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Preface 

 
This volume of Chemical Engineering Research collects the unedited research project reports 
written by 4th year undergraduates (Class of 2023) of the M.Eng. course on Chemical 
Engineering in the Department of Chemical Engineering at Imperial College London. The 
research project spans for one term (Autumn) during the last year of the career and has an 
emphasis on independence, ability to plan and pursue original project work for an extended 
period, to produce a high quality report, and to present the work to an audience using 
appropriate visual aids. Students are also expected to produce a literature survey and to place 
their work in the context of prior art. The papers presented showcase the diversity and depth of 
some of the research streams in the department, but obviously only touch on a small number 
of research groups and interests. For a full description of the research at the department, the 
reader is referred to the departmental website1. 
 
The papers presented are in no particular order and they are identified by a manuscript number. 
Some papers refer to appendixes and/or supplementary information which are too lengthy to 
include. These files are available directly from the supervisors (see supervisor index at the end 
of the book). Some of the reports are missing, being embargoed, as they contain confidential 
information. A few of the reports correspond to industrial internships, called LINK projects, 
performed in collaboration with Shell.  

Cover figure corresponds to a diagram of a simplified ZESTY reactor model (taken from the 
work of Javier Monteliu and Jien Feung Jason Goh, manuscript 12).  

 

London, February 2023 

 

  

                                                
1 https://www.imperial.ac.uk/chemical-engineering 
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Hybrid ZIF-8@Porous Graphene Oxide (PGO) Hollow Fibre Membranes with 
Improved Molecular Sieving Property for Nanofiltration 

 
Jianing Li and Zihao Li 

Department of Chemical Engineering, Imperial College London, U.K. 
 
Abstract  
Membranes with ultrafast water transport and high molecular rejection are desired for various separation 
processes. Graphene oxide (GO) based membranes have demonstrated their potential for nanofiltration. Despite 
the promising water separation performance, the permeance and molecular rejection of the GO-based membranes 
still require improvement. In this study, high-performance zeolitic imidazolate framework-8 (ZIF-8) hybridised 
porous graphene oxide (PGO) membranes were fabricated via in situ growth of ZIF-8 nanocrystals within the 
PGO membranes' lamellar structure. The crystallisation of ZIF-8 mitigated the rejection loss due to nonselective 
defects and slightly enlarged interlayer d-spacing of the PGO membranes. The ZIF-8 hybridised membranes made 
of PGO nanosheets with 5 hours of mild-etching treatment (ZIF-8@PGO_5h) maintained a pure water permeance 
of 2.81 LMHbar− 1. Various dye molecules were used to measure the permselectivity of the membranes on dye-
containing wastewater. The ZIF-8@PGO_5h membrane showed a molecular weight cut-off (MWCO) of 
approximately 314 g mol− 1, indicating the promising future of MOFs hybridised PGO hollow fibre membranes 
for nanofiltration.  
 
Keywords: Graphene Oxide, Porous Graphene Oxide, Metal-organic Framework, ZIF-8, Hollow Fibre 
Membranes, Nanofiltration, Dye Removal 
 

1. Introduction 
In recent decades, rapid industrialisation and 

population growth have intensified freshwater 
scarcity and lack of safe drinking water, even 
threatening people’s lives, especially in developing 
areas. Membrane technology significantly improves 
the separation processes efficiency in wastewater 
treatment and seawater desalination [1]. Compared 
with conventional separation technologies, 
nanofiltration is more cost and energy- effective and 
environmentally friendly [2]. High-performance 
membranes usually have one or more features: 
ultrahigh pure water permeance, low molecular 
weight cut-off, as well as excellent mechanical and 
chemical stability [3].  

Graphene Oxide (GO), a two-dimensional 
nanomaterial with atomic-scale thickness and high 
aspect ratio, has been studied extensively. Its 
tuneable porosity, surface functionalities, and decent 
chemical and mechanical stability make it an 
emerging star nano-scale material [4]. 

GO membranes can effectively retain small 
molecules and multivalent salts because of the 
explicit interlayer space between GO flakes [5]. 
However, inconsistent water permeation 
observations were reported by various research 
groups indicating the structural instability of GO 
membranes [5, 6, 7]. The unstable structure and 
molecular transport behaviour could be triggered by: 
(1) the hydrogen bonding between passing water 
molecules and oxygen functional groups on the edge 
and the basal plane of the GO membrane and (2) the 
interlayer interaction between charged solute (e.g., 
metal ions) and the negatively charged groups on 
GO membranes [7]. Besides, the water flux could 
drop tremendously after more than ten hours, 

indicating that the GO flakes are not packed in the 
uniform, ordered lamellar structure initially [5].  

In this study, PGO-based membranes have been 
regarded as the starting point. Wu et al. implemented 
a mild chemical etching method to prepare PGO 
dispersion and subsequently fabricated PGO 
membranes on alumina hollow fibre substrates [8]. 
Ammonia (NH4OH) and hydrogen peroxide (H2O2) 
were added into GO dispersion, and the dispersion 
was gently stirred for a specific time. The pore size 
and density of the PGO nanosheets were well 
controlled by manipulating the chemical etching 
time. The water permeation of PGO with 5 hours of 
chemical etching treatment showed a 23-fold 
increase compared with the pristine GO membrane. 
However, compared to pristine GO membranes, its 
rejection of methyl red (MR) dye molecules 
declined significantly due to the nonselective voids 
in the membrane microstructure. 

As aforementioned, the water permeation can be 
improved by increasing the chemical etching time 
but at the cost of losing molecular permselectivity. 
Thus, a novel fabrication method and/or material 
have to be introduced to mitigate the rejection loss 
while maintaining high water permeance. 

Metal-organic frameworks are a new type of 
microporous crystalline materials formed by self-
assembling organic ligands and metal ions through 
coordination bonds. Distinctive features of MOFs 
including large specific surface area and pore 
volume, and tuneable pore size make them 
promising materials for a wide range of applications 
in catalysis, adsorption, and separation. However, 
the formation of defect-free, structurally stable 
MOFs-based thin-film membranes is a crucial 
challenge. The fabrication of MOFs@GO 
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composites is a new concept to take advantage of 
desired properties of both GO and MOFs to achieve 
good size-sieving ability and structural integrity. 
The porous MOFs materials with tailored and 
uniform pore size can patch the nonselective defects 
in the GO membranes. The oxygen functional 
groups on GO nanosheets enable them to form 
coordination bonds with the metal ions in MOFs. 
This characteristic not only promotes the long-term 
stability of the composite membrane even under 
hydraulic pressure or cross-flow condition but also 
enables the selective growth of MOFs to boost the 
separation performance of membranes. 

For instance, Ying, Y. et al. intercalated UiO −
66 − (COOH)2  into GO membranes via pressure-
assisted self-assembly (PASA) filtration method on 
PAN supports [9]. The MOFs@GO membrane with 
0.3 mg of wet UiO − 66(Zr) − (COOH)2  
(corresponding MOF loading, 23.08 wt %) per 1 mg 
of GO showed a 159% improvement compared with 
the pristine GO membrane in water permeation and 
obtained a 99.5 wt% water content in the ethyl 
acetate-water pervaporation process. The 
intercalation of UiO − 66(Zr) − (COOH)2 
successfully reduced the nonselective voids. The 
PASA technique ensured that the interlayer spacing 
only changes little even with the presence of MOFs, 
which gave the membrane a compact structure. 

Recently, a highly stable and ultra-permeable 
hybrid membrane was synthesised by Zhang, W. et 
al. via in situ crystallisation of zeolitic imidazolate 
framework-8 (ZIF-8) at the edges of freeze-dried 
GO (f-GO) nanosheets following an ice-templating 
technique [10]. The ZIF-8 nanocrystals were 
preferentially grown along the edges of the f-GO 
nanosheets. This was because 𝑍𝑛2+ in ZIF-8 formed 
a coordination bond with the carboxyl functional 
group which are predominantly found along the 
edges of the f-GO nanosheets [4]. The clusters of 
ZIF-8 nanocrystals filled these major 
microstructural defects. The resulting water 
permeation increased 30-fold compared with that of 
pristine GO membrane and the perm selectivity of 
the hybrid membrane increased by 6 times. This type 
of MOFs hybrid GO-based membrane with stable 
microstructure, high water permeation, and good 
molecular perm selectivity is the desirable building 
block for future nanofiltration membranes. However, 
the neutral dye rejection results showed a molecular 
weight cut-off (MWCO) of 1300 Da which is 
considerably high for nanofiltration membranes. 
Considering the small pore size of ZIF-8 
nanoparticles (0.34 nm), this relatively poor size-
sieving performance of ZIF-8@GO composite 
membranes implies that ZIF-8 nanoparticles were 
not selectively grown on the edges and micro-
defects of GO membranes. 

In this study, ZIF-8 nanoparticles were grown in 
PGO membranes on alumina hollow fibre substrates 
through a modified two-step in situ growth approach 

to mitigate the trade-off between water permeation 
and molecular permselectivity. During experiments, 
only GO etched for 5 hours (named PGIO_5h) was 
used for membrane fabrication. The two-step in situ 
growth method was conducted by soaking PGO 
membranes in the metal solution (1h /3h /12h) and 
then in the ligand solution (1h /3h /12h). The two-
step in-situ growth allows for the selective growth of 
ZIF-8 nanoparticles in the lamellar structure of PGO 
membranes. Through immersing PGO HF 
membranes in metal solution, metal ions with 
positive charge coordinated with oxygen functional 
groups on PGO nanosheets. Immersion in ligand 
solution leads to ZIF-8 nanoparticle growth. The 
loading of ZIF-8 nanoparticles in ZIF-8@PGO 
membranes can be controlled by adjusting metal and 
ligand immersion time so that water permeation will 
not be sacrificed. 

To evaluate the sieving properties of ZIF-
8@PGO HF membranes, two neutral dyes, Methyl 
Red (MR) and Disperse Red (DR), were used in the 
rejection test. As the PGO membrane is negatively 
charged, neutral dyes were used to ensure rejection 
performance only depends on the size exclusion 
rather than the electrostatic interaction. 

 

2. Experiments 
2.1 Materials 

Alumina powder (99.9% metals basis) was 
obtained from Alpha Aesar. 1-methyl-2-pyrrolidine 
(NMP) and poly (methyl methacrylate (PMMA)) 
were selected as the ceramic suspension solvent and 
binder. Arlacel P135 was supplied by Croda. 99% 
(metals basis) Zinc nitrate hexahydrate was 
purchased from ThermoFisher Scientific. 99% 2-
Methylimidazole was purchased from Sigma-
Aldrich. Methanol (absolute) was provided by 
VWR. PGO dispersion and aluminium oxide 
(Al2O3) hollow fibre (HF) substrates were made in 
the lab. Araldite® Epoxy Adhesive was selected to 
fix hollow fibre substrate on the Swagelok tube 
fitting. Hydrogen peroxide (H2O2) and ammonia 
hydroxide (NH4OH) were used in PGO synthesis. 
 
2.2 GO and PGO synthesis 

Graphene oxide (GO) was synthesised according 
to the modified Hummer’s method [11, 12]. Briefly, 
sulfuric acid (H2SO4) and oxidising agent potassium 
permanganate (KMnO4) were gently added to 
graphite powder in an agitated two-wall glass 
reactor and thoroughly mixed at 35 °C overnight. 
Water was added dropwise to dilute the GO 
suspension and then hydrogen peroxide (H2O2) was 
introduced to remove the excess manganese ions 
(Mn2+) [13]. The dispersion was then filtered and 
washed out with diluted hydrochloric acid (HCl) 
aqueous solution. The resultant GO cake was further 
dried at room temperature in the vacuum oven for 3 
days. The dried GO was deeply washed again using 
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acetone in bath sonication and vacuum filtered to 
remove any remaining acids and ensure high purity 
of GO. After drying GO for at least 3 days under 
vacuum at room temperature, GO powder is finally 
ready to be used for homogenous GO dispersion 
preparation.  

Porous graphene oxide (PGO) dispersion was 
prepared via a mild chemical etching method [8]. 
NH4OH and H2O2 were added into GO dispersion 
(GO/H2O2/NH4OH:20/1/1 vol) and the dispersion 
was gently stirred for 5 hours. The PGO dispersion 
was centrifuged and purified by a dialysis membrane 
to remove any remaining NH4OH and H2O2.  

As how etching time affects the water 
permeation and nanofiltration performance has been 
investigated before and it has been confirmed that 
PGO has shown good performance [8], in this study, 
0.1 mg/mL and 0.05mg/mL of PGO dispersion were 
used in experiments aiming to obtain an optimised 
recipe of PGO-based membranes. 
 
2.3 Preparation of ceramic suspension 

3g of dispersant Arlacel P135, 180 g of NMP and 
150 g of alumina powder were transferred into a 
ceramic jar and mixed with a planetary ball miller at 
283 rpm for 48 hours. After that, PMMA was added, 
and the suspension was further mixed for 48 hours 
in a roll miller. To evacuate the bubbles before 
spinning, the suspension was degassed under 
vacuum for 4 hours. 
 
2.4 Preparation of PGO @ ceramic hollow 
fibre membranes 

The suspension was transferred to a stainless- 
stell syringe after degassing. The Al2O3 hollow 
fibres were prepared using a combined phase-
inversion/sintering process, and sintering was 
conducted at 1450 °C to improve the mechanical 
strength [14]. Aluminium Oxide (Al2O3) hollow 
fibre substrates are immersed into acetone and put in 
the ultrasonic bath for washing. Hollow fibre 
substrates were put into tube fittings and glued with 
epoxy to be fixed. The top of the HF substrate was 
also sealed with epoxy resin. A stronger epoxy was 
utilised to avoid the softening of epoxy by organic 
solvent and any possible leakage during membrane 
fabrication and performance evaluation test. The 

diluted 0.1 mg/mL PGO dispersion was prepared 
and sonicated for 1-2 minutes. Hollow fibre 
substrates, with one end sealed, were dipped into the 
PGO dispersion solution. Under vacuum filtration, 
PGO was stacked to the outer surface of substrate 
and formed a nanosheet with a thickness of 200-400 
nm. The thickness of the PGO membranes can be 
tuned by altering the concentration of the PGO 
dispersion or the coating time. The accomplished 
PGO membranes were dried at 40 °C under vacuum 
for 3 hours to remove any residual water in the 
nanosheets or substrates. A mild drying temperature 
is applied to prevent drying-related reduction of 
PGO membranes. 
 
2.5 Intercalation of ZIF-8 into PGO HF 
membranes 

Zinc nitrate hexahydrate (metal) and 2-
Methylimidazole (ligand) are the ingredients for in 
situ ZIF-8 composite growth. DI water and methanol 
are two solvents that have been used to prepare 
metal and ligand precursor solutions. For both metal 
and ligand precursor solutions, concentration and 
immersion time are two critical parameters 
influencing the loading of ZIF-8 growing on the 
pristine PGO membrane.  

For metal precursor solution, 3000 ppm was 
fixed as the concentration of metal precursor 
solution regardless of solvent type. 1 hour and 3 
hours metal soaking time were set in the first step of 
in-situ growth to allow metal ions to interact with 
oxygen on PGO membranes. 

Regarding the ligand precursor solution, 16000 
ppm and 32000 ppm ligand precursor were prepared 
to test whether ligand concentration affects the 
number of ZIF-8 crystals and the rejection 
performance. Similarly, 1 hour, 3 hours and 12 hours 
ligand immersion time were set up. When the ZIF-8 
nanocrystal growth was done, membranes were 
stored in the dye solution overnight. 
 
2.6 Membrane Characterisation 

The pore size and distribution on the basal plane 
of GO and PGO nanosheets were detected by a high-
resolution transmission electron microscope (HR-
TEM, JEOLJEM-2100F).  

Figure 1 Schematic illustration of ZIF-8@PGO HF membranes 
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The formation of ZIF-8 nanocrystals and the 
morphology of GO membrane, PGO HF membrane, 
and ZIF-8@PGO HF membrane with different 
fabrication methods were observed with a high-
resolution field emission gun scanning electron 
microscope (FEG-SEM, LEO Gemini 1525).  

X-ray diffraction (XRD) spectra was collected 
using X’ Pert PANanlytical instrument operated in a 
2θ range of 5º - 30º. The voltage and current were 
set at 40 kV and 20 mA, respectively. The XRD 
spectra would indicate the successful in situ growth 
of ZIF-8 nanoparticles and could be used to calculate 
the interlayer d-spacings of GO membranes and 
PGO membranes based on Bragg’s equation: 

𝑛 ∗ 𝜆 = 2 ∗ 𝑑 ∗ sin(𝜃) 
where 𝑛, 𝜆, 𝑑, 𝜃 represent a positive integer, the 
wavelength of the X-ray, the interlayer d-spacing 
between two nanosheets, and the X-ray incidence 
angle. 

X-ray photoelectron spectroscopy (XPS) was 
used to determine the binding nature within the ZIF-
8@PGO membrane.   

 
2.7 Water Permeation  

The pure water permeation and nanofiltration 
tests were carried out with dead-end filtration 
system 2. The ZIF-8@PGO HF membrane was 
mounted into a cell fully filled with water and 
pressurised using injected nitrogen gas. The mass of 
collected permeate was recorded every 10 minutes 
so that the permeance J (LMHbar-1) could be 
calculated: 
 

𝐽 =
∆𝑀

𝜌 ∙ 1000 ∙ ∆𝑡 ∙ 𝐴 ∙ 𝑝
 

 
where  ∆𝑀 ,  𝜌 ,  ∆𝑡 , 𝐴, 𝑝 represent the change in 
mass (g), the water density (g/cm3), the change in 
time (s), the cross-sectional area of membrane (m2) 
and the pressure (bar).  

Although the permeate contains some dye 
molecules, as the collected permeate volume and the 
dye concentration are both small compared to the 

dye solution in the feed vessel and water permeance 
was assumed to be equal to the MR or DR 
permeance in this study. 

 
As the collected permeate volume was rather 

smaller than that of feed in solution in the test vessel 
and the dye solution 20 mg/L was very dilute, water 
permeation tests were conducted with dye solution 
assuming the density of dye solution is the same as 
water density. 

 
2.8 Dye rejection test 

To wash off the remaining organic ligand groups 
and prevent the impact of adsorption of the dye 
molecules, PGO HF membranes were kept in the 
dye dispersion (Methyl Red (MR) and Disperse Red 
(DR)) with a concentration of 20 mg/L for 12 hours. 
Like the water permeation procedure, the membrane 
connected to the tube fitting was mounted into a cell 
with dye solution and pressurised by nitrogen. At 
least 3mL of the permeate was collected, and the 
permeate concentration was measured by UV-Vis 
spectrophotometer. Rejection was determined by: 

𝑅 = (1 −
𝐶𝑝

𝐶𝑓
) × 100% 

Figure 3 HR-TEM images of (a) GO nanosheet and (b) PGO nanosheet 

(a)
Pore

Pore

Pore

Graphitic
domains

Amorphous
domain

(b)

Figure 2 Scheme of the setup for pure water permeation 
and nanofiltration tests 
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where R is the membrane rejection to the dye 
molecules, Cp and Cf are the concentration of the 
permeate and the feed solution (mg/L). 
 

3. Results 
3.1 Characterisation of ZIF-8@PGO HF 
membranes 

The pores generated through mild chemical 
etching treatment were observed with HR-TEM. 
The oxidation of graphene created intrinsic pores on 
the basal plane of GO nanosheets. Nevertheless, the 
long and tortuous water transport pathways due to 
low pore density and the small pore sizes hindered 
the fast water permeation. Figure 1 shows the HR-
TEM images of GO and PGO nanosheets. No pores 
were observed in Figure 1(a) due to the minimal 
pore sizes of GO nanosheets that might be lower 
than the TEM detection range. For PGO nanosheets 
(Figure 1(b)), both the pores size and pore density 
increased substantially. The generated pores, the 
crystalline graphitic domains, and the amorphous 
domains are labelled. The pore sizes of PGO 
nanosheets were likely to be smaller than those 
presented in the HR-TEM images, as the electron 
beams emitted by the HR-TEM during the scanning 
might have damaged the samples and enlarged the 
pores on the nanosheets. 

Growing nanocrystals along the edges of the 
PGO nanosheets selectively has two purposes. First, 
to increase the permselectivity of the membrane by 
filling the nonselective voids in the PGO membranes 
while maintaining high water permeation. Second, 

to reinforce the membrane structure and increase the 
mechanical stability of the laminate layers. ZIF-8 
nanocrystals were explicitly selected due to their 
ability to crystallise in situ under mild conditions, 
good water stability, minimal resistance to water 
permeation, and high selectivity against undesired 
molecules due to small pore size (0.34 nm). 

 A uniform distribution of ZIF-8 nanocrystals 
throughout the ZIF-8@PGO HF membrane was 
expected to achieve the desired functionalities. 
Compared to the SEM cross-sectional image of the 
PGO HF membrane (Figure 4(b)), the SEM cross-
sectional image of the ZIF-8@PGO HF membrane 
(Figure 4(d) shows that many nanocrystals were 
grown along the edges of the PGO nanosheets and 
between the membrane and the alumina substrate, 
which indicates both the metal source and ligand 
source could fully penetrate the PGO membrane 
through selective defects. Nevertheless, the 
composition and the growth position of the 
nanocrystals required further investigation. 

From the X-ray diffraction (XRD) spectra 
analysis (Figure 5(a)), GO powder exhibited a sharp 
peak at 2θ = 9.56º, corresponding to an interlayer d-
spacing of 0.836 nm. After 5 hours of mild chemical 
etching treatment, the PGO membrane showed a 
peak at 2θ = 15.11º, corresponding to interlayer d-
spacing of 0.808 nm. The decrease in interlayer d-
spacing is due to the removal of oxygen functional 
groups. Furthermore, the ZIF-8@PGO membrane 
XRD spectra portrayed three peaks at 2θ = 7.56º, 
10.63º, and 13.04º, corresponding to the ZIF-8 
characteristic peaks [15], thereby confirming the 

(a)

(c)

(b)

(d)

Figure 4 Surface and cross-sectional SEM images of (a, b) PGO HF membrane and (c, d)  
ZIF-8@PGO HF membrane (M30003h_M1600012h) 
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successful growth of ZIF-8 nanocrystals in the 
lamellar structure of the PGO membrane. 

X-ray photoelectron spectroscopy (XPS) zinc 
spectra of the ZIF-8@PGO membrane (Figure 5(b)) 
showed two peaks centred at approximately 1021.98 
eV and 1023.98 eV, which correspond to the Zn-O 
and the Zn-CO bonds respectively. The presence of 
the Zn-CO bond confirms the bond formation 
between zinc ions and oxygen-containing functional 
groups on PGO nanosheets. In PGO nanosheets 
(Figure 5(c)), the dominant oxygen-containing 
functional group in the pristine PGO membrane is 
the hydroxyl group (C–OH peak), followed by a 
much smaller amount of carbonyl group (O=C–O 
peak) and carboxyl group (hydro O-C=O peak) [16]. 
After the in situ growth of ZIF-8 nanocrystals, no 
major change took place in oxygen-containing 
functional groups binding energies and peak 
intensities, indicating no significant structural 
change occurred due to ZIF-8 crystallisation. The 
binding energy of hydroxyl group (C-O peak) shifts 
from 286.68 eV to 286.28 eV, which is ascribed to 
the coordination bonds between zinc ions and 
hydroxyl groups. The above changes in XPS spectra 

results proved that ZIF-8 successfully crystallised in 
situ and preferably grew along the periphery of PGO 
nanosheets where the hydroxyl groups locate. Yet a 
fraction of ZIF-8 nanocrystals also grew at the 
surface of the PGO nanosheets, which might 
increase the interlayer d-spacing of the lamellar 
structure. These findings are consistent with the 
graphene oxide layer structure model proposed in 
the literature [17].  
 
3.2 Water permeation and dye rejection 
performance 

To understand how coating time affects the 
water permeance, 0.05mg/mL PGO dispersion was 
used to prepare a batch of pristine PGO membranes 
without any MOF composites. As the coating time 
decreases, the thickness of PGO nanosheets 
decreases. From Figure 6, when the coating time is 
half, water permeation rises with an increasing rate.  

To achieve both high water permeance and good 
dye rejection performance, coating time, PGO 
dispersion concentration, metal and ligand precursor 
solvent, ligand precursor concentration, metal and 
ligand precursor immersion time were altered in the 

Figure 5 (a) XRD spectra of GO powder, PGO, and ZIF-8@PGO, XPS spectra of (b) ZIF-
8@PGO(Zn), (c) PGO (carbon), and (d) ZIF-8@PGO (carbon) 

(a)

PGO(c)

Zn O
Zn CO

PGO@ZIF8 (Zn spectra)(b)

PGO@ZIF8 
(carbon)

(d)
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preliminary stage. After coating 0.1mg/mL PGO 
dispersion onto the hollow fibre substrates for 30s 
and dried, the PGO HF membranes were immerged 
in 3000 ppm metal methanol precursor for 3 hours 
(M_3000_3h) and then 16000 ppm ligand methanol 
precursor for 12 hours (M_16000_12h). 100% MR 
rejection was reached with a low permeance (0.585 
LMHbar-1). Water as a precursor solvent could not 
achieve high rejection therefore methanol was fixed 
as both the metal and ligand precursor solvent for the 
next-step experiments.  

 
In the following experiments, 4 factors including 

the PGO dispersion concentration, ligand 
concentrations, metal and ligand immersion times 
were investigated, and it was found that all factors 
affect the water permeance and rejection. The 
highest water permeance and 100% dye rejection 
were found at 0.05mg/mL, M_3000_3h, 
M_16000_3h, which is as the optimal condition. 
Further improvement could be explored based on 
this recipe.  
 
Factor 1: ligand immersion time 

 
In Figure 7, longer ligand immersion time, in the 

other word, longer reaction time allowed more 
ligands to link to the metal nodes and from ZIF-8 

nanocrystals. In that way, water was blocked by 
clusters of ZIF-8 crystals therefore the water 
permeance declined and 12 hours demonstrated a 
perfect rejection.  
 
Factor 2: ligand concentrations 

 
According to the idea of changing ligand 

immersion time, higher ligand concentrations also 
provided more ligands to coordinate with the metal 
ions which may disadvantage the water permeance. 
As shown in Figure 8, 32000 ppm induced slightly 
higher permeance and 100% dye rejection. It is 
highly likely that the repulsion between negatively 
charged ligands and oxygen on PGO nanosheets 
enlarges the interlayer spacing therefore more water 
molecules are able to pass through. However, the 
water permeance difference could also be an 
acceptable experimental error (~10%). It is worth 
applying HR-TEM to measure the d spacing of the 
membrane under different ligand concentrations to 
confirm the microstructure.  
  
Factor 3: metal immersion time 

 
From Figure 9, shortening the metal precursor 

soaking time effectively improved the permeance 

Figure 7 Water permeance and dye rejection for 
0.1mg/mL, M3000_3h, M16000_3hours and 12 hours 
different ligand immersion times 

Figure 9 Water permeance and dye rejection for 
0.1mg/mL, M3000_1h, 2h 3h, M16000_12h 
different metal immersion times 

Figure 8 Water permeance and dye rejection for 
0.05mg/mL, M3000_3h, M16000ppm, 32000 ppm_1h 
different ligand concentrations 

Figure 6 Water permeance for pure PGO HF 
membranes with different coat times 
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but lowered the full rejection. That is because 
positive metal ions have less time to interact with the 
negative oxygen functional groups on the PGO 
nanosheets in 1 hour than 3 hours, even if 12 hours 
of immersion in ligand precursor was not able to 
coordinate more ligands to the metal nodes. The 
micro-defects on PGO nanosheets were not fully 
covered by the limited number of ZIF-8 composites 
leading to a lower dye rejection. The lower rejection 
happened at 2 hours than 1 hour could be triggered 
by the UV-Vis error (5%). Nevertheless, 95.4% is a 
good rejection performance, hence 1 hour metal 
immersion time could be repeated in the following 
experiments. 
 
Factor 4: PGO concentrations 

 
Keeping the coating time and other ZIF-8 

intercalation conditions identical, PGO dispersion 
concentrations were altered to tune the thickness of 
the PGO nanosheet. With increasing the 
concentration, water permeance decreases because 
of the increment in thickness and tortuosity. 
Comparing 0.05 and 0.025 mg/mL conditions in 
Figure 10, there was a minor water permeance 
reduction from 2.5 to 2.2 LMHbar-1. It’s very 
possible that a concentration change in relatively 
dilute PGO dispersion does not dominate the PGO 
nanosheet thickness. In contrast, focusing on the 
higher concentrations 0.1 and 0.05 mg/mL, water 
permeance as well as the PGO nanosheet thickness 
heavily depends on the PGO concentrations. The 
rejection dropped with the decreasing PGO 
concentrations. 82.6% is not an ideal rejection, so it 
is not suggested to try any concentrations lower than 
0.025 mg/mL. 
 
Factor 5: Cross-linking effect (No ligand 
immersion) 

There was a specially designed condition 
skipping the ligand immersion step. The external 
insertion of metal ions between the PGO layers 
crosslinks to the negatively charged oxygen on 

adjacent PGO flakes decreasing the interlayer 
spacing. [18] As a result, the permeance is 
substantially lower than all listed conditions, which 
indicates crosslinking happened. The dye rejection 
(86.4%) was not low, which may be attributed to the 
packed PGO nanosheets with a very small interlayer 
spacing. 
 

4. Discussion  
Methyl Red (MR) is a neutral dye with a small 

molecular weight (269.3 g/mol) that has been widely 
used in membrane dye removal tests. [19, 20] 
However, as MR is widely used as a pH indicator, it 
is very sensitive to pH change.  

In the pressurised cell, it is unpreventable that 
some of the charged metal nodes and ligand organic 
groups were washed off and interacted with MR. As 
a pH indicator, its colour and physical properties 
greatly depend on the pH values. This leads to 
significant errors during UV-Vis absorbance 
measurements and unreliable dye rejection results. 
Therefore, after the preliminary experiments, MR 
was replaced by another stable neutral dye, Disperse 
Red (DR), with a relatively small molecular weight 
(314.34 g/mol) which facilitated a more accurate 
molecular weight cut-off determination. Besides, the 
surface charge of ZIF-8 composite PGO membranes 
could be checked using zeta potential instrument. 
After quantitatively understanding the surface 
charge, charged dyes could be introduced to the 
performance test which better simulate the seawater 
desalination in real life. 

The growth of metal-organic framework crystal 
heavily depends on the temperature, growing time, 
and solvent. From the rejection results, for either 
metal or ligand precursor, when water was chosen as 
the precursor solvent, the neutral dye rejection has 
never exceeded 65%. This indicates that compared 
with water, methanol provides a preferable 
environment for ZIF-8 growing. XPS could be 
carried out to determine the growth behaviour of 
ZIF-8 nanocrystals with water as the precursor 
solvent. 

As the optimal performance occurred at 0.05 
mg/mL PGO, M_3000_3h and M_16000_1h 
showed 94.7% rejection, 1 hour metal and ligand 
immersion time could be tried to investigate if a 
desirable rejection can still be realised. 
 

5. Conclusions 
In this study, we report a two-step in situ growth 

of zeolitic imidazolate framework-8 (ZIF-8) into 
porous GO (PGO) hollow fibre (HF) membranes 
and the substantial improvement in molecular 
rejection performance. The pore size and pore 
density of PGO nanosheets were controlled by 
adjusting the etching time. The in situ crystallisation 
of ZIF-8 was achieved by immersing PGO HF 
membrane into the metal ion source and the organic 

Figure 10 Water permeance and dye rejection for 
0.1mg/mL, 0.05mg/mL and 0.025 mg/mL, M3000_3h, 
M16000_1h different PGO concentrations 
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ligand source in turn. The amount of ZIF-8 grown 
was controlled by adjusting the immersing time. 
HR-TEM images confirmed the creation of 
nanopores with tailored pore sizes on the basal plane 
of GO nanosheets. SEM, XRD, and XPS analyses 
results demonstrated that the ZIF-8 precursors 
successfully penetrated the PGO membrane, and 
ZIF-8 preferably crystallised along the edges of the 
PGO nanosheets as expected. ZIF-8@PGO HF 
membrane with a thickness of 200-400 nm 
maintained a high water permeance up to 2.81 
LMHbar−1 while achieving an outstanding MWCO 
of 314 Da. Such performance results exhibit the 
excellent potential of ZIF-8 nanocrystals in 
improving the performance of GO-based 
membranes. 
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ABSTRACT 

Recombinant proteins are a crucial in industry, comprising component ranging from therapeutic agents to industrial 
enzymes3. However, their natural biological properties give rise to a number of problems, which have limited their 
applications. For instance, glycosylation is a common post-translational modification of proteins. However, it is still 
challenging to create glycoproteins with targeted glycosylation of high homogeneity because of the promiscuity of 
enzymes involved11. Scientists have attempted to resolve this, but methods for industrial-scale production in 
glycoengineering and respective native reaction network are still lacking. To address these limitations, in vitro 
glycosylation has recently been considered and a small-scale sequential glycosylation reactions for tailored sugar 
structures (SUGAR-TARGET) platform has been established11. In this study, successful expression of proteins with 
targeted basal glycosylation was implemented using Chinese hamster ovary (CHO) cell-based cell-free proteins 
synthesis (CFPS). After that, the SUGAR-TARGET platform was optimized at the enzymatic in vivo biotinylation 
followed by one-step immobilisation/purification step. It was found that the efficiency of biotinylation was 
proportional to the extent of biotin added to maximize the yield of glycosyltransferases. Furthermore, a larger-scale 
SUGAR-TARGET platform was built, which acts as a prototype to support its further applications at an industrial 
scale, and raises the prospect for use of the SUGAR-TARGET platform in combination with CHO cell-based CFPS 
systems. 

Keywords - Recombinant protein, CFPS, Glycosyltransferase, Glycosylation, SUGAR-TARGET 

1. INTRODUCTION 

Recombinant proteins have become an invaluable 
biological molecule in a plethora of different industries. 
Despite their wide applications such as health and 
biotechnology, proteins are mainly used in pharmacology 
as therapeutic proteins and industrial fields as enzymes14. 
Due to their large molecular weight, complex 
composition and structure, proteins have limited 
solubility, as well as thermal and proteolytic stability, 
which leads reduced efficacy and greater immunogenetic 
side effects of therapeutic proteins3. In addition, these 
limitations hinder the development of enzymes and 
increase the production cost on an industrial scale3. 
Scientists have explored different techniques to enable 
the manipulation of protein stability, specificity and 
alteration in its overall function to achieve the desired 
properties14. Among all the methods tested, 
glycoengineering appeared to be one of the most reliable 
for future investigation. The principle of 
glycoengineering is changing glycosylation7, which is 
one of the most common and most poorly understood 
post-translational modifications of proteins19. There are 
two major glycosylation pathways, which are called N-
linked and O-linked glycosylation. They respectively 

indicate two ways glycans could attach to, either the side 
chain nitrogen (N) atoms of Asn residues or the side 
chain oxygen (O) atoms of Ser and Thr residues3.  
Glycoproteins are proteins containing glycans attached to 
amino acid side chains during glycosylation. Since 
human cells are fundamentally different from those of 
other species, including microorganisms, fungi, insects 
and plants, the possibility of creating recombinant 
glycoproteins for therapeutic purposes in humans using 
cultivated mammalian cells has generated a lot of 
interest19.  In general, Chinese hamster ovary (CHO) is 
one of the mammalian cells most widely used for the 
expression and production of recombinant N- or O- 
linked glycoproteins9, as it is able to produce 
glycoproteins at a high rate and could be grown in large-
scale bioreactors3.  
Despite the establishment of functional importance from 
previous work, it is still challenging to produce 
glycoproteins with targeted glycosylation of high 
homogeneity5. The promiscuity of glycosylating 
enzymes results in a heterogeneous glycoprofile2. 
Furthermore, methods for large-scale production in 
glycoengineering and respective native reaction 
networks are still lacking and the strategies for 
engineering bespoke functions on proteins using sugar 
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chemistry is time-consuming11. To address these 
demands, in vitro glycosylation has been recently 
considered. It has the benefit of allowing for specific 
sugar modifications on recombinant glycoproteins15, 
which means therapeutic glycoproteins could be readily 
generated in a relatively short time, regardless of the 
production scale.  

2. BACKGROUND 

In previous work, in order to deal with the limitation of 
glycoengineering techniques, a platform for Artificial 
Golgi Reactions sequential glycosylation reactions for 
tailored sugar structures (SUGAR-TARGET) was 
developed which allowed bespoke, controlled N-linked 
glycosylation in vitro11. Apart from that, an innovative 
method including in vivo biotinylation was also created 
followed by one-step immobilisation/ purification. The 
human-like glycosylation pathway was chosen using 
three enzymes, which were N-
Acetylglucosaminyltransferase I (GnTI), α-Mannosidase 
II (ManII) and β-1,4-Galactosyltransferase (GalT)11. The 
reaction cascade is shown below (Figure 1). Therefore, 
these immobilised enzymes were used to mimic the 
reaction cascade of the human N-linked glycosylation 
process, where promiscuity is present naturally. However, 
the SUGAR-TARGET platform was established for 
small-scale reactions with sequential incubation of the 
reaction mixtures with individual enzymes followed by 
removal using magnetic bead separation. 
The purpose of this project was to investigate in vitro 
glycosylation carried out by cell-free protein synthesis 
(CFPS) and to assess whether there was scope to 
supplement these products into an optimized SUGAR-
TARGET platform. Given this, a larger-scale prototype 
of the SUGAR-TARGET system would need to be 
established using packed columns. In order to achieve 
these goals, we firstly focus on the expression and 
purification of proteins with targeted glycosylation by 
conducting CFPS using CHO cells. After that, 
modification on previous small-scale SUGAR-TARGET 
platform was done with optimization of the reaction 
conditions. Lastly, an industrial-scale prototype of this 
system was designed with the usage of polypropylene 
columns in lab.  

Figure 1. Reaction Cascade of Immobilised Enzymes 

 

3. METHODOLOGY 

3.1. Expression and purification of protein with 
targeted glycosylation 

3.1.1. Expression of GFP and mFc-GFP 

Green fluorescent protein (GFP) and green fluorescent 
protein with a monomeric crystallizable fragment 
antibody domain (mFc-GFP) were expressed in Chinese 
hamster ovary (CHO) cells. Cell-free protein synthesis 
(CFPS) was chosen for the expression of protein with 
targeted glycosylation. The main advantage of choosing 
CFPS is that the metabolic and cytotoxic burdens are 
abandoned in CFPS. Thus, it can provide an independent, 
open system to produce specific proteins directly and 
synthesize difficult-to-express or toxic with a high 
throughput production10. What’s more, since all the 
materials are used to produce the protein, it simplifies 
purification steps and reduces the loss of targeted protein 
during purification, which results in a higher yield8. 
Three components are essential for CFPS: a DNA 
plasmid encoding targeted protein, a cell-free lysate 
containing cellular components required for DNA 
transcription and translation, and a reaction mixture 
providing amino acids, nucleotides, energy sources and 
crowding reagents4. However, the yield of protein 
expressed by CHO cell-based CFPS is low, which is 
mainly due to the stress-induced eukaryotic initiation 
factor 2(eIF2) phosphorylation10. To solve this problem, 
accessory protein tGADD34 is added to the expression 
reaction to dephosphorylate eIF2α and inhibit stress-
induced gene expression to improve yields13. The 
expression of proteins is motivated when the genetic 
materials combine with the cell-free extract. 
The DNA plasmid of GFP and mFc-GFP used for 
expression were given as a gift from a member of Polizzi 
Lab. The lysate, tGADD34 and reaction mix used for 
CFPS reaction was prepared as previous research 
described10. 25µL reactions were made to perform CFPS 
with the following procedures: 2.5µL purified accessory 
protein tGADD34 was added to 12.5µL lysate. Following 
mixing the sample with gentle flicking, it was incubated 
at room temperature for 10 minutes. 9.5μL reaction mix 
was then added to the sample and gently mixed with 
flicking. At the same time, the plate reader was pre-
heated to 30 °C to ensure expression could be started 
immediately once all the components are assembled. 
0.5μL DNA of GFP or mFc-GFP was then added to the 
sample. A negative control was performed to cancel the 
background fluorescence by repeating the same 
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procedure described before with a modification: 0.5µL 
water was used instead of the prepared plasmid. The 
reaction samples were then transferred into the wells of 
the Corning 384 well plate (or other multi-well plate). 
Finally, the plate was sealed with membrane and placed 
into the plate-reader CLARIOstarPlus (BMG Labtech) 
with a 300 rpm shaking condition for at least 8 hours for 
expression.  

3.1.2. Purification of the expressed mFc-GFP 

After expressing mFc-GFP with targeted glycosylation, 
it was purified with a one-step purification method using 
Ni-NTA beads. A native condition was chosen to purify 
the protein to avoid effects on glycosylation by denatured 
condition. 40µL (0.5mg) of Ni-NTA Magnetic Beads 
were first mixed with 160µL of equilibrium buffer 
(100mM sodium phosphate, 600mM sodium chloride, 
0.05% Tween – 20 Surfact – Amps Detergent Solution 
and 30mM imidazole). After vortexing the mixture for 10 
seconds, a magnetic stand was used to collect the beads 
and the supernatant was discarded. The beads were then 
mixed with 400µL of equilibration buffer and vortexed 
for 10 seconds. The supernatant was removed and 
discarded. 40mL of the pre-expressed mFc-GFP was 
diluted with an equal volume of equilibration buffer. The 
prepared protein extract was then mixed with beads using 
an end-over-end rotator for 30 minutes. After collecting 
the beads using a magnetic stand, the beads were washed 
twice with wash buffer (100mM sodium phosphate, 
600mM sodium chloride, 0.05% Tween – 20 Surfact – 
Amps Detergent Solution and 50 mM imidazole). 400µl 
wash buffer was added to the beads and vortexed for 10 
seconds, the supernatant was then removed and discarded. 
After washing, 25µL of elution buffer (100mM sodium 
phosphate, 600mM sodium chloride and 250mM 
imidazole) was added and vortexed until all the beads are 
submerged in the elution buffer. The mixture was then 
incubated for 15 minutes on a rotating platform and the 
supernatant containing His-tagged protein was collected 
and saved. The elution step was repeated using 25µL of 
elution buffer. The beads were finally incubated for 10 
minutes and saved.  

3.1.3. SDS-PAGE analysis for purified protein 

Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) was applied to analyse the 
purification of the expressed protein. It can separate 
different proteins with different molecular weights and 
investigate the purity of the glycoprotein sample.  
9% gels were first prepared as follows using a Bio-Rad 
gel casting stand: The glass plates and spacers of the gel 
casting unit were cleaned, and the plates were assembled. 

To cast 2 × 9% gel, resolving gel solution was prepared 
(4.2mL water; 3mL acrylamide; 2.5mL Tris-HCl, pH8.8; 
0.150mL SDS; 0.150mL ammonium 
persulfate ;0.009mL TEMED). The aliquot gel was then 
poured into the plates and water was added to reach the 
top edge of the plates to maintain an even and horizontal 
resolving gel surface. The gel was left for 20 minutes to 
solidify, and the overlaid water was then discarded. 
Stacking gel solution was then prepared (3.69mL water; 
0.625mL acrylamide; 0.630mL Tris-HCl, pH6.8; 
0.05mL SDS; 0.05mL ammonium persulfate; 0.005mL 
TEMED). The stacking gel was poured until it overlaid 
the edge of the plates. The 10-well comb was inserted to 
make sure no air bubbles were trapped in the gel. The gel 
was left for 20 minutes to complete the set-up.  

40µL of the supernatant containing purified mFc-GFP 
was mixed with 10µL 5 × SDS-PAGE buffer (0.225M 
Tris·Cl, pH 6.8; 50% glycerol; 5% SDS; 0.05% 
bromophenol blue; 0.25M DTT). The sample was heated 
and incubated at 100° C for 10 minutes. 20µL of the 
incubated sample was loaded on the gel alongside 
PageRuler Prestained Protein Ladder (ThermoFisher). 
Detailed information for the ladder can be found in 
Appendix A. The gels were then run at constant electric 
current (mAmp) using 25mAmp/gel for 50 minutes. 
After the complete running of the SDS-PAGE, the gels 
were washed and stained with SimplyBlue™ SafeStain 
(ThermoFisher) following the microwave stained 
protocol provided by the manufacturer6.  

3.2. Enzyme expression and immobilisation 

In this research, both GnTI and GalT were expressed in a 
bacterial system. Immobilised enzymes have higher 
reusability, stability, and controllability compared to 
mobile enzymes12. Therefore, the expressed enzymes 
were immobilised to build an enzyme cascade using a 
one-step immobilisation/purification method. Since 
ManII has to be expressed in insect cells and biotinylated 
by a chemical biotinylation technique, it was not 
expressed and purified in this research due to time 
limitations.  

3.2.1. Optimizing the concentration of d-biotin for 
inducing enzyme expression 

From the previous research, GalT and GnTI were 
biotinylate using 20µM biotin. To improve the extent of 
biotinylation, the concentration of biotin was optimised 
by expressing GalT and GnTI with a final concentration 
of biotin varying from 10µM to 30µM with an increment 
of 5µM. A modified experiment was done for induction 
of 20µM and 100µM biotin to express GalT and GnTI to 
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obtain a more visible result and further investigate the 
overall change in biotinylation performance with 
different concentrations of biotin.    

3.2.1.1. GalT and GnTI expression 

The expression of glycosyltransferase GalT and GnTI 
using a bacterial system took 3 days. On the first day of 
the expression process, 900mL of Luria Broth Base 
(Miller's LB Broth Base) ™ (LB) medium (1% peptone 
from casein; 0.5% yeast extract; 1% NaCl in water) was 
prepared. The co-transformed cells of GnTI and GalT 
were given by a member in the Polizzi Lab. A single 
colony of the co-transformed GnTI or GalT was added to 
5mL of LB, together with 100µg/mL ampicillin and 10 
µg/mL chloramphenicol. The whole process was done 
near a fire to eliminate possible contaminants in the air. 
The culture samples were incubated in a shaking 
incubator overnight at 37 °C.  
After one night of growth, the pre-induction culture was 
prepared by diluting 125µL starter culture with 12.5mL 
LB media containing 0.2% glucose. The same pre-
induction culture was prepared for each sample with 
different biotin concentrations added after. To prevent 
the elimination, the whole process was done near a fire. 
The samples were then incubated in a shaking incubator 
at 37 °C until the optimal density at 600nm (OD600) 
reached 0.6-0.8 with a 1mL of LB as the blank. 1mL of 
the pre-induction culture was collected for each sample 
to trace the experiment. The new volume for each sample 
was reduced to 11.5mL. The expression of the enzymes 
was then induced by adding isopropyl β-D-1- 
thiogalactopyranoside (final concentration 0.1mM) and 
biotin into the pre-induction culture. The volume of 4mM 
biotin added to each sample is shown below:  

Table 1. Amount of Biotin Added in Each Sample for the First 
Experiment 

Sample 
No. 

Concentration 
of biotin / µM 

Amount of 4mM 
biotin added / µL 

GalT 
1 10 28.75 
2 15 43.13 
3 20 57.50 
4 25 71.88 
5 30 86.25 

GnTI 
6 10 28.75 
7 15 43.13 
8 20 57.50 
9 25 71.88 

10 30 86.25 
 

The samples were then incubated in a shaking incubator 
overnight at 20 °C.  
After overnight incubation, 1mL of each post-induction 
sample was collected for tracing the experiment. The 
cells were then harvested by centrifugation (4 °C, 4000×g, 
30 minutes). The pellet for each sample was resuspended 
in 1.25mL of lysis buffer (5ml/gr cells; 20mM Tris-HCl, 
pH 7.5; 200mM NaCl; 5% glycerol; 0.1mM 
phenylmethylsulfonyl fluoride) and the samples were left 
for 20 minutes to break the cells. The samples were then 
sonicated for 6 minutes with 10 seconds on/off pulses 
(40%). Finally, the lysate was centrifuged (4 °C, 12864 × 
g, 30 minutes). The supernatant was collected and filtered 
with a 0.45μm filter. The filtrate was collected for further 
analysis.  
With two modifications, the same experiment was done 
to express GalT and GnTI with 20µM and 100µM biotin. 
The volume of 4mM biotin added to each sample in the 
second experiment was shown as follows: 

Table 2. Amount of Biotin Added in Each Sample for the Second 
Experiment 

Sample 
No. 

Concentration 
of biotin / µM 

Volume of 4mM 
biotin added / µL 

GnTI 
1 20 57.50 
2 100 287.50 

GalT 
3 20 28.75 
4 100 287.50 

 
Besides, after the same induction and harvesting 
procedure, the pellet of each sample was resuspended in 
350µL of lysis buffer to ensure protein concentration was 
high enough to show clearer results on the gel.  

3.2.1.2. Quantification of the extent of biotinylation by 
a streptavidin gel-shift  

The strategy of in vivo biotinylation is illustrated in 
Figure 2a. Specifically, the catalytic domain of 
recombinant proteins was initially fused to Maltose 
Binding Protein (MBP) at N-terminus and AviTag at C-
terminus. Subsequently, a small two-residue Glycine-
Serine linker was inserted before AviTag to ensure 
functionality. This allowed for the site-specific 
biotinylation of both enzymes by co-expressing with 
biotin ligase BirA and supplementation of the medium 
with biotin1.   
Before quantifying the extent of biotinylation, a gel-shift 
analysis with streptavidin by SDS-PAGE was used due 
to the non-covalent biological interactions of the binding 
between biotin and streptavidin (Figure 2b). As a result, 
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except the original bands indicating the molecular weight 
of BirA (34kDa) and enzymes (93.8kDa for GnTI and 
76.4kDa for GalT), this binding would be shown on the 
gel in the form of the tint bands of enzymes and 
additional new upper bands with the control of 
streptavidin (66kDa), which was called gel shift.  The 
intensity difference of the bands of the expressed 
enzymes with and without streptavidin would implicate 
the efficiency of biotinylation. 
9% SDS-PAGE gel was prepared as described previously. 
To prepare the samples used for gel shift assay, 8.25µL 
of 2 × SDS-PAGE buffer without DTT (0.09M Tris·Cl, 
pH 6.8; 20% glycerol; 2% SDS; 0.02% bromophenol 
blue) was added to 7.5µL of each biotinylated enzyme. 
The mixed samples were then heated at 95°C for 5 
minutes using a PCR system (ProFlex). The samples 
were completely cooled down to room temperature. 
0.75µL of streptavidin was then added to each sample. 
For negative controls, 0.75µL of DI water was added 
instead. After that, the samples were loaded on the 
prepared 9% SDS-PAGE gel alongside PageRuler 
Prestained Protein Ladder (ThermoFisher) and run at a 
constant electric current (mAmp) using 25mAmp/gel for 
50 minutes. The same microwave staining protocol was 
applied to the gels as mentioned before. Finally, the 
intensity of the bands on the gel was measured using 
Image Lab Software to carry out gel shift assays on the 
biotinylated enzymes.  

 

Figure 2. Principle of in vivo Biotinylation. a. Process of binding 
between BirA and AviTag; b. Interaction of binding between biotin and 
streptavidin. 

 
3.2.2.1. One-step immobilisation/purification of 
enzymes 

Streptavidin silica particles 1%w/v. 1.0-1.4μm 
(Spherotech) were used to carry out the one-step 
immobilisation of the expressed enzymes. For each 
sample of the expressed enzyme, 50µL of streptavidin 
silica particles were centrifuged using a microcentrifuge 
at 6.8rpm for 3 minutes to remove the storage buffer. The 
beads were then washed 3 times. In one wash cycle, 

200µL of 0.1M Tris-HCl (pH 7.5) was added to 
resuspend the beads and then centrifuged at 6.8 rpm for 
3 minutes. 30µL of the expressed enzyme sample was 
then mixed with the washed beads with a dilution by 
970µL of the 0.1M Tris-HCl (pH 7.5). The beads were 
harvested by centrifugation for 8 minutes at 6.8rpm. 
Finally, the particles were washed with 2mL of 0.1M 
Tris-HCl (pH 7.5) 3 times.  

3.2.2.2. SDS-PAGE analysis for immobilised enzymes 

SDS-PAGE was applied to analyse the immobilised 
enzyme samples. 9% SDS-PAGE gel was prepared as 
previously mentioned. The samples for running on the 
gels were then prepared. To prepare the samples of 
expressed enzymes, 40µL of each pro-immobilised 
enzyme sample was mixed with 10µL of 5 × SDS-PAGE 
buffer (0.225M Tris·Cl, pH 6.8; 50% glycerol; 5% SDS; 
0.05% bromophenol blue; 0.25M DTT). The samples 
were then heated up to 95 °C using a PCR system 
(ProFlex) for 5 minutes. To prepare the samples of 
immobilised enzymes, 80µL of beads in DI water was 
mixed with 20µL 5 × SDS-PAGE buffer (0.225M Tris·Cl, 
pH 6.8; 50% glycerol; 5% SDS; 0.05% bromophenol 
blue 0.25M DTT), followed by incubation at 100° C for 
10 minutes. The samples were then centrifuged for 1 
minute at 13.4rpm to remove the beads.   
20µL of each expressed enzyme sample and 20µL of the 
supernatant of each immobilised bead sample was loaded 
on the gel aside from the PageRuler Prestained Protein 
Ladder (ThermoFisher) and run at a constant electric 
current (mAmp) using 25mAmp/gel for 50 minutes. The 
same microwave staining protocol was applied to the gels 
as mentioned before.  

3.2.3. Lab-scale SUGAR-TARGET platform design 

2mL disposable columns (Thermo ScientificTM) and 
silica particles 5% w/v. 1.26μm (Spherotech) were used 
to build a prototype for a lab-scale SUGAR-TARGET 
platform. From the previous study, the conditions for 
inducing desired glycosylation on the targeted protein in 
a large-scale SUGAR-TARGET platform were 
computed theoretically18. Two designs were considered: 
the first design is a continuous packed-beds column 
containing enzyme cascade, while the second one is three 
columns linked in series with the packing of different 
glycosyltransferases respectively. The advantages and 
disadvantages of the designs were considered from 
functional, efficient, and economic aspects.  

4. RESULTS AND DISCUSSION 
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4.1. Expression and purification of protein with 
targeted glycosylation 

4.1.1. Expression of GFP and mFc-GFP 

Initially, the ability of tGADD34 to increase expression 
of GFP and mFc-GFP in CHO cells-based CFPS was 
analysed using the plate-reader CLARIOstarPlus (BMG 
Labtech). Figure 3 showed the expression behaviour of 
newly purified tGADD34 in expression GFP and mFc-
GFP overtime by CFPS, as mentioned in Section 3.1.1. 
The plate reader can detect the signal given by GFP and 
quantify the fluorescent intensity20. The more GFP and 
mFc-GFP were expressed, the higher fluorescence was 
reported. The trend of the positive control and the 
expression of GFP using new tGADD34 are similar, and 
it proves the new tGADD34 can work in the expression 
of GFP and mFc-GFP. Since the fluorescence detected in 
the expression of GFP using new tGADD34 is higher 
than that using old tGADD34 at any time, the new 
tGADD34 worked better in the CFPS, which is mainly 
due to the denaturation of old tGADD34 during storage. 
Furthermore, CFPS performed better in expressing GFP 
compared to mFc-GFP. This is due to the additional 
antibody fragment interfered with GFP folding, thus 
reduced the fluorescence. What’s more, since mFc-GFP 
is greater than GFP in size, by applying the same amount 
of materials for protein expression, the amount of GFP 
produced is higher than mFc-GFP.  

 
Figure 3. Testing New tGADD34 and Assessing Expression of GFP and 
HM-mFc-GFP 

The formal expression of mFc-GFP was conducted using 
the same CFPS method. From Figure 4, the trend of the 
curve for the expression of mFc-GFP is similar to that 
shown in Figure 3. A sudden reduction in the 
fluorescence occurred at 2.8 hours. By analyzing the raw 
data, the fluorescence of the sample of expressed mFc-
GFP in the first well reduced, resulting in a sharp 

decrease in the average fluorescence, which could be due 
to the machinery error. While the overall trend of the 
curve still shows the successful expression of mFc-GFP 
was achieved. 

 
Figure 4. Expression of mFc-GFP with Targeted Glycosylation using 
CHO Cell-based CFPS 

4.1.2. Purification of the expressed mFc-GFP and 
SDS-PAGE analysis for purified protein 

The purification of mFc-GFP was carried out using Ni-
NTA beads with a one-step purification method, which 
was described in Section 3.1.2. Figure 5 shows the SDS-
PAGE result analysing the purified protein. There is a 
band occurs at 54.8kDa, which specifically represents 
mFc-GFP. It further proves the protein expression is 
successful. Since the band is clear and distinguishable 
from others, it shows the purification method using Ni-
NTA beads works to purify the expressed mFc-GFP with 
targeted glycosylation. It should be noticed that some 
impurities are observed in the sample. In that case, a more 
specific purification method could be investigated to give 
a better result.    
However, the glycan analysis shows glycans were 
missing in the purified protein. The His-tagged 
purification using Ni-NTA beads did not work for the 
glycan purification since the detergents were not 
sufficient for microsome lysis, or the beads used were not 
able to specifically capture the His-tagged protein.   It can 
also be because of the impurity issues of the sample, 
which prevent the expressed mFc-GFP to release glycans. 
Besides, since the band of the mFc-GFP shown on the gel 
is thin, the concentration of purified mFc-GFP with 
targeted glycosylation in the sample is lower than 
100µg/mL. Therefore, the glycans cannot be detected. 
The detailed glycan analysis result is in Appendix B.  
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Figure 5. SDS-PAGE Analysis on Ni-NTA Purified Protein with 
Targeted Glycosylation 

4. 2. Artificial Golgi reactions 

4.2.1 Optimization of enzymatic in vivo biotinylation 
during expression of glycosyltransferases 

In order to optimize the yield of proteins (GnTI and GalT) 
from expression, we intended to vary the biotin 
concentration during enzymatic in vivo biotinylation 
experiments. The binding between biotin ligase BirA and 
AviTag provided the foundation of this efficient reaction1, 
which has been mentioned in Section 3.2.1.  
We initially planned to vary it from 10μM to 30μM with 
the increment of 5μM as mentioned in Section 3.2.1 to 
explore the trend of biotinylation efficiency and thus 
achieve the optimization. However, it was quite difficult 
to see the bands of both GalT and GnTI from Figure 6, 
which would a challenge in measuring the intensity 
difference. This result might be due to serval reasons. 
Firstly, the change of biotin concentration of the original 
idea was too small to figure out the obvious gel shift, so 
it seemed to achieve the same biotinylation. Secondly, 
the lysate was too dilute which resulted in a small 
concentration of proteins, and therefore, respective tint 
bands.  

 

 

Figure 6. First Attempt of Biotinylation Confirmation Using Gel-shift 
Assays; Each lane was loaded with and without BirA and streptavidin 
in the absence of reducing agent DTT. a. Gel assays of GalT; b. Gel 
assays of GnTI. 

Having learned the experience of failures before, the 
protocol for in vivo biotinylation was modified (Section 
3.2.1). The much clearer results of gel-shift assays are 
shown in Figure 7. Since streptavidin had four binding 
sites, it could bind to more chains of the biotinylated 
target, which corresponded to multiple bands on the gel11. 
After measuring the intensity of bands for both enzymes 
with Image J software, biotinylation efficiency with 
respective biotin concentration was calculated and the 
results are generated in Table 3. It was obvious to see 
that 100μM of biotin concentration corresponded with 
higher biotinylation, especially for GalT. Therefore, it 
could be concluded that the efficiency of enzymatic 
biotinylation would be proportional to the addition of 
biotin concentration. Furthermore, the intensity of gel 
shift was interestingly found to be different in both cases, 
as can be seen in Figure 7. For GnTI, a darker shift band 
was shown when the concentration of biotin was 100μM. 
This was confirmed after the measurement of protein 
concentration, and it was found to be much higher than 
that of 20μM ones. While in terms of GalT, a darker band 
at 20μM might be a result of operation error, such as poor 
performance when loading samples. 
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Figure 7. Second Attempt of Biotinylation Confirmation Using Gel-
shift Assays; Each lane was loaded with and without BirA and 
streptavidin in the absence of reducing agent DTT. a. Gel assays of 
GnTI; b. Gel assays of GalT. 

Table 3. Results of biotinylation efficiency with respective enzymes and 
biotin concentration added 

Biotinylated enzyme with 
different concentration 

% biotinylation 

GnTI with 20μM biotin 31.78 
GnTI with 100μM biotin 50.14 
GalT with 20μM biotin 38.40 

GalT with 100μM biotin 65.00 
 

4.2.2 One-step immobilisation/purification 

After the successful expression and implementation of in 
vivo biotinylation, one-step immobilisation/ purification 
of GnTI and GalT was conducted with streptavidin-silica 
beads. Gel electrophoresis was then used for 
confirmation, where the results were shown in Figure 8. 
The presence of multiple bands on the lanes of binded 
beads suggested that the recovery of GnTI was not as 

good as that of GalT. This could be a human error, 
resulting in the poor immobilisation of enzymes. In 
addition, it was clear to see that the bands of BirA were 
also shown when non-specifically bound to beads, which 
might be due to the complex formed with its substrate 
AviTag. 

 

 

Figure 8. Confirmation for the Recovery of Enzymes after One-step 
Immobilisation/ purification; a. Gel assays of GnTI; b. Gel assays of 
GalT. 

4.2.3 Design of larger-scale SUGAR-TARGET 
platform prototype 

Following the novel methods of the in vivo biotinylation 
and site-specific immobilisation of glycosyltransferases 
with additional changes to optimize conditions, we 
considered to set up a larger-scale SUGAR-TARGET 
platform by using disposable polypropylene columns 
based on the conceptual and computational prototype 
mentioned in Section 3.2.3. Mainly speaking, there were 
two types of packed bed reactors designed, following the 
cascade of GnTI-ManII-GalT. 
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4.2.3.1 Continuous packed bed reactor 

The first ideal setup was the continuous bed reactor. In 
this kind of system, immobilised enzymes are packed in 
a single continuous column with filters in between, which 
could be seen clearly by three distinct colours from 
Figure 9. When considering the implementation in terms 
of industrial scale, the system had the advantage of 
automatic control and operation, which would help to 
reduce both labour and capital costs21. However, the 
flowrate and residence time of each specific glycoprotein 
could not be controlled separately. Besides, it was 
necessary to consider the pressure drop across the packed 
column, as well as the effect of column dimensions like 
length to achieve the desired reaction rate21. 

 

Figure 9. Establishment of Continuous Packed Bed Reactor with 
Immobilised Enzyme Cascade 

4.2.3.2 Sequential packed bed reactors 

Another idea was to connect three packed columns in 
series (Figure 10) and then control the flow of 
glycoproteins by manually opening or closing, though it 
was somewhat time-consuming. Also, variables like 
temperature and pressure could be controlled easily since 
glycoproteins were separated. Due to the fact that the 
reaction buffers for three immobilised enzymes were 
specific throughout the cascade, it was suggested to 
replace the buffer system in between. To solve this 
problem, a desalting column was considered to be added 
between each packed column. Initially, the heavy 
glycoproteins took much more time to flow through the 
bed compared with small salt molecules. Nevertheless, if 
an inlet stream of buffer was introduced into the desalting 
column and then suddenly flashed out, glycoproteins 
would be quickly pushed downwards to flow to the next 
column and complete buffer exchange. Despite the whole 
system had many advantages, one point to consider was 
that the operating costs would be higher with the usage 
of multiple columns. 

 

Figure 10. Establishment of Sequential Packed Bed Reactor with 
Immobilised Enzyme Cascade 

5. CONCLUSIONS 

In this research, mFc-GFP was successfully expressed 
using a CHO cells-based CFPS method. It was 
sequentially purified with a one-step Ni-NTA beads 
purification method. However, the impurity issue caused 
the failure in detecting glycans in the purified protein, 
which requires further investigation in the specific 
purification method. In terms of modification of the 
previous small-scale SUGAR-TARGET platform, it 
resulted that the extent of enzymatic biotinylation was 
proportional to the increase in biotin content by 
optimizing the biotin concentration. The expressed 
enzymes were then successfully purified with a one-step 
immobilisation/purification method using streptavidin 
silica beads. Lastly, a prototype for the large-scale 
SURGAR-TARGET platform was built, which allowed 
to apply this system for industrial uses in the future.  

6. FUTURE WORK 

The glycan analysis result shows glycans are missing in 
the purified mFc-GFP. To improve the glycosylation of 
the proteins, better detergents can be used to release the 
glycans. A more specific purification technique can also 
be investigated to purify the expressed protein more 
efficiently, such as protein A beads, which is an 
antibody-binding protein that can bind to the Fc region16. 
Besides, the gel shift assay for enzyme expression shows 
the extent of biotinylation did not reach 100% even for 
100µM biotin concentration. Future experiments can be 
conducted with biotin concentrations greater than 100µM 
to optimize in vivo biotinylation. Last but not the least, 
based on the lab-scale SUGAR-TARGET platform and 
the theoretical data from the previous research18, an 
industrial-scale SUGAR-TARGET system can be built 
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with further evaluation of economic potential, practical 
feasibility, environmental and safety factors.  
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1 Introduction 
With the announcement of the United Kingdom 

(UK) being the first major economy to pass the 
ambitious 2050 net zero target, following the 26th UN 
Climate Change Conference of the Parties (COP26), 
there has been an increase in interest and urge to reduce 
carbon emissions within all aspects of the economy [1]. 
Many regulations and policies have been put in place to 
promote the paradigm shift to renewable energy sources. 
However, energy demand and consumption continue to 
increase and the capacity of energy from renewable 
resources is not sufficient. Moreover, the rise of digitally 
connected devices has also amplified the electricity 
demand. Smart energy management aims to monitor 
energy consumption patterns so that businesses can 
anticipate amounts of usage to help control and reduce 
wasted energy and become more energy efficient [2].  

Supermarkets are the most energy-intensive 
buildings, and, in the UK, these supermarkets take up 
3% of the total energy consumption of the economy [3]. 
Within these supermarkets, refrigeration systems 
account for 30% - 60% of the total electricity use. Smart 
energy management techniques have been investigated 
in refrigeration systems in supermarkets as a method to 
reduce electricity use. Reducing this electricity use  
 

 
allows for cost reduction and lets supermarkets rely 
more on renewable sources as the overall demand for 
energy decreases.   

 

A basic layout of a typical refrigeration system 
with a booster configuration is shown in Figure 1. A 
typical refrigeration system includes multiple fridges, 
one at a lower temperature and another at a medium 
temperature, and freezer display cases with two 
compressor banks. The dynamic model of the 
refrigeration system is a system of energy balance 
equations. In the cold reservoir, there is a transfer of heat 
from the foodstuffs to the cooled air, which is then 
transferred from the cooled air to the circulated 
refrigerant. The act of being able to store electrical 
energy as coldness by lowering temperatures of the 
foodstuffs presents a significant potential in the energy 
storage capacity of supermarket refrigeration systems by 
utilising demand side management [4]. Over the course 
of this paper, demand-side management is explored, and 
a potential approach is presented. 

2 Background  
Modelling of refrigeration systems is an exciting 

field in research and has been investigated in numerous 
studies in the literature to learn about various aspects of 
the system’s behaviour. Several modelling techniques 
have been investigated in the literature, one of those 
techniques is data-driven modelling. Each component in 
the refrigeration system, such as the compressor or the 
evaporator can be individually modelled, and their 
behaviour is studied [5].  

[6] explores data-driven modelling through 
artificial neural networks alongside predictive control. 
An attempt is made to improve the efficiency of the 
compressor in the refrigeration system by varying the 
compressor motor speed. Although significant energy 
savings are obtained, the shortcoming lies in the fact that 
training of neural networks is an extensive and 
expensive process and requires good quality 
experimental data. [5] further goes to establish a non-
linear model based on the thermal dynamics of the 
cabinet and the evaporator as opposed to the 
compressor. This is a simpler model and achieves 

Abstract 
United Kingdom’s net zero goals has led to many businesses working proactively to improve the efficiency of their 
energy use and reduce their carbon footprint. Supermarkets, in particular, are extremely energy intensive which means 
there is an added focus on reducing their energy use through a variety of data-driven modelling followed by advance 
control techniques. This paper presents a possible approach for modelling the compressor work for a UK supermarket 
and reducing the compressor work through the implementation of a simple bang-bang controller.  A linear model as 
well as a neural network model was investigated. The linear model was chosen because it is simpler and can be 
physically represented as an equation. The bang-bang controller was simulated with and without temperature setpoint 
changes with the aim of improving energy efficiency. Overall, energy savings of 1.5% and cost savings of 0.8% were 
achieved, which were deemed as reasonable. 

Keywords: Refrigeration Systems, Data-driven Modelling, Bang-Bang Control 

Figure 1: Schematic of the studied refrigeration cycle considered in 
this paper, taken from [18]. 
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promising results, however, it does compromise slightly 
on the accuracy of predictions. 

However, as recognised by [7], while neural 
networks are much more flexible and good for 
eliminating noise, a physical model cannot be 
established in the form of an equation. Similar to [5], 
this paper uses a black box technique identifying time-
varying and time-invariant linear models to design and 
optimise an MPC Controller. The time-varying model in 
particular yields favourable results, showing sufficient 
energy savings. Despite the potential of a linear dynamic 
model, an artificial intelligence (AI) approach using 
neural networks or fuzzy logics has been generally more 
popular for research. AI techniques for refrigeration 
modelling have been extensively discussed in literature, 
such as in  [8], [9], and [10]. 

Establishing a functional model is only the first 
step to developing a control strategy that could 
potentially save energy and reduce costs. A supermarket 
refrigeration system suitable for supervisory control in 
the smart grid is explored in [11]. The fully integrated 
model consisted of three independent models which 
represented the three different subsystems [11]. The 
three subsystems were: the display case, suction 
manifold, and the condenser. Dynamic equations were 
identified to model heat transfers within the subsystems. 
Whereafter, parameter estimations were performed via 
an iterative prediction-error minimisation (PEM) 
method. Supervisory control was implemented with a PI 
controller to regulate the power consumption to the 
reference level received from the grid. The control 
objective was to ensure the average power consumption 
of the refrigeration system follows the reference and 
simultaneously stays within the temperature limits of the 
display cases. Simulations of the model with these 
subsystems corresponded well in confirming the 
effectiveness of the model approach. 

In [12] control strategies in the heat recovery of a 
CO2 booster system in a supermarket has been simulated 
and analysed for its energy, environmental and 
economic benefits. Five different heat recovery 
strategies were investigated. Each strategy analysis 
considered the energy consumption, operational cost 
along with its environmental impact. The models 
validated that it was able to reproduce the behaviour of 
the refrigeration system with high precision. The best 
energy strategy would be able to result in a reduction of 
total consumption by 32%. Heat recovery systems bring 
about significant benefits to improve the energy 
efficiency of energy-intensive buildings such as a 
supermarket. However, trade-offs will need to be 
considered carefully. This paper concludes that it is very 
difficult to model such a system’s behaviour with a 
steady-state model of the installation. Therefore, a more 
accurate model would consider the system dynamics 
[13].  

3 Motivation 
Previous work has been conducted in designing, 

installing, and costing a model predictive control 
framework for a Heating, Ventilation and Air 
Conditioning (HVAC) system. The MPC scheme aims 
to provide an optimal temperature setpoint that will 

minimise the overall costs and carbon usage whilst 
maintaining the thermal comfort range of temperatures 
for the occupants of the supermarket. The full scope of 
this project aims to develop a fully functional 
refrigeration model. However, due to time limitations, 
this paper aims to simulate the refrigeration dynamics of 
several cabinets and implement control systems to 
determine how variations in the temperature setpoints of 
the cabinets can affect overall energy costs using 
available telemetry data.   

4 Data  
4.1 Description 

All data used for the project is from a UK based 
supermarket. All data used is from 25th October 2022 to 
22nd November 2022. The cabinet telemetry data is at a 
resolution of 2 minutes, while the compressor work data 
is at a resolution of 10 minutes. 
4.2 Raw Data Visualisation 

Figure 2 depicts the general effect of ∆T and 
ambient temperature on the compressor duty. It is 
evident that as ambient temperature increases so does 
the compressor duty and as ∆T decreases (in 
magnitude), compressor duty decreases. 

Figure 3 shows the temperature variations and the 
valve positions of a fridge cabinet in time resolutions of 
2mins. The temperature setpoint for this particular 
cabinet is observed to be 1.5C with a deadband of 1C. 
It is evident that a bang-bang controller is utilised as 

Figure 2: Plots showing raw data for the ambient temperature and the 
temperature difference between cabinet and store temperatures (∆T) 

against the compressor duty. 
 

Figure 3: Plots showing the raw temperature data of a fridge cabinet 
and its corresponding valve positions for a sample day: 26th October 

00:00-23:58. 

22



3 
 

there are fluctuations in the temperature between two 
states: above and below the desired setpoint.  

5 Materials and Methods 
5.1 Software 

Python 3.9 was used throughout this project for 
all simulation and modelling purposes. 
5.2 Model for the Compressor Duty 

For the first model, a linear approximation was 
used. Noting that the driving force for the compressor 
work is the temperature difference between cabinet 
temperature and the store temperature, and accounting 
for the effects of the ambient temperature, a linear 
approximation is made in the form of the following 
equation: 

 

𝑊̇ = 𝑎1(𝑇̅𝑐𝑎𝑏𝑖𝑛𝑒𝑡 − 𝑇𝑠𝑡𝑜𝑟𝑒 ) + 𝑎2𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 𝑎3 (1) 
 

Where 𝑇̅𝑐𝑎𝑏𝑖𝑛𝑒𝑡 is the weighted average calculated with 
respect to each cabinet type mentioned in Table 1. 
The equation can be simplified and written as:  
 

𝑊̇ = 𝑎1𝑥1 + 𝑎2 𝑥2 + 𝑎3 (2) 
 

Real-time data for 𝑥1, 𝑥2 and 𝑊̇ is fed to python and the 
LinearRegression feature of scikit-learn is used to obtain 
the constants 𝑎1, 𝑎2 and 𝑎3.  

In order to assess if compressor duty is a linear 
function of the aforementioned temperatures, a neural 
network was also trained on the data. This was done 
using the MLPRegressor from scikit-learn. 

Lastly, the effects of humidity were also 
investigated. This was done by simply including another 
linear term in the equation correlating to the humidity. 
For all models, the data was split into test and training 
sets with a test size of 30% at random. This is kept 
consistent throughout all the models discussed in the 
course of this report.  
5.3 Model for the Cabinet Temperature 
 

Table 1: Classification of cabinet types based on their temperature 
range. 

Cabinet 
Type 

Temperature 
Range 

Description Total 

1 -23 ≤ T ≤ -18 Freezer 13 
2 0 ≤ T ≤ 2 Fridge 4 
3 -1 ≤ T ≤ 3 Fridge 8 
4 -1 ≤ T ≤ 7 Fridge 5 
5 -1 ≤ T ≤ 5 Fridge 5 

 

The cabinet temperature depends on the flow of the 
coolant which is controlled through a valve. The valve 
opening can be manipulated to adjust the cabinet 
temperature which in turn can be used to adjust the 
compressor duty. In order to devise a model for the 
cabinet temperature, a simple heat balance is taken over 
the cycle such that: 
 

𝑑𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡

𝑑𝑡 =
𝑄𝑐𝑎𝑏𝑖𝑛𝑒𝑡

𝑚𝑐𝑝
 (3) 

 

where 𝑄𝑐𝑎𝑏𝑖𝑛𝑒𝑡 is the cabinet duty denoted by 𝑚𝑐𝜆 and 
the mass of the coolant, 𝑚𝑐 can be calculated by 
multiply the valve position by the valve constant, 𝑘𝑉. 
Substituting these inputs into the main equation yields: 
 

𝑑𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡

𝑑𝑡 =
𝑘𝑉𝑥𝜆
𝑚𝑐𝑝

(4) 
 

This equation can be further simplified into a discrete 
time temperature model, using a constant change in 
time, Δ𝑡: 
 

𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡(𝑛 + 1) =
𝑘𝑉 𝑥𝜆
𝑚𝑐𝑝

Δ𝑡 + 𝑘𝐶𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡(𝑛) + 𝑐 (5) 
 

This equation finally can be written in the form of 
𝑌 = 𝑚𝑋 + 𝐶 such that: 
 

𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡(𝑛 + 1) = 𝑚1𝑥(𝑛) + 𝑚2𝑇𝑐𝑎𝑏𝑖𝑛𝑒𝑡(𝑛) + 𝑐 (6) 
 

Similar to the compressor duty model, historic data 
for cabinet temperatures and valve positions are fed to 
python and the LinearRegression feature of scikit-learn 
is used to obtain the constants 𝑚 and 𝑐. Within the 
refrigeration system, there are several cabinets, each 
operating over a range of temperatures. Based on 
temperature range of the product, the cabinets were 
classified into five types as shown in Table 1. A separate 
model was established for each cabinet type. 
5.4 Control Scheme for the Refrigeration 
Cycle 

With the obtained multivariate linear model 
equation for the cabinet temperatures as a function of 
valve position and previous cabinet temperatures, bang-
bang control was implemented to control and regulate 
the temperature of the cabinet within a dead band of 1C 
of the desired temperature set point. The principal theory 
of bang-bang control is the switch between two states 
when the state conditions are met. 

 

There was a total of five different types of cabinets 
that were investigated as shown in Table 1. The valve 
positions were used as the actuators in the control loop. 
Whereby, when the temperature of the cabinet falls 
below 𝑇𝑠𝑝 − 𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑, the valve would be set at the 
lower limiting value and when the cabinet temperature 
reaches above 𝑇𝑠𝑝 +  𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑, the valve position 
would be set to the upper limit value. 

 

Table 2: Manually tuned upper and lower limits for valve positions 
for each cabinet type with their temperature setpoints. 

Cabinet 
Type 

Tsp 

(℃) 

Valve Position (%) 
Lower 
Limit 

Upper 
Limit 

1 -21.0 10 50 
2 1.0 10 35 
3 1.0 10 90 
4 3.0 10 100 
5 2.0 10 40 

 

And so, with the implementation of bang-bang 
control for each type of cabinet, a weighted average 
temperature of all the cabinets at each timestamp was 
calculated and stored as a variable to use in the work 

Figure 4: Control loop diagram for the bang-bang controller. 
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compressor model equation. This would then be used to 
simulate the variation of the work compressor duty as a 
function of time. Hence, an evaluation of the time 
periods of the highest and lowest duties was conducted 
and used to investigate how altering the temperature set 
points at different periods of the day could affect the 
overall work compressor duty and electricity tariffs.  

A representative electricity price profile of an 
economy-7 type tariff was used for the cost analysis of  
the compressor duties of the cabinets.  Table 3 presents 
the variation in electricity prices during the day.  
 

Table 3: Electricity price used for the cost analysis during off-peak 
and on-peak tariff times. 

Hour of the Day Electricity Price [p/kWh] 
00:00 – 16:00 10 
16:00 – 20:00 20 
20:00 – 00:00 10 

 

The hourly tariff information was used to modify 
the temperature setpoints of the cabinets to optimise the 
energy consumption of the compressors in the 
refrigeration model. Whereby, temperature setpoints 
were increased during the hours of higher prices.  

6 Results and Discussion 
6.1 Model for the Compressor Duty 

 
Figure 5: Linear model (top) and Neural network-based model 

(bottom) for the compressor duty, depicting model predicted values 
against real-time values for testing data and training data. 

 

Figure 5 shows plots of the model predicted values 
against the actual values for the compressor duty for the 
linear regression and the neural net respectively. 

The linear model shows favourable results with a 
decent R2 score of 0.45 and a MAPE of 14.4%. The non-
linear model performs slightly better with a marginally 
higher R2 score of 0.53 and a MAPE of 13.4%. Although 

the neural network performs better, for simplicity, the 
linear model was utilised for further analysis. The 
coefficients 𝑎1, 𝑎2 and 𝑎3 are summarised in Table 4. 

 

Table 4: Results from the multivariate linear regression for the 
compressor duty, the coefficients correlate to Equation (1). 

Coefficients Value 
𝑎1 0.057 
𝑎2 -0.032 
𝑎3 0.32 

 

As explained in section 5.2, the effect of humidity 
was also assessed. The inclusion of humidity did not 
improve the results, in either case, yielding 
approximately the same R2 score and MAPE. To assess 
the validity of this conclusion a p-value test was 
implemented on the coefficients. The results of the test 
are summarised in Table 8 in Appendix A. The results 
of the p-value test reiterated the conclusion that 
humidity does not significantly affect the compressor 
duty and only the temperature gradient as well as the 
ambient temperature have a measurable impact on the 
compressor duty. It is noted that the model is based on 
temperature conditions during the winter months thus 
the model validity is limited and is not accurate for the 
warmer summer months.  
6.2 Model for the Cabinet Temperature 

 

The model for each cabinet type performs very 
well, with an R2 score greater than 0.9 for each cabinet 
type. Table 5 summarises the results from the 
multivariate regression with the constants for Equation 
(6). Figure 6 depicts the regression results for each 
cabinet type. 

 

Table 5: Results from the multivariate regression for the cabinet 
temperature, the coefficients correlate to Equation (6). 

Cabinet Type 𝒎𝟏 𝒎𝟐 c 
1 -0.024 0.988 0.433 
2 -0.041 0.880 1.113 
3 -0.019 0.890 0.890 
4 -0.031 0.946 0.744 
5 -0.003 0.989 0.161 

The R2 score is very close to 1 for all models, 
denoting a near perfect fit. This makes sense as the 
cabinet temperature is mostly dependent on the coolant 
flow which is manipulated through the valve position. 
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Figure 6: Linear model for the cabinet temperature, depicting model predicted values against real-time values for testing data and training data. 

Figure 7: Compiled plots of the key results in the two simulations cases: no temperature setpoint changes (left) and with temperature setpoint changes 
(right). 
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6.3 Control Scheme for the Refrigeration 
Cycle 
6.3.1 Controller Simulation 

Upon simulation of the cabinet model equations 
with bang-bang control, Figure 10 in Appendix A 
presents the regulation of the temperatures of each of the 
cabinets to their corresponding setpoints along with how 
the valve positions change to accommodate the 
regulation for a sample day, 26th October 2022 00:00 – 
23:50. Bang-bang control works well to control the 
cabinet temperatures as the figure shows the abrupt 
switches between the two states of the valve positions 
when the pre-determined high and low set points of the 
cabinet temperatures are reached.  

As shown in Figure 10 in Appendix A, there are 
variations in how quickly the temperatures of the 
cabinets respond to the changes in the valve positions 
and this is due to the different types of cabinets having 
different resulting coefficients in their corresponding 
linear model equations.  Cabinet type 4 seems to have a 
much slower response in changing its temperature with 
changes in the valve position as compared to the other 
types of cabinets. Therefore, it was important to 
manually adjust the upper and lower limits of the valve 
positions for each type of cabinet separately to ensure 
that the bang-bang controller was operating in the 
desired manner. 
6.3.2 Compressor Duty 

Using Equation (1) and the coefficients from Table 
4, Figure  8 shows the resulting plot of how the 
calculated compressor duty varies throughout the day 
for the two cases: no temperature setpoint change and 
with temperature setpoint changes. The total duty was 
calculated to be 259kWh/day for the case with no 
setpoint change.  
The compressor duty was the highest during the hours 
of 10:00 – 16:00. These were the periods of the day 
where the ambient temperature was the highest as 
depicted in the subplots of Figure 7. The combined 
subplots of Figure 7 present a useful insight into how the 
key parameters are affected in the two cases. 

As the compressor duty model linear equation is a 
function of ambient temperature, it confirms that there 
is an increase in the compressor duty as ambient 
temperature increases. From this analysis, it can be 
deduced that this compressor duty will be much higher 
during the warmer seasons as generally, the ambient 

temperatures can get 15C higher than those that have 
been used in the model dataset for this project. [14] 
confirms the relationship that compressor duty is 
expected to rise during the summer months and reduce 
during the winter months as a result of the higher 
ambient temperatures. They found that there was a 15% 
increase in the compressor duty in the summer months 
relative to the winter months. Hence, this confirms that 
as ambient temperatures increase, the compressor duty 
is also expected to increase.  

Using the economy-7 electricity tariff as shown in 
Table 3 of section 5.4, the total daily energy cost from 
the compressor duty was calculated to be £30.25. 

Further analysis was conducted to evaluate the 
relationship between the total daily compressor duty and 
overall temperature setpoint changes for all cabinets. 
The temperature setpoints were varied by 1C intervals 
between +3C and -3C from the initial setpoint 
temperatures.  

Figure 9 shows a linear relationship between a 
change in setpoint across all cabinets and their 
compressor duty. With every 1C increase in the 
setpoint, there is a 1.8% decrease in the compressor duty 
per day. This is expected as raising the temperature 
setpoint of the cabinets reduces the temperature 
difference between the store and the cabinet and hence 
will require less compressor work to maintain the lower 
temperatures. 

Considering the daily electricity prices and periods 
of the day where the compressor duty is the highest, 
temperature setpoint changes were implemented to all 
the cabinets as presented in Table 6. 

 

Table 6: Chosen variations in the temperature setpoints across all 
cabinets 

Hour of the 
Day 

Change in temperature 
setpoint 

00:00 – 10:00 0 
10:00 – 16:00 +2 
16:00 – 20:00 +2 
20:00 – 00:00 0 

 

According to [15] and [16], it is good practice to 
store and handle frozen foods in temperatures of -18C 
or lower and cold foods at 5C. The increases in the 
temperature setpoint of all the cabinets outlined in Table 
6 have accounted for these food safety standards.  

Figure 9: Daily compressor duty against 1°C interval changes in the 
temperature setpoint of all the cabinets. 

Figure 8: Variation of Compressor duty without and without 
temperature setpoint changes on 26th October 2022 00:00 – 23:50.  
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With the temperature setpoints changes as shown in 
Table 6, the daily compressor duty was recalculated to 
be 255kWh/day. This is a 1.5% reduction in the 
compressor duty as a result of varying the temperature 
setpoints which has considered the higher compressor 
duty periods and periods of higher electricity rates.  

The total daily energy cost from the compressor 
duty with setpoint changes was calculated to be £30.02. 
This is a savings of only 23p per day. The small savings 
can be due to the lower ambient temperatures and the 
store temperatures in the colder seasons. Following 
equation 1, there is a reduced driving force as the 
temperature difference between the cabinet and the store 
would be less. Hence, the compressor duty would not be 
significantly large to incur large savings. Overall daily 
compressor duties and energy costs have been 
summarised in Table 7.  
 

Table 7: Summary of compressor duty and energy costs. 

 Base 
case 

Case 
1 

Difference 
(%) 

Total compressor 
duty [kWh/day]  259 255 -1.5 

Total Cost [£/day]  30.25 30.02 -0.8 

7 Conclusion 
An attempt was made to establish a simplistic 

model for compressor duty and alter it indirectly by 
controlling cabinet temperatures by changing valve 
position. A simple bang-bang control model was used 
for this purpose. With the implementation of the control 
scheme, savings of 23p per day were obtained, which 
translates to saving  ₤83.95 a year. The small amount of 
savings seems to suggest that the implementation of the 
control scheme is not worthwhile, especially because of 
the costs associated with installing and maintaining a 
cloud-based energy management system.  

Additionally, with respect to the costs before 
implementation, a 0.8% decrease in costs is observed as 
well as 1.5% savings in energy. The percentages very 
well suggest that the cost and energy savings are 
significant enough to consider cloud-based solutions, 
primarily due to the reduction in the supermarket’s 
carbon footprint.   

8 Outlook 
A more in-depth study of the compressor work 

duty correlation is required to obtain a more accurate 
model to improve the quality of the fit. Additionally, the 
effects of various weather conditions should be studied 
to establish a more rigorous model. With a better 
prediction of compressor duty, the control model will 
work qualitatively better, yielding higher savings.  

It is also important to note that the model equations 
obtained from simulations have been based on the air 
temperatures of the cabinets as opposed to the 
temperatures of the foodstuffs. However, it has been 
assumed that the heat transfer coefficients of the 
foodstuffs are very low that it will take a long time for 
the temperature of the foodstuffs to vary for a change in 
the cabinet air temperature, so a model based on 
foodstuff temperatures is worth exploring in future 
analysis.  

Further investigations into more advanced control 
theories, such as proportional-only control (P control) 
and proportional and integral control (PI control) as well 
as feedback control are recommended. These controllers 
would work to reduce the error between the measured 
cabinet temperatures and the desired setpoint, hence it 
would help to eliminate the fluctuations in the cabinet 
temperatures within the deadbands and optimise control 
to reach desired setpoint.  

While control strategies explored in this paper do 
reduce costs, an investigation into alternative 
approaches to reduce the overall compressor duty and 
hence the energy consumption of refrigeration systems 
within supermarkets is a simpler solution. Currently, 
supermarkets do not have doors installed on the cabinets 
and this can have opposing effects in the energy balance 
whereby unnecessary energy can be lost due to the heat 
transfer from the cooler cabinets to the warmer stores. 
This would mean more compressor duty is required to 
maintain the lower temperatures of the cabinets and also 
to maintain the comfortable temperature ranges of the 
stores due to the additional cooling from the heat 
transfer from the cabinets to the store. Simple solutions 
such as installing doors on the cabinets could be more 
cost effective and sustainable. 

Refrigeration systems typically use regular Joule-
Thomson valves. Since these systems in supermarkets 
are large enough, it might be worth investing in turbo-
expanders. Turbo-expanders can be used to recover 
wasted energy and therefore can have beneficial impacts 
in increasing the energy efficiency of the system [17].  
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Abstract Furfural oxidation to furoic acid is a crucial step in producing a new biobased surfactant, SAF. Two schemes, 
stoichiometric and heterogenous oxidation, are investigated to find the optimal conditions and yield of furoic acid 
synthesis. It was found that the yield can approach 73% for stoichiometric oxidation using H2O2 as the oxidizer, methanol 
as solvent, and at a temperature of 60 ℃. For aerobic oxidation, the maximum yield is 75%, which can be achieved at a 
temperature of 120 ℃ and 5% Ru/C catalyst loading. The catalyst shows good potential for recyclability, whose activity 
only declines about 1.2% per round of experiments. The catalyst was then subject to physiochemical studies, suggesting 
that the oxide overlayers' leaching on the ruthenium surface is the main reason for the loss in ruthenium contents. Despite 
the comparable yields observed in both oxidation schemes, we concluded that aerobic oxidation is a more desirable 
scheme for SAF commercialization as it does not require the purification of furfural and uses air as the oxidant. Future 
work on a continuous system can be applied to study the deactivation and regeneration of catalysts in more detail. 
 
Introduction and Background 
 
Surfactants are surface active agent substances that can 
modify the interfacial tension liquid-gas or liquid-liquid 
interfaces because of their unique molecular structures. 
Thanks to this propriety, surfactants have become one of 
the most used commodity chemicals, with applications in 
diverse fields (household, industry, agriculture, personal 
care, oil and gas, food, and pharmaceuticals)1. The global 
surfactant market size was 39.42 billion in 2020 and was 
expected to increase to 57.81 billion by 2028.2 The 
increase is driven by the growing demand for consumer 
products such as detergents.  Due to the large volumes 
commercialized, biodegradability and toxicity are 
essential factors to be considered in combination with the 
low cost and sustainability of the raw material.  
 
Currently, the most widely used surfactants are anionic 
surfactants, which account for more than 20% of a typical 
household product.3 In particular, linear alkyl benzene 
sulfonates (LAS) and sodium dodecyl sulfates (SDS) are 
among the most widely used surfactants to meet 
household laundry requirements. LAS, a typical 
petroleum-based surfactant, can cause various detrimental 
effects on aquatic/terrestrial ecosystems besides 
contributing to positive net CO2 emissions.4 While 
biobased surfactants, such as SDS, often perform lower 
due to lower resistance in hard water and relatively high 
critical micelle concentration (CMC). Therefore, an 
environmental-friendly surfactant with performance and 
costs comparable to those of LAS is needed.  
 
Recently, the concept of sugar-based surfactants has 
received more and more attention. With well-established 
industrial technologies, a glucose-based surfactant, alkyl 
polyglycolide, reached a production capacity of 
approximately 80000 tons annually in the early 21st 
century.5 However, it is a non-ionic surfactant with several 
inherent disadvantages compared to anionic surfactants 
since less effective.  
 
Few catalytic pathways have been reported to transform 
sugars into surfactants through furanic intermediates to 
produce sugar-based anionic surfactants with high 
performances. However, many of them suffer from a 
complex and expensive pathway, which significantly 

limits the scalability of the process. 
 
In 2022, Al Ghatta and coworkers introduced a new 
biobased family of anionic surfactants called sulfonated 
alkyl furoates (SAFs) based on ester linkages, which has 
excellent potential for up-scaling. Compared with other 
sugar-based surfactants, SAFs have superior 
performances because of their high resistance to hard 
water with low CMC and high flammability with 
improving Krafft point. Compared to other furan 
surfactants, the synthesis of SAFs is highly scalable 
because of its well-established catalyst selection and 
purification techniques. Besides, SAFs also have a more 
favorable atom economy than SDSs, and their production 
from waste resources, such as corn cob, dramatically 
benefits the future circular economy. As a result, SAFs 
have shown a promising prospect as a rising sustainable 
surfactant with good performance and reasonable costs.6 
 
The synthetic route of SAFs is illustrated in Figure 1. Li 
and coworkers extracted furfural from corn cob under 
mild reaction temperature (170-190℃): γ-valerolactone 
as the solvent, H-ZSM-5 as the catalyst, with a maximum 
furfural yield of 71.68%.7 Hidayat and coworkers 
evaluated corn cob's economic value for furfural 
production and designed a preliminary corncob-based 
furfural manufacturing plant.8 Furoate ester can be 
synthesized by mixing furoic acid (FA) and dodecanol 
(DOD) under 150 ℃ and acidic conditions with a Dean-
Stark apparatus. The SAFs can then be subsequently 
produced by sulfonation, adding chlorosulfonic acid at 
stoichiometric conditions. 6 In contrast, the chemical step 
from furfural to furoic acid has been considered the 
weakest link in the synthetic chain because of its complex 
mechanism with multiple competing pathways.  
 
Two schemes can be considered for producing FA from 
furfural: stoichiometric oxidation and heterogeneous 
catalytic aerobic oxidation. Stoichiometric oxidation 
systems always require expensive oxidants, such as H2O2, 
with the advantage of not using a catalyst, while 
heterogeneous reaction systems can use more economical 
O2 as an oxidizer, but a noble metal catalyst is generally 
required. As a result, both schemes have the potential to 
be implemented in SAF production.  
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Figure 1. Schematic of SAF synthetic route

 
The most common route for large-scale production of 
furoic acid is through the Cannizzaro reaction, which uses 
sodium hydroxide to convert furfural into equimolar 
amounts of furoic acid and furfuryl alcohol, as shown in 
Figure 2. The major drawback of the Cannizzaro reaction 
is that the maximum theoretical yield is only 50%.9 
Although furfural can be directly oxidized to furoic acid 
using oxygen gas with a metal catalyst; such a reaction 
scheme still needs to be tested at a large scale due to the 
great difficulty of recovering heterogeneous catalysts after 
the reaction.10 
 

 
Figure 2. Schematic of the Cannizzaro reaction 
 
Kazuhiko and coworkers demonstrated homogenous 
catalyst-free oxidation of non-furan aldehydes to 
carboxylic acids using H2O2 in an acidic condition. They 
investigated the effects of reaction temperature and 
substrate- H2O2 ratio on the yield of desired carboxylic 
acid, achieving yields as high as 93%, proving the 
potential of homogenous oxidation.11 The use of H2O2 as 
an oxidizing agent has also attracted attention from 
researchers in green chemistry due to its cleanliness.12 
Within this research, we present a reaction scheme for 
furfural similar to Kazuhiko’s work, using H2O2 as the 
oxidizing agent and NaOH as the base, as shown in Figure 
3. Due to basic conditions, however, the Cannizzaro 
reaction competes with the primary oxidation reaction, 
causing the overall selectivity to decrease. Furthermore, 
the decomposition of H2O2 to water and oxygen is 
catalyzed at high pH. At high H2O2 concentrations, the 
oxidation of furan compounds also tends to be 
uncontrolled, leading to over-oxidation of the desired 
product and the formation of by-products.13 These aspects 
of the reaction had not been investigated in published 
work and are studied within the project. 
 

 
Figure 3. Schematic of homogeneous oxidation using H2O2  

 
Another scheme of FA production is through aerobic 
oxidation, as shown in Figure 4. Sadier and coworkers 
evaluated the oxidation of furfural to furoic acid in an 
alkaline solution under 15 bar of air and room 
temperatures in a batch reactor with a TiO2-supported Ag 
catalyst. They investigated the effect of temperature, air 
pressure, base equivalent, and the nature of the inorganic 
base used separately and achieved a maximum yield of 96% 
FA under optimum conditions. However, the high yield of 
FA is only possible with NaOH and a very high pH. 
Furthermore, the catalyst recyclability is limited, where 
the catalytic performance declines significantly after three 
runs. The decline in catalyst activity is associated with an 
increase in the size and the re-oxidation of the silver 
particles in a combination of side products poisonous to 
the active site.14 Nocito and coworkers described the use 
of MnO2@CeO2 core−shell oxide in the selective aerobic 
oxidation of furfural. They investigated the role of the 
morphology of the catalyst on the reaction yield in detail 
and claimed that up to 96% yield of FA was observed. The 
catalyst also has excellent recyclability, where no 
significant loss was seen after ten cycles and 50 hours of 
operation. However, to achieve a high yield of FA, a high 
catalyst loading (20%-30% mass ratio) and long operating 
time (5h) are required. Moreover, the reaction mechanism 
is not fully understood and proven, and the high loading 
of the catalyst doesn’t justify the regeneration risk leading 
to deactivation in the long term. 15 
 

 
Figure 4. Schematic of aerobic oxidation on Ru/C 
 
Ru/C is a commercial catalyst with vast applications in 
green and sustainable chemistry. Yi and coworkers 
researched the catalytic conversion of 5-hydroxymethyl 
furfural (HMF) to 2,5-furan dicarboxylic acid (FDCA) 
under basic conditions. With commercial Ru/C catalysts, 
they managed to achieve an FDCA yield of 88%.16 The 
Ru/C catalyst requires a weaker base to achieve maximum 
yield and a relatively short reaction time, which opens the 
prospect of using more concentrated furfural and increases 
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the potential of scalability since furfural is unstable under 
strongly basic conditions. However, schematic 
determination of the optimal reaction conditions and 
investigation of the catalyst recyclability for Ru/C has yet 
to be extensively reported, which is studied within the 
project. 
 
Aim of The Project 
 
The project aims to study different approaches for furfural 
oxidation through the usage of a stoichiometric oxidant 
and aerobic approach, performing an optimization study 
on the critical parameters which affect the selectivity.  
For the stoichiometric oxidation, temperature, solvent, 
and the furfural-NaOH-H2O2 ratio will be varied, while 
temperature, air pressure, catalyst loading, and the base 
ratio will be assessed for the aerobic oxidation through a 
design of experiment approach. In addition, the 
recyclability of Ru/C for the aerobic oxidation of furfural 
is studied.  
 
Ultimately, we aim to compare the maximum yield of 
stoichiometric with aerobic oxidation, along with their 
advantages and limitations. This should give an overview 
regarding which system is more beneficial for a scale-up. 
The research outcome should fill the gap in the synthetic 
route of SAF and contribute to the commercialization of 
SAF in the future. 
 
Methods 
 
Materials 
 
All reagents, including pure furfural, furoic acid crystals, 
absolute dry methanol, 50% hydrogen peroxide, 
ruthenium on carbon catalyst, and sodium hydrogen 
carbonate, were purchased from Sigma-Aldrich and used 
without purification. 20% and 50% sodium hydroxide 
solutions were prepared by dissolving sodium hydroxide 
pellets in deionized water, weighted accordingly. 
 
Analytical Method 
 
Standard furfural and furoic acid solutions were prepared 
by dissolving respective compounds in deionized water 
and diluted accordingly. The standard solutions were 
placed in high-performance liquid chromatography 
(HPLC) to obtain calibration curves for each compound, 
enabling measurement of their concentration in samples 
produced by experiments. 
 
Study of furfural stability 
 
The reaction was conducted in a round flask with 20g, 3% 
furfural dissolved in deionized water in a heating plate and 
stirred with a magnetic bar. 20% sodium hydroxide 
solution was added in one portion, with the amount 
depending on the furfural-NaOH ratio to be analyzed. 
Samples were withdrawn from the mixture every 5 to 10 
minutes for 1 hour, diluted, and analyzed with HPLC. The 
conversion of furfural is calculated with a calibration 
curve. Such reaction was repeated at five different 
furfural-NaOH ratios (0.01 to 1) at three different 

temperatures (20, 40, and 60 degrees C). 
 
Stoichiometric oxidation of furfural 
 
5g pure furfural was diluted with methanol to reach the 
target furfural concentration, employing a magnetic stirrer 
in a heating plate (Figure 5). 50% hydrogen peroxide and 
50% sodium hydroxide were added dropwise to the 
mixture. To avoid thermal runaway, the addition of 
reagents was stopped when the temperature of the mixture 
exceeded 60 oC and resumed when the temperature 
dropped below the same threshold. Samples were 
withdrawn from the mixture and analyzed through HPLC. 
The reaction was repeated at different furfural-H2O2-
NaOH ratios and at 15 oC, and an ice bath was used to 
absorb heat from the reaction. Following the addition of 
reagents, the mixture was heated at 55 oC for 1 hour. A 
condenser was also connected to reduce the evaporation 
of methanol. Precipitates formed from the reaction were 
filtered and analyzed through HPLC. 
 
Aerobic Oxidation 
 
3% furfural was prepared by dissolving furfural in 
distilled water. Before performing aerobic oxidation, 3% 
furfural was filtered to remove any precipitation, which 
could potentially behave as poison on the ruthenium 
catalyst. 
 
The high-pressure Parr reactor (Figure 6) is preheated to 
100 ℃ to reduce the heating time. 10g of 3% furfural was 
prepared, and the catalyst and base were measured based 
on the equivalent ratio specified in the DOE. The reaction 
mixture was put in a vial and placed inside the preheated 
reactor. The reactor was quickly sealed before the vial 
temperature reached 100℃. Upon proper sealing, the 
reactor was pressurized using an air cylinder. The reaction 
time is counted when the temperature reaches the set point. 
5℃ fluctuation was considered acceptable. 
 
At the end of the reaction, the heater and mixer were 
turned off, and the reactor was cooled inside an ice bath. 
After the temperature decreased below 50℃, the reactor 
could be depressurized and unsealed. The vial was 
removed from the reactor, and the reaction mixture mass 
was measured. A sample (30-50 mg) was withdrawn and 
diluted with water (1 mL). The sample was then analyzed 
in HPLC, and the FA concentration could be calculated 
accordingly. 
 

 
Figure 5. Experimental set-up of stoichiometric oxidation 
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Figure 6. Parr Series 5500 HPCL Reactor w/4848 Controller & 
Opt. Expansion Modules 17 

 
Catalyst Recyclability Test  
 
20g of 3% furfural was prepared and reacted through 
aerobic oxidation following the methodology above. After 
each reaction, the catalyst was separated through vacuum 
filtration. Water and acetone were used to wash the 
catalyst (6*20 ml). The catalyst was then dried, and its 
mass was remeasured upon drying. The pH of the liquor 
was measured.  
 
The dried catalyst was then used to perform a second 
experiment, and the amounts of base and furfural were 
adjusted accordingly to keep the same initial ratio. Similar 
procedures were performed until the catalyst was used six 
times. All samples were analyzed through HPLC. Catalyst 
characterization was done through Transmission Electron 
Microscopy (TEM), Inductively Coupled Plasma (ICP), 
and Brunauer–Emmett–Teller (BET) analysis to describe 
the particle size, ruthenium content, and catalyst surface 
area, respectively.  
 
Results and Discussion 
 
Stability Test of Furfural in NaOH 
 
Under the presence of NaOH, furfural undergoes a 
Cannizzaro reaction to produce equimolar amounts of 
furoic acid and furfuryl alcohol. The conversion of 
furfural increased with the quantity of NaOH (Table 1). 
During the reaction, the pH of the reaction mixture 
decreased, indicating the consumption of hydroxide ions. 
Although the conversion of furfural was not expected to 
be higher than twice the base ratio due to reaction 
stoichiometry, such phenomena were observed. This 
suggests that since the furfural ring is prone to attack by 
nucleophiles in the aromatic ring (C1 carbon), aldol 
condensation of furfural could have resulted through ring 
opening forming side polymerized products. 18  
 
The conversion was also found to increase with 
temperature, reaching 64% at 60℃, contributed by the 
increase in reaction rate. It was observed that the  
 
 

 
Table 1. The effect of NaOH quantity on the stability of furfural 
in water  
 
temperature of the mixture didn’t change at all conditions, 
suggesting that the Cannizzaro reaction has a low enthalpy 
change of reaction. 
 
Stoichiometric Oxidation of Furfural 

 
The effects of molar ratios of NaOH to furfural, H2O2 to 
furfural, temperature, and solvent on the conversion of 
furfural and yield of furoic acid were investigated, with 
the aim of finding the optimal reaction condition (Table 
2). 
 
In experiment A1, a conventional Cannizzaro reaction 
pathway for furoic acid production was attempted by 
adding only NaOH. Such a reaction converted 40% of 
furfural achieving a 20% yield of furoic acid, which is an 
exact match to the theoretical selectivity of Cannizzaro 
reaction. The temperature of the reaction mixture also 
remained unchanged despite the continuous addition of 
furfural into NaOH. Due to the unreacted furfural present, 
the mixture was light orange in color, however, contained 
no precipitate. 
 
When an equimolar amount of base and peroxide were 
added, an unsatisfactory yield and selectivity of 13% and 
12% resulted respectively (A2). Despite the continued 
addition of excess base and peroxide until 4 and 8 molar 
equivalents (A3), the yield of furoic acid only increased 
by 4%. Cong and coworkers investigated the 
stoichiometric oxidation of substituted benzaldehydes at 
the same substrate-base-peroxide ratio, solvent, and 
temperature, yet achieving yields from 81% to 97%. 19 
However, as the furan ring is prone to uncontrolled 
oxidation in excess peroxide, side reactions such as ring-
opening might have decomposed furoic acid produced. 
This phenomenon may impose a maximum limit to the 
ratio of peroxide in order for yield to be optimal, such that 
over-oxidation is not dominant. 
 
The reaction also produced 6.7g of white precipitate 
soluble in water under acidic conditions, generating gas 
bubbles during dissolution. The solid could not be 
successfully characterized through NMR or HPLC. 
 
In experiments A4-6, the peroxide ratio was varied from 1 
to 4, and a higher base ratio of 2 was selected. The yield 
increased from 51% to 73%, indicating that the yield and 
selectivity limit of the Cannizzaro reaction had been 
exceeded. A fast rise in temperature was also observed, 
suggesting the oxidation by peroxide dominated. 1.84g of 
precipitated was filtered from the mixture.

Base ratio Temperature 
(℃) 

Conversion (%) 

0.01 20 13 
0.05 20 20 
0.5 20 25 
1 20 34 
0.05 40 29 
0.05 60 64 
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Experiment Furfural 
mass (%) 

Base 
ratio 

Peroxide 
ratio 

Temperature 
(℃) 

Solvent Yield 
(%) 

Conversion 
(%) 

Selectivity 
(%) 

A1 10 2 0 60 Methanol 20 40 50 
A2 10 1 1 60 Methanol 13 82 12 
A3 10 4 8 60 Methanol 17 82 17 
A4 10 2 1 60 Methanol 51 68 75 
A5 10 2 2 60 Methanol 63 100 63 
A6 10 2 4 60 Methanol 73 100 73 
A7 10 2 1 60 Toluene 91 92 99 
A8 10 2 2 60 Toluene 100 100 100 
A9 100 1 2 60 - 39 83 47 
A10 100 1 1 10 - 26 87 30 
A11 100 2 2 10 - 29 95 31 
A12 10 2 2 10 Methanol 19 29 66 
A13 5 2 2 10 Methanol 19 25 76 
A14 20 2 1 10 Methanol 33 100 33 
A15 20 2 2 10 Methanol 40 100 40 

Table 2. The effect of reaction parameters on stoichiometric oxidation of furfural 
 
HPLC analysis indicated only 37mg of furoic acid was 
present in the solid, corresponding to a purity of 2%, while 
furfural was undetected.  
 
The reaction was repeated at the same condition (A7, A8), 
but with toluene as solvent. With one molar equivalent of 
peroxide, a yield of 91% was achieved with selectivity 
approaching 100%. However, the phase separation 
between the toluene and ionic phase posed a challenge to 
the accurate calculation of yield and conversion. As 
residual furfural likely remained in toluene while furoic 
acid remained in the aqueous phase, after normalizing 
with the total volume of the mixture, the total quantity of 
furfural was underestimated, and that of furoic acid was 
overestimated. Therefore, the actual yield and conversion 
are smaller than the ones reported. Rodrigues and co-
workers reported the formation of 2-methyl furoate in a 
similar stoichiometric oxidation using methanol as solvent 
and H2O2 as oxidant.20 Due to the absence of esterification, 
the change to toluene as a solvent can potentially improve 
yield and selectivity. 
 
On the other hand, when pure furfural was oxidized 
without any solvent, the yield and selectivity dropped to 
39% and 47% respectively. Using a lower temperature of 
10℃ in experiments A10-11 resulted in even lower yields 
and selectivity. The chromatogram from HPLC analysis of 
the reaction mixture and precipitate showed several peaks, 
indicating the abundance of side products. The reaction 
mixture also appeared dark, suggesting the 
polymerization of furfural had occurred.21 As there was no 
solvent to dilute H2O2, the rate of oxidation increased 
significantly, causing stronger competition from side 
oxidations and ring-opening reactions as mentioned 
previously.  
 
The hypothesis is reaffirmed by observing the trend of 
selectivity when the concentration of furfural in methanol 
was varied. From experiments A12-15, a higher 
selectivity towards furoic acid was achieved at a lower 
concentration of furfural. Nevertheless, a longer reaction 
time may be needed to obtain the same conversion and 

yield due to the slow reaction rate.  
 
In general, the conversion at 60℃ exceeded that of 10℃ 
due to an increase in reaction rate. The selectivity towards 
furoic acid also followed the same trend. An analysis of  
reaction kinetics showed that at a higher temperature, the 
rate of generation of furoic acid from the Cannizzaro 
reaction increased by a larger extent than oxidation by 
peroxide. The activation energy of the former is 
69.3kJ/mol and follows the 2nd-order rate law in furfural, 
while the latter has a smaller activation energy of 
44.6kJ/mol and follows the 1st-order rate law in 
furfural.22,23 Therefore, the high selectivity of reaction 
(>50%) was contributed by both the Cannizzaro reaction 
and oxidation, with oxidation being favored at low 
temperature and low furfural concentration. 
 
We conclude that the optimal reaction condition is the use 
of a furfural-base of 2 and the furfural-peroxide ratio of 4, 
methanol as solvent, and at a temperature of 60℃. Under 
such conditions, furoic acid can be obtained at a 73% yield. 
In systems where the reaction time of stoichiometric 
oxidation of furfural to furoic acid needs to be minimized, 
the concentration of furfural and peroxide ratio ought not 
to be increased beyond optimum since doing so will result 
in the prevalence of over-oxidation. Instead, the 
temperature and solvent type should be modified. 
 
Aerobic Oxidation of Furfural 
 
Since the aerobic oxidation needs to be carried at high 
pressure, the addition of NaOH as done in the previous 
set-up is not possible. Therefore, it was decided to use 
NaHCO3 as a weaker base to limit the side reaction of 
furfural. To understand the stability of furfural in the 
presence of sodium hydrogen carbonate, a stability test 
has been performed at different temperatures. It was 
observed that at 90℃, the conversion of furfural was 27% 
after 10 minutes and achieved 60% in one hour, 
suggesting that furfural degradation is significant even 
with a weak base.  
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Experiment Pattern Catalyst 
Loading 

Temperature 
(℃) 

Air Pressure 
(bar) 

Base 
Ratio 

Yield Complete 
Conversion 

B1 +-+- 7 90 35 1 64 Y 
B2 -+-+ 3 120 10 1.5 35 Y 
B3 ++-- 7 120 10 1 75 Y 
B4 --++ 3 90 35 1.5 56 N 
B5 -++- 3 120 35 1 41 Y 
B6 ---- 3 90 10 1 35 N 
B7 +--+ 7 90 10 1.5 52 N 
B8 ++++ 7 120 35 1.5 73 Y 

Table 3. Results of 1st DOE 
 

Experiment Pattern Catalyst Loading Temperature 
(℃) 

Base Ratio Yield 

C1 0-+ 7 115 1.5 65 
C2 +0- 9 127.5 1 61 
C3 000 7 127.5 1.25 97 
C4 0+- 7 140 1 64 
C5 -0- 5 127.5 1 63 
C6 +-0 9 115 1.25 62 
C7 0-- 7 115 1 74 
C8 0++ 7 140 1.5 61 
C9 000 7 127.5 1.25 63 
C10 ++0 9 140 1.25 53 
C11 -0+ 5 127.5 1.5 65 
C12 000 7 127.5 1.25 60 
C13 -+0 5 140 1.25 59 
C14 --0 5 115 1.25 72 
C15 +0+ 9 127.5 1.5 62 
C16 000 7 127.5 1.25 58 
C17 000 7 127.5 1.25 60 

Table 4. Results of 2nd DOE 
 
The stability of furfural with the catalyst at reaction 
temperature was also investigated. Surprisingly, furfural 
concentration fluctuates, where the furfural conversion 
(49%) after 30 minutes is lower than that after 15 minutes 
(57%). Ultimately, the conversion reached approximately 
74% after 1 hour. We inferred that this might arise from a 
reversible side reaction or furfural adsorption on the 
catalyst support (carbon black). 
 
Design of Experiments (DOE) with JMP was used to 
investigate the effect of temperature, air pressure, catalyst 
loading, and base ratio on the FA yield and determine the 
optimal reaction conditions. 
 
The 1st DOE was applied to screen the effect of these 
parameters, and it provides a basic understanding of the 
reaction (Table 3). The maximum yield achieved was 75%, 
with high catalyst loading, high temperature, low air 
pressure, and low base ratio (B3). Experiments at low 
catalyst loading (B2, B4, B5, and B6）were characterized 
by lower yield. By increasing the temperature and air 
pressure, the yield was expected to increase by a small 
amount according to the DOE prediction tool. However, 
more experiments are needed to increase the level of 
statistical significance. The fact that the air pressure has a 
negligible influence on the FA yield implies that the 
reaction is not oxygen-transfer limited. The DOE also 
predicted that there is no influence on the base ratio. 
Nevertheless, as there are four parameters and only eight 

experiments, our confidence level is insufficient to draw 
discrete conclusions.  
 
It was also found that the conversion of furfural reached 
100% at 120 ℃, while at 90 ℃, the conversion is 
incomplete. The FA yield remains low even if the 
conversion of furfural reaches 100% at high temperatures 
and low catalyst loading, which suggests the presence of 
side reactions or furfural adsorption on the carbon matrix 
 
To obtain more accurate results, a more detailed 2nd DOE 
was performed (Table 4). Since the reaction is not 
oxygen-transfer limited, air pressure is removed from the 
DOE variables. The range of catalyst loading and 
temperature was adjusted toward the more favorable 
intervals. 
  
It was found that the FA yield decreases with increasing 
 temperature at the range of 115-140 ℃. The catalyst 
loading (from 5% to 9%) did not have a significant impact 
on the FA yield, suggesting that 5% catalyst loading is 
enough for aerobic oxidation. The results also confirmed 
that the base ratio does not influence the FA yield. 
 
The central point condition (catalyst loading=9%, 
temperature=127.5℃, base ratio=1.25) is tested with five 
experiments (C3, C9, C12, C16, and C17) to understand 
the repeatability of experiments. It was found that, except 
for experiment C3, the FA yield is in the range of 58% to 
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63%, suggesting the high replicability of the experiments. 
The high conversion of 97% is likely due to the error in 
FA sampling. We also investigated the effect of reaction 
time on the FA yield. We adjusted the reaction time from 
20 minutes to 1.5 hours through separate experiments 
(Figure 7). At optimal reaction conditions, it was found 
that the furfural conversion is 100% even with a reaction 
time of 20 minutes. However, the FA yield decreases to 
about 55% for a 30-minute reaction and further to as low 
as 20% for a 20-minute reaction. For a 90-minute reaction, 
the FA yield increases to 76%, which suggests that 1 hour 
is the optimal reaction time for aerobic oxidation. 
 
We concluded from the results of both DOEs that the 
optimal condition for aerobic oxidation is 5% catalyst 
loading and 120 ℃ for a reaction time of 1 hour. At the 
optimal condition, the conversion of furfural is complete, 
and the FA yield is about 75%. Yi and coworkers studied 
the base-free conversion of 5-hydroxymethylfurfural 
(HMF) to 2,5-furan dicarboxylic acid (FDCA) over a 
Ru/C catalyst on a similar setup and were able to achieve 
an FDCA yield of 88% with oxygen (2 bars) and longer 
reaction time (10 hours).16 Indeed, we achieved a FA yield 
close to 80% with 3-5 bar oxygen pressure and a reaction 
time of 2 hours. However, such conditions are not ideal 
for future commercializing of the process despite the 
higher yield. Longer processing time can result in a 
considerably higher cost for a continuous reactor. To reach 
a high temperature without evaporating the reaction 
mixture, the oxygen pressure must be carefully chosen, 
making the reaction system very difficult to operate on a 
larger scale. Moreover, a high oxygen pressure risks 
poisoning the Ru/C catalyst by oxidizing ruthenium to 
ruthenium (IV) oxide.24 
 
Six recycling experiments were conducted to assess the 
catalyst stability (Figure 8). The FA yield decreased by  
1.2 % after each cycle (75% to 69%), suggesting 
reasonably good catalyst recyclability. The low yield after 
the 2nd round can be explained by an operational problem 
during the set-up which led to air leakage in the system 
during the reaction. After the 4th round, we observed a FA 
yield of about 85%, which is higher than the result of the 
1st run and all the experiments from both DOEs. We 
inferred that the carbon is constantly adsorbing furfural. 
After furfural accumulation reaches a certain amount, it 
de-adsorbs from the carbon and participates in aerobic 
oxidation again.  
 
It was found that the ruthenium content of the fresh 
catalyst was 6.3%, while that of the used catalyst after 6 
cycles decreased to 4.6%. Analysis through BET showed 
that the surface area of the catalyst decreased from 840 to 
717 𝑚2/𝑔 , which was primarily due to a decrease in 
micropores area. The average pore volume decreased 
from 0.68 to 0.58 𝑐𝑚3/𝑔, with the average pore diameter 
decreasing from 7.0 to 6.5 nm and the average pore width 

remaining at around 3.2 nm.  
 
TEM images from the fresh (Figure 9a) and used catalysts 
(Figure 9b) at 120k magnification were used to observe 
the morphology and particle sizes. Using Image J software, 
it was roughly estimated that there was a 16% decrease 
(from 2.9nm to 2.5nm) in unagglomerated particle size, 
which partially explains the 27% loss of ruthenium 
contents observed through ICP analysis. It is clear that the 
ruthenium distribution on the carbon base is not uniform 
and therefore further investigation using TEM is required 
to get a statical distribution of particle size and to 
understand better the ruthenium contents.  
 
It is evident that some agglomerate of ruthenium particles 
is present in both fresh and used catalysts, as illustrated by 
the dark clusters of particles. The sizes of those 
agglomerates range from 5nm to around 20 nm. This 
agrees with the result of Hitrik’s, which investigated the 
agglomeration of ruthenium through a six-step 
mechanism.34 With increasing particle size, the surface-to-
volume decreases sharply, and so does the catalytic 
activity of the particles. This effect can be reduced by 
using nitrogen-doped mesoporous carbons (NMCs) as 
supports and tuning the nitrogen content, which could 
effectively decrease the average particle size to around 
2nm. 35 
 
It is surprising that the FA yield only declines of only 6% 
upon 27 % of Ru leaching. Catalyst deactivation studies 
on ruthenium reveal that the formation of ruthenium oxide 
can happen at room temperatures, which is often 
associated with a significant loss in catalyst activity.32 
Aßmann and coworkers studied the microscopic process 
of catalyst deactivation and found that oxygen absorbs on 
the ruthenium surface, forming some chemical-inactive 
distinct ordered oxide overlayers.33 It is likely that, during 
the preservation of the catalyst, such a layer is formed on 
the ruthenium surface, which is being leached out during 
aerobic oxidation. This explains the relatively high 
ruthenium content loss, moderate reduction in particle size, 
and the relatively small decline in catalytic activity.  
 
We have focused on the physiochemical studies of 
ruthenium particles so far. However, as stated by Lin and 
coworkers, the carbon support loss through oxidation 
could also have an essential effect on catalyst activity 
through the change in active sites, which is worth future 
investigation.36 
 
Understanding Furfural Adsorption and Decomposition 
 
A kinetic and thermodynamic study of furfural adsorption 
onto commercial-grade activated carbon (ACC) from an 
aqueous solution was performed by Sahu and coworkers. 
It was suggested that for 0.05 wt% furfural, the furfural 
removal could achieve 12mg/g. The initial concentration 
of furfural provides a driving force to overcome the
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Figure 7. The effect of reaction time on conversion/yield 
 

 
Figure 8. Catalyst Recyclability Test of Ru/C 
 

 
Figure 9. TEM images of catalyst (a) fresh on the left (b) used on the right 
 
mass transfer resistance, and hence, the amount of furfural 
adsorbed per unit mass increases with increasing initial 
concentration. With increasing temperatures, the 
adsorptive removal of furfural decreases as adsorption is 
in general an exothermic process.25 It was also found that, 
with air oxidation in activated carbon (ACAOx), the 
furfural removal rate was much faster.37 The Weber-
Morris intra-particular diffusion model can be used to 
determine the rate-determining step of the adsorption 

process, as shown in Equation 1: 
𝑞𝑡 = 𝑘𝑝𝑖𝑡1/2 + 𝐶 

where 𝒌𝒑𝒊 is the intra-particle diffusion rate constant for 
adsorption at stage 𝑖 and C is the intercept that represents 
the boundary layer thickness (mg/g).26 It was found that 
the Weber-Morris plot of the furfural adsorption process 
is not a straight line over the whole-time range, suggesting
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the presence of more than one adsorption mechanism. 
Further analysis suggests that the adsorption proceeds via 
a complex mechanism, with the rate-determining step 
being the intra-particle diffusion of furfural into 
micropores. Furthermore, it was found that the furfural 
adsorption onto ACC can be best fitted into the Redlich-
Peterson isotherm, as illustrated in Equation 2.25 

𝑞𝑒 =
𝐾𝑅𝐶𝑒

1 + 𝛼𝑅𝐶𝑒
𝛽 

The aerobic oxidation of furfural was fitted using a 
pseudo-first-order model, as illustrated in Equation 3.27  

𝑅 = 𝑘[𝐶5𝐻4𝑂2][𝑂2] ≈ 𝑘′[𝐶5𝐻4𝑂2] 
In contrast, the adsorption of furfural is usually modeled 
by a pseudo-second-order model, as shown in Equation 
4:25,28 

𝑑𝑄
𝑑𝑡 = 𝑘2(𝑄𝑒 − 𝑄)2 

where Q is the adsorption quantity at time t and 𝑄𝑒 is the 
adsorption quantity at equilibrium. Since the adsorption 
kinetic is of higher order, a high concentration of furfural 
favors the adsorption compared with aerobic oxidation. 
This explains the low FA yield observed when the reaction 
time is reduced to 20 or 30 minutes. The concentration 
fluctuation observed in the stability test can also be 
interpreted by the competition between adsorption and 
oxidation. 
 
However, this does not explain the low yield observed at 
high temperatures and low catalyst loading, which should 
have a relatively low adsorption rate. Therefore, the 
exceptionally low yield is more likely to be explained by 
the presence of undesirable side reactions. This is 
confirmed by the yellowish color of the product, while the 
color for FA is white. One possibility is the formation of 
humins through the intermediate of α-carbonyl aldehyde. 
After 5 hours of reaction at 120 ℃, the carbon yield of 
humins can achieve 23.4%.29 It is also confirmed that 
water is essential for furfural derivatives to form humins 
and hydrolytic open-ring products, where no humins 
formation is observed in experiments carrying with ethyl 
acetate. Indeed, Jin and coworkers conducted a detailed 
experimental study of furfural oxidation, where they 
concluded that furfural decomposition is mainly 
initialized through a ring-opening isomerization reaction 
to form formyl vinyl ketene.30 Furoin is also a potential 
side product for the aerobic oxidation on Ru-based 
catalyst, where Gupta and coworkers observed a furoin 
yield of 14% at 140 ℃  for a 20-minute reaction.31 
However, furoin formation is favored by the use of a 
strong base. With sodium hydrogen carbonate, we expect 
a much lower selectivity to furoin. 
 
In general, it is very difficult to characterize the side 
products accurately, and it is likely that more than one type 
of side product exists. However, through the tunning of 
the reaction temperatures, reaction time, and catalyst 
loading, the side reactions can be effectively avoided, and 
a high FA yield can be achieved. 
 
 
 
 
 
 

Conclusion 
 
A catalyst-free stoichiometric approach to the oxidation of 
furfural to furoic acid has been investigated, with yield 
and selectivity exceeding that of a conventional 
Cannizzaro reaction. Using methanol as solvent and a 
furfural-peroxide ratio of 4, the rates of unwanted 
reactions such as over-oxidation, esterification, and ring-
opening can be minimized, achieving a 73% yield. In 
contrast, the maximum yield with aerobic oxidation on 
Ru/C is 75%, with the optimal condition of 120℃ and 5% 
catalyst loading. 
 
However, with stoichiometric oxidation, purification of 
furfural (pre-distillation to obtain concentrated furfural) is 
required, which accounts for around 70% of the operating 
cost of furfural production. Aerobic oxidation uses 3% 
furfural with a more economical oxidizer (air), and the 
catalyst shows good recyclability. Overall, we considered 
that aerobic oxidation of furfural is a better scheme for 
future commercialization. 
 
Understanding of furfural adsorption and decomposition 
is still limited. To the best of our knowledge, there is no 
evidence in the literature investigating the mechanism of 
the competitive pathways of furfural adsorption and 
decomposition with aerobic oxidation. The method to 
reduce such undesirable side reactions is still to be 
explored. We are confident that, with a better 
understanding of the reaction mechanism, the yield can be 
further increased. 
 
Even though the catalyst shows good recyclability within 
the six rounds of experiments, batch operation results in a 
significant loss in catalyst weight. Therefore, for the 
commercialization of SAF, the transformation into 
continuous operation is necessary. With continuous 
operation, the catalyst can be recycled with more rounds, 
and the deactivation and regeneration of the catalyst can 
be studied in more detail. 
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Modelling of optical components for hydrogen production
in modular photoelectrochemical reactors

Jinjie Zhu, Sid Halder

Department of Chemical Engineering, Imperial College London, United Kingdom

Photoelectrochemical (PEC) water splitting reactors are a developing technology for a sustainable production of
hydrogen – a fuel, platform chemical and an energy storage vector. This paper describes a new COMSOL Mul-
tiphysics 6.1 model of a linear Fresnel lens array coupled with a stepped thickness waveguide. Fresnel lenses are
used as solar concentrators because of their low cost and high optical e�ciency. The stepped thickness waveguide
redirects the light that is concentrated by the lens using embedded mirrors and the principle of total internal
reflection. As a result, concentrated light is e�ciently directed to the waveguide edge, which will potentially be
coupled with the optical window of a PEC reactor. The combined system acts as a solar concentrator, providing
a reasonable way of overcoming the optical challenges of PEC systems. The polymethyl methacrylate (PMMA)
material chosen for modelling the Fresnel lenses and waveguide has the advantage of low cost and light weight.
Overall, an optical e�ciency of 53%, a steady state geometrical concentration ratio of 591 and a steady state
optical concentration ratio of 43 were determined by the proposed solar concentrator model based on the ray
tracing simulation. Di↵erent mirror inclination angles within the waveguide were also studied, with the optimum
determined to be 20�. Further investigation would include coupling the optical model with the water splitting
reactor, introducing a solar tracking system and modeling the heat transfer e↵ect.

Keywords: water splitting, photoelectrochemical reactors, hydrogen, Fresnel lens, waveguide, concen-
tration ratio

1 Introduction

Climate change is the defining problem of this genera-
tion. Consistent use of fossil fuels and polluting manu-
facturing practices have dramatically increased the levels
of greenhouse gases, particularly carbon dioxide, in the
atmosphere, accelerating the rate of global warming [1].
Our infrastructure relies too heavily on fossil fuels - to
prevent catastrophic disruption, there much be a rapid
global transition to a more sustainable society, predom-
inantly powered by renewable energy. The drawback of
renewable energy is the inherent intermittent nature of
the resource; there is a need to develop energy storage
carriers that can be paired with renewable electricity and
hydrogen is a key candidate to fulfil this role.

Key sectors such as energy generation, transporta-
tion, heating and chemical manufacturing can be decar-
bonised by employing the use of green hydrogen, which
can be generated using various electrolyser technologies,
all of which split water into hydrogen and oxygen. Equa-
tions 1 - 3 detail the reactions occurring in alkaline elec-
trolysers, showing that the water splitting reaction has
no associated emissions with it. The hydrogen evolution
reaction (HER) occurs at the cathode of the electrolyser,
with the oxygen evolution reaction (OER) occuring si-
multaneously at the anode:

HER : 2H2O+ 2 e� ��*)�� 2OH� +H2 (1)

OER : 4OH� ��*)�� 2H2O+ 4 e� +O2 (2)

Overall : 2H2O ��*)�� 2H2 +O2 (3)

Theoretically, an equilibrium potential (�V
�) of

1.23 V must be applied to start the reaction. However,
larger overpotentials are required to run the electrolyser,
increasing with scale-up. This is due to ine�ciencies
involving charge and mass transfer, even with the use
of noble metal-based catalysts such as iridium oxide at
the anode and platinum at the cathode. Optimisation
of electrolysers is an ongoing field of research, the aim
being to reduce the electrical energy consumption and
costs of all water electrolyser units. The oxygen evo-
lution reaction (OER) that occurs at the anode is the
kinetically limiting reaction because of its higher elec-
tron stoichiometry (4 e�) when compared to reduction
(2 e�), leading to a higher overall activation barrier [2].

Photoelectrochemical (PEC) reactors integrate pho-
tovoltaics and electrolysers into a single device, essen-
tially harvesting solar energy and converting it to green
hydrogen through photoelectrochemical water splitting.
This combination of devices reduces the need of power
electronics, minimising the power loss and material us-
age. Additional advantages include in situ catalysis and
no requirement for critical platinum group metal (PGM)
catalysts. Although PEC reactors typically use low-cost
semiconducting and catalyst materials, e�ciency is still
a major issue. Two photoelectrodes are often used (pho-
toanode and photocathode), driving the water splitting
half reactions separately. The benefit of this is that
the system is able to utilise a greater portion of the
solar spectrum. Principal phenomena that adversely af-
fect the performance of upscaled PEC systems are elec-
trode orientation (optical challenges), photoelectrode
substrate resistivity and bubble evolution at the elec-
trodes [2]. This paper attempts to address the optical
challenges associated with PEC reactors.
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The research objectives of this paper were to:

• Create an optical system consisting of a linear
Fresnel lens array and stepped thickness waveg-
uide on COMSOL Multiphysics 6.1;

• Quantify the performance of the optical system
by running the model simulation and determining
the optical e�ciency, geometric and optical con-
centration ratio;

• Investigate how the stepped thickness waveguide
parameters a↵ect the performance of the optical
system through a parameter sweep analysis;

• Build upon existing COMSOL PEC reactor models
by coupling the optical system with the aim of de-
termining the relationship between concentration
ratio and hydrogen production flux.

2 Background

A basic theoretical summary of the process of photo-
electrochemical water splitting in PEC reactors is given
in this section, along with an insight into optical com-
ponents that could be integrated with the reactor to
increase the hydrogen flux produced.

2.1 Photoelectrochemical water splitting

PEC reactors use semiconducting photoelectrodes,
which consist of a substrate coated with a layer of semi-
conducting material such as titanium oxide. The semi-
conducting material can absorb solar photons with en-
ergies greater than the material band gap, which is the
energy gap between the valence band and conducting
band. This generates electron-hole pairs known as exci-
tons in the following reactions:

SC + hv
absorption���������*)���������

recombination
SC(e�CB, h

+
VB) (4)

2H2O+ 2 e�CB ��*)�� 2OH� +H2 (5)

4OH� + 4h+VB ��*)�� 2H2O+O2 (6)

In a PEC reactor, one of both electrodes can be
synthesised from semiconducting materials, performing
both photon absorption and catalysis simultaneously.
Photoelectrodes utilise an electric field that exists in the
depletion layer at the semiconductor | electrolyte inter-
face, providing the driving force for the separation of the
negatively charged electron and positively charged hole,
generating a photocurrent. These holes then migrate
to the photoanode | aqueous solution interface, where
they catalyse the OER reaction, producing oxygen. The
electrons are transferred across the photocathode elec-
trolyte | interface, driving the HER reaction. The overall
reaction is the same as a traditional electrolyser (Equa-
tion 3) [3].

Photoanodes tend to be more chemically robust that
photocathodes and so they have been researched to a
greater extent. The PEC reactor being modelled in this

study comprises of a photoanode and a metal cathode
and requires an external voltage input to generate hy-
drogen – this is a stepping stone to the development
of a device that will split H2O spontaneously, with no
input other than solar photons.

A PEC reactor undergoing photo-assisted water elec-
trolysis can be modelled quantitatively. Figure 1 shows
a typical schematic of a PECR that highlights the elec-
trodes (note dimensions not to scale). For testing
purposes, the cathode is fixed at a potential of 0 V
(grounded) and the anode potential is varied relative to
the reference electrode (standard hydrogen electrode).

The output current consists of three major compo-
nents - the ionic current, the cathodic current and the
anodic current (consisting of photocurrent and dark cur-
rent). We refer the readers to a more rigorous theoreti-
cal modelling of the system by Hankin et al [4].

Conventional electrolysers are compatible with large
electrode geometrical areas due primarily to the fact that
uniform electric field distributions are possible between
the anode and the cathode. This is di�cult to recreate
in PEC reactors due to the nature of the photoelectrode
– the semiconductor is coated on the surface of an in-
ert substrate that does not take part in the reaction.
This results in a non-uniform electric field distribution,
causing electron transfer deficiencies. For this reason,
perforated cathodes have been used to facilitate a more
uniform electric field distribution as shown in Figure 1.

PECR’s will be predominantly modular devices but
this has multiple drawbacks – each reactor will need its
own balance of plant, including electrolyte circuitry and
gas manifolds [2].

Figure 1: Prototype photoelectrochemical reactor
schematic, also highlighting ionic, photo and cathodic
current approximation frameworks. Courtesy of Dr Anna
Hankin.

2.2 Integrating optical components with
PEC reactors

Coupling optical components with PEC reactors can en-
hance the amount of light reaching the reactor, thus
increasing the produced H2 flux. The issues of modu-
lar reactors can be circumvented by concentrating the
incident light, increasing the photocurrent density and
subsequently increasing the hydrogen flux output. Fig-
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ure 2 displays a potential PEC reactor coupled with a
linear Fresnel lens array and waveguide.

Figure 2: Speculated PEC reactor coupled with a linear Fres-
nel lens array and waveguide. Courtesy of Dr Anna Hankin.

2.3 Concentrating solar radiation

The intensity of incident solar radiation is dependent on
a number of variables, such as the time of year, time of
day, latitude and extent of cloud cover. The solar radia-
tion that reaches the Earth’s surface without being scat-
tered by molecules or particles in the Earth’s atmosphere
is called direct solar radiation. Non-direct, isotropic ra-
diation delivered by scattered photons is called di↵use
radiation. The sum of the direct and di↵use solar radi-
ation components is called global solar radiation. Lati-
tudes around the equator will receive more sunlight be-
cause the solar incidence angle is closer to the normal.
Therefore, equatorial regions gain more direct solar radi-
ation than other regions at a given day of the year. Di-
rect solar radiation of a given location will vary through-
out the year because the earth revolves around the Sun.

Solar concentration is the most general way to use
solar radiation, providing a way to fulfil electrical and
thermal energy demands. Reflectors with parabolic sur-
faces and lenses with convex-shaped surfaces (hyper-
bolic surfaces) both have the function of converging
light into a point, thus increasing the concentration and
subsequently the intensity of light. Surfaces used in con-
centrated solar power technologies are highly susceptible
to rapid degradation due to adverse environmental con-
ditions and manufacturing defects, resulting in a sub-
stantial drop in e�ciency. Traditional concentrators are
relatively expensive – there is therefore a need to de-
velop cheaper concentrators that are also maintenance
free, light weight and resistant to degradation. A po-
tential viable solution are Fresnel lenses, which are able
to focus or collimate light [5].

2.3.1 Fresnel lenses

Fresnel lenses operate based on refraction, which is the
phenomenon that occurs when light rays pass through
mediums with di↵erent densities, causing a path devia-

tion at the boundary interface. More specifically, if light
travelling through a medium hits a boundary consisting
of a denser material, the light will bend towards the nor-
mal. This is primarily due to a change in the velocity
of light as di↵erent mediums will have di↵erent refrac-
tive indexes. Fresnel lenses are characterised by their
focal length, which is the distance between the plane
of the lens and the plane of the focal point, denoted
the focal plane. Another important parameter is the f-
number, which is defined as the focal length divided by
the diameter of the lens. For a linear Fresnel lens, the
diameter becomes the width.

Optimal selection of the slope facet, facet spacing,
draft facet, and slope angle ensure that incident light is
directed towards the focal region. A schematic of a Fres-
nel lens is shown in Figure 4.The main rationale for using
Fresnel lenses over their plano-convex counterparts, as
depicted by Figure 3, is that a Fresnel lens reduces ma-
terial use and increases the compactness of the compo-
nent while still retaining the same optical performance.
These factors make it ideal in applications where size is
a limitation, such as in the case of PEC reactors. Not all
light rays will be refracted - a small fraction will be re-
flected due to inherent surface irregularities, decreasing
the performance of the component. Other limitations
include losses due to geometry and absorption.

Figure 3: a) Circular Fresnel lens, b) Spherical plano-convex
lens, as depicted by the COMSOL Fresnel Lens tutorial [6]

As for the material, PMMA (polymethyl methacry-
late) is advantageous when compared to glass as it can
be manufactured at scale with low costs. Given the
geometry of PEC reactors as depicted in Figure 2, a
linear Fresnel lens is suited better than a circular Fres-
nel lens. Linear Fresnel lenses operate in the same way
but instead of focusing light onto a focal point they fo-
cus light onto a linear region in the focal plane. This
concentrated light can then be directed to the photo-
electrodes inside the PECR reactor using another optical
component known as a waveguide. Linear Fresnel lenses
can also be integrated with the PECR by simple attach-
ment, aligning the Fresnel lens and waveguide with the
top and bottom surfaces of the PECR respectively.
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Figure 4: Schematic of a Fresnel lens, pointing out the de-
sign parameters that define the geometry [5].

2.3.2 Waveguides

Optical waveguides are devices that guide electromag-
netic waves in the visible spectrum. They allow light
to be directed to a specific location. Vu et al [7] dis-
cusses the implementation of a large-scale daylighting
system based on a coupled linear Fresnel lens array and
stepped thickness waveguide system. Daylighting refers
to the use of natural lighting indoors as opposed to ar-
tificial lighting, producing a more comfortable indoor
environment and reducing the impact of illnesses such
as seasonal a↵ective disorder.

There are two broad categories of waveguide, re-
ferred to colloquially as ’lossy’ and ’lossless’ systems, as
depicted by Figure 5. Both enable light to propagate
through the waveguide by total internal reflection, the
phenomenon that occurs when light rays arriving at the
boundary between one medium and another are not re-
fracted into the second external medium, but completely
reflected back into the first medium. ’Lossy’ structures
propagate the primary concentrated light through a flat
waveguide via coupling prisms that help guide the light
horizontally. However, this leads to geometrical decou-
pling losses and undesired ray interactions at light entry
points, diminishing the e�ciency of the system. Planar
waveguides direct light rays in both horizontal direction
due to the geometry of the coupling losses, meaning that
they cannot be used in applications that require light
propagation in one horizontal direction only. ’Lossless’
systems avoid these issues by instead using a stepped
thickness waveguide, preventing additional ray leakages.
Concentrated light from the Fresnel lens is focused into
a linear region directly below the midpoint of the lens.
In a stepped waveguide, there is a midpoint step aligned
with each Fresnel lens that re-directs the incoming light
laterally into the waveguide. Each step adds thickness
to the waveguide, which poses an issue as the num-
ber of the linear Fresnel lens in the array increases. In
summary, ’lossless’ systems are constrained by thickness
and ’lossy’ systems are constrained by e�ciency. It is
important to realise that the term ‘lossless’ is not tech-
nically correct - a proportion of light will not be reflected
and will simply leave the waveguides, in addition to ab-
sorption losses as the light rays meet each waveguide
boundary. A typical schematic of a stepped thickness
waveguide is depicted by Figure 6.

Figure 6: 2D schematic of a stepped thickness waveguide,
highlighting key design parameter.

3 Methodology

The model construction and simulation were carried out
using the Ray Optics module in the finite element mod-
elling software, COMSOL Multiphysics 6.1. The Geo-
metrical Optics physics interface in COMSOL was ideal
for our study as it is designed for the analysis of ray optic
simulations of cameras, telescopes, spectrometers, solar
collectors and so on. There are some basic requirements
that must be specified before the investigation can be
carried out. A light source needs to be defined to carry
out a ray trajectory simulation study. Each component
of the model should have a defined material with some
known physical properties such as the refractive index.
The boundary conditions of the model should also be
specified. The optical system created and defined by
Vu et al. [7] was used as a foundation for parameter
values of our model, given that the sizing of the system
is comparable to speculated PEC reactor sizes. A pre-
defined ‘extremely fine’ mesh with a maximum element
size of 0.02 mm and a minimum of 0.0002 m was used
for the optical model.

Figure 7: Waveguide and Fresnel lens model on COMSOL

The final geometric model of the system proposed
is given in Figure 7. A simulated solar radiation passes
through the Fresnel lens array, which directs and focuses
the sunlight onto the waveguide. As for the simulation
of a light ray source, a ‘Release from Grid’ node was
used. The node produces a user-defined grid of points
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Figure 5: a) ’Lossless’ system without decoupling losses, consisting of a stepped thickness waveguide b) Lossy system with
decoupling losses consisting of a planar waveguide with coupling prisms [7]

where each point releases a ray. In our study, a rect-
angular light source with a planar wavefront is chosen.
The shape of it is the same as the Fresnel lens. The
total number of rays released is calculated as the num-
ber of points along the width times number of points
along length. The initial coordinates of the source as
well as the light vector direction were also defined. The
size of the light source aims to cover the whole Fres-
nel lens array exactly. For the ray tracing study, the
initial light intensity and total source power are chosen
as 1000 W/m2 and 812.6 W respectively, simulating a
typical solar intensity. Both the Fresnel lens array and
stepped thickness waveguide are made of PMMA be-
cause of its excellent light transmission properties. A
monochromatic light source with wavelength of 660 nm
was chosen. Di↵erent wavelength inputs will lead to
di↵erent results.

3.1 Construction of linear Fresnel lens

The Fresnel lens array construction started with a spher-
ical plano-convex lens from a predefined COMSOL parts
library. Fresnel lenses replace the curved surface of the
lens with a series of concentric grooves, minimising the
footprint of the lens. These contours act as individual
refracting surfaces and lead to the same focal length as
the original lens. Since the aim was to build a linear
Fresnel lens array, a work plane was introduced at the
cross section of the lens to extract the 2D axisymmetric
geometry. This cross section was further extruded to
1000 mm to obtain the linear Fresnel lens. The final ge-
ometry was built by duplicating the lens five times using
the array feature, finally creating a linear Fresnel lens
array. After building the model, a simple test was con-
ducted to see if the planar Fresnel lens had the expected
function of focusing light into linear regions. The light
source used here has the same parameters (intensity and
size of the grid matrix) as the simulated solar radiation
mentioned earlier. The direction of the light rays was

defined as vertically down towards the Fresnel lens array.
The simulation output below (Figure 8) confirmed that
the Fresnel lens was operating as expected.

Figure 8: Simulating incident light onto Fresnel lens to ob-
serve the concentrating e↵ect

The midpoint of each Fresnel lens in the array was
aligned with the inclined surfaces, the mirror surfaces, of
the waveguide located below. The mirror condition was
defined based on the reflection coe�cient only, which
is a parameter that describes the proportion of a wave
that is reflected by an impedance discontinuity in the
transmission medium. The impedance discontinuity is
anything that a↵ects the ratio between the inductance
of the trace and its capacitance. The coe�cient was
chosen as 1 to represent a perfect mirror with no energy
loss. The governing equations are shown below:
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nr = ni � 2 cos(✓i)ns (7)

ku,r = ku,i � 2ku,s cos(✓i) (8)

kuv,r = �kuv,i + 2kuv,s (9)

kv,r = kv,i �
2

cos(✓i)
kuv,s (10)

 r =  i + arg(r) (11)

Where ni is a unit vector in the direction of the
incident ray, ns is a unit vector normal to the material
discontinuity and k is the wave vector. Equations 7 to 9
represent a reflected curvature tensor in the uu, uv and
vv components.  i and  r are the refracted ray phase
of the incident ray and reflected ray respectively. The
di↵erence between these two terms is the phase shift
arg(r). Table summarises the Fresnel lens dimensions:

Fresnel Lens Specification
Thickness (t) 3.5 mm

Width of singular linear Fresnel lens (wf ) 165 mm
Length (lf ) 1000 mm

Number of Fresnel lenses in array (N) 5
Focal length (f) 300 mm

Material PMMA

Table 1: Summary of Fresnel lens design parameters

3.2 Construction of stepped thickness
waveguide

The stepped thickness waveguide was constructed by
first creating a 2D axisymmetric cross section, then
specifying the coordinates of the edge point in a 2D
coordinate system and finally extruding by 1000 mm,
converting it to a 3D model. At the material disconti-
nuity where there are changes of the medium from the
material of model to air, the refracted wave vector is
controlled by Snell’s law based on the refractive index
on either side. If the incident ray undergoes total inter-
nal reflection, no refracted ray is produced. The angle
of incidence ✓i is computed:

✓i = arccos

✓
ni · ns

|ni| |ns|

◆
(12)

In an isotropic medium, the electromagnetic prop-
erties such as the refractive index are the same in all
directions. At a boundary between two isotropic, non-
absorbing media, the refracted ray propagates in the
direction nt is given by the following relations:

nt = ⌘ni + �ns (13)

� = �⌘ cos ✓i + cos ✓t (14)

⌘ =
n1

n2
(15)

✓t = arcsin (⌘ sin ✓i) (16)

Where the ray propagates from the medium with re-
fractive index n1 into the medium with refractive index
n2. ✓t is the refractive angle. ⌘ and � are two de-
fined variables. For medias that are non-absorbing, the
quantities n1, n2, ✓i, and ✓t are real-valued.

Two wall conditions were introduced to the waveg-
uide model. The first is at the bottom surface of the
waveguide. In order to achieve a maximum performance
with minimum power losses of light, the waveguide is
modelled to have specular reflection if various conditions
are met. This interface is set such that there was spec-
ular reflection if the incident angle is greater than the
critical angle, and rays would be removed if the angle is
less than the critical angle, allowing only total internal
reflection to be seen. A pair of variables were detailed
in the parameters setting to calculate the refractive in-
dex of the waveguide material, and the critical angle on
its surfaces given that the free-space region has refrac-
tive index of the material. Specular reflection primary
behaviour is used, giving access to a variable describ-
ing the angle of incidence of the ray on the boundary.
The primary ray condition option can then be used to
compare this angle to the critical angle. Another wall
condition is used to describe the exit of the waveguide.
The condition was set to ‘Freeze’, which stops any rays
from further propagating and therefore the wave vector
of the ray remains at the same value as when the ray
initially strikes the wall. This boundary condition helps
to study the ray power or intensity at the instant contact
was made with the wall. The key design parameters of
the waveguide are shown in Table 2.

Waveguide Specification
Total height (h) 10 mm
Inclined angle (✓) 30�

Height of each step (s) 2 mm
Width (w) 1000 mm
Length (lw) 900 mm

Light directing surface length (m) 4 mm
Material PMMA

Table 2: Summary of stepped thickness waveguide design
parameters

After the geometry is created and the model physics
is defined, the next step is to build the mesh. COM-
SOL uses the finite element analysis (FEA) method to
solve time-dependent problems. The partial di↵erential
equations (PDEs) used to define these problems can be
approximated as numerical model equations. The solu-
tion to these equations act as an approximation to the
real PDEs. A mesh is doing exactly what has been de-
scribed above and plays an important role in how the
model is solved and directly a↵ects the accuracy of the
solution. User defined elements such as prism and tetra-
hedron divide the 3D geometry into small finite parts.
These parts are studied separately and together will give
the final solution.

The ray tracing study is carried out by defining the
time steps and maximum time span. To be specific, the
ray propagation within the time it takes for the waves
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(which represent photons traveling at the speed of light
in a vacuum, 3 ⇥ 108 m/s, to propagate through the
system was studied.

4 Results

The ray tracing simulation was carried out as specified.
Starting from the initial coordinates of the simulated
light source, rays were sent out in the direction defined
earlier, which was vertically downw towards the linear
Fresnel lens array. As time goes on, the light rays pass
through the Fresnel lens, concentrating the light into
five linear regions on the waveguide. The ray tracing
simulation will stop if the maximum time span defined
is reached. The propagation of light through the system
is shown in Figure 9.

Figure 9: Simulating the ray trajectories of the light pro-
pogation through the optical system. A GIF of the process
can be found [8]

4.1 Intensity profile on focal plane

By introducing a physical plane at the focal length on
COMSOL, a ‘Ray Accumulator’ node can be used to
calculate the light intensity profile of the plane.

Figure 10 shows the intensity distribution on the fo-
cal plane, clearly displaying the five linear regions of
concentrated light as expected. The maximum inten-
sity reached is 2.05 ⇥ 105 W/m2 and can be found
at the centre of the spots which are shown in white.
The blue parts represent a lower intensity, and the black
parts indicate regions where the light did not penetrate
the plane.

Figure 10: Intensity plot at the focal plane of the Fresnel
lens

4.2 Concentration ratio profile at waveg-
uide exit

A ray detector was introduced at the exit of the waveg-
uide, its role being to compute information about rays
that arrive at a set of selected boundaries. In our case,
one selected boundary is the surface of the waveguide
exit. The ray detector can provide the accumulated
power at the surface. The concentration ratio was then
studied by taking the ratio of input light intensity and
exit light intensity.

Figure 11: Optical concentration ratio at waveguide exit
against simulation time

We chose to plot the time as the independent vari-
able against the concentration ratio, the dependent vari-
able in our analysis, as this reveals how light propagation
varies with time. A maximum concentration ratio of 43
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is reached at approximately 8.2 ns as highlighted. The
results are shown in Figure 11.

4.3 Ray power profile at waveguide exit

Figure 12: Ray power profile at the waveguide exit

The power distribution diagram at the exit port of
waveguide is shown in Figure 12. The shape of the
light focus points and distribution come from the shape
of the light source, which is rectangular. The red colour
represents locations with the highest power, around 23
W. Summing up the power represented by these shapes
will give the total accumulated power at the exit surface.
The intensity at the exit can be calculated by dividing
the power by the cross sectional area.

5 Discussion

The optical e�ciency of the coupled Fresnel lens and
waveguide can be calculated using the following expres-
sion:

Opticalefficiency =
Pexit

Pi
(17)

Where Pexit is the steady state power at the waveg-
uide exit in W and Pi is the incident light power in W.

Using data output by the COMSOL simulation, the
optical e�ciency of the system was found to be 53%.

As for optical losses, the mirror is modelled as ideal
hence there is no energy loss stemming from this. How-
ever, in reality the reflection ratio will not be 1 due to
a number of limitations, such as manufacturing defects
and material degradation. Losses come from the ab-
sorption of light within the Fresnel lens array and light
absorbed from the waveguides. Also, there are losses
due to Fresnel reflection where the two media having
di↵erent refractive indexes. To be specific, the amount
of light lost depends on the properties of material.

5.1 Concentration ratios

The geometric concentration ratio C0 which is used to
evaluate the quality of solar collectors is defined as:

C0 =
AFresnel

Aexit
(18)

Where AFresnel is the area of Fresnel lens array
and Aexit is the area of focus spots at the waveguide
exit port. A geometric concentration of 591 is obtained
from the model. Typically, in concentrator photovoltaic
(CPV) system, the concentrator needs to have a concen-
tration ratio in the range of 400 – 1000 times to e↵ec-
tively use high-e�ciency solar cells [9]. Therefore, the

proposed model is considered to be acceptable. How-
ever, geometric concentration does not take power loss
into account as it assumes uniform radiation flux. For
modelling purposes, a more representative way of de-
ducing the e�ciency of an optical system is to use the
optical concentration ratio, Copt, which is defined as the
intensity ratio at the lens and at the receiver.

Copt =
IFresnel

Iexit
(19)

A maximum optical concentration ratio of 43 is
reached for our model.

The f � number of a linear Fresnel lens is defined
as:

f � number =
f

wf
(20)

According to Davis’ simulation results [10], for a cir-
cular Fresnel lens, a f-number of 1.85 gives an optical
concentration ratio of 17. This indicates the implement
of waveguide gives rise to an improvement in concen-
tration ratio.

5.2 Investigating the incline angle of the
stepped thickness waveguide

The optimum incline angle of the waveguide mirrors was
determined by performing a parametric sweep in COM-
SOL, whereby the model solutions are found iteratively
for each di↵erent inclined angle. Since this requires sig-
nificant computational power, we chose a range of an-
gles in increments of 5�, relative to the initial value of
30�that was chosen by Vu et al. [7], who o↵ered no
explanation for why they chose this specific value.

Figure 13 depicts the results of the parametric
sweep, revealing an interesting interplay between the in-
clined angle and optical concentration ratio. The light
rays take a specific time to i) pass through the Fresnel
lens and ii) propagate through the waveguide, finally
reaching the ray detector at the exit port of the waveg-
uide. This is the reason that there is a stepped increase
in the optical concentration ratio with time, until all
the simulated rays have propagated through the waveg-
uide and a steady state optical concentration ratio is
reached. A general observation that can be made is
that decreasing the inclined angle increases the concen-
tration ratio. However, in practice this could have draw-
backs. Decreasing the angle slowly reverts the stepped
thickness waveguide back to a planar waveguide, which
as discussed before is a lossy system, decreasing the ef-
ficiency of the system and also exacerbating further ray
leakage. Although the general trend is that a decreased
incline angle increases the concentration ratio, it was
found that an angle of 20�achieves the optimum con-
centration ratio. This suggests that there is a degree
of optimality in the system which could be investigated
further through reactor parameter optimisation.

Analysis of the ‘staircase’ structure also gives an
insight into the non-steady state light propagation
through the system. Five distinct ‘steps’ are observed,
corresponding to the number of Fresnel lens in the array.
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Figure 13: Parametric sweep results, investigating the re-
lationship between the waveguide inclined angle and optical
concentration ratio

The waveguide is a 3D component and the light rays
that are being focused by the Fresnel lens hit the waveg-
uide from all lateral angles. Clearly the incident light
rays from the Fresnel lens that hit the light directing
surface closest to the waveguide exit will reach the ray
detector first, followed by light rays hitting the second
closes light directing surface and so on. This explains
the number of steps on the plot. A time delay is also
observed during the concentration ratio step increase.
We speculate that this occurs because of ray interac-
tions with waveguide boundaries and also with other
rays. This time delay increases fractionally after each
step. Intuitively this makes sense as the rays that hit
the light directing surface furthest away from the ray
detector will interact with the most boundary surfaces
and rays within the waveguide on average, causing the
largest time delay. The inclined angle parameter sweep
also surprisingly reveals that the time delay varies in a
peculiar non-linear way, varying significantly with dif-
ferent inclined angles. Perhaps running the COMSOL
model with a higher resolution would smooth out this
disparity in the time delay, or it could be that a change in
the incline angle alters the ray distribution of the system
in a nontrivial manner. Nevertheless, the results show
that the inclined angle of the waveguide is a parameter
that can be optimised to maximise the concentration
ratio and minimise the time delay of the system. The
concept of steady state and non-steady state when re-
ferring to ray propagation through the system could be
described as redundant because of the almost instanta-
neous reaching of the steady state.

5.3 Global solar radiation intensity

The concept of global solar radiation intensity was in-
troduced in the background section. Considering the
global intensity at London, as shown in Figure 14, the

solar intensity that reaches the Earth’s surface varies
with each day of the year and the maximum global inten-
sity is reached on the 168th day of the year (midyear).
Therefore, the intensity input to the Fresnel lens sur-
face will not be exactly 1000 W/m2 as specified in our
model at all times – this was more of an average value.
This means recording the exact solar intensity from time
to time becomes important as it changes model results
significantly. In this case, the optical concentration ra-
tio will vary and geometric concentration ratio becomes
applicable as it depends on the system geometry only.
In order to develop a more accurate model, proper so-
lar tracking and measurement systems could be inves-
tigated. A dual-axis tracker designed by Nguyen [11]
claimed to provide an additional 40% of solar energy
over the year, relative to a system in a fixed position.
Thus, a solar tracking system guarantees a maximum
intensity of light can be captured and a good measure-
ment gives an accurate intensity input to the model.
Another reason why a solar tracking system is impor-
tant is because the light source in the model is consid-
ered to be ideal, which means the incident angle of light
is always 0�and all the incident light rays hit the Fresnel
lens array. In reality, the incident light will come in all
directions.

Figure 14: Global radiation intensity in London versus day
of year

5.4 Thermal management

A consequence of concentrating light into small focal
regions is that this greatly increases the heat transfer
of the system, leading to extremely high temperatures
at the focal regions. These temperatures cause adverse
degradation of the materials involved. In the application
that this study describes, the light rays are concentrated
by a linear Fresnel lens array onto a stepped thickness
waveguide made of PMMA, which has a melting point
of approximately 160 �C. Heat dissipation systems must
be implemented to ensure that the waveguide material
does not melt - in other solar concentration applications
passive and active cooling water systems have been im-
plemented [2].

9

47



6 Conclusion

This paper reports model-based predictions of the per-
formance of an optical system for harvesting, concen-
trating and directing solar radiation into a photoelec-
trochemical reactor. A model of the proposed PMMA
linear Fresnel lens array and stepped thickness waveg-
uide was built using COMSOL Multiphysics 6.1. The
Geometrical Optics module was chosen, which took into
account refraction according to Snell’s law at a mate-
rial interface. The stepped thickness waveguide caused
light rays to propagate via total internal reflection. The
bottom waveguide surfaces have reflective coating to
minimize the energy loss. Given an input light source
of 1000 W/m2, the geometric concentration ratio and
optical concentration ratio obtained were 591 and 43
respectively in an ideal case. The optical e�ciency of
the system was found to be 53%. The maximum optical
concentration ratio at the waveguide exit could be im-
proved by changing the inclined angle of the waveguide
to the optimum value of 20�. For a more realistic study,
a solar tracking system could have been added to the
COMSOL model to increase the accuracy of the sim-
ulation. Further work may include simulating the heat
transfer of the optical system on COMSOL to determine
the viability of certain waveguide materials, as well as
discovering new waveguide geometries such as a double
layer planar waveguides proposed by Vu et al. [12] used
in concentrator photovoltaic systems.
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Data-driven modelling of twin-column chromatographic
multi-column counter-current solvent gradient purification

(MCSGP) process

Haonan Wang and Yanlong Zhao
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Abstract Chromatography is often involved in the downstream bioprocess for the separation of monoclonal
antibodies (mAbs). A semi-continuous chromatographic process named multicolumn counter-current solvent
gradient purification (MCSGP) process had been developed and proved feasible for the separations of mAbs.
High-fidelity simulations of such processes often demand computing a large set of partial di↵erential and algebraic
equations (PADES) rendering great computational e↵orts. In contrast, a black box model based on the mapping
of inputs and outputs using purely mathematical relationships could save a lot of computational e↵ort. This
paper explores the feasibility of developing a data-driven model using feed-forward artificial neural networks
(ANNs) for a twin-column MCSGP set-up. Two models were developed with saving computational time as
a priority. The two models were designed based on the best mean square error (MSE) of predictions and
optimised through exploring di↵erent learning rates to the ‘Adam’ optimiser. The results proved the two
models can be either used in combination or individually to give a preliminary screening of varying inputting
operating parameters that would be considered feasible given the requirements such as purity, yield, and product
collection window. The developed models were also proved to demand negligible computational time compared
to the mechanistic model simulations.

Keywords: Chromatography, Twin-column MCSGP, Black box model, Machine learning, ANN

1 Introduction

Monoclonal antibodies (mAbs) have contributed vi-
tally to advancement in the treatment of infectious
diseases, cancer, and autoimmune diseases (Torphy,
2002). However, due to their targeted treatment of
chronic diseases such as cancer and their relatively low
potency which results in the need for high cumulative
doses, mAbs are usually amongst the most expensive
of drugs (Farid, 2007). Driven by the increasing pres-
sure of mAbs market demand, there exists significant
research interest related to lowering the cost of pro-
ducing mAbs. It has been shown that the cell cul-
ture titre is one of the most prominent cost drivers
(Werner, 2004). Increasing the titres in turn drives
the search for novel approaches or alternatives for the
downstream purification processes to ensure there is a
net gain in lowering the production cost (Farid, 2007).

Chromatography is often employed in the down-
stream bio-process for the separation of mAbs. Tra-
ditionally, it was performed using gradient batch pro-
cesses. In the past few decades, significant e↵orts
have been made to the development of continuous
chromatographic processes, which have been proven
to be much more economical than batch processes for
large-scale productions of the biomolecules (Aumann
& Morbidelli, 2007). Classical continuous chromatog-
raphy processes such as simulated moving bed (SMB)
and recycling chromatography have significant advan-
tages over the batch types attributed to their ability
to conserve partial separation thereby resulting in bet-
ter productivity (Müller-Späth et al., 2008). There-
fore, these processes were often deployed in the binary
separations of bio-molecules. However, mAbs separa-
tions generally requires splitting the feed stream into

three fractions with the product having intermediate
adsorptive properties and the weak and strong com-
ponents as impurities. Although (Kim et al., 2003)
proved the applicability of SMBs for ternary separa-
tions by cascading two SMBs in series, it was limited
to the case where there is little of the most strongly or
weakly adsorbed impurities. In addition, the charac-
terised drawbacks for SMB and recycling chromatog-
raphy as their inability to perform linear solvent gra-
dients and strong dilution e↵ects of product sample
prior to reinjection respectively urge the development
of a continuous chromatographic process specifically
targeted for the e↵ective separation of three compo-
nent biomolecular mixtures.

MCSGP, first introduced by (Ströhlein et al.,
2006), combined the advantages of both a solvent gra-
dient batch and a continuous SMB. An MCSGP pro-
cess can perform solvent gradient elution as in batch
units but using a continuous countercurrent unit. The
countercurrent nature of an MCSGP process refers
to the solid phase resins switching in position oppo-
site to the flow direction. The readers are referred
to (Aumann & Morbidelli, 2007) for a detailed ex-
planation of the working principle and a preliminary
design based on a batch gradient and the correspond-
ing chromatogram for the original 6-column set-up,
provided by the inventors. (Aumann & Morbidelli,
2008) later demonstrated the practicality of reducing
the columns to 3 and provided a design of the pro-
cess based on the same experimental method. How-
ever, these designs generally lack relationships de-
scribing the physiochemical phenomenon happening
in the process, a more robust design approach will
be based on the relationships describing the adsorp-
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tion equilibria, and the mass transfer properties of
all components. (Müller-Späth et al., 2008) devel-
oped such a mathematical model with Langmuir ad-
sorption isotherms and a lumped kinetic model. The
performance parameters were defined as purity and
productivity. The issue is that to describe the peri-
odic nature and complicated adsorptive phenomena
underlaid, the mathematical models generally com-
prise large sets of partial di↵erential and algebraic
equations (PADEs) rendering great computational ef-
forts.

There exists, however, another approach based
on the mapping of input and output data using
purely mathematical correlations while involving min-
imum physiochemical process description. The data-
driven model can be called a black box model, which,
although lacks physiochemical knowledge, generally
saves computational time and e↵ort (Tabora, 2012).
The data-driven modelling is particularly applicable
to the MCSGP process since not only the process re-
quires great computational power to simulate but also
the feed compositions will vary simultaneously sub-
ject to the disturbances from the upstream bioprocess.
This renders the optimisation of the operating param-
eters very computationally expensive. The black box
model saves the computational time and e↵ort of com-
puting every time point for infeasible sets of initial
conditions until the process reaches the cyclic steady
state (CSS). This paper explores the approach for the
modelling of the MCSGP process at CSS that is based
on feedforward artificial neural networks (ANNs) fol-
lowing four main steps: (1) Data generation from
high-fidelity simulations of the MCSGP process. (2)
Determining the ANN structure including the activa-
tion functions, hidden layer size and neuron size. (3)
Data-driven model optimisation via tuning learning
rate. (4) Cross-validation of the data-driven model
using additional data generated from the mechanis-
tic simulations. Two data-driven models were devel-
oped following the above approach, one static model
aimed at screening infeasible combinations of inputs
and one pseudo-dynamic model designed to approxi-
mate the product concentration profile. The results
showed that the static model can give a decent pre-
liminary screening of the combinations of operating
parameters that could potentially satisfy the purity
and yield requirements, whereas the pseudo-dynamic
model was able to approximate the concentration pro-
file through an operating cycle given the input condi-
tions. Both models presented require negligible time
to run compared to the simulation based on the math-
ematical relationships.

2 Theoretical Background

2.1 Twin-column MCSGP

The focus of the paper was on the twin-column MC-
SGP process setup. As explained by (Krättli et al.,
2013), figure 1 showed the principle of the process
operation, where the middle of the two columns is
connected by flow streams indicated by the arrows.
The figure depicts an entire cycle of the MCSGP that

is the complete repeating element of the process.

Figure 1: Schematic overview of a complete cycle of the twin-
column MCSGP process, adapted from (Krättli et al., 2013)

Figure 2: Plot of concentration against switch time, the blue
curve represents weak impurity, the red curve represents the
product and the green curve represents the strong impurity

To understand the process, it is convenient to
notice the general observation that throughout all cy-
cles, the column on the right is carrying out the gra-
dient elution task, whereas the column on the right is
performing recycling and feeding tasks.

The process starts with column 2 being equili-
brated and emptied. During phase I1, overlapping
regions of weak (W) and product (P) are eluted from
column 1. Before the stream enters column 2, it is
mixed with an additional stream of pure eluent (E)
to enhance the absorption. Figure 2 shows that phase
I1 ends when negligible impurity W concentration is
found to be eluted from column 1. During phase I1, all
components being fed into column 2 are expected to
be retained in column 2. Phase B1 operates in batch
mode. During this phase, the stream eluted from col-
umn 1 is designed to have the highest P concentra-
tion with minimal impurities contamination through-
out the whole switch. Therefore, phase B1 is also
known as the product collection window. Fresh feed
is introduced into and retained in column 2 during
this phase. Phase I2 starts when the overlapping re-
gions of P and S components are eluted from column
1. The modifier concentration in column 1 contin-
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ued to increase throughout the switch to counteract
the increasing adsorptive interactions in the order of
component (W, P, S) with the solid phase resin. Since
impurity W interacts the least strongly with the resin,
it travels the quickest inside the column. Therefore,
when phase I2 finishes with the recycling of the P/S
stream. Phase B2 starts with mostly S being eluted
from column 1 and with W being eluted from column
2. Phase B2 continues until column 1 is empty, mean-
ing all components (W, P, S) were eluted out. After
this point, the switch occurs, meaning that column 1
swaps position with column 2. The gradient elution
task is now performed by column 2, which is the col-
umn on the right at this point. The cycle continues
through all phases until column 2 has eluted out all
components. Then, both columns will be switched
back to the initial positions, and the process will re-
peat exactly the path described above.

2.2 Cyclic Steady State Operation

In contrary to continuous steady-state, CSS is more
relevant to the MCSGP process due to its nature
where both the continuous sector and batch sector
are involved in the process. CSS exhibits uniform op-
erating parameters and produces similar output from
batch to batch given the batch time being constant
throughout each cycle. (Minceva et al., 2003) This
means that both the liquid and solid phase concen-
tration will, at a certain time after the process starts,
follow an almost identical profile axially along the bed.
The cyclic concentration profile of each component
will therefore be indistinguishable from one another
between each cycle. From this time onwards, it can
be identified as that the process has reached CSS.
In the MCSGP process, other than the start-up and
shut-down procedure, CSS will be applicable most of
the time. Therefore, the process performance at CSS
will be the focus of this study.

2.3 Mathematical Formulations

A mathematical model describing the detailed phys-
iochemical behaviour of the process comprised of a
lumped kinetic model and Bi-Langmuir adsorption
isotherm was developed and validated against ex-
periments by (Müller-Späth et al., 2008), where de-
tailed mathematical relations and nomenclature can
be found. Such mathematical models developed based
on the first-principal approach can be classified as
mechanistic models. A mechanistic model is also
known as a white box model since its structure is
well-defined and transparent. Although mechanis-
tic models provide precise and detailed descriptions
of the underlying physiochemical system, it generally
comprises a large set of complex PADEs. For the
twin-column MCSGP process, the simulated model
involves 50 space discretisation points, resulting in
4119 equations and 3309 variables (Papathanasiou et
al., 2016). The main model complexities arise from
equations 1 and 2 since both partial di↵erential equa-
tions are a function of time and space. As listed be-

low, the two equations describe the liquid and solid
phase concentrations of the four components (i.e., the
modifier, the weak impurities, the product, and the
strong impurities).

Liquid Phase Concentration

@ci,h
@t

= Dax

@2ci,h
@t2

� Qh

Acol"i

@ci,h
@z

� (1� "i)

"i

@qi,h
@t

(1)

Solid Phase Concentration

@qi,h
@t

= ki
�
q⇤i,h � qi,h

�
(2)

where t 2 [0, tend ] represents the time, z 2 [0, Lcol ]
the column length, i = 1, . . . , ncomp the component,
and h = 1, . . . , ncol the column index.

The competitive bi-Langmuir isotherm

q⇤ (ci,h) =
ci,h ·HI

i,h

1 +
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i,h

qIi,h

+
ci,h ·HII
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1 +
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i=2

ci,h·HII
i,h

qIIi,h

(3)
Computing both the liquid and solid phase concentra-
tion values at every time and every space point would
demand large computational power. Therefore, when
carrying out a sensitivity analysis or later implemen-
tation of a control and optimisation strategy, the com-
putational time could usually be a major concern for
the mechanistic model.

3 Methodology

The framework as illustrated by figure 3 was followed
through this study.

Figure 3: The framework of black box modelling

3.1 Data Generation and Analysis

The ANNs were trained by the data generated
from the mechanistic model built by Papathana-
siou’s research group at Imperial College London on
gPROMSr ModelBuilder v7.1.1. The data was gener-
ated using the gPROMS’s Global Sensitivity analysis
(GSA) feature. Although a GSA analysis is partic-
ularly applicable to this process as described above,
it is not the main concern of this work. The focus
instead was to use this feature as a convenient way of

3

51



generating the data since the gPROMS’s Global Sen-
sitivity analysis feature could automatically compute
a large set of combinations of inputs (initial condi-
tions), thereby generating the corresponding output
responses. The initial conditions used as inputs for
the data generation are listed in the table below:

First, 500 samples each of varying combinations
of inputs were generated from the mechanistic model
simulation on gPROMSr ModelBuilder. A subse-
quent data handling was carried out to determine the
CSS. It was decided to record the maximum concen-
tration of the product at the outlet of the column ex-
ecuting gradient elution during each cycle. The CSS
had been reached once the maximum product concen-
tration fluctuates within 0.1% from adjacent cycles.

The purity and yield at CSS were then computed
for each sample. The performance indicators were
decided to be the average purity and yield during CSS,
which were computed by the following equations.

Purity

Purav,j =
CavPs,j

CavWs,j + CavPs,j + CavSs,j
(4)

Yield

Yj =
CavPs,j

Cfeed

P

(5)

Where, j = 1, . . . , ncycle the cycle index and s =
1, . . . , noutlet the outlet stream

Given the nature of the product, it was decided
that at least 98% purity was required. The yield re-
quirement was decided to be above 80% to ensure a
satisfactory profit. The average concentrations were
computed using numerical integration with a time in-
terval of 0.2s.

3.2 ANN Structure Determination

Python V3.10 was used to build all models. Numpy
V1.23 and Pandas V1.5.2 libraries were used for data
processing. TensorFlow V2.11 and Keras V2.3 li-
braries were used for building, training, and valida-
tion of ANNs.

Two models were decided to build—-one static
and one pseudo-dynamic model. The first one con-
sisting of 1 ANN predicting the purity and yield was
called the static model. The second one utilised 2
ANNs where each ANN predicted the average product
concentrations at the outlet of one column through
one switch. The pseudo-dynamic model’s predic-
tions consisted of the average product concentration
at 8 time points corresponding to 8 stages through 2
switches. In this way, by tracking the product con-
centration from the outlet of one column through all
stages in a whole cycle, the concentration profile along
the other column would be identical except for a time
di↵erence. Since the model only predicted the average
concentration at eight instants of the process during
a CSS cycle, it could only approximate the concen-
tration profile resulting in the model not being truly

dynamic. To distinguish it from the static model, the
latter model was defined as pseudo-dynamic.

The inputs for both models were decided to be
the same as the inputs for the data generation as
shown in table 1 to incorporate as many details as
possible. Since the static model predicts yield and pu-
rity, to restrict the output between 0 to 1, a sigmoid
activation function was added to the output layer;
whereas to ensure the average concentration output
from the pseudo-dynamic model to be positive, the
output layer for each of the 2 ANN was implemented
with softplus activation function. The two activation
functions are defined below.

Sigmoid

f(x) =
x

1 + e�x
(6)

Softplus
f(x) = ln (1 + ex) (7)

To decide the ANNs structure such as the number
of hidden layers, activation function, and neuron size
on each layer. Mean squared errors, computed using
the following formula, of the predictions to the actual
data were calculated based on the dataset comprised
of 500 samples. 1000 epochs were decided to train the
ANNs of both models, whereas 25% percent of the 500
samples were split into the validation set. An average
mean square error (MSE) was computed for the last
100 epochs for each combination of hyperparameters.
This is to avoid the chance of training stopping at an
abnormality.

MSE =
1

n

nX

i=1

(yi � ỹi)
2 (8)

The following values of the ANN hyperparame-
ters were explored to decide the final structure of each
ANN in the model.

Table 2: Table summarising ANN features explored in the
structure determination

Features Values

Activation functions
sigmoid(6), tanh(9),

hard sigmoid(10), ReLu(11)

Hidden layer size 0,1,2,3,4,5,6,7

Neuron size 4,8,16,32,64,128,256

Activation functions:

f(x) =
ex � e�x

ex + e�x
(9)

f(x) =

8
><

>:

0, if x  �2.5

0.2x+ 0.5, if � 2.5 < x < 2.5

1, if x � 2.5

(10)

f(x) = max(0, x) (11)
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Table 1: Table summarising inputs conditions for the Training and Validation of ANNs.

Boundary for 500 sets Boundary for 100 sets Unit Distribution for 100 sets

Feed concentration of modifier [2.0 3.0] [2.1 2.8] mg/mL Normal distribution with mean 2.6, variance 0.6

Feed concentration of weak impurities [0.05 0.08] [0.04 0.07] mg/mL Uniform distribution

Feed concentration of product [0.3 0.4] [0.25 0.45] mg/mL Normal distribution with mean 0.35, variance 0.6

Feed concentration of strong impurities [0.03 0.05] [0.03 0.05] mg/mL Normal distribution with mean 0.04, variance 0.2

Inlet flowrate of the column executing the
gradient elution during phase I1

[0.1 1.0] [0.2 1.1] mL/min Normal distribution with mean 0.4, variance 0.6

Inlet flowrate of the column executing the
gradient elution during phase I2

[0.1 1.0] [0.1 0.9] mL/min Uniform distribution

Initial modifier concentration for the column
executing the gradient elution

[2.0 3.0] [2.2 2.8] mg/mL Normal distribution with mean 2.6, variance 0.4

Initial modifier concentration for the column
executing the recycling and feeding tasks

[0.8 1.2] [0.9 1.1] mg/mL Uniform distribution

3.3 Model optimisation

After the ANNs structure has been determined, 30
logarithmically (with base 10) spaced learning rates
ranged from 1 ⇥ 10�5 to 1 ⇥ 10�3 were analysed as
input for the optimiser ‘Adam’. ‘Adam’ is a stochas-
tic gradient descent method that is based on adap-
tive estimation of first-order and second-order mo-
ments. The advantage of ‘Adam’ over other optimisa-
tion algorithms arises from its well-suited behaviour
for problems with a large set of data or parameters.
(Kingma & Ba, 2014)

Sensitivity analysis based on varying learning
rates was conducted by training both models with
1000 epochs and with the data split into 3:1 training
and validation datasets. An average MSE loss was
computed for the last 100 epochs for both the train-
ing and validation set at each learning rate for the
same reason as described above. The variance of the
MSE loss for the last 100 epochs was also calculated
to quantify the degree of overtraining or fluctuation
of MSE.

3.4 Model Validation

To further validate the accuracy of the trained models,
an additional set of 100 samples comprised of varying
input conditions was generated. In table 1, Column
‘Boundaries Train Set’ refers to the 500 samples used
for the training of the ANNs of both data-driven mod-
els, whereas column ‘Boundary Validation Set’ refers
to the 100 additional samples used for the valida-
tion. Column ‘Distribution’ refers to the distribution
of each input in the validation set, whereas all inputs
in the Train Set were uniformly distributed. An ad-
ditional data set was generated using di↵erent distri-
bution functions and bounds of the input parameters.
To simulate the disturbance in the feed stream result-
ing from the upstream processes, up to 20% variation
was applied randomly to the upper and lower bounds
of feed concentrations in both columns. To further
eliminate the e↵ect of monotonic increment, uniform
distribution was changed to normal distribution with
the mean shifted up to 15% from the middle value
between the upper and lower bound of each variable.
The generated data was inspected and was completely
di↵erent from the data set used for training.

4 Results and Discussion

4.1 Simulated Data Analysis

CSS Determination

As depicted by figure 4, CSS was reached at di↵er-
ent cycle numbers depending on the initial conditions.
For some combinations of inputs, CSS was reached
from 7th cycle onwards. However, the CSS was far yet
reached even at the 10th cycle for other cases. The
previously mentioned combinations of inputs could
potentially satisfy the purity and yield requirements,
it takes too long to reach the CSS resulting in an un-
desired loss since it was decided that the simulation
only runs for 20 cycles.

Figure 4: Figure illustrating cyclic steady state behaviour of
the MCSGP process. The blue curve with ‘- -’ line shape indi-
cates a case that CSS has reached before 10th cycle is reached
whereas the orange curve with ‘- ⇧’ indicates a case that CSS
is not reached yet at 10th cycle. Each empty triangle locates
at maximum cyclic product concentration where CSS has not
been reached, whereas the empty squares indicate maximum
CSS product concentration.

Non-linear Interactions in Inputs

The periodic nature and complex adsorptive reac-
tions rendered the non-linear dependency of the pro-
cess performance to the operating conditions. For ex-
ample, a change in the impurities concentration will
also a↵ect the adsorptive behaviour of the product,
rendering sometimes the modifier concentrations less
e↵ective. In addition, di↵erence in flowrates inside
the column during the interconnected states will also
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have an impact on the degree of partial separations
of eluting components, resulting in a di↵erent con-
centration pattern at the outlet stream during each
stage. Varying each or some of the initial conditions
such as feed concentrations or flowrates could result
in a totally di↵erent process performance and may
sometimes render the process infeasible. The data
generation with 500 samples was also proved to be
very time-consuming since to compute the process re-
sponse, it requires the simulation to run through ev-
ery time point until CSS has been reached. For this
reason, a quick preliminary screening of the infeasi-
ble combinations of process operating conditions will
be extremely useful for the later process optimisation
subject to di↵erent set-ups or feed compositions.

As shown by figure 5, only a very small portion
(4.4%) of the input combinations satisfied the purity
and yield requirment at the 20th cyclic cycle. In addi-
tion, a wide spread of purities was observed through
all yield values which demonstrates non-linear be-
haviour of the process outputs subject to di↵erent
input conditions. For the high density of observed
purities at yield approaching 0 is, for example, due
to for certain flowrates (of the interconnected states)
combinations, product may not be actually eluted out
during the B1 stage. Moreover, the switch times and
solvent gradients being kept the same for all inputs
therefore remained unoptimised for each set of other
input conditions explains why there is only a small
fraction of the observed purities satisfy both require-
ments.

Figure 5: Plot of sample product purity against product yield,
the red dotted line is a plot of y = 0.98, the orange triangle
scatters represent samples which has reached 0.98 and the blue
circle scatters represent samples which has lower purity than
0.98

This demonstrates the significance of developing a
data driven model for quick screening of infeasible ini-
tial conditions.

4.2 The Static Model

The result from the determination of ANN structure
for the static model in table 3 had shown that amongst
all the tested activation functions, ‘tanh’ and ‘ReLu’
activation functions performed better than ‘Sigmoid’

and ‘hard Sigmoid’ activation functions with regards
to the average MSE loss.

Table 3: Table summarising Best MSE Loss against ANN
features for the static model. The ‘Best MSE Loss’ refers to
the average MSE of the last 100 epochs out of the 1000 epochs
used for training the ANN

Activation function Best average MSE loss Hidden Layer Size Neuron Size

ReLu 0.0583 4 128
Tanh 0.0249 4 128

Sigmoid 0.1619 3 128
Hard Sigmoid 0.1613 4 4

The static model composed of 5 feedforward lay-
ers, which include 4 hidden layers and 1 output layer,
with 128 neurons on each hidden layer was decided.
Further optimisation with regards to the learning rate
was conducted to decide whether ‘ReLu’ or ‘tanh’
activation function performed better for the static
model.

In general, the optimal learning rate was between
1 ⇥ 10�3 and 1 ⇥ 10�4. With lower learning rates,
the neural network was converging slowly and was
likely to stop at the local optima, this will result in
MSE not decreasing further to where the global op-
tima are located. However, larger learning rates may
also result in overtraining given 1000 epochs. It also
lowered the possibility of locating an optimum. The
training would then mispredict the global optima lo-
cation when optimising the neural network. This was
confirmed as higher variances were observed in the
plot for learning rates that were higher than 2⇥10�3.
Therefore, a learning rate that results in both low
mean and variance of MSE was chosen (figure 6).

It was also noticed that ‘Relu’ activation func-
tion had a less stable MSE than the ‘tanh’ function
as demonstrated by larger fluctuations in variance to-
wards larger learning rates. This implied that there
were potentially multiple optima for a short range of
learning rates for the ‘Relu’ activation function. Since
both activation functions had similar MSE at a com-
parative range of learning rates, to ensure the stabil-
ity of the ANN, ‘tanh’ was chosen to avoid locating
at di↵erent optima.

The final ANN structure had been designed as
consisting of 5 layers with 4 hidden layers using ‘tanh’
and the output layer deployed the sigmoid activation
function. For each hidden layer, 128 neurons were
used. A learning rate of 1.05 ⇥ 10�3 was decided for
the ‘Adam’ optimiser. Figure 7 showed the prediction
result of this ANN.

After completion of model training, an MSE
against epochs plot (figure 8) was generated for the
ANN. Although fluctuations of MSE could be seen
throughout the model training which indicated that
the optimisation encountered various optima, a gen-
eral decreasing trend was observed with increasing
epoch number. Although fluctuations could be seen
for the MSE value towards the end of the training,
which indicated a certain degree of overtraining, it
was considered acceptable given the MSE value was
still decreasing.
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(a) ReLu

(b) Tanh

Figure 6: Figure illustrating the average MSE loss and vari-
ance against learning rates for the ‘Adam’ optimiser of two
activation functions (Upper plots: ‘Relu’; Lower plots: ‘tanh’).
The solid lines represent the mean MSE and the dashed lines
plot the variance of MSE. In both plots, the blues line with
empty triangle illustate the training set data where the orange
line shows the validation set data.

Figure 7: Figure illustrating the training result of the static
model. The vertical axis represents the predicted result of pu-
rity and yield in range of 0 to 1 and the horizontal axis plots
the sample purity and yield generated from the mechanistic
model. The dashed line is a plot of prediction = data . The
predictions would therefore be more accurate when the scat-
tered points approach towards the dashed line.

The final MSE for the training and validation set
were 3.6⇥ 10�4 and 1.8⇥ 10�3 respectively as shown
in figure 8. This resulted in an average error of 0.02
for the training set and 0.04 for the validation set with
respect to the simulation data. The percentage errors
of either purity or yield prediction were therefore 2%
for the train set and 4% for the validation set com-
pared to the simulation data.

Figure 8: MSE loss against training epoch for the static
model. The dashed orange line represents the 25% validation
set whereas the blue line is plotted for the 75% training set out
of the 500 training samples.

Table 4 below depicted the accuracy of predic-
tion on the training dataset. Three target purity were
chosen: 0.98, 0.95 and 0.90. The accuracy was not
exactly the ratio between the number that reached
target purity in the data and the number that met
target purity in the prediction. This was due to the
model’s prediction error so that for certain samples
the purities were predicted to be higher than the sim-
ulated data. Although 98% purity was the strict re-
quirement for the targeted product, given there was
only a very small portion of the samples satisfied the
requirements as discussed above, a relatively minor
error could result in a large deviation of the predic-
tion accuracy calculated in such a way. Therefore,
a larger allowance for the purity requirement such as
0.95 or 0.90 was decided to compute for prediction ac-
curacy. Given the model served only as a preliminary
screening of input parameters, it was justifiable that
a relatively less strict purity requirement could be de-
cided for predictions so that samples that achieved
a relatively higher purity such as 0.90 could be opti-
mised later via fine-tuning input parameters.

Table 4: Summary table for the static model accuracy against
training dataset

Target Purity Sample Number
Predicted

Sample Number
Accuracy

0.98 60 45 66.7%
0.95 98 93 89.8%
0.90 134 132 95.5%

The accuracy of the static model’s prediction was
measured with the 100 samples (generated previously
as a test set consisting of di↵erent input combina-
tions) for di↵erent purity requirements. Table 5 be-
low depicted the accuracy in predicting the number
of cases that met the target purity.

The test samples were suggesting that the static
model could predict the cases of input that would
meet the target purity. This could be further im-
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Table 5: Summary table for the static model accuracy against
testing dataset

Target Purity Sample Number
Predicted

Sample Number
Accuracy

0.98 17 10 52.9%
0.95 23 19 73.9%
0.90 31 30 90.3%
0.80 37 37 94.6%

proved by optimisation of the ANN. Due to the non-
reproducible nature of model training, it would be
extremely di�cult to locate the exact optima such
that the ANN could predict the exact output from
the simulated data.

4.3 The Pseudo-dynamic Model

Following the same methodology as for the static
model, the ANNs structure was also decided for the
pseudo-dynamic model. Each ANN composing the
pseudo-dynamic model consisted of 3 feedforward lay-
ers. The 2 dense layers consisted of 256 neurons de-
ployed with ‘ReLu’ activation function, and the out-
put layer used ‘softplus’ activation function to avoid
negative average concentration outputs.

Table 6 illustrates the MSE for both ANNs of the
pseudo-dynamic model. In switch 1, the average error
present in the average product concentration for the
training and validation set were 8.79 ⇥ 10�3 mg/mL
and 0.046 mg/mL respectively, whereas for switch 2,
the errors were 5.90 ⇥ 10�3 mg/mL and 7.61 ⇥ 10�3

mg/mL respectively. This implied that the general
trend from stage to stage would not be drastically
a↵ected and the model would still provide sensible in-
formation to eliminate sub-optimal input conditions.

Figure 9 are the plots of samples for which the
static model had predicted to have a product purity
of above 0.98. The blue curve shows the product con-
centration profile from the mechanistic model. The
scattered points are the predicted average product

Table 6: Summary table for the pseudo dynamic model MSE
and error

MSE Train MSE Validation
Error Train
mg/mL

Error Validation
mg/mL

ANN-S1 7.73⇥ 10�5 1.97⇥ 10�3 8.79⇥ 10�3 4.44⇥ 10�2

ANN-S2 3.48⇥ 10�5 5.78⇥ 10�5 5.90⇥ 10�3 7.61⇥ 10�3

concentration profile of each stage from the dynamic
model. The dashed line indicates the shift from switch
1 to switch 2 corresponding to each ANN. The pre-
dicted average product concentrations for each stage
were considered accurate in providing an approximate
concentration profile for each input condition in the
dataset. The pseudo-dynamic model could therefore
be used to provide insights for the product profile at
the end of each stage for one column, thereby elimi-
nating cases not having the noticeable or highest con-
centration of product during the collection window.

(a) Sample 1

(b) Sample 2

Figure 9: Plots of Sample product concentration against time
points. The pink curve refers to the data set and the scattered
points are the predicted average product concentration for each
stage

Figure 10: Product concentration plot. The vertical axis represents the predicted product concentration, and the horizontal axis
represents the data. The dashed lines are the indicator where the predictions were more accurate when approaching the line.
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To further validate the performance, the pseudo-
dynamic model was tested against the input param-
eters from the 100 sample test data to predict the
product concentration profile. Figure 10(a)-(h) are
plots of the predicted result against the simulated
data. The prediction from the pseudo-dynamic model
being worse than that of the static model was due to
a wider spread of average concentration compared to
either the purity or yield that both ranged from 0 to
1. In addition, the compromise made, which implied
as only 2 ANNs were designed for the pseudo-dynamic
model other than designing in total 8 ANN for each
stage, was to save the computational e↵orts. The re-
sults suggested that larger errors could be seen for the
ANN predicting switch 2 where the targeted column
is performing feeding and recycling tasks. This was
considered acceptable since for most samples that met
the purity and yield requirement, the product compo-
nent was not expected to be eluted out during switch
2.

5 Conclusion

The purpose of this work was to create a black box
model that could predict the purity, yield, and prod-
uct concentration at CSS given the input conditions
listed in table 1 above with saving computational time
as a priority. Although the static model and the dy-
namic model required cross-validation from the mech-
anistic model simulations, both models would still
provide valuable preliminary insights into the process
given the input conditions that were not generated
with the mechanistic model simulations. Since the re-
sponses were highly non-linearly related, simple inter-
polations between data points were thus invalid while
the black box model could predict more accurately.
This would help to eliminate most operating parame-
ters that would yield low purity at first using the static
model. The pseudo-dynamic model will then help to
eliminate the samples where the concentration profile
is not considered optimal.

There are still some limitations to the black box
model. The model is only applicable to the current
operating conditions such as concentration gradients
of the modifier, maximum flow rate during the batch
states, and switch times. It is also only applicable
to the current design parameters such as the column
length-to-diameter ratio and void ratio of the column.
Arguably still, the model can be retrained to other
setups that may be commonly in use in the industry.

The greatest advantage of the black box model
compared to the mechanistic model is the computing
time. To generate a single sample data set, about
60s or more will be required. In contrast, the black
box model would take less than 0.1s for estimating
outputs for 100 samples.

Other than the black box model, the hybrid
model combing features from both the mechanistic
and data-driven models has also been explored by
some researchers. (H. Narayanan, 2021) However, the

best modelling approach that guarantees satisfactory
predicting accuracy with less computation as a pri-
ority remained unclear and challenging that requires
further research.
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Abstract: 
Algorithmic searches for physical models have become increasingly popular in recent years, 
not least in chemical engineering where recent advances have supported the wider adoption 
of machine learning techniques. Existing parametric and non-parametric approaches such as 
sparse and symbolic regression respectively, often suffer from fundamental issues however, 
with overcomplexity and misspecification affecting the former and high computational 
complexity the latter. This paper presents a new mixed integer quadratically constrained 
quadratic programme (MIQCQP), which facilitates symbolic multivariate polynomial 
regression, seeking to strike a balance between these two methodologies. To this end, a new 
formulation is outlined and the effects of implementing a series of additional symmetry cuts, 
to help reduce computational times, are explored. The performance of this formulation is then 
assessed and compared against a tailored form of an existing symbolic regression formulation. 
Applications and possible expansions of the formulation are also briefly discussed laying the 
foundations for possible future work. Performance analysis revealed the new formulation to 
be effective at producing surrogate models to accurately describe non-linear behaviour, 
outperforming the tailored symbolic regression regarding both computational times and 
accuracy. The new formulation was also successfully applied to various chemical engineering 
examples surrounding non-linear dynamical systems and thermodynamic modelling, showing 
great potential for expansion and improvement. A major limitation of the formulation 
however, is its high degree of computational complexity, compared to alternative parametric 
techniques, currently limiting its application to smaller, less complex data sets. 

1. Introduction 
Machine learning (ML) algorithms based on surrogate 
modelling approaches have become increasingly 
popular across chemical engineering in recent years [1]. 
Advances in both computational processing power and 
process automation have fostered the union between 
machine learning and automated systems in many areas 
relating to chemical engineering including process 
development [2], reaction modelling [3] and process 
optimization [4]. Such applications have highlighted the 
increasing need for new ML algorithms to provide 
accurate and robust models for data prediction with such 
models forming an integral part of system automation 
[1]. As such, the past decade has seen heightened 
interest in areas relating to algorithmic searches for 
physical models, with important and relatively recent 
advances made surrounding both parametric [5] and 
non-parametric regression techniques [1,6]. 
 
For instance, concerning parametric regression, where 
potentially non-linear behaviour is described using 
either a linear combination of specified basis functions 
or with the help of existing knowledge of the 
behaviour’s functional form [1], the ALAMO approach 
has emerged as a promising methodology [5,7,8]. 
Examples found in literature, demonstrate the ability of 
ALAMO to produce accurate surrogate models in as few 
terms as possible [7], with more recent developments 
enabling physical knowledge of a system to be 
transferred to ALAMO to improve its modelling 
performance [8]. Wider applications of such sparse 
techniques are abundant in the literature surrounding 
parametric regression, seeing successful applications in 
areas such as model selection for hybrid dynamical 
systems [9], data driven identification of Navier-Stokes 

equations [10] and activity estimation in spectrometry 
[11]. Despite recent developments however, drawbacks 
associated with parametric approaches often come from 
their high dependency on existing knowledge of the 
system being analysed. This exposes the methodology 
to issues such as misspecification alongside other 
underlying issues such as overfitting and 
overcomplexity. 
 
Alternatively, non-parametric regression techniques, 
which require no knowledge of an underlying functional 
form or specification of basis functions [1], allow for the 
flexible formulation of free-form equations, removing 
some of the limitations imposed by parametric 
techniques. One method for achieving this is symbolic 
regression (SR), a technique first proposed as a ML 
method in 2007 by Bongard and Lipson [12] to find 
valid and useful free-form models capable of accurately 
making data predictions. SR is commonly facilitated 
utilising Genetic Programming (GP). This approach is 
so common in fact, that the term ‘symbolic regression’ 
is often used synonymously with ‘genetic programming’ 
[6]. Genetic algorithms can often obtain good solutions 
although there is never a guarantee of global optimality 
[6]. Additional identified issues with this approach 
include poor accuracy [13] and restricted application to 
the discovery of simple functions and to data sets with 
few input variables and data points [6]. This reality has 
seen SR lose popularity compared to alternative 
deterministic parametric techniques which are 
subsequently used much more extensively in practise [9-
11].    
 
In response to some of these issues, an alternative 
approach towards SR was later proposed in 2018 by 
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Cozad [6], where mixed integer nonlinear programming 
(MINLP) was utilised to reformulate SR as a nonlinear, 
nonconvex, disjunctive program that could be solved to 
global optimality. Such an approach helped to improve 
the reliability of SR for inferring behavioural 
information about a given system. Further 
improvements to the formulation presented in [6] have 
been explored in subsequent years. In 2020 for example, 
improvements were proposed by Neumann [1], where 
an alternative globally optimal SR formulation was 
successfully implemented and applied to several 
chemical engineering examples to accurately identify 
physical models which correctly represent physical 
phenomena. More recently, formulations leveraging 
derivative information to propose suitable functional 
forms was developed and its advantages through 
application to determining thermodynamic equations of 
state were demonstrated [14]. In many of these cases 
however, the computationally intensive nature of SR, 
due its high degree of combinatorial complexity, is 
identified as a limiting factor for its application, limiting 
its use to the analysis of, at most, a few hundred data 
points [1,6]. Tackling this issue and expanding the 
applicability of SR to more complex systems remains a 
challenge for current research. 
  
This paper discusses the formulation of a mixed integer 
quadratically constrained quadratic programme 
(MIQCQP) to facilitate regression via a multivariate 
polynomial. We consider the problem of regressing a set 
of input-output data, (𝑋1,𝑑, … , 𝑋𝑁,𝑑, 𝑌𝑑)1≤𝑑≤𝐷by a multi-
variate polynomial 𝑦 =  𝑎0 +  ∑ 𝑎𝑚𝑇𝑚(𝑥1, … , 𝑥𝑁) 𝑀

𝑚=1  
with 𝑇𝑚(𝑥1, … , 𝑥𝑁) ≔ 𝑥1

𝛼𝑚,1 … 𝑥𝑁
𝛼𝑚,𝑁. In addition to 

determining the values of the regression coefficients 
𝑎0, … , 𝑎𝑀 , the aim is to determine the structure of the 
regression model in terms of its monomial terms 
𝑇1, … , 𝑇𝑀 through symbolic regression. A polynomial 
functional form was selected due to its robust ability to 
describe a wide range of non-linear behaviours 
accurately [15], a fact that has seen polynomial 
regression used extensively across science and 
engineering [16-18]. The resulting formulation hopes to 
strike a balance between sparse and SR techniques to 
tackle many of the issues associated with each, namely 
through a reduction in computational complexity 
compared to existing SR formulations and an 
improvement in versatility over existing sparse 
regression techniques.  
 
The remainder of this paper is organised as follows: An 
initial background surrounding SR is presented in 
section 2 before details of the newly proposed MIQCQP 
formulation are provided in section 3.1. Information 
concerning the formulation of a tailored MINLP SR, 
used for comparison, is then presented in section 3.2. 
Section 3.3 details the test instances considered as well 
as the test setup. The results of the computational testing 
are then outlined and discussed in section 4, before 
efforts to expand and apply the proposed formulation to 
several chemical engineering examples are presented in 
section 5. Lastly, final conclusions and opportunities for 
future research are presented in section 6. 

2. Symbolic Regression Overview 
Symbolic regression works under the premise that any 
mathematical expression can be represented by its own 
expression tree (figure 1). The order of the operations is 
encoded by the expression tree using operands at leaf 
nodes and operators everywhere else. The expression 
tree can then be evaluated by recursively applying a set 
of selected operators starting at the root node. Under this 
methodology changes that occur higher up the 
expression tree i.e., at the root node can often have a 
significant impact on the final model. The formulated 
free-form equations can provide insight into the 
underlying behaviour of physical systems [6] and can 
subsequently be used to make accurate data predictions. 

Figure 1: An example of a typical SR expression tree 

As previously mentioned however, a significant 
drawback of such an approach lies with its high 
combinatorial complexity. The large number of feasible 
expressions obtainable through this method, thanks to 
the numerous available functional forms, translates into 
significantly long computational times subsequently 
hindering the applicability of SR.  

3. Methodology 
3.1. MIQCQP Approach  
3.1.1. Formulation 

The proposed MIQCQP formulation is based off the 
recursive formulation of monomial terms (m) in which 
higher order terms can be decomposed into a product of 
terms found earlier on in the solution (figure 2). The 
complexity of the model is controlled by varying the 
maximum number of monomials to be included in the 
final model (M) along with the total number of quadratic 
terms for decomposing these monomials (Q). M and Q 
are selected such that M ≤ N + Q where N is equal to the 
total number of input variables. The aim of this approach 
is to utilise symbolic regression to construct the relevant 
monomials before linearly combining them to produce 
the final surrogate model. Such a method hopes to be 
less computationally complex compared to previous SR 
techniques, as presented in [6], by restricting the 
functional form to solely polynomial. The formulation 
also aims to simultaneously be more robust at describing 
complex non-linear behaviour than existing sparse 
regression techniques, as seen in [5], by removing the 
need to specify fixed basis functions. 
 
Given some set of data, for data points 𝑑 = 1, … , 𝐷 and 
input variables 𝑛 = 1, … , 𝑁, (𝑋1,𝑑, … , 𝑋𝑁,𝑑, 𝑌𝑑)1≤𝑑≤𝐷 we 
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propose the following MIQCQP formulation to perform 
symbolic regression in the least squares sense Eq. (1): 

Figure 2: Schematic overview of MIQCQP formulation 
for input variables 𝑥1, 𝑥2.   

Table 1: MIQCQP notation: indices 
Description Index Range 

Left hand operand 
position for monomial 

decomposition 
𝑖 1, … , 𝑁 + 𝑄 − 1 

Right hand operand 
position for monomial 

decomposition 
𝑗 1, … , 𝑁 + 𝑄 − 1 

Data points 𝑑 1, … , 𝐷 
Monomials 𝑚 1, … , 𝑀 

Quadratic terms 𝑞 1, … , 𝑄 
Input variables 𝑛 1, … , 𝑁 

 
Table 2: MIQCQP notation: parameters  

Description Parameter 
Maximum number of monomials  𝑀 

Bound magnitude 𝐵 
Response values at data point d 𝑌𝑑 

Value of input variable n at data point 
d 𝑋𝑛,𝑑 

 
Table 3: MIQCQP notation: variables 

Description Type Variable  
Initial regression constant  Continuous 𝑎0 

Monomial coefficients  Continuous 𝑎𝑚 
Quadratic term values Continuous 𝑋𝑁+𝑞,𝑑 
Monomial selection Binary 𝑧𝑚 

Left-hand term selection Binary 𝜔𝑞,𝑖
𝐿  

Right-hand term selection Binary 𝜔𝑞,𝑗
𝑅  

 

min ∑ (𝑌𝑑 − 𝑎0 − ∑ 𝑎𝑚𝑋𝑚,𝑑

𝑁+𝑄

𝑚=1

)

2𝐷

𝑑=1

 (1) 

s.t. 

∑ 𝑧𝑚 ≤ 𝑀
𝑁+𝑄

𝑚=1

 (2) 

 
−𝑧𝑚𝐵 ≤ 𝑎𝑚 ≤ 𝑧𝑚𝐵,   ∀𝑚 = 1 … 𝑁 + 𝑄 (3) 
 

∑ 𝜔𝑞,𝑖
𝐿 =

𝑁+𝑞−1

𝑖=1

∑ 𝜔𝑞,𝑗
𝑅 =

𝑁+𝑞−1

𝑗=1

1,   ∀𝑞 = 1 … 𝑄 (4) 

 
| 𝑋𝑁+𝑞,𝑑 − 𝑋𝑖,𝑑 ∙ 𝑋𝑗,𝑑 | ≤ (2 − 𝜔𝑞,𝑖

𝐿 − 𝜔𝑞,𝑗
𝑅 )𝐵, 

∀𝑖, 𝑗 = 1 … 𝑁 + 𝑞 − 1,  
∀𝑞 = 1 … 𝑄, ∀𝑑 = 1 … 𝐷  

(5) 

 
𝑧𝑚, 𝜔𝑞,𝑖

𝐿 , 𝜔𝑞,𝑗
𝑅 ∈ {0,1} 
 

∀𝑚 = 1 … 𝑁 + 𝑄 
∀𝑞 = 1 … 𝑄 

∀𝑖, 𝑗 = 1 … 𝑁 + 𝑞 − 1 

(6) 

 
  𝑎𝑚, 𝑋𝑁+𝑞,𝑑 ∈ ℝ ∀𝑚 = 1 … 𝑁 + 𝑄 

∀𝑞 = 1 … 𝑄 
∀𝑑 = 1 … 𝐷 

(7) 

 
In the above formulation binary variables 𝑧𝑚, 𝑚 =
 1, … , 𝑁 + 𝑄 control which monomials are to be 
included within the final regression model. These 
variables are restricted by a cardinality constraint Eq. 
(2), which limits the total number of selected monomials 
to upper bound M. Similarly, continuous variables 
𝑎𝑚, 𝑚 = 1, … , 𝑁 + 𝑄 are controlled by Eq. (3) in which 
regression coefficients for non-selected monomials are 
forced to zero or bound between some sufficiently large 
constant ± B otherwise. Binary variables 𝜔𝑞,𝑖

𝐿 , 𝜔𝑞,𝑗
𝑅  

encode the decomposition of auxiliary variables 
𝑥𝑁+𝑞, 𝑞 =  1, … , 𝑄 into the product of two terms 𝑥𝑖, 𝑥𝑗  
for 𝑖, 𝑗 = 1, … , 𝑁 + 𝑞 − 1. For each term to be 
decomposed exactly two terms are needed, as enforced 
by Eq. (4). Finally, Eq. (5) enforces the identity of term 
𝑋𝑁+𝑞 as the product of selected terms 𝑋𝑖, 𝑋𝑗 as defined 
by binary variables 𝜔𝑞,𝑖

𝐿 , 𝜔𝑞,𝑗
𝑅 . Eq. (5) can equivalently 

be reformulated as two separate constraints in which the 
LHS is defined as ≤ B and ≥ -B respectively although 
for conciseness the absolute value of the LHS has been 
used above.   
 
The proposed algorithm was initialised as a sparse linear 
regression model by forcing binary variables 
𝑧𝑁+1, … , 𝑧𝑁+𝑄 to zero at the beginning.     

3.1.2. Illustrative example 
Consider input data 𝑥𝑛,𝑑, 𝑛 = 1, 2, 𝑑 = 1, … ,10, for a 
series of randomly selected data points 1 ≤ 𝑥𝑛,𝑑 ≤ 10 , 
and response data given by the function: 

 
𝑓(𝑥1, 𝑥2) = 7 + 𝑥1 + 1.2𝑥1

2𝑥2 
 

(8) 

The above MIQCQP formulation can be used to predict 
this function exactly due its multivariate polynomial 
nature. For the following example Q and M were 
selected to be 2 and 3 respectively with B set arbitrarily 
to 10,000. 
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Solution: 
 

𝑓 = 7 + 𝑥1 + (0)𝑥2 + (0)𝑥1
2 + 1.2𝑥1

2𝑥2 (9) 
 
The resulting regression model Eq. (9) was obtained in 
1.55 seconds using the global solver BARON [19]. It 
can be seen that to produce term three from Eq. (8) the 
regression must first produce an intermediate term 𝑥1

2 
which does not appear in the resulting regression model 
thanks to 𝑧3, 𝑎3 = 0. 
 
Alternatively, if Q = 3 and M = 5 we obtain the 
following solution after 2.61 seconds. 

 
𝑓 = 7 + 𝑥1 + (0)𝑥2 + 9236𝑥1

2 − 9236𝑥1
2

+ 1.2𝑥1
2𝑥2 

 

(10) 

In Eq. (10) the allowance for the use of superfluous 
terms results in redundant terms m = 3 and m = 4. The 
effects of this may be realised in the slightly longer 
computational time that is required.     

3.1.3. Strengthening the formulation 
To avoid instances such as Eq. (10). It becomes 
necessary to include additional constraints to remove 
symmetry from the problem and in theory reduce 
computational times by reducing the size of the search 
space. Below we present several possible instances in 
which a single solution can be presented in a multitude 
of equivalent forms before presenting a series of 
additional constraints to prevent such superfluous 
instances from occurring.  
 
Consider the function: 

 
𝑓(𝑥1, 𝑥2) = 7 + 𝑥1 + 𝑥2𝑥1 + 1.2𝑥1

2𝑥2 
 

(11) 

Eq. (11) can equally be expressed as: 
 

𝑓(𝑥1, 𝑥2) = 7 + 𝑥1 + 𝑥1𝑥2 + 1.2𝑥2𝑥1
2 (12) 

 
𝑓(𝑥1, 𝑥2) = 7 + 𝑥1 + 4𝑥2𝑥1 − 3𝑥2𝑥1

+ 1.2𝑥1
2𝑥2 (13) 

 
𝑓(𝑥1, 𝑥2) = 7 + 𝑥1 + 1.2𝑥1

2𝑥2 + 𝑥2𝑥1 (14) 
 
Eq. (12) presents a case in which intra-term symmetry 
provides an equivalent solution as 𝑥1𝑥2 = 𝑥2𝑥1. Eq. 
(13) presents an instance in which the use of repeated 
terms can be used to provide an equivalent solution as 
𝑥2𝑥1 = 4𝑥2𝑥1 − 3𝑥2𝑥1. Lastly, Eq. (14) demonstrates 
an instance in which inter-term symmetry provides an 
equivalent solution as 𝑥2𝑥1 + 1.2𝑥1

2𝑥2 =  1.2𝑥1
2𝑥2 +

𝑥2𝑥1. In an attempt to remove Eq. (12-14) as feasible 
solutions we enforce the following additional 
constraints:  

∑ 𝜔𝑞,𝑖
𝐿 𝜔𝑞,𝑗

𝑅

𝑄

𝑞=1

≤ 1 , ∀𝑖, 𝑗 = 1 … 𝑁 + 𝑞 − 1 (15) 

 

𝜔𝑞,𝑖
𝐿 ≤ 1 − ∑ 𝜔𝑞,𝑗

𝑅

𝑁+𝑞−1

𝑗=𝑖+1

 , 
∀𝑖
= 1 … 𝑁 + 𝑞 − 2 

∀𝑞 = 1 … 𝑄 
(16) 

 

|𝑋𝑁+𝑞+1,𝑑′| − |𝑋𝑁+𝑞,𝑑′| ≥ 0, ∀𝑞
= 1 … 𝑄 − 1 (17) 

 
Eq. (15) performs a sum across all quadratic terms 𝑞 =
1, … , 𝑄 and stipulates that any combination of active 
binary variables can occur at most at one value of 𝑞. This 
removes symmetry from the problem by preventing the 
programme from producing multiple terms with the 
same configuration of 𝜔𝑞,𝑖

𝐿 , 𝜔𝑞,𝑗
𝑅 . Eq. (16) stipulates that 

for each quadratic term, any active left-hand binary 
variable can only ever be paired with an active right 
hand binary variable whose index 𝑗 is less than or equal 
to the selected index 𝑖. For example, 𝑥1𝑥2 would be 
invalid as 𝑗 > 𝑖 but 𝑥2𝑥1and 𝑥1𝑥1would be valid as 𝑗 ≤
𝑖 in both cases. This removes symmetry by preventing 
the programme from producing multiple equivalent 
terms. Eq. (17) stipulates that no term 𝑁 + 𝑞 can be 
larger in magnitude than its subsequent term 𝑁 + 𝑞 + 1 
at some data point 𝑑′ with magnitude 𝑑′ ≥ 1. This 
removes symmetry from the problem by preventing the 
programme from coming up with multiple equivalent 
solutions in which only the order of terms is changed. It 
should be noted that for magnitudes of 𝑑′ between 0-1, 
Eq. (17) would not be suitable. This is an important 
caveat that needs to be considered when selecting an 
appropriate 𝑑′ and could necessitate data 
modification/scaling. For an alternative approach 
towards tackling both intra and inter term symmetry, not 
implemented in this study, see appendix B.  
 
Adding these additional constraints could in fact 
increase computational times, despite the removal of 
symmetry from the problem, due to the addition of many 
constraints making the problem harder to solve. As such, 
the effects of adding each constraint were explored 
(section 3.3) to select the optimal configuration. The 
results of this exploration are presented in section 4.1.  

3.2. Tailored SR Approach 
For the purposes of assessing the relative performance 
of the MIQCQP formulation outlined above, a tailored 
MINLP symbolic regression, based off the formulation 
presented in [6], was constructed for comparison. For 
details concerning the full formulation see Appendix C.  
 
As previously stated, the newly constructed SR has been 
tailored for the purposes of facilitating a better 
comparison with the MIQCQP formulation outlined in 
section 3.1. To this end, the binary operators made 
available to the model have been restricted to ℬ = {+,∗
} and Unary operators restricted to 𝒰 = {𝑐𝑢𝑏𝑒}. Such 
restrictions enable the SR to construct solely multi-
variate polynomial models, providing a consistent basis 
for comparison.  

3.3. Testing  
Each of the discussed formulations were implemented in 
GAMS version 36.2.0 and tested using an INTEL quad 
core i5-7500 CPU @ 3.4GHz. 
 
An initial exploration of the effects of adding extra 
constraints Eq. (15-17) was conducted. To this end, 
every possible combination of the constraints was 
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implemented and used to determine an optimum 
surrogate model to a series of test functions utilising the 
global solver BARON [19]. Functions included a 
multivariate non-polynomial function: 𝑓(𝑥1, 𝑥2) =
𝑥1𝑒0.1𝑥2 (1), a univariate non-polynomial function: 
𝑓(𝑥1) = 𝑥1 ln 𝑥1 (2) and a multivariate polynomial 
function: 𝑓(𝑥1, 𝑥2) = 4 + 3𝑥1 + 2.1𝑥2 + 5𝑥2𝑥1 −
𝑥12 − 7𝑥2𝑥12 (3). The CPU time taken to achieve this was 
recorded for a total of five runs per configuration with 
the intention of selecting the configuration averaging the 
fastest for future testing. Each initial run was carried out 
with Q = 3, N = 2, D = 10 and M = 5. Further testing 
was then carried out with D = 30 for some test functions 
to verify the results for larger data sets.  
 
Following the successful determination of the optimal 
formulation configuration, a series of tests were 
conducted to assess the relative performance of the 
optimal MIQCQP formulation compared to the tailored 
SR discussed in section 3.2. To this end, a multivariate, 
non-linear, non-polynomial function: 𝑓(𝑥1, 𝑥2) =
2𝑥1𝑒−0.1𝑥2 was selected and both formulations were 
tasked to produce an optimum surrogate. The MIQCQP 
formulation was tested at various combinations of M, Q, 
N and D, whilst the tailored SR was tested at varying 
tree depths, ndata and npred. The performance of the two 
formulations was then analysed and compared. BARON 
[19] was selected as the global solver for both models to 
ensure a fair comparison of performance, although it 
should be noted that the MIQCQP formulation can also 
make use of state-of-the-art global solvers such as 
GUROBI version 10 [20] which may deliver further 
performance improvements compared to when using 
BARON [19]. For all cases, data points 𝑥𝑛,𝑑 were 
randomly generated such that 1 ≤ 𝑥𝑛,𝑑 ≤ 10. 

4. Results and Discussion 
4.1. Constraint Analysis 

Results from figure 3 reveal that for both the univariate 
and multivariate non-polynomial functions the fastest 
configuration included all three additional constraints. 
When looking at the results for the multivariate 
polynomial however, the fastest configuration included 
only one constraint Eq. (17), followed closely by no 
constraints. From these results we see that when trying 
to determine an inexact surrogate model, including all 
three additional constraints can produce the fastest 
formulation whilst when trying to determine multi-
variate polynomials (which can be determined exactly) 

the reverse appears to be true. It should be noted that the 
differences in compute times between configurations 
when trying to determine the multivariate polynomial 
often remained small for D=10, therefore the analysis 
was repeated for D=30 yielding comparable 
conclusions. More broadly such results demonstrate the 
effects that varying the function to be determined can 
have on the impact of added symmetry cuts, making it 
difficult to conclude which configuration would be 
universally optimum with no single configuration 
proving the best in all cases.  

The analysis for the multivariate non-polynomial 
function was also repeated for a larger data set (D=30) 
to explore if the effects of implementing the additional 
constraints would change as additional complexity was 
added into the problem. The results yielded similar 
conclusions with the fastest case being the one in which 
all additional constraints were included (20.70s). 
Including none resulted in the second slowest 
configuration (59.61s) after the case in which only Eq. 
(15,16) were included (72.02s). Here the effects of 
including various constraints become more pronounced 
with compute times varying more significantly. This 
subsequently enables more reliable conclusions to be 
obtained. For the purposes of further testing, a 
configuration in which all three additional constraints 
are included was selected primarily due to the observed 
reduced compute times when attempting to produce 
surrogate models for both D = 10 and D = 30. For fully 
tabulated results surrounding the constraint analysis and 
details concerning both the modelled functions and 
associated error see appendix D.   

4.2. MIQCQP Performance Analysis 
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Figure 3: Constraint analysis for D = 10, Eq. 
(15)/ (16)/ (17): I = Included, NI = Not Included 
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Figure 4: Scalability of proposed MIQCQP formulation as Q varies (a), M varies (b), D varies (c) and N varies (d). 

Performance analysis of the MIQCQP formualtion 
reveals it to possess a high degree of computational 
complexity whilst also demonstrating its ability to 
produce accurate surrogate models to complex non-
linear functions. For instance, figure 4a  shows an 
exponential increase in compute time as the number of 
quadratic terms increases. Despite this however, the 
total squared error can be seen to reduce rapidly to near 
zero after Q=2 subsequently reducing the need to make 
use of additional terms and allowing CPU times to be 
kept well below 30 seconds. Selecting the optimum 
number of quadratic terms such to optimise error against 
compute times is therefore an important step when 
attempting to use this formualtion in practise.  
 
Interestingly, figure 4b shows an initial increase in 
required compute times as M is increased (for fixed 
values of Q and N) before revealing a decrease in 
compute times for higher values of M. This could be due 
to the increased combinatorial complexity that optimal 
term selection introduces into the problem when M is 
low due to the numerous possibilities avaliable for 
which combination of terms to select. As M is increased 
to higher values, a greater proportion of N+Q terms are 
selected (to reduce error) thus reducing the amount of 
variation that term selection introduces into the problem 
and therefore resulting in lower compute times. 

Figure 4c demonstrates how as the number of data points 
increases, the complexity increases exponentially, 
resulting in significangtly longer compute times, 
reaching nearly 1000 seconds by 200 data points. 
Furthermore, the mean square error (MSE) can be seen 
to be increasing with the number of data points, reaching 
a maximum of around 3.0E-4 at D=40 before decreasing 
and broadly leveling off. This makes sense as the MSE 
is an unbaised estimator of variance and as such one 
would expect to see the MSE converge towards the error 
variance. The low value of the MSE at D=200 highlights 
the ability of the formualtion to produce accurate models 
at larger data sets, even if compute times do increase to 
relatively high values.   
 
Lastly, figure 4d reveals a steady increase in compute 
times as the total number of input variables increases, 
however even at N = 7, compute times are below 60 
seconds. Figure 4d also shows how error decreases with 
the number of input variables. This can be explained by 
the fact that M was allowed to increase as N increased. 
By introducing additional input variables, the total 
number of terms avaliable to the model also increased. 
More specifically, the model can utilise a greater 
number of non-quadratic terms consisting solely of input 
varaibles 𝑋𝑛,𝑑, 𝑛 = 1,… , 𝑁, 𝑑 = 1,… , 𝐷.  For tabulated 
resultes of data presented in figure 4, see appendix E.

4.3. Tailored SR Performance Analysis  
Table 9: Tailored SR peformance analysis with varying tree depth: ndata=10, npred=2.     

Tree Depth Nodes Modelled Function CPU Time (s) Square Error 
2 3 𝑓(𝑥1) = 1.321𝑥1 0.31 17.73 
3 7 𝑓(𝑥1, 𝑥2) = 5.363 + 𝑥1 − 0.752𝑥2 7.48 4.10 
4 15 𝑓(𝑥1, 𝑥2) = −0.013 + 1.895𝑥1 + 0.025𝑥2 − 0.137𝑥2𝑥1 377.34 0.17 
5 31 N/A Time out N/A 

Figure 5:Scalability of tailored SR as ndata varies (a) and npred varies (b). 

(d) 

(a) 

(c) 

(b) 
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Table 9 demonstrates the expected significant 
computational complexity associated with previous SR 
formualtions as commented on in the literature [1,6]. As 
tree depth increases the compute time increases by 
several orders of magnitude until at a tree depth of five, 
the time out threshhold of 10,000s is reached yielding 
no final globally optimum solution. This is undesirable  
as at a tree depth of 4, the squared error still remains 
relatively high at 0.17 when restricting the SR to 
produce multivariate polynomails only. 
 
Figure 5a demonstrates how as the number of data points 
increases the compute time increases signifcantly, 
especially after 100 data points. Furthermore, the MSE 
increases significantly as the number of data points 
increases highlighting the difficulty of producing an 
accurate surrogate model for large data sets at a tree 
depth of only 3. It can be predicted however (utilising 
observations from both table 9 and figure 5a), that if a 
larger tree depth was used, significantly large compute 
times and likley time outs would soon become an issue 
as the number of data points increased (as verified by 
futher testing). 
 
Figure 5b shows a steady increase in compute time as 
the total number of input variables increases. For each 
number of input variables tested, identical models were 
produced resulting in the same error for all runs. 
Compared to figure 5a we also see how increasing the 
number of input variables has a less signifcant effect up 
to npred = 7 than when increasing the number of data 
points. For tabulated results of data presented in figure 
5, see appendix F.  

4.4. Performance Comparison 
When increasing the total number of data points, both 
models scale similarly regarding compute times with the 
MIQCQP formulation scaling slightly better for larger 
data sets. The MIQCQP formulation with Q = 3 and M 
= 5 predictably runs slower than the less complex 
tailored SR with a tree depth of only 3, however it is able 
to achieve a significantly lower MSE for all data sets 
and, unlike the tailored SR, is successful at producing a 
relatively accurate surrogate model for D=200. Table 9 
highlights that if the tailored SR were to be provided the 
required layers to yield comparable levels of accuracy to 
the MIQCQP for each data set (i.e.  depth > 4), it would 
run significantly slower, a trend verified in [1,6]. 
Therefore, such a comparison reveals the improved 
capability of the MIQCQP to produce surrogate models 
of improved accuracy within more reasonable 
timeframes and thus we can conclude that the MIQCQP 
is superior to the tailored SR in this regard.  
 
Concerning complexity, the MIQCQP formulation also 
provides increased flexibility over the tailored SR, with 
variations in Q/M enabling a finer balance of error with 
compute times compared to varying the tree depth for 
the tailored SR. In practise this would support quicker 
identification of optimal configurations in which error 
and compute times are sufficiently low (see figure 4a, Q 
=2). 
 

As the number of input variables increases both 
formulations scale similarly regarding compute times 
with neither model requiring more than 60 seconds 
when 7 input variables are present within the data set. 
This is significant as the MIQCQP must also handle an 
increased number of terms as the number of input 
variables increases, facilitating a lower total squared 
error. 
 
When comparing the relative performance of the two 
models however, it becomes apparent that both 
formulations suffer from high degrees of computational 
complexity when compared to alternative parametric 
techniques. In practise, such complexity limits both 
approaches to dealing with no more than a few hundred 
data points. 
 
To summarise, comparing the relative performance of 
the two formulations reveals the MIQCQP to deliver 
improved performance compared to the tailored SR. The 
formulation can obtain more complex surrogate models 
of improved accuracy over the tailored SR and do so 
within more reasonable timeframes. It also provides 
increased flexibility when it comes to balancing error 
with compute times. Compute times for the MIQCQP do 
however scale similarly to the tailored SR with regards 
to both the number of data points and input variables. 
Consequently, the proposed MIQCQP formulation can 
produce usable surrogate models for data sets larger, and 
more complex than those suitable for tailored SR, 
however this will still incur long compute times. 

5. Application and Expansion 
This section explores the applicability and expandability 
of the proposed formulation. To this end, various 
attempts to apply the proposed formulation to practical 
examples found throughout chemical engineering and 
further expand upon its capabilities are discussed.   

5.1. Application to Dynamical Systems 
The proposed MIQCQP formulation could be used in 
practise across many different areas throughout 
chemical engineering. For example, it could be used to 
discover underlying equations of non-linear dynamical 
systems from data, a task recognised to have enabled the 
rapid development of knowledge and technology across 
many disciplines [21]. An existing framework where 
governing equations of non-linear dynamical systems 
are determined through sparse identification was 
presented in 2016 by Brunton, Proctor and Kutz [21]. In 
this section we attempt to use the proposed formulation 
as an alternative approach towards tackling this issue. 

5.1.1. Height of liquid in a tank 
Consider the simple scenario of a tank, cross-sectional 
area 𝐴 = 1𝑚2, filling with water at a constant inlet 
flowrate 𝐹𝑖𝑛 = 20𝑘𝑔𝑠−1and an outlet flowrate given by 
𝐹𝑜𝑢𝑡 = 𝛼√ℎ where ℎ is the height of liquid in the tank 
and 𝛼 is the outlet flowrate coefficient. For this example, 
𝛼 = 10 𝑘𝑔𝑠−1𝑚−0.5. From first principles we know the 
differential of the height of liquid in the tank with 
respect to time is given by: 
  

𝜌𝐴
𝑑ℎ
𝑑𝑡

= 𝐹𝑖𝑛 − 𝛼√ℎ (18) 
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However, let us assume that this was unknown and only 
data for the height of the liquid in the tank, ℎ, at various 
times, 𝑡, was available (t = 0-200s, D = 20). Such data 
can easily be obtained in practise. Using this data, the 
central difference method can be applied to obtain an 
estimate for the differential at each point in time. By 
providing the MIQCQP formulation with all time-
dependant variable data (ℎ) and response data given by 
the approximated gradient, it can produce a surrogate 
model to Eq. (18). For example, at M=3, Q=2, N=1 and 
B =10,000 the formulation produces a globally optimum 
surrogate in 0.50 seconds: 
 
𝑑ℎ 𝑑𝑡⁄ = 𝐴 + 𝐵ℎ + 𝐶ℎ2 + 𝐷ℎ3 (19) 

A = 0.0151, B = -0.00596, C=0.000801, D=-0.0000642 

Figure 6: Actual and predicted dh/dt Vs time 

Figure 6 demonstrates the ability of the surrogate model 
to accurately predict the value of the differential at any 
time 𝑡, both within the range of training data (t=0-200s) 
and beyond (t=200-500s).  

5.1.2. Molar holdup in a reacting system   
This methodology can easily be expanded to more 
complex systems in which there are multiple differential 
equations which are each a function of various time 
dependant variables. This can be achieved by repeating 
the process above for each differential in parallel or by 
modifying the formulation to perform multi-input/multi-
output regression. For instance, consider the case of a 
well-stirred, isothermal reactor in which the following 
reversible reaction is taking place: 
 
𝐶𝐻3𝑂𝐻 + 𝐶𝐻3𝐶𝑂𝑂𝐻 ↔ 𝐶𝐻3𝐶𝑂𝑂𝐶𝐻3 + 𝐻2𝑂 (20) 

 
In this example we want to determine the differential 
with respect to time of the molar holdup of each 
component in the reactor. From first principles we know 
this to be given by: 
  
𝑑𝑁𝑖
𝑑𝑡

= 𝐹𝑖𝑛𝑥𝑖𝑛,𝑖 − 𝐹𝑜𝑢𝑡𝑥𝑖 + 𝑁𝑇 ∑ 𝜈𝑖𝑗𝑟𝑗,
𝑗∈𝑅𝐸𝐴𝐶

 

𝑖 ∈ 𝐶𝑂𝑀𝑃 

 
(21) 

Where 𝐹𝑜𝑢𝑡, 𝑥𝑖, 𝑁𝑇, 𝑟1, 𝑟2 all vary in time. Once again, 
assuming this was unknown and that all that was 
available was information regarding the molar holdup of 
each component at time 𝑡 (t=0-50,000s, D=10, N=4), the 
same method as used previously can be applied for each 
component in parallel. The MIQCQP formulation can 
then once again be utilised to produce a surrogate to Eq. 

(21). For example, at M = 5, Q=1, N =4 and B = 100,000 
the formulation produces a surrogate for each 
component in 3.81 seconds, 2.57 seconds, 2.16 seconds 
and 2.15 seconds respectively (figure 7).   

Figure 7: Actual (points), central difference (dotted 
lines) and predicted (solid lines) dNi/dt Vs time for 

methanol, acetic acid, methyl-acetate and water (NB. 
water and methyl acetate overlap exactly) 

Figure 7 demonstrates the applicability of the proposed 
formulation to more complex dynamical systems, being 
capable of producing suitably accurate surrogates for all 
components. For the same reactor, time differentials for 
outlet flowrates, pressure, total molar holdup etc, could 
also be determined using this method. It should be noted 
that some of the discrepancy seen between the actual and 
predicted values comes from the difference between the 
actual gradient and the gradient fed to the MIQCQP 
formulation determined via the central difference 
method. This can be seen by observing the improved fit 
against the central difference determined gradient. As 
such altering this element of the methodology could 
yield improved results when making data predictions.  

5.2. Expansion to Produce Rational Functions 
By building upon the same basic methodology (figure 
2), the proposed MIQCQP formulation can be expanded 
such that it is able to produce a more diverse set of 
models capable of capturing a wider range of 
behaviours. One possible approach towards achieving 
this is presented below, as a proof of concept, in which 
the formulation is modified to produce rational 
functions. An alternative approach is presented in 
appendix G where division is introduced for 
constructing each monomial.   

5.2.1. Modified Formulation 
The formulation can be expanded by modifying it to 
approximate behaviour through a multivariate 
generalised rational function. Previous studies have 
explored the use of this functional form for 
approximation and note its increased suitability over 
standard multivariate polynomials for approximating 
non-smooth and non-Lipschitz functions [22]. 

min∑(𝑌𝑑 − 𝑅𝑑)2
𝐷

𝑑=1

 (22) 

 

∑ 𝑧𝑏,𝑚 ≤ 𝑀
𝑁+𝑄

𝑚=1

 (23) 
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−𝑧𝑏,𝑚𝐵 ≤ 𝑏𝑚 ≤ 𝑧𝑏,𝑚𝐵,   ∀𝑚 = 1 … 𝑁 + 𝑄 (24) 
 

∑ 𝜃𝑞,𝑖
𝐿 =

𝑁+𝑞−1

𝑖=1

∑ 𝜃𝑞,𝑗
𝑅 =

𝑁+𝑞−1

𝑗=1

1,   ∀𝑞 = 1 … 𝑄 (25) 

 
| 𝐾𝑁+𝑞,𝑑 − 𝐾𝑖,𝑑 ∙ 𝐾𝑗,𝑑 | ≤ (2 − 𝜃𝑞,𝑖

𝐿 − 𝜃𝑞,𝑗
𝑅 )𝐵, 

∀𝑖, 𝑗 = 1 … 𝑁 + 𝑞 − 1,  
∀𝑞 = 1 … 𝑄, ∀𝑑 = 1 … 𝐷  

(26) 

 

𝑅𝑑 = 𝑎0 + ∑ 𝑎𝑚𝑋𝑚,𝑑

𝑁+𝑄

𝑚=1

𝑏0 + ∑ 𝑏𝑚𝐾𝑚,𝑑

𝑁+𝑄

𝑚=1

⁄    

∀𝑑 = 1, … , 𝐷 

(27) 

 
𝑧𝑏,𝑚, 𝜃𝑞,𝑖

𝐿 , 𝜃𝑞,𝑗
𝑅 ∈ {0,1} 
 

∀𝑚 = 1 … 𝑁 + 𝑄 
∀𝑞 = 1 … 𝑄 

∀𝑖, 𝑗 = 1 … 𝑁 + 𝑞 − 1 

(28) 

 
 𝑏𝑚, 𝐾𝑁+𝑞,𝑑 ∈ ℝ ∀𝑚 = 1 … 𝑁 + 𝑄 

∀𝑞 = 1 … 𝑄 
∀𝑑 = 1 … 𝐷 

(29) 

 
We modify the formulation presented in section 3.1 by 
including Eq. (23-29) alongside Eq. (2-7) as well as 
modifying Eq. (1) to Eq. (22). Eq. (2-7) constructs the 
original polynomial (𝑎𝑚, 𝑋𝑚,𝑑) whilst Eq. (23-29) 
constructs a second polynomial (𝑏𝑚, 𝐾𝑚,𝑑) in parallel. 
The final rational function used for approximation 
𝑅(𝑥1, 𝑥2) is then constructed through Eq. (27). Both 
polynomials are initialised as sparse linear regressions. 
Furthermore, to remove symmetry from the problem,  𝑏0 
is fixed to 1 to not only avoid division by zero but to 
prevent equivalent solutions from being formulated in 
which the numerator and denominator are both 
multiplied by some scale factor. The complexity of both 
polynomials is regulated using the same M, Q and B.       

5.2.2. Illustrative example 
Consider a set of input temperatures (𝑇2/K) and 
corresponding vapour pressures (𝑃2/atm) for water as 
defined by the Clausius Clapeyron Equation: 
 

𝑃2 = 𝑃1𝑒−
∆𝐻𝑣𝑎𝑝

𝑅 ( 1
𝑇2

− 1
𝑇1

) (30) 
 
For water ∆𝐻𝑣𝑎𝑝 = 40.8 𝐾𝑗𝑚𝑜𝑙−1. We also know that 
at 1atm the vapour pressure of water is 373K, enabling 
us to define 𝑃1, 𝑇1. Eq. (30) can thus be modelled with 
the expanded formulation (M=4, Q = 3) using BARON 
[19] in 15.94 seconds as:  
  

𝑃2 =
𝐴 + 𝐵𝑇2 + 𝐶𝑇2

2

1 + 𝐷𝑇2 + 𝐸𝑇2
2 + 𝐹𝑇2

3 (31) 

For completeness, and to provide a broad comparison 
between the proposed formulation and alternative sparse 
techniques, the resulting surrogate Eq. (31) was 
compared against a sparse regression in which the basis 
functions [1, 𝑇2, 𝑇2

2, 𝑇2
3] were provided with coefficients 

[G,H,I,J] respectively. The resulting regression 
completed in 0.33 seconds using the BARON solver 
[19]. Due to the magnitude of the resulting coefficients 
(A-J) it is important that they are implemented with 

sufficient accuracy to ensure both models remain good 
surrogates to Eq. (30). For detailed values of each 
coefficient, see figure 8.   

Figure 8: Modelled vapour pressure for water at 
varying temperatures compared with vapour pressure 

determined via the Clausius Clapeyron equation. 

Figure 8 highlights the inherent strengths of the sparse 
regression with it being able to produce a surrogate of 
comparable accuracy to the expanded rational SR in 
significantly less time. Both approaches however are 
able to produce accurate surrogates the Clausius 
Clapeyron equation Eq. (30).    
6. Conclusions 
This report has outlined a new MIQCQP formulation, to 
perform symbolic multivariate polynomial regression, 
with the aim of reducing computational complexity 
compared to current SR techniques [1,6] whilst also 
increasing versatility compared to existing parametric 
techniques [5,7]. The performance of the new 
formulation (with included symmetry cuts) was assessed 
using BARON [19] and compared to a tailored version 
of an existing symbolic regression formulation [6], 
capable of producing solely multivariate polynomials. 
Examples where the formulation was then applied to 
various chemical engineering examples and further 
expanded upon were then briefly discussed laying the 
foundation for possible future work. 
 
The new formulation was able to produce surrogate 
models to accurately describe non-linear behaviour. It 
was successfully applied to predict thermodynamic 
properties and as an alternative technique (to existing 
parametric frameworks [21]) to determine governing 
equations underlying non-linear dynamical systems. 
The MIQCQP formulation was also able to outperform 
the tailored SR, producing more complex and accurate 
surrogate models in more reasonable timeframes. 
Despite the MIQCQP formulation’s improved 
performance over the traditional SR formulation [6] 
however, it does continue to suffer from a high degree 
of computational complexity compared to alternative 
parametric techniques. Such complexity resulted in 
compute times which rise exponentially with both the 
number of data points and the number of additional 
quadratic terms. This limits the formulation’s ability to 
describe complex non-linear behaviour for larger data 
sets, where many terms are required, both accurately and 
more notably, within reasonable timeframes. 

A = 0.35762274000 
B = -0.00240670800 
C = 0.00000409910  
D = -0.00594830600 
E = 0.00001208650  
F = -0.00000000834  
G = 100.0000000000  
 
 

H = 0.97603543500 
I = 0.00315228210 
J = 0.00000338128 
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The scope of this paper has encompassed primarily the 
formulation, testing and comparison of a new MIQCQP 
formulation to carry out symbolic polynomial 
regression. Future work could continue to test this 
formulation by making use of alternative solvers not 
utilised in this paper (such as GUROBI version 10 [20]) 
and assessing whether further performance 
improvements can be obtained. Furthermore, testing the 
formulation against existing open access benchmarks 
could provide an alternative avenue to assess and 
compare its performance. Subsequent work could also 
explore additional means by which to expand upon the 
formulation further, for example, by considering multi-
output regression and/or incorporating information 
criterion to control sparsity. Lastly, investigations could 
be carried out into the effectiveness of the formulation 
when applied to more complex real-world examples 
found throughout science and engineering with 
particular emphasis on how it handles noisy data sets.     
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Abstract 

Base pair mismatches present in DNA 
mutations can have adverse ramifications on 
human health, product quality, and 
experimental research analysis, amongst other 
fields. DNA biosensors can provide a low cost 
and rapid option for the detection of such base 
pair mismatches. The concept of an 
electrochemical biosensor utilising 
streptavidin-biotin interactions to bind DNA 
samples onto a modified screen-printed carbon 
electrode was explored in this study. The 
biosensor demonstrated successful 
immobilisation of biotinylated DNA strand 
onto the streptavidin-modified working 
electrode surface. Cyclic voltammetry revealed 
detectable differences in peak currents across 
double-stranded DNA of varying number of 
base pair mismatches. Detection of target DNA 
concentrations down to 1 μM, or 1 % of the 
immobilised biotinylated cDNA concentration, 
was achieved. Electrical readouts from the 
biosensor were easily replicable across 
biosensor chips. This study hence serves as a 
proof of concept for an innovative 
electrochemical biosensor for the detection of 
DNA base pair mismatches. The electrical 
biosensor signal output has the potential to be 
easily integrated into processes across 
industries, such as quality control of DNA-
based products. 
 
 
Keywords: Biosensors, Cyclic voltammetry, 
DNA, Electrochemistry 

1. Introduction and Background 

Beyond the Watson-Crick model for 
deoxyribonucleic acid (DNA), which gives 
complementary base pairs of guanine-cytosine 
and adenine-thymine, base pair mismatching in 
double-stranded DNA (dsDNA) may occur. In 
DNA replication, such mismatches may occur 
at a frequency of 1 in 107 base pairs per mitosis 
cycle [1]. These DNA mismatches can have 
adverse effects on human health and 
biotechnology, such as in gene mutations [2], 
pathogen infections [3], cancer [4], and product 
quality [5]. The detection of DNA mismatches 
continues to be of significant challenge. Current 
detection techniques include PCR-based 
methods (e.g. RT-PCR [6], ASB-PCR [7]) and 
gel electrophoresis methods (e.g. DGGE [8], 
TTGE [9]). However, these methods each have 
inherent limitations in terms of costs, 
technologies required, or accessibility for 
industrial uses. PCR-based methods generally 
have much higher associated costs and 
technological requirements, while the simpler 
electrophoresis methods offer much less 
information. There is hence a technological gap 
that can be addressed. 
 
Recent developments in DNA biosensors based 
on nucleic acid hybridisation have received 
considerable attention due to their low cost and 
low technological barriers to adoption, while 
also providing rapid detection. Biosensors are 
analytical devices that combine the specificity 
of a biological sensing element with a 
transducer and converts them into signals [10]. 
Such DNA biosensors can be extremely useful 
in various industries, such as clinical 
diagnostics [11], biological research [12], food 
safety [13], and environmental monitoring [14].  
 
Specifically, electrochemical biosensors will be 
investigated in this study due to the high 
sensitivity of electrochemical transducers. They 
have the potential to create a simpler and 
inexpensive detection method compared to 
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other assays such as spectrophotometry [15] 
and fluorescence based biosensors [16]. The 
electrochemical biosensor relies on differences 
in electrochemical characteristics arising from 
the different states of hybridisation between 
complementary single-stranded DNA (ssDNA) 
versus those with base pair mismatches [17]. 
The corresponding electrical signals will then 
be amplified, processed, quantified, and 
visualised on the display unit of the biosensor.  
 
This proof-of-concept study aims to investigate 
the feasibility of developing an electrochemical 
biosensor to detect base pair mismatches in 
DNA. The electrochemical biosensor designed 
is based on a screen-printed carbon electrode 
(SPCE). The SPCE utilises a three-electrode 
configuration consisting of a working 
electrode, a counter electrode, and a reference 
electrode. The reference electrode controls the 
potential of the working electrode and 
minimises potential and current loss in the 
circuit [18]. Advantages of SPCEs include the 
low sample volume required, and the potential 
for modification of the electrode surface for 
specific analytes depending on analytical 
requirements [19]. Problems with classical 
solid electrodes, such as memory effects and 
tedious cleaning processes, can also be avoided.  
 
Selective immobilisation of the ssDNA probe is 
crucial as direct adsorption of ssDNA onto the 
electrode surface will lead to poor hybridisation 
efficiency [20]. This would compromise the 
reproducibility and sensitivity of the biosensor. 
The proposed biosensor will  leverage on 
streptavidin-biotin interactions to attach 
biotinylated probes on the SPCE for improved 
detection sensitivity. The streptavidin-biotin 
binding is one of the strongest known non-
covalent bonds occurring in nature [21], with 
one streptavidin protein having the ability to 
bind with four biotin molecules with high 
affinity and selectivity [22]. Streptavidin-
modified SPCEs would thus be used against 
biotinylated DNA sequences in this study. 
 
The SPCE biosensor chip is evaluated using 
cyclic voltammetry (CV) to investigate the 
electrochemical behaviour on the electrode 
surface. CV is one of the most common, 
straightforward, and efficient method for 
obtaining qualitative and quantitative 
information on biological and redox reactions 
[23]. The working principle of CV can be 

explained with reference to the sample cyclic 
voltammogram output given in Figure 1. 
 

 
Figure 1. Example of a cyclic voltammogram [24]. 

The CV involves scanning across a range of 
potentials, with the forward direction indicating 
an oxidative scan while the backward direction 
represents a reductive scan [18]. Using the 
oxidative scan as an example, the current 
increases exponentially as the analyte is 
oxidised at the working electrode surface. The 
current is dictated by the rate of diffusion of 
oxidant to the electrode. As the scan continues, 
more oxidant is depleted. The oxidised ions will 
form a diffusion layer until the current reaches 
a peak, at which point the current is limited by 
mass transport of analyte to the electrode. 
Further increase in potential causes a decrease 
in current until a steady state is achieved. The 
reverse happens during the reductive scan. The 
anodic and cathodic peak currents should be of 
equal magnitude but with opposite sign, 
implying that a fully reversible process. Hence, 
only analysis of a single peak is required. 
 
The electrochemical biosensor tested presents a 
low cost and simple analytical method for 
detecting base pair mismatches in DNA. A 
successful proof of concept can be used for 
further developments of the method for 
applications in various fields. 
 
2. Materials and Methods 

2.1 Chemicals 

Common use chemicals such as phosphate 
buffered saline (PBS) and salts were supplied 
by Sigma Aldrich (UK). Oligonucleotide 
sequences were synthesised by Invitrogen 
(UK).
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Table 1. Oligonucleotide sequences with underlined mismatches. 

Oligonucleotide Sequence Base Pair 
Mismatches 

MW 
(g/mol) 

Biotin-cDNA 5’-CCG GGC GTC GCT GGT GGG-3’-biotin - 6160.0 
tDNA 5’-CCC ACC AGC GAC GCC CGG-3’ 0 5116.6 
Non-cDNA 1 5’-CCC ACC AGC CTG GCC CGG-3’ 3 5407.6 
Non-cDNA 2 5’-CCC ACC TCG CTG GCC CGG-3’ 6 5398.6 
Non-cDNA 3 5’-GGG ACC AGC GAC GCC GCC-3’ 6 5196.6 

2.2 Oligonucleotide Design 

ssDNA sequences with length of 18 base pairs 
were designed with a pair of complementary 
strands, as well as three non-complementary 
with mismatches of varying number of base 
pairs and/or locations. The complementary 
DNA was biotinylated (see biotin-cDNA) for 
immobilisation on the streptavidin modified 
SPCE. The full list of oligonucleotide 
sequences is provided in Table 1. 
 
2.3 Biosensor Preparation 

The electrochemical biosensor was constructed 
using DropSens streptavidin modified SPCE 
purchased from Metrohm (UK). Preparation of 
the biosensor comprised of two key steps: 
immobilisation of sample onto the working 
electrode and hybridisation of complementary 
DNA strands. Hybridisation of ssDNA was 
conducted prior to sample immobilisation in 
order to achieve greater consistency and control 
over reaction conditions at this current proof-
of-concept stage. It was thought that the 
hybridisation of DNA strands at elevated 
temperatures may damage the streptavidin 
protein attached on the working electrode 
surface were the ssDNA first immobilised then 
heated for hybridisation. 
 
DNA Hybridisation. Working solutions of the 
sequenced ssDNA were diluted in 1x PBS 
solution to the desired working concentrations. 
The desired pairings of ssDNA were hybridised 
together for 5 min at 73 °C, over an electric 
heating bath. Hybridised aliquots were left at 
room temperature for 10 min for cooling to 
minimise material loss due to evaporation. 
 
DNA Immobilisation. 10 μL aliquots of the 
hybridised solutions comprising biotin-cDNA 
and relevant ssDNA were pipetted onto the 
streptavidin coated working electrode surface 
of the  SPCE. The SPCE was left at room 

temperature for 15 min over a water bath, which 
provided humidity to maintain the functionality 
of streptavidin. The working electrode was 
washed with 1x PBS solution for 5 times to 
rinse off any biotin-cDNA not fully 
immobilised onto the electrode surface. 
 
2.4 Cyclic Voltammetry 

CV was performed using a Metrohm AutoLab 
potentiostat on the Nova 2.1.4 interface. The 
prepared SPCEs had their sensing area fully 
immersed in an aqueous solution of 5 mM 
K3Fe(CN)6/K4Fe(CN)6 in 0.1 M KCl. The scan 
rate was set at 100 mV/s across an 
experimentally-determined scanning range of   
-0.2 V to +0.5 V. CV was initialised with 3 pre-
treatment cycles to stabilise the working 
electrode before the data was recorded for a 
further 5 cycles. 
 
2.5 SDS PAGE 

Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS PAGE) was performed 
using a 20 % polyacrylamide gel to separate the 
different ssDNA and dsDNA samples. A high 
concentration of 20% polyacrylamide was 
required to achieve separation due to the 
extremely small differences in molecular 
weights between the DNA strands measuring 
only 18 base pairs in length. The gel was 
prepared with 8 ml of  30 % acrylamide, 3.55 
ml of water, and 0.24 ml of 50x tris-acetate 
EDTA (TAE) buffer. 100 ng samples of the 
DNA were mixed with 5x loading dye and 
made up with water to prepare 20 μL aliquots. 
SDS PAGE was conducted at 100 V for 1 hour. 
The detached gel was then stained with SYBR 
gold for 3 hours before images were captured 
under UV light with NuGenius gel imaging 
system.  
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3. Results and Discussion 

3.1 SDS PAGE 

Successful hybridisation of the ssDNA strands 
following the designed conditions were 
validated using SDS PAGE. As shown in 
Figure 2, visible separation of bands was 
observed between the ssDNA and dsDNA 
samples. 
 

 
Figure 2. 20 % polyacrylamide gel with ssDNA and 
hybridised dsDNA samples captured under UV light. 

Since a standard DNA ladder comprising 
oligonucleotides much longer than the tested 
samples was used, bunching of the DNA ladder 
bands was to be expected considering the fact 
that the samples tested were much shorter and 
would progress much faster. Nonetheless, some 
progression of the DNA ladder down the gel 
showed that the SDS PAGE setup was working 
as intended. The ssDNA samples gave a single 
band while the dsDNA samples displayed two 
bands. The higher band corresponded to the 
hybridised dsDNA due to their larger molecular 
weights causing them to move slower than 
ssDNA. The presence of the second band for 
dsDNA samples indicated that not all of the 
ssDNA were completely hybridised. 
Nonetheless, a simple visual comparison of the 
brightness of the two bands showed that the 
amount of unhybridised ssDNA left was much 
lower than that of hybridised dsDNA present. 
The small amount of remaining ssDNA 
following the hybridisation step would be 

unlikely to significantly affect the 
electrochemical biosensor performance. 
 
Based on the SDS PAGE gel image, it was not 
possible to distinguish between different 
dsDNA strands despite the presence of varying 
base pair mismatches. This further proved the 
utility of an electrochemical biosensor in 
providing complementary data to identify base 
pair mismatches in DNA mutations. 
 
3.2 CV Parameter Validation 

 
Figure 3. Cyclic voltammograms recorded for 
streptavidin modified SPCE with 100 μM  hybridised 
biotin-cDNA and tDNA. Figures A and B 
correspond to scanning ranges of -0.5 V to +0.8 V 
and -0.2 V to +0.5 V respectively. Scan rate of 100 
mV/s. 

Preliminary CV testing conducted on the 
SPCEs allowed for confirmation of the key 
parameters for running CV tests. Figure 3 
shows that the smaller scanning range of -0.2 V 
to +0.5 V was more suitable for the particular 
SPCE used as minimal degradation of the peak 
current was observed across consecutive 
cycles. Reduction in peak current for the larger 
scanning range in Figure 3(A) could be caused 
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by the degradation of biological materials due 
to an excessive potential difference being 
applied. The smooth curves recorded showed 
that the scanning rate of 100 mV/s used 
provided adequate time for the redox reactions 
to proceed. Good overlap of the 5 consecutive 
cycles observed in Figure 3(B) also showed that 
the 3 pre-treatment cycles used were sufficient 
for initial stabilisation of the working electrode. 
 
The cyclic voltammogram in Figure 3(B) 
showed well-defined peaks. This indicated that 
electron transfer kinetics of Fe(CN)6

4− ions on 
the working electrode was fast, and that the 
rinsing process of the working electrode with 
1x PBS was satisfactory. 
 
3.3 Initial CV Testing 

Initial CV testing was performed to ascertain 
the reliability of the CV setup, as well as 
provide a baseline comparison case for 
subsequent tests with dsDNA. The bare carbon 
electrode was tested against standard cyclic 
voltammograms available from the 
manufacturer. Based on the shape of the cyclic 
voltammogram, peak current location and 
values, the bare carbon electrode results had 
good agreement with cyclic voltammograms 
provided by the manufacturer [25]. Standard 
cyclic voltammograms were not available for 
the bare streptavidin modified electrode. 
 

 
Figure 4. Cyclic voltammograms recorded for 
electrodes with bare carbon, bare streptavidin 
modified, and 100 μM biotin-cDNA. Scan rate of 
100 mV/s. 

As shown in Figure 4, both streptavidin 
modified SPCEs with and without immobilised 
material recorded peaks at a lower potential as 
compared to that of the bare carbon electrode. 
By modifying the surface of the working 
electrode with streptavidin, the electrochemical 
characteristics of the working electrode was 
altered. Hence, the shift in peak location was to 
be expected. 
 
Of importance would be the magnitude of the 
peak currents recorded. The bare streptavidin 
modified electrode had the highest peak current 
peak current of around 0.18 mA. Peak current 
decreased to 0.11 mA following immobilisation 
of the single-stranded biotin-cDNA. This 
showed that the immobilisation of DNA onto 
the streptavidin coated working electrode 
surface was successful and brought about 
detectable changes in the electrochemical 
activity of the electrode. 
 
The presence of phosphate groups in 
nucleotides conferred DNA its negative charge. 
The repulsive electrostatic interactions of the 
negatively charged ssDNA and ferrocyanide 
ions impeded the transfer of ferrocyanide ions 
to the working electrode surface. This implied 
a higher electron transfer resistance and thus 
lower peak current [20]. The recorded peak 
currents for bare streptavidin and that of 
immobilised biotin-cDNA provided useful 
reference points for subsequent comparisons 
involving different dsDNA combinations. 
 
3.4 Base Pair Mismatch Detection 

CV tests conducted with the four pairs of 
hybridised dsDNA, previously given in Table 
1, yielded quantifiable differences in 
electrochemical readout from the CV. As 
shown in Figure 5, the magnitude of peak 
currents of the electrodes with hybridised 
dsDNA fell between the range given  by the 
peak current of bare streptavidin modified 
electrode and  that  of the electrode with only 
single-stranded biotin-cDNA.  Amongst the 
dsDNA samples, peak current  recorded in 
decreasing order for hybridised pairs had tDNA 
having the highest peak current, followed by 
non-cDNA 3, non-cDNA 1, and then non-
cDNA 2. 
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Figure 5. Cyclic voltammogram of hybridised dsDNA with tDNA and non-cDNA 1 to 3, enlarged over positive 
current peaks between the range of potential applied from 0.10 V to 0.30 V. Scan rate of 100 mV/s.

While the cyclic voltammogram for dsDNA 
was initially expected to give lower peak 
currents than ssDNA due to an increase in 
resistance from dsDNA, the CV tests conducted 
showed otherwise. Peaks from dsDNA were 
higher than that of ssDNA. Although dsDNA 
might have inherently higher electron transfer 
resistance than ssDNA, other factors such as the 
orientation of immobilised DNA on the 
working electrode surface may also affect the 
overall electrochemical characteristic of the 
electrode [20]. Further investigation beyond  
this study may be conducted to better 
understand the actual electron transfer 
mechanism. Nonetheless, the results obtained 
were reproducible across multiple chips and 
repeats. Trends in the current peaks between 
hybridised pairs of DNA observed were also in 
order as mentioned previously. 
 
To better quantify the effect of the detection of 
DNA base pair mismatches on the cyclic 
voltammogram, the drop in peak current from 
that of the bare streptavidin modified SPCE was 
calculated and plotted in Figure 6.  
 
From Figure 6, the single-stranded biotin-
cDNA recorded the largest drop in peak current 
of 0.08 mA. Samples 2 through 4 are in order of 
increasing number of base pair mismatches. A 
corresponding increase in the drop in peak 
current was calculated, ranging from 0.055 mA 
to 0.065 mA. It could be hypothesised that with 
increasing number of base pair mismatches, the 

drop in peak current would eventually trend 
closer towards that of single-stranded biotin-
cDNA as fewer non-cDNA strands would be 
able to successfully hybridise with the biotin-
cDNA. 
 

 
Figure 6. Drop in peak currents from bare 
streptavidin modified SPCE for various immobilised 
DNA strands. Average readings from three SPCEs 
for each sample recorded and corresponding error 
bars plotted. 

For sample 5, with non-cDNA 3, the peak 
current drop was however noted to be lower 
than sample 4, despite both having 6 base pair 
mismatches. Hybridisation of dsDNA would be 
affected by both the number of base pair 
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mismatches, as well as the location of the 
mismatches on the DNA sequence. Comparison 
between the drop in peak currents of just 
samples 4 and 5 indicate that the difference in 
electrochemical activity between dsDNA with 
the same number of base pair mismatches at 
varying locations could potentially be picked 
up by the electrochemical biosensor. 
 
Nonetheless, it should be noted that while a 
trend of drop in peak current with number of 
base pair mismatches was shown, the 
differences could not yet be said to be 
statistically significant between certain samples 
based on the current small sample size of data. 
This would be further discussed later in section 
3.6. 
 
3.5 Identifying Detection Limits 

A brief study into the effect of target DNA 
concentrations on electrochemical output was 
conducted with hybridised dsDNA between 
biotin-cDNA and tDNA. tDNA concentrations 
of down to 1 μM, or 1 % of the 100 μM biotin-
cDNA concentration, were tested. 
 

 
Figure 7. Cyclic voltammogram for streptavidin 
modified SPCE with different concentrations of 
tDNA hybridised with 100 μM biotin-cDNA at 73 °C, 
enlarged over positive current peaks between the 
range of potential applied from 0.15 V to 0.40 V. 
Scan rate of 100 mV/s. 

 
Figure 8. Correlation between peak current 
recorded and logarithmic of tDNA concentration 
hybridised with biotin-cDNA. 

As shown in Figure 7, the cyclic 
voltammograms showed a decrease in peak 
current recorded with decreasing tDNA 
concentrations. From Figure 8, peak current 
recorded also showed good corelation with 
tDNA concentrations in logarithmic terms. The 
fitting equation obtained was 𝑦 =
0.002 ln(𝑥) + 0.1049  with a goodness-of-fit 
value of 𝑅2 = 0.9883 . This showed that the 
constructed electrochemical biosensor 
performed reasonably well even at reasonably 
low sample detection limits of 1 % of the biotin-
cDNA concentrations.  
 
It would certainly be desirable to conduct 
further experiments to better determine if lower 
detection limits could be achieved with the 
electrochemical biosensor. Nonetheless, the 
current results showed that the biosensor was 
sufficiently sensitive to for detection limits of at 
least 1 % and would be sufficiently robust at 
this current stage of development. 
 
3.6 Critical Evaluation 

As this study is still at an early proof-of-concept 
stage in the development of the electrochemical 
biosensor, there was a conscious need to 
balance the allocation of finite resources 
available. Hence, this study sought to explore a 
breadth of various aspects crucial to 
understanding the biosensor, rather than 
focusing too in depth on any one aspect in 
particular. This included the mechanism of 
immobilisation, effect of base pair mismatches 
on electrical readouts, and an approximate limit 
of detection. Certain trade-offs were thus made 
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in the process in order to determine the overall 
feasibility of the concept. 
 
Oligonucleotide length. The DNA sequences 
used in this study were very short strands only 
18 base pairs in length. This afforded certain 
benefits such as minimising the formation of 
undesired secondary structures which could 
hinder the hybridisation processes. By keeping 
the oligonucleotide lengths short, the ability to 
hybridise would be dependent only on the 
presence of base pair mismatches in the non-
cDNA. The number of mismatched nucleotides 
as a percentage of the total nucleotide length 
would also be higher, thus emphasising the 
difference in hybridisation even for just 3 or 6 
base pair mismatches. However, the use of 
short oligonucleotides would also likely confer 
a much smaller level of impedance to the 
working electrode surface. Smaller magnitudes 
of changes to peak current would thus be 
expected. Cyclic voltammetry readouts could 
thus be more greatly limited by the sensitivity 
of the equipment available. The sensitivity of 
the equipment in measuring short 
oligonucleotides should thus be taken into 
account when evaluating the lack of statistically 
significant differences in the drop in peak 
currents mentioned in Section 3.4. The use of 
longer DNA strands could potentially lead to 
more pronounced differences between the 
drops in peak current. 
 
