Publications
Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleGrundy GJ, Polo LM, Zeng Z, et al., 2016,
PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2).
, Nature Communications, Vol: 7, ISSN: 2041-1723PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes containing nicked DNA and which target PARP3 trans-ribosylation activity to a single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation, nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2. These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break.
-
Journal articleSchuster C, Bellows L, Tosi T, et al., 2016,
The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus
, Science Signaling, Vol: 9, Pages: ra81-ra81, ISSN: 1945-0877Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. To survive an increase in osmolarity, bacteria immediately take up potassium ions and small organic compounds known as compatible solutes. The second messenger cyclic diadenosine monophosphate (c-di-AMP) reduces the ability of bacteria to withstand osmotic stress by binding to and inhibiting several proteins that promote potassium uptake. We identified OpuCA, the adenosine triphosphatase (ATPase) component of an uptake system for the compatible solute carnitine, as a c-di-AMP target protein in S. aureus and found that the LAC*ΔgdpP strain of S. aureus, which overproduces c-di-AMP, showed reduced carnitine uptake. The paired cystathionine-β-synthase (CBS) domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP inhibits osmoprotection through multiple mechanisms.
-
Journal articleBaek K, Bowman L, Millership C, et al., 2016,
The cell wall polymer lipoteichoic acid becomes non-essential in Staphylococcus aureus cells lacking the ClpX chaperone
, mBio, Vol: 7, ISSN: 2150-7511Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.
-
Journal articleBrown RL, Clarke TB, 2016,
The regulation of host defences to infection by the microbiota
, Immunology, Vol: 150, Pages: 1-6, ISSN: 0019-2805The skin and mucosal epithelia of humans and other mammals are permanently colonised by large microbial communities (the microbiota). Due to this life-long association with the microbiota, these microbes have an extensive influence over the physiology of their host organism. It is now becoming apparent that nearly all tissues and organ systems, whether in direct contact with the microbiota, or in deeper host sites, are under microbial influence. The immune system is perhaps the most profoundly affected, with the microbiota programming both its innate and adaptive arms. The regulation of immunity by the microbiota helps protect the host against intestinal and extra-intestinal infection by many classes of pathogen. In this review, we will discuss the experimental evidence supporting a role for the microbiota in regulating host defences to extra-intestinal infection, draw together common mechanistic themes, including the central role of pattern recognition receptors, and outline outstanding questions which need to be answered. This article is protected by copyright. All rights reserved.
-
Journal articleBrown DR, Sheppard CM, Matthews S, et al., 2016,
The Xp10 bacteriophage protein P7 inhibits transcription by the major and major variant forms of the host RNA polymerase via a common mechanism
, Journal of Molecular Biology, Vol: 428, Pages: 3911-3919, ISSN: 1089-8638The σ factor is a functionally obligatory subunit of the bacterial transcription machinery, the RNA polymerase. Bacteriophage-encoded small proteins that either modulate or inhibit the bacterial RNAP to allow the temporal regulation of bacteriophage gene expression often target the activity of the major bacterial σ factor, σ70. Previously, we showed that during Xanthomonas oryzae phage Xp10 infection, the phage protein P7 inhibits the host RNAP by preventing the productive engagement with the promoter and simultaneously displaces the σ70 factor from the RNAP. In this study, we demonstrate that P7 also inhibits the productive engagement of the bacterial RNAP containing the major variant bacterial σ factor, σ54, with its cognate promoter. The results suggest for the first time that the major variant form of the host RNAP can also be targeted by bacteriophage-encoded transcription regulatory proteins. Since the major and major variant σ factor interacting surfaces in the RNAP substantially overlap, but different regions of σ70 and σ54 are used for binding to the RNAP, our results further underscore the importance of the σ–RNAP interface in bacterial RNAP function and regulation and potentially for intervention by antibacterials.
-
Journal articleLiang X, Liu B, Zhu F, et al., 2016,
A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property.
, Scientific Reports, Vol: 6, ISSN: 2045-2322Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase.
-
Journal articleLee W-C, Matthews S, Garnett JA, 2016,
Crystal structure and analysis of HdaB: the Enteroaggregative Escherichia coli AAF/IV pilus tip protein
, Protein Science, Vol: 25, Pages: 1898-1905, ISSN: 1469-896XEnteroaggregative Escherichia coli is the primary cause of pediatric diarrhea indeveloping countries and utilize aggregative adherence fimbriae (AAFs) to promoteinitial adherence to the host intestinal mucosa, promote the formation of biofilms andmediate host invasion. Five AAFs have been identified to date and AAF/IV is amongstthe most prevalent found in clinical isolates. Here we present the X-ray crystal structureof the AAF/IV tip protein HdaB at 2.0 Å resolution. It shares high structural homologywith members of the Afa/Dr superfamily of fimbriae, which are involved in hostinvasion. We highlight surface exposed residues that share sequence homology andpropose that these may function in invasion and also non-conserved regions that couldmediate HdaB specific adhesive functions.
-
Journal articleRasheed M, Garnett J, Perez-Dorado I, et al., 2016,
Crystal structure of the CupB6 adhesive tip from the chaperone-usher family of pili from Pseudomonas aeruginosa
, Biochimica et Biophysica Acta - Protein Structure, Vol: 1864, Pages: 1500-1505, ISSN: 0005-2795Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronicinfection of the lungs of cystic fibrosis patients. Chaperone-usher systems in P. aeruginosa are knownto translocate and assemble adhesive pili on the bacterial surface and contribute to biofilm formationwithin the host. Here, we report the crystal structure of the tip adhesion subunit CupB6 from thecupB1-6 gene cluster. The tip domain is connected to the pilus via the N-terminal donor strand fromthe main pilus subunit CupB1. Although the CupB6 adhesion domain bears structural features similarto other CU adhesins it displays an unusual polyproline helix adjacent to a prominent surface pocket,which are likely the site for receptor recognition.
-
Journal articleKierdorf K, Dionne MS, 2016,
The software and hardware of macrophages: a diversity of options
, Developmental Cell, Vol: 38, Pages: 122-125, ISSN: 1878-1551Macrophages play important immune and homeostatic roles that depend on the ability to receive and interpret specific signals from environmental stimuli. Here we describe the different activation states these cells can exhibit in response to signals and how these states affect and can be affected by bacterial pathogens.
-
Journal articlePruneda JN, Durkin CH, Geurink PP, et al., 2016,
The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases
, Molecular Cell, Vol: 63, Pages: 261-276, ISSN: 1097-2765Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.