Publications
Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleKnuepfer E, Wright KE, Prajapati SK, et al., 2019,
Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites
, PLOS PATHOGENS, Vol: 15, ISSN: 1553-7366- Author Web Link
- Cite
- Citations: 15
-
Journal articleGreen N, Sherrard-Smith E, Tanton C, et al., 2019,
Assessing local chlamydia screening performance by combining survey and administrative data to account for differences in local population characteristics
, Scientific Reports, Vol: 9, ISSN: 2045-2322Reducing health inequalities requires improved understanding of the causes of variation. Local-level variation reflects differences in local population characteristics and health system performance. Identifying low- and high-performing localities allows investigation into these differences. We used Multilevel Regression with Post-stratification (MRP) to synthesise data from multiple sources, using chlamydia testing as our example. We used national probability survey data to identify individual-level characteristics associated with chlamydia testing and combined this with local-level census data to calculate expected levels of testing in each local authority (LA) in England, allowing us to identify LAs where observed chlamydia testing rates were lower or higher than expected, given population characteristics. Taking account of multiple covariates, including age, sex, ethnicity, student and cohabiting status, 5.4% and 3.5% of LAs had testing rates higher than expected for 95% and 99% posterior credible intervals, respectively; 60.9% and 50.8% had rates lower than expected. Residual differences between observed and MRP expected values were smallest for LAs with large proportions of non-white ethnic populations. London boroughs that were markedly different from expected MRP values (90% posterior exceedance probability) had actively targeted risk groups. This type of synthesis allows more refined inferences to be made at small-area levels than previously feasible.
-
Journal articlevan Eijk AM, Larsen DA, Kayentao K, et al., 2019,
Effect of Plasmodium falciparum sulfadoxine-pyrimethamine resistance on the effectiveness of intermittent preventive therapy for malaria in pregnancy in Africa: a systematic review and meta-analysis.
, Lancet Infectious Diseases, Vol: 19, Pages: 546-556, ISSN: 1473-3099BACKGROUND: Resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine threatens the antimalarial effectiveness of intermittent preventive treatment during pregnancy (IPTp) in sub-Saharan Africa. We aimed to assess the associations between markers of sulfadoxine-pyrimethamine resistance in P falciparum and the effectiveness of sulfadoxine-pyrimethamine IPTp for malaria-associated outcomes. METHODS: For this systematic review and meta-analysis, we searched databases (from Jan 1, 1990 to March 1, 2018) for clinical studies (aggregated data) or surveys (individual participant data) that reported data on low birthweight (primary outcome) and malaria by sulfadoxine-pyrimethamine IPTp dose, and for studies that reported on molecular markers of sulfadoxine-pyrimethamine resistance. Studies that involved only HIV-infected women or combined interventions were excluded. We did a random-effects meta-analysis (clinical studies) or multivariate log-binomial regression (surveys) to obtain summarised dose-response data (relative risk reduction [RRR]) and multivariate meta-regression to explore the modifying effects of sulfadoxine-pyrimethamine resistance (as indicated by Ala437Gly, Lys540Glu, and Ala581Gly substitutions in the dhps gene). This study is registered with PROSPERO, number 42016035540. FINDINGS: Of 1097 records screened, 57 studies were included in the aggregated-data meta-analysis (including 59 457 births). The RRR for low birthweight declined with increasing prevalence of dhps Lys540Glu (ptrend=0·0060) but not Ala437Gly (ptrend=0·35). The RRR was 7% (95% CI 0 to 13) in areas of high resistance to sulfadoxine-pyrimethamine (Lys540Glu ≥90% in east and southern Africa; n=11), 21% (14 to 29) in moderate-resistance areas (Ala437Gly ≥90% [central and west Africa], or Lys540Glu ≥30% to <90% [east and southern Africa]; n=16), and 27% (21 to 33) in low-resistance areas (Ala437Gly <90% [central and west Africa], or Lys540Glu <30% [east and
-
Journal articleSlater H, Ross A, Felger I, et al., 2019,
The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density
, Nature Communications, Vol: 10, ISSN: 2041-1723Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.
-
Journal articleBaragaña B, Forte B, Choi R, et al., 2019,
Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis.