Sample preparation. In this study, the 
hybridisation event was conducted first at 73 °C 
before immobilisation to avoid any potential 
degradation of the streptavidin protein. 
However, it was noted that there could be a 
need for immobilisation biotin-cDNA first, 
which then hybridises and captures 
complementary target DNA strands. Most 
samples collected would also likely face 
contamination by other substances, the effect of 
which on the SPCE would have to account for. 
Separately, additional pre-treatment of samples 
could be necessary for real world samples 
containing a wide range of impurities. Hence, 
while the study provides a strong basis for 
further development of an electrochemical 
biosensor, much more work would have to be 
done to arrive at a fully implementable 
commercial product. 
 
The above two factors raised should be taken 
into consideration to provide a more holistic 

view of the results from this study. These were 
conscious decisions made surrounding 
experimental design. It is recommended that the 
above design considerations be accounted for in 
any further work to be done surrounding the 
electrochemical biosensor of interest.  
 
4. Conclusions 

4.1 Biosensor Proof of Concept 

The feasibility of developing an 
electrochemical biosensor to detect base pair 
mismatches in DNA mutations, centred around 
the streptavidin-biotin binding interactions, was 
proven in this study. Hybridised dsDNA with 
the attached biotin protein was successfully 
immobilised onto the streptavidin modified 
working electrode surface. Proof of successful 
immobilisation is a key finding in itself as the 
mechanism of immobilisation could potentially 
be easily replicated for other forms of 
biological molecules such as mRNA. The ready 
availability of commercial SPCEs with the  
streptavidin modification also ensures lower 
barriers to implementation of such an 
electrochemical biosensor. 
 
Detectable changes in recorded peak current 
outputs depending on the number and location 
of base pair mismatches provided a desirable 
outcome for further development of an 
electrochemical biosensor for detection 
purposes. The reproducibility of results across 
multiple chips is also very promising. Given the 
greater ease of processing, this electrochemical 
biosensor could be easily integrated with other 
automated and digital process systems into real 
world applications. 
 
The output of an electrochemical biosensor 
could be used to complement experimental data 
from current established methods such as SDS 
PAGE. This provides users with a simple 
alternative method at lower cost to analyse 
biological samples of interest. 
 
Overall, this study opens up plenty of 
possibilities for applications in various 
scientific fields such as molecular diagnostics, 
therapeutic development, biotechnology, and 
environmental studies. The ease of use and 
scalability of an electrochemical biosensor only 
adds to the attractiveness of such an option in 
real world applications. 
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4.2 Future Work 

This proof of concept study can be used as a 
basis for more in-depth studies to better 
understand the effect of particular parameters. 
These include, but are not limited to, 
oligonucleotide length, number and location of 
base pair mismatches, concentration of 
immobilised biotinylated cDNA, and 
hybridisation conditions. Practical 
considerations of target sample preparation and 
determining the absolute lower detection limits 
can also be explored. 
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Abstract 

The world is undergoing sustained efforts towards decarbonising the energy industry to address the current climate crisis. 
This report investigates the feasibility of retrofitting an MEA-based post-combustion carbon capture plant to a small-scale 
waste-to-energy power plant utilising Refuse Derived Fuel. The power plant is modelled and simulated through Aspen Plus 
V11, alongside the carbon capture process operating with a capture efficiency of 95%. The feasibility is investigated in 
terms of the energy requirements and implications, as well as the specific post-combustion capture plant area requirement 
per unit power generation. At the given capture efficiency, an associated energy penalty of 45.7% is imposed, leading to a 
decrease in net output by 4.3 MWe, primarily due to high energy consumption at the reboiler and CO2 compressor. A 
specific plot sizing of 232.6m2MW-1 is obtained for the physical requirement of the carbon capture plant layout at this 
capacity and operation. The high energy penalty and large specific plot area lead to complications in the feasibility of this 
simulated waste-to-energy plant.  

1 Introduction 

Since the introduction of the Paris Agreement at COP21, 
there has been an increased combined effort across the 
world for governments to combat climate change. Signed 
by 194 parties, including the UK, the Agreement 
established long-term goals to guide nations to limit the 
global temperature increase to well below 2°C, while 
pursuing efforts to further limit this increase to 1.5°C 
(UNFCCC, 2015). This was reinforced at the most recent 
COP27, where a 2°C increase was demonstrated to be 
unsafe, thus focusing on permitting a maximum rise of 
1.5°C. To this end, COP27 saw the launch of new 
programmes to promote climate technology solutions in 
developing countries and scaling up mitigation ambition 
and implementation (‘COP 27’, 2022). Yet, the UN 
Framework Convention on Climate Change currently 
places the world on track to reach 2.5°C by the turn of the 
century (UNFCC, 2022), indicating a need for a 45% 
reduction in greenhouse gas (GHG) emissions (IPCC, 
2018). As such, it is clear that carbon capture holds its 
place within this industry to help achieve these aims, with 
increasing importance as the urgency increases day by 
day. Carbon capture can particularly aid in the transition 
to renewable energy, decarbonising current and existing 
emissions sources, which will be needed to provide secure 
and predictable energy whilst the transition to a low 
carbon energy system is ongoing. Moreover, the 
European Energy Roadmap forecasts that electricity 
produced from biomasses and waste will account for 
between 7.3 and 10.8% of total production in 2050 
(European Commission, 2011), highlighting the 
importance of utilising biomass and waste as energy 
sources for developing an energy system independent 
from fossil fuels. Refuse Derived Fuel (RDF) appears as 

a promising option, being a sustainable fuel source, with 
the main drawbacks stemming from direct emissions due 
to its combustion. Successfully combining an RDF-to-
energy plant with carbon capture technology may 
therefore present a cumulative benefit and encourage the 
adoption of utilising RDF. Investigating primarily the 
energy penalty and physical plant footprint will allow for 
an analysis into the carbon capture feasibility – to include 
both commercial considerations alongside technical 
feasibility – of such RDF-to-energy power plants in 
conjunction with a carbon capture retrofit.  

2 Background 

2.1 Post-Combustion Capture (PCC) 

Fossil fuels play a major role in power generation in the 
UK, hence it is crucial that technologies which reduce the 
carbon footprint of fossil fuel-dependent industries are 
developed, in addition to advancing green energy 
production. Carbon capture and storage (CCS) enables 
continuing operation of fossil fuel-based power plants 
whilst eliminating carbon emissions. The main methods 
for carbon capture fall into three categories: oxy-fuel 
combustion systems, pre-combustion carbon capture and 
post-combustion carbon capture (PCC) – the latter of 
which is implemented here. The installation of PCC 
enables the reduction in carbon emissions without 
significantly changing existing infrastucture making this 
technique more economically feasible; a CCS process is 
retrofitted to a fossil fuel power plant, capturing carbon 
dioxide from the exhaust gas stream before release to the 
atmosphere.  
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2.2 CCS Solvent Selection 

Monoethanolamine (MEA) solution, an amine-based 
absorption solvent for CO2, is selected as the CCS 
technology for this study, being the most documented 
method for CCS. Despite MEA being a mature choice of 
solvent, this technology requires a large solvent 
regeneration energy which has been seen to cause a high 
energy penalty when retrofitted to power stations (Goto, 
Yogo and Higashii, 2013). Research into lowering the 
energy penalty of CCS processes through novel solvents 
(Mumford et al., 2015) and by means of other gas 
separation technologies – such as pressure swing 
adsorption or membranes (Xie et al., 2019) – is currently 
being conducted. However, such processes require 
electricity rather than heat. Thus, assessing the feasibility 
of operating a MEA-based CCS process, of high 
regeneration energy, retrofitted to an RDF-to-energy plant 
is of particular interest here. 

2.3 Refuse Derived Fuel  

Non-hazardous municipal solid waste (MSW) streams, 
which cannot be reused or recycled, can be utilised as a 
source of energy generation whilst helping to overcome 
problems regarding the depletion of fossil fuels, meeting 
increasing global energy demand and managing waste 
generation. RDF is the energy-contained portion of MSW, 
displaying a wide range of chemical composition due to 
varying blends of organic mixtures and thus the properties 
cannot be easily predicted. RDF is prepared from MSW 
via removal of inert matter, size reduction methods – such 
as milling – and drying (Jannelli and Minutillo, 2007).  
Once processed, RDF can be used as a solid fuel source, 
like coal, to produce energy by combustion. This energy 
can then be converted within a Combined Heat and Power 
(CHP) plant; steam turbines coupled with a generator 
produce electricity whilst thermal energy is rejected in the 
cooling water (Environ Consultants Ltd., n.d.). In this 
study, the chemical compositions of several different 
RDFs from European sources have been obtained from 
literature to be able to adequately model an RDF-to-
energy plant. Despite the extensive research into PCC 

retrofitted to larger-scale coal fired power plants, the full-
scale implementation of retrofitting PCC to smaller-scale, 
waste fuel-fired power stations is still minimal (Bisinella 
et al., 2021).  

3 Methodology 

In this study, a PCC plant has been retrofitted to a CHP 
RDF plant based on a UK plant processing 4,500 kghr-1 
of RDF, observed in literature (Environ Consultants Ltd., 
n.d.). Both processes have been modelled by means of 
Aspen Plus V11 code (Aspen Plus, 2000). 

3.1 Power and Heat Generation Plant 

The Aspen Plus flowsheet for this process is displayed in 
Figure 3.1.1. The RDF power plant consists of various 
sections:  

 RDF drying section: moist RDF is dried via direct hot 
air drying through a rotary drier to 1% moisture 
content; 

 RDF combustion section: RDF is combusted through 
a moving grate combustion system at temperatures 
exceeding 1500°C; 

 gas recovery section: product gases are separated 
from ash produced during the combustion of RDF in 
a cyclone; 

 power generation section: a high pressure (HP) 
turbine and low pressure (LP) turbine configuration 
is coupled directly with a generator.  

3.1.1 Characteristics of RDF 

Table 3.1.1 summarises the proximate analysis, ultimate 
analysis, and Lower Heating Values (LHV) of five 
different RDFs sourced throughout Europe. RDF 4 is a 
UK based source, providing the highest LHV and is thus 
chosen as the fuel to simulate, being applicable for this 
study. A fuel with a higher LHV releases more heat when 
combusted, therefore increasing power generation. These 
given characteristics are input requirements to model 
RDF in Aspen Plus since RDF is a non-conventional fuel.  

Table 3.1.1: Chemical characteristics of 5 different European-sourced RDF fuels 

1 - (García et al., 2021); 2,3 - (Grammelis et al., 2009); 4 - (Materazzi et al., 2015); 5 - (Efika, Onwudili and Williams, 2015) 

RDF 
Fuel 

Proximate Analysis (%wt) Ultimate Analysis (%wt) Calorific 
value 

(MJkg-1) 
Moisture 
content 

Volatile 
content 

Fixed 
carbon Ash content C H O N S 

1 8.50 70.40 3.60 26.00 46.80 5.40 20.40 1.10 0.30 11.40 

2 0.99 79.81 9.69 10.50 51.30 7.50 29.72 0.77 0.21 23.09 
3 1.30 72.85 10.84 16.31 56.75 4.74 20.40 1.67 0.13 22.35 

4 5.90 74.39 11.90 13.71 59.80 8.58 16.47 1.03 0.41 24.92 
5 4.20 76.20 10.44 13.36 43.05 5.91 37.07 0.60 0.00 18.45 
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Figure 3.1.1: Aspen Plus flowsheet of RDF-to-energy plant 

 

Figure 3.1.2: Aspen Plus flowsheet of PCC plant 

3.1.2 Drying  

As RDFs are commonly manufactured and received with 
a non-negligible moisture content, implementing a drying 
stage is necessary to remove excess moisture and 
maximise the heat generated and efficiency of 
combustion. In Aspen Plus, this is modelled by contacting 
a hot air stream – heated by use of excess heat from the 
CCS process – with the wet RDF in the RSTOIC block to 
react a portion of RDF to form water, before passing the 
single outlet stream through the DRYER model which 
separates the dried RDF from the moist air exhaust. In 
practice, this is done within a direct dryer such as a belt or 
rotary dryer, the most commercially observed dryers for 
RDF treatment (Kiranoudis, Maroulis and Marinos-
Kouris, 1996). An energy balance around this process 
yields equation 3.1.2.1: 

𝑄௠௜௡,ௗ௥௬௜௡௚ =  𝑚̇௦𝑐௣௦൫𝑇௦௙ − 𝑇௦௜൯
+ 𝑚̇ோ஽ி൛𝑋௜𝑐௣௟(𝑇௩ − 𝑇௦௜)
+ 𝑋௙𝑐௣௟൫𝑇௦௙ − 𝑇௩൯ൟ
+ 𝑚̇௠௢௜௦௧௨௥௘൛𝜆
+ 𝑐௣௩൫𝑇௩௙ − 𝑇௩൯ൟ 

 

(3.1.2.1) 
 

where 𝑚̇௦, 𝑚̇ோ஽ி, 𝑚̇௠௢௜௦௧௨௥௘ denotes the mass flowrate of 
dried RDF, initial RDF and evaporated moisture 
(obtained via a mass balance of the water present) 
respectively; 𝑐௣௦, 𝑐௣௟, 𝑐௣௩ denotes the specific heat 
capacity of the RDF (which is assumed constant over the 
temperature range), water and steam respectively and 𝜆 
the latent heat of water; 𝑋௜, 𝑋௙ denotes the inlet and outlet 
moisture content of the RDF respectively and 𝑇௦௙, 𝑇௦௜ , 𝑇௩, 
𝑇௩௙  denotes the temperature of the RDF at the outlet, at 
the inlet, the saturated water and produced vapor 
respectively. Incorporating a 5% heat loss inefficiency 
and for a drying process achieving 1% moisture content, 
a total heat duty requirement of 𝑄௧ = 0.18MW is 
identified, equating to an air flowrate of 6kgs-1.  

3.1.3 Combustion 

The combustion of RDF is quite complex and is therefore 
only modelled by two major steps. Since RDF is a non-
conventional fuel, the Gibbs free energy of RDF cannot 
be calculated in Aspen and therefore the RDF is first to be 
decomposed into its constituent elements through the 
RYIELD reactor (Aspen Plus, 2000). The yield 
distribution is obtained from the ultimate analysis of RDF. 
The heat of reaction associated with this decomposition of 
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RDF is considered then in the RGIBBS reactor, which 
simulates the combustion process. This block models 
chemical equilibrium by minimising Gibbs free energy 
and does not require details of reaction stoichiometry, 
reacting RDF and air to produce the exhaust gases. A 
sensitivity analysis was conducted to find the amount of 
air required for complete combustion, yielding an air 
flowrate of 55,000kghr-1.  

3.1.4 Exhaust Gas-Solid Separation 

The product exhaust gases are separated from the ashes 
produced during combustion via a cyclone, modelled in 
Aspen Plus by an SSPLIT block, before entering the CCS 
process. The mass fractions of the main exhaust gases are 
displayed in Table 3.1.2. The remaining gases includes 
SOX, NOX, CO and H2 which equate to less than 1% of 
the exhaust gas stream. 

Table 3.1.2: Composition of exhaust gas stream 

Gas Mass Fraction 
CO2 0.157 
N2 0.717 
O2 0.064 

H2O 0.056 
Other gases < 0.01 

 

3.1.5 Power Generation 

To generate power, the Rankine steam cycle has been 
modelled. The hot combustion gases provide heat energy 
to the boiler, raising the temperature of a recycled water 
stream to create high-pressure steam at 600°C and 100 
bar. The high-pressure steam is then expanded in the HP 
turbine to a lower pressure where a portion of the heat is 
converted to work.  The stream exiting the HP turbine is 
again passed back through the boiler and reheated to 
600°C, and then expanded in the LP turbine to 0.1bar. The 
isentropic efficiencies of both turbines are assumed to be 
90%. The low-pressure steam is completely condensed in 
the condenser where the latent heat of condensation is 
rejected to the cooling water. A pump then pumps 
condensate back to the boiler at 10bar.  

A portion of the steam flow is bled from between the HP 
and LP turbines and is used to supply the reboiler duty in 
the CCS process. This stream is later reintroduced to the 
steam cycle once cooled by mixing with the water stream 
first entering the boiler: the detailed reasoning for this is 
explained in Section 3.2.6. 

3.2 Carbon Capture Plant 

The Aspen Plus flowsheet for the CCS process is 
displayed in Figure 3.1.2.  

The CCS process, designed to yield a 95% CO2 capture 
efficiency, is as follows: 

 Exhaust gases exiting the power plant are first 
pressurised and cooled, then enter the absorption 
column; 

 In the absorber, CO2 in the exhaust gas stream is 
absorbed by MEA solvent exiting at the bottom of the 
column, whilst the remaining flue gases exit at the 
top; 

 The CO2-rich MEA stream is then pumped through a 
heat exchanger before entering the stripping column; 

 The stripper removes CO2 from the MEA stream 
which exits out the top of the column, whilst the now-
lean MEA stream is recycled back through the 
process; 

 The CO2 produced enters a condenser, followed by a 
knock-out drum where remaining liquid is separated, 
before being compressed to reduce volume and allow 
transportation to storage sites. 
 

3.2.1 Reaction Mechanism 

In order for Aspen Plus to simulate the necessary 
reactions, the vapor phase is modelled via the Soave-
Redlich-Kwong equation of state, while the liquid phase 
is described through the activity coefficient ‘Electrolyte-
NRTL’ model. This model is defined by the assumptions 
of like-ion repulsion and local electroneutrality (Moioli 
and Pellegrini, 2013). 

The CO2-MEA-H2O reaction mechanism relies on a 
zwitterion mechanism, and is defined by an equilibrium 
of the 5 equations as laid out below (Aboudheir et al., 
2003), with all species in aqueous solution. 

2H2O ↔ H3O+ + OH- (1) 
CO2 + 2H2O ↔ H3O+ + HCO3

- (2) 
HCO3

- + H2O ↔ H3O+ + CO3
2- (3) 

MEACOO- + H2O ↔ MEA + HCO3
- (4) 

MEAH+ + H2O ↔ MEA + H3O+ (5) 

In addition to these, 5 kinetically controlled reactions 
complete the mechanism, as shown in equations 6 through 
10 below.  

CO2 + OH- ↔ HCO3
- (6) 

MEA + CO2 ↔ MEA+COO-  (7) 
MEA+COO- + MEA ↔ MEAH+ + MEACOO- (8) 

MEA+COO- + H2O ↔ H3O+ + MEACOO- (9) 
MEA+COO- + OH- ↔ MEACOO- + H2O (10) 
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3.2.2 Blower 

The pressure of the exhaust gas stream is increased by 
0.10bar by the blower. This ensures any frictional 
pressure drops along the gas pipeline are overcome. 

3.2.3 Cooler 

The exhaust gases are cooled from 160°C to 40°C before 
entering the absorber. This involves two cooling units: the 
first unit is contacted with the air stream required for 
drying RDF in the power plant, rejecting heat to warm the 
air stream. This is explained in more detail in Section 3.3. 
To further cool the stream to the required temperature of 
40°C, the second heat exchanger utilises cooling water at 
20°C.  

3.2.4 Absorber 

The absorber is modelled by a RADFRAC unit, with an 
operating pressure of 0.75bar. The cooled exhaust gas 
stream enters at the bottom of the column, contacting a 
lean solvent stream which enters at the top of the column. 
The concentration of MEA solvent and lean loading are 
set at 30wt% and 22% respectively, observed as suitable 
valves used in literature (Puxty et al., 2009) (Alie et al., 
2005). Optimising such values acts to minimise the total 
regeneration energy of the process, with most of this 
energy being consumed by the stripper reboiler. Sulzer 
MELLAPAKTM 250Y (Chemtech, 2005) is chosen as the 
internal structured packing, giving a large surface area of 
packing material and thus good absorbing ability for the 
CCS process. The dimensions of the column are 
optimised though sensitivity analysis in Aspen Plus V11, 
ensuring a large enough diameter size is chosen - too 
small of a diameter results in hydraulic infeasibility.  

3.2.5 Rich/Lean Heat Exchanger 

The CO2-rich solvent stream exiting the absorber is heated 
to 94°C by a shell-and-tube heat exchanger, where this 
stream is contacted against the recycled hot lean solvent 
stream.  

3.2.6 Stripper 

Like the absorber, the stripper is modelled as a 
RADFRAC block, operating at a pressure of 1.9bar, with 
the internal packing material Sulzer MELLAPAKTM 
250Y to allow for sufficient desorption of CO2. The pre-
heated CO2-rich solvent stream enters at the top of the 
column, where the liquid stream flows down the column. 
The reboiler duty provides the sensible heat, the heat of 
CO2 desorption and the vaporisation heat of water (Lin 
and Rochelle, 2014); CO2 is thus desorbed from the 
solvent stream and exits at the top of the stripper. The hot 
lean MEA stream exiting the bottom of the stripper is 
recycled back around to the absorber. The reboiler is 
designed as a kettle-type reboiler, operating at 125°C. At 

the specified MEA concentration and lean loading values, 
the minimum energy consumption of the reboiler is 
determined as 4.03GJton-1(CO2), in alignment with 
literature values reported to be 4.0GJton-1(CO2) (Soltani, 
Fennell and Mac Dowell, 2017). The minimum reboiler 
energy consumption at the given capture efficiency of 
95% is obtained through computer-aided optimisation in 
Aspen Plus V11. A non-linear objective function is set to 
minimise the reboiler energy consumption, given the 
decision variables and constraints displayed in Table 
3.2.1. To solve this objective function, a portion of the 
rich-solvent stream is diverged before entering the 
stripper. This can be seen in Figure 3.1.2. Thus, this is also 
how the optimal MEA concentration and lean loading 
values are found.  

Table 3.2.1: Decision variables with constraints for minimising 
the reboiler energy consumption 

Decision variable Lower 
bound 

Upper 
bound 

Rich-stream split fraction 0.05 0.25 
Stripper diameter 1.62 m 1.77 m 

Stripper operating pressure 1.7 atm 1.9 atm 
Molar boilup ratio 0.1 0.2 

 

The reboiler heating supply is obtained by bleeding steam 
from between the HP and LP turbines from the power 
plant, where steam is cooled from 286°C (at 10 bar) to 
180°C. Total condensation is assumed with no further 
sub-cooling. For 95% capture efficiency, a ratio of 1.81 

௞௚(௦௧௘௔௠)
௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)

 was obtained. Idem, Gelowitz and 

Tontiwachwuthikul, (2009) reported ratios within the 
range 1.9-2.5 ௞௚(௦௧௘௔௠)

௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)
, yet as the steam in this 

process is being condensed from such a high temperature 
this affects the quantity of steam required, thus providing 
a lower ratio compared to literature. 

3.2.7 CO2 Compression 

Before transportation and storage, CO2 must be 
compressed to a dense phase, above the critical pressure 
(73.82 bar). Goto, Yogo and Higashii, (2013) collected 
and compared several target pressures reported in various 
papers for CO2 compression, whereby the most common 
target pressure was 110bar – this value is therefore chosen 
in this model.  

3.2.8 Cooling System 

Cooling utility water is required as a means to reject heat 
from the coolers across the CCS process, hence a cooling 
system must be implemented. A forced-draft cooling 
tower (FDCT) is chosen for this system. This type of 
tower allows for a closed cooling water system, not 
requiring circulating water from a lake or river and so is 
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more applicable across various locations. In FDCTs, a fan 
is mounted on the side of the tower and is used to force 
air through the tower. FCDTs are filled with structured 
packing material such as Koch-Glitch’s FLEXIPAC@-
2Y (Purushothama, 2009).   

The cooling duty is estimated through conducting an 
energy balance around each cooler, which can be summed 
to find the total cooling duty (𝑞̇) required and thus the 
flowrate of cooling water (𝑚̇௖ ): 

 𝑞̇௜ =  𝑚̇௜,௙ 𝑐௣௙൫𝑇௜,௙ଵ −  𝑇௜,௙ଶ൯ 
     =  𝑚̇௜,௖ 𝑐௣௖൫𝑇௜,௖ଵ −  𝑇௜,௖ଶ൯ 

 
(3.2.8.1) 

𝑞̇ =  ෍ 𝑞̇௜

௡

௜ୀଵ
 

 
(3.2.8.2) 

𝑚̇௖ =
𝑞̇

𝑐௣௖(𝑇௖ଶ − 𝑇௖ଵ) (3.2.8.3) 

  

where c and T represent the specific heat capacity and 
temperature respectively; the subscripts f, c denote the 
process fluid and cooling water streams; 1, 2 denotes the 
inlet and outlet streams and i denotes each cooling block 
where i = 1,…,n – with n being the total number of 
coolers. The cooling water temperature range is set at 
20°C - 25°C.  

3.3 Heat Integration 

Heat generated throughout the process can be transferred 
between streams and integrated within the process, in 
order to minimise utility requirements, environmental 
footprint and improve feasibility as a whole. An analysis 
under the first law of thermodynamics provides an initial 

estimate of the heat duty required, with a negative value 
of 𝑄௠௜௡ = −9.80MW indicating excess heat requiring 
cooling, of the magnitude of at least 9.80MW. The heat 
exchanger network designed must also satisfy the second 
law of thermodynamics, resulting in the introduction of a 
minimum allowable temperature difference Δ𝑇௠௜௡ =
10𝐾. By constructing temperature intervals and the 
associated cascade diagram, any pinch points present 
restricting the transfer of energy can be identified. From 
the Grand Composite Curve in Figure 3.3.1, no pinch 
point is present and so heat can be exchanged across all 
streams involved. This leads to a total integration of the 
heating duty of 0.67MW, for a final cooling duty 
requirement of 9.80MW, representing a 12.1% 
improvement over the non-integrated system. The heat 
exchanger network designed to achieve this performance 
is illustrated in Figure 3.3.2.  

  

Figure 3.3.1: Grand Composite Curve for the simulated plant’s 
network 
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Figure 3.3.2: Heat-integrated heat exchanger network 

3.4 Plant Layout 
Table 3.4.1: Heat transfer areas for PCC heat exchangers 

Heat Exchange Area (m2) 
2COOLWN2 PRECOOL2 HEX 1COOLWN2 REC-COOL REBOILER DIS-COOL 
1.70 45.65 149.98 20.70 129.59 446.15 29.78 
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To achieve an accurate and representative plant sizing, 
sizing of the relevant equipment must be carried out – 
most of the equipment can be sized accurately in Aspen 
Plus. Heat exchangers, cooling towers and the compressor 
are manually sized to achieve specific sizing of these 
units. Heat exchangers make use of the design equation 
3.4.1:  

with a minimum approach temperature of 10K selected to 
ensure feasible heat exchanger operation and areas and an 
overall heat transfer coefficient of 850Wm-2K-1 (Aspen 
Plus, 2000), thus resulting in acceptable areas for all heat 
exchangers present. From this, the area 𝐴 can be 
calculated from the heat duty 𝑄 and logarithmic mean 
temperature difference Δ𝑇௅ெ. As such, the area (m2) 
required for heat transfer is given in Table 3.4.1. For all 
cases, shell-and-tube heat exchangers are selected, being 
the industry standard and presenting a range of feasible 
operating conditions (Shah and Sekulic, 2003).  

Hill provides correlations for the calculation of the base 
area of a cooling tower 𝐴஼் (Hill, Pring and Osborn, 
1990), given by 

 𝐴஼் =
𝑚̇௖

𝐹௟௢௔ௗ௜௡௚
⋅ 𝐹஼ோ ⋅ 𝐹஺௉ ⋅ 𝐹஺்  (3.4.2) 

with the liquid loading factor 𝐹௟௢௔ௗ௜௡௚, ambient 
temperature factor 𝐹஺் , approach temperature factor 𝐹஺௉ 
and cooling range factor 𝐹஼ோ provided from the 
correlation plots A.3.4.1 and A.3.5.1 of Hill, Pring and 
Osborn, (1990). This results in a cooling tower base area 
of 108.5m2.  

The CO2 compressor of magnitude 2MW can be included 
as a screw gas compressor package sourced from GEA, 
with dimensions 2.7 x 8.5 x 3.5m (Maggiore, 2016).  

In the design of a plant layout, safety is a primary 
consideration where appropriate inter-unit and 
interequipment safety distances must be incorporated. 
These safety distances are given in Tables 3.4.2 (Lees, 
2012) and 3.4.3 (IRI, 1991), outlining the minimum 
horizontal ground separation requirements in metres. 
Note that ‘/’ implies no spacing requirement, and ‘CP’ 
that reference must be made to the relevant codes of 
practice; see Section C.6 of Mecklenburgh, (1986).  

Table 3.4.2: Inter-unit safety distances 

7.5

30

30

CP

CP 2
 

Table 3.4.3: Inter-equipment safety distances 

9.144

15.24

15.24

9.144

9.144

1.524

4.572 4.572

4.572 4.572 /

4.572 3.048 4.572 1.524
 

 
4 Results  

4.1 Plant Land Footprint  

Implementation of the safety distances as detailed in 
Section 3.4 leads to a plant sizing shown in Figure 4.1.1.  
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Figure 4.1.1: Diagram illustrating PCC plant layout and sizing 

First, the largest diameter column – here being the 
absorber – is fixed into one corner of the plant layout. 
Following from this, the remaining process units can be 
incorporated in a sequence mirroring the process flow 
diagram as much as possible to achieve minimum spacing 
and consequent investment due to land requirements; 
increased piping, cabling, drainage and other support 
systems; and additional or larger pumps to overcome 
increased friction losses amongst other factors (Lees, 
2012). The cooling system is then appended, defining the 
lower boundary of the plant layout. A rectangular layout 
is thus defined and optimised manually, achieving 
dimensions of 40.07 x 29.61m. This equates to a specific 
plant area of 232.6m2MW-1. By integrating the heat 
available to reduce the cooling requirements, energy 

 𝑄 = 𝑈 ⋅ 𝐴 ⋅ Δ𝑇௅ெ (3.4.1) 

1) High-pressure 
bullet 

2) High-flash point 
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requirements are reduced; however, the plant area 
increases slightly due to the introduction of extra heat 
exchangers and the consequent separation imposed, thus 
extending the dimensions slightly.  

Finally, the current plant does not include storage tanks – 
carbon capture processes often transport the captured CO2 
to suitable storage or usage sites through pipeline 
networks; storage can also typically be carried out via 
deep geological storage or mineral storage. However, 
some cases may call for the use of storage tanks, both for 
the solvent and the CO2. 2 solvent storage tanks may be 
included of base dimensions 2.47 x 2.47m to allow for the 
flexible operation of the plant (Flø, Kvamsdal and 
Hillestad, 2016), decoupling the power plant and capture 
plant operation while partially decoupling the absorber 
and stripper. This can minimize the power plant energy 
penalty related to carbon capture when undergoing load 
changes to adapt to variations in energy demand. 
Additionally, bullet tank cars may be used to store the 
CO2 on-site and allow for subsequent transportation. 
These can load a weight of 60tonnes with base dimensions 
of 2 x 6m, thus requiring 2 tanks to suit the process 
(APEC, 2009). Therefore, if these tanks are to be included 
in the plant, Figure 4.1.2 must be appended 34.63m south 
of the cooling towers, adhering to safety limitations as per 
Lees, (2012). This in turn leads to an updated total plant 
dimension of 109.65 x 29.61m. 

4m

Legend

M   Solvent storage    
      tank
N   CO2 bullet tank

M M

NN
// 30.48m

 

Figure 4.1.2: Diagram illustrating additional storage tank 
layout 

As seen by these dimensions and Figures 4.1.1 and 4.1.2, 
a large proportion of the plant area is due to the safety 
limitations – this is particularly true with the inclusion of 
the storage tank layout. As such, formulating a formal 
optimization model to achieve the minimal feasible layout 
computationally may be favourable, and may result in a 
non-rectangular layout of decreased dimensions.   

4.2 Energy Penalty 

The impact of retrofitting PCC to a power plant can be 
evaluated through calculating the energy penalty: this can 
be measured in various ways. For this work, the energy 
penalty based on the overall reduction in electricity 
generated by the power plant, before and after retrofitting 
PCC, has been calculated. For 95% CO2 capture rate, the 
total reduction in power output was found to be 45.7%. 
Compared to other fuel-fired power plants with 90% 
capture efficiency, this RDF-to-energy plant incurs an 
energy penalty of approximately double. This can be seen 

in Table 4.2.1. As well as this, the power plant efficiency 
penalty after retrofitting CCS was calculated: this was 
found to be 13.9% pts.  

Table 4.2.1: Energy penalties for various fuel-fired power 
plants 

Fuel Type Energy Penalty 
(%) 

Decrease in plant 
efficiency (% pts) 

Coal 29.0 10.0 
Natural Gas 21.0 7.9 

RDF 45.7 13.9 
 

4.3 Variation of RDF properties 

RDF 4 (see Table 3.1.1) was chosen as the fuel to simulate 
in the model; however, the composition of RDF will often 
vary given the nature of this fuel source. Therefore, other 
RDF sources with different chemical compositions were 
inputted into this model, to compare how the varying 
characteristics influence the performance of the power 
plant. Figure 4.3.1 displays the results of how the overall 
plant efficiency varies with LHV of different RDFs – a 
larger LHV allows for more efficient combustion and thus 
greater electricity generation for a given amount of fuel 
input. Variation in the proximate and ultimate analyses of 
RDFs will also influence the efficiency of the fuel source, 
suggesting why there is a non-linear trend between LHV 
and plant efficiency. 

 

Figure 4.3.1: Lower heating value (LHV) of 4 different RDF 
sources as a function of net electrical efficiency of an RDF-to-

energy plant retrofitted to PCC 

5 Discussion 

The main objectives to assess the CCR of the RDF-to-
energy plant simulated in this work include having 
sufficient space available on or near the power plant site 
to accommodate carbon capture equipment, as well as 
being technically feasible. As displayed in Figure 5.1, 
retrofitting PCC still allows for a production of over 
5MWe, however a significant energy penalty of 45.7% is 
imposed. The most energy consuming parts of the 
process, owing to more than 90% of the total energy 
consumed in the process, is the regeneration energy of the 
stripper reboiler and the compression of CO2 to 100bar, 
accounting for over 50% and 40% respectively.  
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Electricity generated 
inc. PCC

Electricity generated 
exc. PCC

Steam for capture

Plant auxiliaryCCS auxiliary

Plant auxiliary

Compression

9.4 MW

5.1 MW

ENet EGross

Figure 5.1: Electricity generation exc./inc. PCC 

Despite obtaining an optimised reboiler energy 
consumption of 4.03GJton-1(CO2), in alignment with 
literature, there is a significant decrease in the electricity 
that can be generated by the power plant as a large flow 
of steam is bled from between the turbines: therefore, 
efficiency of the overall process is impacted. This is 
somewhat expected, given the reported high regeneration 
energy of MEA solvent. However, a larger energy penalty 
is observed for the RDF-to-energy plant than for coal and 
natural gas-fired power stations. This is most likely due to 
having a less efficient fuel source coupled with smaller 
scale operation, thus the reduction in power generation is 
more substantial. The overall efficiency of this RDF 
power plant, before retrofitting PCC, was found to be 
approximately 30%, whereas coal and natural gas fired 
power stations report efficiencies of over 35% and 45% 
respectively. A less efficient fuel means that more CO2 is 
emitted per MWe produced from combustion, requiring 
higher capture energy. However, RDF does contain a non-
negligible biogenic fraction, hence CO2 emissions 
relating to this amount can be deducted from the net CO2 
emissions. This implementation can lead to net negative 
CO2 emissions, making it a greener technology than CCS 
retrofitted to fossil fuel-fired power stations.  

The variation of RDF properties will further impact the 
overall plant efficiency, as shown by varying LHVs of 
different RDFs in Figure 4.3.1. The chemical composition 
of RDF is not predictable and thus more unfavourable 
energy penalties are likely to be obtained in practice than 
what has been found here, where the process has been 
optimised for one RDF type. 

The land requirement associated with the retrofit of this 
PCC plant is significant, at 232.6m2MW-1, which is a 
barrier towards implementing PCC as a carbon capture 
solution. Typical literature values for the footprint of 
similar plants present an almost tenfold decrease in 
specific area, with a 1200MW coal-fired power station 
case study exhibiting a requirement of 35.86m2MW-1 for 
the inclusion of a CCS outfit achieving a similar level of 
capture as to what is explored in this work (APEC, 2010). 
Whilst this specific area relates to a coal-fired station, as 
opposed to a waste-to-energy plant as studied here, this 
discrepancy is unlikely to account for the entire 
difference. It is also expected for the specific area to 

decrease as the power capacity increases, thus becoming 
more feasible and contributing to the large discrepancies 
observed when drawing comparisons to large-scale power 
plant carbon capture outfits. Indeed, based on Fennell’s 
work (Bui et al., 2018), in the range of 300MW up to 
1500MW, the optimal specific plot area decreases from 
28m2MW-1 to 25m2MW-1. The relatively large sizing of 
the considered PCC plant is first explained by the manual 
optimisation carried out, as opposed to employing a 
formal optimisation program. Additionally, flexibility in 
selecting, sizing and placing cooling towers as required 
will allow for decreased areas. Moreover, safety distances 
are the leading factor in the inflated specific area. The 
influence of safety distances on overall plant size will be 
minimised as the power output increases, occupying a 
decreasing proportion of the total plant area and allowing 
for more efficient plot sizing.  

6 Conclusions 

In this paper, an RDF-to-energy plant retrofitted to an 
MEA-based PCC process, processing 4,500kghr-1 of 
RDF, was simulated. An energy penalty of 45.7% was 
imposed on the process, operating with an MEA solvent 
concentration and lean loading set at 30wt% and 22% 
respectively. Such conditions gave a reboiler duty of 
4.03GJton-1(CO2), supplied by a flow of high temperature 
steam with a ratio of 1.81 ௞௚(௦௧௘௔௠)

௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)
. Despite the 

PCC process operating optimally, retrofitting PCC to a 
small-scale power plant whilst utilising a fuel of lower 
efficiency than fossil fuels proved to have a significant 
effect on the plant performance. Whilst positive net 
electricity generation is still achievable, the physical land 
requirement is disproportionately large owing to the 
inflated specific plot area. This presents complications 
towards the feasibility of the project when considering the 
physical implementation. Further considerations into the 
geographical storage of CO2, the technical feasibility of 
transporting CO2 to storage areas and the economic 
feasibility of the process are required to assess the overall 
carbon capture readiness of this RDF-to-energy plant.  
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Feasibility Study on the ZESTY Reactor for Production of Direct Reduced Iron with Hydrogen

Javier Monteliu and Jien Feung Jason Goh
Department of Chemical Engineering, Imperial College London, U.K.

Abstract Calix Ltd. have partnered with the Imperial College London Fennell Group to advance research on
their patented Zero Emissions Steel TechnologY (ZESTY) for the production of hydrogen-based direct reduced
iron. This study aimed to propose a feasible ZESTY-iron reactor between 10-50 m in height, with target annual
productions of 30,000 tonnes of iron from hematite ore. Sensitivity analyses were conducted on an integrated
kinetic Aspen Plus model to investigate the e↵ects that reaction temperature, solid inlet temperature, pressure
and hydrogen excess ratio have on the key performance metrics of residence time and heat duty. Reactor sizing
feasibility was then assessed to filter out inadequate configurations that did not comply with Calix's requirements.
Process simulations revealed that there is an optimal range of residence times which leads to feasible reactor
designs. Operating under minimal hydrogen excess, at elevated pressures and decreased temperatures showed
promising results in terms of leading to smaller, more energy e�cient reactors. Ultimately, this study provided
proof of concept for the ZESTY-iron reactor by proposing a feasible reactor configuration measuring 26.66 m in
height with 4.44 m in diameter and supplied a foundational simulation model from which Calix Ltd. can expand
their Basis of Design for their demonstration plant.

Keywords Calix Ltd., Direct Reduced Iron, Aspen Plus, Decarbonisation, Hematite Ore

1 Introduction

Human-induced climate change is a dire threat to
the natural world and societies, with carbon dioxide
(CO2) being the principal greenhouse gas contributing
to global warming [1], [2]. Leading research institutes
are working to develop new ways to reduce the emis-
sions of CO2 within the top greenhouse gas-producing
industries. One such example is the iron and steel
industry, which constitutes 11% of global CO2 emis-
sions [3]. Key conclusions from COP27 indicate that
this sector must experience a 25% reduction from its
current CO2 emissions by 2030 to comply with objec-
tives set in the Paris Agreement [4].

According to the Global Steel Plant Tracker
(GSPT), 91.2% of the world's iron is manufactured via
blast furnace technology [3]. This process uses coal and
coke to synthesize carbon monoxide as a reducing agent
and emits vast amounts of CO2. The next best produc-
tion alternative is Direct Reduction of Iron (DRI). This
method currently uses natural gases to manufacture
a mixture of hydrogen and carbon monoxide which is
then reacted with high-grade iron ore to produce sponge
iron. These di↵erences allow DRI to emit up to 67%
less CO2 when compared to blast furnaces and aid in
the road to achieving COP27 goals [5]. Additionally,
DRI production is flexible; it is theoretically capable
of operating using pure H2 as a single reducing agent,
e↵ectively accomplishing near-zero CO2 emissions. Un-
fortunately, one major hurdle is the production of clean
H2. The optimal method would be green H2, but it
will take time before it becomes cost competitive. As
such, the general plan to achieving net zero in the iron
and steel industry is to shift away from carbon-intensive
blast furnaces, towards natural gas-based DRI, before
transitioning to green hydrogen-based DRI [6].

The recent conflict in Ukraine has led Russia, the
biggest producer of natural gas, to interrupt supply
chains and create a natural gas shortage. Uncertainty
with supply lines has incited fear that severely disrupts
DRI operations, thus fuelling the search for hydrogen-
based DRI production [6]. The current leaders of DRI,
MIDREX, are pushing forward with a recently an-
nounced agreement with H2 Green Steel to produce
the world's first commercial 100% hydrogen-based DRI
plant [7]. Other companies such as Calix Ltd. are also
looking to develop their own methods for hydrogen-
based DRI.

Calix Ltd. has partnered with the Imperial College
London Fennell Group to advance research for their
patented Zero Emissions Steel TechnologY (ZESTY)
reactor. It has recently received funds to conduct a de-
sign study for a ZESTY-iron demonstration plant ca-
pable of producing 30,000 tonnes of iron per annum [8].
This is a major step forward for Calix Ltd. since it will
provide proof of concept for their hydrogen-based DRI
counter-current reactor. The objective of this study
was to establish the design basis for the ZESTY-iron re-
actor directly applicable to their demonstration plant.
Key design parameters a↵ecting the reduction process
were investigated through simulations in Aspen Plus,
and overall conclusions can be used to take this project
forward into the demonstration phase.

2 Background

Previous partnerships between the Fennell Group and
Calix Ltd. focused on a thermodynamic feasibility
study on Aspen Plus with limited kinetic modelling of
the ZESTY-iron reactor on MATLAB. The thermody-
namic investigations concluded that a counter-current
moving bed reactor operating between 600-800 �C was
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feasible [9]. However, preliminary kinetic studies con-
ducted by Tkachenko found that these temperatures
would result in unreasonable residence times, exceed-
ing ZESTY's 10-50 m height guidelines. This study
concluded that temperatures in the range of 950-1050
�C would be required to achieve a reduction degree of
hematite, Xhem, of 90% [10]. From a feasibility stand-
point, nickel alloys used for construction of Calix's re-
actors have an operational upper temperature limit of
1000 �C [11]. To follow on from conclusions drawn by
Tkachenko, it was decided that a temperature range be-
tween 900-1000 �C would be explored for this project.
Thus, a novel reactor design for these temperatures
must be proposed.

Outside of past work conducted by the Fennell
group in collaboration with Calix Ltd., there is an ex-
haustive list of kinetic studies on DRI of iron oxides, as
reviewed by Spreitzer [12]. These past research stud-
ies explore a diverse range of reaction conditions and
reducing agents. However, for the purposes of this in-
vestigation, only the reduction of hematite into iron
using H2 was considered. This section details the re-
duction reactions and kinetic expressions pertinent to
this research paper.

2.1 DRI from Hematite

DRI from hematite (Fe2O3) by H2 is not a single-step
reaction. Instead, at temperatures higher than 570 �C,
there is a stepwise reduction pathway from hematite
to magnetite (Fe3O4), followed by a further reduc-
tion to wustite (Fe(1–x)O), before iron (Fe) is formed.
Note that (1-x) in wustite's chemical formula represents
atomic vacancies within the lattice [12]. Table 1 show-
cases the full stepwise pathway with the overall reduc-
tion reaction.

Table 1. Reduction pathway of hematite to iron, including

the overall reaction (reaction 4) [12], and the corresponding en-

thalpies of reaction at 800 �C [13].

Number Reaction Equation �rH900�C
(kJ/mol)

1 3Fe2O3 + H2 ! 2Fe3O4 +
H2O

-6.02

2 (1�x)Fe3O4+(1�4x)H2 !
3Fe(1�x)O + (1� 4x)H2O

46.64

3 Fe(1�x)O+H2 ! (1�x)Fe+
H2O

16.41

4 Fe2O3(s) + 3H2(g) !
2Fe(s) + 3H2O(g)

57.03

2.2 Kinetic Rate Law

It was important to first identify the main rate-
controlling process for the reduction of hematite at tem-
peratures between 900-1000 �C. Turkdogan conducted
kinetic studies for hematite particle sizes of 800µm

at 0.96 atm under pure H2 conditions. Temperatures
tested ranged from 300 �C to 1100 �C. It was concluded
that above 900 �C the reaction is only limited by intrin-
sic kinetics up to Xhem of 90%, provided particle sizes
remain smaller than 800µm [14]. Above this size, dif-
fusional limitations hinder the reduction reaction.

The kinetic rate equation given by Eq.1 retrieved
from Chen accounts for the overall reaction under ki-
netic limiting conditions [15]. This expression has been
reformulated in terms of the rate of hematite reduction,
rhem, to adapt it for use within Aspen Plus, and was
the governing rate law for modelling within this study.

rhem = �dChem

dt
= koe

�Ea
RT

✓
pH2 �

pH2O

Keq

◆
Chem, (1)

where R is the ideal gas constant; T represents tem-
perature in Kelvin; Chem is the molar concentration of
hematite in the solid phase; ko is a pre-exponential term
and Ea is the activation energy, both empirically deter-
mined to equal 4.41⇥107 s�1 atm�1 and 214 kJ mol�1

respectively; pH2 and pH2O are the partial pressure of
hydrogen and water in atm; and Keq is the equilibrium
constant for reaction 3.

Keq is included in the kinetic rate equation since
the reduction of wustite with hydrogen has been exper-
imentally found to be heavily influenced by thermody-
namics [15]. The temperature dependence relationship
for Keq was obtained from [16],

Keq =
pH2O

pH2

= exp

✓
�2070

T
+ 1.3

◆
. (2)

Kinetic experiments conducted by Chen were per-
formed at 0.85 atm, 1150-1350 �C, with mean particle
sizes of 21µm. It is understood that the work through-
out this project extrapolates the use of this kinetic rate
law at di↵erent conditions. However, more adequate re-
action kinetic models were not found in literature and
specific experimentation exploring the accuracy of this
extrapolation must be conducted in future.

3 Methodology

3.1 Aspen Plus Model

Aspen Plus was selected for process simulation given
its ability to e↵ectively model solids–gas reactions in a
flowsheeting environment with useful built-in unit oper-
ations. However, Aspen Plus has two main limitations
for modelling the ZESTY reactor: 1. di�culty with
modelling counter-current reactors, 2. long simulations
run-times for complex models with many reactor blocks
and sensitivity tests. These limitations were considered
whilst developing the ZESTY reactor model.

The conceptual design of the ZESTY reactor con-
sists of 3 preheating stages and 12 heating stages op-
erating isobarically with the same residence time each.
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Aspen Plus' inability to model a counter-current reactor
was overcome by utilising Continuous Stirred Tank Re-
actor (CSTR) blocks to approximate each of the stages.
Gas and solid products from each CSTR were then
interchangedly fed in a counter-current arrangement.
Fresh hematite and gas feeds were input into stage 1
and 15 respectively. To overcome the second Aspen lim-
itation of long run-times, a simplified 7-CSTR model
was first used to run sensitivity tests before optimal
configurations were simulated on a complete 15-CSTR
model.

Figure 1. Simplified Aspen Plus ZESTY reactor model.

For the 7-CSTR model, CSTRs 1-3 represent the
3 preheating stages while CSTRs 4-7 each represent 3
stages of the reactor grouped together. The decision for
this design stems from the understanding that tempera-
ture is an important variable for the reduction reaction.
During the preheating stages, heat is exchanged from
the hot gases rising up from stage 4 and the cooler solid
inlet entering at stage 1. Having an adequate tempera-
ture profile across these stages is therefore key for a bet-
ter representation of the actual system. Meanwhile, the
heated stages are set to operate approximately isother-
mally so temperature di↵erences are less.

To implement the governing kinetic rate law for this
project given by Eq.1, the custom rate kinetics feature
within Aspen was used. This was the case since the
rate expression by Chen did not fit under the stan-
dard rate kinetic formats available in Aspen Plus. An-
other aspect of customisation was required to input cer-
tain physical properties of hematite. The component
databases in Aspen Plus provided incomplete molar
volume and vapour pressure relationships. Therefore,
these were manually hardcoded so modelling calcula-
tions computed a negligible solid vapour pressure and
a constant hematite density of 5100 kg m�3 [17].

To assess the accuracy of the modelling conducted,
the 7-CSTR model was tested against the experimental
data supplied by Chen [15]. The experimental Xhem

was plotted against the values obtained from Aspen
Plus simulations. Overall an R2 value of 0.995 was ob-
served for the regressed linear relationship, validating
the use of this model throughout this study.

3.2 Feasibility Test Approach

Feasibility tests were conducted with the aim of identi-
fying the e↵ect di↵erent key process operational para-
maters had on the design of the ZESTY-reactor. The
main paramaters studied during this investigation were
the temperature profile across the heated stages, tem-
perature of the solid inlet, Tsolid,in, pressure, PT , and
H2 excess ratio. The H2 excess ratio refers to the num-
ber of multiples H2 input flowrate is from the stoichio-
metric minimum. The impact of the studied parameters
was investigated through two main perspectives: from
a kinetic perspective, with aims of minimising reaction
residence time, and energy requirements; and from a
physical design perspective, sizing reactors that com-
plied with Calix's specifications.

3.2.1 Target Parameters

Target parameters for the feasibility tests were an out-
put production of 30,000 tonnes of iron per operating
year (an operating year taken to be 8000 h/yr), 90%
overall reduction of input hematite, a reactor size as-
pect ratio of at least 6 with a reactor height between
10–50 m, and minimal operational energy requirements.
These targets were extracted from the ZESTY patent,
past research conducted by Tkachenko and well-known
reactor engineering guidelines from Douglas [8], [10],
[18]. For modelling in Aspen Plus, the overall con-
version goal was set throgh design specification blocks,
whilst an input hematite feed was calculated to achieve
the constant desired throughput.

3.2.2 Identification of Kinetic Relationships

To establish the e↵ect the aforementioned parame-
ters have on residence time and system heat duty, ki-
netic sensitivity tests were conducted using the 7-CSTR
model. Performing sensitivity tests which vary all four
operational parameters simultaneously was computa-
tionally expensive. Hence, a methodical approach was
required to progressively build the understanding of the
e↵ect each operational parameter has. For this purpose,
each of these were varied independently whilst holding
all other constant. As a starting point, preliminary val-
ues for operational parameters were extracted from past
studies from Ching and Tkachenko [9], [10]. Sensitivity
tests were conducted on one operational parameter at a
time and kinetically optimal values that minimised res-
idence time and energy were recycled back into the next
testing. Overall conclusions for the four operational pa-
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rameters were obtained and forwarded onto the sizing
of feasible reactors.

3.2.3 Reactor Sizing – Simplifying Assumptions

Reactor sizing was split into two main parts. The first
part was focused on a rapid assessment of the reactor
system as a whole using the 7-CSTR model. This al-
lowed for a quick comparison between di↵erent reactor
designs and analysis of the trends each operational pa-
rameter has on reactor height and aspect ratio. For
this initial assessment a few key assumptions were con-
sidered: 1. reactor is isothermal across all stages, 2.
physical property parameters are constant at inlet con-
ditions – pure hematite and pure H2 feeds. This prelim-
inary screening test aided in identifying which reactors
were likely to be operationally feasible and would re-
quire more comprehensive sizing.

The second part of this reactor sizing exercise
utilises the 15-CSTR model and aims to provide a more
accurate sizing calculation for reactor configurations of
interest. Through modelling of individual stages, As-
pen Plus was better able to map temperature profiles
and changing physical composition properties at each
stage for the ongoing reaction. These values were ex-
tracted and used for the sizing of each stage, where the
overall reactor height was calculated through the sum-
mation of all individual stage heights. Note that the
diameter of the reactor, dr, was held constant through-
out. The physical properties of interest include particle
density, ⇢p, fluid density, ⇢f , and fluid viscosity, µf .

Fundamental concepts and calculations for both re-
actor sizing sections were identical and are explained
through a general approach in Section 3.2.4. Given the
inaccuracy of modelling the counter current reactor on
Aspen Plus, residence times were obtained through sim-
ulations and reactor dimensions were then calculated on
a separate Excel document.

3.2.4 Reactor Sizing – Calculations

Key variables that were considered for the sizing of re-
actors are particle diameter, dp, residence time, ⌧ , and
apparent terminal falling velocity of the solids, ut. The
particle diameter was held constant at a conservative
estimate based on explanations regarding particle size
limitations in Section 4.2.1. Residence time values were
obtained through Aspen Plus simulations, while ut was
derived from Stokes' law,

ut =
1

18

d2pg (⇢p � ⇢f )

µf
. (3)

Estimating ut requires several assumptions to be con-
sidered. The first was that the flow regime in the reac-
tor was laminar. For falling spherical smooth solids,
particle Reynolds number, Rep , must be less than
0.4 [19]. The second assumption was that constant
pressure, temperature and velocity were maintained

throughout the reactor/stage. Lastly, it was assumed
that most particles would drop along the centreline of
the reactor and thus peak gas velocity, ûg, should be
considered in place of mean gas velocity, ūg [15].

When calculating peak gas velocity, the ideal gas
law was employed. This is reasonably accurate for mod-
elling of high temperature gases at low pressures like in
this case. Volumetric gas flowrate, V̇g, is given by Eq.4,

V̇g =
ṅT,gasRT

PT
. (4)

Following reaction stoichiometry of reaction 4, the mo-
lar ratio of gaseous reactants is equal to gaseous prod-
ucts. Hence, total molar gas flowrate, ṅT,gas, was con-
stant throughout the reaction and calculated using re-
actor inlet conditions as given by Eq.5,

ṅT,gas = ṅH2O,o + 3EH2 ṅhem,oXhem, (5)

where ṅH2O,o, is the inlet molar flowrate of water, EH2

is the specified excess hydrogen ratio, ṅhem,o is the in-
let molar flowrate of hematite, and Xhem is the overall
reduction degree of hematite. Considering ZESTY is a
tubular reactor and using Eq.4 and 5, an expression for
the peak gas velocity was derived. Note that flow was
taken to be fully developed so ûg is twice ūg.

ûg = �8 (ṅH2O,o + 3EH2 ṅhem,oXhem)

PT⇡d2r
RT. (6)

Since ⌧ measures the total residence time for solid par-
ticles, particle falling velocity, up, was employed to cal-
culate the reactor height, l, shown in Eq.8,

up = ut + ûg, (7)

l = up⌧. (8)

Overall reactor diameter, dr, was varied and reac-
tor/stage heights were computed. Note that in Section
3.2.1, one target parameter is to design tubular reac-
tors with an aspect ratio of at least 6. Thus, a second
reactor height was calculated by using dr and an aspect
ratio of 6. The Excel Solver function was then utilised
to minimise the squared error (SE) between these two
heights. For converging scenarios, the reactor configu-
ration was deemed feasible, however, if no convergence
was reached, it was deemed infeasible. This analysis
guided which reactor configurations should be brought
forward to be simulated on the 15-CSTR model for a
more comprehensive reactor sizing.

3.3 Energy Profile

From an e�ciency and sustainability point of view, it
was important to consider limiting the operating en-
ergy input into the reactor system. The previous study
conducted by Ching investigated the e↵ect that di↵er-
ent fuelling profiles would have on reactor performance
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using a thermodynamic basis [9]. This study tested the
three energy profiles proposed in Ching's report and
presents a new profile that considers the kinetic rela-
tionships observed over the course of this research. The
four energy profiles are presented in Figure 2.

The methodology for this section is similar to Sec-
tion 3.2.2. All energy profile tests were first performed
on the 7-CSTR model to identify the optimal profile for
further reactor sizing using the 15-CSTR model. This
two-step process was implemented due to Aspen Plus
limitations stated in Section 3.1.

Figure 2. Energy profiles tested in the 7-CSTR model.

4 Results and Discussion

4.1 Kinetic Feasibility Analysis

4.1.1 Temperature Profile

The first step to developing a kinetically optimal reac-
tor was to select a temperature profile for the heated
stages. In Section 2.1, it was discussed that this model
simplifies the step-wise pathway into a single-step en-
dothermic reaction. Having higher temperatures across
the reactor was therefore predicted to result in faster
kinetics as well as favouring thermodynamics of the
model. To validate this, a sensitivity analysis for
various temperature combinations across the di↵erent
heated stages were run on the 7-CSTR model with ini-
tial operational parameters fixed at a Tsolid,in of 400
�C, pressure of 1 atm, H2 excess ratio of 3.5 and no
water (H2O) input at the inlet. These parameters were
taken from past studies conducted for Calix Ltd. by
Ching and Tkachenko [9], [10]. Temperatures of heated
CSTRs were varied among 900 �C, 950 �C and 1000
�C.

It was found that residence times decreased when
average temperature of the heated stages were in-
creased; confirming the initial hypothesis that higher
temperatures led to lower ⌧ . There were slight di↵er-
ences between the residence times of temperature pro-
files with similar average temperatures but a di↵ering
energy distribution. This hints at the importance of
testing various energy profiles, studied in Section 4.3.

Ultimately, the best performing temperature profile was
1000 �C isothermal operation, which had a ⌧ of 81.1s.
Thus, this profile was used for further kinetic feasibility
studies.

4.1.2 Solid Inlet Temperature

This section studies the e↵ect that Tsolid,in has on ⌧
and the heat duty required to heat the solid feed to the
specified temperature of stage 4, Qsolid. The latter is
the sum of two di↵erent contributions: 1. the heat duty
required to preheat the solid inlet to specified Tsolid,in,
2. additional energy supplied to stage 4 to maintain
its set temperature. For this sensitivity analysis, all
heated reactors were held isothermally at 1000 �C, at
a pressure of 1 atm, H2 excess ratio of 3.5, and no H2O
input.

Figure 3. Variation of residence time, ⌧ , and total solid heating
duty, Qsolid, for di↵erent hematite feed temperatures, Tsolid,in,
at 1 atm, 3.5 H2 excess ratio, with no water at the inlet, and 1000
�C isothermal operation of the heated stages.

Figure 3 showcases how ⌧ and Qsolid change as
Tsolid,in is varied between 400-700 �C at 100 �C in-
tervals. For higher inlet solid temperatures, residence
times were seen to slightly decrease. This follows since
higher Tsolid,in results in higher preheating stage tem-
peratures and thus a mild increase in reduction rates.
However, higher inlet solid temperatures led to a sig-
nificant increase in the total solid heating duty. This
is because at high Tsolid,in there is a small tempera-
ture gradient between the exiting gas stream and the
incoming solids, leading to minimal heat transfer be-
tween phases. Therefore, heat is lost through the gas
phase leaving the reactor and more energy has to be
supplied into the system. Meanwhile, lower solid inlet
temperatures had a larger temperature gradient and
heat losses were reduced.

Given the conflicting trends between optimising re-
actor residence times and solid heating duty, all Tsolid,in

tested were kept under consideration.

4.1.3 Pressure

From simulations, a directly proportional relationship
between the residence time and the inverse of pressure
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was observed, depicted in Figure 4. This trend follows
dependencies shown in Eq.9 extracted from Chen's ki-
netic rate law, where there exists a directly proportional
dependency between rhem and PT ,

rhem = �dChem

dt
_ PT

✓
yH2 �

yH2O

Keq

◆
. (9)

The rate of reaction is inversely proportional to the
residence time for a constant overall reduction degree.
Therefore, by inference, ⌧ is inversely proportional to
the pressure of the system.

Figure 4. Resulting residence time for di↵erent pressures and
solid inlet temperatures with a dry H2 inlet of 3.5 excess ratio
and 1000 �C isothermal operation of heated reactor stages.

Figure 4 also highlights the relative impact pres-
sure has on ⌧ compared to Tsolid,in. It is very clear
that higher pressures would optimise reaction kinetics
and minimise ⌧ much more than by increasing solid
inlet temperatures. However, in Section 2.2 it was dis-
cussed that Chen's kinetic rate equation is based on
experiments conducted at near atmospheric pressures.
Further experimentation must be conducted to reaf-
firm this relationship at higher pressures. Thus, at this
point, it is preferrable not to stray too far away from
Eq.1 conditions and to limit pressure below 3 atm. Ad-
ditionally, given the early stages of this reactor design,
it would be wise to limit the capital expenditure and
operational costs. Gas compressors are CAPEX and
OPEX intensive which makes high operating pressures
unattractive [18]. The target sources of hydrogen for
this reactor are blue or green hydrogen, which can be
supplied between 1–3 atm. This further reinforces the
idea of keeping pressures below 3 atm for future stages.

4.1.4 H2 Excess Ratio

The partial pressure of hydrogen has a first order depen-
dency towards the reaction kinetics as shown in Eq.1.
Thus, it is important to understand the e↵ect H2 ex-
cess ratio has on ⌧ for constant pressure, as it is varied
between 3 and 5 times the stoichiometric minimum.

For the sake of brevity, only 1 atm pressure data
points were included in Figure 5. This graph conveys
two main trends. The first shows that ⌧ decreases by
22% on average for an increasing H2 excess ratio be-
tween 3.5-5, measured over all Tsolid,in. The second
is that as Tsolid,in values are increased, similar to that
seen in Figure 4, there is a small mean decrease of 5.1%
in ⌧ . Based on these trends in isolation, it might ap-
pear that designing a system with high excess reactant
is optimal. However, no consideration has been made
towards energy feasibility, where larger gas flowrates re-
quire a higher heating duty. Another disadvantage of
higher H2 excess ratios is that equipment, such as re-
actors or separators when designing a recycle system,
are much larger in size [18]. These factors increase the
capital and operating expenditure and would heavily
a↵ect the economic feasibility of this process. Thus, it
is better at this stage to design for low H2 excess ratios.

Figure 5. Variation of residence times for di↵erent H2 excess
ratios and Tsolid,in at 1 atm, dry inlet gas feed, and 1000 �C
isothermal reactor operation for the heated stages.

In Figure 5, there are two missing result points at H2

excess ratios of 3. This is because the simulation could
not reach the target reduction degree and resulted in
errors when run at Tsolid,in of less than 600 �C. Upon
further investigation, this phenomenon was seen to oc-
cur because of thermodynamics, where Eq.2 depicts the
influence H2O has on the system. At lower tempera-
tures Keq is less, and therefore there is a smaller equi-
librium concentration of water for constant pressure.
This is validated by simulation errors that occurred in
Stage 1; where temperature was at its lowest and water
concentration highest. These limitations aid in select-
ing feasible H2 excess ratios for corresponding Tsolid,in.
Note that only discrete data points for H2 excess ratios
were tested during this analysis.

4.1.5 Water Inlet Adjustment

The error warnings in Section 4.1.4 indicate that water
content limitations will be a huge factor when designing
a recycle stream in future iterations. Although a full
separation and recycle stream is outside the scope of
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this project, changing inlet proportions of H2O would
a↵ect feasibility and must be considered for the pur-
poses of designing a robust reactor.

Using Stage 1 temperature values, TS1, from sim-
ulation runs in Section 4.1.4, Keq for various Tsolid,in

and H2 excess ratios were calculated. Given that a bi-
nary gas phase mixture of H2 and H2O was considered,
the following equation was derived which calculates the
thermodynamic maximum water concentration at the
outlet of stage 1, yH2O,eq,

yH2O,eq = 1� 1/Keq

(1 + 1/Keq)
. (10)

Since Xhem and target iron throughput were both set
parameters, the total molar flowrate of reacted H2 and
produced H2O were constant between simulation runs.
Therefore, the maximum inlet molar fraction of water,
ṅH2O,max, was computed using Eq.11,

ṅH2O,max = ṅT,gasyH2O,eq � 3ṅhem,oXhem. (11)

Figure 6 plots the relationship between H2 excess ra-
tios and yH2O,max at varying Tsolid,in, following Eq.11.
For higher H2 excess ratios and Tsolid,in, the thermo-
dynamic limiting temperature at stage 1 was increased.
Overall, having a higher TS1 meant that higher yH2O,eq

and higher inlet water flowrates were feasible. Addi-
tionally, higher H2 excess ratios further resulted in an
increased hydrogen concentration, for which more water
at the inlet was required to achieve the same equilib-
rium concentration.

Figure 6. Maximum water inlet molar fraction, yH2O,max, be-
fore thermodynamic equilibrium is reached at the gas outlet of
stage 1, for varying H2 excess ratios and Tsolid,in.

The red line in Figure 6 indicates a change in input
H2O molar fraction from 0% in previous simulations to
2%. This is a conservative value and encourages a more
robust design as typical separation processes recover up
to 99% of H2 from water mixed gas streams [20]. The
resulting e↵ect of this change on overall residence time
was negligible. Note that Tsolid,in of 600 �C at a H2 ex-
cess ratio of 3 fell beneath the inlet water molar fraction

and was thus excluded from further kinetic feasibility
studies. All other configurations presented in Figure 6
were brought forward for reactor sizing.

4.2 Reactor Sizing

4.2.1 Particle Size Selection

Previous sections optimised reaction operational pa-
rameters by minimising ⌧ and energy requirements. To
continue with reactor sizing, an additional parameter
must be explored – particle size denoted by dp. Recall
from Section 2 that dp had been mentioned in the con-
text of rate control limitations and that dp smaller than
800µm at temperatures above 900 �C are kinetically
rate controlled. This size limitation is what has enabled
this investigation to progress using the kinetic equation
by Chen. However, there is another e↵ect that changing
dp has on reactor sizing, namely the gas flow regime. In
Section 3.2.4, creeping flow for terminal falling velocity
was assumed. Changes to dp cause an e↵ect in ut of
the solid particles, which impacts the gas flow regime
inside the reactor. Particle sizes that are too large in-
validate laminar flow assumptions, whilst sizes that are
too small cause entrainment and elutriation up the re-
actor column. Hence, a conservative dp of 110µm was
selected.

4.2.2 Initial Reactor Sizing (7-CSTR)

The kinetic feasibility tests identified that pressure and
H2 excess ratios have huge influence on ⌧ . By extension,
it was hypothesized that they would have the largest
impact on reactor dimensions as well. To test this idea,
reactors were sized using the methodology stated in Sec-
tion 3.2.3 for varying Tsolid,in, pressures and H2 excess
ratios at 1000 �C isothermal operation of the heated
stages. Figure 7 showcases if the di↵erent designs met
ZESTY-iron reactor target parameters of 10-50 m in
height and an aspect ratio of 6.

Reactor sizes were seen to become operationally in-
feasible at high pressures and high H2 excess ratios. An
increase in pressure resulted in two main consequences:
1. large decrease in ⌧ as seen in Section 4.1.3, 2. de-
crease in the volumetric gas flowrate within the reac-
tor. These e↵ects led to a drastic reduction in reactor
volume making it impossible to fit the aspect ratio of
a tubular reactor within Calix's height limits. Mean-
while, an increase of H2 excess ratio led to a decrease in
⌧ and an increase in gaseous volumetric flowrate. The
former shortened the height of the reactor whilst the
latter increased reactor diameters. The combination of
these factors has a counterproductive e↵ect towards the
aspect ratio. Therefore, lower pressure conditions and
minimal H2 excess ratios were seen to be favourable.
All feasible reactor (indicated in green) where brought
forward for comprehensive sizing analysis.
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Figure 7. Initial plots representing reactor sizing feasibility at varying pressures and H2 excess ratios for Tsolid,in of a) 400 �C, b) 500
�C, c) 600 �C, and d) 700 �C. The gas feed was set with a water molar fraction of 2% and the heated stages throughout the reactor
were operated at 1000 �C isothermal. Feasible reactors are shown in green. Closely converging reactors with an SE of less than 50 m2

(refer to section 3.2.4) are shown in amber. Infeasible reactors are shown in red.

4.2.3 Comprehensive Reactor Sizing (15-CSTR)

All models concluded in Section 4.2.2 were simulated
on the 15-CSTR model to identify the best-performing
reactor. The methodology used is outlined in Section
3.2.3. Upon inspection, it was found that higher H2

excess ratios resulted in larger reactor dimensions and
higher heat duty requirements. As such, Tsolid,in reac-
tor configurations not running at their minimum re-
spective H2 excess ratios were discarded. Secondly,
from Section 4.1.5, reactors with Tsolid,in of 500 �C
and 600 �C do not allow for smaller H2 excess ratios
compared to 400 �C. This resulted in reactors that had
negligible size di↵erences from the 400 �C Tsolid,in re-
actor but with higher heat duties. These reactors were
also removed from consideration. Lastly, the 700 �C
Tsolid,in reactors operating above atmospheric pressure
proved to be infeasible when run on the 15-CSTR sim-
ulation. This is most likely due to a slight decrease in ⌧
with respect to the 7-CSTR model, shifting them from
the green to orange zone. Thus, the reactor sizes of the
two remaining models are presented in Table 2.

Hypothetically, if ⌧ were to be increased by adjust-
ing other operational parameters like temperature of
the heated reactors, then higher pressure configurations
would become feasible. If this were the case, these de-
signs could possibly have smaller dimensions than re-
actors operated at 1 atm. This idea forms the basis of
the investigations conducted in Section 4.3.

Table 2. Reactor sizes and total system energy duties for the

two kinetically optimal reactor configuration.

Tsolid,in

(�C)
PT (atm)

H2 Excess
Ratio (-)

dr(m) l(m)
QTOT

(MW)

700 1 3.0 5.99 35.96 3.94

400 1 3.5 7.04 42.24 3.90

It can be concluded that the 700 �C Tsolid,in reac-
tor design resulted in the smallest reactor dimensions
with a minimal increase in heat duty. This forecasts
a lower capital expenditure cost with a negligible dif-
ference in operation cost. Overall, these two reactors

were deemed the most kinetically optimal of all tested
reactors based on energy, size, and predicted cost.

Note that the heat duties portrayed in Table 2 have
inaccuracies due to the assumption that H2 inlet is sup-
plied at 25 �C. In future models, once a proper sepa-
ration and recycle system is set up, this temperature is
likely to increase and reduce the total heat duties for
both reactors.

4.3 Energy Profile Analysis

4.3.1 Testing Di↵erent Energy Profiles

This section builds upon the idea of how performance
of a reactor can be enhanced that was first posited in
Section 4.2. The idea stems from the understanding
that ⌧ can neither be too low as to be infeasible due to
the reactor design's inability to meet an aspect ratio of
6, nor too high where reactor height would exceed 50
m. This balance between shifting operational parame-
ters to ensure ⌧ fits into this optimal range allows for
manipulation of rector performance (reactor size and
operational energy). Throughout the sizing study con-
ducted in Section 4.2, the impact pressure, H2 excess
ratio and Tsolid,in had on reactor sizing was explored.
The one factor that has not been expanded upon is the
energy profile across the heated reactors, which was set
in Section 4.1.1 to operate isothermally at 1000 �C.
This study attempted to reconfigure the energy profile
with the aim of increasing energy e�ciency whilst min-
imising reactor size compared to the two most feasible
reactors illustrated in Table 2.

As the basis of this investigation is to operate a
smaller and more energy e�cient reactor, a lower total
heat duty must be established. A value of 0.374 MW
was obtained by operating a 700 �C Tsolid,in reactor at
2 atm, with a H2 excess ratio of 3, isothermally at 970
�C. This overall quota was set and energy was redis-
tributed along the heated reactor stages in accordance
with the four heating profiles represented in Figure 2.
The results of this analysis are presented in Table 3,
where a lower ⌧ indicated better performance.
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Table 3. Average temperature of the heated stages, Tavg ,

and residence time, ⌧ , for the di↵erent energy profiles at 2 atm,

Tsolid,in of 700 �C and H2 excess ratio of 3 with a 2% water inlet.

Energy Profile Heated Stages Tavg (�C) ⌧ (s)

Decreasing 971.0 85.2

Constant 973.9 83.7

Increasing 977.4 79.8

Mountain 983.4 70.5

It can be seen that energy profiles with the highest
average temperatures across heated stages resulted in
lower ⌧ values. This can be attributed to the bulk of
the reaction taking place throughout the heated stages.
Hence, it is more e�cient to supply heating to the
middle-bottom stages of the reactor as this energy will
be used to further maximise the rate of reaction where it
is highest. The reactor configuration using a mountain
energy profile performed the best and was simulated on
the 15-CSTR model.

4.3.2 Reactor Performance

The energy distribution profile across the 15-CSTR
model replicated the mountain profile from the 7-CSTR
simulation in Section 4.3.1. It should be noted that en-
ergy fractions were all kept within a ±8% uncertainty,
whilst total energy requirement across the stages was
decreased by 5% to not exceed the 1000 �C threshold.

Figure 8. Final proposed reactor's a) height of stages, b) reduc-
tion degree and c) temperature profile, for each of the 15 stages.
Operating conditions are 2 atm, Tsolid,in of 700 �C, 2% water
inlet, H2 excess ratio of 3, and a mountain-shaped energy profile.

Figure 8a showcases the height of each stage within
the 15-stage reactor. Noting that the viscosity of H2O
is higher than H2 and that density of iron is larger than
hematite, the parabolic-like shape that reactor stage
heights take on this figure provides interesting insight
into the changing physical properties across the reac-
tor. Figures 8b and c are strongly interlinked towards

the sizing of the reactor, as outlined during the height
calculations in Section 3.2.4.

At the bottom stages near the gas inlet (stage 15),
most of the conversion of hematite has taken place.
Therefore, maximum iron and minimal H2O concen-
trations are found, leading to longer stages. Travelling
up the reactor, the rates of reduction peak at stage 8,
where maximum production of H2O takes place. As
more water is generated, the viscosity of the gas pro-
gressively increases. This leads to a reduction of ut and
up for the same ûg, following from Eq.3 and 7. By Eq.8,
stage heights decrease, reaching a minimum at stage
5. From here upwards, reduction rates of hematite are
minimal, thereby leading to negligible changes in H2O
concentration. However, in Figure 8c temperatures can
be seen to drop significantly. This decreases gas vis-
cosities resulting in a slight increase in stage heights.
Ultimately, the total reactor height was 26.66 m, with
a diameter of 4.44 m. This is a smaller reactor than
the ones highlighted in Table 2, thus predicting lower
capital expenditure.

When considering operational costs, heat duty for
the total system was measured at 3.80 MW, which is
less than those recorded in Table 2. Although this only
constitutes a minor decrease of 3.5%, it serves as a proof
of concept for the hypothesis posed at the start of the
energy analysis. The main contributor to total heat
duty was the inlet gas feed, accounting up to 64% of
the total energy requirement. Therefore, future e↵orts
to reduce energy usage should target the appropriate
design of a recycle separation system.

5 Conclusion

The integrated kinetic model for the DRI from hematite
simulated using Aspen Plus is integral for the advance-
ment of Calix's goals to establish a Basis of Design for
their ZESTY-iron demonstration plant. It has the po-
tential to act as the foundation from which future con-
ceptual designs of complementary subsystems can be
built. This model was used to successfully establish
a design basis for the ZESTY-iron reactor with target
outputs of 30,000 tonnes of iron per operational year
with a 90% reduction of pure hematite ore. The key op-
erating parameters of the proposed reactor are: 2 atm
pressure, 700 �C Tsolid,in, gaseous inputs at a H2 excess
ratio of 3 with 2% molar fraction of water, which uses
a mountain energy profile. This reactor configuration
was designed for a height of 26.66 m and a diameter of
4.44 m, with a total system heat duty of 3.80 MW.

During this study, a few key findings were made.
The first is that pressure and H2 excess ratio had the
biggest influence on reactor sizing. This is due to the
e↵ect these two operational parameters had on ⌧ as
they were varied. The second interesting finding was
that ⌧ has an optimum range. When ⌧ values were too
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low, the target aspect ratio of 6 for tubular reactors
could not be reached. Contrariwise, when values were
too high, tubular reactors would exceed Calix's height
guidelines of 10-50 m. This led to the final crucial find-
ing that a smaller and more energy e�cient reactor can
be designed by using lower temperature conditions at
elevated pressures. The resulting reactor has the po-
tential for improved performance and lower capital and
operational expenditures. This leaves room for future
research into di↵erent configurations of this reactor.

An additional tool that Calix Ltd. and the Fen-
nell Group can investigate could be automating the
sizing calculations of reactors for each simulation run.
This would enable them to conduct rigorous sensitiv-
ity tests with smaller step changes across influential
operational parameters, and feasibility would be au-
tonomously tested.
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Abstract Ionic liquids (ILs) are salts that are liquid at room temperature with unique and useful properties that have led 
to much research into their use. In this paper, we develop a model within SAFT-γ Mie for predicting the thermodynamic 
properties of ILs. Our model describes ILs as fully dissociated ions with explicit accounts for electrostatic interactions. 
The focus of our model is on 1,3-dialkylimidazolium tetrafluoroborates. We explored two representations of the ILs at 
varying degrees of coarse-graining: a sphere model and a group contribution model. Using experimental data for density, 
isobaric heat capacity, and speed of sound, we estimated parameters for imidazolium and tetrafluoroborate functional 
groups. During the construction of the model, we investigate the importance of accurately modelling the dielectric effect 
to the validity of the predicted results. We show that electrostatic interactions have significant effects on the calculated 
properties. We demonstrate the inadequacy of the sphere model and show that the group contribution model provides 
good predictions for a variety of imidazolium-based ILs. Thus, our work demonstrates the efficacy of using a group 
contribution method with dissociated ions interacting electrostatically to model ILs in SAFT-γ Mie. 
 

1.  Introduction 
Ionic liquids (ILs) have gained increasing interest due to 
their unique properties. ILs are broadly defined as salts 
that are liquid at low temperatures, often specified as 
having a melting point below room temperature (25˚C). 
This is made possible by a typical characteristic shared 
by most ILs: they contain a bulky asymmetric cation 
(Shukla and Mikkola, 2020) which inhibits Coulombic 
interactions, hindering crystallisation. 

One of the unique properties of ILs is their extremely 
low vapour pressure (Aschenbrenner et al, 2009). As 
such, losses due to evaporation are often considered 
negligible. This has led to numerous investigations of its 
use as a green solvent as they have minimal evaporative 
losses during use, hence reducing cost and any associated 
pollution risks. Separation and regeneration can be easily 
and sharply done saving on energy usage (Ramdin et al., 
2012). ILs are also conductive and electrochemically 
stable which has attracted interest in their potential use in 
batteries and electrochemistry (Ray and Saruhan, 2021). 

Many ILs are organic compounds which allows for a 
great deal of customisability and variety while 
maintaining the desirable properties of an IL. This variety 
extends to the ability to create highly selective ionic 
liquids for specific tasks, such as carbon capture (Ramdin 
et al., 2012). With the sheer amount of variety possible, 
it is of great interest to scientists to be able to predict 
these properties and phase behaviours, instead of 
performing countless tedious lab experiments. 

The basis of our research into modelling ILs lies in 
statistical association fluid theory (SAFT), an equation of 
state (EOS) rooted in statistical mechanics and 
perturbation theory. Its main benefit over other classes of 
EOS is its ability to model complex associating and non-
spherical fluids. SAFT comes in many forms, diverging 
after its first introduction in 1989 (Chapman et al. 1989). 
In this paper, we use SAFT-γ Mie, the state-of-the-art 
SAFT EOS by Papaioannou et al. (2014), a group 
contribution EOS capable of accurate and simultaneous 
modelling fluid-phase behaviours and second-order 
thermodynamic derivative properties.  
 Previous papers have investigated the modelling of 
ILs using different versions of SAFT, with different 

approaches. Ji et al. (2012) studied the modelling of 
imidazolium-based ILs with ePC-SAFT using varying 
strategies and determined that the best strategy for 
predicting CO2 solubility had dissociated ions and 
factored electrostatic interactions into the EOS. 
Similarly, Guzmań et al. (2015) modelled 1,3-
dialkylimidazolium tetrafluoroborates using SAFT-MSA 
and showed that explicit electrostatic interactions allow 
for the correct description of trends when increasing 
alkyl-chain length. More, recent papers by Ashrafmanso-
uri and Raeissi (2021), and Dong et al. (2022) modelled 
ILs as single non-dissociated neutral molecules with the 
group contribution methods of SAFT-γ; the former used 
the square well (SW) potential for dispersion interactions 
and the latter used the Mie potential. 
 The novelty of our research can be seen in using the 
electrostatic interactions studied in the earlier papers 
while also taking advantage of the group contribution 
methods and Mie potential that make up SAFT-γ Mie. 
Our research focuses on modelling pure-component 
systems and aims to test the ability of SAFT-γ Mie to 
describe and predict the properties of ILs. We compare a 
simple sphere model with a more complex but flexible 
group contribution model. Additionally, we investigate 
the effects of the dielectric constant on the model. 

2. Theory 
2.1 Molecular Model 
At its core, molecules in SAFT-γ Mie are composed of 
fused-spherical segments with dispersion interactions 
described by Mie potentials. Association interactions are 
described using specially defined sticky sites. Developed 
on the framework of a group contribution approach, 
chemically distinct functional groups (simply referred to 
as groups) are represented by one or more identical 
segments. These groups are put together to describe a 
molecule’s structure. An example of this is illustrated in 
Figure 3. For ionic/electrolyte systems, charged groups 
also interact through Coulomb potentials. 
2.2 Mie Potential 
The Mie potential Φ!"# is an intermolecular pair 
potential that describes the dispersion forces between two 
segments given by 
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to keep ' equal to the depth of the well regardless of the 

values of the exponents 0% and 0& used.  A graphical 
representation of the Mie potential is shown in Figure 1. 

 

Figure 1. Graphical representation of the Mie potential (12,6); ! =
100, %! = 6, and %" = 12. 

2.3 Coulomb Potential 
Analogous to the Mie potential, the Coulomb potential 

3*+,-+./ is a pair potential used to describe the 
Coulombic interactions between charged groups. The 

Coulomb potential between charged groups 4 and 5 is 
given by 

 
3*+,-+./(#01) =

606172

49:3;#01
	 (3) 

where 6 is the charge number, 7 is the elementary charge, 

:3 is the permittivity of free space, ; is the dielectric 

constant, and #01 is the separations of the charges. 

2.4 SAFT-γ Mie Equation of State 
The SAFT- γ Mie EOS can be thought of as being the 
sum of different contributions to the total Helmholtz free 

energy < of a fluid. In this work, the relevant 
contributions take the form of 

 ! = !!"#$% + !&'(' + !)*$!( + !+',( + !!'( (4) 

<"4#&- is the ideal contribution; it is the Helmholtz free 
energy if the molecules of the fluid are treated as an ideal 
gas with only translational, rotational and vibrational 

kinetic energy contributions. <.+5+ is the monomer 
contribution; it is the contribution due to the dispersion 
interactions (attraction and repulsion) between monomer 

segments described by the Mie potential. <67&"5 is the 
chain contribution; it is the change in free energy when 
monomer segments are brought together and are attached 
to each other to form chains/molecules. Note that 
association contributions (e.g., hydrogen bonds) are not 
considered in this work. 

The last two contributions correspond to electrostatic 
interactions unique to electrolyte systems, or in our case 

ILs. <8+%5 is the Born contribution; it represents the free 
energy of solvation based on the Born equation. It can be 
interpreted as the free energy change when a (Born) 

cavity of diameter +008+%5 is created in a dielectric 
medium, where then a charge group is inserted. 
Mathematically, it takes the simple form of 

 
<8+%5 = −

72

49:3
11 −

1
;
2>

?0602

+008+%5

9%&'

0:;
	 (5) 

where @"+5 denotes the list of charged species, ?< is the 

number of molecules of charged species A. <"+5 is the ion 

contribution, sometimes referred to as <!=>; it describes 

the contribution due to Coulombic interactions between 
charged groups through the Mean Spherical 
Approximation (MSA) method. 

For a detailed account of how each contribution is 
calculated and the theory behind them, refer to the works 
of Papaioannou et al. (2014), Schreckenberg et al. 
(2014), and Haslam et al. (2020). 

Simply put, the fluid (without association) can be 

described by nine types of parameters: B∗, C, +, ', 0%, 0&, 
;, 6, +8+%5; where B∗ is the number of identical segments 

that make up a group to imitate non-sphericity, and C is 
the shape factor which describes how much a group 
contributes to the overall molecule. Although the 
subscripts are omitted above for generality, it is 
important to remember that many individual parameters 
make up each parameter type to describe each and every 
group and/or the interactions between them.  

Parameters in SAFT-γ Mie can be classified into two 
types – like and unlike. Like parameters characterise the 
interactions between groups of the same kind (e.g., CH2 

with CH2) denoted by subscript 44, while unlike 
parameters characterise the interactions between groups 
of a different kind (e.g., CH2 with CH3) denoted by 

subscript 45. There are also parameters that describe the 
group itself denoted by subscript 4, which is usually 
considered to fall under the category of like group 
parameter. 

With the parameters specified, we end up with an 
expression for the Helmholtz free energy as a function of 

the state variables temperature D, volume E and 

composition vector F, < = <(D, E, F) 
2.5 Thermodynamic Properties 
After arriving at an expression for the Helmholtz free 
energy of the fluid, thermodynamic properties can be 
calculated using standard thermodynamic relations. In 
this study, we focus on 3 properties: density, isobaric heat 
capacity and speed of sound. Density is determined using 
the following equations: 

 H = −1	
I<
IE
	2
@,B

 (6) 

 J =
KC
E

 (7) 

 KC =>
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?D
KC,<	

<
 (8) 
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where H is pressure, ?< is the number of molecules of 

component A, J is mass density, KC is the total mass of 

the fluid, KC,< is the molar mass of component A, and ?D 

is the Avogadro Constant. Isobaric heat capacity is 

calculated as follows: 

 &F = −DL	I
2<
ID2	MF,B

 (9) 

 
&G = &F − D

*	IHID	,F,B
2

*	IHIE	,@,B
 (10) 

where &F is the isochoric heat capacity, and &G is the 

isobaric heat capacity. Lastly, the speed of sound is 

calculated using: 

 
N = OE

2

KC

&G
&F
1	IHIE	2@,B

	 (11) 

where N is the speed of sound. 

3. Method 
3.1 Molecular Representation 
The ILs are modelled as fully dissociated ions with 

explicit electrostatic interactions. Previous works 

(Guzmań et al., 2015; Ji et al., 2012) have indicated that 

this approach provides the most robustness and 

representability. Moreover, without having seen any 

evidence of that, one can still argue that this is the most 

natural and intuitive way of representing ILs owing to the 

fact that in reality they do exist as free-moving 

dissociated ions in the liquid phase (Lee et al., 2015), and 

by being charged, they are subjected to electrostatic 

interactions.  

 In this paper, we consider two representations of the 

ILs at different degrees of coarse-graining: the simple 

sphere model and the group contribution model. 

Firstly, in the simple sphere model, the cation 1-ethyl-

3-methylimidazolium [EMIM] and anion tetrafluoro-

borate [BF4] are both modelled as individual spheres as 

illustrated in Figure 2. In other words, they are 

represented by only one group each. 

 

Figure 2. Pictorial representation of the 1-ethyl-3-methylimidazolium 
[EMIM] cation (green) and tetrafluoroborate [BF4] anion (blue) in the 
simple sphere model. 

In the group contribution model, the cation is broken 

down into smaller groups as illustrated in Figure 3; 

[EMIM] is split into two methyl groups (CH3), one 

methylene group (CH2) and one imidazolium group (IM). 

By singling out IM, the same set of parameters can be 

applied to other imidazolium-containing cations in a 

predictive manner. [BF4] is still modelled as a sphere 

(one BF4 group) since it has a symmetric tetrahedral 

shape which closely resembles a sphere.  

 

Figure 3. Pictorial representation of the 1-ethyl-3-methylimidazolium 
[EMIM] cation and tetrafluoroborate [BF4] anion in the group 
contribution model. The different colours indicate different functional 
groups: methyl group CH3 (yellow), methylene group CH2 (grey), 
tetrafluoroborate group BF4 (blue), and imidazolium group IM (green). 
The green dashed circle encompasses the IM group made out of five 
identical segments. 

3.2 Ideal Gas Heat Capacity 
The ideal contribution <"4#&- is specified using a 

temperature-dependent correlation for the ideal gas 

isobaric heat capacities. This is done using the Joback 

method (Joback, 1984) – a group contribution method – 

with parameters from the work of Ge et al. (2008). 

3.3 Dielectric Constant and Born Cavity Diameter 
The dielectric constant (or relative permittivity) D is used 

in the calculation of <8+%5 and <"+5 as a primitive 

approach to model electrostatic interactions. 

Experimental data for D for ILs are hard to come by, and 

when they do there are discrepancies from source to 

source. For the sake of consistency, we decided to use an 

average D of 15 for all ILs in this study. 

 In the SAFT-γ Mie code used (see Section 3.6), D is 

expressed by an empirical model used by Schreckenberg 

et al. (2014) which takes the following form: 

 ; = 1 + JHQF 1	
Q@
D − 12 (12) 

where JH is the molar density of the IL, and QF and Q@ 

are component specific parameters that represents the 

density and temperature dependence of D respectively. In 

our model, D is approximated to 15 by taking Q@ as zero 

and choosing a QF value that would give a D of 15 at 

298.15K and 1atm based on experimental density data at 

those conditions. 

 The Born cavity diameter +008+%5 used in the 

calculation of <8+%5 is approximated as being 7 percent 

larger than the corresponding segment diameter +00. 

3.4 Combining Rules 
Combining rules are a way to estimate unlike group 

parameters from their like counterparts. The use of 

combining rules greatly simplifies the optimization 

problem by reducing the number of adjustable 

parameters needed to be estimated. Details of the various 

combining rules for SAFT-γ Mie can be found in the 

paper by Haslam et al. (2020). 

 For the new groups introduced in this paper, 

combining rules are used for all of its unlike parameters 

with the exception of the unlike dispersion energy, '01, 

BF4-

N
N B

F

F F

F

BF4-
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between charged groups. This is because '01 usually 

deviate considerably from combining rules (Papaioannou 

et al., 2014), especially between charged groups. 

3.5 Initial Estimation 
We start off with an initial estimation (i.e., without the 

use of an optimisation program) of the '00 and +00 

parameters from previous works for the simple sphere 

model. The purpose of this step is to see how far one can 

make predictions by just inferring from existing 

parameters from a different iteration of SAFT, and to 

explore the effects each parameter has. 

 '00 is obtained by adapting SAFT-γ SW parameters 

from Ashrafmansouri and Raeissi (2021) using the 

following relationship: 

$ 4&-!# '	)	*+	,
./
− )	*+	,

0
	. +//+

1

2
= $ &34+//+

25!"

2
 (13) 

where '!"# is the equivalent SAFT-γ Mie '00; and +, 'IJ 

and 0IJ are SAFT-γ SW parameters. An approximation 

is made here that + is the same for the SW and Mie EoS. 

Equation 13 is derived from equating the Energy 
Equation of the Mie and SW potentials.  

 +00 is also obtained by adapting SAFT-γ SW 

parameters from Ashrafmansouri and Raeissi (2021) 

using the following equation: 

 
+!"# = R	>C00IJ ⋅ +00IJK	

00
T
	;/K

 (14) 

where +!"# is the equivalent SAFT-γ Mie +00; C00IJ and 

+00IJ are SAFT-γ SW parameters. 44 denotes the list of 

SW groups that make up the simple sphere Mie group. 

Equation 14 is derived by summing the volumes of 

individual SW groups and taking the equivalent sphere 

diameter of the summed volume.  

 0% and	0& are taken to be 12 and 6 respectively – the 

Lennard-Jones potential or Mie (12,6).  

 SAFT-γ Mie calculations on this step (only) are 

carried out using gPROMS. 

3.6 Parameter Estimation 
From here on, SAFT-γ Mie calculations and parameter 

estimation are carried out using the Julia package 

Clapeyron.jl (Walker et al., 2022). The parameters are 

estimated by minimising the least squares objective 

function F: 

 
U =>LV<

6&-6 − V<#MN
V<
#MN M

2O(

<:;
 (15) 

where V<#MN is the experimental value, V<6&-6 is the 

calculated value, and ?P is the number of data points. 

This optimisation problem is solved using the 

Evolutionary Centers Algorithm (Mejía-de-Dios and 

Mezura-Montes, 2019).  

 For the simple sphere model, we use density, heat 

capacity and speed of sound experimental data of 

[EMIM][BF4] at 1atm to estimate parameters for the 

groups EMIM and BF4. 

 For the group contribution model, we use density, 

heat capacity and speed of sound experimental data of 

[EMIM][BF4], 1-butyl-3-methylimidazolium tetrafluor-

oborate and 1-ethyl-3-methylimidazolium acetate 

[EMIM][Ac] at 1atm to estimate parameters for the 

groups IM and BF4. 

 The introduction of [EMIM][Ac] helps overcome the 

problem of degeneracy/unidentifiability of parameters. 

An IL with the acetate anion [Ac] is chosen because it 

can be fully defined with group parameters from previous 

works. The parameters for CH3, CH2 and COO– groups 

are taken from the paper by Haslam et al. (2020). 

 During optimisation, 0& is fixed at 6, a common 

practice as 0& and 0% have a similar qualitative effect on 

the Mie potential. C of standalone groups such as BF4 

and EMIM is set to 1, while C for non-standalone groups 

such as IM, is estimated as part of the optimisation. B∗ 
for groups deemed non-spherical such as IM are adjusted 

manually until reasonable estimated parameters are 

obtained. 

3.7 Deviations 
As a way to quantify the quality of our model parameters, 

we determine the percentage average absolute deviation 

%AAD given by: 

 
%AAD = 100

?P
>Z	V<

#MN − V<6&-6
V<
#MN 	Z

O(

<:;
 (16) 

4. Results and Discussion 
4.1 Initial Estimation 
In Figure 4, we present the results of the simple sphere 

model using parameters estimated from previous works 

(see Section 3.5). These parameters are summarised in 

Table 1. The parameters, and implicitly the contributions 

they describe, are introduced in stages starting with (1) 

only + and ' (together with other fixed parameters such 

as 0%, 0&, 6, C, B∗and 6), followed by the (2) ideal 

contribution (i.e., the ideal gas isobaric heat capacities), 

(3) dielectric constant, ;, and lastly (4) a non-zero +8+%5. 

The number in the parentheses refers to the lines in 

Figure 4 and will henceforth be used to refer to their 

respective stage and changes. 

The density predictions for (1) closely match 

experimental data in terms of both value and slope. This 

can partly be explained by the fact that the source these 

parameters were inferred from did not explicitly account 

of electrostatic interactions; the electrostatic interactions 

are hence implicitly accounted for in their + and ' values 

(and association parameters). However, it is entirely 

coincidental that the exclusion of their association 

parameters and the inclusion of Coulombic interactions 

while using a value of ; = 1 in our model gave such a 

good first estimation. 

(2) has no effect on density. This is because <"4#&- is 

only dependent on temperature, so its contribution to the 

volume derivative of < (Equation 6) is zero.  

In (3), density falls by more than 150 units. This is 

because increasing ; implies a stronger dielectric effect 

that directly reduces the effective strength of Coulombic  
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Table 1. Summary of model parameters at the 3 main stages of development: initial estimation, simple sphere model, and group contribution model. 
CR indicates the use of combining rules. 

Group B0∗  C0 +00 Å⁄  +008+%5 Å⁄  000%  000&  ('00 48⁄ ) K⁄  60 ('01 48⁄ ) K⁄  

Initial Estimation 

EMIM 1 1 5.21 1.07+00 12 6 357.60 +1 
CR 

BF4 1 1 4.64 1.07+00 12 6 167.60 –1 

Simple Sphere Model 

EMIM 1 1 5.16 1.07+00 100.00 6 1312.07 +1 
300.00 

BF4 1 1 5.00 1.07+00 100.00 6 160.82 –1 

Group Contribution Model 

IM 5 0.76 2.61 1.07+00 13.14 6 484.99 +1 
255.83 

BF4 1 1 4.18 1.07+00 20.46 6 59.81 –1 
 

interactions (Equation 3), resulting in a lower density. 
This relies on the fact that Coulombic interactions of a 
salt are predominantly attractive. This demonstrates the 
significance of ; and in turn the electrostatic interactions 
in property prediction. 

(4) leads to a slight drop in density. To clarify, setting 
a non-zero +8+%5 has the effect of activating <8+%5, given 
that the solution when +8+%5 is zero is undefined 
(Equation 5). Within Equation 5, there is no explicit 
volume dependence for <8+%5– the only place +8+%5 is 
used – so it is not expected to affect density. However, ; 
as defined in Equation 12 is dependent on density which 
is in turn dependent on volume. Hence, <8+%5 has an 
implicit dependence on volume through ;.  

Both the heat capacity and speed of sound are 
significantly underestimated for all stages. This is 
expected since Ashrafmansouri and Raeissi (2021) did 
not take into consideration the performance of their 
parameters with respect to second-order thermodynamic 
derivative properties, a class of properties that the SW 
potential often fails to describe accurately as 
demonstrated by Papaioannou et al. (2014). 
4.2 Simple Sphere Model 
Using the exact same simple sphere model representation 
as in the initial estimation, the parameters are optimised 
as detailed in Section 3.6. The optimised parameters are 
summarised in Table 1, and the results are illustrated in 
Figure 5.  
 There are a few caveats about the parameters in Table 
1. Firstly, a few of the parameters are at their bounds; 
these are +00 for BF4, '01 and 000%  for EMIM and BF4. 
No matter how much the bounds are changed/increased, 
they still tend towards them. This could be an indication 
that this representation is flawed, thus the optimiser uses 
unphysical parameter values to attempt to minimise the 
difference between experimental data and calculations. 
Secondly, the parameters are degenerate; they converge 
to different values each time the optimisation is carried 
out. The values of '00 of EMIM and BF4 are also 
observed to swap places. This is because both groups 
EMIM and BF4 are estimated using experimental data for 
a single compound and there is nothing to distinguish the 
two groups. A possible solution is to introduce another I- 

 

 

 
Figure 4. Initial estimation for the simple sphere model: (a) Liquid 
density, (b) liquid phase isobaric heat capacity, and (c) liquid phase 
speed of sound at 1atm for [EMIM][BF4]. The various parameters are 
introduced in a stepped approach, the order of which is indicated by the 
number in the legend. Solid curves represent SAFT-γ Mie calculations. 
Symbols represent experimental data. (Neves et al., 2013; Waliszewski 
et al., 2005; Zarei and Keley, 2017) 
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L containing only one of the groups; this solution is 
explored further in the group contribution model. 
 Looking at Figure 5, although an improvement from 
the initial estimate can be seen, the heat capacity in 
particular is still a far cry from experimental data with an 
%AAD of 43.46%. The results for density and speed of 
sound are closer to experimental values with an %AAD 
of 2.52% and 7.88% respectively; however, visually, it 
can be seen that the slopes are very different suggesting 
that the deviation will only get worse when the model is 
calculated at higher/lower temperatures. The %AADs are 
summarised in Table 2.  
 From this, it is concluded that the simple sphere 
model is too crude for a good description of second-order 
thermodynamic derivative properties of [EMIM][BF4]. 
It is unable to capture the unique interactions between 
uncharged groups (such as between methyl and 
methylene groups) or the interactions between charged 
and uncharged groups (such as between methyl and BF4 
groups), all the while keeping its spherical form; it is 
unable to describe the density, isobaric heat capacity and 
speed of sound simultaneously with accuracy. 

 
Figure 5. Simple sphere model: (a) Liquid density, (b) liquid phase 

isobaric heat capacity, and (c) liquid phase speed of sound at 1atm for 

[EMIM][BF4]. Solid curves represent SAFT-γ Mie calculations. 

Symbols represent experimental data. (Neves et al., 2013; Waliszewski 

et al., 2005; Zarei and Keley, 2017) 

Table 2. Percentage average absolute deviation %AAD of liquid phase 

density, isobaric heat capacity and speed of sound of [EMIM][BF4] 

using the simple sphere model. 

Property %AAD 
J 2.52 
&G 43.46 
N 7.88 

4.3 Group Contribution Model 
In Figure 6, we present the results of the group 
contribution model. Experimental data for 
[EMIM][BF4], [BMIM][BF4] and [EMIM][Ac] are used 
to estimate group parameters for the IM and BF4 groups; 
the same parameters are then used to make predictions of 
the same properties for 1-hexyl-3-methylimidazolium 
tetrafluoroborate [HMIM][BF4], 1-methyl-3-octylimida-
zolium tetrafluoroborate [OMIM][BF4] and 1-butyl-3-
methylimidazolium acetate [BMIM][Ac].  
 The parameters are summarised in Table 1. At first 
glance, it can be seen that the parameters are 
physical/sensible; they are in the range one might expect 
when comparing with the parameters of previously 
studied groups. None of them are at the bounds. With the 
introduction of [EMIM][Ac], the parameters are no 
longer degenerate; they converge to around the same 
values each time the parameter estimation is 
independently carried out.  
 B∗ of 5 for IM is found to be the most optimal. This is 
based on two criteria: the value of the objective function 
F (Equation 15) and observing that C no longer tends to 
1 (the bound). Physically, this makes sense as the 
imidazolium ring is made out of 5 atoms.  
 In Table 3, we summarise the %AAD for the group 
contribution model. The results are excellent across the 
board with low %AAD of 0.45–0.66%, 0.19–3.96%, and 
0.26–1.58% for density, isobaric heat capacity and speed 
of sound respectively. Based on these results, it can be 
concluded that SAFT-γ Mie (with <8+%5, <"+5) is capable 
of modelling ILs accurately, even with respect to the 
most stringent test: second-order thermodynamic 
derivative properties. 
 However, the model in its current state is not without 
flaws. Despite having a small %AAD, the gradients of 
the lines in Figure 6 are all slightly off in the same 
manner, akin to a systematic error; for example, density 
is overestimated at low temperatures and underestimated 
at high temperatures. This observation persists even whe- 

Table 3. Percentage average absolute deviation %AAD of liquid phase 

density, isobaric heat capacity and speed of sound of various ILs 

containing IM and BF4 group using the group contribution model. 

Ionic Liquid 
%AAD 

J &G N 
[EMIM][BF4] 0.45 0.66 0.38 
[BMIM][BF4] 0.52 0.50 0.44 
[EMIM][Ac] 0.45 0.19 0.26 

[HMIM][BF4] 0.66 1.16 0.51 
[OMIM][BF4] 0.54 2.61 1.58 
[BMIM][Ac] 0.57 3.96 1.29 
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n only experimental data for one IL is used to estimate 
the parameters. Below, we go through the possible causes 
of this.  
 Firstly, in our method, the temperature dependence of 
D is ignored, and the density dependence is assumed to 
be linear. As seen in Figure 4, D does have a noticeable 
effect. If indeed D varies significantly with temperature 
and density and/or in a way that does not obey Equation 
12, it could have undue consequences on the fidelity of 
the model. Watanabe et al. (2019) showed that D for 1-
methylimidazolium acetate decreased by about 5 when 
the temperature is increased by 60K. As will be discussed 
in Section 4.4, a small change of 5 in ; can cause an 
increase in %AAD by upwards of 5 folds. 

 

 
Figure 6. Group contribution model: (a) Liquid density, (b) liquid 
phase isobaric heat capacity, and (c) liquid phase speed of sound at 1atm 
for several ILs containing imidazolium IM and/or tetrafluoroborate BF4 
groups. Solid curves represent SAFT-γ Mie calculations for ILs used in 
parameter estimation. Dashed curves represent SAFT-γ Mie predictions 
for ILs not used in parameter estimation. Symbols represent 
experimental data. (Neves et al., 2013; Waliszewski et al., 2005; Zarei 
and Keley, 2017; Vakili-Nezhaad et al., 2012; Kumar, 2008; Froba et 
al., 2010; Su et al., 2016; Araujo et al., 2013; Mokhtarani et al., 2008; 
Waliszewski, 2008; Klomfar et al., 2010; Pal and Kumar, 2012; 
Zorebski et al., 2018) 

 Another possible reason is the lack of association 
contributions. Imidazolium and tetrafluoroborate have 
been shown to form hydrogen bonds (Dong et al., 2006; 
Zheng et al., 2013). That contribution could be the 
missing link and could be important when the model is 
extended to mixtures. 
 There is an uncertainty in the representation of the 
ideal isobaric heat capacity obtained from the Joback 
method. If the ideal heat capacity is inaccurate, this may 
cause distortion to the parameters as the optimiser 
attempts to compensate for this error. 
 Lastly, it could be the simple case that more unlike 
parameters need to be varied, such as '01 between IM and 
CH3, and 001% . 
 The model can be extended and validated further by 
considering the variation with pressure, the extension to 
mixtures and gas solubilities, and the extrapolation to 
interfacial and transport properties. 
4.4 Effects of the Dielectric Constant 
A significant assumption made in our model is the 
dielectric constant D; how it varies from IL to IL and how 
it varies with temperature and density. Here, we evaluate 
the validity of the assumption and its possible 
consequences by looking at a hypothetical case where D 
is changed. 
 In Figure 7, we show how the calculations for the 
density of [EMIM][BF4] change if we vary the value of 
D while otherwise using the same parameters as used in 
Section 4.3. Not only do the values of the predictions 
change, but the slope of the predictions changes as well.  

The resulting %AADs are tabulated in Table 4. At its 
greatest, decreasing D by 5, increases the %AAD from 
0.45% to 2.51%, by a factor of more than 5.  

Fitting multiple ILs using the same D is effectively 
the same as shifting each experimental data set up or 
down, where the magnitude of the shift depends on how 
different the true D is from the approximated D. 

This is particularly important when working with ILs 
with vastly different D, such as 1-butyl-3-methylimidaz-
olium iodide with D of 2.87 (Mou et al., 2017), 1,3,-
dimethylimidazolium dimethylphosphate with D  of  
29.6, 2-hydroxyethylammonium lactate with D of 85.6, 
and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluor-
oborate with D of 23.3 (Huang et al., 2011) to name a 
few. 

Therefore, careful attention needs to be given to D 
and the equations used to calculate D when making 
predictions and estimating parameters.  

Table 4. Percentage average absolute deviation %AAD of liquid phase 
density at 1atm using different dielectric constants D with parameters 
estimated at D = 15. 

D %AAD ^ 
10.0 2.51 
12.5 1.02 
15.0 0.45 
17.5 1.14 
20.0 1.92 
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Figure 7. Liquid density of [EMIM][BF4] at different values of 
dielectric constants. Solid curves represent SAFT-γ Mie calculations 
using parameters estimated with D = 15. Symbols represent 
experimental data. (Neves et al., 2013) 

5. Conclusion 
The SAFT-γ Mie EOS with electrostatic contributions is 
used to model 1,3-dialkylimidazolium tetrafluoroborate 
ILs as fully dissociated ions. The performance of the 
model is evaluated against density, isobaric heat capacity 
and speed of sound experimental data. Two models at 
different degrees of coarse-graining are assessed: a 
simple sphere model and a group contribution model. 
The former is shown to be too crude to accurately 
represent all three properties simultaneously. The latter, 
however, provided good agreement with experimental 
data with %AADs between 0.19% and 0.66 %. The 
predictive capabilities of the new IM and BF4 group 
parameters introduced in this paper are evaluated, with 
%AADs between 0.51% to 3.96% for selected ILs. The 
electrostatic contributions are demonstrated to have a 
significant effect on the model calculations, and an 
inaccurate account of the dielectric effects can affect 
parameter estimation and predictions. Improvements 
could be made by accounting for association, pressure 
variation and an accurate description of the dielectric 
effect. 

Acknowledgement 
We would like to thank Prof. George Jackson, Dr 
Andrew J. Haslam, Pierre J. Walker, and Dr Felipe 
Antonio Perdomo Hurtado for their guidance and 
support. 

References 

Araújo, J. M. M., Pereiro, A. B., Alves, F., Marrucho, I. M., & 

Rebelo, L. P. N. (2013). Nucleic acid bases in 1-alkyl-3-

methylimidazolium acetate ionic liquids: A 

thermophysical and ionic conductivity analysis. The 

Journal of Chemical Thermodynamics, 57, 1–8. 

https://doi.org/https://doi.org/10.1016/j.jct.2012.07.022 

Aschenbrenner, O., Supasitmongkol, S., Taylor, M., & 

Styring, P. (2009). Measurement of vapour pressures of 

ionic liquids and other low vapour pressure 

solvents. Green Chem., 11(8), 1217–1221. 

https://doi.org/10.1039/B904407H 

Ashrafmansouri, S. S., & Raeissi, S. (2021). Extension of 

SAFT-γ to model the phase behavior of CO2+ionic liquid 

systems. Fluid Phase Equilibria, 538, 113026. 

https://doi.org/https://doi.org/10.1016/j.fluid.2021.113026 

Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. 

(1989). SAFT: Equation-of-state solution model for 

associating fluids. Fluid Phase Equilibria, 52, 31–38. 

Dong, K., Zhang, S., Wang, D., & Yao, X. (2006). Hydrogen 

Bonds in Imidazolium Ionic Liquids. The Journal of 

Physical Chemistry A, 110(31), 9775–9782. 

https://doi.org/10.1021/jp054054c 

Dong, Y., Warsahartana, H. G., Hammad, F., & Masters, A. 

(2022). SAFT-γ Mie model for ionic liquids. AIChE 

Journal, 68(6), e17697. 

https://doi.org/https://doi.org/10.1002/aic.17697 

Fröba, A. P., Rausch, M. H., Krzeminski, K., Assenbaum, D., 

Wasserscheid, P., & Leipertz, A. (2010). Thermal 

Conductivity of Ionic Liquids: Measurement and 

Prediction. International Journal of 

Thermophysics, 31(11), 2059–2077. 

https://doi.org/10.1007/s10765-010-0889-3 

Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P., & 

Rooney, D. W. (2008). Heat Capacities of Ionic Liquids as 

a Function of Temperature at 0.1 MPa. Measurement and 

Prediction. Journal of Chemical & Engineering 

Data, 53(9), 2148–2153. 

https://doi.org/10.1021/je800335v 

Guzmán, O., Ramos Lara, J. E., & del Río, F. (2015). Liquid–

Vapor Equilibria of Ionic Liquids from a SAFT Equation 

of State with Explicit Electrostatic Free Energy 

Contributions. The Journal of Physical Chemistry 

B, 119(18), 5864–5872. https://doi.org/10.1021/jp511571h 

Haslam, A. J., González-Pérez, A., Di Lecce, S., Khalit, S. H., 

Perdomo, F. A., Kournopoulos, S., Kohns, M., 

Lindeboom, T., Wehbe, M., Febra, S., Jackson, G., 

Adjiman, C. S., & Galindo, A. (2020). Expanding the 

Applications of the SAFT-γ Mie Group-Contribution 

Equation of State: Prediction of Thermodynamic 

Properties and Phase Behavior of Mixtures. Journal of 

Chemical & Engineering Data, 65(12), 5862–5890. 

https://doi.org/10.1021/acs.jced.0c00746 

Huang, M. M., Jiang, Y., Sasisanker, P., Driver, G. W., & 

Weingärtner, H. (2011). Static Relative Dielectric 

Permittivities of Ionic Liquids at 25 °C. Journal of 

Chemical & Engineering Data, 56(4), 1494–1499. 

https://doi.org/10.1021/je101184s 

Ji, X., Held, C., & Sadowski, G. (2012). Modeling 

imidazolium-based ionic liquids with ePC-SAFT. Fluid 

Phase Equilibria, 335, 64–73. 

https://doi.org/https://doi.org/10.1016/j.fluid.2012.05.029 

Joback, Kevin G. A Unified Approach to Physical Property 

Estimation Using Multivariate Statistical Techniques, 

Massachusetts Institute of Technology, 1 Jan. 1984, 

http://hdl.handle.net/1721.1/15374.  

Klomfar, J., Součková, M., & Pátek, J. (2010). Temperature 

Dependence Measurements of the Density at 0.1 MPa for 

1-Alkyl-3-methylimidazolium-Based Ionic Liquids with 

the Trifluoromethanesulfonate and Tetrafluoroborate 

Anion. Journal of Chemical & Engineering Data, 55(9), 

4054–4057. https://doi.org/10.1021/je100185e 

Kumar, A. (2008). Estimates of Internal Pressure and Molar 

Refraction of Imidazolium Based Ionic Liquids as a 

Function of Temperature. Journal of Solution 

Chemistry, 37(2), 203–214. 

https://doi.org/10.1007/s10953-007-9231-5 

106



   9 

Lee, A. A., Vella, D., Perkin, S., & Goriely, A. (2015). Are 
Room-Temperature Ionic Liquids Dilute Electrolytes? The 
Journal of Physical Chemistry Letters, 6(1), 159–163. 
https://doi.org/10.1021/jz502250z 

Mejía-de Dios, J. A., & Mezura-Montes, E. (2019). A New 
Evolutionary Optimization Method Based on Center of 
Mass. In K. Deep, M. Jain, & S. Salhi (Eds.), Decision 
Science in Action: Theory and Applications of Modern 
Decision Analytic Optimisation (pp. 65–74). Springer 
Singapore. https://doi.org/10.1007/978-981-13-0860-4_6 

Mokhtarani, B., Mojtahedi, M. M., Mortaheb, H. R., Mafi, M., 
Yazdani, F., & Sadeghian, F. (2008). Densities, Refractive 
Indices, and Viscosities of the Ionic Liquids 1-Methyl-3-
octylimidazolium Tetrafluoroborate and 1-Methyl-3-
butylimidazolium Perchlorate and Their Binary Mixtures 
with Ethanol at Several Temperatures. Journal of 
Chemical & Engineering Data, 53(3), 677–682. 
https://doi.org/10.1021/je700521t 

Mou, S., Rubano, A., & Paparo, D. (2017). Complex 
Permittivity of Ionic Liquid Mixtures Investigated by 
Terahertz Time-Domain Spectroscopy. The Journal of 
Physical Chemistry B, 121(30), 7351–7358. 
https://doi.org/10.1021/acs.jpcb.7b04706 

Neves, C. M. S. S., Kurnia, K. A., Coutinho, J. A. P., 
Marrucho, I. M., Lopes, J. N. C., Freire, M. G., & Rebelo, 
L. P. N. (2013). Systematic Study of the Thermophysical 
Properties of Imidazolium-Based Ionic Liquids with 
Cyano-Functionalized Anions. The Journal of Physical 
Chemistry B, 117(35), 10271–10283. 
https://doi.org/10.1021/jp405913b 

Pal, A., & Kumar, B. (2012). Densities, speeds of sound and 
1H NMR spectroscopic studies for binary mixtures of 1-
hexyl-3-methylimidazolium based ionic liquids with 
ethylene glycol monomethyl ether at temperature from 
T=(288.15–318.15)K. Fluid Phase Equilibria, 334, 157–
165. 
https://doi.org/https://doi.org/10.1016/j.fluid.2012.08.002 

Papaioannou, V., Lafitte, T., Avendaño, C., Adjiman, C. S., 
Jackson, G., Müller, E. A., & Galindo, A. (2014). Group 
contribution methodology based on the statistical 
associating fluid theory for heteronuclear molecules 
formed from Mie segments. The Journal of Chemical 
Physics, 140(5), 054107. 
https://doi.org/10.1063/1.4851455 

Process Systems Enterprise, gPROMS, 
www.psenterprise.com/products/gproms, 1997-2022 

Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-
of-the-Art of CO2 Capture with Ionic Liquids. Industrial 
& Engineering Chemistry Research, 51(24), 8149–8177. 
https://doi.org/10.1021/ie3003705 

Ray, A., & Saruhan, B. (2021). Application of Ionic Liquids 
for Batteries and Supercapacitors. Materials, 14(11). 
https://doi.org/10.3390/ma14112942 

Schreckenberg, J. M. A., Dufal, S., Haslam, A. J., Adjiman, C. 
S., Jackson, G., & Galindo, A. (2014). Modelling of the 
thermodynamic and solvation properties of electrolyte 
solutions with the statistical associating fluid theory for 
potentials of variable range. Molecular Physics, 112(17), 
2339–2364. 
https://doi.org/10.1080/00268976.2014.910316 

Shukla, S. K., & Mikkola, J. P. (2020). Melting Point of Ionic 
Liquids. In S. Zhang (Ed.), Encyclopedia of Ionic 
Liquids (pp. 1–9). Springer Singapore. 
https://doi.org/10.1007/978-981-10-6739-6_109-1 

Su, C., Liu, X., Zhu, C., & He, M. (2016). Isobaric molar heat 
capacities of 1-ethyl-3-methylimidazolium acetate and 1-
hexyl-3-methylimidazolium acetate up to 16 MPa. Fluid 
Phase Equilibria, 427, 187–193. 
https://doi.org/https://doi.org/10.1016/j.fluid.2016.06.054 

Vakili-Nezhaad, G., Vatani, M., Asghari, M., & Ashour, I. 
(2012). Effect of temperature on the physical properties of 
1-butyl-3-methylimidazolium based ionic liquids with 
thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-
methylimidazolium with tetrafluoroborate and 
hexafluorophosphate anions. The Journal of Chemical 
Thermodynamics, 54, 148–154. 
https://doi.org/https://doi.org/10.1016/j.jct.2012.03.024 

Waliszewski, D., Stępniak, I., Piekarski, H., & Lewandowski, 
A. (2005). Heat capacities of ionic liquids and their heats 
of solution in molecular liquids. Thermochimica 
Acta, 433(1), 149–152. 
https://doi.org/https://doi.org/10.1016/j.tca.2005.03.001 

Waliszewski, Dariusz. (2008). Heat capacities of the mixtures 
of ionic liquids with methanol at temperatures from 
283.15K to 323.15K. The Journal of Chemical 
Thermodynamics, 40(2), 203–207. 
https://doi.org/https://doi.org/10.1016/j.jct.2007.07.001 

Walker, P. J., Yew, H. W., & Riedemann, A. (2022). 
Clapeyron.jl: An Extensible, Open-Source Fluid 
Thermodynamics Toolkit. Industrial & Engineering 
Chemistry Research, 61(20), 7130–7153. 
https://doi.org/10.1021/acs.iecr.2c00326 

Watanabe, H., Umecky, T., Arai, N., Nazet, A., Takamuku, T., 
Harris, K. R., Kameda, Y., Buchner, R., & Umebayashi, 
Y. (2019). Possible Proton Conduction Mechanism in 
Pseudo-Protic Ionic Liquids: A Concept of Specific Proton 
Conduction. The Journal of Physical Chemistry 
B, 123(29), 6244–6252. 
https://doi.org/10.1021/acs.jpcb.9b03185 

Zarei, H., & Keley, V. (2017). Density and Speed of Sound of 
Binary Mixtures of Ionic Liquid 1-Ethyl-3-
methylimidazolium Tetrafluoroborate, N,N-
Dimethylformamide, and N,N-Dimethylacetamide at 
Temperature Range of 293.15–343.15 K: Measurement 
and PC-SAFT Modeling. Journal of Chemical & 
Engineering Data, 62(3), 913–923. 
https://doi.org/10.1021/acs.jced.6b00496 

Zheng, Y. Z., Wang, N. N., Luo, J. J., Zhou, Y., & Yu, Z. W. 
(2013). Hydrogen-bonding interactions between 
[BMIM][BF4] and acetonitrile. Phys. Chem. Chem. 
Phys., 15(41), 18055–18064. 
https://doi.org/10.1039/C3CP53356E 

Zorębski, E., Musiał, M., Bałuszyńska, K., Zorębski, M., & 
Dzida, M. (2018). Isobaric and Isochoric Heat Capacities 
as Well as Isentropic and Isothermal Compressibilities of 
Di- and Trisubstituted Imidazolium-Based Ionic Liquids 
as a Function of Temperature. Industrial & Engineering 
Chemistry Research, 57(14), 5161–5172. 
https://doi.org/10.1021/acs.iecr.8b00506 

 

107



 

1 
 

Model-Based Design Space for Robust and Flexible CO2 Capture Systems 
 

Lola Truant and Ka Ying Li 
Department of Chemical Engineering, Imperial College London, U.K. 

 
Abstract Carbon capture technologies have been identified as a critical means of tackling climate change. In 
this work, we designed a vacuum swing adsorption (VSA) cycle for the carbon capture of post-combustion flue 
gas by assessing the process performance and flexibility of different adsorbents and operating conditions. A 
pipeline was developed that combines a VSA equilibrium-based model and design space identification to assess 
the performance of zeolite 13X, Mg-MOF-74 and UTSA-16 in terms of the purity (%) and recovery (%) of CO2, 
the CO2 working capacity of the bed (mol/m3) and the specific energy usage (kWh/tonne) as well as the flexibility 
of the system. After screening, the CO2 purities and recoveries for all three materials were found to be similar to 
one another, indicating that working capacity, energy usage and flexibility should be used as the key figures of 
merit for adsorbent screening. The design spaces obtained suggest that there is minimal flexibility in manipulating 
the evacuation pressure (PL) as it dictates whether the stiff recovery constraint can be met. To minimise energy 
usage and overall capture cost, it was found that operating at a higher PL is preferred, but this would be at the 
expense of process flexibility. As for adsorbent ranking, UTSA-16 offers the largest feasible operating region, the 
highest working capacity and lowest energy usage on average and the most flexibility during nominal operation.  
 
 

1. Introduction 
Fossil-based power generation has increased by 
70% from 2000 and represents a significant 
contribution to total CO2 emissions.1 Carbon capture 
and storage (CCS) technologies have been identified 
as a promising means to mitigate emissions and 
meet the 2050 net-zero target, but it is critical to 
optimise the efficiency, cost, and energy impact of 
these technologies to ensure a sustainable future.2  
Absorption and adsorption are the most 
technologically advanced CCS techniques used at 
scale. Adsorption, however, is more energy efficient 
than absorption and does not require corrosive 
solvents such as monoethanolamine (MEA).3 

Adsorption is a separation process where 
adsorbate molecules in fluid phase adhere to the 
surface of a solid adsorbent. Different cyclic 
adsorption configurations exist depending on the 
methods of adsorbent regeneration. Pressure swing 
adsorption (PSA) involves pressurizing the feed to 
above atmospheric pressure for adsorption and 
reducing it for desorption. In the case of adsorbates 
with highly non-linear isotherms like CO2, it is 
favourable to reduce the desorption pressure further 
to vacuum level to enhance regeneration i.e., 
vacuum swing adsorption (VSA).4 As gas 
compression to above-atmospheric pressure is 
energy intensive,5 feeding the gas at atmospheric 
conditions is preferred. Cyclic VSA is thus 
considered in this study.  

The choice of adsorbents is a key design variable 
in adsorption processes. Traditional materials such 
as zeolites and activated carbon as well as the novel 
metal organic frameworks (MOFs) are widely used 
in industry for post-combustion CO2 capture 
systems.6 Zeolite adsorbents are effective for 
separating out CO2 in dry flue gas containing non-
polar compounds3 with high uptake at low partial 

pressures.5 Zeolite 13X is the current benchmark for 
CO2 capture processes6 due to its low energy 
consumption.7 Alternative materials, such as MOFs, 
have recently been studied extensively due to their 
excellent CO2 adsorption capacity and selectivity.8 
In light of the development of more adsorbent 
materials for CCS,7,9 selecting the most appropriate 
adsorbent for optimal process performance based on 
adsorbent properties, such as CO2 adsorption 
capacity, selectivity, regeneration conditions, 
mechanical/chemical pellet stability, and cost10 is a 
complex decision. Adsorbents with high selectivity 
for CO2, working capacity and multicyclic stability 
are desired for an economic adsorption.3,11,12 The 
key performance indicators (KPIs) typically used to 
assess the suitability of adsorbent materials are (i) 
product purity (ii) product recovery (iii) energy 
usage and (iv) working capacity.6,7 Targets of at 
least 90% recovery and 95% purity are stipulated by 
the US Department of Energy (DoE) for CO2 
capture systems.6,7,13 Adsorbents that satisfy the 
purity-recovery constraints should be further 
screened with the aim to minimise the overall 
process costs.6 

A wide range of approaches have been employed 
for screening adsorbents and evaluating KPIs,  such 
as experimental adsorption isotherm measurement, 
14,15 neural network models6 and detailed process 
optimisation.5,16,17 The modelling and optimisation 
of cyclic adsorption is significantly computationally 
expensive, as it involves conflicting objectives, non-
linear isotherms and coupled partial differential 
equations.4,7,18 In contrast, an equilibrium-based 
model requires simpler computational algorithms 
and can yield both analytical and graphical solutions 
for a much larger range of operating and design 
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variables. An equilibrium model is implemented in 
this study to simulate the VSA process.  

To evaluate design and operating strategies, 
multi-objective optimisation is typically used to 
obtain a single optimal operating point by 
maximising/minimising process KPIs. However, a 
suboptimal operating point might provide a larger 
feasible operating region and thus process 
flexibility. Therefore, traditional optimisation does 
not allow for an assessment of the full scale of 
operating parameters, neglecting the flexibility and 
robustness of the system. Our work employs model-
based design space methodology, a novel 
framework developed by Sachio et al.19 that 
accelerates process design and introduces 
operational flexibility as a new performance 
indicator. This gives insight into the extent of 
feasible operating regions for different adsorbents 
that satisfy the recovery and purity constraints. 
Assessing process flexibility allows the 
consideration of controllability in the early design 
stages. Controllability is an important practical 
consideration which is so far unaccounted for in the 
literature on the design of VSA processes. 

This study aims to design an adsorption-based 
carbon capture process for a typical coal-fired power 
plant flue gas. A novel approach that combines an 
equilibrium-based model and design space 
identification (DSI) framework is used to evaluate 
process flexibility and alternative operating 
strategies. We simulate the four-step VSA cycle 
using the equilibrium-based model and assess the 
process performance using the four KPIs: CO2 
purity, CO2 recovery, specific energy usage and 
working capacity for different adsorbent choices and 
operating conditions. The results are then used to 
identify the design spaces, or range of operating 
conditions under which purity and recovery 
constraints are met for different adsorbents. 

This paper is structured as follows. Section 2 
details the workflow in combining the equilibrium-
based model and DSI framework. The process 
performances for different adsorbents are then 
presented in Section 3. Results are compared and 
discussed in Section 4.  

2. Methodology 

2.1 Adsorption Isotherm 

The governing process considered in this work is a 
four-step VSA cycle for post-combustion carbon 
capture. The mixture to be separated is a dry flue gas 
of 15% moles CO2 and 85% moles N2. The process 
performance of using the benchmark adsorbent 
zeolite 13X was assessed along with two 
representative MOF materials, Mg-MOF-74 and 
UTSA-16. These are widely studied adsorbents that 
provide a good distribution of isotherm shapes while 
meeting the requirements of 𝑃𝑈𝐶𝑂2 ≥ 95% and 
𝑅𝐸𝐶𝑂2 ≥ 90%.12 The extended dual-site Langmuir 

(DSL) model was used to describe the competitive 
adsorption equilibrium between CO2/N2 on each 
material, as given by: 

𝑞𝑖
∗ =

𝑞𝑠𝑏,𝑖𝑏𝑖𝐶𝑖

1 + ∑ 𝑏𝑗
𝑛𝑐
𝑗=1 𝐶𝑗

+
𝑞𝑠𝑑,𝑖𝑑𝑖𝐶𝑖

1 + ∑ 𝑑𝑗
𝑛𝑐
𝑗=1 𝐶𝑗

 (1) 

where 𝑞𝑠𝑏,𝑖 and 𝑞𝑠𝑑,𝑖 are the saturation capacities of 
species 𝑖  on site 𝑏 and site 𝑑, in equilibirum with a 
fluid concentration of 𝐶𝑖. Adsorption equilibrium 
constants 𝑏𝑖 and 𝑑𝑖 are given by the van’t Hoff 
equation: 

𝑏𝑖 = 𝑏0,𝑖𝑒−∆𝑈𝑏,𝑖/𝑅𝑇 (2) 
𝑑𝑖 = 𝑑0,𝑖𝑒−∆𝑈𝑑,𝑖/𝑅𝑇 (3) 

where 𝑏0 and 𝑑0 are the pre-exponential factors, and 
−∆𝑈𝑏,𝑖 and −∆𝑈𝑑,𝑖 are the molar internal energies. 
The temperature is denoted as 𝑇 and the universal 
gas constant as 𝑅. Assuming the mixture is fed at 1 
bar and 298.15K, the CO2 and N2 adsorption 
isotherms are illustrated in Figure 1a and 1b. The 
isotherm parameters for the three adsorbents were 
obtained from the literature7 and detailed in 
Supplementary Material Table A1. It can be 
observed that the CO2 isotherms are much more 
nonlinear than the N2 isotherms, indicating the 
selectivity for CO2 is higher at lower pressures for 
all three materials. Mg-MOF-74 displays the largest 
adsorption capacity for both CO2 and N2, followed 
by zeolite 13X and UTSA-16.  

(a) 

 
(b) 

 
Figure 1. Adsorption isotherm of (a) CO2 and (b) N2 for zeolite 
13X (blue lines), Mg-MOF-74 (yellow lines) and UTSA-16 
(purple lines) at 298.15K. 
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Figure 2. Schematic illustrating the workflow in linking BAAM and DSI models. The inputs and outputs from each model are outlined under 
the blue arrows. The processing steps within the models are detailed in the grey rectangles. 

2.2 Adsorbent Screening Workflow  
The model used for simulating the VSA process in 
this study is adopted from the Batch Adsorber 
Analogue Model (BAAM) developed by 
Balashankar et al.7 and the modelling framework 
from Maring and Webley.5 In order to appraise the 
robustness of different operating strategies, a novel 
methodology involving model-based design space 
identification (DSI) is also implemented.19 The 
BAAM and DSI models are linked together to 
screen adsorbents, with the workflow as shown in 
Figure 2.  

The BAAM model in MATLAB simulates the 
four-step VSA process. The inputs to the BAAM 
models are the VSA cycle parameters and the 
adsorbent parameters as detailed in Supplementary 
Material. Within the BAAM model, the first step is 
to choose the operating bounds for PI and PL. The 
lower bound for PL is set at 0.01 bar, as any lower 
would not be technically achievable in CCS 
application.20 The upper bound is taken as 0.1 bar to 
give a large enough range for process modelling.21 
Since PH is at 1 bar, close to atmospheric pressure, 
the upper bound for PI must be slightly lower, at 0.99 
bar. The lower bound for PI is chosen as 0.04 bar, 
which is just above the pressure achieved in pilot 
plant experiments.7 The quasi-random Sobol 
sequence is then used to sample 4000 operating 
points/combinations of PL and PI within these 
bounds. Sobol sequencing is employed as it 
efficiently samples the operating parameter space 
with uniform coverage using only a small number of 
points.22 To ensure the process is physically feasible, 
a data cleaning step is added to remove all the points 
where PL > PI.  

Table 1. The upper and lower bound of the operating parameters 
in the four-step VSA cycle 

Operating 
parameter 

Lower 
bound 

Upper 
bound 

PL [bar] 0.01 0.1 
PI [bar] 0.04 0.99 

The BAAM model is evaluated at each operating 
point obtained from the Sobol sampling to generate 
the corresponding KPIs. The operating points and 

KPIs are then loaded into Python, where the DSI 
package is used. The operating points are screened 
using the constraints 𝑃𝑈𝐶𝑂2 ≥ 95% and 𝑅𝐸𝐶𝑂2 ≥
90% to identify the design space where the product 
targets are satisfied. Design space metrics such as 
the average, maximum and minimum KPI values, 
the number of samples within the design space as 
well as its size are obtained to compare the 
adsorbents quantitively.  

For each adsorbent, the nominal operating point 
(NOP) that maximises the acceptable operating 
region (AOR) is subsequently found using an 
iterative approach, along with information on the 
size and KPI values of this region. This allows us to 
compare the operation flexibility offered by each 
adsorbent during nominal operation. 

2.3 Batch Analogue Adsorber Model 
(BAAM) 
The four-step adsorption cycle modelled in BAAM 
consists of: (i) adsorption (ADS), (ii) blowdown 
(BLO), (ii) evacuation (EVAC) and (iv) light 
product pressurisation (LPP) as shown in Figure 3. 
First, the dry flue gas is fed at ambient conditions to 
saturate the bed at high pressure, PH = 1 bar. Vacuum 
is then applied to reduce the pressure to an 
intermediate value, PI, during blowdown, to remove 
N2 from the adsorbent bed. In the evacuation step, 
pressure is further reduced from PI to PL to collect 
the highly concentrated CO2 product. Finally, the 
raffinate stream is added in the LPP step to 
pressurise the bed from PL to PH again. This 
improves recovery as the CO2 left in the raffinate 
stream can be recycled. 

The modelling equations used in the equilibrium 
model are described in detail by Balashankar et al.7 
The equilibrium model allows for rapid simulation 
and process performance assessment of different 
adsorbents due to the following assumptions:   

• Zero-dimensionality with no spatial 
gradients in temperature, pressure, and 
concentration 

• Isothermal operation 
• Instantaneous gas-solid equilibrium with 

negligible mass transfer resistance 
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Figure 3. Four-step VSA cycle.  

These assumptions reduce the set of coupled 
partial differential equations in a detailed dynamic 
model into a set of ordinary differential and 
algebraic equations. The process performance of the 
three materials is then evaluated in terms of the 
purity (%) and recovery (%) of the CO2 product 
stream, the CO2 working capacity of the bed 
(molCO2/m3

bed) and the specific energy usage 
(kWh/tonneCO2). The model is implemented in 
MATLAB and was available in the research group 
when we started the project.  

2.4 Design Space Identification (DSI)  

The design space (DS) considered in this study is the 
feasible operating region where the constraints 
𝑃𝑈𝐶𝑂2 ≥ 95% and 𝑅𝐸𝐶𝑂2 ≥ 90% are met. Design 
space visualisation thus allows the identification of 
operating points that satisfy or violate the 
constraints. This provides insight into the process 
flexibility prior to carrying out expensive 
experimental study.19,23  

A concave hull, alpha shape, is used to construct 
the design space boundary containing the set of 
feasible operating points. Alpha, α is an important 
parameter that dictates how fine/tight the shape is. 
The shape is convex hull as α→∞ and consists of 
disjointed points for α = 0.24 Bisection method is 
employed to search for the optimal value for α. 
Starting with a large α value, the DS shape contains 
points that violate constraints. The value of α is then 
reduced to tighten the boundary until there are no 
violations. This ensures that we can obtain the 
biggest space possible without any violations with 
respect to the change in α tolerance. The DSI tool 
developed in Python allows us to visualise and 
quantify the DS for an input space with up to three 
dimensions. The AOR for a given NOP within the 
DS is identified using the tool. This determines the 
maximum allowable variations in the input 
operating parameters (PI and PL) under which the 
CO2 purity and recovery constraints are still satisfied 
during nominal operation. The size of the DS and 
AOR as well as the relevant quantitative metrics can 

also be extracted. The Python DSI tool was available 
in the research group when we started the project.  

3. Results 

3.1 Pareto Fronts and Trade-offs between 
KPIs  

A Pareto front is a non-dominated set of solutions 
representing the best available trade-off between 
conflicting objectives.25 Using the approach 
described in Section 2, we obtained the CO2 
recovery and purity of each operating point. The 
trade-off in maximising the purity and recovery 
resulted in the Pareto fronts as shown in Figure 4a. 
The circles represent the different operating points 
of the Pareto fronts, and the green arrows indicate 
the optimal direction of trade-offs. It can be 
observed that there is no significant difference 
between the purity and recovery Pareto fronts of the 
adsorbents. 

Working capacity and energy usage are 
commonly used as proxies for assessing the 
economic potential of the adsorption process.8,12 
Once the purity-recovery constraints are imposed, a 
Pareto front obtained by maximising working 
capacity while minimising energy usage was plotted 
for each adsorbent. From Figure 4b, we can see that 
UTSA-16 provides the best energy usage/working 
capacity trade-off while meeting the product 
constraints. Zeolite 13X and Mg-MOF-74 have 
similar Pareto front behaviours and are suboptimal 
relative to UTSA-16.  

(a) 

 
(b)  

 
Figure 4. (a) Recovery/purity Pareto fronts and (b) constrained 
energy usage/working capacity Pareto fronts for zeolite 13X (blue 
lines), Mg-MOF-74 (yellow lines) and UTSA-16 (purple lines). 
The circles represent the different operating points of the Pareto 
front. The green arow indicates the optimal direction of trade-off. 
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3.2 Design Space and Process Flexibility  

The flexibility of the process using different 
materials was assessed and visualised using the DSI 
framework described in Section 2.4. The resulting 
purity and recovery design spaces for the benchmark 
material, zeolite 13X are shown in Figure 5. The 
black boundary outlines the DS within which the 
operating conditions satisfy the constraints 𝑃𝑈𝐶𝑂2 ≥
95% and 𝑅𝐸𝐶𝑂2 ≥ 90%. The DS shapes and heat 
maps obtained for Mg-MOF-74 and UTSA-16 were 
found to exhibit similar behaviour.  

The DS shape is rectangular with a very large 
length to width ratio, i.e., range of PI to PL. It is also 
confined by the lower bound of PL and upper bound 
of PI. It can be observed that the recovery constraint 
is harder to satisfy than the purity constraint, as most 
of the operating points that meet the recovery target 
are only found in the DS. This is not the case for 
purity, as suggested by the yellow region 
(representing near 100% purity) outside the DS on 
Figure 5b. 

(a) 

 
(b) 

 
Figure 5. Design space for the benchmark adsorbent, zeolite 13X 
using (a) recovery as heat map and (b) purity as heat map. The 
black boundary outlines the design space.  

In Figure 6, the DS overlayed with a heat map of 
working capacity (a-c) or energy usage (d-f) is 
shown. Using the DSI package (Section 2.4), we 
found the NOP with the largest AOR for each 
material. The NOP is indicated in the DS by the 
cross and the AOR is defined by the dashed 
rectangle. The maximum and minimum values of 
the colour bar scale were chosen corresponding to 
the maximum and minimum KPI values within the 
DS for each adsorbent. Since UTSA-16 offers an 

energy usage that is significantly lower than the 
other materials, a colour gradient would not be 
visible if the same scale were used for all three 
materials. The red and black points indicate values 
that are out of the range shown on the scale. The 
finding that UTSA-16 has the lowest energy usage 
(Figure 6f), agrees with the result from the 
constrained Pareto front (Figure 4b). The colour 
gradient of the heat map shows the rate of change of 
KPIs with respect to different operating conditions. 

Despite exhibiting similar DS shapes, the DS 
sizes vary between adsorbents. It is the largest for 
UTSA-16, followed by zeolite 13X and Mg-MOF-
74. The NOPs that yield the largest possible AOR 
are the same for Mg-MOF-74 and UTSA-16 at 
around PL = 0.013 bar and PI = 0.846 bar, whereas 
the NOP for zeolite is at the same PL but at a lower 
PI of 0.611 bar. The heat maps for both working 
capacity and energy usage in the DS are also 
comparable for all adsorbents.  

4.0 Discussion 

4.1 Pareto Fronts 

As seen in Figure 4a, the purity/recovery Pareto 
fronts for all three materials meet the 𝑃𝑈𝐶𝑂2 ≥ 95% 
and 𝑅𝐸𝐶𝑂2 ≥ 90% constraints, implying that they 
are all suitable for postcombustion carbon capture 
process. Despite having different CO2 adsorption 
isotherms (Figure 1a), the three materials show 
similar purity/recovery Pareto fronts, which is in 
agreement with the literature.12,26 This is observed 
because we pre-selected three materials that push the 
four-step VSA cycle to operate at its best 
performance. Typically, the purity/recovery Pareto 
behaviour would differ between materials.8,20,27 Our 
selection of adsorbents for screening yielded similar 
results using the classical approach, highlighting the 
need for screening based on energy usage, working 
capacity and process flexibility. 

Energy usage and working capacity are key in 
assessing the process economics, as the former is 
proportional to the operating cost (OPEX) and the 
latter is inversely proportional to the capital 
expenditure (CAPEX). The energy usage/working 
capacity Pareto fronts (Figure 4b) for zeolite 13X 
and Mg-MOF-74 are very close to each other even 
though Mg-MOF-74 has almost double the CO2 
affinity of zeolite 13X (Figure 1a). The similarity 
between the energy usage/working capacity Pareto 
fronts for zeolite 13X and Mg-MOF-74 implies that 
their volumetric-based capacities could be 
comparable despite having very different mass-
based adsorption capacities. It is noted that UTSA-
16 provides the best economic potential while 
meeting the purity-recovery constraints. Moreover, 
it is observed that the optimality of the Pareto 
solutions of the materials are correlated with the 
linearity of their adsorption isotherms. Working 
capacity is defined as the difference between 
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(a)  Zeolite 13X (b)  Mg-MOF-74 (c) UTSA-16 

   
(d)  Zeolite 13X (e)  Mg-MOF-74 (f)  UTSA-16 

   
Figure 6. Design space with working capacity as heat map for (a) zeolite 13X, (b) Mg-MOF-74, (c) UTSA-16, and the design space with 
energy usage as heat map for (d) zeolite 13X, (e) Mg-MOF-74, (f) UTSA-16. The cross represents the NOP and the dashed rectangle represents 
the AOR. 

equilibrium loading at PI and PL. In contrast to 
nonlinear isotherms, a linear isotherm allows 
reasonable values of PI and PL to be chosen to 
effectively evacuate CO2 and achieve a high 
working capacity. The vacuum pumps would 
consume less energy when operating under less 
extreme conditions. The fact that UTSA-16 requires 
the least energy to achieve the product targets 
suggests that materials with a low N2 affinity are 
desirable. 

4.2 Purity/Recovery Design Space 
Design spaces were identified and studied to 
evaluate the process robustness and flexibility. As 
mentioned in Section 3.2, the DS defined based on 
the purity-recovery constraints for the three 
materials are similar in shape due to their similar 
purity-recovery performance. Furthermore, the tall 
and rectangular shape of the DS suggests there is 
less flexibility in manipulating PL than PI. This is 
because PL governs the evacuation step and thus the 
recovery of CO2. A close examination of Figure 5a 
shows that there are fewer operating conditions that 
meet the recovery target, indicating that recovery is 
the stiffest constraint. Once PL is specified to 
achieve the required working capacity and recovery 
target, purity can be tuned accordingly by 
manipulating PI based on the N2/CO2 adsorption 
isotherms. PI should be low enough to remove 
sufficient N2 for high product purity without 
compromising the recovery. The purity constraint 
must be met for downstream geological storage to 
be feasible, whereas the recovery target is a 
recommendation of the DoE. The fact that the purity 
constraint is less stiff implies that even if the system 
operates slightly outside of DS, the purity target can 
still be met, keeping the CCS process feasible. 
Furthermore, the DS is located near the lower bound 
of PL in order to meet the recovery target, which 

would result in a higher OPEX due to the vacuum 
pumps in the evacuation step.  

The heat maps on Figure 5 allow us to assess 
how the system responds to changes in operating 
conditions with respect to the KPIs. The colour 
gradients indicate a higher dependency of purity on 
PI, which dictates the amount of N2 removed during 
the blowdown step. PL has a more significant 
influence on recovery, as it governs the evacuation 
of CO2. This is further supported by the results from 
the Sobol indices (Figure 7). Sobol method is a 
global sensitivity analysis tool for assessing process 
design heuristics. We calculated the Sobol indices 
using the SobolGSA tool28 based on the 3915 
operating conditions (after the data cleaning step) 
and the corresponding KPI values. First order 
indices show the most influential manipulated 
variables (PL and PI) towards a certain KPI. Second 
order indices correspond to the interactions between 
the manipulated variables. The first and second 
order indices sum up to one as proof of convergence. 
We can see that both purity and recovery are 
predominantly controlled by PI and PL respectively, 
further reinforcing the difficulty in optimising both 
purity and recovery. The same conclusion can be 
drawn for working capacity and energy usage.  

Despite recovery being the stiffest constraint, as 
mentioned earlier, it is interesting to note that within 
the DS, recovery is invariant to the position of the 
operating point, whereas a higher purity can be 
achieved at a lower PI. 

4.3 Energy Usage/Working Capacity Design 
Space 
The purity/recovery design spaces provide an initial 
understanding of the feasibility of the system to 
meet the CCS targets under different operating 
strategies, showing that all three materials offer 
promising carbon capture performances. However, 
further screening of materials should be based on
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Figure 7. First order effect Sobol indices for purity, recovery, working capacity and energy usage for zeolite 13X (blue), Mg-MOF-74 (yellow) 
and UTSA-16 (purple). The filled bar corresponds to PL and the patterned bar corresponds to PI. 

working capacity and energy usage, KPIs that 
govern process economics. We can easily observe 
the conflict in maximising working capacity and 
minimising energy usage and the trade-off that must 
be made from the colour gradients in Figure 6. As 
we operate away from the left of the design space, 
both energy usage and working capacity decrease. 
During practical operation, around 90% of the 
overall capture cost is typically attributed to 
electricity costs.21 It is therefore desirable to operate 
at the right-hand side of the design space, i.e., at 
higher PL, to minimise energy usage and costs. 
However, operating close to the design space 
boundary is done at the expense of process 
flexibility, indicating there is an inherent trade-off 
between process controllability and economics.  

The colour gradient for working capacity 
changes in the direction of increasing PL, but this is 
not the case for PI (Figure 6a-c). This reinforces the 
fact that the working capacity is predominantly 
controlled by PL and that the evacuation of CO2 is 
primarily dependent on the depth of the vacuum 
swing. This result is in line with the Sobol indices. 
The heat maps for energy usage in Figure 6d-f are 
similar to those for working capacity, but there is 
also mixing of colours as PI increases at a fixed PL. 
Energy usage is therefore affected by both PI and PL, 
with the latter having the greater impact, agreeing 
with the fact that OPEX is dictated by the evacuation 
step. However, Sobol indices show that PI has a 
dominant influence on energy usage. This could be 
attributed to the constraint imposed in BAAM to 
ensure PI > PL, such that the values of feasible PL are 
governed by PI. Indeed, the ranges of allowable PL 
and PI overlap and the range of PI is much larger than 
the range of PL (Table 1). This means that having a 
low PI can effectively eliminate a high proportion of 
possible PL values, but the converse is not true. PI 
thus dominates PL.  

4.4 Overall Performance Comparison 
Between Adsorbents 
Table 2 shows the proportion of operating points out 
of the 3915 samples (after the data cleaning step) 
located within the design space and the design space 
size. The metric values for the benchmark material, 

zeolite 13X are reported in absolute terms and Mg-
MOF-74 and UTSA-16 are normalised with respect 
to zeolite 13X. We can note that UTSA-16 is 
superior in both DS metrics, offering the largest 
feasible region of operation. 

Table 2. Design space metrics for the three materials. Absolute 
values for zeolite 13X are shown. Values for Mg-MOF-74 and 
UTSA-16 are normalised relative to zeolite 13X.  

DS metrics 

Zeolite 
13X 

Mg-
MOF-74 

UTSA-
16 

Absolute Relative 
to zeolite 

Relative 
to zeolite 

DS size 0.004 bar2 0.857 1.080 
Proportion 
of samples 

in DS 
6.13% 0.892 1.096 

As shown in Table 3, all materials perform 
similarly in terms of purity and recovery and 
meeting the product targets. UTSA-16 offers the 
highest working capacity and the lowest energy 
usage on average within the DS, indicating that 
UTSA-16 not only provides the largest feasible 
operating region but also the best process-scale 
performance across all KPIs. Mg-MOF-74 
consumes more energy than the benchmark but 
offers a higher working capacity on average. The 
average energy usage obtained with this pipeline is 
in the same order of magnitude as the values quoted 
in the literature for a typical carbon capture plant 
(~250 – 380 kWh/tonne).29, 30, 31 

Table 3. Average values of purity, recovery, working capacity 
and energy usage of the three materials within the design space. 
Absolute values for zeolite 13X are shown. Values for Mg-MOF-
74 and UTSA-16 are normalised relative to zeolite 13X. 

Average 
KPI in 

DS 

Zeolite 
13X 

Mg-
MOF-74 UTSA-16 

Absolute Relative 
to zeolite 

Relative 
to zeolite 

Purity 98.861 % 0.992 0.997 
Recovery 91.859 % 0.999 1.001 
Working 
Capacity 

1930.202 
mol/m3 1.066 1.105 

Energy 
Usage 

320.197 
kWh/tonne 1.056 0.673 

PI PL 
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The DS metrics allow us to assess the range of 
possible operating strategies, whereas the KPI 
metrics give insight on which adsorbent offers the 
best process-scale performance. However, once a 
nominal operating point (NOP) is chosen in the 
design space, operation flexibility centred around 
that point can be assessed through the acceptable 
operating region (AOR). The process using UTSA-
16 has the largest resulting AOR width, i.e., the 
range of possible PL, at 0.00637 bar, followed by 
zeolite 13X at 0.00584 bar and Mg-MOF-74 at 
0.00553. UTSA-16 therefore offers the most flexible 
operation. This is, however, a very small acceptable 
pressure variability, suggesting the VSA process is 
virtually inflexible.   

Overall, UTSA-16 is the best in terms of DS 
metrics, all four KPI values and flexibility around 
the NOP. Mg-MOF-74 does not offer any significant 
process improvement to the benchmark adsorbent 
zeolite 13X. A similar conclusion is drawn in the 
literature.12 

5.0 Conclusion 
The aim of this work was to design a vacuum swing 
adsorption (VSA) cycle for the carbon capture of 
post-combustion flue gas by assessing the process 
performance and flexibility for different adsorbents 
and operating conditions. The current literature 
focuses on the use of computationally expensive 
modelling of the VSA process while neglecting 
flexibility in operation. We developed a novel 
pipeline that links an equilibrium-based model with 
a design space identification (DSI) framework. The 
pipeline completes the simulations and outputs 
graphical solutions within 15 minutes per material, 
which is significantly faster than a detailed dynamic 
model that requires several days of computational 
time7. Using this pipeline, we assessed the 
performance of zeolite 13X, Mg-MOF-74 and 
UTSA-16 in terms of the purity (%) and recovery 
(%) of the CO2 product stream, the CO2 working 
capacity of the bed (mol/m3) and the specific energy 
usage (kWh/tonne) as well as the flexibility of the 
system.  

It was found that all three materials meet the 
purity and recovery constraints given by the US 
Department of Energy (DoE). However, working 
capacity, energy usage and flexibility should be used 
as the key figures of merit for adsorbent screening, 
as the purity/recovery Pareto fronts and design 
spaces are similar for all materials. The tall and 
narrow shape of the design space (DS) indicates that 
there is less flexibility in manipulating PL than PI to 
achieve the product targets due to the stiffer 
recovery constraint. The results from the DSI 
analysis suggest that purity is governed by PI while 
recovery, working capacity and energy usage are 
governed by PL. The effect of the operating 
conditions on these KPIs was further assessed using 

Sobol indices, highlighting the complexity in 
designing and optimising the VSA process. 
Minimising the energy usage should be prioritised 
as it governs the overall carbon capture costs, which 
could be achieved by operating at the right-hand side 
of the DS, i.e., at a higher PL. However, operating 
nearer to the design space boundary would 
compromise process flexibility, implying that the 
process would be more difficult to control in 
practical operations. Comparing the performances 
given by the three materials, UTSA-16 is the best in 
terms of the design space metrics, KPI values and 
flexibility around a nominal operating point. Mg-
MOF-74 does not offer any significant process 
improvement to the benchmark adsorbent zeolite 
13X. 

The pipeline developed is a valuable tool for 
rapid initial adsorbent screening prior to 
experimental studies. More importantly, it allows us 
to consider process flexibility in an early design 
stage, which is an aspect often unaccounted for in 
the literature for VSA process design. Given that 
process flexibility is an important element in 
understanding the controllability and robustness of a 
process, further work in designing VSA should 
focus on addressing the trade-off between process 
flexibility and economics instead of choice of 
materials. A detailed technoeconomic analysis could 
be coupled with DSI to visualise how changing the 
nominal operating point (NOP) and acceptable 
operating region (AOR) would affect the overall 
capture cost, thereby achieving the expected 
economic performance even when disturbances 
occur. The pipeline we presented in this work is thus 
an effective tool in designing a robust and flexible 
adsorption-based carbon capture system. 
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Abstract 

Lead-free halide perovskites were seen to be promising photocatalysts due to their non-toxicity, reasonable stability 
and good solar efficiency. In this paper, lead-free ternary perovskites caesium bismuth bromide (Cs3Bi2Br9) and double 
halide perovskite caesium sliver bismuth bromide (Cs2AgBiBr6) were synthesised under different crystallisation times 
using the anti-solvent crystallisation method and compared in their performances of photocatalytic reduction of CO2. 
One aim of this study was to achieve the correct synthesis as the synthesis of Cs2AgBiBr6 was known to be challenging. 
Further characterisations of perovskite crystals were taken using X-ray diffraction (XRD), scanning electron 
microscopy (SEM) and ultraviolent-visible (UV-VIS) spectrophotometer. Crystals were dispersed on half of the quartz 
filter and transferred into the reactor, the reaction was taking place under the light intensity that equalled to one sun. 
The production of CO was measured after one hour using a gas chromatograph (GC), which indicated the 
photocatalytic performance. It was discovered that the double halide perovskite synthesis was not as ideal due to 
degradation and the best performance appeared in the Cs3Bi2Br9 crystals under one minute crystallisation time which 
produced 4.65 !"#$	&!"	ℎ!" CO. 

Keywords: Lead-free halide perovskites, semiconductor, photocatalysis, CO2 reduction 

 

1 Introduction and Background 

Energy shortages have always been a global concern 
in recent days. In 2021, wholesale electricity prices in 
the European Union (EU) soared, and the prices of 
natural gas and coal rose quite a lot at the same time1. 
However, the demand for fossil fuels is still huge 
accounts for 82% of primary energy use in 20212. With 
no doubt, global fossil CO2 emissions rebounded, it 
increased by 5.3% in comparison to 2020, reaching 
37.9 Gt CO23. As the Secretary-General stated at the 
conclusion of COP 27, the world needs to massively 
invest in renewables and end the addiction to fossil 
fuels4. 

Solar fuels have therefore received an extremely high 
level of public attention as the most economically 
viable, efficient, and environmentally friendly 
alternative to fossil fuels. One possible approach to 
producing solar fuels is “artificial photosynthesis”. 
Similar to natural photosynthesis in plants where 
glucose is produced from water and carbon dioxide 
under sunlight, energy-poor molecules (H2O and CO2) 
are converted to energy-rich ones5. This is also known 
as the photocatalytic reduction of CO2. Under the 
catalysation of semiconductor photocatalyst CO, 

methanol (CH3OH), methane (CH4), formic acid 
(HCOOH) and etc. can be produced. Metal oxides 
such as TiO2, MgO, ZnO and WO3 are common 
photocatalysts used in the photocatalytic conversion of 
CO2, they have been studied for years and used in the 
industry6. Among all, TiO2 is the most favoured choice 
as it is economical, non-toxic, and stable. However, 
the solar absorption of TiO2 is actually very poor as it 
possesses a band gap of ~3.1 eV, absorbing ultraviolet 
light only7. There appears to be a strong desire of 
developing new semiconductor photocatalysts with 
better light absorption. Materials with lower band gaps 
are pursued so that visible light can be absorbed.  

A perovskite is a material that has the same cubic 
crystal structure as the mineral CaTiO3, following the 
chemical formula ABX3. ‘A’ and ‘B’ represent 
metallic cations and ‘X’ is an anion that bonds to both8. 
Researchers first discovered the method to make a 
stable, thin-film perovskite solar cell with light 
photon-to-electron conversion efficiencies over 
10%, using lead halide perovskites as the light-
absorbing layer in 2012, the efficiency grew 
impressively to 25.2%8. Since then, metal halide 
perovskites gradually became very popular 
semiconductors to be used in various optoelectronic 
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fields as they have tuneable band gaps, long carrier 
diffusion lengths, high carrier mobilities and 
extraordinary tolerance of defects9. These are all 
characteristics that also make MHPs suitable catalysts 
for photocatalysis.  

CsPbBr3, as one of the typical representatives of 
MHPs, has been demonstrated as the promising 
photocatalyst for visible-light-driven photocatalytic 
CO2 reduction since the stability of CsPbBr3 was 
found to be quite high due to excellent PLQY 
(Photoluminescence Quantum Yield)10. However, 
research showed that the lead from halide perovskite 
was found to be more dangerous as its ten times more 
bioavailable compared to other resources of lead 
contamination that already appeared under the 
ground11. The toxicity of lead is always seen as the 
most serious concern for LHPs to be used widely. In 
recent days, more researchers spot on replacing lead in 
MHPs with metals like Tin (Sn), Bismuth (Bi) and 
Antimony (Sb)12. In the solar cell field, it is estimated 
that bismuth-based cells could convert light into 
energy at efficiencies of up to 22%. Bismuth is thus 
considered to be a suitable non-toxic alternative to 
lead in halide perovskite13. 

In this research, two Pb-free halide perovskites 
Cs3Bi2Br9 and Cs2AgBiBr6 (double perovskite) were 
used as the catalysts in CO2 photocatalytic reduction. 
Cs3Bi2Br9 is a yellow crystal with a regular perovskite 
structure with Cs+ ions in the centre of the 
cuboctahedron interstices. Cs2AgBiBr6 is orange and 
has a slightly different cubic structure that is built of 
alternating B’ and B’’ centred octahedrons of B’X6 
and B’X6 in a 3D framework known as rock salt 
ordering14. Cs2AgBiBr6 has a lower band gap of 1.8-
2.2 eV15. However, the synthesis of double perovskites 
is known to be more challenging. Hence, one aim of 
this experiment was to obtain the correct products. The 
synthesis also underwent four different crystallisation 
times (1 min, 15 mins, 30 mins, and 60 mins). The CO2 
photocatalytic reduction performances of eight 
samples were measured and compared. The best result 
appeared in Cs3Bi2Br9 samples with one minute 
crystallisation time as it displayed the highest average 
CO production. 

 

2 Experimental Methodology 
2.1 Materials 

Caesium bromide (CsBr), bismuth bromide (BiBr3), 
silver bromide (AgBr), dimethyl sulfoxide (DMSO) 
and 2-propanol (IPA) were purchased from Sigma 
Aldrich. All the chemicals in this experiment were 
used without further purification. Precursors which are 
sensitive to water were kept in glove box and only a 
small amount was taken off before each synthesis. 

 

2.2 Anti-solvent Crystallisation Synthesis 

This experiment tried to produce Cs3Bi2Br9 and 
Cs2AgBiBr6 by the following two reaction, 

3CsBr + 2BiBr3 → Cs3Bi2Br9	
2CsBr + BiBr3 + AgBr → Cs2AgBiBr6 

According to stoichiometry, 0.2078 g of CsBr and 
0.2922 g of BiBr3 were dissolved in 5 ml of DMSO 
respectively in two separate small tubes. DMSO, an 
anhydrous solution, was extracted using shlenk line 
with nitrogen. These two tubes were placed on a 
magnetic stirrer for 30 min at a stirring speed of 600 
rpm to ensure all bromides were fully dissolved. 
Afterwards, two tubes were mixed and placed on a 
magnetic stirrer for another 30 min at 600 rpm. The 
neck of a 500 ml round flask containing 250 ml of IPA 
was clamped by an iron stand to make its bottom just 
touch the surface of a magnetic stirrer which operated 
at 400 rpm to create a stable vortex. The bromide-
DMSO mixture was injected into the already vortexed 
IPA and crystallised for 1 min. The obtained solution 
was added into six centrifuge tubes and centrifuged at 
10100 rpm for 2 min. After each centrifugation, the 
clear waste solution was emptied and more previous 
obtained solution was added and centrifuged until all 
solution was used up. The crystals left in the tubes 
were rewashed with anhydrous IPA for three times. 
Anhydrous IPA was extracted using shlenk line with 
nitrogen as well. All above procedures were repeated 
for different crystallisation times (15 min, 30 min and 
60 min). 

0.2004 g of CsBr, 0.0884 g of AgBr and 0.2112 g of 
BiBr3 were dissolved in 5 ml, 10 ml and 5 ml of 
DMSO respectively in three separate small tubes. 
Followed by same procedures written above. 

Eight samples were synthesised in total which are 
going to be abbreviated as CBB 1 min, CBB 15 min, 
CBB 30 min, CBB 60 min, CSBB 1 min, CSBB 15 
min, CSBB 30 min and CSBB 60 min in this paper. 
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CBB stands for the ternary perovskite (Cs3Bi2Br9) and 
CSBB stands for the double halide perovskite 
(Cs2AgBiBr6). 

 

2.3 Characterisation 

Chemical component quantities were determined by a 
SHIMADZU GC-2030 gas chromatograph (GC). 
Detailed operations are going to displayed in Section 
2.4. Scanning electron microscopy (SEM) images 
were taken using a ZEISS AURIGA Cross Beam at 5 
kV after coating the samples with a layer of chromium 
(15 nm). The samples were prepared by dispersing the 
powder on silicon wafers to ensure a homogenous 
dispersion. X-ray diffraction (XRD) was conducted 
using an Xpert Pro PANalytical diffractometer 
operating at 40 kV voltage and 40 mA current using 
Cu K( (l ¼ 0.15418 nm) radiation in the 2) range. 
Reflectance and absorbance spectra were collected 
with a SHIMADZU UV-2600 ultraviolent-visible 
(UV-VIS) spectrophotometer. 0.25 mg of each sample 
was diluted with 600 mg of barium sulfate, grinded 
using a mortar and pestle to make them homogeneous 
until only one colour was seen. 

 

2.4 Photocatalytic Tests 

A small amount of sample powders was dissolved in 2 
ml of anhydrous IPA and then drop cast onto a quartz 
filter as even as possible to avoid sample 
agglomeration. The quartz filter was heated on a hot 
plate for 15 min to get rid of residual IPA. The sample 
mass was controlled around 0.8 mg to 1.2 mg. Then, 
the quartz filter was transferred to the reactor with 40 
!$ of water drops added away from the sample. The 
reactor used could contain 20 ml gas and quartz glass 
window was used to allow the full solar spectrum to 
reach the surface of the sample. The glass was cleaned 
with Kimtech Science Precision Wipes and DI water 
every time before and after the reaction. 

Keeping the valve to GC closed, the reactor was 
evacuated with the vacuum pump to get rid of any gas 
in the pipes. CO2 was pumped into the reactor slowly 
and the flowrate was gradually increased to maximum 
(50 ml/min). When the pressure went back to zero, the 
valve to GC was opened and the flowrate was turned 
to 10 ml/min for 15 min. After 15 min, a before-
reaction GC measurement was taken, the gas flow was 

stopped and the valves before and after the reactor 
were closed. 

After another 15 min, the light was turned on for one 
hour. AM 1.5G light was used with an intensity of 100 
"*/,"# which was equal to one sun. After one hour, 
the valves before and after the reactor were opened and 
carbon dioxide was pumped in at 5 ml/min for 2.5 min. 
An after-reaction GC measurement was taken 
immediately after 2.5 min. 

All above procedures were repeated three times for 
each sample. 

 

3 Results and Discussion 
To check if the desired perovskites were synthesised 
correctly, to have a picture of what the morphology of 
crystals was, to figure out the differences in band gaps 
and light absorption abilities, and to test the 
performances in photocatalytic of CO2 reduction to 
CO, all eight samples were analysed by XRD, SEM, 
UV-Vis and GC and the results will be discussed in 
this section. 

3.1 XRD 

The XRD patterns of Cs3Bi2Br9 synthesised in 
different crystallisation times are shown in Figure 1(a). 
All of the peaks in the XRD patterns of these four 
crystallisation times were identical to a standard PDF 
card (PDF #44-0714 from JADE 6.0) The values of 
FOM of Cs3Bi2Br9 on reports produced by JADE 6.0 
were all smaller than 2. This revealed a very successful 
synthesis of Cs3Bi2Br9 crystals. There was also a 
strong interest in the effect of varying crystallisation 
time on crystallite size.  The crystallite size ‘-’ of a 
material can be defined by the Scherrer equation for 
the line broadening of the peak, 

- = /0
1 cos ) 

where ! is the wavelength of the X-ray; ", FWHM 
(the full width at half maximum) of the diffraction 
peak; # , diffraction angle; and $ , constant16. The 
crystallite size is inversely proportional to the 
FWHM, hence, a smaller FWHM indicates a more 
crystalline structure. 

Taking the (0,2,2) plane at 31.681° as an example, 
the FWHM values of each crystallisation time are 
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listed below. The FWHM values were all provided 
by Peak Search Report from JADE 6.0. 

Table 1: FWHM values summary 

Sample FWMH (Degree) 
CBB 1 min 0.202 
CBB 15 min 0.177 
CBB 30 min 0.179 
CBB 60 min 0.197 

 

Decreasing FWHM values from CBB 1 min to CBB 
15 min implied that there was a growth of crystallite 
size in the (0,2,2) plane as time went on during the 
synthesis. Similar FWHM values were gained for 
CBB 15 min and CBB 30 min, yet grew up again to 
0.197 for CBB 60 min sample. It was suspected that 
sometime after 15 min, there might be degradation 
of perovskite happening as the synthesis was taking 
place in the air. Degradation of perovskite could be 
affected by many different environmental factors 
like moisture, heat, UV and etc17. It caused 
chemical instability and some research showed that 
there was a clear decrease in the XRD peaks 
intensity and crystal size after exposing the 
perovskite sample to air17. As the IPA used in the 
synthesis was not anhydrous and the reaction was 
taking place in the air, there was a strong possibility 
of degradation. CBB 60 min sample was indeed 
suspected to be degrading as its (0,2,2) peak was 
obviously shorter than that of CBB 30 min, with the 
value of FWHM increasing at the same time. 

 
Figure 1(a): XRD pattern of Cs3Bi2Br9 

The XRD patterns of Cs2AgBiBr6 synthesised in 
different crystallisation times are shown in Figure 1(b). 
As compared to Figure 1(c), a Cs2AgBiBr6 XRD graph 

in another research, the XRD in this work was not very 
identical so further actions should be taken to find out 
the impurities. It was also discovered that after 1 min, 
three new peaks appeared at 30.944°, 44.328°and 
55.039°, indicating the (2,0,0), (2,2,0) and (2,2,2) 
planes respectively. These were all peaks appeared in 
XRD patterns of AgBr. Hence, it was suspected that 
after 1 min, CSBB started to degrade and therefore 
AgBr appeared. 

 

Figure 1(b): XRD pattern of Cs2AgBiBr6 

 

Figure 1(c): Reference and experimental XRD pattern of 
Cs2AgBiBr618 

 

3.2 SEM 

The representative SEM of images of all eight samples 
were shown in Figure 2(a) for CBB and Figure 2(b) 
for CSBB. For Cs3Bi2Br9 crystals, the largest size that 
a single crystal could grow increased slightly as the 
crystallisation time increased. However, the crystal 
size of four Cs3Bi2Br9 samples was relatively similar 
but rough in general, with CBB 1 min sample 
displaying the finest crystal size among all. An 
increasing number of small crystals were seen to stick 
to those large ones as time passed. A reasonable guess 
of the mechanism could be made that small crystals 
will appear first, and then gather to grow into larger 
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crystals. However, the crystal size of the CBB 60 min 
sample became smaller, and that furtherly proved the 
guess of degradation taking place when crystallisation 
time increased. As discussed in the XRD 
characterisation part, the degradation of CBB was 
suspected to take place at a time after 15 minutes and 
for sure the CBB 60 min sample had degraded. 

 

Figure 2(a): CBB SEM images (Mag = 30.00 K X) 

Cs2AgBiBr6 crystals were more than twice as big as 
Cs3Bi2Br9 crystals. The largest size appeared in CSBB 
60 min sample, reaching 1.56 !" . In contrast to 
Cs3Bi2Br9, the crystal structures of Cs2AgBiBr6 were 
obviously well-defined and a clear growing trend 
could be identified as the crystallisation time increased. 
This change can be proved furtherly by Figure 3 that 
Cs2AgBiBr6 powders became darker under longer 
crystallisation time. 

 

Figure 2(b): CSBB SEM images (Mag = 30.00 K X) 

 

Figure 3: Photo of four CSBB samples where colour differences 
were clearly seen 

 

3.3 UV-Vis 

Since UV-Vis spectroscopy probes electronic 
transitions between valance band and conduction band, 
it is a convenient way for analysing the band gaps for 
semi-conductors19. 

3.3.1 Band Gaps Calculations Based on 
Reflectance Spectra 

The minimum energy difference between the top of 
the valence band and the bottom of the conduction 
band is understood as the band gap. For a direct band 
gap semiconductor, the maximum energy of valence 
band and the minimum energy of the conduction band 
occur at the same value of momentum; for an indirect 
band gap semiconductor, they do not occur at the same 
value of momentum. Figure 4 simply explains why the 
value of an indirect band gap is always smaller than 
the value of a direct one. 

  

Figure 4: Direct and indirect band gaps20 

The energy-dependent absorption coefficient, (, can 
be expressed by the following equation, 

(( ∙ ℎ7)" $⁄ = 9:ℎ7 − <&= 
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where ℎ  is the Planck constant, 7  is the photon’s 
frequency, 9  is a constant and <&  is the band gap 
energy. > is equal to 1/2 for direct transition band gap 
and 2 for indirect transition band gap. 

The Tauc plot of the Kubelka-Munk function was 
applied to estimate both direct and indirect band gap 
transitions of CBB and CSBB from their reflectance 
spectra (Figure 5(a) and Figure 6(a)). ?(@) is known 
as Kubelka-Munk function which is equal to, 

?(@) = A
B =

(1 − @)#
2@  

where A is the molar absorption coefficient, B is the 
scattering coefficient and @ is the diffused reflectance 
of material, @ = %(

")) . Barium sulfate was used as a 
reference for the reflectance spectra so the @  value 

mentioned in the above equation was actually taken to 
be the ratio of @*+,-./ @0+12!⁄ . 

By replacing ( with ?(@) and substituting back to the 
first equation, the following equation was obtained, 

(?(@) ∙ ℎ7)" $⁄ = 9:ℎ7 − <&= 

Graphs with ℎ7  as the x-axis and (?(@) ∙ ℎ7)" $⁄  as 
the y-axis were plotted for each sample. Taken > =
1 2⁄ , the x-intercept of the extension of the linear 
region and the x-axis was the direct band gap (Figure 
5(b) and Figure 6(b)). Taken > = 2, it was hard to 
identify the linear region (Figure 5(c) and Figure 6(c)). 
Therefore, two points lie on the steepest region were 
chosen, the x-intercept of the line pass through those 
two points and the x-axis was calculated to be the 
indirect band gap. The results are summarised in Table 
2(a) and Table 2(b). 

   
Figure 5(a): CBB reflectance spectra; Figure 5(b): CBB direct band gap; Figure 5(c): CBB indirect band gap 

   
Figure 6(a): CSBB reflectance spectra; Figure 6(b): CSBB direct band gap; Figure 6(c): CSBB indirect band gap 

Table 2(a): CBB band gaps summary 

Sample Direct Band Gap 
(eV) 

Indirect Band Gap 
(eV) 

1 min 2.695 2.6334 
15 min 2.685 2.6174 
30 min 2.680 2.6104 
60 min 2.700 2.6186 

 

Table 2(b): CSBB band gaps summary 

Sample Direct Band Gap 
(eV) 

Indirect Band Gap 
(eV) 

1 min 2.350 2.1782 
15 min 2.340 2.1687 
30 min 2.340 2.1607 
60 min 2.360 2.1735 
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3.3.2 Band Gaps Analysis Based on 
Absorbance Spectra 

As mentioned in Section 3.2, a darker colour was seen 
for CSBB samples with a longer crystallisation time. 
It was actually same for CBB but the colour 
differences were less obvious than what could be 
distinguished by eyes compared to CSBB (Figure 7). 
Based on these observations, it was imagined that a 
darker-coloured sample with a longer crystallisation 
time would absorb more light and have a lower band 
gap. However, there was not a tremendous decrease in 
the band gaps, even the direct band gaps’ of CBB 60 
min and CSBB 60 min were slightly higher than those 
of CBB 1 min and CSBB 1 min. Meanwhile, it was 
hard to conclude a trend in band gaps’ change as the 
direct band gaps’ difference of CBB 1 min and CBB 
60 min was only 0.005 eV and that of CSBB 1 min and 
CSBB 60 min was only 0.01 eV; similarly, the indirect 
band gaps’ differences were only 0.0148 eV and 
0.0047 eV respectively. 

 

Figure 7: Photo of samples where colour differences were seen 

As this experiment aiming at exploring perovskite 
semiconductors better at absorbing light in the visible 
range, 380 nm to 700 nm range in the absorbance 
spectra (Figure 8) will be focused more in this section. 
CSBB samples absorbed a wider range of visible light 
than CBB samples. This was also verified by 
calculations that both direct and indirect band gaps of 
CSBB were lower than those of CBB. 

 
Figure 8: Absorbance spectra of CBB and CSBB 

Nevertheless, XRD detected the existence of AgBr in 
CSBB samples which might contribute to the 
absorption of visible light. The indirect band gap of 
AgBr is 2.89 eV21 which is narrow enough to make it 
absorb visible light easily22. This might be one of the 
reasons why CSBB absorbed a wider range of visible 
light than CBB. 

 

3.4 GC 

The amount of carbon monoxide production was 
monitored and measured as it implied the 
photocatalytic performances of each sample for CO2 
reduction. 

3.4.1 General Trend 

The sample to be considered as the best photocatalyst 
in this experiment was obviously CBB with 1 min of 
crystallisation time which helped to produced 4.65 
!"#$	&!"	ℎ!"  CO. In general, for both CBB and 
CSBB, the CO production got less and less as the 
crystallisation time increased (Figure 9). This trend 
can be explained by the grow in crystal size which was 
also mentioned in Section 3.2 shown by SEM images. 
As the crystallisation time prolonged, the crystals 
became larger with a smaller surface area available for 
reactions to take place. As a result, less CO was 
produced for samples with longer crystallisation time. 
For CBB samples, the perovskite degradation also 
accounted for the reduction in CO production. 

 
Figure 9: CO production for CBB and CSBB 

 

3.4.2 Compare CBB with CSBB 

According to the UV-Vis results discussed in Section 
3.3.2, CSBB, owned a lower band gap and absorbed 
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more light, was hoped to offer a better photocatalytic 
ability. The GC results were opposite where CSBB 
only produced less than a half amount of CO compared 
with CBB under same crystallisation time. This can be 
explained by the following reasons. Firstly, CSBB 
crystals seen under SEM were much larger than CBB 
crystals; for instance, CBB 1 min crystals were 
approximately 364.31 nm whereas CSBB 1 min 
crystals were 826.44 nm which was 2.39 times larger. 
A larger size led to a smaller surface area and a lower 
production. Secondly, due to the existence of 
unwanted AgBr in CSBB samples, the sample mass 
weighed contained not only pure CSBB but also AgBr 
which indicated the actual CSBB sample mass 
participated in photocatalysis was less than the mass 
used in calculations. Namely, the CSBB sample mass 
might be overestimated and the production might be 
underestimated. 

 

3.4.3 Control Tests 

Two controlled tests were conducted for the samples 
with best photocatalysis performance for both CBB 
and CSBB, which were the ones with crystallisation 
time for 1 min. One of the controlled tests used helium 
only instead of CO2 and H2O, the other also replaced 
CO2 with helium but kept H2O as a reactant. It was 
predicted that the latter one would produce more CO 
but the result was opposite for CBB 1 min sample 
(Figure 10). An unexpected high CO production, 1.24 
!"#$	&!"	ℎ!" , might be caused by residual IPA 
which was not fully removed in the quartz filter 
heating step. IPA might undergo a reduction reaction 
which contributed to the CO production. Some dark 
spots were observed in the quartz filter after reaction 
which proved the presence of remaining IPA in the 
sample (Figure 11). 

 

Figure 10: CO production in control tests 

 
Figure 11: Photo taken after reaction proved the presence of 
remaining IPA 

 

3.4.4 Improved Methodology 

In the very start of this experiment, a whole quartz 
filter and there was no control in the sample mass, in 
other words, an over needed amount of samples were 
dropped on the filter and crystals overlapped with each 
other. Only the crystals on the top surface were active 
for catalysing the reaction while crystals hidden on the 
bottom were not effectively playing a role. Table 3 
assembles some single experiment data which used 
different CSBB sample mass. One of the extreme 
cases used 14.3 mg of CSBB 15 min sample which 
only produced 0.0565 !"#$	&!"	ℎ!" of CO. Another 
extreme case used 0.2 mg of CBB 60 min sample, 
9.5162 !"#$	&!"	ℎ!" of CO was produced which was 
even higher than the amount of CO produced using 
CBB 1 min sample. In the pursuit of a higher but also 
realistic production, the sample mass was decided to 
be controlled around 0.8 mg to 1.2 mg. Besides, the 
reaction time, water content and other parameters were 
optimised for half a filter, these were needed to be 
adjusted for using a whole one, which was the reason 
that only a half quartz filter was used as mentioned in 
Section 2.4. 

Table 3: The effect of sample mass in CO production 

Crystallisation 
Time (min) 

Whole 
or Half 
Quartz 
Filter 
Used 

CSBB 
Sample 
Mass 
(mg) 

CO Production 
(!"#$	&!"	ℎ!") 

1 Whole 3.4 0.9648 
Half 0.8 1.7517 

15 Whole 14.3 0.0565 
Half 0.8 1.5505 

30 Whole 7.9 0.0598 
Half 0.1 0.9606 

60 Whole 1.7 0.3315 
Half 1.1 0.5094 
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4 Conclusion and Outlook 
To sum up, CBB 1 min sample was considered as the 
best photocatalyst in efficient reduction of CO2 to CO 
which took part in reactions and produced 4.65 
!"#$	&!"	ℎ!" of CO. Related crystallisation time to 
the photocatalytic performances of perovskites, there 
was no doubt that a longer crystallisation time created 
a larger crystal size with a smaller surface area and a 
poorer performance. Based on a lower band gap and a 
stronger ability in absorbing a wider range of visible 
light, Cs2AgBiBr6 was predicted to be a better 
photocatalyst than Cs3Bi2Br9. Nevertheless, CSBB 
samples helped to produce much less CO than CBB 
samples. This was due to not only a larger CSBB 
crystal size resulted in a smaller surface area available 
for reactions to take place, but also the appearance of 
AgBr after 15 min when CSBB started to degrade. 

To further improve the study of these two perovskites, 
more trails of GC operations can be carried out. A 
larger number of sample volume definitely provides a 
fairer result and a smaller error bar as it was quite large, 
especially for CBB 30 min sample. In addition, the 
crystallisation time interval can be narrowed to see if 
there is a better crystallisation time for synthesising a 
better photocatalyst. For instance, is there any 
probability that a crystallisation time between 1 and 15 
min does exist which offers a chance to produce the 
most amount of CO can be a future research topic. 
Furthermore, the presence of AgBr strongly adversely 
affected the performances of CSBB samples. A 
different synthesis methodology such as 
mechanochemical synthesis can be studied to check if 
it effectively produces the desired perovskites. Last 
but not the least, the BET23 (Brunauer, Emmett and 
Teller) analysis can be conducted to examine how 
exactly the surface area of crystals changes and 
influence their photocatalytic performances. 
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ABSTRACT  
Within the pharmaceutical industry, there is a strong motivation to study the effect of temperature and additives 
on the morphology of peptides during the crystallisation process to improve the safety, tolerability profiles, and 
long-term efficacy of peptide-based therapies. This work aimed to investigate the effects of temperature, ethanol 
concentration and salt additives on the phase transition boundaries between the two polymorphic forms of 
triglycine: triglycine anhydrate (β-sheeted structure) and triglycine dihydrate (polyproline II / pPII structure). 
Slurry crystallisation experiments were conducted by mixing triglycine anhydrate in (a) temperature-controlled 
binary water-ethanol solutions of varying compositions or with (b) salt additives, followed by observation of 
resultant crystals using microscope images and Raman spectroscopy. The former set of experiments revealed that 
the dihydrate form was favoured by an increase in ethanol molar fraction and temperature. Further analysis of the 
addition of four different salts (LiCl, NaCl, KCl and MgCl2) showed that anhydrate formation was favoured at 
high salt concentrations (>1.5M), with prospective evidence implying that a higher cation charge density results 
in a lower salt concentration required for phase transition.  

Keywords: Crystallisation of triglycine, polymorphic conformation, phase transition boundary, pPII structure, 
Raman spectroscopy, crystallisation additives 

 
 
1. Introduction 
Therapeutic peptides constitute a novel class of 
pharmaceutical agents generally defined as a short 
chain of 2-50 amino acids. As synthetically 
accessible bioactive substances, peptides boast 
many unique qualities that makes them strong 
potential candidates when formulating best-in-class 
therapeutics. Much like biologics, such as proteins 
and antibodies, therapeutic peptides function by 
binding to cell surface receptors and triggering 
intracellular effects with higher specificity and 
potency than small molecules. Unlike biologics, 
peptides are generally less immunogenic, and their 
smaller sizes allow for deeper penetration into 
human tissue. In addition, peptides tend not to 
accumulate in organs and therefore, typically have 
low toxicities (McGregor, 2008). Due to these 
characteristics, peptide-based therapies have the 
potential to offer superior patient outcomes in terms 
of improved safety, tolerability profiles, and long-
term efficacy (Bruckdorfer, et al., 2004) (Fosgerau 
and Hoffmann, 2015). 

With the advancement of drug discovery and 
development strategies, peptide synthesis 
techniques, and molecular pharmacology in recent 
years, peptide therapies are playing an increasingly 
large role in addressing unmet medical needs. 
Today, there are over 80 peptide therapies on the 
market and 550-750 in clinical or pre-clinical 
development across a wide range of indications such 
as oncology, cardiology and endocrinology (Lau et 
al., 2018) (Muttenthaler et al., 2021). Despite the 
apparent boons associated with these advancements 
and the outstanding pharmacological profile of 
peptides, there remains many challenges associated 

with peptide production and manufacturing that 
limit the proliferation of peptide therapies. In 
particular, downstream purification remains a major 
bottleneck in peptide manufacturing and relies on 
chromatography-based techniques. This often 
necessitates excessive use of reagents and solvents 
to obtain high quality peptides, resulting in high 
costs, poor environmental impact, and large 
amounts of aqueous waste (Isidro-Llobet et al., 
2019). 

To address these challenges, the pharmaceutical 
community has proposed peptide crystallisation as a 
more cost-efficient and practical alternative to 
chromatography. However, given the complex 
properties and large sequence space for peptides 
(n20), selecting appropriate crystallisation conditions 
is a laborious, iterative process. The current industry 
standard involves screening using standard sets of 
conditions and further fine tuning around conditions 
with promising results. For a single peptide, this 
could mean several cycles of optimisation before a 
satisfactory outcome is achieved, with each lasting 
days or weeks (Rosa et al., 2020). In addition, 
peptides often have highly flexible conformations 
due to their relatively short amino acid chain 
lengths. The manifestation of different 
morphological conformations further complicates 
the screening process as this could affect critical 
physical and chemical properties of a given 
therapeutic peptide such as solubility, stability, and 
biological properties (Guo et al., 2021). 

This study aimed to investigate how key 
conditions affect the most stable conformation of 
peptides in aqueous systems and further efforts to 
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develop a more robust, systematic approach to 
identifying ideal crystal growth condition for 
peptides, using triglycine as a model peptide. 
Triglycine exhibits two morphologies: triglycine 
anhydrate and triglycine dihydrate. Primarily, there 
were two areas of interest that were investigated via 
slurry crystallisation experiments. Firstly, the phase 
transition boundaries between these two 
conformations were analysed at different 
temperatures in binary water-ethanol solutions of 
varying concentrations. Insights from these 
experiments would be particularly useful as anti-
solvents, such as ethanol, are commonly used to 
assist precipitation of high solubility solutes. 
Secondly, the critical salt concentrations at the phase 
transition boundaries were investigated for four 
different salts (LiCl, NaCl, KCl, MgCl2) to 
understand the potential role of salt addition in 
achieving the desired morphological conformation 
during peptide production. 
 
2. Background 
There have been many studies conducted on protein 
crystallisation. Homogenous nucleation in the 
absence of any foreign particles is particularly well 
studied (Karthika et al., 2016). While many new 
crystallisation theories have emerged to understand 
the process (Lutsko, 2019), the Classical Nucleation 
Theory (CNT) is the most common model used to 
understand the crystallisation of biological 
molecules (Karthika et al., 2016) owing to its ability 
to give reasonable predictions of nucleation rates 
despite its simplicity (Sear, 2007).  

Under the CNT, the crystallisation process is 
described by two separate steps: (a) an initial 
nucleation step, followed by (b) a growth process 
(Xu et al., 2021). CNT assumes that the crystal 
nucleus has the same properties and structure as the 
stable, mature crystal, and that the nucleus is 
spherical in shape. While the assumptions are not 
valid in certain cases, they serve as a fair 
approximation moving forward. Broadly speaking, 
crystallisation methods fall into one of the following 
three categories: batch, vapour diffusion or liquid 
diffusion (Bergfors, 2009, pp.17). The three 
methods differ in how the solution chemistry 
(degree of supersaturation) is adjusted. However, in 
all cases, the level of supersaturation must be high 
enough to initiate nucleation and support subsequent 
crystal growth (Ducruix and Giegé, 1992). In this 
study, batch crystallisation was chosen due to their 
ease of setting up (Bergfors, 2009, pp. 19).  

Polymorphism is commonly observed during the 
crystallisation in the industry, specifically in the 
fields of pharmaceuticals, food and fine chemicals. 
This phenomenon refers to the existence of multiple 
crystalline structures for a single compound which, 
during the crystallisation process, is often influenced 
by the presence of additives and crystallisation 

conditions like temperature (Kitamura, 2008). The 
presence of polymorphs is of particular interest as 
polymorphs demonstrate different physicochemical 
properties (Cruz-Cabeza and Bernstein, 2013). 
Complications may arise for biomolecules with 
many, flexible conformations, such as in peptides 
and proteins. In the pharmaceutical industry, a 
polymorphic phase transition could mean, among 
other factors, a change in solubility and physical 
stability, impacting the dosage delivered, drug 
bioavailability and half-life when administered to 
patients. This also presents significant regulatory 
risk to pharmaceutical manufacturers since drug 
approvals are most often granted only for a single 
polymorph, highlighting the imperative need to 
control the morphology of the active pharmaceutical 
ingredient during the crystallisation process (Barker, 
2020). At best, the wrong polymorphic form can 
cause economic losses to manufacturers, as in the 
case of Abbott and ritonavir, and at worst, it could 
even lead to losses of lives or permanent 
disfiguration, such as in the case of the thalidomide 
scandal.  

The presence of polymorphs introduces an 
additional layer of complexity in this study.  During 
peptide crystallisation, these factors will influence 
the thermodynamic stability of the secondary 
structure of the peptide’s morphologies and, 
generally, the most stable morphology would be 
crystallised (Cruz-Cabeza and Bernstein, 2013). 
However, this may not always be the case. Rather, 
the crystals may pass through a path where the free 
energy barrier is minimum during nucleation. This 
means that the crystals obtained from experiments 
may not be an accurate reflection of what the most 
stable form is under those specific conditions 
(Karthika et al., 2016). Ostwald’s step rule suggests 
that the polymorph that crystallises first is usually 
the metastable one, which more closely resembles 
the state in the solution and are thus advantaged. 
This is followed by a transformation to more stable 
forms over time (Black et al., 2018). As such, it is 
vital for the experiment set-up to be stirred and left 
overnight for the crystals to transform into their most 
stable form.  

In the pharmaceutical industry, hydrates 
constitute an extremely common class of solvates 
and are viewed as an important area of research. 
Their prevalence can be attributed to the common 
use of water as a solvent in pharmaceutical 
processing (Hilfiker, 2006). As with other 
polymorphs, hydrates have different physical and 
chemical properties from anhydrates (Tian et al., 
2010). As such, it is vital to understand the factors 
that affects the stability of the hydrates to control the 
type of peptide being crystallised to ensure higher 
efficacy, reduce regulatory risks and improve patient 
outcomes. 
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Previous studies done have shown that the 
stability depends on various factors. One factor is 
the choice of solvent used. For instance, olanzapine 
exhibits over 25 crystal forms. Seven of these are 
pharmaceutically relevant, being three anhydrates 
(Form I to III), three dihydrates (B, D, and E) and a 
higher hydrate (Reutzel-Edens et al., 2003). Form I 
is the most stable form in organic solvents, while in 
water, Form I is the least stable and it will convert to 
a dihydrate. In a separate study done on the stability 
of an indomethacin/methanol system, Veith et al. 
(2020) found that indomethacin-methanol solvate 
formation is favoured at lower temperatures, while 
γ-indomethacin is found at higher temperatures. 
Despite the existing knowledge on how such factors 
can influence the stability of polymorphic forms, 
there is still a relatively poor understanding of the 
underlying mechanisms at play. 

In this study, triglycine was selected as the model 
peptide to further understand these underlying 
mechanisms as triglycine dihydrate is relatively easy 
to crystallise as compared to the hydrated form of 
other short chain peptides, such as glycine and 
diglycine (Guo et al., 2021). More importantly, 
triglycine can adopt a polyproline II (pPII) 
secondary structure in its dihydrate morphology, in 
addition to its anhydrate morphology. According to 
Guo et al. (2021), there is a strong motivation to 
understand the pPII structure due to its abundance in 
unfolded proteins and peptides and the high stability 
it confers. This significantly addresses the need to 
improve morphological stability to increase the 
pharmaceutical efficacy of end-products. Hence, the 
study of triglycine is essential to further knowledge 
surrounding the pPII structure. 

The distinct difference in crystal habits between 
its dimorphic forms makes visual identification of 
each polymorph easier. In its anhydrate form, 
triglycine has a fully extended, β-sheet 
conformation. This results in a highly regular, 
“plate-like” crystal habit. On the other hand, the left-
handed helical structure of the pPII structure results 
in an observed “needle-like” crystal habit for 
triglycine dihydrate (Guo et al., 2021). This 
morphology was conventionally seen in the aqueous 
state, but rarely in the solid state. Previous work 
done in this area has shown that water molecules 
interact with triglycine’s negatively charged 
carboxylic group and positively charged ammonium 
groups, stabilising the pPII structure (Guo et al., 
2021). The use of different anti-solvents and 
additives can further the understanding of this 
phenomena by investigating how they can interact 
with the side chains of triglycine dihydrate to assist 
or inhibit their formation.  
 
 
 
 

3. Materials & Methodology 
3.1 Materials 
Triglycine (purity ≥ 99%, white powder, anhydrous 
form) was procured from Sigma-Aldrich Co. Ltd. as 
the solute of choice. As for solvents, 18 MΩ 
deionised water was obtained from the on-site 
analytical laboratory and ethanol absolute (purity ≥ 
99.8%, clear colourless liquid, molecular biology 
grade) from VWR Chemicals. The following salts 
were also procured from Sigma-Aldrich Co. Ltd.: 
LiCl, NaCl, KCl, and MgCl2 (purity≥ 99%, powder, 
anhydrous form, molecular biology grade). 
 
3.2 Binary solvent experiments 
To explore the critical ethanol concentration for the 
triglycine phase transformation at different 
temperatures, binary solvent mixtures with select 
ethanol concentrations ranging from 1 mol% to 14 
mol% were tested at temperatures of 5⁰C, 10⁰C, 
15⁰C, 20⁰C, and 25⁰C as the typical screening 
temperatures for crystallisation ranges between 4oC 
and room temperature (Hampton Research, 2021). 
All experiments were performed at atmospheric 
pressure.  The ethanol mole fractions tested, as 
shown in Table 1, were selected based on prior work 
by Jiang (2021), who previously identified the 
approximate phase transition boundaries. An excess 
of triglycine was introduced to each binary solvent 
mixture based on predetermined solubility data to 
ensure sufficient triglycine solid in the slurry would 
be available for subsequent analysis.  

 
Table 1. Experimental conditions tested for triglycine 
crystallisation in binary solvent mixtures. 

Ethanol Molar 
Fraction / mol% 

Temperature /⁰C 
5 10 15 20 25 

1      
2      
3      
4      
5      
6      
7      
8      
9      
10      
12      
14      

To accurately assess the most stable 
conformation for each sample, a series of slurry 
crystallisation experiments were performed at each 
temperature, followed by the observation of the 
resultant triglycine crystals. These samples were 
immersed in a cylindrical double-jacketed glass 
vessel, coupled the ARE Heating Magnetic Stirrer 
and the Grant GR150 R1 Recirculating Water Bath 
with for agitation and temperature-control 
respectively (Figure 1). 
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Figure 1. Experimental set-up depicting the glass vessel 
and magnetic stirrer (left), and the water bath (right). 

 
The samples were continuously stirred overnight 

for 24 hours at 5oC to ensure that equilibrium was 
achieved and the resultant triglycine was in its most 
stable conformation. The solids in the slurry were 
then transferred to a glass slide using a dropper and 
covered with a cover slip to minimise evaporation. 
They were visually inspected under the GT Vision 
GXCAM HiChrome-Met microscope with a 20x 
magnification to observe the crystal habit of 
triglycine. Thereafter, the slurry mixtures were 
filtered using a Büchner funnel and flask connected 
to a Welch 2014B-01 Vacuum Pump, using 
Whatman filter papers (Grade Number 1, 
qualitative) as the filter medium (Figure 2).  

 
Figure 2. Filtration set-up depicting the Büchner funnel 
and flask (left), and the vacuum pump (right). 

 
The recovered triglycine residues were 

transferred to a glass slide and were then analytically 
characterised via Raman spectroscopy using the 
Bruker SENTERRA II Raman microscope under 
20x magnification. For each sample, 10 to 15 
datapoints were taken across different areas of the 
sample to minimise the incidence of gross errors. 
This procedure was repeated for 10⁰C, 15⁰C, 20⁰C, 
and 25⁰C.  

These results were compared to the initial visual 
characterisation of the triglycine crystals to identify 
any deviations from the expected crystal habits, 
which may uncover insights regarding the crystal 
growth and interactions between additives and 
triglycine’s functional groups under different 
conditions. 

 
Table 2. Measurement parameters used for the Raman 
microscope. 

Laser wavelength 532 nm 
Power 12.5 mW 
Aperture 50 µm 
Resolution 4 cm-1 
Spectral range 400a ; 50-4260 cm-1 

 
3.3 Salt addition experiments  
To understand the effect of the type and 
concentration of salt on the triglycine phase 
transformation at 20⁰C, a study was conducted using 
salt concentrations of 1.0M, 1.5M, 2.0M, and 2.5M 
for four salts: LiCl, NaCl, KCl, and MgCl2. A stock 
solution of concentration 2.5M was first prepared by 
dissolving the required mass of salt in 20ml of 
deionised water. Subsequently, the salt solutions 
with the concentrations specified above were 
prepared by diluting an aliquot from the stock 
solution with deionised water using a pipette. 

 
Table 3. Dilution factors for each desired salt 
concentration. 

Salt conc. (M) 
Salt stock 

solution (ml) 
Deionised 
water (ml) 

1.0 2.00 3.00 
1.5 3.00 2.00 
2.0 4.00 1.00 
2.5 5.00 0.00 

As with the binary solvent experiments, an 
excess of triglycine solids was introduced to the salt 
solutions and the samples were left in the water bath 
at 20⁰C overnight for 24 hours before 
characterisation of the sample with microscope 
imaging and Raman spectroscopy the following day. 
 
4. Results  
4.1 Binary solvent phase transition trends 
Given this study focused on understanding the 
conditions for phase transition, the different 
polymorphs were analysed during initial stages of 
experimentation. The observed microscope images 
for both the anhydrate and dihydrate forms are 
displayed in Figure 3(c)-(e), as well as near the 
phase boundary where a mixture was observed.  

The microscope images of the triglycine crystals 
are shown in Figure 3(a). To verify the exact 
morphology of the crystal, Raman spectroscopy was 
conducted on all sample, with focus being placed on 
three distinct ranges of the spectroscopy, namely 
being at 1000 cm-1, 1680 cm-1, and 3300 cm-1, as 
shown in Table 4. The shift in peaks from 
approximately 1000 cm-1 for triglycine anhydrate to 
1030 cm-1 in triglycine dihydrate corresponds to the 
C-C bond stretching, which has changed due to the 
new conformation of dihydrate. The peaks at 1680 
cm-1 corresponds to the change in structure from a  
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Figure 3. Triglycine phase transition boundaries for (a) different temperatures and ethanol molar fractions, and (b) different 

concentrations of MgCl2, LiCl, NaCl and KCl. The lines in red represent a transition from triglycine dihydrate to triglycine 

anhydrate as the dominant morphology. Examples of crystal images under polarised light showing (c) triglycine dihydrate, (d) 

a mixture and (e) triglycine anhydrate were also included above. 

 

 

β-sheet in triglycine anhydrate to the pPII 

conformation present in triglycine dihydrate. Lastly, 

the peak(s) at 3300 cm-1 corresponds to the presence 

or absence of hydrogen bonds formed between the 

N-H group of triglycine and water. When water is 

present, the hydrogen bonding between water and N-

H causes the bonded symmetric N-H2 stretching, 

which is reflected by the difference in the bands 

between anhydrates and dihydrates at the 3300 cm-1 

range. The presence of a single peak at the indicated 

the presence of a dihydrate, which the presence of a 

double band indicated the presence of an anhydrate. 

Based on the above results, a phase transition table 

can be constructed, which is shown in Figure 3(a).  

 

4.2 Salt addition phase transition trends 
As with the above, microscope images of the 

crystals were taken under different conditions and 

collated in Figure 3(b). 

 
 

Table 4. Spectroscopy ranges of interest. 

Wavenumber 
/cm-1 

1000 1680 3300 

Functional 

Group 

C-C 

stretching 
Peptide bond 

N-H2 

stretching 

Anhydrate Single band 

Small band, 

followed by a 

larger band  

Two 

distinct 

bands 

Dihydrate 

Single band 

above 1000 

cm-1 

Two distinct 

bands 

Single 

bands 

 
5. Discussion 
5.1 Ethanol interactions with triglycine 
From Figure 3(a), anhydrate formation was shown 

to be favoured by an increase in ethanol content. 

Prior investigation into protein structures by Singh 

et al. (2010) suggests that alcohol addition can 

disrupt nonlocal hydrophobic interactions in the 

secondary structure of proteins, reducing the 

stability of the secondary structure. This induces the 

unfolding of the helical pPII structure in triglycine 

dihydrate into the fully extended β-sheeted structure 

characteristic of triglycine anhydrate.  
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These experiments also confirmed the 
temperature-dependence of peptide morphology 
across different ethanol-water mixtures. In general, 
triglycine anhydrate was observed as the dominant 
morphology at higher temperatures. Kjaergaard et 
al. (2010) described a similar observation for select 
proteins, where a loss of the pPII structure occurred 
with increasing temperature. The morphology of 
triglycine proved to be particularly sensitive to 
temperature between 15 to 20oC, as represented by 
the large difference between critical ethanol molar 
fraction at these two temperatures, namely being 8% 
and 4%, respectively. However, a broader literature 
review reveals that the underlying mechanism 
remains poorly understood and represents a 
significant area for further investigation. 

In addition, an increase in ethanol concentration 
results in the formation of more fragmented, 
irregular plates, regardless of temperature, as seen in 
Figure 4. According to El Bazi et al. (2017), 
adsorption of ethanol at kink sites occurs due to 
favourable hydrogen bonding interactions with 
triglycine. This limits the access of triglycine in the 
solution to the crystal facets and thus, inhibits 
further growth into a more regular, rod-like shape.  

  
Figure 4. Microscope images showing the crystal habits 
of anhydrates crystals at a lower ethanol concentration 
(left) and a higher ethanol concentration (right). 

 
 
5.2 Salt interactions with triglycine 
Although prior findings from literature have 
established the influence of salt on the morphology 
for other peptides, this effect has yet to be well 
investigated for triglycine. This study demonstrates 
preliminary evidence that the use of salt addition can 
induce the formation of triglycine anhydrate under 

conditions where triglycine dihydrate is typically the 
most stable conformation. 

From Figure 3(b), the dihydrate was expectedly 
observed as the more stable conformation at low salt 
concentrations, in line with triglycine dihydrate 
being the dominant conformation in pure water at 
20oC. However, it was shown that triglycine 
anhydrate was the more stable conformation at salt 
concentrations above 1.5-2M. Han et al. (2021) 
observed a similar phenomenon with glycine, where 
salt addition promoted the formation of γ-glycine 
but could not identify the underlying mechanism.  
Although finer increments of salt concentrations are 
necessary to be conclusive, it can be preliminarily 
concluded that the critical salt concentration at the 
phase transition boundary decreases with an 
increase in the cation charge density (Mg2+ > Li+ > 
Na+ > K+). A theoretical possibility would be the 
competing effect between the salt ions and water for 
interactions with triglycine’s charged functional 
groups. Under this theory, the salt ions could 
stabilise these charged functional groups in place of 
water and inhibit the formation of the pPII structure.  

A separate observation regarding the addition of 
salts is that the addition of salts seems to increase the 
solubility of triglycine, suggesting a salting-in 
effect. This was consistent with what Han et al. 
(2021) observed in their experiments with glycine 
crystals. While characterising the solubility of 
triglycine was not a focal area within this study, it 
was interesting to note that the solubility of 
triglycine increased as the concentration of the salt 
increases. This might be a good area to conduct 
further research on in the future.  
 
5.3 Triglycine conformation at the phase 

boundary 
While the conformation observed at the phase 
boundary was most often either the dihydrate or 
anhydrate, further inspection of the Raman spectra 
revealed a third form of single crystals that had 
distinct Raman spectra from both of these expected 
conformations.  

 
     (a)                                                              (b)                                                              (c) 

     
Figure 5. Example Raman spectra of triglycine (a) dihydrate, (b) metastable and (c) anhydrate crystals. 
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(a)                                                  (b)                                                              (c) 

 
Figure 6. Raman spectroscopy for anhydrate crystals, dihydrate crystals, and metastable crystals at Raman bands of (a) 1000 
cm-1, (b) 1680 cm-1 and (c) 3000 cm-1, with the main regions of interest highlighted in grey. 

  
Referring to Figure 6, unlike the sharp single-

peaks observed for triglycine dihydrate, the Raman 
bands of these single crystals demonstrated minor 
peak splitting at 3300 cm-1 band. This indicates that 
the crystalline structure was not fully hydrated, and 
the sample could not conclusively be determined to 
be the dihydrate. Yet, the Raman spectra 
demonstrated remarkable agreement with dihydrate 
crystals at 1680 cm-1, indicating that these crystals 
indeed adopted a pPII conformation unique to 
triglycine dihydrate. Furthermore, these crystals also 
possessed the characteristic C-C stretching 
vibrational bands of both the dihydrate and the 
anhydrate at approximately 1000 cm-1, as shown in 
Table 5. 

 
Table 5. Comparison between the Raman bands between 
the metastable state and triglycine’s dimorphs. 

Conformation Peak 1 Peak 2 
Anhydrate 1000 cm-1  
Dihydrate  1030 cm-1 
Metastable  1000 cm-1 1030 cm-1 

There are two possible explanations to reconcile 
these findings. Firstly, this could imply that both the 
dihydrate and anhydrate co-exist in the crystalline 
structure in a metastable state, with the resultant 
Raman spectrum being a superposition of that of 
each individual morphology. This suggests that 
single-crystal-to-single-crystal polymorphic phase 
transition may have occurred, whereby triglycine 
molecules in a triglycine anhydrate crystal translate 
to accommodate water in the crystalline structure to 
form the dihydrate form. This is contrary to the 
prevailing theory that the polymorphic phase 
transition is mainly driven by a reconstructive 
mechanism, whereby triglycine anhydrate crystals 
dissolve in the solution, followed by the growth of 
the more stable triglycine dihydrate via nucleation 
and crystal growth (Krishnan et al., 2015). Secondly, 
these results could also imply that a third metastable 
triglycine morphology is possible under certain 
crystallisation conditions which, to date, has yet to 
been observed in literature. The indication that the 
structure is not fully hydrated implies that these 
crystals could have a monohydrated structure. In this 

case, the peak splitting at 1000 cm-1 could be 
attributed to the change in length and angle of the C-
C bond since the carboxylic group on triglycine 
molecules are relatively less stabilised compared to 
triglycine dihydrate (Jorio et al., 2011).  However, 
further analysis using X-ray diffraction and 
thermogravimetric analysis would be necessary to 
verify the morphology of these single crystals. 

Regardless, this observation of a unique and 
identifiable Raman spectrum at the phase boundary 
could potentially be used to speed up the 
crystallisation screening process by helping to 
identify crystallisation conditions near the 
polymorphic phase boundary. 
 
6. Conclusions 
This study was concerned with the effects of 
temperature, water concentration and salt additives 
on the morphology of triglycine. Conclusions were 
drawn by varying each of the three variables and 
subsequent characterisation of the crystals via 
microscope images and Raman spectroscopy.  

For the first variable, it can be concluded that for 
the same solvent composition, the formation of 
dihydrates is encouraged at lower temperatures. In 
addition, increasing the molar fraction of ethanol 
resulted in triglycine anhydrate being the dominant 
conformation. Lastly, preliminary findings show 
that the addition of salts inhibits the formation of 
dihydrates at high salt concentration, with some 
indication that the critical phase transition 
concentration has an inverse relationship with the 
charge density of the cation. Based on these 
findings, it is clear that the morphology of triglycine 
obtained can be manipulated by adjusting any of the 
three factors. However, while anhydrate formation 
can be induced with the addition of salts, one should 
be mindful that the ethanol or salts introduced may 
be considered as impurities, so further steps 
downstream in the pipeline may be required to 
purify the triglycine before the formulation of a 
given pharmaceutical product. 

There are three areas of interest to investigate 
further going forward. Firstly, investigation into the 
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kinetics of the phase transition could be conducted. 
As this work mainly focuses on the endpoint (i.e., 
the final morphology of the triglycine), little to no 
work was done on the rate of phase transition. 
Understanding the kinetic effects of additives could, 
for example, enable the production of a desired 
metastable conformation during the crystallisation 
process. As such, it would be interesting to 
investigate the effect of addition of salt or solvents 
on the speed of both the nucleation and growth 
processes by taking readings at timed intervals to 
shed more light on the kinetics of this phenomenon. 
Secondly, the applicability of these findings to other 
peptides and proteins, particularly those with pPII 
structures, would be imperative to understand. 
Especially for non-homopeptides with more 
complex interactions, these trends may be materially 
different and would give us insight into the 
mechanisms driving phase transition boundary 
trends in more granularity. Lastly, X-ray diffraction 
and thermogravimetric analysis can be conducted to 
verify the identity of the metastable form observed. 
Doing so will improve existing knowledge of the 
phase transition process from the anhydrate form to 
the dihydrate pPII conformation. 
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Abstract
Stainless steel multi-use technologies (MUTs) are used traditionally in biopharmaceutical manufacturing; however the use of plastic
single-use technologies (SUTs) has risen. This paper aims to first assess the economic and environmental viability of SUTs for Advanced
Therapy Medicinal Products (ATMPs) production, specifically Adenoviral (AdV) and Lentiviral (LV) vectors. Environmental impact was
quantified utilising the ReCiPe 2016 approach to life cycle assessment, whilst economic costs were obtained from SuperPro Designer
models. The data was then used as parameters for a multi-integer linear programming (MILP) model to optimise the ATMP supply
chains. It was found that SUT-based manufacturing had higher environmental impact and cost in downstream processes, whilst results for
SUT manufacturing in upstream and fill and finish processes were product-specific. Optimisation results were also product-specific with
AdV having aligned cost and environmental objectives while the objectives for LV were conflicting. This study ultimately aims to provide
the framework for future decision support tools to critically assess the impacts of SUT and MUT manufacturing for ATMPs.

Keywords: ATMP, Singe-use Technologies, Multi-use Technologies, Life Cycle Assessment, MILP

1 Introduction
Advanced therapy medicinal products (ATMPs) are a class of
therapeutics broadly categorised by gene therapies, cell thera-
pies and tissue-engineered medicines. The majority of ATMPs
currently in clinical trials use viral-vectors to deliver genetic
material into cells, with 92% specifically utilising Adenoviral
vectors for vaccines and Lentiviral vectors for cancer therapy
(Capra et al. (2021)), which were the focus of this study. The
global ATMP market is currently valued at USD 9.4bn and is
projected to grow at a compound annual growth rate of 13.2%
reaching USD 22.5bn by 2027 (Grand View Research (2021)).
The typical ATMP supply chain is shown in Figure 1.

Figure 1. Typical Viral Vector Supply Chain and Specific Upstream and Down-
stream Processes

Stainless steel multi-use technologies (MUTs) are tradi-
tionally used in biopharmaceutical manufacturing processes,
however the adoption of single-use technologies (SUTs) has
steadily risen, with adoption growing at a rate of 11% for
bioreactors (Langer & Morrow Jr. (2020)). Advantages of
SUT systems are the reduced need for cleaning and steaming-
in-place (CIP/SIP) processes, increased production flexibility
and reduced cross-contamination risk. A key consideration of
wider SUT adoption is the potential environmental impact of
SUTs through increased plastic production and waste. Envi-
ronmental impact minimisation must be weighed alongside

other possibly conflicting objectives such as costs minimisation
and yield maximisation during supply chain planning.

Decision support tools are mathematical models that aid
decision-making by exploring trade-o�s and the alternatives
for decisions (Sarkis et al. (2021)). The objective of this work
is to develop a Mixed-Integer Linear Programming (MILP)
model to compare the economic cost and environmental im-
pacts of an either MUT or SUT-based upstream (USP), down-
stream (DSP) or fill and finish (F&F) manufacturing lines for
a viral vector-based ATMP. This paper presents results of the
life cycle assessment (LCA) and techno-economic calculations
used to determine input parameters for the model as well as
optimised supply chains for environmental impact and cost
minimisation.

2 Background
2.1 Environmental Impacts of Single-Use Technologies
A study by Cytiva Life Sciences (Flanagan (2017)) compared
the environmental impacts of SUT and MUT-based mon-
oclonal antibody (MAb) production across multiple regions.
The study assessed environmental impact across five categories,
climate change, human health, ecosystem quality, resource
consumption and water consumption. Flanagan observed that
SUTs had lower impact relative to MUTs across all categories,
with environmental burden shifting from the use stage of the
process to the supply chain. This was attributed to reduced
CIP/SIP and an increase in the manufacturing and distribution
of single-use consumables. However the study also noted that
the results were highly sensitive towards the scale of production
as well as the cleanliness of the local electricity grid. Flanagan
therefore cautioned against extrapolating these results to other
products, underlining the complexity of individual processes
as well as the need for location and scale specificity.
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2.2 Techno-economic Impact of Single-Use Technologies
Biopharm Services conducted an economic evaluation com-
paring SUT versus MUT manufacturing for a 2000L scale
MAb process (Sinclair & Monge (2002)). It was found that for
a new installation, SUTs lowered capital requirements by 20%
and the cost of goods by 8%. However, it was noted that the
results varied when traditional installations were retrofitted
with SUTs and are generally plant-specific.

2.3 Life Cycle Assessment
The LCAs performed in this study follow the ReCiPe 2016 Life
Cycle Impact Assessment Method (Huijbregts et al. (2016)).
This method values the impact of a process through 18 mid-
point indicators and groups them into 3 endpoint areas of
protection as shown in Figure 2. ReCiPe 2016 also provides
the choice of three cultural perspectives with varying views
on issues such as time and expectations, with hierarchist being
the consensus perspective. ReCiPe 2016 is an update on its pre-
decessor ReCiPe 2008 and has been observed to have reduced
model uncertainty, particularly for water-intensive processes
such as pharmaceutical manufacturing (Dekker et al. (2019)).

Figure 2. Overview of the impact categories that are covered in the
ReCiPe2016 methodology and their relation to the areas of protection (Hui-
jbregts et al. (2016))

2.4 Flowsheet Model
Sarkis et al. (2022) presented a flowsheet model within Su-
perPro Designer to quantify the relationship between manu-
facturing uncertainties of viral vectors and key performance
indicators a�ecting supply chain investment and planning.
The model was broadly split into the upstream, downstream
and fill and finish manufacturing lines as shown in Figure 1.
The vector products modelled were Adenovirus-based vaccines
(AdV) and lentivirus-based vectors for ex vivo gene therapy
(LV). The model was capable of modelling a range of scales as
well as modelling an SUT or MUT-based process. SuperPro
Designer relies on built-in algebraic and di�erential equations
to perform its calculations.

2.5 Multi-period Optimisation Model
Outputs from the aforementioned SuperPro Designer model
were used as input parameters for themulti-period optimisation
model developed by Sarkis. The model was an update of the
multi-site snapshot model used in Sarkis et al. (2022), with
discretisation being used to enable a demand scenario to be
imposed across time periods. The supply chain described in
the model consisted of upstream, downstream lines in primary
manufacturing, fill and finish lines in secondarymanufacturing,
intermediate storage nodes (SN) and demand zones (DZ). The
model was written in Python using the PyOmo software
package.

The initial model aims to maximise revenue through pro-
duction scheduling and optimised supply chain planning to
fulfil the user-specified demand scenario across demand zones
and time periods. The model allows for a high degree of
user-specified design variables with the key ones listed below:

1. Viral Vector Products (Set i)

• AdV/LV

2. Scale (Set a)

• 50L, 200L, 1000L, 2000L

3. Manufacturing Nodes (Set j)

• USP Section Manufacturing Lines (Set u)
• DSP Section Manufacturing Lines (Set d)
• F&F Section Manufacturing Lines (Set g)

4. Time Periods (Set t)

5. Demand for a product at specific time and node (Dt,j,i)

Economic parameters were split into capital costs of set-
ting up a manufacturing line and the operating costs of run-
ning each line. Operating costs were further split into facility,
labour and variable costs. The segmentation of the model into
separate manufacturing lines allowed for increased flexibility
in supply chain planning. The model was adapted to allow it to
choose either SUT or MUT manufacturing lines and account
for the environmental and economic impact of those choices.
This model can be found in Appendix F.

3 Methodology
AdV and LV were chosen as the viral vector products for this
study as they accounted for the majority of gene therapies in
clinical trials (Capra et al. (2021)) and were well-documented
and studied processes. The scale of the process was chosen
to be 2000L for cross-comparability of results with results of
similar studies conducted on the MAb manufacturing process.
Four viral vector manufacturing flowsheets were designed in
SuperPro Designer: one SUT and one MUT-based process for
both AdV and LV. Data was extracted via SuperPro Designer’s
reports and used to calculate environmental and economic
parameters for the optimisation model. The parameters were
also specific to USP, DSP or F&F manufacturing lines to allow
the model to consider having individual manufacturing lines
be either SUT or MUT-based.
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3.1 Environmental Parameters Calculations
It was necessary to identify key contributors of environmental
impact with the greatest di�erence between and SUT &MUT
process. Based on research, three specific areas of the process
were chosen:

1. Single-use consumables supply chain

2. Stainless steel production

3. CIP/SIP processes

The supply chain of single-use consumables was selected
as upon transition from an MUT to an SUT-based process, an
increase in environmental impact was observed from the supply
chain stage (Flanagan (2017)). It was therefore important to
quantify this increase in environmental impact. On the other
hand use stage impacts were reduced for the SUT process
and water consumption in particularly was observed to fall
by 87%, mostly via a reduction in CIP/SIP processes (Sinclair
et al. (2008)). Steel use was estimated to be reduced by 62% for
SUT processes as estimated in Lopes (2015). All environmental
impacts would be converted to a per gram viral vector product
basis for use in the optimisation model.

3.1.1 Consumables, Waste and Steel Sizing
The SuperPro Designer model identified the key single-use
consumables to be cell bags, storage bags, flasks and test tubes.
When the di�erence in the amount of consumables used was
deemed negligible between the MUT and SUT process, the
consumable was not accounted for in calculations. It was also
assumed that consumables are predominately made of one
material. Bags such as bioreactor bags were thus assumed to be
entirely made from linear low-density polyethylene (LLDPE),
flasks were considered to be polyethylene terephthalate (PET),
and test tubes were considered to be polypropylene (PP). In
accordance with this, the weight per gram product of each
plastic was calculated using Equation 1.

Amount of Plastic(kg/g) =
P

(Consumable Amount⇥Weight)
Mass of Viral Vector Produced

(1)
Steel use for the MUT processes were estimated using the

volumes of largely steel process equipment, namely bioreactors,
blending tanks and centrifuges. Weights of each equipment
were then estimated using product data for similarly sized
equipment currently available on the market. These weights
were then converted to a per gram of product basis by assuming
that the equipment had a 20 year lifespan and that production
remained the same every year. The corresponding steel use for
SUT processes were calculated by reducing the MUT sums
by a factor of 0.38 (Lopes (2015)).

Sources of environmental impact from the CIP/SIP pro-
cesses were chosen to be production of chemicals, water for
injection and steam as well as treatment of resultant waste wa-
ter. Data for each source were taken from SuperPro Designer’s
environmental impact report (EIR) and were converted to a
per gram of product basis.

3.1.2 OpenLCA
LCAs were conducted via the OpenLCA software, using the
sizing data collected, in accordance with the ReCiPe 2016
impact assessment method. A hierarchist cultural perspective
was selected in accordance with consensus. LCAs for each
individual material were conducted using processes from the
ecoinvent v3.6 database, which can be found in Appendix A.
This yielded values in each midpoint impact category, which
were then grouped into their respective endpoint categories.
Finally for comparability, the impact to each endpoint category
was converted intoUSD2017 using equivalent monetary values
presented in Dong et al. (2018), as shown in Table 1.

Table 1. Monetisation value factors (Dong et al. (2018))

Endpoint Indicator Environmental Unit Equivalent
Monetary Value (USD2017)

Human Health DALY 1.46⇥ 105

Ecosystem Health species.yr 3.9⇥ 107

Resource Availability USD2013 1.1

Due to limitations of processes in the LCA database, only
the production of the raw plastic polymer was considered and
the additional impact of transforming the polymer into final
products were not accounted for. However, this was deemed
an acceptable approximation as the environmental impact of
the transformation of polymer to finished plastic products is
only a quarter of that of raw polymer production (Mori et al.
(2013)). For end-of-life impacts, 35% of consumables were sent
to sanitary landfills, whilst 65% of consumables were sent o�
for municipal incineration. This was in line with the regional
mix in the United Kingdom. Similar approximations were
made for steel use impact and CIP/SIP process impacts when
the exact processes were not available within the database.

3.2 Economic Parameters Calculations
Costing data was taken from SuperPro Designer’s Itemised
Cost Reports (ICR).

3.2.1 Capital Costs
Capital costs (CapEx) was taken from the total capital invest-
ment of each process with processes grouped into USP, DSP
and F&F manufacturing lines. It was in units of USD2021.

3.2.2 Operating Costs
Operating costs were split into facility, variable, and labour
costs with each having its own units. Facility costs, which
accounted for plant maintenance and equipment depreciation,
in units of USD2021 per month were taken directly from the
ICR, whilst variable and labour were calculated with Equation
2 and 3 respectively.

CVAR

 
USD2021

GramProduct

!
= CMaterials + CConsumables + CUtilities + CWaste

(2)

CLAB

 
USD2021

Batch Product

!
= CLabour + CLab/QC/QA (3)
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3.3 MILP Model Building
A model built by Sarkis was adapted for this study. The up-
dated environmental and economic parameters were used as
optimisation input and can be found in Appendix D.2.2 and E.

3.3.1 Set Changes
A new set (Set s) was introduced to represent the possible
manufacturing line types for USP (u), DSP (d) and F&F (g)
lines.

Set s = {SU , MU}

All cost parameters were indexed by Set s, and environmen-
tal impact parameters were indexed by scale (Set a), product
(Set i), and Set s. Capital cost was changed as well as to be fur-
ther indexed by product (Set i) as significant di�erences in cost
were observed between the SUT and MUT-based processes
for both AdV and LV.

The following binary and positive variables were indexed
by Set s as well to facilitate the updated mdoel:

• Line installation and availability binary variables

Zt,j,a,u,i,s, Zt,j,a,d,i,s, Zt,j,a,g,i,s 2 {0, 1}
At,j,a,u,i,s, At,j,a,d,i,s, At,j,a,g,i,s 2 {0, 1}

• Product allocation binary variables

Wt,j,a,u,i,s, Wt,j,a,d,i,s, Wt,j,a,g,i,s 2 {0, 1}

• Mass balance binary variables

Nt,j,a,u,i,s, Nt,j,a,d,i,s, Nt,j,a,g,i,s 2 {0, 1}

• Batch amount non-negative integer variables

Bt,j,a,u,i,s, Bt,j,a,d,i,s, Bt,j,a,g,i,s 2 Z, B � 0

• Gram amount of product non-negative real variables

Pt,j,a,u,i,s, Pt,j,a,d,i,s, Pt,j,a,g,i,s 2 R, P � 0

• Time constraint non-negative real variables

Tt,j,a,u,i,s, Tt,j,a,d,i,s, Tt,j,a,g,i,s 2 R, T � 0

3.3.2 New Parameters and Variables
Initially, new parameters were defined for each endpoint en-
vironmental impact category on a per gram of viral vector
product basis for each process section. These parameters were
defined using data from the LCA calculations (Section 3.1).

EHH
u/d/g(DALY/g), E

EH
u/d/g(species·yr/g), E

RA
u/d/g(USD2013/g)

Additional continuous real variables for the environmental
impact for each category from the production of viral vector
products across manufacturing lines at specific time period t,
and specific manufacturing location j, is defined as follows:

TEHH
t,j , TEEH

t,j , TERA
t,j 2 R, P � 0

The totals from each category were summed across all time
periods and locations and aggregated utilising the monetisation
factors in Table 1. The variable was defined as TE.

New binary variables were introduced to account for the
choice of SUT or MUT for each process line. These were
defined and indexed as follows:

St,j,a,u,i,s, St,j,a,d,i,s, St,j,a,g,i,s 2 {0, 1}

3.3.3 Objective Function
The existing objective function (Equation 4) aimed to max-
imise profit by maximising revenue from sales and minimising
costs, whilst attempting to meet demand.

z0 = (Selling Price ⇥
X

t,j,i
Sales) – Total Costs (4)

For this study, two alternative objective functions (z1, z2)
were formulated, one for costs minimisation and one for total
environmental impact minimisation (Equations 5 and 6)

z1 = TCcap + TCop (5)

z2 =
X

t,j
1.46⇥105TEHH

t,j +3.9⇥107TEEH
t,j +1.1TERA

t,j (6)

When either objective function was used, the other was
refactored as an equality constraint.

3.3.4 Equality Constraints
The main equality constraint that was added was for calcu-
lations of total environmental impact per category. The fol-
lowing equation was used to sum the USP, DSP and F&F
production contributions to each impact category for all scales,
products and manufacturing line types (Set a, i, s). The con-
straint for the total human health impact at a specific time and
location is shown in Equation 7.

TEHH
t,j =

X
u,d,g

X
a,i,s

EHH ⇥ Pa,i,s (7)

3.3.5 Logic Constraints
Logic constraints were used to ensure realistic solutions were
found. The sum of the binary variables S across manufacturing
line types was constrained to be less than or equal to one ensure
any manufacturing line was only ever either SUT or MUT-
based.

X
s
St,j,a,u,i  1,

X
s
St,j,a,d,i  1,

X
s
St,j,a,g,i  1 (8)

Binary variable S was further constrained by the line in-
stallation variable, Z, such that the model only decides which
manufacturing line type to utilise when a line is being installed.
An example for USP lines is shown in Equation 9.

St,j,a,u,i,s  Zt,j,a,u,i,s (9)

To segregate product flows by manufacturing line type,
minimum and maximum time constraints were imposed in a
similar fashion from the product allocation variables, W . An
example for USP lines is shown in Equation 10.

Tmin · St,j,a,u,i,s  Tt,j,a,u,i,s  Tmax · Su (10)
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Lastly the sales and demand constraint was reversed, such
that sales met the demand for every time period and location
(Equation 11). This was due to the objective no longer being
tied to sales maximisation. Due to this change, it was essential
for the imposed demand scenario to be within capacity limits
for a feasible solution to be found.

Salest,j,i � Demandt,j,i 8t, j, i (11)

4 Results and Discussion
4.1 General Environmental Analysis
Results were product-specific with SUT and MUT-based pro-
cess having similar impacts for AdV whilst the LV SUT-based
process had significantly higher impact.

Human health impacts were consistently the largest cat-
egory across products and manufacturing types, this can be
attributed to the weighting of the monetisation factors from
Dong et al. (2018). Another potential reason for this is the
hierarchist perspective chosen for the LCAs, which considers
environmental impacts over a period of 100 years. There-
fore the midpoint impact of global warming is valued highly,
as the time scale of the hierarchist perspective and the time
scale of the worst e�ects of global warming on human health
are similar. Another potential cause is the weighting factors
formulated by Ponsioen & Goedkoop used in ReCiPe 2016,
where climate change was given 44.3% weightage for end-
point impacts (Sala, Cerutti & Pant (2018)). Endpoint impact
weighting is ultimately a subjective process and future anal-
ysis could be conducted on the impact of di�erent endpoint
weighting methods on the model.

4.2 AdV Environmental Parameters

Figure 3. Environmental Impact of AdV Manufacturing per Gram AdV

As seen in Figure 3, the environmental impact of the SUT-
based process is smaller than that of the MUT-based process
for the human health (HH) and environmental health (EH)
categories, whilst being higher for the resource availability
(RA) category. This is primarily driven by phosphoric acid

production for CIP/SIP accounting for 28% and 25% of im-
pact in HH and EH but only 12% of impact in RA for MUT
processes, whilst SUT processes had no impacts from CIP/SIP.
RA is more sensitive to impacts from plastic production which
is the driving force of environmental impacts for SUT.

4.2.1 Upstream Process Observations (AdV)
Upstream processes account for a small portion of total envi-
ronmental impact, with the SUT upstream line having smaller
impacts across all categories. This is due to upstream processes
generally having lower process volumes, SUT processes thus
require fewer LLDPE bags. This low environmental impact
from plastic production, is further compounded by the absence
of impact from CIP/SIP for the SUT process, leading to the
SUT upstream line having lower environmental impact.

4.2.2 Downstream Process Observations (AdV)
The downstream process contributes the most to environ-
mental impact for both manufacturing types. This is due to
the nature of the downstream processes which involve large
volumes of bu�ers for purification and polishing. There is
therefore a larger requirement for either steel blending tanks
or LLDPE bags for the SUT process. The environmental im-
pact reduction from no longer needing CIP/SIP processes is
matched by the increase in environmental impact of plastic
production for the SUT process.

4.2.3 Fill and Finish Process Observations (AdV)
The impact from the F&F section of both manufacturing types
is negligible relative to the total impact, as it consists of only one
step and no CIP/SIP is required. This being said, the impact
from the SUT-based process are larger than those of the MUT-
based process. This is due to the nature of AdV vaccines which
require dilution into individual doses, thus requiring multiple
high-volume LLDPE bags which had greater environmental
impact than the steel needed for the blending tanks.

4.3 LV Environmental Parameters

Figure 4. Environmental Impact of LV Manufacturing per Gram LV
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As shown in Figure 4, the overall environmental impact from
the SUT-based process is higher than that from the MUT-
based process across all categories. The per gram impact of LV
production is higher than AdV, this is due to LV being a much
more highly concentrated product with significantly smaller
batch sizes (1.48g to 48.46g batch size for AdV).

4.3.1 Upstream Process Observations (LV)
The upstream process is a relatively small contributor to the
overall process impact. However, for LV the SUT process has
greater impact than MUT across all categories. This is largely
driven by the impact of LLDPE production and waste needed
for the SUT process. The resulting environmental impact from
this outweighed impacts of CIP/SIP for the MUT process.

4.3.2 Downstream Process Observations (LV)
Downstream process impact is the largest driver for the SUT
process having higher environmental impact than the MUT
process. This is due to the nature of downstream processes,
which involve large volumes of bu�ers and require several
LLDPE bags or steel tanks. Similar to USP, LLDPE production
and waste account for the majority of impact.

4.3.3 Fill and Finish Process Observations (LV)
The impact from the F&F section of both processes in negli-
gible compared to the total impact of the process. The SUT
process has marginally higher environmental impact, driven
by LLDPE production and waste.

4.4 Environmental Parameter Uncertainty Analysis
The main source of uncertainty in this paper is changes in
operational ranges due to these processes currently still being
under development, leading to uncertainty in batch size, bot-
tleneck steps which might propagate to supply chain decision-
making. Therefore, uncertainty analyses were focused on
potential changes in the data obtained from the SuperPro De-
signer flowsheets. Upper and lower bounds of the range of
uncertainty were based on values from the global sensitivity
analysis of the model conducted by Sarkis, Shah & Papathana-
siou (2022). Typical ranges of LV and AdV batch sizes were
taken from the report and normalised to batch sizes used in
this study to obtain upper and lower bounds, for the monetised
environmental impact of each product and impact category.
The methodology used for uncertainty analyses and sample
calculations can be found in Appendix C.

As can be seen from Figures 3 and 4, the error bars have the
potential to yield inverted results; for example, in Figure 4, the
lower bound of the range of impact to HH for SUT is lower
than the nominal value of impact to HH for MUT, and so it is
possible for SUT to ultimately have a smaller environmental
impact than MUT for LV manufacturing, a�ecting the results
produced by the optimisation model. In the future, sensitivity
analysis of the optimisationmodel across the operating range of
the SuperPro Designer model should be conducted to further
understand its impact on optimisation results.

4.5 Comparison of Environmental Results to Literature
Environmental results deviated from results seen in other stud-
ies such as those conducted by Flanagan (2017), where SUT-
based processes had lower environmental impact. A potential
reason for this could be fundamental di�erences between the
MAb and viral vector manufacturing processes. The contrast
between these results challenges the comparability of studies
for the manufacturing practices of di�erent products. For fu-
ture work, deeper analysis of the impacts of individual process
steps should be conducted to understand the di�erence in re-
sults between the MAb process and the viral vector processes.
Another potential reason for the disparity is insu�cient cov-
erage of use-stage environmental impacts, which Flanagan
(2017) identifies as being the key driver in environmental im-
pact reduction for the SUT process. Future work could expand
the range of use stage impacts beyond CIP/SIP and steel use
impact to reduce this potential error.

4.6 Economic Parameters
4.6.1 Capital Costs

Figure 5. Capital Costs of AdV and LV SUT and MUT processes

For both Adv and LV, having fully SUT-based manufacturing
lead to higher capital costs, 30% higher than MUT manu-
facturing for AdV and 63% higher for LV. This increase is
primarily driven by downstream process costs, whilst upstream
process was slightly reduced for SUT processes and fill & finish
cost remained relatively constant. AdV has higher fill & finish
costs due to the nature of the product, with increased com-
plexity for the dilution of the batch into 100,000 individual
doses, whilst LV is a highly concentrated product.

The increase in downstream costs is largely driven by
higher direct fixed capital (DFC) costs, accounting for 95% of
the increase for both AdV and LV. This comprises of direct
costs such as plant and equipment costs and indirect costs that
include costs of engineering and construction. Equipment
costs only account for 7.6% of DFC costs, therefore the in-
crease in DFC costs is due to higher plant and construction
costs. Conversely for the upstream and fill & finish processes,
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the SUT process has lower capital costs due to lower DFC
costs. This suggests that SUT processes are more economically
viable for processes with fewer steps and involving lower vol-
umes. In future work, modifying the downstream process in
the flowsheet to being only partially SUT-based should be ex-
plored. SUT utilisation could be prioritised for processes with
high cross-contamination risk and require stringent CIP/SIP,
rather than processes involving bu�ers. This could potentially
lower the DFC of the SUT downstream process, lowering
total capital costs.

Initial investment costs were reduced by 40% for an SUT-
based process relative to a comparable MUT process in a report
byWieland (2022). The discrepancy between the theWieland
(2022) study and the results from this study could be due to
inaccuracies in SuperPro Designer’s costing inputs or possible
selective use of SUT equipment in theWieland study compared
to the fully SUT SuperPro Designer model.

4.6.2 Operating Costs General Observations

Figure 6. Operating Costs of AdV and LV, SUT and MUT processes

For both viral vectors it is observed that operating costs are
higher for SUT processes than for MUT processes, increasing
by 36% for LV and 20% for AdV. Increased total downstream
costs accounted for the overall increased operational costs for
SUT processes, increasing by 130% for LV and 97% for AdV.
Total upstream and fill & finish operating costs were lower for
both products. The key trends between di�erent manufactur-
ing lines is similar to those observed for capital costs. These
observations further supported the segmentation of the model
into di�erent manufacturing lines, as upstream lines and fill
& finish SUT processes seemed more financially viable. Fill
& finish costs were a major contributor to operating costs for
AdV, accounting for 42-53%, whilst being relatively negli-
gible for LV. This is due to the dilution of AdV into vaccine
doses, requiring complex and expensive fill & finish processes.
Across all products and manufacturing types, facility and vari-
able costs were the most significant cost categories for both
products with labour cost being relatively negligible.

Lütke-Eversloh & Rogge (2018) observed a reduction in
operating costs of around 20% for SUT processes relative to
MUT. The study was based on the MAb process, this again
highlighting the di�erences between bioprocesses for di�erent
products. To further validate this, an MAb model could be de-
signed within SuperPro Designer to identify if the di�erence
is ultimately due to di�erences in modelling methods or dif-
ferences in processes for individual products. Further analysis
for the operational costs incurred by individual process steps
would also be useful for building a more refined approach to
SUT usage for future flowsheets.

4.6.3 Variable Cost Observations
Variable costs are defined as the cost of production and were
batch size dependent. Variable cost was a significant cost cat-
egory, accounting for 42-50% of total operating costs and
around 40% of the increase in overall operating cost. For both
products, an SUT-based process had higher variable costs. The
key components of variable costs were the consumable and
material costs, with utilities and waste costs being negligible.
The rise in variable costs for an SUT process is wholly driven
by significant increases of consumable costs, whilst material
costs fell slightly for the SUT process. Similarly to results seen
in total operating costs as well as capital costs, the increase
was driven by consumable costs in the downstream process,
accounting for 67.5% of the increase for LV and 72.9% for
AdV The rise in consumable costs is due to significantly higher
amounts of single-use consumables needed for the SUT pro-
cess, whilst the slightly reduction in material costs is due to
the elimination of phosphoric acid and sodium hydroxide use
for CIP/SIP in the SUT process.

4.6.4 Facility Cost Observations
Facility costs are defined as the cost of operating the plant and
are mainly time dependent. Facility costs account for a larger
portion of total operating costs for AdV relative to LV, this
is due to the aforementioned high dosage nature of the AdV
vaccine product. For both AdV and LV, the facility costs of the
SUT process were higher than the MUT process, accounting
for around 60% of the overall operating costs increase. The
facility costs of downstream manufacturing lines increase for
the SUT process, whilst decreasing for both the upstream
and fill & finish lines, in line with observations of other cost
parameters. The biggest increase in downstream costs is in the
purification step, this further supports the reduction of SUT
usage in purification processes.

4.6.5 Labour Cost Observations
Labour costs accounted for a relatively small portion of total
operating costs. For both AdV and LV, labour costs were
lower for the SUT process, likely due to the reduced need for
CIP/SIP processes. Labour costs were predominantly incurred
in the upstream process, this is due to the upstream process
steps being more time-consuming therefore requiring more
working hours, estimated to be 22 days compared to 5 days
for the downstream process.
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4.7 MILP Optimisation Results
Single-objective optimisation for environmental impact and
total costs were conducted and results are shown in Table 2.

Table 2. Optimised solutions for AdV and LV for both objectives

Product, Optimisation Objective Environmental
Impact (USD 2013)

Total Costs
(USD 2021)

LV, Environmental Impact Minimisation $ 15,168.00 $ 353,113,066.80
LV, Cost Minimisation $ 16,456.32 $ 271,527,502.11

AdV, Environmental Impact Minimisation $ 5,539.62 $ 361,679,614.80
AdV, Cost Minimisation $ 5,539.62 $ 361,679,614.80

AdV had higher total costs, while LV had higher envi-
ronmental impact, consistent with the environmental and
techno-economic parameters used. Environmental impact
minimisation for LV yielded a slightly lower monetised en-
vironmental impact but higher total costs compared to cost
minimisation, indicating the objectives were conflicting. In fu-
ture work, multi-objective optimisation techniques such as the
✏-constraint method could be used to balance the objectives
for LV, with more weight placed on costs as environmental
impact is only slightly increased when costs is minimised. For
AdV, the model produced a non-unique, degenerate solution
whereby the environmental impact and total costs remained
the same for both objectives. This is likely due to both objec-
tives being aligned to each other, as environmental impact and
techno-economic trends are consistent for AdV.

4.7.1 Production Scheduling

(a) Environmental Impact Minimisation (b) Cost Minimisation

Figure 7. Time-based Demand and Production Data for LV

The benefit of multi-period optimisation is observing the
model adapt to changing demand. In this study, demand was
initially set to zero to provide time for setting up of manufac-
turing lines, at months 5-6 there was low demand and demand
was increased in month 10 and 12. The demand profile for LV
is shown in black in Figure 7. For environmental optimisation,
the model scaled out production across multiple manufactur-
ing lines to conduct all production in one month (Figure 7a).
When cost was minimised, upstream production was split into
two campaigns to reduce the number of required upstream
manufacturing lines, thus minimising capital cost (Figure 7b).
At the moment the model only accounts for setting up of new
manufacturing lines, it could be further expanded to account
for existing MUT-based manufacturing lines being retrofitted
into SUT manufacturing lines.

4.7.2 AdV Environmental Impact Minimisation

Figure 8. AdV Manufacturing Lines with Minimised Environmental Impact

The manufacturing lines for environmental impact minimisa-
tion of AdV are shown in Figure 8, with SUT-based upstream
lines andMUT-based downstream and fill & finish lines. Under
lower initial demand, the model only utilised one manufac-
turing line for each process section but as demand increased,
manufacturing was scaled out over two manufacturing lines.
Upstream lines remained SUT-based and downstream and fill
& finish lines remained MUT-based. This is consistent with
the environmental parameters in Figure 3, where upstream
SUT manufacturing lines had lower environmental impact.

4.7.3 AdV Cost Minimisation
The manufacturing lines for cost minimisation of AdV were
the same as the ones for environmental impact minimisation
shown in Figure 8. This is consistent with capital costs and
operating costs results shown in Figures 5 and 6, where the
costs for upstream SUT manufacturing lines were lower.

4.7.4 LV Environmental Impact Minimisation

Figure 9. LV Manufacturing Lines with Minimised Environmental Impact

The manufacturing lines for environmental impact minimi-
sation of LV are shown in Figure 9, with fully MUT-based
upstream, downstream and fill & finish manufacturing lines.
This is consistent with environmental impact results in Figure
4, where MUT manufacturing lines have less impact for all
manufacturing lines. There is no change in manufacturing
line design for low demand and high demand periods, with
the model setting up the maximum number of lines possible
to conduct all production within the same month which is
shown in Figure 7a. This behaviour is due to there being
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no environmental penalty for the setting up of new manufac-
turing lines since environmental impact is only tied to viral
vector production on a per gram basis. This provides scope for
future work to expand the model to include the environmental
impacts of setting up an SUT and MUT manufacturing line.

4.7.5 LV Cost Minimisation

Figure 10. LV Manufacturing Lines with Minimised Costs

Themanufacturing lines for cost minimisation of LV are shown
in Figure 10, with SUT-based upstream and fill & finish man-
ufacturing lines and MUT-based downstream lines. This is
consistent with the capital and operating costs shown in Fig-
ures 5 and 6, where both costs are slightly lower for SUT
upstream and fill & finish manufacturing lines. The model also
adapts to periods of higher demand by setting up additional up-
stream lines, however it only does so when necessary in order
to minimise facility costs. Capital cost is minimised by only
operating a single downstream and fill & finish manufacturing
line. It is these reduced facility costs that primarily lead to this
solution to have lower total costs than the solution in Figure 9.

4.7.6 Validation of Optimal Solution

Table 3. Cost minimised solution for LV with only MUTmanufacturing lines

Product, Optimisation Objective Environmental
Impact (USD 2013)

Total Costs
(USD 2021)

LV, Cost Minimisation (Fixed MUT) $ 15,168.00 $ 316,308,181.84

Validation of the optimality of the proposed manufacturing
set ups was conducted by fixing the manufacturing type to
be either only SUT or MUT. When the model was fixed to
SUT only all solutions had higher environmental impact and
total cost than the ones shown in Table 2. This confirmed
the optimality of the mixed SUT/MUT solutions proposed in
Figures 8 and 10. However when the model was fixed to MUT
only, cost minimisation for LV produced a solution, shown in
Table 3, that had significantly lower total cost but the same
environmental impact as the solution in Figure 9. This is due
to the model reducing the number of downstream and fill
& finish lines, thus reducing the capital costs. This further
highlights the potential for multi-objective optimisation of LV
production to identify the most optimal solution across both
objectives.

5 Conclusions and Outlook
The key conclusions from the environmental life cycle as-
sessment were that the environmental impact of a fully SUT
processing chain was higher. However the impact of SUT
upstream processes were lower for AdV but not LV. SUT
downstream processes consistently had higher environmental
impact for both products, suggesting a fully SUT approach
may not be suitable for downstream processes due to its num-
ber of steps and high volume of bu�ers. SUT fill and finishing
had relatively negligible environmental impact but it was still
higher than the the MUT-based process.

On the techno-economic side, SUT cost was lower for
upstream processes and significantly higher for downstream
processes. For fill and finish, cost were higher for AdV but
lower for LV. This was due to the nature of the AdV vaccine
product, where the fill and finish section involves the dilution
of AdV which require large volumes of bu�ers and water for
injection. This leads to greater cost for an SUT-based fill and
finish process due to higher consumable costs.

The optimisation model utilised the environmental and
techno-economic parameters to produce optimised manufac-
turing lines for AdV and LV under low and high demand
scenarios. The model produced a non-unique solution for
AdV with the same design for environmental impact and cost
minimisation, suggesting that the two objectives were aligned
for AdV. LV on the other hand had distinct solutions, suggest-
ing the objectives were conflicting. This provided scope for
multi-objective optimisation to balance between both objec-
tives and ensure the most optimal solution is found.

In the future, the range of environmental impacts covered
could be expanded to improve the model. In particular the
environmental impact of setting up of an SUT or MUT manu-
facturing line and retrofitting of anMUT line into an SUT one
could be considered. In order to make the SUT-based down-
stream process more environmentally and economically viable
in the future, a more granular and selective approach to SUT
usage in the downstream process could be applied. Equipment
with high risk of cross-contamination should be prioritised
whilst equipment containing bu�ers could be excluded.
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Nomenclature
Abbreviations

AdV Adenoviral vector

CIP Cleaning-in-place

DFC Direct fixed capital
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DSP Downstream processing

EER Economic evaluation report from SuperPro Designer

EH Ecosystem health

EIR Environmental impact report from SuperProDesigner

F&F Fill and finish processing

HH Human health

ICR Itemised costing report from SuperPro Designer

LLDPE Linear low-density polyethylene

LV Lentiviral vector

MAb Monoclonal antibodies (drug class)

MILP Mixed-integer linear programming

MUT Multi-use technology

PET Polyethylene terephthalate

PP Polypropylene

RA Resource availability environmental impact

SIP Steaming-in-place

SUT Single-use technology

USP Upstream processing

Sets

a Scales

d DSP manufacturing lines

g F&F manufacturing lines

i Products

j Manufacturing nodes

s Supply chain type (SUT, MUT)

u USP manufacturing lines

Model Variables

TC Total cost USD2021

TE Total environmental impact USD2017

z Objective for minimisation

Units

DALY Disability-adjusted life year

species · yr Local species loss integrated over time

USD2013 USD value in 2013 for Resource Availability

USD2017 USD value in 2017 for Total Environmental Impact

USD2021 USD value in 2021 for Total Cost
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Optimisation of Full Oxyfuel Combustion for Cement Production 
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Abstract Cement is an essential material for construction buildings. However, the process of production alone is 
accountable for 5% of global carbon dioxide emissions. The implementation of oxyfuel combustion in the process 
allows for higher purities of carbon dioxide to be released from the output flue gas, thus allowing the carbon 
dioxide to be captured more easily using carbon capture systems and potentially being stored or processed further. 
In this study, a full oxyfuel combustion plant was simulated in ASPEN Plus V11, achieving a CO2 rich flue gas 
at full conversion of calcium carbonate. The model was also optimised to meet baseline cement plant 
specifications so that cement production still met its annual target. The efficacy of the plant operation was also 
analysed through a set of key performance indicators, which showed general agreement with current cement 
plants. The plant was also cost analysed and was found to be cost effective when compared with existing cement 
plants, especially considering that the overall capital expenditure included the cost of CO2 purification. Full 
oxyfuel combustion in the cement process was found to be a viable technology for reducing the CO2 emissions in 
the production process, however it is unlikely that new cement plants will be built in the near future, thus further 
study into the construction of retrofitted oxyfuel technologies is recommended. 
 
Keywords – CO2, clinker, cement, flue gas, oxyfuel,  
 
1 Introduction 
Cement is used in the infrastructure of almost all 
buildings worldwide. The process utilises calcium 
and silicon which are very abundant, making them 
suitable for mass production (Perilli, 2019). 
Traditionally, the process of producing cement 
requires clinker to be burned with coal. This 
produces a considerable amount of carbon dioxide, 
in which the industry contributes to approximately 
5% of global carbon dioxide emission (Voldsund, 
2021). Decarbonisation of the cement production 
process will allow for a continued use of a material 
which the world is highly dependent on.  
Oxyfuel combustion in the cement process utilises 
oxygen and recycled carbon dioxide alongside fuel 
for combustion in the kiln in the place of natural gas. 
The clinker burns at a temperature higher than that 
with ambient air, which allows for a more efficient 
combustion process (Linde, 2022). One can achieve 
higher purities of carbon dioxide in the flue gas, 
aiding the decarbonisation of the process. In 
addition, nitrogen no longer dilutes the flue gas 
stream, making it easier to handle and treat. This is 
beneficial as the carbon dioxide in the flue gas can 
be extracted more easily by the carbon capture plant, 
thus a greater amount can be stored instead of being 
released into the environment. 
IKN designed and installed the first successful 
oxyfuel clinker cooler at the HeidelbergCement 
plant in Hannover, Germany (CEMCAP, 2018). The 
aims of the plant were to develop a system that 
produced clinker with reduced CO2 emissions and 
reduced energy consumption. In addition, 
HeidelbergCement aimed to achieve the same 
quality of cement produced when cooled in a CO2 
rich atmosphere as with ambient air 
(HeidelbergCement, 2021). The budget for the 
project equated to €10M. A pilot oxyfuel cement 
burner has also been tested by University of Stuttgart 

in collaboration with Thyssenkrupp. The aim of the 
downscaled industrial process was to test the impact 
of high concentrations of CO2 in the atmosphere and 
the effect it would have on the calcination process 
(Carrasco-Maldonaldo, 2021). In October 2022, 
TotalEnergies and Holcim signed a memorandum of 
understanding to work towards the decarbonisation 
of the Obourg Cement plant in Belgium (Global 
Cement, 2022). The plant currently emits 1.3Mt/yr 
of CO2 in which they plan to decrease. One of the 
technologies included in the decarbonisation will 
include an ‘oxyfuel switchable kiln’ as stated by 
Global Cement (2022). An electrolyser is also in 
development to produce green hydrogen to produce 
e-fuels. The switchable kiln would ultimately be 
fuelled by the oxygen released in the electrolyser 
(Process Worldwide, 2022).  
The main objective of this project was to simulate a 
cost-effective cement process with full oxyfuel 
combustion. The modelling of the process was 
optimised with an aim of achieving a high 
concentration of carbon dioxide output at 100% 
conversion of calcium carbonate. The process 
simulation for the cement plant was carried out using 
ASPEN Plus V11. A range of key performance 
indicators (KPIs) was selected to assess the efficacy 
of the system in areas such as power performance 
and emission intensity. An economic analysis was 
carried out to evaluate whether oxyfuel combustion 
yielded an overall decrease in costs. 
 
2 Background 
The cement process consists of raw meal being dried 
and sent through a series of five preheating cyclones 
and precalciner. It is then sent through a rotary kiln 
where it then becomes clinker. The clinker goes 
through a clinker cooler and clinker mill.  The 
intermediate calcium oxide is formed from the 
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calcination of calcium carbonate as detailed in 
Equation 1. This process accounts for 60% of carbon 
dioxide emissions and takes place at 900⁰C (Driver 
et al., 2022). 

𝐶𝑎𝐶𝑂3 ↔ 𝐶𝑎𝑂 + 𝐶𝑂2    
∆𝐻298𝑘 = +174𝑘𝐽/𝑚𝑜𝑙 

(1) 

Carbon dioxide is also produced as a by product of 
the formation of magnesium oxide from magnesium 
carbonate in Equation 2 (Driver et al., 2022). 
 

𝑀𝑔𝐶𝑂3 ↔ 𝑀𝑔𝑂 + 𝐶𝑂2    
∆𝐻298𝑘 = +118𝑘𝐽/𝑚𝑜𝑙 

(2) 

Reactions in Equations 3-6 account for the 
remaining 40% of emissions from this process. 
These clinkering reactions take place at 1450⁰C 
(Driver et al., 2022). 

2𝐶𝑎𝑂 + 𝑆𝑖𝑂2 ↔ 2𝐶𝑎𝑂∆𝑆𝑖𝑂2   
∆𝐻298𝑘 = −126𝑘𝐽/𝑚𝑜𝑙 

(3) 

3𝐶𝑎𝑂 + 𝑆𝑖𝑂2 ↔ 3𝐶𝑎𝑂∆𝑆𝑖𝑂2   
∆𝐻298𝑘 = −113𝑘𝐽/𝑚𝑜𝑙 

(4) 

3𝐶𝑎𝑂 + 𝐴𝑙2𝑂3 → 2𝐶𝑎𝑂∆𝐴𝑙2𝑂3  
∆𝐻298𝑘 = −7.3𝑘𝐽/𝑚𝑜𝑙 

(5) 

4𝐶𝑎𝑂 + (𝐹𝑒, 𝐴𝑙)2𝑂3 
↔ 4𝐶𝑎𝑂∆(𝐹𝑒, 𝐴𝑙)2𝑂3 
∆𝐻298𝑘 = −27𝑘𝐽/𝑘𝑔 

(6) 

In 2019, The Global Cement Future Conference 
suggested that the probability of oxyfuel technology 
being successfully demonstrated in cement 
production was between 40-60% (Perilli, 2019). A 
challenge that can arise from oxyfuel combustion 
could be the flame length and shape in the rotary 
kiln. A longer flame length than necessary can 
reduce the longevity of components and affect 
clinker reactions (Pneumat Systems Inc., 2021.). 
Optimising this would require changes to be made 
to the burner in the kiln to no longer impact the 
quality of clinker (Bakken & Ditaranto, 2019). From 
a health and safety perspective, operating oxygen of 
high purity with fuels can increase the risk to 
workers when combined with the high temperatures 
in the kiln (Zeman, 2009). The process will also 
have to consider an oxygen production facility as 
well as a CO2 compression station in terms of capital 
expenditure, so that the CO2 can be transported for 
carbon capture and storage (Zeman, 2009). 
Carbon Capture Utilisation and storage (CCUS) 
technologies play a key role in keeping the global 
temperature with 2⁰C above pre – industrial levels, 
as per the aims of The Paris Agreement (IEA, 2020). 
Recently, the UK Government funded 9 companies 
in 2019 to develop projects that could reduce carbon 
dioxide emissions to an equivalent of 22,000 cars 
(GOV.UK, 2019), granting £26 million as part of 

their aim to achieve Net Zero by 2050. CCUS 
technologies specifically geared towards the cement 
industry are set to be commercially available by 
2030 (World Economic Forum, 2022). 
Alternate technologies such as hydrogen fuel has 
been considered as an alternative to using fossil fuels 
in the cement process (Davis, Fennell & 
Mohammed, 2021). This consists of integrating an 
ammonia decomposition system to supply hydrogen 
to the cement plant for fuel. Studies have shown that 
this can equate to a 44% decrease in CO2 emissions 
in comparison to that of the current system (Aziz et 
al., 2022). Biofuels have also been explored as an 
alternative to fossil fuels (Hiremath et al., 2022). It 
was found that they could be substituted without 
great changes to the overall capital investment. This 
alternative is only feasible when co-fired up to 20% 
with coal and is highly dependent on the type of 
biomass fuel sought after (Cuéllar & Herzog, 2015). 
Other technologies integrated in the cement 
production process include calcium looping, a post-
combustion technology that has been applied on a 
pilot scale to the cement process (Hornberger, 
Scheffknecht & Spörl, 2017). It has the potential to 
achieve 95% capture rate of CO2 whilst maintaining 
a high energy efficiency, however the process is 
known for attrition and deactivation of lime 
(Adjiman et al., 2018). Another post combustion 
technology considered was biological CO2 capture 
with algae (Global Cement, 2014). Up to 20% of the 
oil produced from the process can be used for 
biodiesel in the cement process, however there are 
various challenges to be combatted with upscaling 
the process. 
Finally partial oxyfuel combustion has also been 
studied where only the calciner operates under 
oxyfuel conditions as supposed to both the calciner 
and kiln (Carrasco-Maldonaldo et al., 2016). This 
equates to an estimated 60% concentration of CO2 in 
the flue gas and requires a higher level of 
maintenance in comparison to full oxyfuel 
operation. Based on the ECRA plant it was 
estimated that a new installation of an oxyfuel 
combustion cement plant was €290.7M compared to 
€103.7M for a retrofit (IEAGHG, 2013). The 
installation of an air separation unit for the oxyfuel 
process doubles the amount of energy required per 
tonne of clinker. The increased energy usage 
increases the cost of production by 40-50% (Global 
Cement and Concrete Association, 2022). However, 
it is assumed that the new installation would incur 
lower fuel costs due to the higher energy efficiency. 
Despite this oxyfuel combustion is still considered 
one of the most economical options for carbon 
capture in the cement process (Global Cement and 
Concrete Association, 2022). 
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3 Methodology

 
Figure 1. Flowsheet of oxyfuel process 

 

Table 1. Assumed and Simulated Compositions of material streams in the oxyfuel process 
Material Mass Composition 

CaCO3 SiO2 Al2O3 Fe2O3 MgCO3 CaO MgO CaSO4 C3S Ash 

Raw 
Meal 

79.2 13.2 4.4 1.9 1.3 - - - -  

Clinker - - 6.8 2.9 - 11.3 1.0 - 77.1 0.9 
Gypsum         100.0   

GBFS  33.0 13.0 2.0 7.0 45.0     
Cement - 10.5 8.3 2.4 2.2 21.3 0.6 6.3 47.9 0.6 

 
Table 2. Assumed fuel composition 

HHV (MJkg-1) 
 

 
22.4 

Proximate 
Analysis (wt%) 

W FC VM Ash   

10.0 72.0 21.0 7.0   

Ultimate 
Analysis (wt%) 

C H N S O Ash 

68.0 5.0 2.0 1.0 17.0 7.0 

 
3.1 Modelling overview 
The cement plant was modelled using the simulation 
package Aspen Plus V11. The Peng-Robinson 
equation of state was used to calculate system 
properties (Driver et al., 2022). This was decided 
based on literature research as it had been used to 
model similar processes. The flowsheet for the 
cement plant is shown above in figure 1. Table 1 and 
2 features the compositions of the material and fuel 
streams for the cement plant.  
 
3.2 Modelling the cement plant 
3.2.1 Mills 
A closed circuit ball mill was used for milling of the 
raw meal and the cooled clinker. This was simulated 
with a fixed energy consumption of 36 kJ/kg 

(Sprung, 2008). Grindability of the meal was 
specified at 13.5 kWh/ton (Deniz, 2004). The milled 
meal was then transferred to the preheating cyclone.  
In the case of the cooled clinker, the grindability and 
fixed energy consumption were set to 13.7 kWh/ton 
and 90 kJ/kg respectively (Deniz, 2004) (Sprung, 
2008). Prior to milling, the cooled clinker is mixed 
with gypsum and GBFS to obtain the desired cement 
composition. 
 
3.2.2 Preheating Cyclone and Calciner 
The preheating cyclone is fed with the ground raw 
meal at one end and the hot kiln, calciner and fuel 
gases at the other end in a counter current design. 
The preheating cyclone which consists of 5 stages is 
modelled as 5 RGibbs reactors connected in series. 
The outlet from the topmost stage at 150 0C is the 
flue gas stream (predominantly containing CO2) 
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which is sent to a CO2 purification unit. RGibbs 
reactors were used as they can determine the 
equilibrium compositions at each stage through the 
identification of likely products. The calciner was 
also modelled as an RGibbs reactor for the same 
reasons. The calciner calcined all the CaCO3. It was 
fuelled by coal-RDF. Fuelling was modelled with an 
RYield, RGibbs and SSplit block. The RYield block 
was used to simulate the decompositions of the coal 
into its component elements along with 10% water 
by weight fraction. A calculator block was set up to 
determine the yields based on the coal composition. 
The outlet from the RYield block is then passed to 
an RGibbs block where the combustion reactions are 
simulated. To simulate the combustion reactions 
recycled oxygen from the clinker cooler is 
introduced into the calciner. The mixed phase outlet 
stream is then fed into the calciner.  
 
3.2.3 Rotary Kiln 
The burner within the rotary kiln was modelled the 
same as that in the calciner, with oxygen being 
recycled from the hottest end of the clinker cooler to 
drive the combustion. Firing was assumed to be 
fixed at a temperature of 14000C. To drive the 
reaction, heat was transferred from the RGibbs block 
(representing the burner) to the RStoic block. The 
reactions in the rotary kiln were limited to formation 
of C3S as the component bank of the simulation 
package did not contain the remainder of the cement 
components. Following reaction, the clinker is sent 
to the clinker cooler and the gaseous products are 
recycled into the burner to boost thermal efficiency. 
The hot gases from the burner were passed through 
a HeatX block to preheat the kiln feed to improve 
thermal efficiency of the process. The hot flue gases 
are then sent to the calciner and subsequently the 
preheating stages where it is cooled to 1500C. 
 
