Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Yang G, Chen J, Gao Z, Zhang H, Ni H, Angelini E, Mohiaddin R, Wong T, Keegan J, Firmin Det al., 2018,

    Multiview sequential learning and dilated residual learning for a fully automatic delineation of the left atrium and pulmonary veins from late gadolinium-enhanced cardiac MRI images

    , 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Publisher: IEEE, Pages: 1123-1127, ISSN: 1557-170X

    Accurate delineation of heart substructures is a prerequisite for abnormality detection, for making quantitative and functional measurements, and for computer-aided diagnosis and treatment planning. Late Gadolinium-Enhanced Cardiac MRI (LGE-CMRI) is an emerging imaging technology for myocardial infarction or scar detection based on the differences in the volume of residual gadolinium distribution between scar and healthy tissues. While LGE-CMRI is a well-established non-invasive tool for detecting myocardial scar tissues in the ventricles, its application to left atrium (LA) imaging is more challenging due to its very thin wall of the LA and poor quality images, which may be produced because of motion artefacts and low signal-to-noise ratio. As the LGE-CMRI scan is designed to highlight scar tissues by altering the gadolinium kinetics, the anatomy among different heart substructures has less distinguishable boundaries. An accurate, robust and reproducible method for LA segmentation is highly in demand because it can not only provide valuable information of the heart function but also be helpful for the further delineation of scar tissue and measuring the scar percentage. In this study, we proposed a novel deep learning framework working on LGE-CMRI images directly by combining sequential learning and dilated residual learning to delineate LA and pulmonary veins fully automatically. The achieved results showed accurate segmentation results compared to the state-of-the-art methods. The proposed framework leads to an automatic generation of a patient-specific model that can potentially enable an objective atrial scarring assessment for the atrial fibrillation patients.

  • Journal article
    Schlemper J, Yang G, Ferreira P, Scott A, McGill LA, Khalique Z, Gorodezky M, Roehl M, Keegan J, Pennell D, Firmin D, Rueckert Det al., 2018,

    Stochastic deep compressive sensing for the reconstruction of diffusion tensor cardiac MRI

    , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol: 11070 LNCS, Pages: 295-303, ISSN: 0302-9743

    © Springer Nature Switzerland AG 2018. Understanding the structure of the heart at the microscopic scale of cardiomyocytes and their aggregates provides new insights into the mechanisms of heart disease and enables the investigation of effective therapeutics. Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) is a unique non-invasive technique that can resolve the microscopic structure, organisation, and integrity of the myocardium without the need for exogenous contrast agents. However, this technique suffers from relatively low signal-to-noise ratio (SNR) and frequent signal loss due to respiratory and cardiac motion. Current DT-CMR techniques rely on acquiring and averaging multiple signal acquisitions to improve the SNR. Moreover, in order to mitigate the influence of respiratory movement, patients are required to perform many breath holds which results in prolonged acquisition durations (e.g., ~ 30 min using the existing technology). In this study, we propose a novel cascaded Convolutional Neural Networks (CNN) based compressive sensing (CS) technique and explore its applicability to improve DT-CMR acquisitions. Our simulation based studies have achieved high reconstruction fidelity and good agreement between DT-CMR parameters obtained with the proposed reconstruction and fully sampled ground truth. When compared to other state-of-the-art methods, our proposed deep cascaded CNN method and its stochastic variation demonstrated significant improvements. To the best of our knowledge, this is the first study using deep CNN based CS for the DT-CMR reconstruction. In addition, with relatively straightforward modifications to the acquisition scheme, our method can easily be translated into a method for online, at-the-scanner reconstruction enabling the deployment of accelerated DT-CMR in various clinical applications.

  • Conference paper
    Chen J, Yang G, Gao Z, Ni H, Angelini E, Mohiaddin R, Wong T, Zhang Y, Du X, Zhang H, Keegan J, Firmin Det al., 2018,

    Multiview two-task recursive attention model for left atrium and atrial scars segmentation

    , Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Publisher: Springer, Pages: 455-463, ISSN: 0302-9743