, Proc Natl Acad Sci U S AMalaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.
-
Journal articleSherrard-Smith E, Griffin J, Winskill P, et al., 2018,
Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa
, Nature Communications, Vol: 9, ISSN: 2041-1723Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.
-
Journal articlevan Eijk AM, Larsen D, Kayentao K, et al.,
Impact of Plasmodium falciparum Sulphadoxine-Pyrimethamine Resistance on the Effectiveness of Intermittent Preventive Therapy for Malaria in Pregnancy in Africa: A Systematic Review and Meta-Analysis
, Lancet Infectious Diseases, ISSN: 1473-3099BackgroundPlasmodium falciparum resistance to sulphadoxine-pyrimethamine (SP) threatens the efficacy of intermittent preventive treatment (IPTp) for malaria in pregnancy in Africa. We conducted a meta-analysis to assess the impact of SP resistance on IPTp-SP effectiveness.MethodsWe searched databases (1990 to March-01-2018) for clinical studies (aggregated data) or surveys (individual-participant data) containing information on low birthweight (LBW, primary outcome) and malaria by IPTp-SP dose, and for studies reporting SP-resistance molecular markers. We performed random-effects meta-analysis (clinical studies) or multivariate log-binomial regression (surveys) to obtain summarized dose-response data (Relative-Risk-Reduction:RRR) and multivariate meta-regression to explore modifying effects of SP-resistance (dhps substitutions A437G, K540E, A581G). FindingsOf 1097 records, 57 studies were included in the aggregated-data meta-analysis (59,457 births). The RRR for LBW declined with increasing prevalence of Pfdhps-K540E (P-trend=0.0060) but not with Pfdhps-A437G (P-trend=0.35). The RRR in areas of high (Pfdhps-K540E >90%, n=11), moderate (Central/West Africa:Pfdhps-A437G≥90% or East/southern Africa:Pfdhps-K540E 30-90%, n=16) and low SP-resistances (n=30) were 7% (95% CI 0-13), 21% (14-29) and 27% (21-33) respectively (P-trend=0.0054, I2=69.5%). In the individual-participant analysis of 13 surveys (42,394 births), IPTp-SP was associated with reduced LBW in areas with Pfdhps-K540E>90% & Pfdhps-A581G<10% (RRR=10%, 7-12), but not those with Pfdhps-A581G>=10% (pooled Pfdhps-A581G prevalence:37%, range 29-46) (RRR=0.5%, -16-14, n=3). InterpretationThe effectiveness of IPTp-SP is reduced in areas with high SP-resistance, but IPTp-SP remains associated with reduced LBW in areas where Pfdhps-K540E prevalence exceeds 90%. IPTp-SP is not effective in areas with ≥37% prevalence of the highly-resistant sextuple Pfdhps-A581G-containing genotype.
-
Journal articleMagombedze G, Ferguson NM, Ghani AC, 2018,
A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of Anopheles mosquitoes.
, Parasites & Vectors, Vol: 11, ISSN: 1756-3305BACKGROUND: Plasmodium falciparum malaria remains a leading cause of death in tropical regions of the world. Despite efforts to reduce transmission, rebounds associated with the persistence of malaria vectors have remained a major impediment to local elimination. One area that remains poorly understood is how Anopheles populations survive long dry seasons to re-emerge following the onset of the rains. METHODS: We developed a suite of mathematical models to explore the impact of different dry-season mosquito survival strategies on the dynamics of vector populations. We fitted these models to an Anopheles population data set from Mali to estimate the model parameters and evaluate whether incorporating aestivation improved the fit of the model to the observed seasonal dynamics. We used the fitted models to explore the impact of intervention strategies that target aestivating mosquitoes in addition to targeting active mosquitoes and larvae. RESULTS: Including aestivation in the model significantly improved our ability to reproduce the observed seasonal dynamics of vector populations as judged by the deviance information criterion (DIC). Furthermore, such a model resulted in more biologically plausible active mosquito survival times (for A. coluzzii median wet season survival time of 10.9 days, 95% credible interval (CrI): 10.0-14.5 days in a model with aestivation versus 38.1 days, 95% CrI: 35.8-42.5 days in a model without aestivation; similar patterns were observed for A. arabiensis). Aestivation also generated enhanced persistence of the vector population over a wider range of both survival times and fecundity levels. Adding vector control interventions that target the aestivating mosquito population is shown to have the potential to enhance the impact of existing vector control. CONCLUSIONS: Dry season survival attributes appear to drive vector population persistence and therefore have implications for vector control. Further research is therefore needed to better u
