Publications

You can also access our individual websites (via the Members page) for further information about our research and lists of our publications.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Colijn C, Jones N, Johnston I, Yaliraki SN, Barahona Met al., 2017,

    Towards precision healthcare: context and mathematical challenges

    , Frontiers in Physiology, Vol: 8, ISSN: 1664-042X

    Precision medicine refers to the idea of delivering the right treatment to the right patient at the right time, usually with a focus on a data-centred approach to this task. In this perspective piece, we use the term "precision healthcare" to describe the development of precision approaches that bridge from the individual to the population, taking advantage of individual-level data, but also taking the social context into account. These problems give rise to a broad spectrum of technical, scientific, policy, ethical and social challenges, and new mathematical techniques will be required to meet them. To ensure that the science underpin-ning "precision" is robust, interpretable and well-suited to meet the policy, ethical and social questions that such approaches raise, the mathematical methods for data analysis should be transparent, robust and able to adapt to errors and uncertainties. In particular, precision methodologies should capture the complexity of data, yet produce tractable descriptions at the relevant resolution while preserving intelligibility and traceability, so that they can be used by practitioners to aid decision-making. Through several case studies in this domain of precision healthcare, we argue that this vision requires the development of new mathematical frameworks, both in modelling and in data analysis and interpretation.

  • Journal article
    Dattani J, Barahona M, 2017,

    Stochastic models of gene transcription with upstream drives: Exact solution and sample path characterisation

    , Journal of the Royal Society Interface, Vol: 14, ISSN: 1742-5689

    Gene transcription is a highly stochastic and dynamic process. As a result, the mRNA copynumber of a given gene is heterogeneous both between cells and across time. We present a frameworkto model gene transcription in populations of cells with time-varying (stochastic or deterministic)transcription and degradation rates. Such rates can be understood as upstream cellular drivesrepresenting the effect of different aspects of the cellular environment. We show that the full solutionof the master equation contains two components: a model-specific, upstream effective drive, whichencapsulates the effect of cellular drives (e.g., entrainment, periodicity or promoter randomness),and a downstream transcriptional Poissonian part, which is common to all models. Our analyticalframework treats cell-to-cell and dynamic variability consistently, unifying several approaches in theliterature. We apply the obtained solution to characterise different models of experimental relevance,and to explain the influence on gene transcription of synchrony, stationarity, ergodicity, as well asthe effect of time-scales and other dynamic characteristics of drives. We also show how the solutioncan be applied to the analysis of noise sources in single-cell data, and to reduce the computationalcost of stochastic simulations.

  • Journal article
    Beguerisse-Diaz M, McLennan AK, Garduño-Hernández G, Barahona M, Ulijaszek SJet al., 2017,

    The 'who' and 'what' of #diabetes on Twitter

    , Digital Health, Vol: 3, Pages: 1-29, ISSN: 2055-2076

    Social media are being increasingly used for health promotion, yet thelandscape of users, messages and interactions in such fora is poorlyunderstood. Studies of social media and diabetes have focused mostly onpatients, or public agencies addressing it, but have not looked broadly at allthe participants or the diversity of content they contribute. We study Twitterconversations about diabetes through the systematic analysis of 2.5 milliontweets collected over 8 months and the interactions between their authors. Weaddress three questions: (1) what themes arise in these tweets?; (2) who arethe most influential users?; (3) which type of users contribute to whichthemes? We answer these questions using a mixed-methods approach, integratingtechniques from anthropology, network science and information retrieval such asthematic coding, temporal network analysis, and community and topic detection.Diabetes-related tweets fall within broad thematic groups: health information,news, social interaction, and commercial. At the same time, humorous messagesand references to popular culture appear consistently, more than any other typeof tweet. We classify authors according to their temporal 'hub' and 'authority'scores. Whereas the hub landscape is diffuse and fluid over time, topauthorities are highly persistent across time and comprise bloggers, advocacygroups and NGOs related to diabetes, as well as for-profit entities withoutspecific diabetes expertise. Top authorities fall into seven interestcommunities as derived from their Twitter follower network. Our findings haveimplications for public health professionals and policy makers who seek to usesocial media as an engagement tool and to inform policy design.

