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Preface

This volume of Chemical Engineering Research collects the unedited research project reports
written by 4% year undergraduates (Class of 2024) of the M.Eng. course on Chemical
Engineering in the Department of Chemical Engineering at Imperial College London. The
research project spans one term (Autumn) during the last year of the career. It emphasises
independence, the ability to plan and pursue original project work for an extended period,
produce a high-quality report, and present the work to an audience using appropriate visual
aids. Students are also expected to produce a literature survey and to place their work in the
context of prior art. The papers presented showcase the diversity and depth of some of the
research streams in the department but only touch on a small number of research groups and
interests. For a complete description of the research at the department, the reader is referred to
the departmental website!.

The papers presented are in no particular order, and a manuscript number identifies them. Some
papers refer to appendixes and/or supplementary information which are too lengthy to include.
These files are available directly from the supervisors (see supervisor index at the end of the
book). Some reports are missing and being embargoed, as they contain confidential
information. A few reports correspond to industrial internships, called LINK projects, in
collaboration with Shell.

The cover figure corresponds to a photograph of a flow reactor for water splitting (taken from
the work of Konrad Reents and Alexander Kovacs, manuscript 62).

London, February 2024

!https://www.imperial.ac.uk/chemical-engineering

il



paper

10

11

12

13

Title Index

Title

PrCa(5%)FeO3 Photocathodes Optimised Through Hole Transport Layers
and Pt Catalyst

Viscoelasticity and Extensional Rheology of Concentrated Wormlike
Micelles Solution

Analysis of Carbon Capture Readiness for Small-Scale Refuse Derived
Fuel-to-Energy Power Plants based in the UK

Exploring Multi-Fidelity Bayesian Optimization and TuRBO-1 for
Enhanced Engineering Solutions

Stability Study of Dual Drug Delivery Systems under Osmotic Stress

Enviro-Economic Analysis of Refrigeration Cycle Integration into Ground-
Source Heat Pump-Supported Space Heating Systems

A Techno-Economic Analysis and Systematic Review of Blue and Green
Hydrogen Production Technologies

Comparative Thermodynamic Efficiency Analysis of Acetylene-Ethane
Separation Using Distillation and Absorption Process

Effects of Salts on Occurrence Domains of Triglycine Anhydrate and
Dihydrate

A Techno-Economic Analysis of a Novel Process to Treat Pot Ale into
Hexanoic Acid

Enviro-Economic Assessment of a Scaled-Up Hydrogenolysis Process for
the Treatment of Polypropylene Waste

In Situ DRIFTS Investigation of CO; Adsorption & Desorption on Carbon
Nitride Based Materials

Prediction of Thermodynamic Properties and Phase Behaviour of CANDU
Nuclear Reactor Fluid Coolant using the SAFT-VR Mie Equation of State

v

page

14

22

32

42

52

62

*)

72

80

90

*)

100



paper

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Title

Electrochemical Reduction of CO2: Insights into Cobalt Single-Atom
Catalysts via a Decoupled Two-Step Synthesis

Data-driven Modelling and Prediction of Complex Systems Using Neural
ODEs

Tabular and Deep Q-Learning for Optimal Control of a Commercial
HVAC System

A Flexible Calcium Ion Holographic Sensor for Wound Monitoring via
Smartphone Readout

Effect of 2D thickness on the performance of 2D/3D organic-inorganic
metal halide perovskite solar cells

CO. Capture Using Adsorption: an Outreach Project

Neural networks to simulate and optimise a Pressure-Vacuum Swing
Adsorption process

Cold Chain Integration of Liquefied Natural Gas Supply Chains

A Machine Learning Platform for the Optimisation and Innovation of
Ionizable lipids for Efficient RNA Delivery

Turning a new page on PAGE: Investigating the effect of oligonucleotide
structure on gel mobility

Modelling the Solubility of Cholesterol in Primary Alcohols using the
SAFT-y Mie Equation of State

Optimisation of Ionic Liquids in a Closed-Loop Dye Recycling Process

Engineering Magnetically Steerable Biohybrid Cells

Data driven modelling using time series recurrent neural networks (RNN)
for glycosylation prediction in mAbs

Optimizing Crude Distillation Units: An Exploration of Neural Network
Surrogates and Evolutionary Algorithms

page

110

120

130

140

150

160

170

180

190

199

209

219

229

239

*)



paper

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Title

The Role of Ground Source Heat Pumps in UK Domestic Heat
Decarbonisation

Experimental Design to Investigate Aqueous Amino-Acid Solvents for
CO2 Capture

Recovery of Materials (Li, Mn, Ni, Co) from Lithium-Ion Battery Cathode

Derivative-free Optimisation of Neural Networks in Reinforcement
Learning for Process Control

Characterisation of a Complex Mixture of Tri-, Di- and Monoacylgylcerols
from Ethanolysis of Sunflower Oil by NMR Spectroscopic Techniques

Prediction of Aqueous Solubility of Polycyclic Aromatic Hydrocarbons
and their Derivatives by ML-QSPR Modelling

The Development of Criteria for Predicting Breakthrough and Optimising
Adsorbent Use in Gas Phase Carbon Dioxide Adsorption

Development of a Unified Kinetic Model for the Hydrothermal
Carbonisation (HTC) of Microalgal Biomass

Feasibility Analysis of Metal-Organic Frameworks (MOFs) and Zeolites
for Direct Air Capture (DAC)

Machine Learned Equation of State for the 2D Lennard-Jones Fluid

Optimising Detergent Formulation: A Bi-Objective Computer-Aided
Molecular Design Approach

Recovery of 5-(hydroxymethyl)furfural (HMF) from Effluents

Numerical Modelling and Performance Assessment of Spectral Beam
Splitting Based Concentrated Photovoltaic-Thermal Collector

The Effect of Hydrodynamics on the Transesterification of Sunflower Oil
to Produce FAME

Screening the chemical space: An ML Approach to Predicting the Prices of
Chemical Compounds

vi

page

248

258

268

278

288

298

*)

308

*)

318

328

338

348

358

368



paper

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Title

Utilizing the SAFT-y Mie GC Equation of State to Assess the pH-
Dependent Solubility of Active Pharmaceutical Ingredients

Techno-economic Analysis for the ZESTY Process in Sweden, UK and
USA

On the Solubility and Recovery of Gypsum with Ionic Liquids

Lead-free halide Ternary Perovskite Composites for CO> Photocatalytic
Reduction to Solar Fuels

Environmental Impact Assessment of Sustainable Aviation Fuels Against
Planetary Boundaries

Superhydrophobic Cotton: Fabrication and Application in Oil/Water
Separation

Investigating the Electrochemical Behaviour of Graphitic Carbon Cathodes
in Aluminium Dual-ion Batteries

CFD Modelling of Air Entrainment Mechanisms in a Plunging Jet
Filling in the Cracks: An Investigation into Surface Patterning via

Wrinkling

Exploring the Influences of Impurities and Silica Nano-templates on
Diglycine Crystallisation: A Comprehensive Study for Innovative Crystal
Engineering

Catalytic Performances of UiO-66(Hf) under Various Synthesis Conditions
for the Methylation of DHA

Interpretable Supply Chain Optimisation for Inventory Management
Problems with Genetic Decision Trees

In-Situ FTIR Spectroscopy of Interactions Between High-Pressure CO; and
Porous Liquids

High-Flux Ethanol-Water Separation via Mildly Reduced Graphene Oxide
Membranes

Assessing Pyrolytic Carbon Derived from Methane Pyrolysis as an Anode
Material

vii

page

377

*)

387

397

408

416

426

436

446

456

466

476

486

496

506



paper

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Title

Using Agent-Based Modelling to Investigate Effects of the Socioeconomic
Climate on the UK Power Sector

Direct Visualisation of Surfactant Flooding in Micromodels

Ultrathin Graphene Oxide Based Membranes with Tailored Graphitic
Domain for Organic Solvent Nanofiltration

Operation and Modelling of a New Reactor for Solar Water Splitting

Scaling up in vitro glycosylation reactions in cell-free systems using
filtration: a preliminary assessment

Machine Learning Approaches for Periodic Separation Systems Modelling

A Comparative Study of the Pure Gas Permeability of PIM-1 Membranes
and Other Polymers for CO> Separation

Model-based Design Space and Flexibility Analysis for Carbon Capture
Adsorbent Screening

Support Vector Machines Practice on Design Space Identification

Impact of Predicted Data on ML-QSPR Predictions of Lower Flammability
Limits for Pure Compounds

Techno-economic Assessment of a Novel Hybrid PV-T and Heat Pump
System for Household Heating

Supply Chain Optimisation for Plasmid DNA

Analysis of Morphology and Microstructure of the Lignin-derived
Mesoporous Anode for Sodium-ion Batteries and Sodium Storage
Mechanism

Utilising Graph Neural Networks in the Glycomic Analysis of N-Glycan
Biomarkers for the Diagnosis of Colorectal Cancer

Differentiable Equations of State for Machine Learning Thermodynamic-
Property Prediction

viii

page

516

526

536

546

556

*)

565

575

585

595

605

615

625

634

644



paper Title page

(*) These papers have been removed by request of the authors and/or supervisors

Author and Supervisor index at the end of the book.

X



PrCa(5%)FeQOs Photocathodes Optimised Through Hole Transport Layers
and Pt Catalyst

Di Wen, Zhenran Zhang
Department of Chemical Engineering, Imperial College London, U.K.

Abstract

There is continuously increasing demand for green, safe, and efficient energy across the world since many
countries and multinational companies have committed themselves to a net zero pathway. Solar energy is an
optimal substitute for the conventional fossil fuel where Solar-to-hydrogen (STH) conversion offers a reliable
storage method. PEC water splitting, a highly efficient and cost-effective method of generating hydrogen, is
investigated in this article. A state-of-the-art perovskite oxide photocathode based on Ca-doped PrFeOs is
developed and optimized using a number of hole transport layers (HTLs) and Pt catalyst. The FTO / cNiOx
(annealed at 400 °C) / PrCa(5%)FeOs / 3-layer Pt (deposited at 400 °C) gives the best photocurrent of ~21 pA
cm? when testing PEC performance under the N2 environment. Data of multiple characterization methods
including SEM, UV-Vis, and XRD managed to justify the experimental results. Overall, the cNiOx layer is an
effective HTL when PEC measurements are carried out in atmospheric condition whereas it fails to reduce charge
recombination in the hydrogen evolution reaction (HER). When the cNiOx is annealed at 600 °C, it loses its

function as an HTL. When Pt is deposited onto PFO as a catalyst at 100 °C, it can effectively improve the

selectivity of HER.
Keywords:

Introduction

Ever since the Paris Agreement, over 140 countries
have set up their net zero targets.! Various laws and
policies have been laid out. The demand for
decarbonisation has prompted huge interest in the
development of low carbon technologies and
renewable substitutes of fossil fuels. Solar energy is
a potential solution to the continuously increasing
energy needs. However, the utilisation of solar
radiation is severely hindered by its intermittent
nature. An efficient and safe storage method is
required to retain the excess solar energy generated
in the daytime.? Solar-to-hydrogen (STH) energy
conversion has been regarded as a promising method
to store solar energy through water splitting
reaction.* A high purity of Hz can be obtained since
H> and O» are readily separated through water
decomposition. The green hydrogen H: itself is also

an efficient and renewable fuel which generates zero

Solar-to-hydrogen, PEC water splitting, perovskite oxide, Ca-doped PrFeO;

carbon emissions. It demonstrates a superior
gravimetric energy of 120 MJ/kg comparing to that
of gasoline (44 MJ/kg).> (Hydrogen has a higher
gravimetric heating value (141.9 MJ kg'") than most
of the conventional fossil fuels (methane 55.5 MJ
kg!, gasoline 47.5 MJ kg*!, diesel 44.8 MJ kg, and
methanol 20.0 MJ kg!) There are three main
approaches to STH energy conversion via water
splitting, which are the photovoltaic-electrolysis
(PV-EQ), photocatalytic (PC), and
photoelectrochemical (PEC) ways As a highly
developed technology, PV-EC system has already
been partially commercialised. Among the three
technologies, PEC cell is ranked in the middle in
terms of overall efficiency, complexity, and choice
of material.’®! PEC water splitting thus is not only
highly efficient but also relatively simple and cost-
effective. This article gives more insights into the

STH energy conversion using PEC water splitting.



Background

According to the Nernst Equation, water is
converted into oxygen and hydrogen (i.e. Gibbs
energy = 237.2 kl/mol) when a minimum energy of
1.23 eV is applied under atmospheric temperature
and pressure (i.e. 298 K and 1 bar). The solar
irradiance with a wavelength of around 1000 nm
provides the same amount of energy.>%’
Nevertheless, an energy greater than the theoretical
minimum is required to drive the reaction in practice
as a result of the energy loss in PEC water splitting.?
The energy losses accounts for about 0.8 eV,
including the potential loss because of the electrode
and contact resistances as well as the electron-hole
recombination. Thus, in practice, an energy of ~2.0
eV is needed to initiate PEC water splitting.® The

reactions for water splitting are shown below.

Absorption of light: SC + hv (> E,)
- eqpt+hy,
Photoanode (OER): 2H,0 + 4h},
-0, +4H* Egy
=-1.23V

The STH conversion efficiency (Zstn) is normally
employed to quantify the PEC performance of solar
cells.”'* By definition, the STH efficiency is the

amount of chemical (Hz) energy generated per unit

Chemical energy produced]

%) =
N (%) [ Solar energy input

Rate of H, Production X AG 1
_ Hz0-Hz+50;

"~ [Total incident solar power X Electrode Area

_ (mmol H, per s) x (237 000 J mol™1)
| Proga(mW cm=2) X Area (cm?)

]AM 1.5G6

Nsru (%)
_ []sc(mA Cm_z) X (1.23V) x ur

PTotal (mW sz) ]AMl.SG

Where J,. is the generated photocurrent density,
nr is the Faradaic efficiency of Oz or Hz production
(i.e. the efficiency of holes and electrons
contributing to OER or HER)

Photocathode (HER): 2H + 2eg,
- H, Eleq =0V
Overall water splitting: 2H,0
- 2H,+0, AG’
= 237.2 k] mol™*

1
E [ Light Absorption
Eca (- =

\\\
who \
> 7 =g 1 °

Figure 1 :PEC water splitting mechanism

A photocatalyst must have a band gap energy of ~2.0
eV to decompose water due to the significant

overpotentials of the two half equations. electrons

(eww) and holes (hvb+) are generated by solar

irradiation and drive the overall reaction.®

incident solar energy. It is obtained under
normalised solar irradiance with a value of one sun
(100 mW/cm?).% ' The Air Mass 1.5 global (AM 1.5

G) filter is normally used.

N-type metal oxide and p-type non-oxide
photocathodes have been intensively visited in the
field of PEC water splitting. For example, the
studies on using materials including Si, GaP, and
InGaN as photocathodes are well-established."
However, the research on the novel p-type metal
oxide semiconductor photocathodes is relatively
limited, most of which focus on the Cu-based
photocathodes. The p-type Cu-based metal oxides
are regarded as reliable photocathodes due to their
wide bandgaps as well as favourable band edges
correlated to the water splitting redox couples.
Nevertheless, the potential of binary and ternary
copper-based oxides is limited by the chemical

instability against reduction and non-ideal



optoelectronic properties. With buried p-n junctions,
protective layers, and nanostructures, Cuprous oxide
Cu20 possesses promising PEC performance.'s It
has a band gap of 2.0 eV and gives a theoretical Zstu
of 18%.°

PrFeOs is a state-of-the-art metal oxide
photocathode. Perovskite oxide has favourable band
gaps for solar illumination absorption and stability
for aqueous applications.'” However, its PEC
performance is still hindered by the hole-electron

recombination and high overpotential.

Aim

The main objective of this project is to optimize the
calcium doped (5%) praseodymium orthoferrite
PrFeO; (PFO). It is made up of two aspects, in which
the first one is to reduce the recombination of charge
carriers (i.e. holes and electrons) using a range of
hole transport layers (HTLs). The other aspect is to
boost the selectivity and hence the PEC performance
using platinum as a photocatalyst. This project aims
to give a potential option for an efficient, robust and
environmentally friendly PFO-based photocathode
for PEC water splitting.

Methodology

Fluorine-doped tin oxide (FTO)
substrate preparation

FTO glass substrates were cut to 2.7 cm X 1.5 cm
and placed in a staining jar. The substrates were
cleaned by the solution of Hellmanex detergent in
deionised (DI) water, under ultrasonic water bath for
10 minutes. To avoid the contamination by detergent,
the substrates were then rinsed by DI water for 10
times to ensure that there is no new bubble formed.
The substrates were subsequently treated with
acetone and isopropanol for 10 minutes of
ultrasonification with each solution. After drying
carefully with the radiation of hot plate (80°C), a
further 20 minutes of UV-Ozone treatment was
carried out to increase the wettability of the FTO

surface for the immediately following spin coating

steps. An ohmmeter was used to check the side of
FTO with non-zero resistance, and the FTO side was

put upwards.

Compact NiOx layer (cNiOx)

0.01 g of Solaronix Ni-Nanoxide slurry (nickel
oxide nanoparticle paste) was dissolved in 1g
(equivalent to 1260 pL) ethanol and vigorously
stirred for 20 mins. Spin coating was carried out on
the FTO side at 2000 rpm with 2000 rpm/s
acceleration for 30 seconds with 0.05ml solution.
3.5 bar of N2 was used for vacuum for the spin coater.
Annealing temperatures of 400°C and 600°C were
both investigated. The maximum temperature of hot
plate was 500°C. Therefore, the films were heated
on the hot plate of 400°C for 30 minutes when the
annealing temperature condition was set to 400°C.
For the temperature condition of 600°C, these films

were calcinated in the tube furnace for 30 minutes.

Mesoporous NiOx layer (mpNiOx)

0.1 g of Solaronix Ni-Nanoxide slurry was dissolved
in 0.5 g ethanol and mixed with the solution
prepared by 0.5 g ethanol and a varied mass of
Triton X-100 (TX100), to achieve different overall
mass ratio of 1:1, 1:2, 1:5 and 1:10 for TX100:
ethanol. The mixture was stirred for 20 minutes.
This was followed by spin coating of the resulting
mixture on the annealed cNiOx layer at 2000 rpm
with 2000 rpm/s acceleration for 30 seconds with
0.05ml solution. The annealing temperature and

time were 400°C and 30 minutes.

Compact MoOx layer (cMoOx)
10 nm of MoOx layer was deposited by thermal

evaporation on the cleaned FTO substrate.

PrCa(5%)FeOs layer

4 ml Tetrahydrofuran (THF) was extracted by
syringe with needle in nitrogen environment, which
was added to 2ml TX100 and stirred for 1 hour.
Simultaneously, 0.9 g citric acid powder, 0.5 g
Fe(NOs); ‘9H20 and 0.0146 g Ca(NOs); -4H20
solids were mixed with 0.51 g Pr(NO3)s -6H20 solid.



2ml DI water was added to the solid mixture
immediately to prevent the change in the
composition of the hydrates and the solution was
stirred for 1 hour. 4ml of the polymer solution were
then added to the inorganic solution and stirred for 3
hours. 0.05ml solution was used per each sample for
spin coating at 2000rpm with 2000 rpm/s
acceleration for 30 seconds. The coated films were
calcinated in three different temperatures (600°C,
700°C and 800°C) in the tube furnace for 2 hours.

This method was adapted from Freeman et al.!”

Platinum nanoparticles

8.3mg KoPtCls and 223.5mg trisodium citrate were
dissolved in 20 ml H>O. 0.6 ml of 10mM NaBH4
solution was then added to the solution as a reducing
agent and form Pt nanoparticles.'® A 200nm filter
was used on the syringe to filtrate the large Pt
particles or agglomerates. Spin coating was
performed subsequently using 0.02ml at different
spin speed (2000rpm, 3000rpm and 6000rpm) and
evaporating the solvent at two different
temperatures (400°C and 100°C) for 30 minutes.'®
The coating procedure was repeated for adding more

Pt layers.

Characterisation methods
Photoelectrochemical measurements
(PEC)

A PEC cell was set up with a three-electrode
configuration consisted of an Ag/AgCl reference
electrode, a Pt counter electrode and a working
electrode. The tips of the reference electrode and
counter electrode were immersed in 0.1M Na2SO4
aqueous electrolyte with pH 12, after adding NaOH
solution of pH 14 to tune the pH value. The glass
side of the sample (without coated layers) was faced
to the light source while the other side was in contact
with the electrolyte. A 0.28 cm? mask was used to
control the illumination area and simulated sunlight
was introduced by the LOT Quantum Design lamp
with the filter to control the light intensity to 100
mWcem? (AM 1.5).

To be able to compare the PEC performances in
different cell conditions, Nernst Equation at room
temperature and pressure was applied to convert the

potentials to reversible hydrogen electrode (RHE):
Erug = Eagjager +0.059 * pH + 0.197

The IVIUM potentiostat was connected to the
IVIUM software and the light was chopped at a rate
of 2 second. The applied external potential was
swept from +1.4V to -0.6V Vi linearly at a scan
rate of 10mVs..

Ultraviolet-Visible Spectroscopy (UV-
Vis)

The UV-Vis spectroscopy was investigated through
a Shimadzu 25001 spectrophotometer. The Kubella-
Munk function was evaluated for wavelengths from
300 to 800 nm.

X-Ray Diffraction (XRD)

X-ray diffraction (XRD) was carried out to analyse
the crystalline structure of perovskite layers. A
PANalytical X'Pert Diffractometer (Cu Ka, A= 1.54
A) was employed at 40 kV and 40 mA. Diffraction
patterns were taken for 20 values from 20 — 80° in a
slope of 0.0170° and then processed by Highscore

software.

Scanning Electron Microscopy (SEM)
Field Emission - Scanning Electron Microscopy
(FE-SEM) was investigated using ZEISS LEO 1525

with an accelerating voltage of 3KeV.



Results and discussion
PEC measurements

Effect of ¢cNiOx and mpNiOx HTLs

In order to reduce the electron-hole recombination
and to increase the photocurrent density, the
performance of HTLs were investigated by PEC
measurements with the photoactive layer, 5%
calcium doped PFO.

The mass ratio of the surfactants to ethanol was
varied in the mpNiOx layer with the structure of
FTO/cNiOx/mpNiOx/PFO and the FTO/PFO
configuration without the hole transport layers was
used as a reference. Figure 2(a) and 2(b) showed
that mpNiOx made with a 1:5 or 1:10 mass ratio
between polymer TX100 and EtOH demonstrated
the best PEC performance in air while there was no
photocurrent can be observed when the ratio
reached 1:2 and 1:1. Figure 2(b) illustrated the
photocurrent density when applied a flat baseline to
Figure 2(a) (i.e. the total current density subtracting

the dark current density at 0.43V Vgpye)
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Figure 2(c): Bar chart of mpNiOx
made with different mass ratio
between polymer TX100 and EtOH

Figure 2(c) demonstrated the best photocurrent with
mpNiOx (54 pAcm?) is still much lower compared
to the sample without the hole transport layer (87
pAcm). Nevertheless, the effect of cNiOx as HTL
alone was required to be investigated to conclude the
effects of mpNiOx on the performance. Figure 3(a)
and 3(b) illustrated the mpNiOx layer reduced the
electron-hole recombination as well as the
photocurrent density. The trend was clearer from
figure 3(c), adding a cNiOx layer to the structure
improved the photocurrent density in air, from 87
pAcm? to 106 pAcm?, while further coating a 1:10
mpNiOx layer on cNiOx layer reduced it to 54 pAcm’



2. Therefore, mpNiOx was not a desired HTL in that

configuration and cNiOx was promising.

Current Density (uWAcm2)
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Figure 3(c): Bar chart of mpNiOx

and cNiOx comparisons

Effect of cMoOx HTL

The structure with a thin layer of 10nm ¢cMoOx as
HTL was investigated to compare its PEC
measurements with the cNiOx layer. The results in
figure 4 indicated that the poor performance of the
cMoOx layer as the photocurrent density was limited
within 2 pAcm?, which was significantly lower than
the samples coated with cNiOx and might be due to

incompatible structure with PFO.
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Figure 4: cMoOx PEC performance

Effect of calcination temperature of the
photoactive layer

Temperature of calcination of the photoactive layer,
5% calcium doped PFO, was studied to optimise the
configuration and to improve photocurrent density.
From figure 5(a) and 5(b), with interested voltage
0.43V vs. RHE, 600°C was the optimal temperature
since it demonstrated the highest photocurrent
density with 106 pAcm™ and it was the lowest
temperature which saved the energy. !7 Apart from
the optimal temperature, the photocurrent density
with calcination temperature of 800 °C was almost
zero. A possible reason for the PEC performance
was the cNiOx cannot withstand the temperature of
800 °C and form cracks, which required further

justification from SEM results.
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Figure 5(a): Change temperature for calcination
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Figure 5(b): Bar chart for change temperature

for calcination

Effect of spin coating speed for Pt

The spin coating speed would influence the
thickness of the coating layers and thus affected the
distribution pattern of Pt nanoparticles. From Figure
6(a) and 6(b), The spin coating speed of 3000 rpm
showed a 25% improvement to the photocurrent
density compared to 2000 rpm and slightly reduced
the electron-hole recombination. The photocurrent
density by using 6000 rpm was almost identical to
3000 rpm and therefore 3000 rpm was chosen as it

was more energy efficient.
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Figure 6: Different spin speed

120
Phaotocurrent Density
1004
§ 87 88
<
= 804
2 69
g
A ®
£ 4o
8
2
o 0+
S & <
& & &
[ Ly o

Figure 6: Bar chart for different spin speed

Effect of number of coating layers of Pt

To coat the Pt nanoparticles more evenly with more
nanoparticles on the PFO surface, the number of
coating layers of Pt was varied and studied. Figure 7
illustrated the photocurrent density in air increased
as the number of coating layers increased, with 27%

improvement from 1 layer to 2 layers of Pt and a



further 10% improvement from 2 layer to 3 layers.
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Figure 7: Bar chart for different coating layers

PEC measurements in nitrogen environment were
performed to exclude the photocurrent density of all
the other reactions including oxygen reduction
reaction (ORR) and demonstrated the selectivity to
hydrogen evolution. The trend in nitrogen
environment was still hold and can be concluded
from Figure 8. However, there was no clear
improvement after adding the Pt layers since
difference between the photocurrent with Pt layers

and without Pt layer was within the range of

experimental error.
25
Photocurrent Density
_ 21
&
b 20 -
§ 18 18
2 16
215
(2]
[ =
f7
o
S 10
5
o
L
2 5
o
0
N Q >
& & N &
o) o o) o\
@ «@ @ N
N N N IS
° © ° <
< < i o
& & & ©
<O <O <O

Figure 8: Bar chart for different coating layers
in N2

To improve the performance of Pt layers, the
temperature to evaporate the water after spin coating
was lower to 100°C to reduce the effect of Ostwald
ripening and the agglomerations. The temperature of
cNiOx annealing was increased to 600°C to be
consistent with the calcination temperature of 5% Ca
doped PFO layer simultaneously. The PEC results
under nitrogen environment were shown on Figure
9. Compared the photocurrent density of sample
1,2,3 with sample 5 in Figure 9, it illustrated Pt did
improve the photocurrent since there was an over 50%
improvement on the photocurrent density from 6 to
9 uAcm? at least. In addition, after changing to the
new temperatures, the 2 layers of coating of Pt
demonstrated the best performance. The cNiOx
might not be effective since there is no obvious
difference between the results of sample 4 and

sample 6.

Optimal photocathodes

A collection of the optimal photocathodes under N2
condition with FTO/PFO and FTO/cNiOx/PFO as
reference was shown in Figure 10(a), 10(b) and
10(c). The best photocurrent density was achieved
by the sample with lower temperature (100°C) to
evaporate the solvent and higher temperature
(600°C) to anneal the cNiOx. It could be explained
by even though in the lower temperature, the
performance of Pt was improved and resulted higher
selectivity, the cNiOx might lost its function as HTL

to reduce the electron-hole recombination.

Characterisation Results
SEM Results
FTO
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The image demonstrates the scanning electron
microscope (SEM) result for FTO-coated glass. The
marble-like pattern of FTO as well as the grain
boundaries are shown. FTO has an average

crystallite size of ~0.2 pm.

FTO/cNiOx

¢NiOx annealed at 400 °C

1um
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The SEM image of FTO/cNiOx composite has a
similar pattern as the bare FTO one. However, it has
a smaller crystallite size than that of FTO.

¢NiOx annealed at 600 °C

The SEM image of FTO/cNiOx composite
demonstrates a similar morphology as the former
one. The only difference in the preparation of
sample is the annealing temperature of cNiOx is
increased from 400 to 600 °C. cNiOx particles start

to agglomerate at a higher temperature due to the
Ostwald ripening. As a result, cNiOx loses its
preferred function as a HTL and fails to reduce
charge carrier recombination. Moreover, cNiOx
might diffuse into the PFO layer and thus deactivate
PFO. Therefore, the PEC performance for samples
with cNiOx (600 °C) is non-ideal.
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The four images from figure X to X refer to the
FTO/cNiOx/PFO/2-layer Pt photocathode which
gives ideal PEC performance. As these images
shown, there are more cracks on the surface with Pt

(400 °C). Also, more Pt agglomerations can be

observed with a higher deposition temperature for Pt.

The lower layers fail to mechanically support the
PFO and Pt nanoparticles are spread less evenly in
figure X and X. Therefore, the samples with Pt
(100 °C) demonstrate better PEC performance.

UV-Vis Results
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The absorbance and reflectance characteristics were
investigated using Ultraviolet-visible (UV-Vis)
spectroscopy. Absorbance increases as the
wavelength of incident light decreases from 700 to
300 nm. Absorbance is inversely proportional to the
reflectance which is desired. The absorption of light
rapidly increase as the curve enters the ultraviolet
region (wavelength between 100 and 400 nm). The
fluctuation of curves possibly indicates the
iridescence which is the phenomenon gradually
changing colour due to the change of angle of
illumination. It is also partially because of the

intrinsic wave pattern of the incident light.

XRD Results
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X-ray diffraction was investigated for samples with
different layers. The XRD data and reference data
for each material were analysed and plotted using
OriginLab 2022. Then all the plots are combined and
shown in the XRD graph. There is not much
difference between the plots generated by four
different samples. The six reference peaks of FTO
are clearly demonstrated on all four plots. The
reference peaks for NiOx and PFO are partially
shown (i.e. NiOx: 20 = ~43.0°, ~78.0°; PFO: 20 =
~25.5°,~32.5°,~57.5°) while the Pt peaks cannot be
easily identified. The sharp reflections of FTO peaks
dominate which indicates the high crystallinity and
possible desired orientation effects. The sharp peaks
of FTO indicate a low Full Width at Half Maximum
(FWHM) value. Since the crystallite size of a
material is inversely proportional to its FWHM
value, it can be concluded that FTO has a relatively
large crystallite size which is consistent with our
SEM result.'® On the contrary, tiny Pt nanoparticles
with diameters less than 50 nm result in a large
FWHM value and hence negligible peaks. The XRD
patterns of FTO — PFO, FTO — cNiOx — PFO, and
FTO — cNiOx — PFO — Pt(3) composites all partially
match with the diffraction pattern of PFO with
JCPDS no. 00-047-0065. Similarly, the peaks of all
three samples with cNiOx layer partially match with
the known cubic phase of NiO (ICSD: 024014) and
rhombohedral phase of NiOz (ICSD: 078698).2% 2! It
demonstrates that PFO, NiO, and NiO2 might not
have the crystallinity as high as that of FTO.

Conclusion

This study has investigated the effects of the cNiOx,
mpNiOx and cMoOx hole transport layers, the
calcination temperature of calcium doped PFO, spin
coating speed, number of coating layers of platinum
with different temperatures to evaporate the solvent
of Pt nanoparticle solution and presented a
collection of the optimal photocathodes.

In conclusion, the cNiOx layer is an effective HTL
when PEC measurements are performed in
atmospheric condition, while it fails to reduce

charge recombination in the HER. mpNiOx and

cMoOx layers are incompatible with PFO at 600°C
and gives poor PEC performance. However, when
the ¢cNiOx is annealed at 600 °C, it loses its function
as an HTL as well. For tuning the temperature of
evaporating the solvent in Pt coated film at 100 °C,
it can effectively improve the selectivity of HER.
The structure of FTO / cNiOx (400 °C) /
PrCa(5%)FeOs / 3-layer Pt (400 °C) gives the best
PEC performance under the N2 environment among
all the tested configurations with a photocurrent of
21 pA cm™,

Outlook

The preparation method for cNiOx / PFO based
photocathode can be further optimized. For example,
the cNiOx layer might possess a higher activity to
reduce electron-hole recombination when the
annealing temperature is lower than 400 °C.
Furthermore, it would be beneficial if more
advanced characterization method such as
transmission electron microscopy (TEM) can be
used. Finally, more HTLs and catalysts can be

examined for the PFO photocathode.
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Viscoelasticity and Extensional Rheology of Concentrated Wormlike Micelles Solution
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Abstract

The use of wormlike micelles (WLMs) solutions has seen a growth in recent years due to the remarkable
rheological and viscoelastic properties of these fluids, comparable to the more expensive ultra-high molecular
weight polymer solutions. To better understand these complex fluids, numerous research had been done to study
the structural and rheological properties of WLMs solutions. Though, one main gap remained in these studies:
the extensional rheology— a major flow character that will allow a better characterisation of these fluids for real
life use. In this paper, we studied cetyltrimethylammonium bromide/sodium salicylate (CTAB/NaSal) solution,
by fixing CTAB concentration to 0.1M and using different NaSal concentration ratio, R of 1, 2, 3, 4, and 5.
Formation of WLMs in solutions was confirmed by employing previous molecular structure and shear rheology,
alongside our own shear rheology and viscoelasticity study before proceeding with extensional rheology study.
Viscoelasticity studies showed that storage and loss modulus intersection moved towards higher shear rate until
R=3, before moving towards lower shear rate. Thus, indicated that viscosity of the solution increased until a
maximum at R=3 and decreased at higher R values. Extensional rheometer-on-a-chip was used to measure
extensional viscosity with various extensional rates at constant temperature. It was found with R <5,
CTAB/NaSal solution exhibited a general tension thinning curve similar to its shear viscosity whereas R = 5
exhibited a tension thickening pattern before following the general tension thinning behaviour as found in shear
rheology studies. In addition, our research indicated that extensional viscosity was significantly higher than
shear viscosity in all R, which was consistent with previous rheological studies.

Keywords: Wormlike micelles, extensional rheology, CTAB/NaSal solutions, viscoelasticity

1.Introduction and Background

Amphiphilic molecules garnered attention by
researchers due to the highly complex nature of the
molecules when suspended in water. It had been
known that these molecules were able to self-
organise into many different aggregates, with
various kinds of geometry, which affected the
rheology of the fluid significantly. Wormlike
micelles (WLMs) stood out amongst others due to
their vast applications including fracturing
technology in oil industry, template synthesis of
different nanoobjects, micellar copolymerization of
hydrophilic and hydrophobic monomers !,

WLMs were formed by the self-organisation of
amphiphiles into an elongated and extremely
flexible aggregates, capable of forming a network
of transient and highly entangled chains. Hence, the
term ‘living polymers’ was often be associated with
WLMs solutions since they mimic the behaviour of
water-soluble polymers but apart from the transient
nature of the WLMs in solution. This was due to
the hydrophobic interactions holding WLMs
together are extremely weak relatively to the
covalent bonds that bond polymer molecules
together, causing the micelles to break and form

constantly. Thus, WLMs solutions are extremely
susceptible to change in temperatures and
concentrations due to the specific conditions
required to form these micelles. Hence, the
rheological properties of WLMs micelles were
more complex and less predictable than any
polymer solutions.

The formation of WLMs is relatively simple,
requiring only three major components: water, a
cationic surfactant, and an ionic salt. This,
combined with WLMs astounding viscoelastic
behaviour comparable to high molecular weight
polymers, has attracted numerous research in
understanding WLMs.

Cetyltrimethylammonium bromide (CTAB) is one
of the surfactants that has widely been known to
form WLMs at a critical micelle concentration of
1.0M. The addition of ionic salt such as sodium
salicylate (NaSal) allows the formation of WLMs
at a lower concentration of CTAB. The presence of
high electronegative phenyl group in salicylate ion
reduces the repulsions between polar head of
CTAB, allowing CTAB molecules to pack closer to
each other forming thus forming wormlike micelles
at lower concentration.
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In recent years, researchers have mostly focused
their interest in studying the molecular structures of
various WLMs solutions, and the macroscopic
behaviour or the rheology of these solutions
specifically when imposed by a shear stress. These
studies, especially the shear rheology, are
important to better characterise these living
polymers and allow a greater understanding on how
they behave in real-life situations. Though shear
rheology of CTAB/NaSal has been extensively
studied, these studies have failed to address an
important component to fully characterise the
rheology of these fluids: their extensional rheology.

With the recent rise of interest in WLMSs solutions,
we aim to bridge the gap in rheological studies by
employing CTAB/NaSal solution to understand
their extensional flow behaviours, which to the best
of our knowledge has not been investigated
previously. This research primary goal is to study
the extensional rheology of CTAB/NaSal solutions
and using established studies to compare the
behaviour of these complex fluids.

2.Methodology
2.1 Production of CTAB/NaSal Solution

CTAB, manufactured by ThermoSCIENTIFIC™
and NaSal, salts, manufactured by Merck KGaA™
were with purity of 99.5% respectively, without the
need for further refinement or processing. 5 CTAB
solutions with concentration 0.1M were made by
measuring a weight of 0.3665g to produce a 0.1L
solution each. Before addition of deionised water in
each beaker, 0.1601g, 0.3202g, 0.4803g, 0.6404g,
and 0.8005g of NaSal salts were measured and
added to beakers containing CTAB to produce
concentration ratio, R of 1, 2, 3, 4, and 5.
Deionised water was added to the 100ml line, and
solution were then mixed at least overnight under a
constant stirring speed of 400 rpm and temperature
of 35 °C before any rheological studies to allow
solution to equilibrate.

2.2 Confirmation of WLM Structure Formation

Physical inspection of solution produced, was used
as the primary method of confirming the formation
of WLMs by comparing the physical attributes of
the solution with multiple available literatures.

This was done to qualitatively confirm the
structures formation before proceeding with shear
viscosity studies that would allow us to
quantitatively confirm the formation of said
structures.

2.3 Rotational Shear Rheometry

Shear rheology studies were mainly done on Anton
Parr MCR 302 and ThermoSCIENTIFIC™ MARS
60 shear rheometer with a coaxial cylinder as the
measuring geometry, where samples were loaded in
the gap between cylinders.

2.4 Shear Viscosity and Viscoelastic Behaviour

To study the behaviour of CTAB/NaSal solution,
different shear rates were imposed ranging from
0.01 to 100 s! at a fixed temperature of 25 °C.
Graph of the viscosity obtained were then plotted
on a logarithmic axes of shear viscosity (Pa s)
against shear rate (s™).

In addition, small amplitude oscillatory test was
done on the fluid within the linear viscoelastic
region where samples were sheared in an
oscillatory manner about the equilibrium position
at a fixed amplitude. The experiments were carried
out by manipulating the temperature from 15 to
30°C and varying frequency of oscillations and
measuring the maximum shear stress obtained. The
measurement obtained was used by the software to
calculate the storage (G’) and loss (G”’) moduli by
using the equations:

G — amax (1)

Smax

Where G is the modulus of spring, omax is the max
strain and &max 1S the maximum measure stress.

Then, the moduli can then be calculated using:

. G(wt)?

¢ = Tr e @
" o__ nw

"= 1+ (wt)? )

Where w7 is the product of angular frequency and
the relaxation time of the solution after the imposed
stress.

The analysis of the viscoelastic behaviour was done
by plotting the G’ and G” against frequency of
oscillation on the same graph. This in turn gave us
an insight on how fluid behaviour changes with
different shear rates.

2.5 Extensional Rheometry

All extensional rheology studies were done on
RheoSense e-VROC™ microfluidics chip. The
channel of the chip was engineered with hyperbolic
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divots that caused fluid to expand and contract
thereby producing a constant extension flow
around the region. The presence of this hyperbolic
gap caused a significant pressure drop of the fluid,
which was a characteristic of extensional fluid
flow, instead of a constant pressure drop when
shear is the only significant attribute.

Micro Electronic Mechanical Systems (MEMS)
pressure sensors were equipped in throughout the
channel especially upstream and downstream of the
gap, which allows the measurement of pressure
drop, subsequently extensional viscosity to be
done.

Calculation of apparent extensional viscosity was
done fully by the proprietary software made by
RheoSense™, which made use the following

modified viscosity equation:
_ b o

Ne = EH 8 (
Where AP is the pressure drop caused by the
extensional flow through the hyperbolic divots, €,
is the Hencky strain attributed by the fluid
contraction/expansion through the divots and € is
the apparent extensional rate of fluid passing
through the channel.

The e-VROC chip used in all extensional studies
had the same value of Hencky strain of 2.0130,
which was calculated by the equation:
WC
Ey=In— 5
H=n w, (5)

Where w, is the width of the main flow channel of
2.994 mm, and w, is the smallest width of the main
contraction/expansion zone with a value of 0.400
mm.

Fluid was loaded into the chip by use of 1ml
syringe attached to the inlet of the chip, and
covered in a temperature controlled thermal jacket,
connected to Thermocube bath. The syringe
plunger was attached to a pusher block which acted
like a pump, delivering the required flow rates as
specified by the user using the included software.

To ensure measurement of extensional viscosity to
be as accurate as possible, the first extensional rate
was run for an extended period, roughly 1500
seconds, compared to the 50 to 500 seconds for
subsequent extensional rates. This was done to
‘prime’ the sensor, thereby removing any fluids
and/or air bubbles present in the flow channel,
disrupting the pressure drop measurements.

Shear Viscosity at Different R
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Figure 1: Shear Viscositv vs. shear Rate for Different R
3.Results and Discussion
3.1 Shear Viscosity

From Figure 1, for R=1-5, shear-thinning
behaviour was shown for all ratio, shear viscosity
generally decreases with shear rates. However,
several waves showed up at shear rates of 16.2/s
for R=1 and 2.64/s for R=2 and 3 respectively.
Additionally, an extra fluctuation took place at
shear rates of 25.1/s for R=3, while there was no
fluctuation was detected by the rotational
rheometer at R=5, meaning the worm-like micelle
structure was not affected by rotational movement.
This phenomenon indicated that there would be
shear-induced structure, which CTAB molecules
aggregated under rotational movement.
Furthermore, a maximum shear viscosity was
reached at R=3, 106600 mPa*s particularly. Once
R became larger than 3, generally the shear
viscosity started to decrease, possibly due to the
excess of NaSal dissolved in CTAB aqueous
solution causing extra repulsion between the salt
ions and CTAB molecules, making the worm-like
micelle structure to destruct. In addition, from
visually observation, high NaSal solution might
even break caused the CTAB molecule itself to be
decomposed forming bromine in the solution, as
the solutions shown in figure 1, were appeared to
be brownish colour for R=4 and R=5.

3.2 Viscoelastic Behaviour

The exchange of viscous and elastic behaviour of a
fluid was determined by measurement of storage
modulus and loss modulus. At 25°C the results
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illustrated in figure 2-6 had shown that the left
most intersection point of G” and G’ curve

Modulus Curve at R=1 Modulus Curve at R=2 Modulus Curve at R=4

o, 0, Pa

Shear Rate, 1/s Bhear Bate, L/s Shear Hate, 1/3

Modulus Curve at R=3 Modulus Curve at R=5

Bhear Rate, 1/8 - Bhear I\';x:'e. Iis
Figure 2-6: Storage & Loss Modulus vs. Shear Rate at Different R for Temperature=25°C

behaviour started to stabilise at low shear rates. By
combining this observation with shear viscosity,

occurred at R=3, indicating that the solution with the limitation of shear rheology and viscoelastic
R=3 would be the most elastic solution. Apart from behaviour tended to show up at R=3, in another
R=3, the intersection point shifted to left and right word, this ratio for high concentration CTAB
with increasement in shear rates, for R<3 and R>3 solution might be an indicator for significant
respectively. Meanwhile, the largest plateau zone changing in properties.

of G°, which kept stationary after shear rate of 1/s,

was also found on the curve of R=3, meaning that
the fluid with R=3 gave the most elastic behaviour
among all 5 testing samples, the viscoelastic

o, o, Pa

Besides, temperature also played an important role
in viscoelastic properties. For each R, the rightward
shifting of intersection point of the two moduli

18°C aB°C

o, o, Pa

Shear Rate, 1/3 Shear Bate, 1/3

a0°C
0°C a5°C

g, 0, PFa

Shear Rate, /s Shear Rate, 1/

Figure 7-10: Storage & Loss Modulus vs. Shear Rate at Different Temperature for R=3.
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curve indicated that higher temperature would
encourage more viscous behaviour, as more energy
got absorbed by the micelle molecule, causing the
crosslinking and intermolecular interaction
between molecules to be destructed. For some
extreme cases, such as for R=3 at 15°C, the G’ and
G’’ curve did not intersect, meaning that there
would be negligible viscoelastic behaviour and no
fluid change from viscous to elastic regime.

3.3 Extensional Viscosity

Ranging from R=1 to R=5, a general negative
relationship between extensional viscosity and
extensional rate was shown in figure 11, however,
except for R=5, a relatively small amount of
increase occurred at low extensional rates.
Particularly, the viscosity started to decrease at 2.5,
2.5, 1.4 and 4.6/s corresponding to R=1, 2, 3 and 4
respectively. The solution with R=5 generated a
curve with a relatively unique trend, having a
second maximum viscosity point following the
increasing after the decreasing at low extensional
rates where the experiments started. Though the
rising in viscosity might be considered as due to
possible tension-induced structure, similar to shear-
induced structure, the uncertainty at low shear rates
caused by the sensor chip used in the experiments
should be also taken into account. Nevertheless, the
second convex shape curve shown in the curve
representing R=5 might be trustworthily illustrating
the nature of the fluid. Particularly due to the high
shear and extensional viscosity of solution with
R=2 and 3, the test at high extensional rates could
not be carried out, since the fluids would stick
inside the sensor chip not only damaging the sensor
but breaking the gastight syringe, alternative
methods measuring extensional viscosity might
need to be discovered.
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Figure 11: Extensional Viscosity vs. Extensional Rate at Different R

Same as shear viscosity, the maximum extensional
viscosity was also found at R=3 while the lowest
was at R=5. Although in shear viscosity analysis,
the curve of R=2 gave the second highest shear
viscosity, the extensional viscosity curve shown in
figure 11 illustrating that the curve for R=1 and 2
had similar results at extensional rates greater than
1.4/s. At high extensional rates, the gap between
extensional viscosity for different R tended to
become narrower, apart from R=5, where a
relatively more significantly higher extensional
viscosity was shown in figure 11. This
phenomenon indicates that extensional viscosity
might not be necessarily strongly correlated with
shear viscosity.