-
Journal articleKyrou K, Hammond AM, Galizi R, et al., 2018,
A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes
, Nature Biotechnology, Vol: 36, Pages: 1062-1066, ISSN: 1087-0156In the human malaria vector Anopheles gambiae, the gene doublesex (Agdsx) encodes two alternatively spliced transcripts, dsx-female (AgdsxF) and dsx-male (AgdsxM), that control differentiation of the two sexes. The female transcript, unlike the male, contains an exon (exon 5) whose sequence is highly conserved in all Anopheles mosquitoes so far analyzed. We found that CRISPR–Cas9-targeted disruption of the intron 4–exon 5 boundary aimed at blocking the formation of functional AgdsxF did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype and complete sterility. A CRISPR–Cas9 gene drive construct targeting this same sequence spread rapidly in caged mosquitoes, reaching 100% prevalence within 7–11 generations while progressively reducing egg production to the point of total population collapse. Owing to functional constraint of the target sequence, no selection of alleles resistant to the gene drive occurred in these laboratory experiments. Cas9-resistant variants arose in each generation at the target site but did not block the spread of the drive.
-
Journal articleOkell L, Reiter LM, Ebbe LS, et al., 2018,
Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa
, BMJ Global Health, Vol: 3, ISSN: 2059-7908Artemether–lumefantrine (AL) and artesunate–amodiaquine (AS-AQ) are the most commonly used artemisinin-based combination therapies (ACT) for treatment of Plasmodium falciparum in Africa. Both treatments remain efficacious, but single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multidrug resistance 1 (Pfmdr1) gene may compromise sensitivity. AL and AS-AQ exert opposing selective pressures: parasites with genotype 86Y, Y184 and 1246Y are partially resistant to AS-AQ treatment, while N86, 184 F and D1246 are favoured by AL treatment. Through a systematic review, we identified 397 surveys measuring the prevalence of Pfmdr1 polymorphisms at positions 86 184 or 1246 in 30 countries in Africa. Temporal trends in SNP frequencies after introduction of AL or AS-AQ as first-line treatment were analysed in 32 locations, and selection coefficients estimated. We examined associations between antimalarial policies, consumption, transmission intensity and rate of SNP selection. 1246Y frequency decreased on average more rapidly in locations where national policy recommended AL (median selection coefficient(s) of −0.083), compared with policies of AS-AQ or both AL and AS-AQ (median s=−0.035 and 0.021, p<0.001 respectively). 86Y frequency declined markedly after ACT policy introduction, with a borderline significant trend for a more rapid decline in countries with AL policies (p=0.055). However, these trends could also be explained by a difference in initial SNP frequencies at the time of ACT introduction. There were non-significant trends for faster selection of N86 and D1246 in areas with higher AL consumption and no trend with transmission intensity. Recorded consumption of AS-AQ was low in the locations and times Pfmdr1 data were collected. SNP trends in countries with AL policies suggest a broad increase in sensitivity of parasites to AS-AQ, by 7–10 years after AL introduction. Observed rates of selection have implications for pla
-
Journal articleAydemir O, Janko M, Hathaway NJ, et al., 2018,
Drug-resistance and population structure of plasmodium falciparum across the Democratic Republic of Congo using high-throughput molecular inversion probes
, Journal of Infectious Diseases, Vol: 218, Pages: 946-955, ISSN: 0022-1899A better understanding of the drivers of the spread of malaria parasites and drug resistance across space and time is needed. These drivers can be elucidated using genetic tools. Here, a novel molecular inversion probe (MIP) panel targeting all major drug-resistance mutations and a set of microsatellites was used to genotype Plasmodium falciparum infections of 552 children from the 2013–2014 Demographic and Health Survey conducted in the Democratic Republic of the Congo (DRC). Microsatellite-based analysis of population structure suggests that parasites within the DRC form a homogeneous population. In contrast, sulfadoxine-resistance markers in dihydropteroate synthase show marked spatial structure with ongoing spread of double and triple mutants compared with 2007. These findings suggest that parasites in the DRC remain panmictic despite rapidly spreading antimalarial-resistance mutations. Moreover, highly multiplexed targeted sequencing using MIPs emerges as a cost-effective method for elucidating pathogen genetics in complex infections in large cohorts.