  • Journal article
    Kuntz J, Ottobre M, Stan G-B, Barahona Met al., 2016,

    Bounding stationary averages of polynomial diffusions via semidefinite programming

    , SIAM Journal on Scientific Computing, Vol: 38, Pages: A3891-A3920, ISSN: 1095-7197

    We introduce an algorithm based on semidefinite programming that yields increasing (resp.decreasing) sequences of lower (resp. upper) bounds on polynomial stationary averages of diffusionswith polynomial drift vector and diffusion coefficients. The bounds are obtained byoptimising an objective, determined by the stationary average of interest, over the set of realvectors defined by certain linear equalities and semidefinite inequalities which are satisfied bythe moments of any stationary measure of the diffusion. We exemplify the use of the approachthrough several applications: a Bayesian inference problem; the computation of Lyapunov exponentsof linear ordinary differential equations perturbed by multiplicative white noise; and areliability problem from structural mechanics. Additionally, we prove that the bounds convergeto the infimum and supremum of the set of stationary averages for certain SDEs associated withthe computation of the Lyapunov exponents, and we provide numerical evidence of convergencein more general settings.

  • Journal article
    Schaub MT, O'Clery N, Billeh YN, Delvenne J-C, Lambiotte R, Barahona Met al., 2016,

    Graph partitions and cluster synchronization in networks of oscillators

    , Chaos: an interdisciplinary journal of nonlinear science, Vol: 26, ISSN: 1054-1500

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators.

  • Journal article
    Beguerisse Diaz M, Desikan R, Barahona M, 2016,

    Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    , Journal of the Royal Society Interface, Vol: 13, ISSN: 1742-5689

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal-gain cascades (i.e., when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.

  • Journal article
    Amor BRC, Schaub MT, Yaliraki S, Barahona Met al., 2016,

    Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    , Nature Communications, Vol: 7, Pages: 1-13, ISSN: 2041-1723

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  • Journal article
    Bacik KA, Schaub MT, Beguerisse-Diaz M, Billeh YN, Barahona Met al., 2016,

    Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    , PLOS Computational Biology, Vol: 12, ISSN: 1553-734X

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.

  • Journal article
    Fröhlich F, Thomas P, Kazeroonian A, Theis FJ, Grima R, Hasenauer Jet al., 2016,

    Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion

    , PLOS Computational Biology, Vol: 12, ISSN: 1553-734X

    Quantitative mechanistic models are valuable tools for disentangling biochemical pathways and for achieving a comprehensive understanding of biological systems. However, to be quantitative the parameters of these models have to be estimated from experimental data. In the presence of significant stochastic fluctuations this is a challenging task as stochastic simulations are usually too time-consuming and a macroscopic description using reaction rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider moment-closure approximation (MA) and the system size expansion (SSE), which approximate the statistical moments of stochastic processes and tend to be more precise than macroscopic descriptions. We introduce gradient-based parameter optimization methods and uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are assessed using simulation examples as well as by an application to data for Epo-induced JAK/STAT signaling. The application revealed that even if merely population-average data are available, MA and SSE improve parameter identifiability in comparison to RRE. Furthermore, the simulation examples revealed that the resulting estimates are more reliable for an intermediate volume regime. In this regime the estimation error is reduced and we propose methods to determine the regime boundaries. These results illustrate that inference using MA and SSE is feasible and possesses a high sensitivity.

  • Journal article
    Voliotis M, Thomas P, Grima R, Bowsher CGet al., 2016,

    Stochastic simulation of biomolecular networks in dynamic environments

    , PLOS Computational Biology, Vol: 12, ISSN: 1553-734X

    Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wwwtest.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=219&limit=10&page=11&respub-action=search.html Current Millis: 1759570339616 Current Time: Sat Oct 04 10:32:19 BST 2025