3.2.4 Clinker Cooler 
The clinker cooler was modelled as three HeatX 
blocks with the hot clinker as the hot stream and 
oxygen (250C) as the cold stream. To simulate 
operation of a typical clinker cooler which would be 
a conveyor belt fitted with blowers, the clinker 
cooler was modelled in co-current flow. The heated 
oxygen from the first stage was sent to the rotary 
kiln. The oxygen from the second stage was sent to 
the calciner.  
 
3.3 Key Performance Indicators (KPIs) 
To assess the cement plant, four indicators were 
chosen to compare the performance with the 
baseline cement plant. These are listed in equations 
7-10. Final KPI values were obtained at full CaCO3 
conversion by varying the fuel flowrate to ensure 
optimum operation. The specific electrical duty was 
taken as the combined power consumption by the 
mills in the system divided by the total mass of 
cement produced. The specific thermal duty was 

measured by combining the total fuel flowrate and 
dividing it by the mass of clinker produced. The 
higher heating values (HHVf) for all fuel inlets were 
22.4 due to their composition. Finally, the Emission 
Intensity was measured by comparing the amount of 
CO2 in the flue gas with the amount of cement 
produced. 

Conversion =  
𝑚̇𝐶𝑎𝐶𝑂3,0 − 𝑚̇𝐶𝑎𝐶𝑂3,𝑛

𝑚̇𝐶𝑎𝐶𝑂3,0
 (7) 

Specific 
Electrical 
Duty 
(kWh/tcmnt) 

  =
∑ 𝑃𝑖

𝑚̇𝑐𝑚𝑛𝑡
 

(8) 

Specific 
Thermal Duty 
(GJ/tclk) 

=
∑(𝑚̇𝑓 × 𝐻𝐻𝑉𝑓)

𝑚̇𝑐𝑙𝑘
 

(9) 

Emissions 
Intensity 
(tCO2/tcmnt) 

=
𝑚̇𝐶𝑂2

𝑚̇𝑐𝑚𝑛𝑡
 (10) 

 
Where ṁCaCO3,0 is the inlet mass flowrate of CaCO3, 
ṁCaCO3,n is the outlet mass flowrate of CaCO3. Pi is 
the total power, ṁcmnt is the outlet mass flowrate of 
cement. ṁf is the inlet mass flowrate of fuel, HHVf 
is the higher heating value and ṁclk is the outlet mass 
flowrate of clinker. ṁCO2 is the outlet mass flowrate 
of CO2. 
 
4 Results 
4.1 Specifications and KPIs 
Table 3 illustrates a direct comparison of the full 
oxyfuel cement plant against a baseline cement plant 
(IEAGHG, 2013). The oxyfuel plant generally met 
the specifications of the baseline cement plant with 
only slight variation in the specific electrical duty. 
The CO2 concentration in the flue gas was found to 
be 87.7% at 16,000 kg/hr fuel station flowrate and 
2,500 kg/hr rotary kiln fuel flowrate. 
 
Table 3. Summary of specifications and KPIs for model cement 

plant against the oxyfuel simulation 
Parameter Scenario Unit 

 Baseline Oxyfuel  

Clinker 

production 
1.00 1.01 Mt/yr 

Cement 

Production 
1.40 1.63 Mt/yr 

Specific CO2 850 878 kgCO2/tclk 

Raw meal to 

Clinker factor 
1.60 1.54 - 

Conversion 1.00 1.00 - 

Specific Electrical 

Duty 
89.00 35.10 kWh/tcmnt 
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Specific Thermal 

Duty 
3.40 3.18 GJ/tclk 

Emission Intensity 0.50 0.54 tCO2/tcmnt 

 
4.2 Fuel sensitivity 
The fuel flowrate sensitivities were conducted to 
assess the effect of varying raw meal flowrate, fuel 
station flowrate and rotary kiln fuel flowrate on 
various parameters. The sensitivity test values 
ranged from 5,000-16,000 kg/hr of fuel station 
flowrate and the rotary kiln flowrate was varied 
between 500-6,500 kg/hr, whilst raw meal flowrate 
was maintained at 200,000 kg/hr. 
 
4.2.1 Conversion 
Calcium carbonate conversion was heavily affected 
by the fuel station flowrates. The inlet CaCO3 
flowrate was maintained at 158,400 kg/hr. It was 
observed that complete conversion did not take 
place until the flowrate was at least 15500 kg/hr of 
fuel as shown in Figure 2.  

 
Figure 2. CaCO3 conversion against fuel station flowrate 

 
4.2.2 KPIs 
Sensitivity tests were carried out to assess the effect 
on specific thermal duty and emission intensity. Full 
conversion of calcium carbonate was maintained 
during testing. Specific thermal duty values ranged 
from 3.0-4.4 GJ/tclk which is in line with literature 
(Driver et al., 2022). Emission intensity also 
remained between 0.5-0.6 tCO2/tcmnt after full 
conversion as per Figure 3. 

 
Figure 3. Emission Intensity against fuel station flowrate 

 
The specific electrical duty was found to be 35.1 
kWh/tcmnt. When the fuel station flowrate was 12000 
kg/hr, the specific electrical duty was at its lowest of 
34.5 kWh/tcmnt however this meant that full 

conversion of CaCO3 did not take place. The 
specific electrical duty remained between 34.4-35.4 
kWh/tcmnt for the duration of testing. 

 
Figure 4. Specific electrical duty varying with fuel station 

flowrate 
 
4.3 Effect of Recycle 
Testing was carried out to observe how recycle of 
the flue gas stream exiting the topmost stage of the 
preheating cyclone would affect the process.  
 
An effect was observed in the kiln heat duty which 
consequently affected the cost of the kiln. Results of 
these are shown in figures 5 and 6 respectively. 

 
Figure 5. Kiln heat duty varying with recycle ratio 

 

 
Figure 6. Kiln cost varying with recycle ratio 

 
4.4 Effects of Preheaters 
Testing was carried out to observe how a reduction 
in the number of preheating stages would affect the 
process.  
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An effect was observed in the conversion and 
specific thermal duty, results of which are shown in 
figures 7 and 8 respectively. 

 
 

Figure 7. The effect of number of preheaters on CaCO3 
conversion 

 

 
 

 

 
 
Figure 8. The effect of number of preheaters on specific thermal 

duty (GJ/tclk) 
 

4.5 Economic Analysis 
 

Table 4: Calculated and assumed purchase cost of equipment  for oxyfuel plant with varying number of preheaters 
Unit Operation Purchase Cost of Equipment (£M) 

Oxyfuel plant with 
five preheating 

Oxyfuel plant with 
four preheating stages 

Oxyfuel plant with 
three preheating 

stages 

Oxyfuel plant with 
two preheating stages 

Pneumatic Conveyor 1.45 1.45 1.45 1.45 
Preheater 0.14 0.18 0.20 0.22 

Raw Meal Mill 1.19 1.19 1.19 1.19 
Calciner 3.24 3.18 3.13 3.05 

Rotary Kiln 6.51 6.58 7.84 8.10 
Clinker cooler 0.63 0.63 0.63 0.63 
Clinker Mill 1.19 1.19 1.19 1.19 

Air Separation unit 10.90 10.90 10.90 10.90 
CO2 purification unit 9.50 9.50 9.50 9.50 

Total PCE 34.75 34.80 36.03 36.23 
 
 

Table 5: Annual materials and utilities costs for the oxyfuel plant 
Input Unit Price Cost Unit Quantity Annual Cost (£M/y) 

Materials (t/hr) 
Raw Meal 5 £/t 200.00 7.92 

GBFS 2 £/t 13.28 0.21 
Gypsum 6 £/t 66.14 3.14 

Coal-RDF 65 £/t 18.50 9.52 
Utilities (MW) 

Electricity 58.1 £/MW 47.15 42.49 

Costing Parameter Value (£M) 
MC 1.1 
LC 4.5 
OC 7.7 

MSC 23.1 

VOC 27.0 
DPC 50.1 
IPC 5.0 

OPEX 55.1 

 
 

Costing Parameter Value (£M) 

PCC 34.75 

PPC 109.5 

FCC 153.3 

WCC 43.1 

CAPEX 196.3 
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Economic analysis of the process was conducted. 
This costing was done using methods and factors 
outlined in Chemical Engineering Economics 
(Garrett, 1989). Costing of the CO2  and air 
purification units was not conducted manually. 
Values for these were obtained from literature 
(Gardarsdottir, S. O., 2019). The results of these are 
summarised in tables 4 to 7 
 
5 Discussion 
5.1 Specifications and KPIs 
The close agreement of the specifications of the 
baseline cement plant with the oxyfuel cement plant 
reinforces the feasibility of operation under full 
oxyfuel conditions. Table 3 shows that clinker 
production could be maintained at the same target 
whilst exceeding annual cement production at full 
CaCO3 conversion. The CO2 concentration in the 
flue gas was slightly lower than anticipated, 
however with further optimisation high 
concentrations could be achieved. The specific 
electrical duty differs the most from the literature 
value (IEAGHG, 2013), in which the difference 
could be accounted for by considering the power of 
the pneumatic conveyor if given the ability to model. 
 
5.2 Fuel sensitivity 
5.2.1 Conversion 
A fuel station flowrate of 5,000 kg/hr of fuel equated 
to a conversion of 34% as shown in Figure 2. This 
dropped the emission intensity fell 0.54 to 0.17 
tCO2/tcmnt. The cement mill cost also decreased with 
the increase in the fuel station flowrate due to the 
decrease in production as more flue gas was being 
produced. 
 
5.2.2 KPIs 
The specific thermal duty increased with an increase 
in flowrate. This was as expected as the mass of fuel 
put into the system increases greater than the 
increase in clinker produced. 
It was observed that even at flowrates as low as 
500kg/hr, the specific CO2 emission were 844 kg/hr 
due to the raw meal inlet flowrate being 200,000 
kg/hr and calcination taking place. This is also due 
to the process being complete oxyfuel so that only 
oxygen is supplied to the clinker. As the rotary kiln 
flowrate was increased incrementally, the specific 
CO2 emissions increase to 946 kgCO2/tclk. Specific 
CO2 emissions increased more drastically with the 
increase in fuel flowrate as the conversion of CaCO3 
increases, thus more calcination is taking place per 
unit time, thus showing the fuel station flowrate has 
a more direct effect on the CO2 emitted from the 
process than the rotary kiln. 
Specific electrical duty was mainly affected by the 
fuel station flowrate. The production of cement 
decreased with the increase in fuel station flowrate 
but began to decrease faster when the flowrate 
increased to 12,000 kg/hr as the CaCO3 approached 

full conversion. As with the power, the mill grinding 
the raw meal remained at constant power due to 
production specifications. However, the mill within 
the clinker’s power consumption steadily decreased 
as the fuel flowrate increased and became constant 
as full CaCO3 conversion was reached. The effect of 
both the power consumption and cement production 
meant the specific electrical duty varied by less than 
1% throughout testing, remaining between 34.4-
35.4kWh/tcmnt.  
 
5.3 Effects of recycle 
Recycling the flue gas from the topmost stage of the 
preheating cyclone has a dramatic effect on the heat 
duty of the kiln. This can be seen not just in the 
actual heat duty value of the kiln but also in the 
outlet temperature of the kiln. Increasing the fraction 
being recycled back into the reactor from 0 to 0.295 
is able to decrease the outlet temperature of the kiln 
by 3000C. 
As the recycle ratio is increased, the heat duty of the 
kiln drops significantly. Increasing the recycle ratio 
to 29.5% drops the kiln’s heat duty by two orders of 
magnitude. At this ratio the heat duty drops to 
88,356.8 cal/s. This happens due to the kiln gas 
being sent back at significantly lower temperatures 
than the operating temperature of the kiln (13650C). 
As a result of this it can absorb excess heat from the 
kiln. 
 
 
5.4 Effects of preheaters 
Testing of the effects of the preheating cyclone on 
the process was done by reducing the number of 
stages from five to zero. The most marked effect this 
had on the process was on the conversion of CaCO3. 
This went from 100% when all five stages are 
implemented to zero without preheating.  
This is because when full preheating is present, heat 
being generated in the calciner is used only to drive 
the calcination reactions. This calcination reactions 
occur at ∼9000C (Sprung, 2008). However, as 
preheating stages are reduced the raw meal is 
introduced into the calciner at increasingly lower 
temperatures. The heat generated by the fuel now 
must first heat the raw meal to calcination 
temperatures. Thus, there is less heat available to 
drive the calcination reactions. 
It is important to note that even at no preheating, the 
conversion of CaCO3 could possibly still reach a 
100% if the fuel flowrate is increased. However, this 
would increase the both the capital and operating 
costs of the process. This behaviour is seen in table 
4, where a reduction in preheating stages resulted in 
an increased purchased equipment cost. This is 
because an increase in fuel flowrate not only directly 
increases the material costs associated with it, but 
also the heat duties and fuel blower capacity 
requirements of the calciner and the kiln thus raising 
capital costs.  
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Another feature of the process highlighted by the 
preheating tests was the relationship between the 
number of stages and the specific thermal duty.  It 
was noted that the less the number of stages, the 
greater the specific thermal duty of the process. This 
is because when the number of stages is reduced, in 
order to achieve full conversion the mass of fuel 
inputted into the process is increased.   
The reduction in preheating stages also appears to 
increase the mass of clinker. Whilst this may appear 
to make a case for a reduced number of stages, upon 
closer inspection it can be observed that this is 
simply due to the reduced conversion of CaCO3 
which has a high molecular mass. 
 
5.5 Economic Analysis 
The viability of this process of course largely 
depends on its economic feasibility compared to a 
standard cement plant. Implementation of the 
oxyfuel process on a large scale requires that it does 
not dramatically swell the production costs. Tables 
4 to 7 in section 3 show the costing results of the 
oxyfuel process. It is important to note that the value 
used for electricity in the costing (225kWhe/tcmnt) 
was obtained from literature rather than the 
simulation (Zeman, 2009). This was done because 
due to the nature of the model, the electrical duty 
results are not satisfactorily accurate and were 
primarily used to observe trends. 
The simulated plant had a CAPEX of £196.3 M. 
This is above typical ranges (£158-189 M) for a 
standard cement plant (Driver, 2022). However, this 
is below typical values for a new build oxyfuel plant 
as the units in these must be fitted to prevent gas 
ingress or egress and so are typically simulated 
closer to values of £250 M (Global CCS Institute, 
2013). Although, as it has been costed on a standard 
cement plant basis and its value lies within typical 
ranges for such a model, it can be concluded that the 
model along with the costing methods used are 
valid. Therefore, despite uncertainty in the accuracy 
of the CAPEX value the trends observed are still 
insightful. Furthermore, as this cost is inclusive of 
the air separation and CO2 purification units it is also 
highly promising despite the uncertainty.  
When the number of preheating stages is reduced, 
the total purchased equipment cost is increased. This 
is due to the fuel flowrate having to be increased to 
achieve full conversion. Therefore, as the preheater 
and fuel blowers in the calciner and kiln are costed 
based on gas flowrates, there is thus an increase in 
their associated costs. 
From these results it is clear that from a financial 
perspective, oxyfuel is competitive with current 
industry standards. 
 
6 Conclusions 
This study looked at the application of oxyfuel 
technology in cement production. This was 
considered as a means to reduce CO2 emissions as it 

would significantly simplify purification of the flue 
stream as it would no longer be rich in nitrogen. 
Simulation of an oxyfuel cement plant was carried 
out in ASPEN Plus V11 to assess performance of the 
plant under various conditions. Costing of the 
process was also conducted. CaCO3 conversion and 
specific thermal duty were found to improve with 
increasing fuel flowrate and number of preheating 
stages. An increase in recycle ratio reduced the heat 
duty and cost of the kiln. Overall costing of the 
process put CAPEX and OPEX of the plant at 
£196.3M and £73.4M/yr. Additionally, the process 
was able to meet production targets. This indicates 
that this process is feasible and could potentially 
lead efforts to decarbonise the cement industry.  
If this process is to be implemented on a wider scale, 
there are key research areas that need to be explored. 
The retrofitting of existing plants is one such key 
area. As new plants are unlikely to be built, further 
exploration into how the different gas properties 
affect individual units in the plant is required. This 
is paramount as there is a need for the units to be 
designed in such a way that gas ingress or egress is 
prevented (Hills, 2015). 
Another key way in which this study could be 
advanced is an exploration into alternative oxygen 
sources. An exciting alternative is the use of oxygen 
from electrolytic hydrogen production (Nhuchhen, 
2022). Technoeconomic feasibility studies into 
oxyfuel processes coupled with these would be 
highly illuminating. 
In conclusion, large scale implementation of oxyfuel 
in the cement industry is years away. Studies such as 
this indicate that the process has immense potential 
for decarbonisation. To make it a reality however, 
further considerations into the challenges affecting 
its implementation should be researched further. 
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Abstract  
Effective drug delivery systems for cancer treatment require abilities to escape endosomes and release drugs with 
pH change. A novel virus-mimicking liposomal system has been developed to harness the advantage of pH-
responsive pseudopeptides. Comb-like polymers were produced by grafting aminododecanoic acid onto a 
biodegradable metabolite-derived pseudopeptide, poly(L-lysine iso-phthalamide). The long aliphatic side chain 
successfully anchors the pseudopeptides on the cholesterol-containing liposomes that mimic the viral envelope to 
create an endosomolytic liposomal system. Favourable particle size control was achieved by extrusion to enhance 
the performance of liposomes. Optimising the polymer coating concentration allowed the system to exhibit 
negligible leakage at physiological pH while quickly releasing the payload at pH 6.5. The endosomolytic ability 
was also demonstrated through haemolysis assay at different pHs. Moreover, cell studies using HeLa cells further 
confirmed the capability of the liposomal system to effectively deliver both small-molecule and macromolecular 
drugs. The system has shown great potential for future cancer treatments. 
 
Keywords: Liposomes, pH-responsive, virus-mimicking, intracellular drug delivery 
 
1. Introduction 
Therapeutic methods for cancer have been 
developed for decades. While chemotherapy is the 
most popular method among all, there are still many 
concerning issues, such as low specificity and high 
cytotoxicity.1 Therefore, drug delivery systems have 
been a hot topic for researchers to find effective 
solutions. The viral vector is a successful drug 
delivery platform that has been extensively studied 
in recent years for cancer treatment. However, its 
full potential is yet to be realised due to safety 
issues.2 Non-viral delivery methods thus gain 
increasing attention for their safety and ease of 
production.3 Nanotechnology is widely employed 
for its capability of target-oriented delivery.4 With 
advances in nanotechnology, liposomes have been 
extensively fabricated since the 1990s with the first 
use of Doxil.5 Liposomes have high 
biocompatibility and are capable of loading various 
types of drugs. However, for liposomes to be 
successful nanocarriers, they also need to possess 
the ability to target disease sites, escape from 
endosomes, and release drugs upon pH changes.6 
Inspired by the feature of anionic peptides from 
viruses that allow them to disrupt cell membranes to 
release their content, scientists aim to incorporate 
the feature to create liposomal systems that can 
deliver drugs in a targeted, controllable and efficient 
manner.3 Liposomal systems with pH-responsive 
ability are able to control the drug release according 
to changes in the environment. Under physiological 
conditions, liposomal systems should aim to reach 
specific sites to be taken by cells. With pH reduction 
during endocytosis, liposomal systems would react 
towards the change to allow drugs to be delivered. 
Such functions can be developed by coating 
polymers on the liposomal surface to mimic the 
viruses.7 Naturally derived fusogenic peptides could 
be a choice, but safety problems and production 

difficulties drive researchers to find other 
alternatives.3 
 Learning from viral peptides, a series of novel 
pseudopeptides were synthesised with pH-
responsive and membrane-destabilising abilities. 
Hydrophobic amino acids found in viral peptides 
were grafted on a biodegradable metabolite-derived 
pseudopeptide, poly(L-lysine iso-phthalamide) 
(PLP), first to create a polymer with manipulatable 
amphiphilicity.8-10 While the polymer displayed 
good pH-triggered membrane activity, 
improvements could still be made to enhance the 
polymer-membrane interaction. Therefore, with 
inspiration from natural membrane proteins that 
contain long fatty acid chains, a second-generation 
comb-like polymer was synthesised by grafting 
decylamine (NDA) onto the PLP backbone to 
enhance the hydrophobicity.11 To further manipulate 
the amphiphilicity of pseudopeptides, 
aminododecanoic acid (ADA) has been grafted onto 
the carboxylic acid groups on the PLP backbone to 
produce PLP-ADA polymers. 

 
Figure 1. Schematic of the virus-mimicking, endosomolytic 
liposome and its endosomal escape3 
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 This work investigated the effectiveness of 
using PLP-ADA-coated liposomes for drug delivery. 
The system was characterised by particle size 
measurements, polymer coating efficiency and drug 
encapsulation efficiency. The system was also 
optimised for its pH-triggered drug release and 
further tested for intracellular delivery through cell 
study. 
 
2. Background 
In 1965, Bangham et al. published the first 
description of liposomes. The concept of liposomes 
was then developed by Gregoriadis.12 Over the last 
five decades, liposomal systems have been greatly 
developed and transferred from laboratory work to 
commercial use. Many drawbacks were successfully 
resolved to improve the effectiveness of the system. 
For example, cholesterol was incorporated into the 
formulation to produce more rigid lipid bilayers to 
enhance the stability,13 thus encapsulating drugs 
inside liposomes for a longer time. To counter the 
problem of rapid clearance by cells of the 
mononuclear phagocyte system, stealth liposomes 
were developed to increase the circulation half-life. 
Polyethylene glycol liposomes subsequently 
demonstrated the ability to treat Kaposi's sarcoma in 
HIV patients in 1994.14 The concept of enhanced 
permeability and retention effect was also 
introduced by then and became important design 
guidelines for liposome systems.15 
 Apart from the problems mentioned above, 
researchers are also concerned about the central 
topic of effective intracellular drug delivery. 
Membrane-active liposomes gain huge attention for 
their ability to escape endosomes through membrane 
fusion or other types of membrane disruption.12 
Triggered release of drugs is one of the successful 
solutions that has been extensively used for 
intracellular drug delivery. 
 The Chen Group have published some exciting 
work on virus-mimicking liposomal systems. 
Pseudopeptides with pH-responsiveness were 
synthesised and coated on liposomes to produce an 
effective drug delivery system. The first-generation 
polymer PP75 directly imitates a hydrophobic 
amino acid group from influenza viral peptide, and 
it coats on the liposomal surface through 
hydrophobic interactions. The second-generation 
polymer, PLP-NDA18, improves from PP75 by 
replacing the amino acid group with a long fatty acid 
side chain to further increase the hydrophobicity. 
Meanwhile, the side chain allows the polymer to 
coat on the liposomal surface with membrane 
insertion, creating more efficient polymer coating 
through stronger hydrophobic interaction between 
the aliphatic chain and lipid tails. The two 
generations of polymers both demonstrated the 
membrane destabilising ability upon acidification to 
break endosomes and release small-molecule drug 
(doxorubicin).3, 11, 16  

 A third-generation polymer, PLP-ADA, was 
recently produced by the group to further manipulate 
amphiphilicity. A longer side chain with a 
carboxylic acid group has been grafted on the 
backbone of PLP. The same number of carboxylic 
acid groups is maintained with the grafting, and it is 
believed to be able to increase the pH responsiveness 
of the polymer. While some work has been carried 
out on the function of PLP-ADA polymer within the 
group, no work has been done on the potential of 
liposomes coated with this polymer. Therefore, this 
study is motivated to learn the effectiveness of the 
virus-mimicking liposomes coated with the newly 
developed PLP-ADA polymer. We are highly 
interested in formulating the system to demonstrate 
pH-responsive drug delivery potential for small-
molecule drugs as previously developed systems. 
Additionally, we want to discover the system's 
ability to deliver macromolecular drugs such as 
peptides and proteins. 
 

 
Figure 2. Structures of PP polymer (Top), PLP-NDA polymer 
(Middle), PLP-ADA polymer (Bottom) 
 
3. Materials and Methods 
 
3.1 Materials 
L-α-Phosphatidylcholine from egg yolk (EPC), 
cholesterol, phosphate-buffered saline (PBS), 
Dulbecco's phosphate-buffered saline (D-PBS), 
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Calcein, fluorescein isothiocyanate-dextran (FITC-
dextran, average Mw of 40 kDa), penicillin, 
Dulbecco's modified Eagle's medium (DMEM) and 
fetal bovine serum (FBS) were purchased from 
Sigma-Aldrich (Dorset, UK). Chloroform and 
ethanol absolute were purchased from VWR 
(Lutterworth, UK). 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE) was purchased from 
Avanti Polar Lipid Inc. (Birmingham, UK). 
Defibrinated sheep red blood cells (RBCs) were 
purchased from TCS Biosciences Ltd. (Buckingham, 
UK). Hoechst 3342 and LysoTracker Red DND-99 
were purchased from Fisher Scientific 
(Loughborough, UK). Triton X-100 was purchased 
from Alfa Aesar (Heysham, UK). Sodium hydroxide, 
hydrochloric acid, pre-synthesised pseudopeptidic 
PLP polymer (poly(l-lysine iso-phthalamide), pre-
synthesised pseudopeptidic PLP-ADA30/60 
polymer (30%/60% stoichiometric degree of 
substitution with aminododecanoic acid on the PLP 
backbone) and pre-synthesised fluorescein 
pseudopeptidic PLP-ADA30 polymer (Cy5-PLP-
ADA30). 
 
3.2 Methods 
 
3.2.1 Preparation of Liposomal Systems 
Firstly, the lipid film hydration method was used to 
prepare bare liposomes.17 Lipid and cholesterol with 
molar ratios of 60% and 40% were dissolved in 2 
mL chloroform containing 1% (v/v) ethanol. A lipid 
film was formed by removing the organic solvent 
through 3 hours of rotary evaporation. Next, 5 mL 
of PBS buffer was added to the lipid film and 
hydrated in a 40°C water bath for at least 1 hour. The 
size of the bare liposomes was controlled to be 
around 100 nm by extrusion. The hydrated lipid 
solution was extruded through a 100 nm 
polycarbonate membrane 32 times to produce stable 
liposomes. To encapsulate Calcein and FITC-
dextran into the liposomes, the model drug solution 
was added to the sample before extrusion. The virus-
mimicking liposomes were then prepared by 
incubating bare liposomes with pseudopeptide 
solution at the desired concentration overnight at 
4 °C. Excess pseudopeptides and model drugs were 
removed by dialysis (Float-A-Lyzer, MWCO 300 
kDa, Spectrumlabs, USA) in the pH 7.4 PBS buffer 
for at least 3 hours. To ensure efficient dialysis, the 
buffer needs to be changed frequently. The samples 
were stored at 4°C. 
 
3.2.2 Measurement of Particle Size 
The hydrodynamic sizes of bare and PLP-ADA30-
coated liposomes at pH 7.4 were measured by 
dynamic light scattering (DLS, Litesizer 500, Anton 
Paar, UK) at 25 °C. The measurement of each 
sample was repeated three times for an accurate 
result. In addition, the samples were diluted 50 times 

with PBS buffer before measurement to yield a 
suitable counting rate for the measuring equipment. 
 
3.2.3 Measurement of Coating Efficiency 
Unloaded virus-mimicking liposomes were 
prepared using Cy5-labeled pseudopeptidic PLP-
ADA30 polymers according to the methods 
described in Section 3.2.1. The excess polymers 
were removed by dialysis in PBS buffer at pH 7.4. 
Spectrofluorometer (GloMax Explorer Multimode 
Microplate Reader, Promega, USA) was used to 
measure the fluorescence intensities of the samples 
with different initial polymer concentrations (1 
mg/ml, 5 mg/ml, 10 mg/ml) before and after dialysis 
under excitation at 627 nm and emission at 660-720 
nm. 100 μL of samples were pipetted into a black 
96-well plate, and triplicate measurements are 
required to ensure accurate results. The Cy5-labeled 
pseudopeptidic concentrations were calculated 
through the calibration curve. The polymer coating 
efficiency was calculated by the equation: 

%𝑐𝑜𝑎𝑡𝑖𝑛𝑔 =
𝐶𝑝𝑑

𝐶𝑝0
× 100% 

where Cp0 is the pre-dialysed polymer concentration 
of the sample and Cpd post-dialysed polymer 
concentration.  
 
3.2.4 Measurement of Encapsulation Efficiency 
Calibration curves of fluorescence intensity over 
drug concentration were constructed for Calcein and 
FITC-dextran, respectively. In order to obtain the 
Calcein encapsulation efficiency, unloaded Calcein 
was removed by dialysis. The fluorescence 
intensities of the sample before and after the dialysis 
were measured by the spectrofluorometer (GloMax 
Explorer Multimode Microplate Reader, Promega, 
USA) under excitation at 490 nm and emission at 
510-570 nm. Triton x-100 was used to lyse the 
liposomes before measurement. 100 μL of samples 
were pipetted into a black 96-well plate and repeated 
three times. The Calcein concentrations were 
calculated through the calibration curve. The 
encapsulation efficiency of Calcein was calculated 
using the following equation: 

%𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑛𝑔 =  
𝐶𝑑𝑑

𝐶𝑑0
× 100% 

where Cd0 is the pre-dialysed drug concentration of 
the sample and Cdd is the post-dialysed drug 
concentration.  
 
3.2.5 pH-Dependent Drug Release 
The drug release profiles of the virus-mimicking 
liposomes coating with different polymer coatings at 
pH 7.4 and pH 6.5 were investigated. The samples 
and PBS buffer were adjusted to the desired pHs 
using 2 M HCl and NaOH. 400 μL of the sample was 
added into a dialysis tube, which was placed in PBS 
buffer at room temperature. Then, 1 mL of PBS 
solution was withdrawn and replaced by 1 mL of 
fresh PBS solution at timepoints 0, 0.5, 1, 2 and 4 h. 
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The fluorescence intensities of the post-dialysed 
virus-mimicking liposomes and withdrawn buffers 
were measured by spectrofluorometer (GloMax 
Explorer Multimode Microplate Reader, Promega, 
USA). Triton X-100 was used to lyse the liposomes 
before measurement. The drug concentrations were 
calculated through the calibration curves. The 
percentage of the drug content released was 
calculated using the following equation: 

%𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =
𝐶𝑏𝑉𝑏

𝐶𝑏𝑉𝑏 + 𝐶𝑑𝑉𝑑
× 100% 

where Cb is the drug concentration of the withdrawn 
buffer at time t, Vb is the total volume of the dialysis 
PBS buffer, Cd is the drug concentration of the post-
dialysed virus-mimicking liposomes, and Vd is the 
total volume of the dialysed liposomal solution. 

For the Calcein drug release profile, 200 mL of 
PBS buffer was used to ensure efficient dialysis, and 
the fluorescence intensities were measured under 
excitation at 490 nm and emission at 510-570 nm. 
Since the fluorescent intensity of FITC-dextran is 
much lower than Calcein, 100 mL of PBS buffer was 
used for the FITC-dextran release profile, and the 
fluorescence intensities were measured under 
excitation at 475 nm and emission at 500-550 nm. 
 
3.2.6 Haemolysis Assay 
Haemolysis assay was used to examine the 
membrane disruptive activity and investigated 
whether the pseudopeptidic PLP-ADA30 polymer 
absorbed on the liposomal surface retained its pH-
responsive endosomolytic activity.16 12 mL of 
defibrinated sheep red blood cells (RBCs) were 
added into 2 mL Eppendorf tubes and centrifuged at 
3500 rpm for 3 minus (Eppendorf Centrifuge 5424, 
USA). The supernatant was removed and refilled 
with pH 7.4 PBS buffer to wash the RBCs. After 4 
times washing, 170 μL of RBCs were resuspended 
into 300 μL of samples. All samples were adjusted 
to desired pHs using 2 M HCl and NaOH. Two 
controls were prepared by resuspending RBCs in 
deionised water for positive control and PBS buffer 
for negative control. The samples were incubated at 
37 °C for 1 hour, then centrifuged at 3500 rpm for 3 
minutes. The supernatant of each sample was taken 
and diluted 10 times with PBS buffer. 100 μL of 
samples were pipetted into a white 96-well plate and 
repeated three times. The absorbances were 
measured by spectrophotometer (GloMax Explorer 
Multimode Microplate Reader, Promega, USA) at 
560 nm. The percentages of relative haemolysis 
were calculated by the equation: 

%ℎ𝑎𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 =
𝐴𝑒 − 𝐴𝑛
𝐴𝑝

× 100% 

where Ae is the experimental absorbance, An is the 
negative control absorbance, and Ap is the positive 
control absorbance.  
 
 
 

3.2.7 Cell Culture 
HeLa adherent epithelial cells (human cervical cells) 
were grown in DMEM supplemented with 10% 
(v/v) FBS and 100 U/mL penicillin unless specified 
otherwise. Trypsin-EDTA was used to trypsinise the 
HeLa cells. The cells were maintained in a 
humidified incubator with 5% CO2 at 37 °C.3 

 
3.2.8 Laser Scanning Confocal Microscopy 
In order to access the endosomal escape ability of 
virus-mimicking liposomes coated with 
pseudopeptidic PLP-ADA30 polymer, confocal 
microscopy was performed with tracer molecules, 
Calcein and FITC-dextran.3 2 mL of HeLa cells 
(1 × 105  cells/mL) were seeded in a glass bottom 
plate (35 mm, MatTek, USA) and cultured overnight. 
The cells were then treated with 2 mL of serum-free 
DMEM containing 0.22 μm filter-sterilised virus-
mimicking liposomes, bare liposomes, or free drugs. 
The Calcein and FITC-dextran concentration of the 
cells was kept at 40 μM and 4.5 μM, respectively. 
After incubation at 37 °C for 1 hour, the cells were 
washed with D-PBS buffer three times. LysoTracker 
red DND-99 (50 nM) and Hoechst 33342 (1 μg/mL) 
were added to stain the endosomes/lysosomes and 
nuclei, respectively. The cells were further 
incubated for 1 hour and rinsed with D-PBS. The 
laser scanning confocal microscopy (Zeiss LSM-
510 inverted laser scanning confocal microscope, 
Germany) was used for imaging. Calcein was 
excited at 490 nm, and the emission at 510-570 nm 
was collected. FITC-dextran was excited at 470 nm, 
and the emission at 500-550 nm was collected. 
 
4. Results and Discussions 
 
4.1 Liposome Characterisation 
Both EPC and DOPE lipids were used for the 
preparation of liposomes. However, while the EPC 
lipid film could easily dissolve in PBS buffer during 
hydration, the DOPE lipid had very low solubility in 
PBS buffer. Therefore, it caused difficulties in 
controlling the quality of liposomes as the amount of 
DOPE liposomes produced could be different for 
each batch. Therefore, only EPC lipids were used for 
all experiments afterwards. 
 
4.1.1 Particle Size Control 
The size of liposomes should be cautiously 
controlled under 200 nm to enhance the residence 
time in blood and improve the performance of in 
vivo drug delivery into tumour cells.18 Figure 3 
shows that all liposomes were produced within the 
desired size range. Bare liposomes had a size of 
156.7 ± 2.5 nm, while PLP-ADA30 coated 
liposomes had a size of 173.9 ± 0.5 nm. The increase 
in size confirmed that polymers were successfully 
coated on the liposomes. Furthermore, both bare 
liposomes and PLP-ADA30 coated liposomes 
exhibited a decrease in the mean hydrodynamic 
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diameters when Calcein was encapsulated. The 
smaller size of the liposomal system can be 
attributed to the hydrophilicity of Calcein, which led 
to an interaction between the drug and the 
hydrophilic head of the lipids. With PLP-ADA30 
coated on the liposome surface, the membrane 
anchoring, comb-like pseudopeptides further 
strengthened the hydrophilic interaction with the 
drug due to the presence of the carboxylic acid group 
on the side chain, presenting a larger decrease in 
particle size. 

 
Figure 3. Particle sizes of bare and polymer-coated liposomes 
with and without Calcein encapsulated 
 
4.1.2 Polymer Coating Efficiency 

 
Figure 4. Actual polymer coating concentration of PLP-ADA30 
using different initial polymer concentrations 
 
Polymer coating efficiency is essential for the 
liposomal system as the amount of polymer coated 
on the liposomes has a critical impact on the 
system's effectiveness. Therefore, the maximum 
polymer coating concentration should be quantified 
to examine the performance of liposomal surface 
modification. Tests were performed with initial 
polymer concentrations ranging from 1 mg/mL to 10 
mg/mL. This range was selected as both 1 mg/mL 
and 10 mg/mL could produce satisfactory pH-
sensitive liposomes when PLP-NDA18 was used for 
coating in previous work.16 As shown in Figure 4, 
the polymer coating concentration increases as the 
initial polymer concentration increases. Once the 
initial polymer concentration reaches 5 mg/mL, the 
maximum coating concentration is achieved at 1.22 

± 0.01 mg/mL with the highest coating efficiency of 
24.4 ± 0.1%. Continuing to increase the initial 
polymer concentration does not help improve 
liposomal surface modification, as the actual 
polymer coating concentration remains at the same 
value. 
 
4.1.3 Encapsulation Efficiency 
Encapsulation efficiency is another essential factor 
in characterising the liposomal system. Higher 
encapsulation efficiency is always desired as it will 
allow more drugs to be kept in the liposomes to be 
delivered to targeted sites.  
 5 mM of Calcein stock solution was used to 
conduct the test, and the liposomes were prepared 
with an initial Calcein concentration of 0.625 mM. 
Bare liposomes showed an encapsulation efficiency 
of 26.3 ± 0.4%, proving the effectiveness of the 
passive loading method.  
 Further study was then performed to learn the 
effect of liposome surface modification on the 
encapsulation efficiency using different initial 
polymer coating concentrations. It was found that 
once PLP-ADA30 was coated on the liposomes, the 
encapsulation efficiency would largely decrease to 
around 6%, as shown in Figure 5. As the polymers 
have a membrane anchoring effect, the insertion of 
polymer side chains into the lipid bilayers would 
cause a disturbance in the stability of the liposomes. 
In addition, as Calcein is a small molecule drug, it 
can easily escape the entrapment of the liposomes 
during the coating process, thus resulting in lower 
encapsulation efficiencies for polymer-coated 
liposomes. Moreover, Figure 5 also shows that the 
initial concentration does not have a significant 
impact on the encapsulation efficiency in the range 
of 0.5 mg/mL to 5 mg/mL. However, as the initial 
polymer concentration increases to 10 mg/mL, 
another decrease in encapsulation efficiency is 
observed. This is caused by the large amount of free 
polymers present in the solution, creating membrane 
instability to leak out the Calcein that is 
encapsulated before having the surface 
modification. 

 
Figure 5. Encapsulation efficiency of Calcein using different 
initial polymer concentrations 
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4.2 Drug Release Study 
 
4.2.1 Effect of Different Polymers 
For liposomes to be effective for in vivo drug 
delivery, it is essential to produce liposomal systems 
that are stable in physiological pH. In this way, they 
can deliver the desired dosage of the drug into 
targeted cells instead of losing drugs during blood 
circulation. Therefore, it is important to first 
examine the leakage profile of polymer-coated 
liposomes at pH 7.4 to evaluate the function of the 
polymer. 
 PLP, PLP-ADA30 and PLP-ADA60 polymers 
were used for polymer coating at an initial 
concentration of 1 mg/mL to test the performance of 
liposomal systems. From Figure 6, PLP-ADA30 
presents the most stable system, giving the lowest 
leakage percentage throughout 4 hours. Conversely, 
liposomes coated with PLP polymers were the least 
stable and had over 40% leakage just after 1 hour. 
The results were expected because PLP polymers do 
not have long aliphatic chains grafted on the 
polymer backbone to strengthen the polymer-
membrane interaction. Therefore, both PLP-ADA-
coated liposomes exhibited higher stability than 
PLP-coated liposomes.   
 Another interesting finding is that as the degree 
of grafting increases, the stability of the system does 
not increase. It is postulated that the increasing 
amount of carboxylic acid group on the side chain 
brings an unfavourable effect on the hydrophobic 
interaction between the long aliphatic chain and 
lipid tails, causing instability of the system and a 
higher leakage after a shorter period. 

 
Figure 6. Leakage profile of liposomes coated with different 
polymers 
 
4.2.2 Effect of Polymer Concentrations 
Since PLP-ADA30 showed the best performance in 
previous experiments, it was used to further 
investigate the effect of polymer concentration. Four 
different initial concentrations from 0.5 mg/mL to 5 
mg/mL were tested based on the results of polymer 
coating efficiency tests.  
 
 From Figure 7, an obvious disparity of 
performance can be seen that using an initial 

concentration of 5 mg/mL gives the most stable 
liposomal system. There was almost no leakage after 
2 hours, and an acceptable leakage of 20.87 ± 0.04% 
was observed after 4 hours. In the meantime, the 
other 3 concentrations had leakages over 75% after 
4 hours. 5 mg/mL allows the liposomes to reach the 
maximum polymer coating concentration of 1.22 ± 
0.01 mg/mL as mentioned in Section 4.1.2, thus 
constructing more rigid vesicles to hold drugs inside 
stably.  

 
Figure 7. Leakage profiles of liposomes coated with PLP-
ADA30 using different initial concentrations 
 
4.2.3 pH-triggered Drug Release 
The drug release potential of the modified liposomal 
system was tested using the same 4 different initial 
polymer concentrations at pH 6.5 to mimic the early 
endosome condition. As shown in Figure 8, all 
modified liposomal systems were able to release the 
drug content, showing that PLP-ADA30 polymers 
are effective in creating membrane destabilisation. 
However, the coating concentration of polymers did 
not indicate a clear relationship with the degree of 
drug release due to two contradictory effects. On the 
one hand, with increasing polymers coated on the 
liposomes, the pH-triggered polymer activity 
becomes stronger to release more drugs. However, 
on the other hand, more polymers inserted in the 
lipid bilayers also increase the rigidity of the system. 
Therefore, further research is still required to get a 
clearer picture of the complex relationship. 

 
Figure 8. Release profiles of liposomes coated with PLP-ADA30 
using different initial concentrations 
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 7 

 
Figure 9. Leakage/Release profile of liposomes coated with 
maximum coating concentration of PLP-ADA30 and 
encapsulated with Calcein 
  
 Figure 9 shows a clear comparison of the 
behaviours of the liposomal system treated with 
maximum coating under different pH conditions. No 
Calcein was leaked at pH 7.4, while 61.1 ± 0.4% of 
Calcein was released at pH 6.5 during the first hour. 
This result is comparable to a previous study 
published by the research group11 and successfully 
demonstrates the effectiveness of PLP-ADA30 
polymer. While the long side chain could increase 
the packing density of the vesicles through stronger 
hydrophobic interactions with cholesterol and lipid 
tails at neutral pH,11 the protonation of the 
carboxylic acid group during the decrease in pH 
weakens the interaction and thus increases the 
permeability of the membrane to release drug 
outside. 
 With the successful demonstration of releasing 
small-molecule drugs using the model payload 

Calcein, the virus-mimicking liposomal system was 
further examined for its ability to deliver 
macromolecular drugs. FITC-dextran, with a 
molecular weight of 40 kDa, was used as a model 
payload for proteins. Figure 10 shows that the newly 
modified liposomal system with the maximum 
coating of PLP-ADA30 is also effective for pH-
triggered drug release. A quick release of 39.2 ± 
1.4% was observed at pH 6.5, while the leakage was 
only 3.2 ± 0.4% after one hour.  
 It is also noted that the liposomal system 
encapsulated with FITC-dextran is less effective 
than the liposomal system encapsulated with 
Calcein. As FITC-dextran has a much larger size 
than Calcein, it is harder for the liposomal system to 
hold the model drug for a longer time. Meanwhile, 
it is also more difficult for FITC-dextran to pass 
through the lipid bilayers to be released at pH 6.5. 

 
Figure 10. Leakage/Release profile of liposomes coated with 
maximum coating concentration of PLP-ADA30 and 
encapsulated with FITC-dextran 

 
Figure 11. Relative haemolysis assay of liposomes coated with different concentrations of PLP-ADA30 and different concentrations of free 
PLP-ADA30 
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4.3 Haemolysis Assay 
For liposomes to effectively deliver drugs to the 
targeted sites, the liposomes must possess the ability 
to break out endosomes to avoid being degraded.19 
Haemolysis assay was performed using red blood 
cells as model endosomes to test the membrane 
activity of the modified liposomal system. As seen 
in Figure 11, both PLP-ADA30 coated liposomes, 
and free PLP-ADA30 polymers showed higher 
membrane disruptive activity upon acidification. 
Free polymers had almost no membrane activity at 
physiological pH but a significant increase at pH 6.5, 
indicating the high effectiveness of PLP-ADA30. As 
the liposomal system showed similar results at both 
polymer coating concentrations at pH 6.5, it further 
proves the capability of the polymer. A low degree 
of the polymer coating is enough to satisfy the 
haemolytic requirement. It is also worth noting that 
the virus-mimicking liposomes exhibited higher 
endosomolytic activity at both polymer 
concentrations than free polymer, showing that the 
liposomal system can be more useful for drug 
delivery. 
 
4.4 Intracellular Drug Delivery 
Upon successfully demonstrating endosome escape 
ability through haemolysis, the modified liposomal 
system was further tested for its ability to release 
drugs into the cell cytoplasm. Calcein and FITC-
dextran were used as model payloads separately for 

the investigation. From Figure 12, PLP-ADA30 
coated liposomes showed significantly higher 
cellular uptake by HeLa cells compared to bare 
liposomes. Diffused green fluorescence can be seen 
across the entire cell that was treated with modified 
liposomes. In contrast, green punctate spots 
colocalised with red lysosomes for HeLa cells 
treated with bare liposomes. It can be seen from the 
merge images that the green and red spot overlap to 
show many yellow spots, suggesting that bare 
liposomes are still trapped in the endosomes at much 
lower concentrations compared to the coated 
liposomes. HeLa cells treated with free Calcein also 
showed similar results with low green fluorescence 
intensity. Free Calcein entered the cells through 
diffusion, and it can be observed that the cellular 
uptake was much lower as compared to PLP-
ADA30-coated liposomes loaded with Calcein. 
From Figure 13, it can be seen that the cellular 
uptake of PLP-ADA30-coated liposomes loaded 
with 40 kDa FITC-dextran was lower than Calcein, 
but the green fluorescence still diffused throughout 
the cell. The images obtained are thus aligned with 
drug release profiles obtained previously. Since 
liposomes loaded with Calcein and FITC-dextran 
exhibited similar behaviours, the pH-responsive 
virus-mimicking liposomal system again 
demonstrated its ability to efficiently deliver both 
small-molecule and macromolecular drugs into 
cells. 

 
Figure 12. Confocal microscopy images of HeLa cells showing the escape of liposomes encapsulated with Calcein (scale bar 10 μm) 
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Figure 13. Confocal microscopy images of HeLa cells showing the escape of liposomes encapsulated with 40 kDa FITC-dextran (scale bar 
10 μm) 
 
5. Conclusions 
A virus-mimicking, pH-responsive liposomal 
system was successfully developed through this 
project. The newly developed polymer was able to 
coat on the surface of liposomes to produce 
liposomes with desirable particle sizes and enhanced 
functionalities. The maximum coating concentration 
was quantified, and the encapsulation efficiency of 
Calcein was characterised. Using the optimal initial 
polymer coating concentration of 5 mg/mL, a stable 
liposomal system was obtained and had negligible 
leakage after 2 hours. Meanwhile, the effective pH-
triggered release was observed for both Calcein and 
40 kDa FITC-dextran. The endosomal escape ability 
was further confirmed by the haemolysis assay as 
PLP-ADA30 coated liposomes showed higher 
membrane activity at pH 6.5 than at physiological 
pH. Confocal microscopy images of HeLa cells 
demonstrated higher cellular uptake and effective 
intracellular delivery of the modified liposomal 
system in a more visible way and reinstated the 
successful liposome formulation. To examine the 
full potential of the virus-mimicking liposomal 
system, future work should be carried out by loading 
functional payloads into the liposomes. Doxorubicin 
is a great representative of small-molecule drugs and 
has been widely used for metastatic and early breast 
cancer therapy.20 Saporin, a ribosome-inactivating 

protein with anticancer effect,21 can be used as a 
macromolecular drug to test the liposomal system. 
Successful drug delivery of the two functional 
payloads will make the modified system one step 
closer to the clinical use. 
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Fructose Dehydration Solvents 
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Abstract 

5-Hydroxymethylfurfaral (HMF) is a highly versatile chemical that is produced via the dehydration of 
fructose. Herein, this study investigates the unexplored isolation step of HMF, by quantifying the 
recoveries from perturbating solvent systems in batch and continuous processes. The solvent systems 
explored were low boiling solvents: acetone/water and methanol systems and high boiling solvents: 
dimethyl sulfoxide (DMSO) and 1,4-dioxane/DMSO systems. For the batch process, rotavaping 
experiments were conducted for glucose, HMF and acidified HMF solutions. Since crude dehydration 
reaction effluents are usually acidic, small amounts of sulfuric acid were added to mimic this. For the 
acidified HMF isolation experiments, the low boiling solvents, acetone/water and methanol, presented 
high recoveries of 85.76 and 86.66% respectively, as lower operating temperatures were employed, 
decreasing the tendency of HMF to react and/or degrade. For the high boiling solvents, lower recoveries 
of 23.31 and 26.87% were obtained for DMSO and 1,4-dioxane/DMSO respectively. This was due to 
the formation of by-products such as carbonaceous materials called humins, which were observed as 
dark insoluble particulates. For the continuous process, flash distillation was modelled on Aspen Plus, 
which recurrently presented higher recoveries for the low boiling solvents. To further understand the 
behaviour of HMF in solvent systems, a time and heat degradation experiment was devised. For the heat 
degradation, 1,4-dioxane/DMSO and DMSO demonstrated 40 and 10% degradation of HMF, whilst the 
low boiling solvents exhibited negligible degradation. This further justifies the use of low boiling 
solvents for the dehydration of fructose into HMF, providing easier downstream separation and reduced 
thermal degradation of the valuable product. 

Keywords: 5-Hydroxymethylfurfaral (HMF), Recovery, Solvent Removal, Degradation 

1. Introduction  
The use of fossil fuels for energy and process 
feedstock is unique to the chemicals industry where 
it accounts for 14 and 8% of the total oil and gas 
demand respectively.1 Manufacturing, utilisation, 
and disposal of these fossil-based chemicals all 
release carbon emissions, estimated annually to be 
1.5 gigatonnes of carbon dioxide (GtCO2), 
contributing to 18% of all industrial CO2 
emissions.1 Therefore a key part in creating a more 
sustainable chemicals industry is bio-based 
chemicals, produced from biomass.  Current bio-
based chemical and polymer production are 
estimated to be at 90 million tonnes,2 with a market 
of USD 73.16 billion in 2020 and projected to grow 
to USD 144.63 billion by 2028.3  

Sugars are a promising feedstock to produce 
useful chemical building blocks. Food crops such as 
sugar cane, are classified as first-generation sugars. 
These have been heavily criticised for their 
competition with food security, however a 
comprehensive sustainability assessment from the 
Nova institute,4 concluded that they are as valuable 

as second-generation sugars. These include wood, 
residual woodchips and cellulosic crops.5 Both 
generations provide a strategy to aid in the reduction 
of carbon emissions,4 therefore sugars are a pivotal 
part of research for the bio-chemicals industry to 
invest in.   

In particular, the dehydration of sugars can 
produce a highly valued, versatile platform 
chemical known as 5-hydroxymethylfurfural 
(HMF). The Lignocellulosic Biorefinery Network 
(LBNet) has identified HMF as one of the 
UKBioChem10,6 the top ten green chemicals the 
UK should develop and commercialise to reduce its 
dependence on non-renewable feedstocks. The most 
notable application for HMF is through complete 
oxidation to produce, 2,5-furandicarboxylic acid 
(FDCA), which could replace terephthalic acid in 
the production of polyesters.6 Further HMF 
derivatives include hydration into levulinic acid for 
environmentally friendly herbicides,6 and 
hydrodeoxygenation into 2,5-dimethylfuran (DMF) 
for high-energy biofuel.7 Utilising HMF appears to 
be promising in different key markets, therefore, 
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developing an effective process to produce it is 
paramount for this extremely functional chemical. 

Extensive research on the dehydration of 
fructose focuses upon the protocol optimisation of 
reaction conditions such as catalysts, and solvents 
for maximum HMF yield and selectivity. Whilst 
research on the downstream processing of the HMF 
effluents are limited. Advancements in using ionic 
liquids have been made due to their high dissolution 
properties and ability to stabilise HMF. Suppressed 
rehydration to levulinic acid in the presence of water 
provides higher yields and selectivity towards 
HMF. However, their extremely low vapour 
pressures present difficulty in using solvent 
evaporation.8 

More conventional solvents including, dimethyl 
sulfoxide (DMSO) have been extensively used and 
are reported to give high HMF selectivity due to 
their ability to minimise by-products by binding to 
HMF more strongly than water.9 Initial studies from 
1982, showed full conversion of fructose to HMF 
over 16 hours at 100oC, 10 and more recently, similar 
results of 100% conversion and 97% HMF 
selectivity were reported.11 Despite this, HMF’s 
high affinity in DMSO and its high boiling point  
(b.p.189oC) suggests HMF separation would be 
difficult. Also, there are concerns for the 
environmental toxicity of DMSO for commercial 
use. 12 

Therefore, the need for successful reaction 
systems in lower boiling solvents becomes more 
important when considering the separation process.  
The high solubility of fructose in 1,4-dioxane 
(b.p.101oC) led Aellig and Hermans13 to obtain only 
20% HMF yield. Therefore, this resulted in the need 
to add small amounts of DMSO for a 92% yield, 
which nullifies using 1,4-dioxane. Furthermore, 
Van Putten proposed methanol (b.p.64.7oC), 
obtaining a conversion of 89%, which corresponds 
to a combined yield for HMF and methoxymethyl 
furfural (MMF) of 47%.14 Among the limited 
research, Dumesic et al, proposed an acetone/water 
system, achieving 97% HMF selectivity and 98% 
fructose conversion. HMF was then successfully 
extracted using methyl isobutyl ketone (MIBK) and 
isolated by vacuum evaporation.15  

The assurance of these low-boiling systems, 
producing high HMF yields, now presents the 
challenge of ensuring the HMF isolation is feasible. 
HMF is notoriously unstable when exposed to high 

temperatures with a tendency to react and lead to 
substantial carbonisation of the product.16 
Therefore, thermal recovery methods such as 
distillation may potentially cause degradation of 
this valuable product. This paper aims to address the 
quantification of recoveries from different solvent 
systems by investigating the perturbations of 
separation conditions for effective solvent removal, 
with the focus on acetone/water (80/20vol%), 
methanol, and 1,4-dioxane/DMSO (90/10vol%). 
These have been chosen due to their promising high 
fructose conversion to HMF and low boiling 
properties for easier HMF isolation and purification, 
in addition to using DMSO as a comparative 
solvent.  

2. Methods 
2.1 Chemicals 
D-Glucose anhydrous (Analytical reagent), 
methanol (Analytical reagent), sulfuric acid (98%) 
and acetone (Technical) were purchased from 
VWR. HMF (≥99%, FG), DMSO (≥99.5%), 1,4-
dioxane (99.8%), and D-Sorbitol (≥98%) were all 
purchased from Sigma-Aldrich. Deionised water 
(DI) from Veolia Purelab Chorus was used in all 
experiments. 
 
2.2 Experimental Setup 
10 mL solutions of glucose and HMF (0.61, 1.00, 
2.04, and 0.44 wt.%) were prepared in 
acetone/water (80/20 vol.%), methanol, DMSO and 
1,4-dioxane/DMSO (90/10 vol.%) respectively as 
the concentrations were calculated from literature. 
To more closely mimic reaction effluents which 
often contain acidic catalysts, 0.192 mL of 1M 
sulfuric acid solution was used to make up an acid 
concentration of 16 mM for 10 mL of acidified 
HMF solutions at the same HMF concentrations. 
Solvent removal was performed with Buchi 
Rotavapor R-100 under reduced pressures, (30-500 
mbar) using the vacuum pump V-100 in a 250/500 
mL round bottomed flask. The substrate was 
dissolved with 20 mL of deionised (DI) water. 
Water/oil baths were used to provide a range of 
operating temperatures, (60-135oC) depending on 
the solvent system shown in Table 3 (Section 3.2). 
The solution in the flask was fully immersed in the 
water/oil bath during evaporation.   
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Figure 1: Setup of rotavapor. (A) Water bath used for methanol 
and acetone/water system with a 500mL rotary flask. (B) 
Modified setup for silicone oil bath, heated using a hotplate 
with a magnetic stirrer at 500rpm to reach higher temperatures 
used for 1,4-dioxane and DMSO systems with an adapter and 
250ml rotary flask. 

2.3 Quantification of Recovery 
High Performance Liquid Chromatography (HPLC) 
was used to quantify glucose and HMF in the feed, 
distillate, and the solutions that contained the 
redissolved substrate post rotavaping. The 
instrument was calibrated by preparing and 
processing different concentrations of glucose 
(0.11-1.91wt%) and HMF (0.13-1.10wt%). Table 1 
lists the details of the respective HPLC instruments 
used. For the evaporative light scattering detector 
(ELSD), an external standard of sorbitol was added 
to adjust for signal variability.    

Table 1: Operating Conditions of HPLC Instruments 
 HMF Detection Glucose 

Detection 
HPLC 
instrument 

Agilent- 1220 
Infinity II- 
Ultraviolet (UV) 
detector 

Agilent 1260 
Infinity II- 
ELSD 

Signal Variable 
Wavelength 
Detector (VWD) 

Refractive Index 
Detector (RID) 
ELSD 

Mobile Phase 0.4mL of 85wt% 
phosphoric acid 
(H3PO4) in 2L of 
water 

DI Water 

Mobile Phase 
Flowrate 

0.45mL/min 
 

0.75mL/min 

Column 
Temperature 

65°C 
 

85°C 

Volume of 
Sample Injected  

0.5µL 20µL 

The recoveries calculation is shown in equation 1.  

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
( 𝐶𝑠𝑡𝑜𝑐𝑘

𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) 𝑚𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(
𝐶𝑟𝑜𝑡𝑎𝑣𝑎𝑝𝑒

𝜌𝑤𝑎𝑡𝑒𝑟
) 𝑚𝑤𝑎𝑡𝑒𝑟

 
 
 
Eq. 1 

Where 𝐶𝑠𝑡𝑜𝑐𝑘 and 𝐶𝑟𝑜𝑡𝑎𝑣𝑎𝑝𝑒 are the concentrations 
(g/L) obtained from HPLC for the sample before 
and after rotavaping. 𝑚𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is the mass (g) of 
solution rotavaped and 𝑚𝑤𝑎𝑡𝑒𝑟 is the mass of water 

used to dissolve the substrate.  𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 𝜌𝑤𝑎𝑡𝑒𝑟 
are the respective densities (g/L) of the solution and 
water. 

2.4 Time Degradation  
HMF solutions (10 mL) in the solvent systems were 
prepared at the concentrations stated in Table 2. 
Half the sample was kept at room temperature (18-
20oC) and the other in the fridge (10-12oC), except 
for DMSO which was placed in an oil bath at 40oC. 
Experiments were conducted for up to 26 days.  

2.5 Aspen Plus 
The property method used was non-random two-
liquid (NRTL) as Martcotullio17 states that for dilute 
furfurals (<10wt%) at low pressures (<1bar), 
experimental data matches the closest to NRTL in 
comparison to other models. The set-up comprised 
of a mixer to homogenise a HMF and solvent stream 
which then fed into a flash vessel to simulate the 
solvent evaporation process. HMF recoveries, 
purities and solvent removal were quantified.   

3. Results & Discussion 
3.1 Substrate Concentration in Solvent 
Systems 
Considering that HMF is relatively expensive 
(~£13/g),18 a cheaper alternative glucose was used 
to allow for an initial understanding of solvent 
behaviour at experimental distillation conditions. 
The HMF concentrations used for the solvent 
systems are stated in Table 2 which were calculated 
from published fructose reaction data. The same 
concentrations were applied for the glucose 
experiments, for a direct comparison between 
substrates.                        
Table 2: Composition of Solvent Systems 

Solvent System wt% of substrate in 
solution 

Acetone/water (80/20vol%) 0.6115 
Methanol* 1.00, (2.35)14 
DMSO 2.0419 
1,4-dioxane/DMSO* (90/10vol%) 0.44, (3.25)13 

*Glucose was insoluble in the 2nd literature values provided. 1st 
value stated was used (upper solubility limit) 

Glucose was found to be insoluble in the 
methanol and 1,4-dioxane systems at 2.35 and 
3.25wt% respectively. Consequently, the upper 
solubilities concentrations of 1.00 and 0.44wt% 
were used. These were obtained by filtering the 
insoluble glucose to attain a filtrate of the saturated 
solution. This upper solubility concentration is then 
attained by processing the filtrate through HPLC. 
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3.2 Determining Operating Temperatures and 
Pressures 
A range of distillation conditions of temperatures 
(60-135oC) and pressures (30-500mbar) were 
evaluated for the distillation of solvent systems. The 
conditions outlined in Table 3 were found to yield 
effective solvent removal for glucose.  
Table 3: Optimal temperature and pressure conditions 

Solvent System Temperature 
(oC) 

Pressure 
(mbar) 

Acetone/water  75 200 
Methanol 60 500 
DMSO 135 30 
1,4-dioxane/DMSO  135 30 

As expected, the low boiling solvents required 
much milder temperatures than the systems 
containing the high boiling solvent, DMSO. Despite 
1,4-dioxane being a lower boiling solvent, due to the 
presence of DMSO, the same temperature of 135oC 
was required. It was reported that the small addition 
of DMSO stabilises the HMF, which in dehydration 
reactions increases the yield by up to 75%.13 

Increasing concentrations of DMSO in the 1,4-
dioxane system also increases the solubility of 
fructose and reaction rate. This correlation however 
plateaus, thus a 90/10% volume of 1,4-
dioxane/DMSO composition was recommended by 
Aellig and Hermans.13 To achieve this high 
temperature, the experimental set up was modified 
with a hot plate and and oil bath as shown in Figure 
1(B), in substitute to the nominal water bath from 
the Buchi system. These separation conditions were 
then used accordingly for the HMF and acidified 
HMF experiments.  

3.3 Rotavaping Experiments 
3.3.1 Glucose Recoveries 

Encouraging glucose recoveries were obtained for 
the low boiling solvents (acetone/water and 

methanol), over 90%, as shown in Figure 2. The 
discrepancy in recoveries between acetone/water 
and methanol could be due to the nominal presence 
of water forming hydrogen bonds with glucose.20 
Thus, small amounts of HMF are vaporised with the 
water, reducing the recoveries for acetone/water 
system. Water is used as a co-solvent for acetone, in 
lieu of a pure acetone system. Dumesic et al 
demonstrated that whilst increased acetone 
concentrations increase the dehydration rate 
constant, the solubility of fructose decreases. Hence 
small amounts of water were added. It was reported 
that 80/20vol% of acetone/water is capable of 
dissolving fructose whilst maintaining high reaction 
rates. 15 

A reduction in recoveries were observed for the 
higher boiling solvent systems (DMSO and 1,4-
dioxane/DMSO) that required temperatures as high 
as 135 oC, at which Woo et al reported glucose 
degrades to furfaral, HMF, formic acid and lactic 
acid.21 This is evident on the chromatogram in 
Figure 3, when the glucose/DMSO solution was 
rotavaped for a prolonged period (30 minutes) the 
recovery obtained was 23%. Shortening the time to 
15 minutes, a higher recovery of 83% was obtained, 
and no by-products were formed as shown in Figure 
3. The duration of 30 minutes was initially 
conducted as prior to this, there was small drop of 
solution that would not vaporise . However, it was 
found that at 15 minutes the size of the drop was 
approximately the same and there was no evidence 
of humin formation. The correlation between 
rotavaping time and recovery is plotted on Figure 4. 
It must be noted that in between the low and high 
boiling solvent experiments, the signal of the HPLC 
changed from ELSD to RID. The ELSD detects less 
than the RID. Thus, the degradation products of 
glucose for the acetone/water system were perhaps 
not seen.  

 

Figure 2: Recoveries of glucose from solvent systems at 
different operating temperatures (60-135 oC) 
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Figure 3: Comparison of products formed when glucose 
DMSO solution is rotavaped for 15(83% recovery) and 
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3.3.2 HMF Recoveries 

Shifting to the HMF substrate, as deduced in Figure 
5, more consistent recoveries were obtained. The 
general trend shows that recoveries are very similar 
between the HMF and glucose experiments. For 
DMSO and 1,4-dioxane/DMSO system, recoveries 
obtained are higher than glucose, suggesting HMF 
is more thermally stable than glucose at higher 
temperatures. The overall solvent removal from 
different substrate systems is not dissimilar as the 
recoveries obtained were similar.   

3.3.3 Acidified HMF Experiments  
As of now, the simple HMF and solvent systems are 
an oversimplification of actual crude reaction 
effluents, as they contain unreacted substrates, by-
products and homogeneous acidic catalysts that 
would affect the separation process.22 In literature, 
acidic effluents were found to be 1515-17mM14 

therefore adding a layer of complexity, sulfuric acid 

was added to form 16mM of acidified HMF 
solutions. All recoveries were found to drop as 
depicted in Figure 6.  

 

For the low boiling solvents, recoveries dropped 
by 6-12%. For the methanol system, a portion of the 
original mass of HMF in the solvent was methylated 
under the sulfuric acid catalyst, forming 
methoxymethylfurfural (MMF) 14 which is an HMF-
ether. This formation is illustrated on the 
chromatogram in Figure 7. HMF-ethers are of 
interest, with valuable uses, such as cetane boosters 
in diesel blends.23  In addition, they have found to be 
more stable than HMF.23 Onwards, the complete 
etherification of HMF simultaneous to the isolation 
stage should be further explored. 

 

Conversely, for high boiling solvents, recoveries 
decreased by up to 70% due to the carbonisation of 
HMF at high temperatures forming humins.16 This 
was clearly visible as brown solid particulates,  
shown in Figure 8. Humins are a class of 
carbonaceous materials with a largely unknown 
molecular structure.24 They reduce the yield in the 
dehydration reaction and due to their heterogenous 
nature, can cause reactor fouling.14 The dissolved 
solutions were filtered before being processed in the 
HPLC. To further identify the by-products formed, 
gas chromatography (GC) could be employed, as it 

Figure 4: Recoveries of glucose in respective DMSO and 
1,4-dioxane/DMSO decreasing with increased rotavaping 
time 
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different operating temperatures (60-135 oC) 
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is typically used to detect and measure organic 
compounds.25 To prevent the production of humins, 
a heterogenous acid catalyst could be used so that 
the solution is not acidified. Alternatively, 
neutralisation of the reaction effluent prior to 
separation would prevent the catalysed reaction of 
the humins and perhaps recoveries would be similar 
to the simple systems.  

 

Considering the dehydration reaction of fructose 
and the ease of HMF isolation, both low boiling 
solvents prove to be suitable as they have high 

carbon balances. For the acetone/water system, the 
minimal formation of humins is reflected in 
Dumesic et al, as the yield (92%) and conversion 
(96%) are high.15 Methanol’s low boiling nature, 
high recoveries and production of valuable HMF-
ethers makes it suitable. From an economic 
standpoint, the cost of methanol (~£14.70/L)26 is 
higher than acetone/water (~£8.40/L)27, which 
should be taken into consideration when selecting 
the most appropriate solvent.   

3.4 Time Degradation Study of HMF 
3.4.1 HMF Degradation at Heated Conditions 
The versatility of HMF is compromised with its 
unstable nature, especially enhanced in the presence 
of an acid,10 as summarised in the declining 
recoveries in section 3.3.3. The stability of HMF in 
the solvent systems is of interest when selecting the 
most suitable solvent. Therefore, degradation of 
HMF was investigated at the process temperatures 
used during the rotavaping experiments as stated in 
Table 3 over a 24-hour period.

 

 

 

  

Figure 8: (A) Left, filtered solution. Right, Solute remained 
after rotavaping dissolved in distilled water (20mL). (B) 
Insoluble products formed during rotavaping at 135oC for 
DMSO solution  

Figure 9: Degradation of HMF shown by the relative concentrations to the original samples. (A-D): Heated Samples (E-H): 
Room Temperature Samples 
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The fluctuations in the relative concentrations of 
HMF in the low-boiling solvents shows no 
degradation occurring, explaining the higher 
recoveries obtained in the experiments as displayed 
in Figure 9(A/B). Over a 24-hour period, it is shown 
in Figure 9(C) that less than 10% of the HMF in 
DMSO degraded despite being at 135oC.  This owes 
to DMSO possessing a high affinity to bind to HMF, 
9 making HMF stable in this solvent.  

 

On the other hand, for 1,4-dioxane/DMSO 
(135oC), there was a 40% reduction in HMF 
concentration, in lieu of products forming as shown 
in Figure 10. This demonstrates the poor stability of 
HMF, along with the low recoveries obtained in 
section 3.3.3. It can be observed that whether in an 
acidic environment or simply heated at the process 
condition for a prolonged period, HMF in 1,4-
dioxane suffers degradation into different products, 
as shown in Figure 10. From a safety perspective, 
1,4-dioxane is highly flammable, toxic and may 
cause cancer,28 which further deters the use of 1,4-
dioxane. 

3.4.2 HMF Degradation at Storage Conditions  
Devising a time degradation study on the effects of 
HMF under room temperatures of 18-20oC was of 
value to suggest a reliable solvent for HMF storage. 
Results are shown in Figure 9(E-H), in which up to 
a 26-day period, for all solvents investigated, there 
was minimal HMF degradation. Overall, with the 
exception of the acetone/water system, variations in 
HMF concentrations were no greater than 5% of the 
initial value. Fridge temperature conditions (10-
12oC) were also investigated, and similar variations 
were obtained (Figure S1). For acetone/water, a 
very steep initial drop-off in concentration was 
observed after one day. 

3.5 Simulation of Flash Distillation of HMF 
3.5.1 Comparing Experimental and Simulated 
Recoveries 
Aspen Plus was utilised to compare the 
experimental batch results to an industrial 
continuous process by flash distillation. Modelling 
the process using the same temperatures, pressure, 
and HMF feed concentrations (At a constant basis 
flowrate of 100kg/hr) for each solvent system. The 
simulated recoveries were found to be lower for all 
systems except for methanol as seen in Table 4. In 
the case for DMSO and 1,4-dioxane/DMSO, the 
solution completely vaporises and therefore no 
product remains in the bottoms, resulting in 0% 
recovery. HMF is modelled as a liquid, so it 
vaporises with the solvent into the distillate, hence 
simulated recoveries are lower than the 
experimental values. This is in dispute with the 
HMF being collected as a solid experimentally.                      

Table 4: Comparison of experimental and simulated recoveries 
at same process conditions  

Solvent System Experimental 
Recovery (%) 

Simulation 
Recovery 
(%) 

Acetone/water 96.78 78.65 
Methanol 92.35 99.16 
DMSO 87.64 0 
1,4-dioxane/DMSO 92.17 0 

 

3.5.2 Varying Flash Operating Temperatures 
To further investigate the difference between the 
experimental and simulated results, the operating 
temperature for each solvent system was varied, at 
their respective set pressures. Solvent removal is the 
amount of solvent vaporised and this increases with 
temperature, which results in higher purities of 
HMF obtained in the product bottoms stream as 
illustrated in Figure 11. Recoveries decline with 
temperature, as increasing amounts of HMF are lost 
to the distillate as it vaporises. To obtain the same 
experimental recoveries, the methanol system 
requires a higher temperature of 80oC. On the 
contrary, lower temperatures are required, for 
acetone/water (58oC), DMSO (92oC), and 1,4-
dioxane/DMSO (58oC) systems.  

The experimental temperatures are based on 
what is measured in the water/oil outside the rotary 
flask, hence there is uncertainty in actual internal 
conditions of the solutions. Additionally, there is a 
temperature gradient between the heating medium, 
rotary flask, and solution, therefore the point at 
which the solution vaporises is likely to be lower. 

Figure 10: Comparison of products formed for 1,4-
dioxane/DMSO for simple HMF (blue), acidified HMF (red) 
and heated (yellow) 
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This could possibly explain why the simulated 
results require a lower temperature for the same 
solvent removal. An additional probable cause in 
discrepancies could be based on the NRTL model 
estimations. It is favourable for predicting liquid 
activity coefficients. Nonetheless, this is not the 
case for vapour phase fugacity coefficients.17  

3.5.3 Recommended Operating Temperatures 
For optimal separation, the temperatures at which 
the recoveries and purities intersect in Figure 11 are 
recommended. This provides minimal HMF losses 
to the distillate, with a relatively high purity and 
solvent removal, as detailed in Table 5. In addition, 
the heat duties and CO2 productions of the flash 
units are reported, with methanol owing to the 
highest energy use and CO2 emission. This 

correlates to methanol having the highest recovery. 
This could be due the process costing more energy 
to achieve these higher recoveries.  

The flash distillation process gives promising 
HMF recoveries and purities of above 90%, for the 
low boiling solvents, as they are also comparable to 
the experiments conducted. The recoveries for the 
DMSO and 1,4-dioxane/DMSO systems are 
minimal, with purities of 50 and 70% respectively, 
despite the lower heat duties and CO2 productions. 
This discourages the use of these solvents; 
therefore, alternative separation techniques on 
Aspen should be explored, for instance the use of a 
crystalliser. This would favour the solid formation 
of HMF. 

 

Table 5: Operating temperatures that give the optimal recovery, with high purities and solvent removal, with their respective heat 
duties. Constant feed flowrate of 100kg/hr. Pressures and HMF concentrations same as of experimental. 

Solvent System Rotavaped 
Temperature 
(oC) 

Optimal Flash 
Temperature 
(oC) 

Optimal 
Recovery 
Obtained 
(%) 

Purity 
(-)  

Solvent 
Removal 
(%) 

Heat 
Duty 
(kW) 

CO2 
Production 
(kg/hr) 

Acetone/water 75 67 90.56 0.90 99.95 31.41 10.90 
Methanol 60 81 91.72 0.92 99.91 34.37 11.92 
DMSO 135 99 49.17 0.49 98.94 20.93 7.26 
1,4-dioxane/DMSO 135 67 69.15 0.70 99.87 14.07 4.88 

Figure 11: Simulated recoveries, purities, and solvent removal from Aspen for (A) Acetone/water(80/20vol%) (B) Methanol (C) 1,4-
dioxane/DMSO (D) DMSO. Cross indicates the experimental temperature and recoveries.  
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4. Conclusions & Outlook 
This study has demonstrated that the isolation of 
HMF is feasible for low boiling solvents 
(acetone/water and methanol) at both batch 
experimental and continuous industrial scales. HMF 
displays a high thermal stability in these low boiling 
solvents, in addition to high recoveries, even in 
acidic conditions. This is a fundamental 
consideration, as typical crude reaction effluents are 
acidic due to the catalysts used. The methanol 
system seems to be more reactive in acidic 
conditions than the acetone/water, as HMF-ethers 
are formed. Nevertheless, HMF was more stable in 
methanol than acetone/water when left at room 
temperature for a prolonged period. For a 
continuous process, the heat duty and CO2 
production for the low boiling solvents are similar. 
Nonetheless, the production of HMF-ethers can be 
taken advantage of, due to its increased stability to 
HMF.23 To overcome the limited research on HMF-
ethers, the isolation of HMF-ethers from reaction 
effluents could be investigated and compared to the 
analogous HMF isolations.  

High boiling solvents are effective for the 
reaction process, providing high sugar solubility 
and HMF yields. However, in acidic conditions, 
high degradation occurs and humins are formed. 
Substitution of a heterogenous acidic catalyst would 
prevent this. Alternatively, the stream prior to 
separation could be neutralised. Although acidified 
conditions were employed, the actual investigation 
of these crude effluents of varying pH, unreacted 
sugars and by-products could elaborate on which 
solvent systems prove to be suitable. Among the 
DMSO and 1,4-dioxane/DMSO systems, DMSO 
proves to be more suitable for the isolation of HMF, 
as it is less susceptible to thermal degradation. This 
is in spite of high fructose solubility in 1,4-dioxane 
and HMF possessing high affinities to bind to 
DMSO. A time and heated degradation study of 
HMF containing sulfuric acid is additionally of 
interest, as it is proven that more by-products are 
formed in acidic conditions, thus this would develop 
the current understanding. For a continuous 
operation, other separation techniques that favour 
the solid formation of HMF could be adopted, such 
as crystallisation or centrifugation.  

A limited scope out of a comprehensive list of 
successful fructose dehydration systems, including 
ionic liquids and other alcohols have been studied. 
Biphasic systems involving methyl isobutyl ketone 

(MIBK) and tetrahydrofuran (THF) have proven to 
extract HMF from the reaction effluent in situ to 
suppress side reactions such as rehydration to 
levunilic acid.22  Therefore, investigation of the 
solvent evaporation and verification of the 
degradation chemistry of HMF in MIKB and THF 
would provide a further understanding of the 
importance of solvent extraction prior to thermal 
recovery.  

Overall, the selection of the solvent system 
would not only depend on the key performance 
indicators of the fructose dehydration process but 
also the feasibility of separation, economic and 
environmental considerations. This provides a 
comprehensive assessment on which solvents 
would be suitable for the commercialisation of 
HMF production.  
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Abstract  
Decentralised rainwater harvesting system are increasingly implemented to reduce stormwater runoff and to fulfil 
non-potable usage of water onsite. This study investigates the effectiveness of the addition of a catchment tank of 
varying base areas on the system’s ability to treat water onsite and reduce risks of flooding while accounting for 
economic considerations. Multi-objective optimisation using the utopian point method revealed that the additional 
optimal catchment tank did not improve the system’s rainwater harvesting performance. It also highlighted the 
need to make full use of downstream systems which was currently significantly underutilised. A narrow but taller 
tank was more ideal due to the dynamics of the system which affected the flowrate of water passing through the 
system. The comparison between different rainfall events also pointed out how both total rainfall volume and 
duration were critical factors when considering the design of the rainwater harvesting system (RWHS). The 
methodology of assessing the effectiveness of the RWHS can be applied for evaluating other types of catchment 
tanks to suit different stakeholders and their priorities. A potential area of application for this study would be in 
designing new RWHS from scratch, enabling the use of smaller downstream tanks. 
Keywords: Rainwater Harvesting, Multi-objective optimisation, Utopia Point  
 
1 Introduction 
Urban water supply systems are experiencing 
increasing stress due to population growth, 
increased urbanisation, and climate change. Rapid 
population growth and increased urbanisation have 
led to a surge in demand for water resources and an 
increase in the construction of buildings, roads, and 
other civil infrastructures. As a result, the reduction 
of rainwater absorption capacity from soil in these 
areas has exposed and made cities more vulnerable 
to flooding in the presence of extreme rain events. 
This is further exacerbated by global warming which 
has increased the frequency, intensity, and duration 
of rain events. Coupled with economic and political 
issues related to water, have caused significant 
increments in volume of wastewater and rainwater 
within cities, increasing the risk of combined sewer 
outflow and flooding events  (García et al., 2015). In 
2021, flooding cost the global economy $82bn, 
accounting for nearly a third of the total damages 
from natural disasters (Bevere, 2022). Therefore, 
sustainable and optimal urban water management 
has become a goal of strategic planning.  
 
The main goal of these strategies is to maintain the 
quality and sustainability of water resources and to 
adapt these strategies for future development. This 
is particularly important for domestic water usage as 
it currently accounts for 10% of the total global 
water demand (Boretti & Rosa, 2019). As such, 
rainwater is starting to gain attention as an 
alternative water source due to its relatively low 
degree of pollution which does not require advanced 
purification processes (Słyś & Stec, 2020). This, 
however, would depend on many factors, including 
air quality, the type of catchment management, the 
type of roof coverage, etc. Most countries that use 
rainwater harvesting systems (RWHS) use it mainly 

as a complementary system to traditional water 
sources for non-potable use, including for toilet 
flushing, cleaning work and washing.  
 
There has been much research surrounding the use 
of RWHS and the different models to mitigate the 
impact of stormwater events on these systems. 
Existing models includes the use of decentralised 
harvesting and detention systems to reduce the 
rainfall runoff volumes into centralised catchment 
areas  (Soh et al., 2020). This also allows harvested 
water to be treated onsite to support demands within 
the building, thereby alleviating the stress on 
conventional water resources and potential 
contamination with pollutants carried by urban 
runoff. This reduces the amount of rainwater 
reaching the street level and hence reduced runoff 
volumes and peak flows in areas with RWHS 
implementation. However, the observed reduction in 
drainage peak flows attained by RWHS diminishes 
in long and intense rain events as harvesting tanks 
are filled in the early phases of the storm and remain 
filled as rainwater inflows usually exceed the 
demands from the tanks (Snir, Friedler & Ostfeld, 
2022). As such, a full tank loses its drainage flow 
reduction ability and effectiveness as any 
subsequent rainwater inflow causes immediate 
overflow. While RWHS is effective in reducing the 
risks of stormwater flooding, it is limited to handling 
the known water problems at its time of design and 
more must be done to adapt and mitigate this in 
future with increasing rainfall expected. 
 
The choice of a RWHS and its operations are also 
subjected to the same economical laws of profit and 
loss as other investments. Hence, both technical and 
economic analyses should be considered in the 
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decision-making process, such as the capital 
expenditure. 
 
This paper follows up on the works regarding the use 
of decentralised rainwater detention tanks to reduce 
rainfall runoff volumes (Soh et al., 2020) and aims 
to further the development of RWHS by 
investigating the effect of adding an upstream 
catchment tank to ensure the system is sufficient in 
handling the rainfall event. Two key objectives were 
set: To better understand the dynamics of the RWHS 
and to develop a methodology that could be used in 
future designs and models. 
 
Synthetic rainfall patterns were used to model and 
analyse the system. The model simulates the 
response of the drainage system during rainfall 
events and uses the results to derive the required 
parameters for optimisation to address some of the 
gaps in the field of an existing passive RWHS 
network through a real-world case study – a 
residential estate in Singapore. In this case study, the 
catchment system will model the DeepRoot Silva 
Cell, a hybrid system that incorporates both a 
modular suspended pavement system and soil to 
promote tree growth to treat water on-site (Figure 1). 
 

 
Figure 1: Silva Cell schematic (taken from 
https://innovex.ca/en/products/silvacell/) 

 
The remainder of this paper is structured as follows. 
The methodology used to perform the optimisation 
and evaluation of catchment tanks under different 
rainfall conditions is given in Section 2. An outline 
and discussion of the case study results are given 
in Section 3 while the conclusions and future 
outlook are provided in Section 4. 
 
2 Methods 
A suitable rainfall event was chosen to model the 
system to obtain an ideal catchment tank volume and 
to assess the effectiveness in meeting the desired key 
performance indexes (KPIs). However, due to 
potential trade-offs between the different KPIs, a 
multi-objective optimisation was performed to 
obtain a balance between these KPIs. To further 
evaluate the system’s effectiveness, the optimised 
modelled system with the catchment tank was 
benchmarked against the system without the 

catchment tank (base case) and stress tested against 
rainfall events with larger rain volume.  
 
2.1 Rainwater Harvesting System (RWHS) 
2.1.1  Overview 
The modelled system involves the addition of 2 
tanks from the three-tank water harvesting and 
detention system (Soh et al., 2020) – a catchment 
tank and treatment tank. The modelled five-tank 
water harvesting and detention system will be 
segmented into 2 main parts – upstream and 
downstream system. The upstream component 
comprises of only the catchment tank, while the 
downstream system comprises of the remaining 4 
tanks – separation, detention, harvesting and 
treatment tank (Figure 2). For the remainder of the 
paper, the term ‘Rainwater Harvesting System 
(RWHS)’ will refer to the system with the additional 
catchment tank while ‘base case’ will refer to the 
system without the catchment tank.  
 

 
Figure 2: Schematic of the flows and tanks in the RWHS 

 
Rainwater is first captured through a catchment 
system which will be the focus of the research where 
the volume of the catchment system will be varied 
and optimised to analyse the effect on the 
downstream rainwater harvesting system. The 
catchment tank also acts as a temporary storage tank 
for rainwater before it gets directed to the separation 
tank, the first tank in the downstream system, where 
it separates water through a separation filter into the 
detention and harvesting tank. The detention tank 
will hold discharge the rainwater to the public 
drainage network (PDN) at a suitable rate. On the 
other hand, filtered water from the separation tank 
will flow into the harvesting tank and thereafter be 
directed into the treatment tank for treatment to 
satisfy the demand of the building. To prevent 
excessive and quick overflow of the water in the 
separation and detention tanks, secondary outlets - 
weirs are installed in these tanks to allow water to 
flow out of the tank once it reaches a high tank level.  
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Assuming the catchment tank fully utilises the 
effective open area of the roof, the area was fixed at 
400m2 (HDB, 2017)., to ensure that volumetric 
changes are due to variations in height. To observe 
the variation in dynamics due to difference in height 
and to consider the non-maximum utilisation of the 
entire rooftop space, a tank catchment area of 100m2 

was also simulated.  It is important to note that the 
system was previously optimised and is already 
robust against overflows in its design (Soh et al., 
2020). The dimensions and design parameters of the 
downstream system are described in Table 1 below:  
 

Table 1: Dimensions of Tanks and orifices 
 Components Area (m2) Height (m) 

T
an

ks
 Separation 40.00 2.50 

Detention 20.00 2.50 
Harvesting 80.00 3.00 
Treatment 40.00 1.25 

O
ri

fic
e 

CS 0.0962 0.00 
SD 0.00785 0.00 
SD2 (weir) 0.900 0.66 
DO 0.0962 0.00 
DO2 (weir) 0.0491 1.80 
SH 0.0962 0.52 
HT 0.0962 0.00 

 
The model was simulated for a 24-hour period where 
the rainfall event falls within to analyse how the 
rainfall event affects the dynamics of the system. 
The water tank is modelled using equations derived 
from mass balance for the respective tanks. The 
generalised mass balances for a tank j with area Aj 
and height Hj are as follows with Qk representing the 
flowrate between the tanks through the different 
outlets. The flowrates were determined using the 
orifice and weir equations determined by 
Bernoulli’s equation, shown in equations 2 and 3. 
 
Mass Balances:  
 
Accumulation = Inlet Flowrate – Outlet Flowrate 
 

(1) 𝐴𝑗
𝑑𝐻𝑗

𝑑𝑡
= 𝑄𝑗,𝑖𝑛 (𝑡) − 𝑄𝑗,𝑜𝑢𝑡 (𝑡)  

 

Flowrate Equations: 
(2) 𝑄𝑜𝑟𝑖𝑓𝑖𝑐𝑒 (𝑡) =  𝐶𝑑 × 𝑎 × √2 × 𝑔 × 𝐻𝑒𝑓𝑓(𝑡) 
 
(3) 𝑄𝑤𝑒𝑖𝑟(𝑡) =  2

3
× 𝐶𝑑 × 𝐿 × √2 × 𝑔 × 𝐻𝑒𝑓𝑓(𝑡)1.5 

 
 𝐶𝑑: Discharge Coefficient 
 𝑎 ∶ Area of orifice 
 𝑔 ∶ Gravitational Constant 
 𝐿 ∶ Length of weir 
 𝐻𝑒𝑓𝑓: Water level above outlet opening 
 
2.1.2 Key Performance Indexes (KPIs) 
To assess the effectiveness of the RWHS, the system 
was benchmarked against 6 KPIs, of which the first 

3 were main parameters used to optimise the volume 
of the catchment tank: 

1. Rainwater overflow from system 
2. Capital expenditure (CapEx) of catchment 

tank  
3. Volume of rainwater harvested 
4. Rate of water inflow into separation tank 
5. Volume of water discharged into public 

drain network (PDN) 
6. Maximum Tank Utilities  

 
The rainwater overflow from the system was defined 
as the maximum amount of water overflow from the 
system in each second. It was critical that significant 
rainwater overflow to be avoided as floods result in 
disturbances to people’s life, damage to property 
and even fatality. CapEx is measured by the cost of 
the catchment tank which is a function of volume. 
Due to opportunity costs of investments, it is 
essential to minimise CapEx to generate high returns 
on investments. The volume of rainwater harvested 
is the amount of water that enters the harvesting tank 
over the simulated time period. Having a significant 
volume of rainwater harvested allows for more 
water to be treated and used to fulfil demand which 
results in reduced freshwater usage.  
 
The rate of water inflow into the separation tank 
provides comparison with the base case to assess the 
effectiveness of the catchment tank in terms of how 
efficiently it buffers for intense periods of rainfall on 
the downstream system. Excess water is discharged 
at a suitable rate into the public discharge network 
and excessive discharge may strain and cause the 
network to fail. Lastly, the maximum occupied 
capacity of the tank provides an overview on the 
utility of the tanks which offers insights on how the 
different tanks may be reduced to reduce costs. 
 
2.1.3 Assumptions 
To simulate the modelled RWHS to a real-life 
scenario, multiple assumptions were made. Firstly, 
all treated water from the treatment tank will be used 
to fulfil demand and only for non-potable usage. 
Excess water from all tanks in the downstream 
system will result in backflow into the preceding 
tank and hence will never overflow (e.g. An 
overflowing separation tank will result in water 
flowing back into the catchment tank). Only 
installation costs of catchment tanks were 
considered in CapEx while other fixed costs such as 
those associated with digging or piping were not 
accounted for as it varies from systems, locations 
and type of surfaces installed on. Although water 
may leave the system through evapotranspiration, it 
will be difficult to quantify and model. Coupled with 
the relatively short simulation time, water leaving 
through evapotranspiration will be deemed 
negligible and not be included in the mass balances.  
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2.2 Rainfall Event Analysis 
To simulate real-life rainfall scenarios, a 100-year 
period of synthetic rainfall data over 5-minute 
intervals was used as a rainfall signal to the system. 
To filter out negligible rainfall signal, a single 
rainfall event was defined as a time period with 
consecutive rainfall signals that are larger than 
0.5m3. Rainfall signal was then disaggregated to a 
per second basis to ensure coherence with the mass 
balance and flow equations.  

 
Figure 3: Frequency of rainfall event by total volume 

 
Rainfall events were classified based on the total 
volume of rain. The RWHS must be able to handle a 
sufficiently intense rainfall event that occurs 
relatively frequently to justify the high costs of 
installations. As such, a rainfall event that occurs 20-
30 times per 100-years was identified which 
translates to volumes in the range 50-60m3 (Figure 
3). Consequently, the rainfall event chosen for 
simulation in the model, for both the RWHS and 
base case, will be 60.08 m3 in volume and 15 
minutes long.  
 
To assess how the system reacts to larger rainfall 
volumes, the system will be stress tested against 
larger volumes but relatively rare rainfall events. In 
this case, a significantly higher rainfall volume that 
occurs approximately 2-3 times per 100-years 
(Figure 3) was chosen, translating to 153.34m3 of 
rainfall and a longer duration of 95 minutes. 
 
2.3 Optimisation of catchment tank volume 
Through the simulations on the system while 
varying tank heights, values were obtained for the 
main KPIs across a range of volumes. These were 
used in a 3rd degree polynomial regression analysis  
to obtain objective functions for harvested water and 
overflow. These were used to perform a multi-
objective optimisation and obtain an optimal 
catchment tank volume. A regression analysis was 
not conducted for CapEx as a theoretical 
relationship was already known. The objective 
functions for the optimisation are:  

 
 
 

min 𝐶𝑎𝑝𝐸𝑥 (v) 
 
s.t. Harvested Water (ν) ≥ ε𝐻𝑊 
 Overflow from System (v) ≤ ε𝑂𝐹 

CapEx(v) ≥ 0 
 Overflow from System (v) ≥ 0 
 

The ε-constraint method was used where the 
objective functions of minimising volume of 
overflow and maximising volume of harvested 
water were set as constraints by setting inequality 
around some value ε for each function and 
constraining it to non-negativity. ε was then varied 
using parameters that are percentiles of the range of 
values for harvested water and overflow (Table 2). 
Excel Solver Non-Linear Generalised Reduced 
Gradient was then utilised to obtain the optimum 
volume and the corresponding CapEx, volume of 
overflow and harvested water.  
 

Table 2: Values for constraints (used as epsilon values) 

  100m2 400m2 

Percentile 
Volume of 
Overflow 

Volume of 
Harvested 
Water 

Volume of 
Overflow 

Volume of 
Harvested 
Water 

0 0.00 0.00 0.00 0.00 

10 6.00 2.62 6.00 2.06 

20 12.00 5.24 12.00 4.12 

30 18.00 7.86 18.00 6.19 

40 24.00 10.48 24.00 8.25 

50 30.00 13.10 30.00 10.31 

60 36.00 15.72 36.00 12.37 

70 42.00 18.34 42.00 14.43 

80 48.00 20.96 48.00 16.50 

90 54.00 23.58 54.00 18.56 

100 60.00 26.20 60.00 20.62 

 
The obtained optimised points were then normalised 
to allow for equal contribution from each objective 
function in the optimisation. The normalised 
optimised data points were then plotted on a 3D 
graph to obtain the Pareto Front. Since the data 
points were min-max normalised, the point of origin 
became the Utopia Point  (Szparaga et al., 2019), 
with maximum harvested water, minimum volume 
of overflow and CapEx all converging at this point 
in the normalised data. The optima point for each 
system is deemed as the point on the Pareto Front 
which lies closest to the Utopia Point. 
 
2.4 Effectiveness of the catchment tank 
The model was thereafter simulated using the 
optimised catchment tank volumes for the different 
catchment area and compared against the base case 
using the same rainfall. All KPIs will be compared 
on a time basis to analyse the dynamics of the system 
throughout the simulated 24-hour period. The 
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optimal volume will then be stress tested against 
rainfall events with higher rainfall volumes to 
evaluate the system’s ability to handle large rainfall. 
 
3 Results & Discussions 
3.1 Performance of catchment tank 
The main KPIs were measured across different 
volumes of the catchment tank for each respective 
catchment roof area.  
 
Rainwater overflow from the system 

 
Figure 4: Rainwater Overflow over volumes 

 
At low catchment tank volumes, the RWHS cannot 
handle the rainfall, leading to overflow. As 
catchment tank volume increases, the storage 
capacity of the catchment tank and the time required 
for rainwater to pass through the catchment tank 
without overflowing increases as it takes longer for 
the catchment tank to fill up, reducing the volume of 
overflow from the system. This was expected as 
larger volume allows the catchment tank to store 
more rainwater as it enters the RWHS. However, 
there comes a point in the system where further 
increase in catchment tank volume does not result in 
reduction of rainwater overflow as the system is 
large enough to handle the total volume of rainfall. 
As such, to minimise the rainwater overflow of the 
system, a sufficiently big catchment tank that can 
handle the total volume of rainfall is required.  
 
The narrower catchment tank was more efficient in 
handling rainfall as can be seen by the smaller 
volume of tank required for no overflow from the 
system (Figure 4). For the same amount of water in 
the tank, the higher water level in the narrower 
catchment tank causes the outflow of rainwater 
leaving the tank to be higher due to a higher effective 
height. Assuming the same rate of water inflow for 
both cases, there will be a smaller accumulation and 
build-up of rainwater in the tank. Hence, for the 
same catchment tank volume, there was a smaller 
overflow volume from the narrow tank. 
 
 
 

 
CapEx of catchment tank 

 
Figure 5: CapEx over volumes 

 
For both cases, the CapEx was a linear function 
(Figure 5) of the volume of tank (Sherpa, 2021) due 
to the CapEx only considering installation costs. 
Further economic analysis can be conducted to 
account for potential costs savings from reduced 
freshwater usage to justify a potentially higher 
CapEx. However, in this study, the main 
consideration is to keep the CapEx to a minimum. 
 
Volume of rainwater harvested 

 
Figure 6: Volume of Harvested Rainwater over volumes 

 
Contrary to rainwater overflow from the system, the 
volume of harvested water is lowest at the smallest 
catchment tank volume. It increases with the volume 
of catchment tank until a point where an increase in 
catchment tank volume no longer result in further 
increase in the harvested water due to the fixed 
volume of rainwater entering the system. Due to 
larger volume of catchment tank and hence lower 
volume of overflow, more rainwater can reach the 
downstream system for harvesting and treatment. 
However, further adjustments can be made to the 
downstream system to redirect rainwater into the 
harvesting tank compared to the detention tank. 
 
For the same volume of catchment tank, the 
difference in tank area resulted in a higher 
corresponding water level for the 100m2 catchment 
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tank. Since the flowrate of the orifice is a function 
of the effective height (Equation 2) and the orifice 
height is the same, the flowrate of rainwater into the 
separation tank will be higher for this tank. The 
separation tank will be filled up at a faster rate and 
the tank level will reach the height of the orifice 
connected to the harvesting tank (SH) earlier. As 
such, more water will be directed to the harvesting 
tank for treatment at a higher rate for the 100m2 tank.   
 
There was no water harvested for very small 
catchment tanks for the 400m2 area as the water level 
is significantly lower. Combined with a low flowrate 
into the separation tank, this allows more time for 
water to be discharged into the detention tank 
instead. Since the orifice for SD is the lowest in the 
tank, water will first flow out to the detention tank 
before the water level can reach the height of the 
orifice for SH and flow into the harvesting tank.  
 
3.2 Multi-objective optimisation of KPIs 
Trade-offs between these KPIs exist where a smaller 
volume is preferred due to space and cost 
considerations while a larger volume is preferred to 
improve the rainwater harvesting performance. 
Hence, an optimal balance should be obtained in the 
consideration for building a RWHS.  
 

 
Figure 7: 3D graph showing Pareto Front and respective 

optima 

 
The calculated optima point for the narrow 
catchment tank is closer to the Utopia point 
compared to that of the broader tank (Figure 7) 
which meant that the narrow tank was more ideal 
when comparing the 3 main KPIs. This was 
expected due to the ability for the 100m2 tank to 
achieve a lower overflow and higher harvested water 
at a lower catchment tank volume and CapEx. The 
tank with smaller base area and taller height would 
also be preferred in the context of Singapore due to 
its lack of land area and is one of the most built-up 
cities in the world. 
 

Table 3: Optimal solutions for volumes and KPIs 
Catchment 
Tank Area 

(m2) 

Volume 
(m3) 

CapEx 
($) 

Overflow 
from the 
system 

(m3) 

Volume 
of 

Harvested 
Water 
(m3) 

100 4.31 6100 16.55 23.58 
400 12.07 17073 17.25 18.56 

 
3.3 Effectiveness of Catchment Tank 
The effectiveness of the catchment tank will be 
evaluated by comparing the different KPIs for the 
determined optimal volumes against the base case 
and by stress testing the system against a heavier 
rainfall pattern. 
 
3.3.1 Base case comparison  
The KPIs were measured against a 24-hour 
simulated timeframe with the start and end of 
rainfall indicated in the graphs to show how the 
dynamics change with rain. The KPIs analysed were 
focused on the timeframe during which the rainfall 
event occurred. 
 
Overflow from System 

 
Figure 8: Rainwater overflow over time 

 
No overflow was observed for the base case as the 
volume of the separation tank was larger than the 
overall volume of the rain. The volume of optimised 
catchment tanks of the RWHS for the respective 
catchment tank areas were similar and significantly 
smaller, resulting in overflow from the system 
slightly after the rain started. Due to a smaller 
optimised volume for the 100m2 tank (Table 3), the 
system overflowed earlier than that of the 400m2 
tank. However, the dynamics of the system meant an 
increased outflow into the separation tank and 
smaller accumulation in the catchment tank 
resulting in a slightly smaller overflow despite a 
smaller volume.  
 
Volume of Harvested Water 
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Figure 9: Volume of harvested water over time 

 
The volume of harvested water for the base case was 
larger than that for the RWHS. As the water flowing 
into the separation tank was limited by the orifice 
equation and effective height of water in the 
catchment tank, the water flow into the separation 
tank was lower. Hence, more water was harvested 
earlier as the tank level in the separation tank for the 
base case reached the height of orifice for SH faster 
than the cases with catchment tanks.  
 
The relatively constant gradient during the initial 
harvesting of water meant that the harvesting rate 
and hence the water level during that period were 
constant. The gradient decreased at the end of the 
harvesting process due to the decreasing effective 
height as the rain has stopped and no more water 
enters the separation tank. Harvesting stops once the 
water level falls below the height of the orifice SH. 
 
Separation tank water inflow 

 
Figure 10: Flowrate of water into separation tank over time 

 
Due to the lack of catchment tank, the separation 
inflow is simply the rainfall signal for the base case.  
The presence of the catchment tank helps to 
smoothen and alleviate the stress on the system at 
any given time by further spreading out the flow of 
the rain volume over a larger time period. This 
makes the system effective in handling rainfall 
events that are expected to be increasing in intensity 
in future. The constant peak inflow is partially 

attributed to the full tank that prevents further 
increase in flowrate of CS. The broader catchment 
tank was more effective at cushioning peak rainfall 
due to smaller effective tank height and flowrate into 
the separation tank when the tank was full.  
 
Public Drain Network (PDN) flowrate 

 
Figure 11: Flowrate to public drains over time 

 
Unlike most of the other flow parameters, the PDN 
recorded data immediately after the start of the rain 
due to the orifice of SD being located at the base of 
the separation tank. This caused the water to flow 
out from that orifice instantaneously, albeit slowly 
due to the small orifice area. The base case reached 
a larger flowrate for PDN as the separation tank can 
hold the entire volume of rainwater without 
overflowing, allowing more water to enter the PDN 
system at a faster rate. As the tank helped to 
moderate and spread out the water inflow into the 
separation tank, the rainwater took longer to clear 
the system through the PDN and hence the discharge 
rate tailed off later relative to the base case. This 
should be considered in case studies with frequent 
rainfall events as water in the system from earlier 
rainfall events may negate the RWHS effectiveness.  
 
Tank Utilities 

 
Figure 12: Maximum tank utility 

 
The utility for most tanks except catchment tank 
(CAT) were generally similar across all cases. Most 
of the downstream tanks were ineffectively utilised 
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with less than 50% utility which opens up the 
possibility of using smaller tanks in the downstream 
system, especially because Singapore is 
geographically constrained. The design of the 
system such as the placement of the orifices can also 
be adjusted to allow more water to be harvested 
rather than discharged through the detention tank. 
 
The utility of the separation tank for the RWHS were 
also relatively similar due to the presence of the SH 
located at approximately 20% of the tank height, 
preventing the water level from exceeding that 
height. The presence of the weir at SD2 also kept the 
water level from exceeding that level and the 
installation of a secondary outlet on the catchment 
tank in the RWHS can be considered. The separation 
tank utility was slightly more for the base case as the 
flowrate into the separation tank was higher than that 
of the RWHS which meant a higher build-up of 
water. On the other hand, the catchment tank could 
store some rainwater before it flowed into the 
separation tank, reducing the utility of the separation 
tank. Since the catchment tank was significantly 
smaller than the separation tank, the impact in utility 
of separation tank was very minimal.  
 
3.3.2 Stress testing 
 
The RWHS was then stress tested against the 
maximum rainfall volume that was obtained from 
the synthetic data to evaluate the effectiveness when 
faced with extreme rainfall volume.  
 
Overflow from system 

 
Figure 13: Rainwater overflow over time for stress testing 

 
Despite the higher rainfall volume simulated, there 
was no overflow from the system for all three cases. 
The main reason for this was rainfall being spread 
over a longer duration, which meant the average 
rainfall per second was much smaller. Since the 
input flowrate was much smaller, rainwater has 
more time to pass through the entire system before 
there was significant accumulation and build-up of 
the rainwater in the primary tank of the system. This 
meant that a larger rainfall volume does not 
necessarily result in overflow from the system. The 

duration of rainfall event will also affect the rate at 
which water enters the RWHS.  
 
Volume of Harvested Water 

 
Figure 14: Volume of harvested water over time for stress 

testing 

 
The volume of harvested water was also very similar 
in terms of rate and volume harvested across all 3 
cases. As the catchment tank was not fully utilised, 
the flowrate of rainwater into the separation tank 
was like that of the base case and hence few 
differences between the 3 cases were observed. The 
higher volume of harvested water obtained during 
the stress testing was mainly attributed to the larger 
volume of rain during the simulated timeframe.  
 
Separation tank water inflow 

 
Figure 15: Flowrate of water into separation tank over time for 

stress testing 

 
The catchment tank was critical in smoothening the 
rain signals and it was more prominent for the case 
of 400m2 catchment tank. However, the peaks were 
not reduced and less spread out compared to the base 
case due to the smaller average flowrate. As such, 
the catchment tank did not store as much rainwater 
to smoothen the flowrate of rainwater into the 
separation tank. Relative to the 100m2 catchment 
tank, the outflow of the 400m2 tank is smaller, 
allowing more water to accumulate in the catchment 
tank. This spreads out the water inflow into the 
separation tank across a larger time period. 
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Public Drain Network (PDN) flowrate 

 
Figure 16: PDN flowrate over time for stress testing 

 
Like the volume of rainwater harvested, the PDN 
flowrate displayed little differences for all three 
cases and the behaviour was like that of the base 
case. This was due to similar separation tank inflow 
across the 3 cases which resulted in similar effective 
height in the tank and PDN flowrate.  
 
Tank Utilities 

 
Figure 17: Maximum utility of tanks over 24-hour period for 

stress testing 

 
The catchment tank’s utility (Figure 17) was 
different due to smaller rain signal per second. As 
there was no overflow from the system (Figure 13), 
the catchment tanks were not fully utilised. The 
lower flowrate for the 100m2 catchment tank 
resulted in the build-up of water in the tank, resulting 
in higher utility. The reduced rainfall per second also 
meant that the water level in the separation tank only 
reached the maximum height of SH, resulting in the 
same utility of separation tank for all 3 cases.  
 
3.4 Qualitative Analysis of Silva Cell 
While the simulation and KPIs provide a good 
quantitative comparison, qualitative analysis should 
be conducted to understand how the proposed Silva 
Cell system compares with the base case. 
 
The Silva Cell considered have many merits. The 
ability to support and sustain biodiversity offers the 

Silva Cell benefits associated with green roofs such 
as beautification and air purification. Known as the 
‘garden city’, green roofs have huge room for 
growth in Singapore due to its lush vegetation, green 
space and environmental policies, as the government 
aim to have at least 80% green buildings by 2030 
(Up to Us Veolia, n.d.).  The system also protects the 
roof from UV rays and temperature fluctuations, 
reducing the cost of maintenance and likelihood of 
re-roofing (Brass, 2022). Moreover, the additional 
soil layer acts as a fire and heat resistant layer  (Eksi 
et al., 2017) due to high moisture content in plants, 
improving the thermal efficiency of the building. 
This is especially significant in Singapore as cooling 
constitutes almost 25% of an average household’s 
electricity consumption (Muruganathan, 2021). 
Additionally, Silva Cell can filter unwanted 
particles, ensuring high water quality which results 
in less treatment required in the downstream stages. 
Lastly, a land scarce country like Singapore cannot 
afford to have inefficient use of land and will require 
proper planning for all available land area including 
utilising rooftop for variety of purposes such as 
carparks. As such, the modular pavement system 
makes the proposed system very suitable due to its 
ability to take on a huge load for vehicles.  
 
The RWHS does have some drawbacks. Untreated 
acidic rain in the upstream system may destroy 
foliage and corrode pipes in the downstream system. 
The unpredictable nature of root growth also require 
frequent monitoring and maintenance to ensure the 
infrastructure is not damaged by the roots. However, 
this can be mitigated using technology to reduce 
damage to existing infrastructure (Ganesan, 2018). 
 
4 Conclusion and Outlook 
The modelling revealed that instead of improving 
the RWHS, the use of the catchment tank reduced 
the ability to handle rainfall effectively as the larger 
separation tank in the downstream system could not 
absorb water from the surface, resulting in overflow 
and reduced harvested water. It should be noted that 
the current system is designed to be a passively 
operated system and robust against overflows. 
However, this system was found to be inefficiently 
used due to the large downstream tanks. If the 
overall system can be redesigned, accounting for the 
costs of the entire system, the addition or even the 
replacement of the separation tank with the Silva 
Cell catchment tank may prove to be useful in 
buffering rainfall volume and handling high 
intensity rainfalls. The duration and volume of rain 
are additional factors to be considered in the RWHS 
design. The qualitative benefits of the proposed 
system also far outweigh the potential risks. With 
proper mitigation measures adopted, these risks can 
be mitigated, opening up ways where the system can 
be used for the existing system in the base case.  
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Since the dynamics affected the effectiveness of the 
RWHS, further studies can be done to optimise the 
tank dimensions for the different KPIs. Adjustments 
to the design of the RWHS such as orifice area or 
height could help to improve rainwater harvesting 
performance. KPIs should also be prioritised 
according to the order of importance based on 
stakeholder’s interest to ensure key targets are met.  
 
Additionally, an active control system can be 
implemented where actuators such as valves or 
pumps could be installed in the rainwater harvesting 
system. These actuators could be activated using a 
feedback control system to increase the flowrate out 
or to pump water out of the catchment tank based on 
the tank’s water level, making the system more 
holistic and adaptable to changing rainfall patterns.  
 
Through the course of this study, it became apparent 
that retrofitting a catchment system before an 
existing optimised RWHS is not simple, as it is 
difficult to make changes to the downstream section. 
Since a key finding is that the separation tank size 
can be reduced while still handling significant 
rainfall, this methodology would perhaps find 
greater success in application to designing future 
systems from scratch, which should yield significant 
cost and material savings if done correctly.   
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Abstract  
Lipid nanoparticles (LNPs) are a key component in modern day vaccines and therapeutic platforms. Amongst the 
greatest challenges of the development of LNP-based systems include achieving fixed particle size, their lack of 
stability, cytotoxicity in cells and propensity for physical and chemical aggregation in solution. In this research 
project, a unique design strategy is deployed using ionic liquids (ILs) with excipients that can enhance the 
structural stability of proteins and RNA-based lipid nanoparticle vaccines, whilst decreasing ethanol concentration 
needed and eliminating polyethylene glycol (PEG). The best formulations were optimised by reducing the ethanol 
concentration. That will positively contribute to emulate effectively commercial production. In this study, a 
variety of quantitative and qualitative data were utilised to firstly, verify that the lipid film did not remain flat in 
the buffer, and then to produce an LNP-based system of a pH range 6.0-7.5 that would be tested for transfection, 
particle size and zeta potential. Finally, F3B8 combination resulted to the lowest ethanol concentration of 20 
w/w% while remaining colourless. Even though the LNPs agglomerated, next steps are proposed to avoid 
agglomeration and attain PEG-free formulations produced using decreased ethanol volume. 

Keywords: Lipid nanoparticles, ethanol, polyethylene glycol, excipients, vaccines, ionic liquids, drug allergy 
 

1. Introduction 
Vaccine applications frequently constitute the only line 
of defence against viral infections, as antiviral drugs and 
treatment success are inadequate. As we have seen over 
the past 30 months of the COVID-19 pandemic, mRNA 
nanotechnologies have transformative potential as 
vaccines and therapeutic platforms. Furthermore, in the 
pharmaceutical sector, developing lipid nanoparticles 
(LNPs) has attracted great interest, as these can be used 
for controlled drug delivery and have been shown to 
enhance therapeutic effects. However, there are major 
challenges with the development of LNP-based systems. 
There is currently a significant bottleneck associated 
with these technologies: cytotoxicity in cells, attaining 
fixed particle size, their lack of stability, and propensity 
for physical and chemical aggregation in solution. 

Recently, ionic liquids (ILs) have emerged as a class 
of solvents used to stabilise and functionalise polymers 
and drugs. Using ILs with excipients can enhance the 
structural stability of proteins and RNA-based LNP 
vaccines. Thus, using ILs with LNPs could enhance the 
stability of these materials and improve controlled drug 
release, crucial in pharmaceutical development. 

This project aimed to develop polyethylene glycol 
(PEG)-free lipid formulations and buffers (including ILs 
and excipients) that could decrease the percentage of 
ethanol needed in the production of LNPs. Attaining a 
formulation with the aforementioned characteristics can 
potentially decrease the cytotoxicity of the formulation 
and make the formulation accessible to more patients, 
avoiding incidents with patients allergic to PEG that can 
suffer immediate serious allergic reactions with 
symptoms including anaphylaxis upon using PEG 
vaccines. Quantitative and qualitative techniques have 
been utilised throughout the project to judge whether the 
PEG-free LNPs developed in the low ethanol w/w% 
buffers, had the wanted mechanical and chemical 
characteristics.  

2. Background 
During the past years there has been an increased 
interest in RNA vaccines and therapeutics since they 
eliminate the risks associated with DNA or live-
attenuated vaccines while keeping their advantages [1]. 
Due to the high instability of RNA once in the body, 
there have been intense efforts to stabilize it for in vivo 
applications.  
 Strategies for RNA delivery include viral vectors, 
RNA-conjugates, microparticles and nanoparticles with 
the focus being turned to nonviral vectors since this 
became possible due to technological and material 
advancements [1]. 
 Special emphasis has been given to LNPs in the last 
years. LNPs have also been in the spotlight to the 
broader public, due to their use in the COVID-19 
vaccines. The global LNPs market size was valued at 
$694 million in 2021 and it is expected to reach $1210 
million by 2027 [2]. 
 LNPs are shells made of a monolayer of lipids and 
their size can be between 20 and 100 nm. Their internal 
core is made of reverse micelles which encapsulate 
oligonucleotides [3]. They are recognised as versatile 
adjuvants that enhance the efficacy of vaccines [4].  
 Lipids are amphiphilic molecules made of a polar 
head group linked to a hydrophobic-tail region.  Generic 
LNPs are made by combining cationic or ionizable 
lipids with other types of lipids.  
 Cationic lipids are used as their permanently 
positively charged head, aids the combination of the 
negatively charged backbone of RNA. Furthermore, 
they can also bind to the negatively charged cell 
membrane of mammalian cells to induce the RNA 
uptake from the cell, in vitro. However in vivo, this 
exact feature can lead to aggregation of the particles 
with blood proteins as well as enhanced uptake by the 
Reticuloendothelial system (RES) [5]. Examples of 
cationic lipids used for mRNA delivery are 1,2-di-O-
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octadecenyl-3-trimethyl-ammonium-propane 
(DOTMA) and its biodegradable analogue, 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP) [6].  
 Ionizable lipids remain neutral at bodily pH but are 
protonated, becoming positively charged when the pH 
decreases. This feature allows the use of the positive 
charge and the advantages associated with it, in acidic 
conditions in vitro, while allowing the LNPs to remain 
neutral in the blood stream and minimize interaction 
with negatively charged surfaces in the body. An 
example of an ionizable lipid is 1,2- dilinoleyloxy- N, 
N-dimethyl-3-aminopropane (DLin-DMA) [5]. 
 Other types of lipids used in formulations of LNPs 
include cholesterol and phospholipids as well as PEG. 
Cholesterol is crucial during cell transfection and helps 
to stabilise the LNP structure while phospholipids play 
a crucial role in the formation of the lipid layer and its 
disruption during endosomal escape [6]. PEG and 
pegylated lipids act as a barrier between LNPs and other 
proteins by depositing on the LNP’s surface, masking 
the surface charge of the particle and developing a 
hydrophilic barrier [7].  PEG-lipids can affect both the 
size of the particle as well as its zeta potential [5]. 
 Despite the advantages of using PEG and PEG-lipids 
in LNPs there are certain disadvantages linked to them.  
Some studies suggested that while PEGylation extends 
circulation half-life, it does not decrease the binding of 
proteins to the nanoparticle [8]. Furthermore, there have 
been studies that suggested the existence of anti-PEG 
antibodies in healthy individuals that were repetitively 
exposed to PEG [7]. These antibodies could lead to 
anaphylactic shocks. 
 The production of LNPs involves the addition of 
ethanol to the lipid films, which stabilises the edges of 
the lipid fragments, resulting to the required shell-
structure. The ethanol hydrates the flat lipid films. Upon 
the addition of ethanol, the mixture must remain 
colourless, just like vaccines using LNPs are colourless, 
indicating that the lipids are no longer flat but have 
rather acquired the wanted shape. Dilution of ethanol 
with water leads to growth and merge of the fragments 
to larger bundles which is unwanted [1]. However, 
injecting large amounts of ethanol to humans is not safe, 
and LNPs prepared with ethanol need to be washed with 
buffer to eliminate the ethanol content. This leads to a 
large buffer waste and can also damage the formed 
vesicle.  
 For the above problems associated with PEG and 
ethanol, this research project aimed to develop PEG-free 
lipid formulations and buffers that could decrease the 
percentage of ethanol needed in the production of LNPs.  
 In general, the structure of lipids is unstable in 
solution, as lipids can aggregate forming large particles 
due to the stresses and interactions encountered during 
the production stage. It was therefore of great 
importance to develop a buffer solution that would 
hydrate the lipid films but also prevent lipid aggregation 
for the LNPs to be effective and efficient.  
 Numerous organic compounds of low molecular 
weight used as solvent additives, called “osmolytes”, 
have shown to improve the stability of proteins and aid 
in the reduction of aggregation. These solvent additives 
lack affinity for proteins or interact with them in a 

repulsive way, hence stabilising their structure. 
Numerous molecules can act as stabilizers including 
polymers, salts, sugars, surfactants and amino acids [9]. 
By studying different patents, it was decided that such 
excipients could also potentially be used to stabilise 
LNPs [10, 11].  
 Furthermore, it has been found that ILs help towards 
the structural and thermal stabilisation of proteins [12]. 
ILs are organic salts that are in liquid state below 100 °C 
and are composed of ions in their entirety. They are 
found to interact with proteins and water mainly through 
hydrogen bonding [13]. ILs were added to LNPs 
produced in this research to stabilise them.  
 To put the above theory into practice, extensive 
literature review has been carried out to find the lipids 
needed to produce suitable PEG-free lipid films, the 
excipients needed to formulate suitable buffer solutions 
and the ILs that would be combined with the successful 
formulations. Apart from research, the choice of 
chemicals was also based on stock availability.  
 The purpose of the buffer solutions was to replace 
ethanol’s function of stabilising the lipid edges to form 
the desired lipid shells, while also preventing the 
aggregation of lipid molecules into larger bodies. The 
initial goal was to decrease the ethanol concentration 
used in the production of LNPs to 10 w/w %. 
 In general, the composition of the buffers contained 
sugar, surfactant, amino-acid, ethanol and water as the 
basis [9,10,11,14]. Additional components such as polyols 
were added in some formulations as they can act as 
further stabilisers in liquid formulations [15]. 
 Sugars are found to stabilise proteins and are thus an 
essential part of the buffer formulation, as they appear 
to be preferentially excluded from the protein vicinity 
[9].  Possible sugar options include sucrose, trehalose, 
mannitol, lactose, glucose, maltose, mannose, fructose 
and others [11]. Sucrose and trehalose were found to be 
used more often [9] and were therefore the two sugars 
used. Literature suggested a concentration of sugar 
between 5 - 75 mg/mL [14], however a concentration of 
68 mg/mL was used, based on Kallmeyer, G. et al. 
(2014) [10]. 
 Adding surfactant to a sugar - amino acid buffer 
formulation, appears to improve the stability of proteins 
and leads to lower turbidity values, suggesting less 
aggregation. The surfactants considered were ones 
known to be used in the pharmaceutical industry. An 
acceptable amount of surfactant to stabilise proteins was 
reported to be 0.05 – 0.5 mg/mL [10]. The surfactants 
considered were Tween 20, Tween 80 and Pluronic F 
68. Tween 20 was chosen as it appeared in most sources 
and was also in stock. It was used at a concentration of 
0.1 mg/mL. 
 The choice of sugar and surfactant were straight 
forward with different sources of literature agreeing 
between them, however the choice of amino acids 
appeared to be more challenging. Amino acids appear to 
stabilise proteins due to their interaction with the 
protein’s peptide bond which is unfavourable. Cohesive 
force mechanism as well as excluded volume effect can 
be related to the unfavourable interaction observed. The 
interaction causes stabilizing amino acids to remain in 
bulk water which is unstable in terms of entropy [9], 
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hence forcing the protein to take up the least possible 
volume. 
 Different papers aiming to stabilise different 
proteins suggested the use of different amino acids. The 
discrepancy between sources suggested that the best 
amino acid depends on the protein to be stabilised and 
in the case of this study, the lipids to be stabilised.  
 In general, it was suggested to use basic amino acids 
such as arginine (Arg), lysine (Lys) and histidine (His) 
as well as other amino acids [9,10,11,14]. It was also 
suggested that amino acids that crystalise do not act as 
stabilisers but rather as bulking agents [9,14]. Different 
papers report crystallisation of different amino acids for 
stabilisation of different proteins, thus it was deemed a 
good idea to try different amino acids on the different 
lipid formulations, at 10 mg/mL [10]. 
 For the lipid formulations, cholesterol was used, as 
apart from the reasons mentioned above it is also found 
to improve the circulation half-lives as it is an 
exchangeable molecule that can accumulated within a 
liposome during circulation [16].  
 The phospholipids used were 1,2-Dioleoyl-sn-glyce-
ro-3-phosphocholine (DOPC) and Dioleoyl phosphati-
dylglycerol (DOPG) which are both unsaturated. The 
use of unsaturated phospholipids was encouraged by 
results indicating an improved intracellular delivery and 
particle uptake when replacing the saturated analogue 
1,2-Distearoyl-sn-glycero-3-phosphocho-line (DSPC) 
[17]. 
 To complete the lipid formulation, an ionizable lipid 
such as Dlin-DMA was preferred. Due to Dlin-DMA not 
being into stock, the cationic lipid DOTAP was used 
instead. According to Sun M. et al., LNPs of DOTAP/ 
cholesterol composition made it to clinical trials and 
were classified as “the most efficient gene delivery 
systems” [17]. 
 Finally, choline chloride ([Cho]Cl) was chosen as 
the IL to be used for this project. It is a low molecular 
weight, biocompatible IL with high water solubility of 
high purity which can be synthesized easily and at low 
cost [12]. Furthermore, to explore other options, choline 
dihydrogen phosphate ([Cho][DHP]) and choline 
bitartrate ([Cho][Bit]) were also used. 
 
3. Materials and Methods 
The materials chosen to be used for this paper were 
determined by existing literature, as outlined in section 
2, but also based on stock availability. 
 The materials used were stored as recommended by 
the supplier and used without further purification. A list 
of the materials used is provided in table 3.1 below. 

Table 3.1. Main materials used. 
Chemical 

name 
Source Mole fraction 

purity (%) 
Sucrose Sigma-Aldrich >99.5 

Tween 20 Sigma-Aldrich >40 
L-histidine 

/HCL 
Sigma-Aldrich >99 

Glycerol Sigma-Aldrich >99.0 
Serine Sigma-Aldrich >98 

Trehalose Sigma-Aldrich >99 
Glycine Sigma-Aldrich >99.7 

Lysine Sigma-Aldrich >98 
Ethanol Sigma-Aldrich >99 

Chloroform Sigma-Aldrich >99 
Cholesterol Sigma-Aldrich >99 

DOTAP Sigma-Aldrich >99 
DOPC Sigma-Aldrich >99 
DOPG Sigma-Aldrich >99 

[Cho]Cl Sigma-Aldrich >99 
[Cho][DHP] Sigma-Aldrich >99 
[Cho][Bit] Sigma-Aldrich >99 

 
3.1. Buffer formulations 
Aqueous buffers were prepared in deionised water of pH 
7.4. The buffer formulations are given in table 3.1.1. 
 The pH of each buffer was measured using the pH 
electrode Mettler Toledo InLab Micro (WOLFLABS, 
UK) and the average results of three measurements were 
taken. The pH of each formulation was adjusted where 
needed, by addition of either 0.1 M NaOH or 0.1 M HCl 
to obtain a pH of approximately 6.5. All formulations 
were prepared and stored at room temperature until 
measured or used in further steps. 
 
3.2. Lipid formulations 
Lipid films were prepared in a fume cupboard with each 
sample stored in a glass vial (Thermo Fisher Scientific 
Inc, USA). The compositions of the lipid films are 
summarised in table 3.2.1 below.  
 To prepare the lipid films, the lipids were first 
dissolved in chloroform. Based on the composition of 
each film, the lipids were then mixed, and a continuous 
stream of nitrogen air was utilised to evaporate the 
chloroform and form a film. Any residual chloroform 
was removed via desiccation for at least 2 hours. Once 
completed, the buffer was added to the lipid film.  
 
3.3. Lipid nanoparticles formation 
Microfluidic hydrodynamic focusing (MHF) was used 
to form the LNPs from the hydrated lipids obtained upon 
mixing the lipid and buffer formulations.  
 Lipid in buffer solution (LS) was drawn into a 1 mL 
normject disposable plastic syringe, with PRFE tubing 
connected (OD:1/16’’). The relevant buffer (B) 
containing the relevant IL was drawn up into a 5 mL 
normject disposable plastic syringe, with PRFE tubing 
connected (OD:1/16’’).   
 Some of the samples prepared included RNA. The 
RNA used, was made by VEEV-Fluc pDNA. In the 
cases used, the RNA was added to B. 
 LS was injected into the central inlet of an MHF 
suitable microfluidic device at 100 μL/min via a syringe 
pump (Harvard). B was injected into the buffer inlet of 
the same MHF device at 100 μL/min. 
 The two streams were allowed to equilibrate and 
form an MHF flow regime where the central lipid stream 
was flanked by the two sheathing buffer streams at 
steady flow. The flow rates were then adjusted so that B 
had a flowrate of 150 μL/min and LS had a flowrate of 
50 μL/min. This achieved a flow rate ratio (FRR) of 3. 
 Collection of samples started after 30 seconds via the 
outlet tubing present downstream from the crossflow 
junction.  
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Table 3.1.1. Buffer components in each formulation. Water was added to each buffer to produce 1 mL of buffer. 
Buffer Sucrose L-Histidine 

/HCl 
Tween 20 L-Glycerol Serine Trehalose 

Dihydrate 
Glycine Lysine Ethanol 

mg/mL 
B1 68.0 10.0 0.1 0.0 0.0 0.0 0.0 0.0 100.0 
B2 68.0 10.0 0.1 0.0 0.0 0.0 0.0 10.0 100.0 
B3 68.0 10.0 0.1 3.0 0.0 0.0 0.0 0.0 100.0 
B4 0.0 10.0 0.1 3.0 0.0 68.0 0.0 0.0 0.0 
B5 0.0 10.0 0.1 0.0 0.0 68.0 0.0 0.0 0.0 
B6 0.0 10.0 0.1 3.0 0.0 68.0 0.0 0.0 100.0 
B7 68.0 0.0 0.1 3.0 10.0 0.0 0.0 0.0 0.0 
B8 68.0 0.0 0.1 0.0 0.0 0.0 10.0 0.0 100.0 
B9 68.0 0.0 0.1 3.0 10.0 0.0 0.0 0.0 0.0 
B10 68.0 0.0 0.1 3.0 10.0 0.0 0.0 0.0 100.0 

 
Table 3.2.1. Lipid components (molar composition %) in each lipid formulation 

Formulation DOPC  Cholesterol DOTAP  DOPG  
mol% 

F1 90 10 0 0 
F2 10 50 40 0 
F3 50 10 40 0 
F4 0 50 40 10 
F5 0 10 40 50 

 
3.4. RNA Transfection 
The process to introduce nucleic acid to cells by 
artificial means is called transfection. For transfection, 
Opti-MEMTM medium, LipofectamineTM Messenger-
MAXTM reagent and RNase-free water were used. HEK 
293T cells were prepared in a complete DMEM medium 
and were allowed to grow to 70-85%.  
 The transfection was carried out in a 96-well plate, 
and it was designed to have 100 ng of RNA present in 
each well (either LNP-encapsulated or not). 6 LNP 
samples of concentration 1 μg/ml were used in the 
transfection process, as summarised in table 3.4.1 
below: 

Table 3.4.1: Samples used in transfection 
Name Composition 
20R* F3 in B8 with 20 w/w% ethanol, 5 

w/w% [Cho]Cl and RNA 
30R* F3 in B8 with 30 w/w% ethanol, 5 

w/w% [Cho][DHP] and RNA 
50R* F3 in B8 with 50 w/w% ethanol, 5 

w/w% [Cho]Cl and RNA 
20E* F3 in B8 with 20 w/w% ethanol, 5 

w/w% [Cho]Cl, no RNA 
30E* F3 in B8 with 30 w/w% ethanol, 5 

w/w% [Cho][DHP], no RNA 
50E* F3 in B8 with 50 w/w % ethanol, 5 

w/w% [Cho][Cl], no RNA 
 In addition to the samples summarised above, two 
samples of non-formulated RNA and a cells-only 
sample, were used as controls. The non-formulated 
RNA was complexed with lipofectamine. To validate 
the success of the assay, a sample of Vesicular 
Stomatitis Virus (VSVG) was also used as a double 
positive control. 
 Lipofectamine was diluted in Opti-MEM medium. 
For every well 0.3 μL of lipofectamine and 5 μL of Opti-
MEM were required. Once mixed, the tubes were 
vortexed and spined down in a microcentrifuge. They 

were then incubated for 10 minutes at room temperature 
resulting to Solution A.  
 Each sample was diluted in Opti-MEM medium to 
achieve the required 100 ng/μL RNA concentration 
required. Due to the low volume required, a diluted 
RNA stock solution was prepared beforehand. For each 
well, 1 μL of the diluted RNA was mixed with 5 μL of 
Opti-MEM and was incubated at room temperature for 
5 minutes resulting to solution B. Finally, Solution A 
and Solution B were mixed and incubated for 24 hours 
at 37 oC and 5% CO2. 
 To assess the success of the transfection, the 
luminescence of the samples needed to be measured. 
The RNA in the LNPs included the luciferase gene 
which encodes a 61-kDa enzyme. In the presence of 
oxygen, ATP and Mg2+, this enzyme oxidizes D-
luciferin which results to a fluorescent product [18]. 
 Once the incubation was complete, 50 μl of the 
medium were removed, 50 μl of Bright-Glo™ 
Luciferase Assay Reagent was added to each well and 
incubated at room temperature for 5 minutes in the dark. 
The cells were then mixed gently with the substrate, and 
luminescence was measured using a luminometer. The 
values were expressed as RLU/mL. RLU is Relative 
Light Unit. 
  
3.5. Dynamic & Electrophoretic Light Scattering 
To investigate the particle size, polydispersity index 
(PDI) and mean zeta potential of each sample, Dynamic 
Light Scattering (DLS) and Electrophoretic Light 
Scattering (ELS) measurements were conducted using 
Litesizer 500 (Anton Paar Ltd, Germany), at an 
automatic scattering angle.  
 500 μL of each sample were diluted with deionised 
water at pH 7.4 to a lipid concentration of 0.25 mg/mL. 
The samples were placed in an Ω-shaped capillary 
Cuvette 225288 (Anton Paar Ltd, Germany) and 
allowed to equilibrate to 25 oC for 5 minutes. For each 
sample measurement, 3 repeats were conducted, with 
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the Smoluchowski–Kramers approximation utilised, 
and the average measurement results were reported. 
 The PDI was used to estimate how uniform the size 
of the sample is. It is defined as:  

𝑃𝐷𝐼 =  
𝑀𝑤

𝑀𝑛
    (𝑒𝑞. 1) 

Where Mw is the weight average molar mass and Mn is 
the number average molar mass. 

Table 3.5. 1. Samples tested for size and zeta potential 
Name Composition 
20E F3 in B8 with 20 w/w% ethanol, no 

RNA 
20E* F3 in B8 with 20 w/w% ethanol, 5 

w/w% [Cho]Cl, no RNA 
20R* F3 in B8 with 20 w/w% ethanol, 5 

w/w% [Cho]Cl and RNA 
30E F3 in B8 with 30 w/w% ethanol, no 

RNA 
30E* F3 in B8 with 30 w/w% ethanol, 5 

w/w% [Cho][DHP], no RNA 
50E F3 in B8 with 50 w/w % ethanol, no 

RNA 
50E* F3 in B8 with 50 w/w % ethanol, 5 

w/w% [Cho]Cl, no RNA 
50R* F3 in B8 with 50 w/w% ethanol, 5 

w/w% [Cho]Cl and RNA 
 
4. Results 
4.1. Mixing lipids and buffers 
To judge whether a lipid-buffer combination was 
successful, a visual test was carried out. The mixture 
should remain colourless suggesting that the required 
vesicles were formed. Initially, no combination resulted 
into a colourless solution. However, variations were 
observed between different lipid-buffer combinations.  
 To begin with, F1-combinations produced the worst 
results giving large aggregates that were visible with a 
naked eye. The effect that different buffers had on F1, 
was observed by qualitatively observing which 
combination went cloudy first. F1B4 combination 
turned cloudy fast, followed by F1B5 formulation, F1B1 
and F1B2. F1B3 was visually the best combination but 
still not completely colourless, as shown in Figure 4.1.1 
below. The results were concerning; therefore 1 mL of 
pure ethanol was added to a freshly made F1. The 
resulting mixture was better than the buffer mixtures, 
however it was not completely colourless. For this 
reason, F1 was no longer investigated. 

 
Figure 4.1.1. F1 lipid formulations combined with B1, B2, B3, B4 

and B5 from left to right.  
 F2, F3, F4 and F5 all performed better than F1, but 
the solutions obtained were once again not colorless. 

Figure 4.1.2 compares F1, F2 and F3 combinations with 
B1. 

Figure 4.1. 2. Top-view image comparing combinations of B1 with 
F1 (top left), F2 (top right) and F3 (bottom). 

 From all the lipid-buffer combinations, it was judged 
that F3 and F4-containing samples had the best results. 
F3 and F4 were therefore reproduced, and 1 mL of pure 
ethanol was added to them. The resulting solutions were 
colourless, and they were used as a reference point to 
compare subsequent combinations. This indicated that 
the PEG-free F3 and F4 lipid formulations could be 
successfully hydrated. 
 Furthermore, F3B8, F3B1 and F4B8 were the best 
candidates, as the mixtures were closer to the colourless 
result wanted. The formulations were reproduced, but 
the ethanol concentration in the buffers was increased 
from 10 w/w% to 50 w/w%. From the new 
combinations, F4B8(50 w/w% ethanol) turned cloudy 
but F3B1(50 w/w% ethanol) and F3B8(50 w/w% 
ethanol) remained colourless. F3B8 formulation 
remained colourless after reducing the ethanol content 
in the buffer solution to 30 w/w% and 20 w/w%.  
 All steps mentioned above, resulted to 4 colourless 
combinations: F3B1(50 w/w% ethanol), F3B8(50 
w/w% ethanol), F3B8(30 w/w% ethanol) and F3B8(20 
w/w% ethanol) which were used in subsequent steps. 

 
Figure 4.1. 3. 50 w/w% ethanol B8 added to F4 (left) and F3 (right). 

F4B8 turned cloudy whereas F3B8 remained colorless. 
 
4.2. Transfection results 
Before measuring the luminescence of the samples as 
described in section 3.4, the samples were placed under 
a microscope. It was observed that around 90% of the 
cells present in the LNP-containing samples were dead 
compared to cells-RNA combination or cells only 
samples. 
 The above observation was confirmed by 
quantitative results. At gain 4000, the luminescence of 
LNP-containing samples was only 4% compared to the 
luminescence of the cells-only sample, 0.04% compared 
to the VSVG sample and 0.004% compared to the RNA-
only sample. At gain 3000, no luminescence was 
detected from the LNP-containing samples. 
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Figure 4.2. 1. Comparison of luminescence (RTU/mL) of LNP-
containing samples to cells-only sample measured at gain 4000. 

Samples from left to right: 20R*, 20E*, 30R*, 30E*, 50R*, 50E*, 
cells only. 

 
4.3. DLS & ELS results 
As it can be observed from figure 4.3.1, samples without 
IL (20E, 30E, 50E) had more negative mean zeta 
potential values. The zeta potential values were more 
positive for samples including ILs. It is worth noting that 
the mean zeta potential for the 2 RNA-containing 
samples, were in agreement with the COVID-19 vaccine 
zeta potential literature data [19]. The mean zeta potential 
was calculated from the phase analysis light scattering 
(PALS) [20].  

 
Figure 4.3.1. Zeta potential results for F3 in B8 in varying ethanol 

concentration, ILs and samples including or not including RNA. Blue 
columns indicate the samples containing IL. 

 The Litesizer was utilised to measure the particle 
size of the samples. The size of particles varied greatly 
between each run. Measurements were in the order of 
thousands of nm and resulted to large PDI values for all 
samples. The standard deviation was significantly larger 
when compared to literature data [21].  

 
5. Discussion 
5.1. Formulations of LNPs 
Persistently, for all our formulations PEG was 
eliminated due to its toxicity to humans and the potential 
cause of anaphylaxis [22]. 
 F1 failed to remain colourless upon addition of 1 mL 
of pure ethanol.  Twisting the amount of cholesterol and 
DOPC used could result to formation of a better film. 
However, it must be kept in mind that this formulation 
did not include cationic or ionizable lipids and misses 
out on the potential advantages of using such lipids (as 
outlined in section 2). 
 F3 and F4 did remain colourless upon addition of 1 
mL of pure ethanol, which was a promising result 
suggesting that the PEG-free lipid films produced by 
these formulations could successfully be hydrated 
forming the required vesicles. F2 and F5 were not tested 

by the addition of 1 mL of pure ethanol due to finite 
amount of lipids available for this project, however this 
procedure could confirm whether the two formulations 
could be successfully hydrated or not. 
 Even though F3 and F4 could yield viable LNP-
formulations in-vitro, the elimination of PEG could lead 
to decreased in vivo performance of the LNP. For 
example, PEGylation protects LNPs from opsonization 
which reduces the uptake of LNPs from the RES [23], a 
problem that can occur when using cationic lipids. PEG 
was eliminated from the lipid formulations however it is 
not known what the effect of this action will be on 
opsonization. The in vivo performance of the PEG-free 
LNPs was not within the scope of this research project, 
however it is critical to be explored in future steps.  
 Problems with in vivo application can also rise due 
to the use of DOTAP, which can be taken up by the 
spleen and liver and accumulate in the vasculature [23]. 
While F3 and F4 succeeded at remaining colourless in 
ethanol, if these formulations were to be further used, 
the replacement of DOTAP must be considered. As seen 
in section 2, an ionizable lipid such as Dlin-DMA could 
replace DOTAP.  
 
5.2. Decreasing ethanol content needed in buffer-lipid 
mixtures 
The initial goal of decreasing the ethanol content 
required to achieve colourless buffer-lipid mixtures to 
10 w/w% was not reached. The best combination was 
that of F3B8 (20 w/w % ethanol). Even though ethanol 
needed was not reduced to 10 %w/w, 4 colourless 
combinations were produced using buffers instead of 
pure ethanol, which can be considered a success.  
 As mentioned in section 2, it was hard to predict the 
exact effect each buffer would have on the lipid 
formulations. Most of the literature is based on 
stabilisation of proteins, not lipids, and even for 
stabilisation of proteins, the choice of excipients used 
was largely influenced by the protein stabilised. Exact 
mechanisms of interactions cannot be inferred 
from the results. However, it is possible to infer 
what worked and what did not.  
 The buffer formulations that produced the most 
colourless mixtures upon their addition to the lipid films 
were the buffers containing sucrose. It could therefore 
be extracted that sucrose worked better, under the given 
circumstances, in comparison to trehalose. Both sucrose 
and trehalose formed hydrogen-bonds with water and 
were preferentially excluded from the lipid vicinity. 
Sucrose and trehalose bind to approximately the same 
number of water molecules in total [24] and they were 
expected to have a similar effect. The fact that sucrose 
was present in the buffers that resulted to colourless 
results was attributed to the general composition of the 
buffers rather than the presence of sucrose instead of 
trehalose. 
 All the buffer formulations contained 68 mg/mL of 
sugar. The effect of sugar could be further explored by 
varying the amount included in the buffer formulations. 
Studies reported that increasing concentration of sucrose 
results to better protein stabilisation. The maximum 
concentration of sucrose used in those studies was 1 M 

0

500

1000

1500

2000

2500

20 30 50 Cells only

L
um

in
es

ce
nc

e 
(R

T
U

/m
L

) 

Sample tested

RNA
No RNA

-16
-14
-12
-10
-8
-6
-4
-2
0

20E 20E* 20R* 30E 30E* 50E 50E* 50R*

Z
et

a 
Po

te
nt

ia
l (

m
V

)

Formulations

192



 7 

[25, 26], which corresponds to 342 mg/mL. Even though 
increasing sucrose concentration could help in the 
stabilisation of the lipids, making the buffer solution too 
concentrated may have a detrimental effect to cells 
during transfection. It is therefore recommended to not 
exceed a sucrose content of 15 w/w %. 
 In the 10 different buffer formulations developed, 
four different amino acids were used. Serine (Ser) which 
has a polar, uncharged R group, glycine (Gly) which is 
non-polar, Lys, a basic amino acid with a polar charged 
R-group and finally L-histidine/HCl (his/HCl), a salt of 
His, a basic amino acid. Since sugar and surfactant used 
were the same for most formulations, the choice of 
amino acid was what determined the results. 
 His/HCl was most frequently used as it is common 
to use salts of amino acids in buffers to maintain the pH 
at constant levels. Out of the six formulations including 
His/HCl, B1 appeared to work best for F3. All His/HCl 
formulations were acidic with pH values close to 3 and 
needed pH adjustment. Gly was only used in B8, the 
buffer which resulted to the mixture with the lowest 
ethanol concentration.  
 Neutral and basic amino acids appeared to result in 
the most promising buffers, in agreement with literature 
[8, 13].  Out of the basic amino acids, His is the least basic 
with Arg being the most. Arg is not classified as a 
protein-stabilising excipient that lacks affinity for 
proteins but was proven to be extremely effective in 
suppressing protein aggregation, by binding weakly to 
the protein interface [8]. Since lipid aggregation was the 
problem faced here, Arg could be the key to deriving 
buffer formulations with 10 w/w % ethanol, as its most 
basic nature can result to increased number of hydrogen 
bonds formed. Whether Arg would be effective or not in 
preventing lipid aggregation, is subject to interactions 
between Arg and lipid films. The use of Arg does not 
pose a threat for humans.  
 The amount of amino acid to be used was not varied 
in the buffers, as the main focus was to determine which 
amino acid worked best rather than how much amino 
acid worked best. The maximum amount of amino acid 
encountered in literature was 55 mg/mL [13]. In the case 
of B8 where the use of Gly was successful, the effect of 
Gly amount could be explored, varying it between 10 – 
55 mg/mL, after the optimum amount of sucrose is 
determined.  
 Another factor that could contribute to not attaining 
the 10% ethanol goal could be the use of water. As 
mentioned in section 2, using water to dilute ethanol 
leads to merging of fragments to larger bundles which is 
unwanted. Water was used as its interaction with other 
excipients used was well known and it was believed that 
those interactions would help stabilise the lipids. 
However, water was not excluded from the vicinity of 
the lipids and its interaction with lipids was not 
anticipated. Water could be replaced with a neutral 
buffer such as phosphate buffered saline (PBS) which is 
commonly used in biological research.  
 
5.3. Size and charge of particles 
The size of the LNPs developed for this research project 
was an order of magnitude larger than it was supposed 
to be. The suboptimal reproducibility denoted that the 

large aggregates detected could not be accurately 
measured as their size was beyond the Litesizer 
detection limit of 10 μm [19]. 
 Such large sized particles would not be used to 
deliver the encapsulated oligonucleotides to the target 
cells as they would be more susceptible to attack by 
macrophages once opsonized. Desirable chemical, 
mechanical and electrical properties for drug delivery 
are possessed by particles with size less than 100 nm [23]. 
 The large PDI and size of the particles could be the 
result of several factors. The first factor affecting the 
particle size was the composition of the LNPs. Roces C. 
B. et al. suggested that increasing the amount of 
cholesterol and subsequently decreasing the amount of 
cationic lipid resulted to decreased size and PDI [27]. F3 
was made up of only 10 mol % cholesterol. It is possible 
that the low percentage of cholesterol led to the above 
unwanted result. A new formulation based on F3 could 
be derived where cholesterol is increased to 50% with 
DOPC and DOTAP adjusted accordingly. 
 Since using PEG affects both the size of the particle 
as well as its zeta potential, it is possible that the large 
particles were a consequence of eliminating PEG. PEG 
would provide strong steric hinderance to the particles 
and thus stabilise them, preventing agglomeration. 
Studies have shown that PEG-allergic patients could be 
vaccinated with a vaccine containing Tween 80 as an 
excipient. Both aforementioned excipients positively 
contribute to stabilising the LNPs by acting as 
emulsifiers [28]. 
 The particle size could also be affected by the 
microfluidic parameters used in the making of LNPs. 
The size of aggregates dependent on the diffusion length 
generated, and the diffusion length dependent on the 
FRR. High FRR leads to a narrow central steam and thus 
to the formation of many small aggregations in contrast 
to low FRR which would lead to a wide central stream 
and the formation of fewer but larger aggregates [29]. 
This is why an FRR of 3 instead of 1 was used.  
 The large PDIs observed confirm that many 
aggregates were formed, however the size of those 
aggregates was large. For this reason, it is believed that 
microfluidic parameters were not the main reason for 
particle agglomeration.  
 Zeta potential was measured by ELS. The 
Smoluchowski–Kramers approximation was selected 
for the measurements as it is suitable for water-based 
samples [20]. As a rule of thumb, colloids are considered 
stable when absolute zeta potential values are over 30 
mV [19]. Therefore, the low zeta potential magnitudes 
observed, indicated the tendency of the samples to 
aggregate in response to cold chain disruptions. Through 
the zeta potential data, it has been clearly demonstrated 
that all the samples consisted of weakly anionic 
particles. Furthermore, when ILs were added to the 
samples, the zeta potential was more positive as the 
ionic strength increased and the pH decreased [13]. 
 
5.4. Transfection  
The transfection results indicated that the luciferase 
gene was not expressed by the cells, as no luminescence 
was detected from the LNP-containing samples. 
However, around 90% of the cells were reported dead in 
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the LNP-containing samples, meaning that the samples 
were toxic to the cells.  
 The chemicals used in the production of LNPs were 
all biocompatible and not toxic. It was observed during 
transfection that the mixture containing the LNPs turned 
yellow instead of remaining red. The reduced medium 
Opti-MEMTM used in transfection contained phenol – 
red, a pH indicator which transitions from yellow for pH 
< 6.8 to red until pH exceeds 8.2, where it turns fuchsia 
[30]. As mentioned in section 3.1, the pH of buffers was 
adjusted to 6.5 which is lower than 6.8. The LNP-
containing mixtures were too acidic for the cells and 
resulted to their death. It is also possible that the size of 
the LNPs affected the growth of the cells. 
 Since the cells were killed by the LNP-containing 
samples, it is not possible to completely assess whether 
the LNPs would be successful in transferring the RNA 
to the cell and whether the RNA transferred would be in 
good enough condition for the luciferase gene to be 
expressed. Hence, conclusions about the efficiency of 
RNA encapsulation could not be drawn.  
 
5.5. Effect of Ionic Liquid 
As aforementioned, the use of ILs in formulations made 
the zeta potential more positive due to the higher ionic 
strength and lower pH. In agreement with literature, 
acidic solutions have a more positive zeta potential 
value.  
 The decrease in absolute zeta potential indicated a 
greater tendency of particles to agglomerate, as the 
electrostatic repulsion between two particles would be 
decreased. The results for the size particle indicated that 
large agglomerates formed, however due to the 
suboptimal reproducibility of the results, clear 
conclusions on whether IL-containing samples 
increased or decreased the particle size could not be 
drawn.  
 The approach to use [Cho]Cl mainly instead of 
[Cho][DHP] in the formulations has been vindicated by 
the results. Samples with [Cho]Cl had greater absolute 
zeta potential values. ILs stabilise macromolecules due 
to hydrogen bonding as well as electrostatic and 
hydrophobic interactions. [Cho]Cl was anticipated to be 
able to form more bonds compared to [Cho][DHP], as 
the large dihydrogen phosphate chains are expected to 
prevent close contact of the IL with the macromolecules 
due to steric hinderance. 
 Comparing the experimental data with COVID-19 
vaccine zeta potential data which was -5.3 mV, it was 
observed that formulations including [Cho]Cl were 
almost in agreement with the literature value with the 
best formulation being 20R* with a zeta potential of -5.8 
mV. 
 Using a higher concentration of ILs in the 
formulations would have made the zeta potential values 
more positive therefore using 5 w/w% of ILs was 
deemed adequate as values obtained were similar to 
COVID-19 vaccines. Other ILs like choline acetate 
could be considered, as it is more soluble than 
[Cho][DHP]. Moreover, the effect on thermal stability 
of the formulations when varying the ILs should be 
explored further as certain ILs could significantly 

improve solubility and thermal stability of proteins in 
solution [21].  
 
6. Conclusions & Outlook 
Even though this research did not manage to produce 
PEG-free LNPs by using 10 w/w% ethanol, with the 
desired characteristics, the results were promising. A 
serious step was taken into exploring the potential of 
stabilising LNPs with excipients and ILs to decrease the 
amount of ethanol needed, while also aiming to tackle 
the problems associated with the presence of PEG. 
 Especially the fact that F3 and F4 formulations 
remained colourless upon addition of pure ethanol can 
be considered a success, as well as the fact that F3B1(50 
w/w % ethanol), F3B8(50 w/w % ethanol), F3B8(30 
w/w% ethanol), and F3B8(20 w/w % ethanol) 
combinations remained colourless. These results 
indicate that the hydration of PEG-free lipid films by 
using a buffer is possible. 
 The major problem encountered in the results was 
the formation of large aggregates by all the LNP 
samples. However, it appears that a few modifications 
to the buffers and lipid formulations could be the key for 
future success.  
 Increasing the amount of cholesterol to up to 50% in 
the lipid formulations and decreasing the amount of the 
cationic lipid should be one of the first modifications to 
be made. In addition, steric hinderance effect of tween 
80 should be explored, by using it as an excipient, to 
efficiently replace the advantages associated with PEG 
and size.  
 Moreover, varying the amount of sucrose in the 
buffer formulations, testing the effect of Arg and 
replacing water with PBS could be the changes made to 
the buffer formulations to ensure that upon addition to 
the lipid film, the mixture would remain colourless at 
lower percentages of ethanol.  
 The use of ILs, especially [Cho]Cl could play an 
important role in stabilising the LNPs and affecting their 
thermal stability. Due to the low cost of [Cho]Cl it is 
worth to be considered as an excipient in buffer 
formulations. 
 If following the modifications outlined above results 
to LNPs with size less than 100 nm, this project can 
serve as the foundation to a new era in the creation of 
LNPs, allowing their broader and safer application. For 
successful candidates, in situ drug delivery must be 
explored with a series of model drug candidates. 
 Currently, limited information is available on the 
effect of excipients on lipids and LNPs as well as what 
excipients can be used to effectively stabilise LNPs and 
prevent their aggregation. Further research should be 
carried out to determine the excipients that work best as 
well as give more information to the mechanisms used 
in the interaction between excipients and LNPs.  
 Production of LNPs without the use of ethanol would 
mean that no additional buffer will be wasted to wash 
the LNPs. This would result to cost saving, as the 
processing steps required would be decreased. To 
conclude, PEG-free LNPs produced using buffers can 
lead to the formation of new and improved sustainable 
vaccines. 
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Abstract 
Biomass, typically lignin, was expected to be valuable source for renewable biofuels. As lignin 
have high oxygen content. Upgrading needs to be utilized by hydrotreating. Due to its high 
concentration in bio-oil and two oxygenated functional groups, guaiacol was selected as a bio-
oil model and the hydrogenation of guaiacol was investigated. The conversion of guaiacol and 
concentration of products were obtained at 230 ◦C, 250 ◦C, and 270 ◦C and the kinetic energy 
and activation energy for each reaction were calculated. The activation energies of guaiacol to 
phenol, phenol to cyclohexanone, and phenol to cyclohexanol were found to be 113 kJ/mol, 
81.0 kJ/mol, 30.5 kJ/mol respectively. 

 

1. Introduction 

The annual increase rate of global 
consumption of primary energy is about 1.5% 
from 2007 to 2017 and reaches 2.9% in 2018 
according to BP’s statistical review (BP, 
2019). 

 

 
Figure 1. Global consumption of primary energy 
from 2008 to 2018 adapted from BP’s statistics 

(BP, 2019) 

In 2018, the largest source of primary energy is 
oil taking 33.6%. The second and third largest 
source is coal and gas taking 27.2% and 23.9% 
respectively. Clean energies such as nuclear 
energy, hydroelectricity only takes 15.3%. 

 

Figure 2. Percentage of global primary energy 
consumption in 2018 adapted from BP's statistics 

(BP, 2019) 

As the percentage of clean energy is still 
relatively low, an important topic should be 
taken up which is the environment issue 
caused by carbon emission. According to BP’s 
statistics, the carbon emission caused by 
combusting oil, gas and coal reaches 33890.8 
million tonnes in 2018 and is still increasing at 
a rate of 2% (BP, 2019). As global warming 
has become an important topic, many 
governments have proposed carbon emission 
tax aiming to decrease carbon dioxide 
emission. In UK, the carbon tax reaches 
£78/tonne in 2022 (Bridget Beals, 2022).  

Considering both environment and economic 
effects, renewable fuel sources are demanded 
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to replace traditional fuel sources. As the only 
renewable organic carbon source in nature, 
biomass was expected to take important role in 
the production of renewable biofuels (Chen, 
2020).  

Biomass composes lignin, cellulose, and 
hemicellulose. Lignin is the only renewable 
resource for producing aromatic compound. 
Nevertheless, paper industries produce a 
massive amount of lignin every year and 98% 
of them were directly burned at the same 
factory (Calvo-Flores and Dobado, 2010). 
Therefore, it would be worth investigating the 
utilization of lignin. 

2. Background 
Two main processes for producing bio-oil 
from lignin are pyrolysis and hydrothermal 
liquefaction (Chen, 2020). The pyrolysis of 
lignin at 450−600 °C and atmospheric pressure 
was shown to be an economic way to produce 
bio-oil (Mu et al., 2013).  

Bio-oils are organic liquids containing highly 
oxygenated compounds. Comparing to 
petroleum derived oil, bio-oils was undesired 
as fuel source due to its high water content, 
high viscosity, high acidity, high ash content 
and, most of all, low heating value (Mortensen 
et al., 2011). Therefore, upgrading of the bio-
oil is required. The bio-oil was upgraded by 
hydrotreating, catalytic cracking, 
hydrocracking, supercritical fluids, 
esterification, emulsion, or extraction (Chen, 
2020). 

In previous research, guaiacol formed from 
decomposition of lignin was chosen as the 
model compound due to its high concentration 
in bio-oil and the presence of two oxygenated 
functional groups hydroxy (Csp2OH) and 
methoxy (Csp2OCH3) (Chen, 2020).  To 
improve the performance of guaiacol as fuel, 
hydrodeoxygenation was implemented. It was 
found that comparing to external hydrogen 
source, hydrogenation of guaiacol with internal 
hydrogen leads to a higher conversion of 
guaiacol. Feng et al. found that phenolic 
compounds can be converted at a yield of 
98.22wt% with methanol as liquid hydrogen 
donor and Raney Ni as catalyst (Feng et al., 
2017). Yu et al. shows that depolymerization 
products of lignin can be converted with nearly 
90% selectivity towards cyclohexanol under 

the same conditions (Yoshikawa et al., 2013). 
Moreover, some research shows that glycerol, 
considered as potential renewable hydrogen 
source, can be used as a hydrogen source 
through aqueous phase reforming shown below 
(Putra et al., 2018). 

!!""#! + 3"## → 7"# + 3!##	(1) 
(General equation) 

!!""#! → 4"# + 3!#	(2) 
(Decomposition of glycerol) 

!# + "## ↔ "# + !##		(3) 
(Water-gas shift) 

In the previous work of our lab, hydrogenation 
of guaiacol with in-situ hydrogen produced by 
glycerol was implemented with /0/23##! or 
/0 − 5/23##! (X= Cu, Mo, P) as catalyst (Z. 
Chen et al., 2020). The glycerol conversion for 
all catalysts were found to be close to 100%, 
and the reaction pathway of hydrogenation of 
guaiacol was proposed as in figure 3. 

 
Figure 3. Proposed reaction pathway for 

hydrogenation of guaiacol with in-situ generated 
hydrogen from previous research (Z. Chen et al., 

2020) 
Though in many situations promoted catalyst 
tend to improve performance of catalyst, the 
result of previous research shows that all 
promoted catalysts in fact showed less activity 
comparing to /0/23##!, where the guaiacol 
conversion decreases from 95% to 50%. 
Moreover, /0/23##! as catalyst tends to have 
higher selectivity towards cyclohexanone and 
cyclohexanol. 

Although previous work shows that promoters 
are likely reducing the activity of  /0/23##! in 
in-situ guaiacol hydrogenation. It was 
suggested that Sn as promoter may improve 
performance of /0/23##! in other areas 
(Reangchim et al., 2019). Therefore, in our 
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experiment, /0 − 67/23##! was decided to be 
used. As changing catalyst may affect the 
reaction pathway. The reaction pathway needs 
to be redetermined. 

3. Methods 
3.1. Catalyst preparation 
As previously mentioned, several promoters 
were used without any apparent improvement 
in guaiacol hydro-treating.  A new catalyst was 
used in the experiment (/0 − 67/23##!). The 
weight fraction of the components in catalyst 
was shown in table 1. 

67 /0 23##! 
2% 20% 78%  

Table 1. weight fraction components in catalyst 

To synthesize the catalyst, 10 grams of 23##!, 
12.7 grams of /0(/#!)# ∙ 6"## and 0.487 
grams of 67!3# ∙ 2"## were used in the new 
catalyst preparation. Several steps were taken 
in the production. 

1)Three chemical ingredients were dissolved in 
an ethanol solution 

2)An oil bath (373K-393K) was used to 
evaporate the ethanol solvent. 

3)The solid experienced calcination to remove 
water hydration, Nitrate, and chloride. 

4)Product solids /0# − 67#/23#!3! were 
cracked and filtrated to 20 micrometres 
diameter particles. 

5)The particles were reduced in the oven at 
823K by hydrogen in four hours for 
completing reduction and the catalyst /0 −
67/23##! was formed 

3.2. Experiment 

3.2.1 Layout of the experimental equipment 
The reactor consists of two parts: a reaction 
vessel and a lid with several valves, a 
thermocouple, a magnetic drive, and a pressure 
gauge. Additionally, cooling water and 
insulation asbestos protection were added to 
the magnetic drive and inlet-outlet valves 
which could remove the excessive heat from 
the reaction and prevent the vibration.  

 
Figure 4. Layout of the same stirred batch reactor from 

previous research (Chen, 2020) 

3.2.2 Reaction conditions & sample 
extraction 

3.2.2.1 Temperature setup 

Experiments took part in three different 
temperatures from 230°C to 270°C to 
investigate the influence of temperature on the 
evolution of products and estimate the 
activation energy of the reaction. Three 
temperature points were selected: 230°C, 
250°C and 270°C. The temperature of the 
reaction was controlled by adjusting the 
temperature of the furnace. The temperature of 
the furnace is higher than the temperature in 
the reactor and the temperature of the furnace 
could not be controlled accurately as the result 
the temperature of the reactor would fluctuate 
about ± 5°C.  20°C temperature interval would 
be a suitable difference to study. In the heating 
up process, after the warming up of the 
furnace, the initial set-up point of the furnace 
was 725°C. When the temperature of the 
vessel reached 160°C, changed the set point to 
450°C manually and dropped the reactor part 
into the furnace.  

3.2.2.2 Reactants preparation 

As mentioned in the previous section. Glycerol 
acted as the hydrogen provider for the 
hydrotreating of guaiacol. To provide 
sufficient hydrogen in the reaction, an 
overdose of glycerol was added to the reactor. 
A glycerol and guaiacol mixed solution was 
used in the experiment with 1: 2 weight 
fraction. 1.895ml solution was pumped into the 
reactor with 0.1611M concentration. 

3.2.2.3 Sample extraction 
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The concentrations of each component at 
different times during the reaction were 
detected to investigate the reaction order and 
kinetic constant of each reaction. 5 samples 
(0min, 30min, 60min, 90min, 120min) were 
extracted from the valves of reactor in 230°C 
and 250°C experiments. Additionally higher 
reacting temperatures result in more dramatic 
reactions. For 270°C experiment, extra two 
samples were collected at 15min and 45min to 
detect the increasing and decreasing trend 
precisely. After the sample collection from the 
reactor, 0.75 grams of sample are extracted by 
75ml chloroform to extract all reactants and 
products, the chloroform solution samples 
were then used for further analysis. 

3.2.3 Method of concentration detection 

Gas chromatography-mass spectrometry (GC-
MS) analytical method was used in the 
concentration detection. Different organic 
compounds would illustrate different heights 
of peaks at different times (retention time). 
Firstly GC-MS would test products and 
reactants by setting concentration 
(0.01M,0.02M,0.03M,0.04M, 0.08M,0.12M, 
0.16M). The area of each peak would be 
calculated and the calibration line between 
area and concentration would be plotted 
respectively. 

To confirm the accuracy of the result, flame 
ionization detection (GC-FID) analytical 
method was also used to detect the 
concentration for the experiment at 250 °C. 
Calibration solutions were prepared at 0.04M, 
0.08M, 0.12M, and 0.16M. 

4. Results 
4.1. Catalyst Recovery 

The catalyst recovery is shown in table 2. 

Reaction 230 °C 250 °C 270 °C 
Mass of Catalyst 
before reaction 

(g) 
1.5005 1.5007 1.5002 

Mass of Catalyst 
recovered (g) 1.4962 1.4719 1.2136 

Percentage 
recovered 99.7% 98.1% 80.9% 

Table 2. Catalyst recovery 

The recovery of catalyst for experiment at 
230 °C and 250 °C is very high. Nevertheless, 
the recovery is relatively low for the 
experiment at 270 °C. 

4.2. Concentration calibration 

The chromatograms from GC-FID and GC-MS 
were taken into Openchrome for further 
inspection. The peaks and peak areas were 
determined by using built-in functions of 
Openchrome. Retention time for samples was 
recorded for determining the identity. The 
concentration of calibration samples and 
corresponding peak areas were taken into linear 
regression.  

Figure 5. shows an example of calibration curve 
for GC-MS. 

 
Figure 5. Calibration curve of guaiacol for GC-MS 

4.3. Concentration and conversion 

The chromatograms of chloroform solution 
samples were also taken into Openchrome for 
peak area calculation. However, due to the 
presence of negative peaks in some of the 
chromatograms, the auto calculation of 
Openchrome was inaccurate. Therefore, the 
chromatograms were exported into excel 
sheets and Matlab is used to integrated peak 
areas where the peaks are manually 
determined. The retention time for each peak is 
used to determine the identity of compound 
and the peak area was taken into the 
calibration curve to calculate concentration. 
All concentrations were normalized to ensure 
the law of conservation of mass. 

Conversion of reaction (5$) in batch reactor 
follow the equation: 

5$ = 1 − 7$(;)
7$(; = 0)	(4) 
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Figure 6. Conversion of guaiacol & concentration 

of reactant, product at 230°C 

 

Figure 7. Conversion of guaiacol & concentration 
of reactant, product at 250°C 

(GC-MS) 

 

 
Figure 8. Conversion of guaiacol & concentration 

of reactant, product at 270°C 
(GC-MS) 

 

 
Figure 9. Conversion of guaiacol at different T 

(GC-MS) 

 

Figure 10. Conversion of guaiacol & concentration 
of reactant and product at 250°C (GC-FID) 

Great number of the results illustrate many 
fluctuations which does not follow the 
principles of chemical reactions. 

Moreover, results from GC-FID shows that no 
cyclohexanol was produced. In contrast, results 
from GC-MS emphasize that both 
cyclohexanol and cyclohexanone were 
produced. 

5. Discussion 
5.1. Catalyst recovery 

In previous research using /0/23##! or /0 −
5/23##! (X= Cu, Mo, P) as catalyst, changes 
in catalyst structures occur after reaction, 
leading to deactivation of catalyst; Chen et al. 
illustrates that coke yield is about 7wt% (Z. 
Chen et al., 2020). The coke formation is 
mainly caused by poisoning of the active site 
and/or to pore blockage (Guisnet and 
Magnoux, 2001). This is undesirable in 
industrial production. Therefore, it is important 
to find ways to limit coke formation and 
regenerate catalyst. Table 2. from the results 
section shows that instead of gaining mass 
(forming coke), our catalyst is in fact 
remaining near to its original weight, 
especially for catalyst used in 230 °C and 
250 °C experiments. The relatively great loss 
in weight for catalyst used in 270 °C 
experiment could be caused by measuring 
errors. However, it is worth to rerun the 
experiment at 270 °C to investigate reason for 
the great loss. The result from 230 °C and 
250 °C implies that /0 − 67/23##! may be 
less deactivated than /0/23##! and its 
promoted catalysts. However, due to time 
limitations, investigations on structure of 
reformed catalysts were not implemented. 
Therefore, the conclusion is still unsure and 
needs further investigation for an accurate 
result. 
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5.2. Modelling of reaction system 

5.2.1. Reaction Pathway 

As previously mentioned, changing catalyst 
may lead to different reaction pathway. 
Therefore, the reaction pathway was 
reinvestigated using the concentrations of 
reactants and products. Results from GC-FID 
shows that only three compounds are present 
in the solution: guaiacol, phenol and 
cyclohexanone. The reaction pathway was 
proposed in figure 11. 

 
Figure 11. Reaction pathway proposed by GC-FID 

data analysis 

However, data analysis using GC-MS is 
somehow different, the reaction pathway 
proposed by using the results from GC-MS is 
shown in figure 12. 

 
Figure 12. Reaction pathway proposed by GC-MS 

data analysis 

=>?0?@A3 → BℎD7A3	(ED?@;0A7	1)	(5) 
BℎD7A3 → !G@3AℎDH?7A7D	(ED?@;0A7	2)	(6) 
BℎD7A3 → !G@3AℎDH?7A3	(ED?@;0A7	3)	(7) 

In the operation of GC-FID, the high purity 
carrier gas ran out and low purity carrier gas 
was used instead. This leads to a higher 
background noise to the chromatogram and 
may cause worse separation between 
cyclohexanol’s peak and cyclohexanone’s 
peak. Therefore, the reaction pathway in figure 
12 was chosen to be the final proposed 
reaction pathway. 

5.2.2. Reaction Kinetic 

 0TH order First order Second order 
Differential 

rate law 
for reactant 

A 

%&'( 

= −∆[-]∆'  
= / 

%&'( 

= −∆[-]∆'  
= /[-] 

%&'( 

= −∆[-]∆'  
= /[-]^2 

Integrated 
rate law 

for reactant 
A 

[-] 
= [-]! − /' 

[-] 
= [-]!("#$ 
ln[-] 

= 45[-]!
− /' 

1
[-] 

= 1
[-]!

+ /' 

Table 3. Reaction order equation 

Determination of each reaction order in the 
whole reaction system is necessary for 
developing the reaction model. Additionally, 
the kinetic constant (I) could be calculated 
after determining the reaction order. In the 
reaction system, the 0th,1st and 2nd orders of 
reaction were mainly focused on. The equation 
of rate against time were shown above in the 
table. In terms of concentration vs. time graph, 
1st order and 2nd order both exhibit an 
exponential increase and decrease for product 
and reactant respectively which was hard to 
distinguish two orders. As the result, the 
Integrated rate law was used and three orders 
would illustrate a straight line in concentration 
vs. time, ln [concentration] vs. time and 
1/[concentration] vs. time separately. 
Furthermore, the absolute values of the 
gradient of the line in those three graphs are 
equal to the kinetic value. 

 
Figure 13. Straight plot to determine rate constant 

As the result part mentioned, there are some 
errors in experimental data that would act as a 
distraction for determining the reaction order 
and kinetic constant. Jongerius et al. (Jongerius 
et al., 2013), Chen et al. (C. Chen et al., 2020) 
and Zhou (Zhou et al., 2017) illustrated the 
conversion of guaiacol, concentration of 
cyclohexanol and concentration of 
cyclohexanone against time separately. All 
three graphs exhibited a steady ascent trend. In 
terms of the experiment at 250°C, all 
concentrations detected at 90min are inaccurate 
which makes the R-square value for 
linearization much smaller than 1. 
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R-square value 0th 
order 

1st 
order 

2nd 
order 

Reaction 1 0.675 0.666 0.656 
Reaction 2 0.385 0.001 0.051 
Reaction 3 0.163 0.011 0.050 

Table 4. R-square value of linearization for order 
determination 

R-square value 
(Without data at 

90min) 

0th 
order 

1st 
order 

2nd 
order 

Reaction 1 0.975 0.985 0.991 
Reaction 2 0.954 0.851 0.750 
Reaction 3 0.651 0.749 0.713 

Table 5. R-square (without data at 90min) value of 
linearization for order determination 

We could determine the order of reactions the 
first-order formation of cyclohexanol, 0th order 
formation of cyclohexanone and the second-
order reaction of guaiacol. The graphs shown 
below also exhibited how the data points at 
90min distracted the linear regression. The 
reason for the error data points is the 
operational error in sample extraction which 
organic samples were evaporated by the high 
temperature in the vessel. 

 
Figure 14. Effect on the best fit line for kinetic 

analyzation of Reaction 3 by the distractive point 

 
Figure 15. Effect on the best fit line for kinetic 

analyzation of Reaction 2 by the distractive point 

 
Figure 16. Effect on the best fit line for kinetic 

analyzation of Reaction 1 by the distractive point 

 
Figure 17. Conversion of guaiacol & concentration 
of all components vs. time with chosen data sets at 

250°C 

Following the same method and principle of 
data analysis, the data used at 270°C were 
shown in the table below. 

 Time point used (min) 
Concentration of 

cyclohexanol 0, 15, 30, 45, 60 

Concentration of 
cyclohexanone 0, 15, 30, 45 

Concentration of phenol 0, 15, 30, 45, 60, 120 
Concentration of guaiacol 0, 15, 30, 45, 60, 120 

Table 6. Selected time of data sets for analyzation 
at 270°C 

 
Figure 18. Conversion of guaiacol & concentration 
of all components vs. time with chosen data sets at 

270°C 

The error of the data set at 60min is the 
missing concentration of cyclohexanone which 
is because of the relatively low boiling point of 
cyclohexanone(155.6°C) compared with other 
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organics. Only the cyclohexanone be 
evaporated at 60min. Furthermore, the 
cyclohexanone and cyclohexanol were both 
evaporated at 120min. 

 

 Time point used (min) 
Concentration of 

cyclohexanol 0, 90, 120 

Concentration of 
cyclohexanone 0, 60, 120 

Concentration of phenol 0, 60, 90, 120 
Concentration of 

guaiacol 0, 60, 120 

Table 7. Selected time of data sets for analyzation 
at 270°C 

 

 

Figure 19. Conversion of guaiacol & concentration 
of all components vs. time with chosen data sets at 

230°C 

As shown in figure 6, for results from 230°C, 
there are great many inaccurate points which 
caused fluctuations in the conversion of 
guaiacol and the concentrations of all 
components. 

The data used at 230°C were shown in table 7 
above follow by comparing with the results 
from previous literature (C. Chen et al., 2020; 
Jongerius et al., 2013; Zhou et al., 2017). Data 
points were chosen to match with the 
suggested compound concentration over time 
to make our analysis more reasonable. 
However, due to the number of data points we 
dismissed, the analysis is very inaccurate and 
needs data from further experiments to 
improve the accuracy. The kinetic data of 
230°C was also found to be fraud later when 
calculating activation energy. 

 

 Kinetic (M^-1s^-1) 
Experiment Reaction 1 Reaction 2 Reaction 3 

230 °C 4.6 × 10!" 4.0 × 10!# 1.2 × 10!$ 

250 °C 4.0 × 10!" 2.2 × 10!# 8.9 × 10!% 
270 °C 2.2 × 10!& 4.0 × 10!% 2.6 × 10!" 
Table 8. Kinetic energy of reactions for all three 

experiments 

5.2.3. Activation Energy 

Equation 8 was used to calculate the activation 
energy 

37I = −J8K
1
L + !	(8) 

Where I is the kinetic of corresponding 
reaction, J8 is the activation energy, K is the 
molar gas constant, L is the temperature, and ! 
is constant. The curve of 37I against 

9
: is 

plotted. 

 
Figure 20. Curve of *+, against '( for all three reactions 

Linear regression curves were used to predict 

the gradient − ;)
<  of each reaction curve, the 

gradient was then used to calculate activation 
energy. 

J8 = −K × OE?P0D7;	(9) 
Reaction 1 2 3 
Gradient 1.9346 -3432.5 2536.2 

Activation 
Energy 
(kJ/mol) 

-0.016 28.5 -21.1 

Table 9. Gradient and activation energy of each 
reaction 

The negative activation energy for reaction 1 
and reaction 3 brings concerns as this means 
rate of reaction decreases with the increase of 
temperature which does not match with our 
observation. Gao et al. illustrates that the 
activation energy of reaction 1 while using 
platinum as catalyst should be around 99.8 
kJ/mol (Gao et al., 2015), which is far from 
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our result. Moreover, activation energy of 
phenol to cyclohexanol or cyclohexanone by 
thermal hydrogenation is around 33kJ/mol 
(Song et al., 2016). The data points were 
investigated and founding that data points from 
230 °C experiment are taking major role for 
the unrealistic results. The curve was replotted 
without using data points from 230 °C. 

 
Figure 21. Curve of !"# against  !" for all three 

reactions without 230C 

Reaction 1 2 3 
Gradient -13547 -9746.2 -3673.2 

Activation 
Energy 
(kJ/mol) 

113 81.0 30.5 

Table 10. Gradient and activation energy of each 
reaction without 230C 

Without points from 230 °C, the calculated 
activation energy matches to the one in 
literature. Due to time restrictions the 230 °C 
experiment was not reattempted. In future, the 
experiments need to be redone for better 

accuracy. 

6. Conclusion 
A Sn promoted Ni catalyst was applied to the 
hydrogenation of guaiacol with in-situ 
generated hydrogen by glycerol aqueous phase 
reforming. The kinetic energy and activation 
energy of each reaction was found. By 
excluding data points from 230°C, the 
activation energy of guaiacol to phenol, phenol 
to cyclohexanone, and phenol to cyclohexanol 
were found to be 113 kJ/mol, 81.0 kJ/mol, 30.5 
kJ/mol respectively. Which matches with 
literature values for similar reactions. 
However, in future, all experiments need to be 
redone for several times to get a more accurate 
and persuasive result. Moreover, the 230°C 
experiment should be reviewed to clarify the 
factors accounted for the undesired results. In 
addition, all our conclusions were based on 
assuming the in-situ hydrogen provided by 
glycerol aqueous phase reforming is sufficient 
all the time. Though this is true in theory, it is 
worth checking the actual situation. At present, 
due to restrictions of reactor and safety 
concerns, the gas samples at each time points 
are hard to measure. In future research, 
improvements need to be done enabling 
sampling of gas during experiment. 
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Abstract 
Every year, 4.9 million litres of petroleum are spilled into U.S. waters alone, causing significant damage to ecosystems 
and the environment. Developing efficient and sustainable methods for remediating oil spills is an active area of 
research in the scientific community. This report examines the use of waste chicken eggshells as a source for creating 
a superhydrophobic powder for use in oil-water separation and oil spill remediation. The superhydrophobic powder 
is prepared by boiling, drying, and blending eggshells, and functionalizing the resulting powder with stearic acid to 
impart superhydrophobic properties. The maximum measured water contact angle of the powder was 156.7° on a 
tablet that was created by compressing 5% (w/w) stearic acid-eggshell powder and 32-45 µm particle size with 50kg 
of force. The effects of varying powder mass, stearic acid concentration, particle size, and emulsion concentration on 
the effectiveness of oil-water separation are explored. Results showed that a higher mass of powder leads to a higher 
degree of separation. However, no definitive conclusions could be drawn regarding the effects of varying stearic acid 
concentration and particle size. The optimized powder had a maximum oil-sorption capacity of 0.64 goil/gpowder and 
was effective at separating emulsions up to 20% concentration. Further research should be performed on the use of 
petroleum-based oils and the feasibility of recovering adsorbed oil from the powder for its reusability. 
 
1 Introduction 
Approximately 80 million tonnes of eggs are produced 
globally every year, generating 8.58 million tonnes of 
eggshell waste per year (Waheed et al., 2020). 
Chicken eggshells are comprised of 95% calcium 
carbonate (Butcher and Miles, 2019) and instead of 
reusing this calcium-rich commodity for a useful 
application, medium sized egg production companies 
spend €50,000 to €200,000 per year processing 
eggshells as waste, where it ends up in landfill sites, 
creating odours and leading to the growth of harmful 
bio-organisms (European Commission, 2022). It is 
therefore imperative to develop methods to turn this 
abundant waste product into a renewable and valuable 
commodity.  
 
1.1 Circular Economy 
As of November 2022, the world’s population has 
reached 8 billion and is projected to continue 
increasing until 2100 (Relifweb, 2022) alongside the 
demand for raw materials. Since the supply of these 
raw materials is limited, it is crucial for the world to 
move away from a linear economy and towards the 
more sustainable concept of a circular economy which 
entails increasing the life cycle of products, reducing 
their environmental impact and maximising resource 
efficiency. 

The main principles required for transforming to a 
circular economy are known as the 3R’s principles: 
Reduction, Reuse and Recycle (Ghisellini et al., 
2016). If implemented to real life processes, this will 
not only benefit the environment, but also boost 
economies. Circular economy strategies can cut global 
greenhouse gas emissions by 39% whilst creating 6 
million new jobs by 2030, offering an economic 
opportunity worth $4.5 trillion (McGinty, 2021). 

This report investigates reusing waste eggshells to 
create superhydrophobic powders for use in oil-water 
separation, perfectly demonstrating a scenario that 
incorporates the 3R’s principles for transforming to a 
circular economy. 
 
1.2 Knowledge gaps, Aims and Objectives 
Despite there being numerous studies researching into 
the production of superhydrophobic coatings from 
different types of shell waste (Fang, 2019) and on their 
antimicrobial (Causby, n.d.) and anti-icing properties 

(Sanusi, 2021) little literature can be found regarding 
the production of superhydrophobic powders from 
waste chicken eggshells and on their effectiveness in 
oil-water separation.  

Oil-water separation has many applications, 
namely in wastewater treatment and in the petroleum, 
metal working and food industries (WBDG, 2020). 

Every year, 4.9 million litres of petroleum are 
spilled into U.S. waters alone (Thompson, 2010), 
destroying habitats, poisoning, and suffocating 
surface-dwelling animals and contaminating our 
oceans and their seafood supplies (Edmond, 2021). It 
is therefore vital to remediate oil-spills as soon as they 
occur to reduce their devastating effects on the 
environment. Common methods include using 
dispersants, booms and skimmers, or in situ burning, 
but these all come with their flaws. Dispersants tend 
to be toxic, have a poor biodegradability and in some 
cases can be more harmful to the environment than the 
spilt oil itself (Sciencelearn, 2012). Using booms and 
skimmers requires very specific conditions including 
calm waters and slow oil speeds and most of the 
absorbents used have a low efficiency as they tend to 
also absorb water (Bhushan, 2019). Finally, the in situ 
burning of oil spills releases a lot of CO2 and creates 
thick plumes of black smoke. 

It is known that superhydrophobic surfaces have 
great oil-water separating properties (Latthe et al., 
2019), so if the superhydrophobic powder generated 
from waste eggshells can successfully be used for oil-
water separation, it could go a long way towards 
replacing the harmful and inefficient techniques for oil 
spill remediation with a much more sustainable, safer 
and efficient method. Therefore, the 5 main objects of 
this research project are to: 
1. Create a superhydrophobic powder derived from 

waste chicken eggshells 
2. Use the superhydrophobic powder to 

successfully separate oil-water emulsions 
3. Explore the parameters affecting the extent of the 

oil-water separation and determine their 
optimised values. 

4. Explore the absorption capacity and water 
content of the wetted powder.  

5. Simulate a small scale oil spill and successfully 
clean up the oil. 
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2 Background 
2.1 Contact Angle and Wettability 
The wettability of a surface is defined as the tendency 
of one fluid to spread on or adhere to a solid surface in 
the presence of other immiscible fluids and can be 
expressed more conveniently by its inverse 
relationship with the measured contact angle, 𝜃∗. For 
example, a hydrophobic surface with a low wettability 
would create a high contact angle with water droplets 
and vice versa.  

The contact angle represents the angle that the 
liquid-vapour interface of a droplet makes with the 
solid surface and, in its simplest form, can be 
described by Young’s equation in 1805: 

 𝜸𝒔𝒗 = 𝜸𝒔𝒍 + 𝜸𝒍𝒗𝒄𝒐𝒔𝜽𝒚 ( 1 ) 
where 𝛾𝑠𝑣, 𝛾𝑠𝑙 and 𝛾𝑙𝑣 represent the solid-vapour, 
solid-liquid and liquid-vapour interfacial energies 
respectively and 𝜃𝑦 represents the equilibrium contact 
angle of an ideal surface that is rigid, smooth, 
insoluble, non-reactive and chemically homogenous. 

Since very little surfaces are ideal in practice, 
Wenzel expanded on Young’s equation to account for 
the roughness of a surface with chemical homogeneity 
and proposed the equation:  

 𝒄𝒐𝒔𝜽∗ = 𝒓𝒄𝒐𝒔𝜽𝒚 ( 2 ) 
where 𝜃∗ is the apparent contact angle and 𝑟 represents 
the surface roughness and is defined as the ratio of the 
actual area to the projected area of the surface. The 
Wenzel model implies that since 𝑟 ≥ 1, the 
hydrophobicity of an already hydrophobic surface 
(𝜃𝑦 > 90°) will increase with the roughness of that 
surface.  

To account for the heterogeneity of a rough surface 
whereby air is trapped between the droplet and the 
surface, the Cassie-Baxter equation is used: 

 𝒄𝒐𝒔𝜽∗ = 𝒇𝟏𝒄𝒐𝒔𝜽𝒚 − 𝒇𝟐 ( 3 ) 
where 𝑓1 and 𝑓2 represent the fraction of the surface 
made up by the solid itself and the air respectively. 
The Cassie-Baxter model implies that the contact 
angle and therefore the hydrophobicity of the surface 
will increase as the air fraction of the surface, 
𝑓2 increases. 
 
2.2 Superhydrophobicity and Water Repellency 
Since superhydrophobic surfaces tend to be highly 
water repellent, these terms are commonly used 
interchangeably even though their definitions are not 
the same. The hydrophobicity of a surface represents 
how low its wettability is and can be measured by the 
static contact angle, whilst the repellency of a surface 
represents how easily a droplet can roll off the surface 
and is measured by the contact angle hysteresis. By 
definition, a superhydrophobic surface forms a water 
contact angle (WCA) greater than 150°, and a truly 
water repellent surface has a contact angle hysteresis 
below 10° (Karapanayiots and Manoudis, 2012). 

Contact angle hysteresis arises from the chemical 
and topographical heterogeneity of the surface 
(Laurén, 2021) and can be calculated by the difference 
between the advancing angle, 𝜃𝐴 and the receding 

angle, 𝜃𝑅. These angles can be measured by 2 different 
methods: the tilt method and the volume change 
method, both of which are illustrated in figure 1.  

Generally, the volume change method is used more 
commonly to measure contact angle hysteresis 
because its results are not affected by the droplet 
volume size, whilst those from the tilt method are. 

 
2.3 Functionalisation of Waste Chicken Eggshells 
Calcium carbonate (CaCO3) is intrinsically 
hydrophilic. However, it can be functionalised by a 
reaction with stearic acid (SA) to obtain hydrophobic 
properties. Stearic acid is a fatty acid consisting of a 
hydrophilic carboxylic acid head and a hydrophobic 
aliphatic tail. When CaCO3 and SA react together, the 
hydrophilic head of the SA chemisorbs onto the 
calcium cations present on the surface of the CaCO3 
particles, forming calcium monostearate. The 
chemisorbed SA orientates itself in such a way that the 
hydrophilic head is orientated towards the CaCO3 
surface, whilst the hydrophobic, aliphatic tail of the 
SA is orientated away from it, giving the powder 
hydrophobic properties. This structure is visualised in 
figure 2. It is worth noting that the SA may also 
physisorb to the surface of the solid through weak Van 
Der Waals forces. 
 

In theory, the discussed reaction causes the CaCO3 
particles to be covered by a monolayer of hydrophobic 
SA molecules. However, there are many factors that 
can affect the extent of this monolayer coverage, 
causing it to have voids which can reduce its 
hydrophobic potential. Some of these factors include 
the method of preparation and its conditions, the 
moisture content of the CaCO3, the CaCO3 particle 
size, the CaCO3 concentration and the amount of SA 
required to completely cover the calcite surface with a 
monolayer (Cao et al., 2016). This report investigates 
the effects of varying the CaCO3 particle size and the 
concentration on the hydrophobicity of the powder 
and its effectiveness in oil-water separation. 
 
 
 
 

Figure 1. Illustration of methods to measure advancing and receding 
contact angles. (a) Tilt method. (b) Volume change method.  

(a) Tilt method (b) Volume change 
Method 

Figure 2. Diagram depicting the chemisorption between stearic acid 
and calcium carbonate 
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3 Methodology 
3.1 Statistical Analysis 
Analysis of variance (ANOVA) is a statistical method 
that extends the student’s t-test from two data groups 
to three or more. In this study, groups of data are 
collected by repeating experiments under the same 
conditions and an ANOVA test is performed on these 
groups to determine whether or not there are 
significant differences between the means of these 
groups. ANOVA tests are based on the concept of 
variance, which is a measure of the spread in a set of 
numbers. It is important to determine whether the 
differences between the means are statistically 
significant in order to draw meaningful conclusions 
from the experimental data. The null hypothesis states 
that the means of all groups are equal. If rejected, it is 
implied that the means of at least two groups are 
different. A significance level of α=0.05 was selected 
for this report, indicating a 5% probability of 
committing a type I error and falsely rejecting the null 
hypothesis. To conduct these tests, a python algorithm 
was implemented to calculate the F-value and p-value. 
 
3.2 Superhydrophobic Powder Preparation 
Eggshells (ES) were first boiled to remove any 
remaining egg membrane and were then dried in a 
vacuum oven. The dried ES were then ground into a 
powder using a blender, and the particle sizes were 
classified using a vibrating sieve machine. The range 
of particle sizes investigated in this study were 0-
32μm, 32-64μm, 64-75μm, and 70-90μm. 

The ES powder was ground together with SA in a 
mortar and pestle to initiate a reaction between the 
two. This would functionalise the CaCO3 with SA and 
establish physisorption and chemisorption between 
them, giving the powder hydrophobic properties. 

 
3.3 Water Contact Angle Measurement 
Tablets of the powder were prepared using the Gamlen 
tablet press and then blasted with nitrogen gas to clean 
the surface from loose particles. An automated Ramé-
Hart goniometer was used for measuring the WCA 
using the sessile drop technique with deionised water 
of known interfacial energy. If necessary, the surface 
of the tablet was pressed against a sterile surface to 
remove any unwanted asperities and make it more flat, 
reducing the inconsistencies between different WCA 
measurements. The tablet was ensured to be horizontal 
with a 0° tilt, at which point water droplets of 10μL 
were electronically dispensed out a pipette. A plastic 
pipette tip was selected over a metallic one because 
plastic has a lower surface energy than metal and will 
thus form less favourable interactions with water 
molecules, making it more hydrophobic. This allows 
the water droplet to transfer more easily from the 
pipette to the tablet. 

Since wettability is dependent on both the 
chemical properties of the solid as well as its surface 
energy and roughness, the WCA was measured for 
tablets of different SA concentration, particle diameter 
and tablet press force whilst keeping all other 
parameters constant. From these measurements, plots 

were generated to determine the optimum values of 
each parameter with the objective of using all the 
optimum values to create a superhydrophobic surface 
with WCAs consistently greater than 150 °. 

 
3.4 Contact Angle Hysteresis 
Contact angle hysteresis was measured using both the 
tilt and volume change method as discussed in section 
2.2.The tilt method was utilised to measure the WCA 
of a 15μL droplet on a superhydrophobic tablet. The 
surface was rotated at a rate of 1 degree per second up 
to 45 degrees and a measurement of the WCA was 
taken using the Ramé-Hart advanced goniometer at 
each interval, totalling 46 readings. In the volume 
change method, a pipette is placed close to the tablet 
surface and a droplet of 10μL is dispensed such that 
the pipette is inside the droplet. An additional 20μL of 
water is added and removed from the droplet in 1μL 
increments with contact angles taken at each stage. 
Figure 3 below shows the droplet before water is 
added, once it has been added and once it has been 
removed.  

 
 
 
 
 

 
 
3.5 Oil Water Separation 
Preliminary tests showed that mixing the 
superhydrophobic powder with an oil-water emulsion 
creates floccules of the powder suspended in water, 
indicating that the powder has an affinity for oil. Four 
different types of oil were tested to determine the most 
stable oil-water emulsion, with sunflower oil found to 
be the most stable. Further testing and quantification 
of oil-water separation will focus on sunflower oil. 
Section 3 investigates many different methods for 
quantifying the extent of separation. 
 
3.5.1 Syringe with Cotton Wool Support 
This method aims to separate oil and water whilst 
retaining powder particles in a cotton wool support. 
0.100g of cotton wool was measured using a 
microbalance. The cotton was then placed at the 
bottom of a glass syringe and then wetted to reduce its 
oil-sorption capacity. 0.300g of powder was then 
dumped on top of the cotton and a 10% oil-water 
emulsion was prepared by shaking 9mL of water and 
1mL of oil together. This emulsion was then poured 
into the syringe and a plunger was used to push 10mL 
of liquid through the syringe needle. Most of the 
powder could be separated from the cotton and the 
masses of wetted cotton and oil were measured. The 
samples were then dried in a vacuum oven overnight 
to just below the bubble point of water at a temperature 
and pressure of 60°C and 200mbar respectively. 

To investigate the capability of only cotton wool in 
oil-water separation, a control experiment was 
conducted without the powder and initial results 
suggested that the cotton absorbed 10-20 times more 

Figure 3. Photographic sequence showing the Wilhelmy method: (a) 
Before water is added. (b) After adding 20μl. (c) After removing 20μl 

(a) (b) (c) 
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oil per unit mass than the powder. Since commercial 
cotton can be used to separate oil and water (Luo et 
al., 2022), different methods were therefore explored. 

 
3.5.2 Tea Bag 
To quantify separation, a tea bag was filled with 
0.500g of powder and then dipped in a 10% oil-water 
emulsion. It was then dried to measure the mass gain 
of the tea bag, providing a measure of the oil absorbed. 
While this method is useful for developing the final 
product, there were experimental challenges in 
accurately measuring the separation, as it was difficult 
to ensure that all of the powder was exposed to the 
emulsion. Further, the tea bag absorbed a significant 
amount of oil itself, which could introduce 
unreliability in the gravimetric analysis. 
 
3.5.3 Filtration 
0.500g of powder was 
mixed in 10mL of a 10% 
(v/v) oil-water emulsion. It 
was then attempted to 
separate the powder from 
the mixture using gravity 
filtration, but the oil was 
unable to penetrate the filter 
paper and separation could 
not be achieved, as shown in figure 4. 

The same outcome was also reached in the control 
test, where no powder was used. To address this issue, 
vacuum filtration was attempted on the conically 
shaped filter paper, but the paper tore when any 
amount of powder was present. In response to this, the 
same method was attempted on a flat Büchner funnel. 
Even with the vacuum pump running at full power, the 
oil still did not penetrate the filter paper.  

Tea bags were also tested as an alternative to filter 
paper, as they are more porous and allow oil to pass 
through. However, this increase in porosity also 
resulted in powder passing through, affecting the 
accuracy of the gravimetric analysis.  

The final vacuum filtration method involved 
packing a known mass of powder ontop of a mass of 
cotton wool in a funnel. An emulsion was then filtered 
through this setup using a vacuum pump to pull excess 
oil through. However, the filtration approach was 
ultimately discarded because the cotton still absorbed 
a significant amount of oil. 

 
3.5.4 Centrifuge 
1.000g of powder, 10mL of oil, and 40mL of water 
were measured and poured into a centrifuge tube, 
which was shaken to ensure that all of the powder 
came into contact with the emulsion. The mixture was 
then centrifuged to create a two-phase liquid and the 
amount of oil absorbed by the powder was measured. 
However, it was found that only a very small amount 
of oil was absorbed, which introduced high 
uncertainty in the volume measurement, as the 
equipment was only accurate to ±0.5mL, and the 
differences observed were smaller than this. 
Additionally, it was uncertain whether the 

centrifugation process caused oil to be pushed out of 
the powder, rendering the method unsuitable. 
 
3.5.5 Syringe with mesh as support 

In previous tests, it was found that the powder 
support absorbed a significant amount of oil. To 
address this issue, a mesh with an aperture diameter of 
32μm was attached to the end of a syringe that was cut 
open at the base and firmly attached using a cap with 
a hole for the liquid to exit. Parafilm was used to create 
a watertight seal and prevent leakage. In these 
experiments, the oil water separation was investigated 
on powders with different SA content, particle 
diameter and quantity of powder. A 10% oil-water 
emulsion was prepared by mixing 10 mL of oil with 
90 mL of water for 20 minutes using a magnetic 
stirrer. It was important to maintain the stability of the 
emulsion during transfer and passage through the 
syringe in order to ensure consistent and controlled 
experimental conditions. The powder was loaded at 
the bottom of the syringe and tapped on a hard surface 
to ensure it was uniformly spread on the mesh. 
Another syringe was used to withdraw 22.5mL of the 
emulsion from the stirred beaker and was then poured 
over the powder. The plunger was used to force 14mL 
of liquid through the powder and mesh directly into a 
15mL centrifuge container. The contents were then 
centrifuged to create a two-phase liquid, where the 
water could easily be decanted from the bottom of the 
centrifuge container through a punctured hole. Some 
water remained in the container and was dried in a 
vacuum oven set at 60°C and 200mbar, leaving only 
the oil. To ensure more reliable results, the experiment 
was repeated four times and the average was taken for 
each data group. A gravimetric analysis was 
undertaken by measuring the masses of the filled 
centrifuge tube before and after drying as well as the 
tube’s empty mass using a microbalance. From these 
readings, the masses of water and oil in the filtrate 
could be calculated, making it possible to determine 
the concentration of oil in the filtrate. This was 
compared to control runs without the 
superhydrophobic powder, revealing that the presence 
of the powder reduced the amount of oil in the filtrate 
and that it is effective at separating emulsions.  

 
4 Results 
This section presents all data collected from the 
contact angle measurements and the oil-water 
separation analysis. It is worth noting that upon 
analysing data, outliers were omitted if they lied 
beyond 1.5 times the interquartile range due to 
deviations from the planned experimental procedure. 
All error bars displayed in this section represent the 
standard deviation of a sample excluding its outliers. 
 
4.1 Water Contact Angles 
Despite having previously discussed the Wenzel 
(equation 2) and Cassie-Baxter (equation 3) equations, 
all contact angles compared in this section will 
represent the apparent contact angle. Calculating the 
young’s contact angle requires access to an atomic 

Figure 4. Snapshots of the 
filtration method. (a) Whilst 
powder is mixed with the 
emulsion. (b) During 
filtration separation 

(a) (b) 
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force microscopy to measure the surface roughness 
and the surface solid fraction, which was not available 
under the resource and time constraints of this project.  

This report investigates the effect of three 
parameters on the wettability of the powder: 
compression force, powder diameter, and SA 
concentration. These are explored by measuring the 
WCA while varying one parameter and keeping the 
others constant. Several measurements were taken for 
each data point and the average of these readings was 
plotted against the varied parameter. 

 
4.1.1 Varying Compression Force 
The compression force was varied from 50-350kg, 
whilst keeping the SA concentration and powder 
diameter constant at 10% (w/w) and 32-45 μm 
respectively, with its plot shown in figure 5 below.  

 
The results show that as the compression force 
decreases, the WCA increases, with a maximum value 
of 148.4° ± 2.9° at 50kg. This trend can be explained 
by both the Wenzel and Cassie-Baxter equations 
outlined in section 2.1. At lower compression forces, 
the surface roughness, r and the fraction of the surface 
occupied by air, f2 increase. Therefore, the apparent 
WCA, θ∗ will be larger, as observed in figure 5. 

Since the WCA improved at lower forces, it was 
attempted to measure contact angles beyond 50kg and 
even on the powder itself with no force. However, 
beyond this point, the tablet became either too fragile 
to the point that it would crumble, or too rough, 
resulting in the water droplet picking up loose powder 
from the surface and adhering to the pipette rather than 
to the surface. This made it difficult to accurately place 
the droplet on the surface and perform the experiment 
with compression forces below 50kg. Instead, if the 
trend is extrapolated beyond 50kg, it can be 
hypothesised that the powdered form of the 
functionalised ES will be even more hydrophobic than 
its tableted form as it will effectively have no 
compression force. 
 
4.1.2 Varying Powder SA Concentration 
The concentration of SA in the ES powder was varied 
from 3% to 12% for two different particle diameters 
(32-45μm and 45-63μm), whilst the compression 
force was held constant at 50 kg since this value 
yielded the highest WCA from section 4.1.1. The 

results of these experiments are summarized in figure 
6 below.  

Upon initial observation, it appeared that as the SA 
concentration increased, a local maximum for both 
powder sizes was obtained at 5% SA concentration, 
yielding a WCA of 148.0° ± 5.0° for the 32-45μm 
powder diameter and 145.5°±2.8° for the 45-63μm 
powder diameter and that beyond this optimum, there 
appeared to be no trend. The maximum measured 
WCA was found to be 156.7° at 5% SA concentration 
for the 32-45μm particle diameter range, proving that 
it is possible to create a superhydrophobic tablet in 
some cases. A photograph of this WCA is shown in 
figure 7 (a).  

To investigate if superhydrophobic surfaces possess 
oleophilic properties, an oil droplet was dispensed 
onto a tablet under the same previous conditions, and 
the contact angle was measured and recorded to be 
19.5°, as shown in figure 7 (b). This    suggests that a 
superhydrophobic powder is also oleophilic, meaning 
that it is able to attract and adsorb oil whilst repelling 
water. To determine if the SA concentration continues 
to have no significant effect on the WCA at more 
extreme concentrations, readings were taken at higher 
concentrations of 50% and 100%, yielding WCAs of 
108.7°±2.0° and 91.2°±1.7° respectively. This 
suggests that as the SA concentration is increased 
beyond 12%, the powder will eventually become less 
hydrophobic. 

The large error bars of each measurement in figure 
6 make it difficult to conclude if there is actually a 
local optimum at 5%. An ANOVA test was therefore 
conducted to determine the statistical significance of 
the observed trend supports that there is insufficient 
evidence to support the existence of said local optima. 
The large error bars and lack of correlation between 
data points in figure 6 are due to the large experimental 
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error and randomness in the surface roughness of each 
new measurement, as discussed in section 4.1.4.  

Figure 6 also shows that the smaller particle size 
gives a higher WCA for all SA concentrations. 
However, the overlap between the error bars of the 
different powder sizes for 3%, 5%, 7%, 12% make it 
difficult to conclude if this is truly the case. Further 
investigation will therefore have to be performed to 
see how the powder’s size affects the WCA. When 
analysing this, the SA concentration will be kept 
constant at 5% because, although the data points are 
not statistically different for the 32-45μm powder, 
they are for the 45-63μm powder, and 5% SA 
concentration yields the best WCA for this size. 
 
4.1.3 Varying Particle Size 
The WCA was measured for different particle sizes in 
the range of 0-32μm, 32-45μm, 45-63μm and 63-
75μm whilst the compression force and SA 
concentration were kept constant at 50kg and 5% 
respectively for the same reasons discussed in section 
4.1.2.  

 
As particle diameter increases beyond this range, the 
WCA then appears to decrease. Upon initial 
consideration, this inverse relationship may be 
explained by the fact that the surface area decreases as 
the particle diameter increases and that very fine 
particles tend to agglomerate. Consequently, there is a 
smaller surface for the SA to react with when it is 
ground together with calcium carbonate in a mortar 
and pestle. As a result, more SA would physisorb to 
the surface rather than chemisorb, potentially 
decreasing the overall hydrophobicity of the powder. 
Nonetheless, the results of the ANOVA statistical test 
at a 95% confidence level indicate that this is not the 
case and that there is no significant difference between  
the means of the WCAs in the diameter range of 32-
75μm. This implies that the observed differences in 
the WCAs are likely to be due to random chance and 
not to any underlying effect of particle diameter on 
WCA. This suggests that all the SA reacts with the 
calcium carbonate and chemisorbs onto the surface in 
the same way, regardless of the particle diameter in the 
given range. 
 The minimum at the diameter range of 0-32μm can 
be explained by the fact that the tableted form of 
smaller particles was much smoother than the tablets 
of larger sizes, resulting in a lower apparent contact 

angle, for the same reasons discussed in section 4.1.1. 
Furthermore, very fine particle sizes show a strong 
tendency to agglomerate, encouraging voids to form 
in the hydrophobic monolayer of the powder (Cao et 
al., 2016), thus decreasing their hydrophobicity and 
the WCA. 
 
4.1.4 Contact Angle Measurement Limitations 
 Although the Ramé-Hart goniometer is capable of 
measuring contact angles to an accuracy of 1 decimal 
place, there are many factors that can affect the 
accuracy of contact angle measurements. This may 
explain why the standard deviation of the different 
mean WCA measurements was so high. Some of these 
factors include the presence of contaminants on the 
sample surface, surface roughness, inconsistencies 
between experiments, surface properties, and 
environmental factors. These factors can introduce 
error or uncertainty into contact angle measurements 
and should be carefully controlled or accounted for in 
order to obtain reliable and accurate results. 

After examining the powders closely, it was 
observed that there were occasionally small metal 
contaminants in the powder which likely came from 
the mortar and pestle used in the preparation process. 
Other common contaminants present on surfaces 
include dust and dirt which could have been 
introduced to the sample during its preparation and 
handling process, or from the air in the surrounding 
environment. Even after blasting the tablet with 
compressed Nitrogen gas, these contaminants can still 
be present on the surface, altering its surface energy 
and roughness, and this can in turn affect the WCA.  

The method of measurement used in this 
experiment was subject to a high degree of human 
error, making it difficult to accurately reproduce the 
results of each experiment. Between experiments, the 
location where the droplets were placed on the tablet's 
surface and the timing of when the measurement first 
began after first contacting the surface varied, 
introducing a significant amount of random error. To 
eliminate these inconsistencies, the human factors in 
the procedure should ideally be replaced with 
automation. However, this would be challenging, 
time-consuming, and may not be necessary. 

The measurements of the WCA were taken on 
different days when the temperature, pressure, and 
humidity may have varied. These environmental 
factors can also affect the surface tension and 
interfacial interactions between the liquid and the 
surface, which can interfere with the WCA 
measurements, introducing error and uncertainty into 
the measurements (Diaz, Savage and Cerro, 2017). 
 
4.2 Contact Angle Hysteresis 
Both the tilt method and the volume change method 
were used to measure the contact angle hysteresis on 
a tablet compressed with 50kg of force consisting of a 
5% SA concentration and a particle diameter of 32-
45µm. In the former, it was found that the size of the 
droplet volume greatly affected the roll off angle and 
therefore the contact angle hysteresis measurement. 
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More specifically, droplets of 
10µl would not roll off the 
surface, even when it was tilted 
to an angle of 45°, as shown in 
figure 9. However, droplets of 
15µl would roll off at an 
average angle of 11.5°±6.4° 
with an average contact angle 
hysteresis of 23.1°±2.7°. Since 
the roll off angle greatly depended on the droplet size, 
the volume change method was also used to verify the 
contact angle hysteresis. 
Figure 10 below shows an example of one 
measurement taken using the volume change method. 
As the droplet size is increased, the contact angle 
converges to around 157° indicating that this is the 
advancing contact angle. Similarly, as the contact 
angle is decreased, the contact angle converges to give 
a receding contact angle of approximately 134°, 
yielding a contact angle hysteresis of about 23°.  

Both methods give similar results, but the tilt method 
is not very repeatable as the droplet only rolled off the 
surface twice out of the eight times it was performed. 
The volume change method is therefore more accurate 
and reliable for measuring the contact angle 
hysteresis, and is the preferred method. 

The obtained contact angle hysteresis value of 23° 
suggests that the powder is not water repellent, as it is 
not below 10°. However, further experiments can still 
be performed to test its effectiveness in oil-water 
separation, as previous tests indicate that the powder 
is hydrophobic and potentially superhydrophobic. 
 
4.3 Oil-Water Separation  
Many different methods of quantifying oil-water 
separation were investigated. However, the results 
presented in this section were obtained using the 
syringe with mesh support method that has been 
described in Section 3.5.5. To determine the powder 
formulation that yields the best performance, the mass 
of powder, SA concentration, and particle diameter 
were varied when separating a 10% oil-water 
emulsion. After identifying the parameters that 
yielded the best separation, the powder was also tested 
under varying emulsion concentrations to further 
evaluate its performance.  
 
 
 

4.3.1 Varying Powder Mass 
To investigate the relationship between the mass of 
powder loaded and the concentration of oil in the 
filtrate, a series of experiments were conducted in 
which the SA concentration and particle diameter 
were held constant at 10% and 45-63μm, respectively.  

Figure 11 shows a negative correlation between the 
concentration of oil in the filtrate and the mass of 
powder used. This is likely due to the fact that a larger 
quantity of powder will adsorb more oil. At a mass of 
2g, the filtrate is essentially an oil-free aqueous 
solution, indicating that this is the minimum amount 
of powder required for the complete separation of oil 
and water. The slight uptick in the oil concentration of 
the filtrate at 2.5g is likely to be an outlier due to 
experimental inconsistencies. This can be seen by the 
fact that the 2g datapoint has smaller error bars than 
the 2.5g datapoint, making it a more reliable indicator. 
Additionally, it is both intuitively and theoretically 
reasonable that beyond 2g, there should be a decrease 
in oil concentration. Since nearly complete separation 
is achieved at 2g, this mass can be taken to be the 
saturation point of the powder in a 10% emulsion, and 
the oil absorption capacity is calculated to be 
approximately 0.7mLoil/gpowder in a 10% emulsion. 

In the absence of powder, the oil concentration in 
the filtrate is noticeably higher, but it does not 
approach the initial concentration of 10%, indicating 
that the mesh support itself also contributes towards 
oil-water separation. This observed separation is likely 
facilitated by the resistance created by the mesh, 
reducing the velocity of the more viscous oil. 

 
4.3.2 Varying Powder SA Concentration 
Functionalised eggshell powder of 45-63μm particle 
diameter was formulated for varying concentrations of 
SA. As it was established in the experiment described 
earlier where the mass of powder was varied, using a 
1.5g mass of powder ensures that it will always 
saturated. This mass will also allow for more oil to 
pass through to the filtrate, making it easier to measure 
with a lower uncertainty.   
Running the ANOVA test on these groups of data 
returned a p-value of 0.45, corresponding to a 45% 
likelihood that the mean values of these data are the 

Figure 10. Plot of WCA variation as water is added to the droplet.  
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same. This indicates that the variation between SA 
concentration observed in figure 12 is due to 
randomness and no conclusion can be drawn from 
these results. 

 
 
 
Tests were also performed on pure ES powder with a 
0% SA content, and it was observed that the non-
functionalised powder had a very thin, sand-like 
consistency, which contrasted with the cohesive, cake-
like texture of the functionalized powder, suggesting 
that the non-functionalised powder particles were able 
to block the mesh apertures and increase the resistance 
of this filter medium. Consequently, since oil is more 
viscous than water, the increased resistance to flow 
will amplify the separation due to viscosity and 
velocity differences. This hypothesis is supported by 
the fact that significantly more force was required to 
push the emulsion through the non-functionalised 
powder than through the functionalized powder. 
Additionally, the water content in the non-
functionalised powder was 32.8±1.0%, which is much 
higher than the 13.3±3.3% for the functionalized 
powder, indicating that the ES powder adsorbed less 
oil than its functionalized counterpart. It is therefore 
possible that the separation of the 0% powder was not 
due to its ability to absorb oil, but rather to its ability 
to block pores. Because of these differences, it is not 
appropriate to compare the data for the 0% powder to 
that of the functionalized powder, and it has been 
omitted from the above graph. 

 
4.3.3 Varying Powder Diameter 

To investigate the effect of varying powder diameter 
against oil-water separation efficacy, the SA 
concentration of the powder was kept constant at 10% 
and 1.5g of powder was used in each experiment.  

Statistical analysis of the data suggests that the null 
hypothesis cannot be rejected, as the ANOVA test 
returned a p-value of 0.21, which is greater than the 
accepted maximum threshold of 0.05. Since the 
variation in the data are not statistically significant, no 
definitive conclusions can be drawn on the particle 
size and its effects on oil-water separation. 
 
4.3.4 Varying Emulsion Concentration 
The separation of oil and water was studied by varying 
the emulsion concentration while holding the SA 
concentration, particle diameter, and mass of powder 
constant at 10%, 45-63μm, and 1.5g, respectively. The 
emulsion concentration was varied from 5% to 30%, 
and the oil composition of the resulting filtrate was 
determined. 

 

Figure 14 demonstrates a strong positive linear 
correlation when the concentration is varied between 
0% and 20% with a gradient of 0.1232 and a 
coefficient of determination of 0.948. The low 
gradient implies that a small increase in the emulsion 
concentration would result in a smaller increase in the 
filtrate concentration, indicating that the powder is 
effective at separation in this range. Above 20%, the 
oil composition in the filtrate increases rapidly, 
suggesting that the powder becomes saturated with oil 
at and beyond this concentration, allowing the oil to 
easily pass through the powder. 
4.3.5 Powder Cake Analysis 
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As part of this study, the percentage of water in the 
powder was determined by recovering the wetted 
powder cake from the mesh and drying it in a vacuum 
oven at 60C and 200mbar. The water content in the 
sample was then determined by comparing the mass of 
the powder before and after drying.  
The data suggests that the water content of the powder 
decreases linearly as the particle diameter increases. 
This may be because the overall surface area and 
therefore the sorption capacity of the powder 
decreases with increasing particle diameter, resulting 
in less water being absorbed by the powder.  
 
4.3.6 TGA analysis 
A sample of the dry powder obtained after the 
emulsion was passed through was analysed in a 
thermogravimetric analysis (TGA). 

 

TGA tells us that when drying the powder in the 
previous section, no significant amount of oil was 
evaporated and that there is potential for oil-powder 
separation by heating to around 360°C to recover the 
oil, as a there is a sharp decrease of mass at around 
380°C due to the SA evaporating. Heating past 700°C 
will initiate the decomposition of CaCO3 to CaO 
.   
4.3.7 Oil-Water Separation Limitations 
The mesh method was used in this study over the other 
methods discussed in section 3.5. However, like all 
scientific experiments, this method also has its 
limitations.  

In many runs, small amounts of powder were able 
to pass through the mesh support, particularly when 
using smaller particle diameters. Since it was assumed 
that a negligible mass of powder made it through to 
the filtrate, the calculated filtrate oil concentrations are 
likely to be underestimates of the true concentration. 

Another issue is that as the mass of powder or oil 
concentration in the emulsion was increased, the 
plunger required more force to be pushed. This led to 
inconsistencies between experiments, introducing 
more error and increasing the deviation between 
results. Additionally, the need for higher pressures 
sometimes resulted in leakage through the parafilm, 
causing some runs to be discarded, reducing the 
reliability of some datapoints. 

It was originally assumed that separation occurred 
solely due to the powder’s ability to adsorb oil. 
However, it was found that a degree of separation also 
occurs due to differences in viscosity and velocity. Oil 

is approximately 100 times more viscous than water, 
meaning it has a higher resistance to flow. The 
presence of the powder and mesh support impede the 
flow of oil much more than water, leading to some 
separation. Therefore, the sorption capacity of the 
powder and its effectiveness in oil-water separation 
are likely to be overestimates in this report.  

Regarding the preparation of the functionalized 
powder, human variability must be considered when 
using a mortar and pestle. It is practically impossible 
to ensure that every particle was ground together, and 
the amount of particles that weren’t contacted by the 
mortar varied between each batch. Also, the 
distribution of functionalised powder may not be 
uniform in the batch, leading to inconsistencies in 
measurements. These inconsistencies can be solved by 
automating the method using a ball mill instead. 

 
5 Small Scaled Oil-spill Simulation 
A small-scale oil spill was simulated by adding 200 
mL of seawater to a crystallizing dish. 5 mL of 
sunflower oil was then added to the surface of the 
water, and both the water and oil were dyed with blue 
and red colours, respectively. A mesh containing 10g 
of functionalised ES powder was then submerged in 
the dish and mixed with the seawater-oil mixture. This 
mass of powder used in this experiment was in excess 
of the estimated oil sorption capacity. As a result of 
this, the amount of oil in the container decreased, and 
upon removal of the mesh, almost pure water was 
observed with the bulk of the oil being separated. On 
closer observation of the water surface, some residual 
oil was visible. The used powder was transferred to a 
petri dish, and it was observed to have a red colour 
from the dye used. 
Overall the small scale test was successful 
accomplishing objective 5, however it raises questions 
on large scale implementation of this approach as the 
used powder has to be collected and cannot be reused. 
Possible avenues for future research include exploring 
the feasibility of extracting oil from the used powder 
and testing the powder with petroleum-based oils. 

 

6 Conclusion 
This study found that lowering the compression force 
increased the WCA, and the optimum compression 
force was found to be 50kg. Analysis of variance tests 
indicated that the concentration of SA and the particle 
size did not significantly affect the WCA. Although 
optimum conditions could not be obtained for all the 
studied parameters, the maximum measured WCA 
was 156.7°, indicating that it is possible to achieve a 
superhydrophobic powder from chicken eggshells, 
and the highest mean WCA obtained was 148.8°±2.9° 
at a compression force, SA concentration and particle 
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Figure 17. Images showing the oil before and after and the wetted 
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Figure 16. TGA showing the percentage decrease of the intiaial 
sample weight against increasing temperatures.  
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diameter of 50kg, 10% and 32-45μm respectively. 
While this does not correspond to a superhydrophobic 
angle, it is likely that using the powdered form with no 
compression force will produce WCAs greater than 
150°, resulting in a superhydrophobic surface. Based 
on these 2 observations, it can be concluded that the 
first main objective of creating a superhydrophobic 
powder derived from waste chicken eggshells has 
been achieved. 
 Several variables for the superhydrophobic 
powder formulation were investigated to determine 
the optimal powder for separating oil and water. 
However, many of the results did not show a 
statistically significant trend according to the ANOVA 
test, and the data obtained may be due to experimental 
randomness. Data suggests that the SA concentration 
in the powder does not affect oil water separation, 
therefore the least amount of SA should be considered 
as it is the most sustainable option. Variation of 
particle diameter yielded statistically the same mean, 
however there is a strong indication from the cake 
analysis that larger particle diameters absorb less 
water but there is no certainty as to the amount of oil 
that is absorbed.  
 The capacity of oil absorbed by the powder was 
calculated to be 0.7 mLoil/gpowder based on the data for 
varying powder mass. However, this value is an 
overestimate as the separation is also affected by the 
viscosity differences between the liquid. Powder cake 
analysis gave a calculated absorption capacity of 0.22 
goil/gpowder ± 0.14 goil/gpowder for particles with a 
diameter of 75-90 μm. This value however, is subject 
to experimental error. 
 The TGA results suggest that eggshell powder and 
the oil can be potentially separated by heating. This 
will reduce the need to dispose of the used-up powder 
and also in an oil spill scenario recover the spilled oil. 
 Non-functionalized eggshell powder resulted in 
good oil-water separation, but using this material 
absorbed almost twice the amount of water than its 
non-functionalised counterpart, suggesting that 
separation here occurs due to aperture blockage rather 
than its ability to absorb oil.  
 
7 Outlook 
The use of an atomic force microscopy allows the 
surface roughness and solid fraction of the surface to 
be measured. With this extra information, it would be 
possible to calculate the young’s contact angle and 
normalise the contact angles to a smooth surface, 
allowing for the comparison of data groups without 
the variability in surface roughness. This may 
decrease the deviation across measurements to the 
point where statistically different results may be 
obtained and a trends can be observed. 

Additionally, the effect of different drop volumes 
has not been extensively investigated in this report. 
Initial tests showed that a 15μL droplet will give a 
larger WCA, suggesting that droplet size could be a 
meaningful parameter. Further studies should thus be 
performed on the effect of droplet volume on the 
hydrophobicity of a surface. 

The method used to quantify separation has many 
limitations. Mainly, separation is influenced not only 
by the hydrophobicity and oil-sorption on the powder, 
but also by fundamental filtration principles. It is 
therefore recommended to explore a method that 
focuses more on the full immersion of the powder in 
an emulsion to more accurately quantify the oil 
sorption capacity of the powder. 

The small-scale oil spill remediation test showed 
promising results, warranting further research into 
larger scale simulations involving different types of 
oils, particularly petroleum-based ones. It would also 
be beneficial to study the feasibility of recovering 
adsorbed oil from the powder and if it retains its 
superhydrophobic properties, which would further 
support the development of a circular economy. 
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 Fe-Doped TiO2 Photoanodes Grown by Aerosol-Assisted Chemical Vapour Deposition of a 
Titanium Oxo/Alkoxy Cluster 
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Abstract 
Photoelectrochemical (PEC) water splitting is a promising technology for the production of solar hydrogen. 
Titanium dioxide (TiO2) is a popular semiconducting transition metal oxide used as a photoanode material in PEC 
cells. To achieve its full potential, Fe3+ doped nanostructured TiO2 films formed from a Ti7O4(OEt)20 titanium 
oxo/alkoxy cluster solution using aerosol-assisted chemical vapour deposition (AACVD) were explored.  Fe3+ 
doping at 0.05, 0.1, 0.5, and 1.0 mol% concentrations were investigated. Scanning electron microscopy (SEM) 
revealed that photoanodes of porous morphology were synthesised. X-ray diffraction (XRD) showed that anatase 
TiO2 was successfully formed. PEC measurements indicated that increasing Fe3+ dopant concentration increased 
photocurrent density, however, an improvement upon pure TiO2 was achieved solely for 1.0 mol%. The beneficial 
effect of Fe3+ doping at 1.0 mol% was also evident in ultraviolet-visible (UV-vis) spectroscopy results, showing 
a decrease in the band gap of TiO2 and a red shift in absorption which can improve solar light harvesting.  

Introduction 
There is ample solar energy potential to provide 
global energy needs from a renewable, carbon-free 
power supply.1 Photoelectrochemical (PEC) water 
splitting is a promising technology for solar light 
harvesting which can convert solar energy to 
storable hydrogen fuel. 2 As a photoanode material 
in PEC cells, TiO2 is a popular n-type semiconductor 
which has been studied extensively due to its high 
photocatalytic efficiency, low-cost, non-toxicity, 
chemical inertness, and photostability. 3 However, 
due to its wide band gap meaning only 5% of the 
solar spectrum is used, 4 and fast recombination of 
hole-electron pairs, 5 the large-scale applications of 
TiO2 in photocatalysis are limited. 6  

Consequently, over the past few decades, much 
research has focussed on reducing hole-electron 
recombination rates and improving light absorption 
through band gap regulation, morphology control, 
and the construction of heterogeneous junctions.  7 

Though TiO2 exists in amorphous form and 
different crystalline polymorphs including anatase, 
rutile, and brookite, anatase TiO2 shows the greatest 
photocatalytic activity. 8 Therefore, one approach is 
to synthesise nanostructured anatase TiO2 
photoanodes given the higher surface area that 
promotes charge transfer across larger solid-liquid 
interfaces, shortened charge carrier pathways, and 
induced light scattering which facilitates the 
generation of multiple hole-electron pairs. 9 There 
are many possible synthesis methods including sol-
gel, micelle and inverse micelle, hydrothermal, and 
chemical vapour deposition. 10 Of these, chemical 
vapour deposition (CVD), specifically aerosol-
assisted, is a promising fabrication technique for 
large-scale PEC devices, capable of producing 

large-area robust films with good reproducibility 
and relatively low processing cost.  11 

Doping can also enhance the PEC performance 
of TiO2 photoanodes by increasing light absorption 
and supressing recombination, 12 ensuring efficient 
photocatalysis. 13 Specifically, Fe3+ is a favourable 
doping candidate due to its ease of incorporation 
into the TiO2 structure given the similar atomic radii 
of Ti4+ and Fe3+, and Fe3+ ions possessing the ability 
to trap photogenerated electrons and holes, reducing 
recombination rate. 6 

It is expected that Fe3+ doping coupled with 
aerosol-assisted chemical vapour deposition 
(AACVD), has the potential to address the 
limitations of TiO2 in PEC usage. Hence, to the best 
of our knowledge, this paper presents the first 
instance of the formation of Fe3+ doped 
nanostructured anatase TiO2 photoanodes formed by 
AACVD.   

 
Background 
Water can be split into molecular oxygen and 
hydrogen using a PEC cell which extracts electrical 
energy from sunlight.  14,15 A PEC water splitting 
cell requires one or two semiconducting electrodes 
which absorb solar photons to produce charge 
carriers, and a membrane to separate the products of 
the two half-cell reactions, oxygen and hydrogen.  
12,16   When the energy of an incident photon is equal 
to or greater than the band gap of the semiconductor 
material, an electron is excited from the valence 
band to the conduction band, generating a free 
electron and hole which participate in oxidation (1) 
and reduction (2) reactions, respectively.   

2H2O + 4h+  ↔  4H+ + O2                                    (1) 
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4H+ + 4e-  ↔  2H2                                                (2) 

During this process, a large proportion of hole-
electron pairs recombine at the surface and in the 
bulk material, dissipating energy in the form of light 
or heat. 17 Fast hole-electron recombination is 
detrimental to the PEC performance of a 
semiconductor as it reduces the number of charge 
carriers that can react in these photocatalytic 
reactions.  

A solar-to-hydrogen (STH) conversion 
efficiency of 10% is required for commercialisation 
of PEC water splitting, as well as cheap 
manufacturing and long-term stability of 
photoelectrodes. 18 To ensure a high STH 
conversion efficiency, the conduction and valence 
band positions should be more negative than the 
hydrogen evolution potential and more positive than 
the oxygen evolution potential, respectively, with a 
band gap of appropriate size to ensure a sufficient 
portion of the solar spectrum is absorbed. Water 
splitting requires a 1.23V difference between the 
redox levels of the oxidation  and reduction 
reactions at 20°C.   12 

The empty d band of Ti4+ in TiO2 means the 
valence band energy is heavily influenced by the O 
2p levels, hence the valence band is low in energy 
and stable towards oxidation under PEC usage. 12 
However, the highly ionic character of TiO2 
produces a band gap that is too large for efficient 
solar light harvesting as it cannot absorb visible 
light, which accounts for approximately 40% of the 
solar spectrum. 17  

Therefore, nanostructured anatase TiO2 films 
with high-energy facets exposed such as {0 1 0} or 
{0 0 1} have sparked great interest, especially the {0 
1 0} facet owing to its favourable surface atomic and 
electronic structure. 19 AACVD has been proven to 
produce optimal anatase TiO2 nanostructures with 
desert rose morphology and high exposure of the 
most active facet, {0 1 0}.  20 

To perform AACVD, an aerosol is generated 
by atomising the chemical precursors dissolved in 

solvent into finely divided sub-micrometre liquid 
droplets which are distributed throughout a gas 
medium, to be delivered into a  heated zone.  21 The 
solvent is rapidly evaporated or combusted, and the 
chemical precursor deposits the desired film. 21 

By adding dopants to the chemical precursor, 
impurities can be introduced into  pure TiO2 to 
enhance conductivity. There are two types of 
doping: n-doping and p-doping. 

In n-doping, the dopant atoms act as donors 
and conductivity is based on free electrons as they 
are the majority charge carrier. In contrast, for p-
doping dopant atoms act as acceptors, and free holes 
are the majority charge carrier and therefore 
determine conductivity. The band structure for n-
doping involves the Fermi level shifting to just 
below the conduction band, whereas for p-doping it 
lies just above the valence band (Figure 1).  22 

TiO2 has been doped with metal and non-metal 
dopants to address its limitations. Mahmoud et al 23  
adopted the hydrothermal method to dope with Mn, 
Cd, and Cu. Mn and Cd improved visible light 
absorption by 35% and 21.9%, respectively, and 
reduced band gap. Cu, however, only slightly 
improved light absorption but enhanced charge 
carrier lifetime. All dopants significantly improved 
photocatalytic activity towards water splitting. 
Regue et al 24 found that Mo-doped TiO2 
photoanodes prepared by spray pyrolysis also 
outperform TiO2 photoanodes, by a factor of two in 
terms of photocurrent. Wang et al  25 synthesised N-
doped TiO2 films by magnetron sputtering and 
improved photocatalytic activity by controlling the 
preferred orientation of the deposited films.  

Iron doping of TiO2 has also been widely 
investigated. Romero et al 26 produced Fe3+ doped 
TiO2 through calcination of a Ti-containing metal 
organic framework (MIL-125) obtained via 
hydrothermal synthesis. Increased visible light 
absorption and reduced recombination rate were 
achieved, with the optimal photocatalytic 
performance for water splitting being amongst the 
highest reported in literature, obtained at 0.5 wt.% 
Fe3+. 

Valence Band  

Conduction Band  

Band gap 
Fermi level 

Fermi level Holes 
Band gap 

Conduction Band  

Valence Band  

Electrons 

a) b) 

Figure 1: Band structure for n-doping (a) and p-doping (b) 
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Fe3+ doped TiO2 nanostructures have been 
formed by methods including sol-gel, 27 magnetron 
sputtering, 28 and molten salt, 29  with reported 
optimum Fe3+ concentrations as 0.2 at.%, 1.1 at.%, 
and 0.5 wt.% respectively. A decrease in band gap 
as well as a shift in the absorption edge towards the 
visible light region was observed. In all cases, the 
addition of Fe3+ resulted in higher hydrogen 
production in comparison to pure TiO2 and other 
types of metal doped TiO2 photoanodes.  

As indicated by previous studies, different 
synthesis methods can lead to different outcomes of 
optimal Fe3+ doping. This may be due to different 
synthesis methods accommodating Fe3+ ions in 
distinctive positions in the TiO2 structure.  26 The 
aim of this study is to address a gap in literature by 
reporting the effect of Fe3+ doping on TiO2 films 
formed by AACVD for the first time.  

Methods  

Materials  
Ethanol (96 vol%) and toluene (0.02 vol% water) 
were sourced from VWR Chemicals BDH, and 
titanium (IV) ethoxide Ti(OEt)4 and iron (III) 
chloride hexahydrate were sourced from Sigma-
Aldrich. Aluminoborosilicate glass (ABS) coated 
with a fluorine-doped tin oxide (FTO) transparent 
conductive layer (7Ω s-1) was provided by Sigma-
Aldrich and cut in 2.5cm-wide and 10cm-long 
substrates, for their use in the AACVD system. 
These substrates were cleaned ultrasonically using a 
RS PRO Ultrasonic Cleaner with Hellmanex III 
solution, isopropyl alcohol, and deionised water 
(each for 10mins), and finally dried with 
compressed air.  

Synthesis of Ti7O4(OEt)20 
Ti7O4(OEt)20  titanium oxo/ethoxy cluster was 
synthesised via controlled hydrolysis in toluene 
according to a procedure derived from Eslava et al 
30. A mixture of deionised water (0.68mL) and 
ethanol (10mL) was added dropwise to a solution of 
titanium (IV) ethoxide (14mL) in anhydrous toluene 
(30mL) under a nitrogen atmosphere. The mixture 
was stirred overnight, and subsequent solvent 
evaporation yielded a white/yellowish crystalline 
solid precipitate of Ti7O4(OEt)20.  

Preparation of TiO2 Photoanode 
The Ti7O4(OEt)20 precipitate was washed in toluene 
to make a combined solution (185mL). Iron (III) 
chloride hexahydrate was added for iron doping at 
0.05, 0.1, 0.5, and 1.0 mol% concentrations. The 
mixture was stirred vigorously to ensure the dopant 
was fully dissolved.  

All doped TiO2 photoanodes were prepared 
using AACVD.  Depositions were carried out onto 
FTO-ABS substrates, which were placed 
horizontally inside a tube furnace. Aerosol droplets 
were produced using a TSI Model 3076 Constant 
Output Atomiser, with nitrogen used as a carrier gas 
at a pressure of 0.9 bar. Following deposition at 
450oC for 1.5 hours, the substrate was left to cool 
under nitrogen flow. To remove carbon, the 
produced films were  annealed in air at 800oC  for 
2h in a three-zone tube furnace for CVD using a 
heating rate of 10oC min-1 after which they were left 
to cool in air.  

PEC Measurements  
To evaluate the PEC performance of the prepared 
photoanodes, the CompactStat. potentiostat by 
Ivium Technologies was used and photocurrents 
were measured under chopped simulated sunlight 
(AM 1.5G, 100 mW cm-2) from a filtered 300W 
xenon lamp source (Lot Quantum Design). PEC 
cells were prepared using a three-electrode 
configuration consisting of a silver chloride 
reference electrode (Ag/AgCl 3.5M KCl), Pt as the 
counter electrode, and the photoanode as the 
working electrode. The pH of the aqueous NaOH 
electrolyte solution was 13.9. Front illumination was 
used, and photocurrent-potential curves were 
recorded at a scan rate of 20 mV s-1. The Nernst 
equation (3) 31 was applied to convert the measured 
Ag/AgCl potentials (EAg/AgCl) to RHE potentials 
(ERHE).  

ERHE = 0.1976 V + 0.059 pH +  EAg/AgCl                       (3) 

Characterisation  
Ultraviolet-visible (UV-vis) absorption and 
reflectance spectra were measured using Shimadzu 
IRS 2600PLUS UV-vis spectrophotometer for 
wavelengths of 200-800nm.  X-ray diffraction 
(XRD) patterns were collected from 10-80° (2θ) 
Bragg-Brentano using Bruker AXS D8 Advance 
with Cu Kα (0.154 nm) radiation, 0.023°(2θ) step 
size and a total integration time of 1020s. Scanning 
electron microscopy (SEM) micrographs were 
obtained using LEO Gemini 1525 field emission gun 
scanning electron microscope (FEGSEM) using an 
acceleration voltage of 5kV.    

Results and Discussion  

SEM  
Figure 2 displays SEM micrographs of pure TiO2 

and Fe3+ doped TiO2 . It can be observed that porous 
morphology was synthesised for all samples. Pure 
TiO2 (Figure 2a) was determined to have a similar 
structure to what is expected, (Figure 2b) according 
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to findings by Regue et al 20 but does not exhibit the  
same unique desert rose morphology.  

There are also general structural differences 
between the pure and doped samples in terms of size 
and shape. Factors such as carrier gas flowrate, 
precursor synthesis and temperature are known to 
influence morphology and therefore could explain 
this. The most likely cause of these variances is the 
precursor, as the addition of varying amounts of Fe3+ 
to obtain each concentration could have altered the 
reaction and decomposition paths which could affect 
morphology, as seen in previous studies.  9  There 
could also be slight variances between the precursor 
solutions as precursor synthesis was carried out 
multiple times.  

Although it was aimed to produce and use 
identical precursors, this was not possible due to the 
dropwise addition of the ethanol-water mixture by 
hand as well as the time until use of the precursor 
solution each time, given its highly sensitive nature 
to air and water. Nevertheless, it was attempted to 
control this by staggering the dropwise addition of 
the ethanol-water mixture and creating a tight seal 
around the precursor bottle after each synthesis. 

 
 
 

XRD  
Figure 3 shows the XRD patterns of the Fe3+ doped 
and pure TiO2 films on FTO-ABS substrates, as well 
as the FTO-ABS substrate itself. No diffraction 
peaks associated with iron were observed for Fe3+ 
doped TiO2 films, seemingly indicating that Fe3+ 
ions were successfully incorporated into the TiO2 
lattice structure without Fe2O3 formation on the 
surface of TiO2 or any other impurity states. 32  
Alternatively, the absence could be attributed to the 
very small iron content being undetected by XRD, 
which is very likely. All the diffraction peaks of 
TiO2 can be assigned to the anatase phase of TiO2 

(ICDD-JCPDS 71-1166). Specifically, the 
diffraction peaks at 25.2°, 48.0°, and 55.1° (2θ) 
correspond to the (1 0 1), (2 0 0), and (2 1 1) 
diffraction planes. The other diffraction peaks can 
be assigned to the FTO-ABS substrate. The 
confirmation of anatase phase TiO2 being the only 
present phase is important for maximal 
photocatalytic activity due to improved charge 
carrier migration to the surface. Doping with Fe3+ 
did not change the phase of TiO2, as desired.  To 
identify the high exposure facets, transmission 
electron microscopy (TEM) should be carried out.  

 

Figure 3 – X-ray diffraction (XRD)  patterns of Fe3+ 
doped TiO2, pure TiO2, FTO-ABS substrate, and anatase 
TiO2 (ICDD-JCPDS 71-1166) 

 
Figure 2: Scanning electron microscopy (SEM) images 
for (a) pure TiO2 (b) expected pure TiO2 desert rose 
morphology (c) 0.05 mol% Fe3+-doped TiO2 (d) 0.1 
mol% Fe3+-doped TiO2 (e) 0.5 mol% Fe3+-doped TiO2 (f) 
1 mol% Fe3+-doped TiO2 

 

200 nm 

200 nm 200 nm 

200 nm 

200 nm 

200 nm 

a) b) 

c) d) 

e) f) 
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UV-vis Spectroscopy 
Figure 4a shows the relation between absorbance 
and doping concentration. Fe3+ doping did not have 
a significant effect on  the visible light (400-700nm) 
absorption of TiO2. However, a small increase was 
observed at 1.0 mol% Fe3+ doping, which is due to 
this sample possessing a smaller band gap than pure 
TiO2.  

In the UV region (200-400 nm), similarly, only 
1.0 mol% Fe3+ doping resulted in increased 
absorbance in comparison to pure TiO2. It can also 
be seen in Figure 4b that there is a red shift in 
absorbance for 1.0mol% Fe3+ doping. This red shift 
is likely to be a result of the successful inclusion of 
Fe3+ into the TiO2 crystal structure, 32 and excitation 
of Fe3+ 3d electrons to the TiO2 conduction band.  34 
This effect has also been widely observed in 
previous instances of Fe3+ doping. 32,33,35,36  

The band gap was determined for each sample 
using data from reflectance and Tauc’s relation: 
 
αhν = A( hν - Eg )n                                                  (4) 

Where α is the absorption coefficient in m-1 , hν 
is the photon energy in eV, A is a constant, Eg is 
bandgap in eV, and n is an index of value 0.5 and 2 
for indirect and direct transitions, respectively.  33 In 
this case, n = 2 was chosen as anatase TiO2 has an 
indirect band gap.   

The Tauc plots obtained for each doping 
concentration can be seen in Figure 4d. The band 
gap was subsequently determined by drawing two 
tangents to the curve and taking the value at the point 
of their intersection. An example of this for pure 
TiO2 can be seen in Figure 4e. The band gaps have 
been summarised in Table 1.   

 
Table 1: Band gap values determined for pure TiO2 and 
Fe3+ doped TiO2 at different concentrations 

Fe3+ concentration 
(mol %) 

Bandgap (eV) 

0 3.273 
0.05 3.276 
0.1 3.286 
0.5 3.285 
1 3.268 

 
The value determined for pure TiO2, 3.273 eV, has 
good agreement with the value found in literature as 
3.2 eV. 37 1.0 mol% Fe3+ doping resulted in a 
decreased band gap which agrees with the increased 
visible light absorbance observed. This is due to 
doping introducing new Fe3+/Fe2+ energy levels 
which result in the excitation of 3d Fe3+ electrons to 
the TiO2 conduction band.  38  

0.05 mol%, 0.1 mol%, and 0.5 mol% Fe3+ doping 
resulted in larger band gaps than pure TiO2 which 

Figure 4: UV-Vis (ultraviolet -visible)  (a) absorption spectra (b) absorption spectra in the visible light region (c) reflectance spectra (d) Tauc 
plot for TiO2 and Fe3+ doped TiO2 at different concentrations (e) Tauc plot for pure TiO2 demonstrating how band gap was obtained 

a) b) c) 

d) e) 
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agrees with the lower absorbance observed in 
comparison. These results differ from trends in 
literature which generally show reduced band gaps 
and increased light absorbance for all Fe3+ 

concentrations. 32,33,35,36 This could potentially be 
attributed to Fe3+ acting as recombination centres, 
reducing photocatalytic activity and absorbance. 
This effect will be discussed in further detail in the 
PEC Measurements section.  

The reason for reduced band gap not being 
observed for 0.05 mol%, 0.5 mol% and 0.1 mol% 
Fe3+ doping could potentially be Fe3+ ions not 
having an influence on the band structure due to the 
doping concentration being too low.  

Finally, it is possible that the thickness of the 
deposition had an influence on absorption. The 
thickness of the deposition can change between 
experiments for many reasons. The dominant factor 
was determined to be cloudiness of the precursor 
solution caused by rapid addition of the ethanol-
water mixture and was mitigated against as much as 
possible as described previously in the SEM section. 
The level of precursor liquid was also kept constant 
between experiments to ensure the flow of nitrogen 
was sufficient for adequate deposition to occur. 

 
Photoelectrochemical Characterisation  

Figure 5 presents the PEC performance of the 
samples. Fe3+ doping significantly affects the 
photocurrent density, with higher iron doping 
resulting in higher photocurrent density. This is 
because Fe3+ plays the role of an intermediate for the 
efficient separation of photogenerated  electron-hole 
pairs.  39 Fe3+ can trap electrons due the Fe3+/Fe2+ 

energy level being below the conduction band edge 
of TiO2. Fe2+ can be oxidised to Fe3+ by transferring 

electrons to absorbed O2 on the surface of TiO2. 
Simultaneously, Fe3+ can trap holes due to the  
Fe4+/Fe3+ energy level being above the valence band 
edge of TiO2. The trapped holes in Fe4+ can migrate 
to the surface and absorb hydroxyl ions to produce 
hydroxyl radicals. 40 This inhibits the recombination 
of hole-electron pairs and improves photocatalytic 
activity. Fe3+ is a relatively stable ion due to the 
semi-full 3d electronic configuration, therefore, a 
charge trapped by Fe2+ or Fe4+ can easily return to 
the Fe3+ state and participate in the photocatalytic 
reactions. 40 However, when the concentration of 
Fe3+ becomes too large, Fe3+ can act as 
recombination centres for hole-electron pairs due to 
the decrease in distance between trapping sites. 41 It 
is unlikely that an excess Fe3+ concentration was 
reached in this study as there is no peak in 
photocurrent density.  

Surprisingly, compared to pure TiO2, lower 
concentrations of doping seemed to decrease the 
photocurrent density. There was only an 
improvement upon pure TiO2 for Fe3+ doping of 1.0 
mol% at which an optimum photocurrent of 0.52 
mA cm-2 was achieved at +1.23 VRHE.  A potential 
explanation is Fe3+ doping having a net negative 
effect on the photocurrent density at lower 
concentrations, with the prominent effect of Fe3+ 
doping being charge recombination centres, rather 
than an increase in the concentration of holes and 
electrons available to react. While it should be noted 
that different fabrication techniques can lead to 
differences in photocatalytic activities, previous 
studies were consulted to interpret these results.  
Previously, increasing Fe3+ dopant concentration has 
led to increased photocurrent density until an excess 
Fe3+ concentration is reached. 36,39,42 However, 
decreasing photocurrent densities with increasing 
Fe3+ concentration have also been reported and 
attributed to defect states acting as recombination 
centres for charge carriers. 43 A decrease in 
photocatalytic activity with Fe3+ doping of TiO2 was 
found by another study which reasoned this outcome 
with an unfavourable location of Fe3+ inside the 
interior matrix of TiO2 rather than on the exterior 
surface, 44 where it could act as trap sites for 
eventual charge transfer at the interface.  45 Further 
structural characterisation techniques such as X-ray 
photoelectron spectroscopy (XPS) can be used to 
understand the nature of the Fe3+ incorporation into 
the TiO2 structure. 

However, the increasing photocurrent density 
with increasing doping concentration suggests there 
is a beneficial effect of Fe3+ doping, which 
dominates at 1.0 mol%.  

 

Figure 5: Photocurrent potential curves of TiO2 and Fe3+ 
doped TiO2 at different concentrations under 1 sun chopped 
illumination (AM 1.5G, 100mWcm-2) 
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Conclusion  
It can be concluded that Fe3+ doping of 
nanostructured TiO2 photoanodes has the potential 
to address the limitations of TiO2. The maximum 
photocurrent density was obtained with the 1.0 
mol% Fe3+ doped TiO2 film which is higher than that 
achieved with the undoped TiO2 film. At lower 
concentrations, a decrease in photocurrent was 
observed compared to pure TiO2 which could be due 
to Fe3+ acting as hole-electron recombination 
centres.  

The XRD results confirmed that anatase TiO2 
was successfully formed, the most 
photocatalytically active crystalline form of TiO2. 
Fe3+ doping did not have an impact on the TiO2 
phase synthesised, and anatase phase was 
maintained, as desired. SEM micrographs verified 
the production of porous morphology in all samples. 
However, structural differences, in especially the 
structure size and shape were seen across the 
samples because of variances in the precursor used. 
UV-vis spectroscopy confirmed that Fe3+ doping 
reduced band gap at 1.0 mol%, with increased light 
absorption in the UV and visible ranges.  

More experiments need to be conducted to 
confirm the effect of Fe3+ doping on the performance 
of TiO2 photoanodes. By testing higher 
concentrations of Fe3+ doping, a peak in 
photocurrent density should be identified to be able 
to realise the full potential of Fe3+ doping in 
addressing the limitations of TiO2. Further structural 
characterisation techniques such as XPS and TEM 
can be used to further understand the effect of  Fe3+ 
doping on TiO2.  
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Flexible Poly(ethylene glycol) Diacrylate/Acrylamide Microneedle Patch  

for Non-invasive, Continuous Glucose Monitoring 

Tai Xuan Tan and Marieke De Bock 

Abstract Non-invasive, robust, flexible, and reversible detection systems that are easily manufactured are an unmet 
biomedical need for providing continuous monitoring of glucose levels in diabetic patients. In this study, the development 
and successful integration of a hydrogel from poly(ethylene glycol) diacrylate (PEGDA) and acrylamide (AM) as a 
microneedle (MN) base is demonstrated. MN sensors are emerging as a non-invasive, point-of-care technology with great 
potential to replace traditional sampling methods for continuous glucose detection in interstitial fluid (ISF), but material 
limitations prevent their widespread usage. The hydrogel was formulated with a differing PEGDA:AM ratio through 
photopolymerization, and subsequently, the dimensions of the MN base were characterised using a light microscope. The 
PEGDA:AM ratio in the formulation was optimised to obtain the desired mechanical properties. The compression 
modulus was recorded at 0.174 ± 0.023 MPa at PEGDA:AM 70:30, indicating high flexibility, whilst also reporting 
excellent compressive strength at 35.0 ± 0.7 MPa for human skin insertion. These optimal mechanical properties were 
compared to those of MN patches formulated from poly(vinyl alcohol) (PVA), a frequently reported MN base material. 
An insertion test in porcine skin confirmed insertion capabilities as a MN base, achieving an insertion depth of 159 ± 1 
µm. The MN base did not impose any optical limitation on signal transmission when attached to a Förster resonance 
energy transfer (FRET) biosensor, where the device provided a linear response (R2 = 0.984) to variable glucose 
concentration in artificial ISF. These attractive properties of this newly proposed hydrogel, such as ease of preparation, 
flexibility and excellent mechanical performance, indicate its potential towards mainstream treatment of diabetes mellitus.   

Keywords microneedle, continuous glucose monitoring, poly(ethylene glycol) diacrylate, acrylamide, mechanical 
properties, fluorescence 

1. Introduction 
1.1 Diabetes mellitus  

The prevalence of diabetes mellitus, a lifelong condition in 
which the pancreas produces no or insufficient insulin to 
control glucose levels, is expected to increase by 10.1% 
from 2020 to 2030 according to WHO data sources [1]. 
Today, it is estimated that over 530 million adults 
worldwide are affected by this disease [2].  
    Patients diagnosed with diabetes mellitus suffer from 
abnormal blood glucose levels, leading to hypo- or 
hyperglycaemia. These levels must be monitored regularly 
to effectively administer insulin injections. The lack of 
strict regulation puts patients at risk for blindness, heart 
disease, or liver disease [3]. The glucose enzyme biosensor 
was introduced by Clark and Lyons in 1962 [4] and many 
discoveries have been made in the field since then. 
However, challenges remain in clinically accurate tight 
glycaemic monitoring. The most widely used technique for 
diabetes management is capillary blood sampling using a 
finger prick device with a test strip. This method is costly 
and invasive, making the user more prone to infections, and 
must be performed daily, especially for type 1 patients [5]. 

1.2 Continuous glucose monitoring 
Continuous glucose monitoring (CGM) has significant 
advantages over traditional intermittent monitoring, such as 
trend prediction capabilities and detection of unsuspected 
hypo- or hyperglycaemia [6]. In 2019, the U.S. Food and 
Drug Administration had approved nine CGM devices for 
commercial use, of which only one based on a fluorescence 
detection mechanism: Eversense (Senseonics, 

Germantown, MD, USA) [7]. Almost half of these devices 
analyse ISF, found in the surroundings of cells in the dermal 
layer. This body fluid is formed by capillary filtration 
through blood and therefore has a composition similar to 
that of plasma. The composition provides a reliable 
alternative to blood biomarker concentrations for a wide 
range of health-related parameters, including glucose [8]. 
Bruen et al. (2017) reported that the blood glucose 
concentration of a normal healthy adult ranges from 4.9 to 
6.9 mM, while for diabetic patients it is reported to vary 
between 2.0 and 40.0 mM [9]. In comparison, the glucose 
concentration in ISF has a smaller range, between 3.9 and 
6.6 mM for healthy adults and between 2.0 and 22.2 mM 
for diabetic patients. Furthermore, ISF composition is not 
influenced by fluctuating flow rates, lack of fluid 
replenishment, or sample dilution, which are issues that 
commonly affect other biofluids [8]. These interesting 
properties of ISF are utilized by microneedle (MN) 
technology to carry out non-invasive detection. Despite 
major advances in this field, many CGM wearables still face 
barriers such as the need for periodic replacement, re-
calibrations, lack of clear interpretation of results, or 
discomfort of the device [10], which has resulted in limited 
implementation. 

1.3 Microneedle patches 
One of the most promising approaches for CGM is using a 
MN array. These can be applied directly to the skin or 
organs with applications in local drug delivery and 
detection [9]. The patches, which measure biomarkers in 
ISF, are attractive as micrometre-sized needles penetrate the 
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protective dermal barrier, but do not reach deep enough to 
initiate a painful sensation. Direct measurement occurs 
through mechanisms such as electrochemical, optical, 
magnetic, or colorimetric read-out [6]. MNs with 
fluorescent sensors have emerged in applications due to 
their high sensitivity and specificity, ease of use, low cost, 
and ability to measure biometrics. A typical technique, 
Förster resonance energy transfer, has reported a high 
signal-to-noise ratio [11] and is capable of elucidating 
dynamic interactions.  
    The arrays can be formulated from materials found in 
living organisms or from synthetic polymers for more 
customisable characteristics (Table 1). As a result of their 
biocompatibility and affinity with functional groups for 
fluorescence sensing, hydrogel MNs are discussed in this 
study. Initially manufactured in stainless steel with the 
intention of administering drugs, polymeric MNs have now 
shown great potential to measure various biomarkers 
including glucose [12]. Although the research field on MN 
sensor devices has been developing rapidly, the 
optimisation and comparison of biomaterials for general 
MN patch purposes has received considerably less 
attention.  

1.4 Challenges and prospects 
The fabrication of MNs as functional wearable for long-
term use remains especially challenging. First, no flexible 
biosensor patch that allows continuous and reversible 
measurements has yet been reported. Fundamental aspects, 
such as durability and usability, are influenced by material 
selection and formulation. In addition, the fabrication of 
MNs must consider biocompatibility, cost, lifetime, and 
sensor accuracy [13]. However, there is little information at 
the moment on the suitability of the material for a MN 
sensor patch. This necessitates an exploration of materials 
and their characterisation to bring MN devices to the next 
level, which is the focus of this work. 
    This study introduced a hydrogel formulation from 
poly(ethylene glycol) diacrylate (PEGDA) and acrylamide 
(AM) and evaluates its ability as a MN base for continuous 
and reversible glucose sensing. First, the consistency of the 
dimensions of the material is discussed for different 
PEGDA:AM ratios and is compared to MNs fabricated 
using poly(vinyl alcohol). Second, the mechanical 
properties of the patch are characterised, which allows to 
quantify the flexibility, and the ability of the patch to pierce 
porcine skin is assessed. Finally, this report presents an 
assessment of the selected MN base material for FRET 
detection of glucose concentration when integrated with a 
biosensor layer. 

2. Background 
Hydrogels are an emerging class of polymeric materials that 
are broadly recognised to have potential in the 
biotechnology industry. These 3D-dimensional network 
materials can be found naturally, such as gelatine and 
chitosan, but also artificially synthesised, with prominent 
examples of PVA and perfluoromethyl vinyl ether, or a 
combination of both [14]. Hydrogels can be classified 
according to their cross-linking methods [15]. Physical 

cross-linking, by physical entanglement or interactions such 
as hydrogen bonding or van der Waals forces, reports good 
bioavailability. In chemically cross-linked hydrogels, the 
polymer chains are covalently linked, providing excellent 
mechanical strength. Photoinitiated chemical cross-linking 
occurs through radiation exposure, where photoinitiators 
absorb the photons and form free radicals, which in turn can 
react with vinyl bonds in monomers and form a polymer 
network that preserves its structure in an aqueous medium 
[16]. This cross-linking technique was applied in 
fabrication of PEGDA/AM hydrogels in this work.  
   The unique property of hydrogels, specifically non-
solubility in water while hydrophilic [15], due to the 
presence of hydroxyl, carboxylic, amidic, sulfonic acid or 
primary amide group residues, offers many applications in 
the biomedical industry. Their matrix structure filled with 
water resembles living tissue and structures, making them 
suitable for applications to skin, such as MN patches or 
other wearables. The swelling capacity and other 
mechanical properties of this material can be tailored by 
changes in its chemical composition, length of the elastic 
chain, or cross-link density [17].  The variety of hydrogel 
materials offers great potential in achieving desirable 
characteristics of a MN base, such as flexibility, 
transparency, and durability. 

   2.1 Poly(ethylene glycol) diacrylate/Acrylamide 
PEGDA is a monomer derivative of the biodegradable 
polymer polyethylene glycol (PEG) with two acrylate 
groups. Due to its ability to be cross-linked by various 
methods and its availability in a wide range of molecular 
sizes, it has tuneable mechanical properties [15]. Although 
it is a monomer, it acts as a crosslinker in this formulation, 
where it bonds linear chains together. AM is a commonly 
used hydrogel, having good hydrophilicity with its amide 
functional group (-NH2). It is well known as a small 
molecular weight monomer [18]. However, because it is a 
monomer with only an acrylate group, it is only able to form 
linear polymer chains without a crosslinker present.  
    A mixture of AM and PEGDA forms a highly stretchable 
network, with the addition of a water-soluble photoinitiator, 
such as 2-hydroxy-2-methylpropiophenone [19]. 
Polyethylene glycol-bonded polyacrylamide hydrogel 
fibres have shown potential for continuous blood glucose 
detection, preserving their functionality for up to 140 days 
[20]. Only one MN has been reported that included both 
AM and PEGDA in its formulation [5], however, they were 
not combined instead incorporated in different layers of the 
patch. The PEGDA MN base was coated with colloidal 
crystals through the incorporation of a fluorophenylboronic 
acid-based matrix which included AM for attachment to the 
base layer. However, PEGDA alone as a MN base has been 
widely reported for transdermal drug delivery. Its precisely 
controlled structure and ability to cross-link in a short time 
were the deciding factors for PEGDA-based MN as it did 
not compromise the potency of the peptide [21]. Gao et al. 
have demonstrated the potential of film-coated PEGDA 
MNs for antibacterial applications [22], which is a useful 
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property for a CGM patch that is applied to the skin over a 
long period of time. However, there is a literature gap on 
reproducible fabrication methods and study of mechanical 
properties of the co-hydrogel formulated from PEGDA and 
AM, which will be addressed in this work. 

2.2 Poly(vinyl alcohol)  
The synthetic hydrogel PVA serves many applications in 
the biomedical field, amongst which in wearable devices. It 
is composed of linear polymer chains with a simple 
aliphatic [-C-C-] backbone and repeating hydroxyl (-OH) 
functional groups. This allows the formation of 
microcrystalline domains through hydrogen bonding, 
resulting in interesting properties, such as chemical 
resistance and high flexibility, while also being 
mechanically strong [23]. The simple chemical structure of 
PVA poses a minimal risk of toxicity to the human body 
[24]. Numerous projects such as those reported by Chen et 
al. (2021), He et al. (2020), and Coyne et al. (2017) have 
demonstrated that PVA is a suitable material with the 
necessary mechanical integrity for MN applications. 
    A key reason for the comparison of PVA to PEGDA/AM 
is its variety of fabrication methods [25]. Freezing and 
thawing is among the most widely used physical cross-
linking methods in biotechnology. Through varying the 
freezing/thawing cycles, PVA can obtain viscoelastic 
properties that closely resemble those of natural human 
tissue. The drastic change in temperature encourages the 
formation of hydrogen bonds and hence increases the 
degree of cross-linking in the hydrogel. He et al. developed 
a MN sensor patch from a mixture of PVA and chitosan to 
extract ISF. The loading force required to break the needle 
tips was reported to be greater than 3.0 N per needle, 
indicating that the patch had the required mechanical 
strength to penetrate the stratum corneum and epidermis 
layer [26]. 
    PVA can also be chemically cross-linked to fabricate 
MNs, as reported by Tekko et al. [27]. Cross-linking was 
performed through the addition of citric acid (CA), which 
acts as a nontoxic crosslinker. At high temperatures, CA 
converts to a cyclic anhydride, which esterifies with the 
hydroxyl groups present, forming chemical cross-links. The 
patches demonstrated sufficient mechanical strength and 
piercing ability in porcine skin, with a maximum force of 
10.8 N for 15% PVA + CA 5% (w/w). Furthermore, PVA 
was selected as the patch material due to its transparency 
and ability to form fine films needed to observe the colour 
change [28]. In this study, the performance of the patches 
through both cross-linking methods will be evaluated. 

2.3 Other polymeric materials 
Despite copolymer poly(methylvinylether co. maleic acid) 
(PMVA/MA) having limited application due to its 
brittleness, when cross-linked with a plasticiser, such as 
PEG, it has excellent mechanical strength and antibacterial 
properties [29]. It was found that a patch with 121 needles 
consisting of 20% PMVA/MA and 7.5% PEG did not show 
deformation up to a force of 36.3 N, which is far sufficient 
for insertion into human skin [30].  

    Modifying natural hydrogel gelatine with methacrylic 
anhydride (MA) not only prevents thermal degradation, but 
also improves its elasticity and stiffness [31]. Gelatine 
methacrylate (GelMA) is optically transparent, indicating 
its suitability in signal transmission for fluorescence-based 
biosensors [32]. The highest compressive modulus of the 
MN patch designed by Zhu et al. (2020) was reported to be 
7.23 MPa [33]. 
    A third hydrogel reported for MN patches is 
methacrylated hyaluronic acid (MeHA). Hyaluronic acid 
(HA) is a nonsulfated glycosaminoglycan that can be found 
in human biofluid and almost all tissues [34]. Its linear 
chemical structure consists of repeating units of glucuronic 
acid and N-acetyl glucosamine [35]. This includes 
hydrophilic carboxyl and hydroxyl groups, allowing it to 
absorb water. Although HA alone provides a weak 
mechanical structure and quickly dissolves in aqueous 
solution, the covalent bonding with methacrylate groups 
increases rigidity and resistance to degradation while 
maintaining biocompatibility [36]. 

Table 1. Summary of MN materials for biochemical 
sensing and diagnosis 

Material Class Young’s 
modulus (MPa) Ref. 

PVA/PVP Hydrogel 199-211 [37] 
PVA Hydrogel 10-200 [38] 

MeHA Hydrogel 0.175-0.218 [39] 
PMVA/MA 5% : 

PEG 10,000 Hydrogel 71.1 – 115 [40] 

Gelatine 
Methacrylate Hydrogel 0.003-0.180 [41] 

Clear Resin from 
Formlabs Plastic 1600-2800 [42] 

3. Methods 
3.1 Materials 

Poly(ethylene glycol) diacrylate (average MW 700), 
acrylamide (purum, ≥ 98%), dimethyl sulfoxide, 2-
hydroxy-2-methylpropiophenone (97%), poly(vinyl 
alcohol) (MW 85000-124000, 87-89% hydrolysed), citric 
acid (anhydrous, ≥99.5%), 3-(acrylamido)phenylboronic 
acid (98%),  acryloxyethyl thiocarbamoyl rhodamine B, 
N,N’-methylenebis(acrylamide) (99%) , calcium chloride 
(anhydrous, ≥93.0%  ), HEPES (≥ 99.5% (titration)), 
potassium chloride (ACS reagent, 99.0-100.5%), 
magnesium chloride (anhydrous, ≥98%), sodium chloride 
(100.0%), sodium phosphate monobasic (≥99.0%), sucrose 
(≥99.5%), D-(+)-glucose (anhydrous) and methylene blue 
were purchased from Sigma-Aldrich. Standard microneedle 
polydimethylsiloxane (PDMS) mould was obtained from 
Blueacre Technology (needle height 600 μm, needle base 
300 μm, spacing 600 μm, array size 11x11). Ethanol 
absolute was obtained from VWR chemicals. 

3.2 Equipment 
An ultraviolet crosslinker (UVP CX-2000, Fisher 
Scientific ) was used for the chemical cross-linking of 
PEGDA. Freezer (ES Series Combination, 363C-AEV-TS, 
Thermo Scientific) was used for freeze-thawing cycles. The 
EZ50 Universal Materials Testing Machine (Lloyd 
Instruments) with a 100N load cell was used to conduct 
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mechanical tests. The light microscope (Leica DM2700 P) 
was used to observe samples and capture pictures of 
experiment samples. The Microplate Reader (Varioskan 
LUX Multimode, ThermoFisher) was used to measure the 
intensities for different glucose concentrations. 