-
Journal articleWaters AJ, Capriotti P, Gaboriau DCA, et al., 2018,
Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster
, Scientific Reports, Vol: 8, ISSN: 2045-2322The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance.
-
Journal articleHellewell J, Walker P, Ghani A, et al., 2018,
Using ante-natal clinic prevalence data to monitor temporal changes in malaria incidence in a humanitarian setting in the Democratic Republic of Congo
, Malaria Journal, Vol: 17, ISSN: 1475-2875BackgroundThe number of clinical cases of malaria is often recorded in resource constrained or conflict settings as a proxy for disease burden. Interpreting case count data in areas of humanitarian need is challenging due to uncertainties in population size caused by security concerns, resource constraints and population movement. Malaria prevalence in women visiting ante-natal care (ANC) clinics has the potential to be an easier and more accurate metric for malaria surveillance that is unbiased by population size if malaria testing is routinely conducted irrespective of symptoms. MethodsA suite of distributed lag non-linear models was fitted to clinical incidence time-series data in children under 5 years and ANC prevalence data from health centres run by Médecins Sans Frontières in the Democratic Republic of Congo, which implement routine intermittent screening and treatment (IST) alongside intermittent preventative treatment in pregnancy (IPTp). These statistical models enable the temporal relationship between the two metrics to be disentangled. ResultsThere was a strong relationship between the ANC prevalence and clinical incidence suggesting that both can be used to describe current malaria endemicity. There was no evidence that ANC prevalence could predict future clinical incidence, though a change in clinical incidence was shown to influence ANC prevalence up to 3 months into the future. ConclusionsThe results indicate that ANC prevalence may be a suitable metric for retrospective evaluations of the impact of malaria interventions and is a useful method for evaluating long-term malaria trends in resource constrained settings.
-
Journal articleWhite MT, Walker PGT, Karl S, et al., 2018,
Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax
, Nature Communications, Vol: 9, ISSN: 2041-1723Plasmodium vivax poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of P. vivax transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt P. vivax transmission. This analysis highlights the potential options for the future of P. vivax control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination.
-
Journal articleWitmer K, Sherrard-Smith E, Straschil U, et al., 2018,
An inexpensive open source 3D printed membrane feeder for human malaria transmission studies
, Malaria Journal, Vol: 17, ISSN: 1475-2875BackgroundThe study of malaria transmission requires the experimental infection of mosquitoes with Plasmodium gametocytes. In the laboratory, this is achieved using artificial membrane feeding apparatus that simulate body temperature and skin of the host, and so permit mosquito feeding on reconstituted gametocyte-containing blood. Membrane feeders either use electric heating elements or complex glass chambers to warm the infected blood; both of which are expensive to purchase and can only be sourced from a handful of specialized companies. Presented and tested here is a membrane feeder that can be inexpensively printed using 3D-printing technology.ResultsUsing the Plasmodium falciparum laboratory strain NF54, three independent standard membrane feeding assays (SMFAs) were performed comparing the 3D-printed feeder against a commercial glass feeder. Exflagellation rates did not differ between the two feeders. Furthermore, no statistically significant difference was found in the oocyst load nor oocyst intensity of Anopheles stephensi mosquitoes (mean oocyst range 1.3–6.2 per mosquito; infection prevalence range 41–79%).ConclusionsOpen source provision of the design files of the 3D-printed feeder will facilitate a wider range of laboratories to perform SMFAs in laboratory and field settings, and enable them to freely customize the design to their own requirements.
