Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O'Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert Det al., 2020,

    A population-based phenome-wide association study of cardiac and aortic structure and function

    , Nature Medicine, Vol: 26, Pages: 1654-1662, ISSN: 1078-8956

    Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart–brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.

  • Journal article
    Meyer H, Dawes T, Serrani M, Bai W, Tokarczuk P, Cai J, Simoes Monteiro de Marvao A, Henry A, Lumbers T, Gierten J, Thumberger T, Wittbrodt J, Ware J, Rueckert D, Matthews P, Prasad S, Costantino M, Cook S, Birney E, O'Regan Det al., 2020,

    Genetic and functional insights into the fractal structure of the heart

    , Nature, Vol: 584, Pages: 589-594, ISSN: 0028-0836

    The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a vestigeof embryonic development.1,2 The function of these trabeculae in adults and their genetic architecture are unknown. Toinvestigate this we performed a genome-wide association study using fractal analysis of trabecular morphology as animage-derived phenotype in 18,096 UK Biobank participants. We identified 16 significant loci containing genes associatedwith haemodynamic phenotypes and regulation of cytoskeletal arborisation.3,4 Using biomechanical simulations and humanobservational data, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Throughgenetic association studies with cardiac disease phenotypes and Mendelian randomisation, we find a causal relationshipbetween trabecular morphology and cardiovascular disease risk. These findings suggest an unexpected role for myocardialtrabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity, and reveal theirinfluence on susceptibility to disease

  • Journal article
    Lechuga-Vieco AV, Latorre-Pellicer A, Johnston IG, Prota G, Gileadi U, Justo-Méndez R, Acín-Pérez R, Martínez-de-Mena R, Fernández-Toro JM, Jimenez-Blasco D, Mora A, Nicolás-Ávila JA, Santiago DJ, Priori SG, Bolaños JP, Sabio G, Criado LM, Ruíz-Cabello J, Cerundolo V, Jones NS, Enríquez JAet al., 2020,

    Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics

    , Science Advances, Vol: 6, Pages: eaba5345-eaba5345, ISSN: 2375-2548

    Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type–specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues.

  • Journal article
    Sethi S, Jones NS, Fulcher B, Picinali L, Clink DJ, Klinck H, Orme CDLO, Wrege P, Ewers Ret al., 2020,

    Characterising soundscapes across diverse ecosystems using a universal acoustic feature set

    , Proceedings of the National Academy of Sciences of USA, Vol: 117, Pages: 17049-17055, ISSN: 0027-8424

    Natural habitats are being impacted by human pressures at an alarming rate. Monitoring these ecosystem-level changes often requires labor-intensive surveys that are unable to detect rapid or unanticipated environmental changes. Here we have developed a generalizable, data-driven solution to this challenge using eco-acoustic data. We exploited a convolutional neural network to embed soundscapes from a variety of ecosystems into a common acoustic space. In both supervised and unsupervised modes, this allowed us to accurately quantify variation in habitat quality across space and in biodiversity through time. On the scale of seconds, we learned a typical soundscape model that allowed automatic identification of anomalous sounds in playback experiments, providing a potential route for real-time automated detection of irregular environmental behavior including illegal logging and hunting. Our highly generalizable approach, and the common set of features, will enable scientists to unlock previously hidden insights from acoustic data and offers promise as a backbone technology for global collaborative autonomous ecosystem monitoring efforts.

  • Journal article
    Fulcher B, Lubba C, Sethi S, Jones Net al., 2020,

    A self-organizing, living library of time-series data

    , Scientific Data, Vol: 7, ISSN: 2052-4463

    Time-series data are measured across the sciences, from astronomy to biomedicine, but meaningful cross-disciplinary interactions are limited by the challenge of identifying fruitful connections. Here we introduce the web platform, CompEngine, a self-organizing, living library of time-series data, that lowers the barrier to forming meaningful interdisciplinary connections between time series. Using a canonical feature-based representation, CompEngine places all time series in a common feature space, regardless of their origin, allowing users to upload their data and immediately explore diverse data with similar properties, and be alerted when similar data is uploaded in future. In contrast to conventional databases which are organized by assigned metadata, CompEngine incentivizes data sharing by automatically connecting experimental and theoretical scientists across disciplines based on the empirical structure of the data they measure. CompEngine’s growing library of interdisciplinary time-series data also enables the comprehensive characterization of time-series analysis algorithms across diverse types of empirical data.

  • Journal article
    Heaton LLM, Jones NS, Fricker MD, 2020,

    A mechanistic explanation of the transition to simple multicellularity in fungi.