3.3 Preparation of PEGDA/AM hydrogel  
5 different PEGDA:AM ratios were formulated. These 
ratios were expressed as mole fractions, 𝑚𝑜𝑙𝑃𝐸𝐺𝐷𝐴

𝑚𝑜𝑙𝑃𝐸𝐺𝐷𝐴+𝑚𝑜𝑙𝐴𝑀
 (% 

mol/mol of total monomers) and denoted as PEGDA/AM%, 
ranging from 50% to 90%. The concentration of total 
monomers used are kept constant as 7.5 M HMPP (11.45% 
v/v) was added as the photoinitiator for each solution. They 
were all dissolved in DMSO solvent at room temperature. 

3.3.1 Preparation of PEGDA/AM MN 
120 µL of each precursor solution was placed on the PDMS 
MN mould, covered with a glass slide with spacers (Figure 
1). Glass slides were carefully lowered onto the PDMS 
mould to avoid trapping bubbles. They were UV cross-
linked for 20 minutes, inverted, and then run for another 10 
minutes to ensure that even cross-linking was achieved. The 
mould was carefully peeled off the MN patches at least 30 
minutes after cross-linking. They were left to dry under the 
fume hood to detach themselves from the glass slides before 
being immersed in DI water overnight. This was done to 
prevent cracks or shattering due to rapid and uneven 
swelling. The dimensions of the MN were examined under 
the light microscope and measured to scale for 3 
measurements per dimension per composition provided by 
the Leica computer software (LAS 14.2), connected to the 
microscope. 

 
Fig. 1 Procedure of MN patch fabrication with PEGDA/AM hydrogel 
material via photoinitiated cross-linking 

3.3.2 Preparation of PEGDA/AM hydrogel films 
Thin films of the material were prepared for their 
consistency and ease of fabrication. 200 µL of each polymer 
solution was pipetted onto a flat polyester aluminised film, 
between tape strips attached acting as spacers, and then 
covered with glass slides. The setup was then UV cross-
linked for 30 mins until solid hydrogel films were obtained. 
The films were peeled off the glass slides and stored for 
characterisation. 

3.4 Preparation of PVA MN patches 
3.4.1 Preparation of Freeze/Thawed PVA hydrogel 

(FT-PVA) 
An aqueous 30% w/w PVA precursor solution was prepared 
by dissolving PVA in DI water at 90 °C for 4h. After being 
cooled to 37 °C, the solution was poured into the PDMS 

mould and covered with a glass slide. The freezing 
the/thawing cycle involves freezing hydrogel at -20 °C for 
10h, then thawing at room temperature for 4h. The patch 
was removed from the mould and stored at room 
temperature. 

3.4.2 Preparation of PVA + CA hydrogel 
Aqueous 15% w/w PVA precursor solution was prepared 
through the same manner as FT-PVA. CA (1.5% w/w) was 
added and dissolved. The MN patches were prepared by 
pouring the precursor solution onto the mould, then placed 
in a vacuum chamber for 2h to remove trapped bubbles. 
They were dried in an oven at 60 °C for 1h, then cured at 
130 ± 1 °C for 40min. The patch was then cooled to room 
temperature for storage. 

3.5 Mechanical testing 
3.5.1 Mechanical testing of films 

3 sample films of each PEGDA:AM ratio were tested using 
the EZ50 universal testing machine in both compression 
and tensile mode. Their thickness was first measured using 
the light microscope, and surface areas were measured 
using image processing software (ImageJ) with a ruler as 
scale. The load exerted and the extension of the sample was 
measured as the upper platform was lowered onto the MN 
films to a maximum force of 50 N. All tests were run at 0.1 
mm min-1. The compressive modulus, Ec, of the films was 
calculated as the gradient of the linear region on the stress-
strain plots of the films (Eq. 1), where τ is stress, the applied 
force per unit of cross-sectional area normal to the 
extension force, and ε is strain, the ratio to its original 
thickness of the sample.  

𝐸𝑐 =
𝜏
ɛ
 (1) 

For tensile tests, the films were clamped and stretched to the 
point of fracture. The tensile modulus, Et, was calculated in 
the same manner as Ec. The breaking stress, or the ultimate 
tensile stress, was also measured and plotted for 
comparison. 

3.5.2 Comparison of MNs for different materials 
MN patches fabricated from PEGDA/AM 70%, FT-PVA, 
and PVA/CA were observed under the microscope for 
comparison of dimensions, with 3 measurements per 
material per dimension. They were then tested in 
compression mode, in the same manner as the films. The 
patches were placed with needles facing upward for the 
tests. MN patches differ from films where their stress-strain 
curves are influenced by the shape and behaviour of needle 
structures under stress. To avoid dependencies on needle 
structure across different materials, the stress-strain curve 
was divided into two parts: prefracture and post-fracture. 
Assuming elastic behaviour and constant contact area, the 
postfracture region was identified as the first linear region 
encountered and was used to calculate the compression 
moduli. The compressive strengths of the patches were also 
measured, which is defined as the maximum stress 
withstood by the needles before the point of failure or 
fracture. The cross-sectional area is taken as the area at the 
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tip, Atip. The strain at point of fracture, εfrac, can be 
calculated using Eq. 2, where ε0,linear is the strain at the start 
of the height of the linear region, h is the needle of the 
sample and l0 is the original thickness of the MN base. 

𝜀𝑓𝑟𝑎𝑐  =  𝜀0,𝑙𝑖𝑛𝑒𝑎𝑟 −
ℎ
𝑙0

 
(2) 

The safety margin was then calculated using Eq. 3, which 
quantifies the ability of the MN to pierce through skin [43]. 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (3) 

3.5 MN Insertion tests 
The PEGDA/AM 70% MN patches were inserted into 
porcine skin. Methylene blue dye was prepared by first 
dissolving the methylene blue powder (1.5% w/v) in 95% 
ethanol. The saturated solution was then diluted with DI 
water in a ratio of 3:10. For top-view insertion, the MN 
patches were inserted. Several drops of methylene dye were 
added immediately after the patch removal. After 5 seconds, 
excess dye was wiped from the skin surface. For the cross-
sectional view, a piece of porcine skin was immersed in the 
dye for 5 seconds, then washed with DI water to remove 
excess dye. The MN insertion was carried out near the edge 
of the skin tissue. The tissue was then sliced to obtain a 
cross-sectional sample. Samples were observed under an 
optical microscope. Digital images were captured and 
compared. The depth of the insertion was measured in 5 
samples. 

3.6 Quantification of glucose concentration through 
FRET signalling 
The fabrication of the biosensor layer has been optimised 
by Dr. Hu and demonstrated high sensitivity and 
reversibility to glucose in PBS buffer solutions. 

3.6.1 Preparation of fluorescent biosensor 
AM (19.0 % w/v), 3-APBA (12.73 % w/v), Fluorescent dye 
(0.27 % w/v), RhB (0.22 % w/v) and MBA crosslinker (0.13 
% w/v) were dissolved in DMSO for the preparation of the 
fluorescent biosensor. HMPP photoinitiator (1% v/v) was 
added to the solution. 80µL of the solution was added to the 
PDMS mould and the MN base fabricated from Section 3.3 
was carefully placed on top, covering the solution. The set-
up was UV-cross-linked for 45 mins on one side, flipped, 
and cross-linked for another 30 mins. The MN patch was 
dried and immersed in DI water for storage. 

3.6.2 Preparation of artificial interstitial fluid 
Artificial ISF was prepared by adding 2.5 mM CaCl2, 10 
mM HEPES, 3.5 mM KCl, 0.7 mM MgCl2, 1.5 mM 
NaH2PO4 and 7.4 mM sucrose to DI water. To compare the 
intensities of different glucose concentrations, D-(+)-
glucose was added to artificial ISF in concentrations of 4 
mM, 8 mM, 12 mM, 16 mM, 20 mM and 24 mM glucose. 

3.6.3 Fluorescence intensity measurements 
The intensities of MN with biosensor were recorded with 
emission spectra 500 - 700 nm by excitation at 470 nm in 1 

ml of artificial ISF solution. The MN device was incubated 
in solution for 25 min and measurements were repeated 
three times to ensure the equilibrium of the glucose 
complexation. 

4. Results & Discussion 
4.1 Fabrication of PEGDA/AM MN patches 

After photopolymerization of PEGDA/AM, the MN 
patches exhibited varying degrees of curling behaviour. 
This phenomenon could be explained by the surface tension 
of excess non-cross-linked solution on the glass slide being 
transferred to the polymer chains through an attractive 
interaction during the drying process, pulling them together 
and causing the patch to curl up [44]. This process occurred 
unevenly, often with local release of the patch from the 
slide, which initiated its breakage. Immediate immersion of 
the patch in water, however, did not resolve the issue 
because rapid swelling of the hydrogel when attached to the 
slide led to deformation and cracking. To address these 
fabrication difficulties, the PDMS mould was kept on the 
cross-linked patch for at least 30 min, providing a 
mechanical support for the patch to release itself evenly 
from the glass slide. To avoid deformation, caused by 
breakage or cracks during curling, the total patch area was 
manipulated to a minimal size of 70 mm2. 
    Two key trends were observed in the dimensions of MNs 
across the different formulations. First, there were no large 
differences in the diameter of the MN base (Figure 2a) and 
the spacing (Figure 2b) with a changing PEGDA:AM ratio. 
A source of data variability was the curved surface of the 
curled patches, as the scale would only be accurate at the 
plane of focal length of the magnification lens [45]. 
Attempts to flatten the patch introduced cracks (lines in 
Figure 2d), especially at a lower PEGDA:AM ratio, and 
risked damaging the MN tip. A second observation was a 
parabolic trend in the measured needle height (Figure 2c), 
which corresponded to the trends of mechanical properties 
explained in Section 4.2. The overall difference in 
dimension was correlated with a trend in needle volume, 
where the swelling ratio plays a role. The swelling ratio has 
an inverse relationship with the cross-linking density [46]. 
Furthermore, it was confirmed that the fabrication method 
allowed reproducible MN patches with small standard 
deviation (Figure 2a, 2b, and 2c). This is an important factor 
in achieving reproducible skin insertion depth and surface 
area contact with the ISF, leading to reliable glucose 
concentration measurements across the entire surface of the 
patch.  
    A final observation was that the tip height was far from 
the needle depth at 600 µm of the negative mould. This 
suggests trapped air that prevented the hydrogel from filling 
the mould, which also greatly affected the fabrication of 
PVA patches and is further discussed in Section 4.3. 
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Fig. 2 Dimensions of MN base for 50%, 60%, 70%, 80% and 90% formulations of PEGDA/AM. (a) Comparison of MN base diameter for different 
PEGDA:AM ratios. (b) Comparison of tip-to-tip space for different PEGDA:AM ratios. (c) Comparison of needle height from base to tip for different 
PEGDA:AM ratios. (d,e,f) Top view of MN patch for (d) PEGDA/AM 50%, (e) PEGDA/AM 70% and (f) PEGDA/AM 90% at 2.5x magnification. (g,h,i) 
Side view of MN patch for (g) PEGDA/AM 50%, (h) PEGDA/AM 70% and (i) PEGDA/AM  90% at 5x magnification.

4.2 Mechanical testing of PEGDA/AM films
The PEGDA/AM films were measured to have an average 
thickness of 190 ± 5 µm and a surface area ranging from 
212 mm2 to 504 mm2. During both the compression test 
(Figure 3a) and the tensile test (Figure 3b), the films 
demonstrated elastomer behaviour throughout the load 
range, where the modulus increased proportionally to strain. 
Thus, the moduli for both tests were obtained from the 
gradient of the approximated linear region of the stress-
strain curve. The compressive modulus revealed a positive 
parabolic relationship with the PEGDA:AM ratio, whereby 
PEGDA/AM 70% with 0.174 ± 0.013 MPa showed the 
lowest compressive modulus of all ratios (Figure 3c). A 
similar trend was observed in Figure 3d with a tensile 
modulus of 15.6 ± 1.5 MPa for PEGDA/AM 70%. 
    The key factor in determining the mechanical properties 
of a hydrogel, derived from its response to stress, is the 
cross-linking density. The correlation between modulus (E) 
and cross-linking density can be captured from a 
thermodynamic standpoint in Eq. 4 where R is the universal 
gas constant, T is temperature, n refers to the cross-link 
density and 𝑟𝑖2̅̅ ̅/𝑟02̅̅ ̅̅  is the ratio of the end-to-end distance of 
a polymer chain in a cross-linked and non-cross-linked 
state, which is assumed to be 1 [47]. For a given material at 
constant temperature, the modulus is directly proportional 
to the cross-linking density: 

𝐸 = 3𝑛
𝑟𝑖2̅̅ ̅

𝑟02̅̅ ̅̅ 𝑅𝑇 (4) 

The cross-linking density is greatly affected by two 
parameters: the crosslinker concentration and the mesh size. 
PEGDA acts as a crosslinker in this hydrogel network. 
Therefore, an increase in PEGDA concentration leads to 
more cross-links and improved chain entanglement, 
resulting in a higher cross-linking density within the 
hydrogel structure and increased stiffness [48]. However, a 
smaller mesh size, affected by the molecular size of the 
monomers, also increases the cross-linking density. The 
monomer AM (Mw 71.08) is significantly smaller in size 
than PEGDA (Mw 700). The increase in molar ratio of a low 
Mw monomer produces a hydrogel mesh with a denser 
cross-linking network, which simultaneously increases the 
stiffness of the hydrogel. According to Flory [49], long 
chains of polymers, such as PEGDA, contribute to the 
mobility of the internal polymer chain, which allows a 
greater degree of freedom and flexibility within the 
hydrogel network. 
   The U shape across the curves in Figure 3 accurately 
describes these two effects, while agreeing with the trend in 
dimension described in Section 4.1. Consequently, 
PEGDA/AM 70% was selected for subsequent 
investigations in this work, as it was the most flexible 
according to moduli and capable of conforming to the 
curvature of human skin. 
   The curve for tensile breaking stress (Figure 3e) closely 
followed this positive parabolic trend, with a minimum  
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Fig. 3 Mechanical testing of PEGDA/AM films. (a,b) Stress-strain curves during compression and tensile tests, respectively, showing elastic behaviour 
across the test region. (c,d) The effect of the PEGDA: AM ratio on both compression and tension moduli, and (d) Variation of breaking stress measured 
during tensile tests to increase PEGDA concentration.
breaking stress recorded for PEGDA/AM 60% at 0.558 ± 
0.110 MPa. Although on the lower end, PEGDA/AM 70% 
could withstand a tensile stress twice as high (1.02 ± 0.18 
MPa) while stretched before breakage. 
   The standard errors of this investigation were quite 
significant as seen in Figure 3c, 3d and 3e. This variability 
may be due to the approximation of the modulus as a 
constant, which has been shown to vary with strain for 
elastomers [50]. Although the strain rates used are low, this 
was still insufficient to exclude the time-dependent 
behaviour of the hydrated hydrogels, which can be 
examined using rheology methods instead [51]. Methods 
such as thermal gravimetric analysis (TGA) can also further 
examine the internal cross-linking structure to arrive at a 
deeper understanding [52].  

4.3 Comparison of PEGDA/AM MNs and PVA MNs  
As PVA is a hydrogel widely reported for MN devices in 
literature, the performance of the PEGDA/AM patch 
(Figure 4f) was compared to that of the PVA patches 
manufactured by physical (FT-PVA) and chemical cross-
linking (PVA / CA). From microscopic analysis, it was 
concluded that the PVA/CA patch failed to form needles; 
instead, it showed bubble-like structures (Figure 4d). FT-
PVA was successful in needle formation; however, both its 
base (Figure 4c) and the needle itself (Figure 4e) showed 
defects and an inconsistent shape. This was also reflected in 
the large standard deviation of the dimensions relative to 
PEGDA/AM (Figure 4a). The PVA MNs showed a large 
disagreement between individual needles for several 
reasons. First, bubbles were easily trapped in the highly 
viscous precursor solution, resulting in MNs with a porous 
and irregular structure. The absence of MN structures of 
PVA/CA could be the result of moisture still present in the 
solution, which vaporises during the curing process at high 
temperature. Procedures such as centrifugation and 
extended vacuum drying may mitigate this issue, but this 
consumes more time and resources. On the contrary, the 
preparation of PEGDA/AM patches is straightforward and 
time-effective, taking only 30 minutes per MN patch. Apart 
from a UV crosslinker, all the equipment needed to 
fabricate the PEGDA/AM patches could be found in basic 
chemical laboratories, further suggesting the suitability of 
PEGDA/AM over other candidate MN base materials. 
    The compressive modulus and strength were calculated 
from mechanical stress testing. Both the FT-PVA and 
PVA/CA patches reported a significantly higher 
compressive modulus than PEGDA/AM 70% (Figure 4b). 
This was correlated with an increase in the stiffness of PVA, 

which is a less desirable property for wearable sensors. 
Furthermore, the compressive strength, defined as the 
uniaxial stress at the start of needle deformation, was 
recorded at 2.55 ± 1.78 MPa for FT-PVA and 35.0 ± 0.7 
MPa for PEGDA/AM 70%. This suggested that 
PEGDA/AM was better able to penetrate the stratum 
corneum, which requires a stress of at least 3.18 MPa to 
overcome skin elasticity [53]. The MN had a safety margin 
of 11.0 (Eq. 3), indicating excellent insertion capabilities 
for human skin. This property, in addition to its low 
compressive modulus, confirmed the effectiveness of the 
material as an MN base.  
    These results also showed the influence of the cross-
linking method on the mechanical strength. Although 
physically cross-linked FT-PVA was formulated with 30% 
PVA, its compressive modulus was similar in value to that 
of PVA/CA, which only had 15% PVA. As suggested in 
Section 2, these results confirmed the superior mechanical 
strength of chemically cross-linked hydrogels. In addition, 
the high uncertainty in the mechanical properties of FT-
PVA was consistent with the variability in dimensions and 
porosity of the MNs, further supporting our observations. 

 
Fig. 4 Comparison of PEGDA/AM patches with freeze-thawed (FT) PVA 
and PVA/CA formulation. (a) Comparison of MN base diameter, tip-to-tip 
needle spacing and MN height for PEGDA/AM 70% and freeze-thawed 
PVA patch. (b) Top view of PVA/CA MN patch at 2.5x magnification, 
showing needleless, bubble-like structures. (c) Top view of FT PVA MN 
array at 2.5x magnification with bubbles trapped. (d) Side view of FT PVA 
MN array at 5x magnification demonstrates irregularity in the needles. (e) 
Angled view of PEGDA/AM 70% patch at 2.5x magnification. 
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4.4 Skin insertion 
From the analysis in Sections 4.1 and 4.2, PEGDA/AM 
70% showed the most promising properties for successful 
skin insertion. The porcine skin was successfully penetrated 
by this patch (Figure 5), with a measured insertion depth of 
159 ± 1 µm. However, the challenge of keeping the MN 
patch flat remained, as the curled surface led to less efficient 
penetration near the edge of the patch. 
    Porcine skin has been widely used and well researched as 
a skin model due to its histological similarity to human skin 
[43], sharing a similar thickness of the epidermal layer and 
stratum corneum, and a similar elastin ratio. This validated 
that the compressive strength of PEGDA/AM 70% is 
sufficient to penetrate human skin and interact with ISF for 
accurate monitoring of glucose levels. 

 
Fig. 5 Insertion of PEGDA/AM 70%  microneedle in porcine skin stained 
with methylene blue. (a) Cross-sectional view of porcine skin after 
insertion of MN at 20x magnification. (b) Top view of porcine skin after 
insertion. 

4.5 Feasibility of the FRET fluorescence process with 
MN base of detecting glucose 
To further explore its performance as MN sensors, replicas 
of PEGDA/AM 70% patches adhered to FRET biosensor 
through hydrogen bonds (Figure 7). Förster resonance 
energy transfer is a mechanism where the excited donor 
group transfers energy to the acceptor group of a different 
energy level through dipole-dipole coupling interactions, 
allowing the emission of photons of a different wavelength 
[54]. In the presence of glucose, the diol functions of 
glucose bind to the boronic acid groups of 3-APBA in the 
glucose-specific moiety. Upon this binding, an 
intermolecular dissociation of the fluorescein / rhodamine 
B pair occurs, inhibiting the FRET process (Figure 6). This 
mechanism is at the core of the glucose-responsive 
capability of the patch. Fluorescence spectra were acquired 
with an excitation wavelength of 470 nm, corresponding to 
the absorbance maxima of the FRET donor. Two emission 
peaks were observed, one at 520 nm corresponding to the 
green emissive donor fluorophore fluorescein, and the 
second at 578 nm, attributed to the emission of the orange 
emissive fluorophore rhodamine B (Figure 7a). The 
presence of the peak at 578 nm is considered evidence of 
energy transfer from excited fluorescein molecules to the 
rhodamine B subunit in the biosensor layer and is consistent 
with the orange colour of the MN device observed by the 
naked eye upon excitation by blue light (Figure 7c, 7g). For 
PEGDA with molecular weight 700, optical transparency is 
achieved above a concentration of 40% [55]. 

 
Fig. 6 Illustration of the glucose monitoring microneedle device inserted 
into human skin. The MN consists of a MN base, providing the rigid 
structure and biosensing layer. A transparent polyurethane film is 
attached on top to allow adhesion to the skin. The figure in the top 
illustrates the FRET mechanism for the fluorescence response to change 
in ISF glucose concentration, where the biosensor interacts with glucose 
to inhibit energy transfer between donor and acceptor. 
    Furthermore, the fluorescent quenching ability of 
glucose, illustrated by an increase in donor emission 
accompanied by a reduction in acceptor emission as the 
concentration increases, was confirmed (Figure 7a). On this 
basis, glucose levels can be tracked by the MN device 
through the ratiometric fluorescence method. The emission 

intensity ratio (𝐼578
𝐼520

⁄ ) displayed a quasi-linear dose-

response towards glucose (from 4 to 24 mM) (Figure 7b). 

The equation of linear regression was 𝐼578
𝐼520

⁄ =

 −14.0𝐶 + 0.545 (𝑅2 = 0.984) where C represents the 
glucose concentration in molar units. This linear response 
supports the consistent measurement of glucose levels. 
Therefore, it can be concluded that integration of the 
PEGDA/AM 70% MN base did not hinder the signalling 
efficiency of the biosensor layer. 

5. Conclusion 
This work presented an end-to-end investigation on the 
fabrication, optimisation, and characterisation of the 
PEGDA/AM hydrogel MN base for non-invasive, CGM. 
After limitations in fabrication, such as curling and 
breakage, were mitigated, it can be concluded that this 
report proposes a strong and flexible hydrogel material for 
next step fabrication of MN sensors. Further improvements 
in its shape, especially a longer needle tip using vacuum or 
centrifugation methods on the precursor solution, can be 
investigated. The optimised PEGDA/AM 70% was 
characterized to have a modulus of 0.174 ± 0.023 MPa and 
a compressive strength of 35.0 ± 0.7MPa, demonstrating 
improved mechanical properties over PVA, which is a 
widely studied MN material. More detailed mechanical 
analysis using frequency-based dynamic testing could be 
used to study its time-dependent viscoelasticity behaviour. 
For the first time, the performance of a PEGDA/AM MN 
base was validated by successful penetration into porcine 
skin, achieving an insertion depth of 159 ± 1 µm. 
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Fig. 7  Response of the photonic MN biosensor to glucose. (a) Glucose concentration dependence of the normalized fluorescence of the biosensor-
integrated MN immersed in artificial ISF across wavelengths 500-700 nm. (b) The peak intensity, I578/I520, shows a linearly decreasing trend versus 
glucose concentration from 4 to 24 mM. (c) Fluorescence of the MN device under blue light. (d) Application of MN device with polyurethane film on 
human skin. (e) Side view of MN device with biosensor layer at 5x magnification. (f) Angled view of the MN device with biosensor layer at 5x 
magnification. (g) Fluorescent microscope image of the MN device excited by blue light at 5x magnification.

    When a biosensing layer was integrated, a CGM device 
was produced and characterised that could quantitatively 
monitor glucose concentrations. Fluorescence spectroscopy 
showed that it was successful in providing a linear response 
(R2 = 0.984) to the nominal glucose level in artificial ISF 
reversibly. The reliability of the quantification can be 
further improved by using new techniques that allow for a 
consistent thickness in the biosensor layer. Before 
adaptation in real life, the stability and degradation of the 
biosensor in long-term use and at various pHs should be 
tested. Finally, a user-friendly mobile application system 
capable of quantifying the fluorescence response can be 
developed to accurately monitor ISF glucose 
concentrations, to achieve the ultimate objective of 
providing an all-round solution for patients diagnosed with 
diabetes.  
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Abstract  
 
Immunoglobulin G (IgG), a biopharmaceutical, is made by cultivating recombinant animal cells, particularly 
Chinese hamster ovary (CHO) cells. Historically, large fed batch cultures are employed however a perfusion 
culture offers unmatched performance and savings over the former. Perfusion is a complex process as fresh media 
is continuously fed and spent media is removed while keeping cells in culture. Therefore, modelling the process 
in a simulation software such as gPROMS can offer a greater understanding of the process and underlying 
principles as well as offer estimates for various important process parameters. In this research, a perfusion 
bioreactor was modelled using gPROMS and was used to carry out parameter estimation for process parameters. 
The performance was compared with that of a batch reactor and the estimated parameters were used to rerun the 
simulation to compare with the experimental results. The results for the fed batch model are in good agreement 
and follow an expected trend. However, the perfusion model struggles to provide reliable results which may be 
due to the model not being sufficient for perfusion or that initial parameter guesses, and their bounds are not able 
to provide reliable parameters which provide a good fit. 
 

 
Background 
 
When the body feels under attack, it makes special 
proteins called antibodies. These antibodies are 
made by plasma cells and are released throughout 
the body to kill bacteria, viruses, and other germs. 
Immunoglobulin G (IgG) is a very common type of 
antibody which is made by plasma B cells and 
makes about 75% of the plasma serum. IgG 
deficiency is a health condition in which the body 
does not produce enough immunoglobulin G (IgG). 
People with IgG deficiency are more likely to get 
infections. IgG has four different subclasses, IgG1-
4. IgG is always present to prevent infection. They 
are also ready to multiply and attack when a foreign 
object enters the body.[1]  
Biopharmaceuticals such as immunoglobulin G 
(IgG) are manufactured by culturing recombinant 
animal cells, especially Chinese hamster ovary 
(CHO) cells. Due to their similarity to human cell 
lines, CHO cells are used in scientific and medical 
research, especially in genomic and chromosomal, 
toxicity, nutrition, and gene expression studies. 
Production of recombinant proteins in bioreactors is 
one of his main goals for CHO cells, as CHO cells 
represent more than 70% of the entire 
biopharmaceutical industry. They can produce on 
the order of 3-10 grams of recombinant protein per 
litre of CHO cell culture.[2]  
A bottleneck in biopharmaceutical manufacturing is 
believed to be the intracellular IgG secretion 
mechanism. Improved productivity has been 
demonstrated in numerous studies of regulation of 
expression levels of endogenous secretory proteins. 
However, not all proteins performed better as a 
result of these efforts. Based on the understanding of 
the secretion mechanism in IgG-producing CHO 
cells, more rational and effective design of high-
producing cells is required. [3] 

 

 
Figure 1 Metabolism of CHO cell [4] 

 
Despite their practical and commercial relevance, 
there are few reports on the growth and production 
kinetics of Chinese Hamster Ovary (CHO) cells. 
Currently, there are over 200 pharmaceutical 
companies on the market and the economic value of 
these medicines continues to grow, with sales 
increasing by US$30 billion in 2003 and reaching 
US$100 billion by 2012. Among biopharmaceutical 
compounds, monoclonal antibodies (mAbs) are an 
increasingly accepted class of therapeutics, 
especially in the fields of oncology, immunology, 
and organ transplantation. Since their introduction in 
1986, mAbs have become the dominant products in 
the biopharmaceutical market. Mammalian cell 
cultures are used because therapeutic proteins 
require complex post-translational modifications 
and mammalian cells (including CHO) are capable 
of carrying out these manipulations. CHO cells grow 
to very high densities in suspension culture in 
bioreactors of up to 10,000 L, making them suitable 
for large-scale culture. They are relatively stable in 
heterologous gene expression over time. [5] 
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Throughout the industry fed-batch cultures are 
mostly used for cell cultures. Fed-batch culture is an 
operating technique in biotechnology processes in 
which substrates are supplied to a bioreactor during 
cultivation and the product remains in the bioreactor 
until the end. In general, fed-batch culture is superior 
to traditional batch culture when controlling the 
level of a nutrient affects yield.  Another 
understanding for this technique is that "the basal 
medium supports the initial cell culture and the 
nutrient medium is added to prevent nutrient 
starvation".[6] This is also a kind of “semi-batch 
culture”. In some cases, all nutrients are fed into the 
bioreactor. Fed batch cultures offer the advantage 
that the concentration of the fed-batch substrate in 
the culture medium can be controlled at any level.[7] 
 
An alternative to the fed batch culture is the 
perfusion bioreactor. Perfusion is a continuous 
culture process in which cells are retained in a 
bioreactor or returned to the bioreactor. Therefore, 
the harvested medium is cell-free, resulting in higher 
cell concentrations and product yields in the reactor. 
This also avoids the risk of cell washout due to 
excessive dilution. Perfusion cell culture uses a cell 
retention device and continuous medium exchange 
to achieve and maintain high cell densities and 
viability for extended periods of time, typically 
weeks. The cell retainer holds the cells in the 
bioreactor while fresh medium is added and 
products of interest, waste, and spent (or depleted) 
medium are continuously removed. Fresh medium is 
provided at the same rate as product and spent 
medium are removed from the bioreactor. Hollow 
fibre-based membrane filters are the most reliable 
and commonly used membrane type. Long-term 
perfusion is just one application of perfusion, in 
contrast to short-term-based perfusion applications 
such as High Productivity Harvest (HPH), which 
focus on enhancing the fed batch process over 
several days. Perfusion can also be used to enhance 
the seed train, reducing steps and reducing overall 
time to production.[8] 

 
Figure 2 Different reactor concentrations and their 
performance [9] 

 
Currently, perfusion is not common on large scale 
processes due to laborious nature of the process and 
incomplete understanding of the process. Modelling 
the process provides understanding of the system 

and how it was to behave in different conditions. 
Modelling provides estimates of parameters which 
are relevant to the process such as the yields. The 
model may be extrapolated to large scale production. 
In the development of all pharmaceutical 
manufacturing processes, including those using 
hMAbs produced by CHO cells, optimal process 
parameters and methods are determined based on 
cost, time and potency comparisons. Multiple 
scalable platforms are often considered before 
moving the final process to a pilot or scale-up lab. 
Significant R&D time and money are invested to 
increase yields, reduce costs, and improve current 
bioreactor and bioprocess technology.[10]  
 
 
Methods 
To build the model and estimate reliable parameters, 
a general the mass balance was carried out for the 
process. The mass balances take into account the cell 
culture as well as the substrates/ products. The mass 
balances were obtained from literature.[11] The 
relevant equations are shown in in Table 1. 
 
 

𝑑[𝑉𝐶𝐷]
𝑑𝑡

= (𝜇𝑔 − 𝜇𝑑) × [𝑉𝐶𝐷] 

𝜇𝑔 = 𝜇𝑚𝑎𝑥 ×
[𝐺𝐿𝐶]

𝐾𝑔𝑙𝑐 + [𝐺𝐿𝐶]
×

[𝐺𝐿𝑁]
𝐾𝑔𝑙𝑛 + [𝐺𝐿𝑁]

×
𝐾𝐼𝑙𝑎𝑐

𝐾𝐼𝑙𝑎𝑐 + [𝐿𝐴𝐶]

×
𝐾𝐼𝑎𝑚𝑚

𝐾𝐼𝑎𝑚𝑚 + [𝐴𝑀𝑀]
 

 

𝜇𝑑 = 𝑘𝑑 ×
[𝐿𝐴𝐶]

𝐾𝐷𝑙𝑎𝑐 + [𝐿𝐴𝐶]
×

[𝐴𝑀𝑀]
𝐾𝐷𝑎𝑚𝑚 + [𝐴𝑀𝑀]

 

𝑑[𝐺𝐿𝐶]
𝑑𝑡

= − (
𝜇𝑔 − 𝜇𝑑

𝑌𝑉𝐶𝐷/𝑔𝑙𝑐
+ 𝑚𝑔𝑙𝑐) × [𝑉𝐶𝐷]

+ 𝑉[(𝐹𝑖𝑛 × 𝐶𝑖𝑛,𝐺𝐿𝐶)
− (𝐹𝑜𝑢𝑡 × 𝐶𝐺𝐿𝐶)] 

𝑑[𝐿𝐴𝐶]
𝑑𝑡

= 𝑌𝑙𝑎𝑐/𝑔𝑙𝑐 ×  (
𝜇𝑔 − 𝜇𝑑

𝑌𝑉𝐶𝐷/𝑔𝑙𝑐
) × [𝑉𝐶𝐷]

+ 𝑉[(𝐹𝑖𝑛 × 𝐶𝑖𝑛,𝐿𝐴𝐶)
− (𝐹𝑜𝑢𝑡 × 𝐶𝐿𝐴𝐶)] 

𝑑[𝐺𝐿𝑁]
𝑑𝑡

= − (
𝜇𝑔 − 𝜇𝑑

𝑌𝑉𝐶𝐷/𝑔𝑙𝑛 
+ 𝑚𝑔𝑙𝑛) × [𝑉𝐶𝐷]

+ 𝑉[(𝐹𝑖𝑛 × 𝐶𝑖𝑛,𝐺𝐿𝑁)
− (𝐹𝑜𝑢𝑡 × 𝐶𝐺𝐿𝑁)] 

𝑚𝑔𝑙𝑛 =
𝑎1 × [𝐺𝐿𝑁]
𝑎2 + [𝐺𝐿𝑁]

 

𝑑[𝐴𝑀𝑀]
𝑑𝑡

= 𝑌𝑎𝑚𝑚/𝑔𝑙𝑛 ×  (
𝜇𝑔 − 𝜇𝑑

𝑌𝑉𝐶𝐷/𝑔𝑙𝑛
) × [𝑉𝐶𝐷]

+ 𝑉[(𝐹𝑖𝑛 × 𝐶𝑖𝑛,𝐴𝑀𝑀)
− (𝐹𝑜𝑢𝑡 × 𝐶𝐴𝑀𝑀)] 

𝑑[𝑚𝐴𝑏]
𝑑𝑡

= 𝑄𝑎𝑛𝑡𝑖 × [𝑉𝐶𝐷] 
Table 1 Mass balance equations 
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After constructing the mass balance, literature [12] 
was used to obtain initial guesses for the parameter 
values which will be used to do parameter 
estimation. Finally, a model was built in gPROMS 
with the aforementioned balances and parameter 
estimation was run with a schedule to include the 
different phases of the process. These parameters 
were in turn used to estimate the results which were 
then compared to obtained experimental values. The 
table below shows values for the parameters 
obtained. 
 

Parameter Description Value Unit 

VCDinitial 
Starting 

viable cell 
concentration 

0.5000 
X106 
cells 
mL−1 

GLCinitial 
Starting 
glucose 

concentration 
50.95 mM 

GLNinitial 
Starting 

glutamine 
concentration 

9.950 mM 

LACinitial 
Starting 
lactate 

concentration 
0.0000 mM 

AMMinitial 
Starting 

ammonium 
concentration 

0.0198 mM 

µmax 
Maximum 
growth rate 0.0290 h−1 

kd 
Maximum 
death rate 0.016 h−1 

YVCD/glc 
Yield 

coefficient 
cell 

conc./glucose 

0.1690 
X109 
cells 

mmol−1 

YVCD/gln 

Yield 
coefficient 

cell 
conc./glutami

ne 

0.9740 
X109 
cells 

mmol−1 

Ylac/glc 
Yield 

coefficient 
lactate/glucos

e 

1.23 mmol 
mmol−1 

Yamm/gln 
Yield 

coefficient 
ammonium/gl

utamine 

0.67 mmol 
mmol−1 

Qanti 
Specific 

production 
rate 

1.500 

X10-14 
mmol 

cells−1 h
−1 

mglc 
Glucose 

maintenance 
coefficient 

69.20 

X10-14 
mmol 

cells−1 h
−1 

a1 
Coefficient 

for mgln 3.200 
X10-12 
mmol 

cells−1 h
−1 

a2 Coefficient 
for mgln 2.000 mM 

Kglc 
Monod 
constant 
glucose 

0.1500 mM 

Kgln 
Monod 
constant 

glutamine 
0.2200 mM 

KIlac 
Monod 
constant 

lactate for 
inhibition 

45.00 mM 

KIamm 
Monod 
constant 

ammonium 
for inhibition 

9.500 mM 

KDlac 
Monod 
constant 

lactate for 
death 

45.8 mM 

KDamm 
Monod 
constant 

ammonium 
for death 

6.51 mM 

Table 2 Parameter description and literature values 
[12[14] 

 
The parameter estimation was performed using the 
Maximum Likelihood Estimation (MLE) in 
gPROMS. The goal of maximum likelihood 
estimation is to determine the parameters for which 
the observed data have the highest joint probability. 
gPROMS assumes independent, normally 
distributed measurement errors, with zero means 
and standard deviations. The mathematical equation 
used for MLE and the corresponding symbols shown 
below: 
 

 
 

 
Table 3 Symbols for MLE equation 
 
The experimental data for comparison was provided 
by MERCK. The experiment was performed in a 6.3 
L glass reactor with a working volume of 4.2 L at 
36.8 C with 40% dissolved oxygen. The ATF 
flowrate was 1 L/ min and perfusion was started at 
day 3. The experimental results are plotted below.  
 
To simulate the experiment the model reactor has a 
volume of 4.2L. Perfusion began at day 3 with a rate 
of 2vvd (total medium exchange rate) and the bleed 
was 0.14vvd. The feed during perfusion was the 
mean experimental concentrations for the reactants 
and waste products during steady state. 
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Figure 3 Concentration vs time for various 
components 
 
The timeline can be divided into three main steps.  

• Batch phase has a fed batch configuration 
in which the cell culture kept inside the 
reactor. 

• Perfusion expansion phase has perfusion 
turned on and the system tries to reach the 
steady state. 

• Steady state phase has the system in a 
stable steady state condition with constant 
concentrations. 

From the graphs it can be observed that the 
steady state concentration of  lactate and 
ammonia  are around 17 and 0.3 mM. However, 
the threshold values for the two reagents to have 
an inhibition effect is 15 and 5 mM [13]. 
Therefore, lactate is expected to have an 
inhibition effect on cell growth as it has a higher 
concentration than the threshold. In contrast, 
ammonia is not expected to affect the growth 
due to the small concentration.  
Furthermore, an analysis was performed on 
glutamine and glucose to check if they are he 
limiting reagents as suggested by vast literature. 
This was done by plotting the concentration 
gradient against the cell growth. The graphs for 
the two are shown below. 
 
 

The graphs show a positive trend of concentration 
gradient vs the cell growth. This signifies a direct 
relation which implies that the two are limiting 
reagents. 

 
Results and Discussion 
Whole data set 
Using the whole data set provided by MERCK. The 
parameters for the whole model were estimated 
using MLE. Table 7 shows the parameter values 
estimated and their bounds. Parameters 𝑎2, 𝐾𝐷𝑙𝑎𝑐 , 
𝐾𝑔𝑙𝑐and 𝑄𝑎𝑛𝑡𝑖  were the parameters not estimated to 
be at their bounds. Table 8 shows these parameters 
had an individual 95% t-value greater than the 
reference t-value which suggest that the data 
available was sufficient to estimate the parameters 
precisely. 
Graphs from figure 9 show, the VCD Whole values 
predicted by the model is initially close to the 
measured data. After 90 hours there is a spike in 
VCD measured values, the model failed to predict 
this and reached steady state at a significantly lower 
value than the measured values.  
The reactants are predicted by the model similarly as 
shown by graphs GLC Whole and GLN Whole. 
Initially the prediction for glutamine concentration 
became more inaccurate as time passed, while for 
glucose concentration remained close to the 
measured values. When perfusion at day 3 started 
the model predicted the steady-state values 
accurately.  
Before perfusion started, graph AMM Whole shows 
the ammonia predicted values were significantly 
greater than the measured values and peaked at 3 
mmol/L. Once perfusion started the model predicts 
the measured values. The lactate predicted values 
showed a similar pattern as seen in graph LAC 
Whole, however pre-prefusion the model is close to 
the measured values but peaked when prefusion 
started, then it decreased to a value slightly greater 
than the measured value at steady state.  
As shown by graph ANTI Whole. The antibody 
predicted values pre-perfusion were close to the 

Figure 44 Concentration gradient vs growth graph 
for glucose 

Figure 55 Concentration gradient vs growth graph 
for glutamine 
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measured values but fell to a low of 4.81x10-6 
mmol/L at steady state. 
Batch phase data set 
To develop a more accurate model. The dataset was 
split to reflect the different cell growth phases. This 
section focuses on the batch phase.  
The parameters 𝑎2,, 𝐾𝑔𝑙𝑐and 𝑄𝑎𝑛𝑡𝑖   was not 
estimated at their bounds. Table 8 shows the 
individual 95% t-values are greater than the 
reference t-value which indicates that the data 
available was sufficient to estimate the parameters 
precisely. 
From figure 9, graphs VCD Batch, GLC Batch, LAC 
Batch, GLN batch, and ANTI Batch show the model 
predicted similar values to the measured values in 
the batch phase for glucose, lactate, glutamine, 
antibody concentrations and VCD. For ammonia 
concentrations the model predicted higher values 
compared to the measured values as seen in graph 
AMM Batch. 
Perfusion phase 
The parameters 𝑎2, 𝐾𝐷𝑙𝑎𝑐 , 𝐾𝑔𝑙𝑐and 𝑄𝑎𝑛𝑡𝑖  was not 
estimated at their bounds. Table 8 shows the 
individual 95% t-values were greater than the 
reference t-value which indicates that the data 
available was sufficient to estimate the parameters 
precisely. 
The perfusion graphs from figure 9 show the model 
failed to predict the perfusion expansion phase 
(89.77- 160.71 hours) for every component. At 
steady state (184.17-354 hours) the model predicted 
values were close to the measured values for 
ammonia, glutamine, glucose and lactate 
concentrations. However, for VCD and antibody 
concentrations the predicted values were 
significantly lower than the measured values.  
Perfusion steady state phase. 
For the perfusion steady state model, the parameters 
𝑎2, 𝐾𝐷𝑙𝑎𝑐, 𝐾𝑔𝑙𝑐and 𝑄𝑎𝑛𝑡𝑖  was not estimated at their 
bounds. Table 8 shows the individual 95% t-values 
are greater than the reference t-value which indicates 
that the data available was sufficient to estimate the 
parameters precisely except for 𝑄𝑎𝑛𝑡𝑖were the 95% 
t-value is lower than the reference t-value. 
The perfusion steady state graphs from figure 9 
show that the model formed using the parameter 
estimated from the perfusion steady state data set; 
VCD predicted values were the closest to the 
measured values of any model that simulated 
perfusion. However, the antibody concentration 
predicted values were significantly lower than the 
measured values. The other component 
concentrations predicted resembled the perfusion 
model predicted values.  
 
 
 
 
 
 

Parameter data 
 

Parameter Whole 
data 
set 

Batch 
data set 

Perfusion 
data set 

Perfusion 
Steady 
State data 
set 

𝑎2 2.056 2.130 2.026 2.101 
𝐾𝐷𝑙𝑎𝑐 286.7 311.0* 277.5 309.3 
𝑄𝑎𝑛𝑡𝑖  1.443

×10-15 
1.862×
10-15 

1.000x1
0-15 

1.000x10
-15** 

All other parameters were constant for every model 

Model 
Parameter 

Final 
Value 

Lower 
Bound 

Upper 
Bound 

𝑎1 1.000×10
-13 

1.000×10-

13* 
1.500×10
-11  

𝑎2  0.200 4.000  
 

𝑘𝑑 0.0160 0.0160* 0.0160*  
 

𝐾𝐷𝑎𝑚𝑚 10 1.44 10.00*  
 

𝐾𝐷𝑙𝑎𝑐  15.00 311.0  
 

𝐾𝑔𝑙𝑐 0.1500 0.1500 1.000  
 

𝐾𝑔𝑙𝑛 0.0600 0.0600* 0.8000  
 

𝐾𝐼𝑎𝑚𝑚 20.00 1.000 20.00*  
 

𝐾𝐼𝑙𝑎𝑐 140.0 8.000 140.0*  
 

𝑚𝑔𝑙𝑐 0.0000 0.0000* 2.000×10
-10 

 
 

𝑄𝑎𝑛𝑡𝑖  1.000×10-

15 
4.000×10
-14 

 
 

𝜇𝑚𝑎𝑥 0.0290 0.0290* 0.0290*  
 

𝑌𝑎𝑚𝑚/𝑔𝑙𝑛 0.6700 0.6700* 0.6700* 
 

 
𝑌𝑉𝐶𝐷/𝑔𝑙𝑐 

1.690×10
8 1.690×108* 1.690×10

8* 
 
 

𝑌𝑉𝐶𝐷/𝑔𝑙𝑛 9.740×10
8 9.740×108* 9.740×10

8* 
 
 

𝑌𝑙𝑎𝑐/𝑔𝑙𝑐 1.230 1.230* 1.230* 
 

 
*a parameter that lies on one of its bounds 
**Data from experiment may not be sufficient to 
estimate the parameter precisely. 
Tables 7 Model parameters, Literature values for 
bounds [14] 
 
 
 
 
 

240



 6 

  
  

95% t-value 

  
t-
refere
nce 

𝑎2 𝐾𝐷𝑙𝑎𝑐 𝐾𝑔𝑙𝑐 𝑄𝑎𝑛𝑡𝑖  

Whole 
4.831x
104 

1.172x
108 

6.313x
108 

1.524 
x101 

1.666 

Batch 
2.053 
x104   

1.647 
x108 9.199 1.725 

Perfusi
on 

1.687 
x108 

1.584 
x108 

4.260 
x108 5.069 1.680 

Steady 
state 

2.207 
x107 

3.622 
x108 

6.843 
x108 

3.402 
x10-1 1.706 

Table 8 Parameter t-values and t-references 
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Orange line: Predicted values 
Blue dots: Measured values 
Figure 9 Set of graphs comparing model predicted 
values to measured values. 
 

Discussion 
The model that used parameter estimation with the 
whole data set predicted a low antibody 
concentration once perfusion started. This may have 
been caused by the low predicted VCD since the 
antibody production is proportional to the VCD. The 
predicted antibody values when perfusion began 
decreased and the rate of antibody production was 
constant because VCD was constant, hence the 
model predicts the rate of antibody production was 
lower than the flowrate of antibodies out of the 
reactor. 
Overall, the model was sufficient at predicting the 
bioreactor in the batch phase, except for ammonia 
concentration values. This may be due to a change 
in the ammonia mass balance equation than ignored 
the parameter for ammonia removal rate since the 
bioreactor does not have an ammonia removal 
system. This suggest that parameters relating 
directly to ammonia concentration for example 
yields were not transferable to the model. 
Due the model failed to predict perfusion expansion 
phase, the data set for parameter estimation was 
focused on perfusion steady state. The steady state 
graphs from figure_ show the model did not reach 
true steady state. Compared to the perfusion phase 
model the difference between the predicted values 
and measured values for ammonia, glucose and 
glutamine concentration is greater for the perfusion 
steady state model. Lactate concentration predicted 
values are similar for both perfusion models. The 
perfusion model and perfusion steady-state model 
results indicate that the model’s failure to reach 
VCD values after the expansion phase is not the sole 
reason for low antibody concentration predictions.    
Comparing the parameters in the models that were 
different. Across all models the predicted value for 
glutamine concentration was close to the measured 
values; this suggests that the slight difference in a_2 
values does not affect the model’s predictive 
capability.  𝐾𝐷𝑙𝑎𝑐  is a key parameter in the cell death 
rate equation. Considering that every model except 
the batch model failed to predict VCD, the changes 
in 𝐾𝐷𝑙𝑎𝑐  values could be significant during perfusion 
phase. The poor prediction of antibody 
concentration by models that simulate perfusion also 
suggests changes in 𝑄𝑎𝑛𝑡𝑖values could be significant 
during perfusion. 
The models that included perfusion data values in its 
estimation all failed to predict VCD and antibody 
concentration. This suggests that initial parameter 
guesses, and their bounds are preventing the model 
from finding parameter values that fit the measured 
values. 
 
 
Conclusion. 
The model to simulate the perfusion bioreactor did 
not replicate the data from Merck, using the whole 
data for parameter estimation by maximum 
likelihood estimation. The model failed to predict 
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perfusion expansion phase and, the viable cell 
density and antibody concentration in the perfusion 
phase. The investigation into how the different 
bioreactor phases affect the parameter estimation 
showed that the model could predict closely the 
measured bioreactor data in the batch phase. 
However, in the perfusion phase the model 
continued to be unsuccessful with viable cell density 
and antibody concentration predictions.  
To conclude, differences in the parameter values 
across all models had a minimal effect on predicted 
values.  The model’s prediction in the batch phase 
was close to the measured data and the perfusion 
phase predictions was poor. This suggest that the 
model is either not sufficient for perfusion since it 
sufficient for the batch phase or that initial parameter 
guesses, and their bounds are preventing the model 
from finding parameters that fit the measured values. 
To improve the model, we suggest a change in the 
cell mass balance in the perfusion phase because 
VCD was poorly predicted repeatedly, in addition 
using parameters that are more specified for the 
reactor configuration rather than using yields and 
maximum growth and death rate for a batch CHO 
bioreactor. 
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Investigation on PEG-PCL Nanoparticles for Intracellular Drug 

Delivery 

Minzhi Chen and Yichen Zhang 

Department of Chemical Engineering, Imperial College London, U.K. 

Abstract: Poly(ethylene glycol)-Poly(ε-caprolactone) (abbreviated as PEG-PCL) copolymers have 
demonstrated strong potential as the building block for an intracellular drug delivery system. Using 
nanoprecipitation, PEG-PCL nanoparticles were used to encapsulate a negatively charged payload (calcein) 
to examine the copolymer’s ability to encapsulate payload without lipids and to explore whether the charged 
nature of the payload would bring any differences to the performance of the nanoparticles. The synthesized 
nanoparticles had an averaged size of around 200 to 300nm and an average zeta potential of around -17mV. 
The synthesized nanoparticles showed stability in deionized water and rapid releases of payload when 
exposed under human endosomal pH between 5.5 and 6.5. The synthesized particles were also resilient to 
external disturbances and exhibited a leakage of around 10% under 40 rpm shaking for 20 hours. However, 
the synthesized nanoparticle showed instability when exposed to physiological pH of 7.4 and a low 
encapsulation efficiency between 10% to 20%. Once the two problems are dealt with, single-component 
PEG-PCL nanoparticles could be favorable for an efficient intracellular drug delivery vector.  
Keywords: pH-responsive, drug delivery, nanoprecipitation, solvent evaporation, PEG-PCL copolymers, 
encapsulation efficiency 

 
1. Introduction 

1.1. Background 

A lot of effort has been put into the field of 
intracellular drug delivery systems in recent years. 
These systems are key to treating non-infectious 
diseases such as cancer and tumor, where drugs 
would not be effective unless the drug can be 
delivered into the specific organ and mutated cells. 
The process faces multiple delivery barriers 
including organ-level barriers, sub-organ level 
barriers, and subcellular barriers.1  

A popular technique to overcome these 
barriers would be to synthesize bio-compatible 
drug delivery vectors. These vectors are 
nanoparticles that encapsulate the payload and 
have diameters in the scale 100 nm.2 Ideally, such 
vectors are stable during in vitro storage and in 
vivo transport and quickly release the payload 
once they reach target cells. Among these 
materials, PEG-PCL copolymers have 

demonstrated superior stability in physiological 
conditions as well as fast payload release 
performance upon entry in target cells.3 Hence, 
this study focuses on evaluating the performance 
of PEGx-PCLy nanoparticles as drug delivery 
vectors with calcein as payload, where x and y 
would stand for the average molecular weight of 
PEG and PCL in the copolymer, respectively. 
 
1.2. Motivation 
Extensive research has been done on PEG-PCL 
nanoparticles as a drug delivery agent. Some of 
these study have nanoparticles consisting of two 
components – a copolymer and a lipid.4 It is of 
interest to see how well PEG-PCL alone can 
protect the payload during transportation and 
release the payload at the designated site. In 
addition, most payloads studied so far has been 
charge neutral, such as tetrandrine, anastrozole, 
and doxorubicin.4-6 Using a payload that is 
negatively charged would be a good simulation of 
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how good PEG-PCL nanoparticles are at 
delivering negatively charged drugs, such as 
nucleic acids. 
 

2. Methodology 

2.1. Materials 

Tetrahydrofuran (THF), acetone, sodium chloride, 
and ethyl alcohol were purchased from VWR 
Chemicals (Leicestershire, UK). Calcein, 
potassium chloride, and sodium phosphate 
dibasic were purchased from Sigma-Aldrich 
(Dorset, UK). Anhydrous citric acid, sodium 
citrate dihydrate, and potassium dihydrogen 
orthophosphate were purchased from Fisher 
Scientific (Leicestershire, UK). Hydrochloric 
acid solution (0.1M, 1M and 2M) and sodium 
hydroxide solution (0.2M and 2M) were prepared 
by members of Chen Research Group. PEG-PCL 
copolymers (PEG2k-PCL5k, PEG5k-PCL10k, 
PEG5k-PCL11.5k, PEG5k-PCL13k) were synthesized 
and characterized by Yifan Liu and Xinyu Lu 
(members of Chen Research Group). 
 

2.2. Preparation of Solutions 

To make calcein solution, first, solid calcein was 
added to water in a 10ml or 20 ml glass vial. The 
initial concentration of calcein was set to be 
around 5 mM (3mg ml -1), well below the self-
quenching concentration of calcein. After shaking, 
a small amount of 2M sodium hydroxide solution 
was added to the solution to help the calcein 
dissolve. Finally, 2M hydrochloric acid solution 
was added to the solution to calibrate the pH of 
the solution to be between 7.0 and 7.4. This 
solution was further diluted to different 
concentrations based on the need of the study. 

Phosphate buffered saline (PBS) was used to 
make buffers of pH 7.4 and pH 6.5. PBS buffers 
contained 137mM sodium chloride, 2.7mM 
potassium chloride, 10mM of sodium phosphate 
dibasic and 1.8mM of potassium dihydrogen 
orthophosphate. Additional 2M hydrochloric acid 
solution and 2M sodium hydroxide solution was 

used to calibrate the solution to its target pH. 
Citrate buffer was used to make buffers of 

pH 5.5. This buffer contains 70.3mM sodium 
citrate dihydrate and 29.7mM of anhydrous citric 
acid. Additional 2M hydrochloric acid solution 
and 2M sodium hydroxide solution was used to 
calibrate the solution to its target pH. 
 

2.3.  Measurement of calcein concentration  

Earlier studies reported that the relationship 
between calcein concentration and fluorescence 
reading is proportional below 4mM.7 Following 
this relationship, a calibration curve was made as 
the standard for calcein concentration for later 
experiments. 

Different concentrations of calcein solutions 
from 10−5mM to 0.01mM were prepared using 
the calcein solution mentioned in 2.2. To measure 
concentration of calcein in a sample, three copies 
of 200μl solution from the sample were extracted 
and pipetted into a 96-well plate for calcein 
florescence reading in a plate reader (GloMax 
Multi-Detection System, Promega, USA). The 
calibration curve was then plotted for future 
reference, 
 

2.4. Synthesis of PEG-PCL Nanoparticles  

Firstly, a certain amount of copolymer (between 
8mg and 10mg) was dissolved in corresponding 
volume of THF or acetone to make a solution of 
10mg/ml in a 1.5ml plastic vial, called the organic 
phase. Secondly, calcein was extracted from 
calcein solution made from 2.2. and diluted with 
deionized water to make an 800 μl  2mg/ml 
solution in a 10ml glass vial, called the liquid 
phase. Then, 800μl  of the organic phase was 
pipetted quickly into the aqueous phase. The glass 
vial containing the mixture was then left on a 
magnetic stirrer (Topolino, IKA, Germany) for 
continuous stirring to fully evaporate the organic 
phase. This process is referred to as 
nanoprecipitation. Another sample with no 
payload and THF as the organic phase was also 
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synthesized which worked as a comparison group.  
 

2.5. Characterization of Nanoparticles 

The average size, polydispersity index 
(abbreviated as PDI), and average zeta potential 
of synthesized PEG-PCL nanoparticles were 
measured. As these properties were inherent to the 
nanoparticles, they would be referred as “inherent 
properties”. All nanoparticle-containing 
suspensions were diluted to above 1.5ml for 
accurate measurement in a particle size analyser 
(Litesizer 500, Anton Paar, Austria). Size and PDI 
were measured using the particle size series mode 
for five repetitive measurements per sample, and 
zeta potential was measured using the zeta 
potential series mode for three repetitive 
measurements per sample.  
 
2.6. Purification and Encapsulation Efficiency 
After nanoprecipitation, 600 μl  of the 
nanoparticle-containing suspension was extracted 
from the glass vial and diluted to around 1ml to 
1.5ml. This diluted suspension was then pipetted 
into a dialysis tube (Float-A-Lyzer G2 100kD 1ml, 
Spectra/Por, USA). Dialysis tube was then 
assembled with a floater and immersed in 200ml 
of deionized water in a sanitized 250ml beaker. 
The dialysis would be run for some time, during 
which the water was replaced hourly until the 
concentration of calcein in water dropped below a 
threshold value ( 5 × 10−5 mM).* For each 
replacement of water, the concentration of calcein 
inside the replaced water was recorded using the 
plate reader. All was summed up to calculate the 
overall amount of calcein escaped from the 
dialysis tube, which equals the amount of 
unencapsulated calcein. The encapsulation 
efficiency (EE) is then calculated by:      

𝐸𝐸 % =
𝑉𝑛,𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐶𝑐,𝑛 − 𝑉𝑤𝑎𝑡𝑒𝑟 ∑ 𝐶𝑐,𝑖𝑖

𝑉𝑛,𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐶𝑐,𝑛
∗ 100% 

where 𝑉𝑛,𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 is the volume extracted from 
the glass vial after nanoprecipitation (600 μl ), 

 
* Dialysis was sometimes conducted overnight, during which the water in the beaker was not changed.  

𝐶𝑐,𝑛  is the concentration of calcein inside the 
glass vial after nanoprecipitation (2mg/ml 
assuming complete evaporation of organic phase) , 
𝑉𝑤𝑎𝑡𝑒𝑟 is the volume of water (200ml) and 𝐶𝑐 is 
the concentration of calcein in water. 
 

2.7.  Storage and Measurement of Leakage 

All synthesized nanoparticles were stored in 
tightly sealed glass vials at 4 degrees with no 
agitation and no light irradiation for 1, 3, or 5 
consecutive days before a leakage study was 
carried out. Leakage measurement is similar to 
that of encapsulation efficiency measurement. 
The only difference would be the amount leaked 
would be measured only once at 2 hours into the 
test. Leakage percentage was calculated by: 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 % =
𝑉𝑛,𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐶𝑐,𝑛 − 𝑉𝑤𝑎𝑡𝑒𝑟𝐶𝑐

𝑉𝑛,𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐶𝑐,𝑛
∗ 100% 

 
2.8.  pH-Dependent Payload Release 
After complete purification (described in 2.6) to 
remove the unencapsulated calcein, the volume of 
nanoparticle-containing suspension in the dialysis 
tube was recorded and calibrated to 3 ml. The 
nanoparticle-containing suspension was then 
separated into three equal portions. Two of them 
were transferred into two new dialysis tubes, one 
in 200ml pH 6.5 buffer and another in 200ml pH 
5.5 buffer with the third portion left for leakage 
test, or characterization measurements as 
discussed in 2.5, or 200ml pH 7.4 buffer for 
another payload release. The concentration of 
calcein in the buffers were measured at of 2, 5, 15, 
30, 60, 90, 120, 150, and 180 minutes into payload 
release. The concentration measurement took the 
same protocol as described in 2.3. For each 
measurement, an equal volume of buffer was 
refilled into the beaker to account for the plate 
reading loss. After 4 hours (or sometimes 
overnight), plate reading was carried out for both 
the nanoparticle-containing suspension inside the 
dialysis tube and outer buffer. The release 
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percentage is calculated by: 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 % =
𝐶𝑏𝑢𝑓𝑓𝑒𝑟 ∗ 𝑉𝑏𝑢𝑓𝑓𝑒𝑟

𝐶𝑏𝑢𝑓𝑓𝑒𝑟 ∗ 𝑉𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐶𝑡𝑢𝑏𝑒 ∗ 𝑉𝑡𝑢𝑏𝑒
∗ 100% 

where 𝐶𝑏𝑢𝑓𝑓𝑒𝑟 is the concentration of calcein in 
the buffer, 𝑉𝑏𝑢𝑓𝑓𝑒𝑟 is the buffer volume (200ml), 
𝐶𝑡𝑢𝑏𝑒 is the concentration of calcein in dialysis 
tube and 𝑉𝑡𝑢𝑏𝑒  is the volume of nanoparticle-
containing suspension in the dialysis tube at the 
end of payload release. 
 

2.9. Shaking Test  

After purification, some samples were extracted 
from the dialysis tube, diluted to 1 ml if the 
volume left in the dialysis tube was less than 1 ml, 
and transferred into 1.5ml plastic vials. The 
plastic vials were covered with aluminum foil to 
avoid light irradiance. The vials were then clipped 
on to a shaker (Stuart SB3, VWR, UK) and 
rotation speed was set to 40 rpm. Samples 
underwent horizontal or vertical shaking with a 
duration of 2 or 20 hours. After shaking, the 
samples go through the purification step 
mentioned in 2.7. again to determine additional 
leakage.       
 

2.10. Statistical Analysis 

All data reported was the average of at least three 
repetitive measurements. Error bars or error 
margins were calculated for 95% confidence 
interval. A student’s t test was employed to 
evaluate whether comparable values from 
different data sets were statistically different with 
a value of P < 0.05 as an indication of statistical 
difference. Values without error margins were 
usually generalizations of the data. Should two 
sets of data turned out to be statistically different, 
the magnitude of difference was also usually 
discussed. 
 

3. Results and Discussion 
3.1. Inherent Properties: Size, PDI and Zeta 

Potential 

3.1.1. General description 

Size indicates the feasibility of the nanoparticles 
to enter the cells. PDI represents the homogeneity 
of nanoparticles synthesized. Zeta potential 
measures the surface charge and may also indicate 
the stability of the nanoparticles in a suspension. 
Nanoparticles need to ‘pass’ (has a similar 
magnitude with what other researchers reported) 
these three basic criteria before further 
experiments are carried out. 

3.1.2. Trends across copolymers and solvents 

Figure 3.1 shows how the average size change 
across various copolymers synthesized with THF. 
PEG2k-PCL5k nanoparticles showed a bigger 
standard deviation in average size compared to 
other nanoparticles. Additionally, size distribution 
diagram shows that PEG2k-PCL5k nanoparticles 
had a large PDI with two peak intensities. The 
lack of homogeneity and variation from batch to 
batch makes PEG2k-PCL5k unsuitable as a drug 
delivery vector and is hence excluded from 
further analysis. Figure 3.2 shows the size 
distribution of PEG2k-PCL5k compared to that of 
an ‘acceptable size distribution’. Nanoparticles 
synthesized with PEG5k-PCL10k PEG5k-PCL11.5k 
and of PEG5k-PCL13k do not show statistical 
difference in terms of average sizes.  

 

Figure 3.1 Average sizes of PEG-PCL nanoparticles synthesized 

with THF. ‘No payload’ indicates a trial synthesized with PEG5k-

PCL10k without calcein. 

a) 
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b) 

 

Figure 3.2 Particle size distribution of a) PEG2k-PCL5k 

nanoparticles synthesized with THF compared to b) PEG5k-

PCL11.5k nanoparticles synthesized with THF 

Figure 3.3 shows the average nanoparticle 
sizes of all the copolymers that were considered 
‘qualified’ for further payload release testing. 
Similar to THF, nanoparticles synthesized with 
acetone do not show statistical differences in 
average size for different copolymers. Average 
sizes of nanoparticles synthesized with acetone 
were smaller than those synthesized with THF, 
although this difference is not statistically 
significant for nanoparticles synthesized from 
PEG5k-PCL10k. The average of the averaged sizes 
of PEG-PCL nanoparticles synthesized with THF 
were around 270nm while those synthesized with 
acetone were around 200nm. 

 

Figure 3.3 Size comparison between nanoparticles synthesized 

with acetone and nanoparticles synthesized with THF. 

Figure 3.4 shows the zeta potentials of the 
nanoparticles synthesized across different 
copolymers. The zeta potentials of the 
nanoparticles are all negative. Nanoparticles 
synthesized with PEG5k-PCL11.5k tend to have a 
statistically significant more negative zeta and 
potential regardless of the choice of organic 
solvent.  

 

Figure 3.4 Different average zeta potentials of various PEG-PCL 

copolymers synthesized with THF and acetone.  
 
3.1.3. Comparison with literature 
Overall, average sizes of the nanoparticles are 
within the ranges of what other researchers have 
reported which generally varies between 80nm to 
285nm.4,6 The differences in the average sizes of 
the nanoparticles arising from the organic solvent 
was also reported by other researchers using a 
similar synthesizing method. A study on PCL-
PEG-PCL nanoparticles claimed that while some 
organic solvents are completely miscible with 
water, the difference in solvent water miscibility 
led to difference in nanoparticle size.8 The 
average size of PCL-PEG-PCL nanoparticles 
synthesized with THF was 40% larger than that 
synthesized with acetone which matches the 
result of this study. 

The averaged zeta potentials of PEG-PCL 
nanoparticles in this study, which ranges from 
16.48± 0.31mV to -24.66± 0.58mV, are more 
negative than what other studies report, which lie 
between -0.04± 0.04mV and -11.47± 0.64mV.6 
This difference in zeta potential could be 
contributed by the payload. Calcein, having 4 of 
its 6 pKas below 5.5, would readily dissociate into 
calcein anion at pH 7 where zeta potential 
measurement took place.9 Encapsulated calcein 
anions can contribute to negative charges during 
the zeta potential measurements. The fact that zeta 
potentials of the unloaded nanoparticle being    
-7.79± 1.04mV, within the range of what other 
researchers had reported and significantly less 
negative than loaded PEG-PCL nanoparticles, 
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offers further validation of calcein contributing to 
the negative zeta potential.  
 The PDI of the nanoparticles varied between 
0.25 to 0.30, which is higher than what other 
researchers have obtained which were between 
0.05 and 0.18.6 One potential explanation would 
be passive coating methods are difficult to control, 
as it is very difficult to determine the exact stop 
point of nanoprecipitation (i.e., full evaporation of 
organic phase) and control the exact stirring speed,  
 
3.2. Encapsulation Efficiency 

3.2.1. Trends across copolymers and solvents 

Figure 3.5 depicts the encapsulation efficiencies 
of nanoparticles made from different copolymers 
and different solvents. The encapsulation 
efficiencies across different copolymers are not 
statistically different from each other for both 
solvents. On the other hand, the encapsulation 
efficiency of nanoparticles synthesized with 
acetone is higher than that synthesized with THF, 
which is statistically significant across all three 
copolymer nanoparticles. 

 
Figure 3.5 Different average zeta potentials of various PEG-PCL 

copolymers synthesized with THF and acetone. 

3.2.2. Comparison with literature 

The measured encapsulation efficiency has a 
range between 10.37±1.28% and 22.34±9.42%. 
This is much lower than some studies. One study 
pointed out that the encapsulation efficiencies of 
PEG-PCL with nobiletin as the payload could be 
as high as 76.34± 3.25% using DMSO as the 
organic phase solvent for nanoprecipitation.10 
Besides the different choice of organic phase 
solvent, which had already proven its ability to 

influence different encapsulation efficiencies in 
figure 3.5, the study had the payload and the 
copolymer dissolved in the same organic phase 
which may lead to a different encapsulation 
process. In addition, the charged nature of calcein 
may also lead to low encapsulation efficiency as 
the anion, together with negatively charged PEG-
PCL, created electrostatic repulsion that makes 
assemble of nanoparticle more difficult. 

There are currently a limited number of 
studies on how the choice of organic phase 
solvent may influence encapsulation efficiency. It 
is plausible that the difference in solvent water 
miscibility, as discussed in 3.1.3, caused this 
discrepancy.8 Another study reported that 
different solubilities of organic solvent in water 
may lead to encapsulation efficiency difference.11 
Based on this, it is likely that the differences in 
size and encapsulation efficiency were caused by 
the interactions between different organic solvent 
molecules and water molecules. The key 
properties that need to be investigated may 
include viscosity and surface tension coefficient. 
 

3.3.  Payload Release    

3.3.1. Payload Release Profile 

Figure 3.6 depicts payload release over time for a 
single batch of nanoparticle at four different pH. 
The presence of ions (in buffers) would lead to 
significant release of the payload. All release 
profiles show decreasing releasing rate with time. 
Also, from the graph, PEG-PCL nanoparticles are 
stable under DI water storage conditions. 

 
Figure 3.6 A payload release profile of PEG5k-PCL13k 

nanoparticles synthesized with THF across four pHs. 
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3.3.2. Trends across different variables 

Figure 3.6 shows that the payload release rate at 
pH of 6.5 is quicker compared to that at pH 5.5 
and pH 7.4. At pH of 6.5, 82.96± 2.12% of the 
payload were released after 1 hour compared to a 
release of and 58.48±0.94% and 51.82±0.02% at 
pH 5.5 and pH 7.4, respectively. The difference 
between payload release at pH 5.5 and that at pH 
7.4 are not significant.  

The trend of payload release at pH 6.5 faster 
than that at pH 5.5 holds for all nanoparticles 
synthesized with acetone. Specifically, 1 hour into 
the experiment see approximately 45% of payload 
released at pH 5.5 and 60% of payload release at 
pH 6.5. For some nanoparticles synthesized with 
THF, however, there is no difference in payload 
release rate between pH 6.5 and pH 5.5. Figure 
3.7 provides a good example.  

 

Figure 3.7 A payload release profile for PEG5k-PCL13k 

nanoparticles synthesized with THF at pH 6.5 and pH 5.5. The 

difference between two profiles is not significant in magnitude. 

3.3.3. Effect of payload release on Inherent 
Properties 

The average size of nanoparticles did not show 
significant differences. For example, the average 
size of PEG5k-PCL11.5k nanoparticles synthesized 
with THF after a 24-hour payload release at pH 
6.5 was 264.55±11.35nm, which does not deviate 
heavily from the average size for the same 
nanoparticle before dialysis, which was 
285.56 ± 6.45nm. However, the average zeta 
potential showed an increase. The averaged zeta 
potential for PEG5k-PCL11.5k nanoparticles after 
payload release was -10.92±0.38mV. As the zeta 

potential for the same nanoparticles without 
payload release was -24.66± 0.58mV, this is a 
strong validation that encapsulated calcein 
escaped from PEG-PCL nanoparticles during 
payload release. Additionally, as the average size 
did not change much during payload release, it 
could be reasonably inferred that an ionic buffer 
environment created gaps in PEG-PCL 
nanoparticles that are larger than the size of 
calcein molecules, allowing calcein to escape. 
The overall structure of PEG-PCL nanoparticles, 
however, remained intact. 
  

3.3.4. Comparison with literature 

Various researchers have claimed that PEG-PCL 
nanoparticles are stable when stored under pH 7.4 
environment for months, which the data from this 
study strongly disagrees.3 One study went further 
and reported that PEG-PCL nanoparticles 
released only around 20% of the payload within 
10h under pH 7.4 with similar solvent evaporation 
preparation method and doxorubicin as the 
payload.12 Two key differences may explain the 
difference in payload release rate. The first would 
be that the study did not publish the molecular 
weight of PEG-PCL used for synthesis and it is 
evident (from the case of PEG2k-PCL5k discussed 
in 3.1) that the molecular weight of copolymer 
could affect properties of the synthesized 
nanoparticles. Secondly, doxorubicin was not 
highly charged at pH 7.4 while calcein was 
negatively charged at pH 7.4. The difference in 
charge may affect the rate which the payload 
escapes the nanoparticle should there be a hole 
that is similar in size to the payload. In addition, 
other studies also pointed out that while PEG-PCL 
nanoparticles helped reduce the payload release 
rate at pH 7.4 compared to free, unencapsulated 
payload, the magnitude of reduction was rather 
moderate.10 The study, which uses PEG-PCL 
nanoparticles to encapsulate nobiletin, observed a 
90% release of free nobiletin released compared 
to a 65% released of PEG-PCL encapsulated 
nobiletin under pH 7.4 environment for 12 hours. 
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3.3.5. Real-life implications of the results 

Comparing the ideal scenario (as discussed in 1.1) 
to the results of this study, the biggest problem of 
single-component PEG-PCL nanoparticle would 
be instability under pH 7.4. While payload release 
rate at pH 6.5 and pH 5.5 may differ, all samples 
record a release of more than 45% within 1 hour 
and more than 70% within 3 hours. Such results 
are acceptable and further optimization is not a 
priority. 
 

3.4.  Leakage under static condition 

3.4.1 Leakage Profile across copolymers 

Figure 3.8 shows leakage profiles of PEG-PCL 
nanoparticles synthesized with acetone. 

 
Figure 3.8 Leakage profile over time for nanoparticles made 

from three copolymers with acetone 
 

PEG5k-PCL13k nanoparticle saw the largest 
leakage over the 5 days, reaching around 30% at 
day 5. All three copolymer nanoparticles 
exhibited similar leakage amount around 5% at 
day 1, while the difference became more 
significant with increasing time. It could be 
concluded from the figure that larger molecular 
mass of PEG-PCL monomers would result in 
higher leakage within a certain amount of time. 
However, leakage percentages for different 
copolymer nanoparticles were sometimes not 
statistically different from each other. 
 
3.4.2 Comparison with Literature 
The leakage profile over days is in line with what 
other researchers reported. When varying the 

coating material, the payload leakage is 
approximately increasing from 10% at day 1 to 30% 
at day 5.13  
 

3.5.  Effect of Shaking 

3.5.1. Effect of Short Shaking on Leakage 

Shakings for 2 hours simulates external 
disturbances experienced by the nanoparticles 
during intra-city transports. Figure 3.9 displays 
examples of the leakage of nanoparticles after 2 
hours of shaking. The additional leakage was 
small in magnitude (less than 10%) and 
sometimes smaller than that of the control group. 

 
Figure 3.9 Leakage after 2 hours of shaking  

 
3.5.2. Effect of Prolonged Shaking on 

Leakage 
Shakings for 20 hours simulates of external 
disturbances experienced by the nanoparticles 
during inter-city or international transports. 
Figure 3.10 shows the leakage of various 
nanoparticles over 20 hours. Additional leakage 
was statistically significant at around 10%, 
indicating that the amount of additional leakage is 
positively correlated with the duration of shaking. 

 
Figure 3.10 Leakage after 20 hours of shaking 
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3.5.3. Effect of Shaking on Inherent 
Properties 

Inherent properties of PEG-PCL nanoparticles did 
not undergo significant changes after shaking. 
The effect of short-time shakings on these 
properties were statistically insignificant. For 
example, the average size of PEG5k-PCL11.5k 
nanoparticles (synthesized with acetone) after 
horizontal shaking for 1 hour was 
223.77 ± 7.32nm which is similar to 
222.34 ± 7.45nm in the control group.* The 
average zeta potential of the same nanoparticles 
after shaking were -20.86±0.63mV compared to 
-24.66±0.58mV in the control group. The results 
met with leakage results as small or statistically 
insignificant leakage should not lead to changes 
in inherent properties. For longer shaking, the 
average size of nanoparticles also remained 
unchanged. PEG5k-PCL11.5k nanoparticles 
(synthesized with THF) returned an average size 
of 266.88± 10.20nm after a 20-hour horizontal 
shaking, which is still comparable to the control 
group’s average size of 270.10 ± 15.66nm. 
However, a slight increase in average zeta 
potential was observed. The average zeta 
potential of the same nanoparticles after shaking 
was -21.18±0.52mV, which is statistically higher 
than -24.66±0.30mV in the control group. These 
observations were coherent with the leakage 
results, as longer shakings incur a statistically 
significant leakage. Average zeta potential of the 
nanoparticles became less negative as a result of 
calcein anions escaping the nanoparticle. 
 

4. Conclusions 
The study of PEG-PCL nanoparticles proves that 
conventional nanoprecipitation techniques can be 
used to encapsulate negatively charged drugs just 
as to encapsulate charge neutral drugs. PEG-PCL 
nanoparticles also showed superior payload 
release performance in early and late endosomal 
pH environments. Based on in vitro analysis 

 
* Size measurements were statistically different from that reported in figure 3.x. Such differences could arise from simple 
batch to batch difference or due to the fact that these data were measured 4 days after synthesis of the nanoparticles.  

results, acetone was determined to be the superior 
organic solvent for PEG-PCL nanoparticle 
synthesis as nanoparticles synthesized with 
acetone had smaller average sizes which enabled 
better cell wall penetration and higher 
encapsulation efficiencies which means more 
drugs could be loaded to the nanoparticle.  

Meanwhile, this study also shows that simple 
nanoprecipitation process led to low 
encapsulation efficiencies in the range of 10% to 
20%. In addition, a single layer of PEG-PCL was 
not sufficient to achieve stability in physiological 
pH conditions. Further analysis could be done on 
measuring the behavior of the nanoparticles under 
actual blood and cell conditions, and further work 
needs to be done on improving the stability of 
single-layer PEG-PCL nanoparticles in 
physiological pH conditions and improving the 
encapsulation efficiencies. Despite the challenges, 
PEG-PCL nanoparticles have demonstrated good 
potential towards a successful drug delivery 
vector. 
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1 Introduction 
In 2021, the operation of buildings accounted for 

30% of the global final energy consumption [1]. The 
increase in energy use in the building sector is therefore 
responsible for one-third of global energy-related CO2 
emissions. Moreover, the outline made by the 
Intergovernmental Panel on Climate Change (IPCC) in 
their last 2022 climate report highlights the continuing 
rise of total net anthropogenic greenhouse gas (GHG) 
emissions [2]. Therefore, to minimize the temperature 
rise in the upcoming years, the IPCC believes in the 
reduction of carbon emissions through performance and 
efficiency improvements, allowing major cost savings. 
The retail sector, in particular supermarkets, accounts 
for approximately 1% of the UK’s annual GHG 
emissions. The high energy demand for food retail 
buildings is mainly due to the presence of gas and 
electricity features, refrigeration, ventilation, and air 
conditioning [3]. The necessity of reducing these 
emissions is faced by many operators, including 
Sainsbury’s, the UK’s second largest grocery chain, 
with a 15.1% market share in 2022 [4]. Their 
commitment to aligning to a 1.5C trajectory across all 
scopes, therefore reducing GHG emissions from their 
operations by 2035, has already been put in place. 
Reaching their net-zero target is unhesitatingly 
combined with the improvement of the emissions 
outline of their portfolio. 

2 Background 

There is a significant amount of literature on the 
analysis of building energy performance and efficiency. 
To identify the best emissions and cost reduction 
solutions, understanding the complex load requirements 
of power, heating, and cooling of energy-intensive 
buildings is required. While some studies on energy 
demand drivers in food retailers have shown that 
evaluating annual energy demands can be done by 
knowing only a few characteristics of food retail stores 
[1], others have developed data-driven methods to 
predict this demand [4]. These methods correspond to 
benchmarking techniques, allowing a comparison of the 
energy performance of similar commercial buildings [8, 
9, 10]. Benchmarking consistently measures buildings’ 
energy use in relation to their size and other core 
characteristics. It is essential to understand which 
buildings are the most inefficient and what design 
improvements could be made to address them. Current 
energy benchmarking methods can be categorized into 
black, gre,y and white box methods [11]. A number of 
these methods have been developed based on project 
requirements and available monitoring data.  

Multiple regression methods have been developed 
with various applications including linear regression 
(LR), multi-linear regression (MLR) [8], and decision 
trees (DT). While these methods are conceptually 
simple and thus easy to use, other methods that show a 
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different approach can be more challenging due to the 
embedded statistical knowledge and concepts. This 
includes artificial neural networks (ANN), used by 
Kalogirou in his 2000’s work to predict the energy 
consumption of a passive solar building. [6]. While 
these models can predict a building’s electricity and gas 
consumption, they cannot inform on the actions needed 
to be taken to achieve a better performance of this 
building. A few literature gaps were identified, mostly 
around the prediction of building energy performance 
considering weather and carbon factors. Moreover, 
other limitations were found regarding general 
investment strategy roadmaps for particular national 
organizations [5]. Strategic financial planning in the 
sector’s large organizations, such as Sainsbury’s, 
requires knowledge of future demands for gas and 
electricity consumption.  

By partnering with Imperial, Sainsbury’s benefits 
from the university’s research and expertise to assess 
state-of-the-art technologies and make decisions on 
energy savings and carbon reduction strategies. The 
second largest food retailer in the UK has provided 
access to data on energy consumption, including gas 
and electricity usage, and information on store 
characteristics for a large set of stores.  

The main aim of this research is to deliver a potential 
investment strategy specifically tailored for Sainsbury’s 
case. This work principally explores two existing 
benchmarking methods to develop a rigorous forecast 
of energy consumption, with a principal focus on the 
implementation of weather and carbon features, 
including store characteristics such as store area. 
Further, this research presents a financial analysis based 
on the evaluation of costs included in retrofitting 
buildings with different heating and electricity 
technologies.  

This paper is composed of four sections. The current 
section has provided the background, motivations, and 
scope of the problem. The second section informs of the 
methodology along with the mathematical 
conceptualization of the models used to categorize the 
estate and the means through which energy forecasting 
was performed. This section also describes the 
investment strategy scenarios based on energy and 
financial considerations. The third section provides the 
results from the two regression models, as well as the 
energy consumption forecast and cost insights. Finally, 
the last section of this work provides concluding marks, 
including a potential investment strategy based on the 
earlier sections’ results.  

 

3 Methodology 
3.1 Data Collection and Treatment 

To develop regression models, data was first 
collected, cleaned, and processed. 

3.1.1 Building Data 

A database containing building characteristics was 
provided by Sainsbury’s. Data was given for 1927 
assets from the financial year 2017 to 2020. This data 
set included all stores such as supermarkets, 
convenience stores and click & collect grocery markets. 
To have uniformity in building types and to only 
consider operationally intense assets, only Sainsbury’s 
supermarkets were considered, which narrowed down 
the number of assets to 601. A few building 
characteristics were gathered, including gas and 
electricity consumption by four-week periods, sales 
area, and building technology features. The stores that 
contained missing data or anomalies were then 
removed, leaving 183 stores for gas consumption data 
and 174 stores for electricity consumption data.  

3.1.2  Weather Data 

UK hourly raw weather dataset was taken from the 
CEDA Weather Database [12].  An SQL database was 
built to store the raw data, which could then be used to 
easily query the weather data. This data was gathered by 
coordinating the postcodes of each store to the closest 
weather station. The two weather features processed, 
namely the average heating degree days (HDD) and 
cooling degree days (CDD) [13], were calculated based 
on equations 1 and 2. These two features provided a 
more accurate interpretation of the effects of 
temperature on the heating and cooling demand of the 
stores [14].  

 
𝐻𝐷𝐷 =  ∑ 𝑣𝑖(𝑇𝑖 − 𝑇𝑏)

𝑖=𝑑𝑎𝑦

      𝑣𝑖 {1    𝑇𝑖 < 𝑇𝑏
0    𝐸𝑙𝑠𝑒      

 
(1) 

𝐶𝐷𝐷 =  ∑ 𝑣𝑖(𝑇𝑖 − 𝑇𝑏)
𝑖=𝑑𝑎𝑦

      𝑣𝑖 {1    𝑇𝑖 > 𝑇𝑏
0    𝐸𝑙𝑠𝑒      (2) 

 
𝑇𝑖 as daily average temperature, 𝑇𝑏 as baseline 

temperature. 
Based on literature, and to maximise correlation 

between energy consumption and temperature, the 
baseline temperature was selected to be 15°C for CDD 
and HDD [15]. 

3.1.3 Cost and Carbon Emission Factors 

In this case, cost factors represented the cost of 
electricity and natural gas per unit energy consumed, 
with units of £/𝑘𝑊ℎ. Similarly, the carbon emission 
factor described the amount of 𝐶𝑂2 released per unit 
energy consumed with units of 𝑘𝑔𝐶𝑂2/𝑘𝑊ℎ. The 
dataset provided by Sainsbury’s included forecasted 
annual cost factor data for all stores from FY-21/22 to 
FY-24/25. The cost factor values are shown in Table 5. 
The carbon emission factor was taken as a constant at 
0.184 𝑘𝑔𝐶𝑂2/𝑘𝑊ℎ. To evaluate the Net Present Value  
(NPV) of the two chosen scenarios, carbon abatement 
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costs for different technologies was taken from the 
literature [15]. These factors were considered to be 
more representative to develop an investment strategy. 

 
3.2 Electricity and Gas Demand Forecast 

Electricity and gas demand was forecasted by 
performing linear regression where the year was the 
independent variable, whereas the electricity and gas 
demand represented the dependent variables. The 
forecasting was performed by taking the average of the 
year-on-year (y-o-y) growth of electricity and gas 
demand for FY 17/18 to FY 19/20. The average y-o-y 
growth was found to be -5.6% for electricity demand 
and 0.13% for gas demand. These two values were then 
used to forecast the energy consumption in the next 5 
years by taking the assumption that the y-o-y growth 
would remain constant at these two values. These 
findings will be further described in Section 4.1. 

 
3.3 Building Energy Performance 

The building energy performance was analysed with 
the purpose of understanding the main factors that affect 
a building’s gas and electricity consumption and 
exploring possible methods to optimise the overall 
performance. For the purpose of this study, we have 
narrowed down the factors that affects the building 
energy performance to heating degree days (HDD), 
cooling degree days (CDD) and store area.   

The dataset provided by Sainsbury’s contained the 
building characteristics showing the different heating 
and cooling technologies of each store. As these 
technologies would greatly affect the efficiency and 
performance of the building energy usage, the building 
energy performance analysis was conducted separately 
for the different types of technologies. Regarding gas 
consumption, only the stores with gas boilers were 
considered for this study as they represented the 
majority of the stores. For electricity consumption, the 
stores were segmented into two categories of buildings: 
those with Ground Source Heat Pumps (GSHP) and 
those without, as this technology was found to have a 
substantial effect on the electricity consumption of a 
store. 

The study used here may have several limitations 
since it did not consider any other weather parameters 
such as wind or humidity, or any other technical 
advances and building improvements. Furthermore, 
change in footfall was taken to be negligible. Despite 
that, this method yielded substantial results in an easily 
realisable way. 

3.3.1  Linear Regression 

Linear regression method was used to analyse the 
impact of weather and store area on building energy 
performance and to determine whether a linear 
relationship between these parameters could be 

observed. The linear regression was performed based on 
two key equations, one for electricity and one for gas 
consumption. The two equations are shown below: 

 
𝐺 = 𝛼 × 𝐻𝐷𝐷 ×  𝑆𝐴𝑖𝑛𝑐𝑙. (3) 
𝐸 = 𝛽 × 𝐶𝐷𝐷 ×  𝑆𝐴𝑒𝑥𝑐𝑙.  (4) 

 
G is the gas annual consumption, E is the electricity 
annual consumption and SA is the store area. In this 
equation 𝛼 and 𝛽 are the regression coefficients to be 
calculated by plotting the dependent variable against the 
independent variable and taking the gradient at that 
point. The store area,  𝑆𝐴𝑖𝑛𝑐𝑙., used to calculate 𝛼 
includes sales area and checkouts, while the 𝑆𝐴𝑒𝑥𝑐𝑙. to 
determine 𝛽 discards checkouts. This is due to 
electricity, which is mainly used for refrigeration 
systems, only including the sales area, while gas 
provides for the heating system in the whole building. 

The calculated 𝛼 and 𝛽 coefficients could then be 
used to rank the store based on their performance. The 
lower the 𝛼 and 𝛽 values, the more efficient the store 
was in utilizing energy. Based on these coefficients, the 
stores were ranked, from best to worst-performing 
buildings. This information was then used to inform 
investment decisions.  

3.3.2  Multi-variate Linear Regression (MLR) 

Analogous to Linear regression, multi-variate linear 
regression (MLR) was used to analyse the impact of 
weather and store area on the building energy 
performance. MLR was performed as it was predicted 
to provide a better fit in comparison to the linear 
regression. The multi-linear regression was achieved 
using the two equations below: 

 
𝐺 = 𝐴 ×  𝑆𝐴𝑖𝑛𝑐𝑙. + 𝐵 × 𝐻𝐷𝐷 × 𝑆𝐴𝑖𝑛𝑐𝑙. (5) 
𝐸 = 𝐶 × 𝑆𝐴𝑒𝑥𝑐𝑙. + 𝐷 × 𝐶𝐷𝐷 × 𝑆𝐴𝑒𝑥𝑐𝑙. (6) 

 
G is the gas annual consumption, E is the electricity 
annual consumption and SA is the store area. In the 
equation above, A, B, C and D are regression 
coefficients that can be determined by performing the 
multi-variate regression across the stores for the 
different heating and cooling technologies. This 
regression was performed by using the data analysis 
tool in Microsoft Excel. For example, to calculate A and 
B, 𝐺 was set to be the dependent variable while 𝑆𝐴𝑖𝑛𝑐𝑙. 
and 𝐻𝐷𝐷 × 𝑆𝐴𝑖𝑛𝑐𝑙. were considered as the independent 
variables.  

The regression coefficients were then used to 
calculate the baseline gas/electricity annual 
consumption for each store by using equation 5 and 6. 
Baseline consumption represents the gas/electricity 
consumption of the stores performing at the average 
level. Stores could then be ranked based on how far they 
were performing from the baseline consumption. This 
was done using the equation below: 
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𝜃 =
[𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑛𝑠. −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠. ]

𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑛𝑠.  (7) 
 

𝜃 represents the deviation of the actual 
gas/electricity consumption of the stores from the 
baseline consumption. A more negative value of 𝜃 
yields a better performance of the store. This ranking 
system will then be used to execute data-driven 
investment decisions.   

3.4 Investment Strategy: Cost and Carbon 
Savings 

Financial analysis was performed under two 
investment scenarios to determine the potential cost-
savings that Sainsbury’s will be able to attain. Each of 
the scenarios were run using datasets from both linear 
regression and multi-linear regression separately. 
Carbon emission analysis for the two scenarios was also 
conducted to examine the reduction in carbon emissions 
from optimising the store energy performance. 

3.4.1  Scenario 1: Optimising all stores 

The impact of optimising all the stores was 
quantified by calculating the electricity consumption, if 
all the stores were to perform as efficiently as the stores 
at the 75th percentile and the additional electricity 
consumption, if all the gas boilers were converted to 
Ground Source Heat Pumps (GSHP).  

For linear regression, the 𝛽-coefficient was obtained 
for the 75th percentile store and used to calculate the 
optimised electricity annual consumption, as described 
in equation 4. For multi-linear regression, the regression 
coefficients C and D were calculated with simultaneous 
equations by taking the 75th and 80th percentile store 
weather and store size data.  The coefficients were then 
used to calculate the optimised electricity annual 
consumption, i.e. if all stores were to perform at the 75th 
percentile, using equation 6. 

 Assuming that all the stores were to convert their 
gas boilers to GSHPs, the gas annual consumption 
would be reduced to zero. However, the operation of 
these heat pumps would lead to additional electricity 
consumption. For every 1 kWh of electricity used, 3 
kWh of natural gas is required to yield the same heating 
power. Therefore, the additional electricity required 
annually is one-third of the forecasted gas annual 
consumption.  

Total potential cost-savings could therefore be 
calculated by multiplying 𝐺𝑠 𝐺𝑆𝐻𝑃, 𝐸𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙, 
𝐸𝑠𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 by the cost factors in Table 5. 𝐺𝑠 𝐺𝑆𝐻𝑃, 
𝐸𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙, 𝐸𝑠𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 were calculated using the 
equation below: 

 
𝐺𝑠 𝐺𝑆𝐻𝑃 = 𝐺𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 (8) 

𝐸𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
1
3 × 𝐺𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  (9) 

𝐸𝑠𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = 𝐸𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 − 𝐸𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑  (10) 
𝐶𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝐺𝑠𝐺𝑆𝐻𝑃 × 𝐶𝑓𝑎𝑐𝑡𝑜𝑟 (11) 

𝐺𝑠 𝐺𝑆𝐻𝑃 is the gas annual consumption saved from 
implementing GSHP, 𝐺𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  is the forecasted gas 
annual consumption, 𝐸𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 is the additional 
electricity annual consumption required from GSHP, 
𝐸𝑠𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛  is the electricity annual consumption 
saved from optimising the stores to perform at 75th 
percentile, 𝐸𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 is the forecasted electricity annual 
consumption, 𝐸𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑  is the optimised electricity 
annual consumption, if the stores were to perform at 75th 
percentile, 𝐶𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑 is the annual reduction in carbon 
emission and 𝐶𝑓𝑎𝑐𝑡𝑜𝑟 is the carbon factor, taken as 0.184 
𝑘𝑔𝐶𝑂2/𝑘𝑊ℎ [13]. 

To further analyse the scenario, Net Present Value 
(NPV) of the project was calculated by taking the 
investment timeline to be 5 years as requested by 
Sainsbury’s. The total NPV was calculated by summing 
the two NPVs below: 
NPV-G: NPV of implementing GSHP to reduce gas 
consumption [16] 
NPV-E: NPV of implementing electricity-saving 
technologies for all the stores to perform at the 75th 
percentile 
 

𝑁𝑃𝑉 − 𝐺 = ∑
𝐶𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

− 𝐼𝐶 (12) 

 
NPV-G was calculated using the equation above where 
t is the time period in years, T is the total number of time 
period taken to be 5 years, 𝐶𝑡  is the cost-saving at year 
t, r is the discount rate taken to be 6% from the United 
Kingdom’s forecasted interest rate in the next 5 years 
[17], and lastly IC is the investment cost for the GSHP. 
The investment cost and cost-saving can be calculated 
using the two equations below. 
 

𝐼𝐶 = 𝐻𝑃𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐻𝑃𝐶𝑜𝑠𝑡 (13) 

𝐻𝑃𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝐺

𝐻𝑜𝑢𝑟𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟 (14) 

𝐶𝑡 = 𝐶𝐺𝑠 + 𝐶𝐶𝐸 + 𝐶𝐸 𝐴𝑑𝑑 (15) 
 
𝐻𝑃𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the heat pump capacity, 𝐻𝑃𝐶𝑜𝑠𝑡  is the heat 
pump cost is taken to be £633/𝑘𝑊 [18],  Hours in a year 
is taken as the total number of hours in a year assuming 
that heating is required all year round, 𝐶𝐺𝑠 is the annual 
gas cost-saving from GSHP, 𝐶𝐶𝐸  is the annual carbon 
emission cost-saving from GSHP and 𝐶𝐸 𝐴𝑑𝑑 is the 
additional cost of electricity from GSHP. 

 
𝑁𝑃𝑉 − 𝐸 = 𝐴𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑆𝑎𝑣𝑒𝑑  (16) 

 
NPV-E was calculated using the equation above 

where 𝐴𝐶𝐸𝑛𝑒𝑟𝑔𝑦  is the average energy abatement cost in 
£/𝑘𝑊ℎ derived from multiplying carbon abatement 
cost in £/𝑘𝑔𝐶𝑂2 with the carbon factor. 𝐸𝑆𝑎𝑣𝑒𝑑 is the 
total electricity saved from implementing electricity-
saving technologies. These technologies are listed in 
Table 6.  
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The total NPV can therefore be calculated by 
summing NPV-G and NPV-E. If the NPV is positive, 
the investment should logically increase Sainsbury’s 
earnings, making the investment attractive. 

Normalization was performed to compare the two 
scenarios, where the Total NPV per store was calculated 
using the equation below. 

 
𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑉
𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑒

=
𝑁𝑃𝑉 − 𝐺

𝑁𝑜. 𝑜𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 +
𝑁𝑃𝑉 − 𝐸

𝑁𝑜. 𝑜𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 (17) 

 

3.4.2 Scenario 2: Optimising worst 5 stores in gas 
and electricity consumption 

For Scenario 2, the same methodology was applied 
to attain the optimised electricity annual consumption 
based on the 75th percentile store and additional GSHP 
electricity consumption. However, instead of 
performing the optimisation to all the stores, this 
scenario only implemented the improvements on the 
worst 5 stores in terms of gas consumption and worst 5 
stores in terms of electricity consumption. The 
reduction in carbon emissions was obtained following 
the same approach as in Scenario 1. This scenario was 
predicted to be more ideal in the short term as it required 
a smaller investment, yet still leading to substantial 
results.  

4 Results 
4.1 Electricity and Gas Demand Forecast - 

Output 
Figures 1 and 2  show the plot of the linear regression 

performed to forecast the energy demand for the next 5 
years.  

 
Figure 1: Forecast of Gas Annual Consumption for 

the next 5 years 

 
Figure 2: Forecast of Electricity Annual 

Consumption in the next 5 years 

 
While the electricity consumption has been clearly 
declining throughout the last 5 years, from 2017 to 
2021, the consumption of natural gas has remained 
relatively constant, as highlighted by the linear 
trendline. Assuming a constant y-o-y growth, the 
demand in electricity was forecasted to follow a 
constant decline of 5.6% on average, while the demand 
in gas would be relatively stable in the next few years at 
a constant growth rate of 0.13% on average.  
 
4.2 Building Energy Performance - Output 

Understanding the models’ outputs is essential to 
this research since it allows an effective benchmarking 
of buildings. The outcomes of this analysis, applied to 
different categories of buildings, led to the ranking of 
supermarkets by performance efficiency. 

4.2.1 Linear Regression for all the stores 

To assess the impact of the two variables considered, 
i.e the area of each building as well as the CDD and 
HDD, on the buildings’ energy demand, a variation of 
both natural gas and electricity consumption was 
analysed as a function of these two components, as 
shown in Figure 3. 
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Figure 3: Linear plots of 2019 Gas and Electricity consumption against Store area, Weather factor, and Weather 

Factor x Store Area 
 
A few data points, considered as anomalies due to 

abnormally high energy consumption, were removed 
from these graphs since it altered the overall fit of the 
linear trendline. Although the size of the store exhibited 
a relatively clear linear relationship with the overall gas 
and electricity consumption, the heating and cooling 
degree day indexes did not show any clear correlation  
with the energy consumption as seen in Figure 3. This 
can also be seen by the coefficient of determination, R2, 
which not only indicate the goodness of fit, but also can 
be interpreted as the amount of variation of the 
dependent variable explained by the regression equation 
[8]. Table 1 summarizes the R-square term for the three 
correlations plotted for both gas and electricity.  
 
Table 1: R-square values describing the plot of Gas and 
Electricity Consumption as functions of Store area, 
Weather factor and Weather factor x Store area 

R-square values 2019   
Gas consumption VS Store Area 0.4697 
Gas consumption VS HDD 0.0486 
Gas consumption VS HDD x Store Area 0.495 
Electricity consumption VS Store Area 0.8074 
Electricity consumption VS CDD 0.0147 
Electricity consumption VS CDD x Store Area 0.5984 

It can be observed that most of the values are 
reaching 50%, which means that half of the variance in 
the gas and electricity consumption is explained by the 
linear model. This is due to some variability in the data 
that cannot be accounted for by this model. The R-
square coefficient was therefore found to be 
insignificant, which indicates that linear regression was 
not appropriate to this case.  

To further understand the impact of store size and 
weather factors on energy demand, a sensitivity analysis 
was attempted on SobolGSA, a tool for global 
sensitivity analysis. However, no sensible output was 
produced due to the data input being erroneous. 

4.2.2 Linear Regression for the three categories of 
stores 

As mentioned previously, most of the supermarket 
buildings selected comprise a gas boiler for heating. The 
majority of the remaining stores lacked ground source 
heat pumps (GSHPs) and only a few of them would 
possess this electricity – demanding technology.  

The linear regression of each category of stores for 
both natural gas and electricity was computed.  
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Figure 4: Variation of α and β coefficients for the different categories throughout the years, from 2017 until 2020

Figure 4 displays the variation of α and β coefficients 
throughout the years, from 2017 until 2020. While the 
gas consumption coefficient, exclusively applied to 
stores that possess gas boilers, shows a relatively 
stagnant value throughout the four years, the electricity 
demand coefficient for both stores with and without 
GSHPs displays a significant change, principally a 
decrease of 4.4% from 2017 to 2018 for the stores 
lacking a GSHP system, and a 6.6% decrease for those 
owning one. This means that these stores were 
performing better from 2018 since their electricity 
consumption per area and CDD was decreasing. This 
could be due to the addition of more efficient 
technologies such as LED lighting, reducing the 
electricity consumption by around 58% for the stores in 
2018 [19].  

The main goal of this linear regression analysis was 
to suggest a ranking of the top 5 and worst 5 performing 
stores for the different categories. This can be viewed in 
the Appendix, Tables 3 and 4.  

While the Sainsbury’s supermarket from Slough 
revealed to be the least efficient building regarding its 
gas consumption from gas boilers throughout the four 
years, Chichester’s supermarket seemed to be the best-
performing building with a very low α – coefficient of 
0.03% on average. On the other hand, Newton Stewart’s 
supermarket ranked as the worst-performing store in 
terms of electricity demand, whereas Leatherhead 
proved to be the most efficient one in 2020. An 
interesting observation to make is that Slough’s 
Sainsbury’s store ranked first in the best-performing 
supermarkets classification for two consecutive years, 
from 2017 to 2019. 

Stores that included a heat pump had already an 
optimized gas consumption, thus only their electricity 
demand was considered. From the initial number of 
stores considered for this research, only 7 of them used 
a GSHP. Therefore, it was not necessary to evaluate the 
top and bottom 5 stores, as it was done for the other two 
categories.  

4.2.3 Multi-variate linear regression 

The second step was to look at the multi-variate 
linear regression, which was applied directly to the three 
categories of buildings.  

The ranking outcome of this regression technique 
required a different approach since MLR was based on 
the calculation of two regression coefficients for both 
natural gas and electricity consumption.  

 

 
Figure 6: 2019 Baseline electricity annual 

consumption against Actual electricity annual 
consumption 

Figures 5 and 6 exhibit the predicted gas and 
electricity consumption of the multi-variate regression 
model as a function of the actual energy consumption in 
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2019. The correlation between the electricity 
consumption and the area of the building including the 
HDD is better described by this regression model than 
the gas consumption. This can be easily noticed by the 
R-square value of 0.87 for electricity, which is far 
greater than the R-square of the gas consumption graph, 
being around 0.54. This indicates that MLR might not 
be fully suitable to accurately benchmark the 
supermarkets that own gas boilers, and other methods 
should be considered. 

These two plots only account for the data from 2019, 
the rest of the analysis for the other three years can be 
found in the Appendix, Figures 7, 8, and 9.  

Tables 3 and 4 in the Appendix display the ranking 
of the best and worst-performing stores. The MLR 
analysis revealed a similar ranking order to the LR 
analysis, where Sainsbury’s supermarkets owning a gas 
boiler in the region of Slough remained to be the worst-
performing buildings for the last two consecutive years. 
On the other hand, Chichester was ranked as the region 
that had the best-performing stores in the same 
category. An interesting observation to make is that 
there was no overlap between the classifications of the 
worst-performing stores without GSHPs generated by 
the two regression methods. MLR showed that 
buildings from the Guildford region had the worst 
electricity performance, while the first place was 
attributed to the region of Leatherhead in 2021. This 
distinction can be explained by the effectiveness of the 
regression fit to the data. MLR clearly exhibits a better 
fit than the LR, thus the ranking that this regression 
method generated is more accurate. 
4.3 Investment Strategy 

Two different investment strategy scenarios were 
compared, as discussed in sections 3.4.1 and 3.4.2. In 
Scenario 1, optimisation was performed on all stores 
while Scenario 2 described the same optimisation 
strategy, but applied to the 5 worst-performing stores in 
terms of electrical and gas annual consumption. 

The results obtained from the two scenarios for both 
linear regression and multi-variate regression models 

are summarized in Table 2, in terms of NPV from 
implementing GSHP, NPV from implementing the 
optimisation in accordance with the 75th percentile store 
and the Total reduction in carbon emitted in 5 years. 
Analysis on the results from NPV calculations in 
exhaustive detail can be found in the Appendix, Tables 
7, 8, 9, 10. 

 
The outcome of NPV-G was negative for all 

scenarios, and this implied that the investment on GSHP 
was not attractive from a financial standpoint as it 
would result in a negative impact on Sainsbury’s overall 
earnings. However, it should be noted that the total 
reduction in carbon emissions in 5 years for all 
scenarios was relatively substantial. Scenario 1 would 
allow Sainsbury’s to reach their net-zero carbon 
emission target. In this scenario, all gas boilers were 
converted to GSHPs, which used renewable energy 
source to produce heating power. In Scenario 2, the total 
reduction in carbon emitted in 5 years represented 14% 
of that from Scenario 1. This is due to the reduction in 
the number of stores considered in Scenario 2,  
accounting for only 3% of the total number of stores in 
Scenario 1. 

NPV-E for all scenarios yielded positive values. 
Thus, the investment made on optimising the building 
electricity usage by implementing several technologies 
such as PVs or night blinds, as listed in Table 6, would 
be beneficial for Sainsbury’s. The positive value of the 
Total NPV for all the scenarios is due to the absolute 
value of NPV-E being greater than that of NPV-G. 
Therefore, investing in either Scenarios 1 or 2 will 
impact positively on Sainsbury’s earnings.  Lastly, to 
compare the different scenarios and to evaluate the 
impact of the overall investment per store, the Total 
NPV per store was determined. Scenario 2 yielded a 
higher Total NPV per store, suggesting that this 
scenario was more optimal than Scenario 1. Scenario 2 
should therefore be considered for Sainsbury’s 
investment strategy.

 
Table 2: Summary of the cost and carbon analysis of the two scenarios in terms of Net Present Value per store and 

Reduction in Carbon Emitted in 5 years. 

 Units Scenario 1 
- LR 

Scenario 1 
- MLR 

Scenario 2 
- LR 

Scenario 2 
- MLR 

Total GSHP Capacity (kW) 22,200 33,300 733 653 

Investment Cost - GSHP (£ x 1000) 14,000 21,100 464 413 

Total Reduction in Carbon 
Emitted in 5 years (tCO2) 173,000 173,000 5,710 5,090 

NPV - G (£ x 1000) -1,487 -1,487 -223 -198 

Total Electricity Saved in 5 
years (MWh) 147,000 105,000 20,500 14,300 
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Average Energy Abatement 
Cost (£/kWh) -0.271 -0.271 -0.271 -0.271 

NPV - E (£ x 1000) 39,900 28,600 5,570 3,870 

Total NPV (£ x 1000) 38,400 27,100 5,340 3,670 

Total NPV/Store (£ x 1000) 221.2 156.0 1,068.4 734.9 

 

5 Discussion 
In order to understand the energy trends that would 

affect Sainsbury’s supermarkets in the next few years, 
linear regression of the energy demand was computed. 
Comparing the electricity and natural gas consumption 
forecasts, the observed decline in the electricity demand 
could be explained by the implementation of energy-
saving technologies such as LED lights. Sustainable 
operations, for instance dimming, also reduce the 
lighting energy consumption by an average of 70% [20]. 
Regarding the prediction of natural gas consumption, 
the results suggested an overall stability in this energy 
demand. This was assumed to be consistent for the next 
5 years at least.  

The impact of the two independent variables, i.e. the 
area of the store and the two weather factors, on the 
energy usage was carefully analysed. It was concluded 
that the area of the store had a greater influence on the 
energy demand than the HDD and the CDD. The 
previous results suggest that the size of the building 
would have a linear relationship with the electricity 
consumption, which means that the electricity demand 
increases proportionally with the area of the 
supermarket. On the other hand, the absence of a clear 
correlation between the two weather factors and the 
energy demand could be due to the lack of uniformity 
of store sizes for the same HDD or CDD value.   

Linear and multi-variate linear regressions were then 
performed on the three categories of stores introduced 
earlier in this paper. From a general perspective, MLR 
has generated a better fit of the observed energy data, 
leading to a more accurate ranking of the stores.  

Two investment strategy scenarios were proposed: 
one that would be implemented in all stores and the 
other focusing on the worst-performing supermarkets. 
While it was decided to optimize both electricity and 
natural gas demands, the choice between the two 
scenarios was made based on the impact of this 
optimization on these two cases. Looking at the total 
NPV per store, Scenario 2 was concluded to be the most 
attractive from a financial point of view, and therefore 
a more suitable investment strategy for Sainsbury’s.  

While this research focused mainly on providing an 
investment strategy as part of Sainsbury’s sustainability 
roadmap, further considerations affecting the energy 
demand should be considered. Firstly, the energy 
consumption could be predicted more effectively using 
other regression methods such as the decision tree (DT) 

model, as mentioned in [13]. Furthermore, additional 
investigations should be made on different weather 
factors, including humidity, which was not evaluated in 
this work. As part of the investment strategy, the quality 
of the building should be considered, comprising its age 
and the insulation technology used, as well as the 
quality of the refrigeration system [21]. Finally, this 
energy benchmark analysis was developed only for a 
certain number and type of buildings. Further research 
on different building categories should be therefore 
considered. Lacking data should also be recovered in 
order to obtain more accurate results. 

6 Conclusion 
This paper investigated the factors affecting building 

energy usage and developed several net-zero 
investment scenarios for Sainsbury, the second major 
food retailer in the UK. In this work, an investment 
scenario, Scenario 2, aiming to implement electricity 
and heat-saving technologies on the worst 5 performing 
stores, has been chosen to be the most ideal. This 
scenario was determined to have a higher total NPV per 
store, hence yielding a greater financial impact on 
Sainsbury’s. This was achieved by developing linear 
and multi-variate linear regression models, which were 
then integrated into a carbon and cost analysis model 
comparing the two scenarios. 

The LR and MLR models were performed to analyse 
the impact of weather and store area on building energy 
consumption and were used to rank the stores based on 
the output of these models. The MLR model was 
concluded to be more effective in predicting the energy 
consumption as it provided a better fit. This model was 
applied to different categories of buildings, leading to 
the ranking of stores by performance efficiency.  

In the carbon and cost analysis, NPV was derived 
from the financial impact of optimising the building 
energy usage by implementing electricity-saving 
technologies, such as PVs and biofuels, but also gas-
saving technologies, including GSHPs. The total NPV 
per store for Scenario 2 – MLR was found to be 
£734,900, almost five times greater than that of 
Scenario 1 – MLR. Scenario 2 – MLR would also 
reduce carbon emissions by 5,090 tonnes of carbon 
dioxide in 5 years. This decrease aligns with 
Sainsbury’s net-zero target.  

Though this research has touched upon numerous 
factors that would affect the net-zero investment 
strategy, there is still a great research space yet to be 
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explored. The impact of other factors influencing the 
energy demand model, such as humidity and quality of 
the building environment, should be analysed. Since the 
implementation of GSHPs requires a high investment 
cost, other gas-saving technologies should be examined. 
Lastly, this work was conducted with a limited number 
and type of buildings, such as only supermarkets with 
certain technologies were considered. Therefore, 
research on other building types and characteristics can 
be considered to further develop a more robust 
investment strategy. 
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The importance of international support for the sustainable development of Zambia’s power 
sector 
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Zambia’s compliance to the Paris Agreement aligns with its desire to meet its Nationally Determined Contribution 
targets of carbon dioxide emission reduction. Equally, through its Integrated Resource Plan, Zambia aims to ensure 
electricity access across the country, currently at 45% of the population. This paper developed long-term power system 
expansions until 2070 and flexibility assessments on Zambia’s power grid in 2030, using the OSeMOSYS and FlexTool 
modelling software. A scenario-based approach was investigated. The Business as Usual (BAU) scenario replicated the 
inclusion of all current and scheduled technologies and was not constrained to carbon dioxide emissions. Scenarios 1 and 
2 aligned with Zambia’s NDC targets and both supported net zero by 2060. Scenario 1 (SC1) was committed to reducing 
greenhouse gas emissions by 25% in 2030 compared to 2010 and assumed limited international support. On the other 
hand, scenario 2 (SC2) assumed substantial international support and emission reductions of 47%. It could be observed 
that a considerable increase in solar capacity is necessary for Zambia, with most other VRE generation sources at 
maximum capacity. Nuclear was also present in the energy mix in 2070 because of the ever-increasing demand 
particularly at times where solar generation is low. The flexibility assessments of SC1 and SC2, in 2030, highlighted the 
importance of international support and identified the need for investments in transmissions and battery capacities for the 
power grid. In fact, SC2 eliminated the loss and excess load from 11.47% & 52.27% of the annual electricity demand and 
reduced the curtailment by 70.2% compared to SC1. Overall, to achieve its NDC targets, Zambia would need to invest in 
at least 44GW of VRE generation capacity by 2050, along with significant investments in storage and transmission 
capacity, highlighting the importance of international support. 
 

1. Introduction 
 

Zambia has a goal of becoming a world leader in copper 
production, with the aim of tripling its production to 3 
million tonnes in the next ten years [1]. The mining 
sector is therefore crucial to the country’s economy, 
accounting for more than three-quarters of the export 
earnings [2]. Energy consumption is mainly 
concentrated in the industrial sector because of this, 
accounting for more than half of the country’s electricity 
consumed. Consequently, electricity is a key driver for 
the economic development of Zambia.   
 
As of 2021, Zambia had 3.2 GW of installed electricity 
generation capacity, with hydro representing the vast 
majority, at 85% of the total capacity [3]. However, the 
main problem in Zambia is the access to electricity. The 
national average is 45% with 82% of urban and 8% of 
rural areas having access to power [4].  This poses an 
enormous challenge for Zambia’s ability to increase its 
development.   
  
The government of Zambia has set through their 
Integrated Resource Plan (IRP) a pledge to “ensure 
access to reliable, clean, and affordable electricity across 
the country at the lowest economic and financial costs 
consistent with local, national and regional development 
goals” [5]. Zambia’s Nationally Determined 
Contribution (NDC) has also recently been updated with 
a pledge to reduce greenhouse gas emissions by 2030, 
through two scenarios: with and without international 
support [6].   
  
However, as mentioned previously there are numerous 
challenges that impact Zambia’s ability to attain these 
targets. The heavy reliance on storage-less hydro energy 
has proved problematic with fluctuations in rainfall 
patterns because of climate change which has, in turn, 

provoked deficits in hydropower generation. In addition, 
the high population growth rate of 3% [7] poses an issue 
with meeting an increasing demand by a grid that 
currently only reaches 45% of the country. Transmission 
and distribution losses are equally substantial due to the 
high temperatures and theft. In fact, theft directly from 
the grid and vandalism highlight the need for Zambia to 
increase security and control of its energy grid. Recent 
changes have been implemented to overcome these 
issues, such as the shift from using copper cables to 
aluminium [8], but more drastic measures are required. 
  
Equally, since Zambia’s electricity consumption comes 
principally from its mining activity, the country’s goal 
of becoming a world leader will cause a sustained 
increase in the electricity demand, posing another 
challenge for the power grid.    
  
There is also a hurdle with international investments, a 
key driver in the IRP and NDC targets. There was a 
reduction of 42% in investments projects in Zambia in 
2021 compared to 2020 [9], largely due to the pandemic. 
International support depends heavily on the mining of 
copper, with large investments from Canada, Australia, 
United Kingdom, China, and the United States. 
Moreover, large infrastructures and other projects have 
been funded entirely by Chinese companies, with China 
owning 69 percent of the construction industry in 
Zambia [10]. Consequently, Zambia is heavily 
dependent on international support for its development, 
particularly in advancing its infrastructure such as the 
road network, railway, and the construction of power 
plants.   
  
This highlights Zambia’s potential challenge of facing 
insufficient international support, which could result in 
negative consequences for the improvements of their 
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power grid and affect their ability to meet their 
development and climate goals.   
  
This study, therefore, has the aim of assessing the 
possibility of Zambia to achieve its objectives as set out 
by the IRP and NDC, within various modelling 
scenarios. The varied influences of international 
support, along with the limits on carbon emissions, were 
driving factors in the development of the scenarios, with 
the aim of demonstrating the importance of such 
investments on developing countries and their power 
grid.   
 

2. Background 
 
The challenges for the development of Zambia’s power 
grid, mentioned in the previous section, drive the need 
for accurate power system planning and are the reasons 
for the ongoing research in this area. As a result, there 
are numerous studies investigating the expansion of the 
power grid in Zambia, but there is a clear gap regarding 
the combination of long-term power system expansion 
and flexibility assessments. For example, numerous 
papers investigated the feasibility of integrating VRE in 
Zambia’s power grid and the continuous power system 
expansion until 2030 such as the IRP [5] or the report on 
integration of VRE sources in Zambia by the 
RES4Africa Foundation and Enel Foundation [11]. 
However, they do not address the main challenges 
regarding the long-term sustained increase in electricity 
demand after 2030, arising from the high population 
growth, high mining activity, and the electrification of 
the transport industry, which are of crucial importance 
for Zambia’s development goals. Equally, some studies 
do not cover the scope of the country, such as 
McPherson et al. [12], whose paper highlights the long-
term regional planning in Lusaka, Zambia’s capital, for 
variable renewable energy and electric vehicle 
integration.  
 
Hence the purpose of this study was to fill in gaps in 
existing research and help Zambia identify both 
potential development pathways up to 2070 and 
flexibility challenges for the power grid. The 
development pathways were achieved with the Open-
Source modelling software OSeMOSYS, which has the 
unique feature of developing intertemporal cost 
optimization pathways for long-term energy planning. 
To be precise, it is a linear bottom-up energy 
optimization software that focuses on the detailed 
representation of flows and technologies in the energy 
system, which includes their cost parameters, 
performance, and environmental impacts. In simpler 
terms, the bottom-up characteristic of this software 
enables the model to identify the optimal solution for 
meeting the defined demand while minimizing costs, 
completely aligning with the demand driven challenges 
in Zambia’s power grid.   
 
Additionally, the flexibility of this long-term energy 
planning was further investigated with the IRENA 
FlexTool, a linear optimization program. According to 
the International Energy Agency, the flexibility of a 

power system is “the ability of a power grid to reliably 
and cost-effectively manage the variety and uncertainty 
of demand and supply that VRE generation introduces 
across all time scales” [13], which aligns with Zambia's 
NDC goals, and justifies the significance of this 
assessment. This linear program modelling software can 
solve the hourly capacity expansion problem for a one-
year horizon. It determines the optimal flexibility 
solution for the power systems by simulating technical 
constraints on energy balances, reserve requirements & 
others. The linear program solution uses GNU 
MathProg, with this solver ensuring greater certainty in 
determining a global optimum compared to integer 
programs, due to the convexity of the optimization.  
 
These modelling approaches have been researched in 
studies that collaborated with governments ranging from 
national to continental analysis, such as Cyprus, Costa 
Rica, and Africa [14] [15] [16]. They have not yet been 
utilized to investigate Zambia’s electricity grid, with 
previous research using models with different 
optimization characteristics. The IRP made use of 
Antares [5], which does not produce a development 
pathway but generates capacity planning at selected 
years, and the RES4Africa Foundation used GRARE 
[11], a Monte Carlo analysis, to assess the reliability of 
the power grid. Hence, this study provided both long-
term capacity expansion and flexibility assessments 
with a different approach and solution to the problem, 
highlighting the generation of novel material in this 
research.  
 

3. Methods 
 

3.1.  Overview:   
OSeMOSYS and FlexTool require varied techno-
economic input data to match the electricity demand of 
a predefined region with an energy supply mix. The 
inputs of data were found directly from sources readily 
available online or computed through different 
correlations and data-driven assumptions. For 
OSeMOSYS, projections were required until the year 
2070 to develop long-term power expansion planning. 
The output of the power grid in 2030 was subsequently 
used in FlexTool for flexibility assessments. Different 
scenarios were developed within OSeMOSYS using 
different constraints on total capacity of a technology, 
new capacity investments, carbon emission limits and 
cost of new technologies. For a more detailed 
explanation of these modelling software, the following 
resources are helpful [17] [18].  
 
 

3.2. Scenario development. 
• Business as usual (BAU) 

This scenario was characterized by the inclusion of all 
current and scheduled technologies used for electricity 
generation in Zambia. No emissions constraints were 
placed on the model. 

• Scenario 1: achieving net zero without 
external investments (SC1) 

A constraint on carbon emissions was added to the BAU 
to create SC1, which had the aim of meeting the 
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emissions target set out by Zambia’s NDC [6].  This 
involved reducing GHG emissions1by 25% from 2010 
to 2030. A linear reduction in emissions was computed 
to achieve net zero by 2060. Although Zambia is 
currently in discussion about the year by which it can 
reach net zero, an estimate of 2060 was used for this 
scenario [19]. 

• Scenario 2: achieving net zero with external 
investments (SC2) 

This scenario had the aim of meeting the emissions 
target set out by Zambia’s NDC with substantial 
international support. This involved reducing GHG 
emissions by 47% from 2010 to 2030 and achieving net 
zero by 2060. Similarly, to SC1, a linear reduction in 
emissions was computed to meet net zero by 2060. 
 
 

3.3. Development of OSeMOSYS models 
An OSeMOSYS model was developed for each 
scenario. To do this, the Climate Compatible Growth 
starter data kit for Zambia [20] a pre-made model for the 
Zambia electricity grid, was utilised, and modified, as 
detailed in sections 3.3.1. and 3.3.2.  
 

3.3.1. Technical data input 
• Power Plants 

To remain technology neutral, a wide variety of power 
generation units were included in the models. For the 
different technologies, residual capacities and capacity 
factors were computed for all installed power plants and 
projects in development [21]. The potential of all 
technologies in Zambia were equally set as constraints 
[22] [23] [24] [25], to highlight when Zambia had 
maximized its capacity in these technologies.  
 
For solar PV and CSP plants, constraints were added to 
prevent the software from forecasting unrealistic 
amounts of annually added capacity. For SC1 and BAU, 
a power curve was computed starting at Zambia’s 
current level of 0.2 GW and reaching 4GW of annual 
investments, a level resembling developed countries like 
Germany and the Netherlands [26]. For SC2, due to the 
increase in investment in renewable energy sources 
because of international funding, the same approach was 
implemented but increased by 20%. For CSP, annual 
capacity increases have been less significant, so an 
annual limit of 100 MW of added capacity was set from 
2024.  This was increased by 100 MW every 10 years. 
 
With regards to nuclear, Zambia has considered its use 
in the past and planned to install a 2.4GW capacity 
power plant by 2035 [27]. A constraint of 1 power plant 
of 2.4GW built every 5 years until 2050, and 2 every 5 
years beyond this point was added to the model. 
 

• Transmission and distribution  
Losses due to transmission and distribution stood at 7% 
and 11 % respectively, in 2015 [28], as a results of high 
heat and theft. Zambia aims to reduce these losses, with 
plans in place to improve the electricity transmission 
and distribution infrastructures, as set out by the ERB 

 
1 In OSeMOSYS it was assumed that all GHG emissions 
were from carbon dioxide emissions.  

[21] in 2021. For the BAU and SC1, an aim of achieving 
10% total losses by 2070 (comparable to Russia and 
Portugal) was set. For SC2, this value was set to 8% 
(comparable to the UK and South Africa), assuming 
greater control measures are implemented to prevent 
disruptions.  
 

• Fuel availability, imports, and exports  
Data for the reserves of coal present in the country was 
gathered and included in the models [29]. Raw 
materials, such as oil and gas, are not present in Zambia, 
so would only be imported. 
 

Electricity imports and exports were obtained from the 
latest ERB report, with exact values up until 2021. 
Beyond that point, projections were made by 
considering Zambia’s long-term contracts and trade 
relations with countries in SAPP [29].  
 

• Electricity demand and projections 
The ERB provided exact values for the electricity 
demand in Zambia until 2021, and projections of 
subsequent years were performed for each scenario. 
Future demand was divided by sector and determined by 
using the GDP, population growth and income per capita 
data [31] [32] [7].   
 
The industrial projections were correlated with the 
income per capita, GDP growth, investments from 
international support and the production targets of 
copper mines, representing 87% of the industrial activity 
in Zambia. This resulted in an increase by 124% and 
160% in 2030; and 1200% and 1400% in 2070 for 
scenarios 1 and 2 respectively from 2015. The high 
difference for the scenarios is due to the increased 
investments from international support towards the 
country’s development, hence achieving higher 
production targets and a greater demand.  
The projections for the commercial and residential 
sector considered the GDP, income per capita and 
population growth. The increase in access to the grid 
was also included, with 100% of the population 
expected to have access to electricity in 2035 and 2030 
for scenario 1 and 2 respectively. This resulted in an 
increase of 189% and 363% in 2030 and of 1240% and 
1290% by 2070 for scenario 1 and 2 respectively.  
The transport energy sector was projected in the short 
term until 2026 using the population growth and income 
per capita, as from their IRP targets, Zambia is aiming 
to maintain a supply of petroleum products for the 
transport industry until 2030. The long-term projections, 
after 2026, were calculated using Zambia’s sustainable 
development goals (phase out fossil fuel cars by 2050), 
their near-future investments in EV charging ports and 
Zambia’s agreement with DRC for the manufacturing of 
EV batteries [33] [34]. Consequently, the increase in 
demand in this sector was considerably different for 
each scenario as international support resulted in earlier 
implementation of EV infrastructures. This increased 
demand by 63% (SC1), 204% (SC2) by 2030 and a 
factor of 180 (SC1) and 300 (SC2) in 2050.  
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This resulted in an average distribution for the electricity 
demand of 58.6%, 31.5% and 9.9% between the 
industrial, residential, and commercial, and transport 
sectors respectively, aligning with projections from the 
starter data kit and population projections [20] [7].  
 

3.3.2. Economic data  
• Technology costs 

For SC2, due to the increase in investments in 
renewables, the capital cost and fixed costs were 
reduced by 40% and 25%. This aligned with the 
Announced Pledges Scenario (APS) from the World 
Energy Outlook 2022 report [35], which adjusted 
renewable energy technologies costs to meet the 
government targets.  
 

• Fuel Costs 
The cost (in $/GJ) for extraction and imports of coal, 
crude oil and natural gas were added to the models. 
Forecasts and recent volatility experienced in 2022 were 
considered due the impact on commodity prices [36]. 
 

3.4. FlexTool 
Flexibility assessments were computed on the electricity 
grid in 2030 for both scenarios 1 & 2 using the IRENA 
FlexTool software. The year 2030 was analysed as it 
aligns with the NDC targets, ensures greater accuracy 
for the projections, and gives the ability to identify near-
future challenges in the power grid.  The model was set 
in the dispatch operational mode, linearly optimising the 
hourly ability of the power system to have sufficient 
flexibility over a one-year horizon. IRENA FlexTool 
uses four fundamental sets: Grid (1), Node (2), Unit (3) 
& Time (4). An energy grid is a product in the power 
system and within this study only the electricity grid was 
investigated. 
 

3.4.1. Nodes 
The nodes are used to separate the country into regions 
and allocate their generation capacity, demand, 
transmission, and reserve requirements. As shown in 
Fig.1, Zambia was split into 4 different nodes (A, B, C 
& D) and the relative electricity demand (including 
imports and exports) used in OSeMOSYS was 
distributed within these nodes for each demand sector, 
shown in Table 1, where the numbers in the first column 
represents percentages.  

 
Figure 1: Representation of Zambia separated into four nodes, where  
A and B represent urban areas and C and D rural areas [37].  

Table 1: Distribution of the Electricity per demand sector for each 
node, and with the explanation. 

Distribution Explanation 

Industry: A:87, B:2, 
C:5.5, D:5.5 

Mining industry accounts for 
87% of industrial activity, 
located at node A, the 
remainder is agricultural 
activity at node C&D 

Commercial: A: 40, 
B:40, C:10, D:10 

Correlated with urbanisation 
and commercial activity of 
each node 

Residential: A:29, 
B:30, C:14, D:27 

Correlated with the current 
population distribution, 
percentage of the population 
having access to the grid, and 
urbanisation from C&D to 
A&B 

Transport: A:45, 
B:35, C:10, D:10 

Aligned with Zambia’s EV 
development plan and 
urbanisation 

 
3.4.2. Transmission of Electricity between 

Nodes 
The nodes required information on their transmission 
capacities, illustrated in Fig.1. These were evaluated at 
different capacity levels for each scenario. Scenario 1 
used the existing transmission capacities, and the 
development expansion plans up to 2030 reported by 
ZESCO (state-owned power company in Zambia) [38], 
totalling 5016 MW. For Scenario 2, additional 
transmission capacities were incorporated from 
international investments[39] (total of 12949 MW). The 
transmission and distribution losses between these 
nodes were also determined for each scenario using the 
values from OSeMOSYS.  
 

3.4.3. Imports and Exports of Electricity 
within South African Power Pool 

As Zambia is part of the Southern African Power Pool 
(SAPP), imports and exports of electricity are present at 
each node. The total imports and exports OSeMOSYS 
were distributed between the nodes using the current 
distribution in 2022, long-term contracts and trade 
relations with neighbouring countries such as their DRC 
power agreement with Congo [40]. It also aligned with 
the expansion of transmission capacities.  
 

3.4.4. Reserves 
Both static and dynamic reserves were set as constraints 
in the model due to the high share of VRE. The static 
reserves were set at 15% of the electricity demand as 
modelled in the OSeMOSYS program. They were 
distributed between nodes by correlating them to the 
ratio of generation of electricity to the demand of 
electricity at each node. The dynamic reserves were set 
at a reserve increase ratio of 0.1 for all VRE generation 
units, supported by the following study [41].  
 

3.4.5. Minimum Inertia Limit 
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A minimum inertia limit2 was incorporated to ensure 
that there is sufficient energy stored in the large rotating 
generators and motors. This is to prevent a loss of load 
when large power plants fail and maintain the 
predefined RoCoF (rate of change of frequency in the 
system). The computation of this value required 
Zambia’s System Frequency of 50 Hz [42], the worst-
case size of the largest credible multiple contingency 
which corresponds to the Kafue Gorge Hydro Plant of 
1740 MW, and an additional 10% was added to ensure 
sufficient inertia is present. Zambia does not currently 
have a predefined value for the RoCoF, but it was 
deemed reasonable to assume the same value as South 
Africa, 1.5Hz/s, as they are both part of SAPP, resulting 
in a limit of 31900 MW.s. 
 

3.4.6. Unit capacity distribution      
The third fundamental set is the unit set, representing the 
generation and storage of energy sources. The following 
information was required for the input options of each 
unit: the fuel (price and emissions) or the use of a 
capacity factor profile. Also, the inertia constants, 
storage capacity, ramp up/down3, costs, efficiency and 
max reserves were required for each unit type, 
determined from various resources [21] [43] [44].  Then 
the generation capacity of each unit was allocated to 
their corresponding nodes. As this study was evaluated 
for 2030, OSeMOSYS results were essential to 
determine the total generation capacity for each energy 
source in 2030. The existing capacity in 2022 was 
distributed according to its known respective locations, 
and the additional capacity until 2030 was distributed by 
correlating it with the total technology potential within 
each node, considering the localisation of near-future 
investments [23] [24] [45].  
 

3.4.7. Projection for The Storage Capacity 
Expansion 

The OSeMOSYS tool did not compute battery capacities 
within the model. An estimation was required to 
calculate the additional battery capacity in 2030 for each 
scenario. This was achieved by analysing the 
development projects in Zambia. As all the investments 
were achieved through international support [46], it 
seemed reasonable to allocate 25% of SC2’s capacity to 
SC1. The total battery capacity by 2030 was of 2400 
MW for SC2.  

3.4.8. Time series 
Time series corresponding to each hour in the year were 
implemented for the capacity factors of VRE generation 
sources, such as PV and wind, as they varied throughout 
the day. With regards to variation in demand, a load 
curve for the hourly electricity demand in sub-Saharan 
African countries was used [47].  
 

4. Results 
 
To meet the decarbonisation constraints set out by the 
NDC, an energy supply dominated by renewables was 

 
2 Inertia: refers to the energy stored in spinning motors and 
generators, giving the ability to maintain reliable generation. 

necessary.   

 
Fig.2 illustrates the installed capacity forecasts for 
Zambia. In the BAU scenario, the electricity demand is 
met through an energy supply mix largely dominated by 
hydro, solar and natural gas. Hydro power generation 
occupies most of the production until 2030, beyond 
which this technology is at max capacity. To meet the 
increasing demand there is heavy investment in solar 
and natural gas. Only a small amount of biomass and 
wind is used throughout, due to the limited potential of 
the country in these resources.   
 
Both SC1 and SC2 highlight the decrease in use of fossil 
fuels, particularly natural gas, with lower carbon and 
renewable alternatives implemented instead. The 
electricity mix varies over time, with hydro the main 
source up until 2030, beyond which the capacity is at its 
maximum. As result, solar generation increased 
analogously to the BAU scenario.  However, rather than 
utilising natural gas, nuclear energy was implemented 
from 2050 onwards to meet the increasing demand and 
reduce carbon emissions.  
 
Due to the different carbon constraints, the uptake of 
fossil fuels varied between SC1 and SC2. With stricter 
decarbonisation, SC2 had a lower share of fossil fuels in 
the energy grid, causing increases in renewable 
investments. This can be observed in Fig.2 for the year 
2050, where the installed capacity of natural gas 
represented 12% of the total capacity for SC2, down 
from 15% for SC1 and 18% for BAU. Equally, a greater 
demand in SC2 resulted in a greater total capacity each 
year when compared to the BAU and SC1. 
 
Although Fig.2 highlights that there is natural gas 
capacity in 2070, this technology is no longer used for 
electricity generation from 2060 onwards. Therefore, 
SC1 and SC2 successfully achieve net zero by 2060  (see 

3 Ramping rate is the speed at which generators can change 
their output, increasing (ramp up) or decreasing (ramp down) 
generation. 

Figure 2: Comparison of the annual capacity of installed electricity 
generation technologies for different scenarios. 
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supplementary material for electricity production 
graph). 
 
A flexibility assessment on the IRENA FlexTool 
dispatch operational mode was successfully computed 
for both scenarios, as shown in Table 2. 
 

Table 2: Flexibility Assessment of Scenario 1&2 

Flexibility Criteria SC1 SC2 
VRE share (% of annual 
demand) 96.1 96.9 

Loss of load (% of annual 
demand) 11.4 0.0 

Ramp up constrained (% of 
annual demand) 0.0 0.0 

Excess load (% of annual 
demand) 52.2 0.0 

Insufficient reserves (% of 
reserve demand) 6.1 4.4 

Insufficient inertia (% of inertia 
demand) 0.3 0.3 

Curtailment (% of VRE gen.)4 20.1 6.0 
Ramp down constrained (% of 
VRE gen.) 0.0 0.0 

Peak load (MW) 3901.2 5428.9 
Peak net load (MW) -626.8 -1022.6 

 
The comparison between the two scenarios regarding 
the flexibility criteria, particularly the loss and excess of 
load (Fig.3), and the curtailment (Fig.4) highlight the 

importance of international support. In fact, loss of load 
and excess load are completely removed in SC2. 

 
Figure 3: Distribution of the Loss and Excess Load in Scenario 1 

 

 
Figure 4: Distribution of the VRE Curtailment for Scenario 1&2 

 

 

 

 
4 VRE Curtailment is a reduction in the capacity factors 
of renewable generators due to the lack of demand 
flexibility. 

 
 

Figure 5: Sensitivity analyses for: the distribution of the battery capacity in SC1 (blue triangles), the distribution of solar 

capacity in SC1 (black circles) and SC2 (red circles). 
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Additionally, two sensitivity analyses were performed 
(Fig.5), on the distribution of battery storage in Zambia 
for SC1 and on the decrease in the distribution of solar 
capacity at node A for both scenarios. These were 
important to determine the impact of possible changes 
on the flexibility of the power grid.  
 

5. Discussion 
 

As illustrated by Fig.2 Zambia must invest heavily in 
solar power to meet the increasing electricity demand, 
regardless of the scenario. The results highlight that the 
decarbonisation scenarios require the installation of 
44GW for SC1 and 56GW for SC2 of renewable 
technologies by 2050 for Zambia to be on track to reach 
net zero in 2060. Although this seems ambitious, the 
country has the potential and has already begun 
installation of solar power units, with the cost being 
significantly lower than fossil-intensive power plants. 
  
However, there is a caveat. To meet the increasing 
demand from the residential, commercial, industrial and 
transport sectors, solar alone will not suffice. This is 
highlighted by the inability of solar to meet the demand 
during periods of low sunshine, such as the early 
morning or at night. As a result, SC1 and SC2 turned to 
nuclear power to meet the remaining demand. The 
government has considered this option, going as far as 
developing a National Nuclear Policy in 2020 [48], but 
the costs of implementing nuclear power are immense. 
It was estimated that a 2.4GW plant was expected to cost 
around $30 billion [49]. With Zambia’s annual budget 
at around $8 billion this implementation is impossible 
without the aid of international investment. There is 
equally a great scepticism from the Zambian population 
towards this energy source regarding disposal of 
radioactive waste.   
 
Nevertheless, when nuclear power was excluded from 
the OSeMOSYS models, an infeasibility occurred due 
to hydro, biomass and geothermal being at maximum 
capacity, and solar unable to meet the demand at night. 
To overcome this issue, carbon capture systems could 
have been implemented in the model, to maintain the use 
of natural gas. However, its feasibility in the model 
would greatly depend on international support and 
innovations in this technology due to its high cost 
compared to solar technologies [50]. Equally storage 
facilities could have been added.  This would have 
allowed an increase in solar capacity and electricity 
generation from solar technologies, that would then be 
stored and utilised at a later stage when there is a 
demand. Zambia would therefore have to invest heavily 
in storage capacities instead of nuclear power plants. 
This further highlights the importance of external 
funding to enable Zambia to achieve its development 
and climate goals. 
 
However, the model does have limitations. Certain 
assumptions made have a great effect on the output of 
the scenarios. For instance, a linear decrease of the CO2 
emissions was computed, restricting year on year the 

amount of fossil fuels used by scenario 1 and 2. An 
alternative narrative could have been used to postpone 
the reduction in GHG emissions as the country gets 
richer due to greater ease of reducing emissions, which 
would align with Zambia's vision of becoming a middle-
income country by 2030 [5].  This would change the 
energy generation mix outputted by the model as a 
result. Equally, assumptions were made regarding the 
predictions of future demand for the different sectors, 
affecting the energy production of the grid. Due to these 
assumptions, the viability of the proposed scenarios 
should be scrutinised and assessed in further detail.  
 
The Main Flexibility Issues 
From Table 2, scenario 1 has significant flexibility 
challenges for the power grid in 2030 compared to 
scenario 2, due to the high loss and excess load and high 
curtailment. The combination of the excess load at node 
B&C and loss of load at node A (Fig.3), highlight the 
main challenge of geographical disparity between 
electricity demand at node A and the generation at node 
C. In fact, node C has 48% of the generation and 11% of 
the demand, compared to node A with 14% of the 
generation and 52% of the demand. This arises from 
Zambia’s high dependence on storage-less hydro energy 
in 2030 at 85.4% (SC1) and 75.1% (SC2), shown in 
Fig.2. This generation is principally located at node C. 
 
The comparison with the significantly improved 
flexibility in scenario 2, justifies the lack of transmission 
capacity between the nodes to eliminate the loss of load 
at node A. It is constrained by the lack of transmission 
capacity from node C to A, as transmissions to node A 
are only possible from node C (shown in Fig.1), and 
since node C has a significant excess load (Fig.3). 
Equally, there was a lack of battery capacity in SC1 to 
eliminate this excess load. The transmission and battery 
capacities were lower in SC1 by 62.5 % and 75% 
respectively. 
 
This lack of capacity was further confirmed by the high 
curtailment in Scenario 1 (Fig.4), found in node C&D, 
3.2 times greater than SC2. The curtailment in Scenario 
2 is present but is inevitably due to the high share of 
VRE (96.9%) in the power grid. It was determined that 
to eliminate the 6.0 % curtailment, found mainly in node 
A, 1705 MW of battery capacity would need to be added 
to the system. From an economic standpoint, this was 
not beneficial, with a  total project cost of $2.47 Billion 
[51].  Hence It was regarded as of insignificant 
magnitude compared to problems experienced in SC1.    
 
Insufficient Inertia Flexibility challenge 
A challenge that was observed for both scenarios was 
insufficient inertia added to the system by the electricity 
grid to match the limit set (Table 2). This was due to the 
high share of VRE in the system. However, since this 
infeasibility is of a low magnitude for both scenarios, it 
can be considered an insignificant flexibility challenge 
for the power grid. This was further justified with the 
elimination of this flexibility issue when the inertia limit 
was recomputed without the 10% reserves added to the 
worst-case size of the largest credible multiple 
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contingencies, originally computed in section 3.4.5. 
Also, it is important to acknowledge that Zambia does 
not currently have an official RoCoF value for their grid. 
The assumption to use the RoCoF value of South 
Africa’s highlights the potential inaccuracy with this 
flexibility issue.  
 
Insufficient Reserves Flexibility challenge 
The flexibility issue regarding insufficient reserves was 
experienced in both scenarios (Table 1). From the 
analysis of the results, instead of achieving a 15 % static 
reserve, only approximately 10% of the electricity 
demand was achieved. This confirms the importance of 
investing in storage unit capacities to ensure flexibility 
in the energy grid and eliminate the insufficient reserves, 
principally caused by the dependence on storage-less 
hydro units in 2030 shown in Fig.2.  
 
Sensitivity Analysis 
The results for SC1 emphasised the main challenges of 
important loss, excess load, and curtailment due to the 
low transmission and battery storage capacities in the 
power grid. Therefore, a sensitivity analysis on the 
distribution of battery storage in Zambia was computed 
to determine its importance on the flexibility of SC1. As 
shown in Fig.5, a greater distribution of battery storage 
in node A significantly decreased the loss of load and 
the curtailment. This correlation is due to the loss of load 
only being present at node A, and hence a greater battery 
capacity in that node eliminated the curtailment in node 
A and reduced the loss of load. Likewise, it was 
computed for the excess load, but it stayed constant at 
52.27%, due to the lack of transmission capacity from 
node C to A. This analysis validates the importance of 
battery distribution, within Zambia’s power grid and the 
need for high battery storage at node A to minimize the 
loss of load and curtailment. 
 
The solar capacity was distributed with the following 
proportionality (A:30, B:10, C:30, D:30), using the 
rationale mentioned in section 3.4.6. However, high 
distribution in node A may be unfeasible due to the 
important urbanization aligned with the projected 
increase in mining production targets from 2030, as 
shown in Fig.1. Therefore, a sensitivity analysis on the 
decrease in the distribution of solar capacity at node A 
was evaluated for both Scenarios. As shown with Fig.5, 
a higher battery and transmission capacity for the power 
grid in Zambia considerably affects the impact of the 
change in distribution on the grid’s flexibility. Scenario 
1’s loss of load and curtailment increase with a lower 
solar capacity in node A, justified by the lower 
generation present at node A and a greater increase in 
curtailment at node D&C. Contrarily, Scenario 2’s 
curtailment decreases due to greater decrease in 
curtailment at node A compared to the increase at the 
nodes D&C which is counteracted by the higher battery 
storage.   
 
An evaluation was also performed on the cost difference 
of the batteries and transmission capacities for SC1 and 
SC2. The total investment cost difference was $429 
million for transmission capacities [52], and $2.65 

billion for the battery capacity [51]. Therefore, 
increasing the battery and transmission capacity to the 
same level as in scenario 2 to eliminate the flexibility 
issues may be a challenge for Zambia. This underlines 
the importance of attracting international support and of 
developing strategies to minimize transmission and 
distribution losses from heat dissipation and theft, for 
Zambia to reach its goals. Also, it is important to 
acknowledge that this flexibility assessment was only 
performed for 2030, investigating for different years 
until 2070 would be an additional factor to consider 
when comparing both development pathways.  
 

6. Conclusion  
 
This research aimed to contribute to the body of 
knowledge and generate novel material regarding 
Zambia’s power grid, which lacks literature on its long-
term development. This study successfully investigated 
different decarbonization pathways for the electricity 
grid in Zambia, in line with their IRP and NDC targets 
and development goals. It was achieved with the 
computation of long-term power system expansion and 
flexibility assessments on the electricity grid. These 
models required varied techno-economic input data, 
which were generated from sources available online and 
through data-driven assumptions. The study involved a 
direct comparison of three scenarios, which enabled the 
identification of challenges in the Zambian power grid 
and highlighted the importance of international support. 
 
To meet the increasing demand, Zambia must invest 
heavily in solar power. The country rapidly exhausted 
its capacities in hydro, wind and geothermal so an 
alternative source of power was required. The 
OSeMOSYS model outputted nuclear energy as a 
substitute to natural gas, which was heavily present in 
the BAU scenario. However, this technology presents a 
lot of constraints with regards to safety and costs. As a 
results, a more detailed assessment of the possibility for 
Zambia to incorporate nuclear into its energy generation 
mix should be performed.  
 
The evaluation of the flexibility assessments on 
Scenario 1 & 2 in 2030, identified the main challenges 
in Zambia's power grid. To mitigate the geographical 
disparity of electric demand at node A and generation at 
node C arising from the high dependence on storage-less 
hydro energy generation (85.4% for SC1 and 75.1% for 
SC2), investments in transmissions from C to A and 
battery capacities are essential. This was validated with 
the combination of the loss (11.46%) and excess 
(52.27%) load and the high curtailment (20.17%) in SC1 
compared to the insignificant flexibility challenges in 
SC2. Therefore, for Zambia to achieve its targets of 
increasing access to secure and reliable electricity, along 
with achieving its desired mining production, 
international investments and strategies to minimize 
transmission and distribution losses are essential.  
 
Nevertheless, with a rapidly increasing population and 
energy demand, and droughts which have directly 
affected hydropower electricity generation, solar energy 
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appears to be one of the most effective solutions to 
produce sustainable and clean energy in Zambia. 
 
As mentioned previously, there are limitations with the 
accuracy of this study, as for certain projections the 
models required data-driven assumptions. The 
uncertainty of these assumptions was investigated and 
somewhat minimized, through comparisons with 
various sources and sensitivity analyses. The linear 
characteristic of the modelling software resulted in 
uncertainty, as the dispatch for electricity generated 
from a unit increased linearly instead of being directly 
switched on as with an integer optimization model, 
which could present inaccuracies for solar unity.  
 
Regarding this research, it can be deduced that there are 
numerous innovative pathways to expand the analysis. 
The OSeMOSYS model did not incorporate long-term 
modelling for storage capacities, as illustrated by the 
paper by Howells et al. [18], which would provide a 
more accurate projection.  Equally, alternative energy 
sources and technologies could have been explored and 
added to the model, such as hydrogen [53] and carbon 
capture.  
 
Regarding potential extensions on the flexibility 
assessment, an increase in nodes in the FlexTool model 
would help assess issues at a micro level, beneficial for 
the identification of challenges regarding Zambia’s goal 
of ensuring access to electricity in rural areas. Also, 
sector coupling with the heating system and the 
electrification of the transport sector with electric 
vehicles could be implemented in the FlexTool model. 
The use of smart strategies in sector coupling would 
provide demand-side flexibility in the system, extremely 
relevant to the flexibility assessments as there is an 
important implementation of EV from 2030 in Zambia.  
 
Finally, another extension to this study would be the use 
of the investment operational mode within FlexTool, to 
determine the exact required investments in battery and 
transmission capacities in scenario 1 to eliminate the 
loss and excess load and to reduce the curtailment at an 
economically beneficial level.  
 
This novel research provides a reliable reference for 
studies looking to assess the ability of developing 
countries to meet their long-term decarbonization goals, 
without hindering their development. The methods used 
in this paper could be applied to other developing 
countries and provide an assessment of their energy grid.  
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Abstract: Machine learning (ML) has emerged as a powerful predictive tool for describing complex 
thermodynamic relationships that far surpasses the capacity of more time-consuming traditional models. This 
report details the ability of a model to replicate a correlation for the interfacial tension (IFT) of pure fluids using 
a statistical associating fluid theory. A feedforward neural network, trained using the Adam optimiser, was 
employed on a synthetic database produced from SGTPy, to obtain a result that mirrored Garrido’s relationship. 
Upon achieving this, the practicality of the model was tested by computing the IFT of real fluids using molecular 
parameters. The deep learning model developed a relationship for interfacial tension with an average absolute 
deviation (AAD) of 1.4%, surpassing Garrido’s AAD of 2.2%, in a significantly shorter time. The computational 
model for experimental data provided an accurate correlation with an AAD of 3-6%. Whilst noting a substantial 
increase relative to the synthetic set, this can be attributed to underlying errors in the experimental dataset. 
Ultimately, this shows that ML can be used in thermodynamics to supplement existing relationships and offer 
superior correlations, much faster than any human approach. 
 
Keywords: Deep Learning, Interfacial Tension, Thermodynamics, Neural Networks, Quantitative Structure-
Property Relationship

1.  Introduction 
Since the 20th century, measuring interfacial tension 
(IFT) of fluids has rapidly gained interest, due to its 
significance in product development, as it 
characterises prominent system behaviours. This 
key system property dictates the interfacial 
phenomena of liquid-liquid systems that influence 
heat and mass transfers between phases. This is 
observed countlessly in the world today, from the 
emulsifiability of different phases to tertiary oil 
recovery on offshore platforms, and multiphase 
microfluidic flow.1 Evidently, IFT is central to the 
pharmaceutical, medical, and other major industries, 
thus, understanding and modelling IFT is extremely 
beneficial. 

However, despite its abundance of usages, 
current thermodynamics models used to measure 
IFT utilise empirical correlations that took years to 
fabricate. These models are centred around a scarce 
amount of raw data that are only applicable to a few 
pure compounds at set system properties. As such, 
many theory-based estimation methods have also 
been developed, but these lack accuracy or are hard 
to parametrise.2 Despite this, a particular theoretical 
model by Garrido et al., to predict the IFT of pure 
fluids mapped from Mie fluids, obtained an average 
absolute deviation of 2.2%.3 Not only is this very 
accurate but it applies to a wide range of fluids. Yet, 
it was still time-consuming taking months to 
develop. To better these laborious processes to 
develop a model, machine learning (ML) can be 
deployed to produce a correlation for IFT in a 
significantly reduced time. This method will not 
only yield a model similar in accuracy to Garrido’s 
model but will account for non-ideal behaviour as 
well. Non-ideality has conspicuous effects on IFT, 
yet few models can truly account for this, simply due 
to its complexity.2  

Machine learning techniques have been a 
new tool utilised across research and industry in all 
disciplines, from finance to medicine. The ability to 
identify and form relationships between multiple 
variables to a high complexity makes it very useful 
in tackling large-scale problems. These same 
techniques have the potential to overcome non-
ideality in molecular thermodynamics, making 
modelling more accurate over wide ranges of 
materials and properties, valuable information in 
today’s industry as highlighted before.4 

This research project aims to make a proof 
of concept for the application of ML, specifically 
deep learning, in IFT modelling. This would be 
achieved using data generated by the model used in 
Garrido et al. during training and testing, to see if an 
average absolute deviation lower than 2.2% can be 
achieved.3 If this is successful, further modelling 
will be conducted utilising a small set of 
experimental data to test the model’s application to 
real fluids.  
 
2.  Background 
 
2.1 Interfacial Tension correlations 
In 1876, Gibbs introduced IFT in his paper on 
composite-system thermodynamics and as described 
before, this term compensates for the excess 
molecules and energy at intermolecular interface 
interactions.5 This allows for a complete system to 
be defined. Scientists exploited this excess energy to 
directly measure IFT because it causes interfaces to 
minimise interfacial area. This drive towards 
minimised geometry can be interpreted as a tensile 
force per unit length applied in the interfacial plane, 
which numerically equals IFT.6  
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Experimentally, this property is used to 

measure IFT indirectly, using a combination of 
Wilhelmy plates and du Noüy rings for force 
calculations or through pendant drop shape analysis. 
For further information on IFT measuring 
equipment and techniques, the reader is advised to 
study source.6 However, although having high 
accuracy, these methods have a very limited 
application range, due to the strict requirements and 
numerous correction factors. For example, the rings 
must remain parallel to the surface, where the ring 
must experience perfect wettability.6 Also, rings are 
extremely prone to deformation during handling and 
cleaning, which will cause a very large error in the 
measurement. 

Consequently, the popularity of 
theoretically driven simulations has risen in the past 
years, in particular, quantitative structure-property 
relationship (QSPR) models. Based on the 
relationship of molecular descriptors to model 
different chemical properties, this approach offers 
an efficient methodology for predicting critical 
parameters and complex correlations for pure fluids 
from scratch.7 This has been utilised alongside other 
mathematical theories, such as multiple linear 
regression or square gradient theory, to obtain very 
accurate results for physio-chemical properties, that 
surpass any experimental-based correlations. 

For this computation, the QSPR model 
proposed by Lafitte et al. 2013, the statistical 
associating fluid theory for variable range 
interactions through the Mie potential (SAFT-VR-
Mie) equation of state (EoS), was applied.8 This 
semiempirical EoS characterizes molecules using 
spherical fragments linked in a chain, symbolising 
beads on a pearl necklace. These ‘beads’ are 
quantified by the spherical radius [σ], the number of 
Mie ‘beads’ [m], the repulsive component for the 
bonds [λr], the attractive component of the bonds 
[λa], and the energy well depth[ε]. It was selected 
because of its advantage over the previous 
renditions, resulting from its exploitation of the 
Baker and Henderson high-temperature perturbation 
theory and the radial distribution function of the 
reference monomer fluids.8 For further information 

on the development of this theory, the reader is 
advised to review source 8. This application of 
various theories fabricated an EoS that can be 
applied to a much broader range of molecular fluids 
and enhanced accuracy in near-critical regions. This 
coupled with accurate modelling of second-
derivative thermodynamic properties (heat 
capacities, Joule-Thomson coefficients, speed of 
sound, etc) from previous SAFT approaches, 
facilitates a significantly enriched global 
representation of system properties and phase 
equilibria of fluids.8 

 
2.2. Deep Learning for Thermodynamics  
A lot of attraction has been received by a certain 
subsection of ML, deep learning. This is because of 
its ability to process information like the human 
brain whilst being capable of sifting through much 
more information. The models are made of multiple 
layers of interconnected nodes, called artificial 
neural networks (ANN), where an input layer feeds 
the data into the subsequent layer nodes, known as 
hidden layers, until the output layer is reached. 
There are different types, such as convolutional 
networks, that serve to fit specific use cases, like 
computer vision. From a regression standpoint, it is 
much simpler to train a feedforward neural network 
(FNN).9 A visualisation of an FNN can be seen in 
Figure 1. The nodes in an FNN take a weighted sum 
of the outputs of the previous layer and a bias term 
before being permuted further by an activation 
function and sent to the subsequent node. FNNs can 
model complex functions thanks to the non-linearity 
of the activation function. These include rectified 
linear unit, tanh and sigmoid, and each function will 
transform the subsequent inputs differently. For a 
single node of input size n and step function h(x): 
 

𝑦 =∑[𝑤𝑖𝑥𝑖]
𝑛

𝑖=1

+ 𝑤0 Eqn. 1 

𝑧 = ℎ[𝑦] Eqn. 2 
 

Figure 1: A visualisation of a fully 
connected neural network. There nL0 
input nodes and nL[H+1] output nodes. 
In between these layers there are H 
hidden layers, with each layer 
containing nh nodes. 
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Since the same activation function is 
applied to the whole layer, a single layer with m 
nodes can be represented as: 

 

𝒛 = ℎ([
𝑤1,0 + ⋯+ 𝑤1,𝑛𝑥𝑛

⋮
𝑤𝑚,0 + ⋯+ 𝑤𝑚,𝑛𝑥𝑛

]) 

 

Eqn. 3 

= ℎ ([1 … 𝑥𝑛] [
𝑤1,0 ⋯ 𝑤𝑚,0
⋮ ⋱ ⋮

𝑤1,𝑛 ⋯ 𝑤𝑚,𝑛

]) 

= ℎ[𝒙𝑇𝑾] Eqn. 4 

To find these optimal values for W, the parameters 
are initialised with random values and initial 
predictions from the training set are made. This is 
utilised in a loss function, with the true values, to 
find an error that is to be minimised through an 
optimization process known as backpropagation.      
Backpropagation is a simple function that, for each 
parameter, calculates the gradient of the loss 
algorithm from the training set using automatic 
differentiation and adjusts that value proportional to 
the learning-rate, 𝛼. Thus, after every complete pass 
of the training set, the parameters converge closer to 
the optimal values. To reduce the memory 
requirement, the data set is randomly split into mini-
batches and calculates average adjustment for each 
batch. The number of times the algorithm goes 
through the whole set is known as the epoch number 
and will continue to run until the stopping value or 
maximum epoch number is reached. 

Epoch number and batch size are known as 
the hyperparameters (HPs) of the model. Other HPs 
include the learning rate, minibatch size, activation 
function as well as layer number and size. Like the 
parameters of the network, the hyperparameters 
must be optimised so that an optimal solution can be 
reached. This is formally done in a stage called 
hyperparameter tuning to optimise for the best 
values utilising algorithms such as Hyperband and 
Bayesian Optimization (BO).  
 
 
3.  Methodology 
 
For this experiment, a method that combines ML 
with QSPR was exploited, due to its distinct 
advantages over published literature models: high 
predictive accuracy; sufficient interpolation and 
extrapolation ability; and ease of interpretation of 
very large datasets.10  

To test the viability of training a model to 
predict IFT, a large amount of data had to be collated 
to cover the training and validation portions of the 
workflow. Consequently, a database of artificial 
data was constructed to ensure better data quality 
and quantity, following the methodology proposed 

by Zhu and Muller.9 This was completed by utilising 
a Python package called SGTPy which allowed for 
inbuilt functions for calculating interfacial 
properties through the square gradient theory. 11  A 
pipeline was constructed where the SAFT-VR Mie 
EoS parameters were randomly generated within a 
realistic domain, to avoid computational error, and 
using the sgtpy.component function to obtain state 
properties for this simulated molecule. IFT values 
were generated from a saturated temperature range 
of 0.5-0.95 of the critical temperature (Tc) through 
the sgtpy.sgt_pure function. The database was 
compiled where each data point referred to a single 
IFT value for specific saturated temperature and 
SAFT parameters. This method had the advantage of 
being able to control the size of the dataset, and not 
relying on experiment data meaning that the data 
was not restricted to revolving around room 
temperature and/or pressure. This allowed for much 
more general models to be investigated, leading to 
more conclusive results. 

A reduced temperature range from 0.5-0.95 
was selected because outside these bounds the data 
becomes unreliable and cannot be computed 
accurately. At the upper extreme, errors arise from 
the system reaching a critical point. IFT evolves 
from the unbalanced adhesive forces of one phase at 
the boundary and is related to the molecule’s energy. 
At the critical point, this force vanishes as the two 
phases merge into one supercritical phase.12 As IFT 
approaches zero, the molecules are in a state of 
constant fluctuations as they are very mobile near 
the surface, causing continuous adjustments to the 
surface tension.12 At the lower bound of the reduced 
temperature, this is the general region just before 
fluids reach their freezing point. Similarly, the IFT 
drops as the molecules become more organised, 
reducing the net cohesion forces at the interface.13 
However, this bound is an estimate and is heavily 
dependent on the fluid. Hence, gaining accurate 
readings for these unstable regions for IFT are 
difficult. This problem also appears in molecular 
simulations, as models are unable to produce an 
accurate relationship in this area.13 

 Mirroring Zhu and Muller, the problem 
dimensionality was reduced by non-
dimensionalising T and IFT(γ). This data pre-
processing reduces the scale of the respective 
parameters to a common scale to enhance the 
model's accuracy.  These equations are based on 
prior knowledge of thermodynamic relations. This 
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can be taken further by reducing non-
dimensionalised T by normalising it to the critical 
temperature. This is shown by the graphs in Figure 
2, which visualises the further reduction in the value 
ranges and complexity. 

In this project, an FNN was trained using 
the Adam optimiser due to its computational 
efficiency and suitability to large datasets and 
problems and is generally viewed as the 
recommended default option.14 BO was selected for 
the hyperparameter optimisation due to its fast 
convergence speeds, in conjunction with babysitting 
to allow for initialising hyperparameters and small 
tweaks near an optimum.15 K-Fold Cross-validation, 
K=10, was done to prevent data leakage and 
overfitting. 

It was determined that no more than 4 
hidden layers of size 50 would be utilised, with the 
aim of reducing that to <20 to avoid overfitting to 
the training set. The exact number in each layer was 
determined in the HP optimization stage. The 
hyperbolic tanh was chosen as the activation 
function due to its continuous nature resulting in an 
infinite number of continuous derivatives. For the 
loss function, Mean Squared Error (MSE) was 
selected but other metrics such as R2, Root Mean 
Squared Error (RMSE) and Mean Average 
Percentage Error (MAPE) were the main metric 
monitored due to ease of interpretability and 
comparison between models. For all modelling 
pipelines, the databases were split 80:20 
training/validation split, meaning 80% of data would 
be used to train the model whilst 20% would be used 
to test its accuracy. TensorFlow python package, in 
particular the Keras application programming 
interface, was utilised in the coding due to the ease 
of developing and training models with large 
datasets for high performance. 16 

For training and validation, different 
databases were generated to take a methodological 
process to get to a complete model. Initially, m was 
set to 1. This was done to further reduce the 
dimensionality of the problem to only 2 independent 

variables: T and λr. Then the BO HP optimizer 
determines the remaining hyperparameters, which 
are used alongside the dataset to train the model. The 
model is trained until a MAPE under the tolerance 
level of 2% is achieved, after which the validation 
set is utilised to assess performance. This is repeated 
until an optimal value is reached below the 
minimum threshold. A hold-out set is generated 
from a collection of IFT series to test the capability 
of the model on unseen data points. 

The problem complexity is further 
intensified by increasing the value range of m in 
fixed increments of 1, utilising the same training 
methodology. This process is halted when a model 
for 1≤ m ≤6 is obtained as this matches the initial 
criteria of Garrido’s model and for most real pure 
fluids. Upon completion, the ML algorithm would 
provide proof of concept that deep learning can be 
utilised to predict interfacial tension. From here, the 
computational predictive tool was tested against 
existing literature values to truly appreciate the 
accuracy of the model.  

 
4.  Results and Discussion 

 
As aforementioned in section 3, multiple ANNs 
were developed throughout the model, each with 
increasing complexity. The goal of accurately 
predicting IFT using the SAFT-VR Mie EoS model 
consists of six Mie beads and a λr range between 8 

 

   
Figure 2: The graph on the left plots 5 IFT series for different SAFT parameters, each having 20 points between 0.5-0.95 Tc. The curves are far 
apart and have widely differing ranges. Middle plot shows the same series but non-dimensionalised using the SAFT parameters. Now the IFT 
values are set between a fixed similar range, but the temperature scale still differs significantly. However, when plotting non-dimensionalized IFT 
against T*/Tc* instead we see a much better scaling where the values differ slightly, meaning the model only needs to correlate fewer relationships 
to predict the values and reducing problem complexity. 

Table 1: Overview of Synthetic Model Architecture 
 

ANN Specifications 

Inputs Tred*, λr, m 

Output γ* 

Hidden Layers [11,8,6] 

Activation Function Tanh 
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to 44, paralleling Garrido’s theory and real fluids. 
From an overview of the 3 models based on 
synthetic data, very little changed with the model 
architecture. An overview can be seen in Table 1, 
where each network had 3 inputs and 1 output, tanh 
activation function and hidden layer shape of 
[11,8,6]. During training and validation, a common 
trend was found with the hidden layer shape where 
the much larger networks with ≤50 nodes/layer 
would perform noticeably better, with roughly a 
0.5% decrease in MAPE. However, the smaller 
models were chosen to avoid the effects of 
overfitting to the dataset and provide a concrete 
example of machine learning outperforming 
theoretical models. The following sections go into 
detail about the results of each model. 
 
4.1 Case 1: m = 1 

This case was the first to be modelled to ease into 
the complexity of this problem. The performance 
metrics, seen in Table 2, show the model reached an 
MSE of 1.88 × 10-6 in training and 1.89 × 10-6 in 
validation, with the very low values implying a 
strong convergence to a true model. This was backed 
up further by the coefficients of determination (R2) 
being near identical, signifying that the data fit due 
to the regression model being high and replicable. 
This was shown very clearly in the parity plot in 
Figure 3, where the points were almost exactly on 
the true line.  The low MAPE values in training and 

validation further emphasised the accuracy of this 
model. During the testing phase, similar results were 
achieved with there being a slight increase in the 
metrics, which can be attributed to the absence of 
bias in the learning process. A few cases can be seen 
in Figure 4, where the IFT series are plotted against 
reduced non-dimensionalized T (Tred*) for different 
values of λr. The circles represent the predicted 
values by the neural network whilst the true curve 
was plotted for different values of λr, visualising the 
0.398% MAPE achieved in testing. Although 
performing highly, other factors like the large 
dataset and low dimensionality of the inputs could 
have led the model to just memorise the values, since 
dimension reduction had limited the scale that was 
required for predicting.  

4.2 Case 2: 1 ≤ m ≤ 3  
 
During this second case, the range for the number of 
beads, m, was increased to add some complexity and 
move towards a more useful, general solution. 
Similar results were yielded with almost perfect R2 
values and negligible MSE values for both 
validation and training, as shown by the 
performance specifications in Table 3. This 
suggested that the ANN comfortably produced a 
replicable regression model with a strong 

Table 3: 1 ≤ m ≤ 3 Model Test Performance Metrics 
 

Performance Specifications 

 Training Validation Testing 

MSE 8.60 × 10-6 8.76 × 10-6 1.02 × 10-5 

R2 ≈ 1 ≈ 1 ≈ 1 

RMSE 0.00293 0.00296 0.00320 

MAPE 0.779 0.781 1.08 

 
 

Table 2: m=1 Model Test Performance Metrics 
 

Performance Specifications 

 Training Validation Testing 

MSE 1.88 × 10-6 1.89 × 10-6 1.89 × 10-6 

R2 ≈ 1 ≈ 1 ≈ 1 

RMSE 0.00137 0.00137 0.00137 

MAPE 0.319 0.317 0.372 

 
 

Figure 3: Parity Plot for Model m=1 
 

Figure 4: Value Plots for Model m=1 
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convergence towards predicting true values. This 
can be seen in Figure 5, where the parity plot again 
plotted an almost perfect true-line. This sustained 
high performance, despite the increased difficulty, 
indicated that the model was not simply memorising 
the values, but the model has obtained an extremely 
accurate relationship for these parameters.  

Hold-out testing performed on the finalised 
model cemented the accuracy of the model, 
highlighted by the low test metrics mirrored by the 
training & validation stages. The small increase in 
error between the two suggests a lack of overfitting 
within the model. The γ*-Tred* plot, in Figure 6, 
demonstrated the low error margins achieved in 
testing, as little to no deviation is seen. 

Nevertheless, when compared to the 
previous renditions, the error margins have 
increased by a few folds. This was anticipated 
because of the increased difficulty of the new 
dataset, as an additional variable, m, was considered. 
Yet, this error was negligible as it was still in the 
order of 10-3 or smaller for the RSME and MSE.  
 
4.3 Case 3: 1 ≤ m ≤ 6 
 
For the final theoretical case, the parameters are 
expanded to a real range of chemicals that matched 
the theoretical case. Table 4 shows the training and 
validation performance for the optimal model during 
the learning process. The MSE for this case was very 
low, implying that the model had converged close to 

the true parameters. As with the previous case, we 
saw a trend where the MSE was increased with the 
complexity of the inputs, however, it was not 
significant enough to affect the convergence. An R2 
approximately equal to 1 was seen, indicating that 
the model could consistently predict IFT values, 
with Figure 7 further highlighting this. Notably, the 
distribution of data was not large enough across the 
validation data as there were very few values above 
1.2 in this set. This could be assumed because the 
majority of high γ* occurred at low temperatures, 
and very few existed at 0.5 Tc. This made it difficult 
to assess this region properly. However, the rest of 
the set performed well with the values lying on the 
true line reiterating the low MAPE. 

In testing with the hold-out set, there was a 
large jump from 1.08% in the previous case to 
1.58% in the current one. This can be explained by 
both models having the same network size, but the 
current one was training with a more complex 
dataset. This was proven in previous stages of the 
modelling process where for much bigger neural 
networks, a MAPE <1% was achieved. In 
comparison to the 2.2% AAD in the SGT model, it’s 
clear FNNs have the potential to form engineering 
correlations without the need for scientific rigour. 

Figure 8 plots non-dimensionalised IFT 
against non-dimensionalised temperature for some 
of the series in the hold-out set. Comparing the 
neural network predictions, represented by the dots, 

Table 4: 1 ≤ m ≤ 6 Model Test Performance Metrics 
 

Performance Specifications 

 Training Validation Testing 

MSE 1.70 × 10-5 1.68 × 10-5 2.15 × 10-5 

R2 ≈ 1 ≈ 1 ≈ 1 

RMSE 0.00412 0.00410 0.00464 

MAPE 1.34 1.40 1.58 

 
 

Figure 5: Parity Plot for Model 1 ≤ m ≤ 3 

Figure 6: Example Plot for 1 ≤ m ≤ 3 Case 
Figure 7: Parity Plot for Model 1 ≤ m ≤ 6 
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and the true curves of the same parameters, reinforce 
the performance metrics' low error rate. 

 
4.4 Case 4: Experimental Models 
 
The ANN has been shown to excel in replicating a 
relationship for the IFT of pure fluids, based on 
theoretical data. To validate the proof-of-concept for 
real pure fluids, the practicality of the ANN was 
tested against a collection of experimental values 
sourced from Christian Wohlfarth and SAFT 
molecular parameters taken from Herdes et al.17,18 
For each chemical, the most up-to-date IFT values 
were selected, and any data older than eight years 
was disregarded. This ensured the most accurate 
dataset with no conflicting values, and for each 
chemical, the data was sourced from the same 
experiment to maintain some consistency in 
conditions. For the reduction calculations, the 
critical temperatures were taken from the NIST 

chemistry database.19 In this new database, there 
were 25 different chemicals including inorganic 
nonmetals, hydrocarbons, and aromatics, with 
Appendix A going into further detail. In total there 
were 219 individual data points each characterized 
by Tred*, λr, m and γ*.  

An overview of the development of the 
experimental-based model can be found in Table 5, 
alongside the performance of the model. It follows a 
similar approach to the previous cases, with the 
hidden layer size reducing further to [4,2] to prevent 
overfitting to the smaller dataset. The train-test ratio 
for this set was 70:30, with the test size increasing to 
gain a broader perspective of the model’s ability. It 
was also vital that the distributions across the 
training and testing sets were equal, to ensure a good 
reflection of performance. Due to the lack of data, 
the training set was split 70:30 into a new training 
set and validation set, so to replicate the previous 
methodology of an unseen test set. With these 
alterations, the ML algorithm was tuned and trained 
until an optimal model was reached. 

 In training, the model converged to an 
MSE of 3.78 ×10-4, and this is illustrated by Figure 
9 which plots the loss against the epoch number, 
with the validation loss following behind at 6.29×10-

4, being almost double that of the training metric.  
Initially, the losses started at high values, with little 
deviation between training and testing. Over each 

epoch, it approaches a solution but struggles to 
converge properly as there is some noise, oscillating 
around the 10-3 value. During final testing, a smaller 
MSE of 5.63×10-4 was achieved, further showcasing 
the model’s accuracy.  

The experimental model successfully 
achieved a strong regression correlation to the 
experimental data, with an R2 value of over 99% 
across every set. This is illustrated in Figure 10, 
highlighting the ability to perform consistently when 
interpolating data and proving that the model has 
little bias towards training set values.  

Looking at the percentage errors for this 
case, the MAPE for validation seemed abnormally 
high in comparison to the training metric achieved. 
However, upon inspecting the testing metric the 
value appears to agree much more with the training 

Table 5: Overview of Experimental Model  
 

ANN Specifications 

Inputs Tred*, λr, m 

Output γ* 

Hidden Layers [4,2] 

Activation Function Tanh 

Performance Specifications 

 Training Validation Testing 

MSE 3.78×10-4 6.29×10-4 5.63×10-4 

R2 0.996 0.994 0.994 

RMSE 0.0194 0.0251 0.0237 

MAPE 2.99 5.58 3.12 

 

Figure 9: Loss Plot for Experimental Model 
 

Figure 8: Example Plot for Model 1 ≤ m ≤ 6 
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value, implying that the validation percentage may 
be inflated. This is further validated by the RMSE of 
each subset being not that different from the other. 
One factor that could have caused this inflation is the 
validation dataset containing much smaller values 
close to zero.  Errors in these values have more 
significant contributions as the error would be much 
larger than the true value itself, leading to a larger 
overall percentage error. Although an attempt was 
made to make it uniform across the non-
dimensionalised IFT values, this was unlikely to 
occur in every input parameter range for the model. 
This slight disagreement could have caused the 
values to be distributed this way.  

In comparison to the realistic artificial 
model’s performance, there was a significant 
increase in the error. This was expected as a small 
dataset is attributed to an increase in error, due to 
there being fewer data to learn from and hence 
predict from. Additionally, the experimental values 
encompassed a much larger range for temperature, 
compared to that of the artificial model, where it was 
fixed between 0.5-0.95. Henceforth, the real data 
explored the extremities of the physical region: near 
the critical and freezing points. The model was 
expected to struggle in these zones, due to the 
aforementioned IFT fluctuations, but it overcame 
these by developing relatively accurate predictions 
in these regions. Although unable to beat the 2.2% 
theoretical benchmark, a 3.12% error in testing is 

quite accurate and provides an impressive 
performance relative to the small dataset utilised. 

To get a better picture of the quality of 
performance from this dataset, the artificial model 
was further validated by utilising this dataset as 
another hold-out testing set. As shown by the parity 
plot in Figure 11, the model could predict IFT 
accurately and illustrated the R2 = 0.994 calculated 
for this set. The percentage error of 3.12% obtained 
again exemplified that SAFT-focused neural 
network as the concept can be utilised as a high 
accuracy alternative for molecular thermodynamic 
modelling. 

  
4.5 Training Deep Learning Model vs. 
Developing a Theory  
 
In this section, some of the advantages and 
disadvantages of the two modelling methods will be 
discussed, as there are other factors in deciding 
between the two approaches.  

Deep learning methods need to perform 
many iterations and calculations for every training 
cycle. However, this can be done utilising 
computational graphs and is relatively fast 
compared to the time taken to comprehensively 
develop a theory, where it is common to spend years 
perfecting it. The ability to bypass a conventional 
time constraint allows correlations to be investigated 
and discovered much more quickly. The ability to 
tackle high-complexity problems with little outside 
input is any factor in deep learning’s superiority, as 
coupled with the computational time a larger range 
of relationships can investigate between many 
different variables. This is especially pertinent to 
engineering applications, as accelerating the 
modelling process would more breakthroughs for 
real applications in chemical engineering throughout 
research and industry.  

The ability to go around a scientific 
background can be seen as an advantage. Many 
models utilise solely data-driven methodologies as 
they can reduce the complexity to a simple 
correlation problem. However, regarding scientific 
progress, it does little to advance the understanding 
and knowledge of the mechanics behind real 
phenomena. ML with QSPR modelling tries to 
bridge this gap with more molecule-focused inputs. 
Yet, due to the black-box nature of most ML 
techniques, it blurs any perception towards 
understanding the model’s method. Inputs from 
QSPR models cannot always match those of the real 
values, such as the critical temperature literature 
values differing from those forecasted by the SAFT-
VR Mie model. This could have led to 
inconsistencies between Tred

 and the corresponding 
IFT, causing some bias.  

One of the biggest factors that limited 
exploration in this project is the availability of 
consistent, experimental data. Training using neural 

Figure 10: Parity Plot for Experimental Model 
 

Figure 11: Parity Plot for Artificial Model using 
Experimental Data 
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networks requires large amounts of data, as shown 
by the artificial model requiring 1000s of data points 
in the training set. Whilst this size is normal in data 
science, getting enough empirical data from 
experiments would be challenging. If it’s not 
possible to fill this requirement, there will be a 
significant drop in accuracy and generality as seen 
by the attempt at a model correlated purely from 
experimental data. 

On the flip side, having an unnecessarily 
large database leaves the model open to overfitting, 
increasing bias toward values seen more often. This 
goes hand in hand with the requirement for good 
distributions across the input and output parameters 
as failure to do so would result in sub-par predictions 
and worsening extrapolations that may be attempted. 

The ability to extrapolate far outside the 
training data is something deep learning fails to do. 
Theoretical-based approaches have the upper hand 
in both data requirement and extrapolation power as 
they can be formed without the need for large 
amounts of data and can have far better results when 
extrapolating outside of these ranges. This is 
exemplified by Garrido’s work as the database 
utilised is far smaller and achieves similar 
performance benchmarks to FNNs compiled in this 
project. 

Regardless of the disadvantages discussed 
here, the performance metrics witnessed across the 
modelling stage surpassed that of any theoretical 
approach. 
 
Conclusion 
  
The models developed in this investigation have 
showcased the potential for SAFT-focused deep 
learning to replace the conventional theoretical 
modelling practice. Trained using artificial datasets, 
models were able to effectively correlate interfacial 
tension from the SAFT-Mie parameters, m and λr, 
for a specific temperature, illustrated by metrics 
such as high coefficient of determination and 
RMSE. The artificial models were also able to 
outperform the average absolute deviation 
benchmark of 2.2%, obtained by the SGT theory and 
utilised to test model viability. With this 
successfully achieved, an experimental database 
was generated for a variety of different industrial 
pure fluids so that further analysis could be 
conducted on the viability of real fluids. The metrics 
obtained from the model trained with this proved 
again the ability of the neural networks to perform 
well even with experimental real data, with the 
artificial model validating this with a low percentage 
when the experimental data was utilised as a hold-
out testing set. Many shortfalls in these methods 
were addressed, like the inability to extrapolate far 
outside the training set, lack of scientific foundation, 
and the hindrance by a small experimental dataset. 
However, they did not outweigh the result, 

showcasing the computational speed and accuracy 
achieved by SAFT-focused neural networks. The 
disadvantages found can also be addressed by 
further avenues of research which came to move 
towards concrete proof of deep learning being the 
superior methodology. 

Whilst deep learning was the focus of this 
research project, there are many other machine 
learning algorithms and techniques which utilise 
less data-heavy approaches and enhance 
extrapolative power. Transfer learning is the idea of 
taking a previously trained model and further fitting 
it with new data. This idea can be utilised to reduce 
the requirement for the dataset as models trained 
using theoretical models, such as the one compiled 
in this project, can be further retrained using a small 
real database to move predictions towards more 
accurate results. Ensemble learning models can be 
utilised as they train multiple weak learners and 
combine them to create much stronger models. 
Algorithms such as random forest and XGBoost 
which have already proven to be accurate in 
modelling thermodynamic properties, can allow for 
much wider predictions to be made using small 
datasets.9,20 Future SAFT-focused modelling can 
incorporate either of these algorithms to close the 
gap in accuracy and produce a better model overall. 

Another major factor which limited our 
analysis of the two modelling approaches was the 
metric utilised to numerically compare the two. 
Whilst mean average percentage error, synonymous 
with average absolute deviation, is used commonly 
in comparison of models it failed to be truly 
consistent in concretely proving method superiority, 
as seen by inflations in values for sets including 
close to zero values. Finding a more optimal solution 
is important as this can lead to the dismissal of high-
accuracy models. Alternatives such as root mean 
squared scaled error or mean average scaled error 
can be employed for evaluating accuracy.21 Utilising 
a standardized training set, such as the one from the 
theory, in conjunction with standardised hold-out 
sets, would robustly determine which methodology 
is more viable for optimal molecular modelling. 

The scope of this project was focused on 
pure fluids, allowing for simpler systems to be 
modelled. However, industrial chemical process 
modelling focuses more on mixtures of 
inhomogeneous fluids, such as aqueous-organic 
emulsions and separation systems for tertiary oil 
recovery. The logical solution to this is to expand the 
scope of the project to modelling schemes such as 
binary mixtures and others more complex. This 
would include assessing model viability as well as 
investigating correlations from experimental data, 
which may be more common due to its necessity.  
Overall, this exploration would allow for a more 
beneficial real-industry application.22  
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Abstract Aberrant glycosylation is considered to be a hallmark of colorectal cancer. It remains a challenge, however, to 
effectively diagnose colorectal cancer patients and to identify well-validated and clinically useful biomarkers that can be 
exploited in the development of advanced therapies. Here, a framework for a machine learning approach that considers 
multiple algorithms and scaling methods for colorectal cancer diagnosis and patient stratification is proposed and potential 
biomarkers are identified. Using data on the glycomic profiles, age, gender and BMI for 1413 colorectal cancer patients 
and 538 controls, a Soft-Voting Ensemble binary classifier was trained and achieved a mean Area Under the Curve (AUC) 
of 0.723. An XGBoost model trained on the dataset augmented using the Synthetic Minority Oversampling Technique 
(SMOTE) achieved a mean AUC of 0.920, with a sensitivity of 99.9% and specificity of 43.4%. Further, a Random Forest 
multiclass model trained on non-augmented data classified controls and early-stage cancer patients with an AUC of 0.701, 
while classifying controls and late-stage cancer patients with an AUC of 0.729. Permutation feature importance analysis 
indicated that changes in the core-fucosylation of IgG glycans are a potential biomarker, corroborating earlier work into 
the glycosylation traits associated with colorectal cancer.  
 
1.  Introduction 
On a global basis, colorectal cancer (CRC) is the third 
most commonly diagnosed cancer (10.2% of total cases 
in 2018) and the second most common cause of cancer-
related deaths (9.2% of total cancer deaths in 2018) (1). 
The incidence rate of CRC is increasing year-on-year 
and in the coming years, its mortality rate is projected to 
overcome that of heart diseases, which are the leading 
cause of death globally (2, 3). Current screening 
methods for CRC have limitations in terms of 
invasiveness, low sensitivity and high costs (4, 5). The 
success of conventional treatments, such as surgery, 
chemotherapy and radiation therapy, has been limited by 
the failure to diagnose CRC at an early stage, indicating 
the need to identify specific molecular targets for the 
development of more effective diagnostic procedures 
and therapies (4). 

Understanding of the molecular basis of CRC has 
been improved by advancements in genomic and 
proteomic studies. Even so, the identification of well-
validated and clinically useful biomarkers for CRC has 
been relatively scarce (5). The emerging field of 
glycomics is a promising direction of study and has 
gained traction in cancer research. While it appears that 
glycans play a role in tumour proliferation, the 
understanding of the mechanisms that drive this lags 
significantly behind that of other key cell components, 
namely genes and proteins (10). Aberrant glycosylation 
is considered to be a hallmark of CRC, and it has been 
suggested that human serum N-glycans may serve as an 
important biomarker for diagnosis and the development 
of advanced therapeutic intervention (6). Of particular 
interest are N-glycans found on immunoglobulin G 
(IgG), a glycoprotein abundantly present in human 
serum (7). In fact, in healthy adults, IgG constitutes 
approximately 75% of total serum immunoglobulins (8). 
The ease of sample collection, coupled with the 
indications of CRC’s associations with aberrant 
glycosylation, makes IgG N-glycans an excellent 
candidate to exploit in diagnosis and the discovery of 
biomarkers (7, 9).  

In this study, the dataset obtained from the Study of 
Colorectal Cancer in Scotland (SOCCS) study, which 
includes the glycome profiles of cancer patients and 
controls, is used to propose a framework for a machine 
learning approach to CRC diagnosis and patient 
stratification. The framework proposed here presents a 
supplementary tool to existing screening methods for 
CRC. The hope is that the framework proposed is 
general and can be extended to the diagnosis of diseases 
beyond CRC using similar glycomic data. Further, by 
investigating the features that drive classification, this 
study aims to identify potential biomarkers for CRC to 
motivate future research into the pathophysiology of 
CRC and the development of more effective diagnostic 
procedures and advanced therapies. 

 
2. Background 
Since 2017, the field of machine-learning-based disease 
diagnosis has seen considerable growth in the number of 
journal publications and holds great promise towards 
developing inexpensive and time-efficient diagnostic 
procedures (11). Supervised machine learning 
algorithms use optimization with statistical and 
probabilistic methods to detect patterns in labelled data 
to make predictions on new unlabeled datasets (9). In the 
past, machine learning has been demonstrated to 
successfully diagnose various diseases, including breast 
cancer using image data (12) and diabetes using clinical 
and gene expression data (13). In the clinical setting, 
prostate cancer is among the diseases that are routinely 
diagnosed using the help of machine learning with 
image data from CT scans (14, 15). More recently, the 
oxygen needs of COVID-19 patients have been 
predicted using machine learning at over 20 hospitals 
(16). Regarding the algorithms used in machine-
learning-based disease diagnosis studies, Uddin et al 
(17) found that Support Vector Machines are applied 
most frequently, while Random Forest showed superior 
accuracy in 53% of the studies where it was applied. 
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Recent advancements into the glycosylation traits 
associated with specific diseases have opened up 
avenues for disease diagnosis using glycomic data – 
specifically, the relative abundances of N-glycans that 
decorate the immunoglobulin G (IgG) antibody present 
in human serum. Hepatocellular carcinoma (18),  
urological diseases (19), liver fibrosis (20) and 
gastrointestinal cancers (esophageal, gastric and 
colorectal cancer) (21) are examples of diseases that 
have been demonstrated to be identifiable using machine 
learning models trained on glycomic data.  

Previous studies have exploited the indications that 
glycosylation is aberrant in colorectal cancer patients. 
Vučković et al (9) built a regularized Logistic 
Regression model using data from the Study of 
Colorectal Cancer in Scotland (SOCCS) study (1999-
2006), a case-control study performed by clinicians in 
Scotland. Vučković et al (9) used the Area Under the 
Receiver Operating Characteristic Curve, or AUC, as 
the main performance metric. This is commonly used to 
estimate the predictability of a classifier, whereby an 
AUC of 1 corresponds to a model that predicts class 
labels perfectly, while an AUC of 0.5 corresponds to a 
model that has no discriminative power (17). While a 
model based only on age and sex did not show success 
in discriminating between cancer patients and controls 
(AUC = 0.499), adding the glycome profiles of samples 
to the training set increased the discriminative power of 
the model considerably (AUC = 0.755). Further, the 
study found that CRC associates with a decrease in IgG 
galactosylation, IgG sialylation and an increase in core-
fucosylation of neutral glycans with a concurrent 
decrease of core-fucosylation of sialylated glycans.   

The present study builds on the earlier work of 
Vučković et al (9) by applying a wider range of 
algorithms to a modified version of their dataset – our 
version of this dataset has 653 more cancer patients. This 
study also provides an investigation into the impact of 
various scaling methods on model performance, which 
previous studies into machine-learning-based disease 
diagnosis have largely failed to do (22). Further, this 
study investigates the potential of patient stratification 
using glycomic data. Finally, while univariate statistical 
tests are commonly used for biomarker discovery, a 
model-agnostic version of permutation feature 
importance is used here to capture multivariate 
interactions of the glycan features.  

 
3. Methods 
In this study, a dataset from the Study of Colorectal 
Cancer in Scotland (SOCCS) study (1999-2006) was 
used. This includes the composition of 24 glycan 
profiles normalized by summing all peak areas to 100%, 
body mass index (BMI), as well as the known glycan 
covariates, age and gender, for 1413 patients with 
pathologically confirmed colorectal adenocarcinoma 
and 538 matching controls (9). Limitations of the dataset 
include missing BMI data for 238 samples and a 

significant imbalance in the number of controls and 
cancer patients for ages over 60 (719 cancer patients vs. 
4 controls). All computational work was conducted 
using Python, with the scikit-learn library being used 
extensively (23). 
 
3.1 Pre-processing 
For binary classification, the class labels were encoded 
into numerical values based on whether the sample was 
from a control or a cancer patient. For multiclass 
classification, the class labels were encoded into three 
numerical values based on whether the sample was from 
a control, an early-stage patient (stage 1 or 2 CRC) or an 
advanced-stage (stage 3 or 4 CRC) patient, as identified 
by the SOCCS dataset. Similarly, data on the gender of 
each sample were encoded into two numerical values. 
To overcome the problem of missing BMI data for 
certain samples, data imputation was employed. 
Specifically, an iterative imputer that incorporates all 
features to create a regression model in a round-robin 
fashion was used to achieve this.  

Imbalanced datasets are known to pose a challenge 
to machine learning algorithms when learning minority 
class concepts (24). In this regard, data from samples 
over the age of 60 were initially discarded, yielding 694 
cancer patients and 534 controls. Upon identifying that 
more data would improve model performance, data 
augmentation was employed for the binary classification 
to address the class imbalance observed among the 
samples for ages over 60. In doing so, the Synthetic 
Minority Over-Sampling Technique (SMOTE), one of 
the most prominent methods in the literature to address 
imbalanced classification problems (25), was used. 
SMOTE works by first selecting a minority class 
instance, a, at random and finds the k-nearest 
neighbours to a (k = 5 for this study). One of the k-
nearest neighbours, b, is then selected at random and a 
synthetic instance is generated as a linear combination 
of a and b. The SOCCS dataset contains no control 
samples over the age of 74, and to avoid extrapolation, 
samples over the age of 74 were discarded before data 
augmentation was performed. Age, gender and, to a 
lesser extent, BMI, are known covariates of human 
glycome profiles (26, 27), and to ensure that model 
classification decisions were attributable to differences 
in glycome profiles, as opposed to differences in the 
covariates, these three features were controlled in 
applying SMOTE. This was achieved by firstly keeping 
the proportion of males to females approximately 
constant. Secondly, the BMIs of the synthetic instances 
were not generated by SMOTE, but rather, the median 
of the BMI of the non-augmented dataset (after BMI 
imputation) was added. For the 61 to 71 age range, the 
data was augmented to match exactly the number of 
controls and cancer patients for each age. For the 72 to 
74 age range, the data was augmented so that the number 
of controls for each age would be half the number of 
cancer patients. This sampling strategy was employed in 
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an attempt to have no statistically significant differences 
in the underlying distributions for age, gender and BMI 
across cancer patients and controls.  

Statistical hypothesis testing was performed before 
and after data augmentation to assess whether there was 
a statistically significant difference in the underlying 
distributions for age, gender and BMI across cancer 
patients and controls. The null hypothesis for each test 
was that there was no statistically significant difference 
in the underlying distributions of the features between 
controls and cancer patients at a 95% confidence 
interval. For all features except for gender, the Mann-
Whitney U test (28) was carried out. For gender, a 
categorical variable, the Fisher’s exact test (29) was 
used. On all datasets used, the null hypothesis was 
accepted for the known covariates, age and gender. 

Data scaling methods are known to greatly influence 
the performance of machine learning algorithms (22, 
30). To that end, this study evaluates the performance of 
each machine learning algorithm using 3 scaling 
methods: Min-Max, Standard and Robust scaling. These 
scaling methods were selected as they have been 
demonstrated to perform well with the machine learning 
algorithms used in this study (22). The Min-Max scaling 
method scales each feature so that all values lie between 
0 and 1 (31). Min-Max scaling has been demonstrated to 
show particularly strong performance when used with 
the Support Vector Machines algorithm (32). The 
Standard scaling method involves subtracting each 
value from the mean and dividing by the standard 
deviation (31). Standard scaling has been noted to work 
especially well with the Random Forest algorithm (33). 
In the presence of outliers, the mean and standard 
deviation calculated using the Standard scaling method 
may be skewed. An approach to remove the effect of 
outliers in the scaling process is to use the Robust 
scaling method, which scales the data by subtracting the 
median of a feature and dividing by the interquartile 
range (31). 
 
3.2 Machine Learning Algorithms 
In this study, five machine learning algorithms were 
explored: Random Forest (RF), Support Vector 
Machines (SVMs), Logistic Regression (LR), XGBoost 
(XGB) and Soft-Voting Ensemble (SVE). RF and SVMs 
are robust and widely used algorithms for disease 
diagnosis (34), while LR has shown success with the 
original SOCCS dataset (9). XGB was implemented in 
this study as previous studies have shown that tree-based 
ensemble algorithms, such as XGB, are widely accepted 
as the recommended option for real-life tabular data 
(35). XGB specifically has generated increased interest 
due to its success in recent machine learning challenges 
(36).  

The machine learning algorithms used in this study 
are largely very different but share some similarities. 
Firstly, RF is a bagging-based ensemble algorithm 
consisting of decision tree classifiers, where each 

decision tree casts a unit vote based only on a randomly-
selected subset of features, and a new instance is 
classified based on the majority vote (37). For binary 
classification, the SVMs algorithm works by finding a 
hyperplane which separates the d-dimensional data into 
its two classes. For data that is not linearly separable, the 
SVMs algorithm casts the data into a higher dimensional 
space via a kernel function where the data is separable 
(38). LR is an extension of Linear Regression. The linear 
equation used to describe the relationship between 
features and outcomes in Linear Regression is wrapped 
into the exponential of the logistic function so that the 
output of the model is a number between 0 and 1 (39). 
By selecting a threshold between 0 and 1, the LR 
algorithm can be used for classification problems.  XGB 
is similar to the RF algorithm as it is also a decision-tree-
based ensemble algorithm. Unlike RF, however, the 
algorithm is based on an extreme gradient boosting 
approach, wherein trees are added to the ensemble one 
at a time and a gradient descent algorithm is used to 
minimise errors in subsequent models (40, 41). To 
balance out the weaknesses of individual classifiers, 
such as overfitting, the SVE was explored. Much like 
RF and XGB, SVE is an ensemble algorithm that 
comprises more than one base classifier. The 
probabilities of the class predictions from each base 
classifier are used to calculate a weighted average and 
produce a final class prediction (42). In this study, for 
binary classification, base models of LR with Robust 
scaling and XGB with Min-Max scaling were used to 
generate an equally-weighted SVE. Similarly, for 
multiclass classification, an equally-weighted SVE 
comprising of RF with Min-Max scaling and LR with 
Robust Scaling base classifiers was built. 

 
3.3 Model Tuning and Evaluation 
Given the limited data available from the SOCCS study, 
a separate test set was not created. Instead, nested cross-
validation (NCV) was employed. Using non-nested 
cross-validation, hyperparameter tuning is performed to 
maximize a model’s performance on a given validation 
set. The evaluation of the model’s performance is then 
performed on the same validation set. In this way, 
information about the validation set may ‘leak’ to the 
model during hyperparameter tuning leading to 
overfitting. As such, a model selection process using 
non-nested cross-validation will often lead to overly 
optimistic estimates of a model’s generalization ability 
on unseen data (43). This can be avoided without a test 
set by using nested cross-validation. While nested cross-
validation is a computationally expensive procedure, 
Tsamardinos et al (44) demonstrated that the AUC bias 
using non-nested cross-validation is more apparent with 
smaller sample sizes.  In order to propose a generalized 
framework for future applications that can be extended 
to diseases other than colorectal cancer, where data 
availability may be even more limited, it was concluded 
that nested cross-validation was worthwhile.  
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Nested cross-validation incorporates tuning of 
hyperparameters in an inner loop and model training and 
evaluation in an outer loop (43). In the inner loop, a 
stratified 5-fold cross-validation was used, whereby the 
full data is shuffled and split into five folds, with one 
fold held out as the validation set. The model would train 
on four folds and validate on one fold. In the following 
evaluation, a different fold is used as the validation set. 
The procedure is repeated until all folds have been used 
as the validation set. With each iteration in the inner 
loop, a particular configuration of hyperparameters is 
selected, and the mean AUC across five folds is used 
as the performance metric in determining the best 
configuration. The configured model is then fed into 
the outer loop, which involved a stratified 10-fold 
cross-validation procedure. The outer loop follows a 
similar procedure to the inner loop, but ten folds are 
used and only the best hyperparameter configuration 
is used. For model selection, the mean AUC score 
across the ten folds is used as the primary model 
evaluation metric. Stratified folds were used to ensure 
that a similar proportion of observations with a given 
categorical value are present in each fold (45).  

In the inner loop, a random search or an exhaustive 
grid search is often performed over a pre-defined 
hyperparameter search space. In this study, three inner 
loops were used. Firstly, the relevant hyperparameters 
and a range of hyperparameter configurations were 

identified. The best model configuration in the first inner 
loop was used as the initial estimate of the best 
configuration. In the second inner loop, a grid search 
was employed over a search space that ranged ± 15% 
around the initial estimate for each hyperparameter. In 
the third inner loop, a final grid search was employed 
over a search space that ranged ± 10% around the best 
hyperparameter values from the previous inner loop. For 
the sake of runtime, non-numerical hyperparameters 
determined in the first inner loop were not investigated 
in subsequent inner loops. By using this method, a 
greater range of model configurations was tested in a 
time-efficient manner.  

The Receiver Operating Characteristic (ROC) curve 
captures the trade-off between the true positive rate and 
false positive rate that exists as the classification 
threshold is varied. As such, the AUC score quantifies a 
model’s performance across different classification 
thresholds. For a model to be used in clinical practice, a 
classification threshold must be specified. This 
threshold was selected using an adjusted method of 
Youden’s J statistic approach. In its raw form, Youden’s 
J statistic is calculated at various classification 
thresholds, where each threshold corresponds to a point 
along the ROC curve. The classification threshold 
corresponding to the maximum J statistic is selected to 
represent the classifier’s optimal operating threshold 
(46). An adjusted version of this method was 

 
Figure 1. Schematic of the machine learning framework specific to the data from the SOCCS study. 
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incorporated by setting a minimum true positive rate, 
and so a maximum false negative rate, for which to 
calculate the J statistic within.  Favouring high true 
positive rate is generally desired in a clinical setting (47) 
as incorrectly classifying a person as negative would 
limit a patient's access to treatment. The adjusted 
method used here accounts for this.  
 
3.4 Feature Importance 
Univariate hypothesis testing, which is widely used for 
biomarker discovery in bioinformatics, fails to capture 
the complex variable interactions inherent to biological 
processes, and can only identify features important to 
the output variable in isolation from the other inputs 
(48). In this study, a model-agnostic version of the 
permutation feature importance measurement, capable 
of capturing multivariate interactive effects between 
features, is used to identify features that are ‘important’ 
for the SVE model’s predictions on the non-augmented 
dataset (49). The importance of a feature is measured by 
calculating the increase in the model’s prediction error 
upon permuting the feature. A feature is deemed 
‘important’ if shuffling its values increases the model 
error, and ‘unimportant’ if shuffling its values does not 
change the model error (49). The feature importance is 
quantified as the model prediction error upon permuting 
less the original model prediction error.  

 
4. Results 
Data on the features (age, gender, BMI and glycome 
compositions) of 1413 patients with pathologically 
confirmed colorectal adenocarcinoma and 538 matching 
controls were used to train four base machine learning 
algorithms and one SVE. Three scaling methods were 
tested for each base algorithm and SMOTE data 
augmentation was used for binary classification only. 
Further, the ‘importance’ of an input feature was 
quantified with permutation feature importance. 
 
4.1 Binary Classification 
The best scaling methods for each of the machine 
learning algorithms tested, and the corresponding mean 
AUC scores are summarized in Table 1. Among the 
models trained on the non-augmented dataset, excluding 
the SVE, XGB had the highest mean AUC score of 
0.723. However, as illustrated in Figure 2 (b), the 
learning and validation curves show poor convergence, 
which is indicative of overfitting on the training dataset 

and poor generalization ability on unseen data. While 
LR had a worse mean AUC score of 0.696, the learning 
curve in Figure 2 (a) for LR demonstrates relatively 
good convergence between the training and validation 
curves compared to XGB. These observations motivated 
the decision to build an SVE comprising LR and XGB 
base classifiers. Among the combinations of machine 
learning algorithms and scaling methods tested, the SVE 
using Min-Max scaling for the XGB base model and 
Robust scaling for the LR base model showed the 
highest mean AUC of 0.727. Additionally, the learning 
curve for the SVE in Figure 2 (c) showed improved 
convergence. For the models trained on the augmented 
dataset, the RF model using the Standard scaling method 
showed the highest mean AUC score of 0.921. The XGB 
model using the Robust scaling method closely 
followed, with a mean AUC score of 0.920. While the 
difference in mean AUC scores is marginal, the learning 
curves for XGB showed far better convergence for the 
training and validation curves, as illustrated in Figure 2 
(d).  

The ROC-AUC curves shown in Figure 3 (a) and 
(b) illustrate the performance of the SVE and XGB 
models, trained on the non-augmented and augmented 
datasets respectively, at different classification 

Table 1. Mean AUC and standard deviation (std) results for the best-performing scaling method for each algorithm and the SVE model (comprising of 
XGB and LR) for augmented and non-augmented input binary datasets. Note that the scaling method of the SVE is determined by each base classifier.

 Non-Augmented   Augmented  
Algorithm  Scaling Method  Mean AUC Std   Scaling Method  Mean AUC Std 

XGB Min-Max  0.723 0.044  Robust  0.920 0.016 
RF Robust  0.722 0.043  Standard  0.921 0.017 

SVM Robust  0.702 0.030  Robust  0.861 0.018 
LR Robust  0.696 0.033  Standard  0.724 0.033 

SVE - 0.727 0.038   - 0.900 0.038 
 

 
Figure 2. Learning curves: (a) LR with non-augmented data, (b) XGB
with non-augmented data, (c) SVE with non-augmented data and, (d) 
XGB with augmented data, where the shaded region around each 
curve corresponds to one standard deviation away from the plotted 
mean (of 10 cross-validation folds). 
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thresholds. These curves were useful in determining 
potential operating points for the classifier, i.e., what 
thresholds might be desirable given their sensitivity and 
specificity. For the SVE model trained on the non-
augmented dataset, a minimum 90.0% sensitivity 
threshold was selected to give a sensitivity of 90.1% and 
a specificity of 29.3%, at a classification threshold of 
46.1%. The strong performance of the XGB model 
trained on the augmented dataset enabled a minimum 
99.9% sensitivity threshold to be specified. This yielded 
a sensitivity of 99.9% and a specificity of 43.4% at a 
classification threshold of 51.0%. 
 
4.2 Multiclass Classification 
For multiclass classification, three mean AUC scores are 
calculated to illustrate a model’s ability to discern 
between controls and early-stage patients, controls and 
late-stage patients, and early-stage and late-stage 
patients. The best combinations of algorithms and 
scaling methods were identified by calculating the 
average of the three mean AUC scores (average mean 
AUC), and are summarized in Table 2. The SVE model 
used for multiclass classification comprises two of the 
classifiers that had the highest average mean AUC 
scores, namely the RF and LR models. Although the 
SVE achieved the best mean AUC for controls and late-
stage patients, overall it still performed worse than the 

base RF classifier. Notably, due to a statistically 
significant difference in the age distributions between 
early-stage and late-stage patients upon data 
augmentation, this augmented dataset was not used.  

4.3 Feature Importance 
The permutation feature importances derived from the 
SVE’s predictions on the non-augmented dataset are 
shown in Table 3. The SVE model was used to calculate 
feature importances as it was the best-performing model 
on the non-augmented data. The top five ‘important’ 
features are core-fucosylated, supporting past 
indications that increased core-fucosylation of N-
glycans on IgG is a hallmark of colorectal cancer.  

Table 2. Mean AUC and standard deviation (std) results for the best-performing scaling method for each algorithm and the SVE model (comprising of 
RF and LR) for the non-augmented input multiclass datasets. Note that the scaling method of the SVE is determined by each base classifier. 
 

Algorithm 
Scaling 
Method 

Control and Early- 
Stage  Control and Late-

Stage  Early and Late-Stage Average 
Mean 
AUC Mean AUC Std  Mean AUC Std  Mean AUC Std 

XGB Robust 0.667 0.068  0.701 0.042  0.521 0.077 0.630 
RF Min Max 0.701 0.045  0.729 0.034  0.637 0.061 0.689 

SVMs Min Max 0.671 0.070  0.691 0.054  0.478 0.034 0.613 
LR Robust 0.671 0.057  0.700 0.043  0.527 0.072 0.633 

SVE - 0.699 0.048  0.731 0.022  0.593 0.062 0.674 
 

  
Figure 3. ROC-AUC curves for each outer loop cross-validation fold for: (a) the SVE model trained on non-augmented data and, (b) the XGB model
trained on augmented data (as per Table 1), where “TPR” corresponds to “True Positive Rate”. 
________________________________________________________________________________________________________________________ 

Table 3. Top 4 and bottom 4 ranked features based on their mean 
importance score, where “std” corresponds to “standard deviation”. 
The core-fucosylated glycan structures were identified using Figure 
1 in the study by Vučković et al (9). 

Rank Feature 
Fucosylated 

Glycan? 
Importance 

Mean Std 
1 GP14 Yes 0.286 0.009 
2 GP18 Yes 0.263 0.009 
3 GP10 Yes 0.235 0.012 
4 GP9 Yes 0.232 0.007 
24 GP5 No 0.060 0.010 
25 GP22 No 0.049 0.009 
26 Age N/A 0.016 0.003 
27 Gender N/A 0.001 0.001 
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5. Discussion 
5.1 Binary Classification 
The best-performing model trained on the non-
augmented dataset was the equally-weighted SVE, 
comprising LR and XGB models. This model has a 
mean AUC of 0.727, which, at a mean classification 
threshold of 46.1%, has a sensitivity of 90.1% and a 
specificity of 29.3%. The mean AUC for the SVE is 
worse than that achieved by Vučković et al (9) (AUC = 
0.755), wherein an LR model was trained on a dataset 
obtained from the SOCCS study. The LR model trained 
in the present study has a mean AUC score of 0.696. The 
inferior performance of the LR model in this study may 
be attributed to the differences in the dataset that was 
used. Namely, our non-augmented dataset did not 
include samples over the age of 60, upon observing a 
significant class imbalance over this age. This yielded 
694 cancer patients and 534 controls. Vučković et al (9) 
made no mention of discarding data and instead trained 
an LR model on a larger dataset of 760 CRC patients and 
538 controls. So while the AUC score is higher for the 
model built by Vučković et al (9), it may be that the 
model will be less successful in classifying the minority 
class (controls) from unseen data. Most notably, the 
study by Vučković et al (9) used a 10-fold non-nested 
cross-validation procedure, as opposed to a nested cross-
validation procedure. It is known that a non-nested 
cross-validation procedure may result in overly 
optimistic AUC scores (43). As such, it may be that the 
AUC score of 0.755 reported by Vučković et al (9) is a 
slight overestimate of the model’s ability to generalise 
on unseen data.  

Discarding samples over the age of 74 and 
performing data augmentation using SMOTE resulted in 
a dataset with 1298 cancer patients and 1096 controls. 
The XGB model, trained on the augmented dataset, 
using the Robust scaling method has a mean AUC score 
of 0.920. Similarly, high mean AUC scores have been 
achieved in past studies using glycomic data and a 5-fold 
non-nested cross-validation to predict diseases. In a 
study conducted by Iwamura et al (19), a neural network 
model, applied to the diagnosis of urological diseases, 
achieved a mean AUC score of 0.970, while in a study 
by Huang et al (18), an LR model achieved a mean AUC 
of 0.860 in predicting alpha-fetoprotein negative 
hepatocellular carcinoma. Outside of glycobiology, 
Dayan et al (16) achieved a mean AUC of 0.920 which 
crucially was considered sufficient to implement in a 
clinical setting to predict the oxygen requirement of 
symptomatic COVID-19 patients. At a mean 
classification threshold of 51.0%, our XGB model 
trained on the augmented dataset gives a sensitivity of 
99.9% and a specificity of 43.4%. In contrast, 
colonoscopy, considered to be the gold standard for 
colorectal cancer screening, has a lower sensitivity but 
higher specificity of 92.5% and 73.2% respectively (50). 
Colonoscopy is generally performed under general 
anaesthesia and by trained professionals, and while 

uncommon, serious complications such as colon 
perforation and bleeding may occur. Meanwhile, the 
proposed test relies on a minimally invasive blood test. 
The ability of the XGB model to achieve such high 
sensitivity is significant in a clinical setting, as 
erroneously classifying a sample as negative may lead 
to severe consequences. This is especially significant for 
colorectal cancer where a prompt diagnosis is critical. 
The augmented dataset used to train the XGB model is 
indeed synthetic and thus, the framework proposed here 
cannot directly proceed to clinical trials. However, the 
high mean AUC score (AUC = 0.920) achieved using 
the augmented dataset is a hopeful indication that, given 
more samples to train and validate on, the machine 
learning framework proposed in this study can be used 
in conjunction with traditional diagnostic tests. By doing 
so, the framework would offer an inexpensive and time-
efficient means to increase the reliability of diagnoses.  

Significant variation in mean AUC is observed in 
both the augmented and non-augmented results. As 
illustrated in Table 1, the best-performing scaling 
method depends on the machine learning algorithm 
being used, confirming the earlier work of Ahsan et al 
(22), who demonstrated that a model’s performance 
varies depending on the data scaling method.  
Furthermore, for the non-augmented dataset, three out 
of the four machine learning algorithms (excluding the 
SVE) tested favoured the Robust scaling method. Given 
the Robust scaling method is an effective way to remove 
the impact of outliers on classification, this may be an 
indication of significant outliers in the non-augmented 
dataset. While the XGB model has been overlooked in 
previous glycomic studies, the strong performance with 
both the non-augmented and augmented datasets 
indicates the model should continue to be investigated 
in future studies. Further to this, of the five models 
presented in Table 1, the three models with the highest 
mean AUC (XGB, RF and SVE) are ensemble models 
for both the non-augmented and augmented datasets. 
This is somewhat to be expected, as ensemble methods 
are designed to consider the outputs of several 
individual models, and combine to improve overall 
classification performance (51). Even so, the XGB 
model was observed to overfit the non-augmented 
dataset in Figure 2 (a). It is speculated that the increased 
complexity associated with the extreme gradient 
boosting approach makes the XGB model more 
susceptible to overfitting compared to the non-
ensemble-based models tested here. Machine learning 
models are known to overfit small datasets (52), and this 
is reflected by the fact that the XGB model does not 
seem to overfit the larger augmented dataset, as can be 
seen in Figure 2 (d). 

 
5.2 Multiclass Classification 
Across the three classification categories presented in 
Table 2, the RF model showed the best performance 
with an average mean AUC of 0.689. Past studies using 
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the RF classifier for multiclass classification have also 
shown success. Specifically, a study into the patient 
stratification for lymph diseases recorded an average 
mean AUC score of 0.954 across four classification 
categories using the RF model (53). XGB showed strong 
performance with binary classification and in past 
multiclass classification studies (54). However, here, the 
XGB model showed poor performance with multiclass 
classification. Admittedly, the inclusion of additional 
techniques that helped achieve its success in literature, 
such as transfer learning, was not explored in our 
methodology. The comparative success of RF could be 
attributed to the fact that SVMs and LR models can only 
handle binary outputs natively. Therefore, the native 
SVMs and LR models require settings to be adapted to 
address multiclass classification problems (55).  

It can be observed that the mean AUC scores shown 
for the multiclass problem in Table 2 are, in general, 
lower than those for the binary problem using the non-
augmented dataset in Table 1. This is because it is 
widely acknowledged that classification problems 
become more challenging as the number of classes 
increases (55). Moral et al (55) argue that the additional 
complexity in multiclass classification comes from the 
heterogeneity of decision boundaries which gives rise to 
the interaction of decision boundaries.  

The results in Table 2 also highlight the somewhat 
intuitive point that discerning between controls and late-
stage patients is easier than discerning between controls 
and early-stage patients or early-stage and late-stage 
patients. These observations are consistent with the fact 
that poorer CRC prognosis (i.e. late-stage patients) is 
associated with increased IgG pro-inflammatory activity 
(56), which in turn is associated with the presence of 
certain glycan structures (7). Namely, poor prognosis 
has been associated with decreased galactosylation and 
decreased sialylation of fucosylated IgG glycans (56). 
We speculate that the multiclass models have exploited 
these glycosylation traits associated with late-stage 
patients to make better predictions with the control and 
late-stage classification category. 
 
5.3 Feature Importance  
The relative abundances of GP14, GP18, GP10 and GP9 
were found by the SVE model trained on non-
augmented data to be the most important. Beyond the 
top 4 shown in Table 3, the top 11 most ‘important’ 
features for the SVE classifier in making predictions 
contain at least one core-fucosylated glycan structure. 
This is particularly notable given that 15 of the 24 glycan 
features in this dataset contain core-fucosylated 
structures. Indeed, several cancer types are known to be 
associated with increased core-fucosylation on serum 
proteins (6). Further, the result here corroborates the 
earlier work of Vučković et al (9), which found that 
colorectal cancer is associated with an increase in core-
fucosylation of neutral glycans. Interestingly, non-core-
fucosylated glycans were deemed among the least 

‘important’, meaning the SVE model finds non-core-
fucosylated glycans less informative when making 
classification predictions. As such, we speculate that the 
changes in the relative abundance of core-fucosylated 
IgG N-glycans may serve as a potential biomarker for 
colorectal cancer. For clinical use, potential biomarkers 
must undergo validation processes. To that end, high-
throughput methods for quantitative clinical glycan 
biomarker validation exist (57).  

We further speculate that using data on the relative 
abundances of core-fucosylated glycans only may 
increase the discriminative power of the SVE model.  In 
past studies, it has been demonstrated that various 
machine learning models, including RF and XGB, show 
improved accuracy by using only the highest-ranked 
features from the feature importance technique (58).  
 
6. Conclusions 
Key findings from this study support the existing 
potential for a machine-learning-based diagnostic tool 
for colorectal cancer using glycomic data, involving a 
minimally invasive procedure. The XGB model trained 
on the augmented dataset, in particular, achieves a high 
mean AUC score of 0.920. While this result is limited 
by the use of data augmentation, it provides a proof of 
concept for a supplementary diagnostic tool that can be 
developed given a clinically valid dataset larger than 
what is currently available. Therefore, future research on 
the diagnostic potential of glycomic data would involve 
acquiring more data points on controls and colorectal 
cancer patients. Such glycomic data should be 
accompanied by clinically relevant features, including 
age, gender and BMI. Indeed, the framework proposed 
here is designed to be extendable for other diseases 
where glycomic data may be relevant. Moreover, given 
aberrant glycosylation is observed with multiple cancer 
types, this framework has potential to be used as a 
universal cancer screening tool. While data 
augmentation was not explored for the multiclass 
classification, modifying the method used in this study 
to account for the statistical significance observed in the 
underlying distribution for age across early-stage and 
late-stage patients would enable a similar proof of 
concept study for patient stratification to be performed.  

By investigating the features that drive classification 
decisions for the SVE model trained on the non-
augmented dataset, it is speculated that changes in the 
core-fucosylation of glycans present on 
immunoglobulin G may serve as a potential biomarker 
for colorectal cancer. Further understanding of the 
molecular mechanism underlying core-fucosylation of 
glycans may unlock the ability to develop advanced 
therapies that target specific glycosylation pathways. 
Overall, this study supports the existing biomarker 
potential of N-glycans for colorectal cancer and directs 
future studies to further evaluate the feasibility of 
developing a machine-learning-based disease diagnostic 
tool for colorectal cancer.  
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data for this work will be available upon request. 
 
8. Acknowledgements 
We would like to thank Konstantinos Flevaris for his 
invaluable guidance and insight throughout this project. 

9. References 
(1) Bray F, Ferlay J, Soerjomataram I, Siegel RL, 
Torre LA, Jemal A. Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA Cancer J 
Clin. 2018;68(6):394-424. 
(2) Mármol I, Sánchez-de-Diego C, Dieste AP, 
Cerrada E, Yoldi MJR. Colorectal carcinoma: A general 
overview and future perspectives in colorectal cancer. 
Int J Mol Sci. 2017;18(1):197. 
(3) Juan José Granados-Romero, Valderrama-
Treviño AI, Contreras-Flores EH, Barrera-Mera B, 
Enríquez MH, Uriarte-Ruíz K et al. Colorectal cancer: a 
review. Int J Res Med Sci Technol. 2017;5(11):4667-76. 
(4) Wanga D, Madunićab K, Guinevere TZ, 
Lageveen-Kammeijera S, Wuhrer M. Profound diversity 
of the N-glycome from microdissected regions of 
colorectal cancer, stroma, and normal colon mucosa. 
Engineering. 2022. 
(5) Balog CIA, Stavenhagen K, Fung WLJ, 
Koeleman CA, McDonnell LA, Verhoeven A et al. N-
glycosylation of colorectal cancer tissues. Mol Cell 
Proteomics. 2012;11(9):571–85. 
(6) Pinho SS, Reis CA. Glycosylation in cancer: 
Mechanisms and clinical implications. Nat Rev Cancer. 
2015;15(9):540-55. 
(7) Flevaris K, Kontoravdi C. Immunoglobulin G 
N-glycan biomarkers for autoimmune diseases: Current 
state and a glycoinformatics perspective. Int J Mol Sci. 
2022;23(9):5180. 
(8) Kdimati S, Mullins CS, Linnebacher M. 
Cancer-cell-derived IgG and its potential role in tumor 
development. Int J Mol Sci. 2021;22(21):11597. 
(9) Vučković F, Theodoratou E, Thaçi K, 
Timofeeva M, Vojta A, Štambuk J et al. IgG glycome in 
colorectal cancer. Clin Cancer Res. 2016;22(12):3078-
86. 
(10) Lauc G, Pezer M, Rudan I, Campbell H. 
Mechanisms of disease: The human N-glycome. 
Biochim Biophys Acta. 2016;1860(8):1574-82. 
(11) Ahsan MM, Luna SA, Siddique Z. Machine-
learning-based disease diagnosis: A comprehensive 
review. Healthcare. 2022;10(3):541. 
(12) Yao D, Yang J, Zhan X. A novel method for 
disease prediction: Hybrid of random forest and 
multivariate adaptive regression splines. J Comput. 
2013;8(1):170-7. 
(13) Yang J, Yao D, Zhan X, Zhan X. Predicting 
disease risks using feature selection based on random 
forest and support vector machine. In: Basu M, Pan Y, 
Wang J, editors. Bioinformatics Research and 
Applications; Zhangjiajie, China. Cham: Springer; 
2014. p. 1-11. 

(14) Microsoft. A Microsoft AI tool is helping to 
speed up cancer treatment – and Addenbrooke’s will be 
the first hospital in the world to use it 2020 [cited 10th 
December 2022]. Available from: 
https://news.microsoft.com/en-gb/2020/12/09/a-
microsoft-ai-tool-is-helping-to-speed-up-cancer-
treatment-and-addenbrookes-will-be-the-first-hospital-
in-the-world-to-use-it/. 
(15) Jena R, Parkes M, Stranks A. Medicine for 
members: Artificial intelligence in healthcare - 
improving patient outcomes. [Presentation] Cambridge 
University Hospitals. 21-Jul 2021 [cited 10th December 
2022]. Available from: 
https://www.cuh.nhs.uk/news/medicine-members-
artificial-intelligence-in-healthcare/. 
(16) Dayan I, Roth HR, Zhong A, Harouni A, 
Gentili A, Abidin AZ et al. Federated learning for 
predicting clinical outcomes in patients with COVID-
19. Nat Med. 2021;27:1735-43. 
(17) Uddin S, Khan A, Hossain ME, Moni MA. 
Comparing different supervised machine learning 
algorithms for disease prediction. BMC Medical Inform 
Decis Mak. 2019;19:281. 
(18) Huang C, Fang M, Feng H, Liu L, Li Y, Xu X 
et al. N-glycan fingerprint predicts alpha-fetoprotein 
negative hepatocellular carcinoma: A large-scale 
multicenter study. Int J Mol Sci. 2020;149(3):717-27. 
(19) Iwamura H, Mizuno K, Akamatsu S, 
Hatakeyama S, Tobisawa Y, Narita S et al. Machine 
learning diagnosis by immunoglobulin N-glycan 
signatures for precision diagnosis of urological diseases. 
Cancer Sci. 2022;113(7):2434-45. 
(20) Scott DA, Wang M, Grauzam S, Pippin S, 
Black A, Angel PM et al. GlycoFibroTyper: A novel 
method for the glycan analysis of IgG and the 
development of a biomarker signature of liver fibrosis. 
Front Immunol. 2022;13:797460. 
(21) Liu S, Liu Y, Lin J, Wang Y, Li D, Xie G-Y et 
al. Three major gastrointestinal cancers could be 
distinguished through subclass specific IgG 
glycosylation. J Proteome Res. 2022;21(11):2771-82. 
(22) Ahsan MM, Mahmud MAP, Saha PK, Gupta 
KD, Siddique Z. Effect of data scaling methods on 
machine learning algorithms and model performance. 
Technologies. 2021;9(3):52. 
(23) Pedregosa F, Varoquaux G, Gramfort A, 
Michel V, Thirion B. Scikit-learn: Machine learning in 
python. J Mach Learn Res. 2011;12:2825-30. 
(24) Barua S, Islam MM, Murase K. A novel 
synthetic minority oversampling technique for 
imbalanced data set learning. In: Lu B-L, Zhang L, 
Kwok J, editors. Neural Information Processing; 
Shanghai, China. Berlin: Springer; 2011. p. 735-44. 
(25) Elreedy D, Atiya AF. A comprehensive 
analysis of synthetic minority oversampling technique 
(SMOTE) for handling class imbalance. Inf Sci. 
2019;405:32-64. 
(26) Perkovic MN, Bakovic MP, Kristic J, 
Novokmet M, Huffman JE, Vitart V et al. the association 
between galactosylation of immunoglobulin G and body 
mass index. Prog Neuropsychopharmacol Biol 
Psychiatry. 2014;48:20-5. 

293



10 
 

(27) Ding N, Nie H, Sun X, Sun W, Qu Y, Liu X et 
al. Human serum N-glycan profiles are age and sex 
dependent. Age Ageing. 2011;40(5):568-75. 
(28) Mann HB, Whitney DR. On a test of whether 
one of two random variables is stochastically larger than 
the other. Ann Math Statist. 1947;18(1):50-60. 
(29) Fisher RA. Statistical methods for research 
workers. Oliver and Boyd: Edinburgh; 1934. 
(30) Shahriyari L. Effect of normalization methods 
on the performance of supervised learning algorithms 
applied to HTSeq-FPKM-UQ data sets: 7SK RNA 
expression as a predictor of survival in patients with 
colon adenocarcinoma. Brief Bioinformatics. 
2019;20(3):985-94. 
(31) scikit-learn. Compare the effect of different 
scalers on data with outliers 2022 [cited 12th December 
2022]. Available from: https://scikit-
learn.org/stable/auto_examples/preprocessing/plot_all_
scaling.html. 
(32) Ambarwari A, Adrian QJ, Herdiyeni Y. 
Analysis of the effect of data scaling on the performance 
of the machine learning algorithm for plant 
identification. Jurnal RESTI. 2020;4(1):117-22. 
(33) Balabaeva K, Kovalchuk S. Comparison of 
temporal and non-temporal features effect on machine 
learning models quality and interpretability for chronic 
heart failure patients. Procedia Comput Sci. 
2019;156:87-96. 
(34) Pan Y, Zhang L, Zhang R, Han J, Qin W, Gu Y 
et al. Screening and diagnosis of colorectal cancer and 
advanced adenoma by bionic glycome method and 
machine learning. Am J Cancer Res. 2021;11(6):3002-
20. 
(35) Shwartz-Ziv R, Armon A. Tabular data: Deep 
learning is not all you need. Inf Fusion. 2022;81:84-90. 
(36) Distributed (Deep) Machine Learning 
Community. Awesome XGBoost 2022 [cited 8th 
December 2022]. Available from: 
https://github.com/dmlc/xgboost/tree/master/demo#ma
chine-learning-challenge-winning-solutions. 
(37) Oshiro TM, Perez PS, Baranauskas JA. How 
many trees in a random forest? Lect Notes Comput Sci. 
2012;7376:154-68. 
(38) Boswell D. Introduction to support vector 
machines. Department of Computer Science and 
Engineering University of California San Diego. 2002. 
(39) Stoltzfus JC. Logistic regression: A brief 
primer. J Acad Emerg Med. 2011;18(10):1099-104. 
(40) Bentéjac C, Csörgő A, Martínez-Muñoz G. A 
comparative analysis of gradient boosting algorithms. 
Artif Intell Rev. 2021;54:1937-67. 
(41) Chen T, Guestrin C. XGBoost: A scalable tree 
boosting system. In: Krishnapuram B, editor. 
Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining; 
San Francisco, USA. New York: Association for 
Computing Machinery; 2016. p. 785-94. 
(42) Wang H, Yang Y, Wang H, Chen D. Soft-
voting clustering ensemble. In: Zhou Z-H, Roli F, Kittler 
J, editors. International Workshop on Multiple 
Classifier Systems; Nanjing, China. Berlin: Springer; 
2013. p. 307-18. 

(43) Tsamardinos I, Greasidou E, Borboudakis G. 
Bootstrapping the out-of-sample predictions for 
efficient and accurate cross-validation. Mach Learn. 
2018;107:1895-922. 
(44) Tsamardinos I, Rakhshani A, Lagani V. 
Performance-estimation properties of cross-validation-
based protocols with simultaneous hyper-parameter 
optimization. In: Likas A, Blekas K, Kalles D, editors. 
Artificial Intelligence: Methods and Applications; 
Ioannina, Greece. Cham: Springer; 2014. p. 1-14. 
(45) Zeng X, Martinez TR. Distribution-balanced 
stratified cross-validation for accuracy estimation. J Exp 
Theor Artif Intell. 2010;12(1):680-90. 
(46) Kallner A. Interpretation of the elements of the 
ROC analysis. In: Fedor J, editor. Laboratory statistics: 
Methods in chemistry and health sciences. 2nd ed. 
Amsterdam: Elsevier; 2018. 
(47) Ruopp MD, Perkins NJ, Whitcomb BW, 
Schisterman EF. Youden index and optimal cut-point 
estimated from observations affected by a lower limit of 
detection. Biom J. 2008;50(3):419-30. 
(48) Huynh-Thu VA, Saeys Y, Wehenkel L, Geurts 
P. Statistical interpretation of machine learning-based 
feature importance scores for biomarker discovery. 
Bioinformatics. 2012;28(13):1766-74. 
(49) Molnar C. Permutation feature importance.  
Interpretable machine learning. 2nd ed. Munich: 
Bookdown; 2022. 
(50) Martín-López JE, Beltrán-Calvo C, Rodríguez-
López R, Molina-López T. Comparison of the accuracy 
of CT colonography and colonoscopy in the diagnosis of 
colorectal cancer. Colorectal Dis. 2014;16(3):O82-O9. 
(51) Sagi O, Rokach L. Ensemble learning: A 
survey. Data Min Knowl Discov. 2018;8(4):e1249. 
(52) Srivastava N, Hinton G, Krizhevsky A, 
Sutskever I, Salakhutdinov R. Dropout: A simple way to 
prevent neural networks from overfitting. J Mach Learn 
Res. 2014;15(56):1929-58. 
(53) Azar AT, Elshazly HI, Hassanien AE, 
Elkorany AM. A random forest classifier for lymph 
diseases. Comput Methods Programs Biomed. 
2014;113(2):465-73. 
(54) Liew XY, Hameed N, Clos J. An investigation 
of XGBoost-based algorithm for breast cancer 
classification. Mach Learn Appl. 2021;6:100154. 
(55) Moral PD, Nowaczyk S, Pashami S. Why is 
multiclass classification hard? IEEE Access. 
2022;10:80448-62. 
(56) Theodoratou E, Thaçi K, Agakov F, Timofeeva 
MN, Štambuk J, Pučić-Baković M et al. Glycosylation 
of plasma IgG in colorectal cancer prognosis. Sci Rep. 
2016;6:28098. 
(57) Shipman JT, Nguyen HT, Desaire* H. So you 
discovered a potential glycan-based biomarker; now 
what? We developed a high-throughput method for 
quantitative clinical glycan biomarker validation. ACS 
Omega. 2020;5(12):6270-6. 
(58) Khan NM, C NM, Negi A, Thaseen IS. 
Analysis on improving the performance of machine 
learning models using feature selection technique. In: 
Abraham A, Cherukuri AK, Melin P, Gandhi N, editors. 
Intelligent Systems Design and Applications; Vellore, 
India. Cham: Springer; 2018. p. 69–77. 

294



Development of an integrated system for tear ascorbic acid fluorescent detection
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Abstract
Ascorbic acid (AA) is an imperative antioxidant, which is indicative of the state of human health. AA in tears has
been suggested as a potential biomarker for diagnosing dry eye disease (DED). A fluorescent sensor, established
on the contact lens for sensitive turn-on detection of AA, was invented based on the BSA-Au nanoclusters (NCs)
because of its easy operation, low cost, high stability, selectivity and sensitivity. With the increasing demand for
the point-of-care (POC) diagnosis of ocular diseases, a readout platform containing light-emitting lights (LEDs),
a magnifying lens and an optical filter was developed for quantitative measurements and image acquisition by
employing a smartphone camera. The use of a smartphone algorithm and user interface was aiming to process
measurements from the fluorescent sensor and export quantitative diagnostic data. The fluorescent sensor was ex-
amined and exhibited a highly sensitive (R2 = 0.96) AA detection (0 - 1.2 mmol L−1). In this study, a smartphone
application for tear AA fluorescent sensors was also developed with some optimisations of image-processing al-
gorithms. Through this research, continuous monitoring of tear AA concentrations in POC settings was achieved.
With the future use of artificial intelligence algorithms, cloud server data of DED patients in the UK would be
acquired, allowing for accurate prediction of disease severity stages and giving appropriate suggestions.

Keywords: Fluorescent sensing, Contact lens sensors, Ascorbic acid, Tear monitoring, Ophthalmic diagnostics,
Dry eye disease image-processing algorithms, Smartphone readout device, Ophthalmic health track application

1 Introduction
Ascorbic acid (AA), commonly well-known as vi-
tamin C, found in many fruits and vegetables, has
been treated as an important antioxidant in a vari-
ety of fields, including food, beverages, animal feed,
cosmetics, nutraceutical and pharmaceutical formula-
tions [1]. Meanwhile, AA, as a cofactor of enzymes
[2], a reducing agent [3], and an essential nutritional
factor [4], is critical to many physiological processes
in human bodies. The level of AA in the human body
is indicative of the state of human health. Variations
in the amount of AA in the body can lead to a change
in physiological conditions as well as severe diseases
[5]. It has been shown that the deficiency of AA in
the human body leads to immunity reduction, ane-
mia, and scurvy [6]. Other disorders such as stom-
ach convulsion, diarrhoea, and urinary stones [7] can
be attributed to the elevation of AA. Besides, in order
to maintain the necessary AA content in the human
body, AA must be obtained from food intake since
it is an exogenous [8] chemical substance. A human
eye’s polymorphonuclear leukocytes (PMNs) infiltra-
tion will increase the concentration of free radicals
in tears during inflammation. Due to the presence of
toxic free radicals released by early-stage corneal dis-
order [9] and alkali burns [10], the concentration of
AA in tears will increase. Hence, it would be benefi-
cial to analyse the variation of tear AA levels in order
to monitor ocular health and arrive at a diagnosis.

In 2021, the global prevalence of dry eye disease
(DED) was estimated at 11.59% [11] of people world-
wide, while about 9.6% [12] of the population in the
UK was affected by DED. NHS dispensing service

filled over 6.4 million prescriptions for DED such as
artificial tears, ocular lubricants and astringents, at the
cost of more than £27 million [13]. Lack of tears or
an excessive loss of tears causes dry eye and hyperos-
molarity, which results in symptoms such as abrasions
and discomfort to the cornea [14]. Although the ma-
jority of dry eye treatments have focused on a lack of
tear production and inflammation, meibomian gland
dysfunction (MGD) has recently been identified as the
major cause of DED [15]. Lacrimal hyposecretion is
another common cause of DED, which decreases with
age and results in aqueous tear deficiency [16]. Diag-
nostic approaches for DED are mainly based on iden-
tifying symptoms such as burning, gritty, or sandy
sensations, burning, and red eyes [17]. Slit lamp ex-
aminations and symptom surveys are the most com-
mon diagnostic methods. In tests for tear hyperos-
molarity, such as those conducted with osmometers
(TearLab), results are difficult to interpret due to large
standard errors [18]. LipiView (TearScience), an in-
terferometry imaging device that can be used on a
benchtop, is used to monitor the condition of the lipid
layer of an eye. Nevertheless, a patient’s blinking rate
may be inconsistent, which causes this high-cost de-
vice to produce inaccurate results [19].

The fluorescent detection for AA concentrations
in the tear is considered one of the desirable alterna-
tives to existing diagnosis methods of DED because
of its easy operation, low cost, high sensitivity and
selectivity. A number of methods have been devel-
oped for the fluorescent detection of AA, including
electrochemistry [20], the titration with an oxidizing
agent [21], spectrophotometry [22], chromatography
[23] and chemiluminescence [24], enzymology [25]
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Figure 1: The overall experimental design and an integrated POC system for the fluorescent detection of tear AA (a) The use of cuvettes to
simulate contact lens platforms for the sample collection. (b) The readout device used to reduce the noise during the photo-taking procedure
[26] (c) The identified region of interest (ROI), the fluorescent intensity increases with the tear AA increments (d) Predicted calibration curve
based on linear regression used for the smartphone application (e) The user interface design of the smartphone application

and capillary electrophoresis [27]. It remains urgently
necessary to develop less complicated and expensive,
but more sensitive and effective methods in order to
determine the level of AAwithin the human body. For
example, AA can be detected with high sensitivity us-
ing a fluorescent probe composed of CdTe/CdS/ZnS
quantum dots (QDs) [28]. Although CdTe/CdS/ZnS
QDs have excellent properties, the synthesis of a
CdTe/CdS/ZnS QDs probe took a long time, and the
use of Te power and CdCl2 was environmentally un-
friendly and toxic as a fluorescent sensor. A promis-
ing field of new fluorescent probes has opened up as
a result of noble metal NCs. NCs become molec-
ular species in the small size regime, and discrete
states with significant fluorescence are observed [29].
In particular, BSA-Au NCs have been found to be
highly desirable for biolabeling and bioimaging ap-
plications due to their non-toxic nature, which means
they pose little adverse effect on biological systems.
With the addition of KMnO4, the oxidation status of
BSA-Au NCs will be perturbed, resulting in fluores-
cence quenching. After introducing reductive AA
into the quenched solution, added KMnO4 was re-
duced by AA, then the fluorescence of the systemwas
recovered [30]. A novel fluorescent probe for AA can
therefore be created using BSA-Au NCs. A prelimi-

nary study of the proposed method was conducted on
human tear fluid samples with satisfactory results.

Some patients would not be able to visit the hos-
pital to obtain a real-time diagnosis of their ocular
conditions. Therefore, recent studies have developed
personalised POC [31] diagnosis that allows patients
to self-check their eye conditions [32]. In order to
meet the increasing demand for POC diagnostics, it is
imperative to identify and monitor the biological and
chemical molecules in tears under minimal concen-
trations within physiological conditions through rapid
and accurate detection methods [33]. Consequently,
biosensors based on fluorescence provide rapid de-
tection of AA levels in tears. To achieve real-time
monitoring and continuous sampling, the reversibil-
ity of fluorescent biosensors is also an imperative re-
quirement for POC settings. Real-time monitoring,
diagnosis of specific ocular diseases, and an under-
standing of physiological conditions within the eye
systems would be achievable with the employment of
specific fluorescent sensing technologies [34]. With
a smartphone application and a readout device (Fig-
ure 1.b & 1.e), the quantitative POCmeasurement can
be obtained from fluorescent sensors and further pro-
cessed to export quantitative diagnostic data. The de-
veloped fluorescent sensor is highly sensitive (R2 =
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0.96) between 0 and 1.2 mmol L−1. Cuvettes and
artificial tear fluids (ATF) were used to simulate the
contact lens platform and human tear compositions
(Figure 1.a). The integrated ophthalmic system is
demonstrated for quantitatively analysing and report-
ing DED severity stages through smartphone image-
processing algorithms and a calibration curve of flu-
orescent intensity versus tear AA levels (Figure 1.c
& 1.d). The present work allows diagnosis of DED
severity stages in POC settings [17] and can be inte-
grated with AI models in the future.

Basic regression algorithms are applied to predict
values of AA concentrations in tears. The commer-
cialisation of the integrated detection system includ-
ing a readout device, a smartphone application and in-
ternal algorithms will be a breakthrough in POC and
personalised ocular diagnosis, as many patients could
now receive medical advice without attending spe-
cialist appointments. This could potentially improve
the efficiency of medical resource allocation, shorten
the waiting time of patients with more critical con-
ditions and optimise the government expenditure on
ophthalmic health care.

2 Materials and Method

2.1 Chemicals and instrument
Tris-Hydrochloride (Tris acid) purchased from
EMD Millipore Corpration; Tris-2-amino-2-
(hydroxymethyl)-1,3 propanediol (Tris base),
chloroauric acid (HAuCl4), bovine serum albumin
(BSA), sodium hydroxide (NaOH), hydrochloric acid
(HCl), nitric acid (HNO3), ascorbic acid, potassium
chloride (KCl), calcium chloride (CaCl2), magne-
sium chloride (MgCl2), lysozyme, glucose and DI
water purchased from Sigma-Aldrich; Potassium per-
manganate (KMnO4) and sodium chloride (NaCl)
purchased from VWR International. In order to ob-
tain solutions containing different concentrations of
AA ranging from 0 to 1.2 mmol L−1, serial dilutions
of the maximum concentration of AA solution were
performed. The pH levels of buffer solutions were
adjusted and monitored using a pH meter (FiveEasy
F20, Mettler Toledo). With the use of a pH meter,
Tris acid and Tris base were used to adjust the pH
values of the KMnO4 solution, the Tris buffer solu-
tion and ATF to 6.5, 7.4 and 7.4 respectively. Cu-
vettes and ATF were used to simulate the contact
lens platform and human tear compositions. A 3-D
printer (Formlabs Form 3 SLA 3D Printer, Imperial
College London) was used to fabricate the designed
black readout device for data collection and analy-
sis. Samsung Galaxy A7 was employed to capture
and process images with the aid of the readout de-
vice, Oasis (health diagnosis application) and image
algorithms developed by java and C++ on Android
Studio.

2.2 Synthesis of BSA-Au NCs and solu-
tion preparations

Synthesis of BSA-Au NCs: All glassware used in
the experiment was cleaned three times by freshly
prepared aqua regia (HCl and HNO3 in the volumet-
ric ratio of 3:1). Subsequently, ethanol was required
to rinse the glassware three times followed by dis-
tilled deionised water. HAuCI4 solution (15 mL, 10
mmol L−1) was added to the BSA solution (15 mL,
50 mg mL−1) under magnetic stirring. After 3 min-
utes, NaOH solution (1.5 mL, 1 mol L−1) was added
to catalyse the synthesis. Next, the mixture was in-
cubated at 37oC for 48 hours, as the solution colour
changed from light yellow to deep brown, the mix-
ture was dialysed in DI water for another 48 hours to
remove all the excess precursors such as unreacted
HAuCI4, BSA and NaCl. Finally, the prepared BSA-
Au NCs could be stored in the refrigerator at 4oC.

Preparation of ion solutions With the aid of a pH
meter, the Tris buffer solutions of 0 and 1.2 mmol
L−1 AA were adjusted to pH = 7.4 by mixing the
solutions of Tris acid and base of 0 and 1.2 mmol
L−1 AA respectively. As an example, 121.1 mg of
Tris base and 157.6 mg of Tris acid were each dis-
solved in 100 mL of DI water. In order to obtain a
Tris buffer solution with pH = 7.4, these two stock
solutions were mixed and monitored using a pH me-
ter. With the addition of 1.2 mmol L−1 AA, another
Tris buffer solution was also prepared with a pH of
7.4. These two Tris buffer solutions (0 and 1.2 mmol
L−1 AA) were used in the serial dilutions to obtain
solutions of varying AA concentrations.

Preparations of ATF: ATF were used to simulate
the ocular environment, in order to observe the in-
fluences on the fluorescent intensity carried by co-
existing substances in tear, NaCl (150 mmol L−1)
KCl (20 mmol L−1), CaCl2 (1 mmol L−1), MgCl2
(0.6 mmol L−1) lysozyme (2.36 mg mL−1), BSA (50
µg mL−1) and glucose (0.14 mmol L−1) were dis-
solved into the stock Tris buffer solution of 0 mmol
L−1 AA and 1.2 mmol L−1 AA with a pH value of
7.4. Serial dilutions were carried out to obtain the
required concentrations.

2.3 Apparatus

A portable readout device (Figure 2) was developed
for the data collection procedure. It consists of three
parts: a lid, amain body and a detection platform. The
lid contains a long pass filter allows only red light be-
tween 620 nm and 750 nm to pass through. A mag-
nifying glass is used to reduce the smartphone cam-
era natural focusing distance from 7 cm to 4 cm. The
readout device’smain bodywas designed to be a black
cuboid (height is 4 cm) with one LED used to emit ex-
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citing lights at a wavelength of 390 nm. The detection
platform is movable and can be used to place the sam-
ple in its groove. The readout device was developed
for a more unified data collection procedure by reduc-
ing environmental noises. In detail, the fluorescent
intensity is easily interfered by some external factors,
including the excitation light intensity, the reflection
light of the surfacewhere the sample is placed, the dis-
tance between the sample and the smartphone camera,
and the shooting angle of the smartphone. Moreover,
3-D printing materials were also matt black which can
effectively reduce the noise caused by the light reflec-
tion problem. The latter two challenges were solved
by fixing the smartphone camera relative to the filter
on the lid to ensure that, the shooting angle is always
perpendicular to the sample and the shooting distance
is 4 cm throughout the entire data collection proce-
dure.

Figure 2: Readout device for image-taking procedure

2.4 Data Collection Procedure

After BSA-Au NCs were quenched by the KMnO4

solution, a series of concentrations of AA were used
to recover the fluorescence (the ratio of BSA-Au NCs
: KMnO4 : AA = 2 : 1: 2), The fluorescent informa-
tion of the samples are collected using the readout de-
vice and a smartphone, each prepared sample would
be transferred to a cuvette, and this cuvette would
be placed further at the groove of the mobile plat-
form. The distance between the smartphone camera
and the sample is controlled to be 4 cm at a constant
ambient temperature (25oC) to ensure that, the shoot-
ing environment is identical for each sample through-
out the entire data collection procedure. With exci-
tation lights (wavelength = 390 nm), the smartphone
was used to capture the image of the excited-sample
through the lid. Three samples were prepared to re-
duce intensity errors of each AA concentration due to
some external factors mentioned in Apparatus. For
each sample, three pictures were taken to find the

average fluorescent intensity, aiming to reduce sys-
tematic errors caused by the shooting environment.
Finally, image-processing algorithms developed by
C++ could obtain the fluorescent information for a se-
ries of AA concentrations from these images captured
with excitation lights.

Figure 3: Operation of capturing images using the readout optical de-
vice. The magnified photographs on the top indicates the developed
smartphone app for data collection and data analysis

2.5 Image Processing Algorithms

In order to obtain an equation of calibration curves
which can be further applied in the smartphone health
track software, image-processing algorithms were de-
veloped by C++ on VS Code 2022 using the OpenCV
library. Upon acquiring images of samples, the
image-processing algorithms are articulated into three
steps: image segmentation, filtration of noises and
conversion of RGB images into greyscale.

Foremost, the region of interest (ROI) of each
image is required to be obtained. Since ROI is the
red light of a wavelength = 690 nm (Figure 4.a),
the regional-based segmentation splits the image into
green, blue, and red channels. Since the region of in-
terest is the red region, ROI is extracted, and others
are transferred to black. (Figure 4.b)

Following this, erode method is used to denoise
the image. To be specific, sample pictures may con-
tain white dots in the middle due to the reflection of
the light (Figure 4.a), the algorithms will assign the
value of pure white dots to 255, which will pull up
the average greyscale value, making it inaccurate. As
a result, addition algorithms are used to remove the
white dot and this is done by setting a thresh of 200.
With the implementation of algorithms, white dots
have been removed and transferred to black which
will not affect the greyscale value anymore. Besides,
a minimum thresh is set to filter the noise around the
kernel. This is done by trial and error and found that
when the thresh value is great than 120, the noise can
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be effectively filtered.
The reason why this method can be used to de-

scribe the fluorescent intensity can be found in the
following equation of greyscale value.

Greyscale value = 0.30R+ 0.59G+ 0.11B, (1)

where R, G, and B represent the luminous intensity
for red, green and blue channels, respectively. To be
specific, the luminous intensity of the red channel is
been calculated by equation 2:

R =

∫ ∞

0
S(λ)r(λ)dλ, (2)

where S(λ) is the spectral power distribution, r is the
RGB colourmatching functions at standardisedwave-
lengths of 700 nm (red light), and λ is the wavelength.

It is clear that the value of R is proportional to
the spectral power, indicating that a greater value
of R represents higher luminous intensity. Since al-
gorithms developed in this research only extract the
R channel, the greyscale value of the ROI can di-
rectly represent the fluorescent intensity of the sam-
ple (Figure 4.c). Lastly, algorithms will read out the
greyscale value of ROI based on calculations of av-
erage greyscale values. This process is then followed
by data processing, the fluorescence can be quantita-
tively related to the AA concentration in the tear fluid,
a higher AA concentration can enhance the fluores-
cent intensity of the sensor.

Figure 4: Image processing procedure (a) The image was taken
from the readout device (b) The identified region of interest by
using the algorithms. (c) The greyscale format of the identified
ROI which will be used to calculate the average intensity

3 Results and discussion
This section includes the design of a smartphone ap-
plication user interface, all observations and calibra-
tion curves gathered through the variations in sample
volumes and their response to changes in temperature,
storage time, and operation time in ATF

3.1 User interface design

With the purpose of POC ophthalmic diagnosis, an
android smartphone software, Oasis, was developed.
As shown in Figure 5, the application users are guided
step by step to detect the AA concentration in the
tear fluid based on the fluorescent sensing of the im-
age capture. The welcome page (Figure 5.b) with
four clickable buttons was designed for navigating
different activities. The top left button, test navi-
gates the user to where the test image can be im-
ported by taking a photo or selecting it from the al-
bum. When the photo is captured by the smartphone
camera, start button should be clicked to invoke the
image-processing algorithm. Finally, in result page,
the AA concentration is computed based on the av-
erage of regional greyscale values. As long as the
image is successfully processed, the user can select
to save test results and be navigated to advice page
where proper suggestions would be provided. Nev-
ertheless, errors may appear due to the failure of the
camera focus or the extremely strong environmental
light, then the user can return to test page to import or
retake the image again. Moreover, the user can click
the bottom left button, history, to access all the previ-
ous test results by searching for the date.

3.2 Sample volume analysis

The effect of change in tear volume was investigated
by four sets of experiments with different volumes
of ATF (10 μL, 120 μL, 240 μL, and 360 μL). For
each set of experiments, the fluorescent information
of each sample at different AA concentrations was
collected, and a corresponding calibration curve was
plotted with the interested volume (Figure 6.a - d).
The results showed that at higher ATF volumes, the
gradients would be greater. However, for differ-
ent volumes, the lowest and highest greyscale val-
ues were similar which were around 135 and 150 re-
spectively, this indicated that the greyscale value was
mainly related to the AA concentration. The key dif-
ference is the rate of reaching the maximum greyscale
value which is greater at higher AA concentrations.
This might be because the fluorescent effect exhib-
ited better within the higher sample volume. As in
the synthesis process, the BSAwas able to trap at least
one Au+ ion and the clusters might not be on average
bonded within the mixture, higher sample volumes
(360 μL) hence would obtain a higher fluorescent in-
tensity outcome. However, if the tear volume is under
120 μL, the gradient would be similar and around 13.
In reality, the average human tear
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Figure 5: Demonstration of the user interface of the smartphone application (a) Onboarding (b) Homepage: navigation to other pages (c) Take
the photo or upload from the album to start a test (d) Black readout device [26] (e) Import image and waiting for the detection (f) Unknown
errors occur, return to the test page (g) Measure AA concentration (h) Appropriate suggestions based on the test result

fluid volume is usually around 6 μL (2.73 – 12.75 μL)
[35] which indicates that Figure 6.a is more similar
to the actual condition and this calibration curve is
more suitable to act as the underlying principle for the
smartphone application. However, for DED patients,
the tear volume at the test is usually below the aver-
age and around 3 μL [36]. This might cause difficul-
ties when trying to collect the tear sample. One possi-
ble solution could be using the porous polyester rods
[37] to collect tear samples, which is a more rapid,
user-friendly way for the collection of tear fluid. Af-
ter that, the sample can be transferred to the contact
lens sensors and continue the analysis.

3.3 Temperature analysis

Effects of temperature deviation in tear fluid on fluo-
rescent intensity were investigated by carrying out six
sets of experiments with samples temperatures rang-
ing from 28 to 43 oC. Results indicated that flu-
orescent intensity was not directly correlated to the
tear fluid temperature. Figure 6.e showed that with
different sample temperatures, the calibration curves
were nearly parallel with differences in the starting
and endpoints due to the deviating environment of
taking photos since the readout of fluorescent sensors
can be affected by the intensity of the excitation light.
This could be mitigated by maintaining and analysing

the background lighting conditions during the smart-
phone readout. Figure 6.f showed that for each tem-
perature, the fluorescent intensity for the same AA
concentration was similar, indicating that the fluores-
cent effects were independent of the tear fluid temper-
ature. The blue region highlighted the normal human
body temperature, ranging from 36.4oC to 37.1oC
[38], the greyscale value for each concentration was
highly identical in this area, proving that temperature
influence the fluorescence is negligible.

3.4 Storage time analysis

Experiments were carried out to study how long the
sample can keep fresh storing at 5oC and the effects
of light on fluorescent performance. Samples were
tested after 1 hour, 3 hours, 6 hours, 12 hours, 24
hours, 2 days, 3 days, 4 days, 5 days, 7 days, 10 days
15 days of storage with lighted and no light condi-
tions in the fridge at 5oC. From Figure 7, fluorescent
intensity was lower in lighted conditions than in no-
light conditions. This is because the chemical bonds
in BSA-Au NCs are photo-sensitive and easily dis-
sociated under lighted conditions. Au+ undergoes a
reduction reaction under light conditions fromAu+ to
Au, then aggregates to form Au cluster, reducing its
connection to BSA, leading to the reduction in the in-
tensity [39]. Figure 7 showed that the greyscale value
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Figure 6: Optimisations on the volume of detection and characterisations of AA fluorescent sensor with ATF. Calibration curves on temperature
dependency for tear sample volumes of 10,120,240,360 μL with AA concentration range from 0 - 1.2 mmol L−1. (a) Calibration curve for
sample volume of 10 μL, 25oC. (b) Calibration curve for sample volume of 120 μL, 25oC. (c) Calibration curve for sample volume of 240
μL, 25oC. (d) Calibration curve for sample volume of 360 μL, 25oC. (e) Calibration curves for sample temperature ranging from 28 to 43oC.
(f) Temperature dependency of greyscale value with varying AA concentration, temperature range from 28-43oC

decreased within the first 120 hours, followed by a
sharp rise. This is due to the degeneration of proteins
in NCs, forming white cloud precipitates after a long
period of storage. The precipitate can affect the im-
age algorithm by increasing greyscale value (Figure
8). This is because the algorithm assigns white parts
with greyscale value of 255; white precipitate reflects
light, pulls up the average greyscale value of the iden-
tified region of interest. As a result, the recommended
maximum storage time of samples is 120 hours at 5oC
in dark.

Figure 7: Change in greyscale values corresponding to different storage
times. Blue region is fresh sample; white region is degraded sample.

Figure 8: The comparison between a fresh sample and a non-fresh sam-
ple. (a) Sample stored for 3 hours under room light (b) Excited sample
stored for 3 hours under dark environment (c) Sample stored for 168
hours (d) Excited sample stored for 168 hours
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3.5 Operation time analysis
Users would start the AA detection by the smartphone
application as long as they have captured the image.
However, sometimes these users may be required to
retake another picture due to different reasons. As a
result, the sensitivity analysis of the fluorescence de-
pendent on the operation time of 5 minutes, 10 min-
utes, 30 minutes, 1 hour,3 hours, 5 hours, 12 hours
and 1 day should be carried out. According to Figure
9, the fluorescent intensity showed a slightly decreas-
ing trend as the operation time proceeded. Images
are recommended to capture within the blue region
from 0 minutes to 5 minutes after AA is added into
the quenched mixture of BSA-Au NCs and KMnO4).
Otherwise, the fluorescent intensity would be inaccu-
rate when taking a photo after 10 minutes. After 300
minutes of the quenched mixture recovered by the ad-
ditional AA, fluorescent intensities would be lower
and unable to prove the disease diagnosis because of
the instability of the quenched mixture of BSA-Au
NCs and KMnO4.

Figure 9: Different greyscale values corresponding to operation time.
The blue region shows where samples within recommended operation
time for image capture

4 Conclusion
In summary, the quantitative detection of AA was de-
veloped based on the change of fluorescent intensities
after the quenching reaction between BSA-Au NCs
and KMnO4. The sensor obtained a stable perfor-
mance under different temperature settings and was
considered to be independent of temperature. As for
the storage facilities of the sensor, the optimal set-
tings for BSA-Au NCs is at 5oC without light, and
the detection was indicated to be accurate within 5

days. Moreover, the fluorescent effect of the sensor
could last for 5 minutes during the operational period.
Based on the obtained similar calibration equations
of the sensor, the sample volume analysis showed
that the fluorescent intensity was more correlated to
AA concentrations rather than sample volume. The
fluorescent detection for AA was examined in both
Tris buffer solution (pH = 7.4) and ATF (pH =7.4),
indicating that the fluorescent intensity was directly
proportional to AA concentrations ranging from 0
to 1.2 mmol L−1. In order to achieve point-of-care
DED diagnosis, the developed system includes flu-
orescent AA sensors, 3D printed readout box, and a
smartphone application, which demonstrates captur-
ing images, quantitative analysis, and reporting DED
severity stages. With the aid of this personalized sys-
tem, some early-stage DED patients would be able to
confirm diagnostic results and receive efficient treat-
ments. Meanwhile, the government could reduce the
expenditure on ophthalmic health care, and alleviate
the burden of NHS.

5 Outlook

Considering the near future of tear sensor develop-
ment on DED diagnosis, continuous multi-biomarker
monitoring would be more valuable and accurate
compared to one single biomarker detection at POC
platform. Apart from AA, some indicators within tear
fluid such as pH, Na+, Mg2+, Zn2+, Ca2+ and K+,
were also examined and applied to improve the accu-
racy of DED diagnosis [17].

In this research, basic regression models and al-
gorithms were used for data processing. AI models
in this case could be an improvement. It can provide
an accurate and robust prediction of concentrations of
and report disease severity stages, subsequently de-
creasing the misjudgment possibilities of the smart-
phone diagnosis of ocular diseases. Machine learn-
ing algorithms can also be used to analyze user health
status based on existing data. For example, super-
vised learning algorithms [40] could classify, predict,
and detect abnormalities in raw sensing data. The
use of machine learning can find hidden patterns, and
correlations between data points and effectively pro-
cess high-dimensional biosensing data acquired by
sensors measuring multiplex biomarkers. As part of
the implementation of AI in biosensing systems, a
large amount of healthcare information will be re-
quired, such as medical history, streaming biosens-
ing data, and medical imaging data. With the use
of smartphone-based biosensing application, smart-
phones can upload the data onto the cloud server for
processing by using embedded processors, after re-
ceiving all medical data collected by wearable sen-
sors. Meanwhile, the cloud server data could optimise
AI algorithms, leading to a better prediction of DED
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with a shorter processing time.
Regarding the commercialisation of this person-

alised POC diagnosis of DED, the product would con-
sist of a readout device-black box and contact lens
sensors. The biosensing software can be downloaded
from software shops such as Google play and Apple
store. However, due to the use of contact lenses, the
target user groups would initially focus on junior and
senior generations. This is because some children and
elderly people may experience difficulties using con-
tact lenses. To face wider user generations, this prob-
lem can be solved by developing a supplementary tear
fluid collection method. Introducing porous polyester
rods to collect tear samples could be one of the op-
tions, as they can transfer the sample to the contact
lens platform to make a detection.
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Digital Twins to Address Flowsheeting Limitations 
Emma Pajak and Cameron Aldren 

Department of Chemical Engineering, Imperial College London, U.K. 
Abstract As a rapidly growing field, the flowsheeting industry’s fundamental importance to process design is 
illustrated by its lucrative nature. Flowsheeting software, as with any assumption-based engineering modelling, 
faces limitations. Digital twins offer potential advancements that could address the limitations of flowsheeting, 
such as poor modelling accuracy, limited customisation, accumulation of errors, and poor cost estimation. Whilst 
research has explored unit operation digital twins, there has not been an endeavour to apply them specifically to 
the limitations of flowsheeting. Therefore, this project aimed to explore the use of digital twins of unit operations 
to specifically address flowsheeting limitations. In line with achieving this aim, a pump, heat exchanger, and 
reactor were selected, coded in Python, and subsequently embedded in the open-source flowsheeting software, 
DWSIM. Data for the digital twins were either sourced from manufacturers or generated in ASPEN, before 
processing through methods such as neural networks or polynomial regression. The key findings included: the 
pump library demonstrating a more accurate cost estimation compared to traditional models; the grey box reactor 
digital twin addressing assumptions of idealised models, improving accuracy; and the heat exchanger’s 
preliminary success in its application to multiple fluid cases, showing potential to reduce the data required by 
digital twins. It was concluded that with consideration of the limitations around data availability, paired with 
further engineering theory implementation, unit operation digital twins have the potential to offer improvements 
to flowsheeting. Looking at the applications of this potential, from a manufacturer's perspective, digital twins of 
their equipment could offer compatibility validation and real system performance predictions which would 
improve customer confidence and, in turn, equipment sales. 
Keywords: Digital Twin, Flowsheeting, Unit Operations, Grey Box, Neural Network 

Introduction 

Flowsheeting, or process simulation, is a 
fundamental tool in process design used across the 
breadth of chemical engineering. It supports 
material and heat balance modelling, equipment 
design, sensitivity analysis, and cost analysis [1]. 
Flowsheeting software can provide first estimations 
of physical feasibility, equipment sizing, cost and 
commercial viability for a chemical process that 
would otherwise be overly cumbersome by hand. A 
taught module in most chemical engineering 
degrees, flowsheeting is a crucial skill [2]. 