-
Journal articleHogan AB, Winskill P, Verity R, et al., 2018,
Modelling population-level impact to inform target product profiles for childhood malaria vaccines
, BMC Medicine, Vol: 16, ISSN: 1741-7015BackgroundThe RTS,S/AS01 vaccine for Plasmodium falciparum malaria demonstrated moderate efficacy in 5–17-month-old children in phase 3 trials, and from 2018, the vaccine will be evaluated through a large-scale pilot implementation program. Work is ongoing to optimise this vaccine, with higher efficacy for a different schedule demonstrated in a phase 2a challenge study. The objective of our study was to investigate the population-level impact of a modified RTS,S/AS01 schedule and dose amount in order to inform the target product profile for a second-generation malaria vaccine.MethodsWe used a mathematical modelling approach as the basis for our study. We simulated the changing anti-circumsporozoite antibody titre following vaccination and related the titre to vaccine efficacy. We then implemented this efficacy profile within an individual-based model of malaria transmission. We compared initial efficacy, duration and dose timing, and evaluated the potential public health impact of a modified vaccine in children aged 5–17 months, measuring clinical cases averted in children younger than 5 years.ResultsIn the first decade of delivery, initial efficacy was associated with a higher reduction in childhood clinical cases compared to vaccine duration. This effect was more pronounced in high transmission settings and was due to the efficacy benefit occurring in younger ages where disease burden is highest. However, the low initial efficacy and long duration schedule averted more cases across all age cohorts if a longer time horizon was considered. We observed an age-shifting effect due to the changing immunological profile in higher transmission settings, in scenarios where initial efficacy was higher, and the fourth dose administered earlier.ConclusionsOur findings indicate that, for an imperfect childhood malaria vaccine with suboptimal efficacy, it may be advantageous to prioritise initial efficacy over duration. We predict that a modified vaccine could outpe
-
Journal articlevan Beek AE, Sarr I, Correa S, et al., 2018,
Complement Factor H Levels Associate With Plasmodium falciparum Malaria Susceptibility and Severity.
, Open Forum Infect Dis, Vol: 5, ISSN: 2328-8957BACKGROUND: Plasmodium falciparum may evade complement-mediated host defense by hijacking complement Factor H (FH), a negative regulator of the alternative complement pathway. Plasma levels of FH vary between individuals and may therefore influence malaria susceptibility and severity. METHODS: We measured convalescent FH plasma levels in 149 Gambian children who had recovered from uncomplicated or severe P. falciparum malaria and in 173 healthy control children. We compared FH plasma levels between children with malaria and healthy controls, and between children with severe (n = 82) and uncomplicated malaria (n = 67). We determined associations between FH plasma levels and laboratory features of severity and used multivariate analyses to examine associations with FH when accounting for other determinants of severity. RESULTS: FH plasma levels differed significantly between controls, uncomplicated malaria cases, and severe malaria cases (mean [95% confidence interval], 257 [250 to 264], 288 [268 to 309], and 328 [313 to 344] µg/mL, respectively; analysis of variance P < .0001). FH plasma levels correlated with severity biomarkers, including lactate, parasitemia, and parasite density, but did not correlate with levels of PfHRP2, which represent the total body parasite load. Associations with severity and lactate remained significant when adjusting for age and parasite load. CONCLUSIONS: Natural variation in FH plasma levels is associated with malaria susceptibility and severity. A prospective study will be needed to strengthen evidence for causation, but our findings suggest that interfering with FH binding by P. falciparum might be useful for malaria prevention or treatment.
-
Journal articleLee HJ, Georgiadou A, Walther M, et al., 2018,
Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria
, Science Translational Medicine, Vol: 10, Pages: 1-17, ISSN: 1946-6234The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA-sequencing of blood from infected patients. Here we performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Co-expression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ related genes, together with inadequate suppression of type-1 interferon signalling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying targets for adjunctive therapy.
-
Journal articleRoutledge I, Chevez JER, Cucunubá ZM, et al., 2018,
Estimating spatiotemporally varying malaria reproduction numbers in a near elimination setting
, Nature Communications, Vol: 9, Pages: 1-8, ISSN: 2041-1723In 2016 the World Health Organization identified 21 countries that could eliminate malaria by 2020. Monitoring progress towards this goal requires tracking ongoing transmission. Here we develop methods that estimate individual reproduction numbers and their variation through time and space. Individual reproduction numbers, Rc, describe the state of transmission at a point in time and differ from mean reproduction numbers, which are averages of the number of people infected by a typical case. We assess elimination progress in El Salvador using data for confirmed cases of malaria from 2010 to 2016. Our results demonstrate that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55–0.65), individual reproduction numbers often exceeded one. We estimate a decline in Rc between 2010 and 2016. However we also show that if importation is maintained at the same rate, the country may not achieve malaria elimination by 2020.