Temperature effects on extensional viscosity were
also studied for solutions with R=1 and 4.
Temperature would not have significant effects on
the fluid viscosity at extensional rates higher than
27.2 and 9/s corresponding to R=1 and R=4
respectively. Below the threshold rates, at R=1, the
extensional viscosity showed an increasing trend
with temperature, while the opposite was observed
for R=4.
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Figure 12-13: Extensional Viscosity vs. Extensional Rate at Different Temperature for R=1 and 4.
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3.4 Extensional Up-and-Down

Compared to shear stress thixotropic behaviour, the
hysteresis effects in extensional viscosity would

also be worthy to research. Instead of naming
‘extensional thixotropic’ experiments, extensional

up-and-down was defined to the test to study the
hysteresis behaviour. For R=1,2 and 4, there would
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not be apparent differences between the up and
down curves shown in figure 14-16, at extensional
rates above 1.5, 4.1 and 10.7 respectively.
Meanwhile, the results at R=5 indicated that it the
micelle structure might get reformed and even
elongated during ramping down, corresponding to
the deviation between extensional rates of 3.7 to
32.4 shown in figure 17. In particular, significant
difference between positive and negative
experiments showed in figure 15. Nevertheless, for
other ratio, the difference between up and down
curves at low rates could possibly indicating there
would be hysteresis effects, while the uncertainty
of sensor chip may not be neglected.

3.5 Compare Shear and Extensional Viscosity

Finally, shear and extensional viscosity were
compared based on the Trouton ratio equation,
where the shear rates were divided by V'3 to match
extensional rates. As shown in figure 19, 20 and
21, at high rates for R=2,3 and 4, two curves are
getting closer, indicating extensional viscosity
approaching the shear viscosity, indicating the
effect of viscoelastic behaviour might become
negligible.

4. Conclusion

In conclusion, all solutions are tension-thinning at
low extensional rates, apart from R>4, where might
be tension-thickening. Also, temperature does not
have significant effects at high extensional rates,
however, it might affect the extensional viscosity at
low rates. Solutions with R>4 would give different
results in up-and-down experiments. Both shear
viscosity and extensional viscosity would have
maximum at R=3 for CTAB concentration=0.1M.
Besides the main conclusions for extensional
rheology, viscoelastic behaviour is not negligible.
At temperature between 20-35, intersection points
showed up, indicating there was exchange of
viscous and elastic behaviour.
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Abstract

With a growing global interest for sustainable energy coupled with the challenge of underutilised waste, there is a rising
recognition to the significance of generating low-carbon energy via waste-to-energy power plants. This paper investigates
the feasibility of retrofitting a post-combustion carbon capture plant using monoethanolamine (MEA) technology to a
small-scale UK waste-to-energy power plant utilising refuse derived fuel. The overall power generation and carbon
capture system is simulated on Aspen Plus V11, modelled with a capture efficiency of 95%. Both the energy requirements
and the economic potential were explored as part of the feasibility study. At the given capture efficiency, when retrofitting
a post combustion carbon capture (PCC) plant, an energy penalty of 53.3% is imposed, leading to a net energy output of
5.95MW. and a decreased plant efficiency to 31%. A comparison between refuse derived fuel (RDF) power plants and
conventional fuel plants such as coal and natural gas combined cycle (NGCC) power plants revealed that the former has
a significantly larger energy penalty owing to the high energy consumption of the reboiler in conjunction with the low
thermal efficiency of the RDF fuel. The economic potential is estimated to be -£2.44million for the integrated carbon-
capture plant at this energy capacity. The unfavourable economic prospects coupled with the substantial energy penalties
pose challenges to the feasibility of this simulated waste-to-energy plant.

1. Introduction

In the face of escalating concerns about climate change
and the urgent need to mitigate greenhouse gas
emissions, carbon capture has emerged as a pivotal
solution for a more sustainable future. As nations
worldwide aim to transition towards sustainable energy
solutions, the exploration of carbon capture
technologies becomes a focal point. Concurrently, with
the recent developments at COP28, where the phaseout
of fossil fuels faced reconsideration, the increasing
reliance on technologies like carbon capture to mitigate
emissions becomes evident. As we strive towards
achieving the ambitious net-zero target by 2050, it
becomes imperative to recognise that emitting zero CO»
is only one aspect of the problem. Equally vital is the
removal of existing CO» from the atmosphere, marking
it a crucial component in the pursuit of a sustainable
future.

Moreover, rapid urbanisation and population growth
have contributed to a surge in waste generation, placing
immense strain on the existing waste management
infrastructure. Landfills are now facing their limitations,
with finite capacity and environmental consequences.
The current trajectory indicates that London's landfill
capacity is anticipated to reach its threshold by 2026
(London Assembly, n.d.), necessitating a re-evaluation
of waste management strategies. As the demand for
efficient and sustainable waste disposal solutions
intensifies, the UK finds itself at a critical juncture to
explore alternatives that not only address the immediate
challenge of waste disposal but also align with broader
environmental goals.

Among the escalating waste management
challenges, the utilisation of RDF emerges as a
noteworthy alternative, gaining prominence in the UK's
pursuit of sustainable waste disposal practices. RDF is
derived from the processing of municipal solid waste
(MSW), transforming non-recyclable materials into a

valuable energy resource. This approach not only diverts
waste from landfills but also harnesses its energy
potential, contributing to the reduction of reliance on
traditional fossil fuels.

Although there are references to RDF incineration
plants for power generation in literature, there are
limited resources exploring the integrations of an RDF-
to-energy plant with a carbon capture and storage
system. Successfully bringing together an RDF-to-
energy facility with integrated carbon capture
technology, not only promotes the utilisation of RDF but
also enables the production of low carbon energy. An
investigation of the economic viability and energy
penalty will offer valuable insights into the feasibility
and readiness of carbon capture for RDF-to-energy
power plants, with an aim to advance industrial
capabilities.

2. Background

2.1. RDF

MSW represents the diverse range of discarded
materials from households and institutions, comprising
of everyday items like packaging, food scraps,
appliances, and more. The variability in MSW
composition is intricately linked to diverse
socioeconomic factors. For instance, affluent areas often
exhibit lower food waste while lower-income regions
may have a higher organic content (Chavando et al.,
2022). The variation extends beyond local
environments, resonating on a global scale. This
highlights the need for a nuanced examination of MSW
compositions originating from diverse regions. Given
that RDF is derived from MSW, its composition is
dictated by the components of the waste. Table 1
presents a summary of proximate analysis, ultimate
analysis, and lower heating values (LHV) of RDF from
various global locations.
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Table 1: RDF Compositions Across the World

Proximate analysis (Wt%) Ultimate analysis (wt%) LHV
RDF | Location | Moisture @~ Ash  Volatile Fixed (MJ/kg)
Content Content Matter Carbon C H N 0) S

1 UK 5.9 12.9 70.0 11.2 587 84 1.0 16.0 0.4 24.9
2 Pakistan 8.8 8.3 78.3 9.5 542 47 08 304 0.0 22.1
3 EU 1.6 9.1 80.7 8.7 484 69 04 350 0.3 22.2
4 Kazakhstan 1.5 8.2 86.7 3.6 583 99 0.6 228 0.2 23.4
5 Spain 8.5 26.0 70.4 3.6 46.8 54 1.1 20.4 0.3 11.4

1 - (Materazzi et al., 2015), 2 - (Mehdi et al., 2020), 3 - (Alfe et al., 2022), 4 - (Botakoz Suleimenova et al., 2022), 5 - (Garcia et al., 2021)

The production of RDF from MSW, requires a drying
process to reduce its moisture content. Simultaneously,
the waste undergoes fragmentation, and any inert
materials are extracted to enhance its calorific value
(Jannelli and Minutillo, 2007). Following processing,
the resultant RDF serves as a fuel source for energy
production through combustion. This energy can be
harnessed in a Combined Heat and Power (CHP) plant,
where steam turbines, coupled with a generator, convert
it into electrical energy, thermal energy is released via
the cooling water (Environ Consultants Ltd., n.d.).

2.2. Post Combustion Carbon Capture

Amidst the continuously growing demand for power
generation in the UK, reducing the carbon-footprint of
industries dependent on fossil fuels is crucial for a
cleaner and more carbon-friendly future. Carbon capture
and storage not only facilitates the continued usage of
existing infrastructure but also represents one step closer
towards a net-zero nation. Among the three primary
methods of carbon capture — oxy-fuel combustion, pre-
combustion carbon capture, and post-combustion
carbon capture (PCC) — this paper solely focuses on
PCC due to its promising industrial advancements. PCC
can easily be retrofitted and implemented to an existing
chemical plant without much disturbance to its current
infrastructure, making this the most economically
favourable method. In this process, fossil fuels are
conventionally combusted for energy generation, while
carbon dioxide in the effluent gas stream is captured
before being discharged to the atmosphere.

2.3. Solvent Selection

Monoethanolamide (MEA), an amine-based solvent
commonly utilised for post combustion carbon dioxide
absorption due to its high reactivity and low cost (Li et
al., 2016), is selected as the aqueous solvent for this
study.

In addition, MEA stands out as one of the most
commercially ready technologies for minimising the
amount of CO, released to the atmosphere (Jung et al.,
2013). A significant amount of energy is required for
MEA solvent regeneration when retrofitting a carbon
capture and storage (CCS) system, in turn imposing a
heavy energy penalty with a notable decrease in plant
efficiency (Luis, 2016). As a result, extensive research
is being conducted within this field in attempt to

minimise the energy-intensive CCS process and
enhance its thermal efficiency.

In line with ongoing CCS investigations, this study
focuses on the economic feasibility of retrofitting and
optimising a MEA-CO, PCC plant on a waste-to-energy
(W1E) facility.

3. Methodology

3.1. Power and Heat Generation Plant

The power and heat generation plant consists of two
main sections, RDF incineration and then the power
generation section.

The feed of RDF was selected based of the 25 MSW
incinerators with energy recovery in the UK (Nixon et
al., 2013). Due to the relatively small scale of the plant
the capacity of the second smallest plant was taken
which is 30 ktpa. However, due to the plant operating
for 8000 hrs/yr the capacity was scaled up in accordance
to 37 ktpa. As a result, a feed of 4600 kg/hr was chosen.

3.1.1. Characteristics of RDF

In the context of modelling RDF as a non-conventional
fuel in ASPEN, it is essential to input appropriate values
for proximate analysis, ultimate analysis, and LHV.
RDF 1 from Table 1 as the chosen input, selected for its
relevance due to the location (UK) and its relatively high
LHV. The emphasis on LHV is particularly crucial,
considering that it is positively correlated with the
amount of energy it releases.

3.1.2. Drying

The RDF incineration modelled in ASPEN Plus shown
in Figure 1 is similar to that shown in the ASPEN Plus
user guide (Aspentech, 2013) however, the inputs were
designed specifically for the RDF plant.

The first section of the incineration involves pre-
treating the RDF to reduce its moisture content and
therefore increase its heating value. To model this we
assume the reaction for coal drying applies to RDF as
well, where 1 mole of RDF produces 1g of water.

RDF - 0.0555084 H,0 1)

The RDF then enters a flash column where RDF is
separated from the other components present.
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Figure 2: Aspen Plus Flowsheet of PCC plant

3.1.3. Combustion

Given the non-conventional nature of RDF, a two-
reactor system in ASPEN PLUS is necessary for its
incineration. Illustrated in the figure is the sequential
operation of a RYIELD reactor followed by a RGIBBS
reactor. The RYIELD reactor initiates the
decomposition of RDF into its elemental components,
aligning with the fuel's ultimate analysis. The heat
generated during the decomposition is directed to the
RGIBBS reactor, denoted by heat stream Q-
DECOMP’, supplying the required energy for
combustion. The decomposed RDF then enters the
RGIBBS reactor, where combustion occurs. The
RGIBBS block operates by considering all possible
products and establishes chemical equilibrium by
minimising Gibbs free energy, removing the need for
specifying the reaction stoichiometry.

A sensitivity analysis was conducted to find a
suitable trade-off between the carbon dioxide, oxygen
and carbon monoxide compositions whilst varying the
air feed stream. This is to ensure that complete
combustion takes place whilst ensuring that the mass
flowrate of carbon dioxide is not too high. Subsequently,
an air flowrate of 50000 kg/hr was chosen.

The product stream leaving from the RGIBBS
reactor is at a temperature of 1515°C. This stream is then
cooled down to 600°C whilst subsequently providing a
heat duty of 18.07MW to the boiler in the power
generation cycle.

3.1.4. Exhaust Gas-Solid Separation

Following the reactor, the stream is used to heat up the
boiler in the energy generation section whilst
subsequently getting cooled itself. This cooled stream
then enters a splitter where the solid ash gets removed
of the bottom and the exhaust gases come off the top.
The composition of the exhaust gas stream is outlined in
table below. This stream is the input stream for the PCC
process.

Table 2: Outlet RDF Plant Gas Composition

Gas Mass Fraction
N» 0.713
CO, 0.176
H,O 0.063
0, 0.045
SOx, NOy, CO, H, 0.003

3.1.5. Power Generation

A Rankine steam cycle has been employed for this plant
to generate power. Two turbines are used for this
process, a high-pressure (HP) turbine and a low pressure
(LP) turbine and these both operate with isentropic
efficiencies of 90% (Frohling, Unger and Dong, n.d.).
The boiler is modelled as a heat exchanger which is
powered by the heat energy released from the hot
combustion gases.
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Firstly, the water stream that enters the boiler is
heated to 600°C and a pressure of 100 bar and is then
passed through the HP turbine where it is discharged at
10 bar and 286°C. This creates an electrical output of
5.01MW. Following from this the stream is split where
17500 kg/hr is diverted to power the reboiler in the
stripper whilst the remainder is sent back to the boiler
which then heats it up to 600°C. Then it is passed
through the LP turbine from which it gets discharged at
0.1bar and 88°C. This releases a further electrical output
of 2.89MW, meaning that the total electrical output
provided by the plant is 7.90MW.

The low-pressure steam undergoes complete
condensation, reaching a temperature of 45°C.
Following this, the condensed steam is pumped back to
the boiler at a pressure of 10 bar, along with the recycled
steam.

There is a recycle loop of steam used in the power
generation which is depicted by the two streams
“RBSTEAM” and “RBSTEAM?2” as seen in the
flowsheet in Figure 1. This steam leaves the system at
286°C and enters back the system at 179°C, in the
meantime it provides the duty that is required for the
reboiler in the stripper in the PCC process.

3.2. Post Combustion Carbon Capture Plant

The Aspen Plus simulation for PCC with a capture
efficiency of 95% can be observed on Figure 2. An
overview of the carbon capture process are as follows:

- Following the incineration plant, exhaust gas is
compressed and cooled to 40°C before entering the
bottom of the absorber column.

- MEA entering from the top of the absorber absorbs
CO; in the exhaust gas stream, with remaining flue
gases rising and exiting from the top of the column.

- The MEA rich CO, leaves the bottom of the
absorber column and is then pumped through a heat
exchanger before entering the stripper column.

- Inside the stripper, CO; is removed from MEA.
Lean MEA is then recycled and fed back to the
absorber whilst CO; exits the top of the stripper to
be further processed to allow for transportation and
storage.

3.2.1. Reaction Mechanism

Vapor-liquid equilibrium and mass transfer from one
phase to the other is crucial for Aspen Plus operation
simulations.

The vapour phase is described via the Soave-
Redlich-Kwong equations of state whilst the formation
of ionic species in the liquid phase causes the system to
be highly non-ideal. Consequently, this requires the
liquid phase to be modelled via the activity coefficient
Electrolyte-NRTL model. This model uses the local
electronegativity and strong like-ion repulsion
assumption (Moioli et al., 2012).

The governing equilibrium reactions for the MEA-
CO,-H,O electrolyte system are highlighted in
equations below, with all species in an aqueous solution
(Soltani et al., 2017).

2H,0 ! H,0* + OH~ 2)

€O, + 2H,0 & HCO;™ + H;0* 3)
HCO;™ + H,0 g C03*” + H;0" 4
MEAH* + H,0 & MEA + Hy,0* (5)
MEACO00~ + H,0 & MEA + HCO3~ (6)

Reaction 2 represents the ionisation of water, and the
formation and dissociation of bicarbonate are identified
in Reactions 3 and 4 respectively. Lastly, Reactions 5
and 6 reflects the reaction of molecular MEA with CO,
in aqueous solution.

In addition to these five equations, the following
kinetically controlled reactions govern the reaction
mechanism as shown in Equations 7 and 8.

CO, + OH™ > HCO4™ (7
MEA + H,0 + CO, — MEAC00~ + H;0*  (8)

3.2.2. Rate Based Model

A rate-based approach, aligned with Errico et al (2016)
was employed to rigorously model the various mass,
heat, and energy transfer phenome intrinsic to the carbon
capture process.

3.2.3. Cooler

The exhaust gases are cooled from 162°C to 40°C via a
two-stage cooling process prior to entering the absorber.
This is achieved by firstly contacting the exhaust gas
stream with the air stream utilised for RDF drying in the
incineration plant, where heat is rejected to warm the air
stream. The exhaust gas stream is then cooled to 40°C
by passing through a heat exchanger.

3.2.4. Absorber

Table 3 below details the absorber design specifications
modelled in Aspen Plus. The optimum column
dimensions were obtained using sensitivity analysis,
avoiding the possibility of hydraulic infeasibility if too
small of an absorber diameter was selected. The internal
structured packing of choice was Sulzer MELLAPAK™
250Y due to its high specific surface area, allowing for
an increased absorbance per unit area of packing
material (Notz et al., 2012). The recycled lean MEA
stream entering the top of the absorber has a lean loading
of 19% and a MEA concentration of 30wt%, which are
in accordance with values stated in literature (Alie et al.,
2005). Optimal MEA concentration and lean loading
values were enforced using design specifications within
Aspen Plus where MEA and water compositions in the
recycle stream were specified. By optimising these
values, the total regeneration energy of the overall
process is minimised, with the stripper reboiler
consuming the most energy.
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Table 3: Optimised Absorber Specifications

Design Variable Specification
Pressure (bar) 0.75 (isobaric)
Packing Type MELLAPAK™ 250Y
Height (m) 12

Diameter (m) 25

Number of Stages 20

3.2.5. Rich/Lean Heat Exchanger

The cold CO,-rich solvent stream leaving the absorber
is heated to 94°C by passing through a shell and tube
heat exchanger, where the stream is contacted with the
hot recycled lean solvent stream leaving the stripper
reboiler.

3.2.6. Stripper

Table 4 details the stripper design specifications
modelled in Aspen Plus. Like the absorber, Sulzer
MELLAPAK™ 250Y was selected as the internal
packing to facilitate adequate CO; desorption.

Table 4: Optimised Stripper Specifications

Design Variable Specification
Pressure (bar) 2.01 (isobaric)
Packing Type MELLAPAK™ 250Y
Height (m) 4.5

Diameter (m) 2317

Number of Stages 25

Boil Up Ratio 0.131

The stripper reboiler was designed as a kettle-type
reboiler which operates at 123°C. Both sensitivity
analysis and Aspen Plus aided optimisation functions
were run to minimise reboiler energy consumption. As
aresult, table 4 details the most economically favourable
design specifications. At the given lean loading values
and MEA concentration as specified in Section 3.2, the
minimum energy consumption of the reboiler was
determined to be 3.98GJton"!(CO,), in accordance with
literature values outlined to be 4.00GJton!(CO,)
(Soltani et al., 2017).

The reboiler duty provides the heat of CO,
desorption, the vaporisation of water as well as the

PFD
Streams:

sensible heat (Lin & Rochelle, 2014). The reboiler
heating requirement is supplied by bleeding steam
between the high-pressure and low-pressure turbines in
the energy generation plant, where total condensation is
assumed with no further sub-cooling. As a result, a ratio

of 1_94M
kg(CO;, captured)

capture efficiency of 95%, aligning with values reported
by Idem, Gelowitz and Tontiwachwuthikul of 1.9 —

5—KaGteam) 4o et al., 2009).
kg(CO, captured)

was obtained for the given

3.2.7. CO; Compression

For carbon dioxide to be transported and further stored,
CO; must be compressed to a pressure above its critical
pressure of 73.8 bar. In this study, a discharge pressure
of 110bar was chosen in accordance with research
conducted by Goto, Yogo and Higashii (2013).

3.3. Heat Integration

To improve the economic potential of the process, heat
integration was carried out in order to minimise the total
amount of heat duty required for the heating and cooling
of streams, by transferring heat between streams. Hot
and cold streams are to be identified and in the case of
this plant, 1 cold stream and 3 hot streams were
identified as shown in the heat exchanger network,
Figure 3.

An analysis under the first law of thermodynamics
was carried out to determine the minimum duty
requirement after assuming full heat integration. It is
found that Q,,;, = —8.64MW, indicating that heat
needs to be removed from the process. Subsequently, a
further analysis under the second law of
thermodynamics was conducted which states that heat
can only flow from hot streams to cold streams and not
vice versa. A minimum allowable temperature
difference of 10K is applied to ensure that there is
enough driving force for effective heat transfer. When
conducting a Grand Composite Curve, no pinch point
was present meaning that heat can be transferred across
all the streams involved.

Upon completion, a total of 0.68MW is integrated
for a final cooling duty of 8.64MW which results in a
7.3% improvement over the non-integrated system.

-
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Figure 3: Heat Exchanger Network
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4, Economic Study
To explore the economic feasibility of retrofitting a post
combustion carbon capture plant on the RDF
incineration system, both the plant’s capital costs, and
utility costs were explored.

4.1. Equipment Costing

Manual equipment costs were interpolated with process
design correlations (Douglas, 1988), it should be noted
that the Chemical Engineering Plant Cost Index
(CEPCI) was employed for updated costings in
reflection to the year of this study (CEPCli9sg = 113.7,
CEPClzp23 = 800.8) (University of Manchester, 2023).
Process units were costed for the UK with an exchange
rate of $1.00 = £0.79 for 2023.

4.2. Sample Costings — Compressor & Stripper
The installed cost of the 110bar gaseous compressor was
calculated using Guthrie correlations in Equation 9.

Installed Cost,$ = 517.5 X bhp®®2(2.11 + F.) (9)

Where Bhp is the brake horsepower, measured at 2415
on Aspen Plus V11 and F. is the correlation factor.

The equipment cost of the stripper was broken into
its constituent components, the column and the reboiler.

Installed Cost,$ = 101.9D%82H%802(2 18 + F,) (10)
Installed Cost,.p, $ = 101.34%%5(2.29 + F,) (11)

Q
UAT,, (12)

where A =

Equation 10 represents the installed cost for the column,
D is given as the column diameter in feet, A is the
column height in feet and F. is the correlation factor
dependent on the column pressure and shell material.

Equation 11 specifies the installed cost of the
stripper reboiler, where 4 is the heat transfer area of the
reboiler in ft2, UAT.y was approximated as 11,250
BTU/hrfi? from Douglas. F, is given as 1.35 for a kettle
type reboiler, the reboiler heat duty O was extracted
from Aspen Plus as 33,473,700 BTU/hr.

CEPClI index from the 1968 and 2023 were then used
to update costings in reflection to the year of this study,
giving a final installed compressor cost of
approximately $6,840,000 and stripper cost of $775,000
prior to GBP conversion.

4.2.1. PCC Plant
Table 5 details the installed costs of all major process
units within the PCC plant.

Table 5: Installed Cost for PCC Plant
Process Unit Installed Cost [£]

Absorber 418,969
Stripper 617,118
Compressors 6,493,183
Heat Exchangers 180,637
Coolers 383,496
Pressure Vessels 58,016

The total installed cost for retrofitting the simulated
PCC was £8,183,000. The most notable contribution
attributing to the systems compressors, accumulating to
over 80% of the total cost as shown on Figure 4. The
compressor operating at 110bar, amassed to an installed
cost of £5,450,000 alone. It was impossible to minimise
the cost of the compressors due to the pressure
requirements within the pipeline system and final CO,
gaseous outlet. Despite running computer-aided
optimisation and sensitivity analysis to achieve the most
economically favourable column specifications, both
the absorber and stripper columns combined still
constitute to over 12% of the overall installed cost.

Heat Exchangers 2%

9
Coolers 5% Pressure Vessels 1%

Absorber 5%

Stripper 7%

Compressors
80%

Figure 4: Installed Cost of PCC Plant

4.2.2. WtE Plant

The installed cost for the WtE plant was evaluated
similarly to the PCC plant, Table 6 displays the
equipment breakdown for all major process units, again
the installed cost of mixers and splitters were deemed
negligible. The installed cost for the deployment of a
WHE plant is calculated to be £8,950,000.

Table 6: Installed Cost for RDF Plant
Process Unit Installed Cost [£]

Fuel Incinerator 1,594,867
Furnace 3,156,500
Pressure Vessels 331,178
Turbines 3,302,118
Coolers 424,815
Cyclone Separator 114,055
Pumps 22,848

4.3. Annualising Installed Costs

Installed costs are considered as capital expenditures in
this study. The following formula was utilised, where d
and n denote discount rate and expected life of plant in
years respectively:

] d
Annualised CAPEX = CAPEX X m (13)
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The annualisation of capital expenditures was executed
with a conservative strategy, employing a 12% discount
rate. This decision was prompted by the challenging
market conditions prevailing in the UK, characterised by
notably high interest rates of 5.25%. The expected life
of the plant was considered to be 20 years. After
applying the formula, annual capital expenditures of
£1.09 million and £0.99 million are calculated for the
PCC and RDF plants, respectively. This results in a total
capital expenditure of £2.08 million.

4.4. Operational Expenditures

Utilities are essential to provide the required energy to
operate various units and processes within the plant. For
the PCC plant, there are three utilities required: cooling
water, electricity and steam.

Cooling water is used for the 3 coolers within the
process which amounts to a consumption of 406
tonnes/hr at £0.85 per tonne (Driver et al., 2022)
resulting in a cost of £2.76 million per year.

The electricity required for the plant is mainly
required for the compressors with minor amounts
required by the pumps and this will be provided by the
RDF to energy plant. This electricity, 1.95SMW, will be
negated from the revenue generated by the plant which
amounts to £1.88 million per year at 12p per kWh
(Scottish Power, 2022).

Steam is required for the reboiler, however, this is
covered by the steam that is bled from the energy plant.
An additional operational expense to take into account
involves the RDF feed, totalling 4.6 tonnes/hr. The RDF
incurs a cost of £90 per tonne, resulting in an annual feed
expense of £3.31 million.

4.5. Revenue Generation
The sole revenue source is the electricity generated in
the power generation section of the RDF to energy plant.
While the total power output from this section is
7.90MW, the PCC plant necessitates 1.95MW, leaving
a revenue-generating capacity of 5.95MW. This
produces a total annual energy output of 47.6GWh,
consequently, the total revenue generated amounts to
£5.71 million.

This low revenue generation may be attributed to
RDF's inefficiency as a fuel coupled with the electricity
requirement of the PCC plant.

4.6. Economic Potential

The combined annual cost sums to be £8.15million
which exceeds the revenue generated, leaving the
economic potential to be -£2.44million.

S. Energy Penalty

As a result of integrating CCS on a WtE plant, the
energy consumption of the plant increases drastically
contradictory to the main purpose of a power plant by
imposing an energy penalty on the overall system. One
way of calculating the impact of CCS is by introducing
the energy consumption of capture per MWh of
electrical energy, this is calculated with parameters
detailed in Section 3.2.7 using equation 14 below
(Soltani et al., 2017).

6/ o\ B(ww) o«

E (MWh) =4 <tcoz> % n X0 @9
E is the regeneration energy consumption for capture per
MWh of electricity produced, A is the energy
consumption of the reboiler, B is the amount of CO,
generated per MWh of thermal energy produced, 7 is the
power plant efficiency and C is the capture rate of CO».

Table 7: Energy Penalty per MWh Comparison

Fuel Type GJ/tco2 GJ/ MWh
RDF 3.98 4.52
CCGT 3.98 1.50
Coal (bituminous) - fired  3.90 2.33

Table 7 demonstrates the continuation of Soltani,
Fennell and Dowell’s work on the regeneration energy
consumption between combined cycle gas turbine
(CCGT) and coal-fired (bituminous) power plants with
600M Wy, capacity at a carbon capture rate of 90%.

By comparing the simulated RDF plant with Soltani,
Fennell and Dowell’s study, integrating PCC on an RDF
plant incurs the either the same or a greater energy
penalty per tonne of CO, captured when compared to
CCGT (3.98 Gl/tco2) and coal-fired power plants (3.90
GJ/tco2). However, RDF power plants suffer a much
greater energy penalty with regards to electrical energy
produced, with the regeneration energy consumption for
capture per MWh of electricity produced being more
than double in comparison to CCGT power plants (1.50
GJ/MWh). This is explained due to the poor efficiency
of the stimulated RDF power plant (31%), which is
significantly lower than the efficiency of the CCGT and
coal-fired power plant which is stated to be 48% and
60% respectfully.

In addition, energy penalty can be measured by
determining the difference in overall power output of the
plant before and after retrofitting PCC. For the simulated
95% capture efficiency, an energy penalty of 53.3% was
imposed. As demonstrated in Table 8, the energy
penalty for the WtE plant is more than two-fold in
comparison to other fuel-powered plants observed in
literature with a given capture efficiency of 90%.

Table 8: Energy Penalty % Comparison

Fuel Type Energy Penalty (%)
RDF 53.3
NGCC 21

Coal (bituminous) - fired 29

6. Discussion

In this study, the primary objectives of assessing carbon
capture readiness involve an initial analysis of both
technical and economic feasibility. As depicted on
Figure 3, retrofitting a PCC plant continues to enable
over 12.8MW of power generation. Nevertheless, it is
important to highlight that even with the optimisation of
the reboiler duty to 3.98GJton/(CO,), aligned with
literature values, the overall system still imposes a
substantial energy penalty of 53.3%. A noticeable
reduction in the power plant’s electricity output is
observed before and after retrofitting PCC.
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Additionally, a significant steam flowrate is bled
between the series of turbines, as illustrated in Figure 5,
leading to a decrease in the overall efficiency of the
power plant. This phenomenon could be explained due
to the substantial energy regeneration demand of the
selected MEA solvent. Nevertheless, when compared to
traditional power plants such as coal and NGCC, RDF-
to-energy plants incur a notably higher energy penalty,
which could be attributed to the lower efficiency of the
RDF fuel. The lower efficiency of the fuel results in a
higher amount of CO; released for a given MWh of
electrical energy generated. Consequently, the energy
required for CO; capture is inherently higher.

Net Power Output
without PCC 27. 1MW

Net Power Output
without PCC 12.8MW

Figure 5: Power Output with and without PCC

It is crucial to acknowledge that while these
comparisons are adjusted for their respective CO; and
electrical outputs, there exists empirical distinctions in
the design parameters among the three different types of
power plants. Firstly, both CCGT and coal-fired power
plants boast a significantly higher capacity of 600MW
compared to the simulated RDF plant. The overall
efficiency of the RDF plant is likely to improve with a
proportional increase in capacity. Additionally, if the
capture efficiency of other fuel-powered plants were
enhanced to 95%, the energy consumption would
inherently rise. Despite these variations, the conclusions
drawn still provide valuable insights for ongoing and
future research.

The combined economic potential of the RDF-to-
energy plant with the PCC retrofit is -£2.44 million,
indicating the economic infeasibility of such a plant.
Even assuming the existence of an original RDF plant,
the retrofitted PCC plant remains economically
unviable, with an economic potential of -£1.45 million.
To enhance economic feasibility, two potential
exploration avenues are identified: increasing revenue
generation and reducing costs.

In this study, only revenue generated from electricity
production was considered. However, there was also
thermal energy that was ejected in the cooling water
which could be used for the heating of additional
buildings which could generate additional revenue
(Environ Consultants Ltd., n.d.).

When considering costs, it can be noticed that the
expense of the RDF feed is notably high. Exploring a
potential collaboration with a waste-producing company
could present a mutually beneficial opportunity. By
collecting waste from this company, both parties stand
to gain. The waste-producing company can realise
savings on disposal costs and landfill tax, while the RDF
to energy plant would see a substantial reduction in its
operational expenditures.

7. Conclusion

In this investigation, a 12.8MW waste-to-energy plant,
incorporating a retrofitted MEA-based post-combustion
carbon capture plant, was modelled using Aspen Plus
V11. The simulation targeted a small-scale UK plant
processing 4600kg/hr of RDF, aligning with literature
key operating parameters. The introduction of PCC
resulted in an overall increase in the plant’s energy
consumption, imposing an energy penalty of 53.3% on
the system. The carbon capture efficiency was set at
95%, with a specified MEA concentration and lean
loading values of 30wt% and 19% respectively. The
overall plant efficiency was determined to be 31%, and
the optimal reboiler duty was established to be
3.98GJton}(CO,), supplied by a flow of high
temperature steam bled between the HP and LP turbines

at a ratio of 1.94 —96ream)
kg(CO, captured)

that despite comprehensive optimisation on the overall
system, the implementation of PCC to a small-scale
RDF plant had a substantial impact on overall plant
performance. Whilst 5.95SMW_. of electrical energy was
generated, the inherently low efficiency of RDF fuel led
to a significantly higher energy penalty per MWh of
electrical energy compared to other conventional fuels.
Although there was a positive energy generation, the
overall cost of the system surpassed the revenue
generated from electrical energy. Consequently, the
study demonstrated a negative economic potential of
-£2.44million, highlighting severe challenges in terms
of economic feasibility.

The findings revealed
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Exploring Multi-Fidelity Bayesian Optimization and TuRBO-1 for Enhanced Engineering Solutions
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Abstract

Bayesian Optimization (BO) has emerged as a pivotal tool for effectively navigating the optimization of intricate,
high-dimensional functions, especially in cases where derivative information is unavailable. This study presents
a deep dive into the intricacies of BO, starting with a foundational algorithm, and progressing towards integrating
advanced methods such as multi-fidelity and TuRBO-1 to tackle the key challenges of high computational cost
and the dimensionality curse, often encountered in machine learning and engineering applications. In this context,
the study aims to deliver a framework for two robust, scalable, and efficient BO methods to offer a comprehensive
toolset for real-world applications, while also providing insights into the inner dynamics and behaviour of the
algorithms. Specifically, a novel acquisition function is developed featuring a y hyperparameter to provide a more
flexible and nuanced trade-off between the cost and covariance at different fidelities. The study demonstrates the
effectiveness of the proposed multi fidelity framework in achieving lower computational cost, and highlights the
practicality of tuning y to adapt to any problem. Accurate optima of various test functions in 2, 5, and 10
dimensions were achieved, consistently beating the cost output of the old methodology. Moreover, the TuURBO-1
method achieved a complementary solution when dealing with higher dimensions by prioritizing effective local
optimisation within dynamically controlled trust regions, which allows it to adeptly handle the intricacies of
complex, high-dimensional spaces. The proposed research therefore highlights the practicality of two adaptable
strategies designed to address a wide range of challenges, which lays solid foundation for future research and
application of these frameworks.

significantly reducing the number of evaluations
needed to reach optimal or near-optimal solutions.
As such, BO incorporates a crucial balance between
exploration of new, potentially promising areas, and
exploitation of known high-performing regions.
This balance is key in environments where each
evaluation is costly, ensuring that resources are
utilized in the most effective manner.

The practical implications of Bayesian
Optimization in chemical engineering and other
sciences are far-reaching. In an industry where
precision, safety, and efficiency are paramount, BO
has the potential to revolutionize the way chemical
processes are optimized.

One notable application is the early-stage
process development of pharmaceutical compounds.
In a recent study, Braconi et. Al (Braconi and
Edouard Godineau, 2023) optimised sustainable
reaction conditions for C-N coupling using copper
catalysts and non-hazardous solvents through
Bayesian Optimization. BO was able to efficiently
explore a vast reaction space of over 138,000
possible experiments, using only 80 simulations.
This represents an exploration of less than 0.05% of
the total space, effectively highlighting its efficiency
in identifying optimal conditions in complex
chemical processes by leveraging its probabilistic
model to iteratively refine and direct the search
towards the most promising areas. A similar study

1. Introduction
Bayesian Optimization (BO), an active learning
framework, has emerged as a critical tool in complex
systems design, where direct evaluations of
complex, often non-linear systems are prohibitively
expensive (Shahriari et al, 2016). This is
particularly true when dealing with black-box
functions, whose underlying relationships are
unknown or too intricate to be explicitly defined.
Black-box objective functions are commonly found
in fields such as robotics, automated machine
learning (AutoML), engineering, and especially in
the rapidly evolving domain of the chemical
sciences (Terayama et al., 2021). Indeed, processes
in this field can be characterized by high-
dimensional spaces with many governing variables,
such as reaction conditions and material properties.
The traditional approach of grid search or random
sampling is often computationally prohibitive due to
the high cost of evaluations, either in terms of
experimental resources or computational time.
Unlike  traditional =~ methods,  Bayesian
Optimization utilizes a probabilistic model,
typically Gaussian Processes, to create a surrogate
model of the objective function, which quantifies
uncertainty in areas where the function is sampled
less. This surrogate model, unlike the underlying
objective function, is computationally efficient to

evaluate, which is the key to BO’s practicality and
effectiveness, in particular with regards to expensive
and complex functions. The surrogate model's
predictive capabilities enable navigation of the
search space by estimating the outcomes of various
configurations, thereby focusing the exploration on
areas with the highest potential for improvement.
This allows for a more targeted exploration,

was able to navigate the vast space of potential drug-
like molecules to enable the discovery of
antimalarial compounds, and molecules with
targeted activity against pulmonary fibrosis, where
it outperformed traditional greedy search methods
(E. O. Pyzer-Knapp, 2018).
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A different practical application is the optimization
of wind farm layouts to maximize sustainable power
output (Bempedelis and Magri, 2023). The authors
highlight how BO, and the use of Gaussian
processes enabled the capture and exploitation of
complex flow dynamics, which are usually
overlooked in simpler wake models. Bayesian
Optimization is also used to optimize machine
learning systems and server performance, as
demonstrated in real-world applications at Facebook
where BO was utilized for the optimization of a
ranking system and server compiler flags (Letham et
al., 2019). Examples within literature underscore the
versatility of BO in addressing pressing challenges
in chemical engineering and beyond, making it an
indispensable tool in the advancement of the field.
In this context, the main objective of this project is
to achieve a working, scalable, and efficient BO
algorithm capable of optimizing a wide range of
multimodal and multidimensional test functions.
Moreover, the aim is to expand the BO capabilities
by incorporating advanced techniques such as
Multi-Fidelity and TuRBO-1 for enhanced
performance and reduced computational cost. As
such, the objective is to achieve robust solutions
which can be applied in the field, and contribute
towards tackling the key challenge of
computationally expensive problems. Finally, this
paper aims to provide sensitivity-analysis on key
parameters to gain valuable insights into the
algorithm’s behaviour, and lay the foundations for
its use in real-world scenarios.

2. Background
BO is fundamentally about devising a surrogate
model to navigate an expensive black-box function
that is potentially non-differentiable.
Mathematically, the objective function to be
minimised is

minyex f(x) @®

where f represents the unknown, expensive-to-
evaluate function. Despite this, the function f can be
probed by costly evaluations at various points within
its domain X, with the intent to minimize f utilizing
the least number of evaluations.

Viewed as a sequence of decisions, BO requires
selecting the next point- or batch of points- in the
domain for evaluation in each iteration, guided by
prior observation. To manage this effectively, a
representation of the uncertainty about f is updated
progressively with new data. Gaussian Processes
(GP) are ideally suited for this role.

Surrogate models lie at the heart of BO and are
used to model the black-box function. GPs are a
natural choice for this model, as they estimate the
function’s value across its domain and, importantly,
provide a predictive posterior distribution that
reflects the potential range of function values. They
are defined by a mean function p(x) and a
covariance function k(x, x):

f00) ~ GP(u(x), k(x,x") @

The mean function p(x)represents the average
predicted output of the model. The covariance
function k(x,x"), also known as the kernel, is
parametrised by a variance (¢2) and lengthscale ().
This function, which can be selected from common
types such as the Radial Basis Function (RBF) and
Matérn kernels, defined as

2 2 dy\" d
kMatern(d) =0 m . (\/55) K, (\/2_5) 3)
kppr(d) = exp (#) (4)

where I" is the gamma function, d is the Euclidian
distance between two points in the input space, K,, is
the modified Bessel function of the second kind
(Weisstein, E. W., 2023), and v is a parameter from
the covariance that controls the smoothness of the
function. The Matérn kernel becomes equivalent to
the RBF kernel as v approaches infinity. The kernel
dictates how function values correlate across the
input space, and it encapsulates the assumptions
regarding the function’s variability and smoothness
characteristics. To ensure the model aligns
effectively with the observed data, the tuning of
hyperparameters is essential. This tuning process
aims to maximise the log-likelihood, which is
expressed as

1
loglp(Y|X)] = —Z log(2m) — 5 log(det (K (O)])
- %YT[K(O)]*Y
®

where Y represents the vector of observed target
data, X is the matrix of input data where each row is
an input vector, n is the number of observations,
K(0) is the covariance matrix derived from the
covariance function k(x, x") with @ representing the
hyperparameters (variance o2and lengthscale 6),
and the term YT [K(0)]71Y represents the ‘goodness
of fit’. Maximizing this log-likelihood function is
crucial for refining the model, providing the best
statistical explanation for the observed data under
the GP model assumptions.

This optimisation process is fundamental in fine-
tuning the surrogate model. Such refinement
enhances the model’s predictive accuracy and
strengthens  the reliability of uncertainty
quantification. The improved model becomes
instrumental in the subsequent stage of selecting
query points. This crucial step employs acquisition
functions, a methodological approach designed to
direct the choice of subsequent points to be sampled
from the objective function.
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Figure 1 illustrates the Gaussian Process post
hyperparameter tuning. The figure shows the mean
function u(x) as a solid blue line, with the shaded
region indicating the confidence interval. This
interval, based on the GP’s predictive variance o2
quantifies uncertainty. It facilitates a strategic
balance in exploring and exploiting the search space
for the function’s minima.

Gaussian Process Regression

e ———

Figure 1 — Gaussian Process Regression (D.R. Chanona
2023)

The acquisition function integrates both the
mean (1(x)) and the uncertainty (o) projections
derived from the Gaussian process. This integration
is key to striking a balance between exploration-
investigating new, potentially promising areas of the
function’s domain, and exploitation- focusing on
regions known to yield high values. Such a precisely
calibrated approach significantly boosts the
efficiency and efficacy of the exploration process.
Consequently, this leads to a quicker convergence
towards the optimal point of the function, thereby
enhancing the overall effectiveness of the model.

The landscape of acquisition functions is
diverse, each with unique benefits and limitations,
as detailed by (Shahriari et al., 2015).

Among these functions, the Expected
Improvement (EI), Probability of Improvement (PI),
and Upper Confidence Bound (UCB) are defined as
follows

El(x) = E[max(f (x) = Ypest, 0)] (6)
PI(x) = P(f(X) > ybest)) (W]
UCB(x) = u(x) + Ba(x) ®

where V.5 represents the best observed value, f is
the bonus for exploration and o is the standard
deviation. EI quantifies the anticipated improvement
over the current best observation, incorporating both
mean and variance from the Gaussian Process. This
method balances exploration and exploitation. PI, on
the other hand, assesses the likelihood of surpassing
the current best observation, focusing more on
exploitation. UCB merges the predicted mean and
variance, adjusting exploration and exploitation
through the parameter B, with higher values
favouring exploration. The selection of these
acquisition functions is contingent on the
optimization problem's specific needs, particularly
in balancing exploration of new search areas against
exploiting known optimal regions.

Optimizing the acquisition function is a critical
component of BO. This process often employs
gradient ascent or evolutionary strategies to navigate
complex, high-dimensional spaces.

Subsequently, optimisation algorithms like
ADAM (Brownlee, 2021) are applied to maximize
the acquisition function, aiding in the selection of
the next point evaluation.

A pivotal extension of the BO framework lies in
the concept of multi-fidelity optimization. It is an
approach that introduces an additional layer of
efficiency by leveraging a range of data sources of
varying accuracy and cost — the so-called fidelities.
It combines high-fidelity models, which are accurate
but expensive to evaluate, and low-fidelity models,
which are less accurate but cheaper and faster to
compute. By combining insights from these
different levels of fidelity, BO can make more
informed decisions about where to allocate
resources for evaluation. In practice, this is achieved
by extending the GP model to incorporate fidelity as
an additional input dimension. This extension
affects both the kernel and mean function, allowing
them to interpret and integrate data across various
fidelity levels effectively. The acquisition function
is adapted to evaluate not just the predictive
performance at each point, but also to consider the
varying computational costs associated with
different fidelity levels

Bayesian Optimization relies heavily on the
ability to construct a global model that is accurate
enough to eventually uncover a global optimizer.
This task presents significant challenges due to the
curse of dimensionality and the heterogeneous
nature of the function. In contrast to the approach
presented by multi-fidelity, another innovative
strategy in reducing computational costs and
achieving sample-efficient optimization is the
application of trust regions (TR). Trust Region
Bayesian Optimization (TuRBO), unlike traditional
BO which operates across the entire search space,
conducts BO within multiple local trust regions.
This novel use of local BO, combined with
dynamically adjusting trust regions, effectively
addresses some of the key challenges that have
hindered the success of conventional global
optimization methods, providing a more efficient
and focused approach to optimization. The key TR
parameters that should be fine-tuned to the bounds
and dimensionality of the problem, are the success
(Tsucc) and failure (7gq;) threshold, the minimum
(Lymin) and maximum (L,,,,) diameter of the
ellipsoidal TR, the TR centre (centrerg) and TR
radius (rpg).
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3. Methodology

Initial BO

The initial phase of this research involved the
development of a Bayesian Optimization algorithm
from scratch. This foundational step was essential to
gain a thorough understanding of the underlying
mechanics of BO and to set the stage for more
advanced implementations. Starting from basic
principles, the objective was to gradually
incorporate more sophisticated techniques to
achieve a robust and well-rounded algorithm.

Three n-dimensional test functions were selected
for the optimization trials due to their varying levels
of complexity and landscapes, offering a
comprehensive evaluation platform for the BO
algorithm. Each represents a unique optimization
challenge, from simple convex shapes to more
complex, multimodal landscapes. In order of
increasing complexity:

« Sphere function, smooth and convex with a single
global minimum:

f@=) ©

e Rosenbrock function, known for its long, narrow,
parabolic shaped flat valley containing the global
minimum:

FO) =) 100G 2P+ -5 (10)

o Styblinski-Tang Function, defined by a complex
landscape with multiple local minima:

1 n
flx) = EZ 1xi4 — 16x? + 5x; (D]
=

Gaussian Process Regression was utilized as the
surrogate model due to its flexibility and proficiency
in estimating uncertainty in predictions, and
multiple kernels were explored, including the Radial
Basis Function, Matérn kernel, and a combined
kernel consisting of RBF, white kernel (introducing
a noise term), and constant kernel (which scales the
overall variance), each imparting distinct
characteristics to the surrogate model.

Three acquisition functions were implemented
and analysed: Expected Improvement, Probability
of Improvement, and Upper Confidence Bound.

Additionally, two distinct search methods were
used: whole space sampling, where the algorithm
explored the entire domain of the objective function,
and focused sampling, which concentrated the
search around regions that were already identified as
promising.

The BO process started by generating a
randomly distributed set of 5/ 10 /20 (for 2D /5D /
10D) initial samples (in accordance with the chosen
search strategy) to initialize the gaussian process by
computing the objective at each point. It then enters
its iterative phase, where 15 / 40 / 80 iterations are
performed utilizing the acquisition function’s

balance between exploration and exploitation. At
each evaluation, the surrogate is updated, and the GP
refines its understanding of the objective function's
behaviour, thus converging towards the optimum.

