Notable Recent Publications

These are some recent publications which give a flavour of the research from the Barclay lab. For a complete list of publications, please see below.


Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature (2016).
Jason S. Long, Efstathios S. Giotis, Olivier Moncorgé, Rebecca Frise, Bhakti Mistry, Joe James, Mireille Morisson, Munir Iqbal, Alain Vignal, Michael A. Skinner & Wendy S. Barclay

This paper identified a key factor that explained why the polymerases from avian influenza viruses are restricted in humans.  For more, please see the associated New and Views.

See our latest ANP32 papers here: eLIFE, Journal of Virology, Journal of Virology.


The mechanism of resistance to favipiravir in influenza. PNAS (2018).
Daniel H. GoldhillAartjan J. W. te VelthuisRobert A. FletcherPinky LangatMaria ZambonAngie Lackenby & Wendy S. Barclay

This paper showed how influenza could evolve resistance to favipiravir, an antiviral that may be used to treat influenza. The residue that mutated to give resistance was highly conserved suggesting that the mechanism of resistance may be applicable to other RNA viruses.


Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. Plos Path. (2018).
Hui Li*, Konrad C. Bradley*, Jason S. Long, Rebecca Frise, Jonathan W. Ashcroft, Lorian C. Hartgroves, Holly Shelton, Spyridon Makris, Cecilia Johansson, Bin Cao & Wendy S. Barclay

Why do avian influenza viruses like H5N1 cause such severe disease in humans? This paper demonstrated that H5N1 viruses replicate better than human viruses in myeloid cells from mice leading to a cytokine storm and more severe disease.


Citation

BibTex format

@article{Peacock:2020:10.1101/2020.09.03.282384,
author = {Peacock, T and Sheppard, C and Staller, E and Frise, R and Swann, O and Goldhill, D and Long, J and Barclay, W},
doi = {10.1101/2020.09.03.282384},
journal = {biorxiv},
title = {Mammalian ANP32A and ANP32B proteins drive alternative avian influenza virus polymerase adaptations},
url = {http://dx.doi.org/10.1101/2020.09.03.282384},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Abstract ANP32 proteins, which act as influenza polymerase co-factors, vary between birds and mammals. The well-known mammalian adaptation, PB2-E627K, enables influenza polymerase to use mammalian ANP32 proteins. However, some mammalian-adapted influenza viruses do not harbour this adaptation. Here, we show that alternative PB2 adaptations, Q591R and D701N also allow influenza polymerase to use mammalian ANP32 proteins. PB2-E627K strongly favours use of mammalian ANP32B proteins, whereas D701N shows no such bias. Accordingly, PB2-E627K adaptation emerges in species with strong pro-viral ANP32B proteins, such as humans and mice, while D701N is more commonly seen in isolates from swine, dogs and horses where ANP32A proteins are more strongly pro-viral. In an experimental evolution approach, passage of avian viruses in human cells drives acquisition of PB2-E627K, but not when ANP32B is ablated. The strong pro-viral support of ANP32B for PB2-E627K maps to the LCAR region of ANP32B.
AU - Peacock,T
AU - Sheppard,C
AU - Staller,E
AU - Frise,R
AU - Swann,O
AU - Goldhill,D
AU - Long,J
AU - Barclay,W
DO - 10.1101/2020.09.03.282384
PY - 2020///
TI - Mammalian ANP32A and ANP32B proteins drive alternative avian influenza virus polymerase adaptations
T2 - biorxiv
UR - http://dx.doi.org/10.1101/2020.09.03.282384
ER -