-
Journal articleSherrard-Smith E, Sala KA, Betancourt M, et al., 2018,
Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density
, eLife, Vol: 7, ISSN: 2050-084XAnti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7–94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1–87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts.
-
Journal articleLee HJ, Georgiadou A, Otto T, et al., 2018,
Transcriptomic studies in malaria – a paradigm for investigation of systemic host-pathogen interactions
, Microbiology and Molecular Biology Reviews, Vol: 82, ISSN: 1092-2172Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analysis of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue-and systemic-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria as a paradigm for transcriptomic assessment of systemic host-pathogen interaction in humans, because much of the direct host-pathogen interaction occurs within the blood–a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria, and how these may guide studies of host-pathogen interaction in other infectious diseases. We propose that the potential of transcriptomic studies to improve understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require integration of transcriptomic data with analytical approaches from other scientific disciplines including epidemiology and mathematical modelling.
-
Journal articleTadesse FG, Slater HC, Chali W, et al., 2018,
The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia
, Clinical Infectious Diseases, Vol: 66, Pages: 1883-1891, ISSN: 1058-4838Background: The majority of P. vivax and P. falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections, often of low-parasite-density, compared to clinical malaria cases, is currently unknown but important for malaria elimination strategies. Methods: We assessed infectivity of passively-recruited symptomatic malaria patients (n=41) and community-recruited asymptomatic individuals with microscopy- (n=41) and PCR-detected infections (n=82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data was used to estimate the contributions of these populations to the infectious reservoir. Results: Overall, 34.9% (29/83) of P. vivax and 15.1% (8/53) P. falciparum infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). P. vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy- and PCR-detected infections were responsible for 8.0%, 76.2% and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. Conclusions: In this low-endemic setting aiming for malaria elimination, asymptomatic infections are highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might thus accelerate elimination efforts.
-
Journal articleMcardle A, Turkova A, Cunnington A, 2018,
When do co-infections matter?
, Current Opinion in Infectious Diseases, Vol: 31, Pages: 209-215, ISSN: 0951-7375Purpose of review: Advances in diagnostic methods mean that co-infections are increasingly being detected in clinical practice, yet their significance is not always obvious. In parallel, basic science studies are increasingly investigating interactions between pathogens to try to explain real-life observations and elucidate biological mechanisms. Recent findings: Co-infections may be insignificant, detrimental or even beneficial, and these outcomes can occur through multiple levels of interactions which include modulation of the host response, altering the performance of diagnostic tests and drug-drug interactions during treatment. The harmful effects of chronic co-infections such as tuberculosis or Hepatitis B and C in association with HIV are well established, and recent studies have focussed on strategies to mitigate these effects. However consequences of many acute co-infections are much less certain, and recent conflicting findings simply highlight many of the challenges of studying naturally acquired infections in humans. Summary: Tackling these challenges, using animal models or careful prospective studies in humans may prove to be worthwhile. There are already tantalising examples where identification and treatment of relevant co-infections seems to hold promise for improved health outcomes.
-
Journal articleMarshall JM, Wu SL, Sanchez HMC, et al., 2018,
Mathematical models of human mobility of relevance to malaria transmission in Africa
, Scientific Reports, Vol: 8, ISSN: 2045-2322As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3–5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns – a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively “absorbed” as they move outwards from their origin of travel. The gravity model provided a better fit to the data overall and for travel to large populations, while the radiation model provided a better fit for nearby populations. One strength of the data set was that trips could be categorized according to traveler group – namely, women traveling with children in all survey countries and youth workers in Mali. For gravity models fitted to data specific to these groups, youth workers were found to have a higher travel frequency to large population centers, and women traveling with children a lower frequency. These models may help predict the spatial transmission of malaria parasites and inform strategies to control their spread.