The outcomes such as the found optimum, the
number of iterations, and the overall runtime were
then analysed for different combinations of
acquisition function, kernel, and search strategy,
effectively  conveying their strengths and
weaknesses with regards to different test functions.

It is worth noting that an early stopping
mechanism  was  introduced to  enhance
computational efficiency, particularly in higher
dimensions where the time started increasing
rapidly. This mechanism halts the process when the
improvement of objective value falls below a
specified threshold over a set number of consecutive
iterations (defined as patience), effectively avoiding
unnecessary time loss when the optimum has
already been found, or when the algorithm gets stuck
in a local optimum.

Multi-fidelity
Building on the foundational knowledge gained

from the initial algorithm, the research progressed to
a more advanced stage with the implementation of
multi-fidelity techniques. This approach
significantly enhances the BO framework by
incorporating evaluations at various levels of
fidelity z, striking a balance between accuracy and
computational cost. In this research, the possible
fidelity levels are defined as 1 < z < 10.

Similar to the initial BO implementation, the
multi-fidelity version was tested using the Sphere,
Rosenbrock, and Styblinski-Tang functions. A key
aspect however, is the modelling of these objective
functions to account for varying fidelities. The
objective is augmented to incorporate fidelity levels,
creating a composite function that simulates the
objective across different levels of precision. This is
achieved by scaling the input parameters of the
objective function based on the fidelity level. The
higher the fidelity, the more the objective function
reflects the true, high-resolution behaviour of the
system being modelled. Conversely, at lower
fidelities, the function provides a coarser
approximation. The scale used in this study is

f(x,2) = g(x x scale(z)) (12)

where f'is the fidelity augmented objective function,
and g is the original. The scale is defined as

scale(z) = ; (13)

where z, represents the highest fidelity level (10).
This approach allows for a simulated fidelity-
adjusted objective, where evaluations at the highest
fidelity result in the true objective optimum.
Similar to the simple BO algorithm, a GP model
is used as surrogate. In this context, a covariance
function that takes fidelity levels into account has
been structured as a combination of a spatial kernel
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ks (Matérn) and a fidelity kernel kf. This allows the
model to consider both the distance between points
in the input space and the difference in their fidelity
levels. The kernel reflects that the similarity between
points in the spatial domain is modulated by their
corresponding fidelity levels. The adopted approach
was to use a product of these kernels:

k((x,2), (x, z)) = ks (x,x") X k £ (2, 2.) (14)

Assuming z, is the highest fidelity, the hypothesis is
that the correlation induced by the fidelity kernel is
maximal when z = z, and decreases as z deviates
from z,. To model this, a decreasing function of
the absolute difference between z and z, is used
as an exponential decay

k;(z,2)=exp(=2z— z|) (15)

where A is a non-negative parameter that controls the
rate of decay—larger values of A mean that fidelity
levels significantly different from z, will have a
smaller influence on the kernel computation.

Perhaps the most important aspect of the multi
fidelity algorithm lies in the modification of the
acquisition function. As a starting point, an existing
acquisition function from literature was used
(Savage et al., 2023)

wpe(x, Z-)B%Uft(x; z.)

2, (o9 1~ (G2, G, 2’

(16)

Xt+1,Ze41 = aArgmax
(x,2)EXXZ

where ug(x, z.) is the predictive mean and
af¢(x, z.) is the predictive standard deviation of the
objective function at the highest fidelity z,. They
respectively represent the best estimate of the
function's output, and the uncertainty in the model's
predictions given the highest available fidelity
simulations. uy,(x,z) is the predictive mean of the
cost associated with a simulation at fidelity z. In this
study, the cost has been modelled as the square of
fidelity level, to simulate cost-aggressive
applications and penalize high fidelity, as real-world
problems often employ multi-fidelity when
functions are very expensive and resources are

limited. J 1 - k((x2), (&, z.))2 quantifies the loss of

information when choosing a lower fidelity level
compared to the highest one since the covariance
measures the similarity between current and high-
fidelity evaluations. A high covariance suggests that
information gained at a lower fidelity is highly
relevant to higher fidelities, thus indicating less
information loss. The parameter B acts as the
exploration bonus as it is multiplied by the
predictive standard deviation, scaling the influence
of uncertainty in the acquisition function, thus
governing the trade-off between exploration and
exploitation.

The wvariables in the denominator are
instrumental in fidelity selection, as they effectively

determine cost and loss/gain in accuracy of choosing
one fidelity over the other, whereas the other terms
are only functions of x since z, is fixed. As such, it
was theorized that a better and more flexible trade-
off management was needed for these terms,
achieved  through  weighing them  with
hyperparameter y:

1
upe(x, 2)B20p(x, 2.)
Xt+1, Ze+1 = argmax

EO Y o)+ (1= 1 = k(G0 @ 2))°

a7
This novel approach allows for more precise control
on the algorithm’s fidelity selection strategy through
an improved and more flexible trade-off, which is
key when tackling different problems with different
goals, especially given specific budget constraints.
It dynamically adjusts the weight given to the
computational cost and the benefit of exploring at
different fidelity levels. When y approaches 1, the
acquisition function gives more weight to
minimizing the computational cost associated with
evaluating the objective function at a particular
fidelity level, which means the algorithm will prefer
points that are cheaper to evaluate. Inversely, when
v approaches 0, the algorithm emphasizes the loss of
information due to choosing a lower fidelity level. It
will therefore prioritize points that are expected to
provide more accurate information, even if they are
more expensive to evaluate, resulting in higher
fidelity selection. As such, y provides an additional
layer of flexibility. Note that the cost and covariance
values have been normalized to allow for reasonable
sensitivity towards vy, since these values differ in
magnitude.

A final important component in the context of
the multi-fidelity algorithm is the fidelity selection
function, which operates as an extension of the
acquisition function. Its task is to iterate over
possible fidelity levels for each candidate sample
point to maximize the acquisition value, given the
current budget and the remaining number of
iterations.

TuRBO-1
The project further addressed a significant
challenge: achieving global convergence in high-
dimensional problems wusing the TuRBO-I1
algorithm, conducted alongside the development of
the multi-fidelity approach. Utilizing GPJax, a
Gaussian Process library which has gained a lot of
appreciation in recent years. GPJax was chosen for
its advanced features, including GPU acceleration
and Just-In-Time (JIT) compilation, which
substantially enhance computational -efficiency.
Additionally, its mathematical coding closely aligns
with the mathematical expressions in textbooks,
particularly regarding log likelihood calculations.
The methodology involves initializing the
TuRBO-1 algorithm with a quasi-random Halton
sequence, ensuring improved coverage of the
solution space. The number of initial samples is
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adjusted based on the problem's dimensionality: 5
samples for 2D, 10 for 5D, and 20 for 10D problem:s.
This variation accounts for the exponential increase
in the search space as dimensions grow. The primary
focus of the function evaluations lies in the Bayesian
Optimization (BO) iterations, particularly critical in
higher dimensions. Once the initial function
evaluations are completed, the centre of the Trust
Region (TR) of ellipsoidal shape, is strategically
positioned around the most promising initial sample.
The TR radius is meticulously fine-tuned according
to the problem's dimensionality and bounds of the
problem.

The dataset D; is then updated with these initial
samples, followed by the generation of an optimised
posterior utilising the Matern5/2 kernel. After
experiment with various options in the initial
algorithm, the Matern5/2 kernel, and Expected
Improvement (EI) as the acquisition function were
selected. These were found to effectively balance
exploration and exploitation, and provided the best
fit for the smoothness of the Gaussian Process.

The Bayesian optimisation loop proceeds as
follows
1. Sample {100d} samples within the Trust Region

using the GPJax PRNGKey(42) which is a

pseudo random sampling, where d is the number

of dimensions.

2. Evaluate the EI from all the samples on the
posterior

3. Extract point with maximum EI on posterior
function

4. Choose the next query point x;, by maximizing
the acquisition function a, using the surrogate

model M conditioned on the dataset D; for a

number of samples:

X; = argmax a(x; D;, M)

5. Obtain new observations by evaluating the
objective function at x;, yielding y; = f(x;).

6. Expand the dataset with the new observation:
Diy1 =Dy U{(x, )}

7. Update TR centre and Radius depending on
whether there was an improvement in the
objective function value. (TR Dynamics
discussed in depth in next section)

8. Update the surrogate model with the new dataset
to produce M, 4.

The iterative process continues until reaching a
predefined stopping criterion, such as a specific
number of function evaluations.

This was repeated for a total of 3 experiments,
intended to replicate the effect of TuRBO, which
runs multiple TRs on the search space. The only
main difference to note between TuRBO-1 and
TuRBO is that in TuRBO-1 the Trust Regions are
not generated simultaneously, each with their own
posterior, but rather one after the other. This
inevitably leads to longer computational efforts.

After establishing a better understanding of
TuRBO-1, the next step is to cover the dynamics and
hyperparameters behind the TR that guide the TR.
(Park, J. 2020)

TR Dynamics and hyperparameters
In TR optimisation algorithms, the dynamics of the
TR play a pivotal role in guiding the search process
through complex solution landscapes efficiently.
This section discusses the adaptive nature of the TR
dynamics, emphasizing its key mechanisms and
underlying logic, which was inspired by (Eriksson,
2020).

In the experiments conducted, the TuRBO-1
algorithm  was  configured with  specific

hyperparameters as outlined in the theoretical
d

background: Teyce = 2, Tray = ;,Lmin =274
Linax = 10, and rpz = 2.0.

Here, d represents the number of dimensions, q
denotes the batch size, L,,;, and L,,,, denotes the
minimum and maximum length of the TR, and t
indicates the thresholds for success and failure. The
algorithm's adaptability is crucial, relying on its
recent performance. An 'improvement'—a superior
objective function value at iteration n+1—Ieads to
an increment in the success counter and an update of
the Trust Region (TR) centre to this new optimal
value. (Chen, 2016)

Expansion of half the search area is considered
when the current region shows promise, potentially
yielding superior outcomes. This expansion is
activated when the success counter equals or
exceeds the 7, threshold. In contrast, if the
objective function value is unchanged or lower, the
algorithm's failure counter increases by 1. The Trust
Region contracts by half whenever ¢, reaches its
threshold. This iterative process continues until the
prescribed number of Bayesian Optimization (BO)
iterations is completed, or when the Trust Region
length reaches its minimum or maximum limits, as
extreme sizes render the sampling ineffective.

It should be highlighted that these TR
hyperparameters were meticulously adjusted for
different bounds and dimensions due to the initial
challenges in scaling the domain -effectively.
(Diouane, 2022)

4. Results and Discussion

Initial BO
The initial algorithm was used to study the impact of
different acquisition functions, kernels and search

Figure 2 — Sphere function Figure 3 — Rosenbrock function
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strategies on the output
for the three test
functions. In 2D, it was
. found that the different
| combinations had little
Vv S " impact on the found
7 optimum, due to the
—~ 2 ® simplicity of the
) o problem., as each case
Figure 4 — Styblinski Tang
function BO found a very accurate
optimum. Figures 2, 3, 4
illustrate an example of the results where the
combined kernel, expected improvement, and whole
space sampling strategy were used.

However, in the case of higher dimensions,
where the volume of the search space increases
exponentially and data becomes sparse, the Matérn
kernel proved to be more advantageous compared to
the RBF kernel. Its inherent roughness and ability to
capture less smooth variations in the function
landscape provided a more robust model of the
objective function, leading to better exploration in
vast and complex search spaces. Particularly with a
v parameter of 2.5, it provides a compelling choice
due to its capacity to model functions that are
sufficiently smooth but have areas of abrupt change,
making it suitable for the selected test functions.

As for acquisition functions, a balance between
exploration and exploitation becomes crucial,
hence, EI was slightly preferred due to its ability to
flexibly balance this tradeoff. The Upper
Confidence Bound was also a solid option due to its
tunable parameter, which can be adjusted to
emphasize exploration in early iterations to avoid
local optima, gradually shifting towards exploitation
as the algorithm converges. This was particularly
practical for the Styblinski-Tang function

Objective Value Progress Over Rerations
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Figure 5 - 10D Sphere function BO
Overall, the algorithm had difficulties finding
the right optimum for the more complex 10D
functions, which motivated the use of more
sophisticated approaches.

Multi-fidelity
The application of the multi-fidelity BO

algorithm demonstrated marked variances in
optimal behaviour across the selected test functions.
Indeed, each test function required a distinct tuning
of hyperparameters  and y, which suggests that
BO's performance is not only a function of its
internal mechanics but is also deeply contingent on
the nature of the optimization landscape it navigates.

It is important to note that all the presented results
have been obtained in 10-dimensional functions, as
lower dimensions yielded less informative results as
the optimum was very often reached at low fidelities
due to the simplicity.

For the sphere function, a simple and convex
landscape, the algorithm exhibited rapid and
accurate convergence towards the global minimum.
Due to the objective’s less complex nature, it did not
necessitate aggressive exploration, resulting in a
relatively low B value of 1. Additionally, it was
found that a higher y value of 0.75 was preferred,
resulting in overall lower fidelities, despite a general
trend of increasing fidelity with iteration number, as
can be seen from the high-fidelity evaluations
concentrated around the optimum. The found
optimum was 0.59, which is very close to the true
optimum of 0. For reference, the achieved simulated
cost was 1,793, which is lower than the old approach
(2,301) for a similar level of accuracy.

Figure 6 — Objective value over iterations for the 10D sphere
function with =1, y=0.7, optimum=0.59, simulated cost=1,793

The Rosenbrock function, with its narrow,
curved valley, presented a greater challenge. The
multi-fidelity approach proved advantageous, as
initial lower-fidelity evaluations provided valuable
insights into the broader landscape, guiding the
search towards the valley where it started choosing
higher fidelities, and reached an optimum of 2.36,
again very close to the true optimum. The y term of
0.53 was a conservative approach, as it did not
greatly emphasize or penalize either term.
Interesting enough, it was found that even by
modifying this parameter to emphasize higher
fidelities, the general behaviour would not deviate
much, as the acquisition function still intelligently
navigates all the other parameters to achieve an
optimal tradeoff — in this case much higher fidelities
where unjustifiable as the improvement would
always be suboptimal. Moreover, the beta parameter
was higher (1.5), as exploration was encouraged to
navigate the valley. Overall, the optimization path
demonstrated a more gradual convergence, often
requiring exploration at various fidelities before
zoning in on the valley. The algorithm's adaptability
to the challenging topology of the Rosenbrock
function was evident in its dynamic fidelity selection
and thorough exploration, which was better than the
old approach which achieved this through higher
cost.
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The most complex of the test functions, Styblinski-
Tang, with its numerous local minima, put the
algorithm's exploration capabilities to the test. The
results indicate that the algorithm successfully
avoided premature convergence to local minima by
leveraging the explorative aspect of the acquisition
function. This was done through a higher beta
parameter (1.8), and a lower gamma parameter
(0.32). Overall, the fidelity levels were higher,
which is to be expected for a more complex function,
and the optimum found was -384.03, compared to
the real optimum of -390. This was achieved with a
cost of 7,593, significantly improving the old
acquisition function’s implied cost of 9,021.

Objective Value Progress Over iterations

.
Fielity Level

Figure 7 — Objective value over iterations for the 10D Styblinski-Tang
function with =1, y=0.6, optimum=-379.93, simulated cost=7,593

Overall, the sensitivity analysis highlights that
there is no one-size-fits-all parameter setting;
instead, parameters must be adapted to the
characteristics of the objective function being
optimized. This is a particularly interesting feature,
especially in the context of the developed
acquisition function which allows for a more
flexible cost trade-off management through v. It is
hypothesized that “simpler” functions benefit from
a lower B and higher vy, effectively encouraging
exploitation at low fidelity, whereas more
“complex” functions benefit from a higher B and
lower vy, which has inverse implications.
The novel acquisition function has proven to be
more effective than the old one, provided that the
hyperparameters are well-tuned. The findings
emphasize the importance of an adaptive and
context-sensitive approach, as flexibility is an
invaluable tool in real-world scenarios, where each
problem comes with a different set of constraints and
goals. It was found that the new method achieved a
better trade-off between cost and accuracy,
consistently yielding optimal results with less
simulated cost.

Finally, these results underline the need for
further research into automated or semi-automated
methods for hyperparameter tuning in multi-fidelity
BO. Developing strategies to predict optimal
parameter values based on preliminary assessments
of the objective function's characteristics could
significantly  enhance the efficiency and
applicability of BO in diverse fields.

TuRBO-1

In this section, the TuRBO-1 algorithm is

evaluated across various test functions and
dimensions. It’s performance is compared with the
initial BO algorithm, a Random Search, and the
sophisticated multi fidelity approach.
Starting with the simplest unimodal sphere function
(Equation 9), characterized by a singular global
minimum at the origin. This function presented
intriguing results that deviated from the initial
expectations. While the TuRBO-1 algorithm was
anticipated to excel in unimodal functions due to the
simplicity of the function, the dynamic TR updating
mechanism and propensity to converge towards the
centre, the outcomes were somewhat unexpected.
The algorithm displayed a marked tendency for
exploration over exploitation, particularly in high-
conditioning scenarios of unimodal functions. This
was evident in the behaviour of the TuRBO-1, which
prioritized discovering new promising regions rather
than quickly converging to the global optimum. This
is especially true when performing global
optimisation in the 5D and 10D case.

A critical illustration of this phenomenon is
provided in Figure 8. The figure captures a scenario
where all three TRs initially positioned outside the
global optimum gradually converge towards the
centre over several iterations. Notably, the red
crosses in the figure highlight the algorithm's
exploratory nature, underscoring that the high
conditioning of the function does not significantly
influence its sampling decisions.

=1

Figure 8 — Contour plot of the 2D Sphere function

In all three experiments, the initial Halton Sequence
is represented by dark-coloured samples, with the
best initial point used as the centre of the TR,
indicated by the dashed green circle. Grey samples
within the TR are evaluated for Expected
Improvement (EI), with the highest EI point utilized
as a function evaluation, marked by a red cross. The
global minimum is also highlighted yellow.

Moreover, Figure 9 presents a comparative analysis
of the logarithmic regret between the TuRBO-1
algorithm and the Random Search (RS) strategy. A
key observation is the dashed red line at the fifth
evaluation, marking the transition point where initial
sampling evaluations cease, and BO iterations
begin. This demarcation provides valuable insights
into the adaptive response of the TuRBO-1
algorithm as it shifts from initial exploration to more
focused optimization efforts.
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Nevertheless, the TuURBO-1 algorithm outperforms
the RS and initial BO algorithm.

—— Blayemian Optimisation

- v + T T -
2.5 f.0 TE 10 12.6 15.0 175 mno

Rutnher of Black-Boc Function Evaluations

Figure 9 — Logarithmic regret plot of the RS and TURBO-1

A summary table of all the algorithms, and runtimes
for the 5D and 10D case are shown in Table 1.

Table 1 — 5D and 10DSphere function results for different methods.

5D BO From Random TuRBO- Multi
Scratch Search 1 Fidelity
Optime 0.056 0.09 0.036 0.047
found
Runtime <1m <1m 5m 2m
10D BO From Random TuRBO- Multi
Scratch Search 1 Fidelity
Optimum
found 0.275 0.773 0.07 0.69
Runtime 2m <1im 11m 3m

In the 5D and 10D sphere function case, a near
global optimum was achieved with TuRBO-1 at
both occasions, although runtime increased linearly
with dimensionality. This is primarily due to
TuRBO-1’s single TR BO framework.

In comparative analyses, both the multi-fidelity
approach and TuRBO-1 exhibited enhanced
performance. However, the high conditioning nature
of the sphere function resulted in no definitive
superiority of TuRBO-1. The algorithm’s inherent
exploratory behaviour did not significantly
contribute to outperforming other methods in this
context, underscoring the impact of the function's
characteristics on optimization efficiency.

The research further delved into the realm of
multimodal functions by testing the TuRBO-1
algorithm on the Styblinski-Tang function
(Equation 10). This function, with its inherent
nonlinearity and nonconvexity, is particularly
relevant to the field of chemical engineering. It
possesses a global minimum at the point (-2.904, -
2.904), with the objective function value at this
minimum being -39.166 multiplied by the
dimensionality (d), translating to approximately -78,
-195 and -390 in the 2D, 5D and 10D respectively.
in Figure /0, illustrating the 2D case, shows that the
TuRBO-1 algorithm achieved global convergence
within a limited number of iterations, effectively
navigating through local optima to find the global
minimum with a minimal change in the objective
function value. This outcome exemplifies the
algorithm's proficiency in handling complex
multimodal landscapes, highlighting its potential

applicability in challenging real-world scenarios
where optimal solutions are sought despite multiple
local optima.

In the analysis of the 5D and 10D Styblinski-Tang
function, the TuRBO-1 algorithm consistently
achieved near-global optimum results. The

o

Figure 10 — Contour plot of the 2D Styblinski- Tang function

function's landscape, characterized by numerous
local optima, favours an exploratory approach,
which significantly contributed to TuRBO-1's
superior performance over other models. This
advantageous outcome is  comprehensively
documented in Table 2 presents the results for the
5D and 10D scenarios, highlighting the relatively
high running times of the TuRBO-1 model,
attributable to its single TR design. These running
times could be optimized within the TuRBO-1
framework by fine-tuning the minimum (L,,,;,) and
maximum (L4, ) TR limits. This adjustment would
allow the TR to terminate more efficiently when the
input space becomes less effective, followed by the
generation of a new TR around the next most
promising initial sample.

Table 2 — 5D and10D Styblinski- Tang function results for different
methods.

5D BO From Random TuRBO- Multi
Scratch Search 1 Fidelity
Opti 178 -160 -190 188
found
Runtime <1im <1m 7m 3m
10D BO From Random TuRBO- Multi
Scratch Search 1 Fidelity
Optimum 230 215 -390 -380
found
Runtime im <im 14m 6m

Conclusions and Outlook

This study has successfully developed two distinct
yet complementary Bayesian Optimization (BO)
algorithms: the multi-fidelity approach and the
TuRBO-1 method. These algorithms represent
significant improvements in the field of
optimization, especially in the context of high-
dimensional and computationally intensive
problems.

The multi-fidelity framework has been an
effective tool for optimizing the range of tested
functions. By integrating an innovative y
hyperparameter in the acquisition function, the
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computational cost and accuracy are balanced much
more accurately, and in a way that allows for tuning
the algorithm to the problem at hand. The strength
of it lies in the fact that it provides a much more
flexible approach in tackling functions with
different levels of complexity and behaviour.
especially in 10-dimensional spaces. As Bayesian
Optimization continues to evolve, the multi-fidelity
approach presents exciting avenues for future
research. One key area lies in the dynamic tuning of
hyperparameters. Current methodologies typically
involve manual or static hyperparameter settings,
which, although effective, may not always optimally
exploit the potential of multi-fidelity models. Future
research could focus on developing algorithms that
dynamically adjust hyperparameters like  and y in
response to real-time feedback during the
optimization process (Fucci et al., 2022). Moreover,
another promising direction is exploring different
methodologies in the acquisition function, which is
an ongoing process in literature (Takeno et al., 2023)
(Song, Chen and Yue, 2019).

The TuRBO-1 algorithm excels in high-
dimensional optimization, adeptly navigating
complex landscapes and evading early local optima,
as demonstrated in the Styblinski-Tang function. Its
dynamic trust region (TR) mechanism surpasses
traditional Bayesian Optimization methods in
balancing exploration and exploitation, marking it as
an effective tool for complex optimization tasks.
However, its single TR approach limits
computational efficiency. Introducing simultaneous
local TRs, each with a distinct posterior, could
enhance its application in high-dimensional spaces,
maximizing TuRBOs potential for real-world
problems.
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Stability Study of Dual Drug Delivery Systems under Osmotic Stress
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Abstract It was required to investigate the stability of vesicles under osmotic stress to be employed as dual-drug delivery
systems. The effects of lipid architecture and encapsulated cargo were studied using DPPC and DOPC, with two
fluorescent drug mimics - calcein and methylene blue. The stability was analysed through release assays of the fluorescent
dyes and deviations in size for vesicles in sucrose and KCl buffers of various concentrations. DPPC, which is a saturated
lipid, was determined to be more optimal for application in a drug delivery system, as it had lower degree of passive
leakage, despite larger changes in size to counter changes in osmotic pressure. Buffer type and concentration were found
to have minimal effect on the release efficiencies for both DPPC and DOPC vesicles. However, significant differences in
the release efficiencies of both encapsulated cargos were noted, with calcein having a lower passive leakage in all

conditions.

Keywords: Vesicles, stability, dual-drug delivery system, osmotic pressure, calcein, methylene blue

Introduction

Widely employed in various applications, liposomes, or
vesicles', exhibit outstanding properties, particularly in
drug delivery systems, where they first gained traction
in the 1970s2. They are recognised as promising and
adaptable drug carriers due to their biocompatibility,
their capability to encapsulate both hydrophilic and
hydrophobic therapeutic agents, and their ability to
safeguard encapsulated substances from physiological
degradation?. With the ability to selectively transport
payloads to specific sites using passive or active
targeting, liposomes mitigate systemic side effects,
boost the maximum-tolerated dosage, and amplify
therapeutic benefits®. Unstable vesicles, however, pose
a significant risk as the potential premature release of
drugs heightens toxicity risks to healthy tissues and may
limit the treatment’s effectiveness. Hence, maintaining
vesicle stability is crucial for ensuring the efficacy,

safety, and targeted delivery of drugs.

In this investigation, vesicle stability was
characterised by changes in size and passive leakage of
encapsulated cargo through the membrane. While
several factors influence vesicle stability, variations in
osmotic pressure within the body are particularly
relevant in drug delivery systems, and therefore a crucial
consideration. Consequently, this study investigated the
stability of vesicles with two encapsulated drug mimics
(calcein and methylene blue) under osmotic stress for
two lipids, DPPC and DOPC, with varying properties.

The properties and release mechanisms of these two
encapsulated molecules were characterised, and the
effect of lipid architecture, buffer type and concentration
on vesicle stability was explored. The study aimed to
determine the limit of drug concentration that can be
encapsulated such that vesicles have minimal leakage
after being introduced to the bloodstream, while also
distributing the required dose at the target site. These
results were deemed significant in the construction of a
drug delivery system that can trigger the release of
temperature, pH or light responsive cargos, whilst also
minimising the side effects. This would require the
introduction of the fewest number of vesicles possible,
as vesicles can clog blood vessels or get attacked by the
immune system, whilst also delivering the necessary
drug dosage.

Background

Liposomes are nano-sized to microsized vesicles
composed of a phospholipid bilayer, that structurally
adopt a spherical or multi-layered spherical shape®*.
Phospholipids, typically composed of a glycerol
backbone, two hydrophobic fatty acid tails, and a
hydrophilic phosphate group are amphipathic®. In an
aqueous environment, driven by the hydrophobic effect,
phospholipids will spontaneously arrange themselves
into a double-layered structure, known as the
phospholipid bilayer, with the hydrophilic heads on the
outside and hydrophobic tails pointing towards the
inside®. This structural similarity, which mimics the
structure of natural cell membranes, aids in their
integration with biological systems and helps reduce the
likelihood of immune responses or toxicity when used
in drug delivery systems. For this reason, phospholipids
are extensively used in liposomes.

Additionally, lipid bilayers may exhibit different
phase behaviours depending on lipid tail interactions
within the bilayer structure’. There are two primary
phases: a solid (gel) phase, and a liquid phase, which are
characterised by lipid saturation.  Saturated
phospholipids, such as DPPC, result in straight,
unkinked tails, that can be packed closer together in a
crystalline-like matrix, thereby maximising the
intermolecular interactions between tails and decreasing
bilayer fluidity. Unsaturated phospholipids, such as
DOPC, which has two carbon-carbon double bonds,
present with crooked, kinked tails, resulting in fewer
intermolecular interactions and increased bilayer
fluidity. Hence, it is expected that vesicles made with
DOPC will have a higher degree of membrane fluidity,
whilst DPPC membranes will be more viscous.

The lipid saturation will also influence the vesicle’s
ability to withstand variations in osmotic pressure®,
which is defined as the amount of force applied to a
solution, preventing the movement of solvent across a
semipermeable membrane’. DOPC vesicles, owing to
their fluid nature, can deform more easily to counteract
changes in osmotic stress on the membrane.

Water is transported across a membrane by osmosis,
which describes the spontaneous net movement of water
molecules across a semi-permeable membrane from an
area of high-water potential to low water potential until
a state of equilibrium is reached®. In isosmotic media,
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equilibrium is achieved and there is no net movement of
water in or out of the vesicles, and they are stable in size.
When vesicles are placed in hyperosmotic media, where
the concentration of solute is higher on the outside, there
will be a net movement of water out of the vesicle,
which results in the vesicles shrinking. Conversely,
when they are placed in hypoosmotic media, where the
concentration of solute is higher on the inside, there will
be a net movement of water into the vesicles, causing
them to swell. Equilibrium is reached when the force of
water on the hyperosmotic side of the membrane is equal
to the force of diffusion on the hypoosmotic side of the
membrane.

Osmolarity is a property of a solution that considers
the number of particles formed when a substance is
dissolved in water. Whilst molarity is a measure of the
concentration of a solution in terms of moles per
volume, osmolarity is a measure of the number of
particles per volume’. This means that while 2 solutions
could have the same molarity, they could have different
osmolarities.

When ionic compounds are dissolved in water, they
dissociate to form cations and anions, which contribute
towards the osmolarity. Hence, it would be expected that
the osmolarity of KCI buffers to be higher than for
sucrose buffers of the same molarity. In theory, it was
also be expected that if a SmM sucrose solution
corresponds to 5 mOsm/L, a SmM KCI solution would
be 10 mOsm/L as KCl dissociates into K* and Cl- ions’.

Furthermore, the rate at which drugs diffuse from the
vesicle’s membranous lipid bilayer, is another critical
aspect related to the drug delivery systems under
investigation'’. Understanding the release, or leakage
mechanism, of the encapsulated cargo is especially
important, as ideally no passive cargo release, or
leakage, to the surroundings should occur upon transport
of the vesicle from the site of administration to the
target. Cell membranes act as biological barriers,
selectively restricting the passage of certain molecules
based on their permeability!!. The cell membrane is
semi-permeable, with only small uncharged molecules
able to diffuse freely through the phospholipid bilayers,
in a process known as simple diffusion®. Other
mechanisms for transport across the cell membrane
exist, and may be active or passive, depending on their
energy consumption!'. However, most pertinent to this
study is simple diffusion as a transport mechanism. In
this mode of transport, nonpolar molecules freely
diffuse across the lipid bilayer in a process driven by a

difference in concentration’.

The rate of diffusion across a cell membrane directly
relates to this concentration gradient, but is also
influenced by other factors, such as the molecule’s
solubility and acidity, as represented by its logP and pKa
respectively'!. Hence, to explore the passive leakage
mechanism across the membrane, specific to this
investigation, it is necessary to consider the logP and
pKa properties of the drug mimic cargos - calcein and
methylene blue. Calcein and methylene blue are both
self-quenching dyes. In other words, they are
nonfluorescent at high concentrations, and fluorescent at
low concentrations, as demonstrated in figure 1. This
property enables them to be useful indicators for vesical
leakage, as related to vesicle stability. In addition, these
2 molecules were chosen for their drug-like structures,
namely, the abundance of aromatic rings and polar
groups. Furthermore, their different excitation and
emission wavelengths are crucial to enable them to be
used in a study for dual drug delivery.

The partition coefficient, logP, is a measure of the
hydrophilicity (or hydrophobicity) of a molecule. It is
measured as the ratio of concentrations of a compound
that has dissolved into an organic solvent phase and into
an aqueous water phase. Most commonly, the organic
partitioning solvent used is octan-1-o0l. A negative logP
value indicates that the compound has a higher affinity
for the aqueous phase, meaning it is more hydrophilic.
Conversely, a positive logP value is representative of a
higher concentration of the substance in the lipid phase,
meaning the compound is more hydrophobic. A lower
logP is indicative of higher membrane permeability, and
it is easier for the molecule to diffuse through the lipid
bilayer. logP values for methylene blue has been
reported ranging from -1.1 to -0.62, whilst calcein has a
logP of 1.56 '2. It would be therefore expected that
methylene blue leaks out or diffuses through the lipid
bilayer more readily than calcein. The pKa value
represents the acidity of a molecule. It is the negative
log of the equilibrium constant for dissociation in acid-
base reactions, which is the concentration of the
conjugate base, multiplied by the concentration of
hydrogen ions, divided by the concentration of the acid
at equilibrium. A lower pKa value indicates a stronger
acid. Calcein has a pKa of 2.1, whilst this value is 3.14
for methylene blue!2. Since both cargos were maintained
at the physiological pH of 7.4, which is higher than their
pKa values, the cargos should not be in their
protonated/acidic forms.
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Figure 1. Schematic showing leakage from vesicles containing 2 drug like dyes (calcein and methylene blue) and their structures. Vesicles are made
from DPPC or DOPC and diagram showing self-quenching properties of both dyes: As concentration decreases, the fluorescence increases.

Methods
Since the properties of methylene blue are not well
documented, it was necessary to characterised its
fluorescence and absorbance properties. 200 pL of 30
concentrations between OmM and 250mM methylene
blue was placed in a fluorimeter well plate and a clear
absorbance well plate. The absorbance spectra and
fluorescence spectra were then measured to determine
the concentration range of methylene blue that would be
ideal for the investigation.

Lipid films were prepared by drying 200 pL of the
25 mg/mL DPPC or DOPC in chloroform stock under
nitrogen flow on glass to evaporate the chloroform. The
films were then dessicated overnight in a vacuum and
rehydrated with 500 pL of either 500mM calcein
(20mM HEPES, pH 7.4) or 60mM methylene blue
(20mM HEPES, pH 7.4). The vials were vortexed to
ensure they were well mixed, before being heated above
the transition temperatures of the lipids, at 70 °C. To
improve the encapsulation efficiency of the dyes, four
freeze thaw cycles were undertaken, where the vials
were cooled in liquid nitrogen until frozen, then left in
the hot plate for at least five minutes. The lipid
dispersions were then extruded through a 100nm
polycarbonate membrane 21 times at 70 °C to create
small unilamellar vesicles. Finally, size exclusion
chromatography (SEC) was employed to filter the
sample and remove any unencapsulated dyes. This
involved adding the samples dropwise to a SmL SEC
column made from 0.4g of Sephadex G50, hydrated
with 12mL of column buffer, which was 500mM
sucrose, 20mM HEPES for encapsulated calcein and
60mM sucrose, 20mM HEPES for encapsulated
methylene blue. Four fractions, each 300 uL, were then
combined and pipetted up and down to ensure mixing
before being mixed with 12 different buffers of varying
sucrose and KCL concentrations for measurements in
the fluorimeter and dynamic light scatterer (DLS).

Release assays with the 12 buffers were run
overnight using a Cary Eclipse fluorimeter. A well plate
with 96 wells was utilised, with 20 pL of sample mixed
with 180 pL of buffer in each well. 3 trials were
conducted for the sample in all buffers, and 2 trials of
only buffer were tested as a control. Lastly, a gas

permeable sealing membrane was stuck onto the well
plate to minimise evaporation. Calcein fluorescence was
measured at excitation wavelength (1,,) of 495nm and
an emission wavelength (4.,) of 515nm, whilst
methylene blue fluorescence was recorded at A,,=
668nm and A,,= 688nm.

The maximum release was then obtained by lysing
the vesicles with 2 pL of the detergent Triton X-100, and
measuring the total fluorescence under the same voltage
conditions. The release efficiency was then calculated
using equation (1), where F; is the fluorescence at a
specific time, F; is the initial fluorescence of vesicles in
isosmotic buffer, and F; is the maximum fluorescence
after adding Triton’.

Fs-F,

Release efficiency [%]= F—FO x100% (1)
o

The stability of vesicles was also quantified by their
size deviation from reference values using a Malvern
Zetasizer DLS. 20 pL of vesicles were mixed with 980
uL of each buffer in a polystyrene cuvette and covered
with parafilm overnight. Reference values were taken to
be the size of vesicles in isomotic buffer before lysis,
which refers to 350mM sucrose, 20mM HEPES buffer
for calcein, and 60mM sucrose, 20mM HEPES for
methylene blue. A fluorescent filter was used as both
calcein and methylene blue molecules are fluorescent
dyes at low concentrations. In addition, the 13% sucrose
dispersant setting was used for the sucrose buffers,
whilst a water dispersant was used for the 0OmM sucrose
and KCl buffers.

A freezing point depression osmometer was used to
test the osmolarity of various buffers used and to
identify the isosmotic reference point for both
encapsulated cargos. 25 pL of each buffer was pipetted
into an Eppendorf tube and attached to the measuring
head, before being lowered into the cooling aperture,
which started the supercooling process. The sample was
supercooled to a predetermined temperature below the
expected sample freezing point, which is -6.2 °C for the
Loser Type 7M osmometer. A cooled pre-wetted needle
with ice crystals was then automatically inserted into the
sample to initiate freezing. The heat of fusion from the
cystallisation process increased the sample temperature
until a plateau point was achieved, where the liquid solid
equilibrium was maintained %, This plateau was taken
as the true freezing point of the sample. A
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microprocessor then calculated the osmolarity by
comparing the freezing point measured with the freezing
point of distilled water and 2 other standard solutions.

Results and Discussion
Absorbance
It was decided to use methylene blue at a 60mM
concentration with 20mM HEPES to rehydrate the lipid
films based on supplementary figures 1 and 2. Since the
dye is diluted at least 30 times when encapsulated (1:3
dilution in the column and 1:10 in the fluorimeter) and
further diluted by the movement of water molecules
when mixed with buffer, it was necessary to use a
concentration of methylene blue that is non fluorescent
even after being diluted 30 times, so that further
dilutions result in fluorescence. It was seen that
methylene blue is quenched at concentrations above
35mM, so this was the minimum stock concentration
that was required. Based on the fluorescence and
absorbance data of various concentrations of methylene
blue, 60mM methylene blue was used, which
corresponded to an intermediate level of fluorescence.
The absorbance spectrum was also used to confirm
the excitation and emission wavelengths of methylene
blue, which were 668nm and 688nm, respectively.

Osmolarity

Figure 2 shows all the osmolarity measurements
recorded, for buffer concentrations ranging between 0-
250mM for methylene blue and 0-1000mM for calcein.

0 200 400 600 800 1000
Concentration {mM]

Figure 2. Osmolarity of sucrose and KCI buffers used with both
calcein and methylene blue. KCI has higher osmolarity for all
concentrations except 1000mM. Osmolarity of 500mM calcein,
20mM HEPES was found to be 337 mOsm/L, and closest to 350mM
sucrose solution. Osmolarity of 60mM methylene blue, 20mM HEPES
was measured as 66 mOsm/L, and isosmotic reference point was
therefore taken to be 60mM sucrose solution.

The osmolarity of KCI buffers was higher than those
of sucrose buffers at almost all concentrations, except at
1000mM, where sucrose was found to have a higher
osmolarity. This is likely due to measurements having
been taken using a freezing point depression osmometer,
which compares the freezing temperature of the solution
to reference standards to produce an osmolarity reading.

When solutes are dissolved, the freezing point of the
resulting solution will be lower than that of the solvent
on its own due to changes in chemical potential of the
solvent. The degree to which the freezing point is

depressed is directly correlated to the molarity of a
solution through a cryoscopic constant, which is
concentration dependent '4. Since sugars are well known
to have cryoprotectant properties, they can prevent ice
formation on biological tissues '> '%. As such, with a
higher concentration of sucrose, a lower temperature is
required to freeze the sample, and therefore, a larger
temperature difference between the freezing point and
the reference value is recorded, producing a larger
osmolarity reading. Repeat measurements should be
taken to confirm the trends observed and alternative
methods of measuring osmolarity should also be
explored to negate the cryoprotectant effects of sucrose.

Further investigation is also required into factors that
affect osmolarity, as the conversion between osmolarity
and molarity is not linear as expected. The ratio of
osmolarities between the investigated sucrose and KCl
buffers of the same molarity is smaller at low
concentrations, and appears to deviate to a higher degree
with increasing concentration.

As shown in figure 2, 500mM calcein, 20mM
HEPES solution was found to have an osmolarity of 337
mOsm/L, which was most closely balanced with the
350mM sucrose buffer, which had an osmolarity of 371
mOsny/L. This was therefore taken to be the isosmotic
reference point for vesicles with encapsulated calcein.
Similarly, 60mM sucrose solution was considered to be
isosmotic for vesicles with 60mM methylene blue,
20mM HEPES solution, which had an osmolarity of 66
mOsm/L.

Release assays

The release profiles of both lipids with calcein and
methylene blue in different buffers were measured in the
fluorimeter and analysed to determine trends in vesicle
stability in terms of passive leakage. In drug delivery
contexts, it is crucial to minimise the passive leakage
over time.

Vesicle leakage was found to be independent of time
for both lipids with encapsulated calcein in sucrose and
KCl buffers of all concentrations, as seen in figure 3 and
supplementary figure 3. This suggested that the release
occurred instantaneously after the vesicles were mixed
with the buffers and before the well plate was placed in
the fluorimeter.

For DPPC, the maximum release was observed for
vesicles in OmM solution at 10.8%. The minimum
release in sucrose buffers was 1.2% for 1000mM
solution compared to 1.7% for KCl buffers, which
occurred in the 500mM solution. In hypoosmotic media
(below 350mM sucrose), the vesicles in sucrose buffers
of all concentrations consistently have a slightly higher
release than those in KCl buffers. The opposite effect is
observed for vesicles in hyperosmotic media, where
those in KCl buffers are then observed to have higher
releases.

In DOPC, the releases for sucrose buffers were
higher than those in KCl buffers of the same molarity at
all concentrations, though the difference was smaller at
both extremes. A larger range of releases was observed,
with the minimum being 0.4% for 1000mM sucrose, and
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20.8% for 0mM sucrose. DOPC was found to be more
sensitive to changes in buffer concentration due to the
increased membrane fluidity arising from its unsaturated
lipid tails, therefore, making DOPC more likely to have
membrane pores through which leakages can occur.
With both lipids, the maximum release occurred for
vesicles in 0OmM buffer, which is expected as water is
hypoosmotic relative to the encapsulated calcein. The
net movement of water into the vesicles causes them to

swell in an attempt to equilibrate the difference in
osmotic pressure, which results in a slight increase in the
fluorescence as the calcein is diluted. However, as the
vesicle continues to swell to a point where the
membrane is no longer able to withstand the osmotic
stress, the distance between adjacent lipid molecules
will increase, inadvertently forming pores in the
membrane, through which the calcein is able to leak out.

Release efficiency over time for DPPC and DOPC with calcein or methylene blue in sucrose
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Figure 3. Release efficiency over time for both DPPC and DOPC with encapsulated calcein and methylene blue in sucrose buffers of varying
concentrations. (A) Time-dependent release profile for DPPC vesicles with 500mM calcein encapsulated in sucrose. Maximum release was achieved
for 0OmM (orange) at 10.8% and was steady over time. (B) Time-dependent release profile DOPC vesicles with 500mM calcein encapsulated in sucrose.
Maximum release is 20.8% for 0OmM (orange). Larger range and spread of release efficiencies observed for DOPC due to increased membrane fluidity.
(C) Time-dependent release profile for DPPC vesicles with 60mM methylene blue encapsulated in sucrose. Release increases non-linearly over time
and plateaus for all concentrations to an average of 23.1%. (D) Time-dependent release profile for DOPC vesicles with 60mM methylene blue
encapsulated in sucrose. Release increases non-linearly over time and reaches a plateau later in comparison to DPPC. There is a wider range of releases

observed, ranging between 32.6% and 43.2% on average.

Furthermore, in both cases, comparing the final
release efficiencies, shown in figure 4, for both lipids in
various concentrations of sucrose and KCl buffers, it
was noted that the presence of ions in the buffer had
minimal effect on the vesicle leakage. The final release
had an inverse effect with sucrose concentration, but no
clear trend was observed for KCL

The release profile of methylene blue was found to
be extremely different from that of calcein for both
DPPC and DOPC in all buffers.

Comparing the release profiles of calcein and
methylene blue using figure 3, sucrose concentration did
not have much effect on the DPPC vesicle leakage as the
same trend was observed for all concentrations and they
all resulted in a final release between 19% and 26%. In
contrast, for DOPC, the final release ranged between
34% and 46%, which corresponded to the 0OmM sucrose
and 250mM sucrose buffers. However, there was also
no clear trend between the sucrose concentration and
final release observed in DOPC vesicles. Furthermore,
there was a wider range of releases observed for DOPC
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than DPPC, which was likely the result of the combined
effect of increased membrane fluidity and permeability
of methylene blue.

The release profiles of both lipids in KCl was
consequently explored to investigate whether the
passive leakage of methylene blue could be reduced in
an ionic buffer. The results can be seen in supplementary
figure 3. For DPPC, the release ranged between 20% and
36%, for 500mM KCI and 1000mM KCI respectively.
For DOPC, the final release had a smaller range between
37% and 39%, but this was not reflective of the
maximum release that was recorded before the final

time. More repeats of this condition are needed as large
errors were noted in the releases. The release profile for
both lipids were not improved using KCl and there is a
very similar trend for both lipids encapsulating
methylene blue in KCl and sucrose. Larger differences
in the final releases were noted across the buffer
concentrations for KCl than sucrose, but more
investigation is needed to determine if there is a trend in
the normalised release with varying KCI1 concentration.
The results suggest that KC1 does not counteract osmotic
pressure as well as sucrose.

Final release efficiency against concentration for DPPC and DOPC with calcein and methylene blue in all buffers
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Figure 4. Release efficiency against concentration for 500mM calcein and 60mM methylene blue in DPPC and DOPC vesicles. Both lipids have higher
release efficiencies with encapsulated methylene blue due to its lower logP value. The difference between DPPC and DOPC is larger with methylene
blue than with calcein. (A) Final release efficiency against concentration for DPPC and DOPC with encapsulated 500mM calcein in sucrose and KCl1
buffers of varying concentrations. At hypoosmotic conditions, DOPC has more leakage than DPPC. Both lipids in sucrose buffers have higher releases
in hypoosmotic conditions. In hyperosmotic conditions, DPPC vesicles in KCI have the highest release and DPPC has an higher release efficiency than
DOPC in hyperosmotic conditions.(B) Final release efficiency against concentration for both DPPC and DOPC with encapsulated 60mM methylene
blue in sucrose and KCI buffers of varying concentrations. DOPC consistently has a higher release at all concentrations than DPPC due to increased
membrane fluidity. At hypoosmotic conditions, both lipids in sucrose buffers have higher release efficiencies than those in K Cl buffers of the same
concentration. In hyperosmotic conditions, a higher release efficiency is observed for both lipids in KCl than in sucrose.

From Figure 4, DPPC (blue), in hypoosmotic
conditions (below 60mM for methylene blue), vesicles
in sucrose buffers were found to have higher releases
than those in KCI at the same molarity. However, in
hyperosmotic conditions, vesicles in sucrose buffers
were found to have smaller releases than those in KCI.
In contrast, for DOPC, the trend is unclear as the release
efficiencies between sucrose and KCI fluctuate. Under
90mM and above 240mM, DOPC vesicles in sucrose
have elevated releases when compared with those in
KCl, but the observation is reversed between these 2
points.