As per the principle known as Moore’s Law that 
states the capability of computers doubles every two 
years, intensive simulations are continually 
becoming more accessible [3]. This has facilitated 
process simulation becoming a highly active area of 
research. By its nature as an advancing field, and 
fundamental importance in commercial engineering 
projects, flowsheeting software development has 
become an increasingly financially lucrative area. 
The latest market research predicts that the digital 
manufacturing industry will be worth 120 billion 
USD by 2030 [4]. Popular proprietary software 
packages include ASPEN, which mainly focuses on 
a sequential modular process modelling approach, 
and gPROMS which, conversely, is an equation-
oriented software [5] [6].  

As with any engineering modelling based on 
assumptions, flowsheeting faces limitations – 
specifically, challenges with assumptions providing 
a poor representation of ‘real system behaviour’. 
Furthermore, as flowsheeting often models multiple 
interconnected unit operations, a singular error can 
accumulate throughout the flowsheet, further 

damaging the accuracy of the design. Beyond this 
crucial downfall, unit operations can be rigid by 
design, rendering them non-customisable, and, 
therefore, unsuitable for bespoke processes. 
Flowsheeting cost estimation can also be a source of 
uncertainty in process design; costing packages are 
generally based upon correlations with a typical 
model CAPEX in the accuracy range of -50 to 100% 
[7]. Equipment design also holds inaccuracies as it 
treats sizing as a continuum; this can cause issues as 
manufacturers, unless specialists, offer a 
discontinuous set of equipment sizes. Whilst 
flowsheeting undoubtedly remains a crucial stage of 
process design, the accuracy of software 
recommendations and results hinges directly upon 
the specific assumptions employed - and implicitly 
adopted - by idealised models of unit operations. 
Inaccuracies with flowsheeting necessitate pilot-
scale process development, which is expensive: to 
give an example, BP made a 19.5 million USD 
investment in a pilot-scale plastic recycling plant, in 
2019 [8]. From an accessibility perspective, whilst 
open-source, community software exists, better-
developed and integrated proprietary flowsheeting 
software licences are expensive and therefore less 
accessible for small-medium enterprises (SME) and 
start-up companies.  

In summary, the flowsheeting field currently faces 
the following limitations: poor modelling accuracy, 
accumulation of errors in a flowsheet, limited 
customisation, and poor cost estimation. These 
limitations promote an opportunity to consider what 
improvements and concepts could be applied to 
further the current technology. 

The term digital twin does not have a single discrete 
definition [9]. Rather, there are many definitions that 
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encompass similar key themes and ideas, each with 
slight nuances. Fundamentally, a digital twin is a 
“virtual copy of a physical asset, process, system or 
environment” [10] either created using real-world 
data, or, using real-time data from sensors on the 
physical version of the entity being simulated [11]. 
Although digital twins are an active area of research 
in the chemical industry, it is apparent that their 
specific application to the limitations of 
flowsheeting has not been fully explored. 

Digital twins offer numerous potential 
advancements on traditional flowsheeting models; 
they use real process data as opposed to relying 
solely upon assumptions, in theory yielding a unit 
operation that models real system behaviour as 
opposed to solely approximating it. Further to model 
accuracy improvements, digital twins have the 
potential to address poor costing estimation, as exact 
process equipment data can be provided, introduce 
more flexibility and customisation of models, and, if 
based on an open-source platform, could offer great 
improvements to the process simulation capabilities 
of SMEs. In addition to bridging the gap on pre-
existing flowsheeting limitations, the use of digital 
twins could further homogenise the flowsheeting 
stage of process design. With costing data sourced 
from manufacturers, as opposed to a single CAPEX 
figure, the output of a system of digital twins could 
essentially provide a ‘shopping list’ to the user, 
detailing the make, model, and cost of equipment 
they must procure.  

Background 
Many companies, including ASPEN, offer 
commercial-scale digital twin solutions to aid their 
clientele. These solutions, however, focus less on 
process design, and more on process operation 
applications, including operation scheduling, 
maintenance, and process control [12]. Such 
industrial attention has reaped substantial rewards 
for ASPEN’s clientele; for example, the speciality 
chemicals manufacturer, Momentive, employed the 
use of an ASPEN digital twin, facilitating a 25% 
reduction in site inventory and a 40% decrease in 
supply lead time [5]. Therefore, with such tangible 
benefits offered by digital twin technology, attention 
has turned to employ their use in the earlier stages of 
a processing plant’s lifecycle. 

Within a subsection of ASPEN’s ‘Plant Digital 
Twin’, is the capacity for the digital twin to be used 
as a process model. This approach aims to unify the 
process model with digital twins once the plant has 
been constructed – using machine learning 
techniques to ‘calibrate’ the model to align with real 
operation [5]. Research by Boschet et al. highlights 
a similar approach to linking digital twin production 
to the conceptual design phase of process 
development. This approach translates a flowsheet 
into a ‘template’ for a digital twin, with a view that 
it can be filled with sub-models of the equipment as 

and when the data is made available through testing 
[13]. This approach to digital twin development, 
using an existing chemical process to provide the 
requisite data to develop the digital twin, appears to 
have been adopted in further industrial instances. As 
of yet, there has been limited focus on developing 
digital twins for use during process design, to 
influence equipment selection and other significant 
financial decisions before construction.  
Beyond digital twins of entire chemical processes, 
there have been efforts to produce unit operation 
digital twins that can be connected to produce a 
flowsheet model. Some flowsheeting software 
packages, such as DWSIM, allow users to develop a 
custom neural network operation, based on a dataset 
[14]. This would allow a user to develop a simple 
digital twin of a piece of equipment, should they 
have a relevant dataset available. Such a unit 
operation conforms to the ‘black box’ approach 
from machine learning, wherein complex neural 
networks are used to model a process. Although very 
accurate at modelling the nuances of the specific 
system, black boxes have no capacity for a user to 
interpret how the model translates the inputs onto the 
outputs [15]. As a result, such an operation can be 
rigid and does not allow for user insight to modify 
how the unit operation is calculated. 

On the other hand, white box models, based entirely 
upon the physics of the process, have flexibility as 
the parameters of the model can be easily 
manipulated. However, these techniques become 
very complex, especially in 3D flow scenarios [16] 
and, as such, in the context of flowsheeting, require 
significant simplifications to make the flowsheet 
solvable, due to computational power limitations. 
Therefore, it is proposed that hybrid ‘grey-box’ 
models, using both data modelling methods, such as 
neural networks, and information based on the 
physics of the process, would allow the model to be 
solved in a reasonable time frame, whilst achieving 
a higher level of accuracy than an over-simplified 
white box model [17]. 

Therefore, this project intends to explore the 
research gap of using digital twins of unit operations 
to specifically address flowsheeting limitations. The 
following objectives have been constructed to 
support the achievement of the project aim: 

▪ Identify three suitable unit operations, and the 
limitations of their traditional models, to produce 
digital twins that address these shortfalls. 

▪ Implement digital twins in open-source process 
simulation software DWSIM using Python code. 

▪ Conduct analysis to compare digital twins to 
traditional flowsheeting models to determine 
benefits and drawbacks. 

▪ Explore and discuss the future of grey box digital 
twins within flowsheeting and highlight any 
obstacles to their production. 
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Methodology 

In line with the project’s aim, three unit operations 
were selected, created, and tested to best investigate 
the potential of digital twins in addressing the 
limitations of flowsheeting. A complete flowsheet 
comprises numerous different operations and 
therefore a well-balanced investigation of their 
digital twin implementations is required. A pump, 
heat exchanger, and reactor were chosen as, owing 
to their governing engineering relationships, they 
range in complexity. 

The digital twins were coded in Python to then be 
embedded in a flowsheeting software. Accordant 
with the recognition that proprietary software is 
somewhat more developed than its open-source 
counterparts, and with the view of addressing the 
limitations of flowsheeting, the open-source 
software DWSIM (version 8) was selected [18]. 
DWSIM was specifically chosen as it has the 
infrastructure to easily integrate custom scripts 
directly into the software. Additionally, it is CAPE-
OPEN compliant – CAPE-OPEN is a universal set 
of standards for process modelling software – 
meaning it supports common thermodynamic 
property packages. Also, CAPE-OPEN unit 
operations are more easily translated to other 
flowsheeting software [19]. 

Pump 
To model exact pump behaviour, pump curves were 
sourced from Grundfos, a global pump 
manufacturer, as the datasets were readily available 
in an XLSX format for the entirety of their product 
range [20]. The datasets contained the following 
discrete data: head, power, efficiency and NPSH, all 
against flowrate. Polynomial regression models 
were applied to the datasets such that any desired 
pressure change within the given operating range 
could be achieved. An assumption was made that the 
pump would be operated with an inverter.  

A python script defining the digital twin was 
implemented into the DWSIM user interface, which 
allows for a user-defined input stream and desired 
pressure change. The outlet pressure is calculated 
and compared to the pump curve to ensure that 
operation was feasible, i.e., the desired outlet 
pressure is within the operating range of the pump. 
Then, the outlet stream fluid enthalpy is calculated 
using Equation 1, where m is mass flowrate [kg s-

1], h is enthalpy [kJ kg-1], P is power [kW], and 𝜂 is 
efficiency [-]: 

 𝑚𝑜𝑢𝑡ℎ𝑜𝑢𝑡 = 𝑚𝑖𝑛ℎ𝑖𝑛 + 𝑃𝜂 [1] 

The outlet pressure and enthalpy sufficiently define 
the pure, single-phase stream as per Gibbs’ phase 
rule. A layer of validation was implemented to 
ensure the pump digital twin was operating within 
the range of its physical counterpart. For example, 
checking the temperature to ensure the fluid is 

entirely in the liquid phase, and ensuring the 
difference between the inlet pressure (𝑃𝑖𝑛) and 
NPSH, taken from the pump curve, is greater than 
the bubble pressure (𝑃𝑏𝑢𝑏𝑏𝑙𝑒∗ ) for the liquid, i.e., the 
real pump will not cavitate (Equation 2). 

 𝑃𝑖𝑛 − 𝑁𝑃𝑆𝐻 > 𝑃𝑏𝑢𝑏𝑏𝑙𝑒∗  [2] 

Pump Library 
With the pump successfully addressing the accuracy 
limitation, it was further developed to explore its 
applicability in tackling the additional flowsheeting 
limitations around process equipment selection and 
costing. For the pump digital twin, a single pump 
dataset is inputted to DWSIM, whereas the pump 
library can ingest multiple pump datasets. The 
workflow of the pump library is, given a user-
defined inlet stream and desired pressure change, the 
code simulates the digital twin for each pump dataset 
provided, selecting the optimal pump for the given 
scenario, whilst still outputting the outlet stream 
data. The optimal pump is determined by a simple 
optimisation model, where the user can select to 
optimise by price or power – i.e., if optimising based 
on price, DWSIM will output the least expensive 
pump that is still suitable for the given instance. This 
approach also used the aforementioned layer of 
validation to reject any non-viable pumps before the 
optimisation selection step. To assess the improved 
accuracy offered by the pump library, its cost and 
energy usage estimations for a set of scenarios were 
subsequently compared to an ASPEN pump model. 

Heat Exchanger  
The heat exchanger digital twin aimed to accurately 
predict the outlet temperature of the two streams, 
given two fully defined inlet streams. As the 
complexity of the heat exchanger is greater than that 
of the pump, its behaviour is dependent upon 
multiple different variables; therefore, a neural 
network approach was adopted, as it was apparent 
that a neural network would best represent the 
complexities of real system behaviour and non-
idealities. To gain further insight, and develop the 
heat exchanger beyond the black box approach, the 
neural network was informed by heat transfer theory 
to explore whether a digital twin built on a water-
water (water cold and water hot stream) dataset 
could accurately predict heat exchanger behaviour 
for other fluids. 

The dataset fed to the neural network comprised four 
inlet and two outlet variables: the streams’ mass 
flowrate, min

C, min
H; the inlet temperature of the cool 

and hot streams, Tin
C, Tin

H, and the temperature of 
the outlet streams, Tout

C, Tout
H. Whilst it is plausible 

that manufacturers have testing rigs capable of 
generating this dataset, a synthetic version was used 
as, currently, these datasets are not readily available 
to consumers.  
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The synthetic water-water dataset was simulated 
using an ASPEN heat exchanger model by 
performing a four-variable sensitivity analysis on 
the inlet operating parameters to determine the hot 
and cold outlet stream temperatures. Furthermore, 
the identical model was used to simulate testing data 
for different fluid cases. It was ensured that the 
model operated solely in the liquid phase, to avoid 
further complexities during this initial investigation. 

Instead of training the neural network on mass 
flowrate and temperature, it was trained on a pre-
processed dataset, containing the variables (mCp)H, 
(mCp)C, Tin

H and Tin
C, capturing the thermal inertia 

of the fluid – enabling the digital twin to be tested 
for its applicability to other fluids. The neural 
network is then able to predict Tout

H and Tout
C for a 

given instance. The DWSIM implementation of the 
heat exchanger calls the pre-trained neural network 
and feeds the inlet temperature and heat capacity 
flowrate terms (the product of the mass flowrate and 
fluid specific heat capacity) for both streams and 
predicts the temperature of both outlet streams. 

Testing was conducted to verify if the heat 
exchanger digital twin yielded accurate predictions 
of the temperature of the outlet streams. A single test 
set involved randomly selecting 100 different 
permeations of inlet conditions from the testing 
dataset, collecting the digital twin output predictions 
for each permeation, and calculating a single R2 
value to compare the predictions against the actual 
values. It was found that running a single test set 
multiple times caused the R2 value to vary 
considerably, hence it was decided to run each test 
set 25 times to calculate the mean and standard 
deviation of the R2 value to account for sampling 
bias. It was desired to understand the impact of the 
number of water-water training data points on the 
accuracy of prediction for each case. Hence, this 
testing procedure was repeated for each case using 
neural networks of varying training data points, n. 

Reactor 
To investigate the potential of a reactor digital twin, 
a simple, acid-catalysed esterification reaction of 
ethanol and acetic acid to form ethyl acetate was 
chosen. Due to the complex nature of a reactor, two 
different approaches were considered to produce a 
reactor digital twin. 

The first approach was informed by reaction 
engineering to build upon the pre-existing, 
traditional reactor models by addressing their 
limitations by using real data in lieu of a poor ideal 
assumption. More specifically, this digital twin 
incorporated a real residence time distribution 
(RTD) to remove the assumption of perfect plug 
flow and, therefore, conformed to the more desirable 
grey box modelling approach. The second approach, 
like the heat exchanger, employed a neural network 
fit to predict the behaviour of the reactor. This 

methodology will be referred to as a black box 
approach as the inlet variables are fed to the neural 
network – which is essentially a black box that 
outputs the result of the reactor in the form of fully 
defined outlet streams. 

Approach 1: Grey Box 
An experimental RTD was sourced from a research 
paper [21]. As an RTD is specific to a flowrate, 
reactor geometry, and volume, the digital twin built 
is specific to the reactor from which the RTD was 
captured. Equations 3 & 4, sourced from H. S. 
Fogler, were applied such that conversion could be 
obtained from the digital twin [22]. 

 
𝐸(𝑡) =

𝐶(𝑡)

∫ 𝐶(𝑡) 𝑑𝑡∞
0

 [3] 

 
𝑥̅ = 1 − ∫ 𝑒−𝑘𝑡𝐸(𝑡) 𝑑𝑡

∞

0
 [4] 

C(t) is the RTD for a pulse tracer test, E(t) is the 
probability density function, k is the first order rate 
constant, t is time, and 𝑥̅ is the mean conversion. To 
understand if the digital twin offered improvements 
to the ideal model, the testing approach involved 
varying the rate constant across a broad range, to 
highlight whether conversion predictions differed 
between the two.  

Approach 2: Black Box 
The black box reactor’s neural network ingested 
data that informed it on the impact of reactor 
temperature, feed flowrate, feed ratio, and reactor 
volume on reactant conversion. For simplicity, the 
reaction was defined as isothermal. Whilst it was 
appreciated that this is a cumbersome dataset that 
would not be available from a manufacturer, this 
approach was followed to gain a greater 
understanding of the use of neural networks to 
model digital twins of unit operations with multiple 
dependent variables. Hence, similarly to the heat 
exchanger, sensitivity analysis was conducted in 
ASPEN to synthesise a large dataset both for 
training the neural network and testing its accuracy. 

Kinetic data were not required for the neural 
network as it is a black box which has an inherent 
appreciation of the complex relationships between 
inlet and outlet variables. However, the synthetic 
model, in ASPEN, used simple Arrhenius kinetics to 
simulate the dataset [23]. Unlike the grey box, this 
approach did not require comparison to the ideal 
model; since the neural network is built using a ‘real 
system’ dataset, if its predictions are accurate, it is 
inherently, by definition, a true representation of the 
real system. Hence, testing was rather carried out to 
determine the accuracy of the neural network’s fit to 
the dataset. Importantly, statistical analyses were 
performed to better understand the impact of the 
number of training data points, n, on the accuracy of 
predictions.   
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Results 

In line with the third project objective, the relevant 
outcomes of the three-unit operation analyses are 
shown to establish their capabilities in serving as 
improvements on traditional models. 

Pump 
Building upon traditional flowsheeting software, the 
output of the pump library, as well as a complete 
stream table, includes a pump curve displaying 
where the user’s pump is operating, as shown in 
Figure 1. 

 
Figure 1 Pump curve of volumetric flowrate against head with 
operating point displayed from DWSIM pump library simulation. 
Data for this curve was sourced from Grundfos [20]. 

For the pump library, if an optimal pump is selected, 
a pop-up occurs, notifying the user of the model of 
the optimal pump, as well as its power or price 
requirement – depending on whether power or price 
optimisation was selected upon running the pump 
library. In the eventuality where an optimal pump 
could not be provided, as none of the pumps in the 
library had suitable operating ranges for the user’s 
requirements, or the validation parameters (e.g., 
temperature and NPSH) were violated for all pumps, 
an error is passed to the command line.  
Table 1 Table showing results of costing and power requirement 
comparison between ASPEN model and DWSIM digital twin. 

Scenario 1 2 3 
Pressure Change [bar] 10.0 5.0 1.0 
Flowrate [kg s-1] 5.0 1.0 5.0 

Cost [£] DWSIM 5710 5370 2090 
ASPEN 5810 3900 4320 

Power 
[kW] 

DWSIM 9.01 3.92 0.92 
ASPEN 8.46 1.70 0.99 

The output of the pump library is dependent on the 
data supplied and, therefore, the performance of the 
pump library, relative to the optimisation functions, 
would improve monotonically as more pumps are 
included. For this analysis, 20 Grundfos pumps were 
provided to the digital twin. As this is a relatively 
small number of pumps, compared to the product 
range offered by Grundfos, operating points were 
carefully selected such that these results highlight 
the potential benefits of the pump library. Therefore, 
simulations were run for pressure increases from 1 

to 10 [bar] and flowrates from 1 to 10 [kg s-1], with 
key results summarised in Table 1.  

For most simulations, the DWSIM pump cost was 
lower than ASPEN’s, e.g., scenario 3 - £2090 
compared to £4320, supporting the hypothesis 
posited by Walter et. al, that ASPEN costing 
accuracy lies within a -50 to 100% of the actual 
value [7]. In contrast, the ASPEN energy usage was 
generally lower than DWSIM, e.g., scenario 2 – 3.92 
[kW] compared to 1.70 [kW]. A 130% difference in 
energy usage is surprising, as ASPEN does account 
for a pumping efficiency parameter, but the exact 
pump curve efficiency taken in the DWSIM module 
appears to provide a markedly different value to 
ASPEN’s estimation. These inconsistencies justify 
the need for a digital twin as they can offer an 
accurate cost estimation. 

Heat Exchanger 
For the case of the heat exchanger, having verified 
the digital twin was successfully determining the 
outlet stream temperatures for the water-water fluid 
case, it was further tested on different fluid cases, 
Table 2.  
Table 2 Table of heat exchanger digital twin fluid test cases. 

 Case 1 Case 2 Case 3 
Cool Side Ethanol Wtr-Eth*  Heptane 
Hot Side Ethanol Water Heptane 

* Water-Ethanol mixture 1:1 molar ratio 
As the R2 value of the testing predictions is the key 
parameter for this digital twin’s performance, its 
mean and standard deviation are plotted in Figure 2. 

 
Figure 2 Graphs showing statistical analysis of the impact of the 
number of neural network training points, n, on the R2 of heat 
exchanger predictions. Top graph: mean R2 vs n. Bottom graph: 
standard deviation of R2 vs n.  

It is apparent from the water-water curves (purple 
data points in Figure 2) that the heat exchanger 
digital twin provides accurate predictions of the 
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outlet stream temperatures, even when trained with 
relatively few data points. For example, at n = 120 
where, the mean R2 value was 0.982, and the 
standard deviation was 0.006, meaning the neural 
network consistently gave accurate estimations of 
the testing data. The three remaining curves for 
cases 1-3 follow similar trends for both the mean and 
standard deviation: as the number of training data 
points increases, so does the mean of the R2 values, 
and the standard deviation decreases. This analysis 
verifies that the digital twin, although built using 
water-water heat exchanger data, serves as a 
somewhat good predictor of heat exchanger 
behaviour for the other fluid cases. Thus, reducing 
the number of physical tests required from a 
manufacturer as one dataset can accurately simulate 
predictions for other fluids. Although promising, 
there is a need for further investigation into this 
approach as its potential, and limitations, need full 
and careful consideration. Such further investigation 
could involve the use of a real heat exchanger, rather 
than a synthetic dataset. 

Reactor 
Approach 1: Grey Box 
To assess the potential benefits of the grey box 
approach over the traditional ideal model, a plot of 
conversion against the kinetic constant for both the 
digital twin (blue) and ideal plug flow reactor model 
(green) was developed, as shown in Figure 3.  

 
Figure 3 Graph of conversion against varying kinetic constant for 
an idealised reactor model (green) and the grey box reactor digital 
twin, incorporating a residence time distribution (blue) to better 
model real system behaviour. 

Between a kinetic constant of 0.001 [s-1] and 0.1 [s-

1], there is a marked difference in conversion, with 
the greatest difference at k = 0.032 [s-1]. At which 
point, the ideal plug flow reactor (PFR) model 
predicts a conversion of 0.42, compared to 0.78 
predicted by the digital twin. The difference in 
conversion verifies the need for a digital twin as an 
improvement on the idealised PFR model. This 
significant difference in conversion is present 
because of axial dispersion within the reactor, which 
yields an asymmetrical residence time distribution.  

The substantial benefit provided using an RTD is its 
incorporation of the impact of axial dispersion. In 
their study, Obonukut and Bassey, [21], highlighted 

that, despite having a high Reynolds and Peclet 
number, their real reactor experienced substantial 
axial dispersion. It is in instances such as these, 
where the idealised model yields such an under 
prediction of conversion, that the fundamental 
insight offered by a digital twin can significantly 
improve the accuracy of predictions. 

Approach 2: Black Box  
As aforementioned, the ‘black box’ neural network 
inherently contains an appreciation for the exact 
nature of any non-idealities present in the system. 
Therefore, analysis was not required to determine 
the accuracy of the prediction as inherently it 
incorporates all non-idealities as based upon a real 
dataset. Instead, the KPI of this digital twin was not 
based on a comparison to an ideal model, but rather, 
the fit of the neural network to the parent dataset. 
Like the heat exchanger digital twin, the accuracy of 
the black box digital twin’s prediction was measured 
through the R2 value. Figure 4 shows a graph of the 
standard deviation and mean of the R2 value against 
the number of data points used to train the reactor 
neural network. 

 
Figure 4 Graph of the relationship between the mean and 
standard deviation of the R2 value for the black box reactor digital 
twin, against the number of neural network training data points, 
n, for reactor approach 2. 

At 43 training data points, n, an R2 of 0.9 is achieved, 
and, at 66 data points, an R2 of 0.95 is achieved. 
Equally, once the training data points surpass 40, the 
standard deviation is lower than 0.065. This 
illustrates that the digital twin can both accurately 
and precisely predict the outlet conditions of the 
reactor effluent, given a set of initial conditions. 

From a computational standpoint, it would be 
feasible to run a neural network trained on a number 
of data points in the hundreds, even thousands, to 
achieve an even stronger R2 value. However, the 
limitations stand with the acquisition of such 
substantial amounts of data, specific to the reactor 
being modelled. Whilst these results show the black 
box reactor approach can be highly accurate in 
modelling the real behaviour of a reactor, the 
required data comes at a cost. It is unrealistic to 
expect manufacturers to be able to provide such a 
detailed dataset that essentially documents a full-
variable sensitivity analysis of their equipment for 
all conceivable reactions. 
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Discussion 
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Figure 5 Schematic of digital twin ‘roadmap’, demonstrating the evolution of the unit operation digital twins developed within this project; 
labels a, b and c represent the next step of each digital twin. Whilst the figure plots the three discrete digital twins produced, as these twins 
are vehicles to represent varying complexity levels, all pieces of process equipment, with their corresponding complexity, exist on this 
evolutionary axis. 

The varying complexity of the three-unit operation 
digital twins resulted in three digital twins at 
different stages of evolution. These different stages 
are plotted on an evolutionary axis, as shown in 
Figure 5, with the next steps for each digital twin 
highlighted by arrows, a, b, and c. In line with 
evaluating the potential of unit operation digital 
twins to address the limitations of traditional 
flowsheeting models, it is necessary to discuss their 
adherence to the grey box model definition, 
highlight any obstacles to their production, and 
discuss the potential uses of the finished products.  

Pump Library 
As the production of the pump library utilises both 
real data models and fluid mechanics theory, it 
adhered well to the definition of a grey box model. 
It showed success in addressing the flowsheeting 
limitation of inaccurate cost estimation and 
equipment selection. To build upon this success and 
take the next step in the development of the pump 
library digital twin, as shown in Figure 5 arrow a, 
key challenges on data availability and collection 
need to be overcome.  

Whilst pump curve graphs are readily available from 
manufacturers, currently, Grundfos is one of the few 
manufacturers where the raw data can be 
downloaded, as opposed to just being able to view 
graphs. The availability of the raw data in an 
appropriate format is fundamental to building and 
embedding the pump digital twin in a flowsheeting 
environment. There is potential for online tools to be 
employed to extract the data, however, this itself has 
its own limitations and is dependent on the graph 
format. Even with data being available in a 
convenient format, to fully realise the potential of 
the pump library, collecting this data needs to 
become a more automated process. As discussed in 
the results, the pump library’s prediction 
monotonically improves with a larger pump library; 
hence, greater automation of the data collection 

process is important. Furthermore, whilst a primitive 
optimisation algorithm has been implemented in this 
project, further research into the multi-objective 
optimisation of pump choice would further facilitate 
a more flexible, user-customisable, selection. 

Heat Exchanger 
As the heat exchanger digital twin is built using a 
neural network informed by heat transfer theory, it 
too adheres to a grey box model definition. Within 
this category there are some digital twins, like the 
heat exchanger, that have a significant reliance on 
data modelling techniques, thus resulting in some 
black box-related restrictions, e.g., limitations in 
capacity for a user to understand the translation from 
input to output. The heat exchanger did show 
preliminary success through its potential to improve 
upon the poor accuracy of traditional flowsheeting 
models. Furthermore, it demonstrated potential in 
using a single heat exchanger case to predict the 
behaviour of different fluid cases. To further 
develop the heat exchanger digital twin, as shown in 
Figure 5 by arrow b, the following challenges on 
data availability and application of heat transfer 
theory need to be overcome. 

Whilst manufacturers do have suitable datasets of 
heat exchanger operation, it is something not 
currently readily available to consumers. To verify 
the findings from this project, further heat exchanger 
analysis must be conducted with real data. 
Additionally, in this early stage of investigation, an 
assumption of fully liquid operation was made – 
further considerations of how this digital twin can be 
applied to all heat exchanger instances, e.g., boilers 
and condensers, are required. Further validation of 
the potential to generalise the heat exchanger for use 
on other fluids by training the neural network on 
heat capacity flowrates is also recommended. 

Reactor 
The first approach to developing a reactor digital 
twin, as it applied real data to reaction engineering 
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theory, conformed well to the definition of a grey 
box model. In contrast, approach 2 was a paragon of 
a black box model as it was based solely on a neural 
network. Whilst approach 2 resulted in an accurate 
digital twin of a complex unit operation, it bears 
significant resemblance to the approach 
demonstrated by Boschet et al. [13], as this digital 
twin can only be developed once the equipment has 
been built and operational data collected. It is due to 
this, and the fact a manufacturer would not be able 
to provide such a dataset, that approach 2 (black 
box) will not be considered a viable approach for 
future reactor digital twins. 

The grey box approach to producing a reactor digital 
twin showed significant success in addressing the 
flowsheeting limitation of poorly approximating real 
system behaviour. This was achieved through the 
removal of the perfect plug flow assumption by 
incorporating a real RTD. A natural next step in the 
advancement of this digital twin, as shown by arrow 
c, would be in addressing limitations present in the 
availability of the data required to produce the 
digital twin. RTDs are specific to a reactor’s 
geometry and inlet flowrate and, therefore, for an 
unrestricted application to flowsheeting, multiple 
RTDs would be needed to build a digital twin of a 
single reactor. It is apparent that most reactor 
manufacturers have RTD data internally, but this 
data is not easily accessible to a consumer. A further 
consideration would be generalising this modelling 
for more complex kinetics and different types of 
chemical reactors. 

Summary of Unit Operations 
Whilst the three unit operations provide a 
demonstration of the potential of digital twins to 
address the limitations of flowsheeting, due to their 
differing complexities, each holds its own 
challenges in realising said potential. A shared 
theme between these digital twins is in the varying 
availability of consistently formatted, relevant, and 
complete data. Naturally, as systems of higher 
complexity are governed by an increasing number of 
variables, sourcing data that matches these 
requirements becomes increasingly difficult.  

As per their definition, grey box models hinge upon 
two key pillars, models informed by real data, and 
incorporation of the process’ physics. As such, is 
foreseen that with improvements in data availability 
and further focus on the implementation of 
engineering theory, the potential of digital twins of 
unit operations within flowsheeting could be further 
realised. 

Flowsheeting Applications of Digital Twins 
With the results validating the improvements made 
by unit operation digital twins, it is equally 
important to consider where their potential can be 
applied within flowsheeting and in a broader 
chemical engineering context. A key benefit 

provided by these digital twins is that there is a 
substantial incentive for manufacturers to produce 
digital twins of their process equipment to further 
incentivise customers. For instance, a digital twin of 
a physical piece of equipment could be distributed 
with every purchase, thus enabling customers to run 
operational tests virtually, saving time and 
resources. For this to be feasible, ensuring the digital 
twins are CAPE-OPEN compliant is important as 
this would facilitate customers importing them into 
a CAPE-OPEN compliant flowsheeting software of 
their choosing. Equally, before the acquisition of the 
equipment, digital twin application programming 
interfaced (APIs), similar to the pump library, could 
be implemented on a manufacturer’s website, such 
that customers receive recommendations of the most 
suitable piece of equipment for their requirements.  

Alternatively, from a process design perspective, the 
digital twins could be further developed and 
implemented by flowsheet software companies. 
This would incentivise manufacturers to provide 
datasets for their product range, to promote their 
process equipment to customers. As demonstrated 
with the pump library this would ensure that the best 
unit operation is put forward to customers, 
encouraging competitive pricing from the 
manufacturers. 

Digital Twin Applications Beyond Flowsheeting 
Although the application of digital twins in 
flowsheeting is an area of significant potential, it is 
important to recognise that the current research areas 
of operation scheduling, maintenance, and process 
control, are still highly relevant. Therefore, the 
prospect of integrating these flowsheeting digital 
twins with these operations digital twins could be an 
area of further exploration. A key consideration is 
that the flowsheeting digital twins, produced in this 
project, are steady state models, not dynamic models 
which are more suitable for process control 
applications.  

As such, further exploration into the production of 
dynamic unit operation digital twins could facilitate 
the implementation of an operations digital twin. 
Furthermore, in the context of process control 
optimisation, a highly specific and accurate digital 
twin is required to model the behaviour of the 
system in response to disturbances with a sufficient 
degree of accuracy. Therefore, the dynamic digital 
twin would need further tuning, once construction 
and testing have been completed, to give a better 
emulation of the real system. This calibration of a 
dynamic model to real system behaviour adopts a 
similar approach to that highlighted by R. Beck in 
ASPEN’s white paper on the future of digital twins 
[5].  
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Conclusion 

In conclusion, this project aimed to investigate the 
potential of employing unit operation digital twins 
to address flowsheeting limitations. This 
overarching aim was supported by four key 
objectives: building digital twins that serve as an 
improvement on idealised models, implementing the 
digital twins into DWSIM, conducting analysis to 
determine their benefits and challenges, and, finally, 
exploring where the potential of the digital twins 
could be applied within the flowsheeting industry. 

The methodology was underpinned by the selection 
of three suitable unit operations – a pump, heat 
exchanger and reactor. These unit operations offered 
varying levels of complexity, number of dependent 
variables, and data requirements, hence serving as 
appropriate focal points of the investigation. 

After constructing the digital twins’ Python code, 
the DWSIM implementations enabled analysis that 
determined their potential as improvements upon 
current models. The pump library showed strong 
potential as it saw up to a 50% improvement in cost 
estimation, as well as facilitating the selection of 
process equipment. In the instance of the reactor 
digital twin, in addressing the ideal model 
assumption of perfect plug flow through the 
application of a real RTD dataset, its output gave a 
closer approximation of the real system’s behaviour, 
with up to a 36% improvement made in conversion 
estimation. The heat exchanger also showed 
similarly promising accuracy, with R2 values in the 
range of 0.85 to 0.98 for different fluids, when 
trained on over 300 data points. 

There are two fundamental aspects to a grey box 
digital twin: the use of models built upon real data, 
and an incorporation of engineering theory. As well 
as recognising the benefits of the digital twins, 
consideration was given to identify the challenges 
they currently face. This project observed that 
improvements in data availability alongside a 
continued focus on implementing the engineering 
theory would alleviate these challenges. 

It has been concluded that, with consideration of the 
identified limitations, the potential of unit operation 
digital twins could serve as improvements to 
traditional flowsheeting models. As such, it is 
conceivable that there is sufficient incentive for 
equipment manufacturers and flowsheeting software 
providers to develop this technology further. 
Furthermore, there is future potential for these 
flowsheeting digital twins to be homogenised with 
pre-existing operations digital twins, facilitating the 
production of a singular digital twin to support 
flowsheeting, dynamic modelling, and control 
system optimisation. 

 

 

Outlook 

Having established digital twins have the potential 
to address flowsheeting limitations, this outlook 
aims to outline possible avenues for development 
upon this project. Although recommendations will 
be made for each unit operation, focus will be given 
to the heat exchanger and reactor digital twins 
because, as shown in Figure 5, they are not as 
developed on the evolution scale relative to the 
pump library. 

Concerning the pump library, the next steps could 
consider how to integrate multiple manufacturers 
into one digital twin. This would involve 
considering how to incorporate pump curve datasets 
of different formats as, naturally, the format will 
differ by manufacturer. 

The grey box reactor approach successfully 
removed the assumption of perfect plug flow; 
however, further traditional, idealised assumptions 
remain. More specifically, the assumption of 
isothermal operation is a severely limiting one; 
temperature has a significant impact on reaction 
kinetics, resulting in poor approximations of reactor 
behaviour. For example, Arrhenius kinetics 
observes an exponential relationship with respect to 
temperature. Building upon the current grey box 
model, an investigation on how temperature could 
be more accurately captured by the digital twin 
would offer a significant improvement of real 
system behaviour predictions. Additionally, pairing 
the RTD with a specific set of reaction kinetics 
would allow inference on how the digital twins 
could be applied realistically in flowsheeting, as the 
grey box model was applied across a wide range of 
kinetic constants to verify the difference between its 
conversion and that of an ideal PFR. 

Furthermore, if digital twins are to be used to inform 
equipment design and costing, credibility on their 
accuracy is a necessity. Taking the heat exchanger 
as an example, verifying the potential demonstrated 
in this project using real heat exchanger rig data 
would be the first step in fostering this credibility. 
Moreover, a similar approach can be taken with the 
reactor digital twin as its results are based upon the 
synthetic ASPEN model dataset. 

Due to the nature of flowsheeting encompassing a 
wide range of unit operations, it is pertinent to 
consider others beyond the three explored in this 
project and analyse any further complications and 
challenges they may bring.  

313



10 

 

References 
 
[1]  L. Evans, J. Boston, H. Britt, P. Gallier, P. 

Gupta, B. Joseph, V. Mahalec, E. Ng, W. 
Seider and H. Yagi, “ASPEN: An Advanced 
System for Process Engineering,” 
Computers & Chemical Engineering, vol. 
Volume 3, no. Issues 1-4, pp. Pages 319-
327, 1979.  

[2]  Z. N. Pintarič and Z. Kravanja, “Towards 
Outcomes-Based Education of Computer-
Aided Chemical Engineering,” Computer 
Aided Chemical Engineering, vol. 38, pp. 
2367-2372, 2016.  

[3]  R. R. Schaller, “Moore's law: past, present 
and future,” IEEE Spectrum, vol. 34, no. 
10.1109/6.591665, pp. 52-59, 1997.  

[4]  Oliver Wyman, “Projected size of the global 
market for digital manufacturing in 2030, by 
industry segment (in billion U.S. dollars) 
[Graph],” Statista, 2016. 

[5]  R. Beck, “The Digital Twin and the Smart 
Enterprise,” Aspen Technology, 
Massachusetts, 2019. 

[6]  Siemens PSE, “Siemens PSE,” 2022. 
[Online]. Available: 
https://www.psenterprise.com/products/gpr
oms. [Accessed 05/12/2022]. 

[7]  O. Walter, A. Tremel, M. Prenzel, S. Becker 
and J. Schaefer, “Techno-economic analysis 
of hybrid energy storage concepts via 
flowsheet simulations, cost modeling and 
energy system design,” Energy Conversion 
and Management, vol. 218, no. 112955, 
2020.  

[8]  Edie Newsroom, “BP invests £19.5m in 
innovative pilot plant for ‘unrecyclable’ 
plastics,” Faversham House Ltd, 2019. 

[9]  D. Jones, C. Snider, A. Nassehi, J. Yon and 
B. Hicks, “Characterising the Digital Twin: 
A systematic literature review,” CIRP 
Journal of Manufacturing Science and 
Technology, Vols. 29, Part A, no. 1755-581, 
pp. 36-52, 2020.  

[10]  Unity, “What is a Digital Twin?,” 2022. 
[Online]. Available: 
https://unity.com/solutions/digital-twin-
definition. [Accessed 05/12/2022]. 

[11]  AWS Amazon, “What Is Digital Twin 
Technology?,” 2022. [Online]. Available: 
https://aws.amazon.com/what-is/digital-
twin/. [Accessed 05/12/2022]. 

[12]  A. M. Madni, C. C. Madni and S. Lucero, 
“Leveraging Digital Twin Technology in 

Model-Based Systems Engineering,” 
Systems, vol. 7, no. 1, 2019.  

[13]  S. Boschet, C. Heinrich and R. Rosen, “Next 
Generation Digital Twin,” in TMCE 2018, 
Las Palmas de Gran Canaria, 2018.  

[14]  D. Medeiros, “LinkedIn,” 24 April 2018. 
[Online]. Available: 
https://www.linkedin.com/pulse/integrating
-chemical-process-simulator-tensorflow-
daniel-medeiros/. [Accessed 08/12/2022]. 

[15]  J. Benitez, J. Castro and I. Requena, “Are 
artificial neural networks black boxes?,” 
IEEE Transactions on Neural Networks, 
vol. 8, no. 5, pp. 1156-1164, 1997.  

[16]  Q. Meng, Y. Wang, X. Yan and Z. Li, “CFD 
assisted modeling for control system design: 
A case study,” Simulation Modelling 
Practice and Theory, vol. 17, no. 4, pp. 730-
742, 2009.  

[17]  P. Aivalioitis, K. Georgoulias, Z. Arkouli 
and S. Makris, “Methodology for enabling 
Digital Twin using advanced physics-based 
modelling in predictive maintenance,” 
Procedia CIRP, vol. 81, pp. 417-422, 2019.  

[18]  D. Medeiros, “DWSIM Process Simulation, 
Modelling and Optimization Techical 
Manual,” 2018. [Online]. Available: 
https://dwsim.inforside.com.br/docs/mobile
/tech_manual.pdf. [Accessed 08/12/2022]. 

[19]  D. Piñol, J. C. Rodriguez, M. Halloran, W. 
Drewitz, I. Richard Szczepanski, M. Pons, 
M. Woodman, P. Banks and J. v. Baten, 
“Thermodynamic and Physical Properties 
v1.0 CAPE-OPEN,” COLAN, no. 
1.08.008.DOC, pp. 1-87, 2011.  

[20]  Grundfos, “Grundfos,” 2022. [Online]. 
Available: 
https://www.grundfos.com/uk/about-us. 
[Accessed 05/12/2022]. 

[21]  M. Obonukut and P. Bassey, “Residence 
Time Distribution of A Tubular Reactor,” 
International Journal Of Scientific 
Research And Education, vol. 4, no. 1, pp. 
4767-4777, 2016.  

[22]  H. Fogler, Elements of Chemical Reaction 
Engineering 4th Edition, Philadelphia, PA: 
Prentice Hall, 2005.  

[23]  W. D. Seider, D. R. Lewin, J. Seader, S. 
Widago, R. Gani and K. M. Ng, Product and 
Process Design Principles - Synthesis, 
Analysis, and Evaluation (4th Edition), John 
Wiley & Sons, 2017.  

 

314



Production of Carbon Nanotubes Through Electrolytic Reduction of Carbon 
Dioxide in a Molten Carbonate Salt 

Marco Bruno Tome Freire, Daniel Binks 
Department of Chemical Engineering, Imperial College London, U.K. 

 
Abstract – Combating the release and encouraging the capture of CO2 is humanity’s main aim to reduce effects of global 
warming. In this study, a procedure published in literature for electrochemically reducing CO2 in molten lithium carbonate 
electrolyte and produce carbon nanotubes (CNTs) was replicated. Lithium carbonate salt was the chosen electrolyte, iron 
and nickel were the chosen cathode and anode materials respectively. Electrolysis was carried out at 800 ℃ with a current 
density of 200 mA/cm2, to achieve the following process: Li2O + CO2 → Li2CO3 in the electrolyte, followed by 
electrochemical lithium carbonate splitting: Li2CO3 → CCNT + O2 + Li2O. The following methods of electrolyte and 
product analysis were investigated: simultaneous thermal analysis (STA), X-ray diffraction spectroscopy (XRD), Raman 
spectroscopy and X-ray fluorescence spectroscopy (XRF). STA was concluded to be a suitable technique for detecting 
changes to the electrolyte composition because of the electrolysis process, Raman enabled analysis of the structure of the 
carbonaceous deposit and XRF is best for determining compositional changes to the electrode materials.  The relative 
novelty of this CNT production technique meant that it was challenging to produce carbon nanotubes and issues with 
electrode oxidation (Fe cathode to F2O3/Fe3O4 and Ni anode to NiO) were encountered. However, having set out the initial 
steps, future application of the written methodology would be easy to follow for further optimisation and upscaling. 
 

I. INTRODUCTION 
It is well understood that global warming is one of the 
main challenges that humans face on earth. Carbon 
dioxide (CO2), the most bountiful anthropogenic 
greenhouse gas, has been increasingly emitted at an 
extremely rapid rate since the 1800s. Global CO2 
emission in billion metric tons has increased from 0.03 
in 1800 to 34.81 in 20201. Greenhouse gases (GHGs) 
like CO2 absorb and emit thermal radiation from the sun, 
trapping this energy within the Earth’s atmosphere and 
causing the planet to heat up. Current predictions 
estimate that temperatures worldwide will increase by 
2 ℃2. 

To counteract this, there has been global 
initiative to limit GHG emissions and decrease the 
current concentration of CO2 in the atmosphere. For the 
UK, this plan involves committing to a fully 
decarbonised power sector by 2035 and a ban on sales 
of all diesel/petrol powered cars by 20303. To achieve 
the full decarbonisation of the nation's power grid there 
are multiple plans in place, including 50 GW of offshore 
wind capacity and a large investment into low carbon 
hydrogen production with the aim of achieving 5 GW 
capacity by 20303.  

We know the implementation of renewable 
energy technology will not be enough to meet our 
current needs. Therefore, there is great importance on 
the technology of Carbon Capture and Storage (CCS) 
and Carbon Capture and Utilisation (CCU) to help 
renewables to reach net zero.  

The difference between these two types of 
carbon dioxide reducing technologies is in the 
processing of captured CO2. CCS takes the captured 
carbon dioxide and stores it in large, underground rock 
formations where it remains permanently, whereas CCU 
utilises the carbon dioxide in other processes.  

If demand exists for a product made using CO2, 
the case for CCU as the better option is strong. There are 
reduced costs in transportation and storage of the CO2 
and a greater potential to generate revenue as the 

captured gases can be sold to process plants. Industries 
that require carbon dioxide currently obtain it from 
collecting the waste products of burning fossil fuels. 
Considering fossil fuels will be part of our energy 
economy for years, this will prevent much CO2 release.  

Decarbonisation for a country such as the UK must 
be a priority, but carbon-based fuels will remain 
important to the global economy. 

CCU cannot provide the emission mitigation rate of 
carbon capture and storage (CCS), but considering the 
UK, who’s entire storage capacity for CO2 is offshore, 
CCU could mitigate emissions from inland point 
sources. 

Inland CO2 emitting plants are prime targets for 
CCU activities, as they are unlikely to be part of CCS 
networks, which will be localised to coastal regions. 
Point sources generating of order 1 MtCO2e per year (24 
of the UK’s top 60 stationary GHG emitters emit 
1 MtCO2e per year or less) could, in the short term, 
enable greater CO2 processing by utilisation than by 
storage29. 

Up to 3.65 tCO2 (per tonne of carbon nanotubes) 
potentially could be sequestered, with negligible CO2 
emissions30. Furthermore, the estimated energy 
requirement of carbon nanotube production is 40 times 
lower using the CCU method compared to the 
conventional process31. 

A current product that is expensive to produce 
but has many applications are carbon nanotubes (CNTs). 
CNTs are small, hollow tubes made exclusively of 
carbon atoms. Single-walled nanotubes have diameters 
in the range of 0.8 – 2.4 nm4 and can stretch to a few 
micrometres in length. This arrangement of atoms 
produces strong covalent sp2 bonds, which lead to the 
tubes possessing ultimate intrinsic tensile strength in the 
100-200 GPa range5. They are as stiff as diamond and 
around 10x as strong as steel. Additionally, their thermal 
capacity is incredibly high, 20x larger than steel, making 
them resistant to thermal expansion. Chemically they 
are stable so are resistant to corrosion. 
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CNTs can be used in construction due to their 
desirable mechanical properties. There is also a growing 
interest in the medical research community for CNTs in 
efficient drug delivery and even as a treatment for 
aggressive cancerous tumours. The unique chemical 
properties of carbon combined with mechanical benefits 
of this specific structure make CNTs the ideal material 
for a range of medicinal techniques. Further applications 
can be seen on Figure 1. Clearly CNT production will 
be of greater importance in the future as the demand for 
them increases.  

 
Figure 1: Usage and applications of CNTs6 

CNTs are currently produced via three 
different methods: electric arc discharge, chemical 
vapour deposition, and laser ablation. These methods 
are energy intensive and expensive, prompting research 
into an alternative, more efficient production method. A 
potential alternative for production of CNTs is the 
reduction of CO2 gas to solid carbon by molten 
carbonate salt electrolysis. Not only does this aid in the 
process of CCU, but a useful product with many 
applications is also made. 

In molten lithium carbonate (the salt used in 
this experiment) a series of electrochemical processes 
occur in the conversion of CO2 to CNTs. A voltage is 
applied in an electrolysis chamber where at a metal 
cathode CO2 is split and CNTs are formed, and O2 is 
produced at a metal anode7. Molten carbonates are 
necessary for CO2 dissolution and therefore the 
continued creation of CNTs. First there is a reduction of 
the carbonate ion to form CNTs, oxygen and an oxide: 

𝐿𝑖2𝐶𝑂3 → 𝐶𝐶𝑁𝑇 + 𝑂2 + 𝐿𝑖2𝑂 
Then, CO2 added to the electrolyte (through 

gas bubblers) dissolves and reacts exothermically with 
lithium oxide to recycle and reform lithium carbonate: 

𝐶𝑂2 + 𝐿𝑖2𝑂 → 𝐿𝑖2𝐶𝑂3 
We have documented a method of CNT 

production at a lab-scale process through a custom salt 
heating cycle. The aim of this study was to provide a 
clear and complete method of CNT production and post-
electrolysis analysis not presently found in research. 
This can be further optimised and upscaled in future 
developments. 

 

II. BACKGROUND 
It is important to first discuss the current methods of 
CNT production to gain an appreciation of how difficult 
and expensive these procedures are. 

In electric arc discharge, a direct current is 
established between graphite electrodes kept in an inert 
atmosphere (helium or argon). High temperatures 
between the electrodes (3000-4000℃) causes carbon 
sublimation. Sublimated graphite is deposited at the 
negative electrode or the walls of the chamber where the 
process is carried out. These deposits contain CNTs8. 
The arc discharge method is a high energy process and 
requires high precision control which deters the 
scalability of the production of graphene and hence its 
possible applications9.  

In chemical vapour deposition (CVD), a 
substrate is prepared with a layer of metal catalyst 
particles (nickel, cobalt, iron). The substrate is then 
heated between 600-1200℃ and a mixture of gases are 
injected into the reactor. This includes a process gas 
(ammonia, nitrogen, or hydrogen) and a carbon-
containing gas (ethylene, acetylene, methane). CNTs 
grow on the catalyst particles in the reactor and are 
collected after the reactor is cooled. The catalyst 
particles can remain at the bottom or top of the growing 
CNTs10. Some existing challenges are that post 
treatment of mass-produced CNTs is difficult. 
Furthermore, CVD-grown CNTs have poor 
crystallinity11. 

In the laser ablation technique, a high-power 
laser was used to vaporise carbon from a graphite target 
at high temperature while an inert gas (argon, helium) is 
bled into the chamber12. The basic principle of laser 
ablation is simple and easy to perform, but it is 
expensive and the production rate of CNTs could be 
improved13.  

There have been many research papers studying the 
production of CNTs via high temperature electrolysis in 
molten carbonate salts. However, the kinetics of the key 
electrochemical reactions and the relationship between 
the structures of the formed carbon nanotubes and the 
reaction conditions are still not well understood. Many 
electrode materials including monel, steel, galvanised 
steel and copper have been investigated. A wide variety 
of alkali and alkaline earth carbonate salts with different 
mixing ratios have been tested as the electrolyte. To find 
agreement on the optimal combination of electrode 
material, electrolyte composition and other reaction 
variables, further investigation is necessary. The 
parameters which can be used to tune the CNT structures 
also need to be further investigated. 

We must also consider the ability of the CNT 
production system to be incorporated into existing gas 
and coal-powered energy plants. Lau et al14. 
demonstrate a thermodynamic model analysis for a 
molten Li2CO3 electrolysis system incorporated within 
a combined cycle (CC) natural gas power plant to 
produce both CNTs and oxygen. There are several major 
energy efficiency losses in the original CC plant. This 
plant system then generates electricity at higher 
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efficiency due to pure oxygen looped back to the gas 
turbine input from the CO2 splitting. Enriched oxygen 
combustion allows for the combustion chamber to reach 
higher temperatures and combustion efficiencies, 
improving thermal energy efficiencies of the gas turbine 
as well as the steam turbine. Furthermore, the hot CO2 
product from the gas turbine is an excellent reactant for 
the molten electrolysis. 

 
III. METHODOLOGY 

 
Figure 2: Diagram of furnace and peripheral equipment used in 

electrolysis 

Figure 2 was adapted from a design by Zhixu Zhu and 
other group members in Dr. Anna Hankin’s research 
group and displays the experimental setup. 

A TS1 12/125/400 tube furnace along with a 
vertical stand and a control box was purchased from 
Carbolite Gero. TS1 indicates the furnace has a single 
heating zone and can be split into two halves for easy 
access to the crucible inside. 12 indicates the maximum 
furnace operating temperature is 1200°C. 125 indicates 
the maximum diameter of tubing that the furnace can 
accommodate in mm. 400 indicates the heating length of 
the tube furnace in mm. 

The furnace was customised to have only one 
open end; the bottom of the furnace was left uncut. The 
upper aperture was designed with a diameter of 100 mm. 
The maximum wall thickness of the cylindrical crucible 
to be placed in the furnace was 3 mm, leaving a 2 mm 
gap between the furnace and the crucible.  

A gantry was assembled with aluminium 
profiles supplied by KJN Aluminium Profile. The gantry 
was designed by Zhixu Zhu and Dr. Inyoung Jang and 
the adapted diagram can be seen in Figure 3. Clamps 
were set onto the gantry to hold the experimental 
electrodes. 

40 g of the electrolyte, Li2CO3 (Alfa Aesar, 
99.0% purity in powdered form), was added into an 
alumina crucible (15cm length, 10cm width, 6 cm 
depth). The heating process included heating the salt to 
800℃ at a slow rate of 4 ℃/min, and the cooling rate 
was even slower at 0.5 ℃/min to 650℃ to prevent 
thermal shock. The reaction chamber needs to withstand 

high temperature. It was important to choose appropriate 
materials for safety concern. 

 
Figure 3: Diagram of gantry used to support furnace and electrolysis 

cables 

A custom designed quartz crucible was a 600 
mm tall cylinder with a 106 mm outer diameter and a 
101 mm internal diameter, a diagram of which can be 
seen in Figure 4. The heating length of the furnace was 
only 400 mm, meaning that the quartz crucible was 
elevated by an alumina crucible (60 cm height with 12 
cm diameter). 

The rectangular crucible was placed inside the 
large quartz crucible for added safety.  

 
Figure 4: Quartz crucible dimensions 

A specifically designed lid for two spiral disk 
wire electrodes was used, as can be seen in Figure 5. The 
lid has the function of holding the gas inlet and 
electrodes in position, therefore preventing the contact 
of the anode and cathode, leading to a short-circuit. 

 
Figure 5: Quartz crucible lid dimensions 

Cables were connected to the electrodes via 
silver wire, which is extremely heat resistant. Silver also 
has the best conductivity of any known metal15. For 
extra protection, the cables were insulated with alumina 
tubes. High purity alumina is usable in both oxidising 
and reducing atmospheres to 1925 ℃16. The potentiostat 
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was placed outside of the fume cupboard to prevent any 
signal interference from the furnace. 

5 m of nickel (99.95% purity) and iron (99.98% 
purity) wires of 1 mm diameter were purchased from 
GoodFellow. The metals were polished and acid washed 
to remove any impurity and oxides on the surface before 
putting to use as electrodes. 

The two electrodes were spaced apart with a 5 
cm piece of alumina tubing. 

Electrolysis was performed at current densities 
of 200 mA/cm2 at a temperature of 800 ℃. Electrolysis 
time was planned to be 2 hours, but electrolysis was not 
completed due to a large increase in resistance during 
operation. The potentiostat used was an Autolab 
PGSTAT302N produced by Metrohm. 

After electrolysis, the products deposited at the 
cathode and anode were scraped off and were subjected 
to identification analysis.  

Compositional analysis of the experimental 
electrolyte in its original and thermally decomposed 
form (Li2CO3 and Li2O) was conducted using x-ray 
diffraction (XRD) on an Xpert Pro PANalytical XRD. 
The x-ray generator had a tension of 40 kV and a current 
of 20 mA. A full scan range from 5 to 90 degrees was 
used, with a step size of 0.0334 and time per step of 40 
seconds.  Following this, simultaneous thermal analysis 
was conducted using a Netzsch STA 449 F5 Jupiter. 
Simultaneous thermal analysis (STA) applies 
thermogravimetry and differential scanning calorimetry 
at the same time. Thermogravimetric analysis measures 
the mass of a sample over time as temperature changes. 
The molecular weights of the compounds were used to 
calculate the theoretical mass change of our sample. 
This was used to calculate the moles of lithium 
carbonate converted to lithium oxide in our electrolysis. 

Raman spectroscopy using a Senterra II was 
conducted on CNT products and commercial CNTs. X-
ray fluorescence (XRF) analysis, a non-destructive 
technique used to determine the elemental composition 
of a sample aided electrode product identification. A 
PANalytical Epsilion XRF Spectrometer was used.  

 
IV. RESULTS AND DISCUSSION 

Experimental Setup: 
The furnace design was customised, leaving space for 
the crucible’s expansion while keeping good extent of 
seal to prevent heat loss. The gantry was designed to 
hold the peripherals of the reaction setup, such as cable 
lines. 

The electrodes chosen were iron and nickel 
wire because of their common appearance in literature. 
However, there are a multitude of electrode materials 
available for use in electrolysis. There aren’t preferred 
electrode materials in literature and so an investigation 
must be made into their corrosion resistance, product 
yield, and product morphology. 

Three materials were compared for crucible 
fabrication: nickel, quartz, and alumina (aluminium 
oxide) ceramic. Nickel can work as an anode whilst 
simultaneously being the reaction container. This can 

save space in the electrochemical cell, and electrode 
surface area can be maximised. Nickel also has the 
highest mechanical strength among the three materials. 
However, at temperatures greater than 700 °𝐶, nickel 
will oxidise and will therefore cease to be conductive. 
Not only this, but its mechanical strength will also 
decrease. Quartz reactors were reported in literature to 
contain high temperature molten salts up to 1000 
degrees for methane pyrolysis17. 

After running several experiments, it was 
discovered that molten Li2CO3 was etching into the 
quartz crucible. According to the supplier Multi-Lab, 
lithium, sodium and potassium salts can be used as flux 
for the quartz containers18. The quartz crucible also 
cracked due to the volume change of molten Li2CO3 as 
it cooled rapidly. 

Alumina crucibles have been reported many 
times as electrochemical cells for electrolysis of molten 
carbonate salts19. 

To ensure CNT growth occurred at a constant 
rate with minimisation of defects, the current of 
electrolysis was fixed. The value of current density 
chosen was 200 mA/cm2. Previous studies found that 
densities between 200-400 mA/cm2 were sufficient for 
CNTs to form, with an increased current density 
favouring the generation of carbon products of lower 
particle size20. The potentiostat had a maximum current 
rating of 1 A (1000mA) and the set current was 
dependent on both the current density and surface area 
of the electrode 

𝐼 = 𝐽 × 𝐴     (1) 
𝑤ℎ𝑒𝑟𝑒 𝐼 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑚𝐴], 

 𝐽 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑚𝐴 ∙ 𝑐𝑚−2],  
𝐴 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 [𝑐𝑚2]  

It is preferrable to have a large surface area with many 
nucleation points for product to form. The electrode 
wire had a diameter of 0.1 cm and a length of 9 cm. The 
calculation did not include the area of the wire tip as this 
was assumed negligible. The fixed current calculated for 
the system was 0.56549 A. 

𝐴 = (𝜋 ∗ 0.1) ∗ 9 = 2.83 𝑐𝑚2         (2) 
𝐼 = 200 × 2.83 = 565.49 𝑚𝐴         (3) 

 
Analysis of Molten Salt: 

 
Figure 6: XRD measurement of pure lithium oxide 
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Figure 7: XRD measurement of pure lithium carbonate 

Following this, a scan of a 50:50 mixture of the 
two compounds was conducted. Major peaks between 
angles of 20 and 40 degrees of the pure components are 
represented in the scan of the mixture. 

 
Figure 8: XRD measurement of a 50:50 mixture of lithium oxide and 

lithium carbonate 

X-ray diffraction analysis was carried out to 
produce a calibration curve for the salt sample. By 
measuring a range of different known ratios of a Li2CO3: 
Li2O mixture, calibration values can be obtained. There 
was no addition of extra CO2 during electrolysis, and it 
was planned that the Li2CO3 would be slowly depleted 
as the experiment continued. This way we would be able 
to obtain the concentration ratio of the compounds in our 
final electrolyte and understand how well the 
electrolysis was performing. This is a technique that is 
not performed in literature for the assessment of this 
CNT production system. Usual methods involve the 
continual addition of CO2 with comparison of CNT 
yield. However, XRD was abandoned as it was not 
possible to perform quantitative comparison between 
samples. 

Figure 7 shows the XRD spectra for pure 
Li2CO3. There are clear peaks of high intensity at 2θ 
values of ~ 21 and 32, with smaller peaks in the range of 
20-40. Outside of this range there is very little activity.  

Figure 6 is the spectra for pure Li2O and it has 
very little background activity compared to the Li2CO3 
spectra, which makes the peaks easily identifiable. At 2θ 
= 33◦, a high intensity peak is present. The next largest 

occurs at 2θ = 56◦ and there are 3 other smaller peaks 
present.  

Figure 8 is an analysis of a 50:50 mixture of 
both lithium carbonate and lithium oxide and the first 
two spectra can be used to confirm this. There are peaks 
at 21, 32 and 56, which match to the main peaks in the 
individual salt spectra. Lithium carbonate has high 
intensity peaks at 21 and 32, whilst lithium oxide has 
high intensity peaks at 32 and 56. The presence of all 
main peaks confirm that both salts are present.  

XRD could be used later, however, as a 
technique for revealing the local and global features of 
CNTs’ lattice and crystalline phase, domain sizes, and 
impurities, as written by Das, et al21. By characterising 
key features of CNTs, which can cause them to have a 
wide variety of properties, manufacturers will be able to 
select production methods which favour their desired 
CNT shape. Techniques such as scanning electron 
microscopy are popular for characterisation of CNTs, 
but they only unveil local features. 

Example calculation for a 60:40 mixture of 
Li2O:Li2CO3: 
 

𝐿𝑖2𝐶𝑂3 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡: 73.891 
𝐿𝑖2𝑂 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡: 29.88 
𝐶𝑂2 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡: 44.01 

𝐿𝑖2𝐶𝑂3 → 𝐿𝑖2𝑂 + 𝐶𝑂2 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐿𝑖2𝑂 𝑓𝑜𝑟𝑚𝑒𝑑: 

0.6 × (
29.88

73.891
) = 0.2426        (4) 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒: 
0.2426 + 0.4 = 0.6426 = 64.26%      (5) 

 
We found that the final experimental remaining mass 
percentage for the corresponding mixture ratio was not 
equal to this theoretical value. This is because the 
sample could not be perfectly mixed, and the mixture 
was not homogeneous. Furthermore, any moisture in the 
sample could inflate the measured mass. These errors 
were minimised by stirring samples before analysis to 
prevent heterogeneity and keeping samples sealed in 
vials until time for analysis to prevent exposure to humid 
air.  

Differential scanning calorimetry measured the 
difference in the amount of heat required to increase the 
temperature of a sample (our lithium carbonate/lithium 
oxide mixture), and a reference sample. This indicated 
points of enthalpy change, where exothermic or 
endothermic reactions occur throughout the 
measurement. Temperature-driven lithium carbonate 
decomposition to lithium oxide and carbon dioxide is 
expected to be an endothermic process and this is 
expected to occur through a decrease in mass of the 
sample. 

Another purpose of STA analysis was to 
discover the maximum temperature that the electrolysis 
could be ran at. This was key to prevent thermal 
decomposition of Li2CO3 during electrolysis and 
preventing the escape of CO2 without being used to 
create CNTs. Furthermore, allowing the mixture to 

C 

C 

C – Lithium Carbonate 
     
    -Lithium Oxide 

319



decompose thermally runs the risk of carbon monoxide 
being produced, which is toxic and a large hazard if 
released in the lab. There are multiple measures in place 
to mitigate this risk, such as carbon monoxide alarms, 
but ideally none would be produced.   

Samples analysed were 20:80, 40:60, 50:50, 
60:40, 80:20 mixtures of Li2CO3 and Li2O, as well as 
pure Li2CO3. The first trial of simultaneous thermal 
analysis used a mixture of lithium carbonate and lithium 
oxide with a mass ratio of 60:40. A purge and protective 
gas of nitrogen was used to at rates of 60 ml/min and 20 
ml/min, respectively, to prevent any reaction. The 
sample was heated to 1100 ℃ at a rate of 20 ℃/min and 
consequently held at this temperature for 10 minutes. 
Thermal decomposition temperature for Li2CO3 occurs 
at 1310℃, but this effect is reported to occur at lower 
temperatures, close to the melting point22. This is clearly 
the case in the STA measurements, where thermal 
decomposition consistently began at 850℃. Figure 9 
shows the results of this first trial.    

 
Figure 9: STA measurement of a 60:40 mixture of Li2CO3:Li2O 

highlighting initial decomposition temperature 

 
Figure 10: STA measurement of a 60:40 mixture of Li2CO3:Li2O 

highlighting final remaining mass percentage 

The results from the STA analysis of the 60:40 
salt sample show a clear trend. The mass starts to 
decrease gradually at 850 ℃ then shows a much larger 
decrease at 1000 ℃. This decrease in mass correlates to 
the decomposition of lithium carbonate. As seen from 

literature, at temperatures close to its melting point, the 
lithium carbonate decomposes into lithium oxide and 
carbon dioxide23, which was removed from the system 
as a gas. As the temperature increased further, the rate 
of decomposition did not change significantly, which 
suggests a higher temperature does not necessarily 
increase the rate of decomposition and a temperature 
lower than 1000℃ might be sufficient if held long 
enough.  

The STA results indicate a temperature of 
below 850℃ is the ideal temperature to run the 
electrolysis at as the only thing causing decomposition 
will be the applied current. Further analysis of the 
remaining mass fraction shows that, from an initial mass 
of 36.88 mg, 14.00 mg was lost as carbon dioxide. Using 
the known initial ratio in calculations show that 106% 
of the available Li2CO3 mols decomposed. This suggests 
the initial mixture may not have been as uniformly 
mixed, leading to an alternative ratio to the expected 
one.  

A further test was run on a sample with the 
same composition but with the end temperature set to 
1000℃ and held for 15 minutes. This showed the same 
initial decrease at ~850 ℃ and then a greater rate of 
decrease at 1000 ℃. However, after holding for 15 
minutes the rate of change of mass had still not reached 
a plateau, suggesting there was more CO2 still to be 
released. The final recorded mass percentage was 
66.80%, as can be seen in Figure 10. With the theoretical 
final mass percentage being 64.26%, this test had 
released all but 6.85% of the potential CO2 (assuming a 
perfect mixture). To ensure complete thermal 
decomposition, the entire experimental results were 
conducted at 1100 ℃ with a holding time of 20 minutes. 

STA analysis also allowed the thermodynamic 
description of the process to be found, as seen in Figure 
11. A peak on the graph represents an endothermic 
reaction while a trough represents an exothermic 
reaction. In the differential scanning calorimetry (DSC) 
curves for Li2CO3: Li2O, there are visible peaks at 420 
℃ and 690 ℃. The solid-solid phase transition of 
Li2CO3 is observed at 420 ℃ and the melting point is 
observed at 690 ℃. 

 
Figure 11: Differential scanning calorimetry curve of a 60:40 

mixture of Li2CO3:Li2O 
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Table 1: Comparison of calculated and experimental percentage 
mass loss 

Li2CO3:Li2O 
Ratio 

Final Mass 
Percentage / % 

Expected Mass 
Percentage / % 

20:80 85.51 88.09 
40:60 82.11 76.18 
50:50 61.02 70.22 
60:40 66.80 64.26 
80:20 47.30 52.35 
100:0 41.08 40.44 

 
On average, percentage error between 

experimental and theoretical mass percentage was 6.5%. 
The largest error occurred in the 50:50 mixture, while 
the smallest occurred in the pure sample. The 50:50 
measurement was repeated using a sample from the 
same mixture as the initial measurement, and the result 
had a 10.03% error. It was concluded that the mass of 
each compound in the mixture was incorrectly 
measured. Percentage error was attributed to poor 
mixing of the two salts in each sample. It was observed 
that lithium carbonate powder would clump and ‘stick’ 
together easily. This means the samples would not be 
uniformly distributed during preparation. 

A problem encountered during STA was an 
unknown reaction that occurred during the heating of the 
sample. A green crystalline substance was produced that 
caused the sample crucible to be stuck to the STA 
weighing pan. This could also be attributed to 
percentage error. After removal using dilute 
hydrochloric acid, sample sizes were reduced from 30 
mg to 8-10 mg, and a crucible lid was used. 
Furthermore, sample crucibles were cleaned with 37% 
hydrochloric acid after each use. 

Concentrated hydrochloric acid is corrosive 
and can cause severe damage if it encounters skin, eyes 
or is ingested. Furthermore, at high concentrations it can 
be volatile and release HCl gas that can cause irritation 
to eyes, throat and lungs if inhaled. To minimise the 
risks involved, all personnel wore appropriate PPE 
(safety glasses, lab coat and gloves) whilst using the 
acid. The acid was only used inside a fume cupboard and 
the cleaning vessel was a glass beaker inside a large tray 
to prevent spillages. 

All STA curves can be seen in the Appendix, 
from Figures 1 to 18. 

 
Commercial CNT Analysis: 

Raman spectroscopy using a Senterra II was 
conducted on CNT products and commercial CNTs as a 
method of identifying product purity. Raman 
spectroscopy measures the scattering of photons. There 
is a source of monochromatic light in the machine which 
interacts with the sample material, resulting in the 
energy of the laser photons being shifted up or down. 
This can help in the identification of molecules and the 
study of chemical bonding and intramolecular bonds. A 
magnification lens of 100x was used to obtain the 
highest Raman signal. The commercial MWCNTs 

(multi walled carbon nanotubes) were of varying sizes: 
10-40 nm, 110-170 nm, and 9 – 13 nm. Each sample was 
analysed at 4 different points to confirm the results were 
accurate. All graphs show there was minimal variation 
between the points and the important peaks all appeared 
at the same values. For every calculation, an average 
value was used. There was one exception. This test 
appeared in the 110-170nm sample and shows a large 
spike in the 800-1000 cm-1 region. As this peak was not 
reproducible it is assumed to be an anomaly, likely 
caused by impurities in the sample 

 
Figure 12: Raman measurement of CNTs sized 10-40 nm 

 
Figure 13: Raman measurements of CNTs sized 110-170 𝑛m 

 

Figure 14: Raman measurement of CNTs sized 9 - 13 nm 
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The samples studied were all multi-walled 
carbon nanotubes (MWCNTs). These are larger than 
single-walled tubes and consist of multiple layers of 
increasing diameters stacked on top of each other. This 
gives the tube increased thermal and chemical stability. 
The properties of single walled and multi-walled CNTs 
vary and allow for them to have widely different uses in 
industry. Due to the much larger size and strength of 
MWCNTs, they are easier to produce and there is a 
much lower risk of damage or collapse during treatment 
processes. Therefore, in the initial stages of this 
investigation it is desirable to produce MWCNTs over 
single walled. Once the process has been tested and 
optimised, it will be possible to attempt to produce the 
single walled variety. 

Raman data beyond Raman shift beyond 3000 
cm-1 were removed for clarity because this is an area of 
noise. Full graphs including noise can be seen in 
Appendix Figures 21, 22, and 23. 

Raman spectra usually consist of two main 
peaks that correspond to the disorder-induced mode (D 
band) and the high frequency E2g first order mode (G 
band). An important parameter for assessing the quality 
of CNTs is the intensity ratio (ID/IG). This is used to 
evaluate graphitisation and is typically in the range of 
0.5 - 1.8 for CNTs, with variations occurring due to 
differing CNT diameters. A lower24 intensity ratio is 
favourable as this signifies a higher degree of 
graphitisation, which is the degree to which the carbon 
atoms form a close-packed hexagonal structure. A 
consistent carbon structure leads to predictable and 
consistent material properties. The D band can also be 
referred to as the main defect band25 and is visible when 
there are defects present in the carbon aromatic 
structure. Therefore, a lower intensity is ideal for a 
stronger CNT as the graphene sheets that make up the 
CNT will have a higher degree of graphitisation.  The 
intensity ratio for the 10-40 nm, 110-17 nm, and 9 – 13 
nm CNTs were 0.98, 1.06, and 1.39 respectively. All 
these ratios are within the accepted range and consistent 
with values from previous studies. 

 
Table 2: Frequencies and Intensity Ratio of all CNT samples 

 
However, they are considerably higher than 

literature values. Past studies have recorded ratios of 0.6 
and 0.7. This is a positive finding as it shows CNTs with 
a lower degree of graphitisation and therefore weaker 
structure can still be sold commercially. This allows us 
to have greater flexibility when producing CNTs from 
electrolysis and potentially sacrifice product quality 
somewhat to reduce financial and energy costs.  

There exists a weak correlation between the 
diameter and intensity ratio. As the diameter increases 
from 9 nm to 170 nm, the intensity ratio decreases from 

1.39 to 1.06. This suggests that tubes with a larger 
diameter have fewer defects. During conventional 
production, CNTs must undergo acid treatment, and this 
can cause damage to tubes or even total collapse. A 
larger tube is composed of more graphene sheet layers 
(walls), which increases the chemical stability of the 
tube, therefore making them less susceptible to acid 
damage.  

It is likely that after the molten electrolysis the 
electrodes will need to be acid washed to remove the 
solidified salts and any impurities. Therefore, it is 
desirable to have operating conditions that produce 
larger CNTs as they will show greater resistance to acid 
and produce a higher yield overall.   

 
Product Analysis: 

Electrolysis failure was caused by the 
formation of an oxide layer on both the iron and nickel 
electrodes. Post electrolysis, it was clear to see the level 
which the molten electrolyte reached in the crucible as 
it was marked by a brown layer formed during the 
experiment. Half of the electrodes’ surface area were 
exposed to the air, and when the furnace reached 
temperatures of 800℃, the electrodes were oxidised. 
Figure 15 shows the result of oxidation. The sample 
collected from the iron cathode was composed of 
98.076% iron oxide while the sample from the nickel 
anode was composed of 96.046% nickel oxide (full 
elemental breakdown seen in Appendix Figures 19 and 
20; corresponding compositional graphs are shown in 
Appendix figures 24 and 25). 
 

 
Figure 15: Image of oxidised electrodes post electrolysis 

Raman spectroscopy was used to analyse the 
products found on the electrodes, specifically the iron 
electrode as this was where CNTs should form. The 
Raman spectra, shown in Figure 16, did not show bands 
at the same frequency as found in the commercial carbon 
nanotubes. Moreover, it did not correspond with any 
amorphous carbon forms. Therefore, carbon – and 
CNTs - were ruled out as the potential product in this 
very first experiment. Literature analysis of the bands 
obtained indicated it was a form of iron oxide. A Raman 
spectra of iron oxide is shown in Figure 1726. 

Diameter / 
nm 

D band / 
cm-1 

G band / 
cm-1 

Intensity 
Ratio 

9 - 13 1314 1599 1.39 
10 - 40 1306.5 1599 0.98 
110 - 170 1308 1582.5 1.06 
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Figure 16: Raman measurements of iron electrode product 

 
Spectrum A shows a very similar pattern to the 

one obtained from the electrolysis product, with the 
main band in an almost identical position. This 
suggested the product sample is most likely a form of 
iron oxide, specifically magnetite (Fe3O4). This can also 
explain the sudden increase in voltage observed during 
electrolysis as magnetite has a much higher resistance 
than pure iron and for a given current, will increase the 
voltage significantly.  

 

 
Figure 17: Raman of magnetite nanoparticles at laser powers: (A) 

0.35 mW; (B) 4.93 mW; (C) 8.85 mW26 
 
Future Research: 

Introduction of CO2 gas - CO2 bubbler is a 
component which injects CO2 gas into the molten salt. 
This is necessary because over time, Li2CO3 will be 
converted to Li2O as the carbon nanotubes are produced. 
Once all Li2CO3 has been converted, electrolysis will not 
be able to continue. CO2 is bubbled through the molten 
salt to continually replenish Li2CO3. Parkinson et al27. 
reported that quartz injectors were used for CH4 
pyrolysis in molten salts and can withstand high 
temperature up to 1000 °C. Safety is of utmost 
importance when dealing with high temperature 
electrolysis and flammable gases. Any CO2 bubbled 
inside the reactor must be passed through filters to 
remove possible entrained O2 and H2O. Experiments 
must be conducted to investigate the role of surface area 
to volume ratios of bubbles generated by varying the 
bubble size using different flared tips27. 

Using a mixture of carbonates – it is well known 
that using a combination of different carbonates can 

drastically reduce melting temperature of the salt. This 
is beneficial because conducting electrolysis at a lower 
temperature saves energy and therefore money. 
However, there are many areas of investigation that 
could be chosen. This includes: electrode stability in the 
chosen combination of carbonate salts, oxygen 
evolution in different combinations of carbonate salts, 
thermal balance, and morphology of CNTs produced28. 

Investigate impact of reaction temperature on 
product – the temperature of the reaction affects the 
convection currents and physical properties of the salt 
once molten. This can impact the morphology of the 
carbon product. The structure of CNTs heavily 
influences the properties and overall strength and 
usefulness in industry so must be as close to perfect as 
possible. Once a successful method of production has 
been tested, the reaction temperature should be varied to 
study the effects on the CNT structure. 
 

V. CONCLUSION  
This study has explored a potential pathway for 
electrochemically reducing CO2 in molten lithium 
carbonate electrolyte and produce CNTs. Various 
analytical techniques have been calibrated for post-
electrolysis use: STA was used to produce a calibration 
curve of lithium carbonate and lithium oxide mixtures. 
This will be compared against crystallised molten 
mixtures produced post electrolysis to quantitatively 
assess the decomposition of the carbonate during 
electrolysis, and the theoretical yield of CNT. 
Commercially available CNTs of varying diameter and 
length were analysed using Raman spectroscopy to 
provide a reference spectrum to compare all electrolysis 
products against. This will determine whether a carbon 
product was formed and how close to commercial grade 
the quality is. XRF will support identification of any 
electrode product. 

Only one full electrolysis experiment was carried 
out in this time frame and carbon nanotubes were not 
produced. Therefore, a working method cannot be 
confirmed but conclusions can still be made. Due to both 
electrodes oxidising, electrode shape is clearly an 
important factor and efforts must be made to ensure the 
electrode is fully submerged in the molten electrolyte 
throughout the running to prevent exposure to air.  
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1.  Abstract 
Clinical trials are inherently inefficient, with 90% of treatments failing to make it through the three main stages. Since 

data-sharing of Individual Patient Data (IPD) by sponsors of clinical trials is not commonplace, the ability to build and 
learn from past outcomes for similar treatments is limited. By accessing IPD and implementing Machine Learning (ML), 
factors contributing to the progression of a disease can be better understood, aiding in the progress of drug development. 
This paper details the construction of a framework for analysis and prediction of efficacy of a treatment, with a 
dichotomous outcome. The traditional approach of meta-analysis (using summary data) was implemented alongside 
building of a classification model using ML techniques (using IPD). The framework is worked through with clinical trial 
data for Rheumatoid Arthritis treatments, sourced from the Yale Open Data Access Project (YODA), with an outcome 
measure of ACR 20. Results of the meta-analyses suggested Sirukumab and combined Golimumab and MTX therapies 
have a positive effect on participants of the included trials regarding the odds of them achieving ACR 20. For the 
implementation on two trials testing Sirukumab, the ML model provides a proof-of-concept result illustrating that the 
framework can be applied to any data set. 
 

2.  Introduction  
Clinical trials are the primary way to understand the 

efficacy and toxicity of a new treatment on human 
participants. There is a high failure rate for treatments in 
clinical trials, with the four main reasons behind this 
being the lack of clinical efficacy, unmanageable 
toxicity, poor pharmacokinetic properties and lack of 
commercial interest[1] The average cost of developing a 
new drug has been estimated as $2-3billion. [2]  

Rheumatoid Arthritis (RA) is the most common form 
of autoimmune arthritis. As a lifelong, progressive 
musculoskeletal disease, RA comes with added systemic 
complications due to the side effects of often widespread, 
severe inflammation. Early diagnosis and immediate 
treatment with an effective treatment plan is key to avoid 
long-term complications. Research shows that if an 
aggressive treatment plan is started during the first 3 
months of the onset of symptoms, temporary or sustained 
remission is a realistic outcome for some patients. [3]  

Since 2003 the average time from the onset of 
symptoms to diagnosis and the beginning of treatment 
has been approximately 9 months. This can be reduced 
by improving awareness of RA for both the public and 
healthcare professionals, as well as sufficient funding for 
the treatment and diagnosis of RA. However, the chance 
of remission for each patient is bounded by their response 
to the current first and second-line treatments.  

DMARDs are the common initial treatment for RA, 
with the most popular being Methotrexate (MTX). The 
remission rates with MTX monotherapy fluctuate 
between 30% and 50% for patients with longer than 1 
year disease duration and less than one year disease 
duration respectively. [4] Typical combination therapies 
that may also be prescribed immediately after diagnosis 
consist solely of conventional DMARDs. Biologic 
DMARDs (bDMARDs) were developed in the late 
1990s, inhibiting either the proinflammatory cytokine 

Tumour Necrosis Factor alpha (TNF-α) or the 
Interleukin-6 (IL-6) cytokine. Studies show that 
combination therapy approaches employing both MTX 
and a bDMARD lead to better outcomes than MTX 
alone.[5]  The development of new drugs had been 
difficult of late, because phase III trials have commonly 
compared the trial treatment with anti-TNF drugs – 
prioritising advancing current therapeutic strategies 
rather than bringing new drugs to market. [6] 

The socioeconomic cost of RA is vast, costing the 
NHS £560m yearly (2010) and the wider economy 
£1.8billion – due to 75% of people being diagnosed are 
of working age and 1/3 of these people are estimated to 
have stopped working completely within a year of being 
diagnosed. As of 2018, Adalimumab was the single 
medicine on which hospitals in the UK spent the most, at 
a cost of £400m a year. [7] bDMARDs are considerably 
more costly than conventional DMARDs.  

Since the cause of RA is unknown, and the prognosis 
guarded, the development and deployment of 
therapeutics is based solely in the understanding of the 
pathogenesis of the disease.[8] 

The aim of this project is to evaluate the efficacy of 
common RA treatments, Golimumab and Sirukumab, 
through a meta-analysis of selected trials from the Yale 
University Open Data Access (YODA) Project using the 
efficacy measure ACR 20.  Then to build a framework 
using Machine Learning (ML) to predict the efficacy of 
Sirukumab based on clinical and demographic factors. 
This has the potential for expansion to consider other 
bDMARDs and combination treatments for RA to foster 
a more data-led understanding of the efficacy of RA 
treatments. 

Meta analysis has been used for decades to pool 
results of several studies – reducing bias and increasing 
statistical power compared to individual trial outcomes. 
Key requirements for success are a carefully considered 
analysis of study heterogeneity and robust inclusion  

325



2 
 

Table 1: Inclusion criteria  
 
criteria, to ensure the power of the conclusions from the 
pooled result, using either a fixed or random-effects 
model.  

Big data and ML is undoubtedly a force for change 
within the pharmaceutical industry and medicine, with 
McKinsey forecasting up to $100 billion in yearly value, 
in part due to enhanced decision making. [9]Compared to 
the prevalence of meta-analysis in studies on efficacy for 
treatments of RA, ML is scarcely explored. Other 
examples of the use of ML in medicine use include 
predictions of interactions between drugs, analysis of 
medical images and patient monitoring.[10] Formulation 
of a classification model for systematically predicting the 
efficacy of anti-cancer drugs using proteomics and 
phosphoproteomics data has been completed with high 
accuracy.[11] Such models are valuable especially for 
progressive conditions, allowing the most therapeutically 
and economically effective treatment be delivered first to 
allow the best prognosis possible for the patient.  

Shared information from clinical trials is typically 
limited to summary data at most. Of late there has been a 
strong movement for sharing individual patient data 
(IPD) for research purposes, as well as allowing 
researchers to work more efficiently by building on 
previous findings. [12] 

3.  Methodology 
3.1.1 Step 1 – Data collection  

In this paper, the Yale University Open Data Access 
(YODA) [13] project is used to access summary data of 
various trials researching drugs treating RA. Information 
on each trial can be gathered to make informed decisions 
on trials to use in the analysis. Summary level data is 
generally shared online but to access individual level 
patient data (IPD) via projects such as YODA or through 
individual sponsors must be made. 

An inclusion criterion is important for selecting the 
trials for analysis. For meta-analysis, efforts should be 
made to ensure the included trials are similar enough in 
factors such as reported outcomes, study design and 
exposure of interest so that the pooled effect can offer 
insight into the field of study. For machine learning, the 
inclusion criteria should ensure that the trials analysed 
are of the same drug to understand the efficacy for certain 
patient individuals. The minimum inclusion criteria used 
is outlined in Table 1.  

3.1.2 Step 2 – Meta-Analysis  
The summary measure carried forward through the 

meta-analysis section is the odds-ratio, as unlike the risk 
ratio it can be used in case-control studies, so has a wider 
scope. 

To conduct a meta-analysis using the odds ratio as a 
summary measure, the only quantitative data needed is 
the sizes of the placebo and treatment group as well as 
the number of participants from each exposure group that 
experienced the outcome of measure, for example ACR 
20. For each exposure-placebo group, the Table 2 was 
populated using summary data gathered at the time of 
measurement of ACR 20: 

 Exposed Non-Exposed 
Achieved ACR 20 a b 
Did not achieve 
ACR 20 c d 

Table 2: Outcome table for each trial 
 

Using the information in Table 2, a sample estimate 
of the odds ratio can be calculated as: [14] 

 
𝑆𝑎𝑚𝑝𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =

𝑎 × 𝑑
𝑏 × 𝑐

 (1) 

3.1.2.1 Confidence Interval for the Individual Studies 
The confidence interval (CI) describes the uncertainty 

associated with the estimation of the odds ratio for each 
individual study and for the summary, estimates 
following the fixed and random-effect meta-analysis 
methods. For the individual studies, it is mostly 
dependent on the size of the study – with smaller studies 
having larger CI’s due to their inherently less precise 
estimates of effect size. The CI’s associated with the 
summary odds ratios are dependent on the number of 
studies considered and their individual precision of 
estimation. 

The upper and lower limits for the 95% CI (UL and 
LL respectively) for the individual trials are calculated 
using equation 2 and 3 respectively [15]. 

 
 

𝑈𝐿 = exp (𝑙𝑛(𝑂𝑅) + 1.96√
1
𝑎

+
1
𝑏

+
1
𝑐

+
1
𝑑) (2) 

 
 

𝐿𝐿 = exp (𝑙𝑛(𝑂𝑅) − 1.96√
1
𝑎

+
1
𝑏

+
1
𝑐

+
1
𝑑) (3) 

 
If the calculated confidence interval of the odds ratio for 
a trial contains only values greater than 1, this suggests 
that there are greater odds of experiencing the outcome 

Factor Description  
Exposure of Interest Participants must be experiencing RA during the study duration. 
Participants Restrict to only studies with an all-adult population (18+). This is the case for all of the studies 

for RA treatment in the YODA database. 
Reported Outcomes All trials must report at least one ACR20 measurement. The meta-analysis included trials with 

ACR20 measurements taken in the window between Week 14 and Week 16. 
Study design Trials included contained the same dosage of the treatment and a well-defined placebo group 

that received only placebo treatment until the ACR20 measurement has been taken.  
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measure for the treatment group compared to the placebo 
group. 
3.1.2.2 How Fixed and Random effect models differ 

Both fixed and random effect models were considered 
in the meta-analysis as it can be efficiently executed 
using the PythonMeta package. The most appropriate 
model can be decided using the I2 statistic, a measure of 
the inconsistency across studies (the percentage of 
variation across studies that is due to heterogeneity). [16] 

 
 𝑄 =  ∑ 𝑊𝑖(𝑌𝑖 − 𝑀)2 = ∑ (𝑌𝑖−𝑀)2

𝑉𝑖

𝑘
𝑖=1

 
𝑘
𝑖=1   (5) 

 
 

𝐼2 =
𝑄 − 𝑑𝑓

𝑄 × 100% (6) 

Where 𝑌𝑖: effect size estimates, M: mean of the effect size 
estimates, k: number of studies included in the meta-
analysis. 

If I2 is less than 50% then a fixed-effects model may 
be more appropriate as it indicates only small 
inconsistency between study results, and the studies are 
considered homogeneous. [17] The fixed-effect model 
assumes that the only variance in the odds ratio between 
trials is due to the within-studies estimation error, 
whereas the random effects model assumes normally 
distributed odds ratios and aims to estimate the mean of 
a distribution of effects. Compared to the fixed effect 
model, the random-effect model is more likely to assign 
smaller studies higher weights. 

The fixed and random effect models answer different 
questions. By obtaining a summary OR and CI for the 
fixed-effect model, the question at hand is ‘What’s the 
best (single) estimate of the effect?’ whereas with the 
random-effects model the question is ‘what is the best 
estimate of the average effect?’ due to assumptions 
surrounding between-study heterogeneity. [17] 
3.1.2.3 Fixed Effect Model 

The Maentel-Haenszel (MH) method for calculation 
of the odds ratio is used for estimation of the standard 
errors of the effect estimates under the fixed effect model. 
This is a good alternative to the commonly used inverse 
variance method which tends to perform poorly in the 
case low event rates or small study sizes. [17] The MH 
method’s approach to weighting is different depends on 
the effect measure being used, which is not the case for 
the inverse variance method. 

The pooled odds ratio estimate by the MH method is 
generated using the following formula: 

 

 
Where 

 

And the corresponding 95% CI is found using the Robins, 
Breslow and Greenland variance formula. [18] 

 
DerSimonian and Laird method for Tau 

The random-effects model requires the calculation of 
τ2, the between-study variance. This originates from the 
heterogeneity in effect size alongside the within-study 
estimation error. 

An estimation of τ2 was completed using the 
DerSimonian and Laird (DL) method , chosen as it is well 
documented compared to its counterparts[19]. The DL 
method overestimates τ2 on average and can incur 
substantial bias when the number of studies is small. The 
summary odds ratio and 95% confidence interval can be 
calculated for the random-effects model as outlined in the 
paper ‘A simple confidence interval for meta-analysis’. 
[20] 

3.1.3 Step 3 – Machine Learning 
3.1.3.1 Gathering clinical trial data  

Figure 1: A flowchart of steps of applying ML to analyse clinical trial 
data 

The IPD should be gathered for each included trial. 
However, in the absence of IPD, a pseudo-population can 
be generated from summary data to represent the patient 
demographic and outcome data. The following 
demographic input variables are populated: trial (drug of 
choice), dosage (mg), frequency (of drug administration), 
previous use of anti-TNF therapy, age, and gender. The 
output measure used in this paper is whether the patient 
achieved an ACR20 response at week 16. It is up to the 
user’s discretion to change this output accordingly.  

For continuous variables such as age, a random normal 
distribution can be generated, with the standard deviation 
and mean as the ones listed in the summary statistics for 
that variable. To generate the categorical variables such 
as gender, use a random uniform distribution to generate 
a number between 0 and 1 in the same proportions as the 
variable’s summary statistic. 

In this project, country of origin is represented as 
individual features with binary inputs. It is felt that by 
assigning numbers 1-n to a ‘n’ countries may cause the 
model to interpret some countries more important than 
others based on the order of the list. 

 

 𝑑𝑓 = 𝑘 − 1 (4) 

 

𝑂𝑅̂𝑀𝐻 =
∑ (𝑎𝑖𝑑𝑖

𝑛𝑖
)𝑘

𝑖=1

∑ (𝑏𝑖𝑐𝑖
𝑛𝑖

)𝑘
𝑖=1

 (7) 

 𝑛𝑖 =  𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖 (8) 
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3.1.3.2 Pre-processing 
Scaling 

Scaling data is a standard procedure in machine 
learning. A standard scalar is used which scales the data 
to unit variance and centres the data around 0. Many 
algorithms benefit from the process of scaling, for 
example, gradient based algorithms such as XGBoost or 
distance-based algorithms such as KNN. [21] 

The input features to describe a patient were fed into 
a dataset labelled as ‘X’ and the output of choice, in this 
case ACR20, fed into the dataset labelled as ‘y’. Both 
datasets are then split into test and train datasets using an 
80:20 split (train:test).  
Feature selection  

Feature selection is used to make ML models more 
accurate. It can help decrease over-fitting of data as it 
helps to decrease the chances of making decisions based 
on noise.[22] As feature selection removes redundant 
data, it helps decrease training time which is important 
for models when using large training datasets. As this is 
a framework, the scope to optimise is an important 
consideration so that the model can be applied to a range 
of datasets with varying size.  

There are a few methods that are commonly used for 
feature selection. Lasso regression was chosen in this 
project due to its speed, effectiveness, and widespread 
use across ML projects. Lasso (Least Absolute Shrinkage 
and Selection Operator) regression, also known as L1 
regularisation is a technique used to tune the model by 
adding a penalty to the error function.[23] The penalty 
used is the sum of the absolute value of the feature 
coefficients. L1 regularization introduces sparsity in the 
dataset, and it can use to perform feature selection by 
eliminating the features that are not important. This is 
done by shrinking the coefficients of each feature, with 
those having a coefficient of 0 being redundant features 
that can be removed from the datasets containing them.  

PCA analysis  
Principal component analysis (PCA) is an 

unsupervised, non-parametric statistical technique for 
dimensionality reduction in ML and was invented by 
Pearson in 1901. [24] The technique involves mapping 
feature information onto a new dimension transforming 
them to principal components (PC). Clustering is a type 
of classification and one way to perform this analysis is 
by applying PCA. It is technique that transforms data 
with many dimensions to a fewer number of dimensions 
whilst retaining as much information as possible. PCA 
uses orthogonal linear transformation to project the data 
onto a new coordinate system so that the greatest variance 
by some scalar projection of the data comes to lie on the 
first coordinate or first principal component. The second 
greatest variance is the second coordinate and so on. [24] 

The graph produced can be visually analysed to spot 
the different clusters, representing the classes. PCA is 
used to confirm the number of classes in our dataset to 
allow confidence in the progression to the next step. 

PCA can also be used as an outlier detection method. 
Datapoints not grouped close to any specific clusters can 
be identified and investigation can be performed to 
understand why, on an individual patient level, these 
patients are outliers. If such patients are deemed outliers, 
they may be removed from the dataset.  
3.1.3.3 Model selection 

Nine common ML algorithms considered for the 
model are briefly explained in Table 3. Despite the 
possibility that more complex models, such as deep 
neural networks may be more accurate, they are more 
complex and harder to explain– so less accessible for our 
audience. Such models were not considered to be used in 
this framework. This trade-off between accessibility and 
accuracy is justified to ensure uptake of ML in clinical 
trial data analysis. ML is still in the adoption phase for 

Model Name Description  
kNN Pattern recognition algorithm. A datapoint from the testing set is classified by looking at the 

classification of the training set and finding the ‘k’ closest relatives. Inherently performs feature 
selection – well suited to large datasets with high dimensionality.  

Linear SVM Supervised learning algorithm, parametric model. Uses the training data to find an optimal 
hyperplane which can be used to classify the test set data points. 

Logistic 
Regression 

Finds a logistic curve using maximum likelihood, as the y value is a binary outcome.  

Kernel SVM This model is not parametric. Works similarly to linear SVM however now fits data that is not linearly 
separable. More expensive to train than the Linear SVM, ad as it is more complex it is easier to overfit 

XGBoost Implements the gradient boosting decision tree algorithm – new models are created to predict the 
errors of previous models and correct the models. All are added together to make a final prediction. 

CatBoost Similar to XGBoost, although only builds symmetric trees, uses ordered boosting and supports more 
feature types other than just numerical and categorical– saving time on pre-processing  

Random 
Forests 

An ensemble technique - extension of a decision tree algorithm. Constructs many decision trees with 
the training set, then for your test data to the closest tree on the data scale.  

Decision 
Trees 

Supervised learning algorithm. Separates data points into two similar categories at a time, building a 
flowchart where the categories become more finally similar as you move through the layers  

Naïve Bayes Calculates the probability of the datapoint being in each class using Bayes Theorem.  
Table 3: Brief explanation of 9 common machine learning algorithms [36]–[41] 
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clinical trial analysis, it is important for the ML models 
chosen to relatively easy to understand. 

Scikit-learn, a Python library, is the main package 
used in this paper and to pick the most suitable estimator, 
their documentation suggests that for classification 
models of less than 100,000 samples, to try use a Linear 
SVC model. If this does not work or is deemed 
unsuitable, as long as the data is numerical, to try using 
K Neighbours Classifier and again, if this does not seem 
suitable to use SVC or ensembles like random forest 
classifiers. [25] 

Each algorithm is trained using the training dataset 
and the test set is uses this trained algorithm and its 
effectiveness can be measured by generating an accuracy 
score. Accuracy is calculated using equation 9 [21] 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 (9) 

 
Where TP: true positive, TN: true negative, FP: false 
positive, FN: false negative prediction. 

A k-fold cross validation of with 10 folds (k=10), 
generates scores to validate the accuracy of the training 
set. The data is split into ‘k’ different sample datasets. 
The model iterates a process of training and testing on the 
data in each sample dataset generating an accuracy score 
for each iteration. An average accuracy score is 
calculated and outputted, as well as its standard 
deviation.  
3.1.3.4 Model development 

Once an algorithm is chosen, the next step is to tune 
the hyperparameters. In this paper, three algorithms are 
chosen to tune and to have the results of the tuning 
compared, with the view to picking the model with the 
highest test-set accuracy score. It is at the user’s 
discretion how many algorithms to choose to compare. 
Three are chosen to show a wide view of possible 
algorithms and how they can be compared, and how their 
accuracy scores can change by tuning the 
hyperparameters. 

A list of all hyperparameters can be found in the 
documentation for each algorithm issued by the 
developers of the package it is contained within, so that 
they can be included in the model for tuning. A random 
search is used initially to explore a wide range of 
hyperparameters, and it implements a fit and score 
method. [26] Following this, a more specific and 
exhaustive grid search can be applied to find the optimal 
values of the hyperparameters. This method of using 
random search followed by grid search is useful, as grid 
search applies the model for every combination of 
parameters and can be inefficient to start with, whereas 
random search can be used before it to narrow down the 
search and improve efficiency. The optimal parameters 
can then be applied to the model and a new set of 
accuracy scores can be found. This should be repeated for 
each model. 

3.1.3.5 Model evaluation  
Another way of evaluating a model other than the 

accuracy scores as presented above, is analysis of 
receiver operating characteristic, ROC, curves. They are 
probability curves which visualise the trade-off between 
the true positive rate and false positive rate for a 
predictive model using different probability thresholds. 
The area under the curve, AUC, represents the degree or 
measure of separability. The best-case scenario, when 
AUC = 1, is when the model chooses the randomly 
positive instance higher than a randomly chosen negative 
one. [27] 
3.1.3.6 Prediction 

Once a model has been chosen and optimised, the 
reader is able to then predict the efficacy of a drug for a 
certain patient based on their individual characteristics.  

4.  Results & Discussions  
4.1 Meta–analysis  

(a) 

(b) 
Figure 2: A forest plot representing, (a)Intervention with Golimumab 
(+MTX) 50mg q2w (b) Intervention with Sirikumab 100mg q4wm with 
ACR20 measured at week 16. 
 

From the 20 studies available related to RA available 
on the YODA database, 16 were removed as per the 
inclusion criteria outlined in Figure 2. The remaining 
trials contained 1991 participants and were split into two 
subsets for meta-analysis as they tested different 
treatments, Golimumab (Study ID Numbers CR005263 
and CR005263) and Sirukumab (Study ID Numbers 
CR100864 and CR100866). [28]–[31]All trials provided 
dichotomous data for the instances of achievement of 
ACR 20 in both the placebo and treatment groups, listed 
as percentages. 

For a combination treatment of Golimumab (50mg 
dose every 2 weeks) and MTX, the results of the meta-
analysis method suggest that compared with placebo, the 
treatment method has a positive effect on the odds of 
achieving ACR 20 in both trials. Overall, under the fixed-
effect model, the OR was 2.4 with a 95% confidence 

OR     95% CI 
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interval of [2.2, 2.83]. There was minimal heterogeneity 
between the trials implying that the use of the fixed-effect 
model is more appropriate, in this case. Since only 2 trials 
were included, the difference in the combined odds ratios 
achieved by the two methods is small. 

Usage of a monotherapy of Sirukumab (100mg every 
4 weeks) exhibits that treatment had a positive effect 
compared to placebo, in both trials. Small differences 
between the odds ratio across two trials is likely due to 
within study error. Under the random-effect model, the 
OR was 2.94 and there was a 95% confidence interval 
around this of [2.38, 3.6]. Similarly to the Golimumab 
and MTX combined therapy, the combined effect of 
Sirukumab compared to placebo is positive with regards 
to ACR 20. The random-effect model was employed here 
due to the calculated I2 score of 67.51% (>50%). This 
moderately high I2 statistic brings uncertainty as to 
whether the studies in this meta-analysis can be 
considered from the same population. Subgroup analysis 
could be employed to explore this further. As expected, 
the confidence interval for the combined effect size 
calculated using the random-effect model (3.6) is wider 
than that of the one calculated using the fixed-effect 
model (3.33), as there is a higher degree of heterogeneity 
between trials. There is little difference between the 
combined odds ratios for both methods, with the random 
and fixed effect method resulting in 2.99 and 2.93 
respectively.  

In both meta-analyses, the random-effect model 
placed more weight on smaller trials. The combined 
effect sizes for both methods in each meta-analysis are 
very similar. Therefore, higher weights on small studies 
have had little effect on the combined effect size 
estimate.[31] In calculating the combined effects for 
Figure 2a, the ratio of weights for CR005263 to 
CR006343 was 0.37 for the fixed-effect model compared 
to 0.90 for the random-effect model. Here the fixed-effect 
ratio more closely aligns with the ratio of trial size, 0.32, 
as expected. 

A similar story played out for the calculation of the 
combined effects in Figure 2b, with the ratio of weights 
for CR100864 to CR100866 of 0.52 for the fixed-effect 
model compared to 0.73 for the random-effect model. 
Again, the fixed-effect model aligns with the ratio of trial 
size (0.53) more closely, and the difference between the 
ratio of random-effect weights is closer to the size ratio 
for this meta-analysis as the size ratio is larger. The meta-
analyses suggest that both therapies have a positive 
overall effect on the number of participants achieving 
ACR 20. This is in agreement with earlier meta-analyses 
conducted by Aaltonen et al.[32]  

Overall, the efficacy of the treatment methods is 
clear, however this global analysis does not consider why 
such therapies may be more effective on one participant 
compared to another. A personalised level analysis using 
ML is valuable for understanding differences in efficacy. 

4.2 Machine learning  
In this paper, the trials CR005263 (trial 1) and 

CR006343 (trial 2) were chosen using the inclusion 
criteria and are used for analysis using machine learning. 
4.2.1 PCA 

(a) 

(b) 
Figure 4: Two PCA plots to show the clustering of datapoints. (a) PC2 
vs PC1, (b) PC3 vs PC1  

 
In this classification application, there are 2 classes: 

patients from trial 1 and patients from trial 2. Generating 
a PCA plot is helpful to confirm that the class information 
is valid and to identify if the data contains more than the 
expected number of classes. In Figure 4, 2 classes are 
observed (with some outliers). If it was clear there were 
more clusters than expected, this would require further 
investigation. In this case, what is observed matches the  
prediction (2 classes present), and the next step can be 
taken.  

It is worth noting that with IPD it is worth 
investigating outliers and potentially eliminating them 
from the dataset to avoid overfitting of the model later on 
in the process. However, since a pseudo-population was 
analysed, it was not deemed necessary to eliminate 
outliers in the interest of retaining all data, to ensure the 
methods remain general for use with different datasets.  

Total variance is lower than expected at 16% which 
is less than the expected total variance for PCA analysis 
which is usually between 70-80% [33]as this is a 
randomly generated pseudo population these results are 
not expected to be comparable to IPD from a clinical trial. 
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4.2.2 Feature selection 

After performing L1 regularisation on our data, we 
found that the following features had a coefficient of 0: 
frequency of dosage and the countries Bulgaria, Chile, 
Japan, Poland, Puerto Rico as seen in Figure 3.  These 
features were then removed from the ‘X’ dataset and the 
dataset was split again into test and train groups. Reasons 
why only certain countries are redundant are not explicit, 
as in generating the pseudo-population, the generated 
ACR20 binary outcome is independent of the generated 

 

 
 
country. This discounts the possibility of environmental 
factors affecting the presentation of RA symptoms. If 
IPD was applied to the model, we might expect more 
obvious correlation between countries with colder 
climates, for example, and the outcome measure ACR 20. 
However, country data is not necessarily representative, 
as many countries have a vast difference in climate 
depending on location within the country, and the 
duration of time a participant has been living there can 
vary. It would have been valuable to have had ethnicity 

Model Name 
Training set 
accuracy 

Cross-validation 
accuracy mean 

Cross-validation accuracy 
standard deviation Test set accuracy 

kNN 71.88 56.77 2.25 58.63 
Linear SVM 60.40 58.44 2.83 58.24 
Logistic Regression 61.29 59.03 3.42 58.04 
Kernel SVM 63.98 58.00 3.05 57.25 
XGBoost 66.98 59.33 2.28 57.25 
CatBoost 74.09 59.57 2.38 56.67 
Random Forests 100.0 55.40 4.56 54.31 
Decision Trees 100.0 52.95 2.13 54.12 
Naïve Bayes 42.15 41.41 1.07 43.73 
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Figure 3: Feature selection graph showing the features importance based on L1 or Lasso regularisation. Features on the x axis sorted from left 
to right, highest coefficient to lowest.  
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Figure 5: ROC graphs for logistic regression (a), Linear SVM (b), KNN (c) with AUC scores shown 

 

Table 4: Accuracy scores using different algorithms based on the pseudo-population dataset. The table is sorted from highest to lowest test 
accuracy 
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data also, to grasp the effects of nature and nurture on the 
presentation of RA. Country data was included in this 
project as summary data is limited and so all information 
was used. 

Dosage (mg) had the greatest magnitude of 
coefficient. This is likely because both trials have 3 
groups of dosage groups: 0 (placebo), 50 and 100mg. 
Therefore, there was variance in the dataset that led the 
model to be the most sensitive to dosage. Frequency of 
dosage is a redundant feature as both trials used had the 
same frequency of drug administration of 2 weeks. In this 
case, as all frequency data points have the same value, it 
will not influence the model and this result confirmed this 
prediction. If this process was applied to trials with 
varying frequency of dosage, this may not be the case. 
Thus, it is worth keeping this feature in the dataset as the 
trials having the same frequency of dose administration 
may not always be the case. 
4.2.3 Model evaluation 

As can be seen in Table 4, by using the default 
hyperparameters for each algorithm, kNN had the highest 
test accuracy score and Naïve Bayes had the lowest.  

The training set accuracy score was 100 for random 
forest and decision trees classifiers, indicating the models 
had overfitted the training data. To avoid this, one can 
look to increase the number of samples or decrease the 
number of features in the dataset. All test set and cross 
validation scores were low (below 60), suggesting all 
models underfitted the testing data. Scores under 60 are 
generally considered poor.[34] Low scores can be 
anticipated in this application since the pseudo-
population dataset, being randomly generated, did not 
inherently contain any patterns for the model to find. As 
this is a proof-of-concept project, this example with a 
pseudo population is not representative of how well the 
models would perform with real data.  

Each cross validated score in Table 4 shows 
underfitted scores. The standard deviation was small for 
each cross validation (less than 5), showing that each 
model performed quite consistently.  

kNN, linear SVM and logistic regression were chosen 
to move onto the next step of tuning the hyperparameters 
to optimise the model and to increase the accuracy scores. 
A random search is employed followed by a grid search 
to attain the optimal parameters. Here it was found that 
tuning had no effect on the randomly generated pseudo 
population dataset, and no higher accuracy score was 
achieved for any model we attempted to tune.  

It is important to evaluate the type of data the 
algorithm will be working with and the context of the 
application of the model. For example, some ML 
algorithms are complex such as deep neural networks but 
algorithms such as logistic regression or KNN are less so. 
For this framework, ease of understanding is important to 
ensure accessibility and ease of use for all. If there are 
technical barriers in providing research teams these tools, 
it will be expected that it will not be taken up as readily. 

4.2.4 Predictions 
This ML framework is designed to allow predictions of 

the efficacy of a drug based on certain patient 
characteristics. Whilst it is not applied in this proof-of-
concept project it is the aim that the reader will be able to 
apply the model to their datasets of choice.  

Predictions could be made to analyse the importance of 
features within clinical trials and a more specific 
selection criterion for patients can be made to avoid 
unnecessary time spent on feature selection. 
Additionally, by introducing a non-subjective tool into 
the allocation of treatment, it could help to reduce bias 
and help find the most suitable medication for a patient 
quicker. This improvement of efficiency on a larger scale 
and would lead to a reduced cost in the overall healthcare 
system. The next step after this project would be to 
implement the ML framework with IPD from YODA. 
4.3 Limitations  

At the beginning of this project, a research proposal 
was submitted to YODA detailing our project title, aims 
and methods and the sponsors of the trials, GSK and 
Jansson Pharmaceutics were also contacted. Due to time 
constraints, the IPD access was not granted in the 
timeframe of this project from YODA. Restrictions 
outlined in the sponsors’ internal policy meant that they 
were not able to disclose patient level data. 

This presented a unique challenge and allowed 
exploration of generating pseudo-populations for trials 
using summary data which is readily available on the 
YODA website. Randomly generating demographic and 
outcome data results in lower accuracy scores than what 
one could expect when IPD is fed into the framework. An 
advantage of the lack of access to IPD means the 
resulting framework is more general, and robust for 
different study designs.  

ACR 20 has a low threshold of response, arguably an 
ACR50 or ACR70 score would speak more about the 
drugs efficacy and is what should be aimed for to 
significantly improve quality of life for patients. 
However, there is a trade off as the size of the groups 
achieving ACR50 and ACR70 are likely to be 
considerably smaller than those chieving ACR 20, 
meaning a larger percentage error in measures such as the 
odds ratio. ACR20 being a dichotomous measure is 
arguably too high-level as it does not incorporate 
information about the relative improvement of different 
symptoms for the patient in the trial. It would be better to 
use the measure ‘bdACRhybrid’, as proposed by the 
American College of Rheumatology in 2009.[35] This 
measure is much more sensitive to change, incorporates 
a requirement for joint count improvement and preserves 
the ACR20/50/70 system so can be analysed alongside 
trials which just use ACR20, for example. 

Due to the lack of comparable studies within the 
YODA database for RA, the number of trials included in 
each meta-analysis is smaller than what is typical in other 
systematic reviews. The strength of the assumptions 
involved in meta-analyses can come into question with a 
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small number of trials, especially the strength of 
decisions because of the I2 statistic. Ideally there would 
be a higher degree of homogeneity between trials for the 
same treatments to increase the ability to pool their 
results; this is an argument for a higher degree of data 
sharing in the pharmaceutical industry which would offer 
a greater scope for discovering new insight using clinical 
trial data. 

5.  Conclusion 
In conclusion, two different methods were used to 

analyse multiple clinical trial data. The traditional 
method of meta-analysis is implemented to analyse 
global level data on the RA drugs Golimumab and 
Sirukumab to understand treatment efficacy. In using this 
technique, it was found from the trials studied that there 
are greater odds of achievement of ACR20 in the exposed 
vs the placebo groups. 

The technique of machine learning was then used to 
analyse patient level data. Whilst the ML aspect of this 
project is not results based, a proof-of-concept result is 
provided based on clinical trial data for the RA drug 
Sirukumab and have shown that this framework can be 
applied to any data set. The concept of applying machine 
learning for analysing clinical trials is a growing field of 
work and it is hoped that this continues forward to help 
develop the efficiency of the process of clinical trials and 
the general healthcare industry in terms of time and 
capital investment. As discovered during this project, 
accessing patient level data can be a significant limitation 
in the implementation of ML in analysing clinical trials. 
This project has shown the potential of ML and how it 
can be incorporated into clinical trial analysis, as it 
improves the understanding of treatment effect 
heterogeneity by studying the relationships between 
demographic factors and the outcome ACR 20. 
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Abstract 

Speciality chemicals for use in personal care products and cosmetic formulations, can be derived from vegetable 
oils and have the potential to replace traditional petrochemicals. Cocoyl ester betaine (CEB) is an amphoteric 
surfactant with use in cosmetic products that can be produced in a two-step process. This study investigated the 
first step, which is a transesterification of either coconut oil triglycerides or fatty acid methyl esters (FAME) 
with 2-dimethylaminoethanol (DMAE). This produces a coconut fatty acid DMAE ester (CFADE) intermediate 
desirable at high purity for subsequent reaction. The product was characterised using 1H-NMR confirming 
formation of CFADE. Transesterification using oil and FAME substrates were compared using a microwave 
reactor which afforded product samples with only 51.1 and  32.5 % CFADE content for oil and FAME 
respectively at stoichiometric reactant ratios. Following the estimation of equilibrium constants, the severe 
limitations were revealed which led to investigations into shifting the position of equilibrium by varying the 
excess of DMAE. This method offered improvements but required molar excesses of over 5 (for FAME) and 10 
(for oil) to approach 100% purity. Methanol, the by-product of transesterification of FAME and DMAE was 
continually removed using vacuum distillation. Over 96% purity was obtained at a 2:1 DMAE to FAME molar 
ratio operating at 50 mbar and 60ºC. 
 

1. Introduction 

Mineral oil derived from petroleum has been an important 
raw material in the chemical industry since the 1940s. 
However due to finite petrochemical sources and an ever 
increasing demand for environmentally friendly processes, 
natural fats and vegetable oils have garnered attention as a  
feedstock for the production of oleochemicals utilised in 
products such as pharmaceuticals, cosmetics and detergents.  
Compared to their petroleum counterparts, vegetable oils 
have economic and ecological advantages. They display low 
toxicity, are biodegradable and can be obtained from 
renewable resources.  The use of vegetable oils in the 
chemical industry also opens up the pathway to new synthetic 
routes not previously accessible (Baumann et al., 1988). 

Another common use of vegetable oils is for the 
manufacturing of biodiesel by a process called 
transesterification, converting triglycerides into fatty acid 
methyl esters (FAME) as seen in Figure 3. FAME 
additionally serves a role as an intermediate for conversion 
into other products. Using FAME in synthesis pathways is 
sometimes preferrable to vegetable oils for reasons such as 
them having lower viscosity and fewer impurities 
(Belousov et al., 2021). 

In the beauty and personal care industry, specialty 
chemicals derived from vegetable oils can have roles in 
cosmetic formulations such as thickeners, emollients and 
surfactants. The fatty acid profiles of the parent vegetable 
oils determine their physiochemical characteristics, 
available reaction pathways and the properties of the final 
product. For example, ricinoleic acid found in castor oil has 

hydroxyl functionality, which also enhances its emollient 
properties. Coconut oil in particular is an excellent 
feedstock due to its high lauric acid content (C-12:0), 
giving it good foaming properties and making it suitable to  
make surfactants from (Boateng et al.,2016).  

Surfactants are molecules that lower the surface energy 
between interfaces such as those between oil and water 
which are prevalent in many cosmetic formulations. They 
have roles such as emulsifiers or foaming agents (Yea et 
al., 2021). Surfactants are made up of a hydrophilic and 
hydrophobic group and can be categorised according to the 
chemical nature of its polar part. These categories consist 
of anionic, cationic, amphoteric and non-ionic surfactants 
(Hayes & Smith, 2019). 

A large majority of the surfactants used in industry are 
petroleum derived further motivating research in the field 
of biosurfactants, by which the hydrophobic portion can be 
substituted with bio-based carbon (Van Bogaert et al., 
2007) 

 
2. Background 

Betaines are an important class of chemicals employed as 
amphoteric surfactants in many personal care products such 
as shampoos and liquid soaps. These molecules are 
zwitterionic and are characterised by their quaternary 
ammonium (NH4

+) and carboxylate (COO-) group 
(Clendennen & Boaz, 2019). Alkyl betaines (Figure 1.A) 
and especially alkyl amido betaines are two amphoterics 
used widely commercially. The hydrophobic tail groups of 
alkyl betaines are typically produced from an alkyl 
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dimethyl amine feedstock derived from petroleum sourced 
alpha olefins. The alkyl dimethyl amine can also be 
synthesised from fatty alcohols, either petro- or oleo- 
derived (Shah et al., 2016). 
On the other hand, alkyl amido betaines obtain their  
hydrophobe from oleochemical fatty acids. Alkyl amido 
betaines are produced industrially by reacting fatty acids or 
esters of fatty acids with a linker molecule. In the case of 
cocoamidopropyl betaine (CAPB) (Figure 1.C), coconut oil 
fatty acids or fatty acid esters first undergo amidation with 
the linker molecule 3-dimethylaminopropylamine 
(DMAPA) (Figure 1.B). The amide intermediate is 
subsequently reacted with  monochloroacetic acid (MCA) 
to form the final product.  CAPB has become an essential 
surfactant since the 1960s (Floyd & Jurczyk, 2008) with 
3,328 personal care and cosmetic products containing it as 
of 2022, according to EWG’s Skin Deep database. Previous 
studies report that the amidation step requires high 
temperatures in the ranges of 120-160 ºC  (Herrwerth, 
2008) and 150-180 ºC (Clendennen & Boaz, 2019). Alkyl 
amido betaines possess an amide bond which can be broken 
down and biodegraded by natural enzymes, making it 
superior in terms of environmentally friendliness to alkyl 
betaines (García, Campos & Ribosa, 2007).  

 

 
Figure 1: Molecular structures of Alkyl betaine, DMAPA and CAPB(alkyl 
amido betaine), where R is a fatty acid chain with lipid numbers between 
(8:0) and (14:0) 

 
This study focuses on the synthesis pathways for cocoyl 

ethyl betaine (CEB) (Figure 2) which falls under a class of 
betaine called ester betaines and are characterised by their 
ester bond. CEB is also derived from coconut oil but while 
the hydrophobic tail groups for CEB and CAPB originate 
from the same feedstock, the key difference between the 
two is the linker molecule used. A study tested subjects 
sensitive to CAPB, with 1% DMAPA, resulting in all 
subjects displaying allergic reactions (Foti et al., 2003). For 
this reason, a CAPB-like surfactant using an alternative 
linker is desirable for the portion of the population allergic 
to CAPB. DMAE which contains hydroxyl functionality is 
a good option as the tertiary amino group is sterically 
hindered, reducing nucleophilicity towards the carbonyl 
group of the fatty acid ester as the reaction is a 
transesterification. The 2-carbon alkyl chain between the 
amino and hydroxyl group, further increases 
nucleophilicity of the hydroxyl group (Nagumalli, Jacob & 

Gamboa, 2020).  CEB also has the biodegradable properties 
of CAPB, as the ester bond readily undergoes hydrolysis. 
The ammonium group withdraws electron density, making 
the ester carbonyl prone to attack from nucleophiles 
(Hellberg, Bergström & Holmberg, 2000). 

 
Figure 2: CEB molecular structure 

 
CEB has very similar applications and properties to 

CAPB but have been reported significantly less extensively 
in literature and could not be found in any commercial 
products listed on EWG’s Skin Deep’s database. CEB has 
previously been made in a two-step process using ethyl 
esters of coconut oil fatty acids as the substrate. The fatty 
acid ethyl esters were first reacted with DMAE in an 
enzyme catalysed transesterification process. The second 
step is a reaction of the ester intermediate with MCA, and 
is analogous to the CAPB process (Burk et al., 2016).  

An economical industrial process for CEB that has 
milder transesterification conditions than the amidation in 
the production of CAPB is desirable, as it would have 
lower costs and environmental implications. Additionally, 
bypassing the initial conversion into fatty acid esters and 
performing DMAE transesterification with coconut oil to 
form high purity ester intermediate would reduce the 
number of required processing steps, resulting in the same 
advantages. 

This study carries out an investigation into the 
transesterification of FAME and coconut oil to form 
coconut fatty acid DMAE esters (CFADE). 
 
3. Methodology 

3.1 Chemicals 
Sodium methoxide powder (95%, CH3NaO) and 2-
dimethylaminoethanol (>99.5%, C4H11NO) were purchased 
from Sigma-Aldrich. Methanol (CH3OH), sodium chloride 
(NaCl), and sodium sulphate anhydrous (Na2SO4) 
purchased from VWR Chemicals were all in analytical 
reagent grade. The coconut oil was purchased from 
Sevenhills Wholefoods.  

3.2. Catalyst selection 
The catalyst chosen for FAME production and the 
transesterification of oil or FAME with DMAE was 
CH3NaO. This is because it forms the required methoxide 
anion (CH3O-) while preventing saponification (which is 
highly undesirable), as opposed to other alternatives. 

3.3 FAME production 
FAME was produced  by transesterification using a 6:1 
methanol to coconut oil molar ratio with sodium methoxide 
(1 wt% oil) catalyst. About 300g of coconut oil was added 
to a 500 ml dual-necked flask and heated to 60℃ using a 
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water bath in a reflux setup. The magnetic stirrer was set to 
600rpm to ensure the homogenisation of the reaction 
mixture. Once the desired temperature was achieved, 90g 
of methanol containing 3g of dissolved catalyst was added 
to the flask and reacted for 1 hour. Upon completion, the 
content in the flask was transferred to a separatory funnel 
and left undisturbed until two distinct liquid phases could 
be observed. The bottom glycerol layer was disposed of, 
leaving the upper product layer of, which was washed with 
10% brine solution to remove dissolved impurities (water,  
methanol, glycerol, and catalyst). This process was 
repeated as necessary until the aqueous discharge reached a 
neutral pH. Lastly, anhydrous sodium sulphate was added 
to remove water traces from the finished product. The 
liquid was then separated from the solid and stored in a 
bottle to be kept in a freezer. This process produced 
approximately 300g of 98.5%  FAME. 

 
Figure 3: Reaction scheme for transesterification of oil to FAME, where R 
represents a fatty acid chain 

 

3.4 Transesterification using microwave 
Two sets of experiments were conducted with each 
substrate, oil and FAME. For the first set, a molar ratio of 
3:1 for DMAE (2.67 g) to coconut oil (6.36 g) and a 1:1 
molar ratio for DMAE (2.57 g) to FAME (6.16 g) was 
used. These ratios correspond to reaction stoichiometry 
shown in Figures 4 and 5. The reaction mixture was added 
to a 20ml borosilicate glass vial with sodium methoxide (1 
wt% oil/FAME) and a magnetic stirrer. The reaction 
mixture was then made homogenous by vigorously 
shaking. The reaction temperature was held at 120℃, 
controlled by a thermometer probe inserted through the 
capillary tube in the PTFE cap. The temperature was held 
for different durations (1, 2, 5, 10, 20 and 30 minutes) and 
stirred at 600 rpm. At the end of the reaction, the vial was 
quickly cooled with compressed air to 55℃. The heating 
and cooling time was roughly 3 minutes combined. 

 For the second set of experiments, different DMAE to 
Oil molar ratios between 4:1 – 10:1 were used. And DMAE 
to FAME molar ratios in the range of 2:1 – 5:1 were 

investigated. This experimental procedures was identical to 
the previous one, apart from a fixed holding time of 2 
minutes.  

 
Figure 4: Reaction scheme for transesterification of oil to CFADE 

 

 
 
Figure 5: Reaction scheme for transesterification of FAME to CFADE 

3.5 Transesterification using rotary evaporator 
Vacuum distillation was used to carry the experiments at 
reduced pressure. The experiments were performed using a 
range of pressures from 300 to 30 mbar while varying the 
molar ratios of DMAE to FAME from 1:1 to 4:1. Likewise, 
sodium methoxide (1 wt% FAME) and stirrer were added 
to a 100ml two-necked round bottom flask alongside the 
reactants (FAME and DMAE) before starting the 
experiments. The flask was set to rotate at 100rpm on an 
axis in a 60℃ water bath. All the reactions were run for 20 
minutes. 
 

3.6 Sample work-up 
After each reaction, the crude product was either afforded 
as a gel, semi-gel or liquid. For the first two cases, the gel 
was first broken up by vigorous stirring. Next the crude 
product was mixed with roughly 5-10 ml of 10% brine 
solution and then transferred to a centrifuge tube. It was 
then centrifuged for 10 minutes at 9000 rpm until two 
visible phases could be observed. The top layer contained 
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CFADE with unreacted oil or FAME, while the bottom 
aqueous phase contained the removed CH3NaO catalyst, 
DMAE and methanol or glycerol depending on the reaction 
type. The top layer was carefully separated using a transfer 
pipette to another tube. Anhydrous Na2SO4 was used to dry 
the washed product. Once dried, the CFADE product 
sample (clear liquid) was transferred to a 20ml glass vial 
and frozen for further usage. 
 

3.7 Product characterisation using 1H-NMR spectroscopy  
1H-NMR spectra data were obtained using a Joel JNM-
ECZ400S/L1 FT NMR spectrometer running at 400 MHz. 
Each NMR sample was prepared by adding 35μL of 
product and 820μL of deuterated chloroform (CDCL3) to 
an Eppendorf tube and vigorously shaking it before 
transferring to an NMR tube. A metric for CFADE content 
in a sample was derived by comparing the obtained peak 
integral ratio to the expected ratio for 100% CFADE 
content (Equation 1).  

𝐶𝐹𝐴𝐷𝐸 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  
3𝐴2

2𝐴1
× 100% (1) 

 
Where A is the integration of the corresponding signal 
shown in Table 1. 

4. Results and Discussion 
 

4.1 Analysis of 1H-NMR spectra  
Figures 6 and 7 show various 1H-NMR spectra used to 
characterise the formation of CFADE. Signals present in 
1H-NMR spectra obtained using the method outlined in 
section 3.7 were assigned by analysing expected molecular 
structures and utilising online resources such as nmrdb.org. 
The proton assignments are tabulated in Table 1.  

Without an internal standard, CFADE content was 
calculated semi-quantitatively using Equation 1. This 
method neglected potential side-products and impurities, 
assuming the sample to only contain CFADE and unreacted 
fatty acid feedstock . 

Figure 6 shows the 1H-NMR sample prepared from a 
reaction with oil and DMAE. The integration of δ 0.86 ppm 
which corresponds to the terminal -CH3 present in both 
triglycerides and CFADE is normalised to 3. The peak 
integration of 1.52 at δ 2.55 ppm which corresponds to -
CH2N- in CFADE, is then compared to the expected ratio 
of 2, yielding a CFADE content of 76% in the sample. 
Selecting the region for the integral at δ 2.55 ppm 
generally resulted in errors of ±0.05, manifesting as ± 
2.5% CFADE  content. 

 
 
 
 
 
 

 

 
Table 1 1H-NMR spectra peak assignment 
 
Signal Chemical shift, δ 

(ppm) 
Proton Assignment 

1 0.86 Terminal -CH3 
2 2.55 -CH2N- 
3 4.15 -CH2O- 
4 3.65 -OCH3 
 
Comparison of Figures 6 and 7 highlight an important 
difference between the oil and FAME transesterifications. 
Unexpected peaks are observed in Figure 6 for oil reaction 
at around δ 3.59 ppm which may be attributed to the 
formation of intermediates and side products such as partial 
glycerides. This behaviour is observed in traditional 
transesterification of triglycerides with methanol when the 
reaction has not gone to completion due to its stepwise 
nature (Noureddini & Zhu, 1997) . Partial glycerides act as 
surfactants which can stabilize emulsions and complicate 
separation  of the product(Kishore, 2017). 
 

 
Figure 4: 1H-NMR spectrum of product sample produced from Oil + 
DMAE reaction using method in section 3.4 using an 8:1 DMAE to oil 
ratio. Numbers correspond to the signals in Table 1 

 

 
Figure 5: 1H-NMR spectrum of product sample produced from FAME+ 
DMAE reaction using method in section 3.4 using a 1:1 DMAE to FAME 
ratio. Numbers correspond to the signals in Table 1 
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4.2 Equilibrium Limitations of Microwave Reactions 
 
The results of the DMAE  transesterifications with oil and 
FAME at stoichiometric ratios (3:1 and 1:1) following the 
methodology outlined in section 3.4 can be seen in Figure 
8. It is observed that the CFADE content of samples reach a 
fixed value and do not change significantly with time for 
both feedstocks. This indicates the existence of a chemical 
equilibrium, which is reached by both reactions within 1 
minute. The average CFADE content is 51.1% for the oil 
substrate and 32.5% for the FAME substrate. 

 
 

 
Figure 8: Oil or FAME reacted with DMAE in stoichiometric ratios at 
120℃ using microwave-assisted heating 

A method was developed to provide an estimate for the 
average constants of equilibrium (K) for both reactions. 
This was carried out by relating the metric for CFADE 
content (Equation 1) a,nd the ratio between components in 
the product samples, to the concentrations in the reaction 
mixtures.   

In the case of the reactions with FAME, the value of K 
could be calculated using the relative ratio of peak 
integrations in the 1H-NMR spectra. As per Table 1, the 
signal at δ 2.55 ppm corresponds to (-CH2N-) protons 
which are unique to CFADE while that at δ 3.65 ppm 
corresponds to (-OCH3) in FAME . Normalisation of each 
signal to the number of protons can be used to compute a 
concentration ratio. Equations 2 and 3 were used to carry 
out these calculations. 

 

𝐾(𝐹𝐴𝑀𝐸) = [𝐶𝐹𝐴𝐷𝐸][𝐶𝐻3𝑂𝐻]
[𝐹𝐴𝑀𝐸][𝐷𝑀𝐴𝐸]

 = 𝑥2

(𝑎−𝑥)(𝑏−𝑥)
 (2) 

𝐶𝐹𝐴𝐷𝐸 𝑠𝑖𝑔𝑛𝑎𝑙
𝐹𝐴𝑀𝐸 𝑠𝑖𝑔𝑛𝑎𝑙

=
𝐴2
2

𝐴4
3

= [𝐶𝐹𝐴𝐷𝐸]
[𝐹𝐴𝑀𝐸]

 = 𝑥
(𝑎−𝑥)

 (3) 

 
Where a and b correspond to the initial moles of FAME 
and DMAE, and x is the moles of CFADE formed at 
equilibrium. A1 and A4 correspond to the peak integrals as 
listed on Table 1.  

In the case for the reactions with oil, signals 
corresponding to glycerol backbone protons in triglycerides 
were unclean and could not be integrated accurately. This 

meant that the relative signal of triglycerides in the sample 
could not be obtained. Instead, CFADE content was related 
to the consumption of oil, where total consumption of oil 
would produce a sample containing 100% CFADE. This is 
however assumes that any potential side reactions do not 
consume the oil. Equations 4 and 5 were used to carry out 
these calculations. 

𝐾(𝑂𝑖𝑙) = [𝐶𝐹𝐴𝐷𝐸]3[𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙]
[𝑂𝑖𝑙][𝐷𝑀𝐴𝐸]3  = (3𝑥)3(𝑥)

(𝑐−𝑥)(𝑏−3𝑥)3 (4) 

     𝐶𝐹𝐴𝐷𝐸 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑥
𝑐

 (5) 

Oil is assumed to only consist of coconut oil 
triglycerides, c refers to its initial moles, b refers to the 
initial moles of DMAE and x refers to moles of oil 
consumed.  

The standard Gibbs free energy change (∆Gº) can also 
be determined for both reactions using Equation 6.  

 
      ∆G° = −𝑅𝑇 ln (𝐾) (6)  
Where R=8.314 J mol-1 K-1  and T=393 K 
 
The sample that produced figure 6 was produced from a 
reaction with DMAE and oil in the molar ratio 8:1. As 
discussed in section 4.1, it had a 76% CFADE content. 
Using Equation 5, a value for x of 0.76 is obtained. Finally 
using Equation 4, a value for K(Oil) of 0.2 is obtained. K 
values for FAME and Oil reactions were obtained and 
averaged to yield the results in Table 2. 

The obtained K values for both reactions do not favour 
the formation of CFADE, meaning that there are quite 
significant equilibrium limitations. The ∆Gº for the 
reactions with oil substrate is almost 3 times greater than 
that of the FAME substrate. This can be justified by 
referring to Figures 4 and 5, and realising that in both 
reactions the bonds broken and formed are quite similar. In 
the case of oil and DMAE, 3 times as many bonds are 
broken and formed. 

There is an additional caveat of this analysis. The 
relative concentrations of CFADE samples can only be 
applied to the concentrations of the entire reaction mixture 
if all reactants and products remain in the reaction phase 
until equilibrium is reached. The appearance of a gel phase 
(discussed in section 4.4) in the reaction mixtures is 
inherently associated with a change in phase behaviour and 
therefore only reactions resulting in a homogenous liquid 
phase were considered for these calculations. For both 
substrates after allowing the liquid reaction mixtures to 
settle, there was no apparent phase separation and therefore 
all components were assumed to be mutually soluble. 

 
Table 2  Equilibrium constants (K) and standard Gibbs free energy change 

(∆Gº) for each reaction at 120 ºC 
Reaction K ∆Gº (KJ/mol) 

Oil + DMAE 0.230 4.798 
FAME + DMAE 0.593 1.707 
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4.3 Overcoming equilibrium limitations 

 
Figure 9: Oil or FAME reacted with excess DMAE at 120℃ using 
microwave-assisted heating 

  
The previous section highlights the problem of 

equilibrium limitations preventing the production of high 
purity CFADE, which is required for CEB synthesis. 
According to the K expressions in Equations 2 and 4, an 
increase in reactant concentration will shift the equilibrium 
towards the product side. As per the method described in 
section 3.4, microwave transesterifications were carried out 
with both coconut oil and FAME substrates with a varying 
excess of DMAE. The results of these experiments can be 
seen in Figure 9. As expected, CFADE content in product 
samples increases steadily with increasing mole ratio. The 
purity of CFADE increases at a faster rate w.r.t molar ratio 
for the reactions using FAME. They eventually overtook 
the oil substrate reactions at a molar ratio of 3:1 and reach 
CFADE content of  87% at a ratio of 5:1, while the 
reactions with oil reach 80% at a ratio of 10:1 and also 
seem to plateau. 
 

 
Figure 10: FAME reacted with DMAE at stoichiometric ratio for 20 
minutes using rotary evaporator heated by a 60℃ water bath under 
vacuum. 

The reactions using FAME as a substrate offered an 
alternative method to overcome the equilibrium limitations. 
Due to the boiling point differences between methanol 
(64℃) and DMAE (133℃), continuous removal of the 
methanol would also promote a shift in equilibrium and 
was carried out using a rotary evaporator as described in 
section 3.5.  

Aspen Plus V11 was used to approximate methanol and 
DMAE as a binary mixture using the NRTL method. The 
purpose of this was to choose initial operating pressures 
resulting in a methanol enriched vapour phase. Figure 10 
shows that increasing the vacuum increases sample 
CFADE content up to 61.5%  at 30mbar for a 1:1 molar 
ratio at 60ºC.  

 
 

 
Figure 11: FAME reacted with excess DMAE for 20 minutes using rotary 
evaporator heated by a 60℃ water bath at 50 mbar 

 
The final set of experiments combined an excess of 

DMAE and rotary evaporation. The operating pressure was 
chosen to be slightly higher at 50 mbar, as at maximum 
vacuum operation, the fishy odour of DMAE was detected 
in the condensate. This is due to the vaporisation of DMAE 
along with methanol, which must be avoided to maximise 
DMAE concentration in the reaction phase. As seen in 
Figure 11, this method was highly effective, resulting in a 
trend that approaches a purity of 100%. A maximum 
CFADE purity of 98% was obtained at a DMAE to FAME 
ratio of 4:1, however this is a marginal increase from a 2:1 
ratio that has 96.5% CFADE purity.  

For this reason it is suggested that a 2:1 ratio at 50mbar 
and 60℃ would be the optimal conditions to synthesise 
high purity CFADE which can then undergo reaction with 
SCA to form CEB. 

  

4.4 Gel phase behaviour of the crude product 
 
As mentioned before, the crude product was either afforded 
as a gel, semi-gel or liquid, depending on the molar ratio 
used, which is also described in Figure 12. A possible 
theory for the gel formation is due to either DMAE or 
CFADE acting as a gelator and forming oleogels in the 
product mixture. Factors that could cause this are the 
intermolecular forces, such as hydrogen bonding and van 
der Waals interactions between the gelator and fatty acids 
chains (Li et al., 2022). Additionally, these forces are 
affected by the fatty acid structure, that is, the number of 
unsaturated carbons and the carbon chain-length. 
Furthermore, gel formation is a major concern as it will 
change the viscosity of the crude product, which may give 
rise to complications in industrial processes. 
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Figure 12: Gel behaviour of crude product mixture 

5. Conclusions 
 
 
By using 1H-NMR as a characterisation technique, product 
formation from both substrates was confirmed by 
identifying the corresponding peaks of (-CH2N-) at δ 2.55 
ppm and (-CH2O-) at δ 4.15 ppm, which are found in 
CFADE. Transesterification of both coconut oil and FAME 
feedstocks are heavily equilibrium limited as showcased by 
their low values of equilibrium constant, 0.230 for oil and 
0.593 for FAME. FAME has advantages as a substrate as it 
does not form partial glyceride intermediates, and has 
potential for vacuum distillation. 96.5-98% CFADE was 
produced in a rotary evaporator at 2:1 or 4:1 DMAE to 
FAME ratio at 50 mbar and 60 ºC. It would be of interest to 
use this high purity product in the second step of CEB 
production, consisting of a reaction with SCA.  

The 1H-NMR characterization techniques employed 
were sufficient as an initial study, however an internal 
standard would be desired to make the method more 
quantitative. This would allow for more robust calculations 
of thermodynamic quantities. The positive values of ∆Gº 
suggest that investigation into temperature effects to assess 
spontaneity  at different conditions may be of relevance. 

Further study of  the VLE phase behaviour and 
identification of azeotropes between methanol and DMAE 
would allow for further optimisation of vacuum distillation 
for high purity CFADE. 
 

6. Outlook 
 
DMAE is still primarily produced from ethylene oxide, a 
petroleum derivate. A recent paper proposed a method to 
synthesis DMAE from glycolaldehyde using the reductive 
amination reaction (Favaree et al.,2021). The method could 
be investigated for future work to produce reactant-grade 
DMAE. If successful, it will improve the ‘greeness’ of the 
biosurfactant. 
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Abstract Wrong way behaviour is a curious phenomenon which is best described as the transient temperature increase in 
a reactor caused by a decrease in the feed temperature or an increase in the feed velocity. It has been modelled with 
various complexities but all models in literature assume constant velocity and first order kinetics; models in literature fail 
to develop system parameters which are representative of industrial processes. This work develops a two-phase model 
with variable velocity, generalised to nth order kinetics and applied to two industrially relevant processes – Fischer-Trop-
sch and the Contact Process. The model was implemented in gPROMS. Base system parameters were developed for the 
aforementioned processes to investigate the presence of wrong way behaviour and it was not observed for either process 
at industrial conditions. A sensitivity analysis was performed, and it was determined that for Fischer-Tropsch the likeli-
hood of wrong way behaviour increases with larger temperature rises across the reactor. For the Contact Process, the 
suppression of wrong way behaviour is attributed to highly effective dispersion. Future scope is wide and could include 
accounting for radial effects, pressure drop, rigorous modelling of kinetics and temperature-pressure dependence of ther-
mophysical properties. 

Keywords: wrong way behaviour, nth order kinetics, variable velocity, Fischer-Tropsch, Contact Process, gPROMS 
 

1. Introduction 

Wrong way behaviour (WWB) is a curious phenomenon 
which is best described as the transient temperature in-
crease in a reactor caused by a decrease in the feed tem-
perature. Intuitively, one would expect the temperature 
profile for a reactor to decrease with a decrease in feed 
temperature for all points along the reactor. Instead, as a 
result of a reduction in feed temperature, the reaction rate 
in the upstream section of the reactor decreases and 
causes a higher concentration of reactants to reach still-
hot catalyst in the downstream section. This leads to a 
faster reaction rate in the downstream section. Conse-
quently, additional heat is generated downstream leading 
to a new higher temperature peak compared to the initial 
steady-state profile. In accordance with the properties of 
the system, a cooler temperature wave reaches the down-
stream section and forces the system to settle to a new, 
cooler steady state - marking the end of the transient be-
haviour. It should be noted an increase in the (superficial) 
feed gas velocity can also produce WWB and follows the 
same reasoning as previously explained. It is of industrial 
relevance to investigate this behaviour as systems usually 

operate relatively close to reaction runaway temperatures 
due to economic pressures, hence the transient tempera-
ture peak may be significant enough to enable runaway. 
The induced transient temperature rise may also damage 
the catalyst or the reactor. Furthermore, fluctuations in 
feed velocity/temperature are not unusual on a plant due 
to a multitude of reasons ranging from control system 
sensitivities, start-up procedures or human input, thus 
this investigation is necessary. 

The concept of WWB was first predicted by Crider 
and Foss (1966) [1], who observed a transient drop in tem-
perature following a step increase in feed temperature 
whilst modelling packed bed tubular reactors. It was ob-
served by various other researchers over time; Sharma 
and Hughes (1979) [2] observed this behaviour whilst ex-
ploring fixed bed reactor systems for the oxidation of car-
bon monoxide. As a result of these observations, further 
investigation into the effect was undertaken; Table 1 pre-
sents selected studies in chronological order and displays 
the type of model used, observations made and limita-
tions of the studies, thereby providing an overview of the 
developments in the modelling/understanding of WWB.

 
Table 1: A summary of observations and limitations of wrong way behaviour modelling that can be found in literature. 

   

Study & Model Key Observations Limitations 
   
   

Mehta et. Al (1981) [3] 
One-Dimensional-Single Phase-Pseudo-Ho-

mogeneous 

The analysis indicated that high transient tem-
peratures develop only in sufficiently long re-
actors, thus, the impact of the wrong way be-
haviour is not encountered in short reactors. 

Dispersion effects of heat and mass were ne-
glected. Interfacial effects between gas and 

solid catalyst were neglected. Predicts errone-
ously that temperature discontinuities may ex-
ist in the bed. Assumption of constant veloc-

ity. 
   

Pinjala et. Al (1988) [4] 
One-Dimensional-Single Phase-Pseudo-Ho-

mogeneous- 
That accounts for the axial dispersion of heat 

and species 

Study showed dispersion decreases the magni-
tude of wrong way whilst also prolonging the 

shift to a new steady state. 

Interfacial effects between gas and solid cata-
lyst were neglected. Radial effects were ne-
glected. Assumption of constant velocity. 
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Chen and Luss (1989) [5] 
One-Dimensional-Two Phase-Heterogeneous 

Confirmed the predictions of Pinjala et al. 
(1988) [4]; in reactors with a high conversion 
rate, temperature excursions are negligible 

due to a decrease in feed temperature, but the 
excursions are more prevalent in reactors with 
intermediate conversion rates. Also observed 
the similarity between the two-phase model 

and pseudo-homogenous model when all feed 
temperatures have a unique steady state. 

Assumption of constant velocity. Radial ef-
fects were neglected. Two-phase model could 
not predict the backward migration of the tem-

perature wave. 

   

Ganesan and Khaitan (2020) [6] 
One-Dimensional-Two Phase-Heterogeneous 

Considered variable velocity and demon-
strated that velocity contraction due to reac-

tion dominates velocity expansion due to tem-
perature. Therefore, models with constant ve-
locity are more likely to exhibit wrong way 

behaviour. 

Assumption of constant feed velocity for 
changes in feed temperature exaggerated ef-
fects of variable velocity. More robust meth-
ods could be used to obtain system parame-
ters. Investigation was limited to a single in-

dustrially relevant process. 
   

 
Variable velocity is not considered in older studies; 

Ganesan and Khaitan (2020) [6] emphasise the importance 
of taking it into consideration. There is a problem with 
assuming constant velocity since temperature changes 
and gas contractions/expansions would affect gas veloc-
ity competingly. Due to the density-temperature relation-
ship, temperature changes impact gas velocity and this 
effect is prevalent in exothermic reactions which are 
characterised by an increase in temperature along the re-
actor; because of this the gas expands resulting in an in-
crease in velocity. Gas contraction/expansion occurs as a 
result of the change in the number of moles from reac-
tants to products as reaction progresses. 

Considering the importance of modelling variable ve-
locity when investigating WWB, this study builds upon 
the work of Ganesan and Khaitan (2020) [6] and improves 

on it by presenting a model which is generalised to nth 
order reactions and validates whether system parameters 
are truly representative of the process under investiga-
tion. Furthermore, this study investigates WWB in the 
following cases: Fischer-Tropsch (FT) and the Contact 
Process (CP). These two cases were specifically chosen, 
firstly, due to their industrial relevance but more signifi-
cantly due to their comparatively differing nature as high-
lighted in Table 2. Furthermore, the criterion of interme-
diate conversion for WWB as suggested by Chen and 
Luss (1989) [5] is satisfied by these reactions. It is im-
portant to note that a single step of the Contact Process is 
modelled in this study - the oxidation of sulphur dioxide. 
Additionally, modelling FT in this study serves as a val-
idation of the study conducted by Ganesan and Khaitan 
(2020) [6].

 
Table 2: A summary of key features of Fischer-Tropsch and the oxidation of sulphur dioxide in the Contact Process which are relevant to this study. 

  

Feature Fischer-Tropsch Contact Process 
   
   

Reaction 𝑛𝐶𝑂 + (2𝑛 + 1)𝐻2 → 𝐶𝑛𝐻2𝑛+2 + 𝑛𝐻2𝑂 2𝑆𝑂2 + 𝑂2 ↔ 2𝑆𝑂3 
   

Mode of Operation Wall-cooled Adiabatic 
   

Degree of Gas Contraction Significant Negligible 
   

Type of Reaction Gas-to-Liquid (GTL) Gas Phase 
   

Reaction Order 1st w.r.t H2 [7] 0.5th w.r.t SO2 [8] 
   

Type of Reaction Exothermic Exothermic 
   

 
The objectives of this study for each case (FT and CP) 

are to: 
1. Develop a set of base system parameters which 

represent an industrial reactor 
2. Investigate if WWB is present using the set of 

base system parameters 
3. If WWB is not present, investigate when it 

could occur through sensitivity analysis of sys-
tem parameters 

2. Methods 

2.1. Modelling Approach 

In order to investigate the presence of WWB in each of 
the case studies (FT and CP), a system of mass and en-
ergy balances were derived. These balances represent a 

bed of radius 𝑟 and length 𝐿 where feed enters with a ve-
locity 𝑢𝑓,0 and temperature 𝑇𝑓. The bed is composed of 
void space (through which the reaction fluid flows in the 
axial 𝑧 direction) and spherical catalyst particles with a 
radius 𝑟𝑝 as shown in Figure 1. The bed voidage 𝜀, there-
fore, is defined as the fraction of volume in the bed un-
occupied by catalyst. 

 
Figure 1: Generalised representation for the scope of the model. 
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In the case of FT, the system previously described 

represents a single tube within a multi-tubular reactor 
where a coolant (likely steam) flows around the tubes. In 
the case of CP, the system previously described repre-
sents a single (the first) stage/pass within a multi-pass re-
actor where the reaction occurs adiabatically (cooling oc-
curs between stages). This is depicted in Figure 2 where 
the systems under investigation in this study are high-
lighted in green and shaded sections represent catalyst 
packing. 
 

 
Figure 2: Simplified diagram for a wall-cooled Fischer-Tropsch reac-
tor (left). Simplified diagram for a multi-stage sulphur dioxide oxida-
tion reactor in the Contact Process (right). Shaded sections represent 
catalyst packing. 
 

A series of step changes in reactor feed temperature 
𝑇𝑓  and velocity 𝑢𝑓,0 were conducted to test for the pres-
ence of WWB for each of the case studies. The step 
change ranges were chosen to best reflect likely devia-
tions one could encounter during normal operation. 

2.2. Governing equations 

Presented here, in dimensionless form for an nth order re-
action, are the governing mass and energy balances for 
the gas phase and solid catalyst; definitions for the corre-
sponding boundary conditions, scaling equations and di-
mensionless groups follow. At bulk conditions, the di-
mensionless total concentration, mole fraction and tem-
perature are denoted by 𝐶𝑇, 𝑦 and 𝜃 respectively. 
 

Balances and definitions:  
  

𝜕(𝑢 ∙ 𝐶𝑇)
𝜕𝑧

= 𝛼𝑀𝐶𝑇(𝑦 − 𝑦𝑠) (1) 
  

1
𝐿𝑒

𝜕(𝑦 ∙ 𝐶𝑇)
𝜕𝑡

= −
𝜕(𝑢 ∙ 𝑦 ∙ 𝐶𝑇)

𝜕𝑧
− 𝑀𝐶𝑇(𝑦 − 𝑦𝑠)

+
1

𝑃𝑒𝑀

𝜕
𝜕𝑧

(𝐶𝑇
𝜕𝑦
𝜕𝑧

) 
(2) 

  
𝐶𝑇

𝐿𝑒
𝜕𝜃
𝜕𝑡

= −𝑢𝐶𝑇
𝜕𝜃
𝜕𝑧

+
1

𝑃𝑒𝐻

𝜕2𝜃
𝜕𝑧2 − 𝐻(𝜃 − 𝜃𝑠)

− 𝑈(𝜃 − 𝜃𝑤) 
(3) 

  

𝑀𝐶𝑇(𝑦 − 𝑦𝑠) = 𝜂𝑠(𝑦𝑠 ∙ 𝐶𝑇)𝑛𝑒𝑥𝑝 (
1
𝜃𝑟

−
1
𝜃

) (4) 
  

(1 −
1

𝐿𝑒
)

𝜕𝜃𝑠

𝜕𝑡
= 𝛽𝜂𝑠(𝑦𝑠 ∙ 𝐶𝑇)𝑛𝑒𝑥𝑝 (

1
𝜃𝑟

−
1
𝜃

)

+ 𝐻(𝜃 − 𝜃𝑠) 
(5) 

  

𝜂𝑠 =
3

𝜙𝑠
2 (

𝜙𝑠

𝑡𝑎𝑛ℎ(𝜙𝑠) − 1) (6) 
  

𝜙𝑠
2 = 𝜙0

2 𝑒𝑥𝑝 (
1
𝜃𝑟

−
1
𝜃

) (𝑦𝑠 ∙ 𝐶𝑇)𝑛−1 (7) 
  

𝑋 = 1 − 𝑦 (8) 
  

Boundary conditions:  
  
At 𝑧 = 0:  

𝑢𝑓 = 𝑢𝐶𝑇 

(9) 

 

𝑢𝑓(1 − 𝑦) = −
𝐶𝑇

𝑃𝑒𝑀

𝜕𝑦
𝜕𝑧

 
 

𝑢𝑓(𝜃𝑓 − 𝜃) = −
1

𝑃𝑒𝐻

𝜕𝜃
𝜕𝑧

 
  

At 𝑧 = 1:  
𝜕𝜃
𝜕𝑧

= 0 
(10)  

𝜕𝑦
𝜕𝑧

= 0 
  

Scaling equations:  
  

𝐶𝑇 =
𝐶𝑇

′

𝐶𝑇,𝑓,0
′ =

𝑃 𝑅𝑇⁄
𝑃 𝑅𝑇𝑓,0⁄ =

𝜃𝑓

𝜃
 

(11) 

 

𝜃 =
𝑅𝑇
𝐸

; 𝜃𝑟 =
𝑅𝑇𝑟

𝐸
 

 

𝑦 =
𝑦𝐴

′

𝑦𝐴,𝑓
′ ;  𝑢 =

𝑢′

𝑢𝑓,0
′  

 

𝑧 =
𝑧′

𝐿
;  𝑡 =

1
𝐿𝑒

𝑢𝑓,0
′ 𝑡′

𝜀𝐿
 

  
Dimensionless parameters:  
  

𝑀 =
3𝐿𝑘𝑚𝑐

𝑢𝑓,0
′ 𝑟𝑝

(1 − 𝜀) 

(12) 

 

𝛼 = −𝑦𝐴,𝑓
′ (

𝑎 + 𝑏 − 𝑐
𝑎

) 
 

𝑈 =
2𝐿ℎ𝑤

𝑢𝑓,0
′ 𝑟𝐶𝑇,𝑓,0

′ 𝑐𝑝,𝑔
 

 

𝐻 =
3𝐿ℎ𝑓

𝑢𝑓,0
′ 𝑟𝑝𝐶𝑇,𝑓,0

′ 𝑐𝑝,𝑔
(1 − 𝜀) 

 

𝛽 =
𝑅
𝐸

(−∆𝐻)𝑦𝐴,𝑓
′

𝑐𝑝,𝑔
 

 

𝐿𝑒 = 1 +
𝜌𝑐𝑐𝑝,𝑐

𝜀𝐶𝑇,𝑓,0
′ 𝑐𝑝,𝑔

(1 − 𝜀) 
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𝑃𝑒𝑀 =
𝐿𝑢𝑓,0

′

𝐷𝑎
 

 

𝑃𝑒𝐻 =
𝐿𝑢𝑓,0

′ 𝐶𝑇,𝑓,0
′ 𝑐𝑝,𝑔

𝜆𝑎
 

 

𝜙0
2 =

𝑢𝑓,0
′ (𝑛 + 1)𝑟𝑝

2

2𝐷𝑒𝐿(1 − 𝜀)  
 

𝑘(𝜃𝑟)
𝑘0

= 𝑒𝑥𝑝 (−
1
𝜃𝑟

) =
𝑢𝑓,0

′

𝐿𝑘0(𝑦𝐴,𝑓
′ ∙ 𝐶𝑇,𝑓,0

′ )𝑛−1 

 
Key assumptions behind the model are detailed here: 
1. Radial effects are negligible 
2. Rate of reaction follows nth order kinetics with 

respect to a single reactant 
3. Liquid volume in FT is insignificant compared 

against gas volume so it can be ignored 
4. Pressure drop through the bed is negligible 
5. Total concentration is independent of composi-

tion and follows the ideal gas law 
6. Concentration difference between bulk fluid 

and particle surface can be ignored 
7. 𝑐𝑝,𝑐, 𝑐𝑝,𝑔, 𝐷𝑎, ℎ𝑓, ℎ𝑤, 𝑘𝑚𝑐, 𝜆𝑎, 𝜌𝑐 and viscosity 

are constant in 𝜃, 𝑃, 𝑧 and 𝑡 

To preserve the general applicability of the model de-
veloped in this study, simplified kinetics are considered 
for both cases (FT and CP) where the rate expression de-
pends exclusively on one reactant. A further simplifica-
tion is made in treating the reversible oxidation of sul-
phur dioxide in CP as irreversible. A simple calculation 
for the equilibrium constant (and conversion) proves that, 
for the conditions considered in this study, there is an 
overwhelmingly strong bias towards the formation of sul-
phur trioxide. Care was taken to ensure that the parame-
ters used to calculate dimensionless parameters were 
consistent for a given type of catalyst. In the case of FT, 
a cobalt-based catalyst is considered as this enables the 
use of simple kinetics for a low-temperature FT process 
[7]. In the case of CP, a vanadium-based catalyst is con-
sidered as it is most used in industry. 

2.3. Modelling strategies 

The system of equations defined above was solved nu-
merically in gPROMS using a backwards finite differ-
ence solver as a discretised and distributed system. To 
ensure representative initial guesses were used, an initial-
isation procedure was employed which solves an easy-to-
solve version of the model at steady state. 

A systematic approach was required to ensure that the 
feed temperature was not so high as to trigger thermal 
runaway - a convenient mathematical characteristic of 
thermal runaway was exploited to achieve this. An indi-
cation for the onset of runaway is where the first and sec-
ond derivative of gas temperature (with respect to reactor 
position) exceed zero – where the profile displays a point 
of inflection pointing upwards. This was monitored in 

gPROMS and, for a given case, the feed temperature that 
triggers runaway was determined. Models were run to in-
vestigate WWB with a feed temperature 10 K below that 
which triggers runaway. 

An example runaway profile is shown for FT in Fig-
ure 3. The profile shows a characteristic inflection point 
indicating runaway and displays a drop in temperature af-
ter the conversion reaches 100% (and the reactant has 
been completely consumed). 

 
Figure 3: Thermal runaway profile for Fischer-Tropsch which displays 
a characteristic point of inflection in θ with respect to z. 
 

Table 3 details the values for the base (dimensionless) 
system parameters. The dimensional quantities used to 
calculate the dimensionless parameters can be found in 
the Supplementary Information. 
 
Table 3: A summary of dimensionless base system parameters. 

   

Parameter FT CP 
   
   

𝐿𝑒 179 745 
   

𝑀 15 33 
   

∝ -0.311 -0.055 
   

𝑃𝑒𝑀 1582 48 
   

𝑃𝑒𝐻 1597 3 
   

𝐻 133 26 
   

𝑈 31 0 
   

𝜙0 5.590 2.008 
   

𝛽 0.125 0.025 
   

𝜃𝑟 0.047 0.079 
   

 
3. Results and discussion 

3.1. Model validation 

To ensure model system parameters are representative of 
their respective case studies, modelled conversion and 
temperature rise across the bed are compared against lit-
erature in Table 4 and Table 5, respectively. It should be 
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noted that conversion comparisons are for single pass 
conversions and in the case of CP the conversion quoted 
is for a single (the first) stage of the multi-stage reactor 
only as this is what the model is valid across. 
 
Table 4: Conversion and reactor temperature rise predicted by model. 

   

Case Conversion [%] Temperature Rise [K] 
   
   

FT 25 14 
   

CP 45 90 
   

 
Table 5: Conversion and reactor temperature rise from literature. 

   

Case Conversion [%] Temperature Rise [K] 
   
   

FT 18 – 89 [7] 12 [9] 
   

CP 50 [10] – 70 [13] 130 [10] – 180 [11] 
   

 
It is evident that the system parameters for FT capture 

the conversion and temperature rise one would expect 
from a reactor in service in industry. The system param-
eters for CP yield a conversion and temperature rise 
which are in fair agreement with literature. 

It is important to note that the model presented in this 
study assumes constant diffusivity, thermal conductivity 
and total concentration; the temperature dependence of 
these three parameters was neglected. To ensure using 
this simplified approach was justified, a complex model 
which included temperature dependence was investi-
gated using gPROMS. No major discrepancies were no-
ticed between the complex and simplified models in the 
surface: rate, temperature and mole fraction with values 
agreeing within a maximum range of ±0.5%. 
 

 
Figure 4: Gas temperature ratio for Fischer-Tropsch between a model 
that assumes constant velocity to a model that uses variable velocity. 
 

Figure 4 demonstrates the importance of accounting 
for variable velocity. It displays a FT process displaying 
WWB where it undergoes a transient increase in bulk gas 
temperature following a reduction in feed temperature. 
This is evidenced in the relative difference between the 

two curves. The ratio of gas temperature considering con-
stant velocity to gas temperature considering variable ve-
locity is plotted against 𝑧 (dimensionless position along 
the reactor). A value of greater than 1 on the y axis means 
the gas temperature is overpredicted when considering 
constant velocity. This is exactly what is observed on 
Figure 4 where a significant (maximum 40%) overpre-
diction can be seen. Therefore, it is apparent that using a 
constant velocity model exaggerates the magnitude of 
WWB observed. 
 
3.2. Fischer-Tropsch 

3.2.1. Base system parameters analysis 

Figure 5 shows the trend between 𝜃 (bulk gas tempera-
ture) and 𝑧 for a 𝑇𝑓 (feed temperature) drop of 1%. The 
trend shows the progression of transient behaviour over 
time where the broken curves show initial (𝑡 = 0) and fi-
nal (𝑡 = 0.16) steady states. Unbroken curves in between 
the steady state profiles are for intermediate time inter-
vals. It is important to note that 𝑡 denotes dimensionless 
time and for FT, 1 dimensionless time unit is approxi-
mately equal to 1600 seconds. It is evident from Figure 5 
that for a step change of 1%, there is no WWB. This is 
because the temperature at any given position along the 
reactor, for all times, is below that of the 𝑡 = 0 trend. The 
behaviour exhibited is what one would intuitively expect. 
Larger 𝑇𝑓 drops also do not result in WWB and instead 
progressively lead to the reaction becoming quenched 
and the temperature profile flattening out. No WWB was 
observed for FT for any magnitude of 𝑇𝑓 drop using sys-
tem parameters representative of an industrial reactor. 
 

 
Figure 5: Response of dimensionless bulk gas temperature to a feed 
temperature drop of 1% for Fischer-Tropsch. 
 

In the case of increasing 𝑢𝑓 (feed gas velocity) for FT, 
apparent WWB was observed. Figure 6 displays the mag-
nitude of the effect by displaying the difference between 
the maximum transient temperature and maximum initial 
steady state temperature over non dimensionless time. 
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This difference can be thought of as a proxy for the pres-
ence/tendency of WWB where positive values are indic-
ative for the presence of WWB. The effect is not a cause 
for any significant concern as the largest occurrence was 
only 0.13K for a 100% increase in 𝑢𝑓 (which is an ex-
tremely severe increase in 𝑢𝑓). 

This is corroborated by Figure 13 (found in the Sup-
plementary Information) which displays 𝜃𝑠 (the catalyst 
surface temperature) as a ratio of the 𝜃; as this is always 
close to unity this shows the catalyst is also not signifi-
cantly heated. Hence there is practically no risk of runa-
way or catalyst damage. 

It is important to note that although Figure 6 shows a 
characteristic of WWB (as there is an increase in peak 
temperature following an increase in 𝑢𝑓) it is not strictly 
WWB. This is because the temperature increase is not 
transient, and this is evidenced in Figure 6. There still is 
a positive temperature difference even after the system 
has settled at the new steady state. 
 

 
Figure 6: Wrong way behaviour tendency as a function of dimension-
less time for various feed velocity increases for Fischer-Tropsch. 
 

More curiously, the apparent WWB (albeit at a small 
scale) is still observed at significantly larger increases in 
𝑢𝑓 as shown in Figure 6. Intuitively, one would expect 
the temperature to fall and converge in accordance with 
the rate of reaction; instead, the behaviour is more prev-
alent. This is explained by Figure 7 which shows the re-
lationship between an increase in 𝑢𝑓 and 𝑋 (the conver-
sion). It is shown that even after large increases in 𝑢𝑓, the 
decrease in 𝑋 is comparatively insignificant. For in-
stance, a 50% increase in 𝑢𝑓 leads to only a 7% decrease 
in 𝑋 whereas this can be achieved by a contrastingly low 
5% drop in 𝑇𝑓. One reason for this lack of dependency, is 
that the FT process has a product distribution, therefore 
instead of the decreasing residence time sharply impact-
ing conversion a compromise is made with selectivity. 
This means that instead of the desired long-chain hydro-
carbons being produced, shorter chain hydrocarbons are 

produced with increasing velocity. This would also ex-
plain why Figure 7 plateaus at around 𝑋 = 0.1; as at this 
point the residence time is so low, that it is probable only 
methane and other short-chain hydrocarbons are being 
produced. 

 
Figure 7: Maximum conversion as a function of feed velocity for 
Fischer-Tropsch. 
 

As a result of this, it can be concluded that changes in 
feed velocity do not have a significant impact on the FT 
system. This is most prevalent for feed velocity change 
ranges which are representative of typical operating var-
iations. Consequently, the apparent WWB can be ex-
plained by the fact that a higher velocity feed has a mar-
ginally higher spatial average temperature. This would 
lead to a higher bulk temperature and would explain why 
the magnitude of the apparent WWB seen was so small, 
why the change is not transient, and why it increased with 
increasing velocity. 

Evidently using system parameters which are repre-
sentative of an industrial reactor yields no WWB in the 
case of FT. This can be attributed to the effect of wall 
cooling. Although bulk concentration of reactants did 
transiently increase (following moderate temperature 
drops which were representative of typical operating var-
iations), this increase in bulk concentration of reactants 
was identified by a transient increase in the ratio of bulk 
concentration to catalyst surface concentration (as seen 
in Figure 14 in the Supplementary Information). There-
fore, there was potential for WWB to occur in the reactor.  
However, the hotspot of the reactor is unable to effec-
tively utilise this increase in concentration to locally in-
crease the rate of reaction and hence induce a transient 
temperature increase (and thus facilitate WWB). This is 
attributed to the low 14K peak temperature rise in the re-
actor. Hence, overall due to the coolant effectively su-
pressing large deviations in temperature no WWB is ex-
hibited in the base case of FT. It is probable a process 
with a higher temperature rise would be more susceptible 
to exhibit WWB. Furthermore, in the case of velocity in-
creases WWB is even less likely to occur compared to 
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temperature drops for FT. This is because the bulk con-
centration of reactants insignificantly increased follow-
ing moderate velocity increases which were representa-
tive of typical operating variations. The reason for this 
insignificant change was due to the lack of dependency 
of reaction rate on velocity increase. Contrastingly, tem-
perature changes have a strong effect on the reaction rate. 
This is attributed to the Arrhenius relationship between 
temperature and reaction rate, hence why bulk concentra-
tion increases were more prevalent for temperature drops. 
This dependency is even more profound due to the use of 
first order kinetics. Therefore, both the low peak temper-
ature rise and negligible increase in the bulk concentra-
tion effectively suppress the potential of WWB to occur 
following velocity increases for FT. 

3.2.2. Sensitivity analysis 

 
Figure 8: Wrong way behaviour tendency as a function of dimension-
less wall heat transfer coefficient for Fischer-Tropsch. 
 
The postulation stipulated in the previous section is sup-
ported by Figure 8. The figure is split into three distinct 
regions: No WWB, WWB and WWB with runaway. It is 
evident that there is a strong inverse relationship between 
𝑈 (the dimensionless wall heat transfer coefficient) and 
the magnitude/presence of WWB. This can be explained 
by the reasoning that a lower 𝑈 value is accompanied by 
a larger temperature rise in the reactor. This is because as 
𝑈 is decreased the cooling system is unable to cool the 
heat generated by the reaction to the same degree, leading 
to a higher temperature peak. At values of 𝑈 around 13, 
which corresponds to a temperature rise of around 89K, 
the hotspot of the reactor was able to effectively utilise 
the temperature rise to locally increase the rate of reac-
tion. Hence, a transient temperature increase is induced 
(and thus WWB was observed). As 𝑈 is decreased even 
further the temperature rise increases comparably, even-
tually this temperature rise is significant enough to in-
crease the local rate of reaction at the hotspot rapidly. 
This leads to a considerable amount of additional heat be-
ing released, which quickly increases the rate of reaction 

even further. This interdependent cycle leads to the sys-
tem entering a runaway state, with temperature only de-
creasing once the reaction undergoes completion. 

It is important to note that a 5% drop in 𝑇𝑓 was em-
ployed to investigate this relationship. This was specifi-
cally employed to simulate a plausible action an operator 
would take to compensate for a large drop in 𝑈. During 
the analysis of base FT conditions, it was found that a 5% 
feed temperature drop can effectively quench the reac-
tion, thus justifying its use as an appropriate response to 
a drop in 𝑈. Furthermore, greater sudden adjustments to 
operating conditions may not be feasible. 
 

 
Figure 9: Sensitivity of maximum conversion with respect to interfacial 
mass transfer coefficient and the Thiele modulus for Fischer-Tropsch. 
 

Figure 9 shows the effect of changing 𝑀 (dimension-
less interfacial mass transfer coefficient) and 𝜙 (Thiele 
modulus) on the maximum conversion. The changes are 
made independently with all other parameters equal to 
the base system parameters. The effect of changing a pa-
rameter by a factor equal to a multiplier (while keeping 
all other parameter values equal to their base parameter 
values) gives one an idea of the effect of a parameter (in 
isolation) on WWB. The aim of this graph is to determine 
if 𝑀 (film diffusion) or 𝜙 (pore diffusion) is mass transfer 
limiting. Maximum conversion is being used as a proxy 
for mass transport effectiveness as mass transfer limita-
tions hinder conversion. A large value of 𝑀 represents 
small film diffusion limitations whereas a small value of 
𝜙 represents small pore diffusion limitations (as the iso-
thermal effectiveness factor tends to unity for smaller 
values of 𝜙). Figure 9 shows maximum conversion de-
creases strongly with increasing 𝜙 and remains practi-
cally constant for changes in 𝑀. This suggests that, for 
FT, pore diffusion is mass transfer limiting. This is con-
sistent with literature [7] and intuitively makes sense. This 
is because liquid (paraffinic) hydrocarbon product is pre-
sent in catalyst pores which would pose a high degree of 
mass transfer resistance. When compared to a gas, it is 
not unreasonable to expect a liquid to linger in catalyst 
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pores for longer and occupy a given pore volume for a 
greater amount of time. This would drive a lower time-
averaged catalyst porosity and in turn hinder pore diffu-
sion. 

3.3. Contact Process 

3.3.1. Base system parameters analysis 

 
Figure 10: Response of dimensionless bulk gas temperature to a feed 
temperature drop of 1% for the Contact Process. 
 
It is evident from Figure 10 that there is no WWB for a 
𝑇𝑓  drop of 1% for CP. As with FT, increasing magnitudes 
of drops in 𝑇𝑓 result in progressive quenching of the re-
action and no change in 𝑇𝑓 yielded WWB for CP using 
system parameters representative of an industrial reactor. 
For reference, 1 dimensionless time unit for CP is ap-
proximately equal to 800 seconds. 
 

 
Figure 11: Response of dimensionless bulk gas temperature to a feed 
velocity increase of 5% for the Contact Process. 
 

Figure 11 shows no WWB for a 𝑈𝑓 increase of 5%. 
As with drops in 𝑇𝑓, no WWB is observed for CP for any 

magnitude of 𝑈𝑓 increase and as these step changes in-
crease, the reaction is progressively quenched. 

Using a set of base system parameters which are rep-
resentative of an industrial reactor yields no WWB in the 
case of CP. This could be attributed to a high degree of 
dispersion in the reactor. Dispersion manifests itself (in 
the model) through the Peclet numbers 𝑃𝑒𝑀 and 𝑃𝑒𝐻 – 
which in the case of CP are small. Small Peclet numbers 
translate to a high degree of dispersion. With increasing 
dispersion, a reactor can be thought to tend towards the 
behaviour of a continuously stirred tank reactor where the 
contents of the reactor experience a high degree of mix-
ing and rapidly reach a state of homogeneity. What this 
means in the context of WWB is that, should a concen-
tration imbalance form due to a temperature drop, it 
would be rapidly dissipated; a significant excess of reac-
tant would not find its way to a hotspot. If a higher con-
centration of reactants manages to reach still-hot catalyst, 
the excess heat generated would be rapidly dissipated. 
Cumulatively, this would suppress the expression of 
WWB. 

A curious behaviour can be observed with the trends 
above where the gas temperature does not abruptly 
change to the same value of a new feed temperature. In-
stead, the gas temperature tends toward the new feed tem-
perature with time. This suggests that there is a resistance 
to change in the gas temperature at the very start of the 
reactor. This could also be attributed to dispersion. 

Physically, the CP reactor is very short - it has an as-
pect ratio of less than 0.06. The lack of WWB is con-
sistent with the studies conducted by Mehta et. Al (1981) 

[3] and Pinjala et. Al (1988) [4]. It is not unreasonable to 
consider the short reactor as effective in dispersion axi-
ally. The same cannot be said about dispersion radially as 
the diameter is very large for CP. 

3.3.2. Sensitivity analysis 

 
Figure 12: Effect of dispersion and dimensionless interfacial heat 
transfer coefficient on the tendency for wrong way behaviour in the 
Contact Process. 
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Figure 12 shows the influence of changing Peclet num-
bers on the tendency of WWB. The base Peclet number 
for mass and heat are both (simultaneously) multiplied by 
the same multipliers and all other parameters are left 
equal to their base parameter values. Figure 12 shows an 
increased tendency for WWB with increasing Peclet 
numbers when the feed temperature is dropped. The op-
posite is true for feed velocity increases. Physically, what 
this means is that with decreasing dispersion, the ten-
dency for WWB increases for feed temperature drops and 
decreases for feed velocity increases. This supports the 
hypothesis put forward previously as to why no WWB is 
observed upon a feed temperature drop. A physical rea-
soning for the decreased tendency of WWB with a feed 
velocity increase could be the fact that turbulence in-
creases with velocity. An increased turbulence would fa-
cilitate mixing, therefore, has an opposing effect to the 
decreased dispersion that comes with higher Peclet num-
bers. 

The solid line trends (which have a value for 𝐻 equal 
to the base value) eventually plateau with increasing Pe-
clet numbers which suggests that some other factor be-
comes limiting in the expression of WWB when disper-
sion is sufficiently poor in mitigating a concentration im-
balance and dissipating heat. This other limiting factor is 
shown to be 𝐻 in Figure 12. The broken line trends show 
that, with an increase in the value of 𝐻 by a factor of 2, 
the tendency toward WWB increases (shown by an in-
crease in how positive the value of the y axis becomes 
versus the solid line trend). The physical effect of in-
creasing 𝐻 is better heat transfer between catalyst and 
bulk fluid. Therefore, the trend suggests that when dis-
persion is poor (for large Peclet numbers) an increased 
heat transfer between catalyst and bulk fluid is required 
to increase the fluid temperature overall and show WWB. 
This conclusion comes with the assumption that the max-
imum steady state temperature is constant between the 
solid and broken line trends – which was what was ob-
served. 

An analysis for 𝑀 and 𝜙 was conducted for CP in the 
same fashion as FT. CP exhibited sensitivity toward both 
parameters but more so towards 𝜙 (but it is not severely 
pore diffusion limited like FT). An analysis of the ten-
dency for WWB with respect to 𝐻 (dimensionless inter-
facial heat transfer coefficient) was also conducted and 
found that increasing values of 𝐻 tend towards WWB but 
the tendency plateaus and never quite achieves WWB. 
The physical effect of increasing 𝐻 is better heat transfer 
between catalyst and bulk fluid, so the trend above sug-
gests this is no longer limiting with large enough 𝐻. It is 
likely that the reaction rate becomes limiting at this point 
and the maximum amount of heat that is being generated 
at the catalyst surface is transferred to the fluid but this is 
not enough to result in WWB. Further details can be 
found in the Supplementary Information in Figure 15 and 
Figure 16, respectively. 

The degree of WWB observed for CP is practically 
insignificant as it corresponds to a temperature difference 

(between transient and steady state) in the order of less 
than 0.3K. Nonetheless, these trends warrant discussion. 

4. Conclusions 

This study presents a dynamic two-phase, one dimen-
sional reactor model generalised for nth order kinetics 
which accounts for variable velocity. This was success-
fully implemented in gPROMS for two industrially rele-
vant processes/cases which differ greatly in nature – the 
wall-cooled Fischer-Tropsch process and the adiabati-
cally operated Contact Process. A set of base system pa-
rameters are presented which successfully represent an 
industrial reactor for each case. The presence of WWB is 
investigated in this study for each case and it is evident 
that there is no WWB for both cases using models which 
are based on industrial parameters. This is an assuring 
finding as this study implies that the problems that can 
result from WWB are likely not present for these indus-
trially significant processes. A sensitivity analysis was 
also successfully performed to determine what sort of de-
viations from industrially representative parameters 
could result in WWB. The magnitude of deviations in 
system base parameters which cause WWB, are so large 
that they are physically unlikely and lead to an insignifi-
cant degree of WWB. 

For FT (which is a wall-cooled reactor), this study 
shows that the likelihood of WWB increases with larger 
temperature rises across the reactor which can be caused 
by a poor wall heat transfer coefficient/insufficient cool-
ing.  Also, the impact of feed velocity increases is weak 
in causing WWB or generally affecting the gas tempera-
ture. For CP, this study attributes the suppression of 
WWB to highly effective dispersion in the reactor which 
manifests itself in the small Peclet numbers. 

Whilst the model provided physically explainable re-
sults, one should be aware of the limitations/assumptions 
behind the model. There is scope for lifting these assump-
tions to improve how well these models represent their 
respective systems. For example, in the case of CP the 
assumption of negligible radial effects is likely unsuita-
ble as the reactor diameter is large so this could warrant 
developing a two-dimensional model. Other complexi-
ties that can be introduced include: more rigorous mod-
elling of kinetics (rather than simple nth order with re-
spect to a single reactant), including reactor pressure drop 
and accounting for temperature-pressure dependance of 
thermophysical properties. Nonetheless, the model could 
be easily applied as-is to other processes to investigate 
WWB. 
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Nomenclature 
  
∆𝐻 heat of reaction [J mol-1] 
𝑎, 𝑏, 𝑐 stoichiometric coefficients 
𝐶𝑇 dimensionless total concentration 

𝐶 dimensionless bulk concentration,  
𝐶 = 𝐶𝑇 ∙ 𝑦 

𝐶𝑠 dimensionless surface concentration 
𝐶𝑇

′  total concentration [mol mbed
-3] 

𝑐𝑝,𝑔 specific gas/fluid heat capacity [J k-1 mol-1] 

𝑐𝑝,𝑐 specific solid catalyst heat capacity            
[J k-1 kg-1] 

𝐷𝑎 axial mass dispersion coefficient [mbed
2 s-1] 

𝐷𝑒  effective diffusivity [msurface
2 s-1] 

𝐸 activation Energy [J mol-1] 

𝐻 dimensionless interfacial heat transfer coef-
ficient 

ℎ𝑓 interfacial heat transfer coefficient               
[W msurface

-2 K-1] 
ℎ𝑤 wall heat transfer coefficient [W mwall

-2 K-1] 

𝑘(𝜃) rate constant at temperature 𝜃                 
[mol(1-n) mbed

-3(n-1) s-1] 
𝑘0 pre-exponential factor [mol(1-n) mbed

-3(n-1) s-1] 

𝑘𝑚𝑐 interfacial mass transfer coefficient          
[mbed

3 msurface
-2 s-1] 

𝐿 reactor tube length [m] 
𝐿𝑒 Lewis number 

𝑀 dimensionless interfacial mass transfer co-
efficient 

𝑛 reaction order 
𝑃 reactor operating pressure [bar] 
𝑃𝑒𝐻 Peclet number for heat 
𝑃𝑒𝑀 Peclet number for mass 
𝑅 ideal gas constant [J mol-1 K-1] 
𝑟 reactor tube radius [m] 
𝑟𝑝 particle radius [m] 
𝑇 temperature [K] 
𝑡 dimensionless time 
𝑡′ time [s] 
𝑈 dimensionless wall heat transfer coefficient 
𝑢 dimensionless velocity 
𝑢′ velocity [m s-1] 
𝑢𝑓,0

′  reference feed velocity [m s-1] 
𝑋 conversion 
𝑦 dimensionless mole fraction 
𝑦𝐴

′  reactant mole fraction [molreactant moltotal
-1] 

𝑧 dimensionless axial position 
𝑧′ axial position in reactor [m] 
  
Greek letters 
𝛼 expansion factor; negative for contraction 
𝛽 dimensionless adiabatic temperature rise 
𝜀 bed voidage [mvoid

3 mbed
-3] 

𝜂𝑠  effectiveness factor 
𝜃 dimensionless temperature 
𝜆𝑎  axial heat dispersion coefficient [Wbed

-1 K] 
𝜌𝑐 solid catalyst density [kg m-3] 
𝜙0 Thiele modulus at 𝜃 = 𝜃r 
𝜙𝑠 Thiele modulus at 𝜃 = 𝜃s 

  
 

Subscripts 
𝑐 solid catalyst 
𝑓 feed 
𝑔 gas 
𝑟 reference 
𝑠 surface 
𝑆𝑆 steady state 
𝑤 wall 
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Abstract 
Anion Exchange membrane fuel cells (AEMFCs) have recently received increasing attention, as they contain the 

ability to produce respectable power densities, overcoming the issues related with using Pt-based catalysts found in Proton 
Exchange membrane fuel cells (PEMFCs). While extensive research has focussed on the development of such catalysts, 
there is limited information available on the role of ionomers in fuel cells, in particular for AEMFCs. The role of ionomers 
in the catalyst layer is essential, as can significantly improve the electrocatalytic performance and stability of the catalyst 
itself. Currently, the ionic polymer Nafion®, synthesised via the copolymerisation of tetrafluoroethylene, shows the 
highest performance as this agent. The limitations associated with Nafion® include high synthetic costs, which involve 
the use of environmentally harmful per-fluorinated compounds, whilst also being humidity and temperature sensitive, 
limiting its application process. Considerable attention has been drawn to vinyl imidazolium (IM) based ionic liquids as 
ionomers. Although these ionomers have shown to poison Pt/C catalysts in acidic medium, there has been steady process 
of the study of these compounds and their use in basic conditions; and in general, they show good performance. This 
study covers the synthesis and characterisation of alternative ionomers based on poly(ionic liquid)s and compares their 
electrochemical performance to the commercially available Nafion® ionomers in alkaline conditions. 

1 Introduction 
 
The well-established and growing interest in fuel cells 
makes it one of the most prominent technologies on the 
course to meet global sustainability goals. Research on 
fuel cells is primarily focused on proton-exchange 
membrane fuel cells (PEMFC) and the anion-exchange 
membrane fuel cells (AEMFC), with an emphasis on 
PEMFC due to the availability of highly conductive and 
durable proton exchange membranes (PEM) namely 
Nafion® (Favero, Stephens, & Titirici, 2020). Both fuel 
cells are limited by the oxygen reduction reaction (ORR) 
at the cathode due to sluggish kinetics. A large amount of 
expensive Pt-based catalyst is used to overcome this fault. 
Although research has been successful in reducing Pt 
loading, its increasing price is still an issue from a 
commercial standpoint (Holdcroft, 2014). 
 
     Efforts on substituting Pt with an inexpensive 
alternative has shown promise with developments of 
transition metals/nitrogen supported on carbon. Recently, 
the emergence of highly conductive anion exchange 
membranes (AEM) has boosted the research of AEMFCs. 
In such conditions, the ORR proceeds much faster and 
thus other, cheaper catalysts can rival the activity of Pt 
catalysts (Gao, et al., 2017). In particular, iron/nitrogen 
supported on carbon (FeNC) has shown encouraging 
performances in alkali environments (Favero, Stephens, 
& Titirici, 2020).  
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Schematic of the PEMFC with the catalyst layer (Spiegel, 
2019) 
 
     Nafion® is the current state of the art polymer 
electrolyte membrane, but it has issues for large-scale 
development owing to its high synthetic cost, dependence 
on fluorine-based synthesis as well as temperature and 
humidity sensitivity (Holdcroft, 2014). The ionomer and 
catalyst form the catalyst layer (CL), which is the region 
where fuel and oxidant are converted to products. The 
ionomer plays a great role in determining the overall 
performance of the fuel cell, by acting as a binder to give 
mechanical integrity to the catalyst layer, through 
providing proton or hydroxide conductivity, by regulating 
water management and finally by facilitating oxygen 
transport. Figure 1 shows a schematic of a proton 
exchange membrane fuel cell, featuring the proton 
exchange membrane and the two catalyst layers, 
deposited on a gas diffusion layer and composed of 
catalyst and ionomer 
 
     Owing the limitations of Nafion®, research has been 
focused on the development of alternative proton 
exchange membrane and on the development of new 
anion exchange membranes. However, little research has 
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been devoted to the study of such polymers as ionomer 
and their role in the catalyst layer.  
 
     Recent studies have shown that ionic liquids (IL) or 
poly(ionic liquid)s (PILs) can provide high oxygen 
concentration and transport (Wang, et al., 2019). ILs are 
molten salts with melting points below 373K. Notable 
characteristics of ILs include low vapour pressure, high 
thermal/electrochemical stability, and relatively low 
toxicity. An attractive aspect of ILs is its versatility, 
allowing desired properties to be emulated, for example 
providing high oxygen solubility. PILs are formed upon 
polymerisation of ILs which adds polymer-like qualities 
in addition to those associated with the IL. As a result, 
PILs are very suitable to be studied as ionomer in PEMFC 
and AEMFC. In addition, PILs offer even further 
versatility since the morphology of the chain can be tuned, 
allowing to independently optimize their ionic 
conductivity, mechanical stability, oxygen transport and 
hydrophobicity. 
 
     In this manuscript we will present the synthesis of 
imidazolium-based block copolymers and co-PILs Their 
structure and thermal integrity is studied with NMR, TGA 
and elemental analysis. Finally, their performance and 
cathodic catalyst layer ionomer is tested in rotating disk 
electrode (RDE) and gas diffusion electrode (GDE) 
configuration, to draw structure-property relationships 
that will guide the further development of such ionomers.  
 

2 Background 
 
A major limitation of Nafion® includes performances in 
high current density applications, since the presence of the 
ionomer intensifies the local oxygen starvation, 
increasing the oxygen transport resistance (Li, Intikhab, 
Malkani, Xu, & Snyder, 2020). Additionally, the specific 
adsorption of Nafion®’s hydrophilic sulfonate functional 
group causes the blockage of active sites and hinders the 
performance of the ORR. Research has been made to 
mitigate these effects through the use of IL additives to 
Nafion®-containing ink, resulting in enhanced ORR 
kinetic activity (Li, et al., 2020). 
 
Zhang et al. have reportedly improved the electrocatalytic 
performance of ORR in a RDE setup by introducing PILs 
as replacement ionomers for Nafion®, specifically using 
copolymers containing protonated imidazolium (Zhang, 
Yang, Zhang, & Fang, 2019). Styrene was also present in 
the copolymers. Styrene provides hydrophobicity, 
increases the structural integrity and chemical stability of 
the polymer (Lu, et al., 2013). Imidazolium provides high 
anionic conductivity through its conjugated structure, 
which allows its cationic charge to delocalize across the 
structure. A high proportion of imidazolium is required to 
maintain a high ionic conductivity and facilitate oxygen 
transport. There is a limit to how much imidazolium 
improves performance, as having too much causes the 
hydrophobicity of the CL to decrease. Hydrophobicity of 
the CL is crucial to prevent the flooding of the cathode, 
blocking oxygen diffusion (Wang, et al., 2018). The 

performance of the copolymers have been comparable to 
Nafion® (Zhang, Yang, Zhang, & Fang, 2019).  
  
     Previous research by Lu et al. covers various synthesis 
methods for imidazolium-based anion exchange 
membranes and compares various ORR performance 
parameters. By varying the polymer matrix material, a 
range of polymers were obtained and tested showing how 
the performance of imidazolium-based polymers is 
comparable to Nafion®, with Pt/C electrochemical 
surface area (in an AEMFC RDE setup) of a Nafion® 
reported at 79.4 ± 2.4 m2gPt

-1  and that of imidazolium-
based PIL at 68.8 ± 1.5 m2gPt

-1  (Lu, et al., 2013). The 
analysis also revealed how the AEM performance is 
highly dependent on the ionomer and catalyst ratio 
(denoted as I:C) (Lu, et al., 2013). 
 
     The use of styrene/imidazolium copolymer to modify 
the catalyst layer inspired the synthesis of similar 
copolymers. Figure 2 shows the structure of the 
copolymer before and after protonation with TFSI.  
 

 
Figure 2. Structure of the PILs a) before ion exchange in TFSI b) after 
ion exchange 
 
     The aim of this research is to further examine the 
performance of imidazolium and styrene PIL’s potential 
to be used as an alternative to Nafion®. The high oxygen 
affinity, good conductive properties, mechanical stability 
and hydrophobicity of the copolymer should help 
overcome the oxygen uptake resistance and result in 
enhanced ORR performance at the cathode. The 
performance will be measured using various 
electrochemical tests where various compositions will be 
explored to optimise the CL. 
 
 
 
 
 

a) 

b) 
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3 Methods 
 
3.1 Polymer Synthesis 
The polymers and PILs were synthesised with the 
following materials and procedures. 
 
3.1.1 Materials 
Toluene, diethyl ether, Azobisisobutyronitrile (AIBN), 1-
Vinylimidazole, and styrene were purchased from Sigma-
Aldrich, of which the 1-Vinylimidazole and styrene were 
purified with an alumina filter column and the rest were 
used as received. 
 
3.1.2 Synthesis of Poly(1-Vinylimidazole-co-

styrene) (Poly(St-co-Vim)) 
The desired amounts of 1-Vinylimidazole (VIm), styrene 
(St), and AIBN (see Table 1) were dissolved in anhydrous 
toluene under an argon atmosphere in a Schlenk flask. 
Three freeze-pump-thaw cycles were performed to 
remove oxygen present in the reaction vessel. The mixture 
was then placed in an oil bath heated to 60◦C and left for 
approximately 12 hours. However, for the second 
synthesis, the oil bath was heated to 80◦C. After the 
polymerisation reaction, the solution was dropped into 
cold diethyl ether solvent, which resulted in the 
production of a ‘sticky’ orange precipitate (Poly(St-co-
VIm)). The precipitate was washed with hexane and 
methanol, using a Soxhlet set up and dried under vacuum 
at 80◦C for 24 hours. 
 

Molar 
Ratio of 
Vim/Sty 

VIm 
(mL) 

St (mL) Toluene 
(mL) 

AIBN 
(mg) 

7.5:1 30 5 100 9 
4:1 9 4.4 19 16 
Table 1. Reactants for Free-Radical Polymerization reaction. 

 
3.1.3 Protonation/Ion Exchange 
The Poly(St-co-VIm) was synthesised using acid HTFSI 
and dissolved in ethanol. The mixture was then stirred at 
room temperature for 12 hours using a magnetic stirrer. 
To extract the ion-exchanged polymer, the mixture was 
dripped into de-ionized water, which produced a pale 
white precipitate, Poly(St-co-VImH+). The precipitate 
was collected via vacuum filtration, and then left to dry 
under a vacuum at 40◦C for 24 hours. 
 
3.2 Ink preparation 
For ink preparation, the ratio of ionomer (mg) to catalyst 
(mg) will be denoted by I/C, where I/C = 1 corresponds to 
1mg of ionomer per 1mg of catalyst (FePC). The catalyst 
inks for ORR catalysts were prepared using the following 
procedures. For Nafion®, FeNC catalyst (8mg) was 
mixed with de-ionised water (1mL), iso-propanol (1mL) 
and 5 wt% Nafion® of varying quantities from 40µL 
(I/C=0.25), 80µL (I/C=0.5), and 160µL (I/C=1). For 
Polymers and PILs, FeNC catalyst (8mg) was mixed with 
ethanol (2mL), and ionomer of varying quantities from 
8mg (I/C=1) and 16mg (I/C=2). The catalyst inks were 
ultrasonicated in an ice bath for 20 minutes to form a 
homogenous solution. Once sonicated, 12µL of the ink 
was slowly and carefully distributed onto the surface of 

the glassy carbon working electrode and subsequentially 
left to dry for 20 minutes. 
 
3.3 Rotating Disc Electrode 
Electrochemical measurements were made using a 
Rotating Disk Electrode (RDE) method, alongside 
software NOVA 2.1 to record the data produced. As seen 
in Figure 3, the RDE setup consists of a three-electrode 
system; a catalyst-coated glassy carbon working electrode 
(catalyst loading 0.24 mg/cm2), a graphene counter 
electrode, and an Ag/AgCl reference electrode, all in an 
electrolyte solution of 0.1M KOH to create a 
predominantly alkaline environment, , under which, 
metal-free catalysts offer good ORR performance. The 
performance of the inks was characterized using Linear 
Sweep Voltammetry (LSV, at 1600rpm) in the presence 
of oxygen (to remove any mass transport limitations), the 
electrochemical Impedance at room temperature in the 
presence of oxygen, and the Cyclic Voltammetry (CV) in 
the presence of Nitrogen. 
 

 
 
Figure 3. Rotating Disk Electrode (RDE) configuration. 
 
3.4 Gas Diffusion Electrode  
Further electrochemical measurements were made using 
a Gaskatel Gas Diffusion Electrode (GDE) cell (see 
Figure 4) alongside NOVA 2.1 to record the data 
produced. The GDE setup consists of a three-electrode 
system; a carbon paper on which the catalyst ink has been 
sprayed on as the working electrode, a graphene counter 
electrode, and an Ag/AgCl reference electrode, with both 
the counter and reference electrodes submersed in an 
electrolyte solution of 1M KOH. The performance of the 
inks was characterized using Linear Sweep Voltammetry 
(LSV) in the presence of oxygen, the electrochemical 
Impedance at room temperature in the presence of 
oxygen, and the Cyclic Voltammetry (CV) in the presence 
of nitrogen. For each ionomer being tested, three repeats 
were conducted for each of the measurements which were 
then used to calculate and plot the average and error.  
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Figure 4. Commercial GDE cell from Gaskatel adapted at TY 
Darmstadt (GDE-M). 
 

3.5 Elemental Analysis 
A 400 MHz NMR device was used to obtain H-NMR and 
F-NMR spectra for the Poly(St-co-VIm) samples. 
Deuterated Chloroform, purchased from Sigma Aldrich, 
was used to dissolve the corresponding samples. 
Elemental analysis techniques were also conducted to 
analyse and confirm the monomeric ratio of the co-
polymer PS-Vim and to determine the degree of 
protonation after the acidic substitution stage. Moreover, 
gel permeation chromatography was also utilised to 
determine the molecular number average (MN). 
 
3.6 Thermal Analysis 
A thermogravimetric analysis (TGA) was performed on a 
PIL-2 sample over a temperature range of 31℃ - 500℃ 
using a Netzsch TG 209F1 Libra®. The same analysis 
was extended to a sample of PIL-3 using a Netzsch STA 
449F5 Jupiter® over 24℃ - 600℃. The upper 
temperature limit of thermal stability was determined by 
the TGA and used to run a differential scanning 
calorimetry (DSC) analysis on PerkinElmer DSC 8000® 
across a thermally stable range to avoid damaging the 
equipment. The glass transition temperature (𝑇𝑔) 
extracted from the DSC would be used to characterise the 
polymers together with the thermal stability analysis from 
the TGA. 
 

4 Results and Discussion 
 
4.1 Polymer Characterization 
An elemental analysis had previously been performed 
following the synthesis of the polymers and a ratio of the 
two ionomers styrene and vinyl imidazole was obtained 
with data is summarised in Table 2 (further data available 
in Section 8.1 and Section 8.2). TGA revealed the upper 
temperature limit of thermal stability to be 350℃ for PIL2 
and 370℃ for PIL3. To stay within the stable region, the 
DSC was operated in a temperature range between -100℃ 
and 330℃. The DSC analysis did not reveal a glass 
transition temperature for both PIL2 and PIL3 when the 
samples were subject to being heated at 10℃/minute. The 
heating rate was then changed to 50℃/minute for the 
same temperature range, but this adjustment did not 
change the results. 
 
 
 

Polymer Styrene:Vinyl 
imidazole 

Relative 
molecular 

weight 

TGA 
(℃) 

P1 2.2:1 Low - 

P2 2.3:1 Medium - 

P3 1:5 High - 

PIL1 2.2:1 Low - 

PIL2 2.3:1 Medium 350 

PIL3 1:5 High 370 
Table 2. Summary of obtained polymer properties 
 
4.2 RDE Electrocatalytic Results 
The RDE was used to test the electrocatalytic activity of 
the inks derived from the synthesised copolymers and 
commercial Nafion® via Linear Sweep Voltammetry 
(LSV), Impedance, and Cyclic Voltammetry (CV). 
 
4.2.1 Linear Sweep Voltammetry (LSV) 
LSV were performed in oxygen-saturated 0.1M KOH at a 
scan rate of 10 mV/s, to observe the kinetic and mass 
transport behaviour of the catalyst towards the ORR. As 
seen in Figure 5, the LSV plot can be separated into 3 
regions: the kinetic region which is influenced by the 
kinetics and activity of the catalyst; the diffusion region 
which is influenced by oxygen diffusion; and mixed 
kinetic-and-diffusion region. 

 
Figure 5. A typical LSV plot including the three observed regions 
(kinetic, mixed, and diffusion regions). 
 
     Varying the content of Nafion® based ionomer 
influences the performance of the proton membrane fuel 
cells. To perform a fair comparison between the 
commercially available Nafion® and the synthesised 
ionomers, the performance of Nafion® was tested at I/C 
ratios of 0.25,  0.5, and 1 in alkaline conditions using 
LSV. As seen in Figure 6, Nafion® with an I/C ratio = 1 
had the greatest electrocatalytic performance with the 
fastest kinetics and hence served as a benchmark to 
compare the other ionomers against. Unexpectedly, 
I/C=0.25 yield better results than I/C=0.5 
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Figure 6. Linear Sweep Voltammetry plot (at 1600 rpm) of Nafion® at 
I/C = 0.25, 0.5, and 1. 

     The electrocatalytic performance of the different 
polymers at I/C = 1 (see Figure 7) and I/C ratio = 2 (see 
Figure 8) were obtained via LSV and compared to 
Nafion® at I/C ratio = 1. All polymers and PILs at either 
I/C ratio = 1 or I/C ratio = 2 exhibited worse kinetic 
properties and increased resistance to oxygen transport 
compared to Nafion®. These limitations were possibly 
due to adsorption on the catalysts’ active sites or 
decreased accessibility to the active sites on the catalyst 
surface. Furthermore, during the loading of the ink onto 
the electrode, poor stability of the catalyst layer was 
observed which required multiple attempts and changes in 
composition in order to increase the mechanical stability. 

     PIL2 and PIL3, although worse in electrocatalytic 
activity compared to Nafion®, showed the greatest 
performance of the synthesised ionomers with both I/C 
ratios of 1 and 2 displaying identical electrocatalytic 
performance (as seen in Figures 7 and 8). Due to the 
better performance, PIL2 and PIL3 were further tested via 
Gas Diffusion Electrode (GDE) as explained in Section 
3.4. 
 

 
Figure 7. Linear Sweep Voltammetry plot (at 1600 rpm) of Nafion (I/C 
= 1) and P1, P2, and P3 (I/C ratio = 1 and 2). 

 
Figure 8. Linear Sweep Voltammetry plot (at 1600 rpm) of Nafion (I/C 
= 1) and PIL1, PIL2, and PIL3 (I/C ratio = 1 and 2). 
 
4.2.2 Impedance 
The RDE was rotated at 1600 rpm while sinusoidal 
perturbations in the frequency range 10−1 − 105𝐻𝑧 were 
applied to the system to collect impedance data with 10 
frequencies tested per decade at an amplitude of 
0.01 𝑉𝑅𝑀𝑆. The results were examined on a Nyquist plot 
fitted to the equivalent circuit shown in Figure 9, 
composed of the Ohmic drop (Rs), polarization resistance 
(Rp), double layer capacitance (Cdl), resistance to the 
transport of oxygen (Ro) and an additional capacitance 
originated from the storage of oxygen. The results are 
displayed on a Nyquist plot as displayed on Figure 9. The 
electrical circuit that was fitted onto the data is shown as 
a schematic on Figure 10. The values for the fittings can 
be found summarised in Section 8.4 under Supplementary 
Information. 
 
 

 
Figure 9. Electrochemical impedance spectroscopy Nyquist plot for 
various PILs with I/C ratio of 1. 
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Figure 10. Schematic model of two resistances, which represent film 
polarization resistance and oxygen transport. Capacitance is denoted by 
C and the offset potential resistance denoted by Rs. 
 
     The polarization resistance only experienced some 
fluctuation but remained relatively constant, which is 
expected since the active site is not perturbed by the 
ionomer. As seen in Figure 9, PIL2 and PIL3 polymers 
have good oxygen transport since the resistance is 
considerably lower than the commercial benchmark 
Nafion®, confirming the predicted improvement of 
oxygen transport. It is also important to note that the ion 
exchanged polymers have excellent oxygen transport in 
comparison to their original state. This is likely due to the 
fluorinated anions, which provide excellent oxygen 
solubility. The only exception is P1/PIL1; P1 showed 
excellent oxygen transport, likely due to the short chain 
length, however, the low molecular weight also results in 
poor mechanical stability and PIL1 did not yield a stable 
enough layer to perform impedance measurements. A 
notable flaw in the impedance results is a negative offset 
impedance, whereby the Z’ value start off at a negative 
value (i.e. Rs < 0). This peculiarity has no physical 
meaning as there cannot be a negative impedance, so the 
fittings of the Nyquist plot were conducted by taking Rs 
= 0.  
 
4.2.3 Cyclic Voltammetry (CV) 
CV is employed to observe and analyse the reduction and 
oxidation process of a molecular species. It is carried out 
in the presence of nitrogen so that oxygen reduction 
doesn’t occur. The typical rectangular shape that occurs is 
due to the double layer capacitance and the redox peaks 
observed are considered to be due to electron transfer to 
the metal centre or the adsorption / desorption of 
oxygenated intermediates. The high potential peak in 
FePC is believed to originate from OH desorption and its 
position is correlated with the binding energy of the OH 
intermediate. The position of this peak is not expected to 
change with ionomer unless the ionomer has a strong 
interaction with the active sites. 
 

 
Figure 11. Cyclic Voltammetry plot of Nafion (I/C = 1) and polymers 
1,2, and 3 (I/C = 2). 

 

 
Figure 12. Cyclic Voltammetry plot of Nafion (I/C = 1) and PILs 1, 2, 
and 3 (I/C = 2). 
 
     In CV, the size of the cyclic voltammogram relates to 
the electrical double layer; a measurement of the surface 
area and the polarizability of the catalyst surface. A bigger 
width relates to a more accessible catalyst surface and a 
better polarizability of the ionomer. Changes in the size 
of the cyclic voltammogram can relate to different surface 
area accessibility, polarizability, or conductivity of the 
catalyst. 
 
     As seen in Figure 11, the polymers (I/C = 2) exhibit a 
smaller capacitance compared to Nafion® (I/C = 1). P2, 
P3, and PIL1 (see Figure 12) have a smaller width 
compared to Nafion®. All the polymers, and PIL1 do not 
exhibit the CV peaks characteristic of FePC. This can 
indicate poor conductivity, poisoning of the active site or 
lower accessibility to the catalyst active sites, which can 
also explain the low ORR performance reported with 
these polymers. 
 
     In contrast, PIL2 and PIL3 (I/C = 2) displayed a similar 
double layer capacitance and cyclic voltammogram peaks 
to Nafion® (see Figure 12). This suggests that there is 
good conductivity and better accessibility to the catalyst 
active sites. The position of the high potential peak does 
not change which indicates that the PILs do not poison or  
strongly interact with the active sites. 
 
4.3 GDE Electrocatalytic Results 
The RDE is a fast and simple technique, used to screen 
catalysts and ionomer. However, the experimental set up 
of RDE is very different from a real fuel cell, and results 
obtained in RDE are not always translatable to real 
devices. Therefore, it was decided to test the best 
performing synthesised ionomers in a Gaskatel GDE 
configuration, which is a better representation of 
performance in fuel cells. As seen in Section 4.2, PIL2 
and PIL3 displayed the best in performance and hence 
were chosen for the GDE experiments of Linear Sweep 
Voltammetry (LSV), in the presence of oxygen, the 
electrochemical Impedance at room temperature in the 
presence of oxygen, and the Cyclic Voltammetry (CV) in 
the presence of nitrogen. 
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Figure 13. Linear Sweep Voltammetry plot from GDE of Nafion®, 
PIL2, and PIL3 at I/C = 1.  
 
     The electrocatalytic performance of PIL2 and PIL3 at 
I/C =1 (see Figure 13) was obtained via LSV and 
compared to against Nafion® at I/C = 1. The overpotential 
is the difference between the applied potential and the 
thermodynamic potential for ORR (1.23V). At low 
overpotential, Nafion® outperforms the PIL2 and PIL3, 
but at high overpotential, the PILs exhibit better activity. 
This suggests that the catalyst activity is slightly higher 
with Nafion® used as the ionomer whilst oxygen 
transport is better with PILs used as the ionomer.  
 

 
Figure 14. Cyclic Voltammetry plot from GDE of Nafion®, PIL2, and 
PIL3 at I/C = 1. 
 
     The GDE’s CV performance of PIL2, and PIL3 of I/C 
= 1 were compared to the performance of Nafion® of I/C 
= 1 as seen in Figure 14. In both cases of PIL2 and PIL3, 
the ionomers display a larger double layer capacitance 
which indicates they either expose more surface area or 
that the ionomers have greater polarizability compared to 
Nafion®. Furthermore, the cyclic voltammogram peaks 
of the ionomers are also greater than that of Nafion®, 
suggesting that there is better conductivity and 
accessibility to the catalyst’s active sites. From the GDE 
CV results, the actual performance of the synthesised 
ionomers is better than that of Nafion®. 

5 Conclusions and Outlook 
 
The polymers and poly(ionic liquids) were successfully 
synthesised, their structure was confirmed by NMR and 
the Styrene:Imidazolium ratio was determined by 
elemental analysis. Synthesis 1, 2, 3 were found to 
produce polymers with varying proportions of the 
monomers (styrene, imidazole) and molecular weight. 
TGA confirmed that the synthesised polymers PIL2 and 
PIL3 were stable up to 350℃ and 370℃ respectively. 
 
     The electrocatalytic testing from the RDE yielded 
informative results, showing that the polymers before ion 
exchange feature low conductivity and ORR 
performance. In contrast, the poly(ionic liquid)s showed 
better performance, with the exception of PIL1 which, 
due to its low molecular weight, led to a bad binding 
performance and low mechanical stability of the catalyst 
layer. PIL2 and PIL3 showed RDE performance 
comparable to Nafion® suggesting that they are very 
similar in conductivity and accessibility to the catalyst 
active sites. The impedance results suggest that the 
synthesised ionomers have less resistance in oxygen 
transport than Nafion®. 
 
     GDE was also used to confirm the performance of the 
best performing synthesised ionomers (PIL2 and PIL3) in 
a set-up more representative of a real fuel cell device. 
Despite showing similar results in RDE, PIL3 
outperformed PIL2 in GDE, indicating that the higher 
proportion of imidazole monomers offered better oxygen 
transport, which is again further confirmed by the results 
obtained from Impedance. 
 
     For future research, the chain length and composition 
of polymers can be varied to study their effects on the 
electrocatalytic activity of the synthesised ionomers. Ex-
situ characterization of the ionic conductivity, oxygen 
transport and water uptake of the polymers could guide 
the further development of structure-property 
relationships. Additionally, stability measurements 
combined with post-mortem analysis could shine light on 
the stability and degradation mechanism of the catalyst 
layer in presence of different ionomers. Finally, further 
research can allow the introduction of OH conductive 
monomers in order to improve the ionomer’s ionic 
conductivity and performance.  
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8 Supplementary Information 
 
8.1 NMR Results 
 

 
Figure 15. 400 MHz H-NMR results for the first P1 
 
 
 
 

 
Figure 16. 400 MHz H-NMR results for the first PIL1 
 
 
 
 
 

8.2 Elemental Analysis
  

Polymer N Area C Area H Area S Area N % C % H % S % O2% 
Styrene:Vynil-

Imidazole 
P1 5 290 37 017 9 802 0 4.2 47.4 47.5 0.0 0.9 2.20 
P2 5 430 39 176 10 901 6 4.0 46.9 47.9 0.0 1.2 2.30 
P3 13 588 28 009 8 952 14 11.6 38.5 45.6 0.0 4.3 0.21 

Table 3. Raw Data from Elemental Analysis 
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Abstract 
Heat pump technologies are becoming an increasingly popular low-carbon solution to replace natural gas-fired boilers 
in efforts decarbonise the domestic heating industry. The considered heat pumps are categorised into either electricity- 
or thermally-driven technologies. The former consists of air-, and ground-source heat pumps, whilst the latter includes 
thermally-driven absorption, and novel integrated-organic Rankine cycle heat pumps. In this study, the competitiveness 
of these technologies is assessed in the context of the UK domestic heating sector. Here, a whole-system UK heating 
model is used to evaluate the competitiveness of the investigated technologies over a range of market-informed 
hydrogen and electricity prices. Additionally, governmental net-zero policies and strategies are considered to 
investigate how the competitiveness of each technology varies as the domestic heating sector progresses along its 
decarbonisation pathway. It is found that high-performance air-source heat pumps are the most competitive technology 
for most resource price points. However, given the projected future electricity market volatility and plans for a 
functioning hydrogen supply infrastructure in the UK by 2035, it is expected that thermally-driven heat pumps will 
become increasingly favourable on approach to 2050. For price scenarios in which thermally-driven technologies are 
most competitive, it is expected that thermally-driven absorption heat pumps will serve high and medium heat demand 
households, whilst integrated-organic Rankine cycle heat pumps serve low demand households. Considering future 
hydrogen supply limitations, and the increasing electrification of other sectors in the UK, it is likely that a net-zero 
domestic heating sector will see a mix of thermally-driven and high-performance air-source heat pumps installed across 
UK households subject to resource availability. 

1. Introduction 

The average surface temperature of Earth has risen 
approximately 1 °C since the pre-industrial era (1880-
1900) [1]. To address this issue, 196 parties from across the 
globe came together to form the Paris Agreement in 2015, 
which set a goal to limit global warming to well below 2 
°C compared with pre-industrial levels [2]. To achieve this 
goal, countries aim to reduce greenhouse gas emissions as 
soon as possible to achieve net-zero emissions by 2050.  In 
2019 the UK committed to achieving net-zero across all 
sectors by 2050 and so the Carbon Budgets were 
established, providing a roadmap of carbon emission 
targets and key recommendations to meet net-zero 
ambitions [3]. In 2017 the domestic heating sector, made 
up of domestic space heating and hot water demands, 
accounted for 17 % of UK carbon emissions [4]. Currently, 
gas boilers supply 78 % of the UK’s domestic heating 
demand [5]. Therefore, to decarbonise, the UK domestic 
heating sector must transition to low-carbon heating 
technologies such as electricity- or thermally-driven heat 
pumps [6].  

The Sixth carbon budget [7] and the 2021 UK hydrogen 
strategy [8] indicate that hydrogen production must be 
scaled up significantly to achieve a net-zero future, this 
could also have implications to decarbonise the domestic 
heating sector. Hydrogen supply can be categorised into 
three colours: grey, blue, or green. The colour is dependent 
on the relative scale of carbon emissions arising from 
hydrogen production processes. Grey hydrogen is 
hydrogen produced via steam methane reforming (SMR) 
or autothermal reforming (ATR) using natural gas  
feedstocks, with all process emissions being released into 
the atmosphere [9][10]. Blue hydrogen follows the same 
production methods as grey hydrogen, but almost all of 
carbon emissions are captured and sequestered 

underground. Green hydrogen is produced via the 
electrolysis of water using renewable energy sources, such 
as solar or wind, to power the production process. Large 
scale green hydrogen production is a relatively new 
process. This, in conjunction with its dependence on 
renewable energy sources, causes green hydrogen to have 
limited supply and high prices in today’s energy landscape 
[11]. However, with further developments in production 
technologies, increasing investment into green hydrogen 
production facilities, and decreasing costs in renewable 
energy, the price of green hydrogen is expected to 
gradually decrease over the next 20 years [11].  

The International Energy Association identifies that by 
2045, 50 % of the global heating demand must be met by 
heat pumps to reach global net-zero ambitions. To achieve 
this, it is estimated that heat pumps will represent 75 % of 
low-carbon heat technology sales in the UK by 2030 [6]. 
Additionally, the UK could be placing a ban on the 
installation of domestic fossil fuel boilers in new-build 
homes from as early as 2025 [5]. Heat pumps use power to 
transfer heat from a cold source to a hot sink [12], with 
their performance increasing with decreasing temperature 
difference between the cold source and hot sink. Their 
importance in low-carbon heating comes from being able 
to use low-carbon intensive power sources to drive the heat 
pump [13]. In line with their increasing importance, the 
research in this paper focuses solely on the role of heat-
pump technologies in decarbonising the UK domestic 
heating sector.  

There are two main categories of heat pumps: 
electricity- and thermally-driven heat pumps. Electric heat 
pumps are generally more efficient than electric boilers 
since they deliver more heat energy than electrical energy 
consumed [14]. The electric heat pump market is 
dominated by two types: air-source heat pumps (ASHPs), 
and ground-source heat pumps (GSHPs) [15]. The former 
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technology extracts heat from ambient air whilst the latter 
utilises subsurface ground temperatures. For this research, 
ASHPs are split into two design categories: high- (HP) and 
low- (LP) performance, with both types having large (L) or 
small (S) sizes [16].  The performance of an electric heat 
pump is measured using its coefficient of performance 
(COP), defined as the ratio between the useful heat output, 
and the electricity input [17]. 

Thermally-driven heat pumps could be significant on 
the pathway to net-zero heating for two key reasons. 
Firstly, green hydrogen has no scope-1 emissions as a fuel 
source used for heating. Scope-1 emissions are defined as 
the direct greenhouse gas emissions that are associated 
with resource usage [18]. Secondly, completely 
electrifying domestic heating would incur additional costs 
and could put strain on the national grid as peak electricity 
demand would significantly increase as other sectors seek 
electrification as a solution to decarbonisation [19]. 
Therefore using hydrogen-fuelled thermally-driven heat 
pumps can help reduce the strain on the national grid 
during times of peak energy demand. The fuel-to-heat 
(FHR) ratio is a performance parameter used for hydrogen 
heat pumps describing the ratio of useful heat output, to the 
heat provided by the fuel [20]. Similar to the COP for air-
source heat pumps, the FHR is dependent on the ambient 
air temperature. 

In the current thermally-driven heat pump landscape, 
there are two promising technologies: thermally-driven 
hydrogen absorption heat pumps (THHPs), and novel 
integrated-organic Rankine cycle heat pumps (ORCHPs). 
Gas-absorption heat pumps operate in a similar manner to 
electricity-driven heat pumps, however the system utilizes 
heat to drive the compressor. Initially, these heat pumps 
gained significant interest for refrigeration applications. 
However, work carried out by Scoccia et al. [21] identifies 
the promising application of such technologies in 
residential heating, where in some cases they may 
outperform electricity-driven heat pumps. Since the heat 
pump is gas-fired, low-carbon intensive hydrogen can be 
used as a fuel source. ORCHPs, which were investigated 
by Song et al. [20], are a novel heat pump technology. The 
work completed by Song et al. indicates, through thermal 
and economic assessment, that ORCHPs have significant 
potential to compete with existing domestic heating 
technologies. The operation of this technology involves an 
organic Rankine cycle, driven by fuel combustion, in series 
with a vapour-compression air-source heat pump cycle, 
with a heat transferred via an appropriate working fluid.  

In a study by Petrović and Karlsson [22] the 
competitiveness of residential heat pumps is assessed in the 
context of the Danish energy system.  They found that, for 
the Danish energy system, 24-28 % of the total heat 
demand after 2035 will be met by heat pumps and will be 
responsible for 66-70 % of heat from individual heating 
sources. However, it is worth noting that the only 
residential heat pumps assessed within this study were 
ASHPs and GSHPs with no consideration of thermally 
driven technology. 

 In a study by Wang and He [23], a national-scale 
techno-economic analysis of electric-driven heat pumps 
for decarbonising heat in Great Britain was performed. The 
study indicates that such technologies, under suitable 
policy and subsidy schemes, are cost-competitive against 
traditional gas boilers. However, similar to the work 
completed by Petrović and Karlsson [22], thermally-driven 
heat pumps were not considered in their analysis. Work 
completed by Olympios et al. [16] provided whole-system 
comparisons of electricity-driven heat pumps, and 
thermally-driven THHPs, boilers, and district heating in 
the UK. Findings from this study indicate that electricity-
driven heat pumps are the least-cost decarbonisation 
pathway for the domestic heating sector. However, under 
certain price conditions, thermally-driven technologies are 
economically favourable.  

In this research, the competitiveness of the heat pump 
technologies is assessed in the context of the UK domestic 
heating system. To perform this analysis, a modified 
version of the Energyscope model [24] is used to optimise 
the UK heating system with a focus on heat pump 
technologies. Further, heat pump techno-economic 
performance models developed in the CEP technology 
library [25] are used to integrate the investigated heat pump 
technologies into the whole-system heating model. To the 
best of the authors knowledge, novel thermally-driven 
ORCHPs are yet to be assessed in a whole-system context, 
thus forming the first novelty of the research.  

The energy crisis in 2022 has caused unforeseeable 
disruptions in electricity and hydrogen markets. Therefore, 
the second novelty of this work builds on the work 
completed by Olympios et al. whilst considering current 
and projected future resource prices due to the energy 
crisis. Additionally, this work uses current governmental 
net-zero policies and strategies, to investigate how the 
competitiveness of each investigated technology varies as 
the UK domestic heating sector progresses along its 
decarbonisation pathway. 

2. Methods 

2.1 UK domestic heating system model 

To optimise the UK domestic heating sector, a modified 
version of the Energyscope model [24] is used. It has the 
same conceptual formulation as the original model 
developed for the Swiss energy system in the year 2035. 
The model is a greenfield model that optimises the energy 
system considering a single snapshot year. The objective is 
the minimisation of the total annual cost of the energy 
system, defined as the sum of the annualized investment 
and operation and maintenance (O&M) cost of 
technologies, and fuel costs.  

The heating model was initially simplified by the CEP 
Lab group. To simplify the original model, all technologies 
and infrastructures not related to heating are removed. 
Additionally, all input data is updated to be consistent with 
UK conditions in the year 2019. As such, the simplified 
model optimizes the investment and operating strategy of 
the considered technologies (Table 1) to meet the 
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decentralized heat demand (space heating and domestic hot 
water) over an entire year. Thus, the model aims to 
‘choose’ the economically optimum technology to deliver 
heat to different households. Since the model represents the 
UK heating sector, it is important to accurately specify the 
number and size distribution of UK households (as 

different sizes have different levels of heating demand). As 
such, a clustering algorithm is used on the Cambridge 
housing model, [26] which identifies three representative 
types of UK household based on their heating demands 
(Table 2).

Table 1: Key technology-level inputs to the UK domestic heating system model. The numerical cost values and demand-level capabilities for each 
technology are derived from the CEP lab technology library [25], and the work from Song et. Al (ORCHP) [20]. All technologies are assumed to share 
the same maintenance cost, which is £162/yr (also derived from the CEP lab technology library) 

 
Table 2: Specification of household heating demand-level distribution 
over all UK households described by the Cambridge housing model 

Household 
demand 

Annual heat 
demand 

Number of 
households 
(millions) 

High 23200 2.20 
Medium 13600 7.91 

Low 7680 11.5 

Another key input to the model is the UK ambient air 
and subsurface temperature profile. The ambient air 
temperature governs both household heating demands and 
the temperature-dependant performance of (above ground) 
heat pump technologies, whereas the subsurface 
temperature allows for evaluation of GSHP performance. 
Using annual weather data for London (2019), a KMedoids 
clustering algorithm is applied to identify twelve ‘typical’ 
weather days and one ‘peak’ weather day as inputs to the 
model.  

In addition to the objective function, a series of 
practical feasibility constraints, such as the fact that heat 
demand must be satisfied at every hour, are included in the 
model. When considering the household-level installation 
of heat pumps, a thermal storage vessel must also be 
installed. As such, the model is constrained to allow a 
maximum installation of one heat pump technology plus 
thermal storage for each household demand type. For this 
research, the amount of thermal storage installed in each 
household is not assessed, as this will always be present in 
conjunction with heat pumps regardless of which heat 
pump technology is chosen. However, to accurately 
represent the total heating system cost, the costs associated 
with thermal storage installation in each household are 
considered. The model is set up to consider the scope-1 
carbon emissions arising from using the selected heating 
technologies. As such, the carbon intensities of resources 
are nominally specified. In addition to the evaluation of 
system carbon emissions, it is also possible to constrain the 
total emissions to a nominally set limit. A key assumption 
underlying the model is that there exists a fully functional 

electricity and hydrogen supply infrastructure such that 
there is no constraint on the consumption of each resource. 
Further, the model assumes that the specific investment 
cost of the investigated technologies does not change over 
time. In reality, this is not the case since technology costs 
are naturally expected to slowly diminish over time. 
However, since all investigated technologies are of the 
same heat-pump nature, it can be assumed that their costs 
relative to each other will remain the same over time as all 
heat-pump technologies would improve at the same rate. 

A major component of model development is the 
specification of the costs and performances of the 
investigated technologies. The CEP Lab group has 
previously developed a library of techno-economic 
performance models for novel and mature technologies 
such as ASHPs, THHPs, and GSHPs [25]. Each technology 
model assumes a domestic hot water and space heating 
demand of 55 ºC [16] and quantitatively describes 
relationships between performance (COP or FHR) and 
ambient air/ground temperature, which can be used with 
weather data to evaluate the required resource consumption 
to meet a given heat demand. These technology models are 
implemented into the UK heating model with key model 
inputs shown in Table 1. 

2.2 Techno-economic performance of the ORCHP 

As previously discussed, the integrated ORC heat pump is 
a novel technology which was conceptualised by Song et 
al. in 2021 [20]. The theoretical models developed by the 
research group are used to evaluate the specific investment 
cost (SIC), and temperature-dependant FHR profile of the 
technology. Further, it is found that the HP-ORC system 
orientation yields superior techno-economic performance 
compared to the ORC-HP orientation, thus only the HP-
ORC is implemented in the UK heating model. The relative 
novelty of the technology requires some additional 
assumptions: i) ORCHP has the same installation and 
maintenance cost, and lifetime as an ASHP, and ii) 
ORCHP can operate at both high and low heating demands. 

Technology Specific investment cost (£/kW) Installation cost (£) Satisfy household demands? 
High Medium Low 

HP ASHP (L) 548 3720 ✓ ✓   
HP ASHP (S) 677 3720   ✓ ✓ 
LP ASHP (L) 340 3720 ✓ ✓   
LP ASHP (S) 402 3720   ✓ ✓ 

ORCHP 489 3720 ✓ ✓ ✓ 
GSHP 974 10300 ✓ ✓ ✓ 
THHP 434 3720 ✓ ✓   
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This represents possible large and small variants like 
ASHPs. The ORCHP is not treated like the THHP since the 
latter requires a large absorption cycle which constrains its 
minimum size. 

2.3 Resource prices and carbon emissions 

This section details the market research conducted to 
establish current and future resource prices, carbon 
intensities, and carbon emission targets. This allows 
simulations to be reflective of the economic and 
environmental climate leading up to 2050. A summary of 
the results from the market research can be seen in Tables 
3, 4, 5 and 6. In 2021, the UK government committed to a 
completely decarbonised national grid by 2035 [27] and a 
report from the Northern Gas Networks titled the “H21 
Project” [28] predicts hydrogen to be commercially 
available by the year 2035. As such, the years 2035 and 
2050 are significant milestones on the pathway to net-zero 
and are consequently, in addition to 2022, the key years 
considered in this analysis. Considering the resource prices 
within the “H21 project”, a wholesale-to-retail scale-up 
factor of 2 is applied. This is due to distribution and 
operation costs associated with the hydrogen network 
being estimated to contribute 25% each to the total cost 
paid by domestic consumers, with the wholesale cost 
contributing the remaining 50% [28].  

2.3.1 Electricity prices 

The conflict in Ukraine and worsening geopolitical climate 
has caused problems to the natural gas supply chain. This 
massively inflated the cost of electricity in the UK and 
highlighted the National Grid’s reliance on natural gas, and 
the need to decarbonise. As the national grid increasingly 
shifts from natural gas to renewable energy, the cost of 
electricity is expected to recover to pre-2021 values over 
the next 28 years [29][30]. As a result, there are large 
variations in the predicted cost of electricity, and research 
carried out after the start of the energy crisis is prioritised. 
The 2022 cost of electricity is given as the 0.34 £/kWh 
energy price cap set by the UK government in September 
2022 [31]. The BEIS predicts “as the (energy) system 
moves closer to 2050, wholesale prices will become 
increasingly volatile” [29]. The data in this report shows 
predicted deviations from the 2020 electricity price in 2035 
and 2050, and their corresponding likelihood. For this 
analysis, 5% of the lower and upper tail of percentage point 
distribution graph are ignored as the probability of these 
occurring is deemed negligible. Further, predictions from 
additional literature provide much lower estimates than 
those seen past the 95th percentile, thus validating the 
assumption made [32]. Given the 5th and 50th percentile for 
2035 and 2050 electricity price are close or equal to a £0 
deviation, the lower bound is given as the 2020 price in 
both cases. An article written by The Cornwall Insight state 
the average pre-2021 wholesale electricity price is 50 
£/MWh [30] which is supported by the Trading 
Economics’ electricity price statistics [33]. Following a 
scale-up to consumer retail prices, this becomes 0.1 £/kWh, 

the lower bound for both 2035 and 2050. The 95th 
percentile in 2035 and 2050 shows a 95 £/MWh and 120 
£/MWh increase over the 2020 price, respectively. Adding 
this to the 50 £/MWh price and applying the same 
conversions as previous, the upper bounds for 2035 and 
2050 are 0.29 £/kWh and 0.34 £/kWh, respectively.  

Table 3: Summary of current and projected electricity prices.  

Retail price scenario 
(£/kWh) 

Year 
2022 2035 2050 

Nominal 0.34 N/A N/A 
Low  N/A 0.10 0.10 
High N/A 0.29 0.34 

2.3.2 Green Hydrogen prices 

Market research carried out by pwc determines the 
wholesale price of green hydrogen in the UK should reach 
1.75-2.00 $/kg by 2050 [11]. A hydrogen lower heating 
value (LHV) of 33.33 kWh/kg [16] and a USD/GBP 
conversion rate of 0.86 is used for converting to £/kWh. 
Using the central value of 1.875 $/kg it is calculated that 
the wholesale price of green hydrogen in 2050 would be 
0.0485 £/kWh, with a retail price of 0.097 £/kWh. The low 
estimate of 1.75 $/kg gives a retail price of 0.09 £/kWh, 
only 0.007 £/kWh lower than the central estimate. Because 
of this, only the central value is taken, and low and high 
scenarios were not constructed as the error margin is 
deemed negligible compared with other resource price 
ranges. It is also determined that by 2035 the cost of 
hydrogen will likely reach 2.00-2.25 $/kg, the central value 
is taken and applying the same methodology gives a 
consumer retail cost of 0.11 £/kWh. Baldino et al. [34] 
estimate that green hydrogen could be produced for 0.126 
£/kWh and thus the retail price would be 0.252 £/kWh. 
From the investigated literature, this is the highest 
estimated value of green hydrogen and so it is taken as the 
fuel’s upper bound. Finally, the current 2022 price of green 
hydrogen is selected to be the expected cost of green 
hydrogen via electrolysis. A study by Gèrard et al. [35] 
predict the cost of green hydrogen produced via 
electrolysis to be 0.09 £/kWh, with a retail price to 
consumers being 0.18 £/kWh. Green hydrogen production 
costs are generally expected to decrease over time. This is 
a result of decreasing renewable energy costs, lessons 
learned from early hydrogen projects and technological 
advances in electrolyser and renewable technology [11].  

Table 4: Summary of current and projected green hydrogen prices. 

Retail price 
scenario (£/kWh) 

Year 
2022 2035 2050 

Nominal 0.180 0.110 0.097 
Error margin N/A ±0.007 

2.3.3 Blue Hydrogen prices 

As a result of the energy crisis, 2022 is assumed to have 
the highest cost of blue hydrogen as the price of natural gas 
is at an all-time high. A study from the Rocky Mountain 
Institute [36] expects blue hydrogen to cost 4.60 $/kg post-
Ukraine war, corresponding to a wholesale cost of 0.119 
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£/kWh and a retail cost to consumers of 0.237 £/kWh.  
BloombergNEF’s modelling on global hydrogen 
production estimate the cost of green hydrogen will not 
out-compete blue hydrogen until 2030 [36][37]. A report 
by the Energy Networks Association also supports this 
claim [38], they predict the price of blue hydrogen will 
slowly increase between 2030 and 2050 as green hydrogen 
becomes more competitive. A lower bound of 40 £/MWh 
and a 2050 value of 55 £/MWh are taken, corresponding to 
a retail price of 0.08 £/kWh and 0.11 £/kWh respectively. 
Northern Gas Networks’ “H21 Report” [28] estimates that 
blue hydrogen must be sold at a price of 0.101 £/kWh to 
account for costs of establishing and operating the network, 
as well as producing hydrogen. They also predict a 
commercially ready hydrogen network by 2035. The 
nominal values for the blue hydrogen price are obtained 
from references dated before the start of the energy crisis. 
As such, a 35% uplift is applied to consider what could be 
more realistic future prices [39].   

Table 5: Summary of current and projected blue hydrogen prices.    

Retail price scenario 
(£/kWh) 

Year 
2022 2035 2050 

Nominal 0.237 0.101 0.110 
High N/A 0.140 0.150 

2.3.4 CO2 Emissions Target 

From The Office for National Statistics’ quarterly 
publication [40], the level of CO2 emissions in 2020 is 
given as 71000 kt CO2eq. and this is assumed to be the 
highest output over the next 28 years. The Sixth Carbon 
Budget published by The Climate Change Committee [7] 
gives a UK CO2 2035 emissions target 50% lower than the 
2020 value to be on track for net-zero by 2050. This gives 
a 2035 carbon target of 36000 ktCO2eq./yr and is used for 
constructing scenarios during this year. Finally, a 2050 
target of 0 kt CO2eq. was used, also discussed by the 
Climate Change Committee [41]. 

Table 6: Summary of CO2 emissions targets for each year considered. 

Year 2022 2035 2050 
Carbon emissions 

target (ktCO2eq./yr) 71000 36000 0 

2.3.5 Carbon intensity of resources 

Data from the National Grid [42] gives an average carbon 
intensity of 0.183 kgCO2eq./kWh from the start of 2022.  
Given the UK’s commitment to a decarbonised national 
grid by 2035 [27], the carbon intensity of electricity is 
taken as 0 kgCO2eq./kWh for the years 2035 and 2050. 
Blue hydrogen supply has a low, non-zero carbon intensity. 
The Pembina Institute analysed the carbon intensity of blue 
hydrogen [43] and states the Shell Quest facility currently 
produces blue hydrogen with a carbon intensity of 54 
kgCO2eq./GJ. Conversion into kWh gives a final blue 
hydrogen carbon intensity of 0.194 kgCO2eq./kW. 
However, it is to be noted that the current Quest facility has 
only 43% capture of greenhouse gases. Future projects are 

estimated to have 90-95% capture which would result in 
much lower carbon intensities [43].  

3. Results 

3.1 Performance analysis 

Using technology models from the CEP Lab technology 
library [25] and Song et al. [20], heat pump performance is 
plotted against temperature (Figure 1).  

 
Figure 1: Comparison of heat pump performance as a function of ambient 
air temperature.  

As shown, both high- and low-performance ASHPs have 
significantly better performance compared to the 
thermally-driven technologies which is due to low 
absorption cycle efficiency in the THHP, and poor heat-to-
electricity conversion in the ORCHP. Considering the 
thermally-driven technologies, the THHP yields better 
performance at temperatures below 18 ºC. Thus for an 
average UK temperature of 12.8 ºC [44], it is expected that 
the THHP would be the optimal hydrogen technology on a 
performance basis. GSHP performance is not considered 
here due its dependence on ground temperatures, however 
considering the relatively high costs of GSHPs (Table 1) 
and their relatively large space requirements, it is expected 
that in most cases the technology would be suboptimal in 
comparison to other heat pumps. 

3.2 Resource price sensitivity analysis 

To assess the competitiveness of heat pump technologies 
for different demand-level households in response to 
variations in the specific price of resources (£/kWh), 
simulations over a range of green hydrogen and electricity 
prices are run using the UK domestic heating system model 
(Figure 2). For this analysis, blue hydrogen is held at its 
maximum price to represent the increasing popular opinion 
of green hydrogen becoming the most competitive 
commercially supplied type of hydrogen after 2030 [37] 
[38]. As such, if a thermally-driven technology is optimal, 
it would utilise green hydrogen as a fuel source. The 
nominal resource price ranges in this analysis are taken as 
the respective resource price upper and lower bounds from 
market research (Section 2.3). Further, the 2022 CO2 
emissions target of 71000 ktCO2eq./yr (Section 2.3.4) is 
applied to the model such that all investigated technologies 
are feasible from a carbon emissions perspective.
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Figure 2: Assessment of optimal heat pump technologies over a range of retail green hydrogen and electricity prices for: (i) high, (ii) medium, and (iii) 
low demand households. Different colours represent which technology minimises the total UK domestic heating system cost for given resource prices. 
The horizontal and vertical lines denote current and projected green hydrogen and electricity prices for the years 2022, 2035, and 2050. The considered 
technologies include small (S) and large (L), high- and low-performance air-source heat pumps (HP ASHP/LP ASHP), thermally-driven absorption 
heat pumps (THHP), ground-source heat pumps (GSHP), and thermally-driven integrated organic Rankine cycle heat pumps (ORCHP). 

3.2.1 High and medium demand households 

Over the nominal price ranges, it is indicated that either HP 
ASHPs or THHPs are optimal to provide heat to high and 
medium demand households, with high demand 
households requiring the larger and more expensive HP 
ASHP (L) variant. Considering the 2022, and low 
electricity price-case resource prices for 2035 and 2050, 
both types of households favour the installation of HP 
ASHPs. Conversely, THHPs are favoured for the high 
electricity price-case resource prices in 2035 and 2050. HP 
ASHPs have the highest specific investment costs (Table 
1) and performance (Figure 1) out of the investigated 
technologies (excluding GSHPs), with the latter property 
implying that HP ASHPs consume the least resources 
when supplying heat to meet a given demand. As such, 
considering the degree of overlap of the hydrogen and 
electricity price ranges, the relatively low resource costs 
from using HP ASHPs outweighs their high investment 
costs thus allowing them to be the optimal heat pump 
technology for most resource price points. However, when 
electricity and green hydrogen prices are respectively high 
and low, THHPs are favoured. This behaviour can be 
attributed to the resource prices causing the total resource 
cost from using THHPs to be lower than if HP ASHPs are 
used. Additionally, the lower investment costs of THHPs 
relative to the HP ASHP (Table 1) further contributes to 
their optimality in this case.  Naturally, the selection of 
THHPs which utilise green hydrogen as a fuel source cause 
zero scope-1 carbon emissions from the UK heating 
system.  

Neither ORCHPs or LP ASHPs are optimal for high 
and medium demand households. Although LP ASHPs 
have better COP performance than thermally-driven 
technologies, and lower investment costs compared to their 
high-performance counterparts, the lower resource 
consumptions of HP ASHPs are sufficient to offset the 
savings in investment costs achieved from using LP 
ASHPs. As previously discussed, ORCHPs have higher 
investment costs (Table 1) and would perform worse in the 

UK climate compared to THHPs (Section 3.1) thus making 
them the suboptimal hydrogen technology in this case 

3.2.2 Low demand households 

Simulations for low demand households yield similar 
results to that of medium demand households, where small 
HP ASHPs are optimal for most of the resource price 
points. However, in this case, when electricity and green 
hydrogen prices are respectively high and low, the ORCHP 
is favoured instead of the THHP. This is due to the nominal 
minimum size of the THHP (10kW) exceeding the heat 
demand for low households. As such, since the ORCHP 
has marginally worse techno-economic performance 
compared to the THHP but can satisfy low heating 
demands, the model would naturally select the ORCHP in 
this case. Considering the resource price-points for 2022, 
2035, and 2050, the behaviour for low demand households 
is similar to that of high and medium demand households. 
However, in the case of low demand households, the HP 
ASHP is not optimal for 2022 resource prices. This 
behaviour, along with visual inspection of Figure 2, 
indicates that for high electricity prices, the green hydrogen 
price at which the HP ASHP is no longer optimal increases 
as household demand decreases. This is an expected trend 
since lower household demands imply lower resource 
consumption and smaller technology installed capacities, 
which allows the thermally-driven technologies to become 
more competitive against the better performing, higher 
costing HP ASHPs. 

3.2.3 Blue hydrogen price variation 

Despite the uncertainty in future blue hydrogen supply, a 
similar analysis is performed for the fuel whilst holding 
green hydrogen at its maximum price. It is found that the 
results for each household demand level follow the same 
behaviour and reasoning to that of the previously discussed 
green hydrogen price analysis, however in this case the 
thermally-driven technologies utilise blue hydrogen as a 

(i) (ii) (iii) 
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fuel source due to the nominally set high price of green 
hydrogen.  

 3.3 Yearly snapshot analysis 

Using results from market research, yearly snapshots are 
constructed for 2022, 2035, and 2050. As previously 
discussed in Section 2.3, resource prices in 2035 and 2050 
have associated uncertainties, thus alternative scenarios for 
each snapshot year are also considered (Table 7). The 
relevant inputs for each scenario are then applied to the UK 
domestic heating model. Ultimately, this allows 
investigation of the optimal heat pump technologies and 
total heating system cost on a scenario basis as the 
domestic heating sector progresses along its 
decarbonisation pathway (Figure 3). In this section, the 

reasoning behind the nominal resource prices and carbon 
emissions limits used in each scenario can be found in 
Section 2.3.  

Table 7: Market research-informed resource price scenarios considered 
in the yearly snapshot analysis. Corresponding numerical values can be 
found in Section 2.3.  

Scenario 
Blue H2 

price 
Green H2 

price 
Electricity 

price 
2035 2035 2035/2050 

(a) Nominal Nominal High 
(b) Nominal Nominal Low 
(c) High Nominal High 
(d) High Nominal Low 

 

Figure 3: Assessment of the optimal proportion of UK households heat is supplied to by each investigated heat pump technology on a year-by-year 
scenario snapshot basis considering the years 2022, 2035, 2050. The sections of each bar correspond to the heating technology which minimises the 
total UK domestic heating system cost for each proportion of UK households (corresponding to high, medium, or low demand households) in each 
scenario. The lines reflect the variation in maximum, and minimum total system cost across the three years considering the total system cost arising 
from scenarios (a)-(d). The conditions in each scenario are described in Section 3.3 and Table 7, with numerical values found in Section 2.3

The 2022 scenario represents current-day fuel prices 
and carbon intensities, with a total system carbon 
emissions limit of 71000 ktCO2eq./yr. As shown, the green 
hydrogen-fuelled thermally-driven ORCHP is selected to 
supply heat to a large proportion of households in the UK 
(corresponding to low demand households). This is due to 
the low heat demand of these households, and the high 
price of electricity in 2022, causing the ORCHP to be 
economically favourable over the HP ASHP. Further, since 
the blue hydrogen price exceeds green hydrogen prices in 
2022, it is not expected that any technologies would utilise 
blue hydrogen as a fuel. Although the electricity price is 
high relative to hydrogen prices in 2022, the remainder of 
the households have their heat supplied by either large or 
small HP ASHPs which represent high and medium 
demand households respectively. As discussed in Section 
3.2.1, the alternative technology here would be the THHP. 
However, the superior performance of the HP ASHP 
allows it to be favourable in this case, regardless of the 
relatively lower hydrogen prices and THHP investment 
cost. Although these results indicate that ORCHPs are 
optimal to supply heat to low demand households, the 
application of thermally-driven heat pump technologies in 
the year 2022 is infeasible due to the current lack of a 
functional domestic hydrogen supply infrastructure in the 

UK. Aside from hydrogen supply issues, ORCHPs cannot 
be used in 2022 due to their technological immaturity. As 
such, it is expected that small HP ASHPs would be used in 
lieu of ORCHPs to supply heat to low demand households. 

The transition from 2022 to 2035 sees a general 
decrease in resource prices, and a reduction in the carbon 
emissions limit to 36000 ktCO2eq./yr. As discussed in 
Section 2.3.3, it is assumed that there will be a functional 
domestic hydrogen supply infrastructure in the UK from 
2035 onwards, thus allowing thermally-driven heat pump 
technologies to be feasible. It is found that HP ASHPs are 
the optimal heating technologies for scenarios (b) and (d), 
where the smaller size HP ASHP supplies heat to most UK 
households (corresponding to medium and low demands) 
and the larger size serves the remaining high demand 
households. In these scenarios, it is assumed that the 
electricity price will diminish back to 2020 levels. Since 
this electricity price is lower than the 2035 hydrogen 
prices, it is favourable to supply heat using HP ASHPs due 
to their low resource costs and high conversion 
efficiencies. These factors offset the high investment costs 
for HP ASHPs, allowing them to out-compete the 
thermally-driven technologies. Scenarios (a) and (c) 
implement a mixture of THHPs and ORCHPs as the 
optimal heat pump technologies. Here, ORCHPs serve the 

(a) (a) (b) (c) (d) (a) (b) 

High demand  

Medium demand 

Low demand  
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highest proportions of households (low demands) whilst 
THHPs serve the remaining medium and high demand 
households. In both scenarios, the electricity price takes its 
maximum value on account of its projected market 
volatility. Scenario (a) assumes 2035 blue hydrogen prices 
to be consistent with predictions made before the energy 
crisis in 2022. As such, scenario (a) likely provides an 
underestimate of the blue hydrogen price thus causing a 
lower blue hydrogen price compared to green hydrogen in 
2035. Hence, the thermally-driven technologies are fuelled 
by blue hydrogen in scenario (a). Scenario (c) considers a 
more realistic estimate of future blue hydrogen prices 
whereby a 35% uplift has been applied to the blue 
hydrogen price in scenario (a). Consequently, green 
hydrogen becomes cheaper than blue hydrogen, and so the 
thermally-driven technologies are fuelled by green 
hydrogen. 

The 2050 snapshot looks at a fully decarbonised UK 
domestic heating sector. The projected green hydrogen 
price for this year assumes sufficient technological 
advances such that green hydrogen has the lowest specific 
resource price. Since the supply of blue hydrogen has a 
non-zero (although low) carbon intensity, the zero scope-1 
carbon emissions constraint implies that thermally-driven 
technologies cannot be fuelled by blue hydrogen in 2050. 
Therefore, scenarios (c) and (d) are redundant in 2050 since 
they respectively yield the same results as scenarios (a) and 
(c). ASHPs are a feasible technology in 2050 due to the 
assumption of a decarbonised electricity supply from 2035 
onwards (Section 2.3.5). In the year 2050, electricity prices 
are expected to be more volatile compared to 2035, causing 
the high electricity price to take a maximum value of 0.34 
£/kWh. As such, scenario (a) models an electricity price 
which is over three times higher than the expected green 
hydrogen price in 2050.  In this scenario, green hydrogen-
fuelled thermally-driven heat pump technologies are 
favoured, and the behaviour mimics that of scenario (c) in 
2035. As indicated by scenario (b) in 2050, HP ASHPs are 
the optimal heating technologies if electricity prices 
diminish back to 2020 levels by 2050. For this case, the 
electricity price is approximately equal to the green 
hydrogen price. Although the resource prices are similar, 
HP ASHPs are the most competitive technology due to 
their superior performances causing significantly lower 
resource consumption costs than the thermally-driven 
technologies. Further, the size distribution of HP ASHPs 
follows that of scenarios (b) and (d) in the year 2035. 

The total system cost generally decreases along the 
decarbonisation pathway to 2050. The sharp decrease 
observed from year 2022 to 2035 represents the rapid 
decrease in all resource prices as they recover following the 
record-high prices witnessed in 2022. The wide range in 
system cost in 2035 and 2050 results from scenarios (b) 
and (d) investigating a nominal electricity price like those 
seen pre-2021 causing a low minimum total system cost. 
The minimum system cost also remains the same across 
these 2035 and 2050 as the minimum price of electricity is 
predicted to stay the same. The maximum system cost in 

both cases is attributed to the cases where thermally-driven 
technologies are favoured over electricity-driven 
technologies. This behaviour arises due to the poor 
performance of the thermally-driven technologies relative 
to the HP ASHP thus implying a higher resource 
consumption cost when they are chosen. Lastly, a decrease 
between 2035 and 2050 results from the decreasing price 
of green hydrogen between these years.  

4. Conclusions 

In this study, the competitiveness of novel and mature heat 
pump technologies was assessed in the context of the UK 
domestic heating sector across varying levels of household 
heating demands. Firstly, a thorough market analysis of 
current and projected future retail prices and carbon 
intensities of hydrogen and electricity was conducted. 
Then, along with techno-economic performance models 
for the investigated technologies, a modified version of the 
Energyscope model was used to identify the economically 
optimal heat pump technologies to supply heat to 
households over a range of resource prices. Lastly, 
governmental net-zero policies and strategies were 
considered to optimise the domestic heating sector as it 
decarbonises for the key years of 2022, 2035, and 2050. 

It was found that the competitiveness of the 
investigated technologies was dependant on resource 
prices, and household heating demands. Owing to their 
superior performance, HP ASHPs were optimal over most 
of the investigated resource price ranges, with high demand 
households requiring a larger size compared to medium 
and low demand households. However, when electricity 
prices were high and hydrogen prices were low, a switch 
was made towards thermally-driven heat pumps. These 
consisted of THHPs serving high and medium demand 
households whilst ORCHPs serve low demand households. 
The thermally-driven heat pumps were found to have 
similar temperature-dependant performance behaviour, 
with the THHP outperforming the ORCHP in a UK 
climate. A further observation was that thermally-driven 
heat pump technologies became increasingly favourable as 
heating demand decreases due to lower demands closing 
the performance gap between the thermally-driven and HP 
ASHPs. 

Although there were conditions under which thermally-
driven technologies were optimal, their practical 
application is reliant on a functional domestic hydrogen 
supply infrastructure in the UK. As such, in line with the 
H21 report [28],  it is likely that the use of thermally-driven 
heat pumps will only be feasible from 2035 onwards, 
causing HP ASHPs to be the only competitive heat pump 
technology in the year 2022.  

Modelling of 2035 conditions indicated that either HP 
ASHPs, or a combination of THHPs and ORCHPs would 
be the optimal technologies to supply heat to households. 
Again, this was dependant on the relative cost of resources, 
where the thermally-driven technologies would naturally 
be fuelled by the cheapest type of hydrogen. The current 
energy crisis has caused a great deal of uncertainty in future 
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blue hydrogen prices. Therefore, if conditions do not 
improve, it is likely that the blue hydrogen price in 2035 
will be greater than predictions made pre-energy crisis. As 
such, if electricity markets also remain disrupted due to the 
energy crisis, green hydrogen-fuelled thermally-driven 
heat pumps would be the most competitive technology in 
2035. Given the novelty of green hydrogen as a fuel, and 
the need for sustainable hydrogen in decarbonising the 
wider energy sector, it is unlikely that there would be 
sufficient green hydrogen supply to meet all household 
heating demands in 2035. Thus, a more realistic scenario 
would be that a mixture of air-source and thermally-driven 
heat pump technologies would be installed across UK 
households subject to resource availability. 

Simulations of a fully decarbonised domestic heating 
sector in 2050 yielded the same technology selection 
scenarios as 2035. However, the competitiveness of air-
source heat pumps is reliant on two actions occurring by 
2050: i) electricity markets stabilise, and ii) the UK 
achieves its 100% decarbonised electricity supply goal. If 
either of the conditions are not met, then thermally-driven 
technologies would dominate the domestic heat pump 
market. Given the potential case where electricity supply is 
decarbonised, and green hydrogen price predictions are 
accurate, HP ASHPs would be the optimal net-zero heating 
technology, so long as electricity prices remain below 0.15 
£/kWh (low demand households), or 0.16 £/kWh (high and 
medium demand households). Considering the estimated 
2050 electricity market volatility by BEIS [29] electricity 
prices will remain below these values 69 % and 70 % of 
the time, respectively. Thus, it is likely that HP ASHPs will 
be the economically favourable heat pump technology in 
2050. However, for the remaining ~30 % of the time, 
electricity prices are predicted to substantially increase, 
which would lead to an unavoidably high total domestic 
heating system cost if HP ASHPs were utilised in all UK 
households. As such, the argument still exists for the use 
of thermally-driven heat pump technologies since they can 
help minimise the total UK domestic heating system cost 
by being installed in preparation for periods of inflated 
electricity prices. 

In general, HP ASHPs were found to be the most 
promising current-day domestic heat pump technologies 
due to their technological maturity, superior performance, 
and reliance on a well-established electricity infrastructure. 
However, when the UK domestic heating sector was 
modelled to progress along its decarbonisation pathway to 
net-zero, THHPs and ORCHPs were predicted to become 
increasingly popular. The transition to these thermally-
driven technologies would arise due to the ongoing 
advancements in green hydrogen production technology, 
electricity market volatility, and the need to reduce peak 
electricity demand from the UK national grid as other 
sectors seek electrification as a solution to decarbonisation. 

5. Outlook 

Although this work takes a comprehensive view of the UK 
domestic heating sector, energy markets, net-zero policies 

and strategies, and techno-economic performance of heat 
pump technologies, some areas of future research are 
recommended to build on this study. 

From a technological perspective, further work should 
be carried out to develop and optimise the design of the 
ORCHP. Currently, its capacity constraints are an 
assumption and there may be a case where ORCHPs cannot 
satisfy low heating demands due to a practical size 
constraint. Additionally, optimising factors such as 
working fluids can lead to better economic performance of 
the ORCHP thus opening pathways for ORCHPs to serve 
medium and high demand households.  

An extension to the model would be to individually 
consider different regions of the UK. Currently the model 
utilises weather data from London to model heating 
demands. However in colder areas, such as Scotland, 
heating demands would be higher. This, in conjunction 
with the fact that the performance of most heat pumps is 
dependent on ambient air temperature, would affect the 
optimal technology selection to some extent on a region-
by-region basis. As previously discussed, the 
competitiveness of thermally-driven technologies is 
dependent on domestic hydrogen supply in the future. 
Therefore, if more robust information regarding future 
hydrogen supply becomes available, the model can be 
constrained to limit the consumption of hydrogen. A 
further development to this would be to also constrain 
hydrogen supply on a UK regional basis, since locations 
closer to hydrogen ‘hubs’ would most likely have access to 
a greater hydrogen supply compared to areas such as 
London. Additionally, electricity supply may also be 
constrained to model scenarios where the aim is to 
minimise peak electricity demand from the national grid as 
other sectors seek electrification as a solution to 
decarbonisation. This would result in a mix of heat-pump 
technologies supplying heat to each household demand-
level (high/medium/low) as opposed to one technology per 
household demand-level thus allowing for a more thorough 
heat pump evaluation to be made whilst considering the 
resource requirements of other sectors in the UK. 
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Abstract  
A numerical model of a spectral beam splitting-concentrated photovoltaic thermal (SBS-CPVT) system is developed and 
used to model such a collector. The spectral beam splitter (SBS) is specified to be a double-layer dichroic glass filter 
which transmits wavelengths 500-1100 nm to silicon-based photovoltaic (PV) cells and reflects the remaining spectrum 
to a thermal absorber. A 2D modelling approach in COMSOL Multiphysics was used to obtain the transmitted fraction 
and the optimum configuration for the SBS. A transmitted fraction of 0.52 was obtained with a convex SBS selected. The 
2D results were then translated to a Multiphysics 3D model in order to evaluate system performance. Results show that 
incorporating an SBS into a CPVT system improved PV cell efficiency by 7.5%. The SBS-CPVT system developed also 
reported an optical and thermal efficiency (waste heat recovered at the PV cells only) of 90% and 33.7% respectively. 
The average cell temperature of the SBS-CPVT system also decreased by 14 °C to 41 °C compared to a non-SBS system 
with the outlet temperature of the heat transfer fluid reaching 38 °C. A parametric study on the effect of solar irradiance 
(𝐼0), ambient temperature (𝑇amb), windspeed (𝑣), mass flow rate (𝑚̇) and inlet temperature (𝑇in) of the heat transfer fluid 
on the system performance was also conducted, revealing that a set of parameter values may be selected according to 
system performance requirements. The model developed can also be used to evaluate various SBS material, system design 
and absorber design. 
 

1. Introduction 
The UK expects to reach net zero carbon emissions by 
2050, with solar energy being one of the most cost-
effective renewables to achieve this target[1]. 
     Solar energy can be harvested using solar 
photovoltaic (PV) cells which are typically p-n junction 
semiconductors. When photons in sunlight strike the 
surface of the cell, electron-hole pairs are generated 
within the depletion layer. This creates an electric field 
which results in separation of the holes and electrons 
into the p-n junction respectively. This separation 
continues until the difference in electrons and holes 
across the p-n junction becomes so great, giving rise to 
a potential difference across the junction. This drives 
electrons to holes in the p-junction through a circuit 
upon connecting a load to the cell. Cells are either 
single-junction or multi-junction. Multi-junction cells 
(GaAs-based) generally outperform single-junction 
cells, giving a record efficiency of 47.1%[2], compared 
to single-junction cells with a maximum theoretical 
efficiency of 33%[3]. This is due to reduced 
thermalisation and recombination losses in multi-
junction cells[4]. However, they will likely be more 
costly due to their requirement of expensive materials[5]. 
The remaining solar energy that was not utilised will be 
wasted as heat. 
     Solar energy can also be extracted by converting it 
directly into heat. Such systems are referred to as solar 
thermal systems. Other than solar thermal systems, 
hybrid PV-thermal (PVT) systems have also been 
explored in the past. A PVT system is a combination of 
solar PV and solar thermal systems which can generate 
electrical and thermal energy simultaneously. PVT  
systems of different configurations have been developed 
in the past to utilise this waste heat as solar thermal 
energy, such as the flat-plate PVT and concentrated PVT 
(CPVT). Flat-plate PVTs usually consist of glass covers, 
fluid mediums, PV cells, absorbers, and a layer of 
insulation[6]. One of the challenges with PVT systems is 

that the thermal energy generated is of a low grade (< 60 
C), which can be improved by using a CPVT system. 
CPVT systems typically consist of parabolic 
concentrators, thermal absorbers, PV cells and a heat 
transfer fluid (HTF). Rays reflected from the parabolic 
concentrator will converge onto a focal point on the PV 
cells, and result in a high electrical and thermal output 
from a small PV cell area. 
     The PV cells in such systems are commonly Si-
based, for which the usable solar spectrum, i.e., the 
bandgap, is about 500-1100 nm[7]. Only photons within 
the bandgap will be utilised for electricity conversion by 
the PV cells, while the excess spectrum incident on the 
PV cells will be dissipated as waste heat. This causes 
cell temperature to rise, especially under concentrated 
solar irradiation. Consequently, conversion efficiency 
can drop by as much as 0.08% K-1, as observed by 
Radziemska[8]. To overcome this challenge, spectral 
beam splitting has been considered for hybrid (PVT) 
systems. A spectral beam splitter (SBS) will split the 
incident spectrum by transmitting the usable spectrum 
for electricity generation to the PV cells while directing 
the remaining spectrum to a thermal absorber, which 
also allows for more efficient use of the incident solar 
irradiation. Since then, various SBSs have been 
developed, including interference filters and liquid 
absorptive filters[9]. Interference filters, such as dichroic 
filters for CPVT systems are commonly thin multi-layer 
materials with non-absorptive high or low refractivity[9]. 
The incident spectrum splits at the layer boundaries of 
the SBS where a specified bandwidth is reflected and the 
remaining transmitted. 
     Liquid absorptive filters have been increasingly 
popular in recent years compared to dichroic filters, 
particularly nanofluids, since they can act as spectral 
splitters, carrier fluids for the thermal energy generated 
and coolants for the PV cells. While nanofluids offer 
multiple functions, more research needs to be done to 
enhance its stability under concentrated irradiance and 
high temperature[10]. In contrast, multi-layer dichroic 
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filters are relatively more stable and do not degrade as 
easily[11].  
     Hence, this paper aims to develop a 3D coupled 
optical-thermal CFD model of a CPVT system which 
utilises a dichroic double-layer SBS and evaluate the 
model’s performance under varying operational 
conditions. The summary of this paper is as follows: 
• A brief overview on the development of SBS-

CPVT systems has been provided in Section 2 to 
highlight the significance of developing a model 
for such systems. 

• The numerical modelling methodology is 
presented in Section 3.  

• The model developed and a sensitivity analysis on 
the system performance is discussed in Section 4.  

• The conclusion of this study is presented in 
Section 5.  

• Future outlooks for this study are suggested in 
Section 6.  

2. Background 
The development of a 3D model that can simulate the 
solar radiation propagation process, heat transfer 
process and fluid flow in the solar collection system is 
crucial in the effort to further develop CPVT systems, 
optimum SBSs and so on. Literatures related to SBS 
incorporated solar energy collection system had been 
reviewed.  
     The waveband allocation for ray splitting by the SBS 
had been evaluated extensively to determine the 
optimum ray splitting properties that would achieve the 
desired system performance. The effect of the SBS cut-
off wavelength on a system’s electrical, thermal, and 
overall performances have been studied by Kandil et 
al.[12]. In their study, GaAs type PV cell and a dichroic 
mirror SBS has been used. Rays of a low wavelength are 
directed onto the PV cell while rays of a high 
wavelength are directed to a thermal absorber. It was 
reported that the electrical efficiency of the PV cell 
increases when more energy is directed to the PV cell. 
However, the rate of increase reduces when a larger 
portion of radiation is directed onto the PV cell due to 
thermal effects of the cell, resulting in a lower external 
quantum efficiency (EQE). Zhu, Li, and Yu[13] also 
reported a similar observation. The effect of the SBS 
splitting waveband on different types of solar cells were 
also studied by Gao et al.[14]. For GaAs type cells, which 
has short spectrum range (410-890 nm), it was found 
that when the SBS splitting waveband matches the solar 
cell’s active spectrum range, a high EQE can be 
achieved. 
     Various types of SBS material have also been 
explored. Djafar et al[15] investigated a cold mirror and 
hot mirror type SBS. A cold mirror SBS is a dichroic 
filter that transmits infrared rays and reflects visible 
light, while a hot mirror SBS transmits and reflects rays 
in the opposite way. A multi-layer film-based SBS was 
designed by Wang et al[16] for a CPVT system. Besides 
that, a combined fluid and solid based SBS was 
proposed by Han et al[17]. Volumetric absorption was the 
ray splitting mechanism employed by the combined 
fluid-solid based SBS. The fluid-based filter material is 

an infrared light absorber while the solid-based filter 
material is a visible light absorber which absorbs short 
wavelength light not utilised by the Si-based PV cells. 
Improvements on the uniformity of flux on PV cells was 
observed when the combined fluid-solid based SBS was 
used. 
     The thermal energy utilisation method and its techno-
economic viability had also been investigated. Wang et 
al.[18] reported a 1500 tonne CO2 decarbonisation 
potential per year for the processing of milk products by 
using the thermal output of a CPVT system to produce 
steam along with electricity generation using the PV 
cells. The system was found to be economical as long as 
the investment cost of the SBS is lower than 85% of the 
concentrator cost. Peacock et al.[19] explored the 
integration of an organic Rankine cycle (ORC) into an 
SBS-CPVT system. The thermal energy harvested from 
that SBS-CPVT system was used to provide hot water 
and heating. The technoeconomic viability of this 
system was then examined at various locations. The 
study concluded that this setup is only economically 
feasible on a larger scale. 
     Several developed CPVT systems with SBSs were 
also reviewed. Wang et al.’s[20] system mainly consisted 
of flat mirrors arranged into a concentrator, secondary 
parabolic reflector, thermal receiver, and 
monocrystalline Si-cells covered by a 13-layer thin-film 
optical filter (from bottom to top). The average 
transmittance of the optical filter was 0.721 within the 
250-2500 nm wavelength region. A numerical model of 
this system reported a PV efficiency of 30.5% and 
overall system efficiency 26.6% respectively. Widyolar 
et al.[21] simulated an ideal interference filter for a 
conventional SBS-CPVT system configuration with c-
Si cells. The paper reported a PV cell efficiency of 23% 
with an SBS bandpass of 504-1126 nm and 
transmittance of 0.9. Interference filters were also 
shown to have superior transmission, reflection and 
spectral control compared to back-reflecting cell 
systems. Huaxu et al.[22] experimented on an SBS-CPVT 
system utilising Fresnel lens as the concentrator. The 
optical splitting film was an SiO2/TiO2 interference thin-
film filter which reflects wavelengths of 400-1100 nm 
to the Si-cells, while transmitting wavelengths of 1100-
2500 nm to a thermal absorber. Results demonstrated a 
reduction in cell temperature by 11 K. These studies all 
observed an improvement in system performance for an 
SBS-CPVT system compared to the same system 
without an SBS. 
     Most literature focused on PVT system with fluid-
based or multi-layer film-based SBSs for which the 
optical properties of the SBS (i.e., transmittance and 
reflectance) can be altered relatively easily. Whereas 
research on optimum geometrical configurations of  
interference filter type SBSs, such as dichroic filters, is 
scarce. In conjunction to previous studies, this paper 
seeks to broaden existing research on SBS-CPVT 
systems by performing optical analysis on several SBS 
configurations and develop a 3D coupled optical-
thermal model of the complete system. 
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3. Methodology  
3.1 System description  
The system examined in this study is a concentrated 
photovoltaic-thermal (CPVT) system that consists of a 
parabolic concentrator, a thermal absorber, a spectral 
beam splitter (SBS), and PV cells mounted onto the 
outer wall of a triangular duct containing water as the 
heat transfer fluid (HTF). The geometrical configuration 
of the system is shown in Figure 3.1. 

