Clinical Photonics
Main content blocks
We use light to develop advanced diagnostic tools, wearable sensors, and microscale robots for studying diseases and enabling minimally invasive treatments.
- Twitter/X: @_Thompson_Alex
Research lab info
What we do
We use photonics to develop new technologies for medicine and to study the pathophysiology of disease. This includes new and improved diagnostic tools as well as microscale robotic devices for therapeutic applications. We use a variety of optical techniques for this purpose such as fluorescence, Raman and diffuse reflectance spectroscopy, as well as microscopy and interferometry. We develop devices ranging from wearable sensors and fibre-optic probes for minimally invasive diagnostics through to microscale robots for cellular-scale manipulation and therapy.
Why it is important?
Our research has a number of potential clinical applications including improved monitoring of clinical therapies and interventions (e.g. in inflammatory bowel disease and malnutrition), early diagnosis of infection, and even margin mapping in tumour resection surgery.
How can it benefit patients?
The devices we are developing can potentially provide less invasive and lower cost diagnostics. In turn, this may facilitate patient benefits including earlier diagnosis, earlier identification of relapse (e.g. in therapy response monitoring applications), more widespread deployment and more comfortable patient experiences (e.g. through use of less invasive probes and sensors).
Meet the team
Results
- Showing results for:
- Reset all filters
Search results
- No results found
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.