The final release efficiencies for methylene blue
were higher than those for calcein at all concentrations.
This was explained by the difference in logP of
methylene blue and calcein. As methylene blue has a
lower logP value, it is able to diffuse through transient
pores in the membrane more readily, thus becoming
diluted in the external environment and fluorescing.

There was a smaller effect of sucrose concentration
on the methylene blue release than with calcein, as the
range of release efficiencies at different concentrations
is smaller. No significant trends in concentration and
final release efficiency were recognised. The type of

buffer had a more significant effect in methylene blue
encapsulated vesicles than with calcein vesicles.

Size

The dynamic light scatterer (DLS) was used to measure
vesicle stability in terms of vesicle size deviations
between a measured sample and its corresponding
reference vesicle size.

The average size of vesicles in the liquid (DOPC) or
gel (DPPC) phase, and in either type of buffer (KCI or
sucrose) concentration, was compared to that of vesicles
of the same phase, and in the same buffer (KCl or
sucrose), but under isosmotic buffer concentration
conditions. In the case of calcein encapsulated vesicles
in sucrose, for instance, the osmometer data presented
earlier suggests that the osmolarity of the calcein cargo
is most closely balanced with the osmolarity of the
350mM sucrose buffer. The reference vesicle size for
calcein encapsulated DOPC (or DPPC) vesicles in
sucrose, therefore, corresponds to that of the calcein
encapsulated DOPC (or DPPC) vesicles in the 350mM
sucrose buffer. For the case of calcein cargo in KCl, the
osmolarity of the cargo is most closely balanced with the
osmolarity of the 250mM KCl buffer. Similarly, for the
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methylene blue cargo the isosmotic sucrose and KCI
buffer concentrations, correspond to 60mM and 40mM,
respectively. Supplementary Table 1 summarises these
results.

Further, these reference concentrations are important
to determine the concentration range for hypo and

hyperosmotic media, as established within our context.
More specifically, buffer concentrations below the

isosmotic  concentration and above, refer to
hypoosmotic  and  hyperosmotic  environments,
respectively.

Effect of buffer concentration on average size for vesicles with encapsulated calcein and methylene blue
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Figure 5. (A) and (B) respectively refer to calcein and methylene blue encapsulated vesicles, respectively. The figures summarise the average vesicle
size [nm] for each lipid phase (fluid - DOPC or gel - DPPC), in either type of buffer (KCl or sucrose). The reference average vesicle size for each lipid
phase and type of buffer is indicated using a star symbol. This reference helps to distinguish the concentration range for hypo and hyperosmotic
environments as related to the sucrose and KCI buffers. (A) suggests that DOPC in hypoosmotic media is more stable in sucrose, whereas in
hyperosmotic media it is more stable in KCI1. DPPC on the other hand, seems to be more stable in KCl in both hypo and hyperosmotic media. Overall,
DOPC vesicles seems to be more stable than DPPC, and DPPC vesicles on average tend to be larger in size than DOPC vesicles. In the case of methylene
blue cargo, (B) suggests that DOPC vesicle stability is unaffected with regards to buffer type and osmotic media. Since, no clear trend for whether
DOPC in sucrose or DOPC in KCl, is more stable in hypo or hyperosmotic environments. The same may be observed for DPPC. Overall, DOPC vesicles
seem to be more stable than DPPC vesicles in the ionic (KCI) buffer and once again, DPPC vesicles seem to be larger than DOPC vesicles.

Figure 5A and 5B refer to calcein and methylene
blue cargos, respectively. Both figures summarise the
average vesicle size [nm] for each lipid phase (fluid -
DOPC or gel - DPPC), in either type of buffer (KCI or
sucrose). The reference average vesicle size for each
lipid phase and type of buffer is indicated using a star
symbol, which further helps to distinguish the
concentration range for hypo and hyperosmotic
environments as related to the sucrose and KCI buffers.
Using Figure 5A to compare the change in vesicle size
in the sucrose (blue) buffers alone, vesicles appear to be
more stable under hypoosmotic media, as the (vertical)
difference in size between vesicles with respect to the
reference size is smaller than it is for vesicles in
hyperosmotic media. This may be explained by the fact
that in hypoosmotic conditions there’s a net flow of
water into the vesicles, to equalize the osmotic pressure
difference between external and interior environments.
This phenomenon causes the vesicles to swell but also
potentially reduces the stress applied on the lipid
bilayer, thereby enhancing stability. However, this is not
always observed. In KCI (orange), DOPC vesicles seem
to be more stable under hyperosmotic media.
Supplementary Figure 4 compares vesicle sizes of
DOPC in sucrose and KCl buffers, for the calcein cargo,
and shows these trends clearly. Comparing DPPC in
sucrose (green) and KCl (red), in both hypo and
hyperosmotic media, the vesicles seem to be more stable

in KCI. This result is also illustrated in Supplementary
Figure 5. Furthermore, a comparison of DOPC (blue)
and DPPC (green) in sucrose suggests that vesicles in
the fluid phase (DOPC) are more stable in size than in
the gel phase (DPPC) in both hypo and hyperosmotic
media. This may be expected as lipids in the fluid phase
are mobile compared to the gel phase and may therefore
more easily adjust to accommodate changes in the
environment. In the gel phase, lipids are more rigidly
packed, so it’s possible that alterations in buffer
conditions can have a more pronounced effect on their
size. Supplementary Figure 6 summarises this finding.
Finally, as shown in Supplementary Figure 7, the result
that DOPC (orange) is more stable than DPPC (red)
seems to be true for the KCI buffer as well. In the case
of the methylene blue cargo, similar comparisons can be
made using Figure 5B. A comparison of DOPC vesicles
in sucrose (blue) or KCI (orange) does not seem to yield
a clear trend regarding size variations in hypo or
hyperosmotic media. Therefore, unlike in the case of the
calcein cargo, the media does not seem to affect vesicle
size in a particular way. This can be closely observed in
Supplementary Figure 7, and may be explained by
considering that methylene blue leaks out more than
calcein, as suggested by the release assay studies.
Hence, in the case of methylene blue, the osmotic
pressure difference that drives the change in size
decreases over time, so the net water movement is not
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enough to make significant changes in the size of
vesicles.

Likewise, consideration of DPPC in sucrose (green)
and DPPC in KCI (red) also does not seem to suggest a
clear trend for changes in vesicle size in hypo or
hyperosmotic environments. This comparison is also
shown in Supplementary Figure 8. Furthermore, like in
the case of the calcein cargo, a comparison of DOPC
(blue) and DPPC (green) in sucrose suggests that
vesicles in the fluid phase (DOPC) are more stable in
size than in the gel phase (DPPC) in both hypo and
hyperosmotic media. Supplementary Figure 9 illustrates
this. Similarly, as shown in Supplementary Figure 10,
the result that DOPC (orange) is more stable than DPPC
(red) seems to be true for the KCl buffer as well.

The PDI, or Polydispersity Index, is an important
parameter to be considered in drug delivery
applications, as it provides an indication of the quality
of the average particle size measurement with respect to
the size distribution!”. A low PDI indicates a more
uniform size distribution, which is desirable for ensuring
reliable behaviour and performance of the delivery
system!”. Generally, for the purposes of drug delivery
applications, a PDI value below 0.4 is an acceptable
measure'®. Correlograms for their respective PDI
measurements followed the expected trend, indicating
mono sized dispersion. An example of such a
correlogram can be found in Supplementary Figure 12.

Effect of buffer concentration on PDI for vesicles with encapsulated calcein and methylene blue
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Figure 6. (A) and (B) refer to calcein and methylene blue encapsulated vesicles, respectively. The plots summarise the average PDI values for each
lipid phase (fluid - DOPC or gel - DPPC), in either type of buffer (KCI or sucrose). The reference average PDI for each lipid phase and type of buffer
is indicated using a star symbol. This reference helps to distinguish the concentration range for hypo and hyperosmotic environments as related to the
sucrose and KClI buffers. (A) suggests that overall PDI values for DOPC are smaller in KCI than they are in sucrose, regardless of hypo or hyperosmotic
environment. The same trend is observed in the case of PDI values for DPPC. Overall, it may be observed that while the PDI values for the liquid phase
(DOPC) change more than they do for the gel phase (DPPC) in both hypo and hyperosmotic media, the liquid phase line is always below the gel phase
line, suggesting lower PDI values. This is the case in both KCI and sucrose buffers. (B) suggests that overall PDI values for DOPC are smaller in KCI
than they are in sucrose. In the case of DPPC, the opposite is observed, most PDI values seem to be higher for KCI than sucrose. Comparing DOPC and
DPPC in sucrose, and in KCl, there does not seem to be a clear trend with respect to how PDI changes in the hypo and hyperosmotic media. Overall,
however it is observed that PDI values for the liquid phase are smaller than the gel phase.

Key findings from Figure 6A, which relate to calcein
encapsulated vesicles, suggest that overall, the PDI
values for DOPC are smaller in KCI (orange) than they
are in sucrose (blue), regardless of hypo or
hyperosmotic environment. A similar trend is observed
in the case of PDI values for DPPC. Furthermore, it may
be observed that while the PDI values for the liquid
phase (DOPC) fluctuate more than they do in the gel
phase (DPPC), in both hypo and hyperosmotic media,
PDI values for the liquid phase (blue and orange) are
always smaller than in the gel phase. Overall, average
PDI values for both lipids and in both buffers seem to be
below or around the 0.4 reference PDI value mentioned
previously.

Figure 6B, as related to methylene blue encapsulated
vesicles, suggest that overall PDI values for DOPC are
smaller in KCI than they are in sucrose. However, the
opposite is observed for DPPC. Comparing DOPC and
DPPC in sucrose, and in KCl, there does not seem to be
a clear trend with respect to how PDI changes with

media. Once again, however it is observed that PDI
values for the liquid phase are smaller than the gel phase.
This can be expected as DOPC’s fluid nature enables it
to withstand changes in osmotic pressure better, and
therefore experience a smaller degree of deformation,
which is reflected in a lower PD value.

It is important to note that even thought he average
PDI measurements for both lipids in all buffers did not
significantly exceed the 0.4 reference value, it is
advisable to repeat measurements due to large
differences in results recorded.

Conclusions

Vesicle stability was analysed by considering the extent
of passive leakage and the deviations in size. The release
profiles showed that vesicles with methylene blue leak
over time, which was not seen with encapsulated
calcein. This suggests that DPPC and DOPC vesicles
with encapsulated calcein in both sucrose and KCl
buffers are more stable than those with methylene blue,
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as the final release is lower, and the release is stable
(unchanged) over time. Vesicles had lower leakages in
sucrose than KCl for methylene blue. However, despite
this observation, no clear trend was established between
the methylene blue release and concentration for both
sucrose and KCI with both lipids.

Buffer concentration was found to have a higher
effect in DOPC with calcein cargos, but no
concentration dependence was observed for methylene
blue with both lipids.

It was also concluded that DPPC is better than
DOPC for methylene blue encapsulation as less passive
leakage is observed. For both calcein and methylene
blue, DPPC, which has a higher degree of phospholipid
saturation, and less membrane fluidity, would be the
more suitable choice for drug delivery purposes.

Key findings from the DLS explained the effect of
lipid architecture and buffer on changes in vesicle size.
For DOPC with encapsulated calcein, vesicles in
hypoosmotic sucrose media and hyperosmotic KCI
media were more stable. This distinction of buffer and
environment was not clear for DOPC with methylene
blue. Since size seemed to change in a similar manner in
both types of media for both buffers.

For DPPC vesicles with calcein, they were more
stable in KCl regardless of osmolarity, whereas, for
methylene blue, there was no notable trend regarding
stability in different buffers and environments. In
calcein, it seemed as though DOPC vesicles were
always more stable than DPPC (since smaller deviations
in vesicle size were observed). In methylene blue,
DOPC vesicles were only more stable in KCI.

However, despite DPPC vesicles having larger
deviations between the reference size and final size with
both encapsulated cargos in all buffers, this was the
consequence of the membrane expanding to
accommodate changes in osmotic stress.

For drug delivery applications, factors such as drug
retention time, maximim release at target site, vesicle
circulation time, likelihood to aggregate and
macrophage sensitivity are all relevant in selecting the
appropriate delivery system. Compromises are therefore
required to maximise the benefits of the selected system.

Future experiments would focus on encapsulating
both calcein and methylene blue in the same system to
investigate vesicle stability under different types of
buffer and concentrations. It is also imperative to
explore their release mechanisms to see how the passive
leakage changes when multiple drugs are combined, as
dual drug delivery systems often involve the
simultaneous or sequential release of two different
drugs. It is also worth exploring the incorporation of
PEG polymers and to make mixtures of lipids in various
phases to increase vesicle stability. Other lipid
architectures can also be explored, such as other
saturated lipids with different carbon chain lengths
should be investigated, to see if carbon chain length is
another factor that influences vesicle stability.

The next step would then be to apply this research to
co-delivery systems of different drugs or treatments and
compare the performance against existing dual drug
delivery systems.
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Abstract

This paper examines the integration of waste heat from the refrigeration cycle of a Sainsbury’s store into the
building heating, ventilation, and air conditioning (HVAC) system to investigate the potential of electricity consumption
and carbon footprint reductions. Case studies were proposed with different configurational integration concepts: (0) no
integration of the waste heat; (1) indirect integration into the ground; (2A) direct integration via a heat exchanger into the
primary HVAC loop after the ground-source heat pump (GSHP); (2B) direct integration via a heat exchanger into the
primary HVAC loop before the GSHP. The results then were compared to existing Sainsbury’s store performances based
on available historical data.

All cases considered reduced both the cost required to provide space heating, and the carbon dioxide emissions
produced, compared to the base case. The most beneficial case was the indirect integration, case 1, whereby the
refrigeration waste heat is directed into the ground near the supermarket, then extracted by the GSHP with an increased
theoretical coefficient of performance (COP). This case however, due to the requirement of a GHSP, will be difficult to
retrofit to existing stores. The primary integration cases 2A and 2B, do not suffer this drawback, and can readily be
implemented into existing stores, including those operating with a gas boiler, providing a reduction in cost and emissions
of the space heating systems. Our analysis also emphasises the value of government incentives to make renewable energy

solutions and waste heat integration economically competitive to traditional technologies.

Keywords: Waste Heat Integration, Refrigeration, Ground-source Heat Pump, Supermarket

1. Introduction and Background

Supermarkets in the United Kingdom consume
3% of the country’s total electricity, corresponding to 1%
of the greenhouse gas (GHG) emissions. Refrigeration
systems within these supermarkets use between 30-60%
of the electricity, thus meaning supermarket refrigeration
systems use approximately 1% of total UK electricity
(Tassou, et al., 2011). As the concerns of rising global
temperatures and the connection to the burning of fossil
fuels continue to rise, focus has been put onto reducing
GHG emissions, hence the UK has a target to reduce
emissions to 77% of 1990 levels by 2035 (Sunak MP,
2023). As supermarkets, and notably their refrigeration
systems, contribute significantly to these GHG
emissions, reducing this energy consumption
particularly, is an important area of focus to reach this
target. One method to aid this is to integrate the
refrigeration system into space heating, to utilise waste
heat energy of condensing the refrigerant. This is
particularly significant as the heating, ventilation, and air
conditioning (HVAC) systems can use up to 35% of
supermarkets electricity demand (Tassou & Ge, 2008). A
study done in 2011 (Ge & Tassou, 2011) suggests that
heat recovery from CO; refrigeration systems can satisfy
up to 40% of the space heating demand within
supermarkets, thus reducing the overall energy
requirements. Sainsbury's have gone on to surpass this
estimate. Sainsbury’s Olney store fulfils all the space
heating demand using an integrated refrigeration heating
and cooling system (Sainsbury's, n.d.). However, this is a
small store, typically associated with a higher proportion
of refrigeration to space heating demand, meaning this
integration is much easier to achieve. This does however
prove the value and validity of integrating refrigeration
and space heating systems.

An additional way for supermarkets to reduce
their greenhouse gas emissions from the HVAC systems
is to implement a ground source heat pump (GSHP) to
provide a portion of the space heating demand. The
temperature of the ground remains steady all year round,
between 7°C and 12°C in Britain (NERC, 2011). In
wintertime when the surface temperature is below this,
the GSHP can provide heating to the supermarket by
pumping a working fluid into boreholes within the
ground, which then extracts thermal energy. This is then
utilised by the supermarket for space heating.
Conversely, in summertime the GSHP can be used to
meet the cooling demand as the working fluid deposits
thermal energy into the ground (Monschauer, et al.,
2022), this is also essential to avoid excessive fluctuation
of the ground temperature, and to ensure it remains
within the expected temperature range (Dalpane, et al.,
2016). This summertime mode of operation has the added
benefit that thermal storage of the excess heat can be
extracted by the GSHP in winter improving the
coefficient of performance (COP) (Maidment, 2013).
The COP is a metric of performance where the rate of
thermal heat delivered by the system (kW) is compared
to the electrical power input (kW) of the heat pump, as
shown in equation 1. Typical values of the COP are

between 3 and 5 (Maidment, 2013).
COP = Rate of Heat Delivered (KWp)

Power Input (kW) (1)
Ground-source heat pumps have been
implemented into Sainsbury’s stores to aid net zero
targets (Silverman, 2020), more specifically the one on
Kings Lynn Hardwick Road. This store is located near the
Norfolk coast, opened in late 2012 and has a sales area of
72,196 m?2. Instead of a gas boiler, as would be a
conventional practise, the space heating is delivered by a
GSHP.
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Reaching net zero is not achieved with a
singular solution. Many different approaches must be
used in tandem, investigating the coupling of proven
technologies, a GSHP with a refrigeration waste heat
integration system is beneficial. The expectation is that
the waste heat integration lowers electricity consumption
of the GSHP, thus lowers GHG emissions to a greater
extent than each solution separately.

The analysis of this paper was conducted using
energy consumption data collected from 1% January to 6
December 2022 within Sainsbury’ stores. This study
analyses the performance of GSHP and refrigeration
integration into the HVAC system in different
configurations. The cost and carbon dioxide emissions of
all cases is compared to each other, as well as to a typical
store obtaining space heating from a gas boiler.

2. Benchmarking Analysis

To gain an insight into the space heating demand
of Sainsbury’s supermarkets, a comparison of the Kings
Lynn store, GSHP-supported, was made to other stores
operating with a conventional gas boiler, before
considering refrigeration integration. The stores of
comparison were Hayes, Lincoln, Wandsworth, and
Washington. All have a comparable sales area but opened
earlier than Kings Lynn, details are found in table 1.
Table 1: Overview of Sainsbury s stores analysed.

Store Type | Opened Sal(enslj;rea Location
Kings | Gopp | 2012 | 72,196 | Midlands
Lynn
Hayes 1993 76,129 London
Lincoln 1991 75,678 Midlands
Washin | 'Gaq | 1977 | 69963 | North
__gton | East
Wands 1987 73,369 | London
worth

To directly compare the energy consumption
used by the different stores, the daily space heating
energy consumption in 2022 (Egaily) was normalised by
the store area (Astwore), and heating degree day (HDD). The
HDD calculated with equation 2, considers how much
colder the external temperature is compared to the
desired internal temperature of the store which is the
baseline temperature of 15°C (Met Office, 2023). The
final equation to determine the normalised daily space
heating energy demand (Enom) is given by equation 3.

HDD = Tbaseline - Tdaily ave (2)
Edaily

E = — 3

norm Astore*HDD ( )

In figures 1-5 all stores exhibit a positive
correlation between Enom and HDD. This is as expected,
as it is typical to invest more in space heating when it is
colder externally. Another point of significance would be
that for all HDD values Epnom is much less for Kings Lynn
than for the other stores. This is due to the higher
efficiency associated with GSHPs compared to gas
boilers (Calvillo, et al., 2023) meaning much less energy
is required to achieve the same amount of heating.
Washington appears to be anomalous to the other gas
stores, requiring much more energy for heating for the
same HDD, this could be due to its comparative age as

Daily GSHP Consumption against Heating Degree Day - Kings Lynn

Heating Degree Day (°C)
Figure 1: Enorm against HDD for Kings Lynn
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older buildings are associated with lower energy
efficiencies (ONS, 2022).

2.1 Carbon Dioxide Emission Comparison of GSHP
and Gas Stores

To provide further insight into the different
modes of operation, the annual normalised carbon
dioxide emissions (kgCO, m? HDD! year!) were
compared. The total normalised energy consumption for
space heating in 2022 was calculated, then multiplied by
an emission factor, EF, of 0.19338 kgCO, kWh'! for
GSHP and 0.2 kgCO, kWh! for gas (GOV UK, 2022) to
determine the kg of CO, released by the energy
consumption, shown by equation 4.

Annual CO, emission = EF * Y E prm  (4)

All gas stores produced much more CO, than
Kings Lynn on a normalised basis. The lowest store,
Lincoln produced double the CO, emissions of Kings
Lynn, whereas Washington produced over four times as
much CO; as Kings Lynn, shown in figure 6. The lower
emissions of Kings Lynn are because of the lower energy
consumption of the GSHP due to the higher efficiency
discussed previously, and the influence of the slightly
lower emission factor of electricity.

_ Nomaiised Space Heating CO; Production for Different Stores
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Figure 6: Comparison of the normalised CO: production from
space heating in different stores

2.2 Economic Comparison of GSHP and Gas Stores

Analogously, an economic comparison was
conducted by multiplying the annual normalised energy
consumption (kWh m2 HDD"! year!) by the unit price of
each energy type, as shown in equation 5. Electricity was
taken at a representative price of £0.30 kWh! and gas at
£0.08 kWh'!.

Annual Cost = unit price * Y, Eporm %)

Normalised Space Heating Energy Cost for Different Stores
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Figure 7: Comparison of the normalised cost production from
space heating in different stores
The cost of heating the gas stores was comparable or
more economical than the GSHP store. Hayes and
Lincoln were around half as costly, whilst Wandsworth

and Washington were around 10% more costly than
Kings Lynn, shown in figure 7. This is because despite
the higher efficiency, the electricity required to operate
the GSHP is 3.75 times more expensive than gas. The two
stores more costly to heat than Kings Lynn were the two
oldest, Washington and Wandsworth. This is unsurprising
as the lower energy efficiency of older buildings mean
they require more energy to achieve the same degree of
heating and hence are more expensive to heat.

Overall, regarding carbon dioxide emissions the
GSHP store vastly outperforms the gas boiler stores,
highlighting their relevance to meet net zero targets.
Economically however, the cost of the GSHP store is less
competitive.

3. Refrigeration Integration Cases

There are many ways in which the refrigeration
system can be integrated into the HVAC system.
Different cases, as well as the base case of no integration
for comparison, are described. Several commonalities
exist throughout all cases. The space heating duty
required by the building is assumed constant at 500 kW
as per the maximum load for the control system.
Consequently, the building supply and return
temperatures are set at 45°C and 30°C, respectively.

The control volume for the GSHP heat pump is
the primary heat pump loop (orange) and the GSHP
extraction loop (purple) on all the schematics below.

3.1 Base Case — No Integration of Refrigeration System

In the base case, the building HVAC system is
supported by the ground-source heat pump, only. The
base case provides the basis to further comparison, the
configuration is shown in figure 8.

‘The use of heat pumps, namely Ground Source
Heat Pumps (GSHPs), has increased significantly in
recent decades worldwide due to their low carbon
footprint and their ability to extract heat from the ground
for building heating and cooling in different climatic

typologies.” (Xian Li, et al., 2023)

GSHP

BUILDING

I > HX-1
; HX-2

¥

Figure 8: Base case schematics (red: HVAC loop, orange:

primary heat pump loop, purple: GSHP heat pump loop)

3.2 Case 1 — Indirect Integration

In case 1, shown in figure 9, the residue
condensation heat from the refrigeration cycle is supplied
into the ground. Here, as the temperature difference is
reduced between the inlet and outlet of the heat pump
system, the COP is expected to be higher, and thus the
compressor work is expected to be reduced due to the
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improved efficiency of the system. This is the current
configuration of the Sainsbury’s store in Kings Lynn.

’ - BUILDING
h HX-1 —

GSHP REFRIGERATION

AT ~|
v NN ‘v/\'../ \

Figure 9: Case 1 - real case schematics (red: HVAC loop,
orange: primary heat pump loop, purple: GSHP heat pump loop,

blue: refrigeration loop)

3.3 Case 2A — Primary heat exchanger integration after
GSHP

Case 2A, shown in figure 10, integrates the
waste heat into the primary HVAC loop after the GSHP,
to directly reduce the heating demand supplied by the
GSHP.

The expected benefit of this configuration is the
reduction in the workload of the heat pump compressor,
with a small variation in the COP.

l

| J BUILDING

l HX-2 |

GSHP

Figure 10: Case 24 schematics (red: HVAC loop, orange:
primary heat pump loop, purple: GSHP heat pump loop, blue:
refrigeration loop)

3.4 Case 2B — Primary integration before GSHP

Similarly, to case 2A, here the refrigeration
cycle is integrated in the primary thermodynamic loop of
the HVAC system. The difference is the order of
reservoirs: refrigeration system before the GSHP, as
shown in figure 11.

This configuration is expected to result in
similar benefits as of case 2A.

—.l
—| HX-1
—_—

Figure 11: Case 2B schematics (red: HVAC loop, orange:
primary heat pump loop, purple: GSHP heat pump loop, blue:
refrigeration loop)

BUILDING

GSHP

4. Integration Analysis Methods
4.1 Refrigeration Waste Heat

As measured telemetry data was not available
for the refrigeration cycle a primary model of the system
was developed in Aspen Plus, shown in figure 12. The
refrigeration system was modelled as a subcritical R744
(COy) cycle using specified operating conditions in
conjunction with thermophysical data from (NIST,
2021). Only the intermediate temperature refrigeration
system was included. The Aspen method selected was
REFPROP. This was developed by NIST to provide
thermodynamic and transport properties of industrially
important refrigerants including CO; (Aspen Plus, 2019).
Several key assumptions were made, such as the
isentropic efficiency of the compressor being 0.8
(Rasmussen & Kurz, 2009). The development of the
Aspen model ultimately revealed a condenser duty of
280.00 kW, which is required to lower the inlet
temperature of 92.23°C (stream 7-in) to the outlet
temperature of 0.55°C (stream 8). The duty is the
maximum amount of waste heat extractable for heating
in the HVAC system, and the temperatures provide
constraints to the integration cases. Streams 7-in and 7-
out are the inlet and outlet to the heat exchanger that is
integrated into the HVAC system. HVAC-IN and HVAC-
OUT and the HVAC supply and return temperatures of
30°C and 45°C.

)

N G

¥ SCEWSE

i
$3-0-Q

Figure 12: Aspen model created to determine refrigeration waste
heat duty.

2

4.2 Compressor Workload and COP

Due to the lack of historical data for the GSHP,
all calculations were based on a theoretical approach with
the guidance of engineers from the Sainsbury’s team.

4.2.1 Base case

As explained in section 3.1 the base case is the

GSHP system without the integration of the refrigeration

cycle. The theoretical COP for this case is found to be

7.52 using equation 6 according to Carnot’s theorem
(Sidebotham, 2022).

COP,, = —hot (6)

Thot=Tcold
where Thot is the outlet temperature of the heat pump

compressor, and Tcoq is the ground temperature from
where the heat is extracted. Tho is kept constant at 50°C
due to a 5°C approach temperature difference with the
return temperature to the building of 45°C. The ground
temperature is assumed to be 7°C. With the heating duty
assumed to be a constant 500 kW provided solely by the
heat pump, Quyac = Qup = 500.00. The work of the
heat pump was calculated to be 66.53 kW by rearranging
equation 7.

55



Qup =W x COP @)
4.2.3 Case 1

Case 1 is the current configuration of the
Sainsbury’s store in Kings Lynn as defined in section 3.2.
The heat from the refrigeration cycle is exerted into the
ground to raise its temperature from 7°C to an estimated
15°C.

The theoretical COP from equation 6 is
calculated to be 9.23 by substituting in 50°C as the outlet
temperature of the compressor and 15°C as the ground
temperature.

From equation 7, the work of the heat pump is
calculated to be 54.15 kW.

4.2.3 Case 2

In cases 2A and 2B, the refrigeration cycle is
integrated into the primary thermodynamic cycle to
extract heat for space heating in the HVAC system of the
building.

The surplus heat of the refrigeration cycle
provides a maximum of 280.00 kW (section 4.1), which
can only be fully extracted by subcooling the working
fluid, CO», to 0.55°C. Thus, exploitation of the latent heat
of 197.22 kJ kg! would be required at the dew point of
9.98°C at 45 bar (NIST, 2021), the operating pressure of
the refrigeration cycle.

If the maximum available heat of 280 kW were
to be able to be extracted, the energy required by the
GSHP would be 220 kW. This would correspond to a heat
pump work of 29.27 kW, with a COPy, of 7.52 unchanged
from the base case. Unfortunately, this is unfeasible.
4.2.3.1 Case 2A

The primary integration of the refrigeration
cycle after the heat pump from the GSHP is case 2A, as
previously described in section 3.3. The COP for the heat
pump changes, as the outlet of the compressor cannot
reach 50°C like in previous cases.

As explained in the previous section, the
configuration has a constraint due the temperatures of the
HVAC system. This governs the amount of heat the
refrigeration system can supply to the building. Due the
second law of thermodynamics, no temperature
crossover can occur to maintain a driving force and avoid
a pinch point (Sidebotham, 2022). In the pinch point
analysis, an approach temperature difference of 5°C was
used. Via iterative calculations on energy balances the
minimum outlet temperature, that satisfies temperature
crossover constraints, was found to be 48.68°C.
Therefore, using the fundamental heat transfer equation
below (equation 8), the amount of waste heat integrated
from the refrigeration cycle was found to be 44.04 kW.

Q =F=C,*AT ®)
where Q stands for heat in kW, F is the flowrate of the
working fluid in the refrigeration cycle modelled in
Aspen, 3000 kg hr!, C, is the average heat capacity of
CO; over the range of 50 — 92°C at 45 bar, (NIST, 2021),
and AT is the temperature difference of the inlet and
outlet streams for the refrigeration cycle loop from the
heat exchanger connecting to the HVAC system.

This vast difference from the ideal case is due to
large disparity between sensible and latent heat, as the

temperature is restricted to remain above the pinch point.
It is, therefore, not possible to exploit the latent heat at
the specified operating conditions.

Thus, the heat pump needs to supply Qyyac —
Qfrig = 500.00 — 44.04 = 455.96 kIW. The
theoretical COP is improved slightly to 7.72 as Tho is
lowered to 48.68°C and Tcoq remains at 7°C. And thus,
using equation 7, the work of the heat pump is 59.05 kW.
4.2.3.2 Case 2B

In case 2B, the supply temperature from the
building of 30°C again, limits the outlet temperature of
the CO; refrigeration loop, here the refrigeration heat
exchanger outlet temperature is 35°C, which gives a
maximum available heat to be 57.87 kW. The heat
capacity here is estimated to be the average over the
range of 35 — 92°C, explicitly, 1,21 kJ kg! K'!. Thus, the
remaining heat that the GSHP and its heat pump needs to
provide is Quvac — Qfrig = 500.00 — 57.87 =
442.13 kW . Since the COPy, is 7.52, the work of the heat
pump is 58.83 kW.

5. Results and Discussion of Refrigeration
Integration

5.1 Results of Compressor Work and COP

Opverall, following the constraints for each case
and the configurations, the base case requires a
theoretical work of 66.6 kW, case 1 requires 54.2 kW,
whilst with constraints, case 2A requires 60.9 kW and 2B
58.8 kW, as summarised in table 2. Case 1 leads the
largest reduction in compressor work, 18.6% less than the
base case, whilst case 2 configurations lead to a reduction
of around 10%. Case 1 is also most efficient with a COP
of 9.23.
Table 2: Summary of the theoretical heat pump work
requirements for all cases

Base 1 2A 2B
Quvac (kW) 500 500 500 500
Qfridge (KW) - - 42.7 57.9
Qasup (kW) 500 500 457 442
COPgsup 7.52 9.23 7.52 7.52
Wasnp (kW) 66.6 542 60.9 58.8
Wiotar Saving (%) - 18.6 8.54 11.6

5.2 Discussion of Refrigeration Integration

5.2.1 Effect on Heat Pump Coefficient of Performance
and Compressor Work

Shown in table 2, the integration of the
refrigeration cycle causes a reduction in compressor
work in all cases, compared to the base case.

In case 1, the reduction in compressor work is
due to an increase in the compressor efficiency (COP)
thanks to the more favourable operating conditions of the
heat pump. By utilising the heat from the refrigeration
cycle, the temperature of the ground is raised. Thus, the
load of the heat pump is lowered by reducing the
temperature difference between the reservoirs of the heat
pump, and therefore easing the heat transfer from the cold
to the hot reservoir.
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For both scenarios of case 2, the coefficient of
performance is unchanged or deviates only slightly from
the base case. The reduction in compressor work is due
to the integration of the refrigeration cycle in the primary
loop. Thus, there is a reduction in the amount of heat
required from the ground by the heat pump,
consequently, the amount of work that the compressor
must execute.

Relative Compressor Duty against
Relative Theoretical Coefficient of Performance
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Figure 13: Relative theoretical coefficient of performance
against relative compressor duty

Figure 13 shows all cases compared, relative to
each other. As demonstrated, case 1 operates at the
highest compressor efficiency, whilst all other cases
operate at only around 81% of the efficiency of case 1.
Compared to the base case, case 2B operates at the same
efficiency, whilst case 2A introduces a 3% increase, with
case 1 leading to a 23% increase in compressor
efficiency.

Large-scale R717 heat pumps operate in a range
of 0.50 — 13.00 MW (Aguilera, et al., 2022), whilst the
heat pumps discussed in this study operate in the range of
54.1 — 66.6 kW. Yet, as the failure of the compressor is
the costliest in the operation of a heat pump (Madani &
Roccatello, 2014), it is sensible to mention that the
upscaling of such cases for larger stores should be
mindful of the compressor load. An increase of 23 % in
compressor duty of the base compared to case 1 can
reduce the lifetime of the compressor, and thus cause
undesirable costs, whilst also causing degradations over
the expected performance. From this perspective, case 1,
the current structure of the Kings Lynn store, is the most
desirable configuration.

5.2. Carbon Dioxide Emission Comparison

CO; Production Comparison of Refrigeration Integration Cases
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Figure 14: Effect of refrigeration integration on CO:
production from the Kings Lynn space heating.

As expected, when refrigeration integration is
implemented, the compressor work of the GSHP is
reduced, and the normalised CO, production is reduced
by the same amount, as shown in figure 14. The Kings

Lynn case, case 1, previously produced just 30% the
carbon dioxide emissions compared to the average gas
store on a normalised basis. The base case produces 37%
of the emissions of the averaged gas stores, whilst cases
2A and 2B produce 33%. This demonstrates that
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Figure 15: Effect of refrigeration integration cases on cost of
Kings Lynn space heating
refrigeration integration is valuable to reducing the
carbon dioxide emissions of a GSHP as all cases lowered
the emissions compared to the base case.

5.3. Economic Comparison

Similarly, to the carbon dioxide emissions, as
the compressor work is reduced with each case of
refrigeration integration the normalised cost of space
heating also decreases to the same extent compared to the
base case, shown in figure 15.

The base case costs 36% more than an average
gas store to provide space heating on a normalised basis.
This decreases, yet remains more than the average gas
stores by 11% for case 1, 21% for case 2A and 20% for
case 2B. Despite the decrease in cost, all cases of the
GSHP and refrigeration integration are still more costly
to heat than the average gas store.

5.3.1 Renewable Heat Incentive (RHI)

The non-domestic renewable heat incentive
(RHI) is a governmental initiative to motivate businesses,
public sector, and non-profit organisations to reduce
electricity consumption supplied from the grid. This
supports the transformation of the UK towards net zero
targets (UK Gov, n.d.).

The eligibility criteria for the RHI are listed in
table 3, which are all met by the configurations discussed
in this study.

Table 3: Summary of the eligibility criteria for the non-domestic
RHI (as of 2023/24)

Required Acquired
Capacity 100 kWth < yes
COP 2.90 < yes
SPF 2.50< yes

The incentive can be claimed for only ‘naturally
occurring energy’ and ‘must not be designed to provide
cooling or to use heat which has been expelled from a
building or from a process which generates heat’
(Ofgem, 2022). According to section 8.13 of the
governmental specifications, if the amount drawn from
the ground is measurable for simultaneous operations, the
natural heat drawn from the ground is still eligible for
incentive claim. Hence all configurations are eligible to a
certain amount. As summarised in table 4, the amount of
incentive for the cases varies, slightly. The highest
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amount can be claimed via the base case and case 1,
followed by case 2A, and lastly case 2B. Case 2A is a 3%
increase compared to the smallest, case 2B, while the
base and case 1 are an 13% increase.
Table 4: Summary of RHI for all cases
Base 1 2A 2B

Qur (kW) 500 500 457 442

RHI (10°£) 19.8 19.8 18.1 17.5

The GSHP in Kings Lynn became accredited
when the store opened in 2012, as such all eligible heat
output is at a tariff rate of £0.0452 kWh! (Ofgem, 2022).
The eligible heat output was assumed to be the total heat
output, Qup, of the GSHP as a best-case estimate. To
determine the effective cost of running the GSHP with
the RHI scheme, the annual savings achievable are
determined by multiplying the eligible heat output by the
tariff rate. This is subtracted from the annual electricity
cost for the GSHP, then normalised as before.

As shown by figure 16 below, the RHI leads to
a reduction in energy cost for all cases. As the incentive
is dependent on GSHP heat output, the cases where this
is larger, the base case and case 1, achieve greater
savings.

One note of significance is that with the RHI
schemes, all cases of integration become more cost
effective or highly competitive to the average comparable
gas boiler store. With the RHI scheme, the base case
reduces to 19% more costly than the average gas store on
a normalised basis, but case 1 now costs 6% less, case 2A
5% more, and case 2B 6% more.

Cost Comparison of Refrigeration Integration Cases
with Renewable Heat Incentive

08

06

o4

Normalised Energy Cost
(GBP/m?/HDD/year) x10°

0z

0.0

Base Case Case 1 Case 2A Case 28
Refrigeration Integration Case

Figure 16: Effect of refrigeration integration cases on cost of
running the Kings Lynn space heating with (bold) and without
(shadow) the renewable heat incentive.

5.3.2 Carbon Emissions Tax

It is likely for the UK to introduce a scheme
such as shadow carbon pricing, whereby CO» emissions
are taxed (Ferrovial, n.d.), thus an analysis considering
this was conducted. An expected price of £100 per tonne
of CO; emitted was applied to the total annual costs. This
was applied separately and in conjunction with the
renewable heat incentive and normalised, as before.

All integration cases are cost competitive to the
average gas store, only the base case remains more costly.
Due to the greater carbon dioxide emissions, as discussed
in section 2.1, gas stores would be impacted to a greater
extent by a carbon tax. Table 5 summarises the heating
costs of the taxed integrated cases with and without the
RHI to the gas stores.

Table 5 also highlights the importance of
government incentives to making renewable energy

solutions cost competitive to traditional technologies.
Only with these incentives do the integration cases
become cost competitive to the gas stores. This is
noteworthy as it is unlikely that businesses will move
towards renewable solutions to lower their GHG
emissions unless it financially benefits them.

Table 5: Summary of the heating costs of the taxed integrated
cases with and without the RHI to the gas stores

Base 1 2A 2B

Cost vs. Average Gas
Store (Carbon Tax)
Cost vs. Average Gas
Store (Carbon Tax +3% -23% -14% -14%

and RHI)

+17% -10% 2% 2%

6. Conclusions

It was found that all feasible cases of
refrigeration integration led to a reduction in the
electricity demand required to provide space heating in a
large UK Sainsbury’s store. This reduced electricity
demand leads to a decrease of the carbon dioxide
emissions and cost of operation by the same percentage.
The integration cases considered include: (1) indirect
integration whereby heat is deposited into the ground to
enhance compressor efficiency in the GSHP; (2A.B)
direct integration of the refrigeration system into the
building HVAC system via a heat exchanger to lower the
heating demand of the GSHP. Case 1 was found to reduce
the GSHP electricity consumption the most, by 19%.

Comparisons of the integration cases were made
to the base case of a GSHP, and stores providing space
heating with a typical gas boiler. It was shown that when
including the savings achievable with the Renewable
Heat Incentive scheme of the UK government, all GSHP
refrigeration integration cases became cost competitive
to a traditional gas store. This was not quite the case
without this scheme applied, highlighting the importance
of governmental schemes to motivate businesses to
achieve net zero emission targets. The integration cases
become even more economically competitive to gas
stores, when considering the RHI scheme and a carbon
tax, which the UK government will likely introduce in
the near future. With both these government incentives
applied, the best-case refrigeration integration, case 1,
costs 23% less than the average gas store to provide the
same amount of normalised heating.

According to existing literature, the reduction of
electricity consumption is expected by the integration of
waste heat. In Canada in a similar study to this (Reddick,
etal., 2020), thermal demands of the building were linked
to potential heat sources coupled with a pinch analysis.
The conclusion of said paper was, that the combination
of greywater and heat pumping reduces the electricity
costs by 53%. Furthermore, additional solar thermal
collectors can reduce the consumption up to 64%. In
another study (Dhole & Linnhoff, 1993), the Total Site
Heat Integration method was used with mathematical
optimisation, and an extended pinch analysis. In the
paper waste heat and renewable energies were integrated
into an industrial site and were shown to reduce CO;
emissions.

The study was conducted by guidance from the
Sainsbury’s engineering team on a theoretical basis due
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to the lack of historical data for the refrigeration and
GSHP systems. Therefore, the confidence of the findings
is limited. Typical COP values range between 3 and 5
(Maidment, 2013), whilst the theoretical values in this
paper range between 7 and 9, and hence the benefits
drawn are likely overestimations. Yet, previous works
and research support that integration of waste heat is
beneficial for both the reduction of electricity
consumption and the carbon emissions of the system, as
found in this project. Further studying of the topic is
highly suggested as explained in sections 7.2 and 7.3
below, both from a large and small-scale perspective.
Pressing matters in the net zero transition of the UK
demand an urgent action in the energy strategy.

6.1 Retrofitting Refrigeration Integration Cases

There is much difficultly associated with
retrofitting ground source heat pumps due to the
requirement of vast amounts of space or underground
boreholes to extract the energy held within the ground
(UK Gov, 2022). This presents a hinderance to case 1, as
it cannot be easily implemented in existing stores without
a GSHP. Furthermore, retrofitted GSHPs are associated
with lower efficiencies (Breembroek, 2002). Hence the
reductions in compressor work and improvement of COP
will occur but less impactfully than in case 1.

The variations of case 2A and B however, could
potentially be installed to existing gas stores or stores
with other heating configurations much more easily with
heat exchangers. This reduces the demand of the gas
boiler, by supplying a portion of the space heating
demand by primary refrigeration integration. This
reduces the amount of gas required, and henceforth the
associated carbon dioxide emissions and the cost.

The limitations of retrofitting suggest that case
2A should be implemented to existing stores in the short
term to quickly reduce costs and emissions. However, in
the long term and for all new buildings the configuration
of case 1 should be installed or retrofitted.

7. Outlook
7.1 Analysis Limitations

Due to the brevity of the project and the
assumptions made, the model built for the system has
limitations. Firstly, the assumption of constant building
heating demand can be improved by introducing diurnal
and seasonal changes. Coupled with sensitivity,
consumer and error analysis, an extended model can be
built based on time-varying demand.

Additionally, time-varying pricing can be
introduced to reflect industrial economy mechanisms.
Capital costs associated with the integration of the cases
should also be considered.

7.2 Alternatives and Whole-System Approach

Many studies have been conducted on the topic
of thermal storage. In a study of (Ohannessian &
Sawalha, 2014), similarly, cases of refrigeration were
proposed and modelled. It is discussed that a GSHP
operating as a brine thermal storage unit has a higher
COP than a GSHP operating as a connecting heat pump.
Another suggestion in the same paper is that a

supermarket system with heat recovery performs
significantly more efficiently than the ones relying solely
on the GSHP. In summary, supermarkets with GSHP can
further reduce their energy consumption by changes in
the system. Furthermore, with thermal storage
alternatives, the dependency of the system on grid supply
can reduce the need to stabilise with fossil fuels or
nuclear energy. This strategy is called load shifting from
the grid to the respective consuming units. Current
thermal storage alternatives include hydrogen boilers,
hybrid heat pumps with natural gas boilers (Hoseinpoori,
et al., 2023), electrochemical batteries (Ghilardi, et al.,
2023).

Furthermore, other alternatives can be further
investigated such as thermal storage (Li, et al., 2021) and
a potential hydrogen technology (Aunedi, et al., 2023). A
creation of an energy mix was found (Hoseinpoori, et al.,
2023) to be a great solution to increase independency
from uncontrollable factors and to increase energy
security for any system.

In a more detailed model, system flexibility can
also be investigated, which is ‘the ability of the system to
reliably and cost-effectively manage the variability and
uncertainty of demand and supply across all relevant
timescales’ (IEA, 2018). Thus, from an energy security
perspective by analysing system flexibility, the pressing
demands of net zero targets can be aided to be met
through a smoother transition period.

7.3 Store-Specific Recommendations

Above, the potential of further work on large-
scale implementation scenarios were employed on a
systematic aspect. In the case of small-scale
opportunities, other configurations can be further
explored. Different working fluid performances can also
be further studied like in the work of (Radulovic, et al.,
2023) on refrigeration cycle fluids, where similarly to
this study, the COP and compression work is analysed.

As another example, further improvement can
be made by modelling the ground temperature change
caused by the heat extracted from the refrigeration cycle.
Another potential is to implement control systems on
built models to see if the physical implementation of said
cases are feasible.

As discussed here, a healthy amount of potential
lies in the study of heat integration. It is encouraged for
this topic to be further examined, as from small-scale
perspective localised costs can be reduced, and the
energy security of a store can be established with less
dependency on district energy supplies. On a large scale,
by tools discussed above, a smoother systematic
transition can be established to support the net zero
targets by 2050 for the UK.

7.4 Proposed Third Case of Refrigeration Integration

As discussed in sections 4.2.3.1 and 4.2.3.2, the
full duty available from the refrigeration system is not
exploitable via primary integration with the HVAC
system due to second law of thermodynamic constraints
preventing temperature crossover. As such in cases 2A
and 2B only a fraction of available refrigeration waste
heat is integrated into the HVAC system. A proposed
third integration case should be developed and
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investigated as an additional mode of operation, to
exploit much more of the available waste heat.

In case 3, the case 2 configuration is altered with
a heat pump instead of heat exchanger, shown in figure
17. This configuration is expected to overcome
temperature crossover via an additional working fluid,
and thus increase the amount of heat extracted from the
refrigeration cycle with a trade-off in the workload of the
additional heat pump compressor. The drawback is the
lack of efficiency during the summertime period.
Furthermore, the work required for this heat pump
operation is unknown and thus the overall benefit is also
unknown.

l BUILDING F—
HP-2
71

II HX-1
; - HX-2

GSHP

Figure 17: Proposed Third Case of Refrigeration Integration,
(red: HVAC loop, orange: primary heat pump loop, purple:
GSHP heat pump loop, blue: refrigeration loop).

A quantitative benefit of the configuration is
that with a double heat pump system, the amount of heat
extracted from the refrigeration cycle can be controlled
based on demand or supply. By providing control over a
range of independent heat sources, the dependency of the
system on a particular heat source reduces. Therefore, the
system becomes more independent from factors like
weather conditions or electricity price variations.
However, the savings achievable with the renewable heat
incentive will be lowered, as any heat extracted with this
second heat pump is not naturally occurring and is
ineligible for the RHI.