    Late Gadolinium Enhanced Cardiac MRI (LGE-CMRI) for detecting atrial scars in atrial fibrillation (AF) patients has recently emerged as a promising technique to stratify patients, guide ablation therapy and predict treatment success. Visualisation and quantification of scar tissues require a segmentation of both the left atrium (LA) and the high intensity scar regions from LGE-CMRI images. These two segmentation tasks are challenging due to the cancelling of healthy tissue signal, low signal-to-noise ratio and often limited image quality in these patients. Most approaches require manual supervision and/or a second bright-blood MRI acquisition for anatomical segmentation. Segmenting both the LA anatomy and the scar tissues automatically from a single LGE-CMRI acquisition is highly in demand. In this study, we proposed a novel fully automated multiview two-task (MVTT) recursive attention model working directly on LGE-CMRI images that combines a sequential learning and a dilated residual learning to segment the LA (including attached pulmonary veins) and delineate the atrial scars simultaneously via an innovative attention model. Compared to other state-of-the-art methods, the proposed MVTT achieves compelling improvement, enabling to generate a patient-specific anatomical and atrial scar assessment model.

  • Conference paper
    Mo Y, Liu F, McIlwraith D, Yang G, Zhang J, He T, Guo Yet al., 2018,

    The Deep Poincaré Map: A Novel Approach for Left Ventricle Segmentation

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2018), Pages: 561-568, ISSN: 0302-9743

    © 2018, Springer Nature Switzerland AG. Precise segmentation of the left ventricle (LV) within cardiac MRI images is a prerequisite for the quantitative measurement of heart function. However, this task is challenging due to the limited availability of labeled data and motion artifacts from cardiac imaging. In this work, we present an iterative segmentation algorithm for LV delineation. By coupling deep learning with a novel dynamic-based labeling scheme, we present a new methodology where a policy model is learned to guide an agent to travel over the image, tracing out a boundary of the ROI – using the magnitude difference of the Poincaré map as a stopping criterion. Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge. Our method outperforms the previous research over many metrics. In order to demonstrate the transferability of our method we present encouraging results over the STACOM 2011 data, when using a model trained on the SCD dataset.

  • Conference paper
    Wu F, Li L, Yang G, Wong T, Mohiaddin R, Firmin D, Keegan J, Xu L, Zhuang Xet al., 2018,

    Atrial Fibrosis Quantification Based on Maximum Likelihood Estimator of Multivariate Images

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2018), Pages: 604-612, ISSN: 0302-9743

    © 2018, Springer Nature Switzerland AG. We present a fully-automated segmentation and quantification of the left atrial (LA) fibrosis and scars combining two cardiac MRIs, one is the target late gadolinium-enhanced (LGE) image, and the other is an anatomical MRI from the same acquisition session. We formulate the joint distribution of images using a multivariate mixture model (MvMM), and employ the maximum likelihood estimator (MLE) for texture classification of the images simultaneously. The MvMM can also embed transformations assigned to the images to correct the misregistration. The iterated conditional mode algorithm is adopted for optimization. This method first extracts the anatomical shape of the LA, and then estimates a prior probability map. It projects the resulting segmentation onto the LA surface, for quantification and analysis of scarring. We applied the proposed method to 36 clinical data sets and obtained promising results (Accuracy: 0.809±150, Dice: 0.556±187). We compared the method with the conventional algorithms and showed an evidently and statistically better performance (p < 0.03).

  • Conference paper
    Shi Z, Zeng G, Zhang L, Zhuang X, Li L, Yang G, Zheng Get al., 2018,

    Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network for Whole Heart Segmentation from 3D MR Images

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2018), Pages: 569-577, ISSN: 0302-9743

    © 2018, Springer Nature Switzerland AG. In this paper, we propose a probabilistic deep voxelwise dilated residual network, referred as Bayesian VoxDRN, to segment the whole heart from 3D MR images. Bayesian VoxDRN can predict voxelwise class labels with a measure of model uncertainty, which is achieved by a dropout-based Monte Carlo sampling during testing to generate a posterior distribution of the voxel class labels. Our method has three compelling advantages. First, the dropout mechanism encourages the model to learn a distribution of weights with better data-explanation ability and prevents over-fitting. Second, focal loss and Dice loss are well encapsulated into a complementary learning objective to segment both hard and easy classes. Third, an iterative switch training strategy is introduced to alternatively optimize a binary segmentation task and a multi-class segmentation task for a further accuracy improvement. Experiments on the MICCAI 2017 multi-modality whole heart segmentation challenge data corroborate the effectiveness of the proposed method.

