Publications
Results
- Showing results for:
- Reset all filters
Search results
-
Journal articlePinto AL, Rai RK, Brown JC, et al., 2021,
Ultrastructural insight into SARS-CoV-2 attachment, entry and budding in human airway epithelium
<jats:title>Abstract</jats:title><jats:p>Ultrastructural studies of SARS-CoV-2 infected cells are crucial to better understand the mechanisms of viral entry and budding within host cells. Many studies are limited by the lack of access to appropriate cellular models. As the airway epithelium is the primary site of infection it is essential to study SARS-CoV-2 infection of these cells. Here, we examined human airway epithelium, grown as highly differentiated air-liquid interface cultures and infected with three different isolates of SARS-CoV-2 including the B.1.1.7 variant (Variant of Concern 202012/01) by transmission electron microscopy and tomography. For all isolates, the virus infected ciliated but not goblet epithelial cells. Two key SARS-CoV-2 entry molecules, ACE2 and TMPRSS2, were found to be localised to the plasma membrane including microvilli but excluded from cilia. Consistent with these observations, extracellular virions were frequently seen associated with microvilli and the apical plasma membrane but rarely with ciliary membranes. Profiles indicative of viral fusion at the apical plasma membrane demonstrate that the plasma membrane is one site of entry where direct fusion releasing the nucleoprotein-encapsidated genome occurs. Intact intracellular virions were found within ciliated cells in compartments with a single membrane bearing S glycoprotein. Profiles strongly suggesting viral budding from the membrane was observed in these compartments and this may explain how virions gain their S glycoprotein containing envelope.</jats:p>
-
Journal articleZaveri A, Bose A, Sharma S, et al., 2021,
Mycobacterial STAND adenylyl cyclases: the HTH domain binds DNA to form biocrystallized nucleoids
, Biophysical Journal, Vol: 120, Pages: 1231-1246, ISSN: 0006-3495Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme. By analyzing the genomic locus, we could express and purify Rv0890c and find that the NB-ARC domain binds ATP and ADP, but does not hydrolyze these nucleotides. Using systematic evolution of ligands by exponential enrichment (SELEX), we identified DNA sequences that bound to the HTH domain of Rv0890c. Uniquely, the HTH domain could also bind RNA. Atomic force microscopy revealed that binding of Rv0890c to DNA was sequence independent, and binding of adenine nucleotides to the protein induced the formation of higher order structures that may represent biocrystalline nucleoids. This represents the first characterization of this group of proteins and their unusual biochemical properties warrant further studies into their physiological roles in future.
-
Journal articleSabnis A, Haggard K, Kloeckner A, et al., 2021,
Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane
, eLife, Vol: 10, Pages: 1-26, ISSN: 2050-084XColistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.
-
Journal articleRismondo J, Gillis A, Grundling A, 2021,
Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems
, Current Opinion in Microbiology, Vol: 60, Pages: 24-33, ISSN: 1369-5274Secondary cell wall polymers fulfil diverse and important functions within the cell wall of Gram-positive bacteria. Here, we will provide a brief overview of the principles of teichoic acid and complex secondary cell wall polysaccharide biosynthesis pathways in Firmicutes and summarize the recently revised mechanism for the decoration of teichoic acids with d-alanines. Many cell wall polymers are decorated with glycosyl groups, either intracellularly or extracellularly. The main focus of this review will be on the extracellular glycosylation mechanism and recent advances that have been made in the identification of enzymes involved in this process. Based on the proteins involved, we propose to rename the system to multi-component transmembrane glycosylation system in place of three-component glycosylation system.
-
Journal articlevan Sorge NM, Bonsor DA, Deng L, et al., 2021,
Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors
, The EMBO Journal, Vol: 40, Pages: 1-20, ISSN: 0261-4189Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
-
Journal articleMullish BH, Marchesi JR, McDonald JAK, et al., 2021,
Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics?
, Gut Microbes, Vol: 13, Pages: 1-9, ISSN: 1949-0976Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.
-
Journal articleWilliams TJ, Gonzales-Huerta LE, Armstrong-James D, 2021,
Fungal-induced programmed cell death
, Journal of Fungi, Vol: 7, Pages: 1-15, ISSN: 2309-608XFungal infections are a cause of morbidity in humans, and despite the availability of a range of antifungal treatments, the mortality rate remains unacceptably high. Although our knowledge of the interactions between pathogenic fungi and the host continues to grow, further research is still required to fully understand the mechanism underpinning fungal pathogenicity, which may provide new insights for the treatment of fungal disease. There is great interest regarding how microbes induce programmed cell death and what this means in terms of the immune response and resolution of infection as well as microbe-specific mechanisms that influence cell death pathways to aid in their survival and continued infection. Here, we discuss how programmed cell death is induced by fungi that commonly cause opportunistic infections, including Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, the role of programmed cell death in fungal immunity, and how fungi manipulate these pathways.
-
Journal articleFarne H, Singanayagam A, 2021,
Gateway to the lungs: Viral entry receptors and susceptibility to COVID-19
, RESPIROLOGY, Vol: 26, Pages: 404-405, ISSN: 1323-7799 -
Journal articleRuano-Gallego D, Sanchez-Garrido J, Kozik Z, et al., 2021,
Type III secretion system effectors form robust and flexible intracellular virulence networks
, Science, Vol: 371, Pages: 1-21, ISSN: 0036-8075Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
-
Journal articleClarke RS, Ha KP, Edwards AM, 2021,
Multiple classes of bactericidal antibiotics cause DNA double strand breaks in <i>Staphylococcus aureus</i>
<jats:title>Abstract</jats:title><jats:p>Antibiotics inhibit essential bacterial processes, resulting in arrest of growth and in some cases cell death. Many antibiotics are also reported to trigger endogenous production of reactive oxygen species (ROS), which damage DNA and other macromolecules. However, the type of DNA damage that arises and the mechanisms used by bacteria to repair it are largely unclear. We found that several different classes of antibiotic triggered dose-dependent DNA damage in <jats:italic>Staphylococcus aureus</jats:italic>, including some bacteriostatic drugs. Damage was heterogenous and varied in magnitude between strains. However, antibiotic-triggered DNA damage led to double strand breaks, the processing of which by the RexAB helicase/nuclease complex triggered the SOS response and reduced staphylococcal susceptibility to most of the antibacterials tested. In most cases, DNA DSBs occurred under aerobic but not anaerobic conditions, suggesting a role for ROS. We conclude that DNA double strand breaks are a common occurrence during bacterial exposure to several different antibiotic classes and that repair of this damage by the RexAB complex promotes bacterial survival.</jats:p>
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.