7.5 Guidance for Sainsbury’s

It is strongly recommended for Sainsbury’s to
collect detailed GSHP and refrigeration data from
existing stores, to increase the confidence of further
analysis.

As argued in section 2.2, older buildings have a
lower energy efficiency. Not relying on national
infrastructure plans and expecting the same efficiency for
current stores, it is highly recommended to use the Total
site Heat Integration method referenced above in section
6, to utilize all available heat sources and heat sinks.

It is clear that the GSHP-supported store in
Kings Lynn performs significantly better compared to the
averaged gas boiler stores with the available government
schemes. Therefore, a GSHP with refrigeration
integration can be an appropriate solution for the energy
strategy of Sainsbury’s stores. It was found by (Staffell,
et al., 2012) that the capital costs for ground source heat
pumps are estimated to be in the region of £2,500 —
£5,000. Installation costs are estimated to be £500 — £800
per kW of operation. This means for a heat pump of 54.15

kW the overall costs would be assumed to be £48,320 for
the worst-case scenario. Coupled with the Boiler
Upgrade Scheme, another governmental incentive to
support homes and non-domestic buildings (Ofgem,
n.d.), a support of £7,500 can be claimed, reducing the
costs to £41,320. This amount is comparable to the
electricity consumption reduction for Kings Lynn
compared to older buildings, as was discussed and shown
in section 2.2 figure 7.
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Abstract: To remain on course to meet the 1.5°C climate goal, industries will be required to substantially decrease their
carbon emissions. Currently, only 0.7% of hydrogen is produced from low-carbon sources. To achieve these targets,
technologies such as blue and green hydrogen must be a part of the decarbonisation strategies. A systematic review of the
literature on these technologies has been carried and costing data have been collected for steam methane reforming with
and without carbon capture, alkaline electrolysers (AWE), proton exchange membrane electrolysers (PEM), and solid
oxide electrolyser cells (SOEC). These data are used in a model to harmonise the levelised costs of each technology, and
project the costs of AWE and PEM electrolysers in 2030. The harmonisation outcome highlights the importance of
standardisation, and detailed and uniform cost reporting in literature. A sensitivity analysis on the blue hydrogen
harmonisation identified the natural gas cost and carbon taxation to be the factors with the greatest overall impact on the
LCOH with 21.24% and 7.82% deviation from the base LCOH. A Projection based on the learning rate approach indicate
an LCOH reduction of 24% and 36% for AWE and PEM respectively, highlighting the potential of PEM to become an
attractive investment option, although challenges associated material could limit cost reductions to $4.45/kg Ha.

Introduction

In order to mitigate further climate change and remain
on course to limit the increase in global temperature
to 1.5°C, the Intergovernmental Panel on Climate
Change (IPCC) stated that immediate, rapid, and deep
reductions in global greenhouse gas (GHG) emissions
are required in all sectors this decade, with global net
zero CO2 emissions reached in the early 2050s'.
Given that approximately 58% of net global GHG
emissions in 2019 came from the energy sector and
industry', it is imperative that society decarbonises
these sectors by transitioning away from energy
derived from fossil fuels.

Hydrogen, produced with minimal GHG emissions or
from renewable energy sources, is one possible
solution for making this transition, as it has multiple
potential uses, especially in the energy, industrial and
transportation sectors. In 2022, almost 95Mt of
hydrogen was produced worldwide, however low
emission production only accounted for 0.7% of the
total, with the rest produced from natural gas without
carbon capture, utilisation and storage, unabated coal,
and naphtha reforming?. Production via steam
methane reforming typically emits around 9kg of CO2
per kg of H2 produced’ and production via coal
gasification emits around 20kg of COz per kg of H
produced®, therefore supply through low carbon
emissions technology is required for major
decarbonisation. Blue and green hydrogen have been
widely investigated as potential solutions. Blue
hydrogen consists of retrofitting grey hydrogen
technologies, predominantly steam  methane
reforming (SMR), with carbon capture and storage
(SMR+CCS). It is known as ‘low-carbon hydrogen’.
Green hydrogen on the other hand, uses water
electrolysis systems powered by renewable energy to
generate an electrochemical reaction splitting water
molecules into oxygen and hydrogen, and therefore
producing zero GHG emissions. Typical technologies
consist of Alkaline Water Electrolysers (AWE),
Proton Exchange Membranes (PEM), and Solid Oxide
Electrolyser Cells (SOEC)?.

This study systematically reviews the existing
academic literature on green and blue hydrogen
production technologies to understand their present
status and associated challenges and identify areas of
development for large-scale deployment of low
emissions hydrogen. It intends to provide useful
insights that will direct future research towards
addressing these limitations. The research places a
particular focus on costing information to assess the
competitiveness of low-carbon hydrogen production.
Current literature reviews predominantly focus on
technical aspects with little critical analysis of
literature costs?” 444191 Consequently, an economic
model aimed at reporting and harmonising the
literature data is developed, and the projection of each
technology's future costs using predicted input
parameters is produced. For the first time in this
subject area to the authors' knowledge, levelised costs
of hydrogen production (LCOH) are harmonised to
facilitate direct comparisons across different papers.
This aims to address the oversight in current literature
where the LCOHs are compared across papers without
considering the impact of location-specific factors
such as electricity and natural gas prices, capacity
factor, and carbon tax, all of which have significant
contributions to the LCOH.

Methods
i. Systematic Review

A systematic research strategy was created and
implemented to identify the relevant cost-focused
literature on hydrogen production. Search terms were
produced and refined through multiple iterations, with
each set targeting a specific aspect of the hydrogen
industry. These topics include green hydrogen
production, blue hydrogen production, hydrogen
storage and transport, hydrogen applications in
industry and hydrogen for power generation. The
subsequent step involved screening the abstracts using
a questionnaire and categorising them based on their
relevance as follow:
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= High Relevance: The abstract provided direct
information about the technology and
economics of (topic)

= Medium Relevance: The abstract provided
indirect information about the technology and
economics of (topic)

= Low Relevance: The abstract provides
supporting material that might be utilised to
contextualise (topic)

Papers categorised as highly relevant were reviewed
in depth, and summary paragraphs about the
technologies and costs were produced for each study
using a newly developed and more focused
questionnaire. Additionally, references within the
papers and grey literature were consulted to validate
assumptions and  provide  techno-economic
background. The literature data for each technology
type was then reported and analysed using the
economic model below. The search terms and abstract
screening questionnaire are provided in the
supplementary information SI 1. This serves as a
comprehensive resource detailing the methodology of
the systematic review.

ii. Economic Analysis

The papers reviewed utilised the Levelized Cost of
Hydrogen (LCOH) or Net Present Value (NPV) as
economic metrics for hydrogen production.
Nonetheless, the majority of the literature
predominantly utilised the LCOH, with only a few
articles using NPV. Accordingly, LCOH was selected
as an economic metric to comprehensively capture the
costs associated with each technology across their
lifetime. This avoids uncertainties associated with
hydrogen selling prices and potential co-produced
product.

Cost Escalation

An escalation model based on the Chemical
Engineering Plant Cost Index (CEPCI)* was
developed to compare historically calculated levelized
costs. The LCOH values were converted into USD
using the annualised mean exchange rates sourced
from the International Monetary Fund®. This
conversion was applied from the initial currency used
for the year of costing presented or the year of
publication of the study. The values are subsequently
escalated from the base year to the comparison year,
selected as 2022, using equation (1):

CEPCI(2022)

Cost (2022) = Cost (base year) X m (Y]

Harmonisation
The harmonisation of LCOH values across different
technologies aims to standardise the costs under
uniform techno-economic conditions. In the analysis,
intrinsic  values, such as specific capital costs
(CAPEX), operational costs (OPEX), and efficiency,
remain identical to the values reported in their

respective papers, while extrinsic parameters are
modified and made consistent across all papers for
each technology and energy source. The harmonised
parameters include the discount rate, cost of electricity
or natural gas, and the operating hours.

Harmonisation: Blue Hydrogen

The method, initially presented by Hazrat et al.?’, has
been adapted and applied to evaluate the cost of blue
hydrogen production, as shown in equation (2). The
LCOH is defined as the total lifetime cost normalised
by the total hydrogen production?®. Expenditures
encompass the total capital cost CAPEX and the
annual operating costs OPEX,,nuar > divided into
variable and fixed costs.

CAPEX X CRF + OPEX gnnuai

LCOH = 2
My, X 8760 X CF @

Here, my, represents the hourly hydrogen production
rate and CF denotes the capacity factor, indicating the
percentage of operating hours in a year.

The capital cost is annualized using the capital
recovery factor (CRF), calculated by the plant lifetime

n and the discount rate i3 230
CRF = i(a+)" 3
Ta+ir-1 ®

The fixed operating cost is determined by the annual
operating and maintenance (O&M) costs, while the
variable cost is defined as the electricity, natural gas
costs and carbon tax costs.

OPEXannual = OPEXfixed, + OPEXvariable (4)

OPEX,ariabte = '(EL:02 X TaxCOZ + E.el X Cop )
+ Eyg X Cyg) X 8760 X CRF

EC'O2 denotes the rate of carbon emissions in ton/hr,
E,, and Ey; the rate of electricity and natural gas
consumption kWh/hr and kg/hr, and Taxc,, Ce;, and

Cyc represent their respective costs in $/ton COa,
$/kWh, and $/kg.

Harmonisation: Green Hydrogen
Similarly, the method presented by Scheepers et al %%,
has been modified to calculate the cost of green
hydrogen production through water electrolysis.
Unlike blue hydrogen, the costs utilised are power
specific. The plant’s power-specific capital cost
includes the initial investment cost, CAPEX,,,,, of the
stack, and balance-of-plant (BOP) associated with its
procurement and installation, as well as the total stack
replacement costs, REPEX, over its lifetime.

CAPEX = CAPEX,,, + REPEX (6)
The replacement cost is determined by the number of

replacements required throughout the plant's lifetime,
and the stack unit cost, CAPEX ., as defined by
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Equation (7), with LT,; denoting the electrolyser
lifetime in hours.

n x 8760 X CF
REPEX = CAPEXyqep X ——————

I, @)
The operating cost OPEX ;,uq 18 determined by the
power-specific O&M costs, while the variable costs is
restricted to electricity only. Notably, water costs are
excluded from the LCOH for two reasons: several
papers lack clear information about water costs, and
literature indicates that water typically accounts for
only 1-2% of the LCOH3" 32 33 making its impact
negligible on the final result. Combining all the
previously defined parameters, the LCOH is
ultimately  calculated using  Equation  (8),
incorporating the efficiency of the plant efficiency of
the plant n in percentage, cost of electricity C,; in
$/kWh, and lower heating value of hydrogen LHVy,
in kWh/kg.

LCOH =

LHVy, <CAPEX X CRF + OPEX gnnuai
8760 X CF

+Ca)®

Cost Projection

The learning curve approach is employed to assess the
projection of the electrolyser capital expenditure. This
technique outlines the process of learning by doing,
which indicates innovation by production that is
sparked by the competition between companies’. The
learning curve refers to the reduction in production
cost as a result of accumulated knowledge. It
quantifies the relationship between the CAPEX of a
technology and the cumulative capacity as follow>*:

_ P\
CAPEX (t,) = CAPEX (t;) X <m> 9

CAPEX (t,) and CAPEX (t,) represent the capital
costin year 1 and 2 respectively, P (t;) and P (t,) the
cumulative capacity of the electrolyser in year 1 and 2
respectively, and b, the learning parameter.
The learning parameter can be derived from the
learning rate, which denotes the proportion of cost
reduction per electrolyser unit for every doubling of
capacity.

LR=1-27" (10)

Using equation (9), the projected CAPEX values are
assessed and integrated into the LCOH equations.

Results & Discussion
Demographics Of The Systematic Review

The papers were initially evaluated and categorised
into the primary focus topics. In the systematic
review, 407 papers were evaluated, with 103
classified as highly relevant. Among these, 38 papers
focused on green hydrogen, 30 on blue hydrogen,
while 35 papers covered the remaining topics. Due to
time limitations, this study's scope was narrowed
down to blue and green hydrogen exclusively. Out of
these papers, 30 were not particular to a single
technology, 20 of which originated from the green

hydrogen search terms. In this subset, 16 papers
discussed AWE, 14 focused on PEM, 12 on SOEC,
and 1 on Anion Exchange Membrane (AEM). The
uneven focus observed can be attributed to the market
deployment status of electrolyser technologies. AWE,
being the most commercially established production
method’, is more prevalent in the literature, while less
commercialised technologies currently lack available
data. For instance, AEM, still in its early development
stages’, exhibits minimal coverage.

Conversely, 33 papers exclusively focused on a single
technology: with 20 on SMR with or without CCS, 1
on AWE, 6 on PEM, 4 on SOEC, and 3 on other
innovative developments. The abundance of papers on
SMR and SMR+CCS can be attributed to the
technological maturity of SMR and the potential of
CCS to serve as a short-term solution on already
existing plants. For green hydrogen, the shift in focus
can be recognised by the technical maturity. Less
mature technologies such as PEM and SOEC’, attract
larger research attention investigating their techno-
economic potential, thereby contributing to their
advancement on the Technology Readiness Level
(TRL) scale. In contrast, AWE which has reached its
final stage of technological maturity, demands less
R&D for improvement. Lastly, four papers discussed
other topics such as cost projections. SI 5 compiles all
407 screened papers, along with short summaries of
their contents and classification.

Technology Overview & Analysis
As each technology has its own characteristics
affecting the LCOH, it is imperative to consider each
in turn to evaluate their economic feasibility. In this
section, only the main technologies are evaluated.

Blue Hydrogen

In 2021, approximately 62% of hydrogen was
produced by SMR without the use of carbon capture,
utilisation, and storage?. If all the existing plants are
retrofitted with carbon capture technologies, it could
lead to the capture of 710-880 Mt per year of CO22,
therefore it is seen as an interim solution until the
green production technologies develop in scale and
efficiency. It also offers a sustainable prospect to
fossil fuel producers such as Canada, Iran, Qatar,
Norway, the Russian Federation, and the United
States®.

In the SMR process, natural gas undergoes initial pre-
treatment to remove any sulphur and chlorine to
prevent any catalyst poisoning downstream. In a pre-
reformer, any Cxt+ hydrocarbons or olefins are
converted into methane as well as CO2, CO and Ha.
This is fed with steam into a reformer to produce
synthesis gas (syngas), a mixture of CO2, CO, H> and
residual CH4, which is subsequently fed into a shift
reactor. This converts the CO and H2O into H> and
CO», which is fed into the pressure swing adsorption
(PSA) unit, recovering around 85-90% of H» at a
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purity greater than 99.9%. Therefore, CO2 can be
captured at three possible locations in the process: 1)
the reformer flue gas, 2) the shifted syngas, and 3) the
PSA tail gas®. For merchant plants, where hydrogen
production is not integrated with the production of
ammonia or methanol, capturing the CO2 from the
syngas stream can lead to an emissions reduction of
up to 60%, at a cost of $53 per tonne of CO2 (/tCO2).
Emissions reductions can reach up to 90% if capture
also occurs at the reformer flue gas, however this
increases the capture cost to $80/tCO2°. The TRL of
SMR+CCS is currently an 83¢.

Levelised costs of hydrogen production were
generally in the range of $1.5-$5.0/kg H», with
multiple papers having higher values, with the
maximum cost found being $8.88/kg H2*". However,
these outliers are associated with small scale hydrogen
production plants, as economies of scale play a large
part in the LCOH. As with SMR plants with
unabated emissions, the most significant factor in the
LCOH is the natural gas price with Argyris et al.*
reporting that fuel costs accounted for 50-60% of the
LCOH. This agrees with grey literature, where the
IEA states that 45-75% of the LCOH is due to natural
gas costs®. Given the sensitivity of the natural gas
price to geopolitical tensions, as observed after the
beginning of the Russian conflict with Ukraine, future
conflicts may also cause fluctuations in gas prices and
therefore LCOH for SMR+CCS plants.

The other significant factor effecting the
LCOH was found to be the cost of CCUS
technologies. COz capture and compression require
significant amounts of thermal and electrical energy
and thus auxiliary utility systems may need to be
employed to meet the demand, incurring high costs®”.
Large investment and research costs will also be
required to construct pipelines and storage locations
as large-scale infrastructure is required for transport
and storage*” and currently does not exist. Sub-surface
rock formations are possible storage locations,
however, it must be ensured that the stored CO2 does
not leak back into the atmosphere or oceans*.
Although CCUS has been used in oil production for
enhanced oil recovery, currently only 2 commercial
scale hydrogen production plants operate with CCS
due to its technological immaturity*>. Currently, the
most mature and commercially available capture
technology is absorption, which produces a CO2
stream with purities greater than 95%, however have
the disadvantages of requiring large equipment,
energy intensive absorbent regeneration, and
corrosion of equipment if using amine-based
solvents’’. Other capture technologies include
membranes, cryogenic separation, and adsorption;
however, they are not commercially available and
require further development before they can compete
with absorption®”.

Sorption-enhanced SMR is a novel process which has
the advantages of a low reforming temperature, the
lack of the need for multiple shift reactors and
subsequent purification steps and producing high
purity COz streams which can be captured without the
need for further processing such as absorption®.
However, to supply the high calcination heat to
regenerate the CaO sorbent without emitting CO»
emissions requires energy intensive processes such as
oxy-fuel combustion or an indirectly heated calciner.
A feasibility study conducted by Yan et al.’® found
LCOHs for the process to range from $3.08-$4.46/kg
Ha, which is fairly competitive to the SMR+CCS
process, however, given a low TRL of 4, no economic
assessments have been carried out to investigate if it
is viable at large scale.
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Figure 1. Cost ranges for grey and blue technologies

Costs found in grey literature generally agree with
those from academic literature, however, tend to be on
the lower end of the range at $1.64-3.14/kg Ha". The
majority of the costs were in the range of $3.00-
5.00/kg Hz and are displayed in Figure 1.

Green Hydrogen
Alkaline Electrolyser

Alkaline water electrolysers (AWE) have been used
since 1920 and therefore are the most mature
technology for water-splitting, accounting for around
70% of the total market share*. They typically operate
at temperatures of 60-80°C and pressures of 5-30
bar®3. The advantages include high durability, large
scale operation, and low cost due to its inexpensive
materials, unlike the noble metals required in proton
exchange membrane electrolysers®>. However, they
operate at low efficiencies (58-70% LHV)*, current
densities (0.2-0.6A/cm2)* and partial load range
(40%-100%)*. In addition, due to the low operating
pressures, additional compression is required to
increase the product hydrogen pressure to the required
levels for current transportation, incurring high costs.
One option for operating an AWE is to supply the
electricity through the grid. However, depending on
the proportion of fossil fuels used to generate the
electricity, it can have higher emission rates than SMR
or roughly equal rates to hydrogen production using
coal at 24kg eCOo/kg H2%. Therefore, for low
emissions electrolytic production, electricity from
green sources must be utilised. The LCOH for alkaline
electrolysers utilising grid electricity varied between
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$4.73-$14.30/kg Ha. The large range can be attributed
to the varying electricity costs in different regions. For
instance, Khatiwada et al.*” uses a levelised electricity
cost of $0.121/kWh whilst*® utilised $0.014/kWh, a
difference of almost an order of magnitude. Given that
the cost of electricity accounts for 47%-78% of the
LCOH*, a large disparity is expected.

The main challenge of alkaline electrolysers is their
low partial load range, meaning that they are unable
to operate below a certain load factor. This is
particularly important if the electricity is supplied
from wind turbines or photovoltaic cells (PV), due to
their intermittent nature meaning that the electrolyser
will have a low-capacity factor, and therefore produce
little hydrogen. For example, Pagani et al. reported a
capacity factor of 42-43% for an offshore wind farm
and only 13% for an onshore PV farm. To address this
challenge, the system can either be connected to the
grid to supply electricity when the renewable source
is not generating power, or to a battery, which can
store excess electricity generated by the turbines or
PV cells. Superchi et al.** found that by adding a
battery to the electrolyser system, the capacity factor
could be increased by up to 10%. In the same paper, it
was found that utilising multiple lower capacity
modules in series, in this case four IMW modules, led
to a higher capacity factor than a system with one
module of a 4MW capacity, at 64% and 62%

respectively.
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Figure 2. Cost ranges for AWE by energy source

The ranges of LCOH found in literature for onshore
wind, offshore wind and PV powered AWE are $4.63-
$7.25/kg Ha, $11.85-$17.36/kg Ha, and $8.50-
$13.36/kg Hz respectively. Although offshore wind
farms have the highest capacity factor amongst the
three sources, at around 45% compared to 27% and
13% for onshore wind and PV respectively®, the
larger installation costs, leads to higher LCOHs.
Moreover, solar-powered electrolysers can incur large
costs due to their low-capacity factor requiring a high
number of cells to meet the energy demands.
Conversely, if the electrolyser is connected to the grid,
the PV+grid pairing results in a lower LCOH range of
$5.53-$9.51/kg H> due to the increased hydrogen
production offsetting the PV capital costs. Onshore
wind has the lowest capital expenditures and
reasonable capacity factors, resulting in the lowest
LCOH range of the three sources.

Proton Exchange Membrane

PEM electrolyser systems were first introduced in the
1960s by General Electric. They use compact
membrane electrode assembly with solid polymers as
both electrolytes and membranes, making them
suitable for urban use®, and utilise pure water,
avoiding the recovery of alkaline solutions®. They
can rapidly ramp up to 160% of design capacity®,
which is ideal for integration with intermittent
energy®» 4. Despite being more efficient and
producing purer hydrogen than AWE, PEM systems
face challenges with the oxidative conditions created
by the PFSA membrane” 2° which reduces their
lifespan, requiring expensive and robust materials like
iridium® 4. Nonetheless, PEM electrolysis is
approaching its final stage of technical maturity and is
gaining market share, as demonstrated by the increase
in PEM installations® 3.

Hydrogen production using grid electricity found a
range between $6.53-$16.33/kg H», largely influenced
by the varying electricity prices. This mirrors the
sensitivity of AWE despite PEM’s higher efficiency.
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Figure 3. Cost ranges for PEM by energy source

PEM’s load flexibility allows it to utilise better the
intermittent electricity generated by wind turbines or
PV in comparison to AWE. The range of costs found
from literature for PV powered production is $3.59-
$14.53/kg Ha, whilst for offshore and onshore wind
powered production, costs range from $4.53-
$14.49/kg Hz and $7.39-$14.42/kg H> respectively.
These large ranges can be associated with the
electricity cost and capacity factors varying
substantially across the literature. Examples of
electricity costs identified in the literature include
$0.069/kWh'’-$0.136/kWh?? for onshore wind.

Moreover, hydrogen storage and end-use application
often require pressures up to 700 bar. While
mechanical compression is common, interest in high-
pressure PEM electrolysers is growing due to their
simple system configuration® !7> 2% %2 as exemplified
by IFE's research® and Honda’s 700 bar smart
hydrogen station!'”. Self-pressurised electrolysers,
despite exhibiting higher energy consumption, offer
cost advantages by eliminating mechanical
compressor expenses, with optimal operation between
30 to 70 bar’. They present a competitive LCOH of
$13.42-$17.79/kg Hz, compared to $14.04-15.85/kg

B HP PEM-Grid

=1 LP PEM-Wind
[ LP PEM-Solar
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Ha conventionally. Their cost-efficiency nonetheless
remain highly dependent on the electricity costs.
Research highlight challenges associated with
material degradation and gas crossover, which
exceeds the lower flammability limit of 4 vol% for
Hzin O2!713:19-52 resulting in safety risks and barriers
to upscaling. This emphasises the need for mitigating
measures such as reinforced membranes or
recombining catalysts 3.

Solid Oxide Electrolyser Cells

Solid Oxide Electrolyser Cells (SOECs) are amongst
the least developed technologies for hydrogen
production, using electricity and heat™. They are
currently in early-stage laboratory development® and
are anticipated to reach market maturity within the
next decade?. Companies, like Sunfire, are already
selling small-scale units®®, with demonstrations
reaching up to 1 MW7 SOECs use ceramic membranes
of yttria-stabilized zirconia (YSZ), enabling high-
temperature operation (600—1000 °C), high electrical
efficiency®®, and advantageous features such as high
current density and reversible operation. As a result,
they can provide grid-balancing services alongside
hydrogen storage facilities. Co-electrolysis of carbon
dioxide and steam is another application of SOECs®.
However, challenges with material stability due to
high operating temperatures often lead to rapid
component wear and a shorter lifespan®. A
recommended strategy presented by Zhang et al.*® is
hot stand-by mode. This method maintains the SOEC
stack temperature above 600°C, enabling fast load
variation in response to heat or power availability™.
Recent developments in proton conducting SOECs
could address these challenges by operating at lower
temperatures of around 300°C>*,

SOECs require significant energy to generate and
maintain the high temperatures required. This can be
supplied from the waste heat of industrial processes,
solar energy, nuclear energy, or geothermal systems®.
The literature primarily explored the potential of
waste heat and solar energy, as well as electric heaters.

Integrating waste heat into the electrolysis system is
reported by the literature to achieve costs ranging
from $5.90-7.16/kg Ha. This cost-effective technique
significantly enhances the efficiency by utilising
readily available heat with no additional charge. In
contrast, using fossil fuels or grid-connected electric
heaters leads to higher LCOH values ranging from
$7.30-10.20/kg Ha. The disparity in the literature
values can be attributed to the electricity cost, which
doubles across the range. Yet, the enhanced
efficiency of WH-SOEC makes it less sensitive to
electricity prices.

Alternatively, a key area of focus in the literature is
solar energy, notably photovoltaic (PV) and parabolic
trough collector (PTC) systems. PTC-powered SOEC
typically yields a larger LCOH due to its significant
capital investment. Costs are reported at $4.30/kg H2*°

and $11.70/kg H»*® in the UAE and Spain
respectively, reflecting differences in regional solar
potential. Although PTC-powered SOECs have
higher upfront costs, they benefit from high
efficiency. Conversely, PV-powered electrolysers in
Spain have a lower efficiency but offer lower capital
costs and a decreased LCOH of $11.49/kg Ha.
Consequently, Lin et al.° examines a hybrid system
that combines both PV and PTC, achieving a reduced
LCOH of $9.00/kg Ha. Seitz et al.?! discusses the
integration of Thermal Energy Storage (TES) to PTC-
powered systems, which can increase the production
of hydrogen by 50%, and reduce LCOH by 34% with
an 11-hour discharge. Zhang et al.*® advances this
concept further by analysing a hybrid system coupled
with TES and batteries, achieving a competitive
LCOH of $5.50/kg H.. However, constraints
associated with the high cost of TES systems makes
large scale integration impractical, requiring
operation at minimum load>.
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Figure 4. Cost ranges for SOEC by energy source

Nuclear power, for both electricity and heat, could
reduce hydrogen production costs to $1.40-3.00/kg
H> for SOEC, presenting a competitive option.
However, there is limited cost data in the literature.
The significant deviations in SOEC outliers relate to
SOEC's greater investment costs range, which is
nearly twice as large as the ranges for AWE and PEM
electrolysers®®.

Overall, the data in grey literature is relatively sparse
and typically provides LCOH values for electrolysers
powered by different energy sources, with no
distinction between technologies. Nonetheless, green
cost data is more readily available compared to blue
hydrogen. Grey literature data fits well in the middle
of academic data excluding outliers and pressurized
systems, reporting renewable hydrogen costs in the
range of $3.62-12/kg H2>%7°. Endpoints of academic
data, around $1.00-3.00/kg Ha> and $20.00-25.00/kg
H», are mostly associated with SOEC systems.
However, as it is not yet commercialised, grey
literature data mostly represents AWE and PEM
technologies.

Costs Synthesis

The LCOH data for each technology are presented in
Figure 5. The trends observed reveal average costs of
$8.70/kg Hz, $10.20/kg H2, $7.90/kg H>, $3.10/kg Ha,
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$4.00/kg Hz, and $7.00/kg Ha for AWE, PEM, SOEC,
SMR, SMR+CCS, and SE-SMR, respectively.

Consistent with the previous discussion, SMR and its
derivatives are identified as the most cost-effective,
while PEM lies on the higher end. SMR and
SMR+CCS display low standard deviations of $1.7/kg
H> and $2.6/kg H- as opposed to up to $5.80/kg H» for
SOEC, emphasizing their cost stability and reliability.
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Figure 5. Cost ranges for all technologies

The green hydrogen cost ranges, including outliers,
correlate inversely with technology maturity: AWE,
PEM, then SOEC. As indicated, PEM’s larger
levelised costs are associated with its material. SOEC
has the smallest interquartile range (IQR), indicating
a more consistent cost structure. The lower end of its
range aligns closely with the costs of SMR, suggesting
potential competitiveness due to its high efficiency,
making it a promising technology for future market
adoption. Nonetheless, SOEC will need to compete
with the maturity and scalability of more established
technologies. Furthermore, all technologies, except
for PEM, exhibit a right-skewed distribution where
the average is almost twice the median, due to the
small group of outliers discussed in previous sections.
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Figure 6. Mean costs of technology, with bubble size indicating the
number of references reporting costs for each technology

The cost data were relatively abundant across all
technologies, however, varies by energy source. SMR
displays the largest number of sources per category,
reflecting its prevalence in the hydrogen production
market. SMR+CCS has slightly fewer sources,
attributed to the complexities associated with CCS
integration. The sources for green hydrogen data show
a significant number of grid powered electrolysers,
closely followed by renewable sources, highlighting
the growing focus on renewable energy integration,
due to electricity cost reductions. Particularly for
SOEC, the preference leans towards solar energy,

with 5 papers, compared to 3 for other energy sources,
likely due to its potential to enhance electrolyser
efficiency, especially with PTC solar farms.
Harmonisation

The levelised costs of hydrogen production display
wide ranges, primarily due to differences in the
assumptions associated with the discount rates, energy
costs, carbon tax, and capacity factors. These
variables are influenced by the region of operation and
its economic state, resulting in variations between
countries and within a single nation. For instance, the
cost of electricity generated by PV panels can range
between $10/MWh!%in Saudi Arabia to $42/MWh'!in
Finland. These yield differing LCOH values, a
sensitivity underscored in the analysis of several
papers®344432 Nonetheless, the fundamental concept
of the levelised cost remains consistent across the
papers evaluated, with minor variations in its
definition. This enables the capturing of the economic
performance of green hydrogen on a global scale.
However, to effectively compare the costs associated
with the present technologies, it is necessary to
harmonise extrinsic values, unrelated to the
technologies themselves.

Blue Hydrogen
Harmonised LCOH
The harmonised variables were chosen based on the
modal values found in the literature and are
summarised in Table SI 3.4. The systematic review for
blue hydrogen only returned seven papers containing
all the relevant cost data for the harmonisation. A
significant number of studies consisted of reviews
which report referenced LCOHs values and hence do
not provide any costing information*!: 4> 45 47, 30, 57,
Other papers omitted certain cost parameters such as
CAPEX, OPEX or carbon price, preventing the
harmonisation being carried out?® 3% %6,
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Figure 7. Cost ranges for unharmonized and harmonised cases for
grey and blue technologies

Figure 1 clearly demonstrates the effects of the
harmonisation. For the grey technologies, an 82.0%
decrease in the interquartile range (IQR) of the
LCOHs was observed, highlighting the maturity of the
SMR technology, as this suggests that the intrinsic
costs are similar across all papers. For the blue
technologies, a smaller decrease of 24.8% for the IQR
was observed, suggesting a variation of the intrinsic
costs across the papers. This is partly because the data
points are not separated by capture rate, which
positively correlate with the LCOH due to the higher
CCS costs. Additionally, the data points are not
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separated by technology type (SMR+CCS or SE-
SMR), hence the spread in intrinsic costs is expected.

In addition, a sensitivity analysis on the harmonisation
variables was carried out to gauge their individual
influence while keeping all other parameters as
reported in their respective sources.

As expected, the natural gas price displayed the
largest difference in IQR to the unharmonized case at
21.42%, which reflects its significant contribution to
the LCOH, at 45%-75%®. This highlights the LCOH's
sensitivity to natural gas prices, a consensus supported
by the literature. The carbon tax price harmonisation
yielded a moderate difference of 7.82%, suggesting a
lower LCOH sensitivity. However, this suggest that
for green technologies to become more competitive
with grey and blue hydrogen, radical increases in
carbon taxation are required to incentivise the
transition. This aligns with the findings presented by
George et al’’. The other parameters showed only
marginal differences; however, this should not be
interpreted as a general insensitivity of LCOH to the
parameters. For the discount rate, capacity factor, and
plant lifetime, the assumed values in each paper were
either identical or closely matched the harmonised
value, explaining the minimal differences observed.
As for the electricity cost, the marginal difference
relative to the base case can be attributed to the
negligible consumption of electricity in comparison to
that of natural gas>.

These results emphasise the significance and necessity
for a harmonisation to enable a representative
comparison of the LCOHs across different studies.
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LCOH
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Green Hydrogen

Two issues arise when analysing the data for the green
hydrogen harmonisation: on-grid systems and the
scarcity of comprehensive data points. Figure 9
illustrates between one and four harmonisable data
points within each category, with the bulk found in
grid energy sources and other combinations. More
specifically, the focus on renewable hydrogen
production restricts it to only one data point.

The predominance of on-grid electrolysers can be
associated with the broad search terms, which did not
limit green hydrogen strictly to renewable energy
sources, and the limitations inherent to the search
algorithm, which excludes data based on the title,
abstract, and keywords. This results in the grid

hydrogen discussions within the bulk of studies to
bypass the filters.

Moreover, further limitations in the harmonisation are
linked to the data presented in the papers. While some
papers provide comprehensive cost data, they often
overlook intrinsic parameters such as system
efficiency’> 3 3% 57 or lack information about the
lifespan of the electrolyser, plant, and discount rate.
Although the latter are generally consistent across the
literature and can be reasonably assumed, papers with
missing intrinsic data impede this process® 7.
Additional challenges arise when the articles present
total costs that cannot be converted into specific costs,
rendering them impractical for the selected equation
in the methodology®® 3% %% 6!, Alternatively, some
papers include energy plant expenditures that cannot
be distinctly separated into electrolyser and power
plant costs®?. Finally, several papers are industry
reviews with no LCOH calculations or projections and
provide minimal data, making them unsuitable for the
harmonisation®3 3% 63, 44,65, 66
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Figure 9. Number of data points with or without discrepancies for
each technology and energy source

Furthermore, 52% of the harmonisable data points
exhibit discrepancies that could impact the reliability
of the collected data. For instance, uncertainties arise
from the efficiencies reported by Scheepers et al.?8,
where its conversion to electrolyser capacity using the
hydrogen production rate deviate from the study’s
reported values. Specifically, capacities of 3.5 MW
and 119 MW are obtained instead of 1 MW and 100
MW, respectively. In contrast, applying the same
conversion process to the studies by Srettiwat*® and
Jang et al.*® yields identical values. As the capacity
factor and hydrogen production are set values, this
indicates a discrepancy in remaining variables: the
efficiency or the quoted capacity. However, the
calculation of the LCOH using the study’s respective
equation and efficiency yields cost of €5.05/kg and
€4.88/kg, a 3% deviation from the literature's values
of €5.21/kg and €5.04/kg. This suggests that the
efficiencies reported are likely true, whereas the
electrolyser capacities may be less precise. The
discrepancy could be attributed to the use of multiple
electrolyser stacks at the reported capacities, however,
there are no clear indications in this regard.
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In view of these results, the harmonisation of the green
hydrogen costs was not pursued. Nonetheless, SI 3
presents all the calculations and data collected from
the literature, along with a table detailing the
limitations and discrepancies identified in each study.

Cost Projection

The previous sections evaluate the influence of non-
intrinsic data on the LCOH, notably the energy costs.
However, the literature indicates the system capital
cost as the second most significant parameter. Thus,
its reductions will play a crucial role in the
decarbonisation of the hydrogen production industry.
Consequently, a model was developed to investigate
the influence of capital cost reduction on the LCOH in
2030. The model makes several assumptions;
therefore, its purpose is to offer a qualitative estimate
on the market competition based on the anticipated
deployment of electrolysers and influence of capital
cost, rather than an accurate cost forecast.

Parametrisation

The hydrogen council’s 2023'2 data reveal global
electrolyser cumulative capacity of 300 MW by the
end of 2020, expected to increase to 232 GW by 2030.
However, the report lacks precise data and the plot is
not drawn to scale for the 2024-2029 period, making
any findings drawn from the global trends highly
inaccurate. In the literature, papers often create their
own cumulative capacities roadmap based on regional
hydrogen ambitions®> or country-specific data®.
Therefore, to assess the global state, the projection is
limited to the base and final years. The distribution of
the technologies has shown consistency in recent
years, with AWEs dominating the market at 60%,
followed by PEM at 30% and SOEC at less than 1%?2.
However, this balance is anticipated to change with
PEM capturing a larger market share. As several
projects have not disclosed their technologies, a
precise estimation is unavailable’, and the current
technology distribution is assumed to remain constant.
Consequently, cumulative capacities for AWE are
estimated at 0.18 GW in 2020 and 139.2 GW in 2030,
while PEM capacities are 0.09 GW and 69.6 GW in
2020 and 2030, respectively.

As blue hydrogen utilises established technologies,
their cost is only expected to decrease minimally'?, a
reduction which may also be offset by increased
carbon tax in the future. Therefore, the blue hydrogen
cost is maintained constant at $4.00/kg Ha.

Table 1. Learning rates of electrolysers according to references

Reference [Learning Rate| Technology | Timeframe
[20] 9 % Alkaline 2020-2030
[20] 13 % PEM 2020-2030
[22] 18+-6 % Alkaline 1956-2014
[7] 18+-13 % Electrolysers 1972-2004
[23] 8% Alkaline -

[24] 28 % SOEC 1996 - 2008
[25] 15-22% Electrolysers -

Numerous studies have examined the learning curve's
impact on the electrolyser unit cost, estimating the
learning rate over a time span extending from 1956 to
2030. The learning rates of 9% and 13% for AWE and
PEM respectively are selected as they provide the
most up to date data available and align with the
timeframe.

Moreover, Table SI 4.1 displays the techno-economic
parameters selected for PEM and AWE, in the base
and projected year. Parameters, including CAPEX
costs and system efficiency, are drawn from IRENA?
as $750/kW and $1050/kW, as well as 64 kWh/kg and
66.5 kWh/kg for AWE and PEM electrolysers,
respectively. Techno-economic data for the Solar
photovoltaic panel is sourced from the IEAZ
indicating electricity costs at $0.071/kWh and a
23.5% capacity factor. Energy Education'* suggests
discount rates for renewable energy installations fall
between 3% to 10%, consistent with the systematic
review. Hence, the discount rate is selected as 8% to
maintain consistency with the literature. Finally, the
operating cost (OPEX) is calculated as a percentage of
the capital expenditures, a common approach in the
literature. A range of OPEX percentages, between 1%
to 5%, is typically suggested in studies®® 3! 43 5253, 57,
96,67 with a modal value of around 3%. Therefore, the
annual OPEX is defined as 3% of the CAPEX.

Projection

N —— ]
] : B 2030

LCOH ($ /kg H,)

AWE PEM

Figure 10. LCOH projections for AWE and PEM

The baseline costs for AWE and PEM electrolysers in
2020 are $7.62/kg Hz and $9.19/kg Ha, respectively.
These costs are projected to decrease by 24% and
36%, respectively. PEM’s greater cost reduction is
attributed to its higher learning rate, which is linked to
its lower technical maturity. This presents PEM as a
competitive and potentially more attractive
investment option over AWE, behind blue hydrogen.

However, long-term cost reductions for PEM may
face limitations despite growing capacities, mainly
due to constraints with its scarce and expensive
materials such as iridium, titanium-based compounds,
and platinum, for the porous transport layers” 2% 32,
The supply of these elements is controlled by a few
countries, notably South Africa, which contributes
about 70% of the global platinum supply and 85% of
iridium. The price of the latter is subject to a high price
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volatility”, with a ratio of 15:1 between the highest and
lowest prices in the last two decades. At its peak price
of $1,480/troy ounce’, Iridium sets a minimum LCOH
threshold of $1.93/kg. Similarly, platinum yields a
minimum cost of $2.52/kg at its peak. Combining both
materials, their cost contribution cannot decrease
below $4.45/kg, posing a potential bottleneck for
PEM’s large-scale deployment and competitiveness
with AWE and blue hydrogen technologies. Minke et
al.?® proposes solutions such as more efficient PEM
technologies and recycling material.

Conclusion & Outlook

In this paper, the results of an in-depth cost-focused
systematic literature review of blue and green
hydrogen production technologies are presented. The
authors reviewed 63 papers from academic research
along with grey literature to construct a comparative
cost harmonisation and projection of levelised cost
values.

Costs from the academic literature were compiled by
technology and energy source and compared to the
grey literature where applicable. In general, costs
were broadly similar, but the academic literature
presented a larger variety of system configurations.
Costs for most technologies ranged from $2-18/kg Ha,
resulting in a great amount of uncertainty over their
true value. Nonetheless, the averages resulted in
levelised costs of hydrogen of $8.70/kg Ha, $10.20/kg
Ha, $7.90/kg H, $3.10/kg Ha, $4.00/kg H», and
$7.00/kg H» for AWE, PEM, SOEC, SMR,
SMR+CCS, and SE-SMR respectively, with SMR and
its derivatives leading the market. Thus, SMR+CCS
can act as an interim solution until green technologies
reach full technical maturity or economic feasibility.

To narrow down the effective cost range, this study
has undertaken a cost harmonisation of extrinsic
variables. Despite a targeted search of the literature,
only about 23.3% and 13% of the reviewed papers
contained harmonisable costs for blue and green
hydrogen technologies respectively, demonstrating a
lack of rigour and uniformity in the literature. For blue
hydrogen, the findings demonstrate a substantial
decrease in cost ranges for SMR technologies once
region-specific  costs and  assumptions are
harmonised. SMR+CCS revealed to be less sensitive
due to variations in the technologies and CCS capture
rates. A sensitivity analysis indicated that the
harmonisation is predominantly impacted by the
natural gas costs. Nonetheless, this provides investors
with a benchmark to compare technologies. Unlike
blue, the green hydrogen harmonisation was
unfeasible due to a lack of data and discrepancies,
which prevented the identification of the intrinsic cost
ranges of each technology. Challenges and areas of
improvement of each technology are presented,
providing investors with the required insight to make
informed decisions.

10

Finally, a cost projection of the key electrolyser
technologies identifies PEM as a promising
alternative over AWE, leading with cost reductions of
36% by 2030. However, critical analysis emphasise
the potential challenges imposed by its electrode
material, which could impose a $4.45/kg Ha threshold
at peak prices.

Although the production costs for hydrogen have been
investigated in detail, depending on the location of the
end user, the levelised costs for transportation and
storage can exceed those of production'. Therefore,
research into the technologies surrounding them are of
paramount importance if large-scale deployment of
hydrogen is to be achieved. The use of existing natural
gas pipelines for hydrogen transportation and
underground salt caverns for storage are possible
solutions?, however, require substantial research prior
to commercial use.
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Abstract

As the peptide therapeutics market expands, crystallisation emerges as a sustainable and cost-effective peptide
separation technique. To enable critical quality attributes (CQAs), defining occurrence domains of peptide
polymorphs is thus of increasing interest. In this study, the effect of salts ((NH4)2SO4, Li2SO4 and MgSOs,,
common industrial precipitants) on the occurrence domains of recently discerned anhydrous and dihydrated
triglycine polymorphs is investigated in the 10-30C temperature range. Triglycine solubility is shown to increase
monotonically with concentration of MgSO4 and up to a threshold with concentrations of (NH4)>SO4 and
Li,S0, after which specific cation effects appear to reverse. The transition temperature, at which the anhydrate
stabilises, is shown to decrease with salt concentration and to the extent: LiSO4 > (NH4)2SO4 >> MgSOa.
Experimental results are investigated in terms of molecular mechanisms.

Keywords: peptides, triglycine, crystals, hydrates, solubility, stability, salts, cations

1. Introduction

Peptides present unique therapeutic advantages.
Their intermediate size enables desirable properties
of both small molecules and biologics. Like small
molecules, peptides offer low production costs, low
immunogenicity and high bioavailability; like
biologics, they are highly specific and can act as
inhibitors of peptide-peptide interactions [1]. As a
result, their market is large and expanding —
estimates for its value in 2022 and its compound
annual growth rate over 2023-2032 are USD 42.05
billion and 10%, respectively [2]. Though the
average peptide length entering clinical
development has increased each decade since the
1980s, the most common range remains 2-10 amino
acid residues [3].

Peptide manufacturing encounters a significant
bottleneck in the separation process, primarily
addressed via chromatography, associated with
high solvent usage and high costs of
chromatographic adsorbents [4]. Crystallisation has
thus received attention as a more sustainable and
cost-efficient alternative; additionally, it can offer
higher peptide stability and purity [4].

In peptide crystallisation, polymorphic control
is critical. Peptides have been shown to exist in
polymorphic forms [5] — differing solid forms,
including crystalline and amorphous forms, as well
as solvates [6]. Polymorphs possess differing
physicochemical properties, such as stability and
solubility, which affect the bioavailability and
efficiency of the therapeutics and downstream
operations [7].

The present study investigates co-solutes' effect
on the occurrence domains of anhydrous and
hydrated peptide crystal forms. Sulphate salts
(((NH4)2S0s, Li,SO4 and MgS0O4) have been
chosen as model co-solutes for their prominent use
in protein crystallisation as precipitants [5].
Triglycine is selected as a model peptide for its
simplicity and as it has recently been observed to
exist both in folded anhydrous and unfolded
hydrated crystal forms (Figure 1), stable above and
below 30C, respectively [8] [9].
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Figure 1: Hydrogen bonding motifs of triglycine
anhydrate and dihydrate (TGDH) in the single crystal
structure. Reproduced from ref. 8.

2. Background

It has long been appreciated that salts have
significant effects on peptide solubility.

In the 1880s, Hofmeister and collaborators
observed that salt ions could increase or decrease
the solubility of proteins in aqueous solutions —
‘salt-in’ or ‘salt-out’, respectively — and defined
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series — later called Hofmeister series — for cations
and anions (Figure 2) [10]. Specific ion effects
(SIEs [11]) were first attributed to specific abilities
to adsorb water: small, charge-dense ions —
‘kosmotropes’, adsorbing water molecules better
than large, charge-diffuse ions — ‘chaotropes’,
dehydrated proteins, favouring their aggregation
[10]. However, this explanation already eludes the
series for cations: it is not ‘kosmotropic’ ions like
Mg?* or Li* but ‘chaotropic’ ions like NH4" that are
on its salting-out end [10].

Since the 1960s, several studies have attempted
to rationalise the Hofmeister series in terms of
specific ion-peptide interactions [10]. Salting-in is
now understood to arise from ion-peptide
interactions, most favoured for strongly hydrated
cations at negatively charged side chains and
backbone carbonyls and for weakly hydrated
anions at backbone amines [10]. Preferential
interactions of positively charged side chains with
strongly hydrated anions determine a reversal of
the anion series for positively charged peptides
[12].

In addition, the limitations of treating salt ions
separately are emerging, with ion-counterion
pairing shown to lead to substantial deviations from
the Hofmeister series [11].