 
Figure 3.1: CPVT system configuration 

     The concentrator is a reflector with a reflectivity of 
0.90, where radiation from the sun is reflected. The 
irradiance from the sun was set at a constant of 1000 W 
m-2 and incident perpendicularly to the reflection 
surface. The reflected rays were then concentrated 
towards the SBS. The SBS splits the radiation into 
transmitted and reflected rays. The transmitted rays 
were received by the PV cells while the reflected rays 
were absorbed by the thermal absorber.  

3.1.1 System geometry  
The distance between the concentrator, SBS and the 
triangular duct were determined according to the focal 
lengths of the concentrator and the SBS. The focal 
points of both the SBS and the parabolic concentrator 
fell at the centre of the triangular duct. The focal lengths 
of the concentrator (𝑓c) and SBS (𝑓s) were set at 420 mm 
and 25.2 mm respectively. The aperture of the 
concentrator (𝑎c) and the SBS (𝑎s) were specified at 670 
mm and 84 mm respectively. The geometry of the 
system is shown in Figure 3.2. The thickness of all 
surfaces was set to 1 mm. The length of the CPVT 
system was chosen to be 3 m.  
 

 
Figure 3.2: System geometry 

 
     The geometrical concentration ratio (GCR), optical 
concentration ratio (OCR) and optical efficiency (opt) 
of the system were calculated. As the concentration 
ratios and optical efficiency are an indicator of 

concentrator performance only, the SBS was excluded 
from the calculations. The GCR is the ratio of the 
effective concentrator area (𝐴c) to the total PV cell 
surface area (𝐴cell), as described by Eq. 3.1[23]: 

𝐺𝐶𝑅 =
𝐴c

𝐴cell
 Eq. 3.1 

The OCR is defined as the ratio of the total incident flux 
on the PV cells (𝐼cell) to the total source flux, i.e., solar 
irradiation (𝐼0), as described by Eq. 3.2.  

𝑂𝐶𝑅 =
𝐼cell

𝐼0
 Eq. 3.2 

The optical efficiency is defined as the OCR to GCR 
ratio, or the total power at the PV cells to total source 
power ratio, as described in Eq. 3.3. 

opt =
𝑂𝐶𝑅
𝐺𝐶𝑅

=  
𝐼cell𝐴cell

𝐼0𝐴c
  Eq. 3.3  

The GCR, OCR and optical efficiency of the system in 
this study were found to be 6.2, 5.6 and 90% 
respectively. 

3.2 Computational modelling  
COMSOL Multiphysics is used to analyse geometrical 
optics and evaluate the heat transfer and fluid flow in the 
CPVT system. Propagation of concentrated rays passing 
through the SBS was simulated using a 2D optical 
model. The splitting proportion (transmitted fraction) of 
rays obtained through the 2D geometrical optics 
simulation was then imported to the 3D model. Heat 
transfer across the solid and fluid domains as well as 
fluid dynamics were evaluated in the 3D model through 
Multiphysics coupling. Splitting of rays at the SBS was 
excluded in the 3D model due to computational 
constraint. Using the 3D model developed a priori, a 
sensitivity analysis on the system performance was also 
conducted. 
     A finite element analysis method is employed by 
COMSOL in which the geometry domain is discretised 
into elements which form a mesh for computation. The 
stability of the results and computational cost are 
affected by the defined mesh size whereby a finer mesh 
size corresponds to a more stable result. However, a 
higher computational cost is associated with finer mesh 
sizes. The maximum mesh size that is compatible with 
the geometry and produces a stable result was 
determined. This mesh was then used in order to 
minimise computation costs. 

3.2.1 2D model  
A 2D model was developed to study ray propagation in 
the system. A non-sequential ray-tracing approach was 
taken by COMSOL geometrical optics to solve for the 
ray propagation pathway of the geometry. The direction 
of ray propagation is constant until the path intersects 
with a boundary that separates two mediums with 
different refractive indices. Rays at a boundary can be 
either refracted, reflected, or absorbed.  
     For refracted rays, the propagation of rays from a 
boundary is determined by the refractive index of the ray 
propagation medium. The direction of the refracted ray 
is extrapolated out from a boundary according to Snell’s 
law[24], which is described by Eq. 3.4: 

𝑛1 sin 𝜃i = 𝑛2 sin 𝜃t Eq. 3.4 

383



 4 

where n is the refractive index, 𝜃i is the angle of 
incidence and 𝜃t is the angle of transmittance. The 
medium which the rays propagate is indicated by 
subscripts 1 and 2. The speed at which the rays 
propagate through a medium (𝑐) is determined using Eq. 
3.5[24]. 

𝑐 =  
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥
 Eq. 3.5 

For reflected rays, the law of reflection which states that 
the angle of incidence is equal to the angle of reflectance 
is obeyed. The geometrical optics was evaluated with 
the assumption that the wavelength of the radiation is 
insignificant relative to the dimensions of the system. 
The negligence of the diffraction of rays is allowed 
following this assumption.  
     Light rays from the sun were simulated as 
polychromatic light with wavelengths in the range of 5 
nm to 4500 nm. The concentrator was simulated as an 
illuminated boundary in the 2D model. Boundary 
conditions were specified to model the filter property of 
the SBS. Rays with wavelengths within the bandgap of 
500-1100 nm was set to pass through the boundary 
while the remaining rays were reflected. The refractive 
index was defined as 1 for the SBS material. The 
refractive index value is dependent on the SBS material 
used. The reflection coefficient of the SBS was specified 
as 0.77[25], which accounts for the radiation absorbed by 
the SBS material. The properties of the SBS in this 
model are outlined in Table 3.1.  

Table 3.1: Properties of the SBS in the 2D model 
Property Value 
Transmitted wavelength 500-1100 nm 
Refractive index  1 
Reflection coefficient 0.77 

     Material discontinuities were specified at the outer 
surface of the SBS to exclude the release of reflected 
rays at these boundaries, which will contribute to stray 
light rays that produce noise in the result.  

3.2.2 3D model  
A 3D model was developed to simulate heat transfer and 
fluid flow in the CPVT collection system. The 
absorption and conversion of the optic rays into heat 
energy at the PV cells were represented in the 3D model. 
Heat fluxes within the geometry were determined by 
considering heat transfer in the solid and fluid domain.  
     The incident rays were set as monochromatic, with a 
wavelength of 660 nm in the 3D model to minimise 
computational cost. The number of incident rays was 
limited to 1000. More accurate results can be obtained 
by using higher number of rays at the expense of a 
higher computational cost. A balance between result 
accuracy and computational time was taken into 
account. Aluminium and copper were specified as the 
concentrator and triangular duct wall material 
respectively.  
     Rays absorbed by the PV cell were converted into 
heat and electricity. The total radiation reaching the PV 
cell (S) is given by Eq. 3.6, where 𝑟conc is the reflectivity 
of the concentrator and 𝜏SBS is the transmitted fraction 
of the SBS. The value of 𝜏SBS was obtained through 

geometrical optics simulation across the SBS using the 
2D model.  

𝑆 = (𝐼0𝐴c)𝑟conc𝜏SBS Eq. 3.6 
The radiation reaching the PV cell is converted into 
electrical and heat energy. The heat energy generated at 
the PV cell (𝑞̇) is given by Eq. 3.7, where PV is the 
electrical efficiency and 𝛼PV is the absorptivity of the 
PV cell. The heat energy generated is collected by the 
HTF in the duct. 

𝑞̇ = 𝑆𝛼PV(1 − PV) Eq. 3.7 

The electrical efficiency of the PV cell (PV) is 
dependent on PV cell temperature. This dependency is 
described by Eq. 3.8[26], where 𝛽 is the temperature 
coefficient and 𝑇cell is the average PV cell temperature 
in °C. The base electrical efficiency (0) is the electrical 
efficiency at a reference state where the cell temperature 
is at 25 °C and 𝐼0 is 1000 W m-2.  

PV = 0(1 − 𝛽(𝑇cell − 25°C)) Eq. 3.8 

In the solid domain, thermal energy is transferred from 
the PV cell to the HTF via conduction. Heat transfer in 
the solid domain is governed by Eq. 3.9, where 𝑘s is the 
thermal conductivity of the solid, 𝑇s is the temperature 
of the solid domain and 𝑞̇s is the heat generated in the 
solid domain. 

𝑘s∇2(𝑇s) + 𝑞̇s = 0 Eq. 3.9 
The thermal boundary condition at the PV cell is 
described by Eq. 3.10, where 𝒏 is the direction vector 
and 𝑞out is the outward heat loss to the surroundings. 
These boundary conditions correspond to the convective 
heat flux to the surrounding and the surface-to-ambient 
radiation at the PV cell.  

−𝒏 ∙ 𝑞out = 𝑞0 Eq. 3.10 
For convection, 𝑞0 is: 

𝑞conv = ℎ(𝑇amb − 𝑇) Eq. 3.11 
For surface-to-ambient radiation, 𝑞0 is: 

𝑞rad = 𝜀𝜎(𝑇sky
4 − 𝑇4) Eq. 3.12 

where h is the convective heat transfer coefficient, 𝑇amb 
is the ambient temperature, T is the cell temperature, 
𝑇sky is the sky temperature calculated using the 
correlation specified in Eq. 3.14[27], 𝜀 is the cell surface 
emissivity and 𝜎 is the Stefan-Boltzmann constant. The 
convective heat transfer coefficient is given by the 
correlation specified in Eq. 3.13, where v is the 
surrounding windspeed in m s-1 [28]. 

ℎ = 2.8 + 3𝑣 Eq. 3.13 
 

𝑇sky = 0.0552𝑇amb
1.5 Eq. 3.14 

The thermal boundary conditions assigned to the fluid 
domain are given by Eq. 3.15 for inflow and Eq. 3.17 for 
outflow. The inflow condition corresponds to the heat 
energy of the HTF at inlet. The outflow condition is 
specified to account for convection-dominated heat 
transfer at the outlet.  

−𝒏 ∙ 𝑞inlet =  𝜌f∆ℎ𝒗𝐟 ∙ 𝒏 
 

Eq. 3.15 
 

∆ℎ = ∫ 𝑐p d𝑇
𝑇

𝑇inlet

 Eq. 3.16 
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The inflow heat is given by 𝑞inlet. 𝜌f is the fluid density, 
∆ℎ is the specific enthalpy change calculated from Eq. 
3.16, 𝒗𝐟 is the fluid velocity, 𝑐p is the specific heat 
capacity of the fluid, T is the immediate fluid 
temperature and 𝑇inlet is the fluid temperature at the 
inlet. 

−𝒏 ∙ 𝑞outlet = 0 Eq. 3.17 
For the fluid domain, the flow regime was determined 
using the Reynolds number (Re). Eq. 3.18 was used to 
calculate Re, where u is the fluid flow speed, 𝑑h is the 
hydraulic diameter and μ is the dynamic viscosity. The 
hydraulic diameter is calculated from Eq. 3.19 where A 
is the cross-sectional area of the duct and p is the 
“wetted” perimeter of the duct.  

𝑅𝑒 =
𝜌f𝑢𝑑h

𝜇
 

 

Eq. 3.18 
 

𝑑h =
4𝐴
𝑝

 Eq. 3.19 

The critical Re for laminar flow in a triangular duct is 
1100 [29]. 
     Navier-Stokes equations were used to model the fluid 
flow. Conservation of mass, momentum, and energy, 
described by Eq. 3.20, 3.21 and 3.22 respectively were 
satisfied.  

𝜌f∇ ∙ 𝒗𝐟 = 0 Eq. 3.20 

𝜌f𝒗𝐟∇ ∙ 𝒗𝐟 = −∇P +  ∇ ∙ 𝛕 + 𝜌f𝒈  Eq. 3.21 

𝜌f𝑐p𝒗𝐟∇ ∙ 𝑇f = ∇ ∙ (𝑘f∇𝑇f) Eq. 3.22 
where 𝑃 is the fluid pressure, 𝝉 is the viscous stress 
tensor, g is gravitational acceleration, 𝑇f is the fluid 
temperature and 𝑘f is the conductivity of the fluid.  
     The fluid flow was assumed to be incompressible, in 
which the fluid density is expected to be constant with 
respect to time and space. The fluid was specified as a 
Newtonian fluid in which its dynamic viscosity is 
dependent on its thermodynamic state. This assumption 
is valid as the fluid in this system was chosen to be 
water, which obeys the properties of a Newtonian fluid 
under normal conditions.    
     For the fluid domain, a no-slip boundary condition 
was specified at the duct wall. The inflow boundary 
condition was given by the mass flow rate of the HTF, 
flowing in the normal direction to the boundary. The 
pressure at the outflow boundary was specified at 0 Pa.  

3.3 System performance  
Using the 3D model, the effects of the solar irradiance, 
ambient temperature, surrounding windspeed, mass 
flow rate of the HTF and inlet temperature of the HTF 
on the system performance were examined. The outlet 
temperature of the HTF and average PV cell temperature 
were obtained from COMSOL. System performance 
with and without an SBS was also evaluated by setting 
the transmitted fraction of the SBS to 1 (for non-SBS 
system) or 0.52 (for an SBS incorporated system).  
     Here, the performance indicators of the system are 
the PV cell efficiency, determined by Eq. 3.8, and the 
thermal efficiency of the HTF, determined by Eq. 3.23, 

th =
𝑚̇𝑐p∆𝑇

𝐼0𝐴c
 Eq. 3.23 

where 𝑚 ̇is the mass flow rate of the HTF and ∆𝑇 is the 
temperature difference between the inlet and outlet of 
the HTF. 

4. Results & discussion 
4.1 2D modelling 
The 2D model for the SBS-CPVT system was used for 
geometrical optics simulation to select the optimum SBS 
configuration which minimises optical losses, i.e., ray 
divergence. 
     A convex and concave SBS were considered with a 
flat plate SBS as a control. As the SBS material was 
assigned a unity refractive index, the transmitted rays 
through the upper SBS layer did not refract from their 
initial trajectories for all SBS configurations. For the 
reflected spectrum, the angle of reflection equals the 
angle of incidence. Thus, the reflected ray trajectory is 
dependent on the curvature of the bottom SBS layer. 
     The concave SBS (Figure 4.1) resulted in the greatest 
optical loss with no rays received at the thermal 
absorber. The flat plate SBS (Figure 4.2) demonstrated 
a focal point far from the thermal absorber, with some 
rays received by the thermal absorber. The convex SBS 
(Figure 4.3) was chosen as all reflected rays at the layer 
boundary fall onto the thermal absorber without any 
observable ray divergence. 

 
Figure 4.1: Ray trajectories of a concave SBS system 

 
Figure 4.2: Ray trajectories of a flat plate SBS system 

 
Figure 4.3: Ray trajectories of a convex SBS system 

  
The transmitted fraction (SBS) of the spectrum 

through the convex SBS is defined as the ratio of flux 
transmitted to the PV cells to the flux reaching the SBS 
boundary. The transmitted fraction for the convex SBS 
in this study was calculated to be 0.52. This value is 
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similar to Zhang et al.’s[25] value of 0.558 and Wingert 
et al.’s[30] value of 0.560. Dichroic mirrors were used as 
the SBS under a AM1.5 D solar irradiation by Wingert 
et al.[30].  
 

4.2 3D modelling 
4.2.1 SBS-CPVT system performance 
The transmitted fraction of 0.52 was then used in the 3D 
model to account for the SBS component, under the 
assumption that the component’s ray splitting properties 
remain constant throughout this study. This significantly 
reduced computational cost as the SBS component and 
optical simulation can be excluded from the 3D model. 
     Heat transfer and fluid flow were then coupled into 
the 3D model to study the system performance. The 3D 
model was evaluated under the base case condition 
specified in Table 4.1.   

Table 4.1: Base case condition of the system 
Parameter Symbol Value Unit 
Solar irradiance 𝐼0 1000 𝑊 𝑚−2 
Ambient temperature 𝑇amb 298 K 
Windspeed 𝑣 1 𝑚 𝑠−1 
HTF mass flow rate 𝑚̇ 0.01 𝑘𝑔 𝑠−1 
HTF inlet temperature 𝑇in 298 K 

     Under the base conditions, the system achieved an 
outlet HTF temperature (𝑇out) of 311 K (38 °C), average 
cell temperature (𝑇cell) of 313 K (41 °C), PV cell 
efficiency (PV) of 19 % and thermal efficiency (th) of 
34 %. It should be noted that the thermal efficiency for 
the SBS-CPVT system in this study only accounts for 
the waste heat recovered (WHR) by the HTF at the PV 
cells. 

4.2.2 Sensitivity analysis 
A parametric study on the effect of the operational 
parameters on the SBS-CPVT system performance was 
also conducted. The parameters in question were the 
base case parameters listed in Table 4.1. One parameter 
was varied at a time while the rest were kept constant at 
the base case value. The key performance indicators are 
the thermal and PV cell efficiency. The average and 
maximum cell temperature fell below the upper 
operating temperature limit of 620 K (347 °C) [30] for the 
silicon PV cells throughout this study. 

4.2.2.1 Effect of parameters on the PV cell efficiency 
Simulation results demonstrated that the PV cell 
efficiency decreased with an increase in the solar 
irradiance (Figure 4.4), ambient temperature (Figure 
4.5) and HTF inlet temperature (Figure 4.8).  
     The transmitted flux through the SBS to the PV cells 
increases with an increase with solar irradiation. This 
increases the rate of thermalisation in the PV cells. Thus, 
the cell temperature rises, causing a drop in PV cell 
efficiency. Similarly, PV cell efficiency is lower at 
higher ambient temperature (Figure 4.5) as the cell 
temperature increases with an increase in the 
surrounding temperature. The PV cell efficiency 
decreases as the HTF inlet temperature increases (Figure 
4.8). As the HTF inlet temperature increases, the 
temperature difference between the cell and the HTF 
decreases. Consequently, this leads to a decrease in the 

rate of heat transfer from the cells to the HTF, resulting 
in a higher cell temperature and lower PV cell 
efficiency.  
     Alternatively, PV cell efficiency increased with an 
increase in the HTF mass flow rate (Figure 4.7) and 
windspeed (Figure 4.6).  
     As the mass flow rate increases, the larger fluid flow 
allows more heat to be recovered at the HTF. Hence, 
more heat is conducted away from the PV cell, causing 
cell temperature to drop. This improved the PV cell 
efficiency. At higher windspeed, convection heat losses 
from the cell to the environment is enhanced. This is 
because the heat transfer coefficient increases linearly 
with windspeed (Eq. 3.13). Thus, cell temperature is 
lower, and PV cell efficiency is enhanced at a higher 
windspeed. 

4.2.2.2 Effects of the parameters on the thermal 
efficiency 

The thermal efficiency (WHR at PV cells) increased at 
higher solar irradiance (Figure 4.4), HTF mass flow rate 
(Figure 4.7) and ambient temperature (Figure 4.5). 

As mentioned in Section 4.2.2.1, increasing the solar 
irradiance and ambient temperature leads to an increase 
in cell temperature. Thus, the thermal output at the HTF 
increases, which improves the thermal efficiency. 
Likewise, using a higher mass flow rate enhances the 
total heat capacity of the HTF, which increases the 
thermal output at the HTF.  

In contrast, the thermal efficiency decreased with an 
increase in the HTF inlet temperature and windspeed. 
This is due to a decrease in rate of heat conduction to the 
HTF and higher rate of convection heat losses to the 
surroundings respectively. This leads to a lower thermal 
output at the HTF and consequently, a lower thermal 
efficiency. 
     It is also worth mentioning that the PV cell efficiency 
and thermal efficiency are inversely related with respect 
to a change in solar irradiance, ambient temperature and 
windspeed. Thus, improving the PV cell efficiency 
would compromise the thermal efficiency and vice 
versa. On the contrary, the thermal and PV cell 
efficiency are parallelly related with respect to the mass 
flow rate and inlet temperature of the HTF. As results 
suggest, increasing the mass flow rate and decreasing 
the inlet temperature of the HTF can potentially amplify 
both efficiencies. 

 

 
Figure 4.4: Effect of  𝐼0 on the efficiencies at constant  

𝑇amb, 𝑣, 𝑚̇, 𝑇in 
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Figure 4.5: Effect of  𝑇amb on the efficiencies at 

constant 𝐼0, 𝑣, 𝑚̇, 𝑇in 
 

 
Figure 4.6: Effect of 𝑣 on the efficiencies at constant  

𝐼0, 𝑇amb, 𝑚̇, 𝑇in 
  

 
Figure 4.7: Effect of 𝑚̇ on efficiencies at constant  

𝐼0, 𝑇amb, 𝑣, 𝑇in 
 

 
Figure 4.8: Effect of 𝑇in on the efficiencies at constant  

𝐼0, 𝑇amb, 𝑚̇, 𝑣 
 

4.2.3 Flux & temperature distribution 
As discussed in Section 4.2.2, the PV cell and thermal 
efficiencies depend heavily on the cell temperature, 
which also depends on the flux incident on the PV cells. 
Thus, the flux and temperature distribution of the PV 
cells are explored in more detail here.  
     Initially, a geometrical optical simulation was run on 
the 3D SBS-CPVT system. Light rays reflected from the 
parabolic concentrator is concentrated onto focal points 
at the PV cells, as shown in Figure 4.9. Thus, the solar 
flux distribution on the PV cells is non-uniform in the y-
direction.  

 
Figure 4.9: Flux distribution on the PV cells under the 

base case conditions (geometrical optics simulation 
only) 

 
     However, there was computational constraint upon 
coupling heat transfer, fluid flow and geometrical optics 
in the 3D model. Hence, an average flux which was 
uniform across the PV cell surface was obtained from a 
pure optical simulation on the 3D model. This average 
flux was used instead of the local flux as the incident 
flux on the cell surface for the coupled heat transfer and 
fluid flow simulations. This resulted in a uniform 
temperature distribution along the y-direction of the cell 
surface, as shown in Figure 4.10. 

 
Figure 4.10: Cell surface temperature distribution 
under base case conditions (by using an average 

incident flux)  

     This method was employed as initial simulations 
using the local flux showed that the temperature 
variation along the y-direction of the cell surface was 
negligible, and using the average flux greatly simplified 
the computational process. 
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4.2.4 Performance of a CPVT system with & 
without an SBS 

The CPVT system with and without an SBS was also 
compared. From Figure 4.11, only the flux within the 
spectral response of the cell will be utilised for electrical 
energy generation. The remaining flux will be converted 
to waste heat and contribute to an increase in cell 
temperature, which decreases PV cell efficiency. This 
analysis holds true for both systems. 
     The efficiencies between the two systems are 
compared in Table 4.2. With an SBS, the PV cell 
efficiency increased by 7.5%. This is because the SBS 
only allows a portion of the solar spectrum to be 
transmitted to the PV cells, where this portion is 
quantified by the transmitted fraction. Thus, with an 
SBS, the amount of flux converted to waste heat at the 
PV cells is considerably a lot less than that of a non-SBS 
system. This resulted in a lower cell temperature and a 
higher PV cell efficiency. At the same time, the thermal 
efficiency of the HTF also decreased. Should the total 
thermal efficiency be considered, which includes both 
the thermal output at the HTF and the thermal absorber, 
the SBS-CPVT system is expected to be superior in both 
efficiencies as compared to the CPVT system without an 
SBS. 
     A sensitivity analysis for the solar irradiance and 
mass flow rate of the HTF on the efficiencies of the non-
SBS system was also conducted. For a change in 
parameter, the efficiencies exhibited a similar trend to 
that of an SBS-CPVT system.  
 

Table 4.2: Performance of SBS & non-SBS CPVT 
systems 

CPVT system Without SBS With SBS 
𝑇cell 328 K (55 °C)  314 (41 °C)  
𝑇out of HTF 324 K (50 °C)   311 (38 °C) 
PV 17.3% 18.6% 
th 65.4% 33.7% 

 

 
Figure 4.11: Spectral transmittance of the ideal SBS 
matched to the spectral response of the cells[30] under 

an AM1.5 D irradiance[30] 

5. Conclusions 
Numerical modelling of a CPVT system with an SBS 
was conducted. The SBS was specified to be a double-
layer dichroic glass filter. The optimum SBS 
configuration is a convex one which minimised optical 
losses. The transmitted fraction of the SBS was 
calculated to be 0.52 under a 5-4500 nm solar irradiance, 

for Si-cells with a bandgap of 500-1100 nm. The SBS 
was modelled to transmit wavelengths within the 
bandgap to the Si-cells and reflect the remaining 
spectrum to a thermal absorber. The integration of an 
SBS lowered the cell temperature by 14 °C to 41 °C and 
achieved a HTF outlet temperature of 38 °C. Under the 
same operational parameters, this system was shown to 
have performed better than one without an SBS with a 
7.5% increase in PV cell efficiency. The SBS-CPVT 
system also achieved an optical and thermal efficiency 
(WHR at the Si-cells only) of 90% and 33.7% 
respectively.  

For an SBS-CPVT system, a lower solar irradiance, 
lower ambient temperature, higher windspeed, lower 
HTF inlet temperature and higher HTF mass flow rate 
enhances the PV cell efficiency. Whereas the thermal 
efficiency is improved with a higher solar irradiance, 
higher HTF mass flow rate, higher ambient temperature, 
lower HTF inlet temperature and lower windspeed. An 
‘optimum’ set of operating parameter values may be 
specified according to system requirement. 

6. Outlook 
To further enhance system performance, we propose 
several target research directions.  Firstly, the fluid flow 
in this study falls in the laminar flow regime, and it is 
speculated that increasing the flow rate to the turbulent 
flow regime will enhance heat transfer via convection in 
the collector. This will potentially further increase the 
PV cell efficiency. Furthermore, a glass evacuated tube 
concentrator (ETC) encasing the PV cells can be added 
to the system. ETCs are typically designed with air 
removed from within the tube, thus forming a vacuum 
within. This reduces conduction and convection heat 
losses, which can potentially enhance thermal energy 
collection at the HTF[31]. The effect of this on the PV cell 
temperature and hence the PV cell efficiency would 
have to be studied. Finally, an increase in curvature of 
both the parabolic concentrator and SBS can be 
considered, which will result in a shorter focal length[32].  
Theoretically, this would lead to a more compact system 
and may further reduce capital costs. 

To improve accuracy for future research on similar 
SBS-CPVT systems employing the current model setup, 
it is encouraged to incorporate a heat exchanger at the 
solid-based thermal absorber. This will allow for the 
total thermal efficiency to be calculated and thermal 
losses to be simulated. Thus, a complete evaluation of 
the system performance can be carried out.  
     Using the CFD model developed, ray splitting 
properties of various SBS material in similar CPVT 
systems can be evaluated. Different electrical and 
thermal energy absorber designs can also be explored to 
study their effects on the system efficiency. 
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Abstract 

Conventional water membranes are easily dissolved by organic solvents. In this paper, this issue was tackled by 
evaluating polymeric membranes as substitutes, specifically polyether ether ketone (PEEK) membranes. Moreover, 
nanoparticles were integrated into the PEEK membranes to enhance their performance. Two types of nanoparticles were 
synthesised: hydrophilic UiO-66 and hydrophobic OPA-UiO-66. Three types of membranes were fabricated, including 
pristine PEEK membrane, PEEK membrane with UiO-66, and PEEK membrane with OPA-UiO-66. The characteristics 
of the nanoparticles and membranes were studied using various characterisation techniques such as X-ray diffraction 
(XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy 
(ATR-FTIR), field-emission scanning electron microscope (FE-SEM), contact angle, and porosity analysis. Their 
performances were then tested by permeance and rejection tests against multiple inorganic, organic, polar, and nonpolar 
solvents. Interestingly, the permeance of polar organic solvent and nonpolar organic solvent were highest for the 
hydrophilic and hydrophobic membrane, respectively. Modifying PEEK membrane with nanoparticles also proved to 
increase the membrane rejection drastically from 75.9% to 88.4% and 84.7% by integrating UiO-66 and OPA-UiO-66, 
respectively, in organic solvent. 

Keywords — Metal organic frameworks, Polymeric membrane, Polyether ether ketone, PEEK, Mixed matrix 
membrane, Nanoparticles, UiO-66, OPA-UiO-66, Permeance, Rejection

1. Introduction 

Organic solvents are commonly used in many 
industries including pharmaceutical, petrochemical, and 
agricultural; these solvents can be carcinogenic or have 
reproductive hazards and therefore should be separated 
from the industrial products [1]. Industrial chemical 
separation accounts for 10-15% of the total energy 
consumption worldwide, and 80% of the industrial 
separation energy is the energy-intensive thermal 
separation processes such as distillation, evaporation, and 
drying [2] [3] [4]. In this paper, the separation of organic 
solvents will be explored by membrane technology 
which has a potential in massively reducing the energy 
requirement in industrial processes, owing to their lower 
energy requirement for separation since there are no 
phase changes occurring apart from pervaporation [5]. 

Commercial water membranes like polyether sulfone 
(PES) can be easily dissolved by polar organic solvents, 
as shown in Fig. 1 [6]. This study will therefore be 
focused on polymeric membranes, specifically polyether 
ether ketone (PEEK) membrane, due to its high organic 
solvent resistance [7]. Polymeric membranes have 
emerged as a major study area in recent years compared 
to inorganic membranes because of their lower cost and 
higher flexibility [8]. The resources required to produce 
polymeric membranes have become more abundant and 
therefore cheaper compared to inorganic membranes 
such as ceramic membranes, water membranes, and 
zeolite membranes [9]. 

 

 
Fig. 1. Image showing water membrane dissolved by organic solvent 
leaving only PET fabric support layer. 

2. Background/Theory 

2.1 Inorganic membranes 

Inorganic membranes possess advantages such as 
thermal and chemical stability, and the ability to 
withstand extreme operating conditions. However, they 
are not flexible and are highly fragile [8]; making them a 
poor candidate for organic solvent separation processes. 

A possible method of strengthening polymeric 
membranes to become more resistant to organic solvents 
is cross-linking of polymers. An example of this 
modification had been carried out using polyimide, the 
organic solvent nanofiltration (OSN) membrane, and 
polybenzimidazole. Moreover, it is possible to use a 
fundamentally resistant material such as PEEK or poly 
(ether ketone) (PEK) [10]. Cross-linking was, however, 
not chosen as the approach to strengthen membranes in 
this study because the resulting membranes would not be 

Dissolved water 
membrane 

PET fabric 
support 
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appropriate to use with chlorinated solvents such as 
strong amines, strong acids, and bases [10]. 

2.2 Polyether ether ketone (PEEK) membrane 

PEEK membrane was chosen as the focus of this 
research because of its excellence in resistance towards 
most organic solvents. PEEK is a semi-crystalline 
engineered thermal plastic with melting temperature of 
340 °C and glass transition temperature of 145 °C. 
Hydroquinone and benzophenone are two components 
that combine to create the rigid aromatic backbone 
structure of PEEK. Due to its resistance, PEEK can only 
be dissolved by sulphuric acid and methane sulphonic 
acid at room temperature, making it a suitable material 
for membrane fabrication but reduces the processability. 
Therefore, PEEK undergoes a sulphonation reaction (Fig. 
2) after being dissolved in sulphuric acid, which modifies 
its chemical structure in preparation for phase inversion 
process to fabricate the membrane [10]. 

 

Fig. 2. Schematic principal for the sulphonation of PEEK [10]. 

2.3 Metal organic frameworks (MOFs) 

MOFs are a class of porous crystalline materials made 
up of inorganic metal ions connected by organic ligands 
via coordination bonds (linkers) [11]. MOFs have an 
outstandingly large surface area as they have a hollow, 
cage-like structure resulting from formation of nodes by 
metal ions that bind the arms of the linkers together [12]. 
Moreover, they are superior to other porous 
nanomaterials owing to their properties such as 
controllable pore size, tuneable surface chemistry, and 
adaptable functionalities [13]. 

Among various MOFs, UiO-66, a Zr-based MOF, has 
become popular in the research field because of its ability 
to enhance the membrane hydrophilicity and 
permeability [14]. UiO-66 possesses various attractive 
properties such as great chemical resistance towards 
organic solvents such as benzene and acetone, superior 
thermal stability, exceptional chemical stability, and 
excellent resistance to high external pressure [15]. These 
properties arise due to the existence of the strong Zr-O 
bond and high coordination number between the Zr 
clusters and organic ligands [15]. 

N-Octadecyl phosphonic acid (OPA) is an alkyl 
phosphonic acid which can interact with the zirconium 
oxide clusters on the MOF surface by chemisorption 
through bidentate bonding, as shown in Fig. 3. OPA can 
integrate the property of super-hydrophobicity to Zr-
based MOFs such as UiO-66, without altering the high 
porosity of the MOFs [16].  

 
Fig. 3. Molecular level diagram of the addition of OPA to UiO-66 
MOFs by chemisorption through bidentate bonding [16]. 

Furthermore, the two types of nanoparticles were 
studied because of their different properties: UiO-66 is 
hydrophilic, and OPA-UiO-66 is hydrophobic. 

Five types of solvents were used in this study because 
of their varying properties. Water is a polar nonorganic 
solvent, methanol and acetonitrile are strong polar 
organic solvents, toluene is a non-polar organic solvent, 
and 1-methyl-2-pyrrolidine (NMP) is a weak polar 
aprotic organic solvent. 

It is expected that polar solvents will have a high 
permeance through hydrophilic membranes, and 
nonpolar solvents will have a high permeance through 
hydrophobic membranes. This is because polar solvents 
are usually charge-polarized and capable of hydrogen 
bonding, and nonpolar solvents does not contain a 
complete or partial charges on their molecules [17]. 

In this study, organic solvents with varying viscosity 
were used to test the membrane stability and permeance 
alongside water. 

2.4 Mixed matrix membranes (MMMs) 

MMMs are fabricated by dispersing nanoparticles 
into the polymer membrane matrix. The inorganic 
nanoparticles allow the improvement of the membrane’s 
mechanical, physical, and thermal properties. MOFs are 
commonly used fillers to prepare MMMs as they allow 
the characteristics and performances of the membranes to 
be modified. They can act as molecular sieves which 
selectively adsorb solvents and changes the permeability 
of the membrane depending on the molecular size. 
MMMs are superior to conventional polymer membranes 
owing to their improved robustness, permeability, and 
selectivity [18]. 

In this study, MOFs were selected as fillers instead of 
their alternatives such as zeolite and activated carbon 
[18]. This is due to their ability to prevent internal defects 
from forming and their compatibility with the polymer 
matrix [19]. 

2.5 Membrane fabrication 

Phase inversion casting is a widely used method of 
membranes fabrication. It is a rapid demixing process 
where a homogeneous liquid state polymer solution is 
transformed in a controlled manner to a solid state, 
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forming a solid matrix. There are various techniques of 
phase inversion such as solvent evaporation, 
precipitation by controlled evaporation, thermal 
precipitation, precipitation from the vapour phase, and 
immersion precipitation. In this study, the technique of 
immersion precipitation was employed [21]. 

When the cast film is immersed in a coagulation bath 
containing a nonsolvent such as water, a film of polymer 
precipitates instantaneously because of the loss of solvent 
due to absorption of water by the polymer [20] [21]. 

The membrane morphology can be controlled by 
changing the initial stage of phase transition. Whether the 
membranes are porous or nonporous depends on the type 
of formation mechanism; instantaneous demixing or 
delayed onset of demixing, respectively. There are 
several factors which can affect the diffusion and 
demixing processes, and hence affect membrane 
morphology. These factors include the choice of solvent 
and nonsolvent system, the concentration and 
composition of the polymer solution, and the 
composition of the coagulation bath [21]. 

3. Experimental design 

PEEK membrane was studied and further enhanced 
by adding MOF nanoparticles. The objective was to 
design membranes that are resistant to organic solvents. 
Three different types of membranes, pristine PEEK, 
PEEK modified with UiO-66, and PEEK modified with 
OPA-UiO-66, were synthesised. They were denoted as 
PEEK0, PEEK1, and PEEK2, respectively. The 
membranes fabricated were characterised by various 
methods to ensure successful modification with both 
nanoparticles; UiO-66 and OPA-UiO-66. These 
membranes were then compared in terms of performance 
(permeance and rejection) in five different solvents with 
different properties (water, methanol, acetonitrile, 
toluene, and NMP). For each of the membranes, 
independent repetitions were conducted three times for 
improved accuracy and reliability of results.  

4. Methods 

4.1 Materials 

Zirconium (IV) chloride (ZrCl4, Sigma-Aldrich) and 
terephthalic acid (TPA, Sigma-Aldrich) were used to 
synthesise UiO-66 nanoparticles. Additionally, OPA 
(Apollo Scientific Ltd) was used to synthesise OPA-UiO-
66 nanoparticles. Dimethylformamide (DMF) and 
ethanol from VWR Chemicals were used as solvents for 
the synthesis of UiO-66 and OPA-UiO-66 nanoparticles, 
respectively. Polyethylene terephthalate (PET) 
nonwoven fabric (AMFOR Inc., USA) was used as a 
support layer for the PEEK membrane to withstand the 
pressure during performance test. Methanol, acetonitrile, 
toluene, and NMP from VWR Chemicals were used as 
solvents for the performance test and the rejection test. 
Polyethylene oxide (PEO, 100,000 Da, Thermo 

Scientific) was used as rejection material for the rejection 
test.  

4.2 Synthesis of nanoparticles 

4.2.1 Synthesis of UiO-66 

The UiO-66 nanoparticles were prepared by 
solvothermal synthesis method. 900 mg of ZrCl4 and 646 
mg of TPA were dispersed in 150 mL of DMF in a 
sonication bath for 1 h. The resulting solution was heated 
at 100 °C for 24 h in an oven. The solvent was separated 
from the nanoparticles by vacuum filtration using nylon 
membrane filters (Sterlitech, 0.1 μm) and washed with 
DMF, ethanol, and DI water, respectively. 

4.2.2 Synthesis of OPA-UiO-66 

The OPA-UiO-66 nanoparticles were prepared using 
400 mg of the synthesised UiO-66 nanoparticles and 
334.5 mg of OPA dispersed in 400 mL of ethanol and 
sonicated for 10 min. The solution was stirred at room 
temperature for 24 h. Similarly, the solvent was separated 
from the nanoparticles by vacuum filtration and washed 
by ethanol and DI water. The resulting product was put 
in a vacuum oven at 30 °C for 24 h and then at 100 °C for 
24 h connect UiO-66 with OPA by heating treatment. 

Both UiO-66 and OPA-UiO-66 were put in a 
desiccator to remove any moisture. The dried samples 
were then grinded using a pestle and mortar to achieve 
fine nanoparticles. 

4.3 Membrane fabrication 

4.3.1 Casting solution preparation 

The solutions were made using 22 wt% of sulfuric 
acid and 66 wt% of methane sulphonic acid. Three 
casting solutions differ in the nanoparticle composition 
with PEEK0 solution consisting of 12 wt% of PEEK, 
PEEK1 and PEEK2 solution consisting of 11.5 wt% of 
PEEK and 0.5 wt% of their respective nanoparticles. 

For thorough mixing, the solutions were placed in a 
sonication bath for 24 h to disperse the nanoparticles 
uniformly and placed in the rolling machine for 48 h to 
completely dissolve the PEEK powder. The solutions 
then went through a degassing process to reduce the air 
bubbles which can affect the membrane morphology. 

4.3.2 Membrane casting and phase inversion 

The casting solutions were poured onto a PET fabric 
which was placed on a glass plate, with the casting bar 
set to thickness of 250 μm. Phase inversion via 
immersion precipitation occurred when the plate was 
submerged in coagulating bath containing non-solvent 
(DI water) for phase inversion to occur. The fabricated 
membranes were kept in the water container until the 
performance test. 
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4.4 Membrane characterisation 

4.4.1 X-ray diffraction (XRD)  

XRD is a technique employed to analyse the 
nanoparticle’s crystal structure. The XRD patterns were 
produced using X’pert Pro, PANalytical diffractometer 
with Cu Kα radiation of the wavelength λ = 1.54178 Å. 
Additionally, XRD can identify chemical compounds 
presented in the sample to reassure sample purity [22]. 

4.4.2 X-ray photoelectron spectroscopy (XPS) 

XPS (K-Alpha+, Thermo Scientific, UK) was used 
for chemical characterisation of membrane nanoparticles 
by the determination of atomic percentages of each 
element in nanoparticles. For the XPS analysis, carbon 
tape was covered completely with each of the 
nanoparticles before the samples were analysed to 
prevent getting a reading for carbon from the carbon tape. 
The monochromated Al Ka Micro-focused x-ray source 
was operated at around 100-4000 eV, at the resolution of 
0.5 eV, and a 400 μm spot size was used.  

4.4.3 Attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR) 

The ATR-FTIR spectrometer (Perkin-Elmer 
Spectrum 100) equipped with a universal attenuated total 
reflectance (UATR) sampling attachment, middle 
infrared triglycine sulphate (MIR TGS), and a red laser 
with a wavelength of 633 nm as the excitation source, 
was used to determine the characteristic peaks for the 
samples. The samples include nanoparticles, PEEK0, 
PEEK1, and PEEK2 membranes. The changes in 
functional groups resulting from addition of UiO-66 and 
OPA-UiO-66 nanoparticles can be analysed. The spectral 
range of 4000-500 cm-1 was used for each scan sample 
[10]. 

Before measuring each sample, isopropyl alcohol was 
used to clean the ATR crystal.  

4.4.4 Field emission scanning electron microscope 
(FE-SEM) 

The changes in structures of the MOF-modified 
PEEK membranes compared to the PEEK0 membrane 
were studied using SEM images of the membranes’ 
surfaces and cross-sections. For membrane with PET 
fabric support layer a sharp blade was used to precisely 
cut the membrane for cross sectional imaging as liquid 
nitrogen was not strong enough to cut the PET fabric. 
Carbon tape was used to keep all the samples in place, 
then a silver paste was applied on all the samples so that 
electrons can move through the silver conductor to 
achieve clearer images. The sputter coater used 
chromium to coat the samples with the coating thickness 
of 15 nm. For cross sectional imaging, the membranes 
were placed vertically onto the SEM grid, and for surface 
imaging the membranes were placed horizontally. 

4.4.5 Contact angle 

Ramé-hart instrument co. was used to measure the 
contact angle using drop method at room temperature. 
The membrane was taped onto a glass slide to ensure flat 
surface and a drop of DI water was place onto the 
membrane surface via micropipette. A video camera was 
used to capture the shape of the droplet and automatically 
analysed the contact angle. On different membrane 
samples, at least six independent measurements were 
recorded [10]. 

4.4.6 Porosity and pore size 

Zinadini’s work suggested that the membranes’ 
overall porosity, ε (%) can be estimate by using the 
equation (1): 

𝜀 = 𝜔1−𝜔2
𝐴×𝑙×𝜌𝑤

                (1) 

where 𝜔1 is the weight of wet membrane (kg), 𝜔2 is the 
weight of dry membrane (kg), 𝐴 is the effective area of 
the membrane (m2), 𝜌𝑤  is the ethanol density (789 
kg/m3), and 𝑙 is the membrane thickness (m) [23]. 

Membranes without the PET fabric was cut into 1 × 1 
cm2. The dry and wet (soaked in 10 mL of ethanol for 24 
h) weights were recorded. 

The mean pore radius (𝑟𝑚) of the membranes were 
calculated using Guerout-Elford-Ferry equation (2): 

𝑟𝑚 = √(2.9−1.75𝜀)×8𝜂𝑙𝑄̇
𝜀×𝐴×∆𝑃

               (2) 

where 𝑄̇ is the amount of water collected per unit time 
(m3/s), A is the membrane area (m2), 𝜀  is the overall 
porosity, 𝜂 is the viscosity of water (Pa.s) at 25°C, ∆𝑃 is 
the operational pressure (Pa), and 𝑙  is the membrane 
thickness (m). 

4.5 Performance test  

4.5.1 Permeance test 

A dead-end cell (Sterlitech, HP4750 High Pressure 
Stirred cell) was used to measure the membrane 
permeance. The compression of membrane at 2 bar using 
nitrogen gas for at least 1 h was necessary to obtain 
steady state during data collection. The permeance of the 
membranes against water, methanol, toluene and NMP 
were recorded for 1 h and repeated three times with 
different membrane samples at 1 bar. The permeance (𝑃)  
of membrane in LMH/bar was calculated using equation 
(3): 

𝑃 = 𝛥𝑚
𝜌𝑠×𝐴×𝛥𝑡×∆𝑝

                (3) 

where 𝛥𝑚 is the amount of solvent permeation (kg) for a 
certain time 𝛥𝑡  (h), 𝜌𝑠  is the density of the solvent 
(kg/m3), 𝐴 is the effective membrane area (m2), and ∆𝑝 
is the transmembrane pressure. 
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4.5.2 Rejection test 

The rejection tests using dead-end cell at 1 bar were 
performed by dissolving PEO in water, acetonitrile, 
toluene and NMP. Since PEO did not dissolve in 
methanol, acetonitrile was used as a strong polar organic 
solvent instead. An Agilent High-performance liquid 
chromatography (HPLC) and an evaporative light 
scattering detector (Varian 385-LC ELSD) were used to 
analyse the samples. The C18-300 Hichrom reversed 
phase Ace column with length of 250 mm and interior 
diameter of 4.6 mm was used in HPLC. The two mobile 
phases were a 5mM aqueous solution of ammonium 
acetate (mobile phase A) and a 4:1 (v:v) mixture of 
acetonitrile and methanol (mobile phase B). The initial 
gradient was isocratic 90% A for 2 min, followed by a 23 
min linear rise to 5% A. After that, it was reduced to 90% 
A for more than 2 min and was allowed to re-equilibrate 
before the next injection with 90% A for 5 min. The 
column temperature was set to 30 °C and the flowrate of 
1 mL/min were used with the nebulizer set to operate at 
55 °C and the ELSD evaporator at 40 °C [24]. 

This allows the feed and permeate concentrations of 
PEO to be determined and the rejection ( 𝑅 ) was 
calculated using equation (4): 

𝑅 = 1 − 𝐶𝑝
𝐶𝑓

                (4) 

where 𝐶𝑓 and 𝐶𝑝 are the concentration of feed solutions 
and permeate solutions, respectively. 

5. Results and discussion 

5.1. Characterisation of nanoparticles 

5.1.1 Attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR)

 
Fig. 4. ATR-FTIR spectra of UiO-66 and OPA-UiO-66 nanoparticles. 

Fig. 4 shows the ATR-FTIR spectra of UiO-66 (red) 
and OPA-UiO-66 (black). The peaks at 1700 cm-1 and 
1400 cm-1 belong to symmetrical stretching vibrations of 
C=O bond in the carboxyl group (-COOH). The C=C 
stretching vibration in phenyl ring corresponds to peaks 
at 1506 cm-1 and 1581 cm-1. The peaks at 745 cm-1 and 
663 cm-1 are attributed to O-Zr-O symmetric vibration. 
These peaks are present in both graphs which confirms 
that the OPA-UiO-66 nanoparticles contains the UiO-66 
MOFs [25]. In addition, OPA-UiO-66 have characteristic 
peaks at 2920 and 2850 cm-1 resulting from symmetric 

and asymmetric stretching of alkyl -CH2- groups [16]. 
The characteristic peak of UiO-66 due to -OH group is 
the broad peak at 3350 cm-1.  

The OPA-UiO-66 nanoparticles sample have a 
relatively weak vibration of the -OH bond in comparison 
to -CH2- because OPA is made up of long -CH2- chains. 
As a result, the -OH peak was not detected in the ATR-
FTIR spectrum of the OPA-UiO-66 nanoparticle. 

5.1.2 Field emission scanning electron microscope 
(FE-SEM)

 
Fig. 5. SEM images of (A) UiO-66 and (B) OPA-UiO-66 
nanoparticles. 

UiO-66 nanoparticles depict octahedron structure in 
Fig. 5 (A) with the size of approximately 200 nm [26]. 
The surface of OPA-UiO-66 nanoparticles appears to be 
rougher; this confirms the intact morphologies of the 
OPA-UiO-66 crystals caused by the chemical addition of 
OPA into the originally synthesised UiO-66 
nanoparticles. 

5.1.3 X-ray diffraction (XRD) 

 
Fig. 6. The XRD patterns of UiO-66 and OPA-UiO-66 nanoparticles. 

Fig. 6 depicts the XRD patterns of OPA-UiO-66 and 
UiO-66 nanoparticles. The diffraction peaks at 2θ = 7.5° 
and 8.6° attributed to the crystal faces (111) and (200) of 
UiO-66 verify the presence of the MOFs in both 
nanoparticles. The XRD shapes of both nanoparticles are 
similar, indicating that the intrinsic crystal structure was 
well preserved [14].  
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5.1.4 X-ray photoelectron spectroscopy (XPS) 

 
Fig. 7. XPS survey spectrum of UiO-66 and OPA-UiO-66  

Table 1. Atomic compositions of each element in UiO-66 and OPA-
UiO-66 

 Atomic composition (%) 
 C O Zr P 
UiO-66 51.5 33.3 15.2 - 
OPA-UiO-66 70.3 19.7 7.5 2.5 

 

The red and black line in Fig. 7 shows the XPS spectra 
of survey for UiO-66 and OPA-UiO-66 nanoparticles, 
respectively. Both graphs contain O1s, C1s, Zr3p1, 
Zr3p3, and Zr3d. However, only the black graph contains 
P2p. This suggests that the elements oxygen, carbon, and 
zirconium were observed in both spectra, but only 
phosphorus was observed in the OPA-UiO-66 spectra, as 
shown by the peak appearing at 133.3 eV. It can be 
concluded that OPA was added to UiO-66 in the OPA-
UiO-66 sample. 

The compositions of each element in the two types of 
nanoparticles are listed in Table 1. The existence of 
phosphorus in the OPA-UiO-66 confirmed the successful 
addition of OPA into the originally synthesised UiO-66 
nanoparticles. Furthermore, OPA-UiO-66 consisted of a 
higher percentage of carbon due to the addition of the 
long hydrophobic chain from the OPA.  

5.2. Membranes characterisation 

5.2.1 Attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR) 

 
Fig. 8. ATR-FTIR spectra of PEEK0, PEEK1, and PEEK2 membranes. 

There is a strong correlation between ATR-FTIR of 
the membranes (Fig. 8) and that of the nanoparticles (Fig. 
4).  

The characteristic peaks observed in the ATR-FTIR 
of UiO-66 and OPA-UiO-66 nanoparticles are also 
present in the ATR-FTIR of PEEK1 and PEEK2 
membranes respectively. This indicates the presence of 
both nanoparticles on the membrane. 

For PEEK0, PEEK1 and PEEK2, the peak at 1650 
cm-1 corresponds to C=O of the carboxyl group (-
COOH). The peak at 1488 cm-1 is due to the stretching 
vibration of aromatic C-C. Moreover, at 1220 cm-1 and 
1412 cm-1 correspond to symmetric and asymmetric 
stretching vibration of O=S=O, respectively [10]. 

5.2.2 Field emission scanning electron microscope 
(FE-SEM)

  
Fig. 9. SEM images of membrane surface and cross-section (A, D) 
PEEK0, (B, E) PEEK1, (C, F) PEEK2. 

Fig. 9 shows the surface and cross-sectional images 
of the membranes, PEEK0, PEEK1, and PEEK2. The 
structure of each membranes contains a finger-like 
sublayer on top of the PET support layer with macrovoids 
[14]. These images (D to F) show the varying pore 
structure: straight, curved, and rounded for PEEK0, 
PEEK1, and PEEK2 membranes, respectively. The 
curved and round nature of the pore in Fig. 9 (E) and (F) 
show that the nanoparticles can affect the phase inversion 
reaction. The hydrophilic UiO-66 nanoparticles 
incorporated membrane exhibits curved and larger 
finger-like pores (E). The UiO-66 nanoparticles can 
result in thermodynamic instability, thus accelerating the 
exchange between the solvent and the nonsolvent [27] 
[14]. Additionally, the hydrophobic PEEK2 membrane 
(F) did not show finger-like voids on the bottom surface 
like the PEEK0 membrane, but instead exhibits smaller 
pores. This is due to the hydrophobicity of the OPA-UiO-
66 nanoparticles causing more difficult exchange 
between the solvent and the nonsolvent in the phase 
inversion process, resulting in smaller pores [28]. This 
proves that UiO-66 nanoparticles increased the pore size 
of the membrane and  OPA-UiO-66 nanoparticles 
reduced the pore size of the membrane. 

It is clear there were pores on the surface of PEEK0 
membrane and PEEK2 membrane. However, in Fig. 9 
(B), it is not clear the pores were present; this is because 
of the formation of the hydration film by the hydrophilic 
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UiO-66 nanoparticles on the membrane surface [14]. On 
the other hand, PEEK2 membrane pores showed a rough 
texture, compared to the PEEK0 membrane pores, which 
is an indication of nanoparticles situating in the pores, 
confirming the addition of the nanoparticles. 

5.2.3 Contact Angle 

Fig. 10. Contact angle of PEEK0, PEEK1, and PEEK2. The comparison 
between the contact angle of each membrane and the standard deviation 
of the mean is shown by the black bar (from six independent 
measurements). 
 

The contact angle was measured to determine the 
wettability of each membrane. The difference in the 
contact angle was observed when comparing each 
membrane due to hydrophobic and hydrophilic 
behaviour. The addition of OPA-UiO-66 nanoparticles 
increased the contact angle of the membrane, hence 
enhancing the hydrophobicity of the membrane. The 
addition of UiO-66 nanoparticles, on the other hand, 
lowered the contact angle and hence enhanced the 
hydrophilicity of the membrane. This finding indicates 
that PEEK2 membrane exhibit hydrophobic 
characteristic while PEEK1 membrane exhibited 
hydrophilic characteristics. 

The standard deviation of the mean of PEEK2 (black 
bar) shows that the change from PEEK0 might be 
statistically significant. The error bars for PEEK1 and 
PEEK0, however, marginally overlapped, indicating that 
it is not statistically significant. As a result, additional 
data is needed to draw a more definite conclusion. 

5.2.4 Porosity and pore size 

Table 2. Calculated values of the overall porosity, mean pore radius, 
and pore size of membrane. 

Membrane 

Overall 
porosity 
ε (%) 

Mean 
pore 

radius 
(nm) 

Pore size 
(nm) 

PEEK0 59.6 50.5 101.0 
PEEK1 51.7 52.5 105.0 
PEEK2 79.1 39.2 78.3 

 

 

In Table 2, PEEK2 has the highest overall porosity, 
followed by PEEK0, and then PEEK1. With the addition 
of UiO-66 nanoparticles, PEEK1 membrane porosity was 
reduced due to blockage of the membrane pore caused by 
aggregation of the UiO-66 nanoparticles [29].  

The mean pore radius aligns with the conclusion from 
the cross-sectional SEM images. It is confirmed that the 
hydrophilic UiO-66 nanoparticles enlarged the 
membrane pore size, while the hydrophobic OPA-UiO-
66 nanoparticles reduced the membrane pore size, 
compared to PEEK0 membrane. 

All three membranes’ mean pore size are 
approximately in between 50 nm and 100 nm, suggesting 
PEEK0, PEEK1, and PEEK2, can be classified between 
microfiltration (MF) and ultrafiltration (UF) membranes 
[30].  

5.3. Membrane performance test 

5.3.1 Permeance test 

 
Fig. 11. Permeance result of PEEK0, PEEK1, and PEEK2 with water, 
methanol, toluene, and NMP and the standard deviation of the mean is 
shown by the black bar (from three independent measurements). 

Fig. 11 shows the comparison of each membrane’s 
permeance in each of the solvents including water, 
methanol, toluene, and NMP. The permeance trend of 
membrane can be explained by the solvent viscosity. At 
standard temperature and pressure, NMP has the highest 
viscosity (1.7 cP), followed by water (1 cP), toluene (0.56 
cP), and methanol (0.5 cP). PEEK1 membrane exhibited 
the highest permeance for polar solvents (water, 
methanol, and NMP) due to its hydrophilic characteristic. 
On the contrary, PEEK2 membrane showed the highest 
permeance for a non-polar solvent (toluene) due to its 
hydrophobicity nature. This suggests that the permeance 
of the polar and non-polar solvents can be enhanced 
compared to pure PEEK depending on the characteristic 
of nanoparticles. 

Each membrane samples were inspected after the 
permeance tests to identify damages to the structural 
integrity. The observations were that all three types of 
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membranes could withstand 1 h of usage with organic 
solvents. 

However, the standard deviation of the mean error bar 
for membranes in each solvent overlapped indicating that 
it might not be statistically different enough to draw a 
definite conclusion.  

5.3.2 Rejection test 

 
Fig. 12. Rejection of PEO on each membrane in each solvent and the 
standard deviation of the mean is shown by the black bar (from three 
independent measurements). 

Initially, the membrane rejection was calculated by 
dissolving PEG of molecular weights 1,000, 2,000, 
6,000, and 20,000 in 4 solvents (water, methanol, 
toluene, and NMP). However, the HPLC gave 
meaningless results which means the PEG used were too 
small for the synthesised membranes and cannot be 
detected by HPLC. The HPLC was then operated using 
PEO of molecular weight 100,000 Da. This only gave 
meaningful results for water and acetonitrile; this was 
caused by the insufficient time taken to dissolve the PEO 
particles in toluene and NMP. 

According to Fig. 12, the PEEK0 membrane showed 
good rejection in an inorganic solvent (water), but not in 
an organic solvent (acetonitrile). This suggests the 
investigation of adding nanoparticles to improve the 
membrane performance in organic solvents is necessary.  

When using water, the rejection of PEEK1 and 
PEEK2 were slightly better than PEEK0. However, this 
difference is not statistically significant as the standard 
deviation of the mean bar (black error bar) of PEEK1 and 
PEEK2 overlap with the PEEK0 value. Therefore, further 
tests are required before a conclusion can be drawn for 
water. 

In acetonitrile, PEEK1 had the highest rejection, and 
since it is a polar solvent, this aligns with the conclusion 
drawn from the permeance test, that hydrophilic 
membranes are suitable for the use of polar organic 
solvent separation (Fig. 11). This also suggests the pore 
size could be a dominant factor which controls the 
membrane rejection, as PEEK1 has the largest pore size 

(Table 2). PEEK1 and PEEK2 membranes showed 
improved rejection values in acetonitrile, compared to 
PEEK0 without nanoparticles in the membrane matrix. 
This implies the addition of both the UiO-66 and the 
OPA-UiO-66 nanoparticles led to a successful increase 
of membrane rejection and therefore membrane 
performance. 

6. Conclusion 

In this study, PEEK membranes with UiO-66 
(hydrophilic) and OPA-UiO-66 (hydrophobic) 
nanoparticles incorporated into the membrane matrix 
were synthesised. This was proved by the various 
characterisation methods performed as each type of 
membrane showed distinguishable qualities which are 
suitable for different types of solvents. Both the UiO-66 
and OPA-UiO-66 modified membranes showed 
improved permeance in polar organic solvents and 
nonpolar organic solvents, respectively, compared to the 
pristine PEEK membrane. Moreover, modifying 
polymeric membranes with nanoparticles proved to 
increase the membrane rejection in both inorganic 
solvents and organic solvents. However, due to the time 
constraint of the project, rejection tests with organic 
nonpolar solvents were not carried out as operating 
conditions were needed to be varied for PEO to dissolve 
in each of the solvents. 

Overall, the modification of PEEK membrane with 
both UiO-66 and OPA-UiO-66 nanoparticles 
successfully showed improvement to the PEEK 
membrane’s performance with organic solvents. 

7. Outlook 

MOFs are powerful new devices for the more 
sustainable future of chemical separations by polymeric 
membranes. For further studies, the effects of the amount 
of MOFs added to polymeric membranes on membrane 
permeance and rejection could be investigated to 
improve the current understanding regarding the amount 
of MOFs which is required to optimise the membrane 
performance.  

Performance tests with a higher variety of operating 
conditions should be explored when different solvents 
are used, as it will be more comparable to real-life 
industrial situations. Furthermore, more tests over a 
longer period can be conducted to evaluate the long-term 
effect of adding nanoparticles on the permeance and 
structural integrity of the membranes. 

More study could be carried out regarding whether 
there are biodegradable alternatives for PEEK 
membranes, and whether polymeric wastes could be 
derived from landfills to fabricate membranes to reduce 
environmental waste. 

A cost-benefit analysis can be conducted to assess the 
cost efficiency of using mixed matrix membranes instead 
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of commercial polymeric membranes; this will highlight 
how largely chemical industries can benefit from this 
new separation method monetarily and environmentally. 
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Improving the accuracy of enzyme capacity constrained metabolic models of CHO cells for 
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Abstract 

The biopharmaceutical industry widely uses Chinese Hamster Ovary (CHO) cells for antibody production; an 
approach to modelling CHO cell metabolism is to use constraint-based models of genome scale metabolic 
networks. Flux Balance Analysis (FBA) - a methodology used to solve genome-scale metabolic models to 
estimate intracellular reaction fluxes - has been found to lack quantitative accuracy in predicting intracellular 
fluxes. In this investigation we show that the use of enzyme capacity constrained FBA (ecFBA), updated for use 
with the genome-scale metabolic model iCHO2441 and adapted to Python, improves the accuracy of 
intracellular flux predictions when compared to FBA and other constraint-based modelling methods. We found 
that on average, ecFBA predicts cellular growth and Immunoglobulin G (IgG) production rates 9.3% and 3% 
closer to experimental values respectively. Additionally, with ecFBA 36.6% of predictions for all reactions in all 
samples are found to be within the error of the measured experimental value, an increase of 8.96% compared to 
FBA. Furthermore, we have identified 5 reactions as potential bottlenecks in the IgG secretory pathway that 
could be investigated as targets for genetic engineering; of these 5, BiP_ATPase is the most likely to be the 
bottleneck. We anticipate that the ecFBA model developed can be improved by the addition of more enzyme 
kinetic data and the expansion to additional experimental data sets. The approach outlined in this paper could 
also serve as a starting point for investigations in cellular engineering of CHO cells. 

1. Introduction  

In the biopharmaceutical industry, the primary 
production methods for antibody-based therapeutics 
involve genetic engineering of mammalian cells, 
particularly Chinese-hamster ovary (CHO) cells [1]. 
Considering this, understanding and modelling the 
metabolic behaviour and intracellular reactions of 
such cells could be vital for progression in this field. 
One such method is genome-scale models of 
metabolism (GeM). GeMs use knowledge of 
metabolic reactions and genes, the gene-protein-
reaction (GPR) relations linking the two, the 
metabolites participating in these reactions as well 
as the reactions governing the transport of these 
metabolites in order to construct a mathematical 
expression of cellular metabolism [2,3]. The 
advantage of this is that a genome-scale model of 
intracellular reactions can be recreated for any cell 
whose parent species has a completely mapped 
genome. 

Flux balance analysis (FBA) is a constraint-
based method for analysing GeMs, using reaction 
stoichiometries, metabolite mass balances and 
thermodynamic constraints [4,5]. While a useful tool 
for studying cell behaviour, FBA results in an 
underspecified and under-constrained system which 
limits its potential for accurate metabolic modelling. 
To improve this, further constraints can be employed 
in attempts to narrow the solution space. Examples 
of this include parsimonious FBA (pFBA), carbon 
constrained FBA (ccFBA) and enzyme capacity 

constrained FBA (ecFBA) which constrain the total 
sum of fluxes, carbon availability, and enzyme 
availability respectively. 

This investigation attempts to improve the 
accuracy of FBA models by applying enzyme 
capacity constrained FBA (ecFBA) to analyse an 
expanded CHO cell GeM, iCHO2441 [6]. Reaction 
fluxes obtained from the analyses are mapped to 
reactions with experimentally available data from 
Yeo et al. [7]; results are compared against 
alternative constraint-based models and 
experimental data. Relevant enzyme data from Yeo 
et al. [4] is used and built upon with additional data 
extracted from the BRENDA database [8] to 
constrain enzyme capacity more accurately.  

2. Background 

GeMs have the advantage of not requiring cellular 
kinetic data, being based on the mass balance of 
metabolites across the cell [9]. The only knowledge 
required is the mapping of the cell genome, and the 
stoichiometries of the metabolic reactions. 
Additionally, as GeMs explicitly include the GPR 
relations, the effects of individual genes can be 
determined; a useful property for investigating 
cellular engineering targets [10,11]. 

The incorporation of enzyme kinetic data to FBA 
models originates from Beg et al. [12], with the 
creation of FBA with molecular crowding, 
introducing the idea of limiting the volume of certain 
substances in a cell using a capacity constraint. The 
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incorporation of enzyme kinetic data into this 
framework was added by Sánchez et al. [13] through 
the incorporation of enzyme turnover number and 
concentration into the stoichiometric matrix to limit 
molecular fluxes based on enzyme activity. ecFBA, 
developed by [8], is a different approach which 
limits molecular fluxes based on enzyme mass in the 
cell. The secretory pathway was investigated in 
detail, as it has been identified as a bottleneck for 
IgG production [14,15], and work has been done to 
expand GeMs to include the secretory pathway [6]. 
This investigation is the first work applying ecFBA 
to the iCHO2441 model and investigating its impact 
on the accuracy of the secretory pathway.  

3. Methods 

Flux Balance Analysis (FBA) 
FBA is a method used to analyse GeMs and the flow 
of metabolites through a metabolic network. A 
steady state mass balance of metabolites and 
constraints on reaction fluxes are used to create a 
system of linear equations; a particular reaction flux 
can be chosen as an objective function, and the 
system can be solved using linear programming 
(Fig. 1). 

This system created by FBA is underdefined, as 
there are more reactions than metabolites (most 
metabolites will participate in many reactions), so to 
further constrain the solution space several 
approaches have been taken. FBA, pFBA, and 
ccFBA are used as benchmarks to compare the 
performance of ecFBA. pFBA is a bilevel 
optimisation optimising a metabolic reaction, 
usually growth, as the outer optimisation and 
minimising total cellular flux as the inner 
optimisation [16]. ccFBA in contrast constrains the 
total elemental carbon flux into the cell [17].    

Enzyme Capacity Constrained FBA (ecFBA) 
ecFBA [5] constrains the allowable mass of 
enzymes in the cell; as metabolic reactions require 
enzymes to occur at non-negligible rates this 
effectively constrains reaction fluxes. Each flux is 

assigned a coefficient which relates reaction flux to 
the mass of enzyme present, assuming all enzymes 
operate at their turnover number. The sum of these 
capacity coefficients multiplied by the flux must be 
less than or equal to the total mass of enzyme per 
unit mass dry cell weight, which is the enzyme 
capacity constraint C (Eqn. 01) 

∑
𝑀𝑤,𝑗

𝑘𝑐,𝑗

𝑛

𝑗=1

∗ 𝑣𝑗 ≤ 𝐶 Eqn. 1 

FBA and its more advanced variants all result in 
large solution spaces with an infinite number of 
solutions and therefore require at least one reaction 
flux to be chosen as an objective function, which 
poses three problems. The optimal choice for the 
objective function depends on the conditions that the 
modelled cell is in, and is an ongoing area of 
research [18]. Additionally, it has been 
demonstrated that two of the most popular choices 
of objective function - maximising biomass 
growth/ATP production - do not always accurately 
predict intracellular fluxes [19]. Finally, assuming a 
single, unchanging objective function leaves models 
unable to accurately model cells in changing 
conditions [20].  

Flux Sampling 
Markov-chain Monte Carlo methods, also known as 
flux sampling when applied to GeMs, remove the 
need for an objective function [20]. FBA methods 
can be summarised as solving a linear optimisation 
problem subject to a steady state mass balance, and 
flux feasibility constraints. Flux sampling is the 
random generation of sets of fluxes which sample 
the solution space defined by the same set of 
constraints as FBA. In this investigation, sampling 
is set to 5000 with a thinning of 10000 meaning one 
sample is taken for every 10000 potential solutions 
across 50,000,000 solutions to give a good 
representation of the entire solution space. 
COBRApy [21] was used to implement Flux 
sampling with ecFBA constraints. The value of each 
flux is calculated as the average flux of the 5000 
samples. 

Figure 1. Representation of steps involved in Flux Balance Analysis. 1) Intracellular reactions are mapped based on GPR in 
the GeM. 2) Reactions with stoichiometry are extracted to generate stoichiometric matrix S of n reaction coefficients for 
each metabolite (m) 3) Mass balance on equations with steady state condition assumed for all intracellular metabolites gives 
that S*v = 0 generating a system of linear equations. 4) Objective functions are set to solve the linear programming problem 
and find an optimum solution within the solution space. 

1) 2) 3) 4) 

Figure 1. Representation of steps involved in Flux Balance Analysis. 1) Intracellular reactions are mapped based on GPR in 
the GeM. 2) Reactions with stoichiometry are extracted to generate stoichiometric matrix S of n reaction coefficients for 
each metabolite (m) 3) Mass balance on equations with steady state condition assumed for all intracellular metabolites gives 
that S*v = 0 generating a system of linear equations. 4) Objective functions are set to solve the linear programming problem 
and find an optimum solution within the solution space. 

1) 2) 3) 4) 
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This work develops ecFBA models by 
investigating the effects of changing the value of the 
enzyme capacity constraint C [Eqn. 1], the addition 
of estimated enzyme data, and expanding the set of 
enzyme constrained reactions to the secretory 
pathway. In this work values of C of 0.05, 0.09, 0.11, 
0.13, 0.15, and 0.20 genzyme/gDCW were investigated. 
Required enzyme data not present in Yeo et al. were 
first searched for using the GPR from the model to 
extract gene numbers. These were then converted to 
EC numbers using the UniProt database [22], which 
in turn were used to extract enzyme parameters from 
the BRENDA database [8]. If the required data 
could not be found, they were estimated using Eqn. 
2.   

𝐶𝑜𝑒𝑓 = 𝑚𝑖𝑛 𝑀𝑟
𝑚𝑎𝑥 𝑘𝑐 

  Eqn. 2 
 
Reaction Mapping 
Due to experimental limitations, reaction fluxes for 
the exact individual reactions in the model cannot be 
measured experimentally and therefore groups of 
predicted reaction fluxes must be mapped to 
experimental fluxes to analyse results. FBA and flux 
sampling result in reaction fluxes for all 6337 
reactions present in the iCHO2441 GeM. The 
experimental data meanwhile has intracellular 
fluxes for only 56 major metabolic pathways 
measured using 13C labelling [7]. To compare these, 
a mapping process where the series of sequential 
and/or parallel reactions from the model 
corresponding to the experimentally measured 
metabolic pathways are combined to generate an 
overall flux for each pathway. If there are parallel 
reactions, the flux of each is summed to give a total 
flux while if there are sequential reactions the 
absolute minimum of the fluxes is taken.  

Evaluation methods 
Our model was evaluated against experimental data 
covering a wide range of conditions, thus testing the 
robustness of the ecFBA model. Experimental 
intracellular flux data obtained from 13C flux tracing 
from 31 experiments were used to constrain 
exchange and biomass reaction fluxes for the ecFBA 
model, and to compare to the predictions made by 
our ecFBA model. The accuracy of our model to this 
experimental data was evaluated using three 
methods; the root mean squared error (RMSE), 
Pearson correlation coefficient, and capability. The 
RMSE and Pearson correlation coefficients were 
taken between the average of the flux samples for 
each reaction, and the experimental value for each 
reaction, for each experiment. The percentage 
capability of each reaction is defined as the 

percentage of reaction fluxes from all flux samples 
that fall within the experimental error for that flux. 

4. Results and discussion 

Optimal value of C  
The value of the enzyme capacity constraint, C, was 
investigated to both determine its impact on the 
accuracy of the ecFBA model, and assess the 
accuracy of the literature value. The literature value 
of C=0.11 genzyme/gDCW [7] was estimated by 
multiplying the measured value of 0.702 gprotein/gDCW  

[23] by the proportion of expressed genes which 
relate to cell metabolism (0.158) [7]. This value of 
C is not certain, as the value of 0.702 gprotein/gDCW 

itself is an average of two data sources [23]. Despite 
this, using the proportion of expressed genes to 
estimate the fraction of the proteome relating to 
metabolic enzymes has been found to be quite an 
accurate method [24].  

 
It was determined that the precise value of C 

does not greatly affect the accuracy of the ecFBA 
model, in the range around the literature value, using 
all three measures of accuracy (Figs. 2-4). No clear 
trends in mean, median, or interquartile range for 
any of the three measures are observed (Fig. 2), with 
mean spreads being ±0.058 for Pearson, ±1.29 for 
RMSE, and ±2.20% for capability.  This is likely 
because only 62.3% of the mapped reactions have 
enzyme kinetic data to constrain the fluxes. As only 
a small subset of the reactions is constrained, 
changing the total enzyme capacity will not greatly 
affect the system.  

Effect of additional estimated enzyme 
parameters 
In contrast, the addition of the estimated enzyme 
kinetic data decreases the RMSE by an average of 
18.0 (Fig. 3), with the trade-off of slight decreases in 
Pearson coefficient and average capability of 0.0287 
and 3.12% respectively (Fig. 4). Adding any non-

 
Figure 2. % Capability observed from flux sampling 
with changing values of C for ecFBA. Smaller values of 
C were investigated but not included in the figure as they 
were found to be infeasible with flux sampling 
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zero constraint for each flux will constrain the 
system from predicting fluxes of unphysical 
magnitudes. Given that most cellular fluxes are of 
the order of magnitude of 10-3, reducing the 
magnitude of predicted fluxes will decrease the 
RMSE. This is an approximate method, as these 
parameters are simply estimated with no biological 
basis. It is therefore likely they are extremely far 
from the true value, for example the minimum 
coefficient for reactions with enzyme data was 
0.00129 compared to the value 0.000245 obtained 
using estimates. This could explain the marginal 
decrease in Pearson coefficient and capability, but as 
the estimated enzyme parameters are almost 
certainly lower than their true values, they will not 
over-constrain the system.

 

This is demonstrated by the large decrease in the 
Pearson coefficient for C=0.05. This is caused by the 
small value of C and the estimated enzyme kinetic 
parameters over- constraining the system leading to 
excessively small fluxes, hence the minimal impact 
on RMSE.  

 

From this analysis, we conclude that moving 
forward we would use a value of C equal to 0.11 and 

add estimated enzyme kinetic parameters. This was 
deemed to be optimal for not over- or under-
constraining the model, maintaining Pearson 
correlation coefficient and percentage capability 
high, while also limiting RMSEs.  

Performance compared to benchmark methods 
Using capability analysis, it was determined that 
ecFBA was more accurate than the benchmark 
methods of FBA, pFBA, and ccFBA (Fig. 5). The 
increase in accuracy compared to FBA can be 
explained by the addition of physical data to an 
underdefined system which improves its accuracy. 
The increase in accuracy when compared to pFBA 
as the constraint on the sum of fluxes to the 
minimum, as found in pFBA, implicitly assumes 
total flux minimisation as an objective, which 
introduces inaccuracies [18]. ccFBA with flux 
sampling is closer to ecFBA in terms of numerical 
performance; these two methods are the most similar 
in trying to constrain the solution space. ccFBA only 
constrains elemental carbon flux into the cell. This, 
however, does not offer the more detailed control 
over reaction fluxes as achieved by ecFBA.  

The mean RMSE for ecFBA is 4.13, compared to 
40.47 for FBA; both values are much higher, 
however, than the values of 0.13 and 0.11 obtained 
for ccFBA and pFBA respectively. The lower 
accuracy of ecFBA can be explained through an 
analysis of the mitochondrial transport reactions 
akG.m and Glu.m, both anaplerotic reactions. As 
only estimated enzyme parameters are available for 
these reactions, they are massively under-
constrained compared to ccFBA and pFBA (Fig. 6) 
resulting in a much higher RMSE.  

Anaplerotic reactions play a key role in the citric 
acid cycle [25], so increasing the fluxes of these 
reactions would increase the energy available to the 
cell. A wider range of fluxes are feasible with more 
energy available, thus representing a greater 
proportion of flux samples, meaning unconstrained 

 
Figure 3. RMSE observed from flux sampling with 
changing values of C for ecFBA with estimated enzyme 
parameters (V2) and without. 
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Figure 4. Mean Pearson coefficient observed from flux 
sampling with changing values of the enzyme capacity C 
for ecFBA with estimated enzyme parameters (V2) and 
without. 
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Figure 5. % Capability observed from flux sampling 
with ecFBA compared to benchmark methods.  

 

 

 

 

 

404



5 
 

anaplerotic fluxes are likely to be larger in 
magnitude. Given the key role of anaplerotic 
reactions, it is vital they are more accurately 
modelled in future work to capture CHO cell 
metabolic behaviour more accurately. 

 

Qualitative analysis 
The quantitative analysis carried out has large 
uncertainties; in both the values we generate from 
flux sampling as well as the experimental data we 
compare to. Each flux was calculated as an average 
of the flux samples for that flux, but the random 
nature of flux sampling results in a large uncertainty 
in that value. Additionally, the experiments we use 
to evaluate the accuracy of our results also have 
large uncertainties. As an example, for experiment 
‘stat’, the experimental error on the LDH flux was 
67%, not an insignificant amount.  

A novel method we created to evaluate how 
accurately our ecFBA model emulates real-life CHO 
cell metabolism is to determine if general trends in 
fluxes as cell genomes and growth phase change as 
described in the literature are followed by our 
ecFBA model. From the literature, three pairs of 
experiments were chosen, to observe the change in 
flux of a particular reaction between the experiments 
in each pair. The rationale for choosing these 
experiments and fluxes is explained in Table 1.  

Our results determine our model is more accurate 
than the benchmarking methods at predicting 
qualitative trends (Fig. 7). We can observe that all 
the models correctly predict the trend in changing 
cell growth phase, but can only correctly predict 1 
out of 2 trends in changing growth medium. Only 
ecFBA and FBA, however, correctly predict the 
trend in changing cell gene expression. This shows 
that ecFBA is not only quantitatively more accurate, 
but can also more accurately predict broad trends in 
cellular activity compared to the benchmark 
methods.  

Predicting growth rate and IgG secretion with 
ecFBA 
The accuracy of the ecFBA model’s ability to 
predict the growth rate of CHO cells was compared 
to that of FBA. To investigate growth rate 
predictions, ecFBA and FBA (unconstrained) were 
run with the objective function of maximising 
biomass production. Comparing the two methods to 
experimental values, we can see ecFBA predicts 
growth rate more accurately compared to FBA (Fig. 
8). This is demonstrated by the trendline for ecFBA 
being closer to y=x which is the perfect result of 

Figure 6. RMSE of anaplerotic reactions. Note the two 
different axes scales due to the wide range of values. 
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 Table 1. Reactions and experiments analysed qualitatively and their expected trend 

Reactions and Experiments Assessed feature of 
ecFBA  

Expected trend and biological explanation 

GDH (Glutamine dehydrogenase) 
and AST (Aspartate transaminase) 
flux for cells from standard (CM) 
media to low NH3 media (LA) 

Model trends in 
changing cell growth 
media 

Positive change in GDH and negative 
change in AST - NH3 deficient media causes 
change in amino acid metabolism [26] 

LDH (lactate dehydrogenase) flux 
for cells from late→stat 

Model trends in 
changing cell growth 
phase 

Positive relative change - cells increase 
lactate consumption to synthesise NADH, 
for ATP synthesis, as cells transition from 
peak growth to peak IgG production [27] 

PFK (phosphofructokinase) flux for 
SVGS→BCL2 

Model trends in 
changing cell gene 
expression 

Positive change in PFK – PFK is 
determining step in glycolysis, which 
increases in cells expressing the BCL-2Δ 
gene affecting apoptosis [28]. 

 

 

 

Figure 7. Relative % change in fluxes for changes in cell 
condition/growth stage/genome. Data for C=0.15 is used 
as flux sampling for all relevant experiments was 
feasible. 
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exactly predicting the experimental value. 
Additionally, ecFBA’s data points fit closer to the 
trendline by measure of R2, demonstrating there are 
fewer outliers in ecFBA’s predictions. On average, 
ecFBA’s predicted growth rates deviate 46.4% from 
experimental values compared to 55.7% for FBA. 
This is because FBA predicts excessively large 
growth rates for some experiments, which become 
constrained when modelled by ecFBA, and are 
brought closer to the experimental value.  

 

To evaluate the effect of the additional enzyme 
kinetic parameters on the secretory pathway, the 
accuracy of the ecFBA model’s ability to predict the 
IgG secretion rate was compared to that of ecFBA 
without the additional secretory pathway enzyme 
kinetic parameters. It was determined that the 
additional enzyme parameters increased the 
accuracy of the model (Fig. 9); ecFBA with the 
additional enzyme kinetic parameters yields results 
deviating 31.2% on average from experimental 
values compared to 34.2% without. This 
improvement in accuracy is due to the addition of 
enzyme parameters which resulted in the activation 
of the enzyme capacity constraint for excessively 
large IgG flux predictions (namely “SVM3”, 
“SVM4”, and “late”). The prediction for “fed-
batch”, however, became over-constrained and its 
accuracy decreased.  

 

Secretory pathway investigation 

ecFBA with an objective function of maximising 
IgG secretion was further investigated to identify 
potential bottlenecks in the secretory pathway. 
When comparing predictions with experimental data 
sets, the experiments ‘late’, ‘SVM3’ and ‘SVM4’ 
showed the largest improvements in the accuracy of 
IgG secretion rate compared to FBA. These data sets 
were isolated and reaction fluxes for FBA and 
ecFBA compared to investigate for which reactions 
the enzyme capacity constraint has the greatest 
effect.  

Five reactions were identified as potential 
bottlenecks for the IgG secretory pathway. These 
reactions were identified using two methods. Firstly, 
the difference in the Pearson coefficient between a 
reaction’s flux and the IgG secretion rate, when 
comparing FBA and ecFBA was analysed. A 
significant increase in the Pearson coefficient 
suggests a previously insignificant reaction in FBA 
now has a large impact on the IgG secretion rate. 
This indicates that the flux was not previously 
limiting the IgG production but becomes limiting 
when constrained. The second method was using the 
reduced costs of reaction fluxes when using ecFBA 
which are extracted from the model using 
COBRApy. The reduced cost of a reaction flux is the 
rate at which the objective value (in this case IgG 
secretion) changes when the value of that reaction 
flux changes. Therefore, positive reduced costs 
could indicate that a reaction has some limiting 
effect on IgG secretion. The constrained secretory 
pathway reactions with the greatest increases in 
Pearson coefficient and reduced costs are presented 
in Table 2. 

 

Figure 8. Comparison of growth rate predictions using 
FBA and ecFBA to experimental data. 

 

 

y = 1.1937x
R² = 0.8388

y = 0.9619x
R² = 0.8485

0

0.01

0.02

0.03

0.04

0.05

0 0.01 0.02 0.03 0.04 0.05

G
ro

w
th

 r
at

e 
ob

ta
in

ed
 b

y 
FB

A
 (h

-1
)

Experimentally measured growth rate (h-1)

FBA

ecFBA

FBA
trendline

ecFBA
trendine

y=x

Figure 9. Predicted IgG secretion vs experimental for 
ecFBA with and without secretory pathway enzyme data. 
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Reactions 1, 2 and 5 in Table 2 were identified 
as the most likely to be bottlenecks of the secretory 
pathway. This is determined by their significant 
increase in Pearson coefficient when changing from 
FBA to ecFBA, as well as having the greatest 
reduced cost of all secretory pathway reactions, 
suggesting changes in these reaction fluxes would 
have a significant effect on IgG production.  

From plotting the metabolic network of these 
reactions (Fig. 10), it is apparent BiP_ATPase plays 
a key role. BiP (Binding immunoglobulin protein) is 
a molecular chaperone playing a key role in post-
translational protein folding [29] as well as 
translocation of proteins such as IgG into the 
endoplasmic reticulum [30]. The BiP_ATP cycle 
regulates these interactions between BiP and its 
substrate [31], thus constraining this key flux in the 
secretory pathway would have a substantial impact 
on IgG secretion. The key role of BiP is reflected in 
the stoichiometry of the reactions in the network 
linking these reactions, which necessitates the flux 
of BiP_ATPase be significantly greater (x35) than 
the other reactions (Fig. 10). BiP_ATPase has the 
greatest flux, meaning it is more affected by 
ecFBA’s enzyme capacity constraint, and thus be the 
bottleneck in the IgG secretory pathway. The 

enzyme catalysing this reaction is thus a potential 
target for cell engineering; specifically, enzyme 
engineering to increase its activity [32,33] and 
subsequently IgG secretion.   

While our results suggest BiP_ATPase is the 
most likely bottleneck, the other reactions present in 
Table 2 have large Pearson coefficients (between 
their fluxes and IgG secretion), and reduced costs. 
Additionally, only 15 of the 101 reactions in the 
secretory pathway have enzyme kinetic data and are 
thus constrained by ecFBA. Given this lack of data, 
it is highly likely that the reaction which is the 
bottleneck has not been constrained at all.  Further 
investigation is needed to determine the true 
bottleneck of the secretory pathway.  

 

 

 

 

 

 

 Table 2. Secretory pathway reactions identified as the most likely bottlenecks limiting IgG production 

 

Reaction ID 

% Reduction in 
reaction flux with 

ecFBA 

Pearson coefficient 
with IgG production 

(FBA) 

Pearson coefficient 
with IgG production 

(ecFBA) 
Reduced Cost of 
reaction (ecFBA) 

1 ICproduct_co_TRANSLOC_6 47.989 0.770 0.995 0.00291 

2 ICproduct_BiP_release 47.989 0.770 0.995 0.00291 

3 ICproduct_PDI_2 47.989 0.770 0.995 4.23x10-5 

4 ICproduct_GOLGI_MGAT2 19.549 1.000 1.000 1.69559x10-6 

5 BiP_ATPase 47.989 0.770 0.995 0.00292 

6 Average 40.078 0.687 0.837 -2.27x10-5 

 

 

 

Figure 10. Escher map of reactions 1,2 and 5 in table 2. Metabolite ICproduct-SEC61-SPC[r] (left) comes from a direct line 
of reactions from the start of the secretory pathway. Metabolite ICproduct[r] (right) leads to a series of reactions and protein 
folding steps that result in IgG secretion. Thick red lines correspond to larger reaction fluxes with the numerical value 
following the reaction name. 
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5. Conclusion and Outlook   

This work concludes ecFBA models CHO cell 
metabolism more accurately than the benchmark 
methods, but can be improved with additional 
enzymatic data. It was found the value of C had a 
minor impact on the accuracy of ecFBA, with the 
ranges of Pearson coefficient, RMSE, and capability 
being ±0.0581, ±1.29, and ±2.20% respectively. The 
addition of estimated enzyme parameters, however, 
greatly improved the accuracy of ecFBA, decreasing 
the average RMSE by 11.6. Finally, the addition of 
enzyme parameters for the secretory pathway 
increased the accuracy of IgG flux prediction by 3% 
on average, and allowed for the identification of 
BiP_ATPase as a potential bottleneck in the 
secretory pathway.   

To further validate these findings more 
experimental datasets, covering a wider range of 
cellular conditions and gene expression could be 
included. An obvious area in which ecFBA can be 
improved is with the addition of more enzyme 
kinetic data. Currently less than 45% of reactions in 
the GeM have complete enzyme data, with the rest 
reliant on estimated enzyme parameters which 
almost certainly under-constrain the relevant fluxes. 
The addition of more enzyme kinetic data will likely 
make ecFBA’s flux predictions more accurate.  This 
data will also help in conclusively determining the 
bottleneck of the IgG secretory pathway, which 
could be subsequently verified by experiment. This 
increased understanding of the IgG secretory 
pathway could be utilised to increase CHO cell IgG 
production.  

A feature of GeMs which this work has not fully 
utilised are the gene-protein-reaction relations. A 
new area of research in systems biology is ME 
models, which incorporate gene expression data into 
the model along with metabolic data [34]. These 
models, being more comprehensive, are able to 
model cell phenotypes more accurately [35] and the 
development of this model to an ME model would 
be a natural evolution of the GeM after the 
development of a more comprehensive ecFBA 
model.  

6. Acknowledgements 

The Authors would like to thank James Morrissey 
and Ben Strain (Imperial College London) for their 
support and guidance throughout this project.  

7. References  

[1] Jayapal, KP, Wlaschin, KF, Hu, WS & Yap,   
MGS 2007, “Recombinant protein therapeutics 

from CHO Cells - 20 years and      
counting”, Chemical Engineering Progress, vol. 
103, no. 10, pp. 40-47. 

[2] O’Brien, E.J., Monk, J.M. and Palsson, B.O. 
(2015) “Using genome-scale models to predict 
biological capabilities,” Cell, 161(5), pp. 971–
987. Available at: 
https://doi.org/10.1016/j.cell.2015.05.019. 

[3] Antonakoudis, A. et al. (2020) “The Era of Big 
Data: Genome-scale modelling meets machine 
learning,” Computational and Structural 
Biotechnology Journal, 18, pp. 3287–3300. 
Available at: 
https://doi.org/10.1016/j.csbj.2020.10.011.  

[4] Maranas, C.D. and Zomorrodi, A.R. (2016) 
Optimization methods in metabolic networks. 
Hoboken, NJ: Wiley. 

[5] Orth, J.D., Thiele, I. and Palsson, B.Ø. (2010) 
“What is Flux Balance Analysis?,” Nature 
Biotechnology, 28(3), pp. 245–248. Available 
at: https://doi.org/10.1038/nbt.1614.  

[6] Kontoravdi, Cleo; Strain, Benjamin; Morrissey, 
James; Antonakoudis, Athanasios (2022), 
“iCHO2441 genome-scale metabolic model”, 
Mendeley Data, V1, doi: 
10.17632/73cmrfk8x9.1 

[7] Yeo, H.C. et al. (2020) “Enzyme capacity-
based genome scale modelling of Cho Cells,” 
Metabolic Engineering, 60, pp. 138–147. 
Available at: 
https://doi.org/10.1016/j.ymben.2020.04.005.  

[8] Chang, A. et al. (2020) “Brenda, the Elixir Core 
Data Resource in 2021: New Developments and 
updates,” Nucleic Acids Research, 49(D1). 
Available at: 
https://doi.org/10.1093/nar/gkaa1025.  

[9] Angione, C. (2019) “Human Systems Biology 
and metabolic modelling: A review—from 
disease metabolism to precision medicine,” 
BioMed Research International, 2019, pp. 1–
16. Available at: 
https://doi.org/10.1155/2019/8304260.  

[10] Kuo, C.-C. et al. (2018) “The emerging role of 
systems biology for engineering protein 
production in Cho Cells,” Current Opinion in 
Biotechnology, 51, pp. 64–69. Available at: 
https://doi.org/10.1016/j.copbio.2017.11.015. 

408



9 
 

[11] Lewis, N.E., Nagarajan, H. and Palsson, B.O. 
(2012) “Constraining the metabolic genotype–
phenotype relationship using a phylogeny of in 
silico methods,” Nature Reviews Microbiology, 
10(4), pp. 291–305. Available at: 
https://doi.org/10.1038/nrmicro2737.  

[12] Beg, Q.K. et al. (2007) “Intracellular crowding 
defines the mode and sequence of substrate 
uptake by escherichia coli and constrains its 
metabolic activity,” Proceedings of the 
National Academy of Sciences, 104(31), pp. 
12663–12668. Available at: 
https://doi.org/10.1073/pnas.0609845104.  

[13] Sánchez, B.J. et al. (2017) “Improving the 
phenotype predictions of a yeast genome‐scale 
metabolic model by incorporating enzymatic 
constraints,” Molecular Systems Biology, 13(8), 
p. 935. Available at: 
https://doi.org/10.15252/msb.20167411.  

[14] Mathias, S. et al. (2018) “Visualisation of 
intracellular production bottlenecks in 
suspension-adapted CHO cells producing 
complex biopharmaceuticals using fluorescence 
microscopy,” Journal of Biotechnology, 271, 
pp. 47–55. Available at: 
https://doi.org/10.1016/j.jbiotec.2018.02.009 

[15] Reinhart, D. et al. (2014) “In search of 
expression bottlenecks in recombinant cho cell 
lines—a case study,” Applied Microbiology and 
Biotechnology, 98(13), pp. 5959–5965. 
Available at: https://doi.org/10.1007/s00253-
014-5584-z.  

[16] Lewis, N.E. et al. (2010) “OMIC data from 
evolved E. coli are consistent with computed 
optimal growth from genome‐scale models,” 
Molecular Systems Biology, 6(1), p. 390. 
Available at: 
https://doi.org/10.1038/msb.2010.47.  

[17] Lularevic, M. et al. (2019) “Improving the 
accuracy of flux balance analysis through the 
implementation of carbon availability 
constraints for intracellular reactions,” 
Biotechnology and Bioengineering, 116(9), pp. 
2339–2352. Available at: 
https://doi.org/10.1002/bit.27025.  

[18] García Sánchez, C.E. and Torres Sáez, R.G. 
(2014) “Comparison and analysis of objective 
functions in flux balance analysis,” 
Biotechnology Progress, 30(5), pp. 985–991. 
Available at: https://doi.org/10.1002/btpr.1949.  

[19] Boyle, N.R., Sengupta, N. and Morgan, J.A. 
(2017) “Metabolic flux analysis of 
heterotrophic growth in Chlamydomonas 
reinhardtii,” PLOS ONE, 12(5). Available at: 
https://doi.org/10.1371/journal.pone.0177292.  

[20] Herrmann, H.A. et al. (2019) “Flux sampling 
is a powerful tool to study metabolism under 
changing environmental conditions,” npj 
Systems Biology and Applications, 5(1). 
Available at: https://doi.org/10.1038/s41540-
019-0109-0.  

[21] Bateman, A. et al. (2020) “Uniprot: The 
Universal Protein Knowledgebase in 2021,” 
Nucleic Acids Research, 49(D1). Available at: 
https://doi.org/10.1093/nar/gkaa1100.  

[22] Ebrahim, A. et al. (2013) “COBRApy: 
Constraints-based reconstruction and analysis 
for Python,” BMC Systems Biology, 7(1). 
Available at: https://doi.org/10.1186/1752-
0509-7-74.  

[23] Hefzi, H. et al. (2016) “A consensus genome-
scale reconstruction of Chinese hamster ovary 
cell metabolism,” Cell Systems, 3(5). Available 
at: https://doi.org/10.1016/j.cels.2016.10.020.  

[24] Shlomi, T. et al. (2011) “Genome-scale 
metabolic modeling elucidates the role of 
proliferative adaptation in causing the Warburg 
effect,” PLoS Computational Biology, 7(3). 
Available at: 
https://doi.org/10.1371/journal.pcbi.1002018. 

[25] Owen, O.E., Kalhan, S.C. and Hanson, R.W. 
(2002) “The key role of anaplerosis and 
cataplerosis for citric acid cycle function,” 
Journal of Biological Chemistry, 277(34), pp. 
30409–30412. Available at: 
https://doi.org/10.1074/jbc.r200006200.  

[26] McAtee Pereira, A.G. et al. (2018) “13C flux 
analysis reveals that rebalancing medium amino 
acid composition can reduce ammonia 
production while preserving central carbon 
metabolism of cho cell cultures,” Biotechnology 
Journal, 13(10), p. 1700518. Available at: 
https://doi.org/10.1002/biot.201700518.  

[27] Templeton, N. et al. (2013) “Peak antibody 
production is associated with increased 
oxidative metabolism in an industrially relevant 
fed-batch cho cell culture,” Biotechnology and 
Bioengineering, 110(7), pp. 2013–2024. 
Available at: https://doi.org/10.1002/bit.24858.  

409

https://doi.org/10.1016/j.jbiotec.2018.02.009
https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.1949
https://doi.org/10.1371/journal.pcbi.1002018


10 
 

[28] Templeton, N. et al. (2017) “Application of 
13C flux analysis to identify high-productivity 
cho metabolic phenotypes,” Metabolic 
Engineering, 43, pp. 218–225. Available at: 
https://doi.org/10.1016/j.ymben.2017.01.008 

[29] Torres, M., Hussain, H. and Dickson, A.J. 
(2022) “The secretory pathway – the key for 
unlocking the potential of Chinese hamster 
ovary cell factories for manufacturing 
therapeutic proteins,” Critical Reviews in 
Biotechnology, pp. 1–18. Available at: 
https://doi.org/10.1080/07388551.2022.204700
4. 

[30] Nguyen, T.H., Law, D.T. and Williams, D.B. 
(1991) “Binding protein bip is required for 
translocation of secretory proteins into the 
endoplasmic reticulum in saccharomyces 
cerevisiae.,” Proceedings of the National 
Academy of Sciences, 88(4), pp. 1565–1569. 
Available at: 
https://doi.org/10.1073/pnas.88.4.1565.  

[31] Pobre, K.F., Poet, G.J. and Hendershot, L.M. 
(2019) “The endoplasmic reticulum (ER) 
chaperone BiP is a master regulator of ER 
functions: Getting by with a little help from 
Erdj Friends,” Journal of Biological Chemistry, 
294(6), pp. 2098–2108. Available at: 
https://doi.org/10.1074/jbc.rev118.002804.  

[32] Fisher, A.K. et al. (2014) “A review of 
metabolic and enzymatic engineering strategies 
for designing and optimizing performance of 
microbial cell factories,” Computational and 
Structural Biotechnology Journal, 11(18), pp. 
91–99. Available at: 
https://doi.org/10.1016/j.csbj.2014.08.010.  

[33] Basheer, S.M. and Chellappan, S. (2017) 
“Enzyme engineering,” Bioresources and 
Bioprocess in Biotechnology, pp. 151–168. 
Available at: https://doi.org/10.1007/978-981-
10-4284-3_6.  

[34] Thiele, I. et al. (2012) “Multiscale modeling of 
metabolism and macromolecular synthesis in E. 
coli and its application to the evolution of 
codon usage,” PLoS ONE, 7(9). Available at: 
https://doi.org/10.1371/journal.pone.0045635.  

[35] O'Brien, E.J. et al. (2013) “Genome‐scale 
models of metabolism and gene expression 
extend and refine growth phenotype 
prediction,” Molecular Systems Biology, 9(1), p. 
693. Available at: 
https://doi.org/10.1038/msb.2013.52.  

 

410

https://doi.org/10.1016/j.ymben.2017.01.008
https://doi.org/10.1007/978-981-10-4284-3_6
https://doi.org/10.1007/978-981-10-4284-3_6
https://doi.org/10.1038/msb.2013.52


1 
 

A Dual Polymer Chemical Consolidation Approach for the Structural Reinforcement of Calcium 
Carbonate Reservoirs 

Paulina Gordina and Katya Longinova 
Department of Chemical Engineering, Imperial College London, U.K. 

 

Abstract Fines migration in carbonate reservoirs presents numerous operational challenges and consequences within the oil 
and gas industries. This study explores the use of a dual polymer chemical consolidation approach to strengthen carbonate 
reservoirs and control fines migration and compares it to the previously studied single polymer approach. For 60g of CaCO3, 
the optimal secondary cationic polymer concentration to be used in conjunction with 90g of a 2000 ppm solution of the 
primary anionic polymer, a polyacrylamide (PAM) called FLOPAAM 3330S, was optimized on a range of concentrations 
from 2000 ppm to 7000 ppm. The optimal one was found to be 30g of a 5000 ppm solution, which yielded a 40% increase in 
unconfined compressive strength (UCS) when compared to consolidation using only FLOPAAM 3330S. When the optimal 
concentration was tested on a broad range of potential secondary polymers, the greatest improvement in compressive strength 
was obtained from FLOPAM FO 4650 VHM, a high molecular weight (MW) cationic PAM, followed closely by FLOPAM 
FO 4698 SSH, a slightly lower MW cationic PAM. The high MWs of the secondary PAMs serve to enhance bridging 
interactions between polymers and CaCO3 particles, leading to increased flocculation and improved compressive strength. 
The increased compressive strength came at the expense of porosity, as consolidated sample porosity was shown to be 21% 
lower than that of the untreated CaCO3. Lastly, a temperature degradation experiment performed on the best two secondary 
polymers showed that polymer bonds break at reservoir temperature (100 °C), reducing the MW of the PAMs and leading to 
lower flocculation ability. The conclusion of the study showed that a dual polymer approach can lead to an improvement in 
UCS of a CaCO3 sample, giving good results at room temperature and ambient pressure. However, further testing is required 
to give concrete results as to what combination will work best at true reservoir conditions and give the least porosity drop. 

Keywords: Carbonate reservoirs, Polyacrylamides, UCS, Flocculation, Porosity

Introduction & Background 
Industrial Context 
Carbonate reservoirs have been a dominating source of oil 
and gas for many years. They will likely continue to be so, 
as it is estimated that 60% and 40% of the world’s 
remaining oil and gas respectively are stored in reservoirs 
such as these [1]. 
     These reservoirs are composed of primarily calcite 
(CaCO3) and dolomite (CaMg(CO3)2) and typically 
characterized by a heterogeneous pore structure with 
relatively high porosity [2]. Usually, due to their young 
geological age, many of these reservoirs are weakly 
consolidated [3] and thus prone to shear breakage and a 
phenomenon called pore collapse. As more and more oil 
and gas are extracted, the reservoir pressure decreases, 
consequently increasing the effective stress on the rock, 
leading to shear failure and pore collapse [4,5]. While this 
behavior is observed in many different rock structures, it 
is particularly a danger for highly porous rocks, such as 
those making up carbonate reservoirs, as the stress level 
needed to cause shear failure and pore collapse is much 
lower than rocks with a lower porosity [6].  
     Following either of these types of failure, the 
production of “fines” is observed from the crushed rock. 
Fines migration, the movement of these particles through 
the pores of the rock structure, is notorious in the oil, gas 

and carbon capture industries as it often leads to the 
plugging up of pores and consequently, a potentially 
irreversible decrease in the permeability of the rock 
structure, as shown in Figure 1 [7,8]. Well productivity 
losses of up to 100% have been reported as a direct 
consequence of this phenomenon [9]. Furthermore, the 
fines can be damaging to equipment used in extraction, 
incurring both unwanted maintenance costs and safety 
concerns [5,10]. Mitigation of pore collapse and fines 
migration are therefore critical to the continued efficiency 
of carbonate reservoirs. 

Mechanical vs Chemical Consolidation 
A great many techniques for the control of fines migration 
have been developed over the last century, all of them 

Figure 1: Fines migration leading to pore plugging and 
permeability decrease in carbonate reservoirs 
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falling chiefly into two categories: mechanical and 
chemical. Mechanical methods generally employ screens, 
filters, or gravel packing to block fines migration, while 
chemical methods involve the injection of a chemical 
consolidant into the well with the aim of both catching 
loose particles and reinforcing the overall rock structure 
by improving its compressive strength [3,10,11]. It is 
generally acknowledged that mechanical methods are 
more costly, time-consuming and have more associated 
issues, including equipment erosion, installation damage, 
and ineffectiveness for small particles, making chemical 
techniques a favorable choice [10,11]. 
     Even among chemical methods, there are countless 
choices of consolidant, each presenting a specific set of 
advantages and disadvantages. A review of chemical 
consolidation methods for fines control conducted and 
compiled by Alakbari et al. [10] found that many of the 
resins and polymers that have historically been used to 
control fines migration in sandstone (another widespread 
type of reservoir) have notable associated drawbacks such 
as insignificant compressive strength improvement and 
environmental harm. Furthermore, those that have 
successfully introduced considerable reinforcement to the 
rock structure have done so at the expense of rock 
permeability. 
Relationship of Rock Strength and Permeability 
As the chemical consolidant mixes with loose rock 
particles, a decrease in porosity is often observed due to 
the nature of the binding taking place. The relationship 
between rock porosity and strength is most often inverse 
and has been studied extensively even outside of the oil 
and gas industries due to its relevance in the conservation 
of sculptures, monuments, and buildings [12,13]. 
Furthermore, the positive relationship between 
permeability and porosity is described by the Carman-
Kozeny equation [14], which can be found in Appendix 1, 
allowing the inference of an inverse relationship between 
rock strength and permeability. Too high a drop in 
reservoir permeability leads to fewer paths to the surface 
for extracted material, impeding extraction efficiency. 
Thus, preserving the reservoir’s permeability is key. An 
ideal chemical consolidant would increase the 
compressive strength of the rock without compromising 
too much on permeability. 
Single Polymer Consolidation 
According to Alakbari et al. [10], one of the polymer types 
that had the fewest drawbacks was polyacrylamide 
(PAM). PAMs have been a popular choice of flocculant 
within the wastewater industry as well as within enhanced 
oil recovery (EOR) applications for many years due to 
their favorable price, water-solubility, and ease of 
modification to different molecular weights (MW) and 
charges [15,16]. Their ability to cross-link makes them 
highly effective consolidants as well [10]. A study by 

Salehi et al. [17] found that a sulfonated PAM cross-linked 
with Cr(OAc)3 improved the compressive strength of an 
unconsolidated sandstone thirty-fold. No permeability 
data was presented from this study, however. 
     The two main mechanisms governing particle 
flocculation following the addition of a polymer to the 
system are charge neutralization and bridging interactions. 
The first is straightforward in principle: polymer 
molecules of a certain charge adsorb onto particles of the 
opposite charge and aggregate them. In this case, charge 
density plays a deciding role in the effectiveness of the 
flocculant and often governs the optimal dosage of a 
particular polymer [18]. For high MW polymers, bridging 
interactions, in which one polymer molecule can adsorb 
onto multiple particles are observed [19].  
     Most of the existing research in chemical consolidation 
using PAMs has been conducted on sandstone reservoirs, 
which are mostly made up of negatively charged silica 
particles, and thus the applicable PAMs are cationic (C-
PAM) [20]. Carbonate fines are most often positively 
charged under reservoir conditions [21], however there is 
limited literature examining the application of an anionic 
PAM to aggregate them [11,13].  
     A recent study by Lew et al. [11] examined the 
adsorption of three hydrolyzed polyacrylamides (HPAM), 
which are anionic by nature, onto calcium carbonate 
(CaCO3). Their findings indicated that the equilibrium 
amount of polymer adsorbed onto the solids increased 
with increasing MW due to the different natures of the 
adsorption processes for different MWs. The conceptual 
difference between low and high MW polymer adsorption 
onto a particle surface is depicted in Figure 2. 

     A higher MW polymer forms “loops and tails” on the 
particle surface (Figure 2b), while a lower MW polymer 
adopts a much flatter configuration (Figure 2a). Using the 
formed loops and tails, the high MW polyacrylamides 
have the capacity to form larger flocs through bridging, as 
shown in Figure 3 [11,19]. This indicates that for the 
chemical consolidation of CaCO3 particles, a higher MW 
polymer might be preferred in order to enhance the 
bridging interactions between molecules and form larger 
flocs that are more resistant to high shear [18]. 

Figure 2a) depiction of a low MW polymer adsorbed onto 
particle surface 2b) depiction of a high MW polymer adsorbed 
onto particle surface [11] 

a) b) 
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     With the addition of 
enough polymer, it is 
possible for the particle 
system’s overall charge 
to change [18]. In fact, 
through a zeta potential 
analysis in their study, 
Lew et al. [11] also 
demonstrated that after 
the addition of HPAM 
to the CaCO3, the 
charge of the system 
becomes overall 

negative. This invites the possibility of using a dual 
polymer approach to further flocculate the CaCO3 

particles in the system. 
Dual Polymer Consolidation 
Dual polymer 
flocculation has found 
uses in several 
industries, most 
notably dewatering of 
activated sludge and 
papermaking [18]. The 
addition of a secondary 
polymer to a colloidal 
system has been shown 
to significantly 
improve flocculation in 
certain systems. A 
study done on the 
flocculation of alumina 
particles by Yu and 
Somasundaran [18] 
demonstrated that after the addition of a secondary anionic 
polymer (polyacrylic acid) to a pre-adsorbed mixture of 
alumina and cationic polymer (PDADMAC), a 
significantly improved flocculation response was 
obtained, even at lower dosages than the original single 
polymer system. This result was attributed to the enhanced 
bridging interactions caused by polymer chain interactions 
of the polyacrylic acid with the PDADMAC [18]. A 
conceptualization of dual polymer bridging interactions 
can be seen in Figure 4.  

Objectives 
This study aims to discover whether a dual polymer 
approach could be more successful than a single polymer 
one in flocculating CaCO3 with the aim of consolidating 
carbonate reservoirs. The work is meant to be exploratory 
and either confirm or deny the need for further 
investigation into the subject. Within the scope of polymer 
availability, the work specifically aims to find both the 
optimal secondary cationic polymer for use with the set 

anionic primary polymer and the optimal dosage of said 
secondary polymer. Improvements in compressive 
strength and changes in porosity of samples treated using 
a dual polymer approach, as opposed to a single polymer 
approach, are considered as indicators of success.  

Materials and Methodology 
Assumptions 
All experiments, unless otherwise specified, were 
performed at room temperature and pressure (RTP). These 
conditions are not reflective of reservoir conditions and 
are meant only to give an indication of polymer 
performance to determine whether further study is 
necessary. 
     The polymers studied were chosen based on industrial 
relevance and availability. The density of polymer 
solution was assumed to be equal to water density based 
off previous work done by the Luckham research group. 
All variables tested were assumed to be independent of 
each other. 
Pre-Testing & Sample Preparation 
Each sample was prepared with 60g of CaCO3. The 
sample preparation sequence was dictated by several 
parameters: primary and secondary polymer amounts, 
water mass in sample, total mass of sample, and final 
sample texture and mixability. 
     After preliminary testing (Appendix 2) and 
experimentation with these parameters, the following 
sample preparation sequence was derived: 

1. 60g of CaCO3 was mixed with 90g of 2000 parts 
per million (ppm) of an anionic PAM, 
FLOPAAM 3330S, for 1 hour. 

2. 30g of a secondary cationic polymer solution was 
mixed into the sample for 30 minutes. 

The full step-by-step procedure for sample preparation 
can be found in Appendix 3. All components of the first 
step were based off previous research within the Luckham 
group. Their work has indicated that the anionic PAM in 
this amount gave strong single polymer consolidation 
results. This step was fixed as testing for other primary 
polymers was outside the scope of this study. 

The total “wet” mass of each sample was therefore 
approximately 180g.  The samples were separated into 
three cylindrical drying tubes and set on a drying rack next 
to a fan. Sample drying took on average five to ten days. 
A sample was considered dry once there was less than 5% 
mass change two days in a row. 
Unconfined Compressive Strength Testing 
The instrument used to gauge the compressive strength of 
dried samples was Lloyd EZ-50. Samples were 
compressed at a constant deformation rate of 1mm·s-1 
until a sharp drop-off in unconfined compressive strength 
(UCS) was observed following the sample breaking. 

 
Figure 4: Dual polymer chain 
interactions leading to 
enhanced bridging between 
particle flocs, inferred by the 
authors 

Figure 3: Bridging interactions for 
a single polymer system [18] 
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Details on sample preparation for UCS testing and 
machine settings are in Appendices 4 and 5. 
UCS Data Processing 
The target data obtained from compressive strength 
testing was the peak load which was recorded for each 
sample tested. All samples for which the length to 
diameter ratio ranged from 1 to 3, i.e., 1 ≤  𝐿 ∙ 𝐷−1  ≤ 3, 
an adjustment formula was used to obtain an accurate 
value for true peak load [22] (Eq. 1). 

𝐶 =  𝐶𝑎

0.88+(0.24 ∙ 𝐷𝐿)
    (Eq. 1) 

Where 𝐿 is the height and 𝐷 is the average diameter of 
the sample core, in mm, 𝐶 is the calculated compressive 
strength of an equivalent 2:1 length/diameter sample or 
the “adjusted” UCS, in 𝑁, and 𝐶𝑎 is the measured 
compressive strength of the sample tested, in 𝑁, obtained 
from EZ-50 results. Sample calculations of raw UCS data 
processing can be found in Appendix 6. 
Porosity Testing 
To measure the porosities and pore size distributions of 
the samples, mercury intrusion porosimetry (MIP) was 
used. Low- and high-pressure intrusion tests were 
conducted on Micrometrics’ Autopore IV 9500 and data 
for the porosity and pore size distribution with respect to 
the differential intrusion for each sample were extracted 
from the summary report produced by the machine. 
Details on sample preparation for MIP can be found in 
Appendix 7. 
General Experimental Sequence 
Concentration Profile of Secondary Polymer 
The first set of experiments focused on determining the 
best secondary polymer concentration within the scope of 
the sample preparation method. 

As previously mentioned, the primary polymer type 
and concentration were fixed for all experiments, and it 
was assumed that the optimal concentration of secondary 
polymer was independent of polymer type. 
  The secondary polymer for this set of experiments, 
FLOPAM FO 4650 VHM, was chosen arbitrarily from 
those selected for testing. The set of testing concentrations 
ranged from 2000 to 7000 ppm, as seen in Table 1. All 

samples were prepared as outlined in the general sample 
preparation method, with one sample for each secondary 
polymer concentration. Once dry, the UCS was measured 
for each sample. 

Polymer Type Testing 
Following the concentration profile testing, different 
secondary polymers were tested at the determined optimal 
concentration. This approach was based on the assumption 
that the optimal concentration was independent of 
polymer type. The primary polymer type and 
concentration were, once again, fixed for all experiments.  

The secondary polymers investigated can be found in 
Table 2. These were chosen to test different polymer types 
(both PAMs and non-PAMs) and a broad scale of MWs. 
All options were specifically cationic to leverage the 
charge difference between the primary and secondary 
polymers for enhanced flocculation. The goal was to see 
which polymer would perform best and thus give an 
indication of what polymer properties should be at the 
focus of further investigations, if applicable.  

All samples were prepared as outlined in the general 
sample preparation method and once dry, the UCS for 
each sample was measured. 
Temperature Degradation of Polymers 
All concentration profile and secondary polymer type 
experiments were performed at RTP, whereas reservoir 
conditions are closer to 100 °C [23]. To gain an 
understanding of how results may change under reservoir 

Table 1: Concentrations of secondary polymer tested for a 30g 
solution 

Mass of secondary 
polymer solution (g) 

Concentration of 
solution (ppm) 

30 

2000 

3000 

4000 

5000 

6000 

7000 

 

Table 2: Secondary polymers tested for dual polymer consolidation approach. All information is from manufacturer description on packaging 

Producer Polymer Name Polymer Type Average MW Charge 
Density 

SNF FLOPAM FO 4650 
VHM Polyacrylamide Ultra-high High 

SNF FLOPAM FO 4698 
SSH Polyacrylamide High Medium 

BASF Alcomer SK Polyethylenimine modified Low High 
BASF Alcomer 819 Polyacrylate ester quat Medium High 
Sigma 

Aldrich DAC Poly(diallyldimethylammonium 
chloride) Low High 
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conditions, a temperature degradation test was performed 
for the two top-performing secondary polymers. 

Two solutions of these polymers were made at optimal 
concentration. Using a Thermo Scientific HAAKE MARS 
60 rheometer, the viscosity measurement, in 𝑃𝑎 ∙ 𝑠, over 
shear strain, in 𝑠−1, was found for each sample at 25 °C. 
The two samples were then heated in an oven at 100 °C 
for 24 hours. The viscosity over shear strain of the heat-
treated samples was then measured. Details of the 
machine settings for the rheometer are outlined in 
Appendix 8. 

Results & Discussion 
Concentration Profile of FLOPAM FO 4650 VHM 
A range of concentrations of a 30g FLOPAM FO 4650 
VHM dilution was added to a 90g solution of primary 
polymer at 2000 ppm and 60g CaCO3. The UCS results 
were then compared to a sample consolidated using only 
120g of the primary polymer at a concentration 1500 ppm. 
The total masses of the compared samples are thus kept 
constant at 180g. 

A general positive trend was observed between the 
concentration of added secondary polymer and the 
resulting UCS of the sample. As shown in Figure 5, this 
relationship peaks at a secondary polymer concentration 
of 5000 ppm with an adjusted UCS of about 245 N. After 
this, with a higher concentration of secondary polymer, 
the compressive strength declines, before plateauing 
around the UCS of the primary polymer sample, 

represented by the black dotted line at approximately 175 
N. The grey dotted lines on either side of this reference 
value represent the standard error of the primary polymer 
sample, calculated based on triplicated sample 
measurements on Lloyd EZ-50. For a detailed description 
of the calculation of the measurement error associated 
with triplicated UCS results, see Appendix 9. 

The optimal amount of FLOPAM FO 4650 VHM 
shows a marked improvement on the compressive strength 
of the consolidated CaCO3 when compared to the single 
polymer sample, by approximately 40%. Concentrations 
around the optimal, namely 4000 ppm, 6000 ppm, and 
7000 ppm, also give minor improvements on the reference 
single polymer value. However, since the 4000 ppm, 6000 
ppm and 7000 ppm data points fall within the standard 
error margin of the reference, their improvement is not 
considered definitive.  

As previous studies have shown that the flocculation 
in a dual polymer system occurs mainly due to polymer 
bridging, the optimum concentration corresponds to the 
best conditions for bridging to occur [18,19]. Following 
this concentration, polymer “overdosing” occurs, leading 
to a decrease in performance as has been reported by 
several studies on single polymer flocculation systems 
[18]. Furthermore, in their study on the effects of shear 
rate and polymer overdosing on floc formation, Blanco et 
al. [25] showed that at very high doses of a cationic PAM, 
if flocs are sheared by the mixing instrument, they do not 
reform, potentially accounting for the comparatively 

Figure 5: Adjusted mean UCS for a concentration profile of FLOPAM FO 4650 VHM relative to UCS for a single polymer consolidation 
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poorer consolidation of the CaCO3 at high FLOPAM FO 
4650 VHM doses. Qualitative observation reinforces this 
hypothesis, as samples with higher concentrations of 
secondary polymer were creamier and more homogeneous 
than those at lower dosages, indicating a breakdown of 
flocs during the high shear mixing process. A comparison 
of these samples before they were left to dry can be 
observed in Figure 6. The samples in Figure 6a have a 
lower amount of secondary cationic polymer (3000 and 
2000 ppm from left to right) and are seen to still contain 
macroscopic flocs of aggregated CaCO3. The sample in 
Figure 6b contains 7000 ppm of secondary polymer, 
equal, which is well into the overdosing region of Figure 
5 and its texture is much more uniform with no visible 
clumps of particles. 
Secondary Polymer Type Testing 
Based on the results of the concentration profile, a 5000 
ppm 30g solution of secondary polymer was accepted as 

optimal. This concentration was then further tested on a 
broader range of secondary polymers. 
  As seen in Figure 7, FLOPAM FO 4650 VHM, the 
initially selected secondary polymer, gave the best result, 
followed by a slightly lower MW cationic PAM, 
FLOPAM FO 4698 SSH. These are the only two 
secondary polymers tested which resulted in an 
improvement of compressive strength in the consolidated 
CaCO3 samples as compared to the single polymer 
system. 

This result is in agreement with Lew et al. [11], who 
showed that the MW of polymers plays a significant role 
in the pervasion of the bridging flocculation mechanism, 
as discussed in the introduction. Among the polymers 
tested, FLOPAM FO 4650 VHM has the highest MW, 
allowing for enhanced polymer chain interactions and the 
formation of stronger flocs. This result also seems to 
reinforce PAMs as an effective choice as a secondary 
polymer as well as a primary one. Compared to the two 
PAMs, DAC, Alcomer 819, and Alcomer SK have very 
low MWs. This is most likely the reason they do not 
surpass the primary polymer benchmark.  

Since most of the studied polymers have a high charge 
density, the effect this parameter has on results is unclear, 
particularly since FLOPAM FO 4698 SSH, the runner-up, 
is only classified as moderately cationic. In future studies, 
charge density can be further investigated as a variable 
parameter and more conclusive results obtained. 

Figure 6a) Wet samples mixed with 3000 ppm FLOPAM FO 
4650 VHM (left) and 2000 ppm FLOPAM FO 4650 VHM (right) 
b) Wet sample mixed with 7000 ppm FLOPAM FO 4650 VHM 

a b 

Figure 7: Adjusted mean UCS for a range of cationic secondary polymers relative to UCS for a single polymer consolidation  
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Since the optimal concentration of secondary polymer 
was determined through experiment on the polymer which 
turned out to be the highest performing, the question of the 
validity of its optimality across the entire concentration 
spectrum is raised. To test this, a full matrix of polymers 
and concentrations would need to be considered, which 
was not possible in this study due to time constraints. 
Therefore, these results can be taken as an indication of 
optimality. It can be said with reasonable confidence that 
secondary high MW cationic PAMs in conjunction with a 
primary high MW anionic PAM, give the best results in 
terms of UCS improvement in consolidated CaCO3. 
Porosity Analysis 
To assess the effects of dual polymer consolidation on the 
porosity of the CaCO3, the pore size distribution of the 
strongest sample (flocculated using a 2000 ppm 90g 
FLOPAAM 3330S solution and a 5000 ppm 30g 
FLOPAM FO 4650 VHM solution) was quantified using 
MIP. The resulting distribution and porosity values were 
compared to the results from an unconsolidated sample of 
CaCO3 as well as a sample treated with just the primary 
polymer. The data for the comparison was obtained 
previously by researchers in the group. 

The data for the porosity of each sample can be seen 
in Table 3. While a minimal decrease in porosity (2%) is 
observed for the single polymer consolidation using a 
1500 ppm 120g FLOPAAM 3330S solution, a significant 
further drop of approximately 19% occurs upon the 

addition of the secondary polymer FLOPAM FO 4650 
VHM. While porosity is an expected casualty of increased 
compressive strength through chemical consolidation 
[10], as described in the introduction, the magnitude of the 
value is surprising when compared to the initial drop after 
just single polymer consolidation. 

This decrease in sample porosity is also reflected in 
Figure 8, where the differential intrusion peak of pure 
CaCO3 is notably higher than those of the other samples. 
The differential intrusion correlates with the total 
intrusion of mercury in the sample, in mL·g-1, and 
therefore with the porosity.  However, Figure 8 also shows 
that while the three samples all have the same general 
shape, the pore size distribution becomes broader with 
more consolidation. The rightward shift of the differential 
intrusion peak demonstrates that, as more polymer is 
added to the system, the pores accounting for the most 
intrusion become bigger in diameter. The “pores” formed 
between flocs of particles likely account for both the less 
uniform distribution and the size increase.  

Table 3: Porosities for untreated CaCO3, CaCO3 consolidated 
using a single polymer approach, and CaCO3 consolidated 
using a dual polymer approach 

Sample CaCO3 CaCO3 + 
FLOPAAM 

3330S 

CaCO3 + 
FLOPAAM 

3330S + 
FLOPAM FO 
4650 VHM 

Porosity 80.4% 78.5% 59.1% 

 

 
Figure 8: Pore size distributions (on a log scale) for untreated CaCO3, CaCO3 consolidated using a single polymer approach, and CaCO3 
consolidated using a dual polymer approach 
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Overall, the porosimetry results indicate that the 
porosity drop following chemical consolidation using an 
anionic PAM followed by a cationic PAM is significant, 
which counts against the increase in compressive strength. 
Further study into the extent to which porosity affects the 
efficiency of oil and gas extraction would be necessary to 
assess this combination’s viability for enhanced 
consolidation of carbonate reservoirs. 
Temperature Degradation of FLOPAM FO 4650 VHM 
and FLOPAM FO 4698 SSH 
The effect of temperature on FLOPAM FO 4650 VHM 
and FLOPAM FO 4698 SSH at 5000 ppm was measured 
via change of polymer viscosity over shear strain. A log-
log (base 10) plot of viscosity vs shear strain can be seen 
in Figure 9. The overall viscosity of both polymers is 
higher at 25 °C than at 100 °C. Additionally, the PAM 
found to be the best option, FLOPAM FO 4650 VHM, has 
a higher viscosity over all shear strain values, compared 
to the second-best performing polymer, FLOPAM FO 
4698 SSH.  

For PAMs, a known relationship between viscosity 
and MW [25] can be seen in Eq. 2.  

𝜂 = 9.33 × 10−2 × 𝑀𝑊0.75  (Eq. 2) 

Where 𝜂 is viscosity in 𝑃𝑎 ∙ 𝑠. 
 This relationship is further reinforced by the higher 
viscosity polymer being the one of higher MW. This 
means that the reduction in viscosity of the sample after 
heating can be linked to reduction in MW of the polymer. 
This would occur in the case of polymer bonds breaking 
due to the heat, leading to shorter chains. For the shorter 
polymer chains, it can then be inferred that there will be 

fewer bridging interactions to flocculate the CaCO3, 
leading to a less consolidated sample. 
 These results show that high MW polymers, which 
have been recommended for further investigation, 
experience a reduction in MW due to polymer bond 
breakage when reservoir conditions are applied. Thus, a 
lower effectiveness in consolidation of CaCO3 is 
expected. In any further research, the temperature stability 
of high MW polymers should be investigated through 
degradation testing. This will help determine if the 
polymer in question would perform similarly under real 
reservoir conditions as it does at RTP. 

In the case of this study, the temperature degradation 
results imply a significant drop in MW of polymer, posing 
a question regarding the validity of optimality results 
under reservoir conditions.  

Conclusions 
The primary objective of this study was to determine 
preliminarily whether a dual polymer chemical 
consolidation approach for a carbonate reservoir 
application could be more successful than a single 
polymer approach using a primary anionic PAM, 
FLOPAAM 3330S. Further to this, the study aimed to 
determine the optimal secondary polymer and its optimal 
dosage. The main success parameters under consideration 
were the unconfined compressive strengths (UCS) of the 
samples and their porosities. Based on the results of this 
exploration, a decision regarding the need for further 
investigation of this consolidation technique could be 
made. 

 
Figure 9: Viscosity over shear strain in a log-log scale, for secondary polymers FLOPAM FO 4650 VHM and FLOPAM FO 4698 SSH at 
25 °C and 100 °C  
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At RTP, a series of experiments adding 30g of 
FLOPAM FO 4650 VHM at different concentrations to 
90g of a 2000 ppm solution of FLOPAAM 3330S mixed 
with 60g of CaCO3 showed that the optimal concentration 
of FLOPAM FO 4650 VHM was 5000 ppm. This yielded 
the greatest increase in compressive strength compared to 
consolidation by only the primary polymer, by 
approximately 40%. 

As the optimal secondary polymer concentration was 
considered to be independent of polymer type, this 
optimal concentration was tested on several other 
secondary polymer options, representing a large scale of 
MWs. The highest MW polymer, the initially selected 
FLOPAM FO 4650 VHM, performed best, followed by 
the second-highest MW polymer, FLOPAM FO 4698 
SSH. The examination of different secondary polymers 
indicates that high MW is an important parameter when it 
comes to improving UCS, due to the enhanced bridging 
interactions that it allows. This result is in line with several 
similar studies performed on single polymer systems.  

The increase in UCS of the strongest sample presented 
a trade-off with the sample porosity. A MIP analysis 
showed that, while a 2% porosity decrease is observed 
after the addition of the primary polymer to the CaCO3, a 
further 19% drop follows the addition of a second polymer 
to the system. This result reflects the theoretical 
understanding that porosity is negatively correlated with 
strength. It presents a significant drawback in the use of a 
secondary polymer in carbonate reservoir consolidation, 
as it could lead to a high permeability reduction of the 
carbonate rock, impeding reservoir productivity. 

Thus, it can be said that the dual polymer consolidation 
technique is effective, however it comes at a price. Further 
investigation is highly recommended to determine 
whether its advantages outweigh its disadvantages. 

Lastly, a temperature degradation test of the top two 
performing secondary polymers showed that at reservoir 
temperature, 100 °C, the polymer bonds break. The 
broken polymer chains are shorter, reducing the bridging 
properties of the polymer and thus reducing the strength 
of the sample. Thus, when further testing polymers, 
reservoir conditions must be considered, as degradation 
due to temperature is significant. 

Outlook 
The results obtained from this study indicate that the high 
MW cationic FLOPAM FO 4650 VHM is the optimal 
secondary polymer to use for carbonate reservoir 
consolidation and that the optimal dose is 30g of a 5000 
ppm dilution for 60g of CaCO3. However, since the 
dosage was optimized on this particular polymer and later 
tested on others, it cannot be said with absolute certainty 
that no better combination exists. 

Experimental examination of the full polymer matrix 
(i.e., every tested polymer at all possible concentrations) 
would be necessary to verify the results of this study. 
Furthermore, additional research into other high MW 
cationic PAMs would be beneficial to capitalize on the 
evidence that MW drives increased consolidation through 
polymer bridging. A comprehensive examination of other 
high MW PAMs could also shed light on whether there 
are any that can give the same improved UCS but at less 
of a cost to porosity and thermal stability. Effects of 
charge density on sample strength could also be quantified 
through an examination of polymers with similar 
molecular weights but varying charge densities. 

Results from the preliminary temperature degradation 
experiment indicate that polymer performance worsens 
with increasing temperature. It is recommended to also 
examine changes in polymer behavior at other reservoir 
conditions including the presence of brine, and higher pH. 

Lastly, the crux of deciding whether a dual polymer 
approach to carbonate reservoir consolidation is worth it 
over a single polymer approach lies in accepting the 
sacrifice of porosity for improved compressive strength. 
With the addition of a secondary polymer, as some pores 
are blocked and some formed between the flocs of 
particles, a more complex model of the change in porosity 
and permeability in a sample is necessary to understand 
the level of interference the addition of the polymer 
introduces to the practical application of the study: oil and 
gas extraction. Following this investigation, a final 
decision regarding the superiority of the dual polymer 
approach can be made. 
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Abstract 
Lactate is a key metabolite of the anaerobic metabolic pathway within the human body, and increased lactate 
levels have been linked to several life-threatening medical conditions. As a result, there has been a growing 
interest in developing biosensors to monitor lactate levels. Several lactate biosensors that have been developed 
are able to reflect lactate concentration through lactate induced GFP expression but are unable to alter the amount 
of lactate that is present in solution. This study analyses the diffusion and uptake of lactate into an Escherichia 
coli (E. coli) lactate biosensor, then examines the design and cloning of a modified lactate biosensor that contains 
L-lactate oxidase which can consume lactate. Several methods were employed, including the formation of 
hydrogel beads and polymerase chain reaction (PCR) with the assumption of Gibson assembly to follow. The 
results of this study showed that it is difficult to quantitatively model the reaction kinetics of the biosensor unless 
there is data on the lactate consumption rate from the enzyme, and further experiments are needed to optimise the 
cloning and transformation of the new biosensor to obtain this consumption rate. 
 
Keywords: L-lactate, L-lactate oxidase, biosensor, E. coli, PCR, hydrogel 
 
 
1     Introduction 
L-lactate, commonly known as lactic acid, is a key 
metabolite that is formed as a by-product of 
glycolysis (Goers et al., 2017). Increased L-lactate 
levels can act as an alarm signal for the diagnosis of 
several pathological conditions such as liver disease 
and renal failure (Rassaei et al., 2014). Higher L-
lactate levels were also linked to greater likelihood 
of metastases and recurrence of cervical tumours 
(Walenta et al., 2000). In addition to applications 
within the medical field, lactate levels are relevant 
to the food (Kriz et al., 2002) and wine (Lonvaud-
Funel, 1999) industries as it is a crucial component 
in fermentation, as well as in sports where the lactate 
threshold can be used to evaluate the performance 
endurance of athletes (GA, 1985). Thus, there has 
been a growing interest in developing biosensors 
that can monitor lactate concentration, as they have 
potential to be used for metabolite control in 
biomanufacturing (Moya-Ramírez et al., 2022).  

This paper explores the potential of L-lactate 
biosensors to alter the concentration of L-lactate in 
a solution through two parts. By investigating the 
diffusion characteristics of L-lactate into biosensors 
within alginate hydrogel beads, predictions were 
made for the rate of change in lactate concentration 
after the insertion of L-lactate oxidase (LOx), an 
enzyme which catalyses the oxidation of L-lactate. 
Then, after initial predictions were made, a full 
genetic sequence containing the LOx gene was 
created, and cloning could be conducted to 
experimentally measure the changes in lactate 
concentration and verify the observations made 
from the analysis. 

2     Background 
Whole cell Escherichia coli (E. coli) L-lactate 
biosensors have previously been developed by 
Goers et al. (2017), while Moya-Ramírez et al. 
(2022) have encapsulated a hydrogel core 
containing the biosensor within multiple layers of 
polymeric shells, known as living analytics in a 
multilayer polymer shell (LAMPS). However, these 
biosensor designs mainly focused on monitoring the 
lactate concentration in a cell culture through the 
expression of green fluorescent protein (GFP). The 
insertion of the LOx enzyme into the existing L-
lactate biosensor design optimised by Moya-
Ramírez et al. (2022) aims to alter the L-lactate 
concentration in solution through the consumption 
of L-lactate, in addition to sensing the current levels.   

Enzymes including LOx and L-lactate 
dehydrogenase (LDH) have previously been used in 
other lactate biosensors due to their simple 
enzymatic reactions (Goers et al., 2017). The two 
enzymes above have been used extensively in 
fluorometric, electrochemical and 
chemiluminescent biosensors among others. Lactate 
dehydrogenase catalyses the conversion of L-lactate 
to pyruvate through a coenzyme (NADH or NADPH) 
and is commonly used in fluorometric sensors due 
to fluorescence properties NADH (Rassaei et al., 
2014). The NADH fluoresces strongly around the 
wavelengths of 450-460nm, and the light intensity 
measured at this wavelength is proportional to the 
concentration of NADH and therefore the 
concentration of substrate (McComb et al., 1976). 
Conversely, L-lactate oxidase has been more widely 
studied in electrochemical and chemiluminescent 
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biosensors. L-lactate oxidase catalyses the oxidation 
of L-lactate in the presence of dissolved oxygen, 
producing pyruvate and hydrogen peroxide. The 
electrochemically active hydrogen peroxide can go 
through an oxidation-reduction reaction to give a 
current proportional to the L-lactate concentration 
(Rassaei et al., 2014). Hydrogen peroxide can also 
react with hydroxide and luminol to produce an 
electrochemiluminescence that proportionally 
corresponds to lactate levels (Rassaei et al., 2014).  

In biosensors that contain reporter proteins such 
as GFP, the effects of inserting L-lactate oxidase can 
be analysed through changes in the fluorescence of 
the biosensor, which are correlated with lactate 
concentration levels. As a result, when L-lactate is 
converted into pyruvate through oxidation, the 
fluorescence of the biosensor will decrease relative 
to decreased concentrations of L-lactate. 
 
3     Methods 
Unless otherwise specified, salts and other 
ingredients for buffers and bacteria culture media 
were obtained from Sigma-Aldrich (St. Louis, MO). 
Kanamycin sulphate, alginic acid sodium salt from 
brown algae (ref 71238) and poly-L-lysine 
hydrochloride (MW 15,000-30,000 Da) were also 
obtained from Sigma-Aldrich. Chemically 
competent E. coli NEB5α cells were purchased from 
New England Biolabs (NEB, MA). 

3.1     Living Analytic Biosensor (LAB) Bead 
Preparation 

3.1.1 Solutions Preparation 
M9 with Kanamycin 
Bacterial growth medium (M9) was prepared with 
33.7 mM Na2HPO4, 22 mM KH2PO4, 8.55 mM 
NaCl and 9.35 mM NH4Cl, and supplemented with 
0.4% D-glucose (or glycerol), 1 mM MgSO4, 0.3 
mM CaCl2(VWR Chemicals BDH), and 1 mg/L 
thiamine as described in Moya-Ramírez et al. (2022). 
37.5 mg/L of kanamycin was then added, and the 
solution was filter-sterilized. 
Krebs−Ringer N-(2-hydroxyethyl)piperazine-N′- 
ethanesulfonic acid (HEPES) buffer (KRH buffer) 

100 mL of buffer was prepared with 20 mM 
HEPES (Sigma-Aldrich), 135 mM NaCl (VWR 
Chemicals BDH), 5 mM KCl (VWR Chemicals 
BDH) and 0.4 mM K2HPO4 (Sigma-Aldrich). The 
buffer pH was then measured using a pH meter 
(Fisher Scientific accumet® AE150) and was 
adjusted to pH 7.4 through the addition of 5 M HCl. 
After supplementing 1 mM MgSO4 and 1 mM CaCl2 
from separately prepared stocks, the buffer was 
filter-sterilized using 0.45 m and 0.20 m filter 
units (sartorius). 
1 mg/mL Poly-L-Lysine (PLL) in KRH buffer 

From the prepared KRH buffer, 50 mL of a 1 
mg/mL Poly-L-Lysine (Sigma) solution was 
prepared. 

10 mM Tris Buffer pH 8.5 
A 1 M stock solution of Tris buffer was prepared 

with ultra pure water (UPW), then diluted to 10 mM 
with additional UPW to a total volume of 1 L. The 
pH of the solution was then measured using a pH 
meter (Fisher Scientific accumet® AE150) and 
balanced to pH 8.5 through the addition of 5 M 
NaOH. 
Solutions in Tris Buffer pH 8.5 

From the prepared Tris Buffer, 100 mL of a 2% 
(w/v) sodium alginate solution in Tris, and two 300 
mL bottles of 100 mM CaCl2 in Tris were prepared 
as described in Kim et al. (2014). The sodium 
alginate solution was stirred at a low speed overnight 
to ensure thorough mixing, while the two 100 mM 
CaCl2 in Tris solutions were filter-sterilized using a 
0.2 m filter membrane (fisherbrand) into sterile 
glass bottles. 

3.1.2     E. coli Suspension Preparation 
E. coli cells were pelleted from precultures grown 
following the method in Moya-Ramírez et al. (2022) 
at 2300 g for 10 min, then resuspended in sterile M9. 
The optical density at 600 nm (OD600) was measured 
for the suspension using a spectrophotometer 
(Eppendorf), and the suspension was then diluted to 
two separate 1 mL samples of OD600 of 1 and 2. 

3.1.3     Formation of LAB beads 
Using a sterile Eppendorf tube, the alginate solution 
and E. coli suspension were mixed at a 1:3 volume 
ratio as outlined in Moya-Ramírez et al. (2022). A 
total volume of 1 mL each was prepared for the OD1 
and OD2 samples of E. coli suspension. This 
mixture was drawn into a 1 mL syringe, and a sterile 
30G- blunt end needle (Weller) was added to the tip 
prior to the bead formation. To form the beads, one 
bottle of the CaCl2 solution was gently agitated with 
a magnetic stirrer and drops of the alginate-E. coli 
mixture was added from a height of 3 cm. The 
alginate hydrogel beads were then crosslinked for 30 
min, and after 30 min the excess CaCl2 was drained 
from the bottle. The remaining CaCl2 along with the 
beads were transferred to a Petri dish, where they 
were incubated for 1 min in 10 mL of KRH buffer. 
This process was repeated twice to obtain beads with 
the OD1 and OD2 E. coli suspensions, and the 
completed alginate-bacteria are hereafter referred to 
as living analytic biosensors (LABs) in this report. 

A minimum of 12 LABs for each OD type were 
used to create LAMPS, where the LABs were coated 
with one additional layer of Poly-L-Lysine (PLL). 
The LABs were transferred from the Petri dish to a 
15 mL Falcon tube containing 5 mL of the PLL in 
KRH buffer and were gently agitated while 
incubating for 10 min. The beads and buffer solution 
were then transferred to a sterile Petri dish. 
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3.2     LAMPS Fluorescence Measurement 
Fluorescence measurements were taken using a 
CLARIOstar plate reader (BMG Labtech). A 96-
well spheroid microplate (Corning) was used for the 
measurement, as the spherical indent in each well 
helped the bead settle near the centre while 
fluorescence was measured. Due to an error in the 
script, data from four time points were collected: 0 
min, 20 min, 40 min and 15 hrs. The measurements 
at 0, 20 and 40 min were 7x7 matrix scans with a 2 
mm scan width, while the reading at 15 hrs was a 
20x20 matrix scan, also with a 2 mm scan width. The 
LABs and LAMPS were incubated in 200 μL of M9 
culture medium, and a gain value of 2424 was used. 
The three parameters that were varied and analysed 
through the CLARIOstar are shown in the table 
below, and triplicates of each condition were 
collected for analysis. 
 

Table 1: Varied Parameters for LAMPS Formation 

Parameter Variations 

Hydrogel bead type 
Alginate only 
Alginate + one Poly-
L-Lysine (PLL) layer 

Initial Lactate 
Concentration in 
Solution 

0 mM 
5 mM 
10 mM 

Optical Density at 
600nm (OD600) 

OD 1 
OD 2 

3.3 Genetic Design 
The lactate oxidase gene sequence was selected 
from Aerococcus viridans as it is the most widely 
characterised lactate oxidase. The open reading 
frame of the nucleotide sequence was identified, and 
the sequence was optimised for E. coli. The LldR 
biosensor developed by Moya-Ramírez et al. (2022) 
was used as the backbone, and the codon-optimised 
sequence for LOx was inserted in the location before 
the GFP gene for ease of insertion. The primers for 
the amplification of the backbone as well as the LOx 
insert were then designed using the NEBuilder tool 
online. Benchling was used to design the cloning 
strategy, and a schematic of the completed design is 
presented in Section 4.4. Since the inserted LOx 
gene and GFP gene are next to each other in the 
genetic sequence, the stop codons after both genes 
were kept, ensuring that a fusion protein was not 
created. The following configuration was then used 
in the final genetic design: Promoter-ribosome 
binding site (RBS) – Spacer- Start codon- Lactate 
oxidase open reading frame- stop – RBS- Spacer- 
start codon – GFP open reading frame- stop – 
terminator, where the italicised regions were present 
in the plasmid backbone. 

 

3.4     Glycerol Stock, Culture Preparation 
and DNA Extraction 
Glycerol Stock 
0.5 mL of sterile glycerol (100%) was added to a 2 
mL screw-cap cryogenic storage vial. 0.5 mL of E. 
coli from a logarithmic-phase broth culture was then 
added. The vial was vortexed vigorously to ensure 
even mixing of the bacterial culture and glycerol, 
and the vial was frozen in ethanol-dry ice or liquid 
nitrogen. The glycerol stock was stored at -80 °C 
until taken out for use. 
E. Coli Overnight Culture Preparation 

Using a portable Bunsen burner to maintain 
sterility, 20 μL of the prepared glycerol stock was 
transferred to an agar plate containing Luria-Bertani 
(LB) broth and 37.5 mg/L kanamycin. A sterile 
inoculating loop was used to spread the bacteria, and 
the plate was placed in the incubator overnight at 37 
C. The following day, again working next to the 
flame from the Bunsen burner, one colony was 
picked from the plate using a sterile pipette tip. This 
was transferred to a 15 mL culture tube that 
contained 5 mL of LB and 37.5 mg/L kanamycin, to 
ensure that only the target bacteria with kanamycin 
resistance survived. The culture tube was then 
placed in an agitator for 15 hours at 37 C. 
DNA Extraction Miniprep 

DNA was extracted from the overnight E. coli 
cultures by following the manufacturer method 
given for the QIAprep® Spin Miniprep Kit (Qiagen, 
2021). To measure the concentration of the extracted 
DNA prior to PCR, 0.5 μL was placed into a 
spectrophotometer (BioDrop).  

3.5     Polymerase Chain Reaction (PCR) 
PCR was used to amplify the target DNA fragments, 
the biosensor backbone and the LOx gene insert. A 
high-fidelity DNA polymerase, either Q5 or Phusion, 
was chosen for the amplification. Experiments were 
carried out with and without the GC enhancer (Q5) 
and DMSO (Phusion), and an additional 10% of 
each component was added to the PCR mixture for 
improved accuracy, bringing the total volume to 55 
μL for each sample. 50 μL was then transferred to a 
new PCR tube which was put in the thermocycler. 

Tables 2 and 3 outline the reaction setup and the 
thermocycling conditions used for PCR. The actual 
amplification of the DNA occurred in three steps: 
denaturation, annealing and extension. 30 cycles 
were completed for each PCR, and the temperatures 
and durations of the annealing and extension steps 
were specific to the polymerase used and the length 
of the fragment to be amplified. The denaturation 
occurred at 98 °C for 7 seconds, and the annealing 
temperatures were as follows: 68 °C (Q5, 
backbone), 63 °C (Q5, LOx insert) and 55 °C 
(Phusion, backbone). Finally, the extension time 
occurred at 72 °C and was dependent on the length 
of the fragment. The rate of 25 seconds per kb was 
used to determine the length of this step, where the 
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template was set for 1 minute 43 seconds, and the 
LOx insert was set for 30 seconds. 

 
Table 2: Reaction Setup for PCR using Q5® and Phusion® 

high-fidelity DNA Polymerase (New England Biolabs) 
Component Quantity 

(μL) 
Final 
Concentration 

5X Q5 
Reaction Buffer/ 5X 
Phusion HF buffer 

11 1X 

10 mM dNTPs 1.1 200 µM 
10 µM Forward 
Primer 

2.75 0.5 µM 

10 µM Reverse 
Primer 

2.75 0.5 µM 

Template DNA 1.1 < 1,000 ng 
Q5 High-Fidelity 
DNA Polymerase/ 
Phusion Polymerase 

0.55 0.02 U/µl 

5X Q5 High GC 
Enhancer / DMSO 
(optional) 

(11) / 
(1.65) 

(1X) 

Nuclease-Free 
Water 

to 55  

 
Table 3: Thermocycling conditions for PCR using Q5® and 

Phusion® high-fidelity DNA Polymerase (New England 
Biolabs) 

Step Temperature (°C) Time (s) 
Initial 
Denaturation 

98 30 

30 Cycles * See paragraph above 
Final 
Extension 

72 120 

Hold 10 ∞ 
 
3.5.1     Gradient PCR 
Gradient PCR was carried out for the biosensor 
backbone to analyse the effects of the annealing 
temperature on the concentration of primer dimers 
and the target sequence. An 8.8 x mastermix of the 
reaction setup for PCR using Phusion was prepared 
and aliquoted into 8 separate PCR tubes. The 
annealing temperatures for the samples were set at 
51 °C, 53 °C, 55 °C, 58 °C, 60 °C, 63 °C, 65 °C, and 
70 °C. 

3.6     Gel Electrophoresis 
To measure and analyse the size of DNA fragments, 
gel electrophoresis was performed. The agarose gels 
were made using a 1% (w/v) solution of agarose in 
TAE (40 mM Tris-acetate, 1 mM EDTA), and was 
heated until the agarose was completely dissolved 
without clumps. Using the casting apparatus and 
either a small or large gel tray, 3 μL (small tray) or 
5 μL (large tray) of SYBR Safe DNA Gel Stain (Life 
Technologies, S33102) was added to the bottom of 
the tray. An appropriate comb was selected based on 
the number of wells that were needed for that gel. 

For samples larger than 50 μL, two or three wells 
were taped together using autoclave tape. 

The heated agarose gel solution was poured into 
the tray and was stirred with the pipette tip to ensure 
even distribution of the gel stain and removal of any 
bubbles. After solidifying, the gel was removed 
from the apparatus and placed in an electrophoresis 
tank containing 1X TAE buffer. All samples for gel 
electrophoresis were prepared with a loading dye, 
such that the dye had a final concentration of 1X. 

The Hyperladder 1kb (SLS) was added to the 
first well in each gel as a means of verification for 
band size. Wells that did not contain the ladder or 
DNA samples were filled with 1X loading dye to 
ensure the bands would run in a straight line down 
the gel. Each gel was run at 90 Volts for 1 hour, and 
images of the gel were captured using a gel imaging 
system with the UV light setting and were exported 
for further analysis. 

4     Results and Discussion 

4.1     LAB and LAMPS Formation 
Though the methods and process for the LAB and 
LAMPS formation were straightforward, there were 
two aspects that potentially affected the results of the 
fluorescence data or the replicability of the 
experiment.  

The first aspect was the amount of alginate that 
was used to alginate-E. coli mixture. Due to the high 
viscosity, a significant amount of alginate was stuck 
to the inside of the pipette tip while creating the 1 
mL mixture, especially while using the 200 μL 
pipette tips. This resulted in high errors while 
preparing the experiment and would ultimately 
affect the concentration of E. coli contained within 
each bead, as there would be a higher starting 
concentration of E. coli than calculated. To ensure 
that the right amount of alginate solution was added 
to the mixture, a larger pipette tip was used to 
minimise the number of times the alginate was 
pipetted to the Eppendorf tube. For future 
experiments, an average amount of alginate that 
remained in the pipette tip could be calculated. This 
could then be accounted for to obtain more accurate 
results. 

The second aspect was the formation of the 
beads themselves through the dropwise addition into 
the CaCl2 solution. Though this does not affect the 
results of the experiment, to help with replicability 
of the methods, the drops should be added away 
from the centre of the vortex created by the magnetic 
stir bar to avoid clumping of the LABs or LAMPS.  

4.2     LAMPS Fluorescence Data 
The fluorescence data of the GFP-only biosensor 
obtained from CLARIOstar were analysed to 
determine the effect of three different parameters 
and the diffusion characteristics of lactate. However, 
as mentioned earlier, data were only collected at four 
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time points: 0, 20 min, 40 min, and 15 hours. The 
dataset was much smaller than anticipated, so the 
trends over time could not be analysed properly, but 
the fluorescence data was still used to reinforce the 
understanding of the LAMPS and to allow for the 
optimisation of parameters for future experiments 
involving LAMPS.  

The raw fluorescence data at 15 hours were 
plotted in box and whisker plots to compare the 
effect of the different parameters. The data from 
blank wells containing only M9 were also plotted for 
each of the graphs for better comparison. 

As shown in Figure 1, the fluorescence values for 
alginate-only LABs were similar to the values of the 
blanks, while the samples with one PLL layer had 
much higher fluorescence values. This result 
showed that the alginate beads alone were not 
sufficient to contain the LAB. 

 
Figure 1. Box and whisker plot of the average fluorescence at 15 
hours to compare alginate-only LABs and LAMPS with one layer 
of PLL. The red lines indicate the medians of the data set; the 
boxes represent the 25-75 percentiles; the whiskers include all 
data excluding the outliers; the red + signs indicate outliers of the 
dataset. 
 

 
Figure 2. Box and whisker plot of the average fluorescence at 15 
hours to compare the optical density (OD). The red lines indicate 
the medians of the data set; the boxes represent the 25-75 
percentiles; the whiskers include all data excluding the outliers; 
the red + signs indicate outliers of the dataset. 

 
 

The density of the E. coli, quantified by the 
OD600, was then varied between the values of 1 and 
2. The result showed that the fluorescence readings 
from OD1 were slightly higher than those of the 
blanks, but much lower than values observed from 
OD2 data. Therefore, it was concluded that a density 
of OD2 is more suitable for future experiments 
involving encapsulation (Figure 2). 

Finally, the fluorescence level was found to 
increase with increasing lactate concentration as 
shown in Figure 3. Amongst the conditions that were 
experimented, the 10 mM sample had the highest 
fluorescence readings. The 0 mM data were 
considered to account for the auto-fluorescence rate 
due to E. coli production of lactate. However, the 
values obtained from 0 mM samples did not seem 
significantly different compared to the readings 
from the blanks. This indicated that the effect of 
auto-fluorescence was negligible to the overall GFP 
expression due to lactate. 

 
Figure 3. Box and whisker plot of the average fluorescence at 15 
hours to compare the effect of different liquid lactate 
concentrations of the solution: 0 mM, 5 mM and 10 mM. The red 
lines indicate the medians of the data set; the boxes represent the 
25-75 percentiles; the whiskers include all data excluding the 
outliers; the red + signs indicate outliers of the dataset. 
 

In addition to the script error resulting in fewer 
data points, the location of the alginate bead in the 
well of the microplate also affected the accuracy of 
the fluorescence readings from the CLARIOstar. 
The dropwise addition method outlined by Moya-
Ramírez et al. (2022) was used to create the LABs 
and LAMPS, so the average diameter of the LABs 
was taken to be 1.6 mm, while the scan width of the 
readings was 2 mm. 

Since the readings are taken from the centre of 
the well plate, if the bead was not located perfectly 
in the centre, a portion of the bead would not be 
measured, which would result in a lower average 
well scan. There was no direct way to ensure that the 
beads were centred. However, the script was written 
such that the microplate was agitated after every 
reading to try to let the LABs or LAMPS move 
within the well and settle to the bottom prior to the 
next reading. Preparing triplicates of each condition 
also decreased the error, as the average of the three 
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readings was a better representation of the 
fluorescence for a specific set of conditions. Despite 
this, the only way to account for this inaccuracy 
would be to collect readings for multiple cells with 
the same conditions and analyse the trends over time.   

Due to the lack of certainty in the data collected 
for the four time points, the dataset obtained by 
Moya-Ramírez et al. (2022) was analysed. This 
dataset was used to determine the proportions of E. 
coli cellular autofluorescence compared to the 
overall fluorescence readings, and the diffusion 
characteristics of lactate through LAMPS. 

4.3     Lactate Diffusion Rate and LOx 
Reaction Kinetics Prediction 
The insertion of LOx was considered to improve the 
existing design of the biosensor. Before actually 
inserting the LOx, however, the reaction kinetics of 
the enzyme were considered using the Michaelis-
Menten equation: 
 

𝑣 = 𝑘2[𝐸]𝑡[𝑆]
𝑘𝑀+[𝑆]

  (1) 
 

where [𝐸] is the concentration of the enzyme, which 
was the LOx, [𝑆] was the concentration of substrate, 
which was lactate, 𝑘𝑀  was the Michaelis Menten 
constant that accounts for all the reaction kinetics 
constants, and 𝑘2or 𝑘𝑐𝑎𝑡  was the turnover number 
which determined the amount of substrate an 
enzyme could catalyse. 

To find the concentration of lactate, the diffusion 
rate and rate of consumption by LOx had to be 
considered. Since there was no data on the 
consumption rate of lactate by LOx in LAMPS at 
this stage, qualitative predictions of the reaction 
kinetics were made. 

Initially, Fick’s law of diffusion was considered 
to model the diffusion rate of lactate: 
 

𝐽 = −𝐷 𝑑𝐶
𝑑𝑥

  (2) 
 
where J is the diffusive flux, D is the diffusion 
coefficient, C is the concentration, and x is the 
position.  

However, there was not much literature data 
available on the diffusion of lactate through a PLL 
layer. Therefore, the diffusion through the PLL layer 
and the alginate bead, along with the uptake of the 
cell, were considered all together using the rate of 
change of fluorescence at different time intervals. 

The dataset from the previous work by Moya-
Ramírez et al. (2022), collected over 15.7 hours, was 
used in the diffusion characteristics analysis as 
stated in the previous section. In addition, since the 
best results were obtained from LAMPS with one 
PLL layer, an E. coli density of OD600 =2 and 10 mM 
lactate concentration, these conditions were used as 
a focus of the analysis. 

To determine the biosensor fluorescence that 
was solely from the lactate diffusion from solution, 
the E. coli cellular autofluorescence was subtracted 
from the total fluorescence over time. The 
autofluorescence values were determined by 
considering the 0 mM lactate samples. The 
proportions of these values from autofluorescence in 
the total readings were then calculated and plotted 
over time (Figure 4). 

 
Figure 4. The proportion of E. coli cellular autofluorescence in 
the total fluorescence reading for 10 mM lactate concentration 
sample. The autofluorescence initially dropped but started to 
increase at around 8 hours. 

After accounting for the cellular 
autofluorescence, the rates of change in fluorescence 
due to diffused lactate were calculated for each time 
interval. Even though these values fluctuated, the 
overall fitted rate increased initially then decreased 
and displayed more negative values after around 10 
hours (Figure 5). 

 
Figure 5. Rate of change in diffusion induced fluorescence over 
time for 10 mM lactate concentration sample. A fourth-degree 
polynomial was fitted to visualise the trend better. 

The trend observed for autofluorescence and rate 
of change in fluorescence can be explained using 
Fick’s law (equation 2), which states that the rate of 
diffusion is directly proportional to the 
concentration gradient. Initially, the concentration 
gradient between the lactate solution and the bead 
was higher, which led to relatively higher diffusion 
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rates. However, as more lactate diffused over time, 
the concentration gradient between the lactate 
solution and LAMPS decreased. As a result, 
diffusion rate also decreased, which led to a relative 
increase in autofluorescence proportion and 
decrease in the values and rate of change in 
diffusion-induced fluorescence. 

The specific strain of the organism used for the 
LOx genetic design was required to determine the 
equation constant. However, since this information 
was unclear, a strain with the lowest 𝑘𝑀  and the 
highest 𝑘𝑐𝑎𝑡  was selected to assume the best-case 
scenario. The strain selected for this model was the 
wild-type Aerococcus viridans at a pH of 7.0 and a 
temperature of 25 °C using the BRENDA Enzyme 
Database. The values found for 𝑘𝑀  and 𝑘𝑐𝑎𝑡  were 
0.87 and 283, respectively (Yorita et. al., 1996). 

Finally, the initial density of E. coli and the 
change in LOx concentration over time were 
considered to estimate the concentration of LOx 
enzyme. The initial concentration of enzyme per E. 
coli was determined using the OD600 values obtained 
from the experiment, with the assumption that the 
LOx concentration is the same as the concentration 
of E. coli. Then, the change in enzyme concentration 
was determined using the growth rate of E. coli over 
time. 

Considering all the parameters, the change in 
lactate concentration was predicted. The diffusion 
rate was predicted to initially dominate the system 
over the reaction rate. However, as more lactate is 
consumed over time, the reaction rate of lactate 
consumption would eventually dominate over the 
diffusion rate, which would decrease the overall 
lactate concentration and thus fluorescence values. 

Since there was not enough information for a 
quantitative model, the empirical relationship of the 
reaction kinetics had to be investigated. The genetic 
sequence of the biosensor with LOx insert was 
designed as a first step, and PCR was carried out to 
amplify the genes to be used for Gibson assembly to 
combine the LOx insert with the biosensor backbone. 

4.4     Genetic Design 
Figure 6 shows the schematic for the final design of 
the biosensor, containing the lactate oxidase inserted 
before the GFP gene. 

 
Figure 6. Adapted from Figure 1(b) in Moya-Ramírez et al. 
(2022). Schematic of the biosensor genetic design with LOx. O1 
and O2 represent the operator sites, blue ovals represent ribosome 
binding sites, asterisks represent stop codons and dashed lines 
indicate protein synthesis. 

In the absence of lactate, the dimers of LldR bind 
to operator sites O1 and O2 and form a tetramer that 
prevents the transcription of LOx and the GFP genes 
(Goers et al., 2017). However, when lactate is 
present, it binds to the LldR dimer that was bound to 
O2. This dissociates the bond previously formed by 
the dimer and O2. The lactate also binds to the dimer 
bound to O1, which forms a transcriptional activator 
(Goers et al., 2017) that allows for transcription of 
the LOx and GFP. 

The LOx was chosen to be inserted before the 
GFP due to the complexities of the sequence after 
GFP, and the primers for amplification were 
designed with the assumption that Gibson assembly 
would occur to bind the fragments together. One of 
the three enzymatic activities that occurs in the 
Gibson assembly involves the 5’ exonuclease, which 
exposes the complementary sequence for annealing 
by digesting part of the 5’ end to produce sticky ends 
(Gibson et al., 2009). Thus, there were 30 base pairs 
(bp) of homology which was added to the standard 
primer length. Additionally, these regions of 
homology were added to both the 5’ and 3’ ends, for 
both the backbone and the insert. The overlapping 
ends would then be complementary, allowing the 
fragments to form a circular plasmid (Sinfield, 2014). 

4.5     Biosensor Backbone and LOx PCR 
A series of PCRs were carried out to amplify the 
biosensor backbone and the LOx gene, and gel 
electrophoresis was used to analyse the results of the 
PCR. The gene sequence of the biosensor backbone 
had 4115 base pairs (bp), so the expected fragment 
length on the gel was around 4000 bp. 

The first attempt to amplify the backbone using 
Q5 DNA polymerase without the GC enhancer was 
unsuccessful, as the only visible band at the edge of 
the gel was less than 200 bp, indicating that the PCR 
only formed primer dimers (not pictured). 

Since the use of Q5 polymerase without the GC 
enhancer was unsuccessful, the second PCR attempt 
included the use of Q5 polymerase with and without 
GC enhancer, as well as Phusion polymerase with 
and without DMSO.  

As shown in Figure 7, there were again bands 
near the end of the gel less than 200 bp, which were 
the primer dimers. The high concentration of the 
primer dimers indicated that there were few copies 
of the desired template DNA. 

There were also undesirable bands visible at 
around 1000 bp for Phusion and 2000 bp for Q5 
polymerase. For Phusion, a higher concentration of 
the undesirable band was observed when DMSO 
was not added. Therefore, addition of DMSO was 
concluded to be effective, and future PCR trials were 
attempted with Phusion DNA polymerase with 
DMSO. 
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Figure 7. Gel analysis of biosensor backbone PCR using Phusion 
and Q5 polymerase with and without the DMSO and GC 
enhancer, respectively. 

 
Lastly, there were faint 4000 bp bands for both 

samples that used Phusion. However, since the 
concentration was very low, the next step was to 
modify the PCR and optimise it by application of a 
gradient PCR and a DpnI digest. 

The third gel with the gradient PCR and 
amplified LOx samples showed a similar clarity for 
all the bands of the gradient PCR (Figure 8), 
demonstrating that the annealing temperature did 
not have a significant effect on amplification. A 
closer examination of the gel results showed that the 
bands from the gradient PCR were between 5000-
6000 bp, longer than the anticipated fragment size of 
4000 bp. The nonspecific bands could be caused by 
excessive cycling, annealing time or extension time, 
but were more likely caused by impurities in the 
PCR components (Bio-Rad, n.d.). 

 
Figure 8. Gel analysis of biosensor backbone PCR using Phusion 
polymerase with DMSO at varying annealing temperatures (Ta) 
between 51°C and 70°C, and LOx insert PCR using Q5 with and 
without GC enhancer. 
 

There are two potential methods to prevent the 
nonspecific bands. Since the template DNA 
concentration was increased, fewer cycles could be 
used, as nonspecific amplification and errors could 
occur from excessive cycling (Bio-Rad, n.d.). 
Conversely, the primer concentration could be 
decreased to minimise primer dimer formation and 
the binding of the primers to nonspecific sites on the 

template. If the experiment gave the same result of 
larger product sizes when repeated, the DNA could 
be extracted from the gels and sequenced to assess 
the cause more accurately. 

The PCR for the LOx insert was also analysed 
simultaneously. Since the length of LOx insert was 
1185 base pairs, a band around 1000 bp was 
expected. DNA was extracted from the resulting 
band using a gel DNA recovery kit (ZymocleanTM) 
to preserve the LOx insert for further experiments 
and optimisation. 

The fourth and the final attempt of the PCR 
included the DpnI digest and one well containing the 
original template DNA, to test if the bands that were 
observed in the second and the third attempt were 
from the amplified DNA or the original template. 
This was prepared following the manufacturer 
protocol (NEBcloner), with the following 
modification: the nuclease free water was replaced 
with the PCR sample. DpnI cleaves when the 
recognition site is methylated (Biolabs, n.d.), and 
since most E. coli strains are dam methylated, they 
are susceptible to DpnI digestion. The parental DNA 
would then be digested, leaving the synthesized 
DNA fragments (Jena Bioscience, n.d.). 

The DpnI digest sample did not show any bands 
except the primer dimers, while the original template 
DNA had a clear band around the expected 4000 bp 
mark (not pictured). This analysis indicated that all 
the previous PCRs were unsuccessful at amplifying 
the backbone DNA. 

Due to the time constraint, the PCR was not 
further optimised. Therefore, additional trials would 
be necessary to successfully amplify the backbone 
and the LOx gene for potential insertion using 
Gibson assembly and to test the new biosensor 
design. 

6     Conclusion 
The diffusion and uptake of L-lactate into the 
biosensor was calculated, and the reaction kinetics 
of lactate oxidase were analysed to determine their 
effect on lactate concentration over time. However, 
in this process, it was difficult to quantitatively 
model the reaction kinetics of the biosensor unless 
there was data on the lactate consumption rate from 
the enzyme. This data could be obtained after the 
optimisation of the cloning and transformation of the 
full genetic sequence containing the LOx insert. 

These processes can be achieved through several 
steps. Firstly, amplification of the backbone and 
insert fragments must be optimised such that the 
target fragments are synthesised with high 
concentration. Next, Gibson assembly would be 
used to bind the two fragments together and form a 
single plasmid. This assembled plasmid would then 
contain the full genetic sequence and can be 
transformed and plated. Following the 
transformation, the lactate consumption could then 
be analysed by using colorimetry to measure the 

428



 

 9 

lactate concentration over time. This information 
would then be fed back into the Michaelis-Menten 
equation to find the reaction kinetics model in 
LAMPS, which could potentially be used to 
optimise the LAMPS in other environments. 

Due to the time constraint, the biosensor 
containing the lactate oxidase was not transformed. 
Despite this fact, the study still shows that there are 
many areas that can be explored regarding this 
biosensor design. Ultimately, a biosensor that could 
not only express the amount of lactate in solution but 
also alter it could eventually be used in a co-culture 
with mammalian cells through encapsulation, with 
the potential to function as a simple but efficient 
diagnostic tool to save lives. 
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Abstract  

Detection of various ions in the interstitial fluid (ISF) can lead to point-of-care treatments for different conditions like 
hypertension and kidney disfunction in the case of hypernatremia (excess sodium). This study investigates the production 
of a hydrogel-fluorophore matrix via emulsion polymerisation and the dexterity and compatibility of the resulting matrix 
in conditions that simulate the ISF in humans. The study is done to test the matrixes potential for biosensing purposes in 
the human body and ultimately its incorporation into functionalized tattoos. The following report describes the production 
of a P-NIPAM hydrogel with Berberine Chloride (BBR Chloride) used as the fluorophore. Using a microplate reader, it 
was found that although BBR Chloride is a known aggregation induced emission luminogen (AIEgen) the highest 
emission intensity was recorded at roughly 2au of a sample made with the least amount of fluorophore (1.7mg). The 
effects of dilution did decrease the global emission intensity however, did make the samples emission spectrum more 
distinguishable between 35ᵒC to 40ᵒC, the range of interest incorporating the extremes of body temperature. Further 
measurements taken on the pH effect on the thermos-response displayed an increasing emission intensity with higher 
values of pH with consistent trends in the thermal-responsivity. DLS analysis yielded an average particle size of 645nm, 
and a polydispersity index of 0.3, which with further purification are expected to be more consistent and appropriate for 
industrial use.  The sample exhibited an okay degree of thermal reversibility however, this variable will require further 
study in conjunction with analyte concentration. 

Keywords: Optical  b iosensor , Tattoo, Hydrogel, AIE Luminogens, P-NIPAM, BBR Chloride 

1 Introduction 

Tattoos have been around for millennia, with the oldest 
record of them dating back to roughly 3000 BC.[1] They 
serve various purposes including the upholding of 
tradition, expressing individualism or even something as 
simple as aesthetics. Regardless of the reason, tattoos 
are wide-spread and are quite prominent in todays’ 
society, it has been estimated previously in 2019 using 
google trends that 10-29% of the world’s population are 
tattooed.[2] However, due to a scarcity of data on regions 
outside of the western world, this number could 
potentially be higher or lower. With such a huge market, 
the opportunities for the development of humanity 
through the use of technology and engineering have 
risen. One such opportunity, which will also be the focal 
point of this report, is the functionalization of tattoos 
using optical biosensors for the monitoring of various 
biomarkers in the interstitial fluid (ISF).  

Examples of observable biomarkers include but are not 
limited to glucose [3], albumin[4], sodium[5], oxygen[6] 
and pH[7]. There is also external biomarkers such as 
environmental contaminants[8] or toxic food additives as 
well as potential for multiplexing where multiple 
biomarkers can be assessed through one channel.  
Additionally there are applications in drug delivery, 
vaccination, alcohol levels and body temperature.  

One of the major concerns with the use of biosensors in 
vivo is biocompatibility. Biocompatibility considers the 
impact on the body as well the functionality of the 

technology. Common luminescent nanoparticles like 
quantum dots contain heavy metals so require 
encapsulation to ensure long term use. To achieve 
biocompatibility materials that mimic biology are 
selected, for example polymeric hydrogels, like those 
considered in this paper, naturally occur in collagen and 
bone, are flexible and soft, and will biodegrade into non-
toxic orthosilicic acids that are very easily removed 
from the body. More generally tattoo inflammation is 
the most common complication so anti-inflammatory 
drug loaded alginate microspheres have been used that 
release biosensors but also improve biocompatibility. 

2 Background 

2.1 Tattoos  
Tattooing is the process of using needles to create holes 
in the skin, which upon removing creates a vacuum, 
drawing in ink into the cavity. The ink ideally should be 
injected into the dermis, the layer of skin found between 
in epidermis and the hypodermis depicted in figure 1. 
Needle depth is a key factor in the permanence of a 
tattoo, as too shallow can mean the tattoo dissipating 
quickly, while too deep can cause damage to the 
subcutaneous tissue. Inks are generally injected around 
0.4 mm to 2.2 mm. With mean skin thickness being 1.5 
mm to 2.5 mm it is generally accepted that the ideal 
needle penetration depth is 2.0 mm. The effects of a 
variety of factors such as ethnicity, age and hormones 
on tattoo implantation depth requires further studies. 
The uniformity of needle depth will affect the accuracy 
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and reliability of the colorimetric detection of 
biomarkers in the ISF. 
When tattooing another point of consideration is the 
angle at which the needle is inserted into the dermis. The 
needle angle normal to the skin surface, depending on 
the desired look and aesthetics, can be varied between 
45ᵒ and 80ᵒ. This difference in appearance is because the 
angle can alter the distribution of ink in the dermis. 
Needle angle can be controlled accurately for purposes 
of biosensor injections.  

 

When determining the size of the biosensor the 
characterisation of tattoo particle size is a requirement. 
Tattoo particle size can affect the longevity of the tattoo 
itself. This is because if the particles are too small the 
particles can diffuse from the tattooed area. However, 
there must be a balance as too big of a particle would 
require a surgical procedure. The same ideology is 
applied to the size of the optical sensor. Pigments found 
in tattoo ink have been studied to show varying particles 
sizing ranging from 10-5000nm [38], these sizes vary 
with ink colour but are generally within said range.  

Another factor to be considered is tattoo particle density. 
There have been cases of a person carrying up to 40g of 
tattoo pigment [39]. It can be noted that the particle 
density, size and colour of a tattoo can impact the 
amount of hazardous substances in the body which can 
subsequently increase health risks, for instance they can 
interact with lymph nodes mimicking the effects of 
metastatic melanoma [40]. 

2.2 Permanence of tattoos and Laser removal 

The injection of tattoo ink into the dermis triggers the 
body’s immune response to deal with the foreign bodies. 
One theory explaining the permanence of a tattoo is 
based around the ability of a macrophage to ingest and 
store material. Dermal macrophages at the location of 
the tattoo try to ingest the pigments. The small and 
soluble particles are taken away in the blood stream or 
via the lymphatic system where they are ultimately 

stored or destroyed in various organs. The larger 
particles cannot be broken down by the macrophages 
due to their size and as such are stored within 
cytoplasmic vacuoles [12]. Eventually when the 
macrophage life cycle comes to an end the pigment is 
released and again ingested and stored by macrophages 
of the next generation. Large groups of pigment 
particles have been observed in a single lysozyme of up 
to 100μm (Furguson et. al 1997).  

Currently, laser surgery is the most prevalent method of 
tattoo removal. During the procedure a laser (typically 
Nd: YAG) is used up lyse macrophages and to heat 
tattoo particles in a matter of nanoseconds to deform 
them which in turn causes them to break down into 
smaller particles. The smaller particles can then be dealt 
with as describes previously. Additional considerations 
must be taken into account when dealing with the 
removal of colours, such as wavelength of the laser, 
pulse duration and the size of the laser spot or even the 
skins pigment. This procedure takes a while and requires 
many sessions to complete, even then the complete 
removal of the tattoo is not currently possible[36]. Some 
other non-laser techniques of tattoo removal discussed 
by Dash et al [37] to name a few include radio surgery, 
dermabrasion, cryotherapy even so called “home 
remedies” which come with their own complications. 

2.3 Optical Biosensors  
Biosensors are platforms that allow us to transform 
biological signals into those that can be interpreted 
quantitatively or qualitatively.  They are made of 3 
different components. Firstly, there is a biological 
recognition site which will interact with the analyte, 
which is a molecule of interest. This can be done 
similarly to an enzyme where the analyte is converted 
into a metabolite (Catalytic biosensor) or more like an 
antibody where the analyte binds without reaction 
(Affinity biosensor). The second component is a 
transducer which converts that biological response to a 
measurable one, and lastly a processing unit will 
interpret the signal. The ideal biosensor should display 
excellent sensitivity and selectivity for the biomarker of 
interest, be able to operate for long periods of time 
across the required concentration ranges and have 
multiplexing abilities. There are different approaches 
used for transducers which give rise to the different 
types of biosensors including, optical, thermal, magnetic 
and piezoelectric.  

Optical sensors are more sensitive, selective and smaller 
than alternatives. They also aren’t affected by 
electromagnetic signals or radio interference.[9] Tattoo 
functionalisation uses optical biosensors that monitor 
the optical characteristics of an analyte. The incident 
light that passes through an analyte will be affected by 
absorption, transmission, emission and elastic/inelastic 
scattering. A photodetector can convert these changes 
into electrical signals proportional to analyte 

Figure 1: Layers of the skin and tattoo injection [5] 
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concentration.[13] Optical biosensors can be grouped 
further into labelled and non-labelled, i.e. does the label 
need to generate a signal or can the analyte binding 
produce a signal directly. Fluorophores and 
phosphorescent molecules are the most commonly used 
labels which use fluorescence- the excitation of 
electrons to higher energy states. Proteins, peptides, 
polymers and synthetic oligomer are potential 
fluorophores and phosphorescent molecules some of 
which require constant energy sources to emit light 
while others can continue emitting after the incident 
light stops. Generally, the excitation energies are in the 
UV/ Visible spectrum while emission energies range 
from visible light to the near-IR. Some examples of 
labelled sensors include Fluorophore resonance electron 
(FRET), Bioluminescent resonance electron transfer 
(BRET) and Chemiluminescent resonance electron 
transfer (CRET) sensors all of which require an analyte 
binding to an acceptor or cancelling the flow of electrons 
to a doner. [14,15] It’s often better to avoid labels 
especially if the biomarkers is more complex, in these 
cases alternatives like SPR and LSPR are considered 
because they can offer reduced analysis time, 
consumption of solvents, cost and greater sensitivity. [16] 

A key feature of biosensors is the large surface area to 
volume ratio. This allows for greater accessibility and 
binding to analyte but leads to reduced sensitivity, 
stability and reusability. One of the growing 
applications of biosensors is in non-invasive wearable 
sensors that are in contact with the skin to detect 
physiological changes. [17,18] If functioning perfectly 
these sensors will be resistant to mechanical stress and 
cause little inconvenience in everyday activities 
however they will always require electrical power and 
be subject to environmental interference. Those issues 
make high quality continuous real-time monitoring via 

biosensors in the body very attractive since they allow 
for Point-of-care (POC) use.  

2.4 Construction and characterisation  

In the construction and characterisation of biosensors 
nanomaterials have gained a lot of interest, this includes 
carbon-based nanomaterials (i.e. carbon nanotubes & 
graphene) to plasmonic (i.e. gold nanoparticles) and 
photoluminescence nanoparticles (i.e. quantum dots & 
upconverting nanoparticles). Carbon based 
nanomaterials have versatile surface properties as well 
as optical and electrical merits. [19] The production 
method paired with structural variations in carbon can 
lead to different nanomaterial properties. Graphene is 
one example, by using liquid phase exfoliation or 
chemical vapour decomposition you can introduce 
different defects in the structure and therefore different 
surface characteristics. Noble metals like gold and silver 
have the ability to maintain surface plasmon on their 
dielectric metal interfaces [19] which gives way to 
Surface Plasmon Resonance (SPR), Localized Surface 
Plasmon Resonance (LSPR), and Surface Plasmon 
Resonance Scattering (SERS).  There are also quantum 
nanoparticles that can convert two or more photons to a 
higher energy level.[19] Nanoparticle surface 
modifications are achieved via thiol-thiol interactions, 
streptavidin-biotin interactions, p-stacking interactions 
and NHA-EDC chemistry. To validate surface changes 
the following techniques are employed: UV-vis 
Spectrometry, Circular Dichroism. Dynamic Light 
Scattering, and Gel Electrophoresis. [10] SDVD 

2.5: ISF vs Blood  

The best way to monitor biomarkers is by drawing blood 
and testing directly, however this has several downsides: 
it requires specialists, real time monitoring is impossible 
and the patient is often uncomfortable. Alternatives like 
sweat and urine are easier to measure but lack the 
necessary biomarkers and their concentrations can vary 
significantly. The balancing of the starling forces 
generates a net force [20] that can push uncharged 
molecules into the ISF (Interstitial Fluid) by simple 
diffusion while others require transport proteins and 
vesicles. As a result the ISF composition is around 60-
79% similar [21, 22] to the blood and in some cases 
biomarkers are only present in the ISF due to metabolic 
processes or environmental exposure and can be 
particularly important in identifying skin diseases. 

2.6 Hydrogel based nanoparticles and their fabrication 
(Emulsion polymerisation) 

Hydrogels are 3-D networks of natural and sometimes 
synthetic polymers that can absorb large quantities of 
water while maintaining their shape. This ability and 
their permeability for small molecules makes them well 
suited to drug, protein and general biomolecule 
encapsulation.[27] The stiffness, swelling ratio, and 
processability of hydrogels can be adjusted by 

Figure 2: Illustration of biosensor elements and detection 

principles [11] 
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introducing different functional groups like carboxylic 
acids, amino acids and hydroxyl moieties. Additionally 
the hydrogels can be thermos-responsive, pH-
responsive, degradable and even magnetic with the right 
chemical modifications. There are several delicate 
biological molecules that can denature on surfaces but 
hydrogel matrices create a solution like environment the 
protects their structures. [27] A very common approach to 
encapsulation is by direct immobilisation onto 
substrates but hydrogels have several advantages 
including higher loading, better accessibility, and 
studies have shown they maintain protein conformation 
and therefore improve enzyme activity.[27] Emulsion 
polymerisation is common method to manufacture these 
hydrogels because it leads to high rates of 
polymerisation, has high heat removal rates and can 
produce particles with a higher average molecular 
weight with size 50-700nm. The process requires an 
initiator, a surfactant, a dispersion medium and a 
monomer. Additionally phosphates can be added to 
maintain pH and sequestering agents can be added to 
stabilise the initiator.[25] 
At first the monomers will be held in micelles once the 
surfactant concentration is above the critical micelle 
concentration. When the initiator is introduced it will 
produce free radicals that will lead to propagation and 
termination steps producing polymer filled micelles. 
The Particle size distribution (PSD) of any product made 
via emulsion polymerisation will be dependent on the 
particle nucleation, particle growth and coagulation. 
Uncontrolled coagulation can lead to poor product 
quality, loss of product and issues scaling the process to 
the industrial scale. There are often a range of forces 
acting on particles like Van der Waals forces, 
electrostatic, steric and depletion forces.  Coagulation in 
this process generally occurs via Brownian motion of 
particles (Perikinetic) or via the motion of fluids 

(Orthokinetic) but these 
systems can co-exist. 
Different types and 
concentrations of the key 
components as well as 
operating conditions will 
influence coagulation and 
ultimately PSD.[26] 
 
2.7 Further developments and 
challenges  

There are plenty of potential 
uses for biosensors in the 
future including as DNA 

vaccines [30] ,‘solar freckles’ that can prevent skin cancer 
[31] and graphene based electrical sensors that can act as 
fitness accessories tracking hydration, temperature and 
electrocardiogram. Several challenges for biosensors 
still remain. The ISF contains many similar biomarkers 
which can limit sensitivity and selectivity so blocking 
agents need to implemented. [29] Similarly there is a need 

for sensor coating to reduce the impact of sweat on 
sensor stability. When sensors are applied in vivo 
physiological molecules can block the sensor surface so 
these surfaces need to be modified or surrounded by 
antifouling membranes. That same pre-existing 
biological material can have optical properties so it’s 
important to have a high signal to background ratio with 
the devices that are used. Looking at the existing 
approaches, enzyme based tattoo biosensors have shown 
stellar capabilities however they are still limited by their 
longevity, poor reversibility, low stability and low 
precision. Fluorophore-based sensors are still subject to 
photobleaching, light scattering and weak fluorescence 
[29] and label-free optical sensors have not been used for 
in vivo monitoring and have low sensitivity and 
selectivity especially in more complex solutions like the 
ISF.   
 
3 Materials and Method 

3.1 Materials  

NIPAM N-isopropylacrylamide (≥99%) , BIS-
acrylamide (≥99%), Tween 20 (Polysorbate 20), APS 
(≥98%), Phosophate buffered saline (PBS) tablets were 
all purchased from Sigma Aldrich. These 
commercially available reagents were used as 
received without further purification. Berberine 
Chloride (BBR) was synthesized internally and so was 
the Hydrochloric acid (HCL- 1M) and Sodium 
Hydroxide (NaOH- 0.1M) solutions. Additionally there 
was distilled water, a magnetic stirrer and oil as a 
medium to heat flasks. Key pieces of equipment 
included a pH probe with a heating element from Mettler 
Toledo, a large nitrogen tank, an Upright Microscope for 
Polarisation (DM2700 P, Leica), the Varioskan Lux 
Microplate reader by Thermoscientific,  a Fisherbrand 
Classic Vortex Mixer and the Particle Analyzer 
Litesizer 500 Anton Paar.    

3.2 Method  
3.2.1 Emulsion Polymerisation for hydrogel 

synthesis 

The procedures employed for the synthesis of the 
P(NIPAM-Nile Blue A) microgels was as follows. All 
components were added relative to the molar amount of 
NIPAM monomer. (BIS at 1%, Tween 20 at 1%, APS at 
8%, BBR 0.3-1.8%). NIPAM (0.16 g, 1.41 mmol), BIS 
(2.17 mg, 14.1 μmol), Tween 20 (17.3 mg, 0.0141 
mmol, and deionized water (20 mL) were added to a 50 
ml round neck flask. After degassing by bubbling with 
nitrogen for 20 min and heating to 75-80°C, APS (25.7 
mg, 112.8μmol) dissolved in 1.0 mL of deionized water 
was injected under mechanical stirring at 400 rpm. The 
fluorophore BBR (1.7mg, 5.1mg & 10.1mg) was fully 
dissolved in ethanol (amount depending on mass used) 
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then added into the flask. The polymerization was 
conducted under stirring for 1hr.  

3.2.2     Phosphate buffer solution 

Initially a 7.4 pH solution was created by dissolving a 
PBS tablet in 200 ml of deionized water. Using a Ph 
Probe and adding small amounts for Hydrochloric acid 
(HCL) and Sodium hydroxide (NaOH) it was possible 
to produce solutions with pH 6.0, 6.5, 7, 7.5 & 8.  The 
pH of the interstitial fluid can varies between 7.1 and 7.4 
much wider than the range of the blood (7.35-7.4) due 
to a lack of natural pH buffers. The range selected for 
this research included 
and extended these 
values.    

3.2.3 Microplate Reader 

The emissivity of the hydrogel was assessed with the 
help of the Varioskan Lux microplate reader and the 
Skanlt RE 6.1 Program. Using a precise pipette 100μL 
of the desired sample was collected and placed in each 
quadrant and repeated so that there were 3 repeats. The 
samples were placed in the centre of the well and at the 
same heights to ensure accuracy. The plate was placed 
into the reader and the appropriate protocol for 
absorbance and fluorescence spectrum was selected. For 
the fluorescence spectrum a range of 510-800 nm at an 
excitation wavelength of 488 nm was selected. For 
absorbance a range of 250-800nm was selected. The 
goal temperature was selected and the sample was 
incubated for 15 minutes to ensure it acclimated and 
reached this temperature. In situations where the 
temperature needed to be reduced, a cold microplate 
from the freezer was added to aid the equipment cooling, 
before the sample plate was re-introduced to acclimate. 
The time taken to complete the run depended on the 
number of operations selected and the number of 
samples selected. Afterwards the excel data was 
exported and processed.  

3.2.4 Particle sizer 

Depending on the amount of sample available select the 
appropriate cuvette. Factors affecting these 
measurements include the type of cuvette used, solvent 
present, concentration of the sample and the filling of 
the cuvette. All cuvettes used were reduced volume 
cuvettes to maintain consistency. Using a pipette fill up 
the cuvette with the appropriate sample to the same level 
each run. Once the cuvette is filled place it inside the 
apparatus and select the appropriate options along with 
the correct solvent, in most cases the solvent was water 
but in others PBS was used, this data can be entered into 
the system if the refractive index and viscosity is known. 
Each sample will have up to 60 measurements taken for 
each run, and each run was repeated 3 times. Because 
concentration is unknown at the time, this process was 
repeated with more dilute samples (x10,x20,x30 

dilutions) in order to ensure the particles size 
information obtained was consistent. 

3.2.5 Optical microscope 

A Leica DM2700 P optical microscope alongside the 
Las core software helped collect quality images of the 
manufactured particles. Objective lens from 2.5x to 100 
was used. 
 
4 Results and Discussion 

4.1 Berberine Chloride  

Many well-known Luminogens are subject to the 
aggregation-caused quenching effect (ACQ) meaning 
they show little to no emissivity in aggregated solutions 
but this improves with dilution. Aggregation induced 
Emission Luminogens have the opposite behaviour and 
several types exist with colour tunability however they 
are expensive and complicated to synthesise. Berberine 
Chloride is a naturally occurring aggregation-induced 
luminogen (AIEgen) that can be extracted from herbal 
plants like Hydrastis canadensis and Rhizoma coptidis. 
BBR Chloride has been researched extensively and has 
shown pharmacological, antimicrobial and anti-
inflammatory properties. A 2018 study by zhao, Gu et al 
investigated the optical properties of BBR Chloride. [28] 
The study investigated how the molecule’s 
conformation in different concentrations can lead to 
intramolecular vibronic motion behaviour and the 
twisted intramolecular charge transfer effect explaining 
emission strength. AIE nature was proven by 
introducing poor solvent which resulted in greater and 
greater emissivity.  Additionally BBR Chloride was 
identified as a great candidate for LD imaging and 
disease diagnosis due to its fluorescence. BBR chloride 
could also function within a tattoo biosensor with 
biological recognition elements. 

In this piece of research by weighing and then dissolving 
pure BBR Chloride in a 7.4pH Phosphate buffer a 10-3 
M solution was produced. By diluting further 
continuously by 10x, 10-4, 10-5, 10-6, 10-7M solutions 
were also produced. From figure 4 the Aggregation 
induced emission quality of Berberine chloride 
discussed is clear. As the concentration of BBR 
Chloride is increased the peak intensity also increases, 

Figure 3: Set-up of emulsion 

polymerization 

Figure 4: BBR Chloride peak emission (left) and 

absorbance (right) intensity at 25°C with varying 

concentrations 
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however the wavelength at which this occurs is 
relatively unchanged at around 515nm a slight shift from 
the around 530nm peak observed by Yuan Gu et al.[28] 
This could be explained by the use of different 
solvents—PBS vs water/ tetrahydrofuran (THF) 
mixtures.  

4.2 Emulsion Polymerisation for hydrogel synthesis  

Using the method outlined above it was possible to make 
hydrogels containing the fluorophore BBR Chloride at 
varying amounts i.e 1.7mg, 5.1mg and 10.2 mg. Figure 
5 depicts the prepared samples with different amounts 
of BBR Chloride both at room temperature (25°C) and 
body temperature (37°C) under white light and blue 
light with a long pass filter attachment. The colour is 
darker both at room temperature and body temperature 
with greater masses of Berberine Chloride used in the 
polymerisation process which is expected. At room 
temperature the solutions exhibited fluorescence under 

blue light with sample 1, made with 1.7mg of BBR 
Chloride, appearing the most emissive. This could be the 
effect of to the presence of ions in the chosen buffer. 
When the samples were heated to body temperature, 
they became cloudier which was expected due the 
reduced solubility of the hydrogel at higher 
temperatures (see figure 6) resulting in precipitation. 

There was also a significant increase in emission 
intensity from sample 1 but not from sample 2 or 3.  

On top of particle nucleation and particle growth from 
the polymerisation process, coagulation is another 
important factor in the particle size distribution of 
particles made. Undesired coagulation can lead to 
fouling of reactor internals, lower product quality, and 
product loss which will prevent processes from reaching 
the large scale.  

There are van der Waals forces in play between particles 
like electrostatic attractions, steric forces and depletion 
forces to name a few. Perikinetic and orthokinetic 
coagulation describe the two most common mechanisms 
for coagulation in emulsion polymerisation which are by 
diffusive forces and convective forces respectively. All 
variables including the concentration and type of 
monomer, surfactant, initiator, and operating conditions 
will influence coagulation in emulsion 
polymerisation.[33] 

As part of this process undesired aggregation needed to 
be dealt with. Aggregation can occur due to the 
formation of hotspots on the degassing nitrogen inlet 
needle, caused by insufficient mixing. The presence of 
these hotspots encourages the formation of a film that 
cannot be redistributed into the reaction mixture 
therefore the stirrer speed needed to be maximised to 
avoid this.[32] Additionally the amount of initiator added 
needed to be monitored. Work done by Baijun Liu et al 
on anionic KPS, very similar to APS, found that 
increased initiator concentration increased primary 
radical concentration and collision probability resulting 
in larger particle size and narrowly dispersed particles. 
Due to this an initiator of 4% relative to the monomer 
was selected in line with work by Jun Yin et al on 
fluorescent potassium ion sensors.[34]  

 

 

 

 

 

Figure 5: Photos of samples under white light (first row) 

and blue light with long pass filter (second row). First 3 

columns taken at room temperature (25ᵒC), last 3 

column taken at body temperature (37ᵒC). 

Figure 7: Fluorescence spectra of samples with varying masses of BBR Chloride used in synthesis 
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Figure 8: Fluorescence spectra of sample 1 (made with 1.7mg of BBR chloride) at varying levels of dilution. 

Figure 9: Fluorescence spectra of sample 1 at x30 dilution at various temperatures from 25ᵒC - 41ᵒC at specified pH levels.  
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4.3: Effect of fluorophore mass 

Looking at the fluorescence spectra from figure 7 there 
are differences in the curves where different amounts of 
BBR Chloride was used in synthesis. The wavelength of 
peak intensity remains relatively unchanged at around 
530nm. Due to the AIE nature of the fluorophore the 
expectation is that a larger amount would lead to greater 
emissivity which is observed from sample 3 (10.2mg) 
relative to sample 2(5.1mg). However, sample 1 with the 
smallest amount of fluorophore (1.7mg) had the greatest 
peak intensity overall of close to 2au. This could be 
explained by greater agglomeration in sample 1 which 
was prepared with lower stirrer speeds. Further 
investigation should be carried out into the effect of 
stirrer speed on particle size distribution for this 
particular fluorophore-hydrogel matrix. When it came to 
selecting a sample for further analysis, sample 1 was 
chosen for two reasons. 1) It had greater emissivity both 
visually and according to fluorescence data 2) It had 
clearer differentiation between fluorescence at 
increasing temperatures, particularly at the temperatures 
of interest (35-40°C i.e. body temperature).  

 

4.4: Effect of Dilution  

Looking to figure 8 it is possible to discern the impact 
of dilution on the thermos-responsiveness of sample 1. 
Again, here the wavelength of peak intensity does not 
significantly shift with dilution. However, the peak 
intensity decreases from 10x dilution to 30x dilution. At 
20x and 30x dilution the 40°C curve has the greatest 
emissivity across the observed range relative to other 
temperatures at the same level of dilution, especially 
around the 510-600nm range. This was less clear at 10x 
with the 35°C curve being much closer. The general 
behaviour of greater emissivity at greater temperature 
for the hydrogel-fluorophore matrix can be explained by 
figure 6. Above the lower critical solution temperature 
the hydrogel precipitates. This brings the fluorophore 
closer together and leads to greater emissivity due to its 
AIE active nature. The ISF will follow the body and 

blood closely in temperature therefore its range will be 
within 36-40°C and this the ultimate range of interest for 
our optical biosensor. The greatest distinction between 
35°C and 40°C was seen at 30x dilution so this was 
selected for further analysis.   

4.5: Effect of pH on thermos-response 

As previously mentioned the pH of the interstitial fluid 
can vary between 7.1 and 7.4 but this was extended for 
investigation. With reference to figure 9 the peak 
wavelength and general shape of the fluorescence 
spectrums do not change significantly due to pH and are 
the same for each temperature. The same trend of greater 
emissivity with temperature is clear at all pH values. The 
peak intensity increases with pH for all the temperatures.  

This is clearer to see with figure 10. There is a surprising 
decline in emissivity at 33°C and 35°C. Considering the 
range of importance is between 36°C and 40°C, for 
which there is a clear upward trend, this is not alarming. 

4.6: Dynamic light scattering (DLS) data discussion  

DLS was used to inspect the size distribution of the 
hydrogel-fluorophore matrix. Key figures to note are the 
particle sizes and polydispersity index. Figure 12 depicts 
the particle size distribution of sample 1 with 1.7mg of 
BBR Chloride at x30 dilution. 3 peaks were observed 
with the greatest peak found at roughly 690nm. This is 
in line with data compiled by other researchers, who 
found P-NIPAM microgels to be in the range of 250-
760nm [41]. Smaller peaks can be seen at both extremes 
at 59nm and 12,000nm, constituting to roughly 14% and 
5% of the sample respectively. The smaller peak can be 
attributed to any unreacted elements in the mixture, 
while the greater peak is caused by the presence of 
smaller agglomerates formed during the reaction due to 
the formation of hotspots in the reaction vessel as 
explained earlier. With further purification of the 
reaction mixture, with techniques such as dialysis or 
centrifugation, these peaks are expected to disappear. 
With the majority of the sample being around 645nm, 
this matrix is promising for application in 
functionalization of tattoos and the replacement of tattoo 
pigments with biosensors, as this is on the lower end of 
the tattoo pigment size range of 10-5000nm. The 

Figure 10: pH effect on peak intensity at various temperatures 

Figure 6: PNIPAM Solubility with temperature 
[35]
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polydispersity index (PDI) of the sample  is also of 
importance and averaged at roughly 30% or 0.3. This 
value in DLS measurements, denotes the size 
distribution of nanoparticles. PDI ranges from 0.0 to 1.0, 
with 0.0 displaying perfectly uniform particle size 
distribution and 1.0 being an extremely dispersed 
sample with various particle sizes present. As discussed 
by Danaei et al [42], acceptable values for polymer-based 
nanoparticles in industry will be 0.0-0.2. Although the 
obtained value is slightly higher, the PDI of the product 
can be brought lower with further purification of the 
sample as mentioned previously.  

4.7 Microscope images  

Figure 11, displays the sample acclimatized at room 
temperature at x100 magnification under white light 
with no filters. The images obtained resemble PNIPAM 
microgels formed by Ruscito et al [43] using similar 
materials and ratios at room temperature. Particles in 
figure x exhibit a ring like structure which is typical of 
microgels with average diameters lower than 3 μm as 
discussed by Ruscito et al.  

4.8: Thermal Reversibility   

The ability of an optical biosensor to operate nimbly 
within the ISF temperature range is very desirable and it 
is important to understand how emissivity varies with 

cycles. Figure 13 shows the wavelength of peak 
intensity varies with temperature and can return to the 
same value over multiple cycles which is a positive 
indicator. However figure 13 also shows there is an 
upward trend in the peak intensity with cycles making it 
harder to differentiate between the two distinct 
temperatures and any in between. The peak at 40°C did 
remain above the peak at 36°C for all the cycles. The 
primary function of the biosensor is not to detect 
temperature changes but temperature contribution to 
emissivity will need to understood alongside analyte 
concentration.  

 

 

 

 

 

5 Conclusion and Outlook  

Fully functional optical biosensors have the potential to 
improve the detection of diseases and quality of life via 
point of care testing. In this work we investigated the 
properties of a hydrogel formulation with an AIE 
fluorophore. The product showed responsiveness to 
temperature and pH changes as well as limited 
reversibility in the ISF range (36-40 °C) 

5.1 Further improvements and experiments  

Following on from this work there are several potential 
improvements and extensions. The samples made via 
emulsion polymerisation can be further purified either 
by centrifugation or using dialysis membranes. This 
would remove unreacted compounds and not only 
improve the DLS and emissivity data but also ensure 
biocompatibility. Additionally the consistency of the 
emulsion polymerisation process needs to be 
investigated and maintained since the difference in 
operating conditions could have contributed to the 
unexpected greater emissivity of sample 1 relative to 2 
and 3. To realize the end goal of a functionalised tattoo 
a recognition element needs to be selected and added to 
the hydrogel and fluorophore formulation. Then any 
changes in temperature, pH responsiveness and 
reversibility should be investigated and explained. 
Finally the optical biosensor should be paired with a 
software application in an in vivo study too test its 
accuracy.   
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Figure 13: Peak intensity and wavelength  reversibility 

Figure 12: Particle size distribution for sample 1, 30x 

Figure 11: Optical microscope image of sample 1 at 100x 

magnification at room temperature. Scale bar = 20 μm 
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Abstract

A Eulerian multiphase flow model, based on the multiphaseEulerFoam package available in OpenFOAM,
was used to simulate a 2D alkaline electrolyser. The main goal of this study was to add a Joule Heating
source term to the energy balance, and examine what e↵ect that would have on the flow, energy, and e�ciency
of the system based on how much additional time was required to run simulations. A range of parameters
were tested through individual simulations, ran at: temperatures of 300K, 325K and 350K and current
densities of 1000Am�2, 2000Am�2 and 3000Am�2. Joule Heating was seen to cause significant deviations
in the Hydrogen gas evolution along the electrolyser, bulk flow of the electrolyte, and e�ciency of cells.
Additionally, using the simulation timing as a proxy, it has been proven that implementation does not require
a significant amount of extra computational power. Therefore, it should be implemented in future anisother-
mal models of alkaline electrolysers and further examined at greater current densities than those prescribed here.

1 Background

Fossil fuels accounted for 82% of the world’s to-
tal energy supply in 2021 (BP 2022). Despite global

corporate and political powers maintaining fossil fuel
dominance in energy markets, climate change activism,
research, and innovation is slowly changing the world.
The energy sector has observed growth in renewable in-
vestment with the UK generating 12% more renewable
energy in 2022 than the previous year (Gov.uk 2022).
An exemplary area of growth is within the transport
sector which has seen a massive increase in the sales
of electric vehicles - expected to account for 35% of all
new car sales by 2040 (MacDonald 2016). However, like
most sectors undergoing transformation in energy, re-
liance on fossil fuels decreases incredibly gradually and
is not a straightforward process. The huge growth of
the EV industry means that there is a large increase in
demand for lithium and cobalt (amongst many other
commodities). The extraction and processing of these
materials are far from renewable with the mining of
rare earth metals like cobalt also being encapsulated by
political and humanitarian issues.

One promising way to avoid the heavy use of rare, dan-
gerous, and non-renewable resources is the use of water,
one of earths most abundant resources, to create hy-
drogen fuel. Hydrogen fuel o↵ers a solution to many of
the problems outlined earlier. It is completely renew-
able, creates virtually no pollution, and is hugely abun-
dant while being more energy dense than its fossil fuel
alternatives. Although demand for hydrogen powered
vehicles grew by 84% in 2021, this totalled at a meagre
15,500 cars sold (iea.org 2022) which shows how slow
uptake and adoption can be. Currently, the largest uses
for hydrogen include fertilizer production and petrol
refining, both of which are crucial industrial processes.
Demand for hydrogen fuel is already large and with the
rising need for hydrogen as a renewable alternative in
transport and other sectors, demand is projected to rise
from 94Mt in 2021 to 180Mt in 2030 (iea.org 2022).

The main problem hydrogen fuel faces in becoming a
reliable source of renewable energy is its production;
95% of hydrogen currently being produced is generated
from natural gas and coal (Chi and Yu 2018). Water-
splitting is the primary renewable method of producing
hydrogen, but the amount of hydrogen produced via
this method is currently not significant on an indus-

trial scale. Nevertheless, many countries are currently
investing in the research and development of “greener”
hydrogen production. One example of this can be seen
in 2019 when ITM Power received funding from the UK
Department for Business, Energy and Industrial Strat-
egy for a project aiming to lower the cost of electrolytic
hydrogen (Gov.uk 2022).

In 2021, Kakoulaki raised various points towards the
need for a better understanding of hydrogen production
via water splitting. Specific emphasis is placed on the
2019 European Green Deal, in which hydrogen is consid-
ered a key input in the future energy system as a flexible
energy carrier for industry and transport.(Kakoulaki et
al. 2021) The validity of this statement and the role of
electrolysis in the rise of hydrogen as an energy source
is a�rmed by the projections that the cost of produc-
ing hydrogen via electrolysis will decrease from $6.00
per kg to $2.50 by 2030, with electrolyser costs being
projected to halve (Kakoulaki et al. 2021).

The barriers currently preventing industrial water-
splitting from being more wide-spread is the huge asso-
ciated electricity cost in delivering high yield. Currently,
the e�ciency of water-splitting is too low to warrant
large-scale commercial use (Chi and Yu 2018). Hreiz
et al states that in order to increase the e�ciency of
this process, we need accurate knowledge of multiphase
flow within the electrolysers to make improvements on
the operating conditions and apparatus (Hreiz et al.
2015). In order to expand understanding of this topic,
this study will investigate the e↵ects of Joule heating
within an alkaline electrolyser on multifluid flow, as well
as other relevant variables (see Section 3 Results).

Joule heating, also known as resistive heating or ohmic
heating, is a process in which electrical energy is con-
verted into heat energy. It occurs when an electric cur-
rent flows through a conductor, such as a metal wire,
and encounters resistance. This e↵ect is prevalent, and
in some cases taken advantage of, in various industrial
electrolytic processes. For example, during the process
of purifying water through electrochemical advanced
oxidation, applying a current to the anode dissipates
heat. This leads to an interfacial temperature that is
higher than the bulk solution resulting in the interfacial
temperature increasing from 25 to 70.2 degrees, which
creates a rise in the bulk solution temperature by 8.6
degrees (Pei et al. 2019). Furthermore, it is observed
that Joule heating contributes to the high tempera-
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tures needed for solar-driven high-temperature water-
splitting (Lin et al 2022).

The previous models by Zarghami et al and Hreiz
et al which this paper builds on all operated isother-
mally(Zarghami, Deen, and Vreman 2020; Hreiz et al.
2015). Hence the purpose of this paper is to investigate
the significance of the Joule heating and ultimately if
it is worth accounting for in anisothermal simulation
models.

2 Methodology

2.1 Model Dimensions

The 2D mesh used in this study is made up of 46,000
cells, and has a simple rectangular shape for the elec-
trolyser, with a membrane directly in the middle - see
Figure 1.

Figure 1: 2D Electrolyser Model Diagram

Table 1: Electrolyser Model Diagram Labels.

No. Label
1. O2 Outlet
2. Separator
3. H2 Outlet
4. O2 Inlet
5. H2 Inlet

The dotted sections denote the anode and cathode,
where the first 100mm at the inlet is to allow the flow
to fully develop by the time it reaches the electrodes.

2.2 Mesh Sensitivity and Boundary Condi-
tions

For this study, a mesh sensitivity analysis was not con-
ducted as the mesh was obtained from Zarghami et al’s
paper where a mesh independence test was conducted
for a wide range of parameters, inclusive of those used
in this study (Zarghami, Deen, and Vreman 2020).
In terms of boundary conditions, the initial velocity of
the electrolyte solution was set to be 0.69ms�1 at the
inlets (4 and 5) with a no-slip condition applied every-
where else. The temperature was initially a set value
for the electrolyte, Hydrogen gas, and Oxygen gas as
per the simulation choice (See Section 3 Results), and
zero gradient everywhere else. The flow is subject to
an atmospheric pressure drop. No-slip boundaries are
implemented with the standard wall function approach
(Zarghami, Deen, and Vreman 2020).

2.3 Governing Equations

In building the CFD simulation, the first point of con-
tention was modelling the system via the Euler-Euler
method or the Euler-Lagrange method. The positives
and negatives of both methods are explained in detail
by Taqieddin et al where the authors state that the
greater accuracy of the E-L model can be attributed
to the use of describing bubbles via the Langrangian
approach which tracks bubbles individually using New-
ton’s Second Law. Tracking bubbles individually would
be extremely computationally expensive for larger scale
simulations, such as those being undertaken in this
project (Taqieddin et al. 2017). On top of this, the max-
imum void fraction needs to be limited to values smaller
than those encountered in our simulation hence, in this
study, a Eulerian multifluid flow model was created
based upon the multiphaseEulerFoam model available
in OpenFOAM-8. The Euler-Euler CFD model used in
the simulation is based upon the following continuity
and momentum equations:

@(⇢i↵i)

@t
+r · (⇢i↵iUi) = Si (1)

@(⇢i↵iUi)

@t
+r · (⇢i↵iUiUi)

= �↵irp+r · (↵i⌧i) + ⇢k↵ig +
X

Fi

(2)

Where ⇢i, ↵i, ⌧i and Ui denote the respective density,
volume fraction, stress tensor and velocity of species i,
and Fi denotes the interphase forces (drag, lift, virtual
mass etc.) and g denoted the gravitational field strength.
Si denotes the gas phase H2 and O2 produced from
electrochemical reaction with Faradays’s Law:

Si =
jMi

zF⇢i
(3)

Where Mi denotes the molar mass of species i, z denotes
stochiometric coe�cient and F is Faraday’s constant. j,
the current density, is given by the following equation:

j = (��effr�) · n (4)
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Where �eff denotes e↵ective conductivity and � de-
notes the potential. The energy equation that is being
solved throughout the equation is the following:

@ (↵i⇢ih)

@t
+

@ (↵i⇢iki)

@t
+r · (↵i⇢ihiUi) + (↵i⇢ikiUi)

= ↵i
@p

@t
+r · (↵i↵effrhi) + hT (Tc � Td)

+ (�effr�) ·r�
(5)

Where hi is the is specific enthalpy, ↵eff is the e↵ective
thermal di↵usivity, hT is the heat transfer coe�cient
between continuous and dispersed phase (a function of
the Nusselt numver which is described in the chapter
2.7), Tc ad Td are the temperatures of the dispersed
and continous phases and finally where (�effr�) ·r�
denotes the Joule heating source term.

The electrical potential is defined by the following equa-
tion:

r · (��effr�) = 0 (6)

And the conductivity in electrolyte and separator are
given by the following respective equations:

�eff = �o (1� ↵gas)
1.5 �eff = �

✏

⌧
(7)

Where �0 denotes the electrolyte conductivity, tau and
✏ are the diaphragm tortuosity and porosity respec-
tively and ↵gas denotes the gas volume fraction. The
boundary conditions at the electrodes follow the Tafel
relations found below:

�el = �cell � ⌘ � Erev, ⌘ =
2.303RT

↵nF
log

✓
j

j0

◆
,

�el = �cell �
2.303RT

cnF
log

✓
(��effr�el·)n

j0

◆
� Erev

(8)

Where �el and �cell are the electrode and cell potential,
n is number of electrons involved in the reaction, j is
the current density, j0 is exchange current density and
c is charge transfer coe�cient.

The flow is considered Newtonian and incompressible
with the thermophysical properties of the phases be-
ing non-isothermal. The key properties - density, spe-
cific heat capacity, thermal conductivity and viscosity
- were modelled using temperature-dependent 5th Or-
der polynomials, with operating pressure assumed to
be constant at 1 bar. The electrolyte is a KOH solution
of concentration 1M and the considered gases are pure
Hydrogen and Oxygen. The parameters which appear
in Tables 3, 4, and 5 (see Appendix) require a decimal
precision of at least 16 to output the correct results.

Specifically in terms of density, it was important to
model the amount of water vapour present in the
gaseous bubbles formed at both the anode and cath-
ode as the additional water vapour has the potential
to change the density values drastically. These mod-
els were created using experimental data with vapour

pressures of water with H2/O2 gaseous mixtures (Kell,
McLaurin, and Whalley 1989). Viscosity, thermal con-
ductivity, and specific heat capacity were calculated us-
ing pure vapour data from NIST for Hydrogen/ Oxygen
(nist.org 1997), and with extrapolation from literature
for KOH (Zaytsev and Aseyev 1992).

2.4 Drag

To represent the resistance on the gas bubbles as they
move through the electrolyte, a drag force was intro-
duced which acts in the opposite direction of the bubble-
liquid slip velocity. For this simulation, the Wen-Yu
drag model (Wen 1966) was chosen where the dimen-
sionless drag coe�cient,Cd, is expressed as the following
(for ReynoldsNumber(Re) > 1000):

Cd = 0.44✓�2.65
g (9)

Where ✓g is the gas volume fraction.

2.5 Turbulent Dispersion

In terms of dispersed multi-phase flow, turbulence in
the continuous phase causes particles in the dispersed
region to be carried from areas of high to low concentra-
tion (Burns et al. 2004). It is observed that the random
motion of continuous phase eddies brings about a con-
siderable redistribution of bubbles in the axial direction.
The model derived by Burns et al is used in the simu-
lation and can be seen in Equation 10:

Ftd = �3

4

Cd

db
✓g|Ug �Ul|

µturb
l

Sctd

✓
1

✓g
+

1

✓l

◆
r↵g (10)

Where db is the bubble diameter, µturb
l is the turbulent

viscosity and Sc is the Schmidt number.

2.6 Lift

The lift force expresses the force perpendicular to its
direction of motion that a bubble experiences when
travelling in a shear flow. For a spherical bubble, the
lift coe�cient is positive and the bubble travels in the
direction of decreasing liquid velocity. In the simulation,
the lift coe�cient is obtained through the following
correlation derived by Tomiyama et al when studying
the trajectories of a single bubble rising in a shear flow
(Tomiyama et al. 2002).

8
>><

>>:

CL = min
⇥
0.288tanh (0.121Re) , f(Eo?)

⇤

Eo? < 4
CL = f(Eo?).....................4 < Eo? < 10
CL = �0.27..............................Eo? > 10

(11)

Where Eo? denotes the Eötvös number calculated from
the maximum horizontal dimension of the bubble.
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2.7 Heat Transfer

In systems where the Reynolds number does not surpass
104, it is proven by Buist et al that the Ranz-Marshall
correlation predicts the Nusselt number, (Nu), as a func-
tion of the Reynolds number follows experimental date
with a high degree of accuracy (within 2-3%) (Buist
et al. 2017).

NuD = 2 + 0.6Re
1
2
DPr

1
3 (12)

Where Pr denotes the Prandtl number. As the Reynolds
number of this simulation is 7000, the correlation was
deemed appropriate.

2.8 Turbulence

The turbulence within the electrolyte solution is mod-
elled using the shear stress transport (SST) k�! formu-
lation (Menter 1993). The model is a Reynolds-averaged
Navier-Stokes model which is mainly used for turbulent
flows with low Reynolds numbers. This model was cho-
sen over the k � ✏ model and the k � ! model for the
following reasons; the k�✏ model is known to have unre-
liable damping functions when applied to flows di↵erent
from the calibration flows and although the k�! model
addresses this, it was still found that flow struggled to
separate from the smooth surface of the body. The two-
equation nature of the model means that in addition
to the conservation equations, the two transport PDEs
are also solved so convection and di↵usion of turbulent
energy are accounted for. Furthermore, in Zarghami et
al’s investigation of turbulence models and their sim-
ilarities to simulated electrolyser’s experimental data,
it was found that the SST k � ! model performs best
(Zarghami, Deen, and Vreman 2020) The mathematical
representation can be seen in the following Equations
13, 14 and 15:
Kinematic Eddy Viscosity

⌫T =
a1k

max (a1!SF2)
(13)

Turbulence Kinetic Energy

@k

@t
+U j

@k

@xj
= Pk � �⇤k! +

@

@xj


(⌫ + �k⌫T )

@k

@xj

�

(14)

Specific Dissipation Rate

@!

@t
+U j

@k

@xj
=Pk � �!2 +

@

@xj


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@!

@xj

�

+ 2(1� F1)�!2
1

!

@k

@xi

@!
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(15)

Where a1, �⇤, �k and �! are modelling constants, Pk

is the volumetric production rate of k, F1 is a blending
function, k is the specific turbulent kinetic energy, S
is an invariant measure of the strain rate and ! is the
specific turbulent dispersion rate.

2.9 Joule Heating Implementation

Implementing the Joule heating element into the simu-
lations was a trivial task of introducing a source term
in accordance with the final term in Equation 5, the
energy balance.

3 Results

The main goal of this study is assessing whether Joule
heating makes a significant di↵erence to simulations
of alkaline electrolysers. To that end, it begins with
the evaluation of whether Joule heating has significant
e↵ects on the flow, then covers energy and e�ciency.
A total of 18 simulations were conducted to generate
the main results. The simulations covered a range of
parameters including current density (1000, 2000, and
3000Am�2) and temperature (300, 325, and 350K),
with Joule heating turned on and o↵ in each case. Jon
denotes the anisothermal cases with Joule Heating
implementation, and Jo↵ denotes anisothermal cases
with Joule Heating o↵.

There are three key variables which have the po-
tential to vary when the Joule heating element in the
simulation is switched on or o↵ as pertaining to the
flow. They are; the volume fractions of the gases, the
liquid temperature and the liquid velocity. In the case
of energy and e�ciency, this study assesses the cell
voltage as it changes with current density, along with
the cell e�ciency as industrially defined in Equation 16.
Finally, the trade-o↵ between activating Joule heating
and having a more realistic model, with computational
leverage is considered with independent simulations,
conducted purely for timing.

3.1 Gas Volume Fractions

The volume fractions, ↵, of both Hydrogen and Oxygen
were plotted across the horizontal plane of the electrol-
yser at 0.3m, the middle of the mesh, and 0.5m, towards
the top of the mesh. Along both these planes, the vol-
ume fractions of the two gases showed negligible di↵er-
ence (<1%) for all simulations. Both Figures 2 and 3
below show trends at 325K and 2000Am�2. These pa-
rameters were chosen at random but are representative
of the trends displayed at all values of current density
and temperature.

As observed in Figure 2, there is very little separation
between the displayed lines as the two mole fractions
remain consistently similar. However, in the same
graph for Hydrogen (see Figure 3), a significant
separation grows to reach a maximum at the 0.015m
point where there is a di↵erence of 0.043 equating
to a 99% deviation. Although both gas fractions
follow a similar downward trend, the two cases vary
significantly in how Hydrogen evolves along the plane
as the curve with Joule heating is much steeper.
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Figure 2: Graph of Oxygen volume fraction variation along
the electrolyser Oxygen channel, at 2000Am�2, y=0.5

Figure 3: Graph of Oxygen volume fraction variation along
the electrolyser Hydrogen channel, at 2000Am�2, y=0.5

3.2 KOH Solution Temperature

While activating the Joule Heating element can cause
variations in the H2 volume fraction, no such di↵erences
are observed in either the liquid temperature or velocity.
It is observed that as current density increases, there are
naturally greater changes in temperature - see Figure
4.

Among all the collected data, however, the maximum
liquid temperature increase (at a current density of
3000Am�2) was 3K, or less than 1% of the initial
temperature. The Figures 4 and 5 show the case
where the mean temperature di↵erence between cases
with and without Joule heating is greatest, yet is still
insignificant.

3.3 KOH Solution Velocity Magnitude

A similar theme is observed for di↵erences in the liquid
velocities for lower current densities, eg 1000Am�2. In
Figure 6 there is no separation between the cases with
and without Joule heating, across the Hydrogen channel

Figure 4: Graph of the KOH Solution temperature variations
along the Oxygen channel of the electrolyser, at 3000Am�2,
y=0.5

Figure 5: Graph of the KOH Solution temperature vari-
ations along the Hydrogen channel of the electrolyser, at
3000Am�2, y=0.5

of the electrolyser (not plotted in this report, the same
shape is observed in the Oxygen channel). Here, two
lines are plotted but only one is visible.

This changes, however, when observing higher current
densities, eg 3000Am�2. As seen in Figure 7, there is
a noticeable di↵erence between the two mean velocity
magnitudes when Joule heating is on and o↵. The peak
of the graph without Joule heating is pushed closer to
the cathodic wall of the eletrolyser where hydrogen is
being produced. This peak is also higher, at 0.82ms�1,
while the case with Joule heating peaks at 0.8ms�1.

3.4 Energy and E�ciency

Apart from the flow, Joule Heating is predicted to have
an e↵ect on the energy dynamics in the system. Cell
voltage increases with increasing current density, but
the trend is nonlinear and is a↵ected by factors such
as hydrogen and oxygen activation overpotentials, the
concentration of the electrolyte solution, the size of
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Figure 6: Graph of Water Velocity Magnitude along the
electolyser Hydrogen channel at 1000Am�2, y=0.5

Figure 7: Graph of Water Velocity Magnitude along the
electolyser Hydrogen channel at 3000Am�2, y=0.5

the electrodes, and temperature of the solution. The
relationship between all these factors is complex and
not fully understood, but broadly, as the cell voltage
increases, the hydrogen evolution reaction becomes
more favorable and the hydrogen production rate at
the cathode increases.

The cell e�ciency is defined as follows in Equation 16:

Cell Efficiency =
Standard Cell Potential

Overall Cell Potential
(16)

where the standard is set to 1.23V.

Equation 16 above was used to calculate e�cien-
cies of all simulations and generate Table 2.

In addition to the data displayed in the Table above,
the di↵erences in cell e�ciency are most visible in the

Table 2: Table of the absolute percentage di↵erence in
Cell E�ciency with and without Joule heating, averaged
across all recorded temperatures.

Current Density /
Am�2

Average Di↵erence in
Cell E�ciency / %

1000 2.65
2000 6.60
3000 0.46

2000Am�2 region where the maximum change was
10% for the 325K cases.

As the current density increases, more electrons are
available to drive the reaction that produces hydrogen
gas, which leads to an increase in the rate of hydrogen
production. However, it is important to note that
there are limits to the amount of current that can be
passed through an electrolysis cell without causing
problems. At very high current densities, the rate of
hydrogen production may begin to decrease due to a
number of factors, such as increased Ohmic heating
of the electrodes or an increase in activation energy
required for Hydrogen and Oxygen production, thereby
decreased e�ciency of the electrolysis process, and
result in the potential breakdown of the electrolyte
solution.

Figure 8: Graph of overpotentials, comparing the e↵ect of
Joule heating at di↵erent temperatures

Additionally, from Table 6 (see Appendix), it has been
observed that the time required to run simulations with
Joule heating versus without has an average di↵erence
of 2%. This suggests that the computational leverage
required for the additional Joule heating source term
requires is around 2% or less. At the very most, it is
not significant.

4 Discussion

Firstly, the results of this study indicate that Joule
heating has little e↵ect on the peak volume fractions
of gases in the simulated alkaline electrolyser. This
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is consistent with the initial hypothesis that Joule
heating would not significantly alter the bulk flow of
gases in the system. However, the results also showed
that Joule heating has the potential to have a more
significant e↵ect on the H2 volume fraction, specifically
in how it evolves through the electrolyser. As seen
in figure 3, there is a maximum di↵erence of 99% at
a current density of 2000Am�2 as the flow evolves
through the channel.

One reason this could be the case is because the
inclusion of Joule Heating a↵ects the thermodynamics
of the global reaction for the alkaline electrolyser:
H2O(l) ! H2(g) +

1
2O2(g). On a molar basis, Hydrogen

is theoretically produced twice as much as oxygen, so
if Joule Heating has indeed had an e↵ect here, it would
be more noticeable with Hydrogen than Oxygen, and
that is exactly what is observed here in Figure 3 versus
Figure 2.

The e↵ects of Joule heating on velocity in the
simulated electrolyser were largely unsurprising. There
were some observed di↵erences between cases with and
without Joule heating, as seen in Figure 7, and these
di↵erences follow from the aforementioned considera-
tions around Hydrogen volume fraction. As a result, at
the cathode where hydrogen is produced, the di↵erence
in gas fractions causes a visible change in the shape
of the bulk flow. In simulations that are at a greater
scale than ours, this 5% di↵erence in peak velocity
magnitude and alteration of shape need to be well un-
derstood and accounted for in electrolyser optimisation.

When it comes to Figures 4 and 5, the tempera-
ture results are also, expectedly, insignificant. The
nature of Joule Heating means that when it is included
in the model, the temperature of the system will be
di↵erent but only in proportion to how strong the
electric field across the electrolsyer is. This is exactly
what is observed in the figures. A current density of
even 3000Am�2 does little to a↵ect the temperature
greatly.

The increase in cell voltage versus current den-
sity is known to be a non-linear relationship and in this
case should have a decreasing gradient as described
by the well known Butler–Volmer equation for cell
voltage (Chen et al. 2017). The cases without Joule
heating in Figure 8 do not exhibit this behaviour, in
fact, the dependence seems to be almost linear. Hence,
it is shown in Figure 8 that the cases with Joule
heating more closely reflect reality. It is also clear from
a graphical perspective that, again, the 2000Am�2

region shows the most variation in results.

In terms of execution times of various cases, it
can’t be said that Joule heating requires significantly
more execution time or computational leverage. Table
3 (see Appendix) contains data from two cases, the
first being at 1000Am�2 300K where the least variance
in results is expected, and 3000Am�2 350K where the

most variance in data is expected. This essentially
covers the entire parameter space that this study has
simulated, where all cases were run individually to
obtain timing data. The 2% timing di↵erence that is
seen when using Joule heating is not significant enough
to be attributed to Joule heating alone as there could
have been random variance in the simulation physical
parameter data.

5 Conclusion

In this study, the e↵ects of Joule Heating on various
physical properties in alkaline electrolysers were re-
ported. These included the changes to: Hydrogen and
Oxygen gas fractions, the bulk electrolyte velocity, the
electrolyte temperature, the cell e�ciency, cell poten-
tials, and simulation execution times. While there were
no significant changes to the temperature of the sys-
tem, the evolution of Hydrogen gas along the horizontal
plane of the electrolyser showed significant deviation.
This potentially resulted in a 5% di↵erence in peak ve-
locity magnitudes between cases with and without Joule
Heating, with the latter being displaced closer to the
cathode. In terms of energy, the cell e�ciency saw dif-
ferences of up to 10% when applying the Joule Heating
element, and the graph of overpotentials displayed that
realistic behaviour was also better portrayed by cases
with Joule heating when considering the Butler-Volmer
equation.

Implementation of Joule Heating seems to only require
a minimal amount of additional computational lever-
age at 2%, while it has been demonstrated that it can,
on average, cause a di↵erence in e�ciency results of
6.60% for a range of temperatures at a current density
of 2000Am�2 (see Table 2). This change is not insignifi-
cant. As a result, this study concludes that Joule Heat-
ing should be implemented in future alkaline electrolysis
simulations that are anisothermal since the costs of im-
plementation are negligible, while the resulting model
will be much more physically realistic.

6 Outlook

Further research and consolidation is required to assess
the results of this study. To begin with, one aspect that
may require further simulation is the di↵erence between
cases in Figure 7. While it may not be directly the Joule
heating that causes this change, it is attributed to the
fact that the mean fraction of Hydrogen as seen in Fig-
ure 3, follows a steeper gradient with Joule heating. This
brings up a key question. Given that the simulations
were under galvanostatic operation, meaning that the
production of hydrogen by volume should be the same
for the same current density, how could there be such a
large variation in results with and without Joule Heat-
ing for the 2000Am�2 case? The simulation-dependent
as well as the physicochemical answer to this question
should be investigated.
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Future studies could also build on the findings here
by investigating the e↵ects of joule heating with a
larger parameter space to examine greater current den-
sities. Joule heating should have much greater e↵ects at
greater current densities but it is not well understood
exactly how much e↵ect, and when it might start to
become detrimental to increase current density prior to
the point of electrolyte breakdown. It would also be of
importance to have more granular results in terms of
temperature dependence.
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Characterisation of Carbon By-products from Methane Pyrolysis in Molten Alkali Halide Salts 
Tyn Suthanaruk and Korn Amnauypanit 

Department of Chemical Engineering, Imperial College London, U.K. 
Abstract 
 

Methane pyrolysis in molten salts is a promising technology that can produce hydrogen with a low carbon footprint. The 
key challenges in methane pyrolysis are the high levelised cost of hydrogen compared to steam methane reforming and the 
inevitable salt loss due to the intercalation of salts in pyrolytic carbon. Therefore, the economics of this process should be 
enhanced through the commercialisation of carbon co-product. If methane pyrolysis in molten salts were to be widely adopted, 
a vast quantity of pyrolytic carbon would be generated. This makes commercialising the carbon co-product for the battery 
industry of particular interest as it has the demand to meet the influx in carbon supply and exploit the properties of carbon. 
This study explores the impact of molten alkali halide salts (LiBr-NaBr and LiCl-NaCl) on carbon morphology. Experiments 
were designed with the intention of lithium intercalation into the carbon co-product. This would mimic the effects of pre-
lithiation and allow for the potential utilisation of pyrolytic carbon as lithium-ion battery anodes. TGA, TEM, ICP-MS, and 
XRD analyses revealed that lithium was intercalated into the carbon complex. All carbon samples consist of a mixture of 
graphitic and amorphous structures, with the carbon purity ranging between 86-88 wt%. The carbon produced with LiBr-
NaBr as the salt medium has a higher degree of graphitisation, intercalated lithium-to-sodium ratio (2:1), and lithium 
intercalation. Thus, the carbon produced with molten LiBr-NaBr salt is a promising candidate as an anode material for lithium-
ion batteries. Moving forward, testing pyrolytic carbon as an anode material for batteries would be beneficial. 
 
Keywords: Hydrogen production, Methane pyrolysis, Molten salt, Pyrolytic carbon, Anode material, Lithium intercalation 
 
 

1. Introduction and Background 
 

The greenhouse effect is one of the most pressing 
environmental problems scientists must address today. 
This problem is caused by burning fossil fuels and the 
corresponding emissions of carbon dioxide due to the rise 
in global energy demand. New industrial-scale energy 
production with reduced carbon emissions is required 
(Acheampong, 2018). Hydrogen is a feasible alternative to 
fossil fuel since it has a high energy density and emits no 
carbon dioxide when burned. In addition, the chemical 
industry makes substantial use of it as a raw material. 
 

The demand for hydrogen in 2021 is 94 Mt, and it is 
expected to rise to 180 Mt in 2030 (IEA, 2022). This raises 
a concerning issue as the vast majority of hydrogen 
production comes from processes that release a large 
amount of CO2 emissions. 76% of the hydrogen is 
produced from natural gas through steam methane 
reforming (SMR), 22% by coal gasification, and only 2% 
from electrolysis (E.R. Ochu et al., 2021). Two of the three 
processes have a large carbon footprint and account for 
98% of global hydrogen production. This fact illustrates 
the need for an alternative method of producing hydrogen 
that is cost-effective and emits minimal greenhouse gases.  

 
Methane pyrolysis is a technology with the potential to 

solve this problem. Methane pyrolysis yields two moles of 
hydrogen per mole of methane (Eq. 1), while steam 
methane reforming yields four moles of hydrogen per 
mole of methane. Despite this drawback, methane 
pyrolysis has a 27% lower enthalpy of a reaction than 
SMR to produce one mole of hydrogen with no carbon 
dioxide emission (C.F. Patzschke et al., 2021). 
Furthermore, as global warming becomes an alarming 

issue and carbon taxation is enforced, methane pyrolysis 
may emerge as a viable alternative to the current hydrogen 
production technologies. 

 
𝐶𝐻4 →  2𝐻2 + 𝐶(𝑠) (1) 

∆𝐻0 = 37.4 𝑘𝐽(𝑚𝑜𝑙 𝐻2)−1  
 

In economics, methane pyrolysis is a competitive 
process to achieve net zero emissions. In an article 
published in 2017, the levelised cost of hydrogen (LCOH) 
produced through methane pyrolysis with molten salt was 
calculated to be 1.76 $ kg-1(H2) (Parkinson et al., 2019b). 
In contrast, steam methane reforming is significantly more 
economical, with an LCOH of 1.26$ kg-1(H2). However, 
this does not account for the emissions produced by the 
process. To reduce CO2 emissions, SMR should be 
integrated with carbon capture and storage (CCS) 
technology in carbon-constrained scenarios. 
Consequently, the LCOH for SMR with CSS would rise to 
1.88$ kg-1(H2) for a 90% carbon capture rate.  Therefore, 
the cost of manufacturing hydrogen by methane pyrolysis 
in a molten salt medium is comparable to the cost of 
producing hydrogen through SMR with CCS.  

 
In comparison, the LCOH favours pyrolytic hydrogen 

more than the production of hydrogen from renewable 
energy, as wind energy and solar energy have LCOHs of 
5.24$ kg-1(H2) and 8.87$ kg-1(H2), respectively (Parkinson 
et al., 2019b). Furthermore, the economy of methane 
pyrolysis is enhanced if the carbon produced can be 
commercialised (C.F. Patzschke et al., 2021). However, 
the problem with methane pyrolysis in molten salt is that 
it has yet to be at a commercial scale. Methane pyrolysis 
only has a technological readiness level (TRL) of 3-5, 
whereas SMR and SMR with CCS are 9 and 7-8, 
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respectively (Parkinson et al., 2019b). This demonstrates 
that methane pyrolysis should be improved in order to 
compete against current hydrogen production. 

 
Methane pyrolysis involves the thermal decomposition 

of methane into its constituent (hydrogen and solid 
carbon). Since the 1930s, gas-phase methane pyrolysis has 
been used to produce carbon black (M. Voll et al., 2010). 
However, this process was not used to commercially 
produce hydrogen as other hydrogen production methods 
were more energy efficient, as well as the problems with 
the accumulation of pyrolytic carbon on the catalyst’s 
surface, resulting in catalytic deactivation (Schneider et 
al., 2020). Rapid deactivation will affect process 
operations as catalysts would have to be replaced or 
regenerated, thus incurring significant downtime. 
Additionally, this process is uneconomical due to its low 
H2 selectivity, difficulties in carbon extraction, high 
operating temperature (1200 °C), and high energy 
requirements (Holmen, Olsvik & Rokstad, 1995). 
 

A bubble column reactor system with molten salt as the 
reaction medium operating at 1000 °C was developed to 
overcome the issues associated with methane gas 
pyrolysis. Since each bubble has a distinct interphase, 
catalyst deactivation is unlikely to occur, resulting in a 
more efficient catalytic reaction. In addition, methane 
pyrolysis with molten salt enhances heat transfer since 
gas-phase methane bubbles are in direct contact with 
molten salts (Holmen, Olsvik & Rokstad, 1995). The 
proposed molten salts are alkali halides that are 
inexpensive and environmentally safe. 
 

To efficiently utilise carbon produced through the 
pyrolysis of methane, it is necessary to comprehend the 
main properties of carbon. Kang et al. examined the 
carbon morphology produced via methane pyrolysis with 
molten KCl-MnCl2 as a medium. The results suggested 
that the carbon sample exhibited a low-ordered structure 
characterised as amorphous carbon with some graphene 
layers (D. Kang et al., 2019). In addition, the inevitable 
intercalation of salts in carbon samples resulted in the loss 
of expensive salts, which hindered the economics of the 
process (D. Kang et al., 2019). This promotes the 
utilisation of inexpensive salt as a reaction medium and 
takes advantage of the intercalated salt in carbon.  

 
Parkinson et al. also investigated the characteristics of 

carbon generated from methane pyrolysis using molten 
alkali halide salts as a medium (B. Parkinson et al., 2021). 
According to the results, carbon samples contained a 
mixture of amorphous carbon and graphite with varying 
degrees of structural order. In terms of carbon properties, 
the performance of inexpensive salts (NaCl, NaBr, KCl 
and KBr) as reaction media is promising  (B. Parkinson et 
al., 2021). Further research is necessary to establish the 
effects of different combinations of eutectic salt medium 
(LiCl, LiBr, NaBr, and NaCl) on the characteristics of 

pyrolytic carbon and how they might be tailored to certain 
carbon markets.  
 

Due to the high global demand for hydrogen, an 
abundant carbon supply would be created if hydrogen was 
made solely from methane pyrolysis (Muradov, 2017). 
This implies an increase in carbon supply, making 
industries that consume significant amounts of carbon, 
such as the battery, cement, polymer, and agriculture 
industries, are of interest. 
 

The battery industry, one of the most promising 
industries due to its vital role in decarbonising the world’s 
energy and transportation sectors, has great potential to 
meet the carbon supply from methane pyrolysis. Studies 
have indicated that carbon produced from methane 
pyrolysis with molten salts has some graphitic and 
amorphous structure (B. Parkinson, 2020). Although this 
would make pyrolytic carbon produced from the process 
less competitive than graphite used in battery production, 
this disadvantage can be compensated by the intercalation 
of metal ions inside the salt. The interaction of metal ions 
could mimic the effect of pre-lithiation. Pre-lithiation is 
the redox reaction between high-reducing lithium 
compounds and the anode material, resulting in a higher 
lithium content in the anode material (Huang et al., 2022). 
Past studies have shown that pre-lithiation benefits the 
performance of the battery's anode. Batteries with anodes 
that went through pre-lithiation would have extra lithium 
ions in them, allowing the battery to compensate for the 
lithium loss from its first charge and long-term cycling 
(Yue et al., 2022a). Therefore, the carbon co-products with 
intercalated lithium from methane pyrolysis make 
promising anodes. 

 
Carbon is commonly used as a battery electrode, with 

graphite being the ideal candidate. Carbon electrodes are 
distinguished by their electrical resistance and 
conductivity, which derive from their structure. Graphite 
is the most widely used anode material for lithium-ion 
batteries. It has excellent electrical conductivity, high 
crystallinity, and layered structure, making ions able to be 
reversibly intercalated and exfoliated. In addition to 
reversible ions intercalation, graphite allows lithium-ion 
batteries to have a specific capacity of 370 mAhg-1 and an 
operating efficiency above 90% (Hou et al., 2017).  

 
Furthermore, due to its excellent electrical 

conductivity, graphite can be used as an anode material for 
other alkaline metal ion batteries like potassium rubidium 
and caesium. This makes graphite an ideal electrode for 
making a battery. Aside from graphite, research using 
amorphous carbon has also provided promising results 
(Dresselhaus, 2002).  

 
Amorphous carbon includes two carbon materials (soft 

and hard carbon). Instead of having an ordered structure 
like graphite, amorphous carbon comprises voids, 
distorted graphene sheets, and randomly distributed 
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graphitised microdomains. The interlayer spacing for d002 
is 3.4-3.6 Å and 3.7 Å for soft and hard carbons, 
respectively, which is larger than that of graphite (3.35 Å). 
These disordered characteristics allow amorphous carbon 
to succeed where graphite fails, which is an anode for 
sodium-ion batteries. Due to its porous nature and greater 
interlayer spacing, amorphous carbon can accommodate 
large sodium ions, shorten its’ diffusion path, and handle 
significant volume changes during the charge and 
discharge of sodium ion batteries. Thus, amorphous 
carbon can be a practical alternative to graphite as an 
electrode if sodium-ions batteries were needed to be 
produced.  

 
This study aims to characterise pyrolytic carbon 

produced from methane pyrolysis in molten alkali halide 
salts, emphasising lithium salt. Lithium salts are of interest 
because lithium intercalation could enhance the 
characteristics of pyrolytic carbon, potentially turning it 
into battery electrodes due to lithium cations 
contamination. 
 

 
2. Materials and Methods 
 
2.1 Molten salt bubble column reactor 

 
Material Vendor Description 

Saltsa  Alpha Aesar 99.9%, 
anhydrous 

Catalyst ExxonMobil (EMRE) Co supported on 
Al2O3 

CH4 ,Ar BOC Ltd.UK 99.9% 
H2 H2 Generator 99.9% 

The eutectic mixtures were LiBr-NaBr (72:28 mol%) 
and LiCl-NaCl (71:29 mol%). The weight of the salts was 
calculated based on the salt densities, eutectic ratios, and 
reactor dimensions at 1000 oC. Then, the salt mixture was 
combined and heated in a 200 °C oven overnight to 
remove excessive moisture. A third of the salt was to be 
evenly distributed at the top and bottom of the quartz tube 
reactor (250 mm x 20 mm OD / 16 mm ID Quartz tube 
rounded closed-end). The remainder of the dried salt was 
combined with the catalyst (2.5 wt% of the salt and 
catalyst mixture) and filled the middle section of the 
reactor. This was done to ensure that no catalyst particles 
would get stuck at the bottom of the reactor, as the catalyst 
is denser than the salt. The reactor head (borosilicate with 
two ports of 0.25” and 0.5”) was sealed and secured to the 
reactor using silicone grease and stainless steel clamps. To 
provide CH4 and Ar gas to the bottom of the reactor, a two-
inlet arrangement comprising a headspace tube and an 
alumina injector (500 mm in length with 4 mm OD and 3 
mm ID holes) was mounted to the top of the reactor head. 
The outlet at the top was connected to a mass spectrometer 

(MS) and the vent. All equipment was inspected for leaks 
with a bubble trap meniscus test. 

 
To initiate the experiment, a 30 mL min-1 Ar flow was 

supplied in the reactor. The furnace was programmed to 
heat the reactor to 1000 °C at a rate of 5 °C minute-1. 
When the salt mixture had melted, the alumina injector 
was lowered into the molten salt until it reached 10 mm 
above the reactor's bottom. The inlet was switched to 30 
mL min-1 of Ar and 5 vol% of H2 to initiate the catalyst’s 
reduction. The catalyst reduction typically lasts 1 hour, 
after which the hydrogen flow rate is switched off. This 
duration is considered enough since the MS readings trace 
no water after that period. At 1000 °C, the reaction was 
started by switching the Ar flow (30 mL min-1) to the 
headspace and methane flow (15 mL min-1) to the bottom 
of the reactor. After the experiment, the furnace was set to 
700 °C, and the alumina injector was lifted above the 
molten salt surface. While the Ar flow was on, the furnace 
was shut off and cooled to room temperature. The reactor 
was removed at room temperature for carbon collection. 
 

2.2 Carbon recovery 
 

Carbon was collected after the pyrolysis experiment by 
scraping deposits from the reactor's wall, dissolving, and 
sonicating the salt mixture with deionised water. A 
Büchner funnel was used extensively to wash and filter 
any salts on the carbon surface with deionised water due 
to the high solubility of salt in water. This procedure was 
repeated until the resistance of the filtrate remained 
constant. Then, the carbon residue on the filter paper was 
dried overnight and stored for further analysis. 
 

2.3 Carbon Characterisation 
 

A litesizer 500 was employed to measure the particle 
size of the carbon samples. A small amount of each carbon 
sample was dispersed in a tube with deionised water. The 
mixture was subjected to 6 minutes sonication process to 
achieve a more precise result. The particle size analysis 
will be performed on each sample until three 
measurements with a peak of 100% intensity are obtained. 
The measurement with the lowest standard deviation will 
then be selected as the final particle size.  
 

Transmission electron microscopes (TEM) are 
microscopes that use an electron beam to provide a highly 
magnified image of a sample. The TEM images were 
obtained using JEOL 2100F machine and utilised to 
illustrate carbon's crystalline and amorphous structures 
derived from various salts. The sample was prepared by 
dispersing 5 mg of carbon in 2 ml of isopropanol solution. 
Subsequently, the material was sonicated for 5 minutes to 
achieve uniform dispersion. One drop of this sample was 
placed on a 300 carbon-copper mesh.  The sample was 
inserted into the equipment, and measurements were taken 
at multiple magnification levels ranging from 0.5 μm to 20 
nm.  

Table 1: Chemical used for methane pyrolysis 
a Salts refer to LiBr, NaBr, LiCl and NaCl 
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Analysing the crystalline structure of carbon was done 
with the help of X-ray diffraction (XRD). The diffraction 
data were obtained using an X’Pert Pro (PANanalytical) 
with Cu-Kα radiation with λ = 0.1541nm. Measurements 
were done at 40 kV and 40 mA. The °2θ range was 5-90, 
and a step size of 0.0334 was used. Further data processing 
was done using Highscore software to analyse the data 
better. 

 
Raman spectroscopy was conducted using a Senterra 

II (Bruker) with the parameters as follows; 20x 
magnification, a spectral range of 50 to 4260 cm-1 and 532 
nm laser excitation. An average spectrum of over 5 
samples was measured. Baseline correction was applied to 
the acquired spectra in the OriginPro 2023 software. The 
intensity and the location of peaks identified carbon 
structures.  

 
The nature of the carbon and the mass fraction of the 

salt were examined by temperature-programmed oxidation 
(TPO) in a thermo-gravimetric analyser (TGA) STA 449 
F5. The crucible used in the TG experiments was loaded 
with at least 5 mg of carbon sample before being heated 
under air at a temperature of 10 °C minute-1 and a flow rate 
of 40 mL minute-1 at SATP. To study the combustion 
temperature, carbon black and graphite were employed as 
references for the structures of amorphous and graphitic 
carbon, respectively. Following TGA analysis, the residue 
of a sample was collected to be further analysed for salt 
intercalation and carbon purity. This was accomplished 
through inductively coupled plasma mass spectrometry 
(ICP-MS).  
 

Inductively coupled plasma mass spectrometry (ICP-
MS) is an elemental analysis technique that can identify 
most elements on the periodic table at a low concentration.  
ICP-MS would be used because the residue at the end of 
TGA was minimal (around 1 mg). ICP-MS was utilised to 
detect Li+ and Na+ concentrations, as most of the residue 
should be salt. Scandium was chosen as a low-mass 
internal standard to evaluate system performance since it 
is a relatively unimportant material for analysis and is 
unlikely to be present in most sample types. The machine 
was then calibrated with standard lithium and sodium 
solutions at 5, 50, 100, 200, and 500 ppb concentrations. 
For accurate results within the calibrated range, each TGA 
residue was dissolved in 2% nitric acid to obtain 6 mL 
containing less than 500 ppb of each cation. The ratio of 
cations corresponds to the proportion of salt intercalated 
in the carbon. 
 

 
3. Results and Discussion 

 
3.1 Carbon Production and Recovery 
 

To investigate carbon produced from methane 
pyrolysis, the experiment was designed to separate carbon 

based on its densities. The pyrolytic carbon was expected 
to rise to the top of the reactor, while salts and catalysts 
remained below. From this, carbon can be collected, as 
detailed in Section 2.2. In addition to carbon recovery, an 
eutectic mixture of salt was used to account for operational 
aspects. Performing methane pyrolysis with a eutectic salt 
mixture facilitates experiment start up and shut down by 
lowering the melting point of salts. Furthermore, operating 
with a eutectic salt mixture allows for a wider operating 
temperature range, which benefits industrial applications. 

 
Upon experimenting, it was found that the carbon 

produced did not float to the top of the reactor, but it was 
either mixed with other components in the reactor or sank 
to the bottom of the reactor. This finding is problematic as 
it makes operations impractical, especially with a catalyst. 
Separating carbon from salt can be done by simply 
dissolving all the salt in water and filtering as detailed in 
the methods. However, separating the catalyst from carbon 
was not able to be done. Therefore, analysis of carbon 
produced with catalyst was done with catalyst 
contaminated in the recovered carbon. 
 

3.2 Carbon morphology  
 

The particle size should be evaluated to determine the 
potential presence of agglomerates, which may adversely 
affect the electrode capacity (Röder et al., 2016). The 
particle size of carbon samples ranges from 658 to 806 nm. 
The effect of sonication was only analysed on LiBr-NaBr. 
The results suggested that particle agglomerations were 
broken up by sonication, resulting in more precise results. 
Therefore, the remaining samples of carbon were 
sonicated.  According to Table 2, carbon produced from 
LiBr-NaBr has a larger particle size than carbon produced 
from LiCl-NaCl. The obtained particle size was relatively 
small compared to the reference graphite. 

Due to constraints, the carbon samples were only 
obtained from six hours of operation. The particle size of 
pyrolytic carbon could grow as operating time increases. 
As the reaction progresses, more carbon will be deposited 
towards the top of the reactor column due to the lower 
density of carbon. The deposited carbon could act as an 
active site which improves the rate of carbon formation (B. 
Parkinson, 2020).  

 
As shown in Fig. 1, the TEM images and fast-Fourier 

transform (FFT) were obtained at different magnifications, 
ranging from 0.5 μm to 20 nm. According to Fig. 1a and 
1b, the particle size of carbon samples varies from 

Carbon Samples Particle Size (nm)  
LiBr-NaBr  

(No sonication) 
806 

LiBr-NaBr (Sonicated) 697 
LiCl-NaCl (Sonicated) 658 

Reference Graphite 1835 
Table 2: Particle size of the carbon samples  
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approximately 0.5 μm to 0.8 μm which aligned with the 
results from the litesizer. 

 
The TEM images of carbon samples reveal amorphous 

and graphitic structures, with certain locations exhibiting 
a high level of crystallinity. Lamella and lattice patterns 
were more common in the carbon sample obtained from 
LiBr-NaBr than LiCl-NaCl, as shown in Fig. 2c and 2d. In 
addition, bright diffraction spots were observed in the 
diffraction patterns generated from FFT from the LiBr-
NaBr sample. This suggests that carbon generated from 
LiBr-NaBr has a higher degree of crystalline structure, 
resulting in higher conductivity for the battery electrode. 
This was further validated by the XRD and Raman 
analysis.  

 
XRD analysis was done on all the carbon samples 

produced from the methane pyrolysis process and 
displayed on Fig. 2.  As shown in Fig. 2, XRD analysis of 
the carbon sample with cobalt catalyst shows that the 
sample is filled with Al2O3 peaks. This indicates that the 
carbon analysed is contaminated with the catalyst. Due to 
this contamination, the analysis made on this sample 
cannot be conclusive. The presence of carbon is 

represented at ~26 °2θ for every sample with variation in 
peak size. Analysis with the HighScore software suggests 
that carbon produced with LiBr-NaBr as a salt medium is 
in the form of fullerene bromide. However, due to the 
software's low score for this result and the highly complex 
structure of fullerene bromide, it is unlikely that this is 
presented in the process. In addition to the low score, the 
peaks that correspond to carbon for all samples are broad. 
Thus, indicating that the carbon structure does not 
comprise a significant number of structural defects and a 
crystallite size smaller than a micrometre. (Ungár, 2004). 
In contrast, TEM analysis revealed that the particle size is 
lower than one micron, and carbon defects exist. Pyrolytic 
carbon is most likely to consist of amorphous and graphitic 
carbon.  

 
Unlike carbon produced without a catalyst, the carbon 

produced with a catalyst had a much narrower peak at ~26 
°2θ. This can be an indication that the catalyst could 
promote graphitic structure. However, due to the catalyst 
contamination, a conclusion cannot be drawn from this. 
According to the literature and the HighScore software, 
the peak at ~24 °2θ corresponds to lithium carbide 
(Missyul et al., 2017). This peak was presented in carbon 

Figure 1: TEM of carbon particles retrieved from methane pyrolysis in molten salts. a) Magnification at 0.5 μm of carbon sample from LiCl-NaCl b) 
Magnification at 0.5 μm of carbon sample from LiBr-NaBr c) Magnification at 20 nm of carbon sample from LiCl-NaCl with FFT of the scattered electron 
pattern d) Magnification at 20 nm of carbon sample from LiBr-NaBr with FFT of the scattered electron pattern. The red regions indicate the pattern and 
where the FFT was captured. 
 

a) b) 

c) d) 

FFT) FFT) 
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produced with LiCl-NaCl and LiBr-NaBr salt medium, 
with the latter having a much higher peak. This suggests 
that having a LiBr-NaBr salt medium promotes much 
more lithium intercalation than a LiCl-NaCl salt medium.  

 

As shown in Fig. 3, performing Raman analysis on the 
collected carbon samples reveals the presence of D and G 
bands (1350 cm-1 and 1580 cm-1, respectively). D bands 
correspond to the structural defects of the carbon sample, 
which can suggest the existence of amorphous carbon in 
the sample. Meanwhile, G bands illustrate the existence of 
graphitic sp2 structure in the sample (Pimenta et al., 2007). 
The ratio of D and G band peak intensity, ID/IG, indicates 
the degree of graphitisation of the sample, with ID being 
the intensity of the D band and IG being the intensity of the 
G band (Ferrari & Rokstad, 1995). The ideal graphitic 
structure will have no defects and all carbon atoms 
existing only in the sp2 configuration, thus making ID/IG = 
0. As the ideal graphite experience amorphisation, its ID/IG 
will increase up to 2.0 as it gains more structural defects. 
At this point, the ideal graphite will be converted to 
nanocrystalline (NC) graphite. However, carbon atoms are 
still in sp2 configurations. After further amorphisation of 
carbon, the ID/IG will keep decreasing until it reaches a 
ratio of 0.2, indicating that the NC graphite has turned into 
amorphous carbon where ~20% of atoms exist in sp3 
configuration (Ferrari & Rokstad, 1995). Another 
indication of carbon's crystalline structure is the G band's 
peak position. During amorphisation, the G band shifts 
from 1580 cm-1 (graphite) to 1600 cm-1 (NC graphite). 
Upon further amorphisation into amorphous carbon, the G 
band shifts to 1510 cm-1. Aside from the graphitic 
structure, Raman analysis provides details regarding 
graphene layers in carbon. A second-order two-photon 
process creates the 2D band. The shape of this band and 
the I2D/IG, where I2D is the intensity of the 2D band, can 
give details of the graphene layer. Regarding the shape of 
the 2D peak, a narrow peak indicates the presence of 
single-layer graphene. This peak results from four 
overlapping peaks, indicating a bilayer. Furthermore, a 

broadened band indicates the presence of a multilayer 
(Ferrari & Rokstad, 1995). As for I2D/IG, a ratio of 2-3 
corresponds to a monolayer, 2> I2D/IG >1 corresponds to 
bilayer graphene, and an I2D/IG <1 corresponds to 
multilayer graphene (Van Tu Nguyen et al., 2013).   

 
 All carbon samples have an ID/IG between 0.85-1.12. 

This corresponds to either a mixture of graphite and NC 
graphite or NC graphite and amorphous carbon. 
Considering this with G bands location, it suggests that 
carbon produced from NaBr-LiBr salt medium and 
catalyst and KBr-NaBr salt medium is a mixture of NC 
carbon and amorphous carbon as their G bands are below 
1580 cm-1. However, analysis for NaBr-LiBr salt medium 
cannot be conclusive due to the catalyst contamination, as 
mentioned earlier. Analysis for experiments with NaCl-
LiCl and NaBr-LiBr salt medium without catalyst is still 
inconclusive as their G band locations are 1586 and 1584 
cm-1, respectively. This could suggest that it could be a 
mixture of graphite and NC graphite or NC carbon and 
amorphous carbon. When considering this analysis in 
combination with TGA analysis, it could be concluded that 
the composition of the carbon mixture produced from 
NaCl-LiCl salt medium and NaBr-LiBr salt medium 
without catalyst are both a mixture of NC graphite and 
amorphous carbon.  

  

Regarding the 2D band at 2700 cm-1, Raman analysis 
on all carbon samples except for carbon produced with 
LiCl-NaCl salt medium have broad peaks. Thus 
suggesting that the carbon produced has the presence of 
multilayer graphene. On the other hand, carbon produced 
with LiCl-NaCl salt medium has a narrow peak, which 
indicates the presence of monolayer graphene at its 2D 
band. However, the relative intensity of I2D/IG is 0.55, 
making it inconclusive that carbon produced with LiCl-
NaCl salt medium is single-layer graphene (Van Tu 
Nguyen et al., 2013). This narrow peak could be explained 
due to the carbon having a particular orientation during 

Figure 3: Raman analysis of carbon samples (the NaBr-KBr 
experimental data was given by the previous experiment) 
 

Figure 2: XRD analysis of carbon samples (the NaBr-KBr experimental 
data was given by the previous experiment) 
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Raman analysis. Furthermore, as shown in Fig.3, the I2D/IG 
ratio and the shape of the 2D peak of carbon produced 
from LiCl-NaCl salt medium have a similar shape and size 
to the graphite, concluding that monolayer graphene is not 
present in carbon produced from LiCl-NaCl salt medium. 
This explanation falls in line with the analysis made with 
TEM and TGA as both analysis suggest this carbon 
produced has less crystalline structure than carbon 
produced with LiBr-NaBr salt medium.  

 
During the ICP-MS sample preparation, residue 

remained after dissolving all intercalated salt in 2% nitric 
acid. This residue was then cleaned with deionised water 
and completely dried in the oven at 200 °C. To account for 
this contamination, the residue was weighted and deducted 
from each TGA carbon sample's initial weight. The 
residue was identified as SiO2 using XPS. This 
contamination results from the degradation of the internal 
walls of the quartz reactor. 

 
The TGA plot in Fig. 4 illustrates that reference carbon 

black and graphite started to combust around 500 °C and 
700 °C, respectively. Hence, carbon black has a mixture 
of amorphous and crystalline structures. These results for 
reference carbon were consistent with the study that 
suggested the combustion of amorphous carbon begins 
around 400 °C, while graphitic carbon starts at 700 °C 
(Devrim & Albostan, 2016). Fig. 4 shows curves with one 
distinct weight loss starting around 500 °C in all carbon 
samples without a catalyst. TGA plots will often reveal 
two distinct weight losses due to the combustion of 
amorphous and graphitic carbon. At a high combustion 
rate of 10 °C minute-1, there might not be sufficient time 
for all amorphous carbon to burn off and reach a plateau 

before the graphitic carbon starts to combust (Devrim & 
Albostan, 2016).  

 
Fig. 4 indicates that both carbon samples without 

catalyst began to combust approximately at the same 
temperature as the carbon black reference but at a varying 
rate corresponding to different degrees of order structure. 
The carbon produced by the LiBr-NaBr salt has a less 
steep slope than reference carbon black and carbon made 
by the LiCl-NaCl. This may imply that the carbon derived 
from LiBr-NaBr salt has a higher crystalline structure, 
resulting in a higher melting point and higher electrode 
conductivity (Devrim & Albostan, 2016). This result is 
consistent with the XRD and ICP-MS results, which 
showed that carbon from LiBr-NaBr salt contained a high 
peak at ~24 °2θ, indicating intercalated lithium graphite or 
lithium carbide. Furthermore, carbon formed by the LiCl-
NaCl salt could be more amorphous, resulting in a faster 
combustion rate than carbon black. All of the carbon 
samples started to burn before the reference graphite, 
indicating that none of the carbon samples was as 
crystalline as the graphite reference. 
 

Parkinson et al. concluded that there was a strong 
correlation (R2 = 0.93) between the internuclear spacing of 
molten salts (NaCl, NaBr, KCl and KBr) to the amount of 
intercalated salt in the carbon (B. Parkinson et al., 2021). 
NaCl has the smallest internuclear separation of the 
examined samples (B. Parkinson et al., 2021). Therefore, 
the carbon derived from the NaCl had the lowest 
intercalated salt and, thus, the highest carbon purity of 90.1 
wt% (B. Parkinson et al., 2021).  

 

At the end of the TGA, the carbon purity was 
determined by the total weight percentage loss during the 
combustion. The carbon purity produced by LiBr-NaBr 
and LiCl-NaCl were 88 wt% and 86 wt%, respectively. 
However, the latter results were expected to be higher than 
the carbon purity of carbon produced from pure NaCl 
(90.1 wt%) due to the smaller internuclear spacing of Li-
Cl (B. Parkinson et al., 2021). In addition, the carbon 
purity derived from the larger internuclear spacing salt 
(LiBr-NaBr) was higher than that from, the smaller 
internuclear spacing salt (LiCl-NaCl). This does not align 
with the relationship proposed by Parkinson et al. The 
deviation from the expected trend could have arisen from 
the uncertainty due to the calibration of the TGA 
instrument. After validating the reference carbon in TGA 
and discussed with the lab technician, the uncertainty was 
concluded to be ± 5%. In addition, the relationship 
between internuclear distance and carbon purity may not 

Carbon samples Carbon Purity (wt%)a 
LiBr-NaBr 88 ±5%b 
LiCl-NaCl 86 ±5% 

Table 3: Weight percentage of the carbon samples after TGA 
a The carbon purity was calculated by subtracting 100% by the total 
weight remaining (%) at the end of TGA. b The uncertainty of ± 5% 
caused by the calibration process in the TGA equipment. 
 

Figure 4: The TGA plot shows the remaining weight during combustion 
of all carbon samples and references with the adjusted contaminationb.  
a The y-axis where m is the current mass and m0 is the initial mass). b 
The weight of the ICP-MS residue remaining after dissolving all of the 
salt in 2 % nitric acid was subtracted from the initial weight. 
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hold at LiCl-NaCl spacing. ICP-MS further investigated 
the salt residues to determine the ratio of intercalated salt 
in the TGA residue.  

 
As demonstrated in Table 4, all cation values fell 

within the calibrated range of less than 500 ppb. The ratio 
of lithium-ion to sodium ion (Li:Na) reveals the proportion 
of intercalated salt in carbon samples. The Li: Na ratio of 
carbon generated from LiBr-NaBr was around 2:1. This 
was favourable, as lithium-ion batteries would benefit 
from a higher lithium content (Shellikeri et al., 2017). 
However, the Li: Na ratio of carbon generated from LiCl-
NaCl was approximately 1:26. Furthermore, the high 
lithium intercalated ratio was consistent with the XRD 
data, which showed a high peak at ~24 °2θ that might be 
intercalated lithium graphite or lithium carbide. 