-
Journal articleGhani AC, 2018,
Can improving access to care help to eliminate malaria?
, Lancet, Vol: 391, Pages: 1870-1871, ISSN: 0140-6736 -
Journal articleWhite MT, Karl S, Koepfli C, et al., 2018,
Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses
, Malaria Journal, Vol: 17, ISSN: 1475-2875Background:In malaria endemic populations, complex patterns of Plasmodium vivax and Plasmodium falciparum blood-stage infection dynamics may be observed. Genotyping samples from longitudinal cohort studies for merozoite surface protein (msp) variants increases the information available in the data, allowing multiple infecting parasite clones in a single individual to be identified. msp genotyped samples from two longitudinal cohorts in Papua New Guinea (PNG) and Thailand were analysed using a statistical model where the times of acquisition and clearance of each clone in every individual were estimated using a process of data augmentation.Results:For the populations analysed, the duration of blood-stage P. falciparum infection was estimated as 36 (95% Credible Interval (CrI): 29, 44) days in PNG, and 135 (95% CrI 94, 191) days in Thailand. Experiments on simulated data indicated that it was not possible to accurately estimate the duration of blood-stage P. vivax infections due to the lack of identifiability between a single blood-stage infection and multiple, sequential blood-stage infections caused by relapses. Despite this limitation, the method and data point towards short duration of blood-stage P. vivax infection with a lower bound of 24 days in PNG, and 29 days in Thailand. On an individual level, P. vivax recurrences cannot be definitively classified into re-infections, recrudescences or relapses, but a probabilistic relapse phenotype can be assigned to each P. vivax sample, allowing investigation of the association between epidemiological covariates and the incidence of relapses.Conclusion:The statistical model developed here provides a useful new tool for in-depth analysis of malaria data from longitudinal cohort studies, and future application to data sets with multi-locus genotyping will allow more detailed investigation of infection dynamics.
-
Journal articleO'Brien A, Sherrard-Smith E, Sile B, et al., 2018,
Spatial clusters of gonorrhoea in England with particular reference to the outcome of partner notification: 2012 and 2013
, PLoS ONE, Vol: 13, ISSN: 1932-6203Background:This study explored spatial-temporal variation in diagnoses of gonorrhoea to identify and quantify endemic areas and clusters in relation to patient characteristics and outcomes of partner notification (PN) across England, UK.Methods:Endemic areas and clusters were identified using a two-stage analysis with Kulldorff’s scan statistics (SaTScan).ResultsOf 2,571,838 tests, 53,547 diagnoses were gonorrhoea positive (positivity = 2.08%). The proportion of diagnoses in heterosexual males was 1.5 times that in heterosexual females. Among index cases, men who have sex with men (MSM) were 8 times more likely to be diagnosed with gonorrhoea than heterosexual males (p<0.0001). After controlling for age, gender, ethnicity and deprivation rank, 4 endemic areas were identified including 11,047 diagnoses, 86% of which occurred in London. 33 clusters included 17,629 diagnoses (34% of total diagnoses in 2012 and 2013) and spanned 21 locations, some of which were dominated by heterosexually acquired infection, whilst others were MSM focused. Of the 53,547 diagnoses, 14.5% (7,775) were the result of PN. The proportion of patients who attended services as a result of PN varied from 0% to 61% within different age, gender and sexual orientation cohorts. A third of tests resulting from PN were positive for gonorrhoea. 25% of Local Authorities (n = 81, 95% CI: 20.2, 29.5) had a higher than expected proportion for female PN diagnoses as compared to 16% for males (n = 52, 95% CI: 12.0, 19.9).Conclusions:The English gonorrhoea epidemic is characterised by spatial-temporal variation. PN success varied between endemic areas and clusters. Greater emphasis should be placed on the role of PN in the control of gonorrhoea to reduce the risk of onward transmission, re-infection, and complications of infection.