The effects of ions on peptide polymorphic
outcome have also been studied. In particular, the
contributions of cations to peptide folding have
been shown to correlate to salting-out and depend
on the balance between advantageous cation-
mediated peptide dehydration and disadvantageous
cation-peptide binding effects [13] [14]. Observed
equilibrium shifts toward unfolded conformations
have been attributed to the latter [15] [16].

3. Methodology
3.1 Materials

Triglycine (Gly-Gly-Gly, anhydrous, > 98% purity)
and salts — ammonium sulphate ((NH4)2SO,),
lithium sulphate (Li.SO4), magnesium sulphate
(MgSO0s4), sodium sulphate (Na,SO4), sodium
chloride (NaCl) and sodium bromide (NaBr), (all
anhydrous, > 98% purity) — were purchased from
Sigma-Aldrich and used as received. Deionised
water was produced in the laboratory.
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Figure 3: Chemical structure of triglycine.
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Figure 2: Modern version of the Hofmeister series.
Reproduced from ref. 10.

3.2 Sample Preparation and Equilibration

A stock 2.5M solution of each salt in deionised
water was diluted with a liquid handler (Opentrons
OT-2) into Eppendorf tubes to obtain 0.5mL
samples at 5 concentrations in the range from 0.5 to
2.5M with an increment of 0.5M; a 0.5mL sample
of pure deionised water served as control.

After introducing excess amounts of triglycine,
the tubes were transferred to a thermostatic mixer
(DLAB Scientific HMC100-Pro Thermo Mix)
operated at 1500rpm. For (NH4)2SO4, Li2SO4 and
MgSO,, at least two trials were performed at
temperatures of 10, 20 and 30C; due to time
constraints, single trials were conducted at
intermediate temperatures of 15 and 25C, and
results were deemed accurate when fitting with
those from adjacent temperature values. For
sodium salts, a single trial was performed at 20C.

If, after 30 minutes, a sample appeared clear,
additional triglycine was introduced, and the
procedure was repeated until the appearance of a
suspension.

Phase equilibrium was deemed reached within
the following 48 hours (as ref. 9 suggests for an
aqueous triglycine solution), after which the
samples were left quiescent until all solids
appeared to have settled upon visual inspection.
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3.3 Measurement of Triglycine Solubility

From the supernatant, 100uL were transferred via a
micropipette to a second Eppendorf tube. From
this, 10uL were diluted via the liquid handler in
490uL of deionised water in a third Eppendorf tube
to prevent further crystallisation and set the
triglycine concentration within the limits of
calibration. The concentration was thus measured
with UV-vis spectroscopy, and its average over five
repeats was used to calculate the concentration of
the original sample — i.e. the solubility.

A calibration curve was constructed for a
microvolume UV-vis spectrophotometer (Thermo
Fischer Scientific NanoDrop One C). Absorbance
spectra were measured at 230nm for known
concentrations of triglycine in deionised water (8 in
the range from 0.25 to 2 mg/mL). A linear relation
between absorbance and concentration, in
accordance with the Beer-Lambert Law, was
defined (Figure 4).

microscopy (Figure 5.a)) and by characteristic
XRD patterns with PXRD (Figure 5.b)) [8].

UVaVis Calibration Carve

Absorbance
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GGG Mass Concentration  (mg/mlL)

Figure 4: Calibration curve of triglycine (GGG).
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Figure 5.a) Optical microscope images (at 10x
magnification) of triglycine anhydrate (left) and
dihydrate (right) b) The XRD pattern of triglycine
anhydrate and dihydrate.

3.4 Determination of Stable Triglycine
Polymorph

Solids were filtered with filter paper and
characterised by optical microscopy (CX-41
Olympus) and PXRD (PANalytical X’Pert PRO X-
Ray) to determine their crystal form.

Anhydrous and dihydrated crystals were
differentiated by their rod and needle
morphologies, respectively, with optical

4. Results and Discussion
4.1 Effects of Salts on Triglycine Solubility

Figure 6 illustrates measured triglycine solubilities
(normalised over the solubility of the stable form —
dihydrate in the cases considered) at salt

concentrations 0.5-2.5M and temperatures 10-30C.

All salts are observed to salt-in triglycine in the
entire concentration and temperature ranges.
Salting-in can be attributed to the screening of
peptide dipoles, which would otherwise drive
aggregation [17]. Dipoles are expected: all salts
used are either neutral or weakly acidic, so their
aqueous solutions should have a pH close to the
5.56 triglycine isoelectric point [18]. Ion-peptide
interactions are further aided as triglycine is poor in
hydrophobic moieties — apolar side chains and
backbone methyl groups — which would expel ions
[19] [20]. These ion-peptide interactions seem to
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Relative Solubility vs Salt Concentration at 10°C
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Figure 7: Triglycine relative solubility vs concentration of sulphates (NH4)2SO4, Li2SO4 and MgSOs4,) at temperatures, from
left to right and top to bottom, 10C, 15C, 20C, 25C and 30C and vs concentration of sodium salts (Na2SO4, NaCl, NaBr)) at
25C at the bottom right. Error bars represent the standard deviation among the five repeats that were averaged to measure

solubility.

offset the ion-water interactions leading to salting-
out (and argued to cause negligible disruption to
water structure beyond the first ion hydration shell

[21]).

Solubility shows a maximum with (NH4)2SO4
and Li,SO4 concentrations and a monotonic

increase with that of MgSO4. Maxima are
understood to result as the primary salt contribution
shifts from ion-peptide interactions-driven salting-
in to ion-water interactions-driven salting-out at
increased concentrations [17]. Before maxima, the
salting-in rate is higher for Li* than for NH4*— as is
the expected strength of interactions with the
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peptide, while after maxima, it is the salting-out
rate to be higher for Li* than for NH4" — as is the
predicted strength of interactions with water.

The different behaviour with MgSO4 can be
attributed to the stronger interactions with C-
termini and carbonyls of its cation, which arise
from the higher charge density (Figure 2).
However, differing stoichiometries impede direct
comparison of specific cation effects. Indeed,
another explanation accounts for the differing
stoichiometries themselves. As salt concentration
increases, increasing ion-ion interactions favour the
formation of ion pairs [22]. For 1:1 MX (MgSO4)
salts, ion pairs are neutral and thus easily partition
toward backbones while interacting poorly with
water [23]. Meanwhile, as dissociation of 2:1 M,X
salts (NH4)2SO4 and Li>SO4) occurs via a two-step
process:

M,X & M* + MX~; K, (1)
MX~ o M* + X2 K, (2)

and, typically, K; >> K, increased salt
concentration favours an increase in MX" ion pairs,
negatively charged [22]. This explanation extends
to the observed behaviours of sodium salts (Figure
6)). Theories such as the Law of Matching Water
Affinity [24] (Figure 7), capture the extent of ion
pairing and predict strong ion pairing for MgSOs,
observed in past studies [25].
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With temperature, maxima appear to shift to
higher concentrations, the relative solubility with
MgSO, to decrease, and the relative solubilities
with all salts to converge. At higher temperatures,
triglycine dissolution is favoured [9], so the effect
of salt addition might then be reduced.

4.2 Effects of Salts on Stable Triglycine
Polymorph

The observed stable triglycine crystal forms are
illustrated in Table 1.a) — ¢) at salt concentrations
0.5-2.5M and temperatures 10-30C.

The transition temperature — above which
anhydrous are favoured over hydrate crystals —
appears to decrease with salt concentration. This
can be explained as folded configurations are
favoured as ions deplete the peptide hydration shell
of water molecules [13][14]. Indeed, transition
temperature lowers with increased expected water
depletion effects. At 1M and 1.5M is highest with
MgSO4 (30C and 25C vs 25C and 15C with
(NH4)2SO4 and Li2SO4) and at 2.5M higher with
(NH4)2SO4 than with Li>SO4 (20C vs 15C).

In addition, though cation binding is typically
understood to favour the unfolded conformation
[15][16], this might not be the case when the latter
is strongly dependent on buried water networks,
such as for triglycine [8]. Cation binding might
reduce repulsions between carbonyls and between
carboxylates, which has been shown to contribute
strongly to buried water networks in peptide
hydrates [26], including triglycine dihydrate [8].
The transition temperature decreases more with
Li,SO4 than with (NH4),SOs, as the expected
strength of cation-peptide binding increases.
However, it decreases the least with MgSOa,
suggesting that cation-peptide binding, if
favourable, is still not as favourable as salt-water
binding to anhydrate stabilisation.

Figure 7: Ordering of interactions in aqueous water
solutions from strongest to weakest. According to the Law
of Matching Water Affinity, small-small ion pairs are
energetically favoured as their interactions are strong,
whereas large-large ion pairs are favoured as, even though
their interactions are weak, their dehydration leads to
water-water interactions stronger than large ion-water
interactions. In contrast, small-large ion interactions are
not energetically favoured, as their weak interactions do
not compensate for the work required to dehydrate small
ions. Reproduced from ref. 24.
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(NH4)2S04

0.5M

2M

LiSO4

0.5M

1.5M

2M

MgSO,

0.5M

1.5M

2M

Table 1: Optical microscopy
images (at 10x magnification) of
the triglycine crystal outcomes at
temperatures 10-30C and
concentrations 0.5-2.5M of salts a)
(NH4)2S04, b) Li>SO4 and ¢)
MgSOs4. Red lines mark
boundaries between anhydrate
(right) and dihydrate (left)
occurrence domains.
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5. Conclusion and Outlook

Sulphates have been shown to affect triglycine
anhydrate and dihydrate occurrence domains
significantly.

Triglycine solubility appears to increase to a
maximum with (NH4)2SO4 and Li,SO4
concentrations. After maxima, specific cation
effects appear to reverse. This is attributed to the
dominant effect of salt addition shifting from ion-
peptide interactions-driven salting-in to ion-water
interactions-driven salting-out with increasing
concentration. That this shift is not observed with
MgSO0s; is explained in terms of its stronger cation-
peptide interactions and its different
stoichiometries. Salt addition effects appear to be
mitigated as peptide dissolution is favoured at
higher temperatures.

The transition temperature, at which the
anhydrate becomes the stable crystal form, is
shown to lower with salt concentration, to the
extent: Li,SO4 > (NH4)2SO4 >> MgSO4. This
decrease is attributed to salt-water interactions
depleting the peptide hydration shell and, to a
lesser extent, reduced electrostatic repulsions
between charged groups, such as carbonyls and
carboxylates, thought to favour buried water
networks in the hydrate.

While these results enable predictions about the
effect of salts on crystal occurrence domains of
triglycine and affine molecules (e.g., longer
uncharged peptides), their accuracy and
significance could be improved. The individual
contribution of salt stoichiometry and salt ion
affinity with peptide, water and counterion could be
elucidated. This could be done via molecular
dynamics (MD) simulations and further
experimentation — e.g., over more salt species and
with kinetic and more precise and continuous
measurements of solubility and transition
temperatures via techniques such as Fourier-
transform infrared (FTIR) spectroscopy.
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Abstract

Pot-ale is one of the most abundant waste products within the global whisky industry. Most commonly used as low-
grade animal feed/fertiliser or disposed to land/sea, it is considered to be inefficiently utilised. This paper presents
a techno-economic analysis of a novel process to separate pot ales volatile fatty acid content, specifically hexanoic
acid for later sale. Two designs were modelled, one where the pot ale is sent straight to the separations system, and
one where it is first fermented to concentrate its hexanoic acid content in order to determine if this fermentation is
worthwhile. A design of hexanoic acids separation sequence has been built on the process simulation software Aspen
Plus v11 using the NRTL-HOC property model under continuous operation. The route the process stream takes is
as follows: First as the fermentation is a batch process, the stream is sent to a storage vessel to act as a buffer and
allow for a continuous model to be designed. This effluent is then sent to an extraction unit where hexyl acetate,
acting as the solvent, removes the high-water content in the stream. The wastewater is sent to a treatment facility
and the acid/solvent stream is sent to distillation column where hexanoic acid is isolated in the bottoms and the
solvent is recovered in the distillate and recycled back to the extractor. Finally, an economic analysis is presented
for both designs over a 25-year lifetime, where typical tax/interest rates and other such charges have been assumed.
From this analysis it was determined that fermentation of the pot ale is necessary to build a profitable design, with
an estimated rate of return of 68%. Whereas with no fermentation the cost of operation outweighs the revenue seen

and thus is not a financially acceptable design.

Keywords: pot ale, hexanoic acid, VFAs, Aspen Plus, property model, solvent extraction, distillation

1. Introduction

The production of whisky dates back to the early 1000s
in Scotland and Ireland, with both nations claiming they
were the original producers. With limited access to
grapes for the production of wine, these early day
Europeans decided to ferment grains such as wheat,
barley, or rye for alcohol. This alcohol was then distilled
to produce the first recorded cases of whisky [1]. Since
then the whisky industry has grown exponentially, with
improvements in technology and understanding of the
process, more complex flavours and production
techniques have been refined and perfected. Today
whisky is exported and enjoyed all over the globe with
the largest producers being the UK, USA, and the EU.
The Scotch whisky association reported over £6bn
worth of exports in 2022 comprising a quarter of all UK
food and drink exports, with roughly 1.6bn bottles being
shipped yearly [2]. Although this remains a huge market
globally, it has been suggested that the market is
currently saturated in the world’s major economies [3].
Due to the large numbers of producers in the world there
is not much possibility for a unique selling point to
separate one business from another. The market is
dominated by competition and its growth within the
domestic business segment is restricted to the general
economic growth of roughly 1~3% per year [3].

One way a business can expand within the industry is
to improve on the efficiency of one’s process. An
effective way to do this could be to make use of an
otherwise disregarded side product and turn it into a

throughput for another process. If designed correctly
this new process will diversify your revenue streams and
lead to a stable increase in economic growth. For the
whisky industry the obvious candidate for this is pot ale.
Pot ale is the principal effluent by-product of the whisky
industry with estimates ranging from 1.4 to 2.7 billion
litres produced annually by just Scottish SME distillers
[4, 5]. Most commonly pot ale is recycled into animal
feed, or it is spread to land as a low-grade fertiliser
incurring a disposal cost to the business. In some cases,
the pot ale is disposed at sea however this is only
available to distilleries located on the coast and a
specific discharge licence is required [4]. These are
inefficient uses of pot ale and do not provide the industry
with any additional income. A newer and potentially
better application of pot ale is to concentrate it into a
syrup and treat it through anaerobic digestion (AD). This
processes the biomass into a biogas which can be used
as an alternative energy source to fossil fuels. This is
significant as the Scottish Whisky Association (SWA)
has issued targets to source 80% of the industries energy
from non-fossil fuel sources by 2050 [5] and thus the
generation of biogas can help to reach this target.
Furthermore there is evidence suggesting that the
digestate post AD is a more effective fertiliser than pot
ale itself.

As detailed, there are many ways you can process
your pot ale with new methods and processes being
developed all the time. This paper presents a novel
process for the treatment of pot ale whereby it is sent to
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a secondary fermenter to produce and concentrate its
volatile fatty acid (VFA) content, specifically hexanoic
acid. This hexanoic acid is then isolated and purified
allowing it to be commercially sold. Hexanoic acid is a
valuable feedstock in the chemical and biofuel industry,
as well as having application as an antimicrobial agent,
animal feed additive and flavour additive [6]. The aim
of the report is to decide whether this secondary
fermentation is worth the investment or if it would be
financially preferable to separate off the lower
concentration hexanoic acid directly from the pot ale.
With this in mind, two designs shall be built, one where
initial acid concentrations reflect no secondary
fermentation (case 1) and one where hexanoic acid
concentrations have been optimised to reflect the
secondary fermentation (case 2).

2. Background

Pot ale is one of the three main side products within
whisky production, the others being spent lees and draff.
It is comprised of a mixture of Volatile Fatty Acids
(VFAs), water, minerals such as Cu, P and K, and a solid
fraction mainly consisting of yeast [4]. For Scottish
SME malt distillers pot ale has a production rate of
roughly 1.4 to 2.7 billion litres per year [4, 5], this is
often then concentrated into a syrup through evaporation
and used as animal feed selling at roughly £60-200/ton
[4,7]. There are several drawbacks to this method such
as the presence of copper in pot ale. Ingesting high
amounts of copper can lead to copper poisoning causing
haemolysis, which is potentially fatal to the animal, the
copper content must therefore be regulated before pot
ale is allowed to be sold as feed. Furthermore, the syrups
high viscosity presents issues with transportation and
storage making it an unfavourable choice of feed to
farmers [4]. All in all, the low sales price of syrup
coupled with energy demanding evaporation and poor
transportation and storage make this a bad processing
method. Other common practises for the utilisation of
pot ale are land and sea disposal. This is also
unfavourable as it incurs a disposal fee and is only
approved for distilleries located in a suitable location.

The current practises for pot ale utilisation are
out-dated and inefficient. Pot ale is constituted of
valuable VFAs which if isolated, can be sold
commercially. Hexanoic acid sells for roughly
£2000/ton [7], 10x that of animal feed and its
concentration within pot ale can be greatly improved by
fermentation. We are proposing two processes for
generating a high purity hexanoic acid stream, both aim
to separate off hexanoic acid from pot ale syrup with one
having undergone secondary fermentation and the other
not. The aim is to determine whether this secondary
fermentation is financially favourable. There are several
factors to consider here when designing a process like
this. The equation of state and activity model used in our
calculations and predictions is vitally important as this
influences the binary interaction parameters and details
how the system will behave and how different
components will interact. Due to the high-water content
of pot ale syrup LLE extraction is utilised within the
separation process to reduce the volume of process fluid.

Therefore, care must be taken in your choice of solvent
and a recycle stream must be designed to allow for
solvent recovery. Finally, the order of separation must be
considered, and it should be determined if there are any
other worthwhile components other than hexanoic acid
to isolate for commercial sale.

The process proposed within this report details the
separation of hexanoic acid from fermented and
unfermented pot ale syrup. We do not detail the
evaporation of pot ale into said syrup or the actual
fermentation process itself. Should you want to design
this part of the process then you need to consider the
extent of evaporation as a lower water content will
reduce the cycle time within the fermenter but too low a
water content results in a highly viscous fluid that is
difficult to process. You also need to select the bacteria
used for fermentation. In our case we are considering a
water content of 85% by mass and bacteria that was
chosen by the Biorenewables Development Centre
(BDC) in York, UK. The identity of this bacteria is
protected under a non-disclosure agreement.

3. Methods
All process simulations are done in Aspen Plus vl1l
under the NRTL-HOC property model.

3.1. Initialising design

A continuous feed basis of 1000L/hr is assumed, as this
is a reasonable amount of waste produced by a medium
sized distillery [8]. Because fermentation is a batch
process, a buffer vessel is installed to allow for
continuous feed. The feed is at 35 °C and 1 atm and the
mass composition table 3.1.1 was calculated from the
acid concentration profile displayed by figure 3.1.1 at
time t=0 and t=20 hours for cases 1 and 2 respectively
along with the assumption of 85 wt% water content.

Age [R]
Figure 3.1.1: Acid concentration profile with time spent
fermenting [7]

Table 3.1.1: Compositions of feed for both designs by mass

Water | Hexanoic | Acetic Lactic Butyric | Propionic

Case 0.85 0.0062 0.0175 | 0.0667 - 0.0596
1(-)
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Design

Case 1

Case 2

Case 0.85 0.071 0.051 0.019 0.009 -

2()

A preliminary separation design is started out via
distillation, as this is the most used process for this type
of mixture [9,10]. First results indicate that the
separation is extremely inefficient due to the large water
content and high process stream volume.

3.2. Extractor design

Liquid-liquid extraction was found suitable for
removing water from a mixture of organic acids as found
in literature precedents [11]. An adiabatic extractor
using n-hexyl acetate solvent is simulated, and the
number of stages is optimized through trial and error
with respect to the amount of fresh solvent required to
achieve at least 99%wt water removal.

Three different extractants were modelled, two
physical extractants, hexyl and nonyl acetate and one
reactive extractant, trioctylamine (TOA) with 1-octanol
acting as an active diluent. They were modelled in
identical extractors and after considering aspects such as
its extraction efficiency and ability to be recovered,
hexyl acetate was deemed the most suitable.

3.3. Distillation Column Design

Distillation is firstly designed via a RADFRAC block
with an arbitrary number of stages. The defining
operating specifications are chosen to be the reflux ratio
and distillate to feed ratio, both on a molar basis. Both
are subsequently manipulated to meet a design
specification of 99%wt hexanoic acid purity in the
bottoms. Performance metrics are recorded (table 3.3.1):
heating/cooling duty per amount of hexanoic acid
produced, solvent recovery, hexanoic acid recovery.
Afterwards, a sensitivity analysis is performed to find
the minimum number of stages that maintains this
performance.

Table 3.3.1: Distillation column design and performance
metrics

Heating Cooling Hexanoic
Solvent .
No.of = Reflux = duty/mass = duty/mass recover acid
stages ratio of product = of product %] Y recovery
[kWh/kg] = [KWh/kg] ¢ [%]
18 1.5 431 3.81 96.9 98.5
20 2 0.72 0.59 97.4 99.9

3.4. Recycle, Purger & Mixer Design
The recovered solvent stream needs purging to prevent
build-up of residual VFAs. Through trial and error, a
split ratio of 5% is optimal amount able to converge the
simulation whilst minimising loss of solvent. This
recycle is mixed with the fresh solvent feed and fed to
the extractor.

3.5. Sizing Units

Various methods were employed in sizing the units for
our proposed design. First off, when sizing the buffer
vessel the only important parameters are its volume, to
facilitate a continuous feed of fermentation broth, and its
diameter to height ratio, to ensure a stable and space
efficient column. As the feed flowrate from the buffer
vessel is already specified as 1,000L/hr, it was decided
that a column with 10x the volume of this required feed-
rate would be suitable to ensure continuous flow. The
columns volume was therefore specified as 10,000 L. To
design a stable column it was decided to aim for a
diameter to height ratio of roughly 1 <Dr1/Hr <1.2. Now
by just specifying either the height or the diameter, the
column can be sized. In this case a height of 7ft was
selected resulting in a diameter of 8.01 ft.

The extractor column was sized based off of its
number of stages and stage efficiency. By assuming a
stage efficiency, Eo, of 0.7 the actual number of stages,
Naet, could be calculated using Eq. 1.

N
Nact :E_o Eq1

The columns height was then calculated through Eq. 2
[12].
11N, Cr — C
Hy =——o—— Eq.2

Where Cr is the tray spacing and is assumed to be 0.5m
(1.64ft), as specified by Aspen, and all length
measurements are given in feet. By multiplying by a
factor of 1.1, an empty space allowance of 10% for
vapour disengagement and liquid sump has been
accounted for. For this column of 5 stages, it equates to
a height of roughly 18ft and lacking a predicted diameter
from Aspen, one was set to be 5ft.

The distillation column was designed in a similar
way. Eq. 2 was again used to calculate the height
however a factor of 1.15 was used instead of 1.1 to
accommodate the increased vapour disengagement and
liquid sump seen in a distillation column. Aspen
predicted a diameter of 1.5ft, tray spacing of 2ft and
again a tray efficiency of 0.7, leading to a column height
of 62.43ft.

Finally, the mixing and purging vessel were not
specified by Aspen and lacked correlations to size them.
All that is known is they both process roughly 1.5L of
fluid an hour and therefore must be large enough to
accommodate this flowrate. Both vessels are assumed to
be negligible in price compared to the other three
columns and therefore their exact sizing is not relevant
to the economic model.

3.6. Economic Analysis
To build the economic model, several assumptions had
to be made. It was first decided that a ‘harsh’ analysis
was to be built with interest rates and other such costs
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being overestimated to model a worst-case scenario. If
this worst-case proved profitable it would mean that in
actual practise the profit margins would be higher.

To start off the model a 25-year lifetime was
assumed. An operation time of 8000 hours per year was
set. This is around the 10% allowance figure based on a
365-day year and should provide sufficient downtime
for the plant. It was then assumed that the project
would be geared and fully financed by a loan with
12% interest [13] and a target to pay off the principle
and investment payments within 5 years. This target
was set arbitrarily and is up to the company to decide.
A location factor of 1.3 [14] was used to account for the
plant being built in the UK. A linear depreciation of
assets was assumed and finally a consumer price index
of 5% [15], and tax rate of 25% [16] was used.

To calculate the capital expenditures (CAPEX),
correlations from Douglas [17] were utilised:

Installed cost of column shell

M&S
= m101.90;v"661{%8°2(2.18 +F;) Eq.3

M&S
Installed cost of trays = %4.7D%'55HsmckFc Eq.4
Where M&S is the Marshall Swift index, used to update
the correlation to today’s prices. A value of 1800 was
used [18]. Fc is the cost factor and relates to the
materials used, a value of 1 was selected corresponding
to a carbon steel column [19]. The capital costs for the
distillation columns condenser, reboiler and reflux pump
were calculated within Aspen and an estimate of the

mixer’s capital was made based off the prices of other
similar vessels.

The operating expenditures (OPEX) only stem
from the distillation columns utility requirement as well
as the cost of solvent. The column used cooling water
for the condenser, high pressure steam for the reboiler
and required electricity to operate the reflux pump. The
respective requirements for these were calculated using
equations 5 and 6.

Condenser OPEX
_ —Qc * operating time * price of cooling water

Cp,wuter * ATwuter * pwater

* operating time * price of steam
ReboilerOPEX:QT P g AH P f Eq.6

vap
Where Qc and Qr are the heat duties of the condenser
and reboiler respectively and were calculated by Aspen.
AT is the temperature difference of the cooling water, set
to be 11.11 K by Aspen. Cp and p are the heat capacity
and density of water respectively and finally AHvap is the

heat of vaporisation of water.

Finally, to predict the revenue streams, a price of
$2000/tonne hexanoic acid was used [7] and the cost
hexyl acetate (solvent) was set as $4/kg [20].

4. Results

4.1. Final Design
The final design of both of our proposed processes is
displayed by figure 4.1.1, where parameters relating to
case 1 are displayed in blue and for case 2 in red. F
represents the mass flowrate and x the mass
composition.

Rec ycle flowrate Hexyl acetate mass fraction

F =752 kg/hr
F = 63.0 kg/hr % =0.93

Q = -54800 kJ/hr
Condenser
Purger

Distillation s
=
Buffer vessel column (5% spiit
From Extractor
tarmenter_ﬂ_LL’pm L Pot syrup gy~ Extract > Number of stages
eed
N =20
10000 L e
1 atm N=18
N=5
Mixed solvent \]/ ﬁ:::g:lf] Product
Frash solvent T =2053C ’ . .
5 kg/hr Hexanoic acid
25C Mixer _ To Wastewater Reboiler production rate
1 atm Raffinate treatment Q = 181000 kd/hr F=697 ka/hi

F = 5.9 kg/hr
x=0.99

Figure 4.1.1: Process flow diagram for designs 1&2 (blue and red respectively)
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4.2. Solvent selection
Table 4.2.1 presents the performance of the modelled
solvents, nonyl and hexyl acetate, and TOA with 1-
octanol.

Table 4.2.1: Tested solvents performance.

Solvent Nonyl Acetate | Hexyl TOA - 1-

(physical) Acetate octanol
(physical) (reactive)

Distribution 0.999 0.999 0.975

coefficient

G

Solvent : feed | 0.06 0.06 0.015

ratio

Water leeching | 1.35 0.58 0.75

(Wt%)

Recovery Challenging Easily Challenging

ability recovery recovered recovery

4.3. Sizing
The estimated dimensions of each vessel are laid out in
table 4.3.1:

Table 4.3.1: Process unit design dimensions

Process Buffer | Mixer | Extractor | Distillation column | Purger
Unit vessel Case 1 Case 2
Volume (L) | 10,000 n/a ~10,000 | ~3000 ~3300 n/a
Diameter 8.01 n/a 5 1.5 1.5 n/a
(f)
No. of n/a n/a 5 18 20 n/a
stages
Tray n/a n/a 0.7 0.7 0.7 n/a
efficiency
Stage n/a n/a 1.64 2 2 n/a
spacing (ft)
Tangential 7 n/a 18.28 59.14 65.71 n/a
height (ft)

4.4. Economics
With the sizing of each unit complete the CAPEX can
be estimated. Table 4.4.1 presents each units predicted
capital based on Guthrie’s correlation from Douglas’
(Eq. 3 & 4), Aspen provided values and predictions
based off similar sized vessels.

Table 4.4.1: CAPEX for each unit and its constituents

Table 4.4.2: Utility and raw material costs

Cost of cooling water ($/m?) 6.46 [22]
Cost of HP steam ($/kg) 0.0244 [22]
Electricity cost ($/kWh) 0.0775
Cost of hexyl acetate ($/kg) 4

Using equations 5 and 6 along with the material
prices outlined in table 4.4.2 the OPEX of each plant
design could be calculated and is presented in table
4.43. For the electricity charge, Aspen provided an
electricity usage of 0.09 kW and a 20% ancillary service
charge was accounted for.

Table 4.4.3: Summary of OPEX of both designs

OPEX Yearly charge ($/yr)
Case 1 Case 2
Raw materials 160,000 160,000
(hexyl acetate)
Electricity 66.96 66.96
Condenser 61,100 163,000
Reboiler 6,300 17,800
Total 230,000 350,000

Finally, the revenue that can be expected is
outlined in table 4.4.4.

Table 4.4.4: Summary of the revenue to be expected for both
designs.

Design Hexanoic Hexanoic Yearly Ratio of
acid acid sales | revenue yearly
production price ($/yr) revenue
rate (kg/hr) ($/kg) to yearly

solvent
costs (-)

Case 1 6.1 2 97,500 0.609

Case 2 69.7 2 1,115,000 | 6.97

With all the cash flows accounted for a full
economic analysis over the 25-year lifetime could be
produced.

Unit Buffer Mixer | Extractor Distillation Purger
1 2 Presented in tables 4.4.5 and 4.4.6 are a
Shell cost/$ | 119,000 / 119,000 84,600 92(’)00 / summary of the expected cash flows for both case 1 and
Trays cost /$ / / 6,700 2,000 | 3,200 / case 2 respectively.
Condenser cost / / / 55,000 54,80 / Table 4.4.5: Summary of cash flows for case 1
/$ 0
Condenser acc. / / / 110,000 110,00 / Present Cash -$1.600,000 Real AT
Cost /$ 0 P 5
Reboiler cost 7 7 7 68,700 | 69.20 | 7 Flow
/3 0 NPV -$2,350,000 Real AT
Reflux pump / / / 29,500 29,40 / Present Value -$2,200,000 Nominal AT
cost /$ 0 Cashflow
Total /$ 119,000 8,500 125,700 350,700 358,6 n.a .
[21] 00 NPV '$3,000,000 Nominal AT
IRR n/a
Table 4.4.2 provides the material and utility ROI -27%

costs associated with the process.
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Table 4.4.6: Summary of cash flows for case 2

Present Cash $4,000,000 Real AT

Flow

NPV $3,250,000 Real AT
Present Value $6,300,000 Nominal AT

Cashflow
NPV $5,550,000 Nominal AT
IRR 103%
ROI 68%

Where AT stands for after tax, NPV for net
present value, IRR for internal rate of return and ROI for
return of investment. All calculations were done on
excel and make use of the ‘NPV’ and ‘IRR’ functions
within the programme.

Figures 4.4.1 and 4.4.2 present the real
cashflows after tax for case 1 and 2 respectively.

- $0
=
5 -$200 ;
_=-$400
>
T -$600
g
z -$800
& -$1,000
S
-$1,200
S-$L Year of Operation

Figure 4.4.1: Real cash flow over plant lifetime for case 1
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Figure 4.4.2: Real cashflows over plant lifetime for case 2

5. Discussion

There were several areas of research involved in the
process design. Figure 4.1.1 presents the final flowsheet
but does not show the finer details that went into its
creation. First off, when simulating a process on Aspen,
an accurate property model and Equation of State (EoS)
must be selected to model how the systems components
interact with one another. Furthermore, thought must go
into the choice of solvent used to ensure an efficient
separation and later recovery. Finally, the economic
projection of each design must be accurately built to
predict the cash flows over both plants’ lifetime, whilst
also considering its limitations. The areas of research
considered are discussed below.

5.1. Property model

The simulation results are fundamentally linked to the
choice of property model. For polar or highly non-ideal
systems, the “dual approach” [23] is used to choose the
property model. This means that an activity model for
liquid phases is used in parallel with an EoS that
characterizes vapour fugacity. This way, both LLE and
VLE applications can be modelled.

After consulting guidelines for choosing
property models that are supported by Aspen [24, 25], it
was established that NRTL is the most suitable activity
model.

NRTL (Non-Random Two-Liquid model) is
widely used in process simulations and can be trusted to
accurately characterize non-ideality and thus is
appropriate to model a system of volatile fatty acids
(VFA’s) that have complex interactions due to their
varying sizes and ability to hydrogen bond. The equation
of the NRTL activity model, as developed by Renon and
Prausnitz [26] is:

ln Z]ij}L ]l z x] ij ( memrijmj> Eq.7
Y Xk G kaka] kakaj

Gij = e %ty Eq8

Aspen Plus predicts o and 1 using a regression (Eq. 9 &
10) with parameters a, b, ¢, d, e, f, trained on the
corresponding EoS databank. Ultimately, the values of
these parameters direct the simulation results.

Tij = al-]-+ el-]-lnT+ fl]T Eq9

Y
<+
T

a;j = ¢+ dij(T —273.15) Eq.10

As discussed above, it is of great importance to also
choose an adequate EoS. Hayden-O’Connell (HOC)
equation of state is recommended for mixtures of
carboxylic acids, as it can characterize the complex
dimerization behaviour of short chain carboxylic acids

(C2-C4) in the gas phase [27].

In order to validate the choice of NRTL-HOC
and to have a base of comparison, it was decided to
investigate other equations of state. At the moment,
Aspen does not fully support the implementation of
other adequate EoS’s. This limitation is mitigated by
outsourcing the VLE data via the state-of-the-art
Clapeyron.jl package [28]. This open-source package
provides access to numerous thermodynamic models,
complementing Aspen. However, since it is still
developing, Clapeyron.jl is lacking models for lesser-
known chemical substances.

Other equations of state have been
investigated: SAFT (namely PC-SAFT and SAFT y-Mie
variants) for their reported ability to handle a great
variety of non-ideal compounds. Peng Robinson was
also investigated, because it is also a widely used
adaptation of Van Der Waals, this is less sophisticated
but more user-friendly for simulations. SAFT y-Mie is
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also easy to implement thanks to the group contribution
method making it applicable to any molecular structure.

Having created NRTL models paired with the
above equations of state, the VLE data is manually
regressed in Aspen to compute binary parameter values
and subsequently plot VLE envelopes. Table 5.1.1
shows the predicted boiling points for each model. Some
notable inconsistencies: PC-SAFT prediction for
hexanoic acid is an outlier; SAFT gamma Mie model
predicts abnormal boiling points for propionic and acetic
acid (as well as acetate esters). This can be explained by
the fact that the current implementation of this equation
of state fails to account for the strong polarity of the
methyl and methylene groups adjacent to the COOH
group in short chain carboxylic acids [29]. Therefore,
SAFT y Mie was disregarded from further investigation.
For the remaining models, there is a general good
agreement, and the standard deviations are relatively
low, thus the models are accepted.

Table 5.1.1: Predicted boiling points from each equation of
state to test their validity.

Pure component boiling

points [K]
Component
PR PC- SAFTy HOC STD
SAFT Mie

Lactic acid 485.571 - 476.76 490 5.5115
N- 477.82 405.34 476.50 = 478.85 0.9611
hexanoic acid
N- 443.82 44425 44426 |« 44465 0.3348
hexyl acetate
N-butyric acid 435.59 - 435.72 | 436.42 0.3410
Acetic acid 391.95 392.04 213.28 = 391.05 0.4560
Water 37460 373272  373.62 373.15 0.5805
Propionic acid = 413.68 - 202.94 = 414.32 0.32
N- 495.77 - 257.70 4971 0.67

nonyl acetate

Isobaric (1 atm) VLE envelopes of each model
for the relevant binary pairs have been superimposed
and compared against NIST experimental data where
available (figures 5.1.1 to 5.1.7).

For some pairs, there is agreement between the
different models (figures 5.1.1, 5.1.2), the diagram
having similar shapes, and some curves even looking
identical. For other pairs (figure 5.1.4) the NRTL-HOC
model looks much different not only in terms of position
in the Txy space but also in terms of convexity of the
curves, which could be explained by the fact that only

HOC EoS can characterize acetic acid’s dimerization
behaviour.

In the cases where the NRTL-HOC model
predicted a visibly different VLE envelope, the HOC
model had better agreement with experimental data
(figures 5.1.3, 5.1.5, 5.1.7). Mean square error analysis
yielded relatively low values: 0.018, 0.034, 0.013,
respectively, showing that the NRTL-HOC model is a
good fit for mixtures containing acetic and butyric acids.

The influence of HOC on short chain acids is
validated. Although there is not enough empirical
evidence to totally validate NRTL-HOC, it is the most
suitable approach currently.

Ty disgrars s ISETVLAERAEID

Figure 5.1.1: Hexyl acetate - hexanoic acid binary pair T-xy
VLE for HOC and PR models superimposed.
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Figure 5.1.2: Hexyl acetate — acetic acid binary pair Txy VLE

for HOC, PC-SAFT, PR models superimposed.
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Figure 5.1.3: Hexyl acetate — acetic acid binary pair Txy VLE.
Experimental data plotted against NRTL-HOC model at 0.9
bar.
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Figure 5.1.4: Acetic acid — water binary pair Txy VLE for
HOC, PCSAFT, PR models superimposed.
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Figure 5.1.5: Acetic acid — water binary pair Txy VLE.
Experimental data plotted at atmospheric pressure plotted
against NRTL-HOC model.

oy o TY AT

Figure 5.1.6: Butyric acid — water binary pair Txy VLE for
HOC and PR models superimposed.
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Figure 5.1.7: Butyric acid — water binary pair Txy VLE.
Experimental data at atmospheric pressure plotted against
NRTL-HOC model.

5.2. Solvent selection
As previously stated, hexyl acetate was selected as the
solvent for the LLE extractor. Solvent selection is an
important aspect of any design as it determines the
recovery of your desired product. Several aspects need
to be considered when selecting your solvent including,
its distribution coefficients, its extraction efficiency, and
its ability to be recovered.

All 3 solvents demonstrated high distribution
coefficients allowing for almost 100% recovery of
hexanoic acid as shown in table 4.2.1. Although, the
TOA-octanol solvent had a slightly lower recovery of
hexanoic acid, it displayed far better extraction
efficiency due to its much lower solvent to feed ratio.
This would suggest that this is the best choice, however
when it came to recovering the solvent it displayed poor
separation from the hexanoic acid. This is due to the
strong complexation that occurs as a part of the reactive
extraction [30]. Furthermore, as octanol is considered an
active diluent, it is able to hydrogen bond with
carboxylic acids which contributes to the improved
extraction yet also leads to worse solvent recovery. Poor
solvent recovery leads to a lower purity product as well
as a higher raw materials cost and thus the TOA-octanol
was disregarded.

Nonyl acetate was also disregarded for a
similar reason, when the solvent recovery column was
designed it appeared that this solvent had a very high
affinity for hexanoic acid [11] and therefore presented a
challenging separation that would require multiple
distillation columns and a high capital investment. The
poor recovery could also be a result of the higher levels
of water leeching associated with nonyl acetate.

Hexyl acetate however demonstrated efficient
extraction and was easily recovered downstream and
thus it was chosen as the solvent.

5.3. Economics

As is immediately evident from figures 4.4.1 and 4.4.2
along with tables 4.4.5 and 4.4.6, case 1 is not a
financially acceptable endeavour. At no point in the
entire lifetime are any profits to be expected. This can
be explained by the ratio of yearly revenue to yearly
solvent costs as presented in table 4.4.4. This is a ratio
of income to expense and thus the only way a profit
would be seen is if this value is >1. Furthermore, this
ratio does not account for capital and utility costs and
thus the fact that for case 1, with a value of ~0.6, there
is no opportunity to make a profit even though it has a
lower utility requirement and thus operating costs.

Case 2 however is much more promising and
shows that fermentation of the pot ale syrup is necessary
for the plant to be profitable. In the first year due to
capital expenditures a loss of roughly $400,000 can be
expected but in subsequent years a profit can be
expected of roughly $600,000 a year, after the P&I
payments have been repaid in full. Over the whole
lifetime an ROI of 68% and IRR of 103% can be
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expected for this specific design, and therefore it is
considered a worthwhile investment.

As mentioned, case 1 had a lower associated
OPEX at roughly $230,000 a year compared to
$350,000 a year for case 2, as shown in table 4.4.3. This
is due to the lower utility requirement of case 1. The
distillation column designed was able to reach the same
desired recovery and purity of hexanoic acid as case 2
with a lower reflux ratio. This results in lower reboiler
and condenser heat duties being observed, and thus less
cooling water and high-pressure steam is needed. The
distillation column is the only process unit that require
utility and is the only source of the varying OPEX.
Similarly, it is the only source of a difference in CAPEX
between designs. For case 1, the column could be built
with slightly fewer stages and thus is smaller and has a
lower installed shell and tray costs. Again, as all the
other units like extractor and buffer vessel had the same
design between cases, their CAPEX remains constant
between the two scenarios. This only results in a column
roughly $10,000 cheaper to build but as stated above is
inconsequential to the suitability of case 1 due to the
ratio of yearly income vs solvent costs being <1.

There are some limitations to the economic
projection presented that result in an overestimate of
cashflows. First off, due to a lack of necessary data, a
full cash cost of production could not be estimated.
Fixed costs of production such as labour or maintenance
costs were unknown and thus left out of the model (some
fixed costs such as taxes were included). The operating
expenditures presented are the variable costs of
production such as utility and raw material prices.
Furthermore, the cost of the fermentation unit associated
with case 2 has not been included as this was designed
by the BDC in York, UK and details of its design are
protected under a non-disclosure agreement. All of this
will result in an actual ROI and IRR lower than what has
been presented. However, due to their magnitude it is not
expected that these extra expenses will result in a
negative return. Typically, annual ROIs of 7% or higher
are considered a good investment [31].

6. Conclusion

This report designed two scenarios of a separation route
for hexanoic acid from bio-based distillery waste and
conducted a techno-economic analysis to support design
choices. Research was conducted to validate simulation
results and to identify n-hexyl acetate as the best solvent
for liquid-liquid extraction due to its efficient capability
at extracting hexanoic acid as well as later recovery from
said acid. After having planned a preliminary flowsheet,
simulations were run numerous times to find and obtain
the optimal design specifications: number of stages in
the separation units, reflux ratio in RADFRAC,
percentage of purge stream, solvent make-up and
recycle configuration. The equipment was mapped
according to industry standards, either provided by
Aspen or discovered in literature, and costing was
computed through correlations commonly used in

academia. NRTL-HOC was found as the current most
suitable property model available on Aspen.

The results clearly show that case 2 is more
financially sensible, producing larger amounts of
hexanoic acid at a negligible increase in both capital and
operating expenses. This is the profitable design, with an
estimated rate of return of 68% over the plant’s 25-year
lifetime. A negative net cash flow will be seen in the first
year due to the initial capital investment however this is
offset in subsequent years as the profits substantially
outweigh the expenses. Real-life implementation of this
process would provide whisky distilleries with a diverse
income stream and improve on their financial growth as
it converts an underutilised waste product into a
valuable throughput.

Going forward the design can be further
developed to generate a more accurate economic model.
The fixed costs of production such as labour or
maintenance should be accounted for as this will give a
better representation of cash flows. Furthermore, better
estimates are required for the mixing and purging units
as currently their capital is either not accounted for or a
rough estimate. For the process simulation on Aspen,
SAFT type property models should theoretically predict
more accurate component interactions. However, before
this can be implemented, a wider range of components
need to be modelled within its database — this can be
done on the property package, Clapeyron.jl. Finally to
just improve the process as a whole, it could be
redesigned to also isolate the other fatty acids present in
the fermentation broth and thus generate a more diverse
income stream.
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Abstract

The rate at which plastic waste is accumulating in landfills is posing a significant threat to ecosystem and human health.
The use of chemical recycling for the treatment of post-consumer plastics has become increasingly popular, including
hydrogenolysis, favoured for its mild operating conditions and valuable products. In this report, a hypothetical industrial
hydrogenolysis process is designed and analysed. Aspen HYSYS is used to design and model a converged flow-sheet
before both a techno-economic analysis (TEA) and a life cycle assessment (LCA) are carried out. Both assessments help
determine the feasibility of the scaled-up process and how its performance might compare to current end-of-life pathways,
including other chemical recycling technologies. The results demonstrate that the scaled-up hydrogenolysis process is
profitable overall with a positive NPV of $120.5 million. A cost of $0.46/kg of polypropylene feed and a break-even
price of $0.74/kg of polypropylene were determined. The LCA demonstrates that the proposed design has a significantly
lower environmental impact than current recycling processes, particularly concerning human health and resource depletion.
However, certain areas of the process require investigation and improvement, from the high capital cost to the low readiness

level and uncertainty surrounding the performance at scale. These limitations are discussed in the paper.

Keywords: Hydrogenolysis, Polypropylene, Chemical Recycling, Circular Economy

1 Introduction

Annually, approximately 400 million metric tonnes of syn-
thetic polymers are produced worldwide [1] with polyolefins
such as polyethylene (LDPE) and polypropylene (PP) ac-
counting for roughly 60% of the global plastics [2]. These
polyolefins have low recycling rates due to strong C—C bonds
which make them difficult to break down [2]. Primary
recycling of plastics typically occurs through mechanical
recycling which despite being comparatively cost-effective,
results in the contamination and degradation of the plastic
(downcycling) making it ultimately unsustainable [3]. In
any case, currently only approximately 18% of plastics are
recycled, leaving 24% to be incinerated and 58% sent to
land-fill or discarded [1]. The continuous production and
accumulation of plastic waste results in a sustained loss of
resources and poses a serious threat to the environment and
human health; for instance through the formation of harmful
microplastics which are dangerous both when ingested or
upon entering ecosystems[4].

As a result, chemical recycling methods have gained
attention for their ability to transform polyolefins into
valuable products that can then be re-integrated into a range
of industrial processes [5]. Thermal cracking and pyrolysis
are currently popular examples of chemical recycling but
are limited by their high operating temperatures (400 °C to
900°C) and poor product selectivity [5]. Hydrogenolysis is
promising as it not only produces high-value products but
has been shown to operate in a milder temperature range of
200°C to 300°C [6].

Hydrogenolysis uses a metal catalyst and high-pressure

hydrogen to cleave the C—C bonds in the polymer chains to
break them down into shorter hydrocarbons. In the case
of polypropylene, alkanes of varying lengths are formed.
Catalyst selection is therefore crucial in process design and
determines reaction conditions, kinetics and degradation
time [7]. Noble metal catalysts are particularly favourable
for hydrogenolysis, particularly platinum (Pt) and ruthe-
nium (Ru) based catalysts [6]. Pt-based catalysts perform
very well in thermal cracking reactions but fail to effectively
break the C-C bonds at low reaction temperatures without
added acid sites [7]. Ruthenium catalysts are currently being
investigated as a cheaper alternative, operating at 200°C
to 250°C whilst still producing promising distributions
of useful products. The Rosseinsky catalyst group at
the University of Liverpool demonstrated that a Ru/CeOq
catalyst could produce large yields of useful alkanes from
polypropylene waste, with an enhanced selectivity towards
liquid alkanes. Thus, suppressing excess methane generation
which to date has been a common problem of plastic
hydrogenolysis [6].