 
Carbon samples  Li+ (ppb)  Na+ (ppb) 

LiBr-NaBr 434.0 206.0 
LiCl-NaCl 16.8 436.0 

 
 

4. Conclusions 
 

With a demand of 94 Mt of hydrogen in 2021 and an 
expected rise to 180 Mt of hydrogen by 2030, hydrogen 
production becomes a concerning issue. SMR and coal 
gasification are responsible for 98% of hydrogen 
production. This makes hydrogen a significant contributor 
to CO2 emissions. In contrast, methane pyrolysis in molten 
salts produces hydrogen with minimal CO2 emissions and 
has the potential to create valuable carbon byproducts. 
However, due to the low technological readiness of this 
process, it is not employed commercially. In addition, a 
large amount of pyrolytic carbon would be generated if 
methane pyrolysis were widely implemented. This makes 
commercialising pyrolytic carbon to the battery industry 
of particular interest as it has the demand to handle the 
carbon produced. Prior studies on methane pyrolysis 
indicated salt loss due to intercalation into the carbon 
product, hindering economic viability.  This study aims to 
characterise carbon produced from methane pyrolysis in a 
molten lithium salt mixture to enhance the economics of 
this process, as pyrolytic carbon with lithium intercalated 
is suitable anodes for lithium-ion batteries.  
 

Performing methane pyrolysis in molten salts (LiBr-
NaBr and LiCl-NaCl) has provided promising results for 
carbon commercialisation. All samples of pyrolytic carbon 
produced from the process exhibit a mixture of graphitic 
and amorphous structures. TGA, TEM, ICP-MS, and XRD 
analysis suggested that lithium was intercalated into the 
carbon complex. The carbon derived from LiBr-NaBr salts 
contained a higher degree of graphitisation, lithium-to-

sodium ratio and high degree of lithium intercalation. This 
indicates that it could be a suitable anode material for 
lithium-ion batteries 
 
 

5. Outlook  
 

This study provides an analysis of the primary 
characteristics of pyrolytic carbon that are associated with 
the performance of the Li-ion anode. The following step 
would be to benchmark the capabilities of pyrolytic carbon 
as the anode of Li-ion batteries, given that the features of 
pyrolytic carbon produced were promising for Li-ion 
batteries. Each carbon sample will be used to generate the 
anode, which will then be tested in a coin cell. The analysis 
would be focused on how pyrolytic carbon produced from 
different salt mixtures and catalysts will affect the capacity 
of the coin cell.  

 
In this investigation, not all analytical procedures were 

utilised perfectly. The TGA results provided in Section 3.2 
had some trends that were not aligned with the literature. 
The discrepancy from the expected trend could be due to 
the high combustion rate. Therefore, in future 
experiments, the combustion rate should be lowered. 
Additionally, CHNS elemental analysis should be 
conducted on carbon samples to obtain and validate 
carbon purity. 
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pharma compounds 
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Abstract In this work, we intend to investigate the performance of a fully computational method to predict the pKa value 
of two API of interest, ibuprofen and procaine. Using these pKa values along with the predicted values of the activity 
coefficient of these API, obtained using a cutting-edge equation of state SAFT-γ-Mie, we try to predict the pH dependent 
solubility profiles of the API of interest and assess the performance of these models by comparing them to experimental 
data. We approach this problem by implementing a quantum-mechanical method to calculate the values of the pKa which 
as opposed to the original research by Ho and Ertem will further be linearly regressed to correct for the systematic error 
given by the quantum-mechanical method. Using this linear regression technique, we managed to increase the accuracy 
of the predicted values of the pKa of the API of interest threefold compared to the original research. In terms of pH-
solubility profiles, the predicted solubility tends to be higher than the experimentally determined one, moreover in the 
case for ibuprofen an unusual curvature is observed in the predicted profile which has no physical meaning and is most 
likely due to numerical issues generated by the choice of buffering agent. 
 
 

1.Introduction 
 
The poor solubility of drugs is a common problem 
that can lead to low bioavailability and limited 
efficacy. In the gastrointestinal (GI) tract, where 
drugs are absorbed, the pH can vary greatly 
(Prescott, 1974). The solubility of ionisable drugs 
is dependent on the pH of the surrounding medium 
and the drug's pKa value (Shoghi et al., 2013). 
Therefore, obtaining the pH-solubility profile of a 
new drug is essential for predicting its 
bioavailability. While experiments are the most 
reliable way to determine pKa, they can be 
inconvenient and costly at the early stages of drug 
design for a new API (active pharmaceutical 
ingredient). In addition, conducting experiments on 
molecules that may be discarded at later stages of 
development can lead to a loss of time, money, and 
resources. In contrast, a fully computational 
approach offers a more desirable alternative for 
obtaining pH-solubility information about potential 
API at an early stage. This method can quickly 
identify and eliminate poor candidates, allowing 
experimental resources to be focused on the most 
promising API.  
Obtaining the pKa of a new ionisable API is crucial 
before it’s pH-solubility profile can be produced. 
Previous work has been conducted by Ho and Ertem, 
where they used quantum-mechanical methods to 
predict pKavalues of different molecules (Ho and 
Ertem, 2016). In particular the thermodynamic cycle 
method was used and pKawas found to be within 
3.8-6.2 pH points of experimental values. In 
determining these pKavalues, a variety of solvation 
models were used and optimised at different levels 
of theory. 
     Ho and Ertem attribute the discrepancy between 
the predicted pKaand experimental pKavalues, to a 
systematic error. This has also been identified by 
researchers in the MSE group at Imperial College 
London. In this paper, we aim to address this 
discrepancy and improve the pKaprediction through 

systematic error elimination achieved via a simple 
linear regression model.  
     The focus of this research is on two ionisable API 
of interest, ibuprofen and procaine. Ibuprofen is a 
non-steroidal anti-inflammatory drug which is 
widely used and available over the counter 
(Drugbank, 2005a). Procaine is a local anaesthetic 
drug which is used for peripheral and spinal nerve 
block (Drugbank, 2005b). Since these drugs are 
common, pH-solubility experimental data will be 
easier to acquire as they have been well studied, this 
allows for a good assessment into the effectiveness 
of this proposed computational method. 
The aim of this research is twofold. The first aim is 
to predict the values of the pKaof these API using a 
two-stage procedure, which consists of a 
preliminary prediction via a quantum-mechanical 
approach followed by refinement of the preliminary 
predictions using a linear regression model. The 
second aim is to then use the predicted values of 
pKa to obtain the pH-solubility profile of the API of 
interest and assess their performance against 
experimental data. 
     The remainder of this paper is laid out as follows. 
Firstly, we will outline the two-stage method used to 
obtain the predicted values of pKafor both API of 
interest. We then outline the method used to obtain 
pH-solubility profiles for the API of interest and 
assess their performance against experimental data. 
Next, we will present the results of our investigation 
along with some analysis. Finally, we will 
summarise the conclusions of the research and 
discuss the implications of our findings  
 

2.Background and Methods 
 
The general purpose of this work is to study the 
performance of a fully computation approach to 
predict the pKavalues and the solubility profile at 
varying pH values for two ionisable active 
pharmaceutical ingredients (API) of interest, 
ibuprofen and procaine. To predict the pKa values 
for the API of interest, the thermodynamic cycle 
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method (Ho and Ertem, 2016) was chosen for this 
work. To predict the solubility profile of an ionisable 
API one must know both the pKa and activity 
coefficient value for the API. The pKawill be 
obtained using the method specified above and will 
be refined using a linear-regression model, and the 
activity coefficient will be predicted using a cutting-
edge equation of state SAFT-γ-Mie.  
 
2.1 pKa Prediction: 
 
In general, the acidity constant of the API or of its 
conjugated acid, if the API is a base is used, Ka. This 
constant quantifies the chemical dissociation of the 
API in water and is defined according to Equation 
(2), this definition is used here to be consistent with 
the original research made by (Wehbe, 2022). The 
chemical dissociation of the API of interest in water 
is described using Equation (1), using the general 
notation for the dissociating acid as HA and the 
ionised form of the acid A-.  
 
HA + H2O → A- + H3O+   (1) 

 

Ka, HA
m = (

mA- m
H3O+

mHA
)(

γ͂m,  A-γ͂
m, H3O+

γ͂m, HA
)   (2) 

 
In Equation (2), Ka, HA

m  represents the molality 
dissociation constant of the API, where HA 
represent the API or its conjugated acid if the API is 
a base. In the same equation mi and γ͂m,i represent the 
molality and the asymmetric molal activity 
coefficient of compound i. In general, however, it is 
not the dissociation constant that is mostly used, but 
its negative logarithm in the base of 10, the pKa, this 
is defined in Equation (4) below. 
 
pKa = − log10 (Ka, HA

m )                                                (4) 
 
In our study we decided to use a quantum-
mechanical based thermodynamic cycle method 
plus a systematic error elimination method to predict 
the value of the pKa of the API of interest. The 
preliminary estimate of this value is calculated using 
Equation (5) and the thermodynamic cycle 
presented in Figure 1. 
 

pKa = ∆Gaq
*

RT ln (10)
                                                               (5) 

 
To do this, we follow the approach set up in Ho and 
Ertem (Ho and Ertem, 2016). We use a thermocycle 
approach, Figure 1, in conjunction with the 
continuum solvation model to calculate the energies 
of solvation and liquid phase geometry 
optimizations. The reason we chose to use the 
thermocycle approach instead of the “direct 
method” defined by Ho and Ertem is the fact that the 
thermocycle method gives us a greater flexibility in 

selecting the level of theory for different 
calculations, allowing us to reach a better match 
between the model used and the level of theory. This 
means that for the gas phase calculations we select a 
high level of theory – namely G3MP2 - to assure 
good accuracy and for the solvation energy 
calculations we select the level of theory that is 
consistent with the parametrization scheme of the 
solvation model in Ho and Ertem. The solvation 
model we used to calculate the solvation energies 
and optimise geometries was SMD-M062X with a 
basis set 6-31+G(d). 
 
Below, Figure 1, we present the general 
thermodynamical cycle used to perform all the 
calculations in our work. The cycle represents the 
dissociation reaction of a general acid HA, Equation 
(6). In order to calculate the value of the pKa of HA 
one should use Equation (5). As it can be seen from 
it, all that is needed to use Equation (5) is the change 
in the standard Gibbs free energy of the dissociation 
reaction in the liquid phase, ∆G(aq)

* . According to the 
thermocycle method in the original work (Ho and 
Ertem 2016) this change in energy should be 
obtained from Equation (7). 
 
 
HA + H2O → A- + H3O+                                        (6) 
 

 
Figure 1. Generic thermodynamic cycle reproduced from Ho and 
Ertem (Ho and Ertem, 2016). 
 
∆G(aq)

* = ∆G(g)
* - ∆GS

* (HA)+ ∆GS
* (H+ )+∆GS

*(A-)  (7) 
 
In Equation (7), ∆G(g)

*  stands for the change in 
standard Gibbs free energy of the dissociation 
reaction in gas phase and ∆GS

* (HA), ∆GS
* (H+) and 

∆GS
*(A-) represent the solvation energies for HA, 

H+ and A-. All of these are calculated using the 
quantum-mechanical approach described above and 
in (Ho and Ertem, 2016). All the calculations were 
performed in the software Gaussian 16. The value 
of pKa obtained from this method represents the 
preliminary estimation of it. We call it preliminary 
estimation as it has been proven by Ho and Ertem 
and by the work of other members in the MSE 
group at Imperial College London that this 
quantum-mechanical based technique gives a 
systematic error in the predicted value of the pKa. 
In our work we intend to correct this systematic 
error by applying a scaling factor and a shifting 
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term that can be derived from a linear-regression 
model, as it has been proved by the work of 
members in our group (MSE Group, Imperial). 
 
2.1.1 Linear-Regression Model: 
 
Once the preliminary estimates for the API of 
interest are calculated, they can be refined using a 
linear-regression model. To do this, the linear 
model must be based on experimental values for 
the pKa of small molecules. The molecules chosen 
for the model must be similar in structure to the 
target API for which the preliminary pKa value 
must be corrected. It is natural then to expect that 
each of the API of interest will have its own 
separate linear model and if the API is diprotic then 
two linear model should be built for that API. In 
this work the API of interest are ibuprofen and 
procaine. Ibuprofen is an acidic monoprotic API, 
therefore only one linear model should be built for 
it. On the other hand, procaine is a diprotic basic 
API, hence two linear models will have to be built 
for it. Regardless of the API, the linear model is 
built in the same manner. For each API - or more 
accurately for each acidic/basic site, a set of 
molecules must be compiled, ones that are similar 
in structure to the acidic/basic site that is desired to 
be studied. These sets of molecules must be well 
known and experimental data for their value of the 
pKa must exist and must be collected. All these sets 
are inputted into the quantum mechanical method 
chosen for this study and their preliminary 
estimations for the values of the pKa are calculated. 
Then the preliminary estimated values for the pKa 
are linearly regressed against their experimental 
counterparts, hence obtaining the linear model. The 
model takes as input the preliminary estimate for 
the pKa value of the API, and outputs the refined 
value. These refined values are considered to be the 
final values for the pKa of the API of interest in 
this work. All of the results, the linear models and 
their accuracy, and the refined values for the pKa of 
the API of interest are presented in the Results and 
Discussion section.  
 
2.2 Activity Coefficient Prediction:  
 
The values for the activity coefficients for 
ibuprofen and procaine at different values of the 
pH of the solution were calculated using a highly 
accurate, cutting-edge equation of state SAFT-γ-
Mie. This equation of state was deemed to be very 
accurate in predicting the values of the activity 
coefficients of various compounds in different 
solutions, as shown in the work done by (Wehbe, 
2022). SAFT-γ-Mie is an equation of state based on 
statistical-mechanics perturbation theory. Its main 
function is to calculate the total Helmholtz free 
energy of the system of interest  (Papaioannou et 

al., 2014). After this is obtained, it can be 
manipulated using standard thermodynamic 
relations to get the value of the activity coefficient 
(Wehbe, 2022). The Helmholtz free energy 
calculated by SAFT-γ-Mie is defined in Equation 
(7) below, in the same way Wehbe defined it in her 
work (Wehbe, 2022) 
 
A = AIdeal  + AMono  + AChain  + AAssoc  + AIon + ABorn  
                                                                              (8) 
 
In Equation (8), A stands for total Helmholtz free 
energy, AIdeal represents the ideal contribution to 
the total Helmholtz free energy and the rest of 
terms stand for the monomeric, chain, association, 
ion and Born contributions to the total free energy 
of the system, respectively (Wehbe, 2022). As it is 
illustrated in Equation (8), the total Helmholtz free 
energy of the system is modelled as the sum of 
different terms, each term representing the 
contribution to the total free energy of different 
factors. This follows the underlying perturbation 
theory approach (Papaioannou et al., 2014). The 
activity coefficient is defined in the same way 
Wehbe defined it in her work (Wehbe, 2022) 
Equation (9). 
 

 γHA(T,P,xL) = φ̂HA(T,  P, xL)
φHA

* (T, P)
                                   (9) 

 
γ ͂i= γi

γi
∞                                                                  (9a) 

 
γ ͂m,i= xH2Oγ ͂i                                                         (9b) 
 
In Equation (9), γHA represents the symmetric 
activity coefficient of HA at given temperature T, 
pressure P and liquid phase composition vector xL. 
Moreover, φ̂HA represents the fugacity coefficient 
of HA in the solution at the given temperature 
pressure and composition, and φHA

*  represent the 
fugacity coefficient of pure HA at the same 
temperature and pressure. In Equation (9a), γ͂i 
stands for the asymmetric molar coefficient of 
component i and γi

∞ stands for the symmetric 
activity coefficient at infinite dilution of 
component i. Equation (9b) is used to obtain the 
asymmetric molal activity coefficient of component 
i, γ͂m,i which will be used extensively in this work. 
Coming back to Equation (9), to obtain the fugacity 
coefficient φ̂HAuse Equation (10) below. In this 
equation μi

Res(T, P, x) stands for the residual 
chemical potential of component i (which can of 
course be our general acid HA) at temperature T, 
pressure P and composition x, and R represents the 
universal gas constant. 
 

ln φ̂i(T, P, x)= μi
Res(T, P, x)

RT
                                  (10) 
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To obtain the residual chemical potential in 
Equation (10), Equation (11) is used. In this 
equation ARes  stands for the residual Helmholtz 
free energy at the given temperature T, volume V 
and composition x. Ni represents the number of 
moles of component i in the mixture and Z is the 
compressibility factor. 
 

μi
Res(T, P, x) = ∂ARes(T,  V,  x)

∂Ni
|
T, V, Nj≠i

−  RT ln Z(T, P, x)  

                                                                            (11) 
 
To obtain the residual Helmholtz free energy in 
Equation (11), the compressibility factor Z, and the 
pressure P of the system use Equations (12), (13), 
(14), (15), respectively. 
 
ARes = A − AIdeal                                                (12) 
 
Z = PvP (RT)⁄                                                      (13) 
   
vP= VP N⁄                                                             
(14) 
 
P = − ∂A(T, V, x)

∂V
|
T, N

                                              (15) 

 
In Equation (14) VP represents the volume at the 
given pressure P, and N represents the total number 
of moles and hence vP stands for the molar volume 
at the given pressure. For in-depth analysis of these 
equations check the work done by (Wehbe, 2022). 
It must also be noted that the bolded variables are 
vectors, and the normally written ones are scalars. 
To be able to use SAFT-γ-Mie one must first create 
the molecular model of the molecule of interest. 
This equation of state treats the chemical 
compounds as fused chains of spherical segments; 
this set of segments, represents the molecular 
model of the compound and these segments 
represent the different chemical groups that form 
the molecule of interest (Papaioannou et al., 2014). 
The molecular models for ibuprofen, procaine and 
their ionised forms were taken from another work 
(Wehbe, 2022) and we reproduce them in the 
Results and Discussion section, in the respective 
Case Studies. 
 
Finally, to use SAFT-γ-Mie, one must calculate all 
the parameters required for the groups used in the 
molecular models of the molecules of interest. In 
the case of ibuprofen and procaine all the required 
parameters for all the groups of interest were 
calculated in another work by (Wehbe, 2022). We 
take these parameters from their work; for more 
details about how these parameters were calculated 
check the work done by (Wehbe, 2022). Using the 
molecular models for ibuprofen, procaine and their 
ionised forms, and the parameters calculated by 

Wehbe for their groups, we implement the SAFT-
γ-Mie equation of state to predict the value of the 
activity coefficients of the molecules of interest in 
solution at different values of pH. 
 
2.3 Solubility Profile Prediction:  
 
At this stage we have the means to calculate the 
value for both the pKa and the activity coefficient 
for the API of interest, ibuprofen and procaine. 
Hence, we can proceed to calculate the solubility of 
these API at different values of the pH of the 
solution. To do this, one must solve Equations (16) 
to 21 simultaneously, these have been taken from 
(Wehbe, 2022), while specifying the value of the 
pH of the solution of interest.  
 

ln xHA
L (T, P)= ∆hHA

fus (THA
fus , P)

R
( 1

THA
fus - 

1
T

) + 1
RT ∫ ∆cp, HA(T', P)dT'THA 

fus

T - 
1
R ∫ ∆cp, HA(T', P)

T'
dT'- ln γHA(T, P, xL)THA

fus

T                (16) 
 

Ka, HA
m = (

mA- mH3O+

mHA
) (

γ͂m, A- γ͂m, H3O+

γ͂m,  HA
)                          (17) 

 
Kw= ( mH3O+ mOH- )(γ͂m, H3O+γ͂m, OH-)                   (18) 
 
∑ qimi=0N

i=1                                                              (19) 
 
pH= - log10(aH3O+ )                                             (20) 
 
∑ xi

N
i=1                                                                         (21) 

 
 
Equation (16) represents the solid-liquid 
equilibrium between the solid API and its 
solubilized neutral form. Equation (17) represents 
the chemical dissociation of the API. Equation (18) 
represents the chemical dissociation of water. 
Equation (19) represents the electroneutrality 
equation of the solution. Equation (20) represents 
the definition of pH and Equation (21) represents the 
mass conservation equation - the sum of the molar 
fractions of all components in a mixture must be 
equal to unity. 
 
Once all of these equations are solved one can 
retrieve the value of the solubility of the API in the 
solution at that specified pH. The solubility of the 
API was defined, Equation (22), in the same way as 
(Wehbe, 2022) did in her work. It must be noted 
that Equation (16) will be modified for procaine, 
that is the integration terms will be taken out. 
 
SAPI= ρMw(mHA+ mA- )                                      (22) 
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In Equation (22), ρ stands for the density of the 
solution, Mw for the molecular mass of water and 
mHA stands for the molality of HA and mA- for that 
of A-. 
     It must be noted that in this work the solubility 
analysis was performed only until pHmax, a quantity 
defined by (Wehbe, 2022) in her work as the value 
of pH at which the salt of the ionisable API starts to 
precipitate. To calculate pHmax one must solve 
Equations (16) to (21) and Equation (23) 
simultaneously. Below, we present Equation (23), 
which represents the solubility product equation for 
the salt of the API. It must be noted the solubility 
product equation used here is not the same as the 
one used by Wehbe. 
 
Ksp= ( mA-  mB+)(γ͂m,  A- γ͂m,  B+ )                         (23) 
 
Now pHmax can be calculated. Using the values of 
pKa, activity coefficient and pHmax one can now 
obtain the solubility profiles for the API of interest. 
These profiles are presented in the Results and 
Discussion section together with all the results 
obtained from this work. 
 

3. Results and Discussion 
 
3.1 Case Study 1: Ibuprofen 
 
3.1.1 Thermodynamic Cycle: 
 
Here we present the particular form of the 
thermodynamic cycle used to predict the pKa value 
for ibuprofen. This cycle represents the dissociation 
rection of ibuprofen. 
 

 
Ibuprofen(aq)  → H(aq)

+ + Ibuprofen(-)(aq)                     Equation Z 
 
Figure 2. The thermodynamic cycle for ibuprofen. 

 
3.1.2. Linear-Regression Model: 
 
For ibuprofen, the small molecules chosen to make 
the linear regression were taken to be as similar as 
possible in structure to ibuprofen. The data source 
for the experimental pKa for the small molecules 
were determined using a pH-metric method and 
were taken from (Haynes, Lide and Bruno, 2014). 
This was done since the pH-metric method is one of 
the most common methods of pH determination and 
this allowed for a larger selection of potential 
molecules for the regression, however there were 
still difficulties in obtaining pKa values for some 
molecules which had large similarity to ibuprofen. 

The chosen molecules for ibuprofen were: 
Acetic acid, propanoic acid, phenylacetic acid, 2-
phenylpropanoic acid, 4-methylbenzoic acid , 4-tert-
butylbenzoic acid. However, phenylacetic acid and  
4-tert-butylbenzoic acid were found to be outliers 
and removed from the final model. The structures 
for the final regression model are presented along 
with the structure for ibuprofen in the figure below 
a)  

 
b) 

 
c) 

 
 
d) 

 
e) 

  
Figure 3. Structures for the small molecules used in the linear 
regression along with the structure for ibuprofen. a) ibuprofen b) 
acetic acid c) propanoic acid d) 2-phenylpropanoic acid f) 4-
methylbenzoic acid 
The linear regression model created using the small 
molecules shows excellent correlation between the 
Gaussian pKa and the experimental pKa, this is due 
to the systematic error present in the Gaussian 
calculations. These models are shown in Figure 4 
along with the R2 value and the visualisation. While 
these models could be constructed using any 
combination of molecules, by using molecules 
which have similar chemical groups to ibuprofen we 
can have pKa values which are in close proximity to 
each other. This allows a linear model to be easily 
created. The high correlation could also be due to the 
systematic error being specific to different chemical 
groups, which was also a suspicion that Ho and 
Ertem had. 
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Figure 4. Linear regression model used to correct the preliminary 
Gaussian-predicted pKa value for ibuprofen. The blue dashed line 
represents the model and the R2 value is given along with the 
model equation. The variable y is the experimental value and x is 
the Gaussian pKa. To correct the preliminary Gaussian-predicted 
pKa value it is input as x into the model equation to generate y; 
the corrected Gaussian-predicted pKa value. Each of the black 
data points corresponds to a different molecule used to construct 
the linear regression model. By increasing values of Gaussian 
pKa these are:  
4-methylbenzoic acid, 2-phenylpropanoic acid, acetic acid, 
propanoic acid. 
 
3.1.3. pKa prediction 
 
Using the linear regression model created in the 
prior section, the preliminary Gaussian-predicted 
pKa value for ibuprofen was corrected. This has 
been reported in Table 1 along with the literature 
values for the pKa.  
     Ho and Ertem (Ho and Ertem, 2016) reported that 
the general precision of predicted pKa values for 
carboxylic acids using the SMD-M062X solvation 
model and thermodynamic cycle method is within 
2.0 pH points of the experimental values. Using the 
same model and same thermodynamic cycle 
method, by applying a linear regression it can be 
seen that our precision has increased to be within 
0.05 pH points of the mean literature pKa value for 
ibuprofen, illustrating the large increase in precision 
that has been achieved by applying the systematic 
error correction.  
 

Literature pKa QM calculated 
pKa 

4.51 4.42 4.85 4.54 
 
Table 1. Literature values for the pKa of the ibuprofen along with 
the corrected Gaussian-predicted pKa values at T=298.15K 
P=1atm. The literature pKa values were taken from (Domańska 
et al., 2009). These literature values were determined using the 
pH-metric method as it was the most common method for 
determining pKa experimentally.  
 

3.1.4. Activity Coefficient prediction: 
The molecular models used to model ibuprofen and 
its ionised form were taken from another work along 
with all the required parameters for the groups of 
interest, this work is (Wehbe, 2022). These models 
are presented in Figure 5, below. 
 

Figure 5. The molecular model used to model ibuprofen, image 
taken from (Wehbe, 2022). The molecular groups used to model 
ibuprofen were: 3 x CH3, 4 x aCH, 1 x aCCH, 1 x CCH2, 1 x CH, 
1 x COOH. The ionised form of ibuprofen was modelled using 
the same groups as the molecular ibuprofen, the only difference 
is that the COOH group in molecular ibuprofen was replaced by 
the COO- group in the ionised form. 
 
Using these molecular models and the parameters 
for all the required groups - all taken from (Wehbe, 
2022) - one can now implement the SAFT-γ-Mie 
equation of state to predict the value of the activity 
coefficient of ibuprofen in solution.  
 
3.1.5. Solubility Prediction:  
Using the corrected quantum-mechanical pKa value 
and the activity coefficient, the pH-solubility profile 
was produced for ibuprofen. This was done by 
following the methodology outlined in section 2.2. 
pHmax was also calculated as outlined in section 2.2 
and using a pKa of 4.54 the pHmax was calculated to 
be 6.84 for ibuprofen. The pH-solubility profile was 
plotted against experimental data for pH-solubility, 
which was determined via saturation shake flask and 
pH-metric methods. A reasonably good fit is 
observed qualitatively.  
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Figure 6. pH-solubility profile for ibuprofen against experimental 
data taken from (Avdeef, Berger and Brownell, 2000). Blue curve 
represents the QM pH-solubility profile. Black dots represent the 
experimental data, obtained using pH-metric and SSF method. 
Dotted vertical line is plotted at pHmax to outline the sections 
before and after pHmax. Plotted at conditions T = 298.15K, P= 1 
atm. 
 
An overprediction is observed in the predicted 
solubility, this is most probably due to the calculated 
pKa not being in complete agreement with the 
literature pKa value. Our investigation was only 
concerned with the pH-solubility behaviour prior to 
pHmax, however a strange curvature was seen in the 
profile beyond pHmax. This was also observed by 
other members in the MSE group and is suspected 
to be due to numerical error. Due to time constraints 
in this investigation, this deviation was explored 
however remains unresolved. This deviation is a 
point for improvement which can be explored in the 
future. Perhaps a better agreement with 
experimental data can be achieved at pH values 
beyond pHmax. 
 
3.2 Case Study 2: Procaine 
 
3.2.1. Thermodynamic Cycle: 
 
Here we present the particular forms of the 
thermodynamic cycles used to predict the two 
pKavalues for procaine. In Figure 7, the thermocycle 
used to predict the pKa value for the first 
dissociation reaction for procaine is shown, and in 
Figure 8 the thermocycle used for the second 
dissociation reaction for procaine. 

 
 

Figure 7. The thermodynamic cycle used to predict the value of 
the pKa of the first dissociation reaction for procaine.  

 
 

Figure 8. The thermodynamic cycle used to predict the value of 
the pKaof the second dissociation reaction for procaine. 

 
The two dissociation reactions for procaine are 
presented below in Equation (24) and (25). 
 
Procaine(+)(aq) → H(aq)

+ + Procaine(aq)                     (24)                       
 
Procaine(2+)(aq) → H(aq)

+ + Procaine(+)(aq)             
(25)                        

 
3.2.2. Linear-Regression Models: 
Using all of the equations presented in the Section 
2.1 one can reproduce the initial estimate of the 
pKa value for the API of interest that we obtained 
using a quantum-mechanical approach. These 
predicted values of the pKa of procaine have been 
refined using a linear-regression model meant to 
correct the systematic error given by the original 
quantum-mechanical method. For procaine, which 
is a diprotic API, two linear models will need to be 
developed, one for the aliphatic amino basic group 
and another for the aromatic amino basic group. 
For the aliphatic basic site of procaine the 
following molecules were selected to build the 
linear refinement model: diethylamine, 
dimethylamine and ethylamine. For the aromatic 
amino basic site, the following molecules were 
considered fit to be included in the linear model: 4-
nitroaniline, ethyl 4-aminobenzoate and aniline.  
These structures, along with the structure for 
procaine have been shown in Figure 9 below. 
Comparing the structures of these aromatic and 
aliphatic groups with the structure of the molecules 
selected for the sets to be linearly regressed, a great 
similarity should be observed between the target 
amino group and its respective set of selected 
molecules. 
a) 

 
 
b) 
 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 
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Figure 9. Chemical Structure of a) Procaine. The small 
molecules used in the linear regression are shown as well.  
For the aliphatic basic site, the molecules used were: 
b) diethylamine c) dimethylamine d) ethylamine 
For the aromatic basic site, the molecules used were: 
e) 4-nitroaniline f) ethyl 4-aminobenzoate g) aniline 
 
Using these two sets of molecules the linear models 
have been developed, they are presented in Figure 
10 and 11.  

 
Figure 10. Linear-Regression Model for the aliphatic amino site 
of procaine. It can be seen from the R2 = 0.993 as well as from 
the graph itself that this is a good fit. The molecules used in the 
final fit were: diethylamine, dimethylamine and ethylamine. 
 
 

Figure 11. Linear-Regression Model for the aromatic amino site 
of procaine. It can be seen from the R2 = 0.968 as well as from 
the graph itself that this is a good fit. The molecules used in the 
final fit were: 4-nitroaniline, ethyl 4-aminobenzoate and aniline. 
 
 

3.2.3. pKa Prediction: 
Using these linear models, we have the intention to 
remove the systematic error given by the quantum-
mechanical method and hence increase the precision 
of the predicted values of the pKa for the API of 
interest. So, for the aliphatic site of procaine a pKa 
of 10.62 is obtained, using the linear model 
presented in Figure 10. When compared to the 
experimental value obtained by (Cairns, 2012, p.70) 
it doesn’t seem to be a good agreement between the 
two. However, if we are to compare to other 
quantum-mechanical calculated pKa value for the 
aliphatic site of procaine we would discover that the 
precision of the method presented in this work is 
threefold better than the general prediction 
presented by other studies. For, instance Ho and 
Ertem (Ho and Ertem, 2016) report a general 
precision of the original method of 4.6 pKa points, 
whereas in our work we obtain a precision of 1.6 pKa 
points at our lowest performance.  
 
Moving to the aromatic amino basic site of procaine, 
using the proposed linear model in Figure 11 the 
predicted value for this pKa was found to be 2.04. 
When compared to the experimental value of 2.5 
(Cairns, 2012, p.70) a very good agreement can be 
seen. On top of this good agreement, there is also the 
knowledge that the general precision of the original 
method was found to be 4.6 pKa points (Ho and 
Ertem, 2016). In this case our precision is of 0.46 
pKa points, tenfold better.  
 
3.2.4. Activity Coefficient Prediction: 
The molecular models used to describe procaine and 
its ionised forms were taken from another work, 
(Wehbe, 2022) and we just reproduce them here in 
Figure 12 to 14, below. All the required parameters 
for all the groups of interest used in these models 
were calculated by (Wehbe, 2022) and we retrieve 
them from there.  
 

 
Figure 12. The molecular model used to describe procaine, image 
taken from (Wehbe, 2022). The procaine molecule was modelled 
using the following groups: 2 x CH3, 4 x CH2, 1 x N, 4 x aCH, 1 
x aCCOO and 1 x aCNH2. 
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Figure 13. The molecular model used to describe procaine 
mono-cation, image taken from (Wehbe, 2022). To describe 
procaine monocation the same groups were used as to describe 
molecular procaine, the only difference is that the N group in 
molecular procaine was replaced by the N+ group in procaine 
monocation.  
 

 
Figure 14. The molecular model used to describe procaine 
dication, image taken from (Wehbe, 2022). The groups used to 
describe procaine dication are the same as those used to describe 
procaine monocation, the only difference is that the aCNH2 
group in procaine monocation was replaced by the aCNH3

+ 
group in procaine dication.  
 
Using the molecular models presented above in 
Figure 12 to 14 and the parameters retrieved from 
(Wehbe, 2022) one can now implement the SAFT-
γ-Mie equation of state to calculate the value of the 
activity coefficient for procaine in solution.  
 
3.2.5. pH-Solubility Profile Prediction: 
Following the method described in the Background 
and Method section of this work together with the 
particularities for procaine (linear-regression 
models, molecular models and the fact that procaine 
is a diprotic base hence two chemical dissociation 
reaction may occur and the pKa value will be 
calculated for both of these reactions. etc.) one can 
now predict the solubility of procaine in solution at 
a given value of the pH, and from here the pH-
solubility profile for procaine can be obtained. This 
profile was calculated only to pHmax (Wehbe, 2022),  
which was found for procaine to be 7.83. This value 
is not in good agreement with the one calculated by 
Wehbe for procaine, 6.21, judging that pKa is 
measured in logarithmic scale, hence an error of 
1.62 in logarithmic scale, represents in linear scale 
an error of over one order of magnitude. All the 
work done in this research was performed according 
to the method described by Wehbe. The only 
difference between her work and ours is the value 
used for the pKa of procaine. In the work by Wehbe 
this value was taken from literature whereas in our 
work we calculated it using a fully computational 

quantum-mechanical method. Hence, the 
discrepancies between the work done by Wehbe and 
this work can be attributed to the predicted value of 
the pKa not being identical to the experimental one 
used by Wehbe. 
 
In Figure 15 we present our calculated pH-solubility 
profile for procaine. Its performance would have 
ideally been compared to a set of experimental data, 
however the data available for procaine is not 
sufficient to draw a conclusive analysis, hence we 
decide to compare our profile to the one obtained by 
Wehbe. The procaine pH-solubility profile of 
Wehbe has been shown to agree very well with 
existing experimental data available for procaine 
and we decide to use this profile as our standard, 
considering it to be experimental level data. 
 

 
Figure 15. The pH-solubility profile for procaine calculated using 
the pKa values obtained from the thermodynamic cycle method 
and the activity coefficient value obtained from SAFT-γ-Mie (red 
curve) compared to the pH-solubility profile obtained by Wehbe 
(black curve). It can be seen that the two profiles agree 
qualitatively, they have the same shape, but disagree from a 
quantitative point of view, they do not superimpose. We attribute 
this disagreement to the calculated values for pKa of procaine not 
being identical to the experimental ones used by Wehbe. 
Comparison is performed at conditions of T=298.15K and P = 
1atm. 
 
As it can be seen from Figure 15, the pH dependent 
solubility profile for procaine developed in this 
work captures the qualitative essence of this 
property by having the same shape as the profile 
developed by Wehbe which we consider to be 
experimental level data. Hence from a qualitative 
point of view our model performs well, it manages 
to predict the steep increase in the solubility of 
procaine at the point where ionization starts to take 
place and play an important role in the overall 
solubility of procaine. On the other hand, 
quantitatively the performance of the solubility 
model developed in this work decreases drastically 
compared to the standard we chose. The pH-
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solubility model for procaine developed in this 
work agrees quantitatively with the one developed 
by Wehbe only in the pH region 11-14 and 
disagrees all throughout the rest of the pH 
spectrum. A shift in the curve can be seen in Figure 
15, where the original model by Wehbe (Wehbe, 
2022) predicts that the solubility of procaine starts 
to increase at a lower pH value than the one 
predicted by the model developed in this work. As 
stated before, all calculations performed in this 
work respect the method presented in the original 
work in (Wehbe, 2022) the only difference is that 
the two pKa values for procaine were calculated, in 
our work, using a fully computational method, 
whereas in the original work (Wehbe, 2022) they 
were taken from literature. Thus, we attribute this 
inaccuracy of our model to the values of the pKa of 
procaine not being identical to the experimental 
ones used by Wehbe. 
 

4. Conclusions 
 
Based on our investigations, we can conclude that 
the linear regression models have improved the 
accuracy of the predicted values for the pKa of the 
API of interest, as compared to the values obtained 
by Ho and Ertem. We have obtained a threefold 
increase in accuracy of the predicted values of the 
pKa. In terms of solubility predictions, we manage 
to obtain a fairly good qualitative agreement with 
the experimental data for both API of interest, 
however when the point of view is switched to a 
quantitative one, it can be easily concluded that the 
performance of the models developed in this work 
is quite poor in predicting the experimental data for 
the solubility of the API of interest. Moreover, 
there should be further investigations into 
improving the curvature issue observed in the 
ibuprofen pH-solubility profile. We suspect this 
issue could be due to the choice of the buffering 
agent used to control the pH value of the solution. 
Investigations should be performed with a variety 
of basic buffers to see whether this curvature issue 
can be addressed. To improve the general 
predictions of the solubility for the API of interest 
one should endeavor to increase the accuracy of the 
predicted values for the pKa. This could be done by 
implementing a stronger correction model than the 
simple linear one. It could be argued that only one 
predictor or one feature, namely the preliminary 
prediction for the pKa of the API of interest, is not 
enough to describe nor correct for the systematic 
error given by the quantum-mechanical method 
used in this work and the original research. One 
would be interested in pursuing a non-linear model 
that takes into account, along with the preliminary 
prediction of the pKa of the API, of interest some 
information regarding their chemical structure, 
such as aromaticity etc.  
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Abstract:  

The high cost associated with training employees is often mitigated by using non-immersive videos. VR has 
recently immerged as an alternative, but it remains to be seen if it is objectively more effective. EEG technology 
will therefore be used to bridge the brain-computer barrier (BCI) and objectively assess the mental performance 
during an assessment of two groups: Group A having received immersive training and Group B, non-immersive 
training. A combination of linear power spectral density ratios and machine learning models was used to quantify 
the levels of restfulness, mindfulness, engagement, alertness, and workload of the candidates. The values and the 
trends observed were compared to the commonly used subjective Nasa TLX survey to justify the use of EEG. It 
was found that immersive training allowed for higher concentration and focus than non-immersive training, but it 
proved to be a less restful experience for the user which could cause mental fatigue and negatively affect alertness 
through continued exposure. Although this was partly shown through the Nasa TLX survey, the results of the 
EEG were more consistent from one index to the other and from one participant to the other, as shown by the 
lower coefficient of variation. Further research is required to assess the effect of mental workload in an immersive 
environment on mental fatigue.  

 

Keywords: Electroencephalography (EEG), Virtual Reality (VR), Brain Computer Interface (BCI), Interactive 
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1. Introduction  
 
Skill training is a significant expense in the 

operation of any complex system with UK employers 
paying an average of £1,530 to train an employee in 
2020 [1]. Transforming a novice into a skilled personnel 
is cost, time and resource intensive often requiring large-
scale training infrastructure. Many industries such as 
medicine, manufacturing, education, maintenance and 
safety, therefore, try to mitigate these issues by utilizing 
video-based training, which is generally made by 
subject matter experts [2] [3] [4]. Interactive training has 
emerged as an alternative to these tutorials as 
individuals can train at their own pace by repeating 
simulations to improve their skills, practice often 
dangerous situations with less risk and learn from 
anywhere geographically. This switch to interactive 
training is expected to be accelerated by the recent 
advancements in immersive technologies such as virtual 
reality (VR). 

Electroencephalographic (EEG) technology can be 
used to bridge the brain-computer interface (BCI) and 
assess the effectiveness of such VR training [5]. EEG 
indices such as power spectral densities and their ratios 
are commonly used to characterise the response and 
attitude of individuals performing various tasks, but 
little research has been conducted in applying these 
methods to VR training [5]. This type of immersive 
training is usually only assessed through self-reporting 
instruments such as the Nasa TLX survey or the IEQ 
which are rarely objective. Another limitation of these 
surveys is that the users are expected to gauge and 
remember their feelings throughout the whole process at 
the end. 

This paper aims to assess the effectiveness of VR 
training by direct comparison with non-immersive 
training through EEG with two groups: 

1. Group A - Immersive: Subjects trained in 
immersive and interactive VR training, which we 
consider close to real-world training. 

2. Group B - Non-Immersive: Subjects trained in non-
immersive and non-interactive video-based 
training, for which we opted for a first-person point-
of-view recording of VR training.  
 

2. Background 
 

2.1 Immersive and Non-Immersive Training 
 

The effectiveness of immersive compared to non-
immersive training has been quantified before by 
comparing the performance of their subjects on an 
assessment after having either read a textbook, watched 
a video, or trained in VR [6]. However, the behaviour of 
the candidates in this study was only reported 

subjectively by making use of nine adapted emotion 
scales. Various meta-analyses’ of the effectiveness of 
immersive training has been performed over the years, 
especially in the field of education, which quantify the 
learning outcomes of students in different year groups 
taught in an immersive environment [7]. While the 
results also showed immersive training to be more 
effective than non-immersive, these studies looked 
directly at academic achievements and did not 
characterise the learning through the use of EEG 
technology. The limitations of immersive training have 
also been explored, however, to show that physical 
training is still more effective by comparing the 
performance of candidates who used a VR or a physical 
wooden puzzle [8]. 

2.2 Performance Measurements with EEG 
 
A systematic review of the application of EEG 

technology to effectively bridge the BCI showed that 
power spectral density (PSD) indices can be calculated 
to measure performance during various tasks ranging 
from flying a plane to arithmetic tests [5]. In literature, 
different EEG spectral powers have been associated 
with separate aspects of mental performance. A high 
alpha power (8-13 Hz), for example, has been linked to 
lower alertness but can also be a sign of cognitive fatigue 
[9] [10]. A decrease in mental awareness results in an 
increase in alpha power, and conversely a drop in alpha 
levels has been linked to the difficulty of a task 
increasing [9]. Beta power (13-30 Hz), on the other 
hand, has been associated with short-term memory 
alongside a change in working memory [11] [12] [13] 
[14] [15]. A higher beta power is a sign of a higher 
mental workload and of an increase in concentration 
levels [16] [17]. Finally, theta power (4-8 Hz) has been 
shown to rise with the difficulty of a task especially if it 
requires continued concentration which also leads to 
lower levels of alertness [18] [19] [9]. These frequency 
bands are the foundation of indices/ratios that enable 
further evaluation of mental performance. 

The use of multiple indices to quantify overall 
mental performance is necessary due to its diverse 
nature [20]. Given theta increases with concentration 
and alpha increases with lower alertness, a power 
spectral density ratio suggested in literature is 
theta/alpha which can be used to assess mental workload 
[21]. Moreover, fatigue has been linked to both a 
decrease in theta and an increase in alpha powers, which 
both impact mental workload scores [22] [23]. This ratio 
will be used alongside two other ratios: engagement, 
defined as the ratio of beta-to-alpha power and alertness, 
defined as the inverse of alpha power [24]. Given that 
beta increases with higher concentration and alpha 
decreases with increasing difficulty, engagement 
reflects the ability to visually process and synthesise 
information [25]. Furthermore, from the definition of 
alertness, we expect to see an increase in the alertness 
value when the alpha band decreases. The procedures to 
analyze the data laid out by Freeman and inspired by 
Pope et al. will also be used to calculate all the PSDs 
[24]. 
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As suggested by the systematic review of the 
application of EEG technology, two additional non-
linear indices were implemented from the Brainflow 
library in python which utilize a machine-learning 
model trained on all five EEG power bands [5]. 
 
2.3 EEG within VR 
 

EEG has also specifically been combined with VR 
to either create an adaptive environment such as a game 
that adjusts to the mental workload of the player to 
maximize engagement or to characterise behaviour in an 
immersive setting [26].  EEG was, for example, used to 
measure the cognitive load of people playing a game 
similar to Tetris in VR [27]. EEG indices have also been 
used to evaluate the effect that playing a VR game in a 
first-person, or third-person perspective has on 
engagement [28]. 

The research that is most closely related to this 
paper is one that investigates the technical feasibility of 
adaptive training in VR using alpha-based indices [29]. 
As mentioned earlier, our paper will use a combination 
of PSD ratios because of the diverse nature of mental 
workload. Although this research explores the feasibility 
of VR training, it only uses EEG as feedback to adapt 
the training and not as a performance assessment tool 
and therefore also does not make the comparison with 
non-immersive training.  
 
 
3. Methods 

 
3.1 Experiment Protocol  

To compare the effectiveness of VR and non-
immersive training, two groups of four were formed, 
with Group A receiving VR training and Group B 
receiving non-immersive training. The eight candidates 
were recruited through a survey in which they had to 
supply their personal contact details, age, and gender, 
and indicate whether they wore glasses. The age range 
of the candidates was 18 to 23 years old, and all were 
male. As part of the survey, the participants were also 
required to measure their head circumference with 
provided measuring tapes as well as complete a mental 
math test. The candidates were selected if their head 
circumference lay between 51 cm and 61 cm, as these 
were the only sizes the Ant Neuro Eego medium and 
large EEG caps were able to accommodate, and if they 
did not wear glasses so that they could comfortably wear 
the VR headset, a Pico Neo 2 Eye (All-in-one android-
based VR headset). Furthermore, given this research 
contained human subjects, we also collected ethical 
approval from the department and written consent from 
all the subjects. All data from the study was also 
anomalysed using a subject identification number. 

 
 
 
 

 
 
 

 
During the experiments, the EEG caps were fitted 

onto the heads of the participants (Figure 1) by aligning 
all the electrodes with the nine scalp sites of the 10-20 
system considered (F3, F4, C3, C4, P3, P4, Cz, Pz and 
Fz) [30][Appendix 9.3]. The central region of the scalp 
was chosen to prevent interference with the VR headset 
and help reduce noise. A conductive gel was added onto 
each electrode to bridge the scalp-electrode barrier and 
the EEG cap was adjusted until the impedance at each 
electrode was below 60 Hz. Each site was referred to 
Cpz, grounded at Fpz and the recorded sampling rate 
was of 500 Hz. The signals were notch filtered at 50Hz 
to remove UK-specific electrical interference during 
data acquisition [31]. 

The VR environment was then calibrated to the 
floor to ensure that all the elements of the test 
environment were at the correct height. Additionally, the 
fit of the headset was adjusted using a built-in 
application. 
 
3.2 Experimental Task  

 
To be able to normalize the EEG readings of the 

training and assessment, the candidates were first asked 
to complete a 30-second relaxation exercise with their 
eyes closed to serve as a base level, and a math test until 
they reached the median score of the survey results, to 
serve as the high level. The candidates were all given a 
pre-training task to get familiar with the buttons on the 
controllers and learn how to grab objects in VR. The 
training for group A candidates then consisted of 
performing the experimental task with audio commands 
and Group B candidates watched a recording of 
someone performing the experimental task. 

 
 
 
 

 
 
 

Figure 1: Subject wearing the VR Headset and EEG Cap 

EEG Cap VR Headset 
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As shown in Figure 2, the experimental task was a 
packing exercise in which the user is required to place 
an empty cardboard box on a work surface, attach a label 
on the side of the box, place two gears in the box in a 
specific order, close the box with a lid and send it off to 
the next processing step by placing it on a conveyer belt.  

Both groups were then assessed on the same 
experimental task in VR without any audio commands 
but if the participants could not remember the steps, they 
had the possibility to refer to a textbox indicating the 
next step. Participants were given as much time as they 
needed. 

 
3.3 Data Description  
 

The EEG activity of all the participants was 
measured during the relaxation exercise, math test, 
training, and assessment at the nine locations on their 
scalp. Each participant also completed a NASA TLX 
survey to collect a subjective assessment of their 
performance solely during the assessment [Appendix 
9.1]. The participants were first asked to rate out of a 
100 their perceived workload with six sub-scales (Table 
1):  

 
 

Table 1:  Nasa TLX Definitions for a given Index 

Index Definition 

Mental How mentally demanding was the 
task? 

Physical How physically demanding was the 
task? 

Temporal How hurried or rushed was the pace 
during the task? 

Performance 
How successful were you in 

accomplishing the task you were 
asked to do? 

Effort 
How hard did you have to work to 

accomplish your level of 
performance? 

Frustration How insecure, discouraged, irritated, 
stressed, annoyed were you? 

 

 
The reported scores from the scales were then 

weighed using results from paired choices between the 
same six indices. The survey data for groups A and B 
were analysed separately. The average completion time 
of the assessment was also measured for both groups.  

 
3.4 Analysis Methods  
 

The data collected with the EEG caps was first 
filtered for noise using the ANT Neuro software. A Fast 
Fourier Transform was then performed on data from 
each electrode for each participant to compute power 
estimates. These were split into five frequency bands 
(Table 2): 

 
 

Table 2: Frequency Intervals for a given Band 

Band Frequency interval (Hz) 
Delta 1-4 
Theta 4-8 
Alpha 8-13 
Beta 13-30 

Gamma 30-50 
 
       The power spectral density was then estimated 
using Welch’s method on two-second windows without 
considering the first and the last chunk to account for 
start-up and shutdown [32].  Mindfulness and 
restfulness indices were calculated using the Brainflow 
library in python with all five frequency bands for each 
two-second window.  Engagement, alertness, and 
workload were calculated for each two-second chunk 
using the following equations: 
 
 

         Engagement Index =  
Beta

Alpha
    (1) 

 
 

         Workload Index =  
Theta
Alpha

          (2) 

 
 

         Alertness Index =  
1

Alpha
           (3) 

 
 
This analysis was performed in python and the 

script can be found in the appendix [Appendix 9.2]. 
Each index's minimum and maximum values in all the 
two-second windows during the relaxation and 
mathematics exercises were used as low and high limits 
for each participant. The average values of each index 
for each participant were then normalized using those 
limits. The coefficient of variation (CV) was also 
calculated for each index, for each group, both for the 
EEG data and the Nasa TLX survey to compare the 
precision and consistency of the data.  

 

Figure 2: VR Experimental Task [33] 
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4. Results 
 

4.1 EEG Data  

 

Firstly, from Figure 3, we can observe that 
candidates who followed non-immersive training had 
higher restfulness. Secondly, we can see a 17.7% and 
21.3% increase in restfulness from the training to the 
assessment for Group A and Group B, respectively. As 
can be seen from Table 3, the training values for Group 
B have the highest CV at 66% which is still considered 
low variance as it lies below 100%.  

Looking at Figure 4, we can see that Group A has 
a mindfulness score for training higher than Group B. 
Furthermore, looking into the change between training 
and assessment, Group A and B had a 14.4% drop and 
31.3% decrease respectively in mindfulness. Group B’s 
training data, with a CV of 97% (Table 3), had the 
highest variance but again, given it is below 100%, can 
be considered low.  

 

As seen in Figure 5, the engagement index 
followed the same trend for both Group A (-4.4%) and 
B (-40.2%) experiencing a drop from the training to the 
assessment. Looking into the CV values from Table 3, 
the values for both training and assessment for Group A 

are close or at 100% possibly indicating that these values 
have high variance and therefore lower reliability.  

 

Looking at Figure 6, Alertness was quite unique as 
the changes from the training to the assessment in both 
groups were opposite. Group A saw a decrease of 13.1% 
and Group B gave an increase of 35.4%. This resulted in 
a very small difference between the A and B assessment 
ratios of 0.02. Given that no CV value was greater than 
51%, all alertness ratios can be considered to have low 
variation and therefore high precision. 

 

 

Looking into the workload from Figure 7, we can 
observe the same decreasing trend from training to 
assessment as seen in prior data between Group A and 
B. Regarding the precision, the CV values for training 
and assessment for Group A were 94% and 97% 
respectively. Since these values still lie below 100%, 
they can be considered low variance. 

 

 

 

 

Figure 3: Calculated Restfulness Index for Immersive 
(Group A) and Non-Immersive (Group B) Training 
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Figure 4: Calculated Mindfulness Index for Immersive 
(Group A) and Non-Immersive (Group B) Training 
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Figure 5: Calculated Engagement Index for Immersive 
(Group A) and Non-Immersive Group B) Training 
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Figure 6: Calculated Alertness Index for Immersive (Group 
A) and Non-Immersive (Group B) Training 
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4.2 Average Assessment Completion Time  

 

 

As can be seen from the average completion time in 
Figure 8, the immersive group was able to complete the 
assessment 15.7% faster than the non-immersive. 

4.3 NASA TLX Survey 

As can be seen from Figure 9, Groups A and B 
reported very different scores for most of the indices. 
The largest difference was found to be for physical 
demand with Group A’s average reported score 10 times 
higher than Group B’s. The candidates from Group B 
also reported an 81.0% lower mental effort score than 
group B. The average reported temporal and 
performance indices were 73.0% higher and 9.8% lower 
for Group A than for Group B, respectively. These were 
the closest scores of any metric indicating that on a 
subjective level, candidates did not feel differently 
between training mediums as heavily. The percentage 
difference between Group A and B for the Effort Index 
was 51.2% and Group B reported being 6.2 times more 
frustrated than Group B. Given the relatively large 
differences between the individual metrics, it was quite 
surprising to get very similar overall scores (Figure 10) 
with the weighted averages for Group A being 12.0% 
lower than for Group B.  

 

 

 

It should also be noted that the reported scores in 
the Nasa TLX survey for both groups had very high 
coefficients of variation: 1.01 for group A and 0.94 for 
group B (Figure 10).  

4.4 Measurement Error 

Furthermore, measurement error was considered 
throughout the experiment. Firstly, we used wet 
electrode EEG caps to minimise EEG measurement 
errors due to signal quality and variation in skull 
geometry. We also created a custom montage [Appendix 
9.3] for each subject when carrying out the tasks which 
helped ensure connection between the EEG cap and the 
amplifier was stable. Moreover, the recording software 
(ANT Neuro Eego) provided online noise and signal 
filtering to help ensure reliability of the data. This data, 
for all four tasks, was also recorded in a single trial 
having an approximate five-minute duration. To 
minimise subject-specific errors due to noise, we further 
normalised the metrics using EEG data from the first 
two tasks.  
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Group A 

Training Assessment 

Index St. 
Dev Mean CV St. 

Dev Mean CV 

Mindfulness 0.15 0.55 27% 0.047 0.47 10% 

Restfulness 0.15 0.44 34% 0.047 0.53 9% 

Engagement 0.26 0.29 93% 0.28 0.27 100% 

Alertness 0.28 0.55 51% 0.17 0.48 35% 

Workload 0.42 0.45 94% 0.36 0.37 97% 

 
Group B 

Training Assessment 

Index St. 
Dev Mean CV St. 

Dev Mean CV 

Mindfulness 0.39 0.40 97% 0.13 0.28 46% 

Restfulness 0.39 0.60 66% 0.13 0.72 18% 

Engagement 0.06 0.16 37% 0.04 0.10 45% 

Alertness 0.078 0.33 23% 0.20 0.45 44% 

Workload 0.035 0.23 15% 0.11 0.19 56% 

 

5. Discussion 
 

5.1 EEG Data 

When comparing the data from both groups, two 
aspects are of interest: the first is the values of the 
indices during the training and the second is the change 
between training and assessment. What is of particular 
interest is the shift from training to assessment. If 
different for both groups, it would indicate this change 
is caused by the medium (immersive versus non-
immersive) through which the content is taught and not 
the content itself. Firstly, it can be observed that 
participants who received immersive training were less 
relaxed than their counterparts in Group B from the 
lower calculated restfulness score (Figure 3). A possible 
explanation for this lower restfulness is that the stress of 
completing the activity oneself in the VR environment 
and the performance anxiety associated with the task 
were greater than the stress caused by simply watching 
someone else do it, possibly highlighting some 
drawbacks associated with training in VR. Fortunately, 
this metric increased for both groups when moving onto 
the assessment, but the Group A participants remained 
less relaxed. As the trend is the same in both cases, it is 
more likely caused by the content of the exercise and 
could simply be explained by the increased confidence 
that both groups had with the task at hand which shows 
that the training was effective in delivering the material 
in both cases. However, given that very little, if any, 
research has been carried out on the link between 
restfulness and immersive versus non-immersive 

training, more work needs to be carried out to fully 
justify these explanations.  

Participants from Group A were also much more 
concentrated on the task during the training than 
participants from Group B as seen from the higher 
mindfulness (Figure 4) and engagement (Figure 5) 
scores recorded. Being immersed in a 3D environment 
and having to continuously perform tasks to complete 
the training could logically increase the given indices 
and decrease the chance of a trainee losing focus. 
Knowing that higher engagement scores are linked with 
increased concentration and alertness levels, helps 
confirm that immersive training is more effective than 
non-immersive training [16] [25]. However, higher 
engagement is also linked with increasing difficulty of a 
given task showing that subjects possibly found the VR 
training to be more challenging than watching the video 
[25]. This is also shown through the increased workload 
index for training in VR (Figure 7). More research, 
therefore, needs to be carried out to see the difference in 
workload between the two groups when a more complex 
and mentally demanding task is performed to see if the 
consequence of this effect on a subject over a sustained 
period leads to other outcomes not considered. 
Furthermore, as the mindfulness index is based on a 
novel machine-learning model, there is not sufficient 
literature to fully understand it. A possible way to 
quantify the weight of each of the five power bands in 
the machine-learning model would be to perform a 
sensitivity analysis. Finally, going from training to 
assessment, concentration seems to decrease in both 
cases which is therefore likely caused by the content and 
not the medium, although both metrics decreased more 
heavily for subjects in Group B. This can be logically 
understood as the act of learning requiring more focus 
than the act of completing an assessment. The respective 
percentage drops of 4.4% between Group A’s training 
and assessment compared to the 40.2% decrease from 
Group B’s training to assessment illustrate that training 
in a VR environment can improve concentration when 
the task is eventually assessed. 

Group A was also much more alert than Group B 
during the training (Figure 6) which confirms that the 
subjects remained much more aware of the material 
being taught [9]. However, as discussed before, 
alertness can also be an indication of mental fatigue 
which might explain the trend from training to 
assessment for both groups [10]. Group A became less 
alert whilst Group B’s alertness index increased to 
almost match the level of Group A. Given the higher 
workload of Group A during training and assessment 
(Figure 7), the VR may have challenged the participants 
too much and negatively affected mental fatigue. While 
this shows alertness is more heavily linked to the 
environment in which candidates perform a task than to 
the content of the training, it is concerning that even a 
simple task caused a drop in alertness from training to 

Table 3: Coefficients of Variation for each of the five Indices 
Measured for both Groups 
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assessment. Given this decrease was relatively small, 
more research would need to be carried out to measure 
the effect of more complex tasks in a VR environment 
on fatigue and alertness. 

5.2 NASA TLX  

The higher reported mental and effort scores in the 
survey for candidates who received immersive training 
are consistent with the high mental workload index 
measured. The slightly higher temporal pressure felt by 
Group A could also explain why they completed the 
assessment eight seconds faster on average (Figure 8), 
but all the other metrics seem to give a poor 
representation of the assessment. The high frustration 
for the non-immersive group is contradictory to the EEG 
data as this should have impacted the restfulness score. 
Moreover, the performance index is also higher for 
Group B even though almost all candidates had to refer 
to the written instructions. These differences are most 
likely caused by the subjectivity of this survey which is 
shown by the high coefficient of variation for both 
Groups A and B. This shows how much more consistent 
and precise the EEG data is compared to the Nasa TLX. 
To confirm these results, a higher number of participants 
should be selected.  

 

6. Conclusion  

In conclusion, EEG technology enabled us to bridge 
the BCI and objectively show through both the linear 
engagement metric and mindfulness machine learning 
model that immersive training permits higher 
concentration and focus than non-immersive training. 
However, immersive training also proved to be a less 
restful experience for the user which could cause mental 
fatigue and negatively affect alertness through 
continued exposure. This adverse effect could be caused 
by the higher workload required to complete the task in 
the VR environment. Although this was partly shown 
through the Nasa TLX survey, the results of the EEG 
were more consistent from one index to the other and 
from one participant to the other, as shown by the lower 
coefficient of variation. These results differ from 
previous studies as the superiority of immersive learning 
is put into question which might stem from our use of a 
combination of linear and non-linear ratios. The use of 
multiple indices to get a more complete understanding 
of the effect of immersive training is only one of the 
steps required to compare training in immersive and 
non-immersive environments. An optimum between 
mental fatigue and high mental workload which 
increases engagement could be found by conducting a 
range of experimental tasks with a spread of difficulties 
and duration. With more time, a greater number of 
candidates with more age and gender diversity should 
also be used to increase confidence in the data. 
Additionally, more sensitive EEG caps would enable 

more accurate readings in more precise areas of the 
brain, which with more knowledge of the different 
cortexes could lead to a more comprehensive answer to 
our research question. 
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Abstract 

Adequate energy management systems and distribution algorithms are essential within buildings and communities 
that share solar power, especially so during recent years where carbon emission reduction is a priority and 
countries around the world are facing an energy crisis. This paper addresses this problem by developing a novel 
optimisation model, which uses a multi-objective function formulated and solved within python. This determines 
which energy management system (EMS) strategy and distribution algorithm to implement to make the best use 
of generated PV within a building. This model is used with the Flamsteed Estate and factors in the savings 
residents will experience, the fraction of PV generated that is unused, and the equalised annual cost when making 
a decision. It is also used for cases outside of the Flamsteed Estate where the solar panel capacity has not yet been 
determined in order to find the optimum configuration of panels along with EMS strategies and distribution 
algorithms. For the Flamsteed Estate, Peer-to-Peer (P2P) trading and 80kWh of battery storage capacity with 
equal distribution of PV between residents results in a reduction in the building’s electricity costs of 66%. Future 
projects on buildings of a similar size should use the same distribution algorithm with 100kW of solar panel 
capacity, P2P trading and 90kWh of battery storage capacity which will reduce annual electricity costs by 72%. 

Keywords: Solar PV, Energy Sharing, Energy Management System (EMS), Multi-Objective Function (MOF) 
 
Introduction 

Building operations contribute more than 9.9 Gt 
of carbon emissions annually, accounting for 27% of 
all energy related CO2 emissions (IEA, 2022). 
Decarbonisation of these sectors through the 
reduction of the dependence on fossil fuels is now a 
priority, with the Paris agreement stating buildings 
must be net-zero by 2050 (World Resources 
Institute, 2019). This pathway to a low-carbon future 
can be achieved with smart energy management 
systems in combination with on or off-site 
renewable energy.  

 Solar power and PV technology has seen the 
largest fall in cost of any electricity technology over 
the last decade with an 82% decline from 2010-
2019. (IRENA, 2020) PV technologies are expected 
to provide 25% of the global electricity requirement 
by 2050 with 40% of this energy coming from PV 
panels integrated within buildings (Masson et al, 
2019). This fall in price has led to a year-on-year 
increase in the rate of solar panel adoption. By 2030, 
the UK’s solar panel capacity is expected to triple 
according to the IEA (IEA, 2022), hence, it is vital 
that adequate energy management systems (EMS) 
are implemented to optimise the use of household 
electricity. Soaring electricity prices further 
emphasise the need for such energy management 
systems allowing for resident’s financial, as well as 
environmental concerns to be alleviated.    

Through the implementation of such smart 
algorithms and EMS strategies, the interaction 
between the communal building with equipped PV 
and the grid should be minimised by ensuring the 
building load at a given time matches with the 
production of PV. On-site production of PV also 
allows residents to act as prosumers, this being an 
individual who both consumes and produces power. 
This allows for energy sharing to occur between 
residents through dynamic pricing and allocation 

according to supply-demand ratios, ultimately 
providing a framework which potentially improves 
economic performance known as Peer-to-Peer (P2P) 
which will be discussed further in this paper. 
Therefore, the study on how this solar energy use 
should be optimised between residents will be 
carried out. By better consuming PV produced 
onsite with EMS and battery storage, there is scope 
to realise considerable monetary savings and reduce 
dependency on the grid whilst lowering greenhouse 
gas emissions. 
 
Background 
         The increase in PV adoption in recent years 
has led a number of researchers to conduct studies 
into optimal allocation strategies. Due to occupant’s 
role as prosumers, they can now play an active role 
within the energy market and this ability to change 
their roles between buyers and sellers allows them 
to partake in an internal energy market between grid-
connected peers. This new, collaborative network 
where the users of the grid can self-organise and 
trade renewable energy directly with each other 
without an intermediary is known as Peer-to-Peer 
(P2P) trading – an energy sharing model that has 
potential to provide significant savings. The 
financial benefits of such a model has been explored 
and it was discovered that the energy bills of 
participating households would see a reduction 
between 15.1% and 23.6% amounting to an average 
of £2.92 per customer over a six-month period. 
Additional benefits of this included balancing of the 
energy grid and the mitigation of transmission losses 
due to reduced congestion within the distribution 
network (Klein et al, 2019). The use of a P2P model 
has been further investigated by exploring internal 
pricing procedures based on hourly and daily 
forecasts in demand and electricity market prices 
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which ultimately saves costs for prosumers when 
compared to trading with the utility grid (Liu et al, 
2017). In some cases where the use of battery 
systems can be incorporated alongside P2P, energy 
costs for a community were able to be reduced by 
30% (Long et al, 2018).  
         Allocation strategies where a uniform amount 
of the generated renewable energy is distributed 
between residents is shown to encourage responsible 
usage and ease of interlinkage with P2P mechanisms 
(Syed et al, 2020). Stackelberg game approaches 
have also been used in which pricing and allocation 
is determined using an hour-ahead model. 
Deviations between actual energy consumption and 
scheduled energy consumption are then reflected 
within the final bill which enhances the utility of the 
prosumer while improving the profit for the operator 
(Erol et al, 2022). Similarly, it has been found by 
using a model predictive control which accounts for 
the weather forecast and changes in price in the 
electricity market, linear programs can provide 
monetary individual savings between 5.4% and 
7.7% (Vand et al, 2021). Optimisation models have 
been developed for the operation of production and 
storage technologies using a 15-minute balance, 
however, it is suggested that smaller time intervals 
should be explored to provide for more granular data 
which will be explored in this paper (Savolainen et 
al, 2022). These methods, whilst improving the 
utility of on-site generated energy, did not present an 
effective way of combining the respective allocation 
strategies with the use of agent-based models and 
storage capabilities. Research also focussed on 
solely the benefit to operator or individual and not 
both parties, a crucial element to our case study 
where social benefit is vital.  
         
Aim and Motivation 

This paper aims to identify the best 
combination of EMS strategy and PV distribution 
algorithm for a twelve-dwelling building in 
Flamsteed Estate within the Royal Borough of 
Greenwich. Currently, the PV generated by the 
rooftop PV panels (Capacity = 72.5kW) is used to 
power the communal areas in the building, with the 
excess PV generated sold to the grid. Even with the 
most generous export tariff being £0.075/kwh 
(Gridcog, 2022), the council does not earn a 
significant revenue from doing so. The excess PV 
generated could instead be distributed amongst the 
residents of the building, who are mostly low-
income families. Doing so would be beneficial not 
only from a social aspect, but also from an 
environmental standpoint as it would reduce the 
building’s dependence on grid electricity, whose 
share of renewable energy is only ~40% (GOVUK, 
2022), which aligns strongly with the Paris 
Agreement’s requirement for buildings to be net-
zero by 2050 and the council’s own sustainability 

targets of reaching net-zero carbon emissions by 
2030 (RBG, 2021). 
 
This paper also generalises the model developed to 
identify the optimal solar panel capacity that should 
be installed and pairs it with the optimal EMS 
strategy and distribution algorithm combination for 
similarly sized communal buildings. 
 
The optimal strategy will be the scenario which 
achieves the best mix of the following objectives: 

1. Maximise collective savings per year of the 
residents/Minimise the collective costs per 
year of the residents. 

2. Minimise unused electricity generated by 
the panels. 

3. Minimise the equalised annual cost (EAC) 
of the investment. 

Method 
A: Scenarios explored 
 

Scenario Description 
1.Equal 
percentage cost 
savings 
distribution with 
solar panels 

At each 1-minute interval, PV 
generated is distributed 
proportionally to the 
dwelling’s electricity demand 
as a ratio of the total 
building’s electricity demand. 
 
Demand deficits are met by 
grid imports whereas surplus 
after allocation is exported to 
the grid. 

2.Equal amount 
distribution with 
solar panels 

At each 1-minute interval, PV 
generated is distributed 
equally amongst the 
residents.  
 
Demand deficits are met by 
grid imports whereas surplus 
after allocation is exported to 
the grid. 

3.Equal 
percentage cost 
savings 
distribution with 
solar panels and 
Peer-to-Peer 
trading 

At each 1-minute interval, PV 
generated is distributed as per 
scenario 1.  
 
Dwellings allocated a surplus 
can ‘sell’ their surplus to 
dwellings in deficit at the 
export to grid price. Earnings 
from/purchase of P2P trading 
is proportional to the 
dwelling’s contribution 
to/demand of the total excess 
PV allocated.  
 
Post P2P, demand deficits are 
met by grid imports whereas 
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surplus after allocation is 
exported to the grid. 

4.Equal amount 
distribution with 
solar panels and 
Peer-to-Peer 
trading 

At each 1-minute interval, PV 
generated is distributed as per 
scenario 2.  
 
Dwellings allocated a surplus 
can ‘sell’ their surplus to 
dwellings in deficit at the 
export to grid price. Earnings 
from/purchase of P2P trading 
is divided equally amongst 
the ‘sellers/buyers’.  
 
Post P2P, demand deficits are 
met by grid imports whereas 
surplus after allocation is 
exported to the grid. 

5.Equal 
percentage cost 
savings 
distribution with 
solar panels and  
Li-ion battery 

PV generated is distributed as 
per scenario 1.  
 
Excess PV generated is stored 
in the battery during hours of 
PV generation and distributed 
when no PV is generated. 
Dwellings ‘purchase’ the 
battery power as per demand 
at the grid export price from 
the council. 
 
Demand deficits are met by 
grid imports whereas surplus 
after allocation is exported to 
the grid. 

6.Equal amount 
distribution with 
solar panels and 
Li-ion battery 

PV generated is distributed as 
per scenario 2.  
 
Excess PV generated is stored 
in the battery during hours of 
PV generation and distributed 
when no PV is generated. 
Dwellings ‘purchase’ the 
battery power as per demand 
at the grid export price.  
 
Demand deficits are met by 
grid imports and surplus after 
allocation is exported to the 
grid. 

7.Equal 
percentage cost 
savings 
distribution with 
solar panels,  
Peer-to-Peer 
trading and Li-
ion battery 

Post P2P surplus is stored in 
the battery which discharges 
when there is no PV 
generation.  
 
Distribution algorithm 
follows the same rules as 
other equal percentage 
savings models. 

8.Equal amount 
savings 

Post P2P surplus is stored in 
the battery which discharges 

distribution with 
solar panels, 
Peer-to-Peer 
trading and Li-
ion battery 

when there is no PV 
generation. 
Distribution algorithm 
follows the same rules as 
other equal amount models. 

 
B: Collection of dwelling demand data and solar 
panel output by minute 

Occupants have a diverse range of energy 
consumption patterns which is modelled using an 
open-sourced thermal-electrical demand model 
(McKenna, Thomson and Barton, 2015) that 
integrates three models – domestic occupancy 
(Richardson et al., 2008), domestic lighting demand 
(Richardson et al., 2009) and domestic electricity 
use (Richardson et al., 2010) – designed for low-
voltage network analysis for houses in India and the 
UK. This model was made publicly available by the 
Centre for Renewable Energy Systems Technology 
(CREST). The dwelling parameters i.e. number of 
residents, occupancy at each time and appliance 
distribution were selected stochastically and per-
minute electricity data was collected for three 
representative weeks (One week from January, one 
week from July and one week from September - 
Winter, Summer and Autumn in the year. Figure 1 
below shows the trend between power demand by 
the building over a day. The trend over all the days 
in the year follows a similar pattern. 
              Real-world weather data for the 
representative weeks is also used to predict patterns 
of PV production and account for the seasonality and 
intermittency of solar power. Per-hour PV 
generation data was obtained from an open source 
platform (Pfenninger et al, 2016) and an equal 
distribution of PV generation was assumed for each 
minute of every hour.   
 
 

 
 
C:Modelling of EMS Strategies 

The models developed to simulate the 
different strategies use Mixed Integer Linear 
Programming (MILP). They have been formulated 
and solved on Python using a graphical method.   
 
 
 
 
 

Figure 1 Building power demand data 
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Multi-Objective Function 
𝐦𝐢𝐧
𝑷,𝑩𝒎𝒂𝒙

∑ ∑ [(𝒘𝟏
𝒄𝒕,𝒅

∑ 𝒃𝒄𝒕,𝒅𝟏𝟐
𝒅=𝟏

) + (𝒘𝟐
∑ 𝒆𝒙𝒕,𝒅𝟏𝟐
𝒅=𝟏
𝑷𝑽𝒐𝒖𝒕

) +𝟏𝟐
𝒅=𝟏

𝟓𝟐𝟓𝟔𝟎𝟎
𝒕=𝟏

(𝒘𝟑
𝒆𝒂𝒄

∑ 𝑺𝒂𝒗𝒕,𝒅𝟏𝟐
𝒅=𝟏

) ]    (1) 
 
𝒄𝒕,𝒅 = (𝐼𝑚𝑝𝑡,𝑑 × 𝑝𝑖𝑚𝑝) + (𝐸𝑏𝑎𝑡−𝐴𝑡,𝑑 × 𝑝𝑏𝑎𝑡𝑡,𝑑) +

((𝐸𝑃2𝑃−𝐴𝑡,𝑑 − 𝐸𝑃2𝑃−𝐶𝑡,𝑑) × 𝑝𝑃2𝑃)  (2) 
𝒃𝒄𝒕,𝒅 = (𝑑𝑒𝑚𝑡,𝑑 × 𝑝𝑖𝑚𝑝)   (3) 
 
𝒆𝒙𝒑𝒕,𝒅

=

{
 
 

 
 {(𝐸𝑃𝑉𝑡,𝑑 − 𝑑𝑒𝑚𝑡,𝑑 − 𝐸𝑃2𝑃−𝐶𝑡,𝑑)  𝑓𝑜𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑤/𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

(∑ 𝐸𝑏𝑎𝑡−𝐶𝑡,𝑑

𝑛(𝐷)

𝑑=1

− 𝐵𝑚𝑎𝑥)   𝑓𝑜𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑤/ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

(4)

 

 
𝒊𝒎𝒑𝑡,𝑑 =  ( 𝑑𝑒𝑚𝑡,𝑑 − 𝐸𝑃𝑉𝑡,𝑑 − 𝐸𝑏𝑎𝑡−𝐴 − 𝐸𝑃2𝑃−𝐴𝑡,𝑑) (5) 
 
𝐸𝐴𝐶 =  𝐸𝐴𝐶𝑝𝑎𝑛𝑒𝑙 + 𝐸𝐴𝐶𝑏𝑎𝑡   (6) 
 

𝐴𝐹𝑝𝑎𝑛𝑒𝑙 =
[1− 1

(1+𝑐𝑐)𝐿𝑝𝑎𝑛𝑒𝑙
]

𝑐𝑐
   (7) 

 

𝐴𝐹𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
[1− 1

(1+𝑐𝑐)𝐿𝑏𝑎𝑡𝑡𝑒𝑟𝑦
]

𝑐𝑐
   (8) 

 
𝐸𝐴𝐶𝑝𝑎𝑛𝑒𝑙 =  (

𝑃𝑐𝑜𝑠𝑡
𝐴𝐹𝑃𝑎𝑛𝑒𝑙

) + (𝑃𝑀𝑐𝑜𝑠𝑡

𝑛(𝑃)
)  (9) 

 
𝐸𝐴𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =  (

𝐵𝑐𝑜𝑠𝑡
𝐴𝐹𝑏𝑎𝑡𝑡𝑒𝑟𝑦

)   (10) 
 

Equation (1) is a weighted sum of 
electricity costs incurred by the building as a fraction 
of the cost incurred in the base case scenario, total 
electricity generated by the solar panels exported to 
the grid as a fraction of the electricity generated by 
the building and equalised annual cost of the 
investment as a fraction of the total savings 
experienced by the residents of the building.  w1, w2 
and w3 are weights assigned to each of the objectives 
in the cost function and are proportional to the 
priority of each of the objectives. The function is 
heavily weighted towards minimising the residents’ 
electricity costs as social benefit is the greatest 
priority for the council and building emissions from 
grid imports are consequently reduced. The aim of 
minimising this function to strike the ideal balance 
between the three objectives listed. The score 
obtained from this function will be the primary 
comparison metric used to determine the best 
scenario to be adopted for the current building and 
future projects. 

The decision variables across all scenarios 
are the solar panel system’s capacity in kW. For the 
strategies involving the use of a battery, the 
maximum battery capacity in kWh is another 
decision variable considered. The Solar panel 
capacity for the Flamsteed Estate specific case is set 
at 72.5kW as this is the capacity of the solar panels 

that is currently in place. These two variables do not 
directly appear in the objective function however are 
primarily responsible for the values of the variables 
that are present in it.  
 
Distribution methods 
Equal percentage savings Panel PV Allocation 
method 
 
𝐸𝑃𝑉𝑑,𝑡 =  

𝑑𝑒𝑚𝑑,𝑡

∑ 𝑑𝑒𝑚𝑑,𝑡
12
𝑑=1

× 𝑃𝑉𝑜𝑢𝑡   (11)  
 
Equal amount Panel PV Allocation method 
 
𝐸𝑃𝑉𝑑,𝑡 =  

𝑃𝑉𝑜𝑢𝑡
𝑛(𝐷)

    (12) 
 
Equal percentage savings Peer2Peer Allocation 
method 
𝐸𝑃2𝑃−𝐴𝑑,𝑡 = ∑ [(𝐸𝑃𝑉)𝑑,𝑡 − (𝑑𝑒𝑚)𝑑,𝑡]12

𝑑=1  × 𝑑𝑒𝑚𝑑,𝑡

∑ 𝑑𝑒𝑚𝑑,𝑡
12
𝑑=1

 (13)    
 
Equal percentage savings Peer2Peer Contribution 
method 
 
𝐸𝑃2𝑃−𝐶𝑑,𝑡 =

[(𝐸𝑃𝑉)𝑑,𝑡−(𝑑𝑒𝑚)𝑑,𝑡]
∑ [(𝐸𝑃𝑉)𝑑,𝑡−(𝑑𝑒𝑚)𝑑,𝑡]12
𝑑=1

 × 𝐸𝑃2𝑃−𝐴𝑑,𝑡 (14)
     
Equal Amount Peer2Peer Allocation method 
 
𝐸𝑃2𝑃−𝐴𝑑,𝑡 =  

∑ [(𝐸𝑃𝑉)𝑑,𝑡−(𝑑𝑒𝑚)𝑑,𝑡]12
𝑑=1  
𝑛(𝐷)𝑢𝑛𝑑𝑒𝑟𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

  (15) 
 
Equal Amount Peer2Peer Contribution method 
 
𝐸𝑃2𝑃−𝐶𝑑,𝑡 = =  

 𝐸𝑃2𝑃−𝐴𝑑,𝑡
𝑛(𝐷)𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

  (16) 
 
Battery Energy Allocation method (Panels only and 
Peer2Peer) 
 

∑ 𝐸𝐵𝑎𝑡−𝐴𝑑,𝑡
𝑛(𝐷)
𝑑=1 =

 {
∑ 𝑑𝑒𝑚𝑑,𝑡
𝑛(𝐷)
𝑑=1  𝑖𝑓 (𝑃𝑉𝑜𝑢𝑡𝑡 = 0) 𝑎𝑛𝑑 [𝐵𝑡 − ∑ 𝑑𝑒𝑚𝑑,𝑡

𝑛(𝐷)
𝑑=1  ≥ 0.2 × 𝐵𝑚𝑎𝑥]

0.2 × 𝐵𝑚𝑎𝑥 𝑖𝑓 (𝑃𝑉𝑜𝑢𝑡𝑡 = 0) 𝑎𝑛𝑑  [𝐵𝑡 − ∑ 𝑑𝑒𝑚𝑑,𝑡
𝑛(𝐷)
𝑑=1  < 0.2 × 𝐵𝑚𝑎𝑥]

0 𝑖𝑓 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑃𝑉 𝑂𝑢𝑡𝑝𝑢𝑡𝑡  > 0
 (17) 
 
Constraints 
Demand Balance Constraint 
This constraint is in place to ensure that all the 
dwellings’ electricity demand is met at all time 
intervals. 
 
𝑑𝑒𝑚𝑑,𝑡 = 𝐸𝑃𝑉𝑑,𝑡 + (𝐸𝑃2𝑃−𝐴𝑑,𝑡 − 𝐸𝑃2𝑃−𝐶𝑑,𝑡) + (𝐸𝑏𝑎𝑡−𝐴𝑑,𝑡 −

𝐸𝑏𝑎𝑡−𝑐𝑑,𝑡) + 𝐼𝑚𝑝𝑑,𝑡   (18)  
 
Energy Balance Constraint 
This constraint is in place to ensure the model 
satisfies the law of conservation of energy. 
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 5 

 
𝑃𝑉𝑜𝑢𝑡 = ∑ (𝐸𝑃𝑉𝑑,𝑡 + 𝑒𝑥𝑝𝑑,𝑡)

12
𝑑=1                  (19) 

 
Battery State of Charge Constraint 
The operating Depth of Discharge (DoD) of the 
battery in this model was assumed to be 80%. 
 
0.2 ≤ 𝑆𝑂𝐶 ≤ 1.0    (20) 
 
0.2 × 𝐵𝑚𝑎𝑥 ≤ 𝐵𝑐𝑎𝑝𝑡  ≤  𝐵𝑚𝑎𝑥  (21) 
 
Initial Conditions 
Battery Level Initial Condition 
𝐵𝑡=0 = 𝐵𝑚𝑎𝑥    (22) 
 
Results and Discussion 
Solar Panels Only 

 

The equal percentage cost savings 
distribution algorithm results in a lower MOF score 
across all solar panel capacities trialled in this study, 
suggesting that it is the better of the two distribution 
algorithms for this EMS strategy. Additionally, the 
model suggests that the ideal panel capacity that 
minimises the MOF score to 0.530, is 50kW for the 
equal percentage cost savings distribution 
algorithm. The ideal capacity is 60kW for the equal 
amount cost distribution algorithm which minimises 
the MOF score to 0.619. These are both lower than 
the 72.5kW capacity that is installed on the building 
being modelled within the Flamsteed Case. 

Figure 3 above shows that the total savings 
experienced by the building over the year increases 
logarithmically with solar panel capacity. Across all 
solar panel capacities trialled, the equal percentage 
cost savings distribution algorithm results in higher 
total annual building savings, and as a result, lower 
total electricity costs for the residents in the 
building. Consequently, it will also result in a lower 
equalised annual cost as a fraction of savings as the 
equalised annual cost is independent of the 
distribution algorithm for the same solar capacity.  

Figure 4 above shows that the ratio of 
electricity generated that goes unused by the 
building i.e., exported back to the grid, also 
increases logarithmically with solar panel capacity. 
Across all solar panel capacities trialled, the equal 
percentage cost savings distribution algorithm 
results in a lower fraction of generated electricity 
that goes unused. 

The logarithmic nature of the increase of 
both building annual savings and unused PV ratio in 
the capacities tested means that rate at which they 

Figure 2 MOF Score against Solar Capacity for a General Case. Note 
the 'X' marks the Flamsteed Case 

Table 1 Allocation method for Flamsteed and General Case 
showing Panel Capacity, MOF Score and EAC 

Figure 4 Unused PV Ratio against Solar Capacity for the General 
Case. Note the 'X' marks the Flamsteed Case 
 

Figure 3 Savings against Solar Capacity for a General 
case. Note the 'X' marks the Flamsteed Case 
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increase with panel capacity i.e., the slope of the 
graphs, decreases with time. This means that the 
increase in savings slows down with an increasing 
solar panel capacity and there will be a capacity 
above which the increase in savings experienced 
does not outweigh the penalty of the rise in the 
equalised annual cost, which increases linearly with 
solar panel capacity as seen in figure 5 below. This 
linear trend is also observed for the battery EAC in 
the scenarios including a battery. The multi-
objective function accounts for this with the 
equalised annual cost as a fraction of savings term 
and thereby concludes that a 50kW panel for the 
equal percentage cost savings distribution method 
and a 60kw panel for the equal amount distribution 
method best meets the objectives of this report.  

The reason why the equal percentage 
savings distribution algorithm performs better in the 
above two metrics is due to the solar power 
generated being distributed proportionately to the 
dwelling’s demand. This results in the solar power 
generated being used more efficiently as opposed to 
the equal amount distribution algorithm which sees 
smaller households, which demand less electricity 
on average, being heavily overallocated and larger 
households, which demand more electricity on 
average, being heavily under allocated. This 
mismatch in allocation results in a greater fraction of 
the PV being exported in the equal amount 
distribution algorithm, reflected by the trend in 
figure 4, leading to a greater amount of electricity 
having to be imported from the grid, which leads to 
greater costs and lower savings from the residents, 
reflected by the trend in figure 3.  

Solar Panels with Battery Storage 

The equal percentage cost savings 
distribution algorithm results in a lower MOF score 
across all battery capacities trialled for the 
Flamsteed Estate specific case (72.5kW Solar Panel 
Capacity in place) and across all solar panel and 
battery capacity combinations trialled for the 
generalised case in this study, suggesting that it is 
the better of the two distribution techniques for this 

EMS strategy. Additionally, the model suggests that 
the ideal panel and battery capacity that minimises 
the MOF score to 0.358 and 0.387 is 100kW and 
90kWh respectively for both distribution 
algorithms. 

Figure 7 below shows that the total savings 
experienced by the building over the year increases 
logarithmically, just like in the solar panels only 
EMS strategy, with battery capacity for the 
Flamsteed Estate specific case. A similar trend can 
be expected for every solar panel capacity trialled.     

Across all battery and panel capacity and 
combinations trialled, the equal percentage cost 
savings distribution algorithm results in higher total 
annual building savings, and as a result, lower total 
electricity costs for the residents in the building. 

Figure 6 MOF Score against Battery Capacity for the Flamsteed 
Case. Note the 'X' marks the minimum point 

Figure 7 Savings against Battery Capacity for the Flamsteed Case. 
Note the 'X' marks the ideal case for Flamsteed 

Table 2 Allocation method for Flamsteed and General Case 
showing Panel & Battery Capacity, MOF Score and EAC 

Figure 5 EAC against Solar Capacity 
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Consequently, it will also result in a lower equalised 
annual cost as a fraction of savings as the equalised 
annual costs is independent of the distribution 
algorithm for the same solar capacity as per equation 
9.  

Figure 8 below shows that the ratio of 
electricity generated that goes unused by the 
building i.e., exported back to the grid, also 
decreases with battery capacity for the Flamsteed 
Estate specific case due to fewer exports to the grid. 
A similar trend can be expected for every solar panel 
capacity trialled. Across all combinations of solar 
panel and battery capacities trialled, the equal 
percentage cost savings distribution algorithm 
results in a lower fraction of generated electricity 
that goes unused. 

 

The logarithmic nature of the increase of 
building annual savings and decrease in unused PV 
ratio in the capacities tested means that rate at which 
the benefit experienced increases with battery 
capacity i.e., the absolute value of the slope of the 
graphs decreases with capacity. This means that the 
rate of increase in savings and decrease in the 
fraction of unused PV slows down with increasing 
the capacity and there will be a capacity above 
which these benefits experienced do not outweigh 
the penalty of the rise in the equalised annual cost, 
which increases linearly with solar panel and battery 
capacity. The multi-objective function accounts for 
this with the equalised annual cost as a fraction of 
savings term and concludes that a 100kw panel with 
a 90kWh battery for both distribution algorithms 
best meet the objectives of this report.  

The equal percentage cost savings 
algorithm performs better across both metrics in 
figures 7 and 8 for the same reasons as that of the 
solar panel only model. The battery charges and 
discharges in the same manner in both distribution 
algorithms, hence the same explanation applies here 
too. The only difference being the overall savings 
experienced by the residents which is greater, and 
the fraction of PV generated getting exported which 
is lower. This is because a portion of what would 
otherwise be exported is stored in the battery and 
redistributed amongst the dwellings when there is no 

PV generation and within the confines of the 
battery’s operating constraints. This further reduces 
the dwelling’s reliance on expensive grid electricity. 

Solar Panels with Peer-to-Peer trading 

The MOF scores for both distribution 
algorithms are very similar to each other in figure 9, 
with the equal percentage cost savings algorithm 
having a very slight advantage across all capacities. 
However, considering the various sources of errors 
and the assumptions made when building the model, 
which are highlighted in the error analysis section, 
the difference between the MOF scores is not high 
enough to conclusively decide that this is the best 
algorithm for this EMS strategy. The final decision 
should then be made considering the ease of 
implementation of the two distribution algorithms 
and the fairness of distribution. In any case, the 
benefits observed from either distribution algorithm 
selection will be very similar, meaning the 
differences between each option will be negligible.  

Additionally, the model suggests that the 
ideal panel capacity that minimises the MOF score 
is 50kW for both distribution algorithms, which is 
lower than the 72.5kW capacity that is installed on 
the building being modelled.  

Figure 8 Unused PV Ratio against Battery Capacity. Note the 'X' 
marks the ideal case for Flamsteed 

Table 3 Allocation method for Flamsteed and General Case 
showing Panel Capacity, MOF Score and EAC 

Figure 9  MOF Score against Solar Capacity for the General Case. 
Note the 'X' marks the Flamsteed Case 
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 8 

 

Figure 10 above shows that the total 
savings experienced by the building over the year 
increases logarithmically with solar panel capacity. 
Across all solar panel capacities trialled, both 
algorithms result in similar annual building savings, 
with the difference being too low to conclusively 
determine that one distribution algorithm 
outperforms the other. Consequently, the equalised 
annual cost as a fraction of savings will be very 
similar for the same solar capacity. 

 

Figure 11 above shows that the ratio of 
electricity generated that goes unused by the 
building i.e. exported back to the grid also increases 
logarithmically with solar panel capacity. Again, the 
difference between the two distribution algorithms 
is very minute.    

The logarithmic nature of the increase of 
both building annual savings and unused PV ratio in 
the capacities tested means that rate at which they 
increase with panel capacity i.e., the slope of the 
graphs, decreases with time. This means that the 
increase in savings slows down with increasing the 
solar panel capacity and there will be a capacity 
above which the increase in savings experienced 
does not outweigh the penalty of the rise in the 

equalised annual cost, which increases linearly with 
solar panel capacity as seen in figure 5. The multi-
objective function accounts for this with the 
equalised annual cost as a fraction of savings term 
and thereby concludes that a 50kw panel for both 
distribution algorithms best meets the objectives of 
this report.  

When comparing this EMS strategy to the 
solar panel only strategy, we see that there is a very 
small improvement when peer-to-peer trading is 
added for the equal percentage cost savings 
algorithm while the equal amount distribution 
algorithm sees significant improvements in all three 
metrics of the multi-objective function. This is 
because the problem of over-allocation and under-
allocation that weakens the equal amount 
distribution algorithm in the solar panel only 
strategy is corrected in this strategy. The over-
allocated households sell the excess electricity that 
was allocated to the under-allocated households at a 
price that is lower than the grid import price. Not 
only does this reduce the fraction of electricity 
generated that gets exported, but it has a great impact 
on the savings of the residents as they earn a revenue 
for using less electricity than what was allocated to 
them/are able to meet their deficit at a much lower 
price than before. 

 
Solar Panels with Battery and Peer-to-Peer trading 

At lower battery capacities, we see in figure 12 the 
two distribution algorithms have almost identical 
MOF scores for the Flamsteed Estate specific case 
(72.5kW Solar Panel Capacity in place). From a 
battery capacity of 60kWh onwards, we see the 
equal amount distribution model has consistently 

lower MOF scores, albeit by a relatively small 
margin. We expect this trend to follow for all the 
solar panel sizes trialled in this study. 

Figure 10 Savings against Solar Capacity. Note the 'X' marks the 
Flamsteed Case 

Figure 11 Unused PV ratio against Solar Capacity for the General 
Case. Note the 'X' marks the Flamsteed Case 

Figure 12 MOF Score against Battery Capacity for Flamsteed Case. 
Note the 'X' marks the lowest MOF score for the Flamsteed Case. 

485



 9 

 
                The model suggests that the ideal panel 
and battery capacity that minimises the MOF score 
is 100kW and 90kWh respectively for both 
algorithms. 
               This EMS strategy combines the benefits 
achieved from all the strategies previously 
mentioned and therefore will result in greater annual 
savings for the building as a whole, a lower fraction 
of unused electricity that was generated by the solar 
panels and a lower equalised annual cost to annual 
building savings ratio for the reasons mentioned in 
the previous strategies. These combine to give this 
strategy a lower MOF score than the other strategies 
for both of the distribution algorithms. 
              When comparing the MOF scores for all 
scenarios, we see that for the Flamsteed Case using 
an equal amount distribution algorithm with P2P 
trading and a battery of 80kWh capacity has the 
lowest score of 0.358. This allows total building 
energy costs to be reduced by 66% and meets all 
three objectives the best. The Flamsteed Estate 
should therefore adopt this scenario for their 
building. 
          For the general case, an equal amount 
distribution algorithm is used with 100kW of solar 
capacity, 90kWh of battery capacity and P2P trading 
resulting in the lowest MOF score of 0.317. Future 
projects of similar sized communal buildings should 
adopt this approach. 

 
Error Analysis: 

Within this report several assumptions 
have been made which can have an impact on our 
final findings. Firstly, in order to get PV generated 
per-minute, hourly electricity generation data was 
obtained from a 2019 open-source database and 
divided by 60 as minute-by-minute data is not 
available. Given the intermittency of solar 
generation and changes within our climate, these 
results may not accurately represent the true PV 
generation at the time of implementation. There is 
also an assumption that the solar panels and battery 

work without loss in performance and degradation 
which can affect the efficiency of the model in future 
years after implementation.  
        The crest model used to obtain per-minute 
dwelling data is modelled using data from 2015. 
Electricity consumption patterns may have changed 
since then which can potentially affect the what the 
ideal scenario may be. 
 
Conclusion 

The work presented in this paper proposes 
an optimum EMS strategy and distribution 
algorithm for solar energy generated in a communal 
building and buildings of similar sizes. This was 
done by developing a multi-objective function 
which made use of real-world weather data in 
addition to dwelling electricity consumption data 
from the CREST model. This model was tested on a 
building in Flamsteed Estate which had 12 dwellings 
within it. The optimal scenario deduced the total 
annual electricity costs for residents within the 
building can be reduced by 66% given that the 
building has 72.5kW of solar panel capacity and 
there is a battery with 80kWh capacity. For future 
projects for communal buildings of a similar size, 
resident’s annual electricity costs could be reduced 
by 72% given 100kW of solar panel capacity and a 
battery with 90kWh capacity.  
 
Future Work 

To further increase the scope of this 
project, the model should be expanded to deduce the 
optimal scenario for buildings of different sizes and 
types. This would also allow other areas to be 
explored outside of social housing where energy 
management systems will be necessary such as 
hotels with on-site PV. The multi-objective function 
could be adapted with different weightings to 
prioritise various areas such as social and economic 
benefit. In some cases, a fixed tariff may not be used, 
hence exploring these cases with a variable tariff is 
also recommended as it may affect the optimal 
scenario given the price of electricity at a certain 
time. With reduction in carbon emissions also being 
a consideration in this project, a quantitative 
measure of carbon emissions reduced as a result of 
the implementations of these scenarios can also 
investigated. Finally, any embodied emissions in the 
creation of solar panels and batteries has also not 
been considered within this project as they often 
involve mining rare earth metals and other energy 
intensive materials (Kilgore, 2022) which can be 
done so for future projects.                                                                                                    
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P Solar Panel System Capacity / kW 
Pcost Solar Panel System Installation Cost 

/ £ 
PMcost Solar Panel System maintenance cost 

/ £  
n(P) Number of 325W Solar Panels 
EAC Equalised Annual Cost / £ 
AF Annuity Factor 
cc Cost of Capital = 0.04 
Lbattery Battery Lifetime = 10 years 
Lpanel Solar Panels Lifetime = 25 years 
Bmax Maximum Battery Capacity / kWh 
Bcost Battery installation Cost / £ 
Bt Battery Capacity at a specified time 

interval / kWh 
t 1 min time intervals; 

t ∈ T 
T T = [1,2, . . . ,525600] 
n(T) Number of 1 min time intervals in a 

year 
d Dwelling Index; 

d ∈ D 
D D = [1,2, . . . ,12] 
n(D) Number of dwellings in the building 
dem Dwelling Electricity demand / kWh 
Eimp Electricity Imported from grid / kWh 
EPV Electricity generated by solar panels 

allocated / kWh 
EP2P-A Electricity allocated from Peer-to-

Peer trading / kWh 
EP2P-C Electricity contributed towards Peer-

to-Peer trading / kWh 
Ebat-A Electricity purchased battery / kWh 
Ebat-C Electricity contributed to battery / 

kWh 
c Cost of electricity in the scenario 

tested / £ 
bc Base case electricity costs / £ 
PVout Total Electricity generated by solar 

PV panels on building rooftop / kWh 
EAC Equalised annual cost of the 

investment in scenario implemented / 
£ 

Sav Savings experienced on electricity 
costs relative to base case cost of 
electricity in the scenario tested / £ 

Imp Electricity Imported from the Grid / 
kWh 

exp Electricity Exported to Grid / kWh 
Bat. 
Purchase 

Electricity Purchased from the 
Battery / £ 

pimp Grid import price / £. Taken to be 
£0.34/kWh 

pexp Grid export price / £. Taken to be 
£0.075/kWh 

pbat Battery electricity purchase price / £. 
Set at £0.075/kWh 

pp2p Peer-to-Peer trading price / £. Set at 
£0.075/kWh 
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Abstract  
As energy demands rise in developing countries, it is becoming increasingly important to transition to renewable sources 
of energy in order to meet the demands in a sustainable manner. Lao PDR is aware of this and has introduced energy 
policies to commit to increasing the share of renewable energy in the country’s total energy supply. With agriculture 
being the main sector in the Laotian economy, there is potential to produce biomass that can be used as feedstock to 
generate energy. This study presents the energy generation potential of cassava, sugarcane, and maize as energy crops by 
mapping the crops onto suitable land in Lao PDR using QGIS. Several conversion technologies were analysed, and 
granular-level comparisons were made to identify optimum energy crop choice. In addition, the energy potential from the 
residues of currently grown rice, cassava, sugarcane, and maize crops were investigated. Future impacts of climate change 
scenarios on the yield of potential energy crops were also considered.  The results of the study found that a distribution 
of cassava and sugarcane generated the highest potential energy of 66.5 billion kWh, and an additional 20 billion kWh 
can be produced from existing residue. Maps of these results were created, which can be used when assessing the 
implementation of biomass energy systems in Lao PDR. As this study was primarily focused on energy potential, 
economic and other considerations must be made to identify the optimum strategy for the country. 
 

1 Introduction 
Global energy supply is currently dependent on 

fossil fuels, accounting for 82% of primary energy use 
in 2021 [1]. Fossil fuels are finite resources which 
produce greenhouse gas emissions, causing global 
climate change. Therefore, it is crucial that countries 
focus on the development of renewable energy sources. 
Developing countries such as Lao PDR are experiencing 
significant increases in energy demand due to economic 
and social developments. Lao PDR has been extending 
its electricity grid to bring electricity to more remote 
areas, increasing energy demand. Total energy 
consumption in Lao PDR is expected to increase at an 
average of 4.7% per year over 2015 to 2040 [2]. Lao 
PDR has introduced energy policies, including reducing 
its fossil fuel consumption and increasing the share of 
renewable energy in total energy supply by 30% in 2030 
[2] and achieving electrification of the whole country. 
This places importance for Lao PDR to consider 
renewable energy alternatives such as biomass energy in 
order to reach the country’s goals.  

Biomass energy is energy generated from biological 
material, such as plants. It currently accounts for around 
12% of the world’s final energy demand [3]. Biomass is 
a renewable energy source that produces significantly 
less emissions than fossil fuels and would reduce the 
country’s dependence on importing fossil fuels. Other 
factors when considering using biomass is that it 
provides social and economic benefits especially in rural 
areas. Biomass feedstock from residues of crops is 
abundant in rural areas of Lao PDR; if bioenergy 
systems are introduced, this can create employment in 
rural areas and reduce the waste produced. 

Lao PDR has an opportunity to utilise its current 
agricultural production and land to implement biomass 
energy production as a component of its energy strategy. 
This report aims to address the following three main 
goals using a map-based approach: 

 
1. Lao PDR’s potential for bioenergy production 

through existing agricultural residues; 
2. Lao PDR’ potential for bioenergy production 

through growing energy crops, considering 
optimum crop growth, the conversion processes 
available, food security, land preservation and other 
factors. 

3. Investigate effects of climate change on future 
energy crop yields to ensure future feasibility. 

By meeting these goals, this report aims to perform 
a national-scale analysis of Lao PDR to provide insights 
for the biomass energy strategy. The maps generated can 
also provide a foundation for future work in this field. 

2 Background 
2.1 Literature Review 

Bioenergy potential from existing crop residue can 
be estimated by utilising crop production data found in 
FAOSTAT and performing calculations. A study 
published in 2018 did this approach for Lao PDR [4]. 
This however does not provide geo-spatial data of the 
production of these crops. This study aimed to use a 
map-based approach as it provides the opportunity in 
future work to assess location-dependent factors that are 
necessary when considering the implementation of 
bioenergy production. These factors include spatial 
awareness of existing grid lines, transportation links, 
costs, energy use, and others. 

GIS-based approaches have been used previously for 
the evaluation of bioenergy potential through energy 
crop growth. In 1980, one of the earliest applications of 
this approach, woody biomass production potential in 
southeast United States was analysed by Ranney and 
Cushman [5]. County-level maps were produced to 
show the potential areas of biomass supply from woody 
crops by analysing land availability, soil conditions, and 
woody crop productivity. More recent studies have used 
more sophisticated GIS-based approaches. Miscanthus 
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production in England for the purpose of bioenergy 
potential was analysed by taking into account both 
spatial supply and demand relationships [6]. Factors 
such as the spatial energy use in different regions and 
the cost of transporting biomass feedstock was analysed 
to determine efficient usage of the distributed feedstock. 
To identify areas suitable for Miscanthus production, the 
approach excluded areas that did not meet the criteria for 
production such as unsuitable land types, natural 
habitats, water bodies, urban areas and others.  

GIS-based approaches have also been used for the 
evaluation of bioenergy potential through agricultural 
residue and waste. Beccali et al. performed analysis of 
bioenergy potential in Sicily, Italy, by using GIS to 
identify the potential areas for residue collection from 
the pruning of olive groves, vineyards, and other 
agricultural crops [7]. The database used included data 
on land cover, land use, regional cartography, climatic 
data, and other factors. With this GIS-map generated, 
potential areas of residues from chosen crops were 
identified. With the areas highlighted, yield coefficients 
of the various crops were assumed and used in 
calculating the theoretical potential productivity. The 
bioenergy potential in Uganda was estimated using a 
GIS-based approach by Barata [8]. In the study, land 
available for the growth of energy crops was mapped, 
accounting for food security by excluding land already 
being used for crop growth. Selected crops were then 
evaluated by splitting into crop parts and calculating 
bioenergy potential using different conversion 
processes. Maps were then generated of individual crop 
parts with the highest energy potentials. Limitations of 
the study include generating maps on an individual 
crops basis and not looking at the crops holistically to 
identify differences in regions. 

This report aims to build on the foundations of prior 
GIS-based approaches but include additional results that 
are critical in understanding to aid in the implementation 
of biomass energy. This includes evaluating and 
comparing energy potentials of different crops in the 
same area to identify optimum crop choice. Various 
climate change scenarios were also analysed to take into 
consideration the effects on crop production. 

2.2 Workflow 
The production of biomass has been addressed from 

two sources. The first is growth of energy crops, which 
are crops grown for the purpose of energy production. 
The second is agricultural residues, the waste materials 
from existing food crop production. 

2.2.1 Energy Crops 
Energy crops are plants grown specifically for the 
purpose of producing bioenergy which has three forms: 
direct combustion of biomass, biogas, and biofuels. The 
Lao Institute for Renewable Energy has determined 
jatropha curcas to be the most likely commercial bio-
fuel crop in Lao PDR [9]. Additionally, saccharose- and 
starch-producing crops are effective energy crops as 
they can also be used for ethanol production, with 
sugarcane, cassava, and maize being the most promising 
in Lao PDR [10]. As these crops are already being 

cultivated in Lao PDR for energy purposes, they are 
deemed suitable for further investigation. 

Cassava is a resilient woody shrub that is easily 
cultivated in Lao PDR. Sugarcane is a perennial grass 
and has high potential to provide bioenergy, as seen in 
Brazil’s electricity mix where sugarcane mills are the 
fourth most important electricity suppliers, providing 
more than 22,5000 GWh in 2019 [11]. Maize is a cereal 
grain and staple crop. It can grow in hot and dry 
conditions, enabling it to be grown in land that is not 
suitable for other crops.  Jatropha curcas is valued due 
to its resilience. It can grow in many different types of 
soil, thriving in arid conditions and poor-quality land. 
This makes it suitable to survive dry seasons in Lao 
PDR.  

2.2.2 Agricultural Residue 
Lao PDR has a large agriculture sector where, on 
estimate, 80% of the total population is engaged in 
farming [4]. This production of crops leads to large 
quantities of agricultural residues being generated.  
Often the residues are left in order to improve soil 
fertility. However, they can also be used for energy 
generation as feedstock. Lao PDR has an opportunity 
generate biomass energy from current residues. This 
report analysed the crop residue potential from rice, 
cassava, sugar cane, and maize. These selected crops 
cover a majority of the crops grown in Lao PDR, being 
the four highest crops in production quantity in Lao PDR 
[12], and with 72% of total cultivated area dedicated to 
rice [13]. 

2.2.3 Conversion processes 
The majority of the energy consumption in Lao PDR 

comes from residential use, where about 51% of all 
power is consumed [10]. Wood fuel, fuelwood and 
charcoal accounted for 69% of the average energy use 
in rural areas where it is mainly used for cooking and 
heating [10]. Therefore, renewable energy alternatives 
for Lao PDR’s primary energy use were studied. Hence, 
direct combustion of biomass and biogas were examined 
as they can be used for cooking and heating. Despite the 
fact that cassava, sugarcane, and maize can also be used 
for ethanol production for biofuels, this was not further 
investigated as focus was placed on bioenergy that can 
be utilised for Lao PDR’ main energy needs. Biofuel 
processing plants are non-existent in Lao PDR and so 
the feasibility of biofuel production would be hard to 
assess. Biodiesel production from jatropha curcas was 
not further investigated for the same reason. However, 
the GIS work performed, including the maps generated, 
can still be used as a basis for further investigation in 
these alternative fuels in future work. 

When choosing suitable conversion processes for 
energy generation, emphasis was placed on mature, 
proven processes that are commercially available or in 
the early commercial stage. Previously implemented 
conversion processes in Lao PDR were also considered 
due to the country's familiarity with them. According to 
International Finance Corporation (IFC), combustion, 
gasification and anaerobic digestion are conversion 
processes most suitable [14]. 
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• Combustion: Electricity is produced by direct 
combustion when biomass is burned to produce 
high-pressure steam which then allows turbines to 
rotate. This drives a generator which produces 
energy. 

• Gasification: Solid biomass material is exposed to 
high temperatures with very little oxygen present, to 
produce synthesis gas (syngas). The gas can then be 
burned to produce energy. 

• Anaerobic digestion: Organic waste material such 
as animal manure or human sewage can be collected 
in tanks called digesters. In these oxygen-free tanks, 
the waste is decomposed by anaerobic bacteria, 
which produce methane and other by-products. This 
forms a renewable natural gas that can be purified 
and used to generate electricity. 
Different conversion processes require engines 

suitable for the process and therefore multiple engines 
were considered. Conversion efficiency and practical 
factors were considered for engine choice used in final 
energy calculations.  
• Combustion: The two main conversion processes 

considered were Stirling engines and Externally 
Fired Gas Turbines (EFGT). Both Stirling Engines 
and EFGT have a rather low electrical efficiency of 
20-25% but both engines can be operated using all 
biomass feedstocks. The Stirling engine was selected 
over the EFGT as it would be able to cope with fast 
load changes better. [15] 

• Gasification: Microturbines can directly run-on 
biogas and are suitable due to their low maintenance 
requirements and high efficiency of around 35%. As 
it is of importance to provide energy to remote areas 
where maintenance and operation area easy, 
microturbines were the most suitable choice [15].  

• Anaerobic Digestion: Due to similar reasons 
mentioned above, microturbines have been selected 
as the most suitable engine for the process. 

2.2.4 Yield data 
The Global Agro-Ecological Zones (GAEZ) 

modelling framework [16], developed in cooperation of 
The Food and Agriculture Organization of the United 
Nations (FAO) and the International Institute for 
Applied Systems Analysis (IIASA), has generated a 
spatial database for the cultivation potentials of around 
50 crops. GAEZ v4 was used extensively in this study 
to determine yield potentials of crops when calculating 
bioenergy potentials. Two main data sources from 
GAEZ v4 were used: 
• Actual Yield and Production: providing downscaled 

historical yields of crops; 
• Agro-climatic Potential Yield: providing potential 

yields of crops under different input and 
management assumptions for historical, current and 
future climate. 

2.2.4.1 Actual Yield and Production 
Aggregate data regarding agricultural production 

exists at a national level, but this does not provide data 
at a finer resolution which is needed to assess crop yield 
potential across Lao PDR. GAEZ v4 uses a 

“downscaling” method in order to convert the national-
scale data into individual spatial unit data. This is 
performed using optimization principles to combine 
spatial data from several factors that affect the 
distribution of crop production. These factors include: 
land characteristics, land cover, soil type, terrain slopes, 
climate and others. 
2.2.4.2 Agro-climatic Potential Yield 

The potential crop yield is calculated in two parts. 
First, calculating the biomass and yield potential and 
second, applying adjustment factors to account for agro-
climatic restraints. 

The biomass and yield potential is calculated by 
Land Utilization Types (LUTs). Each location (grid-
cell) has a specific LUT which comprises technical 
specifications for crop production within the given 
socioeconomic setting. A LUT will consist of attributes 
such as water supply type, type of main produce, 
cultivation practices, and other agronomic data. The 
temperature and radiation regime of the grid-cell is then 
combined with the LUT and the specified crop’s 
characteristics such as growth cycle information, 
photosynthesis rates, respiration rates, sensitivity to heat 
etc. This allows a potential yield to be calculated. Each 
grid-cell yield can be calculated for different water 
source conditions (rain-fed or irrigated) and different 
input levels (low, intermediate, and high). Under rain-
fed conditions, water requirements of each LUT and 
crop are identified, and a water-stress and water-deficit 
yield reduction factor is applied where necessary. A 
low-level input uses conditions where production relies 
on the use of ‘labour intensive techniques, and no 
application of plant nutrients, no use of chemicals for 
pest and disease control and minimum conservation 
measures’. A high-level input uses conditions where 
production is ‘fully mechanized where possible with low 
labour intensity and uses optimum applications of 
nutrients and chemical pest, disease and weed control’. 
An intermediate level input was not used in this study. 

 After the yield potential is calculated by LUTs, 
individual agro-climatic constraint factors are combined 
and applied, including pests, diseases, weeds, effect on 
farming operations and others. Yield adjustment factors 
also include crop-specific responses to CO2 
concentrations, which is crucial when evaluating 
climate scenarios. An example equation is provided in 
Appendix A for how the factors is calculated. 

2.2.5 Climate Scenarios 
As a goal of this report is to provide a foundation for 

Lao PDR in developing a sustainable plan for renewable 
energy, it is important to understand the impacts of 
different climate scenarios on bioenergy production. 

Scenarios have been run using various 
Representative Concentration Pathways (RCP), which 
provide scenarios of the emissions trajectory and 
resultant radiative forcing projections. RCP 2.6, known 
as ‘Low emissions’, would have CO2 emissions stay at 
today’s level until 2020, then decline and go to zero in 
2100. RCP 4.5. known as ‘Intermediate emissions’ and 
the most probable baseline scenario, have CO2 
emissions increase slightly before declining starts 
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around 2040. RCP 8.5, known as ‘High emissions’ and 
the basis for the worst-case scenario, have emissions 
continue to rise throughout the century. 

3 Energy Potential of Energy 
Crops & Residues 

3.1 Method 
A step-by-step methodology was established to 

determine the total potential energy that could be 
generated from biomass use in Lao PDR. Background 
research on Lao PDR provided a foundation for creating 
the workflow, which considered land distribution, 
conversion processes, and suitable energy crops.  

All calculations and mapping work were carried out 
on Quantum Geographical Information System (QGIS), 
and all relevant shapefiles containing this work has been 
saved to be used for future work in this field. 

3.1.1 Mapping suitable land for energy crop 
growth 

The first step was to determine the area of land 
suitable for growing energy crops. Initially, a map of 
Lao PDR was imported into QGIS. ‘Land use’ and 
‘Forest classification’ outlined in ‘Forestry Strategy to 
the year 2020 of Lao PDR’ [17] were then used to 
identify regions of Lao PDR to remove from the map 
and have been defined below: 
• Production Forests are considered areas used in 

regularly providing forest products such as timber on 
a sustainable basis to help social and economic 
development requirements and for people’s 
livelihoods. 

• Conservation Forests are regions classified for the 
purpose of protecting and conserving animal and 
plant species, natural habitats, and various other 
entities of historical, cultural, tourism, 
environmental, educational, or scientific value.  

• Protection Forests: are regions classified for the 
protection of watershed areas and prevention of soil 
erosion. They also include areas of forestland with 
national security significance, areas for protecting 
against natural disaster and areas for protection of 
the environment.  
Land in Lao PDR that is already being used for 

existing crop production were also identified and 
removed in order to account for food security. To create 
a map of Lao PDR without protected regions or crop 
land cover, the AEZ shapefiles for forest regions and 
existing crop production areas were downloaded and 
processed using QGIS [18]. The shapefile layers were 
then overlaid on the map of Lao PDR and geoprocessing 
tools were used to remove areas of overlap, resulting in 
the final map representing suitable land for energy crop 
use. 

3.1.2 Calculating production of energy crop 
The next step involved collecting yield data 

corresponding to the areas on the created map in order 
to calculate the total production of each crop to be used 
as biomass feedstock. The yield data for the respective 

crops was downloaded from the ‘Actual Yield and 
Production’ theme in GAEZ as outlined in section 
2.2.5.2. This data was in a raster file format, which is a 
rectangular array of values known as pixels, and 
therefore converted into a vector shapefile using the 
‘raster pixel to polygon’ processing tool to be 
compatible with other layers in QGIS. The yield data 
had a resolution of 5 arc minutes, providing granular 
information on a 9km-by-9km scale for Lao PDR. 
Geoprocessing tools were then used to merge the yield 
data with the corresponding areas on the map, 
converting the map into small 9km-by-9km grids of the 
potential production of each energy crop. 

3.1.3 Calculating energy potential 
Crop production for each grid cell was then 

converted to energy potential. The purpose of 
considering different conversion processes available 
was to compare the maximum potential energy 
generated using the production data and calorific value 
for each energy crop and by accounting for types of 
engines and engine efficiency. The following equation 
was used to derive energy potential and has been 
adapted for each conversion processes [19]:  
 

𝐸 =  (𝐶𝑉/𝐶1) ×  𝐶2 × 𝐷𝑀   (1) 
 
Where 𝐶𝑉 is the calorific value (MJkg-1), 𝐶1 is the 
coefficient to transform MJ unit to kWh (1kWh = 
3.6MJ), 𝐶2 is the efficiency of the engine, 𝐷𝑀 is the dry 
matter of the crop (g/ha), C3 is syngas efficiency to 
convert biomass to gas, E is the energy potential 
(kWh/ha). 
Combustion:  

𝐸𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 =  𝐷𝑀 ×  𝐶𝑉 ×  𝐶2 ×  𝐶1   (2) 

Gasification: 

𝐸𝐺𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  =  𝐷𝑀 ×  𝐶𝑉 ×  𝐶3 ×  𝐶2 ×  𝐶1   (3) 

Anaerobic Digestion: 

𝐸𝐴𝐷 =  𝐷𝑀 ×  𝐵𝑖𝑜𝑔𝑎𝑠 𝑌𝑖𝑒𝑙𝑑  ×  𝐶𝑉  ×  𝐶2 ×  𝐶1  (4) 
1m3 of Biogas Yield = 22MJ/kg 

3.1.4 Energy Crops 
Cassava, sugarcane, and maize were chosen as the 

energy crops to analyse, as explained in Section 2.2.1. 
Jatropha curcas was not included in this section as 
historical yield data was not available due to jatropha 
curcas cultivation being negligible in Lao PDR in the 
past. Jatropha curcas was analysed in Section 3. Energy 
crops investigated in this report were split into different 
parts of the plant. This approach ensured that the 
suitable parts of each crop would be used dependant on 
the conversion processes and remaining parts could be 
used for other purposes, such as food or ethanol 
production. The breakdown of each crop has been 
included below and a more detailed summary has been 
included in the Appendix B. All relevant data required 
was collected from literature. 
• Cassava has been separated into stalks, leaves, and 

husks 
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• Maize has been separated into corncob, stover and 
trash 

• Sugarcane has been separated into bagasse, trash, 
straw, and leaves 
These values were then applied to the equations in 

Section 3.2 to output total potential energy for each 
energy crop and conversion processes. 

3.1.5 Grid-by-grid Comparison 
To determine the distribution of the different crops 

across Lao PDR in order to maximise potential energy 
production, analysis was carried out to compare energy 
potentials of different crops in each grid cell location. 
To perform this, the individual maps generated for each 
crop were combined into one layer. Once combined, 
each grid was evaluated using an expression to output 
the crop that generates the most energy. 

3.1.6 Calculating energy potential of residues 
Rice, cassava, sugarcane, and maize were selected to 

analyse the potential energy production from residues, 
as explained in Section 2.2.2. To calculate the energy 
potential, land crop cover of Lao PDR was collected 
using data from AEZ [18] and generated into QGIS. As 
the data source was agglomerated, data filtering work 
was carried out in order to produce isolated maps of the 
specific crop. Yield data was then ‘merged’ as explained 
in Section 3.1.2, producing a map of the specified crop 
production across Lao PDR. 

To calculate the potential energy associated with the 
specified crop, each crop was broken down into its 
residue parts. The total potential energy of each crop 
was then calculated using the formula [20]: 

𝐸𝑖 = ∑ 𝑃𝑖 × 𝑅𝑃𝑅𝑖,𝑗 × 𝐿𝐻𝑉𝑖,𝑗 𝑗    (5) 
Where 𝑖 is the crop and 𝑗 is the residue part of the 
selected crop. 𝑃 is the mass crop production, 𝑅𝑃𝑅 is the 
residue to crop ratio, and LHV is the lower heating value 
(MJ/kg). Breakdown of each crop can be found in 
Appendix B.1.3 

3.2 Results 
3.2.1 Energy potential of residues 

Crop Residue 
part 

Energy of 
part (kWh) 

Total Energy 
(kWh) 

Rice 
Husk 3.27E+09 

7.28E+09 
Straw 4.01E+09 

Cassav
a 

Stalk 2.82E+09 
5.79E+09 

Roots 2.97E+09 

Sugarca
ne 

Bagasse 8.89E+08 
2.03E+09 

Top & trash 1.14E+09 

Maize 
Husk 1.70E+08 

4.93E+09 Stalk 4.54E+09 
Cob 2.22E+08 

Table 1 Potential energy generation using residues from existing crop 
land cover in Lao PDR. 

Table 1 displays the potential energy that can be 
generated using residue from current crop land cover in 
Lao PDR. A substantial amount of energy can be 
generated from existing agriculture already in place, 

with a total combined potential of 20 billion kWh, which 
is promising for Lao PDR.  

3.2.2 Energy potential of energy crops 
For the base case, all forest area including 

unprotected forest regions were removed from the map 
in addition to crop land cover. 

Table 2 Comparison of potential energy generated for different energy 
crops using various conversion processes 

Table 2 shows the total potential energy calculated 
for each energy crop when using different conversion 
processes. The figures reported are the total energy 
potentials for all of Lao PDR and a more detailed 
breakdown of the figures for each province can be found 
in the Appendix C.1.1. From these figures, it is clear that 
energy potential is highly affected by conversion 
processes type. Moreover, cassava can generate the 
highest total potential energy under current climate 
conditions and agriculture input level when using 
combustion as the conversion processes. The energy 
generated from cassava and sugarcane using combustion 
were both significant. Grid-by-grid comparison (as 
explained in Section 3.1.5) generated the map shown in 
Figure 1 which showcases the outcome of crop 
distribution by prioritising energy potential. From the 
map, it was apparent that whilst cassava would be the 
predominant crop used for energy generation, there were 
certain provinces that favoured sugarcane production. 
Energy potential generated from maize crop is 
significantly lower compared to the other crops as the 
total production of the crop is not as large. From these 
results, it is evident the yield of the crop plays a large 
factor in the total energy production as the heating value 
of individual parts of the crop are similar. 
 

3.2.3 Expanding suitable land area 

 
Figure 1. Mapping of energy crops and crop residues in Lao PDR 
using all forest areas (right) and without unprotected forest area (left). 
Red regions represent the regions recommended to grow cassava; 

Crop 
Combustion 

(kWh) 
Gasification 

(kWh) 
AD  

(kWh) 
Without Forests 

Cassava 6.52E+10 4.51E+10 6.45E+10 
Maize 2.12E+10 1.23E+10 1.85E+10 
Sugarcane 5.14E+10 3.12E+10 1.90E+10 

 With Forests 
Cassava 1.31E+11 9.04e+10 1.29E+11 
Maize 4.14E+10 2.40E+10 3.62E+10 
Sugarcane 1.02E+11 6.21E+10 3.78E+10 
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yellow regions represent the regions to grow sugarcane; purple regions 
represent regions using residue. 
 

Figure 1 shows a side-by-side visual comparison, 
mapping the energy crops using forest regions not 
protected by law (right) and without (left). A significant 
increase in energy crop cover can be seen, mainly in the 
northern provinces such as Louangnamtha and 
Oudomxay, when accounting for forest areas which is 
expected as about 20% of Lao PDR is covered in forest 
areas not protected. The increase in area of land that can 
be utilised is translated into a greater energy potential 
value as seen in table 2. However, as mentioned before 
it is unrealistic to remove all forest area for the sole 
purpose of growing energy crops and therefore a more 
detailed breakdown of energy potentials is provided on 
a provincial scale in C.1.1 to help individual provinces 
if they wish to remove some of the forest cover. 

3.3 Discussion 
3.3.1 Agricultural Residues 

One of the project aims was to identify the bioenergy 
potential through existing agricultural residues. 
Calculations show by using residue from existing crops, 
about 20 billion kWh can be generated which equates to 
about 20% of the total energy that can be generated from 
biomass in this report. With current demand levels in 
Lao PDR, using only residues for energy generation 
exceeds the current annual consumption of 5.47 billion 
kWh [21] in the country.  

3.3.2 Energy Crops 
3.3.2.1 Crop Selection 

Table 2 shows that, for maximising energy 
production, cassava using anaerobic digestion 
outperforms the studied crops and conversion processes, 
making cassava a promising energy crop to start 
growing in Lao PDR, especially in the northern 
provinces. The driving reason behind cassava’s energy 
potential is that cassava is able to generate higher yields 
and thus higher energy potentials. An explanation for 
this is that the climate is favourable to cassava in these 
regions. According to AEZ [18], for the periods when 
yield data was collected (2010), precipitation levels 
were on average below 1500mm throughout the 
northern provinces and some south-western provinces. 
According to [22], optimum precipitation levels for 
cassava are 1000 to 2000mm per year which explains 
why it outperforms maize and sugarcane yields in 
regions of low precipitation. In contrast, in areas of high 
precipitation such as south-eastern provinces, where 
over 2200mm were recorded in 2010, sugarcane 
outperforms maize and cassava. 

The results found that northern provinces of Lao 
PDR tend to achieve higher yields for all the energy 
crops compared to other provinces. This can be more 
easily seen in Appendix C.1.1 where energy crop maps 
for each individual crop is provided. This can be 
explained by more suitable agro-climatic conditions in 
these regions. When evaluating energy crop growth, 
these northern provinces should be prioritised where 
greater yields lead to greater energy potential. 

The results show that it important to consider 
growing a variety of energy crops in Lao PDR. It was 
found that using one energy crop across all of Lao PDR 
did not maximise energy potential, but a mixed 
distribution of crops was optimum as showed by Figure 
1. Whilst about 65 billion kWh could be generated from 
cassava alone, by replacing some regions where higher 
sugarcane yields are achievable, an additional 1.3 billion 
kWh of energy can be produced.  
3.3.2.2 Conversion Processes Selection 

The results show that the energy potential generated 
by the crops are dependent on the conversion process 
used. Table 2 shows that for all the energy crops, 
combustion is able to produce the highest energy 
potential. However, anaerobic digestion is able to almost 
match the production of energy for cassava by 
generating 64.5 billion kWh. This can be explained as 
selection of a preferred conversion processes is complex 
and requires consideration of the type of biomass and 
moisture content in the fuel. For biomass with moisture 
content above 65%, the calorific value becomes too low 
for combustion, making a biogas plant the more suitable 
option [14]. Moisture content in cassava crop can range 
from 62.5-75.4% [23] and therefore, the energy 
generated from anaerobic digestion almost matches 
combustion. Combustion outperforms anaerobic 
digestion in this instance due to a larger proportion of 
the feedstock being used in the process. In contrast, as 
moisture content in maize (14-22%) [24], and sugarcane 
(45-55%) [25], are lower than the suggested 65% 
moisture content, combustion conversion processes was 
the ideal conversion processes. 

As the energy potential generated is still significant 
in each of the processes, factors other than just energy 
potential should be examined. As most of Lao PDR’s 
population are in rural areas, anaerobic digestion and 
gasification is more suitable as they are lower 
maintenance and are ideal for small-scale energy 
generation. This makes anaerobic digestion of cassava 
potentially the more attractive combination to use in Lao 
PDR. 
3.3.2.3 Expansion of suitable land area 

Table 2 shows that energy potential is almost 
doubled when expanding the land cover used to grow 
energy crops to include forest areas in Lao PDR that are 
not protected. With the help of this data, decision-
makers can assess whether it is beneficial to use forest 
area for the purpose of bioenergy production. It is 
important to account for proper use of forest areas and 
implications on wildlife. Therefore, more detailed 
energy potential data has been provided on a provincial 
level in the Appendix C.1.1, to aide in the evaluation.   

4 Climate Scenarios 
4.1 Method 

In this section, the aim of the investigation was to 
understand the impacts of climate change on the 
predicted yields of selected energy crops by comparing 
it with historical averages which formed a baseline. This 
would provide useful insights to the suitability of 
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growing energy crops in the future for Lao PDR. The 
workflow in this section was adopted from the 
methodology outlined in Section 3.1, using QGIS to 
identify suitable land for energy crop growth, with key 
differences being the theme used to collect data and 
focusing mainly on predicted yields to draw conclusions 
rather than maximum potential energy. Therefore, the 
area used for growing energy crops in our climate 
scenarios were equivalent to our base case. As 
mentioned in Section 2.2.4, there were multiple themes 
created by GAEZ for different classes of data. In this 
section, the ‘Agro-Climatic Potential Yield’ theme was 
used to calculate potential yields by applying adjustment 
factors to account for different agro-climatic scenarios. 

This theme also provided simulations using 
historical data between 1981-2010, which would be 
used as a baseline for comparing against future 
estimated yields. A limitation, however, was that the 
climate pathways were only modelled with a high input 
level which, as mentioned in Section 2.2.4, is a scenario 
where crop production is fully mechanised and uses 
optimum farming techniques. To maintain consistency, 
the baseline data was adjusted by factoring in a high 
input level scenario. This allowed for a comprehensive 
comparison between the data generated from different 
climate pathways and the baseline scenario. The impacts 
of using a high input level will be explored in the 
discussion. Conversion processes were not applied as 
improvements in technology and efficiency are 
unknown for the future. Therefore, the energy potential 
calculated for each crop is the maximum thermal energy 
that can be generated and has been included in Appendix 
C.1.3. 

Historical data for cassava, maize, sugarcane and 
jatropha curcas from 1981 to 2010 were obtained using 
the CRUTS32 data source provided by GAEZ. For 
future climate data, the IPSL-CMIP5 climate model was 
used to generate potential yields for different 
representative concentration pathways (RCP2.6, 
RCP4.5, RCP8.5) for the periods 2011-2040 and 2041-
2070. Maize was replaced by jatropha curcas as previous 
results suggest that the performance of the crop is not 
promising. Jatropha curcas could only be assessed in the 
climate pathway work due to the availability of crop data 
provided in this theme.   

4.2 Results 

Table 3 Predicted average yields generated for different energy crops 
under different climate pathways between 2011-2040 

Table 4 Predicted average yields generated for different energy crops 
under different climate pathways between 2041-2071  
 

The performances of the energy crops were assessed 
by the difference in yields generated under each climate 
pathway, relative to the baseline as the simulations were 
modelled with the same control variables. Tables 3 and 
4 show how the average potential yields vary under 
different climate pathways for each energy crop, 
between 2011-2040 and 2041-2070. Potential energy 
generated from these yields can be located in Appendix 
C.1.3.  

Table 3 shows that between 2011-2040, for all future 
climate scenarios, the predicted average yield is 
generally expected to decline and the variation in 
decline are energy crop specific. Jatropha curcas appears 
to be the most resilient crop under different climate 
scenarios with the lowest changes of 2%, 2.9% and 2.6% 
for RCP 2.6, 4.5 and 8.5 respectively. Cassava is also 
predicted to maintain decent crop yields with a 
maximum decline of 4% under RCP 8.5. Sugarcane 
yields are expected to decline the most between 2011-
2040 under all climate scenarios with expected declines 
of -5.5% under RCP4.5 and -16.6% under RCP 2.6 and 
8.5. As seen in table 4, between 2041-2070 the decline 
in predicted crop yields area expected to increase. This 
is the case for all energy crops for all climate scenarios 
except sugarcane under RCP 2.6 which slightly 
increases predicted yields from a -16.6% decline to  -
16.3%. RCP 8.5 climate pathways cause the largest yield 
declines between 2041-2070 of -9.3%, -29.1% and -
7.7% for cassava, sugarcane and jatropha curcas 
respectively. Jatropha is predicted to have the lowest 
yield decline across all climate scenarios once again.  

4.3  Discussion 
4.3.1 Impacts of high input scenario 

Tables 3 and 4 and table 13 in Appendix C.1.3 shows 
the changes in potential yields and energy potential for 
different climate pathways relative to the baseline when 
operating with a high input level, which is promising for 
the prospect of growing energy crops in the future for 
Lao PDR. However, due to the high input level 
assumption, the absolute values can be misleading and 
therefore, an emphasis is placed on the relative 
difference to the baseline data. This is because 
modelling for expected yields using only high input 
levels does not necessarily reflect the overall agriculture 
industry/landscape in Lao PDR This can be seen by the 
difference in energy potentials generated using data 
from 2010 operating with current input levels used to 
create our base case and data from historical averages 
operating with a high input level. Refer to table 2 in 
section 3.2.2 and table 12 in appendix C.1.3. The 

Crop 
Baseline 

Yield 
(Kg/ha) 

% Difference 2011-2040 

RCP 
2.6 

RCP 
4.5 

RCP 
8.5 

Cassava 29395 -3.5% -2.9% -4.0% 

Sugarcane 104456 -16.6% -5.5% -16.6% 

Jatropha 3524 -2.0% -2.9% -2.6% 

Crop 
Baseline 

Yield 
(Kg/ha) 

% Difference 2041-2070 

RCP 
2.6 

RCP 
4.5 

RCP 
8.5 

Cassava 29395 -3.7% -4.4% -9.3% 

Sugarcane 104456 -16.3% -15.6% -29.1% 

Jatropha 3524 -2.4% -3.4% -7.7% 
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difference in values show that Lao PDR can generate a 
significant amount of extra energy through adopting a 
high input level but, currently this is not the case. The 
value that can be extracted from this work is that under 
all climate scenarios in the future, the difference in crop 
yields relative to historical averages are reasonable and 
therefore, expected yields can be utilised as a source of 
energy for Lao PDR. 

4.3.2 Impacts of climate pathways 
From tables 3 and 4, it is evident that the impacts of 

different climate pathways vary between the first half of 
the century and the second half. Between 2011-2040, 
there is less variance in yield declines for the different 
RCP scenarios compared to 2041-2070, where the range 
in yield declines are larger. For example, between 2011-
2040, cassava crop yield decline ranges from -3.5% to -
4% whereas between 2041-2070, the yield decline 
ranges from -3.7% to -9.3%. In addition, RCP 8.5 is 
expected to cause the biggest change in yields between 
2011-2040 and 2041-2070 compared to all other climate 
scenarios.  

Similar yield declines for all climate pathways 
between 2011-2040 can be attributed to the fact that 
until 2050, the expected outcomes between RCPs ae 
relatively small. This is because climate change systems 
respond slowly to changes in greenhouse gas (GHG) 
emissions [26]. After 2050, more importance must be 
given to the different RCPs as they represent very 
different scenarios by accounting for rate of warming, 
and bigger changes to water temperature and 
precipitation levels. Whilst RCP 2.6 and 4.5 models are 
less distinguished, with increasing temperatures and 
GHG emissions expected to slow down, RCP 8.5 leads 
to greater temperature increases and increased GHG 
emissions [27]. The findings in tables 3 and 4 support 
the aim of using crops for energy generation as predicted 
yields can still generate a substantial portion of energy 
consumed in Lao PDR annually. However, it is 
important to be wary of climate scenario RCP 8.5 where 
there is a much more significant decline in crops, as if 
global climates area exacerbated further, the impacts on 
yields could be much worse  

4.3.3 Yield Responses 
As seen in table 3 and 4, the percentage decrease in 

predicted yields for cassava and jatropha curcas are 
lower than sugarcane. This suggests that energy crops 
have different sensitivity levels to changes in climate 
which affects predicted yields. The data supports that 
cassava and jatropha curcas are more resilient to 
changes in climate which make them more suitable for 
use in Lao PDR as they will generate relatively 
consistent yields for all climate pathways. The response 
of the energy crops can be explained by the following 
reasons: 
• Yield response to water 
• Yield response to CO2 levels 

Yield reductions are related to changing rainfall 
patterns, evaporative demand, and reduced availability 
of water [28]. Ky values have been derived by FAO to 
quantify the link between production and water use by a 

crop. A Ky value greater than 1 suggests that the crop 
response is very sensitive to water deficit with 
proportional larger yield reductions when water use is 
reduced because of stress [29]. The impacts of reduced 
availability of water caused by climate change are 
reflected in the decreasing yields observed in tables 3 
and 4. According to FAO, sugarcane has a Ky factor of 
1.2 which is higher than jatropha curcas and cassava and 
explains why a relatively greater decrease in predicted 
yields are seen.  

According to IPCC, CO2 levels are expected to 
increase under all climate scenarios [30]. The 
‘fertilisation’ effect on crop yields caused by increasing 
CO2 in the atmosphere has been accounted for by GAEZ 
[16]. Crop species respond differently to changes in CO2 
levels depending on physiological characteristics. The 
empirical correction factor, fCO2, captures the yield 
responses of five broad crop groups. Cassava and 
jatropha curcas have been classified as group 2 crops, 
whilst sugarcane has been classified as a group 3 crop. 
Group 3 crops have consistently higher increment 
factors for all CO2 levels compared to group 2. By 
accounting for yield response to water deficit and CO2 
levels, results in tables 3 and 4 seem reasonable. Cassava 
and jatropha curcas seem more resilient to climate 
change compared to sugarcane due to the positive 
response to increasing CO2 levels and the lower 
sensitivity to water deficit. When deciding the best 
energy crops to utilise, it is important to recognise the 
ability to grow under changing climates alongside the 
yields that can produced. By factoring in all these 
indicators, cassava, jatropha curcas and sugarcane all 
seem viable options. 

5 Conclusions 
This report achieved the aims of the project by using 

a map-based approach to understand the energy 
generation potential of suitable energy crops and 
agricultural residues in Lao PDR. The results obtained 
found that a combination of cassava and sugarcane 
across Lao PDR generated the highest potential energy 
of 66.5 billion kWh. This involved using combustion as 
the conversion process, however, anaerobic digestion 
was found to perform similarly and may be more 
suitable for use in rural areas in Lao PDR due to lower 
maintenance requirements and more suited for small-
scale generation. Results also found that an additional 
20 billion kWh of energy can be produced from existing 
residue. Additionally, results from climate pathway 
analysis showed that decline in crop yields are expected 
under all climate scenarios but are more significant 
between 2041-2070. However, the results show cassava 
and jatropha curcas are more resilient to the changing 
climate. 

Geo-spatial data in the form of maps have been 
produced, to allow spatial evaluation when considering 
how to implement the biomass energy potential that has 
been found in this study for Lao PDR. These maps have 
been made accessible to provide a foundation for future 
work in this field. In deciding which energy crops to 
grow and conversion processes to choose, whilst this 
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report has evaluated energy production potential, it is 
also important to consider the economic factors that will 
determine what strategy is more suitable for Lao PDR. 
Some factors that should be included in a future 
economic analysis are: 
• Cost to produce crop: Seeds, fertilizers, plant 

protection products, cost of capital goods such as 
equipment & machinery, labour, land costs and 
others. FAO have produced the Handbook on 
Agricultural Cost of Production Statistics [31] 
which outlines a workflow for calculating cost of 
production of crops, especially focused for 
developing countries.  

• Cost required for energy production: transportation 
of feedstock, processing of feedstock, initial 
investment & operational costs of conversion 
processes, implementation costs with existing grid 
lines and others.  
The geo-spatial nature of the data provided in this 

study can provide a basis for assessing these location-
dependent economic factors. 

The crops evaluated in this report were the most 
promising, but not exhaustive. Other potential energy 
crops, such as soybean and oil palm, can be evaluated 
using the same methodology. The conversion processes 
evaluated also focused on mature conversion processes 
that have been used in Lao PDR previously. However, 
biomass conversion processes in the research and 
development stage and demonstration stage, namely 
pyrolysis and torrefaction, could be looked into. 
Pyrolysis involves heating biomass with high 
temperatures in the absence of oxygen to produce solid 
charcoal, liquid pyrolysis oil, and a product gas. 
Torrefaction is a mild form of pyrolysis where biomass 
is heated in the absence of oxygen to produce char to use 
for bioenergy production. 

Although biofuel production was not assessed as 
explained in Section 2.2.3, the spatial data of crop 
production in this report can be used to calculate the 
energy production of the bioethanol production from 
cassava, sugar cane and maize. Factors to consider when 
using the selected crops for biofuel production are 
outlined in Table 2.1 of the Appendix in [10]. 

Finally, to ensure future viability, a sensitivity 
analysis should be performed on the production of the 
studied crops as production is variable and vulnerable to 
significant changes. Although climate scenarios were 
considered, other factors could impact the production in 
the future such as diseases. Future improvements in 
agricultural techniques, water availability, irrigation and 
efficiency of biomass conversion processes would also 
be important to consider. 
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Techno-Economic and Environmental Assessment of Ethylene 
Electrosynthesis from Carbon Dioxide  

 
Xu, Yuzhe and Leung, Chiyuen 

Department of Chemical Engineering, Imperial College London, U.K. 
 
Abstract: Global concern about greenhouse gas emission rose from last century. Researchers have developed 
numerous methods to reduce the impact of from chemical processes to the environment. Current technology enables 
people to build nano-level of catalyst structures for desired conversion of previously non-reactive components. 
Based on former study of electrolysis of carbon dioxide in alkaline solution, we have managed to accomplish a 
model of the process alongside with its life cycle assessment result to observe how the process could help to the 
environmental improvement and its corresponding economic price. Aspen Plus V11 is used to model the process, 
consisting of three different separation units to obtain four main sales product of CO2-H2O electrical reduction: 
ethylene gas, hydrogen gas, pure ethanol, and pure acetic acid. The process is dedicated to reducing the emission of 
carbon dioxide; hence it is not its duty to pose a positive economic payback. In the results section, a negative 
economic potential is presented, yet the contribution to net-zero and carbon-neutral target of global politics of the 
process is obvious and apparent. Furthermore, current constraints of this report and the discussion of it is also 
available in the conclusion.  
 
Keywords: Process Simulation, CO2 Electrical Reduction, CO2 Absorption, Ethanol Distillation, Acetic Acid 
Extraction, CO2 Life cycle assessment  
 

 Figure. Overall Flowsheet of the Process 
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1. Introduction 

 
Increased global greenhouse gas emissions have been 
a growing concern for mankind as the accumulation 
of those gases in the atmosphere could lead to 
devastating consequences such as severe heatwaves, 
melting of glaciers and arctic ice caps, loss of habitats 
for animals etc. In December 2015, 195 countries 
reached a historical climate agreement that to keep 
the rise of global temperature below 2°C to avoid 
dangerous climate change. Many governments then 
announced the gradual phase-out of fossil fuels and 
switch to renewable energy as means to achieve the 
target [1]. 
    Carbon dioxide (CO2) is the most significant 
greenhouse gas, accounting for about three-quarters 
of total greenhouse gas emissions [2]. CO2 is 
produced by a variety of sources, including the 
burning of fossil fuels, as well as by certain industrial 
processes and agriculture for example the production 
of livestock and the use of fertilizers. One of the most 
common methods to consume CO2 is through the 
process of photosynthesis, in which plants and other 
photosynthetic organisms use light energy to convert 
CO2 into glucose and other organic compounds. This 
process acts as the basis of the Earth's food chain and 
is essential for sustaining life on the planet. 
    In recent years, carbon capture and utilization 
(CCU) has gained attention as a potential solution to 
reduce CO2 emissions and mitigate climate change. 
This approach involves capturing CO2 from industrial 
emissions or the atmosphere and using it as a starting 
material for the synthesis of other chemicals, 
particularly ethylene as it has a large market size and 
many applications, for instance, acts as a starting 
material in the production of synthetic rubber and 
plastics. This technology enables CO2 to be used as a 
valuable resource rather than simply being released 
into the atmosphere. However, CCU also has some 
barriers to implementation and limitations. For 
example, the process of retrieving CO2 and 

purification of desired products could be energy-
intensive and expensive, therefore the chemicals 
produced via this process may not be price 
competitive with those derived from fossil fuels. 
Additionally, there are concerns about the 
environmental impacts of using CO2 as a feedstock 
for chemical reactions since it could be difficult to 
dispose process waste. Despite these challenges, 
CCU remains an active area of research and 
development, and it holds promise as a potential 
solution for reducing CO2 emissions and mitigating 
climate change. In the case that the carbon tax 
imposed by governments rises when the world has a 
more urgent energy crisis, the cost of the process may 
be less than the cost of emissive carbon dioxide to the 
atmosphere. Hence, the process would perform a 
positive effect on a local factory and shall be 
developed a better scheme as soon as possible. 
 
2. Background 

 
This report explores the possible routes of ethylene 
electrosynthesis from carbon dioxide. Similar 
research on carbon dioxide electrolysis has already 
been started by pioneers [3]. Previous studies 
developed routes relatively effective to produce 
ethylene and several by-products. The main 
characteristics of the process include gas diffusion 
electrodes and copper-based catalyst, and a full 
combination of separation techniques. The process 
could be operated by two different routines, the direct 
CO2 to ethylene process (CO2P) and the two-step 
CO2/CO to ethylene process (COP); the latter 
performs a better economic potential [4].  
    In this report, simulations of both routes are 
performed, a detailed result discussion is established 
for the CO2P process, and the corresponding life cycle 
assessment is produced. Based on the previous art of 
work [4], a better separation technique is introduced, 
and the detail of gas absorption is developed using 
Aspen Plus V11 to determine the necessary 
parameters of the block units. Furthermore, a 
complete economic analysis is performed by the 
software to give a direct view of the process’ s total 
cost and revenue. 

Figure 1. CO2 Electrolysis Reactor Group  
 

Figure 0. Process Framework 
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    The electrolyser used to reduce CO2 consists of 3-
compartment and is operated at a high-pressure 
condition (10 bar) with a total current density of 5000 
A/m2 to achieve better conversion [4]. Unfortunately, 
Aspen Plus V11 does not include a model block as an 
electrolyser, hence a replacement series of the 
stoichiometric reactor (RSTOIC) and numerical 
separator (SEP) blocks using electrolysis model 
ENRTL-RK are performed to resemble the 
electrolysis operator, shown in Figure 1. Carbon 
dioxide is set to react with water and produce four 
main products: ethylene, ethanol, acetic acid, and 
hydrogen, discarded dividedly by the electrolyser 
along with unreacted carbon dioxide and water. This 
report then presents the enhanced separation 
technique to gain high purity products in the section 
Process Simulation; Methodology and how much 
they influence the environment in the section Life 
Cycle Assessment. The process involves several 
chemicals which recycle as entrainer or solvent inside 
separation units; with the products and the reactants, 
a life cycle of all participants is in turn performed as 
a cradle-to-gate level estimation of the process’ s 
impact to the environment. 
 
3. Methodology 
 
3.1 Process Feed 
 
 The feed to the reactors is assumed to be purified 
carbon dioxide from a plant’ s emission, since a non-
pure syngas would disturb electrolysis and evades 
selectivity of carbon dioxide. The relative Faraday 
Efficiencies of the products are ethylene (50%), 
acetic acid (20%), ethanol (20%), and hydrogen 
(10%); the reaction conversion is set to 50%, the 
unreacted carbon dioxide would be recycled back to 
the electrolyser. The selection of main techniques to 
purify carbon dioxide from emission, absorption, 
adsorption, and membrane permeation, depends on 
the composition of syngas of the existing chemical 
flowsheet. This report does not discuss the pre-

reaction procedures but may offer a case of 
absorption. The yield of product i is calculated by 
Eqn.1 
 

 𝑌𝑖𝑒𝑙𝑑𝑖 = 𝐶𝐷𝑡𝑜𝑡𝑎𝑙×𝑡×𝐴
𝑛𝑖𝐹

× 𝐹𝐸𝑖%     (Eqn.1) 
 
which CD, t, A, n, F, FE% stand for current density, 
time, area of electrode, stoichiometric moles of 
transferred electron during reaction, Faraday constant, 
and Faraday Efficiency, respectively. The area of 
electrodes can be calculated by Eqn.2 
 

𝐴 = 𝑁𝐶𝑂2
𝐶𝐷𝑡𝑜𝑡𝑎𝑙

𝐹 ∑ −𝑣𝑖(
𝐹𝐸𝑖
𝑛𝑖

)
     (Eqn.2) 

 
which 𝑁𝐶𝑂2  and 𝑣𝑖  are number of moles of reacted 
carbon dioxide and stoichiometric number of carbon 
dioxide as reactant corresponding to each product. In 
this case, 455 kmol hour⁄   of carbon dioxide is 
supplied with 1910 kmol hour⁄   of water to Aspen 
electrolyser; 50% of the carbon dioxide is converted 
for CO2P method, 75% for COP method. Three main 
product flows are obtained from the outlet of 
compartments.  
 
3.2 Gas Separation Unit 

 

Block Name Number of 
Stages 

Feed 
Stage 

Distillate Rate 
(kmol/hour) 

Reboiler 
Duty (MW) 

Solvent 
Feed Stage 

Absorber 9 9 N/A N/A 1 
Stripper-CO2 20 2 1453 133 N/A 

ODC 25 16 28.4 1.65 N/A 
ADC-Ethanol 33 12 22.65 0.67 2 

Stripper-Glycerol 5 2 5.8 0.32 N/A 
Liquid-Liquid Extractor 15 1 N/A N/A 15 

ADC-Acetic Acid 50 18 354.45 8.25 N/A 
Stripper-Ethyl Acetate 10 1 9 N/A N/A 

Table 1. parameter of gas separation columns for single step process 
 

Figure 2. Absorber-Stripper-Flash Column Gas 
Separation Sequence 
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The main product of the reaction, ethylene, is the 
target product in this section, and the gas separation 
unit also takes responsibility to recycle unreacted 
carbon dioxide back to the electrolyser. Coming out  
 from the electrolyser unit, the syngas stream, with a 
total flowrate of 352.6 kmol hour⁄ , is composed of  
 19.4%mol hydrogen, 16.1%mol ethylene, and 
64.5%mol carbon dioxide.  
     To remove carbon dioxide, a RADFRAC block as 
absorber is imposed, fed with 5500 𝑘𝑚𝑜𝑙/
ℎ𝑜𝑢𝑟 stream of monoethanolamine (MEA) with a 
concentration of 20%mol as the reactive solvent of  
 carbon dioxide, based on thermal dynamic model 
ENRTL-RK and its following system properties of 
Henry’ s constants of water and MEA. Furthermore, 
few more properties are user-defined; Henry’ s 
constants for water-CO2 and CO2-MEA are obtained 
from [5,6] respectively. The Arrhenius equation 
parameters of kinetic and activated energy are 
obtained from [7]. The manually imposed properties 
serve the basis of equilibrium and kinetic coefficients 
of matters in packed absorber and stripper  
 units. Once all set up, ethylene and hydrogen leave 
the absorber column from top as renewed syngas, and 
carbon dioxide is absorbed by MEA which leaves 
from the bottom as carbonate solution. The leaving 
syngas would then be sent to adsorption unit using 
activated carbon as the gas bed to filter product 
ethylene. The bottom solution of absorber is sent to 
stripper unit for carbon dioxide stripping, and MEA 
is recycled back to absorber. When carbon dioxide 
leaves the stripper from top alongside with water 
vapour, a flash unit operated at 10 bar and 80℃, is in 
turn to separate the two components, recycling carbon 
dioxide back to the purification unit before 
electrolyser. Table 1 presents the optimal parameters 
of the absorber and stripper column units used in 
Aspen Plus V11. The gas separation unit section is 
totally operated at a pressure of 10 bar to match the 
condition of former electrolysis for a more 
convenient recycle process. Scaling calculation for 
the columns is performed manually; take the packed 
absorber column as an example, Eqn.3 estimates the 
diameter of the column and Eqn.4 estimates the 
height of it. 
 

𝐴𝐶 = 𝑉𝑤
𝐾√𝜌𝑉

√ 𝐹𝑃
𝑔𝜌𝐿

(𝜇𝐿
𝜇0

)0.05     (Eqn.3) 

 
 

𝐻 = 1.3 × 𝑉𝑤
𝑘𝑂𝐺,𝑎𝐴𝐶

ln (𝑦𝐵
𝑦𝑇

)     (Eqn.4) 
 
which 𝑉𝑤  is the mass flowrate of gas, 𝐾  is the 
capacity factor at 80% flood, 𝜌𝑉 is the gas density, 𝐹𝑃 
is the packing factor, 𝑔 is gravitational constant, 𝜌𝐿 is 
solvent density, 𝜇𝐿 is solvent kinematic viscosity, 𝜇0 
is constant of 1 × 10−6 , 𝑘𝑂𝐺,𝑎  is the overall mass 
transfer coefficient (obtained from [8]), and 𝑦𝐵, 𝑦𝑇 

are mole fractions of target product in feed and in 
product respectively. The calculation matches well 
with the simulation process, absorber column with  
diameter of 0.9m and height of 25m performs a good 
hydraulic result and operates below flooding 
condition. Such scaling calculation will not present in 
later column sections; the calculation is self-operated 
by Aspen Plus V11.  
 
 
3.3 Ethanol Distillation Unit 
 

This section is done using the thermal dynamic model 
of UNIQUAC in Aspen Plus V11. Once left from the 
electrolyser, the high-pressure stream is first 
depressurized to 1 bar through a hydraulic turbine, 
which also could be considered a contribution to 
energy recycle. The depressurized ethanol alongside 
with water is sent to the first distillation column, 
RADFRAC block in Aspen, for rough distillation. 
Since there exists an azeotrope for the 2-component 
system of ethanol and water at 78℃, the target of the 
column is to conduct an ethanol stream consisting of 
80%mol ethanol from 10%wt, the feed condition. In 
the first distillation column, the ethanol-rich stream 
leaves at the top, flowing to the next azeotropic 
distillation column; the pure water stream leaves at 
the bottom, serves as a heating resource for the 
factory since the exit temperature reaches 99.9℃.  
    In the second column, glycerol is used as an 
intermediate solvent to form a solution with water. 
Purified ethanol of 99.95%mol comes out from the 
top of the column as distillate, with a flowrate of 
22.65 𝑘𝑚𝑜𝑙/ℎ𝑜𝑢𝑟 ; the remaining solution flows to 
the next stripping column to separate glycerol solvent 
from water, creating a recycle stream for glycerol. In 
the stripping column, water is evaporated as steam 
from the top, which could be used to thrust power 
generation through a turbine or serve as heat mediate. 
The >99.999%mol pure glycerol recycles back to the 

Figure 3. Ethanol Distillation-Stripping 
Column Separation Sequence 
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azeotropic distillation column with a flowrate of 
20 𝑘𝑚𝑜𝑙/ℎ𝑜𝑢𝑟 . The overall ethanol distillation 
entity operates at constant pressure, 1 bar, and the 
corresponding column specifications are presented in 
Table 1. 
 
3.4 Acetic Acid Extraction Unit 

 
This section is done by using thermal dynamic model 
of UNIQUAC in Aspen Plus V11. The third stream 
left from 3-compartment electrolyser consists of 
20%wt acetic acid and water. The total flowrate of the 
solution is 488.63 𝑘𝑚𝑜𝑙/ℎ𝑜𝑢𝑟  with the pressure 
from electrolyser outlet of 10 bar. Resembling the 
procedure dealing with ethanol stream, a 
depressurisation turbine is amounted to release the 
extra potential of the liquid stream. After 
depressurisation, the solution is sent to a liquid-liquid 
extractor, using model EXTRACT in Aspen for 
simulation. An extractor solvent is imposed to the 
column, composed of 86%mol ethyl acetate, to carry 
acetic acid out from water. The extract solution  
 leaving from the top of column then enters an 
azeotropic distillation column, again simulated using 
model RADFRAC in Aspen, to obtain a pure acetic 
acid bottom stream. The product stream from the 
distillation column has a flowrate of 34.1 𝑘𝑚𝑜𝑙/

ℎ𝑜𝑢𝑟, and the purification reaches 99.9%wt acetic 
acid. 
    Furthermore, the liquid distillate leaving from top 
of the column goes to a decanter to separate ethyl 
acetate from water, giving two streams with different 
compositions: one ethyl-acetate-rich stream, one 
water-rich stream. The organic rich stream is recycled 
directly back to liquid-liquid extractor, and the water-
rich stream goes to a similar stripper used in ethanol 
distillation unit, together with the raffinate stream, 
which is also water-rich solution with mere 
composition of ethyl acetate. Finally, as the 
remaining ethyl acetate in water-rich stream is 
stripped and leaves the column from top, it is sent to 
mix with the outcome of azeotropic distillate and re-
joins the separation of ethyl acetate from water to 
recycle the extractor solvent in a maximized utility. 
At the bottom of the stripping column, pure water 
stream is produced and can be served as a heat 
intermediate or recycling reactant. The mentioned 
columns, specification parameters are produced in 
Table 1.  
 
3.5  Life Cycle Assessment  

 
 

CO2 Feed Cost 69986.9 $/hour 
Acetic Acid (99.9%) Sales 2450.6  $/hour 

Ethanol (99.9%) Sales 1450.0  $/hour 
Ethylene Sales 7620.4 $/hour 
Hydrogen Sales 6809.7 $/hour 
Oxygen Sales 2191.8 $/hour 

Total Project Capital Cost 4.21E+07 $/Year 
Total Operating Cost 7.40E+08 $/Year 

Total Raw Materials Cost 6.14E+08 $/Year 
Total Utilities Cost 6.83E+07 $/Year 
Total Product Sales 1.80E+08 $/Year 

Table 2. Economic Report Generated by Aspen Plus V11, component price from website [10, 11, 12, 13] 
Process assumed to run for 20 years 

 

Figure 4. Acetic Acid Extraction-Distillation 
Column Separation Sequence 

  

Figure 5. Representation of the relations between 
the impact categories midpoint and the areas of 

production [19] 
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The goals of the life cycle assessments (LCAs) are 
determined based on the scope of this project and 
literature [18] as follows: To compare and analyse the 
environmental impact of the simulation model with a 
conventional ethylene production line. To identify the 
contributions to the environmental impact of the 
production of ethylene by the CO2P process. LCA  
 was performed with the platform openLCA 1.11.0. 
Ecoinvent was selected as the database and the  
 methods pack was loaded with openLCA 
LCIA_pack. To obtain a thorough understanding of 
the environmental impact, the calculations were 
performed using ReCiPe2016 Endpoint (H) 
methodology as it aggregates the information into 
three endpoint categories namely human health, 
ecosystems, and resource scarcity. The results were 
normalised with the year 2010 as a reference for 
impact comparison. The performance of the CO2P 
and reference process systems was standardised using 
1kg of ethylene produced as the functional unit. Also, 
a cradle-to-gate system boundary was implemented to 
satisfy the aim. However, it was difficult to determine 
the carbon footprint of the inlet stream in the CO2P 
process as it was captured from the flue gas which has 
various compositions and may require pre-treatment 
depending on the type of industrial processes. 
Therefore, the CO2 inlet in the LCA calculation was 
assumed to be obtained in the air. Whereas other  
 materials input for production were assumed to be 
obtained from global markets.   
 
4. Results and Discussion 

 
 4.1 Techno-Economic Assessment  
 
  Aspen Plus V11 is equipped with a full-scale 
economic analyser. This section is based on the 
results of simulation streams and blocks, including 
the price of import of the reactant, solvent, and 
chemical equipment and the sales product revenue. 
Table 2. presents the economic status of the process. 
It is worthy to notice that even though carbon dioxide 
stream is from an existing flowsheet process, the cost 
of purification still causes an industrial expenditure of 
producing pure carbon dioxide, and it takes up to 3 
million USD per hour [9]. Water is assumed to be 
supplied with zero expenditure, and the cost of pump 
is calculated with other equipment of the process. 
Product sales price of acetic acid, ethanol, ethylene, 
and hydrogen are obtained from Made-in-China 

suppliers; respective cost/revenue of the component 
is presented in Table 2. Noted that the electrolysis 
does not solely consume carbon dioxide; it consumes 
water as well. In the electrolyser, approximately 
1000 𝑘𝑚𝑜𝑙/ℎ𝑜𝑢𝑟  of water is reduced into 
corresponding hydrogen and oxygen output. The two 
basic gases could be recycled as clean energy of the 
factory and have their values presented in the table, 
assuming they are worth the market price. 
    From investment analysis, the cost of this process 
way exceeds the revenue it brings to the producer. 
Due to the mechanism of the process in modern 
industry, petroproducts are alongside with the 
creation of carbon dioxide as an unwanted by-product, 
the research is based on CO2 reduction. Therefore, 
profiting is not the main purpose. In this report, all 
carbon dioxide emission from the existing plant 
participated the electrolysis reaction. The whole 
process is a decontaminating fitting. It could be useful 
to factories which locate in strict environmental 
legislation nations, but currently, this process 
prohibits a relatively high expenses to major 
production lines in the world. In the future, however, 
with rising concern of global warming and the spread 
of net-zero ideology, this technique could then serve 
its uses.  
    Beyond electrical reduction, there are numerous 
research dedicated to decrease the emission of carbon 
dioxide. In 2017, a research team in Chinese 
Academy of Science has explored a reaction pathway 
to convert carbon dioxide into fuel-qualified gasoline 
[15]. Recently, a pilot plan was built in Dalian, 2022,  
which successfully tested the theory with a 
production rate of 1000 tonne/year of gasoline [16].  
 

Impact category/Process CO2 Electrolysis Conventional Process 

Resource Scarcity 9.98E+08 2.67E+07 
Human Health 9.74E-03 8.18E-05 

Ecosystems 6.31E-07 6.21E-09 

Table 3. Normalized results for CO2P and conventional production method  
 

Figure 6. Comparison of the process impact on 
fossil fuel scarcity 
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4.2 Environmental Assessment  
 
 The results were analysed in the categories 
mentioned above and compared to an existing 
ethylene production derived from fossil carbon 
sources. Table 3 illustrates the normalised result for 
both processes.  
 
According to the impact values, to produce ethylene 
in either way, the impact exhibited on resource 
availability is dominating relative to the other two 
categories. Following a further breakdown of this 
category, the exploitation of fossil and mineral 
resources contributes 75% and 25% respectively. The 
comparison in figure 5 revealed that the CO2 
electrolysis process was approximately 100 times 
harmful to the fossil resource than the conventional 
process. This result is not desirable as it is indicating 
that, from environmental perspective, the process 
being not implemented to factories as means to 
convert CO2 from the fume gas to other valuable 
products without further optimisation.  
 
A sanky diagram of the CO2P process was produced 
to get a better understanding of the reason for the 
observed large value in fossil resource scarcity. A cut 
off 3.613% was selected to produce a general shape 
of the flowsheet. According to the colour scale of 
figure xx, the production of monoethanolamine 
(MEA) accounted for over 99.9% impact. It was 
noticeable that the flowsheet of the upstream process 
block involved the production of ethylene oxide 
which was mainly formed from the oxidation of 
ethylene that extracted from fossil carbon source. 
Since the absorption process consumed a large 
amount of MEA, the environmental impact on 
resource availability outweighed the reference 

process to a large extent. Possible ways of 
optimisation include the tuning of separation column 
parameters to reduce the MEA input without 
affecting the purity of desired product and the 
implementation of substitute solvent with less overall 
damage to environment. 
 
5. Conclusion 
 
Overall, this report presents a possible solution to an 
existing environmental issue.  However, it is still not 
at an optimal status to conduct a practical pilot plant 
building. There still exists a blank of adsorption 
modelling in Gas Separation Unit. This requires a 
further simulation using Aspen Adsorption as the 
basis theoretical program to proceed. The adsorption 
simulation consists of Langmuir equation for accurate  
adsorbing behaviour to extract ethylene from 
hydrogen. Current majority uses activated carbon to 
purify hydrogen [17], yet there are numerous choices 
of which depend on the economic and efficiency 
consideration. Additionally, the cost of capital may 
be further reduced since this report does not imply 
any heat integration analysis yet. Current assumption 
is to build heat exchangers between the reboilers and 
condensers of different columns, which the least 
amount of 0.9-megawatt energy usage could be saved, 
contributing approximately 8% of current energy 
consumption, yet still, the cost to purify carbon 
dioxide before electrolysis is the main part of 
expenditure in the process. Furthermore, current 
international relationship may present a negative 
impact to global chemical industry, especially in 
Europe and United Kingdom. It is the time which 
carbon dioxide emission is not considered as a main 
issue to enterprises, hence the electric reduction 

Figure 7. Sanky diagram of the CO2P process on fossil resource scarcity  
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process of CO2 may have a more sufficient time to 
develop better reaction mechanism.  
 
6. Supplementary Information  
 
Simulation Model Available at here*. Calculator 
spread sheet available here**. Aspen economic 
analysis report available here***. This report is 
based on the previous research of CO2 electric 
reduction by Bert de Mot et al., for electrolyser 
detail please visit 10.1021/acs.iecr.1c03592. 
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Abstract

Reinforcement learning is a promising approach for process flowsheet generation. This paper presents
a novel reinforcement learning agent architecture called graph actor-critic (GAC) for graph building
tasks such as process flowsheet synthesis. GAC is based on graph convolutional networks and allows
for local perception and operation on the flowsheet graph. The proposed GAC is validated in two case
studies: one in a simple graph building game and another in a simple chemical process environment
for the synthesis of para-xylene. The results demonstrate the potential of deep reinforcement learning
in graph building tasks such as chemical process design.

Keywords: Reinforcement Learning; graph convolutional networks; flowsheet synthesis; machine learning; graph
actor-critic

1 Introduction

Process synthesis is the art of designing chemical pro-
cesses that transform raw materials into desired prod-
ucts. It involves a combination of disciplines within
chemical engineering, including process design, simu-
lation, and optimization. Currently, process synthesis
is mostly carried out by human experts who use their
knowledge and experience to create process flowsheets
that meet product specifications and constraints such
as safety and environmental regulations.12 However,
this process is time-consuming and often involves trial
and error, making it di�cult to design optimal pro-
cesses quickly. As demand for sustainable and circular
processes increases, there is a growing need for more ef-
ficient and e↵ective methods of process synthesis.10 Ar-
tificial intelligence (AI) and other emerging technolo-
gies o↵er promising possibilities for process design and
could help the chemical industry transform and become
more sustainable.3 The design of process flowsheets is
a complex, time-consuming, and expensive task, that
requires expertise, creativity, and intuition. It also in-
volves multiple objectives, constraints, and uncertain-
ties, that need to be balanced, coordinated, and op-
timized. The current design methods are limited by
their heuristics, their assumptions, and their approxi-
mations. Therefore, there is a need for a new design
method that is more flexible, more accurate, and more
e�cient, that can handle the complexity, the diversity,
and the dynamics of the process design. Reinforcement
learning (RL), a sub-field of machine learning (ML), is
a promising approach to process flowsheet generation
because it allows the design of chemical processes and
their flowsheets to be learned and optimized through
interaction with a process simulation tool. This allows
the RL agent to explore the space of possible flowsheet
designs and evaluate their performance in a simulated
environment without requiring a priori knowledge or

expert guidance. Overall, the characteristics of RL
make it well-suited for the task of process flowsheet
generation and can enable the automation and opti-
mization of chemical processes in a data-driven and
e�cient manner.

1.1 Previous approaches and state-
of-the-art

Recently, RL has shown its potential to tackle com-
plex decision-making problems by outperforming ex-
perts in Chess and GO14, and has also shown success
in process control.11,7,13 RL allows for the exploration
outside the user-defined structure and find alternative
solutions without heuristics or prior knowledge of the
problem. RL shows great potential in handling large
open-ended problems and recent research has shown
its applicability to process synthesis, itself a creative
design task.5,9,4,6,15,8 Midgley8 demonstrates the im-
plementation of RL for designing and optimising a dis-
tillation column sequence for non-azeotropic mixtures.
He created a simple process simulator environment in
which a soft actor-critic2 RL agent learns to design
distillation trains; the agent first decides whether to
add a new column and subsequently selects the col-
umn’s operating conditions. Göttle et al.4 models flow-
sheet synthesis as a game of two competing players,
who in turn attempt to create more profitable flow-
sheets than the last. This problem formulation enabled
them to reuse DeepMind’s AlphaZero monte-carlo tree
search RL algorithm1. They have since enhanced their
work by structuring the agent’s actions to consist of
several hierarchy levels and using convolutional neu-
ral networks (CNNs) to perceive the process state as
represented by large flowsheet matrices, thus improv-
ing their approach in terms of scalability to large and
more complex flow sheeting problems.6 They success-
fully demonstrated the usability of their framework for
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fully automated synthesis of the ethyl tert-butyl ether

process. Until recently, a major gap in the literature
on RL for process synthesis was in the state represen-
tation of flowsheets. In the past, flowsheets were rep-
resented in matrices containing features such as unit
design specifications, stream data, and topological in-
formation. Stops et al.15 recognised that these ma-
trices are limited when passed through CNNs because
they are designed to operate on Euclidean data and do
not consider geometric features. Graph convolutional
networks (GCNs) are a generalized version of CNNs
that can handle varying numbers of node connections
and unordered nodes. They can produce useful feature
representations and leverage structural information in
networks, allowing the topology to be part of the net-
work’s input. By using graph neural networks (GNNs),
the RL agent can learn to represent and manipulate
the flowsheet graph in a more expressive and e�cient
way, and it can use this knowledge to explore the space
of possible flowsheet designs and evaluate their perfor-
mance. Stops et al.15 designed an agent using a com-
bination of GCNs and hierarchically structured multi-
layer perceptrons (MLPs) and demonstrates its abil-
ity to design economically viable flowsheets for a case
study involving equilibrium reactions and azeotropic
distillation.

1.2 Contribution

In this paper, we propose a novel RL agent architecture
for graph building tasks such as process flowsheet syn-
thesis, called graph actor-critic (GAC). Our approach
is based on GCNs, which enable the learning agent
to represent and reason about complex process flow-
sheets using graph structures. Previous actor-critic ap-
proaches, such as the one proposed by Stops et al.15,
use flowsheet fingerprint vectors as global representa-
tions of the entire flowsheet graph in a latent space.
The GAC approach allows the actor and critic to op-
erate at a local level on the flowsheet graph, making
it possible to distinguish between di↵erent nodes and
their potential actions. Refer to section 2.4 for details
about the GAC’s architecture. We argue that state
representation is a crucial factor for e�cient and e↵ec-
tive RL. By carefully designing the state representa-
tion, we can help the learning algorithm to focus on
the most relevant and useful information, and to ig-
nore irrelevant or noisy information that may hinder
learning. To this end, we propose a new state repre-
sentation that is described in detail in section 2.3. We
believe that our proposed state representation has sev-
eral advantages over existing approaches, and that it
can improve performance and reliability.

2 Reinforcement learning for
process synthesis

RL focuses on sequential decision making and enables
an agent to learn in an interactive environment by trial
and error, using feedback from its own actions and ex-
periences. In RL, the agent observes the state of the
environment, selects an action according to its policy,
and receives a reward or penalty from the environment
based on its action. The agent then updates its pol-
icy to maximize its expected cumulative reward. A RL
problem can be expressed as a Markov decision pro-
cess (MDP), meaning the current action of the agent
depends only on the current state, and not on the his-
tory of the past states and actions. An MDP consists of
two entities: the agent and the environment. The agent
observes the state of the environment and selects an ac-
tion according to its policy, which is a mapping from
states to actions. The environment then transitions to
a new state based on the selected action and provides
feedback to the agent in the form of a reward. This
sequence continues until a terminal state is reached,
resulting in a series of state-action-reward tuples {S,
A, R}. The agent attempts to learn a behaviour that
maximizes its cumulative reward by updating its policy
incrementally.

Figure 1: Basic depiction of a Markov Decision Pro-

cess.

2.1 Graph Game

The Graph Game is an environment designed to test
and evaluate the performance of the GAC RL agent.
The Graph Game environment has several advantages
over a process simulation environment, such as inter-
pretability, computational e�ciency, and controllabil-
ity. The Graph Game environment allows us to gain
insight into how both the actor and the critic make
decisions, and to modify the agent’s hyperparameters
before testing on a process environment. In order for
an agent to succeed at the game, it must gain an under-
standing of the directed structure of the graph in order
to maximise the game’s non-linear reward structure.
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Figure 2: Example illustration of the Graph Game depicting an action, resulting state transition and

example reward calculation.

2.1.1 Agent-environment interaction for

the Graph Game

The Graph Game consists of four types of nodes: Red,
Blue, Green, and Black (a terminating node). The
game is initialized with a single genesis node, and the
graph is created in an iterative manner. The agent ob-
serves the graph and chooses an action, which consists
of selecting a node type and an existing node in the
graph to create an edge from. The chosen node type
is then added to the graph, and the graph transitions
to the next state. The process is repeated until either
the maximum number of nodes is reached, or there are
no available nodes left in the graph to add to. A node
is considered unavailable if it is a terminating node,
or if it has reached a given maximum number of con-
nections. Some actions result in additional resultant
nodes being added to the graph, for example, if the
agent chooses to add a blue node to an existing green
node, a resulting blue node is added to the green node,
as to increase the complexity of the game and to more
resemble a process environment.

Rewards in the Graph Game are calculated based
on the number of edge hops between nodes of the same
colour. For example, red nodes directly connected to
each other receive a reward of 0.1, while green nodes
two edge hops apart receive a reward of 0.5. An edge
hop is the act of crossing an edge from one node to
another. The cumulative reward of the entire graph is
computed at every transition and is used as feedback
for the agent. Figure 2 illustrates the Graph Game
with an example action and resulting state transition,
as well as an illustration of how rewards are calculated.

2.2 Process environment

The purpose of the process environment is to demon-
strate that a GAC agent can be e↵ective in a process
design context. The environment consists of reactor
units and separation units. Reactors are modelled as
gas phase isothermal plug flow reactors (PFRs) with
a heterogeneous catalyst. Four reactions take place in
the reactor, both parallel and consecutive, and the re-
action rates are a function of the mass of the catalyst.
Separators are modelled as distillation columns (DCs),

and several correlations are used to model their oper-
ational conditions, physical dimensions, and cost. The
feed steam consists of primarily methanol and toluene,
with para-xylene being the most profitable product.
The less valuable side products produced by side reac-
tion were also sold if the minimum purity was met.

Figure 3: Objective of the GAC algorithm in a pro-

cess design context.

2.2.1 Agent-environment interaction for

the process environment

The process graph is generated iteratively, like in the
Graph Game. However, the state and action space in
the process environment are more complex. The agent
must make both discrete and continuous actions. The
available discrete actions are to add a PFR, a DC, or
a terminating stream. Continuous actions associated
with the PFR include its physical dimensions, such as
length and cross-sectional area, as well as the mass of
catalyst. Cost correlations are used to calculate the
annualized cost of the specified PFR unit based on its
dimensions and the amount of catalyst used. Actions
associated with the DC include selecting a component
as the light-key, and light-key split, which are used to
calculate the internal column dimensions, number of
stages, and operating conditions. An annualized cost
is calculated from the process unit’s respective design
variables. Positive rewards are given for selling compo-
nents in terminating streams if their purity is above 90
mol%. Process flowsheet synthesis can be formulated
as a MDP as depicted in figure 4. The goal of the
agent is to produce varieties of profitable flowsheets,
with their associated cost breakdowns given the initial
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feed conditions and market price of chemicals, as seen
in figure 3

Figure 4: Markov Decision Process in a flowsheet

synthesis context.

2.3 State representation

Stops et al.15 represents process units as nodes, and
streams as edges with edge features. Although streams
are represented as edges in process flowsheets for hu-
man engineers, this is not necessarily the best repre-
sentation for a GNN. In this paper, streams were also
represented as nodes, which we believe has numerous
advantages. Representing process units as nodes and
streams as edges provides a more compact represen-
tation of the process flowsheet, which may make the
graph easier to process and reduce computational com-
plexity. However, this representation may not capture
the full complexity of the process flowsheet because
it does not explicitly show the interactions between
process units and streams. On the other hand, repre-
senting both process units and streams as nodes allows
for a more detailed representation of the process flow-
sheet because it explicitly shows the interactions be-
tween process units and streams in the graph structure.
This may provide the agent with more information and
enable it to make better decisions. Additionally, when
streams are represented as nodes then there is no need
to add unspecified process units upon node classifica-
tion as was necessary in Stops et al.15 This would be

problematic in GAC where every legal node is consid-
ered, meaning that unspecified process units would be
created for every open stream upon every forward pass.

2.4 Agent architecture

We devised a novel RL agent architecture which we be-
lieve is especially suited to flowsheet generation. GAC
is a RL method that uses GNNs to learn and optimize
policies for process flowsheet synthesis tasks. In GAC,
the RL agent takes actions on the flowsheet graph
by proposing operations and design variables for each
node in the graph, and it uses GNNs to evaluate the
expected reward of the proposed actions. The GAC
agent can learn from the feedback of the environment,
such as the energy and cost e�ciency of the generated
flowsheets, and it can adaptively update its policies
to improve the performance over time. GAC has sev-
eral advantages over actor-critic for process flowsheet
synthesis tasks. For example, GAC can provide more
fine-grained and flexible control over the action selec-
tion process, as it can evaluate and select actions for
every node in the flowsheet graph, rather than only for
the whole graph. This can enable the GAC agent to
explore the space of possible flowsheets more e�ciently
and to learn more complex and dynamic policies. In
addition, GAC can decouple the actor and the critic in
the action evaluation process, which can improve the
accuracy and stability of the learning process, and it
can avoid bias and overfitting in the policy optimiza-
tion. GCNs are a type of GNN that have been widely
used and studied for a variety of RL tasks, including
process flowsheet synthesis. We chose to use GCNs as
they can e↵ectively capture the local and global struc-
tural patterns in the flowsheet graph, and they can be
trained e�ciently using gradient-based optimization al-
gorithms. Overall, GAC can be a more e↵ective and
e�cient method for process flowsheet synthesis tasks
than traditional actor-critic. By using GNNs to evalu-
ate the expected reward of the proposed actions, GAC
can enable the RL agent to learn complex and dynamic
policies that can optimize the performance of the gen-
erated flowsheets.
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Figure 5: Graph actor-critic architecture

2.5 Training and Implementation

In this paper, we present a simple exploration strategy
for a reinforcement learning agent applied to the chem-
ical flowsheet design problem. Our approach involves
running the agent for 1000 games between episodes to
explore the design space and collect experience in the
form of transitions. A transition is a tuple consisting
of the current state, the next state, and the associated
reward. The set of transitions resulting from one game
is referred to as a trajectory. Transitions are sorted
and stored in replay bu↵ers, which are a type of data
structure. During training, batches of transitions are
sampled from the replay bu↵ers and used to update the
agent. The method of sampling and batching of tran-
sitions is critical to the e�ciency of training, and is a
central problem in RL for which sophisticated strate-
gies such as curriculum learning are a hot topic of re-
search. In this paper, we employ simple strategies for
this purpose.

2.5.1 Method

First, a completely random agent is run for 1000 games
to collect basic information about the environment.
The agent is trained on random batches of transitions,
which allows it to gain a basic understanding of the
process environment. From this point on, the agent
is run for 1000 games with a depth-based exploration
and the experience is stored and sorted into a separate
set of policy bu↵ers. The exploration is a function of
both depth and episode number. In the first episode,

the agent has an exploratory phase lasting a few steps
in the process design, after which it mostly follows its
policy greedily. In each subsequent episode, the zone
of exploration shifts a constant number of steps deeper
in the design. Ultimately, the choice of how to batch
samples of transitions from the replay bu↵ers was a sig-
nificant factor in performance. See section 3.2.2 for a
comparison between random batch transition sampling
and batch trajectory sampling.

2.5.2 Balancing Exploration and Exploita-

tion

In the context of reinforcement learning, it is crucial to
strike a balance between exploitation and exploration.
The agent should exploit its previous experience by
avoiding poor trajectories and designs, while also ex-
ploring variations of successful trajectories and unex-
plored design space. This balance is particularly di�-
cult in process synthesis, where a minor alteration in
a design trajectory may result in significantly di↵er-
ent profitability. In order to address this challenge, we
propose an exploration strategy that is suitable for the
chemical flowsheet design problem. Our strategy al-
lows the agent to first gain a basic understanding of
the process environment through random exploration
of the design space. Subsequent depth-based explo-
ration allows the agent to focus on specific areas of the
design space, exploring deeper in a targeted manner
as the training episodes progress. The use of a nor-
mal distribution for the exploration function allows the
agent to explore a range of depths within each episode,
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balancing exploration and exploitation to improve per-
formance over time.

2.5.3 G-DDPG Update

The paper introduces G-DDPG (Graph Deep Deter-
ministic Policy Gradients), an adaptation of the Deep
Deterministic Policy Gradients (DDPG) algorithm for
use with Graph Neural Networks (GNNs). Unlike tra-
ditional DDPG, where the critic network produces a
single scalar value as the predicted Q-value, GNNs pro-
duce a vector of q-values, one for each node in the
graph. To update the GNN critic, a target Q-value
must be specified for every node-action pair. How-
ever, only one action is taken in the environment with
only one corresponding reward received. This raises
the question of how to determine the target Q-values
for the remaining node-action pairs. To address this
issue, we propose G-DDPG, which adapts the DDPG
algorithm for use with GNN actor-critic frameworks,
where both the actor and critic networks are GNNs.
This allows for the evaluation of a proposed action for
every node in the graph, as well as the corresponding
expected Q-value for every node-action pair. In G-
DDPG, the target Q-value vector is computed in the
following way: for the chosen action, the correspond-
ing target Q-value in the target Q-value vector is up-
dated using the true reward of the next state, as in
DDPG. The remaining target q-values are set to the
legal predicted q-values of the current state, with ille-
gal q-values being nullified. This approach allows the
critic to learn from a single example without altering
its predictions for other actions.

3 Results and Discussions

3.1 Results from graph game

Figure 6 shows the change in performance of the GAC
agent as it is trained in the Graph Game. The distribu-
tions of rewards are plotted for 1000 game simulations
in a graph with a maximum size of 50 nodes. The
performance of GAC’s noisy policy is compared with
that of a random agent, which takes completely ran-
dom actions at every time step. GAC performs worse
than the random agent at the beginning of training
but shows an outperforming reward distribution after
the third training episode. It converges to its optimal

policy and the distribution remains relatively constant
after the seventh episode of training. This shows it
can reliably outperform a baseline random actor for an
open ended, sequential decision-making problem with
a nonlinear reward structure. The most useful results
from the graph game can bee seen in figure 7, the train-
ing dashboard. The dashboard is allows for gaining
insight to how both the actor and critic are thinking,
and how their decision making evolves with each train-
ing episode. The three graphs in the top right are
called inspection graphs, they illustrate every possi-
ble sequence of nodes for a three edge-hop neighbour-
hood. Halos around the nodes represent how valuable
the critic thinks it is to act on each node. A red halo in-
dicates a negative Q-value, while a green halo indicates
a positive Q-value. The size of the halo is indicative
of the magnitude of the Q-value. The plots on the
left give insight on the critic and show the Q-values
of adding di↵erent node types to the end of di↵erent
node sequences. The plots under the inspection graphs
indicate the actions the actor is likely to propose given
certain node sequences. After five episodes of train-
ing, the GAC agent develops a good understanding of
which node sequences are worth while pursuing, as well
as which actions to take to maximise cumulative re-
ward. Furthermore, we know the agent has essentially
solved, or figured out the optimal policy of the game
as the inspection graphs are representative of how to
fully maximise the provided reward structure.

Figure 6: Comparative distribution of reward over

1000 simulation on a graph with maximum of 50

nodes. Violin plots comparing GAC agent perfor-

mance with a random agent over several training

episodes.

6

512



Figure 7: Training Dashboard for Graph Game after 5 episodes of training.

3.2 Results from process environ-
ment

3.2.1 Benchmarking against random agent

Figure 8 shows distributions of annual profit for 1000
simulations in the process environment. An agent with
a completely random policy is shown in blue and is used
to benchmark the performance of our agent trained
with random transition batch updates, shown in yel-
low. The agent following the random policy never
creates a flowsheet with annual profit above $10 mil-
lion, with most of its flowsheets resulting in a negative
profit. The trained agent exhibits a bimodal distribu-
tion, with one its mode being centred around a similar
annual profit of that seen in the random agent. The
other mode is centred around a much higher annual
profit of $15 million, with some flowsheets producing
annual profits as high as $22 million. The bimodal
distribution is a consequence of the agent following a
noisy policy, which means it’s not always making what
it thinks is the most optimal decision at every step. A
noisy policy can allow the agent to explore a broader
range of possibilities and consider a wider variety of
options. This can potentially lead to the discovery of
new and improved flowsheet designs that may not have
been found with a deterministic policy. Flowsheet syn-
thesis is particularly sensitive to exploratory actions
policy because it is a complex and dynamic problem
that involves many variables and decision points. As a
result, many flowsheets produced by the agent result in
a low annual profit, as its exploratory actions on that
particular simulation did not pay o↵. An example of
such actions could be not creating a reactor early in
the process, thus not producing the valuable product
para-xylene until too late in the process. Alternatively,

the agent could have made a very promising flowsheet,
but then decided not to create product streams, thus
not selling the valuable streams it produced. These re-
sults indicate that GAC is able to outperform an agent
following a random policy for flowsheet generation. It
is worth noting that the economic potential of the pro-
cess is $40.05 million in annual profit, assuming perfect
separation and reactor conversion. This potential value
is determined by the value of the product and the cost
of the raw materials, without considering the costs of
the necessary process units. The agent using GAC was
able to produce flowsheets with over half the profit of
the economic potential, which is a promising result.
This suggests that there may not be much room for
improvement in the agent’s performance.

3.2.2 Comparing trajectory and random

transition updates

Figure 9 compares the annual profit distributions of
two agents trained with di↵erent methods: random
batch transition updates (yellow) and trajectory batch
updates (blue). Both agents follow a noisy policy and
exhibit two main modes in their distributions, one
around $0 million in annual profit and the other with
a much higher annual profit. Upon closer inspection
of the flowsheets that yielded high profits, the blue
distribution shows that the agent trained with trajec-
tory updates generally outperforms the other. Most
of the flowsheets it creates have annual profits above
$20 million, while the majority of those created by the
agent trained on random transitions have annual prof-
its of around $14 million. Furthermore, the trajectory
trained agent converged on its optimal policy almost
three times faster than the agent trained on random
transitions. This suggests that the trajectory training
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method allows the agent to learn the best actions more
quickly and e↵ectively, due to its exploration being a
function of depth. Additionally, the blue distribution
is less broad than the yellow one, indicating that the
trajectory trained agent is able to consistently achieve
higher annual profits with fewer fluctuations. This sug-
gests that the trajectory training method leads to more
stable and reliable performance.

Figure 8: Distribution of annual profit over 1000 sim-

ulation comparing an agent with a random policy

and an agent trained with random transition sam-

pling.

Figure 9: Distribution of annual profit over 1000 sim-

ulations comparing an agent trained with random

transition sampling and an agent trained with tra-

jectory sampling.

3.3 Future Work

3.3.1 Broadening the scope and applicabil-

ity in industry

One major limitation is that the model currently only
considers a single objective, such as maximizing profit
or minimizing emissions. In the real world, process
synthesis often involves multiple objectives, such as

maximizing profit while minimizing emissions and en-
suring safety. Therefore, future work on GAC should
consider developing methods for handling multiple ob-
jectives in the process synthesis problem. Addition-
ally, the current implementation does not consider con-
straints on the process, such as maximum energy con-
sumption. Incorporating such constraints into the al-
gorithm would make it more realistic and applicable to
real-world process synthesis problems.

The current implementation is limited to a specific
type of process synthesis problem, namely the syn-
thesis of continuous processes. However, many indus-
trial processes are batch processes, which require dif-
ferent modelling approaches. Therefore, future work
should consider extending it to handle batch processes
as well. One potential way to broaden the scope of
application is with the use of a commercial process
simulation software such as ASPEN. It is designed to
model a wide range of processes from simple distillation
columns to complex multistage processes with heat and
mass transfer, reaction kinetics, and other phenomena.
This would allow for the creation of a more realistic
and accurate representation of a process compared to
a simplified model.

3.3.2 Implementation of hierarchical rein-

forcement learning

Göttle et al.6 and Stops et al.15 have shown the appli-
cation of hierarchical reinforcement learning (HRL) is
very promising in the space of process synthesis. HRL
can be applied to process flowsheet synthesis by de-
composing the design process into multiple levels or
hierarchies of decision making. At the high-level, a RL
agent could be trained to learn a policy for selecting
the overall structure of the flowsheet that is most likely
to meet the specified performance criteria. This pol-
icy could be based on the characteristics of the process
and the flowsheet design, such as the chemical reac-
tions involved, the properties of the process inputs and
outputs, and the constraints on the flowsheet design.
The agent could learn to take actions that maximize
the reward signal, such as minimizing the cost or en-
vironmental impact of the flowsheet, and it could use
this knowledge to select the most promising flowsheet
structures. At the low-level, the RL agent could be
trained to learn a policy for selecting the detailed op-
erating conditions within the flowsheet. This policy
could be based on the characteristics of the individ-
ual process units, such as the kinetics of the chemical
reactions, the heat and mass transfer rates, and the
energy and material balances. The agent could learn
to maximize a reward such as the yield of the process
or minimizing the energy consumption of a unit op-
eration. One of the key benefits of HRL is improved
learning e�ciency. By dividing a complex task into
smaller subtasks, HRL enables the learning algorithm
to focus on learning each subtask separately, which can
improve learning e�ciency compared to trying to learn
the overall task all at once. This can reduce the amount
of computational resource required to learn a given
task, allowing you to train your model more quickly.
Another benefit of HRL is better generalization. By
breaking a complex task into subtasks, HRL enables
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the learning algorithm to learn more generalizable skills
that can be applied to a wider range of tasks and en-
vironments. This can help improve the adaptability
and robustness of your model, allowing it to perform
well on a greater variety of process flowsheet generation
problems. In addition to these benefits, HRL can also
increase modularity and reusability. By learning and
reusing individual subtasks across di↵erent tasks and
environments, HRL improves modularity and makes it
easier to reuse components of your learning model in
di↵erent contexts. This can save time and e↵ort com-
pared to starting from scratch each time you want to
solve a new process flowsheet synthesis problem.

3.3.3 Other Applications

The GAC framework introduced in this paper could po-
tentially be applied to other areas relevant to chemical
process design, such as retro-synthesis for the discov-
ery of alternative synthetic routes. Retro-synthesis is a
problem in chemical engineering that involves predict-
ing the sequence of reactions needed to synthesize a
given target molecule from a set of starting materials.
One approach to solving the retro-synthesis problem
is to use machine learning algorithms to automatically
search through the space of possible reaction pathways
and identify the most promising ones. This can be
achieved by representing molecules and reactions as
graphs, with atoms and bonds as nodes and edges, re-
spectively, and using graph neural networks to learn
the structural and chemical properties of these graphs.
By defining a reward function that rewards the agent
for finding pathways that are feasible, e�cient, and
cost-e↵ective, the agent can be trained to predict the
optimal pathway for synthesizing a given molecule.

Overall, the GAC framework has the potential to
be applied to a wide range of problems in chemical
engineering, making it a valuable tool for chemical en-
gineers in the future.

3.3.4 Use of Attention

Another type of GNN that may be suitable for the pro-
posed GAC agent is graph attention networks (GATs).
GATs are a variant of GCNs that use attention mech-
anisms to weight and combine the features of the flow-
sheet graph nodes and edges, which can enable the
agent to focus on the most relevant and informative
parts of the graph One of the potential advantages of
using GATs for process synthesis is their interpretabil-
ity. This is because the attention mechanisms in GATs
can provide insights into the decision-making process of
the GAT. For example, the node- and edge-level atten-
tion can provide information about the most relevant
operations and equipment, and the most relevant in-
teractions between them. This can help to explain the
decisions made by the GAT, and to understand the
reasons behind them.

4 Conclusion

In this paper, we present a novel approach to the task of
chemical process synthesis by combining graph neural

networks and deep reinforcement learning. Our pro-
posed framework, known as the Graph Actor-Critic
(GAC), utilizes both GNNs for the actor and critic,
and the critic plays a key role in the decision mak-
ing process by simultaneously considering and weighing
multiple actions at each step in the flowsheet design.

To enable the GNN critic to learn from a single
example without a↵ecting its predictions for other ac-
tions, we propose a new version of the Deep Determin-
istic Policy Gradient algorithm called Graph Deep De-
terministic Policy Gradients (GDDPG). We test GAC
in two case studies. The first study validates its abil-
ity to learn a robust policy within a non-linear reward
structure based on graph topology and node features
using a simple graph building environment known as
Graph Game. The second study applies GAC to the
more complex task of chemical process design within
a simple process environment, incorporating reactors,
distillation columns, and product streams as discrete
actions, and process unit specifications as continuous
actions for the synthesis of para-xylene.

In order to e↵ectively explore the vast design space,
we employ a depth-based exploration strategy. De-
spite operating in a hybrid action space that is not
well-suited for a DDPG algorithm and the actor lack-
ing a hierarchical structure, the GAC agent success-
fully learns to generate profitable and reasonable pro-
cess designs. Furthermore, we observe that updating in
batches of trajectories leads to significant performance
improvements compared to random samples of transi-
tions.

Overall, our results demonstrate the potential of
deep reinforcement learning in graph building tasks
such as chemical process design. We argue that there
is no fundamental reason why hierarchical RL could
not be extended from a process flowsheet down to a
P&ID or even a full CAD design. This could greatly
impact the chemical engineering industry by allowing
for the detailed automated design of complex chemical
processes.

However, we also identify several avenues for future
research and development. In particular, we argue that
further innovation is needed in the state representation
to enable local and global process perception. In the
current work, a major limitation is that the directed
graphs only support upstream perception of the pro-
cess. In order for an agent to e↵ectively utilize recycles,
it is critical that it incorporates downstream informa-
tion in its policy. Thus, new state representations and
GNN architectures should be explored to this end.

In the context of an increasingly circular chemical
industry, this kind of model could be used to explore al-
ternatives to valorize waste streams. As chemical pro-
cesses become more complex and environmentally sus-
tainable, the ability to automatically design profitable
and sustainable processes will become increasingly im-
portant. Our GAC framework represents an important
step towards this goal, and we believe it has the poten-
tial to be a valuable tool for chemical engineers in the
future.
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Abstract The transformation of non-consumable second-generation biomass to high value platform chemicals such as 5-
hydroxymethylfurfural (5-HMF) via glucose-fructose isomerisation (GI) contributes to the collective effort of shifting 
energy dependency away from the non-renewable fossil fuels, thus allows a step further into building a more sustainable 
future. Large-scale GI currently relies on the catalytic activity of the enzyme xylose isomerase as seen in the production 
of high-fructose corn syrup (HFCS). However, since the biological catalysts present some drawbacks such as the need to 
operate at narrow pH and temperature windows, studies revolved around the search of a chemo-catalyst that can perform 
better than the enzymes have become more popular. Hafnium-beta zeolites (Hf-Beta) are one of the many Lewis acid 
catalysts being studied for this subject and it has been recently proven to perform well in continuous operations of GI. To 
give an economical point of view on the Hf-Beta catalysed GI reaction and provide context to their economic values, a 
technoeconomic assessment was conducted on this process in which optimisation procedures and economic evaluations 
were carried out and compared alongside the biological system. This was done through modelling a simulation on Aspen 
Plus V11 based off kinetic data from experimental results found in literature. The results of the model showed that the 
optimum temperature to operate the model at was 140⁰C with 30 wt% water in solvent for a specified glucose conversion 
of 50%, which gave fructose yield and selectivity of 45.6% and 91.2% respectively. The total fructose production cost 
amounted to a value of $1.68 per kilogram of fructose and was compared against fructose price in commercialised HFCS-
42 and HFCS-55 where it was concluded that further refining on the cost comparison method should be worth pursuing.    
 
Introduction & Background 
As the world slowly transitions into greener and more 
sustainable methods of supplying energy and chemical 
production, dependency on non-renewable fossil fuels is 
being reduced by introducing environmentally friendly 
feedstock substitutes such as biomass1. Biomass can be 
any organic material or waste that contains chemical 
building blocks (i.e. carbon and hydrogen) which can be 
used to generate bioenergy for application as fuels and 
power production2. Although both fossil fuels and 
biomass originates from living organisms, the main 
contrast between the two is that the former is unable to 
re-absorb the carbon it emits whereas the latter has the 
ability to do so and contributes to the exchange 
occurring in the carbon cycle3. This is simply because 
the growth of biomass themselves remove carbon 
dioxide from the atmosphere4 as they come from 
recently living organisms unlike fossil fuels which 
releases carbon that has been concealed away from 
thousands of centuries ago3. As fossil fuels currently 
supply around 80%5 of the world’s energy while 
contributing over 75%6 and almost 90%6 of greenhouse 
gases and carbon dioxide emissions respectively, this 
transition is a very much important step towards 
achieving world sustainability goals.  

Lignocellulosic biomass is biomass rich in cellulose, 
hemicellulose, and lignin, and is a form of second-
generation biomass feedstock which are not suitable for 
consumption7. It is a promising source of bioenergy as 
they are a highly abundant and renewable natural 
resource on Earth7. The conversion of lignocellulosic 
biomass to platform chemicals such as furans and 5-
hydroxymethylfurfural (5-HMF) are of high interest not 
only in the scope of biofuel production, but also because 
they can be readily upgraded into molecules with high 
potential for generating fuel-derived or polymer-derived 
products8. This said “conversion” involves the critical 
step of transforming the simple carbohydrate glucose, 
which is a constituent of the complex carbohydrate 
cellulose, into fructose through an isomerisation 

process. Instead of the viable route of directly 
converting glucose into these platform chemicals, it is 
more challenging to do so than starting with fructose9 
and studies have shown that better yields are observed 
when the latter route is taken10.  

Glucose to fructose isomerisation (GI) can occur in 
hot water at high pressure even without catalytic 
activity, however, this only happens as a side reaction 
and is unable to achieve a high selectivity of fructose11. 
This explains the reliance of GI reactions on catalytic 
activity for large-scale fructose production. Lobry de 
Bruyn and Alberda van Ekenstein were the first to report 
the reciprocal interconversion of carbohydrate isomers 
in 189512. The equilibrium between glucose, mannose, 
and fructose was found to be possible through the 
formation of enediolic intermediates in alkali 
solutions12. Further exploration on their 
interconversions were then carried out extensively 
which mainly focused on the biocatalytic approach via 
enzymes and mineral acid/base catalysis13.  

In 1957, Marshall and Kooi discovered that the 
enzyme isolated from Pseudomonas hydrophilia in the 
presence of xylose and arsenate exhibited GI activity 
and exploited this feature to produce high-fructose corn 
syrup (HFCS)14. It was then emerged into an industrial 
scale production in 1997 by Clinton Corn Processing 
Co. in the US14. Until today, large-scale industrial HFCS 
production utilises xylose isomerase (EC 5.3.1.5)13 to 
catalyse GI in aqueous phase. However, major 
drawbacks are inherent in the bio-catalytic process 
which is mainly centered around the activity and 
stability of the enzyme throughout the reaction13. The 
narrow operating pH (7.0 – 9.0)15 and temperature range 
(55⁰C – 60⁰C) due to irreversible inactivation of the 
enzyme at higher temperatures limits the equilibrium 
glucose conversion at 50% and increases the risk of 
microbial infection14, thus implying the necessity of 
expensive chromatographic enrichment to achieve 
higher fructose concentration in HFCS16. Moreover, the 
sensitivity of the enzyme towards impurities such as 
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heavy metals require pre-reaction purification steps, 
further reducing the process economic efficiency17. One 
way to address these flaws is through immobilisation of 
the enzyme to enable continuous HFCS18 production 
and widen its stability range15. It was recently reported 
that silica/chitosan microspheres immobilisation 
increases the operating pH range to 5.8 – 8.0 and 
temperature range to 40⁰C – 80⁰C15. Even though 
massive studies around the biocatalytic process were 
carried out to further improve the system18, 
isomerisation via chemo-catalysis is seen to be more 
attractive as it is more operationally versatile thus 
allowing process intensification. 

   In chemo-catalysis, both Bronsted bases and Lewis 
acids can be used as catalysts for the GI reaction. In the 
case of Bronsted bases, reports have shown that this 
catalysis resulted in low fructose yield and was only able 
to reach a high selectivity at low glucose conversion due 
to the instability of monosaccharides in strong alkaline 
media19,20. This explains why Lewis acids are typically 
preferred but it is important to note that there have been 
interesting developments on the Bronsted base catalyst 
such as the high performance achieved by using 
hydrotalcites catalysts in GI with ethanol solvent21.   

Zeolites have drawn significant attention in the 
catalysis field on account of its highly crystalline 
structure and tuneable composition22. Numerous reports 
have revealed the effectiveness of Sn-Beta, a three-
dimensional zeolite beta containing isolated Lewis 
acidic tin (Sn) sites, in catalysing GI23. Recent work 
comparing the performance of different Lewis acidic 
silicates namely Sn, zirconium (Zr), titanium (Ti), and 
hafnium (Hf) under continuous operation of GI has 
demonstrated Hf to exhibit the highest stability after a 
brief induction period (subsequently eliminated by 
methanol pre-treatment), surpassing Sn which lost 40% 
of its activity upon 113 hours on stream23. At high 
glucose conversion of 66.2%, high fructose selectivity 
remained with zero loss of carbon balance, indicating 
the absence of competitive side reactions which are 
present in the case of Sn23. The high fructose selectivity 
was even maintained at a high operation temperature of 
140⁰C which deemed Hf-Beta to be the first ever catalyst 
to achieve this in GI catalysis23.  

Before allowing process scale-ups, preliminary 
economic evaluations are necessary to gauge whether or 
not a process system is worth upgrading. As limited 
literature was available on the economics related to the 
Hf-Beta catalysis, a technoeconomic assessment was 
important to identify specific aspects of the process that 
would be profitable and thus allow suggestions of more 
specific optimisation procedures to be made. This paper 
aims to conduct a technoeconomic assessment on the 
Hf-Beta catalysed GI reaction through optimisation of 
the process and obtain its economic feasibility with 
respect to existing bio-catalysed GI reaction implied on 
an industrial HFCS production.  
 
Methods 
Setting up the simulation model 
Aspen Plus V11 was used to build a model simulating 
the continuous GI reaction over Hf-Beta catalyst based 
on published experimental data in Angew. Chem. Int. 

Ed. 2020, 59, 20017-20023 which involved a continuous 
isomerisation of glucose at varied contact times, 
reacting at two different temperatures. The process 
flowsheet in Aspen started from a feed stream of glucose 
dissolved in methanol solvent passing through a pump 
into a plug-flow reactor (RPlug) producing an outlet 
stream. The reactor was set to operate isothermally at a 
defined temperature and at a pump outlet pressure of 20 
bar. 

The thermodynamic model applied was the Non-
random Two-liquid (NRTL) method due to its proven 
agreement with highly non-ideal systems and extensive 
use in the chemical industry, which also achieved high 
consistency when tested against experimental data in a 
study involving sugar-alcohol-water system24. 

The overall GI reaction was modelled considering 
the following two reaction pathways,  

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝑘1
 ⇌ 
𝑘2

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒   (1) 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝑘3
 ⇌ 
𝑘4

𝑀𝑎𝑛𝑛𝑜𝑠𝑒   (2) 

where 𝑘𝑖 represents the rate constants of reactions 𝑖. The 
process modelling involved some assumptions as listed 
below: 

1. The backward reaction of mannose to glucose 
(𝑖 = 4) is negligible  

2. All other reactions follow the first-order 
kinetics with respect to the concentration of its 
reactants 

3. The catalyst effect is inherent in the kinetic 
parameters and not simulated explicitly in the 
model 

4. Pressure drop across the reactor is negligible 
5. The catalyst deactivation rate is negligible up 

to 800 hours of operation23  
6. Mass transfer limitation inside the reactor is 

negligible 
 

Deducing the kinetic parameters (i.e. pre-
exponential factor and activation energy) of the 
reactions required the expression of the experimental 
data into Arrhenius plots using the following plug-flow 
reactor design equation and reaction rate equation: 
 

𝑟𝐺𝑙𝑢  =  − 𝑑𝑛𝐺𝑙𝑢
𝑑𝑉𝑅

   (3) 

𝑟𝐺𝑙𝑢 =  𝑑𝐶𝐺𝑙𝑢
𝑑𝑡

= 𝑘1𝐶𝐺𝑙𝑢 −  𝑘2𝐶𝐹𝑟𝑢+ 𝑘3𝐶𝐺𝑙𝑢 (4) 
 
where  𝑟𝐺𝑙𝑢 is the rate of disappearance of glucose, 𝑛𝐺𝑙𝑢 
is the molar flowrate of glucose, 𝑉𝑅 is the reactor 
volume, 𝐶𝐺𝑙𝑢, 𝑎𝑛𝑑 𝐶𝐹𝑟𝑢 are the concentrations of the 
compounds glucose and fructose respectively. 

Further manipulations to equation (3) and (4) led to 
the following three equations which can be solved to 
obtain 𝑘𝑖 values for the Arrhenius plot: 
 

𝑋𝐺𝑙𝑢
𝑋𝐺𝑙𝑢,𝑒𝑞

=  1 − 𝑒−( 𝑘1+𝑘3+𝑘2)𝜏 (5) 

𝑘1 = 𝑌𝐹𝑟𝑢
𝑋𝐺𝑙𝑢

(𝑘1 + 𝑘3)  (6) 

𝐾𝑒𝑞 = 𝐶𝐹𝑟𝑢
𝐶𝐺𝑙𝑢

= 𝑘1+𝑘3
𝑘2 

  (7) 
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where 𝑋𝐺𝑙𝑢,𝑒𝑞 is the equilibrium glucose conversion, 𝜏 is 
the contact time, 𝑌𝐹𝑟𝑢  is the fructose yield and 𝐾𝑒𝑞 is the 
equilibrium constant. It is worth noting that the 
constants at equilibrium point were approximated using 
the data point at the highest contact time as available 
from the experiment. 
 
Validating the simulation model 
Before proceeding with further steps of optimising the 
GI process and obtaining its related costs using the 
model, validation plots comparing the model to the 
experimental data were generated by running the model 
at the exact same operating conditions (1 wt% glucose 
in methanol, 110⁰C) of the experiment. The metrics that 
were used to validate the model included glucose 
conversion, fructose yield and selectivity, and mannose 
yield. 
 
Optimisation of process parameters 
In line with the objective of optimising the Hf-Beta 
catalysed GI reaction, a set of performance parameters 
were used as a measure to compare between the 
manipulated process parameters. Glucose conversion, 
selectivity of fructose, production costs, and catalyst 
productivity were regarded as performance parameters 
whereas operating temperature and water content were 
the desired process parameters for optimisation. Each 
simulation run ensured the volumetric feed flow rate 
was fixed at 1.5 mL min-1 and the reactor diameter at 
0.41 cm, to match the scale of the experimental work.    
  

1. Temperature effects 
The effects of different temperatures on the performance 
parameters were observed by implementing the 
sensitivity analysis tool onto the model. The reactor 
length was set as the manipulated variable as it directly 
affects the contact time, and this feature was activated 
for separate runs at temperatures of 110⁰C, 120⁰C, 
130⁰C, and 140⁰C each. This temperature range was 
chosen as the absence of Maillard browning of sugars 
was observed during the experimental runs up to this 
temperature23. 
 

2. Water fraction effects 
Previous simulations with methanol as solvent operated 
at only 1 wt% of glucose in the feed stream owing to the 
limited solubility of glucose in methanol. This limitation 
however can be mitigated by the addition of water into 
the solvent to increase its solubility. A solubility data of 
glucose in a methanol-water mixture was extrapolated 
from Figure 9 of van Putten, R.-J. et al. (2014) to aid this 
evaluation. As the presence of water in a zeolite-
catalysed reaction is known to reduce the catalyst 
activity due to the leaching of the active sites26, further 
alterations to the reaction kinetics must be made to 
account for the reduced catalyst activity. This was done 
by fitting a decreasing exponential function on SI Figure 
S9 of Angew. Chem. Int. Ed. 2020, 59, 20017-20023 to 
deduce a scale factor that relates the decrease in catalyst 
productivity with respect to water fraction. This scale 
factor was then used to alter the pre-exponential factor 
of all reaction kinetics at each water fraction as an 

approximate to ‘correct’ for the reduced rate of reaction 
due to the reduction of catalyst activity in the presence 
of water based on equation 8:  

𝑅𝑓𝑟𝑢| 𝑥𝑤𝑎𝑡𝑒𝑟>0 = 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑅𝑓𝑟𝑢| 𝑥𝑤𝑎𝑡𝑒𝑟= 0   (8) 
 
where 𝑅𝑓𝑟𝑢| 𝑥𝑤𝑎𝑡𝑒𝑟>0 is the rate of fructose production in 
the presence of water, and 𝑅𝑓𝑟𝑢| 𝑥𝑤𝑎𝑡𝑒𝑟= 0 is the rate of 
fructose production in absence of water. 

Though in reality, the presence of water may alter 
the kinetics in a different manner, this was taken to be 
the best available approach in accounting for the effect 
of water on catalyst activity. To validate this approach, 
the simulation output using the ‘corrected’ kinetics was 
compared against the experimental data of adding 5% 
water23 and the model was found to be within a fair 10% 
deviation from the data.  Upon this, a range of 0 wt% to 
80 wt% water was evaluated at each temperature where 
glucose was fed at its maximum solubility at each water 
fraction, and the glucose conversion was fixed at 50% 
using the design specification feature on Aspen Plus. 
The model is simulated in a steady-state setting, with the 
lowered rate of reaction to account for the reduction in 
catalyst productivity due to its deactivation. 
 
 
Costs evaluation 
The estimate of the production cost of dry basis fructose 
was calculated only taking into account the cost of raw 
materials, catalyst, and utilities associated with 
operating the reaction at a laboratory scale. A basis of 
8,000 hours of operation per year was used to reflect 
reactor downtime during catalyst regeneration, where 
the catalyst is regenerated after 800 hours of operation 
and replaced once a year. Every fresh/regenerated 
catalyst will undergo 20 hours of pre-activation with 
methanol solvent at operating temperature to eliminate 
the induction period of the catalyst23. At 140⁰C, this is 
not required as no induction period was observed at this 
temperature23. This pre-activation period of 20 hours 
was reflected in the cost calculation where no glucose is 
fed, and no fructose is produced during these hours. 

The cost of the catalyst was assumed to be 
dominated by the cost of materials needed to synthesise 
the catalyst, hence the associated utilities required for 
synthesising and regenerating the catalyst were 
neglected. As listed in SI of Angew. Chem. Int. Ed. 
2020, 59, 20017-20023, the cost of each material was 
taken from SigmaAldrich and converted into USD using 
a currency rate of 1 GBP = USD 1.19.  

The costs of glucose and methanol were taken from 
Alibaba, while the cost of water was taken from a 
vendor27. Since methanol is highly volatile, it was 
assumed that 95% of methanol was recovered and 
recycled back into the reactor, at a negligible operating 
cost.  

Utilities composed mainly the electricity required to 
run the pump and the heater for the reactor. The pump 
duty and the reactor duty required were both taken from 
Aspen Plus results. The electricity cost per kwh was 
taken from the average electricity price for industrial 
consumers in the US from the year 202128. The unit 
price for each cost component is summarised as follows: 
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Table 1. Unit price of each cost component 

Cost component Unit price Unit 
Hf-Beta Catalyst 9.30 $/g 
Glucose 99.00 $/kmol 
Methanol 3.50 $/kmol 
Water 0.0013 $/kg 
Electricity 0.0726 $/kwh 

 
Results and Discussion 
Model output validation 
Figure 1 A-D presents the comparison between the 
experimental and simulated data of glucose conversion, 
fructose yield, mannose yield, and fructose selectivity 
against the duration of which the solution mixture is in 
contact with the catalyst whilst residing inside the 
reactor (“contact time”), respectively. The shaded area 
in these plots represents the boundaries calculated with 
respect to the experimental data to evaluate the 
closeness between them.  

As seen in Figure 1, good agreement was achieved 
for glucose conversion, fructose yield, and fructose 
selectivity. However, for mannose yield, the model 
deviates considerably far from experimental values. 
This may be due to the error in experimental data, 
having over 100% carbon balance of the product stream, 
which may suggest an over measurement of mannose 
product. As mannose yield is not the main focus of this 
project, and the fructose selectivity predicted by the 
model is still within tolerable range at higher 
conversions, the model is deemed valid for further 
optimisation on fructose production process. 
 

 
Figure 1. Plots of comparison between model results and experimental 
data with boundaries as a validation method. General reaction 
conditions: 1 wt% glucose in methanol, 110⁰C. A) glucose conversion 
against contact time; B) fructose yield against contact time; C) 
mannose yield against contact time; D) fructose selectivity against 
contact time.    
 
Temperature effects 
Figure 2 depicts the effect of temperature on glucose 
conversion at different contact times. Up until 50% 
glucose conversion, a consistent trend can be seen across 
the different temperatures where the contact times 
required to achieve the same glucose conversion 
decreases exponentially as temperature increases. This 

is in line with the increased rate of reaction due to 
increased kinetic energy as temperature increases. 
 
  

Beyond this point, the conversion is expected to 
plateau at a faster rate and at increasing conversion as 
the temperature increases owing to the fact that the 
reaction proceeded endothermically29. However, the 
model failed to attain an equilibrium as can be seen from 
the non-plateau lines in Figure 2Figure . This can be 
presumed so due to the limited experimental data points 
that the model is based on, which were absent of data 
points near reaction thermodynamic equilibrium, thus, 
the approximate equilibrium concentrations were far off 
the true values. Other than that, this lack of model 
prediction at higher conversion was also due to 
neglecting the backward mannose reaction to glucose in 
the kinetic model hence the reaction proceeded without 
being bounded by a finite equilibrium point, thus, 
increasing the glucose conversion further beyond the 
supposed equilibrium. With this model limitation, 
further investigation proceeded at 50% glucose 
conversion, keeping it comparable to the existing bio-
catalysis, and ensuring the validity of subsequent results. 

 
Figure 2. Effects of temperatures on contact times required to achieve 
a variation of fixed glucose conversion. 
 

The temperature effect on fructose production was 
further evaluated at a standardised glucose conversion 
of 50% by inputting the correlated contact times at 
different temperatures through manipulation of reactor 
length. Figure 3 depicts the carbon mol% of the product 
stream for every temperature. It can be observed that a 
consistent trend of decreasing fructose selectivity with 
increasing temperature was achieved. This is because 
the GI reaction involved two competing parallel 
reactions, hence increasing the temperature would 
increase both rates of productions. Therefore, the 
concentration of mannose in the product stream became 
more and more significant as the temperature increased, 
growing from around 3% at 110⁰C to around 5% at 
140⁰C. This thus lowered the fructose selectivity that 
was being achieved from 95% to 91% as temperature 
increases. As the drop in selectivity is undeniably 
marginal, deducing the optimum temperature based on 
fructose selectivity alone is not fair. Further evaluation 
of temperature effects on other design aspect must 
therefore be taken. 
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Figure 3. Effects of temperatures on fructose selectivity at a fixed 
glucose conversion of 50%.  
 

The influence of temperature on reactor size and 
ultimately fructose production costs was studied to 
rationalise the temperature selection. While keeping the 
glucose conversion at the same fixed value of 50% as 
before, the results of simulations showed that the reactor 
volume decreased with increasing temperature (Figure 
4A). The reactor volume at 140⁰C only came to about 
0.1 mL whereas at 110⁰C, it went up to around 0.5 mL, 
which is 5 times bigger. This can be explained by the 
requirement of a larger contact time value hence a larger 
reactor length for the lower temperature operations to 
reach the same level of glucose being converted at the 
higher temperature operations. 

The fructose production costs for each operating 
temperature were evaluated based on simulation results 
and broken down into four different categories (utilities, 
solvent, feedstock, and catalyst) as visualised in Figure 
4B. The utility cost rose with temperature at 
approximately 11% – 13% for every 10⁰C and came to 
a maximum value of $2.096 per kilogram of fructose. 
This observation is consistent with the fact that a larger 
heat duty is required to heat up reactors set to operate at 
higher temperatures, hence more cost.  

The cost of methanol solvent and glucose feedstock 
gave similar trends and the maximum differences across 
the four temperatures were $0.031 kgfru

-1 and $0.058 
kgfru

-1 respectively. Without normalising to the amount 
of fructose being produced, the cost of methanol solvent 
($3.125 year-1) was the same for all temperatures as the 
inlet volumetric flowrate was kept constant at a value to 
allow contact time and reactor length variation for the 
purpose of achieving a fixed conversion.  

Similar to solvent cost, the cost of feedstock also 
depended on the inlet volumetric flowrate thus its value 
per unit time was consistent at $3.090 year-1 across the 
different temperatures except at 140⁰C. This can be 
explained by the absence of pre-activation period at this 
temperature that allows more glucose to be fed for the 
same normalised time unit which gave a value of $3.160 
year-1 instead.  

The catalyst cost, however, showed an opposite 
trend from the rest of the cost categories where the 
increase in temperature was accompanied by a decrease 
in its own value. When compared with the plot of reactor 
volume against temperature (Figure 4A), the trends can 

be seen to agree with each other. This was expected as 
the mass of catalyst per reactor volume (“bed density”) 
was kept constant. The mass of catalyst and equivalently 
the costs it is associated with should display a linear 
relationship as proven.  

The overall production cost of fructose was 
discovered to attain the highest value of $5.592 kgfru

-1 at 
the lowest temperature of 110⁰C with catalyst cost 
dominating around 33% of the said total. The total 
production cost at the other operating temperatures was 
governed by the utility costs instead of the catalyst cost, 
and the lowest production rate cost was achieved at 
130⁰C with an amount of $4.894 kgfru

-1. However, this 
was slightly over 1% smaller than $4.947 kgfru

-1 that was 
obtained when the reactor was operated at 140⁰C. This 
small difference implies that the additional heating 
being put into the system was compensated by the 
relatively small volume of the reactor, therefore 
operating at a high temperature can be beneficial, 
nevertheless.   
 

 
Figure 4. Effects of temperature on reactor sizing and fructose 
production costs, at a fixed glucose conversion of 50%. A) Reactor 
volume as a function of temperature; B) Breakdown of costs for 
fructose production as a function of temperature. 
 
Water fraction effects 
Using the solubility data mentioned earlier in the 
method section, the increase in glucose loading in the 
feed stream with water content can be seen in Figure 5A. 
To alter the kinetics of the reaction, the scale factor 
deduced from two experimental data in Angew. Chem. 
Int. Ed. 2020, 59, 20017-20023 can be found in Figure 
5B. From this graph, a general decrease in the trend of 
the Hf-Beta catalyst productivity can be seen. This is 
contradictory to a published paper which studied the 
activity of Sn-Beta of the same isomerisation reaction30. 
From the paper, an optimum window of catalyst 
productivity was found in between 0 - 10 wt%, which 
then followed by a decreasing trend as more water was 
added. Although this seemed to be the case with Sn-
Beta, the water effect with Hf-Beta is still unknown as 
the two species exhibit different intrinsic properties 
which is beyond the scope of this project.  Therefore, a 
general decrease in catalyst productivity as water 
content increases was deemed as a valid assumption for 
Hf-Beta, based on the two experimental points23 which 
showed a decrease in productivity when 5% of water is 
added. 

From these graphs, the simulation model operating 
at the maximum glucose loading, and ‘corrected’ 
kinetics at each water fraction were repeated for each 
temperature, and the catalyst productivity against water 
content was analysed as shown in Figure 6. As can be 
seen from the Figure 6, a consistent optimum point of 
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water content was obtained across the different 
temperatures investigated. This trend can be explained 
by two competing effects which dictate the productivity 
of the catalyst. The first one is the positive effect of 
increasing water content in the solvent where it 
increases the solubility of the glucose. More glucose can 
therefore be fed into the reactor, increasing the 
concentration of glucose in the feed stream. As GI is 
taken as a first-order reaction, increasing the glucose 
concentration increases the rate of reaction which 
directly relates to increasing the fructose production. 
Conversely, increasing the water content impedes the 
reaction. This is due to the leaching effect of water26 on 
the zeolite crystals as mentioned earlier which caused 
irreversible catalyst deactivation, hence reducing the 
catalyst productivity.  

From the result, a 30% water content was found to 
be the optimum point as it correlated to the highest 
catalyst productivity. This means that before this point, 
the effect of increasing glucose concentration outweighs 
the degrading effect of water on the catalysis. Hence, 
increasing the water content will directly increase the 
productivity of the catalyst. Beyond this point, the 
deactivation effect of water on the catalyst influenced 
the productivity by great amount, causing the 
productivity to drop despite the increase in glucose 
loading.  

 

 
Figure 5. A) Glucose loading against water content in methanol-water 
solvent; B) Scale factor for ‘corrected’ kinetics against water content   

 
To see how this impacts cost, further investigation 

was carried out to figure out the effect of water percent 
variation on cost of fructose production. Same approach 
was taken as before apart from the catalyst cost where it 
was considered to be replaced nine times per year after 
800 hours of operation to account for irreversible 
deactivation caused by water. From Figure 6B, as the 
water content increases, the total production cost for 
each temperature decreases until it reached a minimum, 
and then increases. The minimum cost was found near 
the 30% optimum point which suggested that the total 
production cost is reflective of the catalyst productivity 
where the higher catalyst productivity relates to the 
lower total cost. The initial decreasing trend can be 
explained by the faster increase in fructose production 
relative to increase in reactor volume required to achieve 
the defined conversion. In other words, the increase in 
reactor volume which relates directly to increase in 
utility, catalyst, and feed cost were compensated by the 
larger increase in fructose production per hour, which 
then translates into a decreased in total production cost. 
The opposite is true for the points beyond the minimum, 
where the increase in fructose production is no longer 
large enough to reduce the effect of increasing reactor 
volume. This is due to the drop of catalyst productivity 

as discussed earlier. Therefore, based on these two 
graphs, a water content of 30% was deemed to be the 
best operating parameter for GI. 
 

 
Figure 6. Effects of water content in methanol-water solvent on 
catalyst productivity and fructose production cost at fixed glucose 
conversion of 50%. A) Catalyst productivity as a function of water 
percent; B) fructose production cost as a function of water percent. 

 
Cost breakdown at optimum operating parameters 
The final model was evaluated with inputs of the 
optimised conditions (140⁰C, 30% water in solvent) 
concluded earlier for 50% glucose conversion. The 
results of this model gave fructose yield and selectivity 
values of 45.6% and 91.2% respectively. To put this into 
context, this yield value surpassed the 42% yield 
observed with the biological system23 which provides an 
optimistic future in the scope of utilising Hf-Beta for 
large-scale GI reactions. It can be observed from Figure  
7 that the total cost of production was dominated by the 
cost of glucose feed (72%), followed by utilities (15.7%) 
and catalyst (9.2%).  

The high glucose cost contribution suggests its role 
as one of the cost drivers and highlights the critical 
importance of minimising glucose waste in GI reactions. 
This can be achieved by maximising glucose conversion 
through reactor operation at equilibrium conversion of 
higher temperatures.  

One other possible factor leading to this observation 
is the process model setup that did not consider recovery 
of unreacted glucose feed after the reaction was 
completed, since it was beyond the scope of this project. 
From literature, it was discovered that the current sugar 
separation technique involves an expensive simulated 
bed chromatography unit operation31. A study on an 
alternative method of separation known as simultaneous 
isomerisation reactive extraction (SIRE)32 has been 
found for the biocatalytic process. In the same way, 
separation methods for the chemo-catalytic process 
should be explored as it not only eliminates the need of 
expensive separation unit, but also overcomes 
equilibrium limitations of the GI reaction and becomes 
another to compete against the biological system.  

The final reasoning that was considered to justify the 
large cost contribution by glucose was the usage of 
highly purified glucose cost as the feedstock price. In the 
real-world case of utilising second generation biomass 
for platform chemicals production, the initial step before 
GI that biomass must go through is the saccharification 
process to break its complex carbohydrate compound 
into the simple carbohydrate glucose. This process does 
not achieve a high purity as that of glucose used for this 
costing therefore this was an overestimation.  

The utility cost takes the second place after glucose 
feedstock as the highest contributor towards the whole 
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fructose cost production. This suggests the necessity of 
applying energy integration in the overall process of 
converting biomass to platform chemicals on the larger 
scale. 

Next in line is the catalyst cost which accounts for 
9.2% of the total fructose production cost. Although not 
as much as glucose contribution, this percentage is quite 
a significant value and can increase once the 
aforementioned steps towards reducing glucose cost 
contributions are realised. It thus highlights the 
importance of picking the right catalyst by studying their 
respective catalytic activity and regeneration methods to 
give the best performance in GI. 
 

 
Figure 7. Cost breakdown of fructose production at optimum 
conditions (140⁰C, 30% water in solvent) for Hf-Beta catalysed GI.  

 
Cost comparison to biological catalyst 
Looking further into the economical aspect of this 
process, comparisons against the cost breakdown of the 
biological system would be favourable as it could 
directly conclude if the heterogeneous system has 
potential in beating the biological system. Ideally, this 
comparison should be done using processed or 
experimental data of the same scale which considers the 
same process operation with similar goals. However, 
due to time limitations and mismatch of data available 
in a sense that only industrial scale ones were obtainable 
for the biological system, it was impossible to realise 
this idea. Regardless, a comparison against the available 
data was deemed necessary to put the result of $1.680 
kgfru

-1 for total fructose production cost into context and 
its results are presented in the form of a bar chart on 
Figure8.  

As the HFCS manufacturing process demonstrates 
bulk formation of fructose from glucose through the bio-
catalysed GI reaction, it was selected to represent the 
biological system where prices of fructose on a dry 
weight basis in commercialised HFCS-42 and HFCS-55 
obtained from US wholesale spot price33 were utilised. 
With the commercialised HFCS having went through a 
high-level degree of optimisation for its millions of 
tonnes per annum34 production, it was expected that this 
comparison would be in favour of the biological system.  

It should be appreciated, nonetheless, that the 
differences between the Hf-Beta bar and the two 
commercialised HFCS bars on Figure 8 can be 
considered medium-sized as they are within similar 

orders of magnitude with a minimum percentage 
difference of 42.6%. Here, it is important to mention the 
caveats related to comparing data of incompatible scale 
such as inconsistent inclusion of additional or reduced 
costs from heat integration, labour, maintenance, and 
downstream process of separation. Generating lab-scale 
data for the biological process or carrying out an 
extensive data search that can be used to set up a similar 
model to the one built for Hf-Beta would be highly 
beneficial for a fairer comparison to be made. However, 
this was not possible within the time limitations that was 
imposed upon this project.  

 
Figure 8. Price of fructose (dry weight basis) from different sources 
of production 
 
Conclusions 
The discovery of biomass as a non-renewable energy 
source has opened a door to a greener and more 
sustainable planet Earth. Biomass are a promising 
alternative feedstock to fossil resources as they can be 
integrated into high-value platform chemicals like 5-
HMF. This involves a critical step of isomerisation from 
glucose to fructose which is currently being achieved at 
large scale using the biological catalyst xylose 
isomerase. Although effective, this process suffers from 
several drawbacks which include requirement of strictly 
controlled operating conditions which inspires the 
pursuit of a heterogeneous catalyst to challenge the 
position of enzymes in the industrial scene status quo.  

From literature, it was reported that Hf-Beta 
exhibited good performance in GI catalysis and was 
therefore used to represent heterogeneous catalyst for 
the purpose of gauging its economic feasibility.  A 
technoeconomic analysis was conducted on Hf-Beta 
zeolite catalysed GI reaction by first setting up an Aspen 
simulation that was modelled and validated using kinetic 
parameters obtained from the available experimental 
data. The model was then used to optimise the GI 
reaction and it was found that higher temperatures 
favour the productivity and economics, while the 
addition of water only improved the economics. 
However, this was limited to a temperature range of 
110⁰C to 140⁰C and in the case of water addition, an 
optimum point existed. From the aforementioned 
observations, it was concluded that the optimum 
conditions to operate the reaction specified at 50% 
glucose conversion were 140⁰C and 30:70 mass ratio of 
water to methanol solvent. Operating at these conditions 
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attained a fructose yield of 45.6% and selectivity of 
91.2%. 

On the economics side, it was observed that the 
glucose feedstock dominated the fructose production 
cost which amounted to $1.68 per kilogram of fructose. 
To put this into context, this value was compared to 
fructose price in commercialised HFCS as a 
representative of the biological process. Although it was 
expected that the economy of scale would favour the 
highly optimised HFCS fructose production cost, it 
should be made clear that exploration into the economic 
comparison with lab-scale biological data is worth 
pursuing as the differences among the values compared 
were of similar orders of magnitude.  
 
Outlook 
The Aspen model developed in this paper could be used 
as a supporting tool in labs to predict reactor outputs at 
low conversions. However, limitations to the model 
must be addressed, where firstly, it did not produce 
satisfactory result near reaction equilibrium, suggesting 
future work to be done on improving the model. In order 
to achieve this, more experimental data which allows the 
reaction to operate at equilibrium conversion is needed 
to obtain more accurate kinetics.  

The rough assumption of exponential decrease of 
Hf-Beta productivity with water content must also be 
validated in labs as only two points of data were 
available during the analysis. This relationship is pivotal 
in obtaining the optimum operating water content when 
operated at maximum glucose solubility as this optimum 
point is highly influenced by the extent of water effect 
on catalyst productivity. 

On top of that, as the model predicted a 30% water 
content to be the optimum, further evaluation on cost-
benefit of this amount of water must be taken into 
account when considering the downstream cost related 
to wastewater treatment required as considerably large 
amount of water is involved in the system as opposed to 
the initial consideration of methanol alone as the 
solvent. 

Lastly, it is worthwhile to carry out lab-scale GI over 
the enzyme catalyst, xylose isomerase in order to obtain 
enough data for subsequent process modelling of a 
comparable scale to the current model developed. This 
is beneficial to aid the identification of limits to the 
operating parameters in terms of profitability when 
compared to the biocatalyst system. 
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Abstract 
Electrothermal energy storage (ETES) is a novel bulk energy storage system which utilizes the closed Brayton 
cycle with supercritical carbon dioxide as a working fluid.  This study focuses on proposing a realistic and 
accurate model that analyses part-load operations to address fluctuations in renewable energy supplied to 
power grids. An exploration of exisiting ETES research was first performed to better understand the impact 
that each key parameter had on roundtrip efficiency. Key relationships were noted and brought forward to the 
simulation stage of the analysis. This paper also focusses on the modelling and the implementation of the 
turbomachinery performance maps in the simulation. Ultimately, this study proposes an optimal ETES design 
that can perform at a roundtrip efficiency of 51%. The part-load evaluation reveals a round-trip efficiency drop 
of 9% when power supplied undergoes fluctuations of 10%.  

Keywords: Electrothermal Energy Storage, supercritical CO2 Brayton cycle, part-load, turbomachinery 
performance maps

Introduction  
Due to their fluctuating nature, renewable energies 
such as wind and solar power cannot be scheduled 
at the request of power grid.  Currently, in cases of 
electricity production exceeding the power grid 
demand, curtailment of renewable energy is the 
only available option due to lack of efficient energy 
storage systems. Research shows that  amidst the 
UK energy crisis between 2021 and 2022, 1300 
GWh of energy have gone to waste from wind 
turbines alone. [18] When electricity demand is 
greater than renewable source energy production, 
carbon-emitting dispatchable generators are used. 
This has a vast negative environmental  and 
economical impact. Curtailment of renewable 
energy and the use of gas for energy compensation 
during lapses cost an additional £390 million 
during the energy crisis [18]. This contributedg to 
a surge in energy prices affecting millions of 
households. As long as countries remain dependent 
on the import of oil and gas- arguably more costly 
than renewables - energy insecurity will remain 
prevalent and households will continue to struggle 
with ever-fluctuating energy prices. This stresses 
the importance of building reliable renewable 
storage systems that can enable countries to make 
full use of their natural resources and gain energy 
independence to stabilize their energy prices. 

The energy industry has recognised the 
importance of such research and are advancing 
their understanding through extensive research on 

energy storage systems. The most promising 
established technologies that currently exist are 
lithium-ion batteries, pumped hydro storage (PHS) 
and compressed air energy storage (CAES). 
Lithium-ion batteries have high efficiencies, but 
they suffer from costly materials and low 
capacities. Pumped hydro storage and CAES 
benefit from high storage capacity. Though, they 
have geographical restrictions, as pumped hydro 
requires high altitude water reservoirs and CAES 
requires underground caverns for energy storage. 
Additionally, CAES relies on natural gas 
combustion as a heat source. 

 Therefore, there is a need for location and fossil 
fuels-independent storage solutions with high 
efficiencies, long charging hours and a long 
lifetime. The innovative technology of 
electrothermal energy storage (ETES) is believed 
to meet all the above criteria. It operates as a 
“Carnot battery”; when energy demand is low, it 
stores electricity in the form of a thermal energy in 
a working fluid. Meanwhile, when energy demand 
is high, this thermal energy can be converted back 
into electricity.  The system also benefits from a 
cold storage unit which cools down during 
charging, when heat is being stored. Most studies 
suggest that this energy storage system can reach 
efficiencies of 60%. It does not require specific 
location characteristics nor costly materials as in 
the case of lithium-ion batteries. Its cost solely 
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depend on the turbomachinery, the working fluid 
and the widely accessible storage fluids used. It is, 
also, believed to not possess any lifetime 
limitations, as degraded materials can be readily 
replaced .  

Simplified simulations of the ETES systems 
have been realized in the past, though, they 
typically lack a realistic representation, as they 
include turbomachinery simplifications and 
assumptions such as the constant supply of the 
design electricity input into the system.  The aim of 
this analysis was to construct a robust and reliable 
simulation of the process. The simulation included  
the design of thermal storages and considered their 
impact on reversibility. It, also, implemented 
turbomachinery characteristic performance maps 
which reflected the most current prediction models 
for these novel components. Most importantly, this 
study assessed the operation with a variable, lower 
electricity input than the design on, referred to as 
part-load operation. This was essential to consider 
the innate characteristic of renewable sources, 
which is intermittency. Finally, future 
recommendations will be provided to potentially 
overcome the key inefficiencies observed. 

1- Background 
1.1 Working Principle of the 

Thermodynamic Cycle 

ETES is composed of two thermal storage tanks, 
two compressors, a turbine, an expander, and a 
working fluid that acts as a carrier for the exchange 
of energy from one form to another. This system 
includes a charging and discharging cycle which 
can be approximated to follow a Brayton reversible 
cycle.  

The working principle behind an ETES system is 
that during low electricity demand, excess energy 
supplied will be used to drive the charging cycle. 
This charging cycle transfers thermal energy to the 
hot storage through the process presented in Figure 
1. The cycles starts when excess energy is directed 
towards an electrical motor. This motor is linked to 
the charging cycle compressor, which elevates the 
working fluid’s temperature and pressure. The 
compressed fluid is then passed through a counter 
current heat exchanger where its heat is transferred 
into the hot storage fluid. After this thermal 
exchange, the fluid’s pressure is lowered via an 
expander. Since the expander is mechanically 

coupled to the compressor, work from the expander 
will be recycled to the compressor and reduce the 
net work input into the system. It will then enter the 
heat exchanger coupled with the cold storage 
arrangement where it gains thermal energy and 
cools down the cold storage material before being 
recycled back to the compressor. (Figure 1) When 
additional reserves of power are necessary, the 
stored heat is converted back to electricity through 
a discharging cycle – which is a reverse process to 
the one described above. 

 
Figure 1: ETES Charging cycle 

1.2 Key Performance Indices  
By convention, the following performance indices 
are used  to quantify performance of refrigeration 
cycles, including those used for the purpose of 
energy storage. These same ratios will be used as 
indicators to measure performance of the simulated 
ETES system.  

Work ratio is defined as the fraction of the 
expander work output consumed by the 
compressor during the charging cycle. Indeed, the 
compressor and the expander are mechanically 
coupled to ensure the transfer of the power 
generated by the expander to the compressor 
(Equation 1). 𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 can therefore be written 
as the sum of the net charging work input 𝑊𝑛𝑒𝑡 and 
the power generated by the expander 𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟. A 
high work ratio is preferred as it indicates a smaller 
required net work input.  [1] 

𝑊𝑟𝑎𝑡𝑖𝑜 =
𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟
=

𝑊𝑛𝑒𝑡 + 𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟

𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟
 

Roundtrip efficiency is defined as the ratio between 
the work recovered during discharge and the work 
inputted during charge. 
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𝜂𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑖𝑝 =
𝑊𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑊𝑐ℎ𝑎𝑟𝑔𝑒
 

Work inputted during the charging cycle can be 
expressed as the consumption of the compressor 
reduced by the expander power, while the work 
recovered during discharge corresponds to the 
turbine power subtracted by the power supplied to 
the compressor. A high roundtrip efficiency is 
preferred as it is an indicator of small energy losses 
between the charging and discharging processes. 

1.3 Transcritical vs Supercritical 
Operation 

Supercritical operation occurs when the entire 
operation of a system follows a supercritical 
Brayton refrigeration cycle. This means that the 
working fluid remains in the supercritical region 
throughout the entire charging and discharging 
cycles, exchanging sensible heat with the storage 
material. In contrast, transcritical operation 
describes a transcritical Brayton refrigeration 
cycle, exchanging latent heat and causing phase 
change of the storage fluid.  

Transcritical cycles benefit from high 
efficiencies, due to low losses in their heat transfer. 
However, they face some practical challenges [2]. 
Since a phase transition happens during the heat 
transfer, it would be complex to ensure a consistent 
flow of the freezing, solid, material used for the 
cold storage. The use of sensible heat storage, 
usually in the liquid state, is therefore preferred. In 
this case, smaller temperature differences within 
the heat exchangers should be chosen to reduce 
losses. Transcritical cycles also require 
turbomachinery in the liquid region of working 
fluid, which are lacking in efficiency. Supercritical 
cycles, in contrast, are less sensitive to 
turbomachinery and can lead to very high round-
trip efficiency, assuming that the temperature 
difference of the working fluid within the heat 
exchangers is kept at a minimum [3]. Hence, a 
supercritical Brayton cycle was chosen for the 
ETES system simulation. 

1.4 Integration of Regenerative Heat 
Exchange 

A higher temperature difference between the hot 
and the cold thermal storage implies a higher 
round-trip efficiency and energy density [1]. 

Though, there are several challenges that emerge 
when attempting to achieve this.  

First, the operating temperature of the hot 
thermal storage must be greater than the freezing 
temperature of molten salt and smaller than its 
degradation temperature. Hence, the possible heat 
absorbed from the hot thermal storages must be 
limited. Additionally, it is important to note that it 
is essential for the temperature difference within 
the heat exchangers to be kept small to minimise 
losses. Finally,  the expander work increases as its 
inlet temperature increases. The expander power 
output, therefore, becomes a higher fraction of the 
compression work, which decreases work ratio and 
round-trip efficiency. 

The addition of a regenerative heat exchanger 
(Figure 2) can resolve all the issues described 
above. The molten salts are maintained in the liquid 
state, temperature input to the expander is 
decreased, thus, leading to a high work ratio and 
ensuring the largest possible temperature 
difference between the hot and cold thermal 
storages. On the cold side of the cycle, the sCO2 is 
sufficiently heated to reach the required 
temperature inlet to the compressor, while 
maintaining the temperature difference within the 
cold storage heat exchanger at a minimum. 

 
Figure 2 ETES cycle with regenerative heat exchanger 

1.5 Working fluid selection  
The choice of working fluid for the heat storage 
cycle is crucial. For the configuration and 
simulations conducted, CO2 was chosen as a 
working fluid. The use of carbon dioxide (R744 in 
refrigerant nomenclature) has multiple benefits. Its 
pressure in the critical region is amongst the lowest 
compared to other common working fluids [2]. It is 
beneficial for its low cost, exceptionally low 
critical point and possesses excellent thermal 
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properties. Additionally, it is non-toxic and has a 
low global warming potential compared to other 
refrigerants. [2]. 

1.6 Thermal storage material selection  
Molten salts were chosen as the ideal hot thermal 
storage material due to their high heat capacity and 
their high operating temperatures. A comparison 
between the most widely used molten salts was 
conducted based on the following properties: 
degradation temperatures, heat capacity (averaged 
over their operational temperatures) and price 
(Table 1).  Solar salt is observed to be the optimal 
molten salt for the ETES system designed,  for its 
high degradation temperature, low cost, and 
sufficient heat capacity.  

Table 1: Comparison of commercially available molten salts 
as thermal storage material  

Molten 
Salt 

Degradation 
T [℃] 

Cost 
[$/kg] 

Heat 
Capacity 
[kJ/kg K] 

Solar 
Salt 

600 0.5 1.50 

HITEC 550 0.9 1.49 
HITEC 

XL 
500 1.1 1.45 

LiNaK 550 1.1 1.55 
 

When considering fluids for the cold thermal 
storage, water was selected for to its high heat 
capacity and its thermal properties. It is also  cost 
competitive, has a low impact on the environment 
and is safe to use [2]. 

2- Methodology  

Aspen Hysys was selected to model this simulation 
for its ability to  compute the performance of the 
system as well as measure the behaviour of all 
components during both charging and discharging 
cycles . Since the systems in question are both 
closed loop in nature and highly dependent on one 
another, a very robust methodology was 
constructed for simulations. The methodology is 
listed  below.  

2.1 Thermal storage material selection   
A property package analysis was essential prior to 
the modelling of the system to ensure that the 
simulation data collected were sensible. 

Supercritical fluid simulation can vary 
significantly due to the complexity of property 
behaviour within the critical region. Therefore, an 
extensive investigation took place to determine the 
optimal property packages. The most widely used 
Aspen properties for pure supercritical CO2 are 
RefProp, GERG2008, Peng-Robinson and Lee-
Kesler-Plocker. Upon comparison with the values 
provided by NIST, Lee-Kesler-Plocker had 
entropy differences that were the closest to 
experimental data. Additionally, as literature 
suggests, Lee-Kesler-Plocker provides the best 
predictions near the critical point and has superior 
performance when operated at high temperature 
and pressures [10]. The National Energy 
Technology Laboratory, also, recommends the 
Lee-Kesler-Plocker property package due to its 
higher consistency in the critical region [8]. 
Therefore, it was the property package chosen. 

For the simulation of water, NRTL was used, as 
it accurately predicts polar components. For the 
case of solar salt, it was modelled using a mixture 
of 60wt% NaNO3 and 40wt% KNO3. Multiple 
property packages were investigated. Despite 
being suggested for ionic compounds by Aspen 
Hysys, Electrolyte NRTL predicts molten salt as a 
vapor in the operational temperature range chosen. 
This is further indicated by the small value 
obtained for mass density in these conditions 
(Table 2). For this reason, Peng-Robinson was 
chosen, as it provided the closest prediction of the 
essential properties and accurately predicted the 
state of the molten salt, as shown below. 

Table 22: Property comparison of molten salt using different 
property packages at the conditions of the cold side of the hot 

thermal storage system. 

 
Property Package 

Heat 
Capacity 
(kJ/kgC) 

Mass Density 
(kg/m3) 

Electrolyte NRTL 1.061 1.730 
ENRTL-HG 1.162 409.6 

Peng-Robinson 1.236 409.6 
Experimental values 1.468 1823 

The difference in heat capacity and density values 
between the Aspen and those obtained through 
literature remains significant, especially for 
density. Hence, the density value used for tank 
sizing was the one obtained from literature. To 
avoid overestimation of the tank size using the 
mass flowrates extracted from Aspen, which were 
higher than the actual ones due to the difference in 
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heat capacity, a correction factor of 19% was be 
applied. 

2.2 Charging cycle simulation   
As this paper corresponds to a preliminary study of 
the part-load operation of the ETES technology, a 
pilot sized system with a compressor input of 
10MW was first simulated. As the process dealt 
with is a closed loop, the cycle was disconnected, 
initially, at the inlet of the compressor. The 
compressor input conditions were assumed to be in 
accordance with the design described in the ETES 
project with regenerative heat exchanger [4] and 
the polytropic efficiency of the turbomachinery 
was fixed at 90% [1]. The remaining conditions 
were determined with the aim of maximizing the 
temperature difference between the hot and the 
cold storage systems, the importance of which was 
highlighted in Section 1.4, while increasing the 
work ratio (see section 1.2).  The steps listed below 
were followed and, ultimately, the loop was closed.  

2.3 Turbomachinery Modelling  
In an effort to understanding the effect that 
fluctuating power supply had on the performance 
of the system, it is essential to predict the impact  
these fluctuations had on the turbomachinery . To 
estimate the compressor and expander efficiencies 
at optimal design and off-design conditions, the 
performance maps of the turbomachinery are 
modelled. The sCO2 compressor performance map 
utilized in this study is first based on the 
characteristic performance curves of a typical 
compressor. These were expressed in normalized 
mass flowrates and presents an optimal operating 
point at 4Kg/s and 3700RPM [5]. However, the 
Aspen simulation of the optimal case described in 
section 3.2.1 indicates that the required sCO2 mass 
flowrate in the charging cycle is 60Kg/s. Therefore, 
in accordance with the fan law which states that the 
volumetric flowrate is proportional to the speed of 
the compressor, the mass flowrates and speeds 
were multiplied by a factor of 60/4 in order to stay 
in line with the design point of the system. Finally, 
as present studies were able to confirm that the 
efficiency of these machines was in the high 
eighties, the efficiency curves were adjusted so that 
the optimal design point was set at 85%.  

After implementation of the compressor 
performance map in Aspen, a sensitivity analysis 
was run to determine the power input resulting in 
the highest compressor efficiency. The optimum 

design operating conditions of the charging cycle 
were considered reached for this power supply. In 
parallel, the compressor outlet conditions were 
monitored with the varying power input in order to 
facilitate the realistic temperature definition of the 
molten salt storage system. 

A similar approach based on was adopted to 
model the characteristic performance curves of the 
expander [5]. Its outlet conditions were utilized to 
determine the temperatures of the cold thermal 
storage tanks. 

2.4 Heat Exchanger Modelling 
The next component type that required simulation 
was the heat exchangers of the system. The first 
important step was the selection of temperatures 
for the cold and hot storage tanks. The upper bound 
of the molten storage tanks is influenced by the 
degradation temperature of the solar salt used, 
which is 600oC. The achieved compressor outlet 
temperature was 570 oC. Hence, the hot side of the 
molten salt storage system was defined at  560 oC, 
maintaining the chemical integrity of the material. 
On the cold side, the temperature of 420oC was 
chosen, as it is widely cited by previous research in 
this field and it ensures a small temperature 
difference within the heat exchanger for minimum 
exergy losses.   

With regards to the regenerative heat 
exchanger, the outlet of the cold side was defined 
with the same conditions as the compressor inlet to 
accommodate the closing of the loop. Then, the 
outlet of the hot side was manipulated, and the 
compressor outlet, at maximum capacity was 
monitored. The aim was to reach a sufficiently 
small temperature, while remaining within the 
supercritical region, to maximize the temperature 
difference between the heat source and heat sink.  

 
Figure 3: A diagram of the regenerative heat exchanger of 

the Aspen Hysys charging configuration 
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As  the water thermal storage system heats up the 
working fluid, the cold tank was defined at 40oC, 
which is lower than the temperature of the outlet of 
the expander. On the hot side, the tank was kept at 
80 oC, keeping the temperature difference small 
and the water below its boiling point. 

Currently, in industry, the most efficient heat 
exchangers for systems involving supercritical 
fluids are plate counter current heat exchangers [2]. 
Hence, the two storage heat exchangers and the 
regenerative heat exchanger were modelled as 
such. The corresponding pressure loss in each one, 
on the CO2 side, was kept at 1% as indicated by 
prior research conducted [1]. On the liquid side of 
molten salt and water the pressure loss was 
assumed negligible. 

In both charging and discharging simulations 
conducted, the temperatures of the storage tanks 
were kept constant. This would, effectively, 
correspond to a storage fluid flow control system 
in real life operation. Such decision was important 
in order for the operation of the discharge cycle to 
not vary. The optimal conditions and flowrate of 
the discharge cycle will be retained, ensuring a 
constant design efficiency and hence, the highest 
round-trip efficiency. The sole variability will be 
the operating time in each run, depending on the 
amount of molten salt and cold water collected in 
the respective charging cycle. 

2.5 Discharging cycle modelling  
The discharging cycle operates in reverse to the 
charging cycle. There is the sole addition of a 
cooling unit to the ambient to ensure inefficiencies 
expressed as heat accumulation in the system can 
be removed and reversibility retained.  

The cycle was modelled to closely approach the 
charging cycle in temperature and pressure. The 
optimal storage temperature values from charging 
were input into the discharging cycle. The storage 
fluid temperatures would effectively push the 
discharge thermodynamic cycle within the 
charging one. Moreover, it was essential to specify 
the operating times for these cycles. The charging 
time was chosen to be 8 hours and the discharging 
time 8 hours. These time periods overlap with the 
low demand dip and the high demand peak of the 
“duck cycle” [19]. The molten salt flowrate in the 
discharging cycle was therefore matched with the 
charging cycle molten salt flowrate in a one to one 
ratio. These specifications would be possible 

through the implementation of a temperature 
control system on the hot storage. Ultimately, it 
would maintain the discharging cycle conditions, 
including flowrates and energy exchange rates, 
unchanged regardless of part load operation. As a 
result, the efficiency of turbomachinery in the 
discharging cycle was considered non-variable. To 
guarantee the simulation is as realistic as possible, 
the efficiency of the turbine and the compressor 
were defined as the maximum efficiency obtained 
by the expander and the compressor of the charging 
cycle respectively.  

2.6 Selection of design specifications and 
part load analysis  

After identifying the optimal power input, different 
amounts of power were supplied to the compressor 
to simulate the part load operation of the system. 
The effect of part-load operation on the overall 
performance of the process was studied via an 
analysis of the roundtrip efficiency.  

During each part-load operation run, the net 
power input in the charging cycle which 
corresponds to the power required from the 
compressor reduced by the power recovered from 
the expander is collected. The respective power in 
the discharging cycle is independent of part-load 
due to the temperature controls (see section 2.5). 
Moreover, the storage tank flowrates during part-
load were used to calculate the amount of fluid 
heated or cooled respectively during the eight-hour 
charging time which will, hence, be available 
during discharge.  the molten salt mass flowrate is 
kept constant, the collected fluid mass was used to 
calculate the updated discharge time. The 
following roundtrip equation was used, converting 
the power to work using the running times of the 
two cycles.  

   𝜂𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑖𝑝 =
𝑊𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑊𝑐ℎ𝑎𝑟𝑔𝑒
 

   𝜂𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑖𝑝 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒−𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟−𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟
   

2.7 Storage tank sizing and operating times 
Based on the temperatures chosen, during design 
operation, the mass flowrate between the hot 
storage tanks was noted. With a targeted 8 hour 
running time for the charging cycle, the molten salt 
tanks were sized accordingly to correspond to the 
fluid capacity required. 

532



The modelling of the discharge cycle enables 
the sizing of the cold storage tanks. The water 
storage flowrate required for the optimal operation 
of the discharge cycle was noted and the water 
storage tanks were sized to allow for efficient 
capacity of cold water for discharge of a duration 
of 6 hours.  

3.1 Performance maps  
The modelling of the turbomachinery maps made 
it possible to evaluate its performance when 
operating at part-load conditions. A required shaft 
speed between 50 and 55 Krpm was  predicted to 
reach the high efficiency region. These values 
agree with the range of sCO2 compressor speed 
cited by TiTech and SNL [6]. The simulation was 
therefore carried out with a constant corrected 
speed of 50 Krpm.  The curves were also  validated 
by comparison with the experimental and 
numerical results of the project sCO2-HeRo[7].  

A representation of the compressor’s characteristic 
curves in figure 5 shows the constant efficiency 
and constant impeller speed lines. The region to the 
right of the surge line is highly undesirable as it is 
characterized by a backflow of gas through the 
device. The operating point should therefore 
always remain on its right but must not be located 
at very high flowrates and low head values to avoid 
high power losses. 

 
Figure 4 Compressor Performance map 

Sensitivity analysis were performed to monitor the 
position of the operating point in the compressor 
and expander maps for different power inputs into 
the compressor. As the operating point is at the 
surge line at 6.5 MW and exceeds the maximum 
compressor flowrate at 9MW, only this power 
range can be further considered as power input. 

Figure 3 displays the efficiency of the compressor 
in this range. However the expander performance 
map indicates that the sCO2 flowrate exceeds its 
operational limits for a power supply to the 
compressor of 8.15MW. Therefore, the part load 
analysis will be carried in the range of 6.5 to 9 MW. 

 
Figure 5 Compressor Polytropic Efficiency 

3.2 Thermodynamic Cycle 
Following the simulation of the charging and 
discharging cycle, the thermodynamic cycles 
displayed in figure 6 were obtained for the design 
operation of the process. 

 
Figure 6 Thermodynamic charge and discharge cycles 

At its biggest part a very good fit was achieved.  
This was the closest approximation to reversibility 
that the charging and discharging cycle conditions 
obtained from the Aspen Hysys simulations could 
provide.  As expected, the discharging cycle is 
constrained by the charging one both in 
temperature and in pressure. The horizontal curved 
lines closely approach isobars, as plate heat 
exchangers, which were the ones used, benefit 
from a small pressure drop. 

The gap between the temperatures of the working 
fluid on the cold side during charging and 
discharging is due to conditions approaching the 
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critical point. Isobars converging near the critical 
point. Therefore, despite the temperature 
difference between cycles being quite small, the 
corresponding difference in entropies are much 
larger.  

3.3 Total and part-load operation  
The design power supply to the compressor was 
chosen to be 7.79MW as it corresponds to the best 
turbomachinery efficiency (see figure 7). As the 
molten salt flowrate corresponds to 45.3Kg/s, a hot 
storage flowrate of 60.4Kg/s was implemented in 
the discharging cycle simulation.  Following the 
methodology detailed in section 2.6, the roundtrip 
efficiency was calculated at different part loads as 
shown in figure 7. It is important to note that 
compressor power input at values higher than the 
initial design power chosen, the discharging time  
will not be curtailed at 6 hours. The charging and 
discharging temperatures maintained their 1:1 
relationship and the operating time of the discharge 
was adjusted to ensure that all hot molten salt was 
utilized. This was done as a verification that the 
true optimal design power supply to the 
compressor was chosen. 

 
Figure 7 Round-trip Efficiency at Part-load operation 

Simulation data shows that an increase in power 
input to the compressor enables an increase in the 
required hot storage flowrate. As a direct 
consequence, during part-load, less molten salt is 
accumulated in the hot molten salt tank and the 
discharging cycle running time is reduced. As the 
discharge power is constant, the discharge work 
will decrease. In the case of charging work, as 
evident in the graph the net input power is 
increasing, and the operating time is constant at 8 
hours. Hence, the charging work increases. 
Therefore, their quotient, which is equivalent to 
overall round-trip efficiency. This loss of energy is 
in accordance with the drop of compressor 

efficiency at power values below 7.79MW, as 
showcased in Figure 7. 

Though, it was observed that there is a peak in 
efficiency at a value that corresponds to a higher 
duty that the one of maximum turbomachinery 
efficiency. The mathematical explanation for this 
occurrence is the reverse of the previous case, as 
discharging times are increasing and net input 
power decreasing.  

Table 33: Power associated with the turbomachinery during 
design operation of the systems configured 

 Charging Discharging 
Compressor 8.043MW 4.442MW 
Expander/Turbine 1.894 MW 1.251MW 

 

3.4 Sizing of the thermal reservoirs 
For a charging operating time of 8 hours and a 
discharging operating time of 6 hours the 
following tank sizes were calculated. 

Table 4: Sizes required for hot and cold thermal storage 
tanks and the associated capital expenditure for their 

contents 

 Tank size (m3) 
Molten Salt 880 
Water  460 

As observed, the size of the tanks for the pilot plant 
design power input is small enough for an ETES 
storage system to be implemented within cities. 
Placing energy storage at a short distance from the 
point of demand is very beneficial for overall 
power grid efficiency. Transmission over long 
distances creates power losses in the range of 8% 
to 15%. [20]. Local ETES systems can help support 
sustainable transportation by decreasing the 
transmission line. 

Though, during operation, a complexity arises 
with the use of the water tanks. The required flow 
of water during charging is significantly smaller 
than the respective required one during discharge. 
Hence, after the charging cycle is completed, water 
will not have fully filled the cold side of the storage 
at 40oC, which is the amount required for the 
efficient 6-hour discharge operation. A potential 
solution is the draining of the remaining water at 
80oC to the 40oC. The cold tank will be open to the 
atmosphere to dissipate the excess heat and a 
heating body will be placed to ensure the 
temperature stays at the required temperature. 
Assuming the plant operates at a location with a 
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warm climate, the heat required is negligible. 
Alternatively, the surplus of hot water could be 
repurposed, for example for household use. Then, 
a fresh supply of water would be required to fill the 
cold water tank. 

4. Conclusion 
This study collected some key findings that will 
accommodate future implementation of the 
electrothermal energy storage. The maximum 
round trip efficiency for a pilot plant using current 
research based supercritical CO2 compressor 
characteristics is 51%. It was observed that 
variability in CO2 flowrate, caused by the 
fluctuating power input during part-load, restricts 
the operating range of the system. It also decreases 
the roundtrip efficiency to as low as 37% at 
minimum compressor power input. Externally 
increasing the CO2 flowrate during part load via a 
control system could counteract these challenges.  

The tank sizes required for a pilot scale plant are 
compact, at 880 m3 for the molten salt and at 460 
m3 for the water tanks. They could fit, even, within 
cities, assuming ones with availability of natural 
resources. A suggested suitable location for the 
system would be an island in the Mediterranean 
Sea. Though, it is important to note that additional 
heating and, potentially, water supply is required 
for the cold water tank. This could reduce round 
trip efficiency.  

In order for ETES to become a reliable and 
widely applicable energy solution, further studies 
are essential. Primarily, as models for 
turbomachinery for supercritical fluids become 
increasingly realistic, the ETES simulations need 
to be updated accordingly.  

This will ensure an up-to-date prediction for 
plant efficiency, as well as, capital and operational 
expenditure. Additionally, more robust heat 
exchanger modelling is essential. In this study, an 
assumption of 1% pressure drop within heat 
exchangers was made. It is very important for 
accurate pressure drop models to be constructed for 
the materials used. This will lead to an additional 
layer of complexity and realism in the simulations. 
Lastly, it is essential for the system to be designed 
to respond to the fluctuating nature of renewable 
energy, via a variable power input within the same 
charging cycle. Hence, an in-depth analysis of the 
dynamic operation of the process should be 

performed. This will enable the design of highly 
important control systems to the overall efficiency, 
such as CO2 flowrate and thermal storage 
temperature control. 
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Abstract 

Reversed-phase high-performance liquid chromatography (RP-HPLC) is considered the most widely employed method 
of purification for peptide-based drugs. A variety of research has been done on developing methods to improve HPLC 
performance and achieve higher yields. However, the lack of association with the peptide adsorption mechanisms derived 
from a deeper understanding leads to a great consumption of time and resources during method development. In this 
study, the fundamental mechanisms in peptide adsorption using RP-HPLC are investigated in detail. This was achieved 
by performing adsorption experiments in the HPLC using caffeine and different types of peptides as analytes, and cross-
comparing the performances of columns Luna C18(2), Luna C8 and Luna phenyl-hexyl. The adsorption isotherms were 
characterised by employing different techniques such as frontal analysis (FA) and peak maxima (PM). Different 
mathematical models were fitted to the isotherms, leading to a more thorough investigation. The formation of multiple 
plateaus across all experiments with caffeine using FA indicates the existence of different adsorption sites within the 
columns. FA is deemed suitable for estimating the maximum column capacity due to column saturation being achieved 
at equilibrium. However, due to the low analyte quantity requirement and the minimal risk of gelation, using PM is 
considered more practical to examine the characteristics of peptide adsorption. 
 