    , Nature Communications, Vol: 11, ISSN: 2041-1723

    Development of multicellularity was one of the major transitions in evolution and occurred independently multiple times in algae, plants, animals, and fungi. However recent comparative genome analyses suggest that fungi followed a different route to other eukaryotic lineages. To understand the driving forces behind the transition from unicellular fungi to hyphal forms of growth, we develop a comparative model of osmotrophic resource acquisition. This predicts that whenever the local resource is immobile, hard-to-digest, and nutrient poor, hyphal osmotrophs outcompete motile or autolytic unicellular osmotrophs. This hyphal advantage arises because transporting nutrients via a contiguous cytoplasm enables continued exploitation of remaining resources after local depletion of essential nutrients, and more efficient use of costly exoenzymes. The model provides a mechanistic explanation for the origins of multicellular hyphal organisms, and explains why fungi, rather than unicellular bacteria, evolved to dominate decay of recalcitrant, nutrient poor substrates such as leaf litter or wood.

  • Journal article
    Greenbury S, Barahona M, Johnston I, 2020,

    HyperTraPS: Inferring probabilistic patterns of trait acquisition in evolutionary and disease progression pathways

    , Cell Systems, Vol: 10, Pages: 39-51, ISSN: 2405-4712

    The explosion of data throughout the biomedical sciences provides unprecedented opportunities to learn about the dynamics of evolution and disease progression, but harnessing these large and diverse datasets remains challenging. Here, we describe a highly generalisable statistical platform to infer the dynamic pathways by which many, potentially interacting, discrete traits are acquired or lost over time in biomedical systems. The platform uses HyperTraPS (hypercubic transition path sampling) to learn progression pathways from cross-sectional, longitudinal, or phylogenetically-linked data with unprecedented efficiency, readily distinguishing multiple competing pathways, and identifying the most parsimonious mechanisms underlying given observations. Its Bayesian structure quantifies uncertainty in pathway structure and allows interpretable predictions of behaviours, such as which symptom a patient will acquire next. We exploit the model’s topology to provide visualisation tools for intuitive assessment of multiple, variable pathways. We apply the method to ovarian cancer progression and the evolution of multidrug resistance in tuberculosis, demonstrating its power to reveal previously undetected dynamic pathways.

  • Journal article
    Hoffmann T, Peel L, Lambiotte R, Jones Net al., 2020,

    Community detection in networks without observing edges

    , Science Advances, Vol: 6, ISSN: 2375-2548

    We develop a Bayesian hierarchical model to identify communities of time series. Fitting the model provides an end-to-end community detection algorithmthat does not extract information as a sequence of point estimates but propagates uncertainties from the raw data to the community labels. Our approachnaturally supports multiscale community detection as well as the selection ofan optimal scale using model comparison. We study the properties of the algorithm using synthetic data and apply it to daily returns of constituents of theS&P100 index as well as climate data from US cities.

  • Journal article
    Maes A, Barahona M, Clopath C, 2020,

    Learning spatiotemporal signals using a recurrent spiking network that discretizes time

    , PLOS Computational Biology, Vol: 16, Pages: e1007606-e1007606

    <jats:title>Abstract</jats:title><jats:p>Learning to produce spatiotemporal sequences is a common task the brain has to solve. The same neural substrate may be used by the brain to produce different sequential behaviours. The way the brain learns and encodes such tasks remains unknown as current computational models do not typically use realistic biologically-plausible learning. Here, we propose a model where a spiking recurrent network of excitatory and inhibitory biophysical neurons drives a read-out layer: the dynamics of the recurrent network is constrained to encode time while the read-out neurons encode space. Space is then linked with time through plastic synapses that follow common Hebbian learning rules. We demonstrate that the model is able to learn spatiotemporal dynamics on a timescale that is behaviourally relevant. Learned sequences are robustly replayed during a regime of spontaneous activity.</jats:p><jats:sec><jats:title>Author summary</jats:title><jats:p>The brain has the ability to learn flexible behaviours on a wide range of time scales. Previous studies have successfully build spiking network models that learn a variety of computational tasks. However, often the learning involved is not local. Here, we investigate a model using biological-plausible plasticity rules for a specific computational task: spatiotemporal sequence learning. The architecture separates time and space into two different parts and this allows learning to bind space to time. Importantly, the time component is encoded into a recurrent network which exhibits sequential dynamics on a behavioural time scale. This network is then used as an engine to drive spatial read-out neurons. We demonstrate that the model can learn complicated spatiotemporal spiking dynamics, such as the song of a bird, and replay the song robustly.</jats:p></jats:sec>

  • Journal article
    Liu Z, Barahona M, 2020,

    Graph-based data clustering via multiscale community detection

    , Applied Network Science, Vol: 5, Pages: 1-20, ISSN: 2364-8228

    We present a graph-theoretical approach to data clustering, which combines the creation of a graph from the data with Markov Stability, a multiscale community detection framework. We show how the multiscale capabilities of the method allow the estimation of the number of clusters, as well as alleviating the sensitivity to the parameters in graph construction. We use both synthetic and benchmark real datasets to compare and evaluate several graph construction methods and clustering algorithms, and show that multiscale graph-based clustering achieves improved performance compared to popular clustering methods without the need to set externally the number of clusters.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wwwtest.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=916&limit=10&page=3&respub-action=search.html Current Millis: 1759528392381 Current Time: Fri Oct 03 22:53:12 BST 2025