This report aims to take hydrogenolysis at its low readi-
ness level and to assess its viability as a plastic treatment
process. To achieve this, the process is scaled up to
meet pre-defined plastic treatment goals by extrapolating
experimental data to create a flow-sheet in Aspen HYSYS
V11. The approach in this report is “best-case” and uses the
highest conversion achieved at laboratory-scale conditions
that is realistic at scale. The distribution of products is
modelled based on the laboratory data from the Rosseinsky
group at the University of Liverpool [6], supplemented by
data from a literature review. A comprehensive techno-
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economic assessment (TEA) is carried out using data from
both literature and the HYSYS model, and a comparative
life cycle analysis (LCA) is carried out to analyse the
environmental impact of the hypothetical industrial process.

Both analyses aim to evaluate the feasibility and sus-
tainability of the final flow-sheet. In the TEA, capital
expenditure (CAPEX) and operating expenditure (OPEX)
values are calculated to determine the Net Present Value
(NPV) and investigate the profitability of the process. The
cost to produce 1kg of polypropylene and the polypropylene
break-even price is also calculated in the economic assess-
ment. The CAPEX is then compared to other chemical
recycling technologies to assess the initial costs. In the LCA
analysis, the ReCiPe 2016 method [8] is used in OpenLCA
to compare hydrogenolysis to the common recycling meth-
ods of incineration and landfill, assessing the performance
of each process against common environmental indicators
and identifying key problem areas. This paper aims to
lay out a comprehensive model whilst acknowledging the
limitations that call for further research; suggestions for
intermediate investigations and pilot-scale experiments are
laid out throughout and summarised in the outlook.

2 Background

With growing discourse on the advantages of chemical
upcycling and its ability to produce various value-added
products [3], hydrogenolysis has gained attention as a route
to transform plastic waste into valuable chemical feedstocks,
contributing to a circular economy. Hydrogenolysis com-
petes with several types of chemical recycling at different
stages of development. Some methods are non-catalytic,
generally operating at higher temperatures, these include
pyrolysis, hydrothermal liquefaction and gasification [9].
Others also involve catalysts, for example, hydrocracking,
which operates at lower temperatures and uses hydrogen
at high pressure and a noble metal catalyst, making it
similar to hydrogenolysis [10]. Crucially, hydrogenolysis can
be conducted under relatively mild conditions, minimising
energy consumption and associated environmental impacts
in comparison to other chemical recycling methods [11].
Recent literature on the hydrogenolysis of plastic waste
predominantly involves laboratory-scale experiments explor-
ing catalytic mechanisms and assessing their impacts on the
hydrogenolysis process [7]. They also explore the optimisa-
tion of laboratory conditions, comparing the effectiveness of
the different set-ups [12]. However, there is limited informa-
tion regarding the scalability of the reaction mechanism and
no existing design of an industrial hydrogenolysis process.
Despite its promise, the hydrogenolysis of plastic is
complex and challenging. Catalyst development, selectivity
of the reaction towards desired products and the behaviour
at scale are among the key areas for investigation and im-
provement. Additionally, understanding the environmental
and economic impact of a large-scale hydrogenolysis process
are vital for the widespread adoption of this technology and
for informing the policy and investment decisions that must
be made with the implementation of a novel technology.
One research group working on the development of
hydrogenolysis is the Rosseinsky catalyst group at the
University of Liverpool which in 2023 conducted a study on
hydrogenolysis of polypropylene at a laboratory scale under

batch conditions [6]. Results from the cited paper were
supplemented with literature data to form the foundations
for this report. The Rosseinsky group carried out a range
of tests on polypropylene hydrogenolysis involving different
catalysts and varying temperatures to investigate conversion
and catalytic properties. Data from these experiments are
used in the modelling in this report, taking into account that
the process is at a low readiness level.

3 Methodology

3.1 Process Design

3.1.1 Overall Design

The basis for the analysis was the flow-sheet developed on
Aspen HYSYS which models an industrial-scale hydrogenol-
ysis process. Some basic parameters were derived from lab-
oratory data, such as the conversion (90%) and the process
conditions within the reactor (220°C, 30 bar Hydrogen) [6].
Specific design goals were established, including the ability
to process 25 kilo-tonnes (kt) of polypropylene yearly to
align with a comparable assessment of chemical recycling
technologies [9], 8000 hours of operation based on guidelines
for life-cycle cost analysis [13] and purity of useful product
of above 95% as a first pass.

A hypothetical solid was modelled in HYSY'S to represent
polypropylene, defining the molecular weight, the density
and the heat of formation from the Polymer Handbook [14].
The products were grouped according to standard crude
oil fractions and the midpoint properties of the class were
used to define the class, based on a similar methodology
found in previous reports [15]. The Rosseinsky group paper
contains product yield ranges for the hydrogenolysis reaction
[6] which were used to estimate the product distribution,
finding average product yields for the conditions selected.
Additional data was obtained from the Rosseinsky group
to facilitate the estimation of the product splits and this
was verified against data from previous hydrogenolysis
experiments such as that carried out by Wang et al. [2].
The distribution used is summarised in table 1. The Peng-
Robinson fluid package was chosen for its general accuracy in
determining phase equilibria for a range of substances given
the phase transitions in our reactor, as well as its wide usage
in the oil and gas industry [15].

Table 1: Chosen product splits for the hydrogenolysis reactor
estimated from literature data
Product Percentage
Light Gases 22.0%
Gasoline 13.2%
Kerosene 19.8%
Diesel 29.8%
Waxes and Lubricants 15.3%

3.1.2 Reactor Design

The reactor is modelled as a simple conversion reactor in
HYSYS as in similar studies [9]. The kinetics of the reaction
have not been investigated so the reaction equations mod-
elled on HYSYS were designed to represent the distribution
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of products found in the literature. Hydrogen consumption
was estimated from the equivalent stoichiometric amounts
of hydrogen needed for the separation into each product
class. By creating a representative balanced stoichiometric
reaction in HYSYS the reactor was designed to consume re-
actants and generate products at ratios proportional to those
at the laboratory scale, providing a first-pass prediction
for reaction behaviour. For costing purposes, the reactor
was sized as a gasification reactor, which has previously
been applied in waste treatment [16], as laid out in section
3.2. This provides an order of magnitude estimate for the
cost, but would undoubtedly be further refined in advanced
reactor design.

Note that several types of reactors could be considered
in this process. Agitation, even heat distribution, ability to
withstand pressure increases and ability to handle viscous
mixtures are key requirements. Spinning basket or screw
feeder reactors are commonly used in high viscosity appli-
cations [17], whereas a fluidised bed would provide effective
contact between the gaseous and solid reactants. Further
knowledge of kinetics would inform whether a cascade is
desirable. Currently, the data available is insufficient to
ascertain which of these options would be ideal. Specific
reactor design is therefore not only beyond the scope of this
report but it also not necessarily useful given that any design
would largely be lacking the core engineering data required,
it is, therefore, important to emphasise these knowledge gaps
to work towards a robust intermediate scale, this is further
addressed in the discussion (Section 4.1.1).

3.1.3 Separation Design

The order of the distillation train is based on standard
heuristics to minimise the difficulty of each separation. Light
gases are separated off first as the difference in boiling point
is the largest. The difference between gasoline to kerosene
and diesel to lubricants is small, but gasoline has a molar
flow of approximately three times that of the lubricant flow,
so this separation is prioritised, subsequent separation order
is also based on boiling point differences. Aspen HYSYS is
used to design each column, using the shortcut column to
estimate the column sizing before fine-tuning it in the flow-
sheet. The final separation train is presented in Appendix
1.

A component splitter is used to remove the remaining
solid polypropylene after the reactor. By decreasing pressure
and temperature after the reactor, most of the hydrogen
produced can be flashed out, which decreases the overall
energy requirement and makes the separation train easier
to converge. A component splitter is also used to model a
pressure swing adsorption (PSA) in the HYSYS flow-sheet
as HYSYS can not handle non-steady state operations, this
PSA is modelled to have 82.5% separation of Hydrogen as
the midpoint of the range for typical hydrogen PSA [18].

3.1.4 Recycle and Purge and Conditions

Both the hydrogen and polypropylene were recycled to min-
imise waste and improve the economic and environmental
feasibility of the process. Purge streams were added to both
recycle loops to mitigate the build-up of impurities, maintain
process efficiency and ensure the quality of products. The
hydrogen obtained after the PSA was of high purity, thus a

purge of 1% was deemed sufficient, whereas due to the large
uncertainty of the quality and nature of the polypropylene
recycle, a purge of 10% was used as an estimate.

3.2 Heat Exchanger Network

Conditions are moderated in the process using compressors,
turbines, coolers and heaters to make separations easier
and to meet the reaction conditions. These were designed
and implemented in HYSYS. Aspen Energy Analyzer is
used to analyse net heat and cooling duty and to design
a heat exchanger network using Aspen’s in-built utilities.
Multiple designs are simulated in Aspen Energy Analyzer
but the design with the biggest energy savings and lowest
cost is chosen. Conventional and readily-available utilities
are prioritised.

3.3 Techno-Economic Analysis

3.3.1 Costing and Economic Analysis

A techno-economic analysis (TEA) is used to assess the
feasibility of the hydrogenolysis flow-sheet. Aspen Economic
Analyzer V11 is used to obtain CAPEX values for all process
equipment besides the PSA and the reactor which are sized
and costed using methods found in literature. The PSA
unit is sized and costed as a packed bed pressure vessel
using the Guthrie method [19]. The reactor is costed with a
gasification reactor correlation which is scaled based on the
dry solid feed to the reactor [20]. This method is chosen
because the solid polypropylene reactor feed rate can be
modelled more accurately than the residence time, favouring
this correlation over others considered. A comprehensive
description of the sizing and costing of each unit and
associated economic assumptions can be found in Appendix
3.

The catalyst Ru/CeQs3, from the Rosseinsky group paper,
is difficult to cost due to the catalyst being prepared in
the laboratory and therefore not being directly purchasable.
In the experimental set-up of the Rosseinsky paper, the
catalyst mass is 5% of the polymer mass [6], it is uncertain
how this would scale or how the specialised catalyst could
be produced industrially. For estimation, a cost heuristic
was used based on a previous TEA [9], assuming that
the ratio of the catalyst cost would be comparable given
the similarity of the experiment which used ruthenium
on platinum/tungstated zirconia as the catalyst in the
hydrogenolysis reactor, operating at 250°C and 30 bar. This
allows for an estimation of the proportional cost of the
catalyst despite the significant uncertainty surrounding the
eventual industrial catalyst. Using the cost correlation, the
catalyst is calculated to be 18% of the total reactor cost.

All capital costs are updated using the Chemical En-
gineering Plant Cost Index (PI) [21]. For data acquired
from HYSYS and for the PSA unit, the PI from 2019 to
2023 is used, whereas for the reactor the PI from 2014 to
2023 is used to align with the current economic market.
OPEX values are also derived from HYSYS, thereby taking
into account the heat integration results and utilities. The
remaining capital costs and annual costs are calculated as
functions of the HYSYS and custom data. These include
contingency fees, labour, depreciation, taxes, insurance,
general administration, research and development. The
labour costs are calculated assuming an average salary
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of $65,000 [22] and that the facility runs on a four-shift
schedule with one set of workers per shift. The number
of workers required to operate the plant is determined using
Perry’s coefficient [23]. An in-depth calculation for labour
and other annual costs can be found in Appendix 4.

3.3.2 Profitability Analysis

The profitability of the process is assessed through the
calculation of the Net Present Value (NPV), a positive NPV
suggests the investment is financially viable and anticipated
to yield a higher return than its expenses. A cost per
kilogram of polypropylene feed is also calculated, using
CAPEX, OPEX and total kilograms of solid polypropylene
fed to the system annually. To determine the price at which
polypropylene must be purchased to attain a Net Present
Value of zero, the break-even point for the chosen design is
investigated. The break-even point and price per kilogram
are important indicators that enable the comparison of
hydrogenolysis to similar technologies for the treatment of

polypropylene.

3.3.3 Chemical Recycling Comparison

There is inconclusive information regarding which recycling
method has the most overall promise, but some initial cost
indicators have been calculated. HYSYS CAPEX values
taken from the supplementary material of the Hernandez et
al report [9] are used to evaluate hydrogenolysis relative to
emerging “competitors”. From there, the same capital cost
correlations used on the hydrogenolysis data are applied to
the literature data to ensure consistent results. Understand-
ing the upfront investment required helps assess whether the
project is financially viable and whether it can ultimately
generate a satisfactory return on investment whilst also
highlighting areas for potential improvement.

3.4 Life-Cycle Assessment

LCA is employed in this study to assess the environmen-
tal impact of the process designed, particularly relative
to similar plastic recycling processes. The ReCiPe 2016
Endpoint method [8] is used on OpenLCA to quantify the
impacts of a given process using 18 indicators which are
subsequently grouped into three impact areas: damage to
human health, damage to ecosystem quality and damage
to resource availability. The functional unit is 1 kg of
polypropylene processed and the scope of the study was end-
of-life treatment. Data is obtained from the comprehensive
Ecoinvent v3.6 database [Ecoinvent]. Results from the
LCA are analysed to compare different waste treatment
methods to identify ’hotspots’ of environmental impact and
therefore areas for improvement. Using only data from
Ecoinvent minimised issues around data integration.

The ReCiPe method can be applied through three
‘cultural perspectives’, the ‘hierarchist’ framework was se-
lected, as it is commonly encountered in similar scientific
models mainly due to it aligning closely with the timescale
of policy development processes. Ecoinvent does not contain
a process flow for hydrogen production such that water
electrolysis was simulated using water and electricity in-
puts. The rest of the inputs and outputs for this process
including utilities can be found in the Ecoinvent database.
Incineration and landfill of polypropylene are also modelled

in OpenLCA by adapting processes defined on the Ecoinvent
database for validation and relative impact analysis.

For comparability, the impacts are converted from the
endpoint units in the ReCiPe method into equivalent mone-
tary values using the externalities monetisation method laid
out in Dong et al. [24]. The Dong et al. paper converts
the metrics to 2003 Euros, such that the metrics are first
converted to 2003 US dollars using data from the OECD
[25] and subsequently converted to 2023 US dollars using
data from the Bureau of Labour Statistics [26].

Table 2: Conversion factors from ReCiPe environmental impact units
to $2023

Impact
Cat(le)gory Result €)2003 $2023
Human . .
Health DALY 7.40 x 10 1.40 x 10
Ecosystem ) . .
Quality Species.yr  9.50 x 10 1.79 x 10
Resource
Availability 02013 N/A 1.32

4 Results and Discussion

4.1 Process Design

4.1.1 Process Overview
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Figure 1: Process flow diagram of designed hydrogenolysis process
for treatment of polypropylene waste

The process flow diagram in Figure 1 depicts the main
functions of the designed process as described in Section
3, a complete flow-sheet can be found in Appendix 1.
Table 2 contains the key process indicators obtained from
the HYSYS flow-sheet. The high conversion and carbon
efficiency are a result of the small purges, a high reac-
tion conversion and all the products being useful alkanes,
however, it is important to emphasise here that this is a
best-case scenario and it is likely that in the final process,
there will be more impurities, that the splits will not be
as ideal and that the catalyst will vary, all of which would
lower these indicators and would have to be accounted for in
future iterations. At this stage, a significant error margin is
expected, the priority of this work is to develop a framework
that can be fine-tuned with more inputs as described in the
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introduction. Note also that the natural gas purity is lower
due to the presence of the hydrogen from the incomplete
separation in the pressure-swing adsorption, the further
processing of products was beyond the scope of this project
but this stream could either be further separated or sold as
low-quality natural gas.

Table 3: Key process technical indicators of hydrogenolysis of
polypropylene waste

Indicator Result
Polypropylene Conversion 99.5%
Carbon Efficiency 98.6%
Work Requirements 0.383 MW
Energy Consumption 3.94 MW
Natural Gas Purity 80.2%
Gasoline Purity 99.9%
Kerosene Purity 99.9%
Diesel Purity 99.9%
Lubricants Purity 99.6%

Before implementation at any scale nearing the hypothet-
ical scale presented in this paper, extensive research must be
conducted into several aspects of the process. More informa-
tion on kinetic data and the reaction mechanism is required
to predict behaviour at scale. In addition, the catalysts used
by the Rosseinsky group are shaped catalysts produced on-
site using raw materials obtained from Sigma Aldrich [6],
the final catalysts are therefore not available commercially
so catalyst preparation would have to be adapted to a
large-scale supply chain. Also, more information is required
regarding the material properties within the reactor which
are especially relevant given that there is a solid-to-gas-and-
liquid transition and that the reaction temperature is above
the melting temperature of polypropylene [14]. The current
residence time at laboratory-scale conditions investigated in
this paper is 16 hours [6], although this would change at scale
with optimisation and catalyst improvement, it introduces
significant uncertainty which should be addressed by kinetic
modeling and pilot-scale experiments. Dichloromethane,
which has a range of associated health risks [27], is often
used to clean the vessel in the laboratory post-reaction and
would have to be substituted before implementation at scale.
In summary, experiments at laboratory scale and pilot scale
are needed to provide a more comprehensive view of the
scale-up behaviour which will enable realistic process design.

The data obtained are important as order-of-magnitude
predictions are a key objective of this project. However, de-
spite HYSYS allowing flexibility in design, time constraints
meant that there was a limit on the number of configurations
that could be tested, for example, a full sensitivity analysis
of this design or future designs could help identify improve-
ment areas. There are also some limitations to this software,
although HYSYS produces a robust high-level model, other
modelling methods such as computational fluid mechanics
or density functional theory could be used to give a more
granular understanding of the molecular-level mechanisms
of hydrogenolysis as has been done for comparable processes
such as hydrocracking [28], this would supplement large-
scale investigations such as this one, giving the modelling
a more interdisciplinary perspective, therefore, making it
more capable of preempting issues in the process.

4.1.2 Heat Integration

Table 4: Industrial hydrogenolysis process heating and cooling duties

Heat Heating Cooling
Integration Duty (MW) Duty (MW)
Before 1.65 3.56
After 0.94 3.00

Energy Analyzer calculates a net heating duty of 1.96
MW and a net cooling duty of 3.56 MW. Despite favouring
conventional and readily available utilities, fired heat is
required to meet the highest reboiler temperatures in the
columns which went up to 478.5°C. The cooling duties
are supplied by cooling water and the rest of the heating
and cooling duties are provided by exchange with other
process streams. The largest heat duty was from the heater
directly before entering the hydrogenolysis reactor and also
the reboiler in column three which account for 32% and 36%
of the total heat duty respectively. The largest cooling duty
is from the hydrogenolysis reactor which accounts for 43% of
the total cooling duty. Heat integration reduced the heating
duty to 0.94 MW and the cooling duty to 3.00 MW as shown
in Table 4. Appendix 2 provides a detailed explanation of
the heat integration used and details the exact changes. The
integrated network uses 18 heat exchangers with a total area
of 194.7 m?. Data from Aspen Energy Analyser suggest that
the integrated network will save $109,500/yr and reduce
heat and cooling duty demand by 21%. From this, the
amount of cooling water was estimated using the correlation
in Turton’s textbook [29] to inform the LCA and costing.
Further investigation should be done to minimise the use of
fired heat as combustion is not a sustainable way to heat
a system and is detrimental to the environmental impact
of the process as further discussed in section 4.3. If it is
not possible to eliminate fired heat, the light gases from
hydrogenolysis could be used for energy recovery similar
to other chemical recycling processes such as gasification
[9]. This would not only reduce the environmental impact
associated with acquiring the fuel for fired heat but also
reduce the costs of the process overall.

4.2 FEconomic Assessment

4.2.1 Capital Investment Cost

Summing the working capital and total fixed capital costs
gives a total capital expenditure for the industrial process
of $34,000,000. The total fixed capital costs include process
capital, general plant capital (15% of process capital) and
contingency costs (25% of the fixed capital cost) [19]. In
this model, the working capital only includes adjuvants such
as the initial catalyst cost, it does not include accounts
receivable or inventory. The total capital cost breakdown is
depicted in Figure 2, and in-depth calculations can be found
in Appendix 5. As expected, the largest process capital cost
comes from the compressors at 42%, given that compressors
are one of the most expensive pieces of equipment in a
plant operation. Also, since the process requires gas as
a reactant, multiple compressors are needed to get the
hydrogen to reaction conditions. The reactor cost is also
a large percentage of the capital cost (32%), polypropylene
hydrogenolysis reactors would undoubtedly be complex as
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discussed in section 4.1 and there is no research on an
industrial design. Additional column internals would likely
be needed to handle the solid plastic similar to a screw-
feed gasification reactor device [30]. The hydrogenolysis
reactor operates at a comparatively high pressure (30 bar)
so it would be costly to find specialized material capable of
withstanding these conditions. Also, hydrogenolysis relies
on a heterogeneous catalyst, so the reactors must be built
to allow for the introduction and regeneration of catalysts,
which adds to the total complexity and cost. In summary,
the customisation of this reactor is ultimately the reason for
the larger capital cost contribution.

Flash
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Figure 2: Capital cost breakdown of hydrogenolysis process

4.2.2 Total Manufacturing and Annual Expenses

Adding the total manufacturing costs to additional annual
charges gives total annual expenses for the industrial process
of approximately $9,707,000. The total manufacturing
cost includes maintenance, depreciation, labour, taxes and
insurance, waste disposal and utility costs [19]. Summing
these expenses gives a manufacturing cost of approximately
$8,072,000. It was estimated that the maintenance cost is
2.5% of process capital cost and taxes and insurance are 3%
of the total capital expenditure. Additionally, depreciation
was worked out to be 6.67% of the total capital investment
cost. Other annual expenses include general administration
and research and development, which are both assumed to
be $10,000/year [19]. The total annual expenses breakdown
is shown in Figure 3, this methodology and estimations are
based on Systematic Methods of Chemical Process Design
[19] and full calculations can be found in Appendix 5.
Labour is the highest operating cost due to the number
of distillation columns and the fact that Perry’s coefficient
method [23] used to calculate labour costs gives a larger
weighting to distillation columns, necessitating a greater
number of people. Also, the other operating costs for the
process are relatively small thus labour constitutes a larger
proportion; the utility costs for the process make up only
5% of total costs due to the process operating at mild
conditions and the use of heat integration which decreases
the total heat duty by 21%. Feedstock cost is not large as the
only feedstock purchased is hydrogen and the cost of waste
polypropylene is considered negligible. It is also assumed
that the cost of pre-treatment and separation to get the

polypropylene to reaction conditions is met by the gate fees
companies would pay to have their plastic waste recycled.
The waste cost is also a small portion due to the process
only requiring two small waste streams; one hydrogen purge
stream and one reactor polypropylene waste stream.
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Figure 3: Operating cost breakdown of hydrogenolysis process for the
treatment of polypropylene waste

It would be beneficial to compare the calculated OPEX to
other recycling methods, but this risks inconsistent results
as different reports use different costing methodologies and
correlations. Data consistency is important along with data
quality, in future, it would be useful to carry out a standard-
ised study of OPEX costs for chemical recycling technologies
using a pre-determined methodology for reliable comparison.
Consistent data is currently not available in the chemical
recycling literature and this investigation was beyond the
scope of this report.

4.2.3 Revenue

The sources of revenue are light gases (methane to pentane),
diesel, gasoline, kerosene, wax, and lubricants from the
various distillation columns, amounting to a total revenue
of $33,600,000. Kerosene produces the most revenue, con-
tributing $18,000,000 to the total. The detailed calculations
for the revenue value can be found in Appendix 5. The light
gas stream is costed as natural gas as although the stream
contains 18.2% hydrogen, the heating value is 50,000 kJ /kg
which is similar to the net heating value of actual natural gas
at 41,000 kJ/kg [31]. Note that these revenues assume that
the products are of marketable standard when in reality fur-
ther refining would likely be required constituting additional
costs. These costs would increase if the products were used
as feedstock for virgin polymer production requiring the
breakdown and further processing of the alkanes produced,
although these steps are beyond the pre-defined scope of this
report they are important for future consideration as they
would determine the wider circular economy context of this
process. This is further discussed in section 4.3.
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4.2.4 Profitability Analysis

Net present value (NPV) is calculated using equation 1,
assuming constant revenue and expenses.

1= (144)™"
NPV:fCifC’wwL(RfX)(lft)%
13
1—(1+i)™  Co+Cl
+D _ : 1
t i (1+2t)n ( )

The NPV was calculated to be $120.5 million. The param-
eters used to calculate these values can be found in Table
13 in Appendix 5 13. To calculate the NPV, the following
assumptions were made: the working capital is equal to the
initial catalyst cost as explained in section 3.2; the tax rate
was assumed to be 21% [9]; the interest rate was assumed
to be 15% [19]; project lifetime was assumed to be 20 years
with straight-line depreciation; and salvage value is assumed
to be $0. The large positive NPV suggests that this process
is economically favorable.

Despite Net Present Value’s (NPV) usefulness as a fi-
nancial metric for assessing profitability, it has certain
drawbacks. When comparing projects of varying sizes or
timescales, hydrogenolysis included, NPV might not be
appropriate. This is because larger projects that have higher
absolute Net Present Values (NPV), do not necessarily have
higher percentage profits. In these situations, metrics such
as the Internal Rate of Return (IRR) may offer a more
comparable measurement. Also, the NPV can be sensitive
to assumptions such as interest rate and changes in the
market, although a sensitivity analysis partially mitigates
this effect, it is nonetheless particularly difficult to predict
future cash flows of such a novel process. Using risk-adjusted
metrics such as a Risk-Adjusted Return on Investment or
a more complex scenario analysis such as a Monte Carlo
simulation could complement the use of NPV for highly
uncertain processes such as the one presented in this report.
These analyses are beyond the scope of this report and
in any are currently lacking the reliable inputs needed for
their computation. Instead for comparability with other
processes, the cost per kilogram of polypropylene and the
break-even cost of polypropylene were calculated.

4.2.5 Polypropylene Costs

A cost of $0.46/kg of polypropylene feed was calculated for
the hydrogenolysis process. This is comparable to the cost of
recycling plastic in landfills at $0.77/kg and incineration at
$0.56/kg [32] which partly justifies treating plastic through
hydrogenolysis, although this is only indicative as the
cited values are for a mixture of plastics as opposed to
polypropylene specifically, with the error margin expected it
cannot be said with certainty that hydrogenolysis is cheaper
than conventional alternatives. However, this only considers
economic capital whereas there is a trend in environmental
policy discourse towards “natural” capital, that is the
economic equivalent value of protecting nature [33]. If
the environmental benefits of switching to hydrogenolysis
were adequately quantified and considered, the process may
be favourable overall despite its potentially lower economic
value.

Figure 4 indicates that a polypropylene feedstock price of
$0.74/kg is required to break even. The price to purchase
virgin polypropylene is approximately around $1.46/kg [34].

The lower break-even point of industrial hydrogenolysis
provisionally confirms that it has potential for use in plastic
production.
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4.2.6 Sensitivity Analysis

Revenue
Interest Rate
OPEX

CAPEX

Parameters

Compressor Cost |
Reactor Cost

Raw Material Cost

105 115 125 135

NPV ($Millions)
10% increase = 10% decrease

Figure 5: NPV sensitivity analysis of the polypropylene process with
10% parameter change

A sensitivity analysis for the NPV against revenue, interest
rate, OPEX, CAPEX, compressor cost, reactor cost, and
raw material cost is depicted in Figure 5, computed by
varying each variable value by 10%. As expected, revenue
has the biggest positive effect on NPV, with a 10% revenue
change causing a corresponding 10% NPV change. Thus
to increase the NPV, research into reactor conversion and
product selectivity towards kerosene and other high-value
products could help improve the profitability. The NPV
changes by approximately 6% with a 10% interest change,
indicating that the interest rate assumption influences the
NPV as predicted. NPV assumes a constant interest rate
throughout the project because as mentioned it is difficult
to predict future scenarios, particularly for new processes,
as a result, this may not be an accurate representation of the
changing economic market. To make a more well-informed
investment decision, NPV should be used in conjunction
with other financial indicators such as the Rate of Return
(ROI) or the Internal Rate of Return (IRR) as described
in section 4.2.4. Changing the OPEX causes a 5% change
in NPV, whereas the CAPEX only causes a 2% change.
This highlights that to increase the profitability of the
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process, focus should be put on reducing the OPEX costs.
The OPEX cost is likely to change throughout the project
lifetime as it is affected mainly by changing electricity costs,
wages and feedstock prices all of which have a degree of
variability, this should be considered when laying out an
implementation plan.

4.2.7 CAPEX Comparison
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Figure 6: CAPEX comparison of chemical recycling methods

Figure 6 compares the CAPEX for the different chemical
recycling technologies. Hydrogenolysis and hydrocracking
have high CAPEX values mostly due to the use of expensive
catalysts, high hydrogen pressures and complex reactors.
To reduce these costs, research could be done to explore
alternative catalyst options, particularly favouring milder
conditions, increasing the selectivity of desired products,
decreasing CAPEX and increasing revenue. The simplicity
of the HTL process and the feedstock flexibility are the
main reasons for the low capital costs. This flexibility can
reduce the need for extensive pre-processing facilities and
reduce the number of unit operations required. Pyrolysis
and gasification have similar CAPEX and are likely the
closest to widespread use compared to the others because the
reactors used are low-cost and operate at lower pressures (1
bar). Also, since gasification directly burns leftover gases
in a gasification furnace, it does not require any energy
recovery equipment. These features could be integrated
into future iterations of the hydrogenolysis process provided
they satisfy economic and environmental requirements as
discussed in section 4.1.2.

4.3 Environmental Assessment

Figure 7 illustrates the endpoint analysis conducted on the
process that was calculated using the ReCiPe 2016 method.
The negative values represent the negative impact that is
avoided, for example by the use of waste polypropylene or
the generation of useful products [35]. The generation of
valuable products is what acquires most of the environ-
mental “credit” as these products are otherwise generally
environmentally damaging to obtain.

The most significant beneficial environmental impact is
to human health with $0.313 of “credit”, as opposed to
resource availability which was hypothesised to be the
leading indicator of hydrogenolysis due to the replacement
of environmentally damaging processes such as mining. This

is likely due to the health-threatening impacts of processes
such as crude oil extraction but could also be attributed
to the hierarchist perspective as its timescale aligns with
the timescale for which climate change will have the worst
effects on human health [24]. The only notable negative
impact is from the utilities. This is expected as the use of
fired heat is damaging; its emissions are estimated to be 1.10
kgco, /Kgpolypropylene [31] and it releases toxins, highlighting
the need to investigate alternative heat sources.
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method
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Figure 8 displays the midpoint indicator breakdown of
the total externalities costs as represented by the endpoint
indicators converted to a monetary basis. For all indi-
cators, the designed hydrogenolysis process is either less
environmentally “damaging” than landfill and incineration
or comparably “damaging”.

The most notable indicators fall into 3 key areas: climate
change, because the process avoids climactically damag-
ing end-of-life processes and sustainably produces valuable
products; land occupation and resource use metrics, as
hydrogenolysis eliminates the need for separate facilities;
and the human health indicators, as expected hydrogenolysis
produces less health-threatening substances than landfill
and incineration. These results are indicative and the
large numerical differences in the environmental impacts
of the processes should be viewed critically as the LCA
is subjective and may be easily skewed by assumptions
made. This is not only a best-case scenario, but the
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lack of standardised methodologies for the comparison of
plastic waste makes it difficult to draw robust comparisons
as the outputs are limited by the quality of the data.
Despite the reputability of Ecoinvent, variations in process
efficiency, regional disparities, socio-economic factors, costs
of retrofitting and product and feedstock quality are difficult
to model but can affect results.

There are several ways to strengthen the LCA analysis in
future iterations: carrying out a sensitivity analysis to iden-
tify key parameters, comparing with alternative chemical
recycling technologies to validate the preferential investment
in hydrogenolysis, comparing different frameworks beyond
ReCiPe or carrying out a scenario analysis assessing different
scales, future innovations and locations. This model, like
the flow-sheet and the TEA, is static and does not take into
account variability in parameters such as availabilities and
prices and therefore has a limited ability to predict future
scenarios. Processes that have been simplified, such as the
electrolysis of water, should also be investigated and fully
specified as key decisions such as the source of the electricity
used can have a significant impact on the sustainability of
the process.

Chemical recycling is currently energy-intensive and is
therefore unlikely to serve as a direct replacement for simple
and cost-effective mechanical recycling, however, mechanical
recycling is inherently non-circular as we cannot downcycle
indefinitely and that is where hydrogenolysis could be
critical if its products are used for the production of virgin
polymers and not as combustible fuels.

5 Conclusion

This paper presents a first estimate of the design and enviro-
economic assessment of an industrial-scale hydrogenolysis
process for the chemical recycling of polypropylene waste.
A process flow-sheet is designed based on extrapolations
from lab-based data, predominantly those generated by the
Rosseinsky group at the University of Liverpool [6]. The
flow-sheet is converged with high conversion, carbon effi-
ciency and product purities. A techno-economic assessment
is used to summarise the capital and operations cost of the
process, suggesting that the process is viable as evidenced
by a high NPV and low cost per kilogram, largely owing to
the production of useful products. Making it a competitive
option amongst emerging chemical recycling processes. The
environmental assessment also provisionally suggests that
the process is superior to other plastic end-of-life processing
methods particularly concerning climate change, resource
use and human toxicity.

However, this theoretical analysis, like any model, has
inherent limitations. The assumptions made in models
often do not align with reality, particularly those concerning
complex and under-specified themes from reactor design
to policy-making. Any uncertainties in the hydrogenolysis
process should be addressed before implementation at any
scale nearing the industrial process presented in this report.
Despite the use of well-established methods in this report,
the results are indicative and not conclusive as several ap-
proximations had to be made as a result of the low readiness
of the process discussed. Ultimately, the contribution of
hydrogenolysis to a circular economy depends on the context
of its use, hydrogenolysis is a promising technology but how

and why it will be used will define its wider impacts.

6 Outlook

There are significant areas to be addressed before a decision
is made on the investment in hydrogenolysis, beginning
with investigations into the kinetics and properties of the
hydrogenolysis reaction and how it behaves at scale before
subsequent pilot-scale experiments. Additional catalyst
design and optimisation could help address current issues
surrounding product distribution and residence time whilst
allowing for more precise costing. One of the main
strengths of this process is the generation of useful and
marketable products, the refinement of which could enhance
the profitability of the process and further help offset the
environmental impact. A weaker area of the process is also
the utilities used; investigating other heat sources would also
be an important research area.

More information should also be gathered on the process’
social, environmental and economic impact. Given the
complexity of the process, variability and future changes
should be taken into account when assessing its future
implementation. Modelling should be holistic and diverse
ensuring future studies carry out scenario and sensitivity
analyses. Additionally, a more in-depth comparison to
alternative chemical recycling technologies could help inform
future investment decisions and policy-making regarding
plastic waste treatment.

Like any novel technology, hydrogenolysis of plastic waste
has its limitations and disadvantages as discussed in this
report. It should therefore be subject to standard regulation
with careful attention to its integration into the current
waste disposal infrastructure, accounting for sources of elec-
tricity, delivery of feed stock and perhaps most importantly
the usage of its products. With these factors considered,
hydrogenolysis could become a core part of sustainable waste
handling and contribute to building a circular economy.
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Prediction of Thermodynamic Properties and Phase Behaviour of CANDU Nuclear Reactor Fluid
Coolant using the SAFT-VR Mie Equation of State

Alkmini Nicolaides, Naser Al-Wsaifer
Department of Chemical Engineering, Imperial College London, U.K.

Abstract Canadian Deuterium Uranium Nuclear reactors (CANDU) form an essential power generation source for
Canada and a multitude of European countries. CANDU reactors are characterised by their use of deuterium oxide as
coolant as opposed to conventional light water of carbon dioxide coolants used in most nuclear reactors. However,
CANDU reactors suffer from deuterium oxide radiolysis - the splitting of coolant to deuterium and oxygen gas. This
poses a major threat to the safe and economic operation of CANDU reactors over their lifetime. Hence, clear separation
and recombining process of deuterium and oxygen back to deuterium oxide is essential. In light of this, this research
paper proposes the first theoretical models of deuterium oxide and the deuterium oxide + oxygen + deuterium mixture
present in CANDU reactors. The models of the pure components and mixtures were devised using the SAFTVR — Mie
equation of state along with computational techniques to estimate the parameters required by the equation of state to
generate the complete pure and mixture models. The models are used to predict crucial physical properties of deuterium
oxide and the vapour-liquid mixture under standard operating conditions as well as CANDU operating conditions. The
devised models demonstrate excellent accuracy, providing <5%AAD for the pure deuterium oxide, oxygen and deuterium
models as well as the mixture system. The aim of devised models is to be used in shortlisting the possible separation and
recombining techniques possible.

L Introduction
Choosing a nuclear reactor coolant is a crucial part of
the nuclear reactor design. The power output of any
nuclear reactor is determined by the rate of heat removal

coolant, leaving more neutrons to be absorbed by the
uranium fuel.

Steam lines

from the core via the primary coolant loop. In light of Light water
this, choosing an effective coolant is crucial for the safe _—esr::;'::)_?s—_ Gl
operation of a nuclear power plant. Pressurizer i[' ¥ 1]

An effective coolant will potentially have a high 2 . Coolant pumps ®
isobaric heat capacity and thermal conductivity (rapidly \
removing plenty of heat from the reactor core),
radiolysis resistance (not readily decomposing under the F:edwaf'?f
harsh radiation intensive conditions of nuclear reactor
core (NRC)), and a low neutron absorption cross section
(lower tendency of absorbing neutrons), meaning more
of the generated neutrons are reserved for fission Heavy
reactions. These essential physiochemical properties, 48 Cv(\;z:g; i

amongst many others, (chemical inertness, critical point,
cost) form the multi-variate problem of choosing a
primary coolant for a nuclear power plant.

With the plethora of industrial coolants present, it is
highly desirable to obtain models that can accurately
predict their thermophysical properties under reactor
conditions without the need for costly and time- '1‘::]&1‘;?_,
consuming experimentation — this is especially true moderator
under the severe nuclear reactor core conditions which
may entail pressures of up to 120 bar and extreme
temperatures radiation.

Canada Deuterium Uranium Nuclear Reactor
(CANDU) is a type of nuclear reactor that utilises
deuterium oxide as its primary coolant — Figure 1. It
currently provides 15% of Canada’s electrical power'.
Deuterium oxide is primarily used due to its reduced
likelihood of absorbing neutrons (neutron absorption
cross section) compared to light water, the primary

’

“~Fuel channel

Fig 1. A schematic of a typical CANDU nuclear reactor. Deuterium
oxide flows through the calandria, a series of small channels passing
through the reactor core. Deuterium oxide also passes through the
steam generators (carried by the orange pipes) boiling the secondary
coolant water to be sent to the generator. A pressuriser ensures
CANDU’s high operating pressure while coolant pumps ensure
deuterium oxide’s circulation around the reactor. (Spinks 2011)

However, deuterium oxide undergoes radiolysis —
splitting to form oxygen and deuterium upon gamma

coolant used in the most common nuclear reactor types,
the Pressurised Water Reactor (PWR) and Boiling
Water Reactor (BWR). Deuterium oxide’s lower
neutron absorption cross section allows for the use of
much lower uranium fuel enrichment (natural uranium
enrichment of 0.7%, instead of 4-5% enrichment used in
a typical PWR) as less neutrons are absorbed by the

radiation absorption. The following reactions are the
primary radiolysis reactions taking place in CANDU
reactors’:

1
D,0 (y,n) » D, + EOZ €]

D,0 (n) - DTO (2)
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Deuterium oxide is a costly coolant, amounting up to
20% of the initial nuclear power plant capital cost®.
Hence, it is of paramount importance to limit its
depletion from radiolysis and ensure its maximum
recovery. The recovery of deuterium oxide is achieved
by separating the deuterium-oxygen vapour mixture
from other vapours present and recombining deuterium
and oxygen back to deuterium oxide®. Therefore, the
objective of this research is to develop a model for the
mixture generated in CANDU?’s reactor core to predict
its physical properties, aiding in the choice of separation
and recombination techniques of the deuterium and
oxygen generated.

Previous attempts on generating empirical equations
of state of pure deuterium oxide, deuterium, and oxygen
have been made with great success, predicting physical
properties under a wide range of conditions and with
excellent accuracy. Interest in deuterium oxide’s
physical and nuclear properties began in the 1950s. With
the advent of the cold war, interest in nuclear weapons
programs led to extensive research in deuterium oxide’s
physical properties and eventually, the development of
its correlations. Kirschenbaum, I.# began the discussion
on the need for accurate deuterium oxide experimental
data and an accompanying empirical correlation.
Kesselman, P. M, Mamedov, A. M?, Plank et al’ and
Suvorov® followed by devising the first empirical
equation of state for liquid deuterium oxide. A series of
improvements to the existing equations of state using the
growing experimental data available at wider operating
conditions followed by Ikeda et al.’, Juza et al.'” and P.G
Hill et al'!. The final deuterium oxide equation of state
was generated by W. Lemmon et al'? reducing the
number of terms found in the previous equation of state.
Oxygen and deuterium follow a similar path with the
latest empirical equations of states generated by
Weber!?, Wagner!* et al, and Lemmon et al®>.

All the aforementioned equations of state are
empirical, using experimental data fitting to generate
correlations. Although exceptionally accurate, these
equations of state do not give much insight into the
quantum interactions present. Furthermore, a model for
the deuterium oxide + deuterium + oxygen mixture is
still absent. Hence, the work to be presented will provide
the first theoretical models, using the Statistical
Associating Fluid Theory (SAFT) equation of state for
pure deuterium oxide and the deuterium oxide +
deuterium and deuterium oxide + oxygen mixtures.

The report is structured as follows: in section II we
provide the theoretical background of Statistical
Associating Fluid Theory and the SAFT-VR Mie’s
equation of state and we describe the procedure we
followed to develop the pure and mixture models. In
section III the models’ performances are presented and
discussed by comparing the model predictions to
experimental data graphically and quantitatively using
%AADs. Lastly in section IV we summarise our key
findings, as well as the implications of our research, and
we discuss possible developments and improvements on
our current work.

IL. Methodology

In this section, we describe the background theory and
the procedure we followed for developing the pure
component models for deuterium oxide, deuterium, and
oxygen, as well as the two binary mixture models of
deuterium oxide + deuterium and deuterium oxide +
oxygen. Initially, the background theory of Statistical
Associating Fluid Theory (SAFT) is provided
(subsection II.A), followed by a description of the
SAFT-VR Mie equation of state and its molecular
parameters (subsection I1.B). Finally, the procedure for
developing the molecular models wusing the
SAFT-VR Mie equation of state is outlined - subsection
II.C.

II.A Statistical Associating Fluid Theory
The molecular framework underlying the Statistical
Associating Fluid Theory (SAFT) is a chain of fused
spherical segments that represent a molecule. The
segments interact with each other through an interatomic
potential. Numerous SAFT equations of state have been
developed!® 2225, each using varying types of potentials
to describe the segment-segment interactions.
Association  interactions —  strong, directional
intermolecular bonds — are modelled as interactions
through a square-well potential between association
sites on the segments!®.

The SAFT equations of state are expressed in terms of
the fluid’s total Helmholtz free energy A. The Helmholtz
free energy is given as a sum of contributions'®:

A = Aigeal ¥ Amono T Achain T Aassoc  (3)

Aidgeal 18 the free energy of an ideal gas mixture of the
molecules in the fluid. It incorporates the contributions
from the translational, rotational, and vibrational modes
of motion. Ameno 1S the residual free energy of each
segment. It incorporates the segment-segment
interactions taking place within the molecule. Achain 1S
the contribution from the fusing of the segments forming
a chain. Ao is the free energy from the strong
intermolecular association interactions, like hydrogen
bonding, in the fluid!®.

Wertheim’s Thermodynamic Perturbation Theory
(TPT) provides the basis for describing the relation
between site-site interactions and bulk fluid properties
of associating molecules'’. In his theory, molecules are
represented as single spheres. To model the strong
attractive interactions of associating fluids, he defines
acentrically positioned attractive sites. These sites
interact through a short-range square-well potential.
Wertheim takes advantage of the short range of the
interactions to introduce steric hindrance effects and
limit the number of intermolecular bonds each
association site participates in. This led to the
development of his Thermodynamic Perturbation
Theory. For particles with two attractive sites, Wertheim
derives the first-order TPT1 equation of state's.
Chapman et al. restates the TPT1 into a form which can
be used to describe mixtures of species of different sizes,
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with a non-spherical molecular shape, as well as with
different numbers of association sites'®. This is
incorporated in the SAFT equation of state!'s,

I1.B SAFT-VR Mie equation of state

SAFT Variable Range (VR) Mie is one of the many
equations of state belonging to the SAFT equation of
state family. The underlying molecular framework is a
chain of homonuclear (identical)  segments.
SAFT-VR Mie enables the manipulation of the range of
the segment-segment dispersion interactions, rendering
it a “variable range” equation of state. The
SAFT-VR Mie equation of state incorporates the Barker
and  Henderson  high-temperature  perturbation
expansion of the Amono term. In this perturbation
expansion, the segment-segment interactions are
described by the Mie potential (Figure 2) — a generalised
form of the Leonard-Jones potential’:

A
b= (B O - O] @

where ¢ is the depth of the potential well, o is the
segment diameter, A, and A are the attractive and
repulsive exponents, respectively®’.

SAFT-VR Mie’s improvements from its predecessor
equation of state make it an attractive option to model
the species of interest of this study. In general, a good
description of phase behaviour is easily achievable
through any potential with fixed attractive and repulsive
exponents, but most equations of state struggle around
the critical region. The thermodynamic property
prediction around the critical region is one point that
SAFT-VR Mie excels in. Additionally, most equations
of state struggle with the prediction of second-derivative
properties like isobaric heat capacity. Second derivative
properties are sensitive to the nature of the repulsive
interactions, captured by the repulsive exponent, A.
Thus, a more versatile potential, like the Mie potential,
which allows adjustment of the repulsive exponent, can
offer a better description of second derivative
properties?'. The SAFT-VR Mie equation of state serves
the purposes of this research well, as it enables accurate
phase behaviour prediction up to the critical point. It
also provides the means to achieve better predictions of
heat capacity, which is of interest in a nuclear reactor
setting.

0 (]

r

Fig. 2 Mie intermolecular potential, where ¢ is the depth of the
potential well, o is the segment diameter. (Sikorska 2020)

A set of molecular parameters need to be defined to
describe a pure component using the SAFT-VR Mie
equation of state — Table 1. Four of these parameters can
be seen in equation 4. These are the energetic parameter
&/ks (K), the size parameter ¢ (A), and the attractive and
repulsive exponents, /A, and /A, respectively.
Additionally, the molecular weight and the number of
segments comprising the molecule need to be specified.
For associating species, like deuterium oxide, the
association energy é&asoc/ks (K), the bonding volume
parameter K (A%, and the number of attractive
(hydrogen sites) N ST,, and repulsive (electron sites)
N ST, association sites, also need to be specified? 2.