1. Introduction 
Peptide-based drugs have gone through huge 
development over the past decades. In 2019, 11 of the 
top 20 drugs by global sales were peptide-based, 
including peptides and proteins such as antibodies and 
fragment antigens (Blankenship, 2019). Peptides are 
becoming more popular than proteins due to their 
simpler structure and comparable specificity. 
Additionally, the possibility of synthesising peptides 
through chemical synthesis, without the need for 
recombinant technologies required for protein, makes 
the production of these biomolecules more rudimental 
(Allee, 2017). However, since the by-products from 
chemical synthesis are analogous to the main product of 
interest, particular attention must be focused on the 
purification step.  

High-performance liquid chromatography (HPLC) 
is the most common technique in purification for such 
types of peptides in the biopharmaceutical industry. The 
principal chromatography modes used for this 
application include normal-phase (NP-HPLC), size-
exclusion (SEC), ion-exchange (IEX) and reversed-
phase (RP-HPLC). Constant efforts have been made to 
improve the performance of all these modes to optimise 
HPLC purification steps (Žuvela et al., 2019).  

SEC has received high attention for producing resins 
capable of separating tiny molecules. However, the 
current improved technologies remain a limited 
minimum molecular weight cut-off of 5-6 kDa, which 
coincide with the upper limit of the average size for most 
peptides. Additionally, in the case of purification of 
peptide mixtures derived from chemical synthesis, since 
most contaminants are derivative species of the target 
sequence with comparable sizes, SEC mode is not 
suitable to be utilised (Mant et al., 2007).  

Although IEX provides good resolution for most 
applications, it requires extensive method development 
to ensure binding to the surface and programmed elution 
(Aguilar, 2004). Another disadvantage is that the 
selectivity between peptides with similar or close 
isoelectric points is poor, which leads to the requirement 
for a second purification step. 

Due to the relatively high hydrophobic properties of 
peptides, RP-HPLC is considered the best purification 
method and most frequently used mode. In this mode, 
separation of the mixture of organic compounds and 
impurities is achieved based on the difference between 
their chemical properties and affinities to the stationary 
phase, where the more hydrophobic analytes are 
adsorbed stronger onto the stationary phase. Elution is 
achieved by changing the solvent strength of the mobile 
phase. Moreover, the resolution and selectivity of this 
technique are sufficient to separate complex mixtures of 
peptides with a relatively simple system (Žuvela et al., 
2019). 

By adjusting the composition of the aqueous mobile 
phase, solute retention and selectivity can be 
manipulated. Hence, even though the experimental 
window of solvent concentration required for protein 
and peptide elution is very narrow, fine-tuning can lead 
to satisfactory purifications. The three most employed 
organic solvents to increase the solvent strength of the 
aqueous mobile phase in RP-HPLC are acetonitrile, 
methanol, and 2-propanol, which all exhibit high optical 
transparency under the detection wavelengths used for 
peptide and protein analysis (Aguilar, 2004). Due to the 
interaction with the stationary phase, these different 
organic solvents form an organic-rich adsorbed layer 
with a unique thickness, which has a direct effect on the 
adsorption ability of the stationary phase (Gritti & 
Guiochon, 2005).  

During method development, columns are tested at 
different mobile phase compositions, normally through 
a gradient mode where the organic solvent is mixed 
gradually with water until the analyte is eluted. This 
iteration process is time-consuming, and the final 
method only applies to the column and analyte tested to 
the point where even columns with similar 
characteristics show small variations. The complexity of 
the RP-HPLC separation reproducibility result from 
inconsistencies during manufacturing of the resins.  

Silica-based resin is currently the optimal choice for 
RP-HPLC packing materials, as its pore structure and 
morphology allow silica particles to be mass-produced 
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with a certain degree of reproducibility while 
maintaining a rapid mass transfer and decent loading 
ability (Žuvela et al., 2019). During synthesis, 
condensation or polymerisation between silanol (Si-
OH) groups is required to create siloxane bridges (Si-O-
Si) (Rahman & Padavettan, 2012). This type of reaction 
leaves free silanol groups at the surface of the resin, 
which is then functionalised with any desired ligand. 
However, the efficiency of this reaction is affected by 
the type of silanol present on the surface (isolated, 
vicinal or geminal), pore accessibility and steric 
hindrance (Bracho et al., 2012).  

Residual silanols can produce numerous 
intramolecular interactions such as hydrogen bonding, 
van der Waals forces and London dispersion forces, with 
not only the analyte but also mobile phase molecules 
(Bocian et al., 2010). Thus, the presence of these 
undesired silanols can interfere with the hydrophobic 
interaction between analyte and stationary phase during 
a chromatographic run depending on the coverage 
density of the resin ligand. A customary strategy to 
counter the effect of residual silanols is by adding an 
ion-pairing reagent, frequently trifluoracetic acid 
(TFA), as an additive in the mobile phase in RP-HPLC 
for the purification of peptides and proteins. These 
molecules contain both ionic and hydrophobic 
functional groups; this characteristic allows them to 
control the pH by providing an acidic environment for 
adsorption, form a complex with oppositely charged 
ionic groups to enhance retention, and suppress the ionic 
interactions between peptides and silanol groups on the 
silica (Supelco, 2002). 

These complex interactions can be investigated 
through the measurement of adsorption isotherms which 
describe the relationship between the adsorbate in the 
liquid phase and the adsorbate on the surface of the 
adsorbent at equilibrium. A variety of methods for the 
determination of adsorption data are available, such as 
frontal analysis (FA), frontal analysis by characteristic 
point (FACP), peak maxima (PM), elution by 
characteristic point (ECP), and the inverse method (IM) 
(Marchetti et al., 2009). A method is selected depending 
on the availability of the analyte and the precision of 
measurement required. Nonlinear behaviour of 
adsorption isotherms is usually observed in the 
purification of peptides or proteins because of the 
properties of the solute, mobile phase and stationary 
phase, such as the nature of the distribution equilibria of 
the solutes between phases, chemical reactions or 
equilibria in the column, solubility limitations, and 
viscosity effects in liquids.  

The experimental adsorption data can be fitted to 
mathematical models based on different fundamental 
assumptions to characterise and understand the 
fundamentals of the adsorption mechanisms. These 
models include Freundlich, Langmuir, Brunauer-
Emmett-Teller (BET) and so on. However, the degree to 
which these models represent the characteristics of the 
stationary phase and its interactions with the analyte is 
determined by the accuracy of the adsorption data. 

The main objectives of this research is to thoroughly 
investigate the fundamentals of the complicated 
adsorption mechanisms for peptides. This was achieved 

by first examining the performance of frontal analysis 
and peak maxima using a relatively simple compound, 
caffeine. This leads to gaining an understanding of the 
adsorption mechanisms for small molecules with 
relatively simple interactions to the column stationary 
phase. The adsorption isotherms were determined for 
peptides of different sequences and chemical properties. 
In this way, the adsorption mechanism of peptides were 
better understood with model fitting and comparison 
with that of caffeine. 

 
2. Background 
Over the years, along with the extensive use of RP-
HPLC for purification of proteins and peptides, the 
majority of research has shown the tendency to 
investigate methods to enhance the HPLC performance 
for higher yields to be achieved as per industrial 
requirements. For instance, it is demonstrated that a 
mixed-mode reversed-phase/ weak anion-exchange 
technique with the utilisation of two columns with 
different stationary phases can provide better selectivity 
based on the differences in hydrophobicity and charge 
between peptides and impurities (Nogueira et al., 2005). 
However, there has rarely been any research 
investigating the fundamentals of the adsorption 
mechanism in RP-HPLC for the separation of proteins 
and peptides. Without a deeper understanding of such 
mechanisms, a large amount of resources and time may 
be consumed using merely trial-and-error to improve the 
performance of RP-HPLC. 

In a study published by Gritti & Guiochon (2005), 
models were successfully developed to analyse the 
adsorption isotherms and the adsorption energy 
distributions of caffeine and phenyl using a variety of 
organic solvents. This provided insight into the 
adsorption mechanisms in RP-HPLC. In the case where 
methanol was used as an organic modifier in the mobile 
phase, strictly convex upward isotherms were 
established, indicating that an adsorbed analyte 
monolayer was formed in the organic-rich film on the 
stationary phase surface. On the other hand, s-shaped 
isotherms were observed when acetonitrile was used in 
the mobile phase, suggesting the formatting of upper 
layers. It can be concluded from these results that 
acetonitrile is a stronger eluent for low-molecular-mass 
polar compounds compared to methanol. It is also 
demonstrated that the behaviours of adsorption 
isotherms in RP-HPLC are highly dependent on the 
nature of the organic mobile phase (Gritti & Guiochon, 
2005). 

To explore the fundamentals of peptide separation in 
RP-HPLC, the correlation between the hydrophobicity 
of peptides and their retention time was well 
investigated by Krokhin &Spicer (2009). In their work, 
a hydrophobicity index (HI) parameter was measured in 
RP-HPLC under isocratic conditions and fitted by the 
retention prediction model. This value is capable of 
indicating the hydrophobicity and concentration of the 
organic modifier, as well as the fixed retention factor for 
each peptide. Regardless of the lack of further 
investigation into the adsorption isotherm behaviour, 
this study well characterised peptide hydrophobicity and 
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provided a foresight in methodology development, 
which could be further utilised. 

The adsorption isotherm of a tripeptide (LLL) was 
investigated experimentally by frontal analysis under 
both controlled and uncontrolled pH conditions. By 
fitting the calculated profile from the inverse method 
(IM) of isotherm determination to the experimental 
breakthrough profile, the comparison was made and 
showed the existence of two different adsorption 
isotherms between the two pH conditions. With further 
analytical procedures, this study concluded that the pH 
of the elution environment and the quantity of ion-
pairing agent added to the mobile phase have a 
significant influence on the retention mechanisms of 
peptides, as well as the non-linear isotherm behaviour 
(Andrzejewska et al., 2009).  
 
3. Methodology 
3.1 Materials 
Caffeine (1,3,7–Trimethylxanthine) powder was 
purchased from Sigma-Aldrich (ReagentPlus). Bovine 
Serum Albumin (BSA) lyophilized powder (>=96%) 
and Lysozyme (from chicken egg white) crystalline 
powder were purchased from Sigma-Aldrich. Peptides 
P1 (LGGGGGGDGSR), P2 (LGGGGGGDFR), P3 
(LLGGGGDFR), P4 (LLLGGDFR), P5 (LLLLDFR) and 
P6 (LLLLLDFR), developed by Krokhin and Spicer, 
were purchased from GenScript with a minimum purity 
of 96% and no termini modification. All organic 
solvents used were HPLC grade. Methanol (>=99.9%) 
and acetonitrile (>=99.8%) were purchased from Fisher 
Scientific. The ion-pairing agent, Trifluoroacetic Acid 
(TFA, >=99.0%, 100mL) was purchased from Sigma-
Aldrich. Deionised (DI) water with quality of 18MΩ 
Ohm was obtained from Elga Purelab Chorus unit.  
 
3.2 Equipment 
A modular HPLC prominence LC-40 (Shimadzu, Japan) 
was used to carry out all chromatographic sorption 
experiments. Mobile phase solutions were continuously 
filtered with a 10 µm in-line filter and degassed using a 
DGU-405 degassing unit and an LC-40D pump. The 
chromatography data was recorded during injection and 
elution by placing a dual channel SPD-40 UV/Vis 
detector and an SPD-M40 photodiode array detector 
(PDA) before and after the column, respectively. The 
temperature was controlled using a CTO-40C column 
oven. All samples were injected using a SIL-40C 
autosampler.  

HPLC columns Luna C18(2) (150 x 4.6 mm ID,), 
Luna C8 and Luna phenyl-hexyl were purchased from 
Phenomenex (USA) with similar dimensions of 150 x 
4.6 mm ID and average particle size of 5 µm.  
 
3.3 Determination of mobile phase volume 
The volume of the mobile phase, also known as the 
thermodynamic void volume (VM), was obtained from 
the excess isotherms measured by the minor disturbance 
method. The HPLC pump was used to mix water (line 
A) and acetonitrile (line B) in a step series from 0% to 
100%B. Each step was run for 20 mL, allowing an 
equilibration volume of 10 mL between steps. After 
equilibration, a 1 µL injection of pure acetonitrile was 

injected into the column to maintain infinite dilution of 
the organic modifier in the mobile phase. The retention 
volume of the first resulting disturbance peak, either 
positive or negative, detected by the post-column 
detector was adjusted by the retention volume of the 
injection peak detected by the pre-column detector.  

The integration of these retention volumes over the 
concentration range was computed to determine VM, as 
explained by the following equation: 

𝑣𝑀 =
∫ 𝑣𝑟𝑑𝐶𝐵

𝑙𝐶𝐵
𝑙 (100%)

𝐶𝐵
𝑙 (0%)

𝐶𝐵
𝑙 (100%)

               (1) 

where 𝐶𝐵
𝑙  is the concentration of ACN in the bulk liquid, 

and the percentage in parenthesis refers to the 
concentration of ACN in equilibrium. 
 
3.4 Experimental procedure for caffeine adsorption 
Caffeine was used as a reference adsorbate to compare 
the agreement between FA and PM methods. Both 
methods were carried out under 40 ℃ and with a 
mobile phase solution of methanol/water (30/70, v/v) 
in accordance with the Tanaka method (McHale et al., 
2021) and to ensure desorption of the analyte. 

FA experiments were performed with a saturated 
mother batch of 35 g/L caffeine in methanol/water 
(30/70, v/v) and another mobile phase solution of 
methanol/water (30/70, v/v) to adjust the composition. 

For PM experiments, caffeine in methanol/water 
(30/70, v/v) solution of the following concentrations 
were prepared in 2 ml vials respectively and placed 
into the Auto Sampler in HPLC: 0.5, 1, 2.5, 5, 7, 8, 9, 
10, 15, 20, 25, 30 mg/mL. The following injection 
volumes were taken for each vial: 1µL, 10 µL, 25 µL, 
50 µL, 100 µL. Each volume of injection was repeated 
by triplicates for result accuracy. The same method was 
carried out for all three target columns and with an 
additional run without any column for comparison. The 
system was initially equilibrated using the mobile 
phase solution in between testing for each column.   
 
3.5 Experimental procedure for peptide adsorption 
3.5.1 Isocratic test 
For all six types of peptides, 200 µL samples of 2 
mg/mL peptide in water solution were prepared, 
transferred into vials, and placed in the Auto-Sampler, 
separately. Isocratic tests for P1, P2, P3, P4, P5, P6 were 
carried out in the ranges of 0%-20%, 5%-25%, 10%-
30%, 15%-35%, 20%-40%, 25%-45% volume of ACN 
in water, respectively. Each injection was completed 
with increments of 2.5% of ACN. 
 
3.5.2 Adsorption of peptides by PM 
Solutions of ACN with 0.1%(vol) TFA and water with 
0.1%(vol) TFA were prepared and connected to line B 
and line A of the HPLC inlet, respectively. The 
concentrations of the ACN in water mobile phase 
solution used for P1, P2, P3, P4, P5 and P6 were 5%, 
12.5%, 17.5%, 22.5%, 27.5% and 30%, accordingly.  

For P1-P4, 1 mL samples of 75 mg/mL peptide in 
water solution were prepared, transferred into vials, and 
placed in the Auto-Sampler. The 1 mL samples for P5 
and P6 were prepared with 4 mg/mL concentration of 
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peptide in ACN/water (25/75, v/v) and ACN/water 
(50/50, v/v), respectively. 

Injection volumes of 0.5, 1, 2.5, 5, 7.5, 10, 20, 30, 
and 50 µL were taken from the P1-P4 vials. Injections 
of 9.4, 18.7, 46.9 and 93.8 µL were taken for P5 and P6. 
All injection volumes were performed by triplicates. 
Same procedure was carried out on all three columns. 
 
3.6 Measurements of Adsorption Isotherms 
3.6.1 Frontal Analysis (FA) 
The breakthrough curves of analyte before and after the 
column were measured by two detectors. Signal 
intensities were transformed to the concentration of 
analytes and the volume of the mobile was subtracted 
from the post-column detector signal. Area between two 
curves on the front part was calculated and represented 
to the mass of analytes adsorbed. Equilibrium 
concentration was calculated by following equation: 

𝑞𝑒 =  
𝑚𝑎 
𝑉𝑠

=
𝑚𝑎 

𝑉𝐶 − 𝑉𝑚
                     (2) 

where 𝑚𝑎 is the mass of analyte adsorbed, 𝑉𝑠 is the 
volume of stationary phase, 𝑉𝐶 is the volume of the 
column, 𝑉𝑚 is the void volume of column. 
 
3.6.2 Peak Maxima (PM) 
The retention time was obtained from the main peak in 
chromatograph. Equilibrium concentration was 
calculated by following equations:   

𝑉𝑟 = 𝑡𝑟 ∗ 𝐹𝑚                                 (3) 
 

𝑞𝑒 = ∫
𝑉𝑟 − 𝑉𝑚

𝑉𝑠
 𝑑𝑐                      (4) 

where 𝑉𝑟  is the retention volume, 𝐹𝑚 is the flowrate of 
mobile phase,  𝑡𝑟 is the retention time, 𝑉𝑠 is the volume 
of stationary phase, 𝑉𝑚 is the void volume of column 
 
3.7 Modelling of Adsorption Isotherms 
Adsorption data were fitted via multiple-objective 
optimisation using the following models: 
Freundlich model: 

𝑞𝑒 = 𝐾𝐹𝐶𝑒
1 𝑛⁄                         (5) 

 
Redlich-peterson model: 

𝑞𝑒 =
𝐾𝑅𝑃𝐶𝑒

1 + 𝛼𝑅𝑃𝐶𝑒
𝑔                   (6) 

 
Langmuir model: 

𝑞𝑒 =
𝑞𝑚𝐾𝐿𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
                     (7) 

 
BET model: 

𝑞𝑒 =
𝑞𝑚𝐾𝐵𝐸𝑇1𝐶𝑒

(1 − 𝐾𝐵𝐸𝑇2𝐶𝑒)(1 − 𝐾𝐵𝐸𝑇2𝐶𝑒 + 𝐾𝐵𝐸𝑇1𝐶𝑒)    (8) 

 
Anti-Langmuir model: 

𝑞𝑒 =
𝑞̂𝑚𝐾̂𝐿𝐶𝑒

1 − 𝐾̂𝐿𝐶𝑒
                    (9) 

The best-fitting model was selected by minimising the 
mean squared error. 

 
4. Results and Discussion 
4.1 Determination of VM  

 
Figure 1: Estimation of VM values in acetonitrile/water mixtures. The 
organic modifier in the mobile phase, acetonitrile, for this case, is 
represented as B. Percentages are shown as volume/volume ratios. VM 
values were calculated using Eq. 1. 
 

The mobile phase volume of a column (VM) is a crucial 
parameter in chromatography used to adjust retention 
volumes to obtain simple retention factors (k’) for 
system suitability assessment, theoretical descriptors, 
prediction of retention times, and determination of 
thermodynamic properties responsible for 
chromatographic retention, partitioning and sorption 
processes. It represents the approximate volume of 
liquid inside a column during chromatographic 
conditions. In other words, it describes the minimum 
amount of liquid required to fill the empty spaces in the 
column, including the pore and the interstitial volumes. 
Approximations of VM are experimentally performed by 
measuring the minimum amount of mobile phase 
required to elute an unretained molecule, customarily 
referred to as void volume (V0). Under ideal conditions, 
V0 and VM are identical; thus, they are frequently used 
interchangeably in the literature. However, reports   
have shown that no completely unretained marker exists 
for RPLC columns due to the complex surfaces of these 
silica particles (Luo & Cheng, 2005). Variations of V0 
are attributed to the mobile phase composition and 
marker properties. 

Alternatively, VM can be defined thermodynamically 
by the Gibbs excess isotherms of organic/water mixtures 
in contact with an adsorbent defined by Eq. 1.  

Figure 1 depicts the retention volumes of a peak 
formed from a minor disturbance of the mobile phase at 
equilibrium for the three columns tested. The VM has 
values of 2.2123, 2.1647, and 2.1089 mL for C8, PH and 
C18, respectively. The order is not surprising since the 
apparent size of the ligand is proportional to the length 
of the ligand when fully extended; thus, the VM values 
are inversely proportional. In other words, since C18 
occupies more space than PH and C8, the volume 
available to the mobile phase reduces. However, this 
inference is only valid when the ligand surface coverage 
and the packing density are the same amongst columns. 
Hereinafter these VM values were considered for all 
calculations unless otherwise stated.  
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4.2 Analysis of adsorption data of caffeine 
4.2.1 Breakthrough curve and adsorption 

isotherm by FA 
As per the principle of FA, saturation of column is 
achieved to measure the overall loading capacity at 
equilibrium, thus a plateau is formed once the column is 
fully saturated in that specific concentration. This can be 
observed for columns C8, C18 and PH in Figure 2A, 2B 
and 2C, respectively. If the analyte follows an ideal 
adsorption mechanism with only a single adsorption 
site, a single plateau would be expected (Marchetti et al., 
2009). Contrastingly, all columns tested for this project, 
showed the appearance of a second plateau, suggesting 
the presence of another adsorption mechanism.  

As the concentration of analytes increases at 
equilibrium, the earlier and higher this plateau forms. So 
the first assumption made to this phenomenon the is 
formation of second or multiple layers are formed on the 
stationary phase. A plateau is also seen during 
desorption at the rear part of the breakthrough curves, 
which suggests another assumption that the existence of 
complete different adsorption site dependent on the 
analyte-surface interactions such as hydrophobic 
interactions at the resin ligand, hydrogen bonding at the 
silanols, electrostatic interactions at protonated silanols, 
π-π interactions between aromatic rings. However, the 
breakthrough curves are not capable to justify which 
assumption is correct, further justification is carried out 
in Section 4.2.3. 

The adsorption isotherms have also been calculated 
and plot in Figure 2D. Since columns C18 and C8 have 
alkyl chains with different length covalently attached to 
the silica surface of the resin, similar hydrophobic and 
electrostatic interactions between the analytes and 
stationary phase would be expected, implying that the 

distribution of analytes and loading capacity in high-
energy sites would also be similar. The experimental 
adsorption data shows a good agreement to this 
theoretical statement, the equilibrium concentration of 
caffeine of column C18 has the same trend and 
comparable adsorption at low concentrations of analyte. 
In higher range of concentration of analytes, column 
C18 has a longer alkyl chain which provides more high-
energy sites for analytes to be adsorbed and relatively 
higher overall loading capacity. Size exclusion effect is 
not considering, since caffeine should be small enough 
to access all the pores (Miyabe & Guiochon, 2004). 

The isotherm for column PH shows the highest 
equilibrium concentration among all three columns in 
the entire range of concentration. This result can be 
explained by the π-π interaction between analytes, 
caffeine, and the aromatic ring on the ligand of the silica 
surface, so stronger attraction from the stationary phase 
contributes greater loading capacity on the high-energy 
site, as well as the overall capacity of adsorption. 

  
4.2.2 Breakthrough curve and adsorption 

isotherm by PM 
The peak maxima method has also been used to analyse 
the adsorption mechanism of columns. As per the  
principle of peak maxima, only a small amount of 
analyte is injected into the system, and the analytes are 
adsorbed onto stationary, and then eluted away. 
Therefore, with the same condition, the equilibrium 
concentration should also be the same as the volume of 
injection increase. However, instead of remaining the 
same shape, the adsorption isotherms curve downward 
as the injection volume rise as shown in Figure 3A, 
which means that the retention time of analytes is 
shorter.  

B 

C 

D 

A 

Figure 2: Caffeine breakthrough curves recorded by PDA detector at λ = 308nm in column (A) C18, (B) column C8, (C) column PH, and (D) the 
adsorption isotherm data of caffeine determined by FA for all three columns and its molecular structure  
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To understand this isotherm behaviour, a 
comparison between peak properties with varying 
injection parameters was carried out. Figure 3A shows 
that the peak is higher, broader, and earlier with an 
increase in injection volume for the same sample 
concentration. The same observation is also observed 
with an increase in concentration and the same injection 
volume as shown in Figure 3B. This result indicates that 
the more mass of analytes is injected into the column, 
the elution would start earlier and have a longer 
duration. Thus, the peak behaviour is only dependent on 
the mass of injection. This statement is confirmed in 
Figure 3C as the same peak shape is observed (Vr = 
4.157mL ±0.028; Height = 152.9E+03mV ±6.66E+03; 
W0.5h =0.58mL± 0.014) for the same mass of injection 
regardless of the volume of injection and sample 
concentration. 

From these results, it can be speculated that multiple 
adsorptions and desorption stages occur along the 
column. When a small amount of analyte is injected, the 
compounds are momentarily adsorbed onto the 
stationary phase, desorbed into the mobile phase, and re-
adsorbed onto the stationary phase repeatedly as the 
peak band moves along the length of the column until 
full elution can be observed. With higher mass of 
injection, a higher surface coverage is achieved, 
preventing re-adsorption. Thus, these adsorption-
desorption stages would complete faster, resulting in an 
earlier and broader peak. 
 
4.2.3 Comparison between isotherms of FA and 

PM 
The adsorption isotherms determined by PM have 
shown that column PH has the highest equilibrium 
concentration and C8 has the lowest, which is consistent 

with the isotherms by FA and verifies the theoretical 
assumption mentioned in Section 4.2.1. When both 
methods are compared to each other, PM gives more 
linear adsorption behaviours and intersects their FA 
counterparts. However, an overestimation to the 
equilibrium concentration produced by the PM method 
is expected because the mass of analytes injected 
(minj,max=3 mg) is significantly lower than that for FA 
(minj,max= 25 mg). The analytes adsorbed onto the 
stationary phase in the latter would not saturate the 
column, hence equilibrium concentration is never 
achieved.  

The Langmuir model (Eq. 7) was chosen to fit the 
adsorption data determined by PM and FA, and isotherm 
parameters were obtained in Table 1. The great 
difference between isotherm parameters qm which 
represent the maximum adsorption capacity of the 
column for PM and FA has proved the over-estimation 
of equilibrium concentration by PM. 

Figure 4: the adsorption isotherm data determined by FA and PM for 
three columns 

C 

A B 

D 

Figure 3: Adsorption data of caffeine determined by PM with different injection volume (A); The chromatographs of peak recorded by PDA 
detector at λ = 308nm for varying concentration (B), of varying injection volume (C), of same injection mass (D).  
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The BET model was selected to justify the formation 
of a second adsorption layer mentioned in Section 4.2.1, 
due to its derivation from a multi-layer physical 
adsorption mechanism. When the model was fitted (Eq. 
8), the parameter KBET2 nullifies meaning that the model 
becomes Langmuir, hence there is no more loading 
capacity apart from the first layer, which denies the 
‘second layer’ assumption. Gritti and Guiochon 
concluded that the organic-rich layer that forms from the 
excess isotherm of MeOH/H2O mixtures has a thickness 
of 4 Å, which is not sufficiently thick to allow the 
analytes to form an additional layer. On the other hand, 
they also proved that the organic-rich layer formed from 
ACN/H2O mixtures measures 13 Å which provides 
enough space to create a second layer showing a BET 
adsorption behaviour for caffeine (Gritti & Guiochon, 
2005). 

Similarly, when the Redlich-Peterson model was 
conducted (Eq. 6), the exponential parameter g turned to 
1, and the model turned into Langmuir model which is 
an indication of macroscopic homogeneous adsorption. 
However, the chemistry of silica particles contradicts 
this idea as residual silanols from the condensation 
reaction prevail after end-capping. These silanols cannot 
be capped with current technologies (Bracho et al., 
2012), which means that there should always be at least 
two energy sites, alkyl ligands and silanols, on the 
surface of the resin. 

Even though the silica material should be 
heterogenous in theory, as the greater difference in 
adsorption energy between energy sites and high 
coverage of end-capping, the resin could be considered 
a homogenous surface mathematically. Analytes which 
are only affected by hydrophobic interaction or silica 
resin with low end-capping coverage can be used in the 
same experiment to verify the assumption above. 
 
4.3 Analysis of adsorption data of peptides 
4.3.1 Isocratic Test 
The amino acids present in the peptide sequence 
determine the chemical properties of the biomolecule. 
For instance, when comparing peptides P1 and P2, a 
glycine (Gly, G), a neutral amino acid, and a serine (Ser, 
S), a polar uncharged amino acid, was substituted from 
the former for one hydrophobic phenylalanine (Phe, F) 
in the latter. This subtle substitution increases the 
relative hydrophobicity of the sequence. This behaviour 
also occurs when two glycine side chains are substituted 
by a leucine (Leu, L) another hydrophobic amino acid. 
On that account, the hydrophobicity increases from P1 
to P6. 

The same trend is observed in the elution order of 
RPLC separation processes, as shown in Figure 5. Since 
a higher content of ACN, which means stronger solvent 
strength, is needed to split the hydrophobic interaction 

between peptides with higher hydrophobicity and 
stationary phase and cause elution. 

The same explanation is applicable to the retention 
behaviour of individual peptides. The retention volume 
of P1 remains constant when the percentage of ACN is 
greater than 10% and starts retaining only within the 
range of 5-10%. As the content of ACN decreases in the 
mobile phase, the solvent strength reduces, favouring 
the adsorption of P1 onto the stationary phase and 
displacement from the mobile phase. Additionally, no 
elution occurs when the percentage of ACN is lower 
than 5%. Therefore, the adsorption range of each peptide 
can be inferred from the data presented in Figure 5. 

 
 

4.3.2 Isotherm behaviour under adsorption 
conditions 

In the adsorption of peptides, high-energy sites adjacent 
to the ligand on the stationary phase becomes 
inaccessible because the size of the peptide is greater 
than the separation between alkyl ligands. Thus, 
peptides only interact with the tail of the ligands and 
cause adsorption on the low-energy sites. 

With this theory, similar adsorption isotherm 
behaviours of P1 amongst different columns are 
expected, as shown in figure 6A. As there is no aromatic 
ring in molecules, so the effect of π-π interaction is not 
observed in the case of P1, and only hydrophobic 
interactions affect the adsorption. Contrastingly, for P2 
to P6 (Figure 6B-F), where an aromatic ring exists at the 
serine side chain, a lower equilibrium concentration in 
column PH, compared to column C8 and C18 is observe. 
As the discussion in Section 4.2.1, π-π interaction should 
have synergy with the hydrophobic interaction between 
analytes and stationary phase. This result indicates that 
a repulsive π-π interaction is dominant instead of 
attraction, it has a significant interference with the 
attractive hydrophobic interaction. 

  FA   PM  
 C18 C8 PH C18 C8 PH 

 𝒒𝒎 108.309 82.251 110.239 258.894 228.527 748.744 
 𝑲𝑳 0.015 0.015 0.023 0.004 0.003 0.003 
SSE 10.432 1.120 8.429 0.326 0.203 1.459 

 

Table 1: Isotherm parameters acquired from the adsorption of caffeine by FA and PM in three columns 

Figure 5: Retention volume of P1 to P6 in correspond percentage of 
ACN 
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Another major observation is that column C8 
appears to have higher adsorption than column C18 for 
P3, and this difference becomes greater from P4 to P6. 
This result could be explained by considering the 
properties of both the peptides and the column resins. 

A relative ligand coverage can be calculated by 
dividing the carbon load of the column by the number of 
linear carbons in the ligand. As the carbon load for C8 
is 13.5% and 17.5% for C18 and PH, according to the 
supplier, the relative coverage for each column would be 
1.69, 0.97 and 1.94 for C8, C18 and PH, respectively. If 
the coverage of ligands on the surface is low, the 
residual silanols and other end-capping species become 
more accessible to peptides, resulting in contributions 
from hydrophilic and ionic interactions during 
adsorption. So, a higher ligand coverage generates a 
relatively more homogenous surface which enhances the 
hydrophobic interaction with peptides. Therefore, the 
difference in coverage between columns C8 and C18 
could explain higher adsorption for more hydrophobic 
peptides, as observed from P2 to P6 (Figure 6B-F). 

Another consideration with regard to the efficiency 
of adsorption is the accessibility of pores. By taking into 
account the properties of P1 and P2, where both peptides 
have comparable sizes (approximately 10 nm) but 
distinct hydrophobicity, a similar concentration of 
adsorbed peptide onto both columns shows that the 
driving force governing adsorption might be the size and 
not hydrophobicity. As the three resins have an average 
pore size of 10 nm, according to the manufacturer, one 
molecule of P1 and P2 can effectively occupy the whole 
opening of the pore, reducing the surface area for 
adsorption, causing a size exclusion effect. As the size 
of a peptide decreases, more pores can be accessed and 
enhance the adsorption of peptides. This can be 
extended to P3 to P6, where this statement occurs. There 
have been reports that ligands close to the opening of the 
pores can reduce the pore diameter or completely block 
it (Carr et al., 2011). Assuming a kinetic diameter of 0.7 
nm per carbon (Aguilar-Armenta & Dıaz-Jimenez, 
2000), two molecules of C18 at opposite sites in the pore 
aperture will reduce the diameter to 8 nm. A shorter 
length of alkyl chains can reduce the possibility of 

B A 

E F 

C D 

Figure 6: The adsorption isotherm data of P1(A), P2(B), P3(C), P4(D), P5(E), P6(F) determined by PM under adsorption conditions for three 
columns and corresponding peptide sequences 
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having a blocked pore on the surface, thus, adsorption is 
enhanced. 

All adsorption data of P1 to P4 are fitted with the 
Langmuir model (Eq. 7), and corresponding isotherm 
parameters are shown in Table 2. Due to the solubility 
of P5 and P6 is low, data is not sufficient to be fitted by 
any model. 
 
4.3.3 Isotherm behaviour under elution 

conditions 
Ideally, no adsorption should occur under elution 
conditions, as the solvent strength is greater than the 
interaction between peptides and the stationary phase. 
However, adsorption is still observed and presents an 
anti-Langmuir behaviour, as shown in Figure 7.  

As the peptides are injected into the column with an 
organic-rich mobile phase, compounds can still be 
adsorbed onto the stationary phase and cause mere 
retention if they get close enough to the surface. With a 
higher mass of injection, more compounds are possible 
to be adsorbed, so greater retention is achieved. 

Higher adsorption is still observed in column C8 
under elution, which may prove that the surface of the 
stationary phase in column C8 is more homogenous and 
provides stronger hydrophobic interaction with peptides. 

Adsorption data is fitted with the anti-Langmuir 
model, and corresponding isotherm parameters are 
shown in Table 3. 
 
5. Conclusions 
In conclusion, since the unique molecular structure and 
physicochemical properties of peptides, the interaction 

between peptides and phases in PR-HPLC system is 
more complicated caffeine. Therefore, more factors are 
considered to characterise the adsorption mechanism of 
peptides, such as size exclusion effect, hydrophobicity 
of peptides, pore structure and coverage of stationary 
phase, solvent strength of mobile phase, interactions 
with residual silanols and so on. 

FA is a more suitable method to analyse the 
complete adsorption isotherm and estimate the 
maximum column capacity since full column saturation 
is achieved at equilibrium. However, this method 
requires large amounts of analyte compared to PM. This 
is important for the investigation of peptides whose 
availability is low. It is also curial to note that the 
experimental conditions of FA are limited to the 
solubility of the peptide, because of the risk of gelation 
inside the column. 

So, PM is particularly useful in this case because the 
amount of analyte required is significantly lower. Even 
though the PM method cannot provide accurate 
adsorption parameters, it can still characterise the 
adsorption mechanism sufficiently to compare different 
peptides onto different columns.  

In the future, the adsorption of phenol can be 
experimented with to compare with the data of caffeine 
and analyse the effects of hydrogen bonding on 
adsorption. The same experiment can be carried out for 
peptides with NP-HPLC to investigate the interaction 
between residual silanols and peptides. Larger or more 
hydrophobic peptides can also be used in the same 
experiment to enlarge the size exclusion effect or 
enhance hydrophobic interaction. 

Figure 7: The adsorption isotherm data of P2(A), P3(B), P4(C) determined by PM under elution conditions for three columns 

Table 3: Isotherm parameters acquired from the adsorption of peptides P2-P4 under elution conditions in three columns 

B C A 

Table 2: Isotherm parameters acquired from the adsorption of peptides P1-P6 under adsorption conditions in three columns 

adsorption 
 

P1 
  

P2 
  

P3 
 

C18 C8 PH C18 C8 PH C18 C8 PH 
 𝒒𝒎 502.796 411.360 674.262 562.140 442.257 312.016 397.566 427.420 271.199 
 𝑲𝑳 0.081 0.100 0.062 0.102 0.136 0.006 0.113 0.128 0.006 
SSE 1.897 2.515 2.841 4.385 4.789 3.677 4.468 3.733 2.319   

P4 
  

P5 
  

P6 
 

 
C18 C8 PH C18 C8 PH C18 C8 PH 

 𝒒𝒎 415.425 409.862 
 

- - - - - - 
 𝑲𝑳 0.116 0.157 

 
- - - - - - 

SSE 2.901 4.576 
 

- - - - - - 
 
 

elution 
condition  

 
P2 

  
P3 

  
P4 

 

C18 C8 PH C18 C8 PH C18 C8 PH 
 𝒒̂𝒎 93.789 120.621 119.515 72.143 167.701 101.458 261.117 140.909 115.327 
 𝑲̂𝑳 0.046 0.042 0.037 0.056 0.039 0.045 0.012 0.041 0.043 
SSE 0.449 0.329 0.331 0.350 0.223 0.198 0.110 0.272 0.200 

 

545



 10 

 
6. Acknowledgement  
We would like to express our utmost gratitude to Oscar 
Mercado Valenzo for his continuous support and 
guidance throughout the period of this research project. 
 
7. References  

Aguilar-Armenta, G. & Dı́az-Jiménez, L. (2001). 
Characterization of the porous structure of two naturally 
occurring materials through N2-adsorption (77 K) and 
gas chromatographic methods. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 176 (2-3), 
245–252.  

Aguilar, M.-I. (2004). Reversed-Phase High-
Performance Liquid Chromatography. HPLC of 
Peptides and Proteins, 251, 9–22.  

Andrzejewska, A., Gritti, F. & Guiochon, G. (2009). 
Investigation of the adsorption mechanism of a peptide 
in reversed phase liquid chromatography, from pH 
controlled and uncontrolled solutions. Journal of 
Chromatography A, 1216 (18), 3992–4004.  

Blankenship, K. (2020). The top 20 drugs by global 
sales in 2019. [online] Available at: 
https://www.fiercepharma.com/special-report/top-20-
drugs-by-global-sales-2019. [Accessed 16th December 
2022]. 

Bocian, S., Vajda, P., Felinger, A. & Buszewski, B. 
(2010). Effect of End-Capping and Surface Coverage on 
the Mechanism of Solvent 
Adsorption. Chromatographia, 71 (S1), 5–11.  

Bracho, D., Dougnac, V.N., Palza, H. & Quijada, R. 
(2012). Functionalization of Silica Nanoparticles for 
Polypropylene Nanocomposite Applications. Journal of 
Nanomaterials, 2012, 1–8.  

Carr, P.W., Dolan, J.W., Neue, U.D. & Snyder, L.R. 
(2011). Contributions to reversed-phase column 
selectivity. I. Steric interaction. Journal of 
Chromatography A, 1218 (13), 1724–1742.  

Gritti, F. & Guiochon, G. (2005). Adsorption 
Mechanism in RPLC. Effect of the Nature of the 
Organic Modifier. Analytical Chemistry, 77 (13), 4257–
4272.  

Hannappel, M. (2017). Biopharmaceuticals: From 
peptide to drug. AIP Conference Proceedings, 1871 (1), 
doi:10.1063/1.4996533. 

Krokhin, O. V. & Spicer, V. (2009). Peptide 
Retention Standards and Hydrophobicity Indexes in 
Reversed-Phase High-Performance Liquid 
Chromatography of Peptides. Analytical Chemistry, 81 
(22), 9522–9530.  

Luo, H. & Cheng, Y.-K. (2006). A comparative 
study of void volume markers in immobilized-artificial-
membrane and reversed-phase liquid 
chromatography. Journal of Chromatography A, 1103 
(2), 356–361.  

Marchetti, N., Cavazzini, A., Pasti, L. & Dondi, F. 
(2009). Determination of adsorption isotherms by 
means of HPLC: Adsorption mechanism elucidation and 
separation optimization. Journal of Separation Science, 
32 (5-6), 727-741. 

McHale, C., Soliven, A. & Schuster, S. (2021). A 
simple approach for reversed phase column 

comparisons via the Tanaka test. Microchemical 
Journal, 162. 

Miyabe, K. & Guiochon, G. (2004). Characterization 
of monolithic columns for HPLC. Journal of Separation 
Science, 27 (10-11), 853–873. 

Nogueira, R., Lämmerhofer, M. & Lindner, W. 
(2005). Alternative high-performance liquid 
chromatographic peptide separation and purification 
concept using a new mixed-mode reversed-phase/weak 
anion-exchange type stationary phase. Journal of 
Chromatography A, 1089 (1-2), 158–169.  

Rahman, I.A. & Padavettan, V. (2012). Synthesis of 
Silica Nanoparticles by Sol-Gel: Size-Dependent 
Properties, Surface Modification, and Applications in 
Silica-Polymer Nanocomposites—A Review. Journal 
of Nanomaterials, 2012, 1–15.  

Shibue, M., Mant, C.T. & Hodges, R.S. (2005). 
Effect of anionic ion-pairing reagent hydrophobicity on 
selectivity of peptide separations by reversed-phase 
liquid chromatography. Journal of Chromatography A, 
1080 (1), 68–75.  

Supelco. (2002) Application Note 168 Eliminate 
TFA and Improve Sensitivity of Peptide Analyses by 
LC/MS. [online] Available at: 
https://www.sigmaaldrich.com/deepweb/assets/sigmaal
drich/marketing/global/documents/129/989/11547.pdf 
[Accessed 15th December 2022]. 

Wang, J. & Guo, X. (2020). Adsorption isotherm 
models: Classification, physical meaning, application 
and solving method. Chemosphere, 258, 127279.  

Žuvela, P., Skoczylas, M., Liu, J., Ba̧czek, T., 
Kaliszan, R., Wong, M.W. & Buszewski, B. (2019). 
Column Characterization and Selection Systems in 
Reversed-Phase High-Performance Liquid 
Chromatography. Chemical Reviews, 119 (6), 3674–
3729.  
 
 

546

https://www.fiercepharma.com/special-report/top-20-drugs-by-global-sales-2019
https://www.fiercepharma.com/special-report/top-20-drugs-by-global-sales-2019


1 
 

Developing a Chiral Alanine and Water Ternary Phase Diagram and investigation of 
NRTL Model Applications 

Sarah Gunnery and Bastiaan Geurtz 

Department of Chemical Engineering, Imperial College London, U.K. 

Abstract 

Ternary diagrams are pertinent in the development of preferential crystallisation techniques, yet current 
experimental techniques to develop these are slow, and modelling is limited to a few applications of the NRTL 
model. Therefore, the focus of this research will be to reduce the time required. Techniques to reduce experimental 
time will be explored and, while doing so, novel ternary data for a chiral alanine and water system will be 
collected. Investigation into the NRTL model will also be undertaken, exploring reduction of the data input 
required. Significant reductions in time were successfully made at the cost of high precision by applying the 
assumption that behaviour between different enantiomers and a solvent can be considered the same. The modelling 
investigation has shown that without extensive data to highlight patterns ternary data will remain very reliant on 
experimental procedures. Novel ternary data has also shown alanine is a racemic forming compound.  

1. Introduction 
Chiral compounds are a type of compound which 
have two non-superimposable mirror image 
enantiomers, they are abundant in biological 
systems and are used throughout industry. As of 
2021 the global chiral chemical market was valued 
at USD 58.82 billion, an increase of 47% on the 
valuation made in 2015, USD 39.79 billion, and is 
expected to continue growing with an estimated 
value of USD 149.95 billion by 2030 ((NMSC), 
2022) (GVR, 2022). 

The pharmaceutical, agrochemical, food, 
and cosmetic industries all contribute to this market 
and regulations for these bodies are developing to 
create safer and more environmentally conscious 
products regarding chirality. For instance, in 
Sweden there is incentive to reduce environmental 
loading, and hence the use of racemic mixtures in 
the agrochemical industry, through the 
implementation of a tax on the weight of the active 
components (Williams, 1996). To use the single 
active isomer product which would be more 
desirable in this situation, production techniques 
require development. 

Significant caution is required, specifically 
in the pharmaceutical industry where biological 
structures such as proteins, sugars, amino acids, and 
nucleic acids are also often chiral (Shaffer, 2022). 
As a result, enantiomeric drugs produce different 
effects, ranging from the desired therapeutic effect 
to severe side effects – one of the most prominent 
cases of this was thalidomide; of which one 
enantiomer has a sedative effect compared with the 
other enantiomer resulting in a teratogenic effect 
(Zhang et al., 2019). As of 2006 56% of the drugs in 
use were chiral, of which 88% were racemic 
mixtures (Nguyen et al., 2006). Hence, 
pharmaceutical industries require intensive research 
surrounding chiral compounds. They are tasked with 
investigating the differing pharmacokinetics, 
pharmacodynamics, and toxicology of enantiomers 

to determine whether a racemic mixture is 
acceptable for drug delivery or if an enantiopure 
compound is required for safe or improved 
delivery.  FDA policy states ‘manufacturers should 
develop quantitative assays for individual 
enantiomers in in vivo samples early in drug 
development’ (FDA, 1992). This requires the 
capacity to produce pure enantiomers both for 
investigation and the production of those which are 
found to be safe or improved in pure enantiomeric 
form. 

Two available routes for producing 
enantiomerically pure compounds are asymmetric 
synthesis and separation. Asymmetric synthesis 
requires, either a chiral pool (reactant), chiral 
auxiliary or chiral catalyst, and is reaction specific. 
Separation routes are also especially difficult 
because of the similarities between enantiomeric 
properties. 

The aim of this paper will be to consider 
how preliminary research required for development 
of ternary diagrams for the application in 
preferential crystallisation of chiral compounds can 
be improved; both by reducing the time and 
therefore economic input. The process used for 
gathering experimental data to create a ternary 
diagram will be evaluated, this will include 
considering assumptions which can contribute to the 
reduction of experimental time required. The 
experimental procedure will be completed upon a 
chiral alanine and water system as there is currently 
no ternary data available from a literature review for 
this system. Additionally, an implementation of an 
NRTL model in Julia will be evaluated which will 
consider how efficiently binary data can be used to 
create ternary diagrams in chiral compound and 
solvent systems. 
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2. Background 
A ternary phase diagram is the graphical depiction 
of the solubility of two compounds at varying 
compositions and temperatures in a solvent. There 
are two distinct types of chiral compounds which 
can undergo preferential crystallisation, these are 
conglomerates and racemic compounds resulting in 
two types of ternary diagrams as shown in Figure 1. 
Racemic forming compounds form crystals with 
both enantiomers within the crystal lattice, 
conglomerates however form separate crystals for 
each enantiomer therefore creating a physical 
mixture instead. 

 

Figure 1: “Ternary solubility phase diagrams for (a) a 
conglomerate and (b) a racemic compound-forming system, with 
S and R, the two enantiomers of a chiral compound, RS, the 
racemic compound, and s and l, indication of the solid and liquid 
state, respectively” (Cascella et al. 2020). 

Racemic systems are a particularly 
important focus as they account for 90% of chiral 
systems (Wang et al., 2005). The ternary diagrams 
regions within racemic forming systems and in 
particular the eutectic points (the two points at which 
the three phase, two phase and one phase region 
meet) determine viable preferential crystallisation 
limits (yields and purity) and are pertinent to 
development of preferential crystallisation 
separation techniques. Hence, significant 
importance of this report is derived from the 
application to preferential crystallisation, however 
preferential crystallisation is not covered in further 
detail in this report, two significant papers in this 
field to consider for further information are 
referenced at the end of this paper are (Cascella et 
al. 2020) and (Gänsch et al. 2021). 

Furthermore, classical crystallisation 
techniques are present in at least one stage in over 
80% of pharmaceutical separation processes 
(VAISALA n.d). Crystallisation techniques are a 
well-known technique in industry and would allow 
for new developments with preferential 
crystallisation techniques to be much more simply 
adopted than entirely novel processes.  

For modelling purposes, ternary solubility 
equilibria have been determined for multiple chiral 
systems in solvents such as Mandelic Acid in Water 
and Threonine in a Water/Ethanol mixture (Lorenz 
et al 2003). Earlier work by Worlitschek et al (2004) 
describes the determination of Trögers base in 
Ethanol where Trögers base is used as model system 

in chiral chromatography. The NRTL activity 
coefficients are then used in solubility equations to 
build a ternary diagram. The enantiomer-enantiomer 
binary system is also investigated. More recently, N-
methylphedrine has been determined in two 
different chiral solvents (Kaemmerer et al 2010) 
Since then, Mandelic Acid has received 
considerable attention because of both its role as 
pharmaceutical precursor and its favourable 
crystallisation characteristics for experimental 
procedures. Ternary solubility phase diagrams for 
Mandelic Acid in chiral solvents have also been 
constructed (Tulashie et al. 2010).  
 

3. Methodology 
This research has two main focuses, the 
experimental research determining a preliminary 
ternary diagram of alanine and the computational 
research to evaluate and improve the modelling of 
ternary diagrams available.  

3.1 Experimental 
3.1.1 Rig Design  

The rig design included a jacketed vessel to contain 
the solution attached to a cooling system. The 
cooling system worked via feedback control cooling 
or heating water in response to a temperature probe 
inserted into the solution. This was pumped through 
a sintered metal filter to remove crystals and 
subsequently through a second PTFE 0.22µm screw 
filter to remove air bubbles. This was followed by 
the pump (Jasco PU-1585), which was set to a 
1ml/min flowrate when in use, a densitometer 
(Anton Paar mPDS 1000) and a polarimeter 
(Advanced Laser Polarimeter PDR-Chiral Inc) as 
seen pictured in Figure 2. Additionally, there was a 
second temperature probe within the vessel attached 
to a data logger used to log the temperature, voltage 
from the densitometer and the voltage from the 
polarimeter. A magnetic stirrer was used in the 
vessel at 700rpm to ensure mixing of the solution. 
 In addition, a turbidity and imaging probe 
was used to evaluate the turbidity when evaluating 
the metastable zone width. 

 
Figure 2: Image of the rig design used for the experimental 
collection of ternary chiral alanine and water data. 
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The materials in use are: 

L-Alanine (Biosynth/Carbosynth >98.5%) 
D-Alanine (Biosynth/Carbosynth >98.0%) 
DL-Alanine (Alfa Aesar 99.0%) 

3.1.2 Metastable Zone Width 
Two solutions were made for the metastable zone 
width evaluations, the first containing 100ml of 
water and 20.16g of L-alanine and the second 100ml 
of water and 20.92g of DL-alanine. Each was heated 
to 55ᵒC whilst the magnetic stirrer was set to 700rpm 
to dissolve the initial crystals. The imaging probe 
and temperature data logger probe were inserted into 
the solution. The imaging software was run before 
starting the experiment to check if surface bubbles 
or the stirrer was in view of the probe and adjusted 
if necessary. Once the probe was reading a steady 
turbidity and the images processed showed no 
crystals, bubbles, or the stirrer, the temperature 
control was dropped to 10ᵒC. This temperature was 
allowed to reduce until crystallisation occurred 
(determined by a recorded increase in turbidity) at 
which point the temperature was increased to 55ᵒC. 
When the turbidity returned to its initial steady 
value, the crystals were fully dissolved. The two 
temperature values of importance are those at which 
the crystallisation first began and the temperature at 
which the crystals fully dissolved; these signify the 
start and end of the metastable zone width for this 
solution. The exact temperatures for these two points 
were determined using the data logger information 
at the times recorded from the probe for the point of 
the beginning of crystallisation and end of 
dissolving. It is important to note that the 
crystallisation and dissolving should happen while 
the temperature is changing i.e., not yet at a steady 
state temperature, when considering the metastable 
zone width. 

3.1.3 Densitometer Calibration 
To calibrate the densitometer five 50ml solutions of 
L-alanine and water were created with varying 
concentrations (10, 20, 30, 40 and 60 g/L) which 
were below the literature saturation solubility at 25̊C 
of 164g/L (Yalkowsky & Dannenfelser, 1991). Each 
of these were continuously stirred by the magnetic 
stirrer to ensure mixing. The solution was pumped 
through the system at 1ml/min to a waste jar. The 
voltage output of the densitometer was recorded, and 
the value taken once it had reached a steady value; 
this was repeated three times for each solution. A 
linear calibration was created linking the density 
input and the voltage output as seen in Figure 3. 

 
Figure 3: Densitometer calibration curve, densitometer 
voltage(V) vs known density of Alanine(g/L) with a linear 
regression. 

The calibration line followed Equation 1  
𝑉𝑜𝑙𝑡𝑎𝑔𝑒(𝑉) =  0.0191 ∗

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑔/𝐿) + 1.0857  (1) 

The linear regression (R2) value of this calibration 
curve is 0.9991 with all three repeats considered. 

3.1.4 Ternary Diagram 
The Ternary Diagram data collected consisted of 
eighteen distinct points made up of, six different 
enantiomeric excesses (100%, 80%, 60%, 40%, 20% 
and 0%) each of which were evaluated at three 
different temperatures (10ᵒC, 15ᵒC, 20ᵒC) to create 
three isotherms.  The solution in the jacketed vessel 
was mixed using the magnetic stirrer throughout the 
experiments and the data logger in use. To begin, 
pure L-alanine and water was mixed for a 100% 
enantiomeric excess and was heated to 55ᵒC, the 
crystals fully dissolved and then the temperature 
reduced to 20ᵒC. The solution was allowed 30 
minutes to begin crystallising and the pump was then 
turned on at 1ml/min. To enable the crystallisation 
to finish the solution was allowed to recycle through 
the system for 2 more hours. The pump was then 
turned off and the temperature returned to 55ᵒC for 
the crystals to once again dissolve. This full process 
was then repeated substituting 15ᵒC and 10ᵒC as the 
temperature the solution was reduced to. 

Visually the data logger represents this as 
seen in Figure 4, the increase in temperature to 
dissolve all crystals happens after the initial 
experiment for 20ᵒC has ended and the voltage 
stabilised, 30 minutes are allowed to pass before the 
pump is restarted which here results in a spike as the 
crystallisation has not fully finished and the next 
experiment is commenced. 
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Figure 4: Voltage (V) and Temperature (ºC) against Time (mins) 
of the alanine system when running until crystallisation has 
finished. 

The full process is repeated for each new 
enantiomeric excess which are created by adding D-
alanine to the original solution. As alanine is a 
racemic forming compound, the solubility of the 
solution does decrease beyond the eutectic point, a 
new solution had to be made from scratch with a 
lower total alanine content to dissolve at 55ᵒC once 
the eutectic point was passed and the solubility 
increased too much. This solution then underwent 
the same addition of D-alanine for the remaining 
points. The final solution created was the racemic 
solution itself which was created from the racemic 
compound rather than a mixture of L-Alanine and 
D-alanine, this was used for increased accuracy of 
the racemate point. 
 

3.2 Modelling 
Solid- liquid equilibria for racemic enantiomers in a 
solvent can be represented with two model 
equations, namely the Schröder and van Laar and the 
Prigogine and Defay equations. The SolMod.jl 
(github.com/RGambarini/SolMod.jl) package in 
Julia was used to solve the solubility predictions. 

The Schröder and van Laar equation, 
shown below in Equation 2, determines the 
equilibrium between a single enantiomer and the 
solvent at a given composition 𝑥𝑖 and activity 
coefficient 𝛾𝑖. 

𝑙𝑛(𝑥𝑖𝛾𝑖) =  
∆𝑓𝑢𝑠𝐻𝑖

𝑅
(

1
𝑇𝑚,𝑖

−
1
𝑇

) (2) 

For L-alanine an enthalpy of fusion ( ∆𝑓𝑢𝑠𝐻𝑖) of 
75.33 kJ/mol and temperature of melting( 𝑇𝑚,𝑖) of 
581.95 K were found using differential scanning 
calorimetry (DSC) (O’Brien, no date) Alternative 
values of 22±5 kJ/mol and 608±9 K respectively are 
also reported in another paper which are found using 
fast scanning calorimetry. Hence, a range of values 
were tested in our modelling evaluation. It is worth 
noting that the literature does also highlight issues 

arising due to the decomposition of L-alanine during 
measurements of these values and is likely the 
contributing factor to this uncertainty (Zen Chua et 
al., 2018). 

The equation by Prigogine and Defay 
(1973) shown in Equation 3 considers the 
interactions between the two enantiomers using both 
enantiomeric compositions and activity coefficients. 
This gives rise to the racemic forming compound 
behaviour within the ternary diagram.  

𝑙𝑛(4𝑥𝑖𝛾𝑖𝑥𝑗𝛾𝑗) =  
∆𝑓𝑢𝑠𝐻𝑟𝑎𝑐

𝑅
(

1
𝑇𝑚,𝑟𝑎𝑐

−
1
𝑇

) (3) 

Here the enthalpy of fusion and temperature of 
melting also change to reflect the focus on the 
racemic compound rather than the pure enantiomer. 
The racemic form, DL-alanine, has a quoted 
enthalpy of fusion (∆𝑓𝑢𝑠𝐻𝑟𝑎𝑐) of 113 kJ/mol and a 
temperature of melting (𝑇𝑚,𝑟𝑎𝑐) of 562.15 K.  

An example outcome of these two 
equations is shown in Figure 5 below, with the linear 
sections attributed to the Schröder and van Laar 
equation and the non-linear line a result of the 
Prigogine and Defay equation. The two points of 
intersection shown are the eutectic points. To create 
the ternary diagram, the Schröder and van Laar 
results are used at enantiomeric excesses higher than 
that of the eutectic points (the outer edges of the 
ternary diagram) and the Prigogine and Defay 
results are used at enantiomeric excess values 
between the two eutectic points. 

 
Figure 5: Example Ternary Diagram for a racemic forming 
system, for the linear component see Equation 2 and non-linear 
component Equation 3.  

It has been shown that values on the RHS 
of both equations are determined by experimental 
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procedures or found via literature which quotes 
experimental procedures. The composition and 
temperature of the isotherm are inputs to the model. 
All that is left to consider is the activity coefficients, 
here is where the NRTL modelling method is 
required. The Non-Random Two-Liquid (NRTL) 
Gibbs excess model is applied to calculate the non-
ideal solvent-solute interactions. In a system of 𝑐 
components the activity coefficient is given by 
Equation 4: 

(𝛾𝑖) =
∑ 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗

𝑐
𝑗=1

∑ 𝐺𝑗𝑖𝑥𝑗
𝑐
𝑗=1

+ (4) 

∑
𝑥𝑗𝐺𝑖𝑗

∑ 𝑥𝑘𝐺𝑘𝑗
𝑐
𝑗=1

𝑐

𝑗=1
(𝜏𝑖𝑗 −

∑ 𝑥𝑘𝜏𝑘𝑗𝐺𝑘𝑗
𝑐
𝑗=1

∑ 𝑥𝑘𝐺𝑘𝑗
𝑐
𝑗=1

) 

In which the values of 𝜏 and G are determined by the 
Equation 5 and Equation 6 where 𝛼𝑗𝑖 is the non-
randomness parameter introduced into the model. 
These variables express the temperature dependency 
of the activity coefficients in the NRTL model: 

𝜏𝑗𝑖 =
𝑔𝑗𝑖 − 𝑔𝑖𝑖

𝑅𝑇
,  𝜏𝑖𝑗 =

𝑔𝑖𝑗 − 𝑔𝑖𝑖

𝑅𝑇
 (5) 

 𝐺𝑗𝑖 = exp(−𝛼𝑗𝑖𝜏𝑗𝑖), 𝐺𝑖𝑗 = exp( − 𝛼𝑖𝑗𝜏𝑖𝑗) (6) 

In the case of the ternary system of alanine in a 
solvent (c=3) the interaction parameters between 
each enantiomer (i=1 or 2 for L/D) and the solvent 
(i=3) are considered symmetrical as shown in 
Equation 7 and Equation 8. The nonidealities are 
then identical with: 

𝑔13 = 𝑔23,  𝑔31 = 𝑔32 (7) 

 𝛼13 = 𝛼23 = 𝛼31 = 𝛼32 (8) 

An additional assumption in the first instance is that 
the heterochiral interactions between the 
enantiomers are considered negligible so that: 

𝑔12 = 𝑔21 = 0 (9) 

The three final initial parameters which then still 
need determining beyond these assumptions are 𝑔13, 
𝑔31 and 𝛼13. 

Correlations for the binary parameters can be 
found in Aspen Plus databases of regression 
information. NISTV110 NIST-IG provides values 
for L-alanine and water of 𝑔13= -3’526 kJ/mol, 𝑔31= 
11’019 kJ/mol and 𝛼13= 0.1. The required binary 
parameters for L-alanine at 100% EE can be 
determined from the experimental procedure carried 
out for alanine and the heterochiral interaction 
parameters 𝑔12,  𝑔21and 𝛼12 were calculated using 
the objective function described by Haida et al. 

(2010). The objective function uses a least-squares 
method using MATLAB to further refine the 
parameters. The same function implemented in Julia 
1.8.2 was used to iterate the parameters found from 
Aspen. 

4. Results and Discussion 
4.1 Experimental  
4.1.1 Alanine Ternary Diagram  

As outlined prior, the primary focus of the 
experimental procedure was to build a ternary 
diagram for chiral alanine and water. The output of 
the method outlined above is the voltage 
measurements from the densitometer corresponding 
to each solubility point. The values found from the 
experiment are shown in Table 1, the voltage output 
and hence the density calculated using Equation 1. 

Table 1:Solubility values determined at varying L-Alanine 
enantiomeric excess values and varying isotherms. 

Enantiomeri
c Excess (%) 
(L-Alanine) 

Temper
ature 
(K) 

Densito
meter 
Readin
g (V) 

Density 
(w1+w2) (g/L) 
(Calibration 
curve found in 
section 3.1.3) 

100 293.15 3.77 140.54 
100 288.15 3.65 134.26 
100 283.15 3.52 127.45 
80 293.15 4.17 161.48 
80 288.15 4.03 1 54.15 
80 283.15 3.89 146.82 
60 293.15 4.39 173.00 
60 288.15 4.26 166.19 
60 283.15 4.12 158.86 
40 293.15 4.18 162.01 
40 288.15 3.98 151.53 
40 283.15 3.82 143.16 
20 293.15 3.89 146.82 
20 288.15 3.7 136.87 
20 283.15 3.56 129.54 
0 293.15 3.83 143.68 
0 288.15 3.69 136.35 
0 283.15 3.53 127.97 

Using the density of the alanine above, water density 
taken at 1000g/L and the enantiomeric excess values 
the compositions can be calculated. Considering w1 

and w2 as the weight of L-Alanine and D-alanine 
respectively the solubility given as a mass fraction 
can be found via a mass balance as shown in 
Equation 10. Where the enantiomeric excess 
reported above is found through Equation 11. 
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𝑊1% + 𝑊2% =
𝑤1 + 𝑤2 

𝑤1 + 𝑤2 + 1000
 (10) 

 𝐸𝐸 = 𝑤1−𝑤2
𝑤1+𝑤2

∗ 100 (11) 

Plotting this results in the ternary diagram shown in 
Figure 6.  
 

 
Figure 6: Ternary phase diagram of the alanine enantiomers in 
water at enantiomeric excess varying between 0% - 100% for 
three isotherms. 

From this, Alanine shows behaviour of a racemic 
crystal forming compound (this was the likely 
outcome considering as stated in the background 
90% of compounds create racemic forming systems) 
the solubility on average increases by 5.9g/L of 
alanine per 5 degree increase of temperature. 

Assumptions to extend the available data 
can allow for development beyond the experimental 
results. In total there are 9 possible combinations of 
binary interactions between the two chiral alanine 
components and the solvent. One possible 
assumption is that the L and D-alanine – water 
interactions are identical because of the similarity of 
the compounds involved. Beyond that there are the 
heterochiral interactions – these are the interactions 
between L-alanine and D-alanine. If for a 
preliminary evaluation these are considered equal, 
asymmetry can be ignored, therefore this diagram 
can be extended to show the ternary diagram through 
the full range of L-alanine 100% EE to D-alanine 
100% EE. This is shown below in Figure 7. 

Using Figure 7, the eutectic point is equal 
for both D and L alanine and can have an initial 
evaluation made through a line of best fit through the 
given data points. The expected form of the line of 
best fit is determined by the typical solubility 

diagram of a racemic forming system. The eutectic 
point is shown to be at an EE of 53.3% for 10ᵒC, 
53.8% for 15ᵒC and 54.2% at 20ᵒC. With a range of 
0.9%EE across 10ᵒC it would be a reasonable to 
expect that a eutectic of approximately 54% is valid 
in a range of temperatures surrounding the 
investigated ones. 

 

Figure 7: Ternary phase diagram of the alanine enantiomers in 
water at enantiomeric excess varying between 0% - 100% for 
three isotherms mirrored at the racemic and with lines of best fit. 

The total data collection time is 
approximately halved using the assumptions above. 
If more accuracy is required, the use of the 
assumptions can act as a starting point to reduce the 
range in which investigation to find the eutectic 
needs to take place. It could also reduce the amount 
of the solute required by using values closer to the 
solubility limit while maintaining a saturated 
solution. 

4.1.2 Enantiomeric Excess  
As stated in the methodology the final determination 
of the enantiomeric excess, as graphed above, was 
based on the mass balances entering the system. 
However, this does not account for small amounts of 
mass being lost through cleaning of the rig which 
was required daily. The mass lost was minimised by 
using the densitometer to register the residence time 
and change between the recycling to waste and vice 
versa at a more accurate time. Whilst use of a check 
of enantiomeric excess was explored, the 
polarimeter in the rig setup was not used in the 
methodology because of the small optical rotation of 
alanine – 14 degrees (sigma-aldrich, n.d.). Hence, 
the polarimeter was not sensitive enough and would 
have needed a larger chamber to accurately 
determine the EE via optical rotation. 
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An alternative consideration was to use 
HPLC; this involved selection of solvents, IPA, 
methanol, ethanol, acetonitrile, and cyclohexane 
were tested. Unfortunately, solvents required in 
HPLC use is specific to the compounds and though 
data available directed these as possible options in 
binary combination with alanine when combined 
with both chiral alanine and water all solvents tested 
except cyclohexane acted as antisolvents. Hence, 
further investigation of HPLC during this 
experiment was hindered due to access to available 
solvents. 

This does lead to the conclusion that the 
enantiomeric excess will have some error in the 
quoted values. However, throughout the project 
varying solubilities meant the current solution was 
above saturation at 55ᵒC and to resolve this issue 
three solutions had to be made from scratch: 100% 
EE, 40% EE and 0% EE. With both the addition of 
new solutions and preferential crystallisation being 
neglected due to the fast crystallisation these points 
can be taken with higher degree of certainty; hence 
the lines of best fit and the eutectic point can be 
considered with more certainty.  

4.1.3 Metastable Zone Width 
The metastable zone width evaluation was carried 
out at two distinct points rather than evaluating it 
across the range at which the experiment was 
performed. The focus of this was to determine why 
the experiments nearer to the racemic composition 
were slower to crystallise than those at 100% EE. 
The two values found are shown in Table 2 

From this it is clear to see that the 
metastable zone width is substantially larger for the 
DL-alanine than the pure L-alanine and hence was a 
determining factor in the decrease speed of the 
crystallisation. 

Table 2:Values for the metastable zone width  

4.2  Modelling 
In this section, the results of simulating the three-
equation model introduced in the previous sequence 

will be discussed. Three specific scenarios were 
modelled and will be discussed here. 

Table 3: Binary interaction parameters of L-Alanine and Water 
with the Parameters, Scenario 1 and Scenario 2 parameters 
respectively. 

 Scenario 1 Scenario 2 
𝑔13 -1.256•106 kJ/mol -3.526 kJ/mol 
𝑔31 8.669•105 kJ/mol 1.102•104 kJ/mol 
𝛼13 0.004 0.1 
𝑔12 - 2.786•104 kJ/mol 
𝑔21 - -1.004•104 kJ/mol 
𝛼12 - 0.15 

In the first scenario, the binary interaction 
parameters shown in Table 3 were established by 
fitting the experimental alanine data to the Schröder 
and van Laar equation, assuming hundred percent 
enantiomeric excess. 

 
Figure 8: Predicted ternary phase diagram of the alanine 
enantiomers in water for scenario 1, according to the NRTL 
model and measurement data for three solubility isotherms. 

Figure 8 shows the resulting ternary 
solubility diagram with the NRTL model -
predictions. Clear deviation from the experimental 
values is shown. The 283.15K modelled isotherm 
shows good correlation on the left side of the triangle 
as the parameters were calculated using the L-
alanine and water solubility data. Approaching the 
eutectic point however the model continues 
downwards. The parameters are at first trained 
without racemic contribution, hence a conglomerate 
forming system is expected as the initially presented 
result. The higher two isotherms at 288.15K and 
293.15K do not resemble the experimental data, the 
shift in solubility is due to the initial high heat of 
fusion parameter for L-alanine used in the model. 
Comparisons of Equation 2 between L-alanine in 
water and literature data for L-Mandelic Acid in 

Concent
ration 
(g/L) 

Enantio
meric 
Excess 
(L-
alanine) 
(%) 

Temper
ature to 
begin 
crystalli
sation 
(ᵒC) 

Temper
ature to 
fully 
dissolv
e (ᵒC) 

MS
ZW 
(ᵒC) 

201.6 100 18.01 45.85 27.8
4 

219.2 0 11.44 54.63 43.1
9 
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Diethyl Tartrate (Tulashie et al., 2010) show 
magnitude 10 difference in the activity coefficient 
needed to satisfy the system. The decomposition of 
amino acids at higher temperatures requires 
optimisation of the enthalpy of fusion. The isotherm 
starting solubility i.e., the binary solubility, is 
thereby better fitted to the experimental curve. 

In the second scenario, the energy 
parameters 𝑔13, 𝑔31 and 𝛼13 shown in Table 3 were 
Table 3 were obtained from literature and were used 
to model the solubility. At an enthalpy of fusion of 
75.33 kJ/mol, the NRTL model failed to create a 
model. Lowering the enthalpy to 10.96 kJ/mol 
showed a preliminary model. The updated enthalpy 
parameter did not provide a racemic fit, instead a 
conglomerate system formed. 

 
Figure 9: Predicted ternary phase diagram of the alanine 
enantiomers in water for scenario 2, according to the NRTL 
model and measurement data for three solubility isotherms. 

The heterochiral interactions for alanine 
were calculated through the racemic solubility 
equation resulting in energy parameters 𝑔12, 𝑔21 and 
𝛼12 shown in Table 3. The objective function 
parametrization was only partially feasible. Figure 9 
shows the heterochiral interaction by comparison of 
the left side with the isotherms starting at solubility 
values close to experimental and the right side with 
the isotherms shifted towards lower solubility. This 
is in direct contradiction with the symmetrical 
enantiomer assumption. Both sides should mirror at 
each isotherm. With these parameters the 
conglomerate system has different eutectic points at 
the same isotherm, indicating a discontinuity, 
making the model infeasible again.  

For both Figure 8 and Figure 9 no correct 
fit was found with only the initial shape being 

satisfied around the L-enantiomer and water. Better 
model fit would be achieved by incorporating 
ternary data in parametrization at different 
enantiomeric excess using Equation 3 to model 
racemic compounds 

Finally, in the third scenario, the 
experimental data and binary energy parameters for 
Mandelic Acid in Diethyl Tartrate and Ethyl Lactate 
as described by Tulashie et al. (2010) were 
replicated.

 
Figure 10: Predicted ternary phase diagram of the mandelic acid 
enantiomers in diethyl tartrate according to measurement data for 
three solubility isotherms and the NRTL model in black, colour 
isotherms above the black represent parameter decrease of 10% 
and colour isotherms under the black represent parameter increase 
of 10%. 

The sensitivity of the binary parameters 
with Diethyl Tartrate were studied in Figure 10. The 
original output of the parameters in black decrease 
in accuracy with increasing temperature. Increasing 
the solvent – solute energy parameter interactions by 
10% caused a marked increase in solubility reported, 
with the isotherms shifting downwards. The 
opposite happened with a decrease of 10% where the 
predictions made for lower solubility than 
experiments showed. Varying 𝛼𝑖𝑗  had no impact on 
model output, in line with it being the non-
randomness parameter. 
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Figure 11: Predicted ternary phase diagram of the mandelic acid 
enantiomers in ethyl lactate according to the NRTL model and 
measurement data for four solubility isotherms. 

When available, extracting parameters 
from literature would speed up the process of 
constructing ternary diagrams. Figure 11 however 
shows the discrepancy for Mandelic Acid in Ethyl 
Lactate between reported and modelled results. The 
calculated solubility is off by more than 25% at any 
point. This contradicts the correct implementation of 
the Diethyl Tartrate system. The equation 
implementation in Julia is therefore valid. The lack 
of good fit for alanine being due to unsuccessful 
objective function optimisation. No errors were 
discovered in the open-source code that could 
indicate the model being optimised to run Diethyl 
Tartrate correctly. The belief is therefore that the 
results may have been misreported in the final 
journal article. 

5. Conclusion 
Throughout the experimental and modelling 
procedure the need for improved techniques to build 
ternary diagrams has been clear both through the 
time taken experimentally and the failings of the 
model. 

The experimental procedure and results 
have shown how the understanding of the metastable 
zone width could be used for more effective 
manipulation of temperatures for crystallisation 
speed and, if compound is limited, a reduction of 
excess compound beyond the upper solubility limit. 
Additionally, by choosing appropriate chiral 
compound behaviour assumptions, the time taken to 
build an experimental ternary diagram can be 
significantly reduced (approximately halved) by 
using a line of symmetry at 0% EE. 

The ternary diagram built has determined 
alanine is a racemic forming compound, with a 
eutectic at approximately 54% enantiomeric excess 
and hence could be used to determine the possible 
preferential crystallisation routes for alanine in 
future work. 

Modelling the behaviour of alanine using 
the NRTL model has proven challenging. The 
racemic compound forming shown from solubility 
data was not replicated in the model. Therefore, 
more investigation is needed in the behaviour of the 
model around the eutectic point with the second 
scenario already providing a better fit. The 
importance of the calorimetric properties was 
confirmed by the difference in energy parameters 
between scenario 1 and 2. The sensitivity of the 
literature parameters showed robustness for 
Mandelic Acid in Diethyl Tartrate in contrary to 
Mandelic Acid in Ethyl Lactate which failed to 
approach the experimental data. 

6. Outlook 
The outlook requires consideration of points 
discussed throughout the report and new options 
exploring. Further work would have a focus directed 
towards outlining a fast and accurate method to 
determine solubility with a modelling method less 
reliant on ternary experimental data. It would be 
insightful to see how the model performs in regions 
which have not been used in training the energy 
parameters and hence see how the model extends 
beyond its fed data. This would require more 
experimental data to be available. These results 
could be compared between NRTL models and other 
models such as UNIQUAC or COSMO-RS not 
explored in this paper. 

Another consideration which is, as of 
current, limited by the lack of experimental ternary 
data available is to use machine learning on large 
samples of ternary data and evaluate the output. This 
could be through either reinforcement learning 
techniques or alternatively through a level of 
supervised/unsupervised machine learning. 

Experimentally, the significance of the 
time taken for crystallisation and the impact of the 
metastable zone width have highlighted routes for 
improvement. Consideration towards how 
antisolvents/additives could be used in systems to 
manipulate the solubility limits particularly for 
application in preferential crystallisation would be 
useful. This was particularly highlighted by the 
antisolvent response to HPLC solvents tested. 
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Abstract

The ability of a catalyst to be recycled without noticeably losing its catalytic activity or efficiency is a highly desirable
component of every catalytic process. This paper discusses the recyclability of two different base catalysts, sodium
methoxide (CH3ONa) and sodium hydroxide (NaOH), in the transesterification of rapeseed oil (RO) with methanol to
produce biodiesel. The key findings of this study are that the catalysts are not destroyed in reaction, and that both
catalysts are recyclable for 2 times using the approach detailed in this paper. The glycerol phase containing all the
recovered catalyst is utilised in the subsequent recycle while keeping the oil:methanol:catalyst ratio constant for every
recycle. The mass of catalyst recovered is used as the reference value to calculate the scaled-down masses of RO
and methanol. Results indicate that although recyclability of the base catalyst via the method detailed in this paper
is possible, it is not favourable. This is due to the glycerol buildup unexpectedly competing with methanol to react
with some of the RO, forming monoglycerides and diglycerides. As this study proves that the base catalysts are not
destroyed in reaction and are hence recyclable, further work can be done to examine other methods for recycling the
catalyst that do not involve the buildup of glycerol in order to avoid glycerol interference with the transesterification
process.

Keywords: Biodiesel, Base Catalysts, Recyclability, Glycerol

1 Introduction

Biodiesel is a widely used, renewable, clean biofuel
which can be produced from vegetable oils1, animal
fats, waste cooking oil and microalgal oil2 in a trans-
esterification reaction with alcohols such as methanol
and ethanol3. The worldwide biofuel market was esti-
mated to be worth $ 131.85 billion in 2021, and is pro-
jected to grow to $ 331.89 billion by 2030, with a Com-
pound Annual Growth Rate(CAGR) of 11.9% from 2022
to 20304. With a 28.34% share in 2021, vegetable oil
dominated the worldwide biofuel market.5 Biodiesel is
set to become well-established in the coming decades as
a measure to reduce greenhouse emissions after the Paris
Agreement.

The most popular method for producing biodiesel, or

Fatty Acid Methyl Esters (FAME), is via transesterifica-
tion of fats and oils with excess methanol in the presence
of a catalyst:

Fig. 1 Transesterification of triglyceride with methanol in the
presence of a catalyst to produce methyl esters and glycerol

Triglycerides are transesterified batch-wise or continu-
ously in multistep reactors at atmospheric pressure and a

1
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2 MATERIALS AND METHODS

temperature of roughly 60-70°C. At the conclusion of the
reaction, the mixture is given time to settle. The upper
methyl ester layer is washed to remove impurities while
the lower glycerol layer is pulled off.6

An equilibrium between the reactants is what defines
the transesterification reaction. 1 mole of triglyceride
reacts with 3 moles of alcohol based on stoichiometry in
a sequence of three reversible reactions which have in-
termediate products of monoglycerides and diglycerides.
To achieve larger yields of the products and improve
phase separation between the produced esters and glyc-
erol, an excess of alcohol is typically utilized in the pro-
cess for a high level of triglyceride to ester conversion.
The unreacted transesterification agent is then taken out
of the mixture.7

Both basic and acidic catalysts have been widely stud-
ied for their efficiency in transesterification of vegetable
oils in order to create FAMEs. In early reports, homoge-
neous liquid acids were widely used as acidic catalysts8.
Later, numerous heterogeneous acidic catalysts, such as
sulfated silica, cationic exchange resin, zeolites, sulfonic
acid-functionalized carbon materials, heteropoly acids,
and others, were also examined for transesterification.
Acid catalysts are advantageous in that they do not re-
sult in saponification, however the rates of reaction as-
sociated with the use of acid catalysts are too slow. Base
catalysts, which demonstrate remarkable effectiveness as
well as a higher rate of reaction for the transesterification
process, have been widely studied for their efficiency in
transesterification reactions. However, little research has
been done to understand the recyclability of the base cat-
alysts. This aspect of the process is especially important
and worth looking into because catalyst recyclability re-
duces carbon emissions and resources associated with
extracting, refining, transporting, and processing cata-
lysts, which ultimately contribute to economical and en-
vironmental impacts.

This study examines the recyclability of homogenous
base catalysts. Given the scarcity of research done on
the recycling process using base catalysts, this paper
presents a preliminary glimpse into this novel develop-
ment that could be further looked into. In this study,
the glycerol phase containing all the recovered catalyst
is brought forward to the subsequent recycle. To keep
the oil:methanol:catalyst ratio constant for every recy-
cle, the mass of catalyst recovered is used as the refer-
ence value to calculate the scaled-down masses of RO
and methanol.

2 Materials and methods

2.1 Experimental setup

Two base catalysts, sodium methoxide (CH3ONa) and
sodium hydroxide (NaOH), were examined for their re-
cyclability. Experiments for both catalysts were per-
formed using rapeseed oil (RO) and methanol for the
initial reactions. Biodiesel and glycerol were synthe-
sized in house via transesterification, and the products
were left to separate overnight. The produced glycerol
phase, which contained all the recovered catalyst and
some methanol, was brought forward to the subsequent
recycles. This was repeated until no more pure biodiesel
was obtained.

A 500 mL two-neck round-bottom flask was immersed
in a water bath, heated, and stirred using an IKA Mag-
netic Stirrer RH digital. One end had an ETS-D5 elec-
tronic thermometer, connected to a needle septum stop-
per, to ensure temperature control in the mixture. On
the other end was a serpentine condenser, capped with
a glass stopper that was used to prevent the loss of
methanol through evaporation, as seen in figure 2.

Fig. 2 Experimental setup showing A) stopper, B) water outlet,
C) water inlet, D) serpentine condenser, E) thermometer, F)
needle septum, G) magnetic bar, H) two-neck round-bottom
flask, I) magnetic stirrer, J) separatory funnel

2
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2.2 Reaction conditions

For this experiment, edible RO was selected as feed-
stock for biodiesel synthesis as it is a common vegetable
oil that is liquid at room temperature and hence easy
to measure and handle. To prevent extraneous factors,
such as the levels of water and free fatty acids (FFA),
from influencing the results, oil from the same batch
was utilised. The RO was heated until the desired tem-
perature of 63�C was reached, after which the methanol
and catalyst was added. The reaction temperature was
kept constant at 63�C to maximise the oil conversion
while keeping the reaction below the boiling point of
methanol (64.7�C)9. The stirring rate was kept at 600
RPM to ensure sufficiently mixing of the reaction mix-
ture. Methanol:oil ratio was kept at 6:1, which is twice
the 3:1 stoichiometric ratio, so that methanol was in ex-
cess to faciliate complete conversion. Catalyst loading
of 1.12 wt% and 1.00 wt% was used for CH3ONa and
NaOH respectively.10

2.3 Standardisation of solutions for titration

To prepare an accurate concentration of NaOH, stan-
dardisation was done by autotitrating against a known
amount of potassium hydrogen phthalate (KHP) with
three drops of phenolphthalein. Three samples of KHP
were titrated and the results were averaged to find the
correct concentration using:

CNaOH =
mKHP

MKHPVNaOH0.001
, (1)

where mKHP is the mass of KHP, MKHP is the molar mass
of KHP (204.22 g/mol), and VNaOH is the volume of
NaOH used in mL until the solution turned pink. The
concentration of NaOH was calculated to be 0.0186M.

This concentration was then used to standardise the
HCl solution based on:

CHCl =
VNaOHCNaOH

VHCl
, (2)

where VNaOH is the volume of NaOH in mL used until
the solution turned pink with VHCl , which was a known
volume of 5 mL of HCl. The concentration of HCl was
calculated to be 0.0272M.

2.4 Calculation for mass of base catalyst recovered

After separation of the transesterification products, titra-
tion was carried out in order to determine the amount of
base recovered in each phase.

For titration of each phase, a known volume (5mL
for biodiesel titration and 10mL for glycerol titration)

of 0.0272 mol/L HCl was pipetted into a 100mL con-
tainer of a known mass of sample (within the range of
0.1g - 0.5g). The HCl reacted with all of the base in the
sample (if any), and the remaining unreacted HCl was
titrated against 0.0186 mol/L of NaOH. Using the vol-
ume of NaOH titrated, the concentration of base in each
phase could be calculated as follows:

nbase =
nHCl �nNaOH

msample
mphase (3)

where nbase is the moles of base recovered, msample is the
mass of biodiesel sample or glycerol sample, mphase is the
mass of the biodiesel phase or glycerol phase, and nHCl

and nNaOH are the moles of HCl and NaOH respectively,
calculated as:

nx =CxVx, (4)

where x is either HCl or NaOH, Cx is the concentration
of x in mol/L, and Vx is the volume of x in L. The mass
of base can then be calculated as follows:

mbase = nbaseMbase, (5)

where nbase is the moles of base in each phase and Mbase

is the molar mass of the base used for each experiment.
To reduce the likelihood of errors or anomalous results,
at least 3 samples were taken from each phase and the
results were averaged. This was done for every recycle.

The mass of base recovered was used as the reference
value to calculate the scaled-down masses of RO and
methanol for the subsequent recycle.

2.5
1
H NMR spectroscopy

One drop of glycerol in 0.5 mL of deuterium oxide
(D2O) and one drop of biodiesel in 0.5 ml of chloro-
form (CDCl3) were tested with NMR spectroscopy. NMR
peaks were analysed to obtain i) the mass of methanol
in the glycerol phase as detailed in section 2.6, and i)
the biodiesel content in the upper phase as detailed in
section 2.8.

2.6 Calculation for mass of methanol

The total methanol for all recycles was made up of i)
fresh methanol, and ii) the existing methanol in the
glycerol phase from the previous cycle. By analyzing
the NMR spectrum of the glycerol phase, the mass of
methanol in the glycerol phase was first calculated. This
mass was then deducted from the calculated mass of
methanol needed for the recycle reaction, to give the
amount of fresh methanol needed.

As seen in Fig. 3 the signals corresponding to the

3
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2.7 Washing and drying of biodiesel 2 MATERIALS AND METHODS

Fig. 3 H-NMR spectrum of glycerol phase, 1st recycle, CH3ONa
catalyst. Integrations of the signals around 3.25ppm and
3.68ppm show values of 0.25 and 0.14 respectively.

methyl protons of methanol (around 3.25ppm) and
the proton of the centre carbon of glycerol (around
3.68ppm) were first integrated. The percentage of
methanol in the glycerol phase was then calculated
by comparing the areas associated with the protons of
methanol and glycerol. In a case where methanol and
glycerol are equimolar, the ratio of the areas of the
3H/1H signals would be 50%. Hence, the following can
be derived:

%MeOH =

area3H
area1H

3
⇥50% (6)

where %MeOH is the percentage of methanol in the glyc-
erol phase, area3H is the area of the 3H signal, and
area1H is the area of the 1H signal.

By using the mass of the glycerol phase and the molar
masses of methanol and glycerol, the mass of methanol
in the glycerol phase can be obtained as follows:

mMeOH =
mglycerol phase ⇥ (%MeOHMMeOH)

%MeOHMMeOH +(100%�%MeOH)Mglycerol
(7)

where mMeOH is the mass of methanol in the glycerol
phase, mglycerol phase is the mass of the glycerol phase,
%MeOH is the percentage of methanol in the glycerol
phase, MMeOH is the molar mass of methanol (32.04
g/mol), and Mglycerol is the molar mass of glycerol (92.09
g/mol). This calculation method was applied for all re-
cycles of the reactions for both catalysts.

2.7 Washing and drying of biodiesel

The biodiesel phase was washed repeatedly with a 10%
brine solution until a pH of 7 was obtained in order to
remove any methanol and impurities left in the mixture.
Anhydrous sodium sulphate (NaSO4) was then used to
dry the mixture overnight to ensure all the water was
removed. NaSO4 was chosen over magnesium sulphate
(Mg2SO4) as a drying agent due to better results. A
0.8mm hypodermic needle was then used to extract the
purified biodiesel.

2.8 Calculation for mass of biodiesel obtained

In the chemical structure of a FAME molecule, The OCH3

group is highly specific to the ester, whereas the CH2

group is common in both the triglycerides and the ester.
By analyzing the NMR spectrum of the biodiesel phase
and comparing the areas of the signals associated with
the protons of these groups, the mass of biodiesel ob-
tained can be calculated as detailed below.

Fig. 4 Chemical structure of a FAME molecule. The methoxy
(OCH3) protons at the end of the molecule are associated with
a H-NMR signal of around 3.7ppm and the methylene (CH2)
protons are associated with a H-NMR signal of around 2.3ppm

Fig. 5 H-NMR spectrum of biodiesel phase, original reaction,
CH3ONa catalyst. Integrations of the signals around 2.3ppm
and 3.7ppm show values of 0.68 and 1.00 respectively.

As seen in Fig. 5, the signal around 3.7ppm corre-
sponding to the methoxy (OCH3) protons and the signal

4
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around 2.3ppm corresponding to the methylene (CH2)
protons were integrated. The percentage of biodiesel
content can then be calculated by normalising the val-
ues of integration according to the number of protons
contributing to each peak as follows:

%biodiesel content =
2areamethoxy

3areamethylene
⇥100% (8)

where %biodiesel content is the percentage of biodiesel con-
tent in the upper phase, areamethoxy is the area of the
OCH3 signal, and areamethylene is the area of the CH2 sig-
nal.

The mass of the upper phase after washing and dry-
ing was also weighed and recorded. The mass of pure
biodiesel in the upper phase was thus calculated as fol-
lows:

mbiodiesel = %biodiesel content ⇥mupper phase (9)

where mbiodiesel is the mass of pure biodiesel in the up-
per phase, %biodiesel content is the percentage of biodiesel
content in the upper phase, and mupper phase is the mass
of the upper phase. This calculation method was applied
for all recycles of the reactions for both catalysts.

3 Results and Discussion

3.1 Mass of catalyst recovered

3.1.1 Biodiesel phase

From titration of the biodiesel phase, it was found that
the concentration of base in the biodiesel phase was 0
for all reactions for both catalysts. This indicated that
the base was not in biodiesel phase, and that all the base
was in the glycerol phase.

3.1.2 Glycerol phase

From titration of the glycerol phase, it was found that
base catalyst was present in the glycerol phase for all
reactions for both catalysts.

As seen in Fig. 6, there was a general decrease in the
mass of catalyst present in glycerol at the end of every
recycle. For CH3ONa, 66.8% of the base was recovered
from the initial reaction, followed by a 69.5% recovery in
the 1st recycle, a 70.0% recovery in the 2nd recycle, and
a 81.5% recovery in the 3rd recycle. For NaOH, 71.0%
of the base was recovered from the initial reaction, fol-
lowed by a 58.9% recovery in the 1st recycle, a 78.4%
recovery in the 2nd recycle, and a 66.0% recovery in
the 3rd recycle. The portion of base lost is attributed
to saponification.

Fig. 6 Mass of base catalyst in the glycerol phase at the end of
every cycle, for CH3ONa and NaOH

These results showed that the base catalyst is not de-
stroyed in the reaction, and can hence be reused as cat-
alyst for subsequent reactions.

3.2 Mass of glycerol obtained

The masses of the glycerol phase after every cycle was
weighed. This mass was made up of glycerol and
methanol. By deducting the mass of methanol (calcu-
lated using the methodology detailed in section 2.6), the
mass of glycerol was obtained as follows:

Fig. 7 Mass of glycerol obtained at the end of every cycle, for
reactions catalysed by CH3ONa or NaOH

In principle, it would be expected that the mass of
glycerol increases by recycle, due to new amounts of
glycerol produced via transesterification. However, the
results showed that there was an increase in mass of
glycerol only up until the 1st recycle. The mass of glyc-
erol decreased after the 2nd recycle and showed no clear
trend, as seen in Fig. 7.

This was because glycerol, instead of methanol, had
unexpectedly reacted with some of the triglycerides (to
form monoglycerides and diglycerides). Due to the struc-
ture of this research that necessitated all of the recovered
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3.2 Mass of glycerol obtained 3 RESULTS AND DISCUSSION

base to be used in the subsequent recycle, the amount of
glycerol added to each recycle was not limited, and thus
eventually built up to be in excess. The glycerol reacting
with the RO had been unanticipated as glycerol is insol-
uble in vegetable oil, and the methanol had been used
in an excess 6:1 ratio. However, it was found that when
the reaction was in equilibrium, some of the glycerol had
competed with methanol to react with some of the RO in
a side reaction.

Fig. 8 Glycerolysis of triglycerides to form monolycerides
(MAG) and diglycerides (DAG)

To validate that glycerol had reacted with the triglyc-
erides to form mono- and diglycerides, the H-NMR spec-
trum of biodiesel was analysed for signs of mono- and
diglycerides. This was done by looking for the signal for
glycerol, as the signals for mono- and diglycerides would
be complex signals in the region similar to that of glyc-
erol. This was found to be around 4.1ppm to 4.3ppm.

Fig. 9 NMR spectrum of biodiesel, 2nd recycle, CH3ONa cat-
alyst. Integrations of the signals around 3.7ppm and 4.2ppm
show values of 1.00 and 0.32 respectively.

As seen in Fig. 9, the signal around 3.7ppm corre-
sponding to the OCH3 protons of the biodiesel, as well
as the signal around 4.1 to 4.3ppm corresponding to
mono- and diglycerides, were integrated. The percent-
age of mono- and diglycerides can then be calculated by
comparing the areas of these selected signals.

Fig. 10 Chemical structure of a glycerol molecule showing the
5 protons that contribute to the signal

As mentioned above, the signals for mono- and diglyc-
erides is taken to be similar to that of glycerol. In the
chemical structure of glycerol, there are 5 protons con-
tributing to the signal, whereas in the -OCH3 group spe-
cific to the biodiesel, there are 3 contributing protons. By
normalising the values of integration according to num-
ber of protons contributing to each signal, the percent-
age of mono- and diglycerides in biodiesel can be ob-
tained:

%MAG and DAG =
A1
5

A1
5 + A2

3

⇥100% (10)

where %MAG and DAG is the percentage of mono- and
diglycerides in the biodiesel, A1 is the area of the mono-
and diglycerides signal, and A2 is the area of the OCH3

peak.

Results demonstrated that the amount of mono- and
diglycerides increased in each consequent recycle, as
seen in Fig. 11. . This further validated that glycerol
had reacted with the triglycerides in a side reaction to
form monoglycerides and diglycerides.

Fig. 11 Percentage of mono- and diglycerides in the biodiesel,
for reactions catalysed by CH3ONa or NaOH
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3.3 Mass of biodiesel obtained

From the NMR results and using equation 8 as detailed
in section 2.8, the content of biodiesel in the upper phase
was found to be as follows:

Table 1 Percentage of biodiesel content in the upper phase,
for reactions using CH3ONa or NaOH as catalyst

Percentage of biodiesel content (%)
CH3ONa NaOH

original 98.0 98.0
1st recycle 93.9 42.6
2nd recycle 69.4 10.2

The mass of the upper phase after washing and drying
was also weighed and recorded as follows:

Table 2 Mass of the upper phase after washing and drying, for
reactions using CH3ONa or NaOH as catalyst

Mass of upper phase (g)
CH3ONa NaOH

original 45.2447 56.6859
1st recycle 19.6184 26.4604
2nd recycle 3.441 14.6892

Using equation 9 from section 2.8, the mass of pure
biodiesel in the upper phase was thus found to be as
follows:

Fig. 12 Mass of pure biodiesel obtained, for reactions using
CH3ONa or NaOH as catalyst

As seen in Fig. 12, there is a general decrease in the
mass of pure biodiesel obtained after every subsequent
recycle. In the initial reaction, the mass of biodiesel ob-
tained was higher when catalysed by NaOH compared to
that of CH3ONa; for the recycles, the mass of biodiesel
obtained was higher when catalysed by CH3ONa. In the
3rd recycle, no pure biodiesel was obtained.

3.3.1 Comparison with theoretical values

To keep the oil:methanol:catalyst ratio constant for every
recycle, the oil input for every subsequent recycle was
scaled down according to the recovered catalyst mass.
The mass of triglycerides available for transesterifica-
tion was thus decreased by every recycle. Hence, one
might wonder whether the general decrease in the mass
of biodiesel obtained was caused by the decreasing oil in-
put. To accurately examine this, the experimental mass
of biodiesel obtained was compared with the theoretical
mass of biodiesel expected from stoichiometry:

%yield =
mass of biodiesel obtained
mass of biodiesel expected

⇥100% (11)

The results obtained were then plotted. As seen in Fig.
13, there is a general decrease in the percentage yield
as the recycle goes on, so the amount of pure biodiesel
obtained does decreases with every recycle.

Fig. 13 Mass of biodiesel obtained/mass of biodiesel expected

The highest yield obtained in this study was 59.3%
when catalysed by NaOH and 49.6% when catalysed by
CH3ONa. This was lower than expected, as a signifi-
cant amount of biodiesel was lost during washing due
to limitations in the methods of purification available for
this study. The reason for the low yield is also partly at-
tributed to the phenomenon of glycerol competing with
methanol as detailed in section 3.2.

3.4 Additional approaches

Other approaches of carrying out the transesterification
reaction were also investigated.

3.4.1 Amberlyst-A21 as catalyst

A separate reaction was conducted to test the feasibility
of the weak base Amberlyst-A21 resin as a heterogenous
catalyst. This was examined because in principle, the

7
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Amberlyst-A21 would be very easy to recycle just by
filtration as it is a solid catalyst.

To keep the base concentration similar to that of the
reactions using CH3ONa and NaOH as catalyst, the ca-
pacity of the Amberlyst-A21 (1.3 meq/mL by wetted bed
volume) was used to calculate the amount of resin re-
quired. Other than the change in catalyst, all other fac-
tors of the reaction were kept constant. Compared to
CH3ONa and NaOH, the Amberlyst-A21 was much more
difficult to handle, especially during transfer, as the resin
stuck to the walls of the containers.

Unfortunately, the Amberlyst-A21 did not present any
activity for this reaction. There was no production of
glycerol, and no transeterification results were obtained.

3.4.2 No stirring or heating

To investigate the feasibility of the reaction by diffusion
alone without energy input, the reaction using CH3ONa
was replicated with all factors kept constant; the only
difference was that there was no stirring or heating in-
volved.

Results indicate that initially, the reaction was slow
and showed an indistinguishable mixture. After 10 days,
a distinct, separate glycerol layer was observed. The
yield of pure biodiesel obtained was found to be the
same as that obtained when stirring and heating was in-
volved. This showed that the reaction is feasible without
energy input, albeit with a longer lag period.

An advantage in this approach was that the equilib-
rium was shifted by the phase separation with methanol.
Although the phases are immiscible, at the interface of
phases where transesterification occurs, monoglycerides
and diglycerides are formed which can carry the base
and the methanol to the bulk of oil, starting the reac-
tion. Hence no energy input was needed, although the
time taken was much longer. Further research can be
done to examine this aspect of the compromise between
energy expended and time taken.

3.4.3 Days left to sit

To examine whether the biodiesel yield was influenced
by the time period for which the mixture was left to sit,
the reacted mixture was left to sit for 3 days instead of
1 day. This was carried out to investigate if more time
would facilitate better separation between the biodiesel
and the glycerol phase. The products were then sepa-
rated using a separatory funnel. This was performed for
both CH3ONa and NaOH, with all other factors kept con-
stant.

There was no significant difference in the biodiesel
yield or the amount of base recovered, compared to the
reactions with 1 day of sitting. This demonstrated that
the time for which the reacted mixture is left to sit does
not affect the experimental results.

4 Conclusion

This research demonstrated that the base catalysts
CH3ONa and NaOH are not destroyed in reaction, and
that they are recyclable for 2 times. Although recyclabil-
ity of the base catalyst via the method detailed in this pa-
per is possible, it is not favourable due to the excess glyc-
erol competing with methanol to react with some of the
triglycerides. This lead to the formation of mono- and
diglycerides, which are not the products this study fo-
cuses on. The yield of biodiesel was lower than expected
as a significant amount of the mass was lost in purifica-
tion steps. Under more ideal purification methods, it is
expected that the mass of pure biodiesel obtained would
be higher than the values discussed in this paper. The
low yield is also partly attributed to the phenomenon of
glycerol interfering with the transesterification process.

To test for more environmentally friendly and eco-
nomically viable options, this research proved that the
transesterification reaction can be achieved solely by
diffusion, without energy input. The compromise be-
tween energy expended and time taken is an develop-
ment worth looking into. A separate reaction using the
resin Amberlyst-A21 unfortunately showed no activity
for this reaction. It was also found that the time left for
the reaction mixture to sit did not affect biodiesel yield
or catalyst recyclability.

5 Limitations and Outlook

Over the course of the project, several issues linked to
the method used were identified. Given the time con-
straints imposed, these were not acted upon but only
discussed as below.

Due to time and equipment restrictions, no pre-
treatment of the oil was done, resulting in high content
of free fatty acids in the solution, which in turn increased
the possibility of secondary reactions during transesteri-
fication.11 The yield of pure biodiesel was also limited by
the method used for the washing of biodiesel, resulting
in considerable loss of the desired product.

For future work, it would be advisable to select a way
to pre-treat the oil before the reaction. More optimal
methods of purification could also be looked into. Al-
ternatively, the focus could also be put on the formation
of MAG and DAG as they could also be desired products
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due to their applications. MAG and DAG are widely used
in food, pharmaceutical and cosmetics as they enhance
emulsion stability when mixed types are employed, sta-
bilize ingredients, prevent separation, improve food tex-
ture, and lengthen product shelf life.12The global mar-
ket was worth $8.26 billion in 2021 and is projected to
be worth $15.23 billion by 2029.13

As this study proves that the base catalysts are not
destroyed in reaction and are hence recyclable, further
work can be done to examine other methods for recy-
cling the catalyst that do not involve the buildup of glyc-
erol, such as the possible recyclability of heterogeneous
base catalysts that could be extracted from the products.
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Abstract 
Hydrogen could be a key source of energy as the world transitions to net-zero emissions – hydrogen 
supply chains inherently have emissions of their own. This paper studies the emissions from an 
established hydrogen supply chain and how hydrogen acts as a harmful indirect greenhouse gas. In this 
paper a detailed analysis of the hydrogen emissions for the pilot phase of the Hydrogen Energy Supply 
Chain project was conducted in order to quantify the long-term impact on the climate. The emissions at 
different stages of the supply chain have been calculated, providing insights into emissions reduction 
in the highest emitting sectors. The climate impact quantified using Global Warming Potentials over a 
time scale of 100 years of 12.8±5.2 kgCO2, eq./kgH2. A total emissions intensity of 12.57% was calculated 
for the Hydrogen Energy Supply Chain supply chain, corresponding to 120.83 tonnes of CO2, eq. being 
emitted. These emissions were scaled to assess the impact as the supply chain was scaled to its 
commercial scale of 225,000 tonnes of LH2.  
 

1. Introduction 
Traditional fossil fuels like oil, coal and natural 
gas have supported modernization and 
economic growth across the world. Global 
efforts such as the Paris Agreement have set 
clear goals to limit global warming to well 
below 2 degrees Celsius compared with pre-
industrial levels [31]. Japan and Australia are 
two of the ratifying countries that have 
submitted their Nationally Determined 
Contributions to demonstrate their 
commitments. By 2030 Japan aims to reduce 
greenhouse gas emissions to 26% below 2013 
levels and Australia aims to reduce its 
emissions to 26% below 2005 levels [1]. 
Hydrogen offers many advantages as an 
alternative energy source, however, its effects 
on the environment in the long term are not 
completely understood. This paper aims to 
model hydrogen emissions of a liquid hydrogen 
(LH2) supply chain to assess its wider impact on 
the global climate. 
Japan’s limitations in domestic natural 
resources created a dependency on a foreign 
import of energy to fuel its livelihood and 
industry. As a result, Japan’s energy transition 
strategies must look to achieve a reduction in 
greenhouse gas emissions whilst 
simultaneously ensuring its future energy 
security. Japan looks to realize its strategy 
through energy security, economic efficiency, 

environment, and safety, known as the “3E+S” 
energy policy [2]. For a long-term solution 
through to 2050, and into the latter half of the 
century, it must reform its current energy 
supply structure and transition to a new clean 
energy system. Hydrogen is one such 
alternative, it is plentiful and contains no carbon. 
Its similarity in characteristics to light natural 
gas (LNG) allows hydrogen to complement 
approaches to decarbonization. It is estimated 
that hydrogen has the potential to account for 
up to one fifth of global energy consumption 
reducing global emissions by 6 Gigatonnes of 
CO2, eq. [3].  
In 2017, Japan became the first country to adopt 
a national hydrogen framework in the Basic 
Hydrogen Strategy. As a highly industrialised 
country, it has a severe lack of hydrocarbon 
resources, developing a strong hydrogen 
economy can provide energy security and 
industrial competitiveness as well as reducing 
carbon emissions. Since hydrogen is an 
unrestricted energy source anyone can act as a 
consumer or supplier regardless of geographic 
advantages some countries may have. Japan 
have been trialling hydrogen supply chain 
projects, most notably from Australia, Brunei 
and Saudi Arabia [2].  
Historically, Australia has been the biggest 
supplier of energy and key minerals to Japan. 
Australia provides around two-thirds of Japan’s 
coal, and a third of its natural gas [4]. 
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Australia’s competitiveness as a producer of 
raw materials has cemented it as a safe and 
reliable trade partner. In the transition from 
fossil fuels Japan looks to achieve net-zero in 
its current supply chains; its lack of carbon 
capture infrastructure means that building 
stronger synergies with Australia will be 
essential.  
The future hydrogen industry is expected to 
grow to $4 trillion globally by 2050 [5], Japan 
and Australia both look to be huge players in 
this market. A consortium of Australian and 
Japanese companies and government has raised 
$500 million to fund the Hydrogen Energy 
Supply Chain (HESC) [3] project where 
hydrogen gas will be produced in Australia and 
shipped as liquid hydrogen to Japan. The 
world’s first overseas shipment of liquid 
hydrogen, transporting 75 tonnes of liquid 
hydrogen from Australia to Japan, was 
completed in January 2022 as part of the pilot 
phase of this project. Following this, it will be 
moving onto the commercial phase where the 
225 kilotonnes of liquid hydrogen will be 
produced for shipment to Japan by 2030 [6]. 
Hydrogen has great potential as an effective 
alternative energy carrier to support the energy 
transitions in the future. It is a zero-emission 
fuel that has many production routes from 
available resources such as fossil fuels, biomass 
and water. Gaseous hydrogen’s energy content  
by weight, 33.6 kWh/kg, is greater than diesel, 
12-14 kWh/kg, however it has a lower energy 
content by volume. Therefore, throughout 
supply chains hydrogen can be transported as 
liquid organic hydrogen carriers, ammonia or 
liquid hydrogen [7]. Liquid hydrogen is 800 
times more dense than gaseous hydrogen and 
does not require as much further processing in 
the downstream of supply chains [3].  
Hydrogen presents many advantages but it is 
considered as an indirect greenhouse gas [8]. 
Hydrogen has an atmospheric lifetime of 1.4-
2.1 years based on modern estimates, after 
which it completely oxidizes with the hydroxyl 
radicals. This hydrogen oxidation leads to a 
reduction of hydroxyl radicals and formation of 
ozone in the troposphere, as well as formation 
of water vapour in the stratosphere. These will 
have adverse consequences on the climate. Yet, 
limited research has been conducted to assess 

the long-term climate impact of hydrogen 
emissions [8].  
Most recently, the consequences of hydrogen 
leakages were modelled in literature by Ocko 
and Hamburg., 2022 across different timescales 
[9]. Additional studies are needed to assess the 
real effect of hydrogen releases on atmospheric 
warming. The authors are aware of only one 
paper that researches hydrogen emissions along 
supply chains, by Cooper et al., 2022 [10]. This 
study aims to estimate hydrogen emissions 
across different stages from the HESC project 
with a wider range of modelling methods to 
more accurately assess the impact of these 
emissions on global warming as the supply 
chain enters its commercial stage. 

2. Background 
2.1 H2 production, brown coal gasification 
with carbon capture 
This supply chain is based on the HESC project, 
the first project in the world to produce, process 
and transport liquid hydrogen by sea to an 
international market. Hydrogen is produced 
through gasification of coal and biomass and 
refined in Loy Yang, Latrobe Valley. Whilst 
carbon credits were used to offset CO2 
emissions in the project’s pilot phase, a carbon 
capture system will be implemented in the 
commercial phase during refining. Hydrogen 
gas is then compressed and transported to the 
Port of Hastings by road for liquefaction [3].  
2.2 H2 production, green electrolysis 
The supply chain is based on a research trial in 
Queensland shipping hydrogen as a liquid 
organic hydrogen carrier (LOHC) to Tokyo, 
Japan [11]. Hydrogen is extracted through solar 
powered electrolysis of treated non-drinking 
water in Redland, Australia is modelled for its 
production stage only, to understand the 
hydrogen emissions associated with a green 
hydrogen production route. The extracted 
hydrogen is converted to methylcyclohexane 
(MCH) and exported to Tokyo, Japan. As this 
work only models shipments for liquified 
hydrogen, only the production and processing 
stage of this supply chain is considered [11]. A 
limited amount of data is available to make an 
informed assessment of hydrogen emissions 
along the shipping and distribution stages of 
this supply chain. 
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2.3 Liquefaction 
High purity hydrogen is brought to the Port of 
Hastings and loaded into a pilot liquefaction 
plant. The specific hydrogen liquefaction 
process used in the HESC pilot project is 
unknown. Yin., 2019 reviews the design and 
optimization from a wide range of liquefaction 
processes [12]. This source is the key literature 
piece used to make a suitable assumption of the 
liquefaction process used in the Port of 
Hastings. It considers the performance of a 
wide range of pre-cooled systems and cascade 
systems. 
2.4 Shipping 
The ship studied in this research is the inaugural 
Suiso Frontier - the world’s first liquid 
hydrogen carrier. The vessel has a gross 
tonnage of 8,000 t and is 116 m long [3]. Given 
the lack of data on the ship specifications the 
IMO Type-C limits were used when applicable 
[13]. The Software used to calculate the Boil-
off rate in the Suiso Frontier’s 1,250 m3 
Stainless Steel tank, is called BoilFast [14]. 
This software was developed by the University 
of Western Australia and has been tested 
extensively at Nasa’s Glenn Research Centre. 
The software required specifications for the 
tank was unavailable. To address this lack of 
granular data IMO type-C values were used to 
determine the thresholds for certain tank 
specifications and estimated appropriate values. 
2.5 Unloading and regasification 
Liquid hydrogen was successfully shipped and 
unloaded at the Port of Kobe. Here, it is 
unloaded into Japan’s largest liquid hydrogen 
storage tank where it can be transported for 
further processing such as regasification or for 
distribution and consumption. There is a lack of 
specific process data for this stage. 

3. Methodology 
H2 emissions are estimated across different 
stages of the HESC supply chain through 
various modelling methods. The supply chain is 
segmented into four stages, production and 
processing, liquefaction, shipping, unloading 
and regasification. Hydrogen emissions are also 
modelled from an alternative green hydrogen 
production route, a large scale solar powered 
electrolysis plant in Gladstone for comparison 
with brown coal gasification.  
The production and processing stages are 
estimated using emissions factors found in 
literature which is scaled to the relevant 

throughput of the system in consideration. This 
method was repeated for the unloading and 
regasification stage due to a lack of process 
specifications. A combination of methods 
found in literature and Aspen Plus is used to 
model the liquefaction stage. A software 
developed by the University of Western 
Australia called BoilFast is used to model 
fugitive emissions in the shipping stage. 
Throughout this paper hydrogen emissions are 
defined as hydrogen directly lost to the 
atmosphere such as through fugitive emissions, 
venting and incomplete combustion. Whereas 
hydrogen consumption is defined as hydrogen’s 
energy content used to power the system. 
3.1 Emissions factors 
For the production and regasification stages of 
the supply chain specific process data was 
unavailable so a method found in literature was 
used to calculate the relevant hydrogen 
emissions [10]. This method calculates the 
quantity of hydrogen emitted using emission 
factors which takes the average hydrogen 
emissions as a percentage of total hydrogen 
throughput in the systems considered. 
 
Where 𝐸𝑖  is the emissions per supply chain i, 
𝐴𝑖  is the total throughput in supply chain i, 𝐸𝐹𝑖  
is the emissions factor of supply chain stage i. 
 

𝐸𝑖 =  𝐴𝑖 × 𝐸𝐹𝑖  (1) 

𝐸 =  ∑𝐸𝑖

𝑁

𝑖=1

 
 

(2) 

 
The total emissions across a supply chain can 
subsequently be calculated by summing 𝐸𝑖  
across N number of stages. 
3.2 Aspen Plus for Hydrogen Liquefaction 
Hydrogen gas is liquefied when it is cooled to 
below -253oC at 101.325 kPa [3]. Hydrogen 
liquefaction is typically a low efficiency 
process which consumes high amounts of 
energy. There is a lack of data in literature on 
the specific liquefaction process used in 
Latrobe Valley. A review of current hydrogen 
liquefaction facilities from literature was 
conducted to decide a base process, considering 
specific energy consumption (SEC) and exergy 
efficiency (EXE). A precooled dual-pressure 
Linde-Hampson process was selected for 
modelling due to its high exergy efficiencies 
and relatively low specific energy consumption.  
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Aspen Plus software is used to model this pre-
cooled dual pressure Linde-Hampson process 
as seen in Figure 1. This process involves four 
stages: 
 

i. Pre-cooling from 300K to 80K 
ii. Compression from 20bar to 80bar 
iii. Cooling from 80K to 20K 
iv. Expansion From 80 bar to 1 atm 

(1.01325 bar) 
 

The feed stream has a temperature of 300K, this 
must be precooled to hydrogen’s inversion 
temperature 80K at 20bar. This is necessary for 
the temperature to decrease when the cooled 
hydrogen is finally liquefied through a Joule-
Thompson expansion from the valve into the 
separator [15]. The LH2 output is set to be 
10.4kg/hr for the HESC project [3]. 
A Peng-Robinson equation of state is 
implemented in the simulation. The feed stream 
was simulated with 99.99% purity of hydrogen 
with the remaining composition assumed to be 
carbon monoxide. The mass flowrate of the 
feed is adjusted to ensure a liquid hydrogen 
output of 0.25 tonnes/day of LH2 as specified in 
the HESC project [3]. It is assumed that both 
compressors operate under isentropic 
conditions with an isentropic efficiency of 0.72 
and mechanical efficiency of 1.0 as 
recommended by Aspen Plus. 
Values retrieved from simulations of this model 
is used to evaluate the systems performance 
through specific energy consumption (SEC) 
and exergy efficiency (EXE) are calculated by 
the following equations: 
 

𝑆𝐸𝐶 =  
𝑊̇
𝑚̇𝐿𝐻2

 

 

 
(3) 

𝐸𝑋𝐸 =  
𝑊̇𝑟𝑒𝑣
𝑊̇𝑎𝑐𝑡

 
 

(4) 

 
Where 𝑊̇ is the net power of the entire system 
and 𝑚̇𝐿𝐻2  is the mass flow rate of liquid 
hydrogen. For the exergy efficiency is 
calculated as a ratio of 𝑊̇𝑟𝑒𝑣 , the ideal 
reversable liquefaction work and 𝑊̇𝑎𝑐𝑡 , the 
actual liquefaction work. The amount of 
hydrogen energy consumed in the system is 
also calculated to demonstrate the inefficiency 
of this stage. 
3.3 Shipping 
The ship’s containment system has a capacity 
of 1,250 m3 (ClassNK Classification 
Registration, 2022). As one cubic metre of 
liquified hydrogen weighs 70kg, it can carry 
87.5 tonnes of hydrogen fully laden, however 
the operating capacity is 75 tonnes of Hydrogen. 
The ship can be compared to a small LNG 
tanker and the tank is based on IMO-type C 
Specifications.  In the HESC Pilot project, the 
Suiso Frontier was used to ship blue hydrogen 
from the Port of Hastings last year in December 
and arrived at the Kobe Port in Japan in January, 
a journey of 4,907 nm (Sea-distances, 2022), 
taking 23 days at a speed on 13 knots. 
The major source of emissions contributors 
during the shipping phase of the supply chain is 
boil off. Boil-off in the cryogenic storage tank 
in the Suiso Frontier was modelled as being 
vented to the atmosphere and the only 

Figure 1 - Pre-cooled Dual Pressure Linde-Hampson Process modelled in Aspen Plus 
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emissions involved with this stage of the supply 
chain. 
We inputted the journey distance, and the 
software then yielded the boil-off rate curve 
below and the boil-off rates across the journey 
with intervals of 1 hour. Uncertainty bounds of 
10% were assumed for total journey time of 377 
hours. 
3.4 Global Warming Potential 
 The climate impact of the hydrogen 
emissions over different time scales can be 
quantified through global warming 
potentials (GWP). Different values for the 
GWP100 of hydrogen can be found in 
literature can be defined as the amount of 
energy the emissions of 1 kg of gas will 
absorb over 100 years compared with the 
emissions of 1 kg of CO2,eq. The most recent 
study from Nov 2022 [16] calculates 
GWP100 for hydrogen to be 12.8±5.2 
kgCO2,eq/kgH2. A government study from 
April 2022 found the GWP100 of hydrogen 
to be 11±5 kgCO2,eq/kgH2 [16].  
Most of the GWP100 uncertainty in both 
papers is due to uncertainty in the 
magnitude of the hydrogen soil sink and 
radiative forcing scaling factors. These 
modern studies consider stratospheric 
effects more accurately, this value is 
significantly larger than previous estimates 
made in 2006, where GWP100 for hydrogen 
was 5.8 kgCO2,eq/kgH2 [8]. For this study the 
most recent literature GWP100value of 
12.8±5.2 kgCO2,eq/kgH2 is used in this paper 
to calculate CO2,eq emitted along the HESC 
supply chain to understand the effect 
hydrogen emissions in the long term. 

4. Results & Discussion 
To compare the results from each stage of the 
chosen supply chain, hydrogen emissions were 
expressed as a ratio of tonnes of hydrogen 
emitted per tonne hydrogen. A GWP100 value of 
12.8±5.2 kgCO2,eq/kgH2 is then used to calculate 
tonnes of CO2,eq emitted to compare with the 
current emissions profile of Japan and Australia. 
The contribution of emissions reduction 
achieved by the HESC project can also be 
estimated. Through these models it was found 
that the heaviest emitting stage of the HESC 
supply chain is shipping, twice as much as 
liquefaction, second highest emitting stage. The 
relevant hydrogen emissions of each stage is 
shown in Table 1. The total emissions intensity 
of the supply chain is calculated to be 12.57% 
of total hydrogen in the supply chain, using 
values in Table 1. Therefore, to ship 75 tonnes 
of liquid hydrogen from Australia to Japan 9.44 
tonnes of hydrogen is emitted equivalent to 
120.83 tonnes of CO2,eq.  
4.1 Production and Processing 
 The chosen production route of the HESC 
project was brown coal gasification, mostly 
lignite, with carbon capture to abate greenhouse 
gas emissions [16]. The exact process for 
gasification is unknown so a hydrogen 
emissions factor of 0.55% from literature is 
used to calculate the hydrogen emissions for 
this stage. The Latrobe Valley gasification plant 
has a capacity to produce 5000 tonnes of 
hydrogen per year, the pilot phase saw 75 
tonnes of this shipped to Japan. It is assumed 
the throughput to achieve this is in this stage is 
78 tonnes of hydrogen, relevant emissions data 
for this stage can be seen in Table 1.  
Brown coal gasification is typically an intensive 
process with low efficiency. According to 

 
H2 

throughput 
(tonnes) 

H2 emitted  
(%) 

H2 emitted 
(tonnesH2) 

CO2, eq 
emitted 

(tonnesCO2, eq) 
Brown H2 production with 

CCS 78.0 0.55 0.44 5.6 

Green H2 production via. 
electrolysis* 78.0 2.05 1.60 20.5 

Liquefaction 77.6 3.30 2.56 32.8 

Shipping 75.0 6.69 5.02 64.3 

Unloading and regasification 70.0 2.03 1.42 18.2 

Table 1 – Emissions per stage of the supply chain,   * denotes a supply chain stage not part of the HESC project 

570



6 
 

literature values [18], gasification processes 
typically produce up to 0.17kg of hydrogen 
from 1kg of coal. For a typical fixed bed reactor 
processing lignite, up to 0.418 m3 of carbon 
dioxide could be released per kg of the 
synthesis gas produced. Assuming the same 
performance for brown coal gasification in the 
HESC project, 458.8 tonnes of coal would be 
needed to produce 78.00 tonnes of hydrogen. 
Therefore, should this technology be scaled to 
withstand the commercial scale of the HESC 
project of hydrogen to Japan and minimise 
impact on climate, carbon capture systems must 
be implemented to limit direct greenhouse gas 
emissions from this stage. Or alternative 
production routes which does not rely on 
carbon-based fuels should be considered. 
Therefore, a large-scale electrolysis plant in 
Gladstone preparing for export to Tokyo Japan 
is modelled to compare with the HESC 
production route [19]. The relevant hydrogen 
emissions factor is found to be 2.1%. The plant 
is part of a research trial in Queensland which 
will produce up to 365kt of renewable hydrogen 
per year for [20]. If this scale is successfully 
achieved, 7.5 ktonnes of hydrogen will be 
emitted per year, equivalent to 95.8 ktonnes of 
CO2,eq using a GWP100 for hydrogen of 12.8±5.2. 

4.2 Liquefaction  
From model simulations it is found that to attain 
75 tonnes of liquid hydrogen the system 
requires 92.3 kW of power which corresponds 
to a SEC of 9.1 kW/kgLH2 and EXE of 26%. The 
higher heating value of LH2 is found to be 141.9 
MJ/kgLH2 from literature [21]. It is calculated 
that 31.9% of hydrogen’s energy content will be 
consumed to output 75 tonnes of hydrogen. 
Liquefaction is by far the most energy intensive 
stage of the supply chain so a small 
improvement to the plant’s efficiency will have 
a significant impact on overall emissions for 
liquid hydrogen supply chains. A sensitivity 
analysis was conducted to see how specific 
energy consumption and percentage of 
hydrogen consumed changes as hydrogen feed 
rate is varied, this can be seen in Figure 2 and 
Figure 3. The specific energy consumption 
significantly improves as the feed rate is 
increased, because when the feed rate is low 
there is the compressors and heat exchangers 
are disproportionately intensive. However, 
when the HESC project scales to its commercial 
stage the necessary hydrogen liquefaction rate 
will increase significantly to a point where the 

process has an improved specific energy 
consumption. 
The main source of fugitive hydrogen 
emissions in the liquefaction stage is due to boil 
off in the unloading of LH2 from the process. 

The boil off emissions in this stage is 3.3% of 
unloaded hydrogen is gathered from literature 
[22]. For the pilot stage of the HESC, 2.6 tonnes 
of hydrogen will be emitted in liquefaction. 
Should this be vented it is equivalent to 21.86 
tonnes of CO2,eq being emitted for the pilot 
phase of the project. These emissions could be 
either recycled back into the liquefaction 
system or flared off as it combusts cleanly. 
Despite the relatively low boil off rate, 
inefficiencies in the system are due to the high 
energy intensity of liquefaction. This is due to 
the complexity of the process and the low 
operating temperatures and high pressures. In 
typical liquefaction plants the lower limit of 
energy consumption is 30% of hydrogens 
higher heating value [23]. This is a significant 
factor causing H2 losses in the supply chain and 
demonstrates the need for optimization of this 
process.  
Hydrogen exists in the form of two spin isomers, 
ortho and para hydrogen, the composition of the 
two changes with temperature. As the 

Figure 2 – Hydrogen consumption vs. hydrogen feed 
rate 

Figure 3 – Specific energy consumption vs. hydrogen 
feed rate 
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temperature of gaseous hydrogen is decreased 
in liquefaction, ortho-hydrogen will be 
converted to para-hydrogen until the 
composition of the liquid hydrogen output 
stream is almost 100% para-hydrogen. This 
conversion releases heat of 670 kJ/kg, which is 
greater than hydrogen’s latent heat of 
evaporation of 452 kJ/kg [12]. Due to this 
phenomenon, the deal heat of transformation 
will cause 50% of liquid hydrogen stored to be 
evaporated within 10 days. Therefore, to 
increase overall efficiency of the liquefaction 
system, it is recommended that a catalytic 
ortho-para hydrogen conversion should be 
implemented in the precooling stage to prevent 
excess boil off in the unloading of the system.  
4.3 Shipping 
The Suiso Frontier uses a propulsion system 
consisting of three Daihatsu DE-23 1,320kW 
diesel engines and two 1,360kW electric motors 
enabling the vessel to sail at speeds of up to 13 
knots.  
During transportation LH2 is stored in 
cryogenic tanks to minimise heat loss. However, 
heat ingress is unavoidable and heat ingress into 
the liquid and vapour stages causes local 
convection at tank walls and heat conducted 
through the liquid-vapour interface results in 
thermal stratification which causes a 
temperature gradient on the top layer of the 
liquid. These two factors result in the formation 
of Boil-Off gas, which forms in the tank and 
causes an increase in pressure known as ‘self-
pressurisation’. During self-pressurisation, both 
the liquid–vapor interface temperature and 
vapor pressure continue to rise until the tank 
pressure reaches the pressure relief set point 
and the BOG is vented to the atmosphere [24]. 
Shipping was the heaviest emitting section of 
the supply chain, but it should be noted that 
there are already methods to reduce boil-off gas 
emissions, that could be adopted should the 
liquefied hydrogen market become mainstream. 
The BOG generated in the tank does not have 
to be directly vented to the atmosphere, the 
other options include: utilising the boil-off gas 
to fuel the propulsion system, flaring the gas as 
it is vented. The excess gas can also be burned 
in a gasification unit, but this means there will 
be waste of materials and energy  
[30]. The boil off gas can also be reliquefied 
and sent back to the tank – however this is a 
complex process and requires many 
components. [25] The calculated emissions 
data for this stage can be found in Table 1. 

4.4 Unloading and Regasification 
This stage of the HESC project had a severe 
lack of data available. A hydrogen emissions 
factor was found to be 2.05% of the total 
throughput [3]. The relevant emissions for this 
stage can be found in Table 1. To minimise 
these emissions, it is recommended liquid 
hydrogen should not be stored for longer than 
necessary to ensure minimal boil-off emissions.  

4.5 Alternatives 
Other transportation methods could also be 
considered. Compressed hydrogen pipelines do 
currently exist but only on a small scale to 
transport chemicals between facilities. The 
pipeline pumps for this consumes a lot of 
hydrogen’s energy content to power the 
compressors, at least 1.4% of hydrogen flow is 
consumed per 150km of pipeline.  This makes 
pipeline transport very unfavourable if Japan 
continues to rely on a foreign import of 
hydrogen [23]. 
Hydrogen can alternatively be transformed into 
liquid organic hydrogen carriers such and 
methylcyclohexane (MCH) for high density 
hydrogen storage and transport. Projects 
producing this through green electrolysis and 
grey natural gas in Australia and Brunei 
respectively both ship MCH to Japan. Although 
MCH has a lower energy density than liquid 
hydrogen, 47 kg H2/m3 and 70 kg H2/m3 
respectively. MCH can be stored at ambient 
conditions, compared with liquid hydrogen, 
which is stored at 20K, there is no need for the 
energy intensive liquefaction process. MCH 
does however require heavier downstream 
processing as it has a high enthalpy of 
dehydrogenation, 73.6MJ/molH2. The largest 
barrier for MCH to be successfully adopted at 
large scale is its infrastructure. Dedicated 
hydrogenation and dehydrogenation process 

Figure 4 - Boil off rate over time as liquid hydrogen is 
shipped to Japan 
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can be optimized to improve the efficiency of 
MCH supply chains [26]. 
Ammonia is another great hydrogen carrier that 
should be considered. The high volumetric 
density of hydrogen, 107 kgh2/m3 and mature 
synthesis and distribution infrastructure are just 
a few of its advantages. Therefore, it must be 
considered in the discussion of likely hydrogen 
carriers for the future. There are a few 
drawbacks in the high temperature needed for 
ammonia decomposition and incomplete 
separation allows residual ammonia to poison 
polymer electrolyte membranes in fuel cells. 
The typical Ammonia production route is the 
well-established Haber-Bosch process which 
emits roughly 2.9 tonnes of CO2 per tonne of 
ammonia, this process consumes 1-2% of 
yearly global energy demand. Electrochemical 
routes to production offer a green alternative to 
the Haber-Bosch process and can complement 
electrification well. Ammonia does have 
disadvantages with lower flammability and 
increased difficulty in handling due to being 
toxic to humans and marine life. A wider 
assessment of the environmental impact of 
ammonia must be considered. 
4.6 The climate impact of hydrogen 
emissions 
By 2030 for Japan to meet its emissions 
reduction goal of 46% from benchmark 2013 
levels, 1,395MtCO2,eq an annual reduction of 
642MtCO2,eq must be achieved. As of 2021, 
Japan’s has already achieved a 17.6% reduction 
in emissions. For Australia, to reduce its 
emissions by 43% from 2005 levels, an annual 
reduction of 240MtCO2,eq needs to be achieved 
and as of 2021 Australia has achieved a 12.7% 
reduction in emissions. 
In this study models of hydrogen emissions 
along the supply chain that follows a 75-tonne 
liquid hydrogen pilot shipment. The quantity of 
emissions is modelled to be 120.83 tonnes of 
CO2,eq. Considering the liquid hydrogen to have 
an energy content of 120 MJ/kgH2, this pilot 
project provides 9 million MJ. It is 
subsequently calculated that at the pilot scale 
the HESC project will emit 13.4 g 
CO2,eq/MJH2,HHV of energy delivered  [7]. 
Comparisons can be drawn with a literature 
value that found methane emissions from 
Australia to Japan LNG supply chains is 3.2 g 
CO2,eq/MJLNG,HHV.  
The HESC project looks to be scaled to its 
commercial phase of producing 225 ktonnes of 
liquid hydrogen per year for shipping to Japan 

by 2030 [6]. Should this production rate be 
achieved, the associated emissions for each 
stage of this modelling study can be scaled to 
assess the climate impact of the projects 
commercial phase. A total of 28.3 ktonnes of 
hydrogen will be emitted, equivalent to 361.98 
ktonnes of CO2,eq.  
This ambitious project’s pilot stage has created 
400 jobs, and thousands more when the supply 
chain is successfully commercialised. This will 
also act as a great opportunity to upskill and 
retrain workers for renewable energy systems. 
This project estimated to reduce CO2 emissions 
by 1.8 million tonnes per year, equivalent to 
emissions of 350,000 cars or 0.129% reduction 
of Japan’s annual emissions compared with 
2013 levels. By 2030 Japan looks to boost its 
demand for hydrogen to 3 million tonnes per 
year, the commercial phase of the HESC supply 
chain can meet 7.5% of this forecasted demand 
[27] [28]. 
4.7 Limitations 
This study has uncertainties due to lack of 
relevant process data. Production and 
processing, unloading and regasification is all 
modelled using emissions factors from 
literature. Errors within this method arise from 
discrepancies, and because a proxy of LNG is 
used, where leakage rates of hydrogen is 
calculated by drawing parallels with existing 
LNG supply chains. In liquefaction the 
uncertainty is from a cubic equation of state 
being used to model quantum fluids, as well as 
specific compressor duty and efficiency data. 
The uncertainty in the shipping stage is mostly 
due to lack of specific data on storage tank 
specifications. 
In these estimates of climate impact using 
GWP100 values, error and uncertainty is 
calculated using error bounds of ±5 kg 
CO2,eq/kgH2. Uncertainty comes from unknown 
atmospheric distribution of hydrogen and other 
gases, unknown size of a hydrogen soil sink. 
These factors vary greatly depending on 
geographic location and environment.  

5. Conclusion & Future Work 
If hydrogen becomes a main-stream source of 
energy production – it will be essential to carry 
out further research on its emissions. Some 
conclusions and suggestions for future work are 
outlined in this section: 

1.) Production and processing route must 
shift away from brown coal. Work 
should be done to understand different 
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supply chains. Other dense hydrogen 
carriers such as LOHCs and ammonia 
should also be researched. A variety of 
distribution methods should be 
considered as well, such as transporting 
the hydrogen via pipeline or trucks. 

2.) Liquefaction processes must be 
optimized to improve efficiency of the 
supply chain. 

3.) Emissions from the shipping stage can 
be significantly reduced through the 
utilization of boil-off gas in the ship’s 
propulsion system, or through flaring 
the gas or reliquefying it. 

4.) lack of specific process data for large-
scale electrolysis prohibited this 
research therefore more in-depth 
modelling of the green hydrogen 
production route should be conducted. 

5.) For future modelling of hydrogen 
emissions using Aspen software, it 
should be considered that hydrogen is a 
quantum fluid and that cubic equations 
of state, such as the Peng-Robinson 
model, has yielded poor predictions of 
thermodynamic properties [29]. 

6.) Should the HESC project continue to 
rely on brown coal gasification, a 
dependency on sequestration 
technologies would be the only way to 
offset greenhouse gas emissions. At a 
commercial scale the effects on climate 
this will have could be prevented by 
using green routes. 

7.) To inform policy, future studies should 
be conducted on the downstream 
distribution pathways and future 
hydrogen demand should be forecasted. 
A cost-benefit analysis would be useful 
to determine the economic incentives 
for adoption of and investment into this 
supply chain. 
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Abstract This study aims to utilise reinforcement learning (RL), a subfield of artificial intelligence, to solve the 
supply chain management and optimization problem. Widespread problems through periods of global shortages 
and uncertainties from geopolitical tensions have rendered traditional supply chain policies ineffective. Recent 
advancements in RL are a key area for the future operation and development of sustainable industrial production 
systems. This study leverages these techniques to better optimise these systems by maximising the reward function 
subject to key parametric industry constraints. These include inventory storage limits as well as simulating 
stochastic and seasonal demands with both continuous and discrete products. A generalised multi-period 2-
echelon supply chain environment was implemented through a custom OpenAI gym environment. The approach 
investigates the applicability and performance of model-free policy optimization RL algorithms. Specifically, the 
Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO) algorithms. It was observed both 
proposed methods outperformed the baseline simple agent policy and show promising results for the supply chain 
optimization problem. The loss function of each method showed convergence over large timesteps with PPO, 
using a 0.2 epsilon clipping, converging to the optimal policy significantly faster. Seasonal demand provided 
greater volatility and paired with the continuous dataset, a larger converging reward per unit of time. 
 
 
Introduction 

1. Supply Chain Optimization 
Supply chain management is the centralized 
management of the flow of goods and services of a 
supplier, monitoring each touchpoint. Over the last 
few decades, the conventionally linear supply chain 
with entities in direct series with one another has 
evolved into an increasingly complex and uncertain 
integrated supply network. With so many 
opportunities to enhance value along the supply 
chain, proper management can drive an increase in 
profit margins, improve customer service and reduce 
the environmental impact of suppliers (Fernando, 
2022). Supply chain optimization exploits 
technology and resources such as Artificial 
Intelligence, IoT and blockchain (IBM, 2022) to 
improve the efficiency and performance of supply 
networks. They help to address issues with data that 
is siloed, supply disruptions, and sustainability and 
can even help to build a competitive advantage. 
 
Global supply chain issues were prominent during 
the outbreak and spread of the COVID-19 
pandemic, due to national lockdowns and shifts in 
demand, which brought challenges to governments, 
enterprises, medical institutions and citizens. There 
have been sudden shortages in various sectors 
including consumer goods, metals, food and 
chemicals (Chase, 2022). More recently, the Russia-
Ukraine conflict and wider geopolitical issues 
continue to escalate supply issues. 
 
Traditional methods to address supply chain 
optimization include branch and bound (Karimi & 
Davoudpour, 2014), Tabu search (Melo, et al., 
2012), genetic algorithms (Govindan, et al., 2010) 
and linear programming (Piedro, et al., 2010). These 

approaches have been widely used in supply chain 
management and have achieved remarkable results. 
However, for large-scale and complex supply chain 
systems, traditional methods still face many 
difficulties in practical application. 
 
Firstly, the solution space is often very large. Many 
modern supply chain scenarios involve many nodes, 
and complex network relationships, and therefore 
require a long period to be solved online. A second 
challenge is that of being able to cope with large 
operational uncertainty. There are various uncertain 
factors in the operation of the supply chain, not only 
internal operation, such as demand, price 
fluctuations, and production uncertainty but also 
external uncertainties, including the risk of 
disruption caused by unexpected events. 
 

2. Reinforcement Learning 
RL is a subfield of Artificial Intelligence 
specialising in sequential decision-making which 
trains an agent how to take optimal actions to 
maximise reward over time. RL was designed to 
address the optimization of stochastic, sequential 
decision-making processes, and it turns out to 
supply chains are exactly this type of system.  
 

Figure 1: The agent-environment interaction in RL 
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The typical RL setting is illustrated in Figure 1 and 
can be described by an agent interacting with and 
exploring the environment in which it resides. At 
each time step 𝑡, the agent receives a state 𝑠𝑡 and 
selects an action 𝑎𝑡 from some set of possible actions 
𝒜 according to its policy 𝜋, where 𝜋 is a mapping 
from states 𝑠𝑡 to actions 𝑎𝑡. In return, the agent 
receives the next state 𝑠𝑡+1and receives a scalar 
reward 𝑟𝑡. This process continues to loop around 
until the agent arrives at a terminal state, at which 
point the episode resets and restarts. 
 
Formally, RL is a framework enabling us to solve 
problems that can be described as a Markov 
Decision Process (MDP). The MDP serves as the 
flexible framework for goal-directed learning that 
can be described as a tuple: 
 

< 𝒮,𝒜,𝒫,ℛ, 𝛾 > 
 

(1) 

 
Where 𝒮 is a finite set of states, 𝒜is a finite set of 
actions, 𝒫 is a state transition probability matrix 
such that 𝒫𝑠𝑠′𝑎 = ℙ[𝒮𝑡+1 = 𝑠′|𝒮𝑡 = 𝑠, 𝐴𝑡 = 𝑎], ℛ is 
a reward function such that ℛ𝑠𝑎 = [ℛ𝑡+1 = 𝑠′|𝒮𝑡 =
𝑠, 𝐴𝑡 = 𝑎], and 𝛾 is a discount factor, 𝛾 𝜖 [0,1]. 
 
The goal of the RL agent is to find the optimal policy 
𝜋: 𝒮 × 𝒜 that maps states into actions so that the 
cumulative expected return over the time horizon is 
maximised. 
 
In many scenarios, it can be ambiguous whether the 
action performed by the agent contributed to the 
gained reward, so an n-step discounted return is 
applied, where the cumulative rewards for the action 
𝑎𝑡 for n steps are exponentially weighted by a 
discount factor 𝛾. 
 
As supply chains evolve and further increase in 
complexity, action and solution spaces continue to 
grow and RL algorithms alone become ineffective. 
Deep RL is a more recent advancement that pairs an 
RL algorithm with an artificial neuron network to 
approximate Q values instead of storing all the state 
and value pairs in a table. Agents can make decisions 
for huge, unstructured data sets. This increases the 
manageability of the solution space and allows the 
RL agent to generalise the values of states, that have 
not even been encountered during the training phase, 
based on past experiences.  
 

3. Literature Review 
There have been some preliminary studies 
portraying great promise for RL to solve many of the 
current supply chain challenges. RL was first 
applied to supply chain optimization and inventory 
management over twenty years ago (Giannoccaro & 
Pontrandolfo, 2002). This was the first published 
paper to use RL to optimize supply chain processes, 

as they recognized traditional methods are 
struggling to optimize supply chains as system and 
action spaces grow.  
 
More recently, Deep RL-based methods have also 
been proposed to solve supply chain optimization 
problems. A Deep Multi-Agent RL technique was 
proposed to solve supply chain optimization 
problems (Fuji, et al., 2018).. Multi-agent RL 
employs numerous artificial intelligence agents that 
collectively learn, collaborate and interact with each 
other whilst cohabitating in an environment. This 
technique allows for faster training and greater 
exploration of the environment, and the agents 
update the network’s weights to reinforce the 
probability of actions with positive rewards and 
weaken the inclination to take actions with negative 
rewards.  The study used Deep-Neural-Network-
Weight-Evolution to optimize processes in a beer 
distribution game and managed to achieve 80.0% 
lower costs in the game than expert players. 
 
An innovative, cooperative multi-agent RL 
approach for a resource balancing problem on a 
simulated ocean transportation service was also 
proposed and compared with various Multi-agent 
RL methods (Li, et al., 2019). The study found that 
all multi-agent techniques outperformed the baseline 
methods and the Diplomatic Awareness Multi-agent 
RL technique performed best. 
 
From the literature review, past studies show RL 
outperforms traditional methods and is a promising 
solution for the optimization of supply chain 
optimization problems. However, these studies 
usually deal with smaller, simple supply chain 
networks. The literature also focuses on only 
discrete action spaces and rarely considers capacity 
constraints.  
 
In this study, we focus on multi-period supply chain 
optimization problems with: 
 

• Discrete and continuous action spaces 
• Capacity constraints  
• Demand uncertainty (stochastic and 

seasonal) 
 
Two DRL-based methods (PPO and A2C) are 
proposed to solve the supply chain optimization 
problem on a two-echelon supply chain model that 
has been easily generalized and can easily be 
modified to increase the complexity. 
 
The rest of this paper is organized as follows: section 
two describes the inventory management problem 
statement. Section three presents the methodology 
of building a custom OpenAI gym environment and 
the decision-making behind selecting the Deep RL-
based methods selected to solve the optimization 
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problem. Section four presents the results of the 
proposed methods, and section five follows with the 
discussion. Finally, section six outlines the 
conclusions and prospects of the study. 
 
Problem Statement 
In this paper, we focus on the multi-period supply 
chain optimization problem. The supply chain is 
structured as Figure 2 and consists of a plant, two 
warehouses, a single retailer and consumers with 
both stochastic and seasonal demands.  
 

 
Figure 2: Supply chain structure with two echelons 
 
The structure of the optimization problem is divided 
into a set of periods with the same length of 365. At 
the beginning of each time period, the agent reviews 
the current state of on-hand inventory and 
backorders of the plant warehouses and the retailer. 
It then uses its policy to return a number of products 
to produce and deliver between each echelon. Due 
to the capacity constraints set, there are upper limits 
on the number of products the plant can produce, and 
each warehouse and retailer can store. The products 
produced by plants are assumed to be stored onsite 
at the plant warehouses in one action and therefore 
not subject to any delays here. A waiting time is 
applied between each echelon, from Echelon 1 to 
Echelon 2 and Echelon 2 to the consumers. This 
waiting time is represented through a gaussian 
distribution for each independent echelon transfer. 
The supply of raw material is assumed to be 
adequate and stable and so negligible to the 
optimization. The demand from consumers is 
stochastic and potentially seasonal and the decision 
maker satisfies the demand to the fullest extent by 
the on-hand inventory. In addition, the overstocked 
products or unsatisfied demands are carried over to 
the next period, which means that the decision made 
in a period will affect the inventory levels in future 
periods. In the case of excess inventory, a storage 
cost is incurred per unit of overstocked products. 
Otherwise, in the case of deficient inventory, a 
penalty cost is incurred per unit of unsatisfied 
demand. The process is fulfilled till the end of the 
full-time period. The initial inventory is set constant 
as well as an initial order to start the supply chain 
environment. 

The aim is to maximize the total profit taking into 
consideration revenue from sold products, 
production costs, storage costs, penalty costs and 
transportation costs incurred in during all periods. 
The demands across the periods are independent, 
though not necessarily identically distributed. This 
problem encapsulates the dilemma of matching 
supply with volatile demand in the presence of 
capacity constraints and distributed waiting times. 
The supply chain optimization problem can be 
formulated as follows:  
 

𝒎𝒂𝒙∑

{
 
 
 
 

 
 
 
 𝒗𝟏∑𝑫𝒆𝒎𝒋,𝒕 − 𝒗𝟐𝒑𝒕 − 𝒗𝟓∑[

𝒅𝒋,𝒕
𝜸 ]

𝑲

𝒋=𝟏

𝑲

𝒋=𝟏

−𝒗𝒔∑𝒎𝒂𝒙{𝒊𝒏𝒗𝒋,𝒕, 𝟎}
𝑲

𝒋=𝟏

+𝒗𝟒∑𝒎𝒊𝒏{𝒊𝒏𝒗𝒋,𝒕, 𝟎}
𝑲

𝒋=𝟏

𝑻

𝒕=𝟏

 (2) 

 
Subject to 
 

 

𝟎 ≤ 𝒑𝒕 ≤ 𝑷𝒎𝒂𝒙,  ∀𝒕 𝝐 {𝟏,… ,  𝑻} (3) 
∑𝒅𝒋,𝒕 ≤ 𝒊𝒏𝒗𝒋=𝟎,𝒕, ∀𝒕 ∈ {𝟏,… , 𝑻}
𝑲

𝒋=𝟏

 (4) 
𝒊𝒏𝒗𝒋=𝟎,𝒕 + 𝒑𝒕 ≤ 𝑪𝒋=𝟎,𝒕, ∀𝒕 ∈ {𝟏, … , 𝑻} (5) 

𝒊𝒏𝒗𝒋,𝒕 + 𝒅𝒋,𝒕 ≤ 𝑪𝒋,𝒕, ∀𝒋 ∈ {𝟏,… , 𝑲}, ∀𝒕 ∈ {𝟏,… , 𝑻} 
 (6) 

𝒊𝒏𝒗𝒋=𝟎,𝒕+𝟏 = 𝒊𝒏𝒗𝒋=𝟎,𝒕 + 𝒑𝒕 −∑𝒅𝒋,𝒕,
𝑲

𝒋=𝟏

∀𝒕 ∈ {𝟏, … , 𝑻} (7) 
𝒊𝒏𝒗𝒋,𝒕+𝟏 = 𝒊𝒏𝒗𝒋,𝒕 + 𝒅𝒋𝒕 − 𝑫𝒆𝒎𝒋,𝒕, ∀𝒋 ∈ {𝟏, … ,𝑲},  ∀𝒕 ∈ {𝟏, … , 𝑻} 

 (8) 
 
Where 𝑣1is the revenue from sold products, 𝑣2  is 
the production costs, 𝑣3is the storage costs, 𝑣4 is the 
penalty cost and 𝑣5 is transportation cost. 𝑝𝑡  is 
production target in time period t, 𝑑𝑗,𝑡 signifies the 
products delivered to retailer j, 𝑖𝑛𝑣𝑗,𝑡 is the inventory 
level of the plant and warehouse (𝑗 = 0) and 
retailers (𝑗 = 1). When backorder occurs and there 
is inadequate inventory the value of 𝑖𝑛𝑣𝑗,𝑡 will 
become negative. 
 
There is a production capacity limit for the plant as 
a constraint (2) and the total delivered amount 
should be no more than the current inventory level 
of the plant warehouse as a constraint (3). 
Constraints (4) and (5) represent the storage capacity 
constraints of the plant warehouse and retailers. In 
the plant warehouse, the sum of current inventory 
and newly produced products should not exceed the 
capacity limit. For retailers, the sum of the current 
inventory level and newly delivered products should 
not exceed the capacity limit. Constraints (6) and (7) 
represent the material balance for plant warehouses 
and retailers. 
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The objectives of the project are outlined below: 
1. Build an Open AI GYM environment to model a 

2-echelon supply chain process as the base case 
to test agent performances 

• Outline and then apply the parametric 
constraints of the supply chain process 

2. Using A2C and PPO StableBaslines3 RL 
models, train agents on the environment 

3. Tune the hyperparameters and cross-validate to 
maximise our model rewards and accuracy 

• Vary the demand type, vary between 
discrete and continuous  

• Obtain reward graphs, loss graphs 
 
Methodology 

1. Generalised Supply Chain Model 
For this study a simple 2-echelon supply chain was 
modelled and implemented into a custom OpenAI 
gym environment, that can be easily generalized. 
The environment can be described by the main 
supply chain class with a gym wrapper to simulate 
the initialisation, reset of the environment and step 
function for each given period. The gym wrapper is 
key to model StableBaselines3 algorithms; it 
provides easy implementations to policies, setting 
up and resetting environments as well as being easily 
able to make changes to the supply chain. This 
includes varying the key echelon parameters sent to 
the supply chain such as product sale/cost, lead 
times, storage costs, storage capacities and material 
costs. However, more importantly, it also allows for 
changes to the entire supply chain class including the 
number of echelons, nodes per echelon and the given 
number of products a customer can demand. 
 
The structure of how a simulated supply chain is run 
is similar to the structure of any RL algorithm. The 
environment is observed within the observation 
space. Below is the supply chain state which is 
comprised of all existing inventory of all echelons 
with the given demand of products concatenated.  
 
 

𝐼1 𝑑1,1
𝐼2 𝑑1,2

𝑑2,1 … 𝑑𝑖,1
𝑑2,2 … 𝑑𝑖,2

⋮ ⋮
𝐼𝑛 𝑑1,𝑛

⋮ ⋱ ⋮
𝑑2,𝑛 … 𝑑𝑖,𝑛

 

 

(9) 

 
Where 𝑑𝑖,𝑛 represents the demand for product 𝑖 of 
echelon 𝑛 and 𝐼𝑛 represents the array of inventories 
at echelon 𝑛. The agent, using a trained policy or 
value-based function (or both), observes the state 
and reward to output an action that becomes an order 
request sent to the previous echelon. This action is 
within the limits of the action space and holds the 
demand for a given product. 
 

[𝑂1,2, 𝑂2,3, 𝑂3,4  ⋯  𝑂𝑛−1,𝑛] 
 

(10) 

Where for a given product order  𝑂𝑛−1,𝑛 represents 
the order from echelon 𝑛 − 1 to 𝑛.  It is important to 
note both action space and observation spaces are 
different which tailors the RL algorithms that can be 
applied, with more details in the following section. 
 
The action is sent via the step function which 
updates the environment, returning the new state 
(observation) and reward from the reward function. 
Appendix A can be referred to and is the gym 
environment used for this study. (Note the appendix 
environment setting is set for discrete constraints, 
taking stochastic demand for our base policy.) The 
environment is as described in the problem 
statement. 
 
In this process, the demand was described as both 
stochastic and seasonal. Randomness can be applied 
in programs via the use of pseudorandom number 
generators. The program uses packages random and 
gauss to help achieve the continuous demands. This 
is supported by random seeding to ensure values are 
stochastic in nature. Seasonal demand is achieved 
using a sinusoidal curve to map the bounded 
demands to this curve. This helps achieve rising and 
lowering demands multiple times throughout the 
entire period. Whilst the stochastic demand exhibits 
stochastic and stationary behaviours seasonal also 
exhibits along with periodicity, stochastic 
behaviour. 
 
Continuous and discrete are also calibrated 
throughout the environment. How the environment 
changes from discrete to continuous is the following 
changes. First, changing the actions and observation 
space constraint to float data type. Also changing 
our discrete stochastic and seasonal demand to take 
floating values. On top of this, the state function 
should hold continuous values and the lead times can 
be selected via a continuous dataset. The action data 
type provided by the agent must be changed via the 
hyperparameters to output an order within its limits 
to any degree of accuracy. 
 
Rule-based methods are a simple solution for the 
supply chain optimization problem, where for 
example a fixed quantity will be ordered when the 
inventory position drops to the reorder point. These 
policies are easy to understand and implement, so 
they have been widely used in practice. Therefore, 
the simple agent policy, shown below, will be used 
as a baseline to compare the performance of the RL 
algorithms. 
 

 
Figure 3: Simple agent policy used as baseline case 
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The simple agent observes the current storage and if 
the demand is greater than the storage it places an 
order for the number of echelons multiplied by the 
demand. Otherwise, if the storage is greater than two 
times the demand the agent places an order for 80% 
of the demand. This rule-based method is functional; 
however, it is not efficient and it’s clear the storage 
costs and losses incurred can be optimized. 
 
As the aim of this study is supply chain optimization, 
model-free policy optimization RL algorithms were 
adapted and evaluated. Specifically, this paper 
investigates the Advantage Actor-Critic (A2C) and 
Proximal Policy Optimization (PPO) algorithms. 
The decision-making process behind selecting these 
algorithms is outlined below. 
 

2. Reinforcement Learning Taxonomy 
The landscape of algorithms in RL is vast and an 
exhaustive list of all the current methods would be 
futile. Therefore, a taxonomy of a few distinguished 
modern RL algorithms is illustrated in figure 4. 
 

 
Figure 4 - A non-exhaustive, but useful taxonomy of 
algorithms in modern RL (OpenAI, 2018) 
 
Further research into the algorithms was conducted 
and is outlined below to help decide which of the 
algorithms would be best to adapt and implement 
into the supply chain model. 
 

2.1 Model-Free v Model-Based 
There are two main groups of RL algorithms: 
Model-based algorithms and model-Free 
algorithms.  
 
Model-based algorithms use the transition and 
reward functions to estimate the optimal policy. 
They are utilised in situations where the agent has 
access to a model of the environment and has full 
knowledge of how it responds to different actions, 
with probabilities and subsequent rewards attached.  
Model-based algorithms allow the RL agent to plan 
ahead, and therefore for static environments where 
everything is fixed model-based RL algorithms are 
best suited. 
 
Model-free algorithms on the other hand estimate 
the optimal policy directly from the agent’s 
experience and interaction with the environment. 
The agent learns by altering its behaviour and 

observing the different kinds of rewards it receives. 
They can function without access to any transition 
or reward functions, and with limited knowledge 
regarding the dynamics of the environment. Model-
free RL is more applicable in circumstances 
involving incomplete information about the 
environment. In the real world, we rarely have fixed 
environments. Supply chains have a dynamic 
environment with many internal and external 
uncertainties, with stochastic and unpredictable 
demands. Often model-free, Deep RL based 
algorithms do not require the transition probability 
distribution to operate. Hence, they are able to make 
decisions without a thorough model of the 
environment. In such scenarios, model-free 
algorithms outperform other techniques. 
 

2.2 Policy Optimization v Q-Learning 
Delving into model-free RL there are a further two 
key groups of algorithms: Q-learning and Policy 
Optimization. 
 
Q-learning is an off-policy method, implying the 
policy the algorithm optimizes differs from the 
policy the agent uses to select an action. The 
algorithms learn the action-value function and 
determines the policy using it. They are also 
deterministic, meaning that the methods will always 
give the same output, given the same input. Due to 
this, some sort of ∈-greedy policy needs to be 
implemented to allow exploration of the 
environment. 
 
Off-policy algorithms often tend to lead to severe 
instabilities when optimizing policies and using data 
off-policy only tends to be useful if the environment 
in which the agent resides is slow (OpenAI, 2018), 
so you want to squeeze as much information from 
each experience the agent has. 
 
Policy gradient algorithms are on-policy methods 
that directly optimize the same policy that the agent 
uses to select the actions it takes. The agents update 
the network’s weights to reinforce the probability of 
actions with positive rewards and weaken the 
inclination to take actions with negative rewards. 
They are also stochastic so unlike off-policy 
methods, they can give different outputs given the 
same input. The action is sampled from the 
distribution outputted from the network (Salwiczek, 
2021). Therefore, exploration of the environment is 
not an issue and no epsilon greedy strategy is 
required. 
 
Policy gradient algorithms tend to be less 
hyperparameter sensitive and have more stable 
convergence properties (OpenAI, 2018). If the agent 
is learning from a fast environment so that 
observations are easy to obtain or if you can run 
many instances of your environment, like in the 
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supply chain optimization model, then an on-policy 
method is the preferred method. 
 

2.3 Policy Optimization Algorithms 
There are four major modern policy optimization 
Deep RL algorithms: (Reinforce) policy gradient, 
A2C, PPO and Trust Region Policy Optimization 
(TRPO).  
 
Policy gradient functions employ stochastic gradient 
descent to converge to the optimal policy. After 
looking into the specifics of the algorithms we found 
it was sample efficient. One rate-limiting aspect of 
the reinforce policy gradient algorithm is that the 
gradient estimate at each step is only valid for the 
current policy and therefore only one step of 
gradient descent can be carried out per trajectory 
batch, otherwise the policy can fluctuate wildly and 
destroy training. 
 
The TRPO algorithm was designed, motivated by 
this and is able to do multiple gradient descent steps 
by looking at the KL divergence of its distributions 
between policies and constraining the steps of 
optimization close to the original policy. TRPO does 
this by determining a maximum step size to be 
explored around the original policy and imposing a 
hard trust region constraint which has to be solved 
with second-order methods (Hui, 2018), whereas the 
PPO algorithm does this by doing first-order 
optimization and clips the objective function 
between a range eliminating reasons for the new 
policy to fluctuate drastically away from the original 
policy. (OpenAI, 2018). 
 
Therefore, the reinforce policy gradient is 
eliminated in favour of the other algorithms for this 
problem. Looking into the algorithms even deeper, 
it was found that TRPO, although suitable when 
dealing with continuous control tasks, is not 
effective with algorithms that share parameters 
between a policy and value function (Gujar, 2018) 
and lacks a faster convergence rate compared to 
PPO. Therefore, TRPO was also eliminated and 
A2C and PPO were selected as the RL algorithms 
that would be adapted into the supply chain model. 
 

2.4 A2C and PPO 
The two core types of RL algorithms are policy-
based and value-based. Actor-Critic algorithms 
merge these methods by explicitly representing the 
policy independent of the value function. The actor 
outputs the best action by taking the state as an input, 
whereas the ‘critic’ evaluates the action and portrays 
how good it is to be in this state. 
 

 
Figure 5 - Actor-Critic Model with TD error 

 
The critic computes the action value function (Q-
value), and outputs the resultant temporal difference 
(TD) error, which in turn informs the actor how to 
adjust. If the TD error is positive the inclination to 
take that action is reinforced for the future, and if the 
TD error is negative the action is discredited. 
 
Both actor and critic are composed of separate 
function approximators, and the training is 
performed using gradient ascent to find the global 
maximum and update their individual weights at 
each step.  
 
Two popular improvements of Actor-Critic models 
are the A2C and PPO models where the function 
approximators are non-linear artificial neural 
networks. Action value functions can be 
decomposed into the state value function 𝑉(𝑠) and 
the advantage value 𝐴(𝑠, 𝑎). Advantage functions 
depict how better an action is compared to others at 
a given state and help stabilize the model by having 
the critic learn the advantage values instead of the 
action value, which reduces the high variance of 
policy networks. A2C uses these advantage 
estimates to calculate the value proposition for each 
action state pair (Mnih, et al., 2016), resulting in 
faster training. 
 
The major distinction between A2C and PPO is the 
loss function (Lisi, 2021). Policy optimization 
algorithms employ stochastic gradient descent to try 
to optimize a policy objective function. PPO 
incorporates a clipped objective function: 
 

 
𝐿𝐶𝐿𝐼𝑃(𝜃) = Ê𝑡[min (𝑟𝑡(𝜃)Â𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)Â𝑡)] 

 
 

(11) 

Where 𝜃 is the policy parameter, Ê𝑡 is the empirical 
expectation over timesteps, 𝑟𝑡 is the ratio of the 
probability under the new and old policies (from 
importance sampling), Â𝑡 is the estimated advantage 
over time and 𝜀 is a hyperparameter (usually 0.1-
0.2). 
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By introducing the clip function PPO directly 
improves the training stability of the policy and aims 
to make the largest possible improvement of the 
original policy in a single step, without overdoing it 
and taking a huge leap that could potentially destroy 
the training. The algorithm uses a ratio that indicates 
the difference between our current and old policies: 
 

 

𝑟𝑡(𝜃) =  
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

 

 
 

(12) 

and then clips this ratio between a specific range 
(1 − 𝜀)(1 + 𝜀). Empirically, it’s clear smaller steps 
in policy updates during training are more likely to 
converge towards an optimal policy. A large step in 
a policy update can result in requiring a long time to 
stabilise and recover, if it ever does. 
 
Both models are implemented via StableBaselines3 
and trained up to a maximum of 2 million timesteps, 
with models saved periodically and uploaded to a 
tensor board. The key here is being able to cross-
validate and hyper-tune the necessary parameters for 
the best model for our environment. Documentation 
around this library supports an open-source 
hyperparameter optimization framework to 
automate hyperparameter search (Optuna, 2022).  
 
 
Results 
To conduct an assessment on the performance of the 
two proposed methods, the environment of the 
supply chain model is run on different settings. 
These settings include changing three main factors. 
This includes exploring how the seasonal demand 
varies alongside stochastic demands, observing the 
difference when all constraints, inputs and outputs 
are compared from continuous and discrete and 
lastly, how both proposed algorithms perform 
against the baseline simple agent.  
 
These are run on our multi-echelon environment for 
up to two million time steps and terminate when the 
loss function converges and is minimal. Time 
complexity is a limitation, as models are run under 
CPU. Maximum timesteps per episode were set at 
200 with the number of time steps per batch set to 
2048.  
 
Firstly, hyper tuning the parameters is crucial. They 
were tuned for each model, using a random sampler 
and median pruner, 2 parallel jobs with a budget of 
1000 trials and a maximum of 50000 steps. The 
general parameters for our network were as follows. 
 
 
 
 

Table 1 – Hyperparameters of our MLP network 
Hyperparameter Tuned Value 

 Learning Rate 0.00003 
 Activation 

Function (Output 
Layer) 

ReLU 

Hidden Layer 
Activation 
Function 

ReLU 

Policy  MLP 

 Number of 
episodes 

10 

 
For our Actor-Critic models, using the tensorbaord 
cross-validation method, the further following 
Actor-Critic parameters were tuned. 
 

Table 2 – Hyperparameters of our MLP network 
Hyperparameter Tuned Value 

Loss Function MSE 
Clipping 

Fraction Epsilon 
(PPO) 

0.2 

Batch Size 2048 (continuous) 
512 (Discrete) 

Epochs 10 

Number of 
episodes 

10 

 
These hyperparameters were varied and tested to 
value the model that helped produce the highest 
cumulative reward, quickest convergence, and 
lower loss values per period. Using tensorboard 
extensive features, the mean reward per period 
illustrated that many time steps could achieve a 
high reward model. Most models with time steps 
above 200,000 had similar rewards. 
 
The following case is for discrete data sets in an 
environment with stochastic demand. (Note: the 
random agent is a control variable for reference of 
the performance on our environment if a random 
action from the action space was to be taken.) 
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Graph 1 – Reward per step, using discrete data and 
stochastic demand 

 
The following case is for the continuous data on all 
agents on the environment with stochastic demand 
 
Graph 2 – Reward per step, using d data and 
stochastic demand 

 
 
The following case is for the discrete data on both 
RL agents on the environment with seasonal 
demand. 
 
Graph 3 – Reward per step, using discrete data and 
seasonal demand 

 
 
The following case is for the continuous data on both 
RL agents on the environment with seasonal 
demand. 
 
 
 
 
 
 
 
 

Graph 4 - Reward be step, using continuous data 
and seasonal demand 

 
 
Using the loss function built into PPO and creating 
a similar graph for A2C the following is observed. 
(Note: similar trends are established in all settings.) 
 
Graph 5 – Loss function of both A2C and PPO 
models trained over 500,000 timesteps 

 
  
 
Discussion 
The results clearly show in all models and tests that 
the model-free RL algorithms outperform the simple 
agent policy. This is mainly due to the interaction 
with the environment and the hyperparameters used. 
 
Both RL models show rewards higher than the base 
model, with a plateau as the losses start to converge 
and the best policy is found. This is the attempted 
solution to the optimality equations.  
 
In many cases, A2C has higher volatility, but 
performance is somewhat similar to PPO due to the 
similarity in nature of both algorithms. Since the 
difference is the fact that PPO clips the objective 
function so that step changes from the previous 
policy are minimal, it is able to maintain a lower 
volatility in its performance across the time steps. 
Over larger timesteps, both models obtain similar 
rewards. 
  
The base model seems to show the highest volatility 
in its rewards due to its limited functionality. When 
more extreme demands are made the inventory will 
be full of existing backlog orders and the rewards are 
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hindered in the penalty aspect of the function. This 
causes periods of extreme drops in rewards. 
Similarly, when demands are not as extreme it 
matches the orders exactly to the per demands with 
sufficient inventory. This is exhibited in both 
seasonal and stochastic demands. But the rewards 
for this throughout the period are capped. Therefore, 
the highest reward is limited by the rewards function 
where the weights of both the sale and cost of 
inventory heavily negate themselves.  
 
The seasonal demands compared to the stochastic 
show better performance but are less consistent with 
higher volatility. This is because seasonal demands 
have a greater shift in the extreme values of the 
action space, ultimately having a bigger impact on  
reward considering the policy each model learns in 
the previous step. The PPO algorithm, due to the 
clipping function, shows an even more stable 
performance when compared to A2C. 
 
Conclusion 
In this paper, an investigation is carried out on the 
use of reinforcement algorithms, specifically PPO 
and A2C, on a supply chain optimisation problem. 
A simple 2-echelon supply chain process is built 
under an OpenAI gym wrapper. This allowed us to 
vary three key settings to test the performance of 
each RL model against the base model. These 
settings include changing three main factors and 
exploring how the seasonal demand varies alongside 
stochastic demands from customers, and observing 
the difference when all constraints, inputs and 
outputs are compared from continuous and discrete 
testing. Key conclusions are highlighted as follows. 
 

1. Both RL models in all cases outperform the 
base simple agent. PPO performs best with 
the greatest reward per unit step and less 
volatility due to its clipping function. 

2. Over long periods PPO and A2C, due to 
their similar nature, perform evenly. 

3. Hyperparameters play a crucial role in 
optimising StableBaselines3 algorithms, as 
they allow for better learning and heavily 
influence rewards. 

4. Seasonal demand seems to have a greater 
impact on the volatility of the reward 
functions on any model. 
 

The results from the overall study are promising and 
demonstrates that both the two RL methods always 
converge to a better policy than the simple agent 
policy, in all the different settings mentioned above. 
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Abstract 
Aqueous silica particles in colloidal suspension in mixtures of polyethylene oxide (PEO) and water, widely known as shake-gels have 
unique rheological properties. This mixture of materials can undergo a discontinuous step increase in viscosity of up to ten times its 
original value when subject to shear stress (such as shaking). This transforms the initial liquid equilibrium state into a gelled material, 
with viscoelasticity sufficient to support its weight. After the gelled state is reached, and no more shear is applied, the gelled state 
reverses back into a liquid, with this process known as relaxation. As interesting as these materials might sound, they have found 
limited application in both industrial and domestic settings. To promote increased applicability of shake gels, a series of experiments 
were conducted to evaluate the rheological and qualitative properties of shake gels when a quaternary component (or additive) was 
introduced. Additives assessed were the surfactant sodium dodecyl sulfate (SDS); vanillin, a phenolic aldehyde responsible for the 
taste and aroma of vanilla; and an ionic salt, sodium chloride. 
 

At certain concentration ranges of additives, shake-gels formed with additional qualitative properties to that of ‘normal’ shake-gels, 
including change in critical shear rate, relaxation time, foaming, scent, and even gelatine-like properties. The rheological behaviour of 
these new shake gels was most dramatically impacted by the addition of SDS, where viscosity was subject to a significant increase 
at all measured concentrations with relaxation time dramatically increased and the critical shear rate decreased. 
 

Controlling the various aspects of the shake-gel such as the critical shear rate (CSR), relaxation time, smell, and even colour 
allows for a broader range of future applications, perhaps opening research to places previously not thought of. Injecting additives 
such as SDS in shake gels have a varying effect on the physical properties of a shake gel. Rheological measurements such as critical 
shear rate and relaxation time can be used as benchmarks to test these varying conditions. Unfortunately, there is no widespread use 
for shake-gels at the moment, but there certainly could be a place in domestic products. 
 
 
Introduction 
Shake-gels, first discovered in the early 2000s, are mixtures 
containing a high molecular weight polymer with a colloidal 
suspension of a silica-based compound in an aqueous 
environment. These shake gels show non-Newtonian shear-
thickening behaviour in the liquid state but differ from the classic 
behaviour of a shear-thickening fluid. This is presented in shake-
gels by a jump discontinuity in viscosity when subjected to a 
shear rate sufficient to activate the gelation process, whereby 
the low viscosity, almost colourless liquid transforms into a 
highly viscous gel with high elasticity, sufficient to support its 
weight. This gelatinous state also shows opposing non-
Newtonian behaviour to that of the liquid state in that shear-
thinning behaviour is observed. When shear stresses are 
removed, the gelation event is followed by a period of relaxation 
whereby the gel reverses back to the low-viscosity liquid in 
varying periods ranging from seconds to weeks; unlike the 
gelation event which shows a jump in viscosity, relaxation is a 
gradual process. 
 

The literature on relaxation time is well established with the 
impact of mixture composition, temperature and pH being the 
common focus of studies; however, one area of shake-gels 
lacking research is the impact of additives on the properties of 
shake-gels. Having limited application in a few areas such as the 
domestic market; with the addition of additives to shake-gels, the 
potential for application skyrockets as these gels may be tailored 
and fine-tuned to meet specific requirements in various 
industries and household environments. 

 
Upon activation of this ‘gelation’ event by shaking, one may 

notice a stimulating effect, accompanied by satisfaction, which 
is achieved by converting a transparent, low-viscosity liquid to 
an elastic type gel in a matter of seconds; so much so, that 

during this research project, visitors that entered the lab started 
to ‘play’ with the shake gels, many if not all wanted to continue 
shaking/playing with these gels. 
 

A potential application of a shake gel is as a children’s soap, 
hence we explored how the addition of sodium dodecyl sulfate 
(SDS), an anionic surfactant, commonly found in many soaps, 
toothpaste, shampoos, etc., due to its ability to act as a foaming 
agent and its thickening ability [28]. For the varying array of 
potential domestic use, testing the effect of SDS as an additive 
in shake gels is of great interest. Also tested as additives were 
vanillin the molecule responsible for scent in vanilla extract and 
NaCl for its use as a preservative. in designing new household 
products in the children’s sector, not only will these products be 
fun to play with for a child, but they may pose as a solution ito 
bathing in children with sensory issues, with the soap viewed as 
a friendly toy rather than an adversary, a common observation 
of children with these types of conditions. 
 
Background 
To convert a silica-PEO mixture into a gel, an applied shear 
force is needed. This phenomenon shown in shake-gel is a 
unique type of shear thickening. Shear thickening fluids are 
those that show an increase in viscosity when subject to an 
increasing shear rate.  
 
When a shear force is applied to a shake-gel mixture, the PEO 
chains that exist in solution are highly coiled due to the 
interaction with water [30], a shear force enables the expansion 
of the coiled chains, into elongated polymer chains that make 
available more active adsorption sites to adsorb onto the silanol 
groups present on the surface of silica particles. Once the PEO 
is adsorbed onto the silica particles, further shear allows access 
for more PEO chains to be adsorbed to the silica, leading to 
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cross-linking and polymer bridging, which results in large 
clusters of silica-PEO that make up a silica-PEO network that 
expands the entire solution resulting in the gelled form of the 
shake gel.  
 
Once the shear force is removed from the shake-gel, the PEO 
desorbs from the silica reducing the extent of bridging and the 
polymer chains return to their original coiled form gradually until 
the solution reaches its original liquid equilibrium state. The time 
that is taken to transition back from the gelled to the liquid state 
is known as the relaxation time which is dependent on several 
factors such as temperature, the concentration of PEO and of 
silica, pH, and molecular weight, which has been studied 
extensively [2,7,8,9]. 
 

There are many papers exploring the effect of these factors 
on relaxation time, however, Cabane, et al. (1997) [1] is thought 
to have been the first to discuss the shake-gel and postulate that 
there should be further structural studies into shake-gels since 
their properties can be manipulated quite easily. 
 

Due to the formation of interconnected 3D aggregates and 
the bridging effect, shake gels can sometimes support their 
weight once a shear force is applied. As the coverage of PEO 
increases, the laponite particles become saturated, and it no 
longer forms a shake-gel. The behaviours observed with 
laponite-PEO mixtures are also applicable to silica-PEO 
mixtures, except laponite holds its structure better [2]. 
 

Experiments can be conducted using these laponite-PEO 
mixtures to determine the effect of PEO molecular weight on 
critical surface coverage. It can be concluded that shear-induced 
gelation occurs at laponite concentrations of above 1.25 wt.%, 
and the amount of PEO required for formation is between 0.2 
wt.% and 0.3 wt.%. Below the formation range of PEO, the 
mixture says a liquid. A higher molecular weight PEO mixture 
decreases the surface coverage and creates a ‘weaker’ overall 
shake-gel. Also, increasing the molecular weight of PEO above 
6x105 g/mol does not severely affect the physical properties of 
the shake gel [3]. 
 

Two sources of silica are described in the literature, those 
being Laponite possessing disk shape silica particles and Ludox 
which has spherical-like silica particles. Particle shape impacts 
the formation of shake gels, with shake gels containing laponite 
existing at narrower concentration ranges compared to that of 
Ludox.  

 
At different PEO concentrations, a weak gel could be 

formed, or perhaps an irreversible phase separation (gel + 
water). It is suggested that extensional shear is more important 
in shake-gel formation than simple shear and can be 
investigated by sending the shake-gel through a fine needle [4].  
 

There is a distinct transitional state when a shear force is 
applied to a shake-gel between it being a liquid and a gel and 
increasing temperature can decrease this gelation time[2].  

 
Increasing the applied shear rate also decreases the 

gelation time and decreases viscosity [4,5,10]. During this 
transitional state, the viscosity of the mixture increases by 
several orders of magnitude while forming a shake-gel. 
 

When given a shake-gel mixture at a low pH, it becomes 
flocculated and adhesive, and the shake-gels do not form due to 
the weak interparticle repulsion and the presence of too many 
hydrogen atoms [6]. The mixture does not exhibit the same 
transition at higher pH since there are fewer hydrogen atoms. 
Relaxation time also happens to be longer at lower pH, and 
shear thickening occurs at a pH range of 8-9.9 but not outside 
this range. 
 

Increasing the concentration of PEO in the solution has a 
directly proportional effect on relaxation time unless the 
concentration is between 0.1 wt.% and 0.2 wt.% [7]. Increasing 
silica concentration also exponentially increases relaxation time, 
and it seems as if increasing temperature decreases relaxation 
time linearly [9]. Making use of small angle X-Ray scattering 
analysis (SAXS) and dynamic light scattering analysis to track 
the structural development of the silica-PEO mixtures showed 
that the correlation length of PEO chains returned to their 
original states after 10 to 20 minutes [8]. 
 

There exists a specific set of concentrations that produce 
excellent shake-gels, specifically 15 wt.% to 35 wt.% of silica, 
and 0.1 wt.% to 0.5 wt.% of PEO. It is also understood that the 
effect of PEO concentration on the half-life of the shake-gel 
follows a similar curve, which can be approximated by the 
formula 813.09x2-420.78x+59.011. The relaxatio time of the 
shake-gel also seems to increase with higher silica 
concentration. As for temperature, higher temperatures lower 
relaxation time since bonds are more easily breakable [9]. It is 
also known that high PEO molecular weights and high silica 
concentrations promote the formation shake gelsels. Tnhis 
evidence further supports the theory that polymer bridging of the 
PEO is the primary mechanism behind the formation of shake 
gels [10]. 
 

This research project aims to augment the properties of the 
shake-gels to find the ideal blend of Ludox and PEO to create a 
fascinating children’s soap using different additives such as salts 
and surfactants. These shake-gels will be created using Ludox 
TM-50 colloidal silica mixture, and average molecular weights of 
PEO varying from 6x105 g/mol to 2x106 g/mol. 
 

Methodology 
All shake-gel samples were formulated with the three most 
common components found in the literature: colloidal silica as 
Ludox TM-50® [11] purchased from Sigma-Aldrich, containing 
49.9 wt.% of silica, a molecular weight of 60.08 g/mol, and 
density of 1.4 g/mL at 25oC [11]; pH of Ludox was measured as 
9.0 in a lab with ambient temperature ~ 25oC. PEO is also from 
Sigma-Aldrich with an average molecular weight of 900,000 
g/mol, the density of 1.21 g/mL at 25oC and containing an 
inhibitor BHT in the range of 200-500 ppm which prevents the 
autoxidation of the polymer [12,13]. While the water was present 
in the Ludox suspension at 50.1 wt.%, additional water was 
needed to reach the required concentrations of each 
component; deionised water sourced from Millipore-Q System 
located in the department of Chemical Engineering, Imperial 
College London, was used for this purpose. 
 

In addition to the base shake-gels, the additives explored 
were: the surfactant sodium dodecyl sulphate (SDS) purchased 
from Sigma-Aldrich, with a purity > 98.5%, SDS has a molecular 
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weight of 288.38 g/mol and a critical micelle concentration in the 
range of 7 – 10 mM at 20 – 25oC [14]; sodium chloride purchased 
from BDH chemicals at a purity of 99.9%, density of 2.5 g/ml at 
25oC and a molecular weight of 58.44 g/mol; vanillin (the 
component that pertains to the aroma of vanilla) purchased from 
sigma Aldrich with a purity of 99%. 

 
All materials purchased were used as-is from the 

manufacturer with no further processing or refinement.  
The choice of additives relates to the potential application of 
shake-gels for use as children’s soap. A surfactant sodium 
dodecyl sulfate (SDS) was investigated for its foaming ability, an 
essential property required for soaps to maximise the surface 
contact of the soap with the skin. Vanillin was tested as an 
additive for its scenting ability since soap requires a pleasant 
smell. NaCl was the final additive selected, it was noticed when 
formulating shake gels w/o additives, that over an extended 
period shake gels in sealed containers lost their properties as a 
shake gel, with NaCl being a common preservative in food 
products for its ability to reduce the amount of water unbounded 
to allow for the growth of biological microbes  
 
Samples were weighed on an OHAUS Pioneer Analytical 
balance precise to 3 decimal places (i.e., an absolute error of ± 
5x10-4 g). First, high-concentration PEO solution was prepared 
at 1.6 wt.% which was later diluted further before formulating the 
shake gels. This was achieved by the slow (to prevent 
agglomeration) addition of PEO to DI water stirred by a magnetic 
stirrer and a high rotational velocity.  
 
Additives were also first dissolved into a base solution before the 
formulation of the shake gel in the same manner as the PEO 
solutions. The additive solutions were formed at SDS solutions 
of 20 wt.%, a Vanillin solution of 0.9422 wt.% and a NaCl solution 
of 0.2 wt.%. 
 

All solutions used to prepare the samples were kept for no 
longer than 48 hours to prevent concentration of the solutes due 
to evaporation of water, to combat this issue within the 48-hour 
window, parafilm was placed over containers and sealed from 
the atmosphere to again prevent evaporation. Solutions were 
kept at room temperature to prevent degradation of the polymer. 
 

Before formulating the shake gel, the PEO base solution 
was diluted down to 0.4 wt.% with DI water; next, for shake gels 
containing additives the additive solution was added, then was 
mixed, and left to settle. The Ludox suspension was then added, 
which formulated the shake gel. It was found that following the 
initial mixing of Ludox into the solutions, the shake gel did not 
form but after being left in a closed container for ~24 hours, the 
shake gel solutions were established. 

 
Designing a product for children’s use in domestic environments, 
the aim was to formulate a base shake gel with a fast relaxation 
time for maximum appeasement, hence the aim was to create a 
shake gel with the lowest fraction of Ludox and the highest 
fraction of water, i.e., the most ‘dilute’ shake gel. Not only does 
this have the benefit of a fast relaxation time, but there are also 
positive implications on economic feasibility; a significant cost 
fraction of the shake gel comes from the Ludox/silica source, 
minimising this component concerning the total volume of 
shake-gel formulated, which helps to minimise production costs. 
 

A base shake-gel (BSG) was used as a reference sample to 
compare with the additive containing shake gels To find the 
‘most dilute’ shake gel composition, an intermediate weight 
fraction (between the established bounds of 0.25 to 0.5 wt.% of 
PEO was nominated at 0.4 wt.% and kept constant. Silica 
fraction was then decreased by substitution with DI water to 
make several shake-gels until a shake gel no longer formed, to 
establish a minimum concentration of Ludox needed to form a 
shake-gel at the selected PEO weight fraction. 
 

The final composition of the BSG was 0.400 wt.%, 20.615 
wt.% and 78.985 wt.% of PEO, silica, and water, respectively. 
To account for the change in composition upon the presence of 
a fourth additive, the mass of the additive was substituted by the 
reduction of the water content, for example, a sample containing 
0.5 wt.% of SDS meant the water mass fraction would be 
reduced to 78.485 wt.%. Reduction of the water content over the 
reduction of silica or PEO content was in an attempt to minimise 
the distortion in shake-gel properties due to a deviation from 
BSG composition. Water was not only the most abundant 
component in the BSG meaning a change in composition led to 
the lowest relative change in composition, but also water has the 
least impact on shake-gel properties compared to silica and 
PEO. 
 
All rheological measurements were performed on a Thermo 
Scientific™ (previously HAAKE™) MARS™ 60 modular 
rheometer platform with the recessed bottom coaxial cylinder 
(CC20 Ti) measuring geometry. This geometry consists of a 
serrated cylindrical rotor, that during measurements, is placed 
concentrically inside an also serrated cylindrical cup (CCB26-
C32/SE). The rotor possesses a recessed bottom, trapping air 
as the rotor is vertically moved into the cup containing the 
sample, this trapping of air prevents contact of the sample with 
the bottom portion of the rotor negating torque measurement 
influence, which would arise from contact to the bottom surface. 
A top recession is also present on the rotor and provides an 
overflow region for cases where sample volume exceeds the 
specified 17.2 ml, the excess volume (up to the point where the 
overflow is filled) is trapped in the top recession preventing any 
influence on torque measurements on that region. 
 

A double gap CC27 geometry was also a candidate for use 
in viscosity measurements, but its use was neglected as it is 
believed to have required a longer period to activate the gelation 
event. The CC20 Rotor and the CCB26-C32/SE Cup were 
chosen for the rheometer due to the serrations in both the rotor 
and cup, allowing for more shear stress so that the shake-gel 
can form in a reasonable amount of time. 
 

Calculation of the viscosity in rotational rheometry is 
performed using the following procedure: The shear stress 𝜏 is 
given by the equation: 
 

𝜏 = 𝐴 ⋅ 𝑀𝑑 ( 1 ) 
 
Where 𝑀𝑑  is the torque applied to the rotor and 𝐴 is a geometry 
factor given by the equation: 
 

𝐴 =
1

2 ⋅ 𝜋 ⋅ 𝑅𝑖
2 ⋅ 𝐿

 ( 2 ) 
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Where 𝑅𝑖 is the outer radius of the rotor and 𝐿 is the height of 
the cylindrical part of the rotor. This geometry factor specific to 
the recessed coaxial cylinder geometry used in the experiments, 
with the variation of this factor pertaining to the modularity of the 
equipment.  
 
The shear rate (or strain-rate) 𝛾̇ can then be determined by the 
following: 
 

𝛾̇ = 𝑀 ⋅ Ω ( 3 ) 
 
Where Ω is the angular velocity of the rotor and 𝑀 is a second 
geometry factor again specific to the recessed coaxial cylinder 
measuring geometry and is expressed in the following: 
 

𝑀 =
2 ⋅ 𝛿2

𝛿2 − 1
 ( 4 ) 

 
With 𝛿 denoting the ratio between the inner radius of the cup 
and the outer radius of the rotor. 
 
Finally, viscosity 𝜂 can be related to the shear stress and shear 
rate in the following: 
 

𝜂 =
𝜏
𝛾̇

 ( 5 ) 
[24] 

 
 
Typically, studies that measure gelation point nominate a 
constant shear rate and measure the time taken for the liquid-
gel transition to occur. However, the problem faced in this 
scenario was that a dramatic change in rheological properties 
arose due to the presence of certain additives (such as SDS) 
which lead to an issue in nominating a shear rate to measure 
gelation time.  
 
When subjected to a shear rate above 500 s-1, shake gels 
containing SDS instantly gelled and no distinct step change in 
viscosity was observed. Below a shear rate of ~900 s-1, the base 
shake-gel containing no additives and the other additive-
containing shake-gels would not gel independent of the amount 
of time the sample was subjected to shear. 
 

To combat this, a ramp (or linear) increase in shear rate was 
set up on the rheometer to measure the point at which a 

discontinuous jump from a liquid to a gel occurred this is known 
as the critical shear rate (CSR). Keeping the rate of increase of 
shear rate constant w.r.t time at 1.4 s-2, allowed for a comparison 
of relative minimum shear.  

 
Due to the sudden change in viscosity at the gelation point, 

the data acquisition needed to be sufficiently fast such that the 
viscosity change shows as an almost vertical line on a plot of 
viscosity-shear rate; the data acquisition used for these 
measurements was every 0.5 s; important to note is that while 
this rate of data acquisition was sufficient for the rate of shear 
rate increase used in these experiments if testing at a greater 
increase rate it is likely that a faster data acquisition would be 
required. 

 
Keeping the rate of increase in shear rate constant allows 

for the comparison of the shear rate value at which the gelation 
event occurs. An essential point to note is that time is also a 
crucial factor in the occurrence of gelation, thus running the 
experiments at a lower rate of increase in shear would likely 
result in the gelation occurring at a lower shear rate. 
 

To process the data and attain a shear rate at which the 
gelation occurred, the raw viscometer data was processed in a 
MATLAB script that used the gradient function. This script uses 
a central difference approximation between subsequent data 
points (except the first and last points where a simple difference 
is calculated, allowing for the output of vectors with dimensions 
equal to that of the input). From the output data, the maximum 
gradient (or differential) value for change in viscosity w.r.t. shear 
rate was extracted along with the corresponding shear rate at 
which this maximum gradient took place, this shear rate was 
deemed as the CSR. Figure 1 shows an example of the 
viscosity-shear rate profile obtained during a CSR 
determination; in this example, the CSR would have been 
determined to lie somewhere on the steep upwards gradient 
shown in the orange (gelation) section  
 

Due to the high data acquisition required to observe a ‘sharp’ 
step change, the data was subject to noise in the form of 
oscillations. To combat this, at points (other than where the step 
occurred), data were averaged to create a smooth plot. 
 
 
Once the critical shear rate for each sample was determined, a 
new template job was created that assessed the respective 
relaxation time of all shake-gel samples. To achieve this, the 
following procedure was created: the shear rate was initially set 
to 10 s-1 for three minutes to attain a baseline measurement of 
viscosity in which the sample is known to be fully relaxed; the 
shear was stepped up to 1100 s-1 (a shear rate that exceeded 
all critical shear rates previously determined) and kept constant 
for five minutes; finally, the shear rate was stepped back down 
to 10 s-1 and left to run, once the viscosity equalizes and returned 
to the initial baseline measurement, the job was terminated.  

Fig. 1. Example of a viscosity shear rate plot for a shake gel sample when 
subjected to a linear, continuous increase in shear rate. Showing the initial 
liquid, gelation and gelled states split by distinct regions. 

Gelled State 
(Shear-Thinning) 

Liquid Phase 
(Shear-Thickening) Gelation 
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The period from which the shear was stepped back down to 

10 s-1 to the point where the viscosity reached the initial baseline 
level was deemed as the relaxation time shown graphically in 
figure 2. This was determined mathematically using a MATLAB 
script that performed the following operations: first, the period in 
which overcoming of inertial effects was shown was extracted to 
minimise the error of the baseline measurement; noise that was 
present in the baseline measurement was accounted for by 
averaging of all points, hence the horizontal line show in the blue 
region in figure 2. Then, the baseline measurement average was 
extended in the time dimension to find the intersection with the 
relaxation curve, the time between the step down back to 10 s-1 
and the time at which the intersection point was found was 
quantified as the relaxation time. 
 
Results and Discussion 
The presence of all tested additives allowed for the formation of 
shake-gels, i.e., mixtures that possess the same unique 
rheological properties found in ‘normal’ shake-gels. As 
expected, there exists a finite concentration of each additive for 
which the typical shake-gel properties are maintained.  
 
The BSG showed qualitative properties consistent with that 
found in the literature such that, the colour of the liquid form saw 
a highly translucent white solution at low concentrations which 
upon application of shear a transformation to an opaque white 
gelled agglomerate with the relaxation time qualitatively 
occurring in a matter of seconds as desired.  
 

Contrary to the rheometer data which observed the 
relaxation time of the BSG as 1005.79 s, after hand shaking the 
base shake-gel, the gel seemed to relax within seconds of 
formation when shear was no longer applied. This disparity is 
likely due to the rheometer shear rate of 10 s-1 exceeding a shear 
rate that enables the maximum rate of relaxation. Other factors 
that explain the disparity in visual observation of relaxation vs. 
quantitative measures involve the geometry of the rheometer 
apparatus, such that the U-shape slowed down the relaxation 
due to a higher surface area to volume ratio meaning the 
desorption of PEO from the silica surfaces was slowed. 
 
At the BSG mixture composition tested in this work, SDS had a 
maximum concentration of 0.120 wt.%; above this point, the 
liquid form became too viscous to distinguish from the gelled 

phase with the gelation event not sufficiently evident to be 
classed as a shake-gel.  
 

As expected, the addition of SDS to the shake gels 
increased the viscosity of the liquid form of the shake gel at all 
concentrations with the viscosity seeming to be independent of 
the concentration of SDS in the first four samples containing 
weight fractions of SDS in the range (0.2, 0.4), but the samples 
containing an increase in SDS at 0.8 and 1.2 wt.% showed a 
dramatic increase in liquid phase viscosity. 
 

This research aimed to establish the potential for shake-gel 
in domestic applications, with one of those potential applications 
being as a soap for children. To be an effective soap, foaming is 
required to increase the surface contact between the soap and 
the area of the body that is being washed, with SDS being a 
common additive in domestic products to allow this foaming 
ability it was tested in shake 
 

Another interesting factor of the SDS containing shake-gels 
was observations in colour. In their liquid form, all the samples 
containing SDS were colourless, i.e., no hint of a white hue was 
shown to be present in the base shake-gel. After shaking and 
forming the gel, the SDS samples also showed a significant 
increase in transparency (decrease in white colour) as 
compared to the base shake-gel, with samples containing 0.20, 
0.24 and 0.28 wt.% showing a slight white tinge that decreased 
with increasing SDS concentration with the samples at 0.40, 
0.80 and 1.2 wt.% having no observable colour in their gelled 
form. 
 

An increase in SDS concentration above 0.4 wt.% showed a 
noticeable decrease in gel quality, in the sense that upon hand 
shaking a sample, while a gelation event did still occur, the 
cohesivity of the gel or formation of one large agglomerate was 
not as evident as in the base shake-gels and the SDS containing 
shake-gels at lower concentrations. 

 
As a point of comparison, the quantitative results of the BSG 

were a CSR of 991.81 s-1 and a relaxation time of 1005.79 s. 

 
  The trend shown in Fig. 3 can be split into three distinct regions: 
 

The first region is bound by the critical point shown as a 
maxima at the SDS concentration of 0.24 wt.% which can be 
defined as the critical concentration for the formation of polymer-
bound micelles (cpmc), below this point the concentration of SDS 

𝛾̇ = 10 𝑠−1 

 
𝛾̇ = 10𝑠−1 𝛾̇

= 1100𝑠−1 

Fig. 2. Example of a viscosity time plot for a shake gel sample when 
subjected to a multi-step change in shear rate. Showing the initial liquid 
baseline viscosity measurement, the gelation induction and relaxation time 
measurement. 

Fig. 3. A co-plot of both critical shear rate and relaxation 
time against SDS weight fraction (shown as a percentage). 
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is not sufficient to form polymer bound micelles, leaving the SDS 
anions freely existing in solution. 
 

The second region is bound by the cpmc and a second 
critical point is shown as a second (larger) maxima at an SDS 
concentration of 0.4 wt.%. This point can be defined as the 
polymer-bound micelle saturation point (spmc). Above the cpmc, 
the formation of polymer-bound micelles occurs; these micelles 
present a high-density anionic surface charge from the 
organosulfate head forming the outer region of the micelle as 
shown in Figure x. The polymer-bound micelles electrostatically 
repel one another resulting in the coiled form of PEO 
expanding/extending and elongating. This expansion occurs up 
to the spmc at which point the polymer chain is saturated with 
micelles. 
 

Region 3 defined concentrations at concentrations above 
the spmc, further addition of SDS results in the formation of free 
(unbounded) micelles. These unbounded micelles also present 
an anionic surface charge and electrostatically repel the 
polymer-bound micelles resulting in a contraction of the PEO 
chain back to its original shape. [23] 
 

Research conducted by Witte and Engberts [25] found the 
values of the cpmc and the spmc at 0.4 wt.% and 0.85 wt.% SDS 
respectively. However, these points were established from plots 
of both viscosity-concentration and viscoelasticity-
concentration. 
 

The value of these points for the SDS shake-gels tested in 
this study were found to be cpmc = 0.240 wt.% and spmc = 0.600 
wt.%. The lower value found for the cpmc compared to that found 
in the literature for PEO-SDS mixtures is likely due to the 
presence of silica, or more specifically the presence of the 
silanol groups on the surface of the silica particles. These silanol 
groups dissociate a proton when in an aqueous environment, in 
the following manner: 
 

−𝑆𝑖𝑂𝐻 ↔ −𝑆𝑖𝑂− + 𝐻+ 
 

leaving an anionic surface charge on the silica particles. 
Adsorption between silica and PEO occurs due to electrostatic 
attractions that form between these anionic silanol surface 
groups and the PEO chains. While partially shielded by the 
presence of Na+ ions in the Ludox suspensions and dissociated 
from SDS when in an aqueous environment, the anionic silanol 
groups explain the increase in cpmc whereby substitution of the 
silica adsorbed to the PEO chains requires an increased 
concentration of SDS to overcome the attraction between silica 
and PEO.  
 
The reduced value of spmc is also likely explained by the anionic 
silanol groups whereby substitution of silica particles by the SDS 
micelles results in free (or less adsorbed) silica, electrostatically 
repelling the polymer-bound micelles contracting the polymer 
chains, meaning the point at which the contraction begins to 
occur may be lower than the point at which the polymer is 
saturated with SDS micelles. 

 
This mode of action posed as an explanation for the 

increased viscosity and viscoelasticity in SDS-PEO solutions 
with increasing SDS concentration, which may also explain the 
change in CSR. For the gelation event to occur, shear is required 
to extend the PEO molecules from the coiled equilibrium state, 
allowing more area for adsorption to silica surfaces. At SDS 
concentrations between the cpmc and the spmc, the expansion 
of the PEO coils due to the presence of polymer-bound micelles 
reduces the required amount of shear to fully expand the PEO 
chains allowing for adsorption with silica surface at significantly 
lower shear rates. 
 

The polymer-micelle complex is broken down when subject 
to shear, this occurs at a shear rate when the hydrodynamic drag 
exerted on the polymer-bound micelle exceeds the force that 
binds the micelle to the polymer, essentially ripping the micelle 
off the polymer chain, analogous to how a sufficient wind speed 
is required for leaves to detach from the branch of a tree [15].  

 
The amount of force that binds a micelle to the polymer 

depends on the total number of micelles bound to the polymer; 
increasing the SDS concentration from the cpmc to the spmc 
leads to a decrease in the attraction between individual micelle-
polymer forces. 
 
Figure 3 shows a double plot of the CSR and the relaxation time 
of SDS containing shake gels. There is a strong relationship 
between critical shear rate and relaxation time. To quantify the 
correlation, the following statistical equation was used to 
calculate the correlation coefficient: 
 

𝑟 =
Σ(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

√Σ(𝑥 − 𝑥̅)2Σ(𝑦 − 𝑦̅)2
 ( 6 ) 

 
 
A correlation coefficient of r = 0.993 was calculated, suggesting 
a very strong relationship between CSR and the relaxation time. 
This implies that the interaction between SDS and PEO that 
accompany the gelation process occurs in reverse sequential 
order in the relaxation process. 
 

Upon the initial formulation of the vanillin containing shake 
gels, ‘good’ shake gels formed such that upon shaking they had 
excellent agglomeration into a gelled ball that relaxed quickly, 
and this was the case at all vanillin concentrations tested for 
shake gels. The colour of the shake gel on the initial mixing 
shake gels was similar to that of the BSG i.e., a translucent white 
in the liquid form transforming to an opaque white in the gelled 
state.  
 

Another observation following 24 hours of creating these 
shake-gels was a change in colour of all samples in the liquid 
state, where they had been found to have transitioned to a light 
red/brown colour; with the intensity of this browning increasing 
for the samples containing increasing concentrations of vanillin, 
hence it was evident that the colour change was due to a 
reaction occurring with the vanillin.  
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This colour change occurred due to the oxidation of vanillin 

which is known to happen in the presence of an alkaline 
environment [27]. This oxidation reaction may also explain why 
the shake gels containing large quantities of vanillin were 
permanently gelled the day following formulation. 

 
Not only was a colour change observed, but a change in 

rheological properties also accompanied this reaction. After 48 
hrs in the lab, a sample containing a greater concentration of 
vanillin that tested (at 0.317 wt.%) formed an inviscid permanent 
gel in its resting/equilibrium state those of which were excluded 
from any rheological measurements.

 
 

Vanillin present showed a slight impact on the CSR values 
as compared to the BSG, at concentrations of 0.082 and 0.129 
wt.% an approximate 10% decrease was seen; at intermediate 
concentrations of 0.177 and 0.224 wt.% a decrease of ~ 5% was 
shown; at the highest vanillin concentration measured at 0.271 
wt.% a more significant decrease of ~ 20% was shown. 

 

 
 

The interaction of vanillin with PEO and vanillin with silica 
has not been assessed in the currently available literature, but 
insights can be postulated from the assessment of its chemical 
structure shown in Figure 5. The presence of a hydrophobic 
aromatic ring is likely to interact with the hydrophobic regions 
present in PEO. This interaction may reduce the extent of coiling 
PEO at equilibrium in solution, leading to a reduction in shear 
required to fully extend the chain easing the formation of the 
silica-PEO network that pertains to the gelled state of shake 
gels. 

 

The low solubility of vanillin in water is reported as 11 mg/mL 
[26] and talks to the aforementioned hydrophobic nature of the 
vanillin molecule. F. Shakeel et al. measured the solubility of 
vanillin in different solvents including PEO-400 a polymer 
solvent containing molecules of PEO at a molecular weight of 
400 g/mol; they report an increase in solubility of vanillin in PEO-
400 at 4.29 x 10-1 as compared to that in the water of 11 mg/mL 
at 25°C [26]. This increased solubility of vanillin in a PEO solvent 
(as compared to water) affirms the speculation of hydrophobic 
PEO-vanillin interactions impact on the CSR. 
 
Relaxation time, at low vanillin concentration, was shown to 
have reduced compared to that of the BSG by ~ 20 to 40%, but 
at concentrations above 0.224 wt.%, a large increase in 
relaxation time is observed. A reason for this behaviour is that 
at high concentrations of vanillin the hydrophobic interactions 
between vanillin and PEO may present themselves in the 
gelled state and interrupt the breakage of the polymer-silica 
network that occurs during relaxation. 
 

Shake-gels would only form with the NaCl additive at low 
concentrations and this is likely due to the shielding of charges 
on the silanol group by Na+ ions, preventing the formation of the 
silica-PEO complex seen in the gelled state. 

 
The salt concentrations assessed were in the range (0.02, 0.12 
wt.%), and the upper limit was determined by an inability to form 
shake gels at greater salt concentrations. The intensity of the 
white colour associated with the liquid state, increased with 
increasing salt concentrations up to 0.12 wt.%. 
 

Above a salt concentration of 0.12 wt.% and below 0.60 
wt.%, a milky white emulsion formed that when subjected to 
shear saw no transition into the gelled state.  

 
At salt concentrations exceeding 0.60 wt.%, a phase 

separation was observed, whereby a single white agglomerate 
coexisted with a colourless liquid; this phase separation is 
known as the cloud point and is dependent on the salt 
concentration [17]. In non-ionic surfactants and glycols such as 
PEO, glycol solutions generally show a reduction in cloud point 
in more saline fluids, thus a shake gel at 0.6 wt.% reduces the 
cloud point of the shake-gel mixture to approximately 25 oC (the 
lab temperature in which the samples were prepared), which is 
consistent to what was found at high concentrations of NaCl in 
shake gels. 

Fig. 4. A co-plot of both critical shear rate and relaxation 
time against Vanillin weight fraction (shown as a 
percentage). 

Fig. 5. Skeletal structure of Vanillin 

Fig. 6. A co-plot of both critical shear rate and relaxation 
time against NaCl weight fraction (shown as a percentage). 
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One observation made in this study with shake-gels that is 
seldom mentioned in the literature is the loss of shake-gel 
properties over time in those formed without additives.  
 

24 hours after the initial formulation (of shake gels without 
additives), the expected shake gel properties are seen with the 
change from a low viscosity to an almost colourless liquid to a 
highly viscous agglomerated white gel. When left to sit for an 
extended period of time (approximately 2-3 weeks), found a loss 
in this ability to undergo gelation, with shake gels remaining in 
their liquid state when subjected to shear and this was true for 
all samples of shake-gels tested without additives. This is of 
concern when considering a shake-gel as a marketable product 
that may be held in stores for an extended period of time, as a 
loss in functionality leads to the loss of the selling point of the 
product. 
 

However, in the case of the salt and the SDS containing 
shake-gel samples, this loss of shake-gel properties was not 
observed. These samples preserved their shake-gel ability over 
a kept period of several weeks. This is an essential finding when 
considering applications of shake-gels and furthers the potential 
of its use for both domestic purposes and industrial applications. 
 
The error associated with weighing the samples arises due to 
the ± 0.0005 g inaccuracy of the balance. To quantify the relative 
error associated with the mass balance, the following is an 
example of a relative error calculation associated with the 
measurement of 5.007 g of PEO solution (the amount used in 
each shake-gel sample).: 

 
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =

0.0005 𝑔 × 2
5.007 𝑔 × 100 = 0.020 % 

 
An error this small is unlikely to have impacted either the 
qualitative or quantitative properties of any shake-gel sample. 
This error can be further reduced by the measurement of larger 
quantities of individual components of the shake-gel. 
 
The absolute error associated with Thermo Scientific rheometer 
measurements is ± 0.000005 Pa·s. To put this error into 
perspective, for a viscosity measurement of 10.20489 Pa·s 
(lowest recorded viscosity in all of the samples), the relative error 
is in the order of 10-5. 
 
According to Sigma-Aldrich’s website, the Ludox TM-50 
suspension has a ‘quality level’ of 200. This denotes increased 
control over a substance with a standard 100 quality level (with 
the scale ranging between 100-600 in steps of 100). Sigma-
Aldrich gives the purity of the Ludox TM-50 suspension a range 
between 49 to 51%. To put this error into perspective, the 
quantity of Ludox used in each sample was 8.246g meaning the 
silica content ranges by ± 0.165 g. resulting in a relative error of 
4%. This is somewhat significant in the case of comparing 
shake-gel properties when formulated with different batches of 
Ludox but for comparison of the same batch, the error is 
irrelevant.    

 
The 900,000 molecular weight PEO powder has the same 200 
‘quality level’ as the Ludox.  
 
The Sigma-Aldrich SDS powder has a quality level of 200, and 
a purity listed as > 98.5%. The greatest error associated with 
SDS purity concerns the shake-gel with the greatest quantity of 
SDS; this shake-gel contained 0.200 g of SDS resulting in an 
error of ± 0.003 g and a relative error of 1.5%, this is also a 
significant error when dealing with small quantities. This relative 
error could have been reduced by formulating larger samples. 
 
The sodium chloride supplied by VWR Chemicals has a > 99.9% 
purity according to the label. This led to a negligible error. 
 
The Vanillin powder, the Sigma-Aldrich website lists a quality 
level of 200, but this time the purity is also shown at > 98.5%. 
 
Sigma-Aldrich lists the molecular weight of the supplied PEO as 
a nominal value, there is no way to know (with our current 
resources) if the listed MW of 900,000 is accurate. Since the 
coaxial CCB26 cup has vertical serrations, leftover residue was 
impossible to clean fully out of the serrations, this may have led 
to slight errors in viscosity measurements.  
 
It is also known that the Ludox solution contains differing silica 
particle sizes for different batches of Ludox, possibly distorting 
results [5]. 
 
Conclusion 
We have demonstrated that shake-gels can be formulated when 
in the presence three different quaternary additives: SDS, 
vanillin and NaCl, with additive containing shake-gels showing 
the same unique properties to that found in standard shake gels.  
 
SDS shake-gels exhibited the desired foaming when subject to 
shear and acted as a preservative, maintaining the shake-gel 
properties over an extended period of time. The vanillin shake-
gels possessed a significant aroma at very low concentrations, 
but the vanillin was subject to oxidation, disrupting the quality of 
the shake-gels. The NaCl shake-gels, similar to the SDS shake-
gels showed a preservation in shake-gel properties over an 
extended period of time.  
 
The rheological properties of shake-gels containing SDS are 
consistent with those found in the literature studying the 
interaction between SDS and PEO.  
 
Outlook 
Formulation of a shake-gel that possesses the combined 
properties of scent, foaming ability and preserved quality over 
time would be required to decide the suitability as a children 
soap and to potentially start the process of bringing such a 
product to market.  
 
Testing of shake-gels that possesses two or even all three 
additives hopefully combine all the beneficial properties of each 
additive, which should be the next step, following this study. 
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Abstract Crystallization is a widely used technique across various industries today. Controlling the nucleation 
stage, the onset of crystallization remains a challenge especially for peptide crystallization across the 
biopharmaceutical industry. Heterogeneous template nucleation method is being researched for this purpose as 
they not only assist with polymorph selection but also have an impact on induction times. This report investigates 
the effect of surface porosity on the induction time via the use of silica nano templates of 50, 30, 10, 6nm pore 
diameters. A supersaturation of 1.2 was used across all experiments and the silica mass loading was kept at a 
constant 10% for each set of heterogeneous nucleation experiments. Induction times were determined from the 
de-supersaturation curves obtained by monitoring the concentration via use of the IR sensor in-situ. A linear trend 
between induction times and pore diameter was obtained where the best results were 5.5 and 6.1 times faster 
induction times with 10nm and 6nm pores respectively compared to the time taken for homogeneous nucleation. 
The results obtained can be used to increase the efficiency of separation of biopharmaceuticals by reducing process 
times and increasing their cost effectiveness by reducing operational costs of batch crystallization separation 
techniques currently employed in the pharmaceutical sector. Underlying mechanisms behind hetero-template 
nucleation like surface porosity, surface chemistry and epitaxy were also discussed and suggestions for further 
analysis were provided.  
 
1.0 Introduction 
Crystallization is a technique used in a wide range 
of industries like pharmaceutical, nutraceutical, 
paints and even semiconductor industries.[1] This 
process consists of two main steps: nucleation and 
growth phase. The nucleation phase, the rate 
determining step, consists of the formation of a new 
phase due to the supersaturation of the medium. This 
is followed by the growth phase which is 
characterized by the evolution and agglomeration. 
Crystallization is one of the most crucial final steps 
in active pharmaceutical ingredient manufacturing 
(API) as the crystals’ shape, size and structure 
determines the downstream operations needed to 
achieve >99% purity. This high-quality requirement 
is key in the pharmaceutical industry for drug 
manufacturing as the presence of any impurities can 
weaken the therapeutic effect.  
    The pharma market size was estimated to about 
1.42 trillion USD in 2021 which is an almost 4-fold 
increase from the 390 billion USD market size in 
2001[2]. The COVID-19 pandemic was one of the 
many triggers for this significant increase in the past 
two decades. The growing need for more advanced 
drugs is a huge motivation to make pharma 
processes more cost efficient and sustainable. 
Separation and purifications steps often characterize 
a large proportion of the total manufacturing costs 
and hence can be a key area of improvement. 
Traditionally techniques like liquid chromatography 
have been used for downstream purification because 
crystallization does not allow the control of crystal 
type and size.  
    The surface chemistry, pore size and amount of 
Hetero-seeding affect the level and time taken for 
nucleation. They can be used to better control the 
crystallization process.  
Diglycine form three polymorphs: a, b, and g. a is 
the easiest and thermodynamically stable polymorph 

to crystallize while b and g require many 
recrystallizations.  
    The potential of heterogenous crystallization in 
enabling better control of crystals’ characteristics 
using nano templates as seeds will guide this study. 
 
2.0 Background 
2.1 Crystallization 
Crystals are solids comprising of orderly arranged 
atoms, ions or molecules repeated in three 
dimensional arrays. The angles between faces of 
crystals of the same compound are identical and 
characteristic of that material. Crystallization has 
cemented itself as an important separation technique 
capable of producing highly pure products even 
from solutions with significant impurities. This 
importance is further reinforced by the low energy 
input in its operation compared to other separation 
units like distillation which are much more energy 
intensive.[3] The conventional separation for 
peptides involves chromatography which is not only 
more expensive but also much slower compared to 
crystallization. Crystallization’s driving force is 
supersaturation which can be described as a 
thermodynamically unstable state at which the 
solution contains more solute than that present at 
saturation.   
    The first step of crystallization is Nucleation, 
which can be described as the genesis of crystalline 
nuclei forming a site upon which additional particles 
deposit resulting in crystal growth and can further 
evolve by aggregation and agglomeration. The 
degree of supersaturation influences both nucleation 
and crystal growth.  
    Nucleation can be classified into two main routes, 
primary and secondary. Primary nucleation is when 
crystals formation is driven solely by solution 
properties in the absence of crystals (of the material 
itself). Primary nucleation can be further classified 
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into homogeneous and heterogeneous. 
Homogeneous nucleation is when crystals form due 
to the chemical potential resulting from 
supersaturation alone. Heterogeneous nucleation 
results from the presence of insoluble materials in 
the system which could involve the walls of a vessel, 
the impeller or as in this report’s case, 
heterogeneous seeds. Secondary nucleation happens 
in the presence of crystals or homo-seeds and 
involves attrition which is the breakage of existing 
crystals into smaller fragments due to impact from 
the impeller for instance. These fragments then act 
as nuclei which grow to form more crystals.   
    Nucleation is a very important stage in the process 
as it governs the physical characteristics of the 
crystalline structure like habit, morphology, size, 
number, and flaws. Therefore, control of nucleation 
is regarded as paramount because if nucleation could 
be controlled then all the aforementioned 
characteristics too could be controlled. Traditional 
models for nucleation include the famed Classical 
Nucleation Theory (CNT) and the newly adapted 
Two-step Nucleation model (TSN). According to 
CNT, the particles of the substance begin 
aggregating together until they reach a critical 
radius, beyond which the aggregate starts 
functioning as nuclei and crystal growth occurs. The 
CNT makes two assumptions: the nuclei are 
spherical, and that the interfacial surface tension is 
isotropic. However, recently, the TSN (Vekilov, 
2010), explained the process of nucleation with two-
steps instead of the one in CNT. TSN’s rate 
determining step in homogeneous nucleation is 
characterized by the formation of pre-nucleation 
clusters of size in the range of several hundred 
nanometers within dense liquid droplets suspended 
in the solution. In the second step of TSN, these pre-
nucleation metastable structures act as hetero 
surfaces for the onset of nucleation similar to the 
heterogenous case. So, the homogeneous nucleation 
is not quite homogenous as was previously 
expected. This is seen as promising as it also 
resolves some longstanding mysteries of protein 
crystallization and also opens up an avenue for 
nucleation control. For example, on of the long 
standing mysteries was why the theoretically 
predicted nucleation rates were much larger than the 
ones actually measured through experiments. This 
can be explained through the presence of two steps 
in the nucleation mechanism compared to just one in 
classical theory. The first step is theorized to be the 
formation of pre nucleation clusters which is much 
slower than the step after which is the formation of 
stable nuclei. This first step is the rate determining 
step and if the second step alone is considered, then 
there is a match between actual and predicted 
nucleation rates (Parambil, 2019).   
This places an even stronger emphasis on the 
mechanistic understanding on the role of surfaces 
and how they influence nucleation. As this appears 

to be the only way to accurately model 
crystallization heterogeneously. These mechanisms 
include Surface Epitaxy, Chemistry and Porosity.  
  
2.2 Surface chemistry   
This mechanism refers to solute-template and 
solvent-template intermolecular interactions. 
(Parambil, 2019) The surface chemistry heavily 
influences both these interactions which can impact 
template assisted nucleation (Frank & Matzger, 
2017). Some of these specific interactions between 
the functional groups of template surface and the 
crystallizing molecule can reduce the interfacial free 
energy required for nucleation to occur. This can 
result in increased nucleation rates. Moreover, 
research has been done on diglycine-silica surface 
chemistry by (Vivek et al., 2021). The research 
studied the hydrogen bond donor (HBD) and 
hydrogen bond acceptor sites (HBA) present in 
diglycine. There were 2 HBDs and 3 HBAs found 
within diglycine where it was also discovered that 
there existed a hydrogen bonding complementarity 
between the diglycine and silica surface. 
Furthermore, the hydrogen bond lifetime (10 – 70 
ns) was compared to the time needed for one 
molecule to be added to the crystal (21 ps). As the 
latter was much shorter, this implied that there was 
a higher probability to form stable crystal nuclei. 
These two effects combined resulted in improved 
nucleation rates for diglycine with silica template.  
  
2.3 Epitaxy  
The interplay of similar molecular arrangements 
between the molecule and surface is considered for 
this mechanism. Once a good match between the 
two is struck, interfacial free energy is reduced 
which favors nucleation. A study specific to 
diglycine has not yet been conducted, making its 
effect uncertain. This mechanism also has a 
profound effect on polymorph selection (Parambil et 
al., 2019) 
  
2.4 Surface Topography  
Topography covers a broad range of factors 
including surface geometry, confinement and pores. 
Some of these factors like surface geometry have 
overlaps with mechanisms like epitaxy. This report, 
however, will only focus on the surface porosity 
aspect of topography. Surface Porosity in the context 
of nano templates refers to the presence of nanosized 
pores on the hetero-surface and encompasses both 
number of pores as well as their size distribution. 
Pores have been theorized to help trigger nucleation 
through generation of local ‘zones’ of elevated 
supersaturation. Additionally, pores of different 
sizes have also exhibited selectivity favouring the 
nucleation of some molecules over others mainly 
based on their size. This mechanism unlike surface 
chemistry remains largely unexplored specially for 
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diglycine. Surface porosity will be the main area of 
investigation in this report. (Shah, 2012) 
 
3.0 Methodology 
3.1 Experimental Set-up 
The experimental setup comprised of Mettler 
Toledo EasyMax 102 which had two reactors of 
volume, 20ml and 50ml. A temperature probe and a 
Mettler Toledo ReactIR 15 IR probe was inserted 
into the head of the vessel. This allowed automated 
in situ measurements of temperature and 
concentration in fixed intervals of temperature, so no 
external disturbance to the system, i.e., no sampling 
and handling was required. 
    Prior to every set of experiments, the IR probe 
was calibrated to obtain a spectrum for the 
background atmosphere. This was done to ensure 
that the probe head was clean, was only measuring 
the sample and not any contaminants.  A bottom 
stirrer bar was inserted in the reactor instead of an 
overhead stirrer to avoid any collision with the IR 
probe. Additionally, the Mettler Toldeo ReactIR 15 
apparatus was topped up with liquid nitrogen every 
12 hours to cool the internal optical fibres to prevent 
overheating causing potential malfunctions.  
    A saturated 40ml solution of diglycine in water 
(solvent) was prepared at 40℃ using the solubility 
data solubility data (Guo et al., 2022) with a 
concentration of 284.28mg ml-1. To ensure the 
complete dissolution of the sample, it was placed in 
the 50ml reactor for an hour at 60℃ followed by 
filtration with the 200nm Nylon membrane syringe 
filter and added to a fresh reacting vessel. Filtration 
was performed as a preventative measure against 
secondary nucleation due to undissolved diglycine 
particles. 
 
3.2 Mass Loading of Silica  
For the heterogeneous nucleation experiments with 
silica nano-templates of pore sizes 6nm, 10nm, 
30nm, and 50nm, the mass loading ("!) was kept 
constant at 10% of the maximum theoretical amount 
of silica expected to crystallize out of the solution 
(""#$%) at 1.2 supersaturation. To calculate, "!: 
solubility of diglycine at 40℃ (%&') and at 32.7℃ 
(%().+) and the total volume of the solution (&) is 
required.  
 

!!"#$	[!$] = ((%& − ('(.*	)	[!$	!++,] ∙ -[!+] 
 

!!"#$ = (284.28 − 236.90) 	 ∙ 	40	 = 1900	!$ 
 

!-	[!$] = 0.1 ×	!!"#$ = 190!$		 
 
3.3 Script for Rig control 
The iControl software that controls the rig required 
a script with the sequence of steps to be provided. 
The saturated solution was set and maintained at 
45℃ for 120 minutes to allow the system to 
equilibrate and ensure complete dissolution of 
diglycine. The sample was then cooled to 32.7℃ 
over 25 minutes to achieve a supersaturation of 1.2 

(Guo et al., 2022) allowing to operate within the 
metastable zone, hence enabling nucleation. This 
supersaturation was desirable as smaller 
supersaturations yield longer induction times 
consequently leading to larger measurable 
difference in induction times with use of nano 
templates. To obtain the induction time marking the 
onset of nucleation and the complete de-
supersaturation curve as diglycine crystalises out of 
the solution, the temperature was maintained at 
32.7℃ for 300-400 minutes. The steps were 
designed to conduct three repeats of every 
experiment to minimise the error.  
 
3.4 Interpretation of the Infrared (IR) Spectrum 
for Transmittance 
IR spectrum provides a fingerprint region for 
chemicals by measuring the transmittance of 
functional groups which is characteristic/unique for 
every compound. The experiment was set to record 
the IR spectrum for the sample every 10 seconds. 
The spectra for both water and diglycine solution 
were obtained and superimposed for comparison.  
    Initially, the two peaks of the diglycine spectra, at 
1384cm-1 and 1262cm-1 that corresponds to the flat 
lined region in the water spectrum from 1000 – 1500 
cm-1 were observed to determine the peak 
corresponding to diglycine and that corresponding 
to silica. The area under the peak at 1384cm-1 
changed with time, while that under the peak at 
1262cm-1 remained constant. Hence, the 1384 cm-1 
peak was identified as the diglycine peak and the 
1262cm-1 was identified as the silica peak as the 
silica concentration in solution remains constant. 

The area under the diglycine peak (highlighted) 
observed in Figure 1 was recorded from the 
diglycine solution’s spectrum produced every 10 
seconds. Area under the peak is directly proportional 
to the concentration of diglycine. This area was then 
plotted against time to obtain the ‘S’ shaped 
supersaturation curves as the diglycine continued to 
crystalise, hence reducing the concentration. 

Figure 1: IR Spectrum superimposed for Water (pink) and 

Diglycine Solution (black) with the peak at 1384cm-1 

highlighted as the diglycine peak 
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3.5 Induction Time Determination 
Figure 2 shows the tangent method used to 
determine the induction time ‘(,-.’ from the 
supersaturation curve. This involved drawing a 
tangent of the greatest slope to the curved part of the 
graph and intersecting it with the straight line in the 
beginning. The time at which the temperature 
stabilizes to the set-point of 32.7℃ , was taken as the 
(,. The point of intersection of the tangents from the 
region of the greatest slope and the stable part before 
nucleation was taken as (-, time at onset of 
nucleation.  

Here, (,-. = (- − (, 

 
3.7 Hydrodynamic Diameter determination 
Litesizer 500 by Malvern works based on the 
principle that particles in solution that are in 
Brownian motion diffract the incident beam of light 
causing a shift in its frequency which is recorded by 
the diffractometer. The Disposable PS cuvette was 
used for the experiment. This data alongside 
correlation curves was then used to generate a 
particle size distribution graph as well as the average 
particle size. This technique was utilised to 
determine the hydrodynamic diameter of diglycine.  
 
3.8 Powder X-Ray Diffraction (PXRD) 
The Powder X-ray diffractograms were recorded on 
XPRT-PRO diffractometer system with 
PANalytical measurement program using a copper 
anode as radiation source (λ= 1.541nm) at 40 mA 
and 40 kV. The scans were performed at a frequency 
0.013° 2θ min-1 in the range between 5° and 35°. 
This technique results in the generation of a patterns 
of intensity against angle (2θ) for the silica, 
homogeneously and heterogeneously formed 
diglycine. This ultimately aided in the identification 
of the polymorph of diglycine formed by a 
comparison with previously obtained polymorphic 
patterns. 
 
 
 

3.9 Microscope Imaging 
The diglycine crystals obtained after using a vacuum 
filter to separate the crystals from the solution, were 
visually analysed using an Olympus CX-41 
microscope (Essex, UK) under magnifications of 5x 
and 10x. The GT Vision GXCAM HiChrome MET 
display (Suffolk, UK) connected to the microscope, 
was used to capture the images of the crystals, 
determining the crystal habit and size. These results 
with the aid of PXRD results were then used to 
confirm the obtained polymorph.  
 
4.0 Results and Discussion 
4.1 Solid State Characterization  

Figure 3: Diffractograms obtained from PXRD for:   
A) Crystals obtained in Homogeneous experiments 

B) Silica beads 
C) Crystals obtained for heterogeneous experiments  

A) 

B) 

C) 

Figure 2: Tangent Method for Induction time measurement 
shown for the example of Homogeneous nucleation 
experiment (induction time found to be 185 minutes) 
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A total of 6 diffractograms were obtained for this 
characterisation pertaining to the homogeneously 
formed diglycine as shown in Figure 3.  
    The silica diffractogram was hollow and showed 
no characteristic peaks which is consistent with its 
amorphous nature, this ensures that it does not 
interfere with the heterogeneously formed diglycine 
patterns. The diffractograms, belonging to all 
diglycine crystals investigated, had peaks at the 
same 2+ values. From this it can be inferred that they 
had the same preferred orientations. Some variance 
was observed in relative peak intensities between the 
50nm, 30 nm and the 10nm, 6 nm samples. This 
could be attributed to the non-uniform consistency 
of the powder sampled and could be mitigated by 
grounding the powder more finely in future 
experiments. Nevertheless, upon comparison of the 
diffractograms to literature, it was confirmed that the 
polymorph obtained was stable ,-form of Diglycine. 

 
 
 
 

The obtained crystals were further observed under 
an inverted light microscope, Figure 4. A plate like 
crystal shape was observed. This observation could 
be made more clearly with the homogeneous sample 
due to its larger size. This is consistent with the ,-
Diglycine polymorphic structure. Another 
observation was that the size of crystals was smaller 
for larger pores which could have implications in 
applications where crystal size distribution (CSD) is 
important and should therefore be further 
investigated. 
 
4.2 S-shaped Curves 
Figure 5 displays all the de-supersaturation ‘S’ 
shaped curves stacked for comparison. Homogenous 
nucleation shows the longest induction and overall 
de-supersaturation times. This clearly demonstrates 
that the addition of seeds of any diameter positively 
impacts the induction time. Decreasing the pore 
diameter of the silica seeds results in the graphs 
shifting to the left indicating further reduction in 
induction times. 

 
 
The results extracted from Figure 5 are shown in the 
Table 1. Additionally, the surface area (%-) 
corresponding to each bead was also calculated 
using specific surface area (a) and mass loading (mL) 
which is represented in the table.  
 

%-	[")] = 0	[")1/0] ∙ "!	[1] 
 

For convenience, the induction times (tind) have also 
been interpreted as improvement factors (i) for all 
pore sizes  

3 = 45"51676589	(,-.
46(6:51676589	(,-.

 
 

Figure 4: Microscope images obtained for all the 
experiments' crystals obtained 

50 um     50 um     

50 um     50 um     

50 um     50 um     

50 um     50 um     

50 um     50 um     

Figure 5: De-supersaturation curves plotted against time for 

the homogeneous case (purple), heterogeneous cases using 

silica with pore size 6nm (black), 10nm (red), 30nm (blue), 

and 50nm (green) 

600



 6 

 

  
All the experiments were conducted a minimum of 
3 time while other were repeated 4 times. These 
repeats omit the anomalous results which were very 
short induction times. This could be due to internal 
solvent evaporation in vessel that can lead to crystal 
formation on the head of the reactor, potentially 
causing a crystal falling back into solution and 
acting as a homo-seed, resulting in a shorter 
induction time than expected. These results were 
taken as anomalous and only the results from other 
repeats were taken into consideration while 
calculating mean induction times and standard 
deviations. 
    A trend can be observed between surface area and 
improvement factors showing a positive correlation.  
 
4.3 Induction Time vs. Pore diameter 
To get a more graphical depiction of how induction 
time varies with pore diameter, Figure 6 was 
constructed. 

 
The plot shows a positive linear trend between 
induction time and pore size. This trend is also rather 
strong reinforced by a 0.98 mean square error value. 
From the results obtained thus far it can be deduced 
that not only is the addition of silica better but also 
upon decreasing its pore size this effect is more 
profound. This can be attributed to not only a 
decrease in pore size but also presence of a greater 
number of pores due to an increase in surface area as 
seen in Table 1.  
    Due to this simultaneous increase in both 
variables, it could be said that surface porosity has a 
significant impact on induction times, however, one 
variable cannot be solely attributed as the reason 

behind this improvement. One way to further 
explore whether surface area or pore size had a more 
significant contribution, two sets of experiments 
could be performed.  
    The first would be to vary pore size and the mass 
loading in a way such that the surface area remains 
constant, and the other experiment should involve 
keeping the pore size constant but variation of 
surface area through a change in loading. This could 
provide a better indication of what factor; pore size 
or surface area has a more profound effect. 
 
4.4 Hydrodynamic Diameter Measurement  
To investigate the relation of pore size with a 
reduction in induction time, hydrodynamic diameter 
of diglycine was measured using a zeta sizer. The 
Figure 7 shows the distribution obtained.  

A size of 0.94nm was obtained for the 
hydrodynamic diameter. The unit cell for diglycine 
comprises of 4 repeated units of diglycine molecule 
(Vivek et al., 2021)  giving a rough size of 4nm. This 
size is very comparable to the pore sizes tested 
specially 6 and 10 nm which yielded the best results.  
 
4.5 Mechanisms behind Nucleation 
The mechanism by which pores facilitate nucleation 
through increased zones of local supersaturation can 
be visualised with the schematic below Figure 8.  

 Surface area [m2] Induction time [min] Error (St. Dev) [min] Improvement Factor 
Homo - 165 22.9 - 
50 nm 57 125 14.6 1.3 
30 nm 152 87 18.6 1.9 
10 nm 760 30 6.0 5.5 
6 nm 855 27 8.0 6.1 

Table 1: Surface area, Induction time, Error and Improvement Factors for all cases 

Figure 7: Hydrodynamic diameter determination from the 
Litesizer 500 

Diameter (nm) 

Figure 6: Induction Time vs. Pore diameter using 
values summarized in Table 1 
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It should be noted that the schematic in Figure 8 
uses simplified geometry to illustrate the mechanism 
at play and the pores are non-uniform and not 
cylindrical. Diglycine molecule is also represented 
as a circle for simplicity. The idea that pores 
generate these elevated supersaturation zones stems 
from the molecules getting deposited and stuck in 
the pores which results in a concentration 
differential near the surface and the bulk. This 
increases supersaturation close to the surface 
increasing nucleation rates. After the nucleation is 
initiated in the pores and a stable nuclei core is 
generated, crystal growth continues as more 
diglycine molecules get layered which can 
eventually engulf the seed itself. This can be visually 
observed in the microscopic images in Figure 4 
where it appeared that seeds were inside the 
heterogeneously formed crystals.   
    This effect from pores could be coupled with 
surface chemistry mechanisms as well (Diao, et al., 
2011) Diglycine can form hydrogen bonds with the 
silica surface as it has both HBD and HBA sites. 
These hydrogen bond interactions lower the 
interfacial free energy needed for nucleation and 
help stabilise the formed nuclei core. This can be 
visualised in the Figure 9 .  
  
  
  
  

 
  
  
   
 
 
 
 
 
 

Research that has already been done on diglycine 
and silica has shown hydrogen bonding 
complementarity between them which allows them 
to interact even more effectively. Additionally, the 
lifetime effect also further enhances the nucleation 
as the lifetime of a hydrogen bond interaction (10-
70ns) was much larger than the measured time for a 
molecule to attach to the growing crystal (21ps) 
(Vivek et al., 2021). This allows more molecules to 
attach overall resulting in a higher probability of 
forming a stable crystal nucleus. The hydrogen bond 
complementarity and the lifetime effect can 
therefore assist in the improvement factors of 1.3 
and 1.9 for 50nm and 30nm samples respectively. 
These pore sizes were around 10 times larger than 
the unit cell size of 4nm and were unlikely to support 
the improvement through the pore mechanism 
described earlier. It could then be the case that 
surface chemistry mechanism dominated in those 
samples resulting in the improvement factors.  
    Lastly, epitaxy could also have played a role in 
the improvement. Epitaxy mechanism lowers the 
interfacial free energy needed to start nucleation 
upon a good match of molecular arrangement in 
molecule and surface. This could be thought of as a 
lock and key mechanism similar to then enzyme-
substrate mechanics. This effect could improve 
nucleation rates but plays a more significant role in 
polymorph selection.  
    It is unlikely that only one of the three 
mechanisms discussed was responsible for the 
improvement in induction times. It would be a good 
assumption to assume they all played a role and 
contributed in combination with each other to yield 
the results. The contribution of each however is 
unknown specially at a quantitative level. It is 
essential to further investigate these mechanisms 
individually through a previously made suggestion. 
To run two set of experiments measuring induction 
times by varying surface area and pore diameter 
independently to see which had a more significant 
impact. Pore diameter would suggest that the surface 
topography mechanism influenced more heavily 
where surface area would suggest either or both the 
surface chemistry and epitaxy were at play. 
Quantification of these could support optimisation 
of operating conditions in biopharma industry for 
instance where then an appropriate mass of seeds 
would be loaded preventing waste and will result in 
shorter induction times allowing more batches to be 
processed. This would reduce the cost of running the 
process consequently making medicines more 
affordable.  
 
5.0 Conclusion 
This study showed that overall heterogenous 
nucleation has a shorter induction time than 
homogeneous nucleation for all pore sizes 
investigated. The effect of variation of surface 
porosity was observed by experimenting with four 

Figure 8: Schematic Representation of Silica Pores 

Figure 9: Schematic for HBD and HBA explaining the 
Surface chemistry mechanism 
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pore sizes: 6nm, 10nm, 30nm, and 50nm which gave 
induction time improvement factors of 6.1, 5.5, 1.9, 
1.3 respectively. Therefore, the smaller pore sizes of 
6nm and 10nm were more efficient compared to the 
larger pore sizes of 30 and 50nm. This can be 
attributed to the comparability between the size of 
the small pores and the unit cell size of the ,-
polymorph observed, i.e. 4nm.  
    The polymorph formed was identified through 
PXRD and further confirmed by observing them 
under the microscope. Additionally, the size of 
crystals observed decrease with an increase in pore-
size and homogeneous crystallization produced the 
biggest crystals. This can potentially be justified by 
the comparability between the pore size used and the 
size of  ,-polymorph nuclei. However, further 
experimentation is necessary to confirm this 
hypothesis.  
    Overall, the results from this study can be utilised 
to make biopharmaceutical separation of diglycine 
from mixtures more efficient through an effective 
reduction in operating time upon utilising nano-
templates. The reduction in operational time would 
effectively reduce the operating cost of 
crystallization separation and purification 
techniques used in the pharmaceutical industry. This 
would effectively help reduce the cost of expensive 
drugs and make healthcare more affordable in the 
future. 
 
6.0 Outlook 
This study can be further expanded to gain a better 
understanding on ways to make the separation of 
diglycine in biopharmaceutical processes more 
efficient. Firstly, surface porosity of hetero-seeds 
should be investigated at higher supersaturations to 
check whether the improvement in induction time 
through hetero-seeding is still as significant when 
the supersaturation driving force increases. This 
information would be helpful in applications that 
have different operating conditions.  
    It would also be useful to find the crystal size 
distribution (CSD) for the homogeneous and 
heterogeneous sets of experiments. The information 
obtained through this would be useful to design the 
required down-processing steps like filtration, 
milling and grinding when diglycine in crystallised 
in industry.   
    Additionally, analytical experiments to realise the 
impact of surface chemistry and epitaxy on the 
nucleation of diglycine would provide a better 
insight into the mechanisms at play. Relative impact 
of these factors independently is not possible to 
explore since nucleation is a very complex process 
where these mechanisms of surface porosity, 
chemistry and epitaxy often work in combinations.  
    Lastly, since, pharmaceutical processes generally 
have more than one peptide present in mixtures that 
need to be separated, it is useful to conduct further 
experiments to find the selectivity of silica nano-

templates to diglycine. This will allow the targeted 
crystallization of peptides thereby achieving better 
control over the industrial crystallization process. 
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Abstract: The rapid advancement of machine learning and deep learning methods in recent years has provided 
an opportunity for a paradigm shift within the discipline of Chemical Engineering. Complex, non-linear dynamical 
systems with arbitrary relationships between inputs and outputs are not only difficult to predict and optimise but 
are also ever-present within Chemical Engineering, however, neural networks and their applications in deep, data-
driven, learning provide researchers with potentially powerful tools to solve these problems. This paper 
investigates the applications of five different architectures of neural networks popular within data-driven learning, 
namely “Feed-Forward”, “1 Dimensional Convoluted”, and three forms of “Recurrent” neural networks and 
assesses their resilience to systems with a high degree of complexity generated through adding both stochastic 
and measurement noise to two known dynamical systems of differing linearity. The study found that the neural 
network architecture of the “LSTM”, a “Recurrent” neural network variant, performed the best overall, with a 
high resilience to complex systems, but was extremely computationally expensive. “1 Dimensional Convoluted” 
and “Feed-Forward” neural networks performed well when predicting multivariate and univariate systems 
respectively and could be used as an alternative to the “LSTM” in cases where accuracy is less important. It is 
worth noting that this study recommends the further integration of mixed network systems, namely “Bayesian” 
and “Transformer” neural networks as these are popular in literature and could improve the resilience of predictive 
models of dynamical systems within Chemical Engineering by introducing probabilistic predictions and the ability 
to input sequences in parallel respectively. Additionally, further studies into the Kalman filter to use system 
estimate covariance when predicting complex, noisy data could further refine future predictive models. 
 
Keywords: Data-Driven, Neural Networks, Dynamical Systems, Resilience, Complexity 
 
1. Introduction and Objectives  

 
1.1 Introduction and Motivations  

Dynamical systems exist everywhere within the 
fields encapsulated by the acronym “STEM”, in 
Chemical Engineering, these could be any one of a 
multitude of chemical reactions occurring within a 
variety of process systems. The ability to understand 
and model such systems is key to optimising 
systems such that, for example, more desired 
product is gained from the overall process system.  

This understanding and modelling of systems 
manifests in the form of mathematical equations that 
analytically describe the system and its variables as 
a function of time, equations that were historically 
found by humans painstakingly combing through 
vast amounts of data obtained through observing 
interactions and environments within a system to 
find its common governing principles (Mussmann, 
2021). This process can be arduous, especially when 
a system is complex and non-linear, resulting in a 
difficult to find analytical solution, a problem that is 
ubiquitous in Chemical Engineering (Hanyu Gao, 
2022). An emerging solution to this common issue 
is the application of deep neural networks and data-
driven learning, which is a range of computational 
methods that have the ability to learn the behaviours 
of a system more effectively than humans by 
understanding and interpreting patterns and trends 
within datasets.  

Given the data-rich nature of Chemical 
Engineering, it seems strange therefore that 

computational technology has not been more of a 
leading factor within the field. However, this can be 
attributed to the fact that it is only recently that there 
has been a large amount of research into machine 
learning, deep learning, and other data-driven 
learning processes spurred on by the rapid 
advancement of computer technology and data 
storage infrastructure (Hanyu Gao, 2022).  
 
1.2 Objectives 

This paper will aim to further investigate the 
practical applications of data-driven learning using 
different neural network architectures to predict 
both simple and complex dynamical systems. A 
focus will be placed on assessing not only their 
overall ability to solve dynamical systems, but to do 
so while the data is purposefully altered to simulate 
both measurement noise and stochastic noise, 
reflecting potential real-life scenarios where data is 
wrong due to inaccurate measuring instruments and 
disturbances as a result of intrinsic system 
stochasticity. An emphasis will be placed upon 
finding neural networks that are resilient to poor data 
inputs and difficult data to assist in solving the issue 
of systems with complex and arbitrary links between 
inputs and outputs, a problem found throughout 
Chemical Engineering. 

 
2. Background and Scope 

 
2.1 Dynamical Systems 
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2.1.1 Dynamical Systems Overview 
A dynamical system is described as a system 

which evolves over time according to a fixed rule 
and is typically described with an ordinary 
differential equation. The state conditions could be 
any number or variety of physical conditions, such 
as concentration or temperature for example. It is 
formally defined as a state space , a set of times , and 
a rule  that specifies how the state evolves with time 
(Nykamp, 2008).  Within this paper, deep learning 
is used to predict both simple linear and complex 
non-linear dynamical systems, with the following 
two systems chosen to for this purpose. 
 

2.1.2 Mass-Spring System with Damping  

 
The simple, single-variate, linear system chosen 

is a mass attached to the end of a spring that 
oscillates vertically with a damping force that 
opposes the motion of the mass as seen in figure 1. 
This is represented as the following linear ODE: 
 

𝑀 𝑑2𝑥
𝑑𝑡2 + 𝑘𝑥 + 𝛽 𝑑𝑥

𝑑𝑡
= 0    (1) 

 
Where M is the mass of the suspended object, k is 
the spring constant, x is the displacement,  is the 
damping coefficient, and t is time. The deep learning 
methods will be used to predict the displacement 
from the set point as a function of time.   

This is a classically investigated dynamical 
system within the general field of deep learning 
applications to dynamical systems, thus selecting 
this made logical sense as it allowed for the results 
of this paper to be easily compared to other papers.   

 
2.1.3 Biohydrogen Production System 

The complex, multi-variate, non-linear system 
chosen as part of this investigation is the hydrogen 
production from naturally occurring cyanobacteria, 
Cyanothece 51142 (Figure 2), which turns solar 
energy into hydrogen under aerobic conditions. 

 
 

The following equations have been adapted from 
“Optimal Operation Strategy for Biohydrogen 
Production” (Del Rio-Chanona, 2015) and will be 
used to predict the interlinked concentrations of 
Biomass (2), Extracellular Nitrogen (3), and 
Intracellular Nitrogen (3): 

 
𝑑𝑥
𝑑𝑡

= 𝜇𝑚 + 𝑥 + 𝑁
𝑁+𝐾𝑁

− 𝜇𝑑 ∙ 𝑥2  (2) 
 

𝑑𝑁
𝑑𝑡

= −𝑌𝑛𝑥 ∙ 𝜇𝑚 ∙ 𝑥 + 𝑁
𝑁+𝐾𝑁

+ 𝐹  (3) 
 

𝑑𝑞
𝑑𝑡

= −𝑌𝑞𝑥 ∙ 𝜇𝑚 ∙ 𝑁
𝑁+𝐾𝑁

− 𝜇𝑚(4) 
 

Where N is nitrate concentration, q denotes 
normalised, x denotes biomass concentration, Y 
denotes yield, F denotes feed, and t denotes time. 

This is an example of a potentially difficult 
system within Chemical Engineering in which the 
inputs and outputs have a difficult analytical 
relationship. This dynamical system will be 
investigated to assess how effective deep learning is 
when applied to more advanced and complex 
problems that are within the scope of Chemical 
Engineering.  
 
2.2 Data-Driven Learning  

Data-driven learning can be described as the 
process of learning how a specific task, system, or 
process works by using large amounts of data. In 
these processes, large amounts of example data, the 
“training data” is used to train the system that learns 
and refines predictive outputs (Shah, 2020). An 
increasingly popular example of this is “Chat GPT-
3”, an AI chatbot that uses machine and deep 
learning to generate responses to a wide range of 
prompts and questions. “Chat GPT-3” was trained 
using data from sources such as books, Wikipedia, 
and articles giving it an almost human-like response 
to many different questions (Mills, 2022). The data-
driven methods explored in this paper revolve 
around the usage of artificial neural networks that 
resemble, and are intended to mimic, the human 
brain, a naturally occurring biological neural 
network. 
 
2.3 Artificial Neural Networks  
2.3.1 Artificial Neural Network Overview 

Figure 1: Illustration of the damped mass-spring system 
(ShareTechnote, 2015) 

Figure 2: Cyanothece 51142 cell synthesizing Hydrogen 
(Urquhart, 2010) 
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The data-driven methods explored in this paper 
revolve around the usage of artificial neural 
networks, or ANN’s, that resemble, and are intended 
to mimic, the human brain, a naturally occurring 
biological neural network (Wahlström & Dernsjö, 
2021). Figure 3 illustrates this idea.  

 

 
Though there exist different artificial neural 

network architectures, there remains components 
that each have in common. The first is “input”, 
which is data put into the model for learning. The 
second is “weight”, this aids in organising each 
variable by impact of contribution on the output. The 
third is the “transfer function”, which is where all 
the inputs are combined into a single output variable. 
The fourth is the “activation function”, which 
decided if a specific neuron should be activated 
based on how important the neuron’s input is to the 
prediction process. The fifth is the “bias”, 
responsible for shifting the value given by the 
activation function. Finally, the last common feature 
is “layers”, these refer to the general layout of 
individual neural network nodes arranged into 
different layers that receive raw data (input layers), 
output predictions (output layers), and all the layers 
in between (hidden layers) (H2O.ai, 2022). 

The “learning” aspect of the process takes place 
through multiple iterations of forwards and 
backwards propagation of data. The initial inputs are 
run through the neural network and produce a 
predictive output, this is then compared to the 
desired output using a loss function such as the 
“mean squared error” (5). 

𝑀𝑆𝐸 =  1
𝑛

∙  ∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑎𝑐𝑡𝑢𝑎𝑙)2 (5) 
the gradient of the loss with respect to the weights is 
then calculated using the chain rule. This is done by 
starting at the output layer and working backwards 
through the layers of the neural network, using the 
gradients of the loss with respect to the outputs at 
each layer to calculate the gradients with respect to 
the weights. The weights are then updated using an 
optimisation algorithm, such as stochastic gradient 
descent. This reduces the loss and improves the 
performance of the model (Brownlee, Machine 
Learning Mastery, 2016). 

Neural networks take on a variety of 
architectures, and it is understood that within the 
scope of time series prediction, feed-forward neural 
networks (FNN’s), convolutional neural networks 

(CNN’s) and recurrent neural networks (RNN’s) are 
effective for even the more complex dynamical 
systems with multiple inputs that have arbitrary 
mappings to outputs (Brownlee, Deep Learning for 
Time Series Forecasting, 2018). It is for that reason 
that these architectures have been chosen to predict 
the two chosen systems within this paper.    

 
2.3.2 Feed-Forward Neural Networks 

Multi-layer feed-forward neural networks, 
trained with a backpropagation learning algorithm, 
are reportedly the most widely used neural network, 
and its general structure can be seen in figure 3, with 
each neuron in one layer receiving an input from 
every neuron in the previous layer. In a feedforward 
neural network, the data flows only in one direction, 
from the input layer to the output layer, and there are 
no loops or connections between neurons in 
different layers. This makes feedforward neural 
networks easier to train and faster to run compared 
to other types of neural networks, such as recurrent 
neural networks, which have loops in their 
architectures. However, due to the lack of 
connections between neurons, FNN’s may be less 
well suited to time series prediction as they are 
unable to retain data from previous time steps 
(Daniel Svozil, 1997). 
 
2.3.3 Recurrent Neural Networks 

Recurrent neural networks differ from the 
aforementioned FNN by having not only forward 
connections, but a hidden state to memorise the 
previous inputs and sequences. These hidden states, 
shown in the RNN’s architecture in figure 4, enable 
the network to retain information from previous time 
steps and use it to process the current input data.  

 

 
This aids the RNN in finding complex patterns 
within time series input data, however, not only are 
RNN’s computational expensive to train, but they 
also suffer from a vanishing or exploding gradient 
problem, where the hidden layer parameters either 
do not change much or lead to numeric instability. 
RNN’s also suffer from a weak memory and are 
unable take several past elements into further 
predictions (Pra, 2020). 
 

Figure 4: The general structure of an RNN, the vector 
x(t) is the input, y(t) is the output, and h(t) is the hidden 
state at time t which acts a memory for the network that 

is calculated based on both the current input and the 
previous time step’s hidden state  (Pra, 2020) 

Figure 3: A basic feed-forward neural network 
(Facundo Bre, 2017) 
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2.3.4 Long Short-Term Memory (RNN Variant) 
In order to combat the vanishing gradient 

problem with RNN’s, the long short-term memory 
unit was developed to improving the gradient flow 
within the network by replacing a hidden layer. This 
is achieved by the LSTM’s four unique features that 
are shown in figure 5. The first is a cell state c(t), 
this represents the network’s memory, and brings 
information along the entire sequence. The second is 
the forget gate, this will decide what elements from 
previous time steps should be kept or “forgotten”. 
The third is an input gate, which will decide what 
information to add to the current time step to the 
information from that of the previous time step. 
Lastly, there is the output gate, this decides the value 
of the next hidden state and passes this and the new 
cell state to the next time step. 

 

 
The LSTM is the most capable of all RNN types in 
regard to retaining long term dependencies in data, 
however, as such, it is also the most computationally 
intense RNN variant (Pra, 2020). 
 
2.3.5 Gated Recurrent Units (RNN Variant) 

The gated recurrent unit (GRU’s) are a relatively 
new RNN variant similar to the LSTM in that it 
replaces a hidden layer in order to solve the 
vanishing gradient problem. This unit is more 
simplistic, having two gates to the LSTM’s three, 
and is less effective at retaining long-term 
dependencies within data. This being said, the GRU 
is simpler and faster to both train and run than the 
traditional RNN and its variants in this paper.  
 

 

Figure 6 illustrates the GRU and its three 
comprising features, the first being a reset gate, this 
decides how to combine the new input with the 
previous memory by deciding the amount of the 
previous time steps information which can be 
forgotten. The second feature is an update gate 
which allows the model to determine how much 
information from the previous time steps to pass 
onto the future. The last feature is the memory h(t), 
which brings information along the sequence and 
passes to the next time step. 
 
2.3.6 1D Convoluted Neural Networks 

1D (1 dimensional) convolutional neural 
networks (CNN’s) are able to process sequential 
data, such as time series data. They are composed of 
multiple layers of interconnected neurons and only 
one spatial dimension (i.e., width) and no height or 
depth. They are typically comprised of three 
elements, the first of which is a convolutional layer 
that applies convolutional filtering to extract 
potential features and patterns from the data it is 
analysing. The second is a pooling layer which 
serves to reduce the size of a data series while 
ensuring that the important patterns and 
characteristics of the data identified by the 
convolutional layer are preserved. The final element 
is a fully connected area that lies at the end of the 
network which maps the features extracted by the 
layers before it into coherent values as an output. 
Figure 7 displays this architecture and elements. 

 

 
 

CNN’s are able to identify patterns independent of 
the time component and are considered noise-
resistant. Additionally, CNN’s are computationally 
less expensive than RNN’s and in some cases can 
perform better. However, by design CNN’s can 
struggle with long term dependencies, which are 
patterns that span over long time periods and are 
essential to predicting a time series (Lewinson, 
2020). 

 
3. Methodology  

 
3.1 Introduction to the Method  

The utilisation of dynamical systems with known 
analytical solutions representable as ODE’s is a 
conscious choice designed to compare the 

Figure 5: The general structure of an LSTM unit, the 
vector x(t) is the input, y(t) is the output, h(t) is the 
hidden state and c(t) is the cell state  (Pra, 2020) 

Figure 6: The general structure of a GRU unit, the 
vector x(t) is the input, y(t) is the output, h(t) is the (Pra, 

2020) 

Figure 7: The general architecture of a 1D CNN 
(Lewinson, 2020) 
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predictions generated by each neural network 
architecture trained upon noisy and imperfect data to 
the “real” system, thereby allowing for a 
measurement of the true resilience of the deep 
learning method. Both dynamical systems will be 
analysed in the same way, with the same noise 
applied at the same defined point for each neural 
network. Each part of the methodology applies to 
each combination of neural network and dynamical 
system, creating 10 total pairings, and will serve to 
achieve the objective goal of understanding the 
resilience of deep learning methods. 

 
3.2 Data Generation and Hyperparameter 

tuning 
The ODE’s for the dynamical system being used 

were integrated across a time period which would 
allow enough data to be generated for a pattern to 
emerge (in the case of the MSS), or for the reaction 
of the system to go to completion (in the case of the 
biohydrogen production problem). This yielded 
deterministic datasets, upon which hyperparameter 
tuning was conducted to define the models to be 
used for the prediction of noisy data.  

The generated data of length n was then 
processed to be formed of input windows of length 
5, and dimensionality 0 which corresponded to a 
single output, the next “input”. 

• E.g., if the dataset was [0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10] and the window size was 3, X1 would be [0, 
1, 2] and y1 would be [3]. X2 would be [1, 2, 3]. 

 
Table 1 below shows the hyperparameters used 

for the MSS: 
Algorithm Hyperparameters/Model Summary 
Simple 
FNN 

Dense (U = 32, ID=5, ReLU) 
Dense (U = 16, ReLU)  

Simple 
RNN 

Input Layer, (window size = 5, inputs = 1)  
SimpleRNN(U = 5), Dense(U = 5, ReLU)  

LSTM Input Layer, (window size = 5, inputs = 1) 
LSTM(U = 15), Dense(U = 5, ReLU) 

GRU Input Layer, (window size = 5, inputs = 1) 
GRU(U = 5), Dense(U = 5, ReLU)   

1D CNN Input Layer, (window size = 5, inputs = 1) 
CNN1D(U = 5), Flatten 
Dense(U = 5, ReLU) 

Table 1 
Where U represents the number of units in the 

layer and ID gives the input dimension. Since the 
MSS was treated as a univariate system, in all cases, 
the input consisted of a sequential window of 5 
inputs and the output layer was a 1-unit Dense layer 
with a linear activation function. The learning rate 
was 0.01 and 7 epochs were run. The solver used 
was Adam. 

For the biohydrogen production system, the 
principles for hyperparameter tuning stayed are the 
same. The increased complexity of the system 
demanded that NNs were deeper and had more units 
in each layer. The number of data points and input 
window size also had to be increased as a result. 
Furthermore, since there were 3 measured (and 

output) variables, the input layer gained one 
dimension to allow multiple inputs, and the linear 
output layer was changed to have three outputs. 
Table 2 shows the hyperparameters used. 

Algorithm Hyperparameters/Model Summary 
Simple 
FNN 

It was found that predicting multivariate 
systems with multivariate outputs was 
impractical with the FNN 

Simple 
RNN 

Input Layer (window size = 100, inputs = 3) 
SimpleRNN(U = 32),  
Dense(U = 64, ReLU) * 3  

LSTM Input Layer, (window size = 100, inputs = 3) 
LSTM(U = 64), Dense(U = 64, ReLU) * 3 

GRU Input Layer (window size = 100, inputs = 3) 
GRU(U = 32), Dense(U = 64, ReLU)  * 3  

1D CNN Input Layer (window size = 100, inputs = 3) 
CNN1D(U = 64), Flatten 
Dense(U = 64, ReLU) * 3 

Table 2 
 

 
3.3 Addition and testing of noise 

Noise was added in two steps. The magnitude of 
random process disturbance was taken as its 
variance. The disturbance was included in the 
integration step, in the form of a spontaneous change 
in variable (normally distributed with mean equal to 
the point of disturbance and the variance being the 
quantifying metric of the noise). The integration was 
then continued with the “disturbed” value being the 
new initial condition for the solver. This was then 
looped to introduce multiple points of process 
disturbance to the system, at random times. This was 
done to decrease the likelihood of the algorithm 
“expecting” disturbance at a certain timestamp after 
training. Testing was started with a variance equal to 
~1/2 the test set’s mean and increased until the 
model broke. The model could be considered a 
failure if:  
• The root mean-squared error was deemed too 

high, 
• The model predicted something impractical for 

application, 
• The model was underfitted/overfitted, or any 

combination thereof. 

Figure 8: The same model, before and after tuning 
hyperparameters. 

Figure 9: Example dataset for the multivariate system 
with both process disturbances and measurement noise 
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At the level of stochasticity prior to model failure, 
additional measurement noise was added through 
giving each data point a new value which was 
uniformly distributed. The key metric here was the 
range. For the MSS, a constant range was used. In the 
case of the multivariate system, due to the varying 
orders of magnitude of the different variables, a 
proportional range was deployed. The same 
principles for system failure were applied in the tests 
for system resilience against measurement noise. 
 
4. Results 

Results were found which were indicative of the 
speed vs accuracy of the different algorithms, their 
adaptability to process disturbances and resilience to 
measurement noise. 

 
Figure 10: Graph showing the average training time vs 

the root mean square error for each algorithm 
 

First, data was collected about the nature of each 
model’s adaptability towards process disturbances.  

 
Figure 11: Graph showing the increasing RMS-e as a function 

of increasing process disturbance for MSS 

 
Figure 12: Graph showing the increasing RMS-e as a 

function of increasing process disturbance for 
biohydrogen 

 
It is important to note that although it may seem that 
some algorithms appear to be better than others from 

the raw error data, this is only one factor in the 
judgement of the suitability of a model. Some good 
examples of models which yield low RMS-e values  

Figure 13:2 Simple RNN, PD = 1. RMS-e = 0.2213 
Unacceptable level of overshoot and data is underfitted despite 

pleasing MSE scores 
but are unsuitable include Figure 13, which shows 
substantial overshoot in the prediction set in the 
event of process disturbance, and Figure 14, which 
predicts values of biomass concentration orders of 
magnitude away from the real value. 
 

 
Figure 14:3 1D CNN, PD = 30, RMS-e = 4.6312. 

Overall trend seems strong but is let down by negative 
values of Biomass. (Nitrogen is also negative. However, 

this is a result of the method of adding process 
disturbances and not a symptom of a failing algorithm) 

 
After this, data was collected on the breaking 

point of models with measurement noise on top of 
process disturbances.  

 
Figure 15: Univariate with measurement noise 
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Figure 16: Multivariate with measurement noise 

(inverse) 
 
Some interesting plots from this series included:  
 
Univariate FNN 

 
Figure 17: FNN, PD = 1, MN = 2: Very robust 

algorithm, ideal for solving linear systems 

 
Simple RNN 
 

 
Figure 18: Simple RNN, PD = 0.75, MN = 0.75. Data is 

underfitted 
 
 
 
 
 
 
 
 
 
 
 
 

CNN 

 
Figure 19: 1D CNN, PD = 15, MN = 1/2: Excellent 

prediction of multivariate systems considering the level 
of noise added to the system. (Figure 9 for a dataset used 

in training this model) 
 

Figure 20: 1D CNN, PD = 1. The same level of noise can 
also cause the system to break. Underfitted data like this 

was generated on the second and 5th run 
 
LSTM 

 
Figure 21: LSTM, PD = 15, MN = 1/4. More gradual 

failing of system as noise increases as opposed to other 
algorithms 

 
GRU 

 
Figure 22: GRU, PD = 10, MN = 1/4. Comparably 

underfitted compared to LSTM, even with less stochastic 
noise 
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5. Discussion 
As can be seen, the results show that the FNN is 

not only the least computationally expensive neural 
network, but also produces good results when 
applied to univariate systems, even when the dataset 
is subjected to noise. It cannot be used on 
multivariate systems however, due to its input limit. 
The CNN performed well the univariate system, 
however, due to unknown reasons, had the tendency 
to be unreliable at random points. Therefore, 
although it produced some of the best fitting models 
for the system, more research into the exact 
mechanisms of the CNN may be required before 
applying it to this purpose. In regard to the 
multivariate, of all the neural networks tested on this 
system, the CNN's model worked best. Not only did 
it produce the best fitting predictions, but it was also 
the most resilient to both process disturbances and 
measurement noise.  

To now focus on the RNN's, as expected, the 
advanced LSTM was the most reliable of the three, 
followed by the GRU and then the simplistic RNN 
model. This was expected due to the nature of each 
variant discussed in the background. However, with 
increasingly better results came increasingly 
expensive computational requirements, the LSTM 
was especially taxing, which was made very clear 
during the data collection process, as it took over 4 
times as long to train and test when compared to the 
CNN. This long run time and the fact that the FNN 
and CNN were able to produce competing results 
within a fraction of the time indicate that the strength 
of the LSTM lies within the more reliable prediction 
of complex systems. It can also be stipulated that the 
fact that LSTM is the only algorithm which is able 
to store long-term patterns means that it is actually 
not suited for application to batch systems and may 
find more success in a continuous process, in the aid 
of control systems. 
 
6. Conclusions 

To conclude, the overall objective of applying 
neural network-based data-driven deep learning 
methods to investigate neural networks has been 
successful. Through rigorous testing, it can be said 
with confidence that the best method for time series 
prediction across both univariate and multivariate 
applications is the LSTM. Though computationally 
expensive, it has the capability to accurately predict 
time series data with a good resilience to noise. It is 
superior to its other RNN variants and offers an 
overall improvement on simple RNN's and GRU's in 
terms of accuracy. Despite the fact that LSTM did 
not produce as close-fitting data as CNN, it was 
shown to have a much steadier decline in accuracy, 
as opposed to other algorithms which would 
suddenly fail at a threshold noise level. 

Due to the nature of the LSTM however, the time 
to run the models is often long and it may be an issue 
for less powerful computers to use. This study found 

that FNN's and CNN's provide a less 
computationally expensive predictive method for 
univariate and multivariate systems respectively. 
Although these sacrifice reliability for speed, for 
less complex systems or cases where accuracy is less 
important, these can provide a good predictive 
deep learning model. 

 
7. Outlook 

Though the results were indicative of certain 
neural networks, namely CNN’s, performing better 
than others, achieving the overall objective, it is 
worth noting that due to both the time constraints of 
the project and breadth of the investigation 
undertaken, that there are certain key areas that 
should be expanded upon from this study. The focus 
on exploring individual neural network architectures 
and their ability to predict time series predictions 
combined with the limitations of the technology 
used resulted in a lack of emphasis on 
hyperparameter tuning and experimenting. This 
process can prove computationally taxing, however, 
the use of, for example, different activations such as 
Sigmoid rather than ReLU could have provided 
different, and potentially better, predictive results, as 
observed during the initial setup of each model. 

It is further discussed in literature that 
combinations of the neural networks’ architectures 
can be useful to refine and improve prediction. In 
addition to combing together the neural network 
architectures discussed and investigated here, 
adding a Bayesian neural network layer – which 
adds a probabilistic predictive method to the 
predictions, and adding a transformer neural 
network – which can input sequences in parallel 
respectively and assist in identifying long term 
system trends, can further improve models for 
predicting complex dynamical systems (Brownlee, 
Deep Learning for Time Series Forecasting, 2018).  

Additionally, further studies into the Kalman 
filter algorithm could prove useful to achieving the 
objective. This filter utilises system estimate 
covariance when predicting complex, noisy data and 
can handle systems with many dimensions, 
uncertain or incomplete information, and can adapt 
to changes to the system over time. Applying this to 
systems and combining it with the models explored 
in this paper is a robust solution to not only the 
objective, but even more complex systems due to the 
Kalman filter’s intrinsic resilience to high levels of 
noise and missing data (Maitra, 2019). However, 
although this could be used for real examples, as the 
stochasticity and measurement noise used in this 
study was gaussian by default and known, the 
Kalman filter may be inappropriate to use in 
combination with the methods used here. 
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