  • Conference paper
    Seitzer M, Yang G, Schlemper J, Oktay O, Würfl T, Christlein V, Wong T, Mohiaddin R, Firmin D, Keegan J, Rueckert D, Maier Aet al., 2018,

    Adversarial and perceptual refinement for compressed sensing MRI reconstruction

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2018), Pages: 232-240, ISSN: 0302-9743

    © Springer Nature Switzerland AG 2018. Deep learning approaches have shown promising performance for compressed sensing-based Magnetic Resonance Imaging. While deep neural networks trained with mean squared error (MSE) loss functions can achieve high peak signal to noise ratio, the reconstructed images are often blurry and lack sharp details, especially for higher undersampling rates. Recently, adversarial and perceptual loss functions have been shown to achieve more visually appealing results. However, it remains an open question how to (1) optimally combine these loss functions with the MSE loss function and (2) evaluate such a perceptual enhancement. In this work, we propose a hybrid method, in which a visual refinement component is learnt on top of an MSE loss-based reconstruction network. In addition, we introduce a semantic interpretability score, measuring the visibility of the region of interest in both ground truth and reconstructed images, which allows us to objectively quantify the usefulness of the image quality for image post-processing and analysis. Applied on a large cardiac MRI dataset simulated with 8-fold undersampling, we demonstrate significant improvements (p<0.01) over the state-of-the-art in both a human observer study and the semantic interpretability score.

  • Conference paper
    Mo Y, Liu F, McIlwraith D, Yang G, Zhang J, He T, Guo Yet al., 2018,

    The deep Poincare map: A novel approach for left ventricle segmentation

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 561-568, ISSN: 0302-9743

    Precise segmentation of the left ventricle (LV) within cardiac MRI images is a prerequisite for the quantitative measurement of heart function. However, this task is challenging due to the limited availability of labeled data and motion artifacts from cardiac imaging. In this work, we present an iterative segmentation algorithm for LV delineation. By coupling deep learning with a novel dynamic-based labeling scheme, we present a new methodology where a policy model is learned to guide an agent to travel over the image, tracing out a boundary of the ROI – using the magnitude difference of the Poincaré map as a stopping criterion. Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge. Our method outperforms the previous research over many metrics. In order to demonstrate the transferability of our method we present encouraging results over the STACOM 2011 data, when using a model trained on the SCD dataset.

  • Journal article
    Kraaij T, Kamerling SWA, van Dam LS, Bakker JA, Bajema IM, Page T, Brunini F, Pusey CD, Toes REM, Scherer HU, Rabelink TJ, van Kooten C, Teng YKOet al., 2018,

    Excessive neutrophil extracellular trap formation in ANCA-associated vasculitis is independent of ANCA

    , Kidney International, Vol: 94, Pages: 139-149, ISSN: 0085-2538

    Neutrophil extracellular traps (NETs) are auto-antigenic strands of extracellular DNA covered with myeloperoxidase (MPO) and proteinase3 (PR3) that can be a source for the formation of anti-neutrophil cytoplasmic autoantibodies (ANCAs). The presence of NETs was recently demonstrated in renal tissue of patients with ANCA-associated vasculitis (AAV). NET formation was enhanced in AAV, suggesting that MPO-ANCA could trigger NET formation, supporting a vicious circle placing NETs in the center of AAV pathogenesis. Here we investigated NET formation in 99 patients with AAV by a novel highly sensitive and automated assay. There was a significant excess of ex vivo NET formation in both MPO-ANCA- and PR3-ANCA-positive patients with AAV compared to healthy individuals. Excessive NET formation did not correlate with serum ANCA levels. Likewise, immunoglobulin G depletion had no effect on excessive NET formation in patients with AAV, indicating an ANCA-independent process. Next, we explored the relation of excessive NET formation to clinical disease in ten patients with AAV and showed that excessive NET formation was predominantly found during active disease, more so than during remission. Excessive NET formation was found in patients with AAV hospitalized for disease relapse but not during severe infection. Thus, excessive NET formation in AAV is independent of ANCA, and an excess of ex vivo NET formation was related to active clinical disease in patients with AAV and a marker of autoimmunity rather than infection.

  • Journal article
    Yang G, Yu S, Hao D, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Guo Y, Firmin Det al., 2018,

    DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction

    , IEEE Transactions on Medical Imaging, Vol: 37, Pages: 1310-1321, ISSN: 0278-0062

    Compressed Sensing Magnetic Resonance Imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging based fast MRI, which utilises multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training datasets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN) is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilise our U-Net based generator, which provides an endto-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CSMRI reconstruction methods and newly investigated deep learning approaches. Compared to these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wwwtest.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1161&limit=10&page=8&respub-action=search.html Current Millis: 1759528136617 Current Time: Fri Oct 03 22:48:56 BST 2025