-
Journal articleVerity RJ, Hathaway N, Waltmann A, et al., 2018,
Plasmodium falciparum genetic variation of var2csa in the Democratic Republic of the Congo
, Malaria Journal, Vol: 17, ISSN: 1475-2875Background: The Democratic Republic of the Congo (DRC) bears a high burden of malaria, which is exacerbated inpregnant women. The VAR2CSA protein plays a crucial role in pregnancy-associated malaria (PAM), and hence quantifyingdiversity at the var2csa locus in the DRC is important in understanding the basic epidemiology of PAM, and indeveloping a robust vaccine against PAM.Methods: Samples were taken from the 2013–14 Demographic and Health Survey conducted in the DRC, focusingon children under 5 years of age. A short subregion of the var2csa gene was sequenced in 115 spatial clusters, givingcountry-wide estimates of sequence polymorphism and spatial population structure.Results: Results indicate that var2csa is highly polymorphic, and that diversity is being maintained through balancingselection, however, there is no clear signal of phylogenetic or geographic structure to this diversity. Linear modellingdemonstrates that the number of var2csa variants in a cluster correlates directly with cluster prevalence, but not withother epidemiological factors such as urbanicity.Conclusions: Results suggest that the DRC fts within the global pattern of high var2csa diversity and little geneticdiferentiation between regions. A broad multivalent VAR2CSA vaccine candidate could beneft from targeting stableregions and common variants to address the substantial genetic diversity.
-
Journal articleKaslow DC, Okumu F, Wells TNC, et al., 2017,
malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication
, PLoS Medicine, Vol: 14, ISSN: 1549-1277Since the turn of the century, a remarkable expansion has been achieved in the range andeffectiveness of products and strategies available to prevent, treat, and control malaria,including advances in diagnostics, drugs, vaccines, and vector control. These advanceshave once again put malaria elimination on the agenda. However, it is clear that even withthe means available today, malaria control and elimination pose a formidable challenge inmany settings. Thus, currently available resources must be used more effectively, and newproducts and approaches likely to achieve these goals must be developed. This paper considerstools (both those available and others that may be required) to achieve and maintainmalaria elimination. New diagnostics are needed to direct treatment and detect transmissionpotential; new drugs and vaccines to overcome existing resistance and protect against clinicaland severe disease, as well as block transmission and prevent relapses; and new vectorcontrol measures to overcome insecticide resistance and more powerfully interrupt transmission.It is also essential that strategies for combining new and existing approaches aredeveloped for different settings to maximise their longevity and effectiveness in areas withcontinuing transmission and receptivity. For areas where local elimination has been recentlyachieved, understanding which measures are needed to maintain elimination is necessaryto prevent rebound and the reestablishment of transmission. This becomes increasinglyimportant as more countries move towards elimination.
-
Journal articleWinskill P, Slater H, Griffin J, et al., 2017,
The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study
, PLoS Medicine, Vol: 14, ISSN: 1549-1277BackgroundAlthough significant progress has been made in reducing malaria transmission globally inrecent years, a large number of people remain at risk and hence the gains made are fragile.Funding lags well behind amounts needed to protect all those at risk and ongoing contributionsfrom major donors, such as the President’s Malaria Initiative (PMI), are vital to maintainprogress and pursue further reductions in burden. We use a mathematical modellingapproach to estimate the impact of PMI investments to date in reducing malaria burden andto explore the potential negative impact on malaria burden should a proposed 44% reductionin PMI funding occur.Methods and findingsWe combined an established mathematical model of Plasmodium falciparum transmissiondynamics with epidemiological, intervention, and PMI-financing data to estimate the contributionPMI has made to malaria control via funding for long-lasting insecticide treated nets(LLINs), indoor residual spraying (IRS), and artemisinin combination therapies (ACTs). Weestimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million) malariacases and saved 940,049 (95% CrI: 545,228, 1.4 million) lives since 2005. If funding is maintained,PMI-funded interventions are estimated to avert a further 162 million cases (95%CrI: 116 million, 194 million) cases, saving a further 692,589 (95% CrI: 392,694, 955,653)lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166) perDisability Adjusted Life Year (DALY) averted, PMI-funded interventions are highly costeffective.We also demonstrate the further impact of this investment by reducing caseloadson health systems. If a 44% reduction in PMI funding were to occur, we predict that this lossof direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million) cases and290,649 deaths (95% CrI: 167,208, 395,263) deaths between 2017 and 2020. We have notmodelled indirect impacts of PMI funding (such as health systems strengthening
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.