Table 1 SAFT-VR Mie molecular parameters

Parameter Units  Description

m - Number of spherical segments

e/kn K Depth of Mie potential-well

c A Segment diameter

Aas Ap - Attractive and repulsive exponents
of the Mie potential

Eassoc/ kB K Depth of association square-well
potential

K A3 Bond volume parameter

N STe - Number of site types corresponding
to lone a lone electron pair

N ST, - Number of site types corresponding

to H atom

II.C Parameter estimation procedure

To develop equations of states to describe the target pure
components and binary mixtures, we used experimental
data to regress the molecular parameters of the SAFT-
VR Mie equation of state. This section describes in
detail the parameter estimation procedure for the pure
components and for the mixtures.

Firstly, we modelled deuterium oxide — the key
component found in the primary coolant of CANDU
nuclear reactors. We collected pseudo-experimental data
from NIST? for the saturation pressure (Py,,), saturated
liquid density (p**)!7, isobaric heat capacity (Cp) at
100 pbar, 1 bar, and 100 bar.
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Important to any equation of state is the ideal
contribution. There are various ideal gas models
available, which can be implemented in a SAFT
equation of state. We used the Reid ideal model, which
accounts for the translational, rotational, and vibrational
modes of motion of the ideal gas?*. The Reid coefficients
were obtained by fitting the Reid heat capacity
polynomial to the vapour phase heat capacity data at
100 pbar data, as the heat capacity is approximately that
of an ideal gas at this pressure. The molecular interaction
parameters were then estimated by regressing the
saturation and heat capacity data at 1 bar. The saturation
pressure and saturated liquid density were given a
weighting of 1.0 while the heat capacity was given a
weighting of 0.1 in the objective function. The
parameters estimated were the potential-well depth e,
the segment diameter o, the repulsive exponent A, and
association energy &assoc. Lhe existing SAFT-VR Mie
light-water parameters?? were used as initial guesses for
the parameter estimation.

SAFT models of deuterium and oxygen have already
been developed. Deuterium was modelled using another
SAFT equation of state — the SAFT-VRQ Mie equation
of state®® — while oxygen was modelled using the
SAFT-VR Mie equation of state?'. The SAFT-VRQ Mie
parameters of deuterium were implemented in the
SAFT-VR Mie equation of state. To improve their
performance in predicting the heat capacity, we
implemented the Reid ideal contribution in the
SAFT-VR Mie models of the two components.

Additional data was collected from NIST? for the
evaluation of the pure component models. For
deuterium oxide, the saturated molar volume and the
liquid density and heat capacity at 1 bar and 100 bar,
were collected. For deuterium and oxygen, data of
vapour density and heat capacity at 1 bar were collected.
The models were evaluated quantitatively with the
percent average absolute deviation %AAD and
qualitatively by examining the graphs of the properties
of interest.

We developed the binary mixture models of deuterium
oxide + deuterium and deuterium oxide + oxygen using
the finalised pure component models. Experimental data
for the mole fraction of deuterium and oxygen dissolved
in deuterium oxide at varying temperatures were
obtained from Scharlin et al.?® and Setthanan et al*’. In
addition to defining the pure component parameters
when modelling a mixture, it is required to estimate
unlike molecular interaction parameters to describe the
interactions between the different species present in the
mixture. In this study, we defined the ¢ and /A unlike
parameters. There are two approaches of doing so. The
first approach uses combining rules — an augmented
geometric-mean rule?® and the Berthelot rule'® to
estimate the unlike ¢ and A respectively. The second
method involves regression of the parameters using
experimental data. Initially, combining rules were used.
The combining rules underpredicted all experimental
data sets. Hence, they were used as lower bounds in the
parameter estimation, which was subsequently
conducted. The parameter estimation for the mixtures
was done by experimental data regression, similar to the
pure components. Finally, the mixture models’

performance was evaluated using average absolute
deviation (AAD) and %AAD values and graphs.
1. Results and discussion

In this section, we present the molecular parameters of
the SAFT-VR Mie equations of state for the pure
component (deuterium oxide, deuterium, and oxygen)
and binary mixture (deuterium oxide + deuterium,
deuterium oxide + oxygen) models. Additionally, we
evaluate the models’ performance in predicting
thermophysical properties. We first evaluate the pure
components in subsection III.A and then proceed to
discussing the mixture models in subsection III.B. For
each model we report the average absolute deviation
(AAD) or the percentage average absolute deviation
(%AAD) between the experimental data points and the
model predictions:

N, ata
. dat ZieXP _ Z}*node]
%AAD = 100 X - ®)
data 4 Z
i=1 3
Ngata
AAD = Z |2 — Zmode| (6)
Ndata =

where Ngaw is the number of data points and Z%*P and
Zmodel are the experimental and predicted values of
property Z, respectively. Along with the models
developed, we present the existing model and
experimental data of light-water in order to compare it
with deuterium oxide to demonstrate that the deuterium
oxide model can capture the slight differences in
thermophysical properties between the two isotopes.

III.A Pure component models

This section discusses all the pure component models
with a focus on the deuterium oxide model and its
performance in predicting liquid properties at 1 bar and
at 100 bar — CANDU reactor operating conditions. The
SAFT-VR Mie molecular parameters for each
component are reported in Table 2. The %AAD of the
pure component models’ predictions from pseudo-
experimental data are reported in Table 3. It should be
noted that the uncertainty of the NIST pseudo-
experimental data is reported to be below 0.1% for the
saturation and density data used, and 1% for the heat
capacity data®.

III.A.1 Deuterium oxide model performance for
saturation properties

The deuterium oxide model provides highly accurate
predictions of the saturation properties. The molar
volume in the temperature-molar volume saturation
envelope (Figure 3a) is predicted with a 2.1% AAD.
Small deviations are noticeable near the critical region
and in the low temperature region of the gas phase
branch. The saturation pressure (Figure 3b) is also
predicted with outstanding accuracy up to the critical
region — with 1.0% AAD. In both the saturation
envelope and the saturation pressure curve, the
deuterium oxide model is able to capture the slight
differences of deuterium oxide’s physical properties
when compared with light-water’s.

IIILA.2 Deuterium oxide model performance for
liquid properties at 1 bar
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solid) and deuterium oxide (red solid) along with the respective experimental data — blue circle and red triangle. The model accurately predicts the
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Fig. 4. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for light-water (blue solid) and
deuterium oxide (red solid) at 1 bar in the liquid phase along with the respective experimental data - blue circle and red triangle. The model predicts
light water and deuterium oxide’s molar density with exceptional accuracy while it slightly underestimates deuterium oxide’s heat capacity for the
same temperature range indicating the presence of nuclear quantum effects unaccounted for by the model.

The liquid phase of deuterium oxide is the most
interesting, yet challenging to model, as complex
intermolecular and intramolecular interactions play a
deterministic role in its thermophysical properties. In
this section we examine deuterium oxide’s model
predictions of the heat capacity and density of the liquid
phase at 1 bar. We examine limitations that the
SAFT-VR Mie equation of state faces when predicting
these liquid properties, as well as the implications this
has for the estimated SAFT-VR Mie molecular
parameters.

The deuterium oxide model predicts with exceptional
accuracy the pseudo-experimental liquid density at 1
bar, (1.1% AAD), capturing the subtle differences
between deuterium oxide and light-water — Figure 4a.
However, it is also observed that the model does not
capture the liquid density maximum, which is an
inherent limitation of the SAFT-VR Mie theory. By
closely examining the liquid density data of the two
components, one can make an interesting observation —
the heavier deuterium oxide has a lower density than its
light-water counterpart. This anomaly in the density

indicates that the arrangement of the molecules in the
liquid is what has a determining effect on its density.
Deuterium oxide forms on average more hydrogen
bonds per molecule (3.76) than light-water (3.62)%,
giving it a more organised, tetrahedral structure
(Figure 5) when compared to light water. Deuterium
oxide’s tetrahedral structure has a greater intermolecular
void, as opposed to light water’s more disordered
structure, causing deuterium oxide to have a lower
density?’. The density anomaly is analogous to the more
familiar phenomenon observed in light-water and ice;
upon freezing of light-water to form ice, all molecules
participate in four, tetrahedrally-oriented hydrogen
bonds*. The molecules become arranged with a low
packing efficiency, resulting in a less-dense solid phase
compared to the liquid phase?®. To capture this effect
when modelling the liquid density, the four-body
intermolecular interactions would have to be
considered.
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SAFT-VR Mie faces a limitation when it comes to
modelling fluids when many-body interactions are
present. These many-body interactions have a prominent
effect on the physical properties of the components they
are affecting, as observed in deuterium oxide.

SAFT uses an effective-pair-density function to
describe associating fluids. It assumes that only two-
body intermolecular, association interactions are taking
place in the hydrogen-bonding liquid. As a result, the
hydrogen-bonding molecules in the liquid phase are
modelled as dimers, instead of tetrahedrals!” !%. Since
SAFT-VR Mie does not incorporate many-body
interactions, it implicitly accounts for the density in the
association energy parameter, €assoc, Which relates to the
hydrogen bond strength. We speculate that when
regressing the SAFT-VR Mie molecular parameters, the
association energetic parameter, €xssoc, 1S €stimated to
have a lower value than it would have if it were
modelled taking the tetrahedral arrangement into
consideration. This is further supported by regressing
the experimental data for the pure model using a lower
relative weighting on the density data — the quantum
effects introduced by the density data, including the
strength of the hydrogen bonds, will have less of an
effect on the model parameters®2. The resulting model
parameters predict a stronger hydrogen bond strength
than the previous model, reducing the effect of the
tetrahedral structure formation on the hydrogen bond
strength as excepted.

The isobaric heat capacity is predominantly defined by
the ideal contribution, with the remaining residual
contribution being affected by the hydrogen bond
strength3? — g,50c. The model consistently underpredicts
the pseudo-experimental liquid heat capacity data at 1
bar (Figure 4b) with a 5.4% AAD. The underprediction
of the heat capacity is speculated to be a byproduct from
the model’s interpretation of the intermolecular
interactions present when regressing the density data —
interpreting the lower deuterium oxide density
compared to light water as weaker hydrogen bonds.
This, in turn, causes the underprediction of the heat
capacity by the model.

Studying the performance of other classical
thermodynamic models of water, it becomes evident that

without quantum treatment and consideration of many-
body interactions, it proves challenging to reproduce the
heat capacity with greater accuracy’*3° — the light water
model proposed by Graham et al?? uses alternative, more
sophisticated parameter estimation techniques to reach
the excellent light-water model performance
demonstrated (Figure 4b). The SAFT-VR Mie equation
of state does not explicitly account for quantum effects.
They are to an extent implicitly incorporated in the
molecular parameters, as heat capacity was used to
regress the model parameters. To predict the heat
capacity with greater accuracy, the heat capacity data
should be given a greater weighting in the optimisation
function used to optimise the deuterium oxide model
parameters. Quantum effects would then be implicitly
accounted for in the molecular parameters. This,
however, results in poor modelling of the phase
behaviour and loss of physical meaning of the molecular
parameters.

Comparing deuterium oxide’s model with the light-
water model developed by Graham et al?? (Table 2), it is
observed that deuterium oxide’s association parameter,
€assoc, 18 slightly lower than light water’s association
parameter. This suggests weaker hydrogen bonding in
deuterium oxide when compared with light water. This
is contrary to literature belief — X-ray spectroscopies and
observations of physical properties, like the higher
melting point of deuterium oxide2.

IIILA.3 Deuterium oxide model performance at
operating conditions
Once we have tested and validated the performance of
the deuterium oxide model for saturation and liquid
properties at 1 bar, we then examined how the model
performs under CANDU reactor operating conditions —
100 bar and 500 K — 550 K 3. The model predicts the
liquid density remarkably well across the liquid
temperature range. The model’s predictions of heat
capacity become increasingly more accurate as
temperature increases, with a perfect prediction of the
heat capacity within CANDU’s operating temperature.
Pressure, as expected, does not have a significant effect
on the liquid properties, as the values and curvature of
the experimental data and model prediction curves at
100 bar closely resemble the model predictions at 1 bar
over the same temperature range (figures 6a and 6b).
Temperature, by contrast, has a significant effect on
the physical properties and accuracy of the deuterium
oxide model. The heat capacity remains relatively
steady and begins to gradually increase around 450 K.
This gradual increase in heat capacity can be attributed
to the nuclear quantum vibrational modes of motion
(stretching and bending) beginning to activate as the
temperature increases’’. The vibrational modes of
motion introduce their contribution to the heat capacity
through the ideal gas heat capacity contribution.
Another interesting effect is the SAFT-VR Mie
model’s increasingly improving performance with the
increase in temperature. The model initially
underpredicts the heat capacity identically to the model
predictions at 1 bar — the effect of the tetrahedral
structure of deuterium oxide on the heat capacity
prediction is still present. Yet, at higher temperatures,
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Fig. 6. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for light-water (blue solid) and
deuterium oxide (red solid) at 100 bar (CANDU operating pressure) in the liquid phase along with the respective experimental data — blue circle and
red triangle. The model predicts light-water and deuterium oxide’s density with exceptional accuracy across the liquid phase temperature range.
Deuterium oxide’s heat capacity is predicted by the model with an increasing improvement, starting with a slight underestimation and progressively
improving with a perfect prediction at CANDU?’s operating temperature (500-550 K and depicted in a green band) indicating the presence of nuclear

quantum effects at lower temperatures unaccounted for by the model.

where the liquid is more disordered, the intermolecular
attractions more closely resemble two-body
interactions®2. Thus, at higher temperatures the model’s
predictions become more accurate, as SAFT’s
interactions more closely resemble two-body
interactions.

III.A.4 Deuterium and oxygen models performance
for vapour-phase properties at 1 bar

To complete the CANDU reactor primary coolant
mixture that occurs due to deuterium oxide radiolysis,
we test the deuterium and oxygen model performances.
The two models demonstrate perfect performance in
predicting the vapour phase density and heat capacity —
Figures 7a and 7b. The gases display close to ideal
behaviour, which is why in the data points have almost
identical values.

In the total Helmholtz free energy expression of a
component, the ideal contribution, Aigeal, is the most well
understood and well-defined. The gases at 1 bar behave
almost ideally. Thus, the model’s predictions perfectly
overlap with the gaseous density data points. The same
applies to the heat capacity?. Since the Reid ideal heat
capacity coefficients were fitted specifically for oxygen
and deuterium, as expected, the models match the data
exactly. Comparing the deuterium and the hydrogen heat
capacity data, it is clear that there are differences in their
values, which are captured by the deuterium model.

II1.B Binary mixtures models performance
This section presents and discusses the two binary
mixture models (deuterium oxide + deuterium,
deuterium oxide + oxygen) and their performance in
predicting the mole fraction of deuterium and oxygen in
deuterium oxide. The additional unlike molecular
interaction parameters describing the mixtures and the
corresponding AAD values are presented in Table 3.
The model predicts the amount of deuterium and
oxygen dissolved in deuterium oxide with %AADs of

5.1% and 17%, respectively. It is worth noting that the
%AADs are misleadingly high, due to the very small
order of magnitude of the mole fraction values of
dissolved deuterium and oxygen in deuterium oxide.

The observed disparity between the theory and the
experimental data (Figure 8) could firstly be attributed
to the structure and dynamics of deuterium oxide. The
limited insight into the hydrogen bond network in
deuterium oxide impedes the accurate modelling of the
interactions of the dissolved gases in deuterium oxide?.
Additionally, information regarding the accuracy of the
experimental data is lacking. As outlined in Scharlin et
al?”’, ideality is assumed initially, when determining the
amount of gas dissolved in the solvent. The mole
fraction values are later corrected for non-ideality.
However, the accuracy of this approximation is not
stated. Instead, only the error associated with the
experimental procedure is given.

The optimal unlike parameters for the mixture were
obtained by regression of the experimental data.
Initially, though, combining rules were used to estimate
the unlike parameters. The combining rules tended to
underpredict the experimental data. When the
combining rules were used, the predictions generated
70% %AAD for the mole fraction of deuterium
dissolved in deuterium oxide and 29% for the mole
fraction of oxygen dissolved in deuterium oxide. The
unlike parameters obtained from the combining rules
were not chosen as the optimal parameters, since
experimental data and a better parameter estimation tool
are available. However, combining rules demonstrate
that even if there are no experimental data available to
regress the unlike parameters, the theory can provide
reliable predictions. It is not uncommon that in the
absence of experimental data, combining rules would be

relied on for unlike parameter estimations'®.
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Fig. 7. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for deuterium (red solid) and
oxygen (black solid) at 1 bar in the vapour phase along with the respective experimental data — red triangle, black diamond and blue circle for
hydrogen. The model predicts the molar density and heat capacity with exceptional accuracy for all the species across the whole tested temperature

range — a tribute to the ideal behaviour of the vapours.

Table 2. SAFT-VR Mie parameters for the pure components: deuterium oxide, deuterium, oxygen and light-water

Model Parameters
m (ek)K_ a/A Ar Ja (Eassoc/kB)/ K KIA3 N ST: N ST

D,O 1.257 382.0 2.824 27.98 6.000 1590 177.6 2 2
D, 1.000 21.20 3.154 8.000 6.000 - - - -
O, 1.000 81.48 2.967 8.922 6.000 - - - -
HO * 1.257 351.2 2.802 25.13 6.000 1630 177.6 2 2
* 1,0 model by Graham et al® for comparison with D,0 model
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Fig. 8. SAFT-VR Mie’s solubility prediction of the solubility variation with temperature for deuterium (red solid) and oxygen (black solid)
vapour mixture in liquid deuterium oxide along with the respective experimental data — red and blue triangle for deuterium and black diamond for
oxygen. The different triangle colours represent the different deuterium solubility data sources with the red and blue triangle being from Setthanan?®,
and Scharlin?’. The two SAFT-VR Mie models (D,0 + D, and D,0 + D,) exhibit a concave shape while the experimental data for both components
exhibit a convex shape. Although the difference in shape between the experimental data and the model is noticeable, the scale at which the solubility
data is exhibited is extremely small, demonstrating a significantly accurate mixture model.

Table 3. Mixture model unlike parameters and absolute average deviations (AAD) and %AAD from mole fraction, x, experimental data

Model Unlike Parameters AAD x 107 AAD(%)
(e/kB)/K X X

D20 + D2 136.9 20.97 9.2 5.1

D20 + O2 183.5 15.16 45 17
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IV. Conclusions

To conclude, this research sought to generate theoretical
models capable of predicting thermophysical properties
of the nuclear coolant mixture found in CANDU reactor
cores. We established a deuterium oxide SAFT-VR Mie
model and improved upon existing deuterium and
oxygen SAFT models. The pure models predict heat
capacities and densities with excellent accuracies, both
at 1 bar and at CANDU reactor operating conditions —
100 bar. The mixture models predict the deuterium +
deuterium oxide and oxygen + deuterium oxide binary
mixture solubilities with slightly less accuracy.
Nevertheless, the mixture model performance is more
than adequate for an engineering purpose.

The research’s significance lies in its aid in the
selection of separation techniques of the generated
vapours in CANDU reactors and the added insight into
the quantum effects present in the coolant mixture. The
models will reduce the need for experimental data under
CANDU operating conditions for deuterium and oxygen
to determine their physical properties and hence decide
on the suitable recombination methods. Furthermore,
deuterium oxide’s SAFT-VR Mie model parameters and
their comparison to light water’s parameters, provide
insight on the quantum effects present and their
respective strengths, indicating that hydrogen bonding is
weaker in liquid deuterium oxide compared to light-
water hydrogen bonding. Furthermore, deuterium
oxide’s parameters validate the observed differences in
physical properties between deuterium oxide and light
water — the differences in liquid densities and heat
capacities.

In the greater picture, this research further validates
SAFT-VR Mie’s theoretical model of molecules and
their interactions by demonstrating highly accurate
predictions of physical properties in both pure and
mixture systems. Furthermore, this research introduces
a starting point for theoretical analysis of fluids in
nuclear reactor settings.

Nuclear reactors contain a complex mixture of many
fluids. Hence, the mixture models devised can be greatly
improved by introducing the missing components found
in CANDU liquid coolant mixtures. The introduction of
tritium oxide, T,0, and deuterium tritium oxide, DTO,
into the liquid phase can be an area of further study,
probing into their effect on the mixture physical
properties. Additionally, including interactions between
deuterium and oxygen in the vapour phase may prove
beneficial to the prediction performance of the model.
Finally, compiling further experimental data for the
current mixture system will prove valuable in improving
the current mixture model as well as be used to validate
the model performance in a wider range of operating
conditions.
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Electrochemical Reduction of CO»: Insights into Cobalt Single-Atom Catalysts via a Decoupled Two-
Step Synthesis
Hashem Ghandour and Mencia Izaga
Department of Chemical Engineering, Imperial College London, UK.

Abstract Electrochemical CO: reduction offers a sustainable solution to environmental challenges by converting CO2
emissions into valuable chemicals and fuels, using excess renewable energy to close the anthropogenic carbon cycle. This
study explores single metal atom catalysts embedded in nitrogen-doped carbon (MNC), with emphasis on cobalt due to
its potential high activity for the reduction of CO2 to CO. Employing a two-step decoupled synthesis method, the aim was
to successfully integrate cobalt into the highly porous nitrogen-doped carbon matrix, while preventing nanoparticle
formation that typically limits SACs efficiency. Characterisation of the catalyst material using X-ray Photoelectron
Spectroscopy (XPS) suggests high metal and oxygen content (8.39 wt% cobalt and 9.76 wt% oxygen respectively), which
often entails moderate catalytic performance due to nanoparticle formation. However, electrochemical testing exhibited
high CO faradaic efficiency (FE), reaching a maximum value of 97% at -0.8V vs. RHE, with a total current density of
17.6 mAcm?. These results positioned TAP900@Co as a competitive alternative amongst other state-of-the-art Co-SACs.
Future work should include advanced analytical techniques to confirm cobalt aggregation into the formation of other
species and elucidate their role in the catalyst’s performance.

Keywords: electrochemical CO2 reduction, single atoms catalysts, cobalt, transmetalation

1. Introduction

In 2015, leaders from 55 countries worldwide agreed on
an international treaty aimed at combatting global
warming, famously known as the Paris Agreement. This
pact aspires to limit the increase of the global average
temperature to no more than 1.5°C by the end of this
century, primarily through the reduction of greenhouse
gases (GHGs) emissions [!l. Fast forward to 2021, the
AR6 Climate Change report predicted a concerning
increase of 0.45°C for every 1000Gt of cumulative CO»
emissions . Furthermore, the International Energy
Agency (IEA) recorded a significant 36.8Gt of CO2
emissions in 2022, originating from global energy-
related sources like power plants, automobiles and
airplanes 1!, This data serves to reveal the role of COz as
one of the primary anthropogenic contributors to GHG
emissions and emphasizes the necessity of long-term
approaches for full decarbonisation, such as COz capture
and utilisation, in addition to emission reduction
technologies ™.
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Figure 1. Schematic of the electrochemical set-up for the eCO2RR.
Reprinted from Ref ['),

The electrochemical CO: reduction reaction, or
eCO2RR, has emerged as a promising technology to

address these environmental concerns and to ultimately
close the anthropogenic carbon cycle ). As seen in
Figure 1, by utilizing electricity derived from renewable
sources and protons from an aqueous electrolyte, the
eCO2RR can transform CO: into a wide variety of
feedstock chemicals, valuable for processes like fuel
production, thereby standing as a promising way to
eliminate our dependence on fossil fuels at a commercial
scale. Nevertheless, the scale-up of this technology faces
several barriers, including the thermodynamics and
kinetics of the reaction, catalytic efficiency and stability,
product separation and the purity and sourcing of CO2
[51

One of the main challenges arises from the
competition of eCO2RR in aqueous electrolytes with the
hydrogen evolution reaction (HER), due to the
overlapping of their thermodynamic potentials . In
addition, the reduction of CO: itself can result in
multiple products (Figure 1) which share similar
thermodynamic potentials [, causing them to compete
during the reduction process. Over time, researchers
have explored different catalysts, reaction conditions
and electrochemical set-ups with the aim of achieving
high activity and stability catalysts that can selectively
produce desired products, at low overpotentials.

Despite the difficulties in the development of
these catalysts, the economic value of e CO2RR products
remains an incentive to continue the pursuit of more
effective alternatives 8. As illustrated in Figure 2,
formic acid and propanol emerge as the most profitable
eCO2RR products. Metals such as Sn, Bi, Hg, In and Pb
have been shown to produce formic acid as their main
product M1 due to their weak adsorption energy with
the CO2" intermediate radical. Despite the high
profitability of formic acid and propanol, their current
low production levels (0.2MtC/yr and 0.1MtC/yr
respectively) B, are insufficient to meet the targets of
the Paris Agreement. In contrast, Ca+ products like
ethylene (120MtC/yr) and ethanol (40MtC/yr) offer a
balance between profitability and the potential for an
impactful eCO2RR [,
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The state-of-the art catalyst for hydrocarbons
containing more than one carbon is copper (Cu), since it
has demonstrated a unique ability to facilitate C-C
coupling "%, It is the only metal that has weak binding
to H2 and moderate binding to COz, facilitating the
further reduction of *CO into Cz+ products, rather than
the desorption and subsequent formation of CO:z or the
HER. However, Cu is still far from an ideal solution.
The main issue lies in its lack of selectivity due to its
involvement in several reaction pathways, resulting in a
wide range of products which diminishes its
effectiveness in selectively yielding a single desired
product. This was illustrated in the work of Kuhl et al.,
who identified a total of 16 products when studying Cu
across a range of potentials. The highest faradaic
efficiency (FE%) for a Cz+ product was the one for
ethylene, 23% approximately ['!l.  Additionally, the
production of longer chain hydrocarbons includes
multiple proton and electron transfer steps, which
require high overpotentials (> than 1V), leading to
energy inefficiencies within the process ['2I.
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Figure 2. Market price of select CO: recycling products as a
function of energy content. Reprinted from Ref ¥,

The formation of CO is a simpler
electrochemical process involving the transfer of two
protons and two electrons, making it a more practical
option for study and application. Furthermore, it is
usually accompanied by the HER resulting in syngas
production, which can be used as feedstock in synthetic
fuels production via the catalytic Fischer-Tropsch
process 131, Currently, precious metals like gold (Au)
and silver (Ag) are the state-of-the art catalysts for CO
formation, achieving high selectivity towards CO at low
overpotentials ['¥), For example, ultrathin Au nanowires
have shown the ability to reduce CO2 to CO with a
selectivity of 94%, at a potential of -0.35V vs. RHE 1%,
Silver nanoparticles have achieved greater than 95%
selectivity towards COz, at a potential of -0.8V vs. RHE
(16 Despite their high performance, earth-abundant
catalysts are being studied as an alternative to reduce the
reliance on these expensive and limited metals.

Single-metal-atom catalysts (SACs) offer a
promising option. Isolated single-metal-atoms are
evenly distributed on a conductive support, typically
made of carbon-based materials such as carbon
nanotubes, graphene or amorphous carbon U7, The

uniqueness of these catalysts lies in their configuration.
Each metal atom is individually anchored to the support,
ideally allowing every metal atom to act as an active site,
thus maximising the utilisation of the material. This
minimises metal wastage that is typically present in
conventional, aggregated metal catalysts, where a
significant number of metal atoms are rendered inactive
due to lack of accessibility '],

Building upon the promise of SACs as optimal
catalysts for eCO:2RR, efforts have been directed
towards metal-nitrogen-doped-carbon (MNC) catalysts.
These MNC materials can be sustainably prepared from
sources like biomass and feature porous structures that
ensure active sites are electrochemically exposed and
conductive, as they are supported on a carbon substrate
1A range of metal centres in MNC catalysts,
including Mn, Fe, Ni, Co and Cu have been investigated
to demonstrate their effect on activity and selectivity 2,
The comparison between these metals is depicted in
Figures 3a-d. Fe is the most active catalyst and has the
ability to initiate eCO2RR at low overpotential, due to
the strong binding affinity to *COOH. Ni presents the
highest selectivity towards CO, attributed to the weak
bond with *H, hindering the HER. As a result, Ni and
Fe containing catalysts are considered some of the most
promising materials

In the synthesis of SACs, the final treatment
often involves heating the catalyst material, which
already contains the metal centre integrated in the
nitrogen-doped carbon support, to temperatures ranging
from 600°C to 1000°C. These high temperatures are
known to enhance the conductivity of the material !,
However, they can also lead to the formation of metal
oxides, nitrides and carbides, creating a diverse range of
active sites, and thereby complicating the ability to draw
clear conclusions regarding catalyst performance.
Furthermore, such elevated temperatures can also
facilitate the carbothermal reduction of metal ions into
pure metal, which lacks functionality as an active site.
At temperatures exceeding 800°C, it has been shown
that a thin carbon layer can form on the elemental metal
(221 This protects the metal atoms from being removed
during acid washing and leads to their retention in the
final catalyst, reducing the efficiency and utilisation of
the catalyst material.

A new synthesis method (Figure 4) was
proposed recently to prevent these challenges and limit
the undesired aggregation of active sites, which occurs
due to the system’s inclination towards stability and the
high surface energy of free-standing atoms 1?2, This
approach decouples the synthesis of the support material
from the low temperature metal coordination step
through transmetalation, avoiding the production of
metal oxides, nitrides and carbides. One recent study
following this method showed promising outcomes for
Ni and Fe metal centres, leveraging exceptional porosity
to both inhibit aggregation of single atoms and
maximise active site utilisation. However, such high
active site utilisation comes at the compromise of site
density, which inhibits the catalytic activity of the
material %], Future work should aim to enhance metal
loading without sacrificing performance to establish the
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Reproduced from Ref 14H19],

method as a commercially viable option for catalyst
production.

The synthesis mentioned involves pyrolysis of
the organic precursor 2,4,6-triaminopyridimine (TAP)
and a MgCl..6H-0 templating agent at 900°C to provide
an adequate balance between nitrogen content,
electricalconductivity, and porosity 4. This is followed
by transmetalation, where a desired metal atom is
coordinated through low temperature wet impregnation
in methanol reflux, replacing Mg. This process led to
59+6% and 45+14% electrochemical utilisation for
TAP900@Ni and TAP900@Fe respectively, which are
unprecedented figures for MNC catalysts [,
TAP900@Fe displayed a slightly lower utilisation,
which can be attributed to the inherent contamination of
inactive Fe sites within the uncoordinated TAP900 as
shown in Figure 5, where the metal content was
calculated from inductively coupled plasma mass
spectrometry (ICP-MS) measurements.

The notable utilisation is a result of the high
mesoporosity of the catalyst, which arises from the
interaction between TAP and Mg*" salt. Upon heating,
TAP organises around the salt’s water molecules
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Figure 4. Schematic of the synthesis for the preparation of pyrolyzed TAP 900 and the subsequent low temperature metal coordination M. Reproduced

from Ref [°],

through hydrogen bonds, melting together to form a
homogeneous liquid that polymerizes without forming
grain boundaries. This process yields a material with
high porosity once acid washed, hindering aggregation
and facilitating a relatively high density of
electrochemically active sites on the nitrogen-doped
carbon support (~3295m?g!) 5. The selectivity
improvements are apparent when comparing with the
previous data displayed in Figure 3, as TAP900@Fe
presents a FEco of 93.5+3.7% at -0.55V, while
TAP900@Ni displays a FEco of 95.3+4.7% at -0.59V,
both at stable current densities of approximately
15mAcm? %)

The acute sensitivity of cobalt to different
coordination environments has been a subject of
interest, with recent studies highlighting its potential for
high FE in CO production. Although the CoNC material
in Figure 3c displays a poor performance over the
potential range applied, research investigating alternate
support structures has achieved efficiencies towards CO
exceeding 99% between -0.73V and -0.77V vs. RHE 261,
The inconsistent performance between materials
underscores the need for further investigation into the
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intrinsic catalytic abilities of cobalt for the eCO2RR. The
synthetic method used in this paper that coordinates
cobalt into TAP900 through transmetalation, seeks to
clarify these ambiguities. By leveraging the material’s
inherent high porosity, the intrinsic activity of cobalt can
be accurately quantified, due to the direct interaction of
e CO2RR intermediates with fully exposed Co single
atom sites. Research conducted into the d-band centres
of Ni, Fe and Co supports the premise that cobalt’s
intrinsic activity is high 1?7, as opposed to showing good
performance only in specific tailored environments.
This is evidenced by the proximity of cobalt’s d-band
centre to the fermi level, which facilitates the electron
transfer from the metal d-band to the adsorbate.
Characterisation showed that the d-band of Ni was
closest to the fermi level, followed by Co and Fe. The
CO: adsorption energy on the Co active site tested was
also significantly stronger than that of the Ni active site,
further substantiating the appeal of cobalt as a high
performing electrocatalyst for CO2 reduction.
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Figure 5. Metal loadings calculated through ICP-MS of different
TAP900-derived catalysts. Reproduced from Ref %),

2. Experimental procedure

Synthesis. TAP (97% Sigma Aldrich) and magnesium
chloride hexahydrate (99% Sigma Aldrich) were
measured in a weight ratio of 1:8, then ground to a
homogenous powder with a pestle and mortar. The
mixture was then pyrolysed in a ceramic crucible that
was filled to 1/3 capacity. The pyrolysis was conducted
at 900°C for 3 hours in a N2 atmosphere (>99.998%,
BOC). The N flowrate was maintained at 300mlmin'
and the heating rate was set at 5Cmin’'. The material was
collected, ground to a fine powder, and then acid washed
overnight in 2M HCI, (prepared by dilution of fuming
37%, Merck), to eliminate any residual MgCl> and
MgO. After acid washing, the powders were filtered
extensively with DI water, then dried at 80°C under
vacuum conditions. The final product was designated as
“TAP900”.

Cobalt Coordination. To coordinate cobalt into the
material, 60 mg of TAP900 were added to a 250ml
round-bottom flask containing 75ml of MeOH (AnalaR
NORMAPUR Reag. Ph. Eur.,, ACS, VWR). This
mixture was stirred until a uniform dispersion was
achieved. Following this, a 75ml solution of 25 X 1073
M CoCl..6H20 (98% Sigma Aldrich) in MeOH was
prepared. The flask was connected to a reflux condenser

and subjected to a low temperature wet impregnation
method, where it was continuously stirred at 90°C for 24
hours. Next, the material was filtered and rinsed with
MeOH. It was then washed overnight with 0.5M H2SO4
(95-98% Sigma Aldrich) to remove any aggregated Co
species. The cobalt  coordinated  catalyst,
(TAP900@Co), was filtered thoroughly with DI water
to remove the acid and dried at 80°C under vacuum.

Electrode preparation. To prepare the cathode ink,
12mg of TAP900@Co, and 40 mg of ball milled
polytetrafluoroethylene, (PTFE), were ground to a
homogenous powder with a pestle and mortar. PTFE
was employed to act as a binder, due to its adhesive
characteristics, and provide a hydrophobic layer
between the electrolyte and catalyst. The hydrophobicity
of PTFE prevents the electrolyte flooding onto the
electrode, therefore allowing for the formation of a
three-phase interface between the COz passing through
the flow field, the cathode, and the aqueous electrolyte
(231, Since the solubility of CO: presents mass-transport
limitations, it was crucial to form this interface as a way
of ensuring consistent supply of gaseous CO:z to
maintain the concentration gradient that allows for
diffusion from the bulk of the electrolyte to the catalyst
surface. The mixture was dispersed in 10mL of
isopropanol and spent 10 minutes in a sonication bath,
followed by 10 minutes under probe sonification for
further homogenisation. The probe sonicator followed a
pattern of 5s on 5s off to avoid excess heat generation
that could possibly damage the sample. The cathode ink
was then air-brushed onto the hydrophobic side of 4x4
cm carbon paper, (GDL — Sigracet 39BB), which was
then cut into 16 cathodes, each measuring 1 cm?. The
dilution with IPA and subsequent homogenisation
served to reduce the probability of the air-brush
clogging, and effectively disperse the particles in the ink
for even spraying onto the electrode. For the anode ink,
100 mg of 40wt% Pt/C was dispersed in a 12mL solution
of 80% DI water and 20% ethanol by volume. The
ensuing steps taken were identical to the cathode
preparation.

Anod Flow field
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Anolyte FUMASEP
compartment membrane

Figure 6. Image of the electrochemical setup.

Cell assembly. The electrolyte was prepared from 30ml
of 0.5M KOH. It was placed in a centrifuge and
saturated with CO2 for 30 minutes to ensure sufficient
supply of CO. at the electrode surface. The
electrochemical cell used had a gas diffusion
configuration and consisted of a flow field, catholyte
compartment, anolyte compartment, 4 gaskets, a
FUMASEP membrane that has been wet with DI water
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in advance, and an anode end plate. Copper tape was
added around the flow field and end plate to ensure
efficient current distribution, improving contact with the
electrodes. The compartments were then assembled as
shown in Figure 6. Each compartment was separated by
a gasket, which provided an additional seal to the cell,
preventing any liquids or gases from escaping or
entering. Once the cell was put together and tightened,
the Ag/AgCl reference electrode was screwed into the
catholyte compartment, and 1.5 ml of KOH electrolyte
was added to the catholyte and anolyte compartments.

Electrochemical tests. Gas chromatography (GC) was
paired with chronoamperometry (CA) at varying
potentials utilizing an AUTOLAB PGSTAT302N
potentiostat. ~ This  configuration enabled the
simultaneous analysis of gaseous products and
assessment of the electrocatalyst's performance. The GC
is equipped with a Flame Ionisation Detector (FID),
which is highly sensitive, for the detection of carbon-
based products, alongside a Thermal Conductivity
Detector (TCD) for sensing Hz. Before electrochemical
measurements were taken, the GC was conditioned to
remove any residual contamination from prior
experiments. This required raising its temperature to
210°C and letting in Ar, Hz and air at 10psi, 20psi and
5psi respectively.

Prior to CA, Frequency response analysis
(FRA) and cyclic voltammetry (CV) measurements
were conducted to correct the resistance of the
electrolyte between the electrodes and stabilise the
catalyst surface by forming an interface between the
electrode and the electrolyte. All three tests were run
using NOVA 2.1.4 software. Post-resistance adjustment,
CV was conducted between 0 and -0.5V vs Ag/AgCl for
10 cycles with a 50% internal resistance (iR)
compensation. Subsequently, CA was performed at -1.2,
-1.3, and -1.4V vs. Ag/AgCl, each for 2400 s. The
overpotential conversion to vs. RHE, is defined as:

Erup = Eagjagar + 0.59V (1)

The gas chromatography (GC) system
performed three injections during each CA run, each
lasting 16 minutes, (13.25 min injection and 2.75 min
cooling down), to monitor the formation of gaseous
products, with peaks and currents noted at 300, 1260,
and 2220 s into the CA. Each peak is proportional to the
concentration of the detected gaseous species. Partial
currents j; for each product i were calculated as follows:

. AXF X Qflow (2)
Ji = ______i7_______
m

where A is the integrated area under the peak for each
gas i from the GC data, F is the calibration constant
specific to each gas i, V,, is the total volume of gas i that
passes through the GC and Qfy,,, is the rate at which
gas i is passed through the GC. Partial current densities
were found by dividing j; by the surface area of the
working electrode S (1cm?). The Faradaic efficiency
(%) of each product i was then found with:

FE, =2 x 100 )
Jtotal

where j;,+q; 1 the total current density measured during
each CA.

Material Characterisation. X-ray Photoelectron
Spectroscopy (XPS) was performed in a Thermo Fisher
K-Alpha XPS system and analysed using Avantage
software. All spectra were calibrated relative to the
carbon Cls peak at 284.8 eV for correcting for charging
effects.

3. Results and Discussion

Characterisation Results. XPS confirms the
incorporation of Co into the TAP900 framework,
quantifying elemental composition in TAP900@Co by
both weight (wt) and atomic (at) percent, as detailed in
Table 1. The at% is derived by normalizing the wt%
with the atomic mass of each element. This shows the
primary constituents of TAP900@Co: carbon, followed
by nitrogen, oxygen and cobalt.

Table 1: Compositions by weight % and atomic % of TAP900@Co,
calculated from XPS data.

Element Weight % Atomic %
Cls 72.64 81.1
Ols 9.76 8.18
N1s 9.21 8.82
Co2p 8.39 1.91

TAP900@Fe synthesized in another work from
TAP900 with 0.18 wt% Fe (from contamination of the
TAP precursor) following the same method, allowed the
coordination of 0.520 wt% of Fe single atoms 2°1. This
low metal content, characteristic of SACs, indicates the
formation of highly dispersed single metal atoms on the
surface of the catalyst. In contrast, TAP900@Co’s high
metal content of 8.39 wt% implies significant cobalt
aggregation and the consequent formation of
nanoparticles. This is further supported by the
pronounced peak for Co2p in the XPS spectrum in
Figure 7, where the peak’s magnitude correlates with
elemental concentration 8. The Ols spectrum
additionally indicates a high oxygen content, suggesting
substantial oxidative characteristics of the sample.

The synthesis of TAP900@Co includes several
critical steps where any slight deviation could introduce
undesired high metal content. A crucial aspect is
achieving the proper nitrogen content, around 4.5 at%
(241 which provides the necessary number of lone
electron pairs for the coordination of cobalt within the
TAP framework. This step requires precise pyrolysis
conditions. Should the furnace fail to reach or maintain
the necessary temperature, or if the sample tube is not
sealed properly, it could detrimentally impact the
structural properties of TAP900. Other analytical
techniques should be used to confirm the findings of
XPS. Inductively coupled plasma mass spectroscopy
(ICP-MS) could be applied to verify the chemical
composition of the catalyst, since it is highly sensitive
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Figure 7. X-ray photoelectron spectra of TAP900@Co a Co2p spectrum, b Ols spectrum, ¢ TAP900 Cls spectrum and d TAP900@C Cls spectrum

¢ TAP900@Co Nls spectrum.

and can detect trace metals within the bulk composition
of the measured material, as opposed to XPS, which is a
surface analytical technique. The oxidation state and
coordination environment around TAP900@Co could
be further assessed by X-ray absorption spectroscopy
(XAS) and extended X-ray absorption fine structure
(EXAFS). To show the distribution of single atoms and
verify the existence of metallic nanoparticles, high angle
annular dark field scanning transmission electron
microscopy (HAADF- STEM) should be employed, as
well as X-ray diffraction (XRD). It would also be
beneficial to quantify the porosity of TAP900@Co
through Brunauer—-Emmett-Teller (BET) analysis.
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Figure 8. TAP900 N1s spectrum. Reproduced from Ref?4],

XPS spectra in Figure 7c and 8d confirm the
metal loading after metal coordination, and the common
features of MNC materials. The Cls spectrum of

TAP900@Co shows three different contributions that
correspond to C-C, C-N and C-O bonding. In the Nls
spectrum, a peak arises at 399 eV that corresponds to N-
Co coordination. The N1s spectrum also presents three
other contributions that stand for pyridinic, pyrrolic and
graphitic. Compared to TAP900 in Figure 8, the total
contribution of the pyrrolic moieties decreases and the
one corresponding to nitrogen coordinated to metals
increases (Mg in the case of TAP900 and Co in the case
of TAP900@Co), while the other components remain
similar. This fact suggests that Co is coordinated via
pyrrolic N rather than pyridinic.

5, Pyridinic

Figure 9. General structure of TAP900, reproduced from Ref
(2],

Electrochemical testing results. In eCO2RR, current
density is a key metric that indicates the rate of flow of
electrons with respect to the working electrode.
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Applying a negative potential to the electrode increases
the energy of electrons, which can reach such a high
energy that they transfer into the vacant states in the
electrolyte ), causing the reduction to take place. As
the applied potential is increased, the reactants receive
additional energy which facilitates their ability to
overcome the activation energy barrier. Electrons are
transferred more energetically and the mass transport of
reactants to and products away from the electrode
surface is enhanced, thereby increasing the reaction rate
and, as a result, the current density.

Current density reaches a relatively steady state
after 300s approximately, implying that the
electrochemical environment has stabilised. The
observed fluctuations in current density, specially at
higher potentials suggest concentration overpotential,
where the consumption rate of reactants exceeds their
supply rate to the catalyst B, This is evident in Figure
9, where current oscillations could be attributed to the
dynamic formation and detachment of gas bubbles that
intermittently block and unblock electrode active sites.
At -0.71V vs. RHE, the frequency of these fluctuations
is increased. This implies that smaller gas bubbles are
formed, which quickly detach. The quick detachment
helps to avoid larger bubbles that can disrupt the
process. Therefore, -0.71V vs. RHE is high enough to
accelerate the reaction, while avoiding the limitations
imposed by mass transport when reactants cannot reach
the electrode fast enough, allowing the reaction to run
with less disruption.

Partial current density represents the current
associated with the formation of a specific product,
serving as an indicator of a catalyst’s activity. FE, on the
other hand, measures the proportion of the total amount
of current that contributes to the formation of a product,
thus serving as an indicator of selectivity. It is also a
significant parameter when it comes to industrial
scalability. Although low faradaic efficiency towards
CO can indicate the production of more profitable
hydrocarbons, such as ethylene or ethane, the
implications can include much greater separation and
purification costs. To assess the performance of
TAP900@Co, both factors were considered in this
analysis, as shown in Figure 10.

With rising potentials, an increase in partial
current densities was observed for both H> and CO,
aligning with the general trend of current density
increasing as a result of elevated energy received by
electrons and reactants. The partial current of CO grows
more sharply with higher potential, reaching a value of
17.1 mAcm™ at —0.8V vs. RHE, indicating a dominance
over Hz formation and therefore, the inhabitation of the
HER. In contrast, the marginal increase in H> partial
currents up to 1.7-2.5 mAcm? implies that HER’s
dependency on applied potential is minimal, suggesting
its occurrence regardless of potential adjustments.

At 0.6V vs. RHE, TAP900@Co displayed a
relatively low FEco of 66%, without the presence of any
other profitable products. One possible reason for this,
in addition to the inadequate energy received by
reactants mentioned earlier, could be insufficient
structural changes in the catalyst surface. These
structural changes, which lower the activation energy

for CO2 reduction to CO by exposing desirable active
sites, could become more pronounced as the applied
potential is increased. This is proven as the chemical
environment surrounding Co active sites in
TAP900@Co can promote COz reduction towards CO
with approximately 82% and 97% selectivity at the
potentials of -0.7V and -0.8V vs. RHE respectively.
The potential of -0.6V vs. RHE displays
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Figure 10. Catalytic performance of TAP900@Co as a
function of applied potential (vs. RHE).

approximately 90% total FE. The discrepancy could be
due to the formation of liquid byproducts, such as
formate, which due to their anionic character [*' are not
entirely constrained by the anion exchange membrane
(AEM). At higher current densities and CO: flowrates,
product concentration at the electrolyte increases. This
can cause product crossover through the AEM and
consequent oxidation at the anode, due to a greater
diffusion rate. This suggests that a portion of liquid
products may have formed because of the low CO:
flowrate used. The fraction of liquid products caused by
this electromigration effect was not significant,
presumably as a result of the relatively lower current
densities measured. Typically, electromigration is more
impactful at current densities greater than 50 mAcm?
311, Considering the summation of total FE at -0.7V and
-0.8V vs. RHE, it is possible that the structural changes
that enhance CO formation begin to dominate over the
electromigration effect at higher potentials. This finding
can be supported by additional evidence, where similar
TAP900 materials coordinated with Fe and Ni also
experienced discrepancies in the summation of FE at
only low potentials %),

Assessing the specific surface area and total
pore volume of TAP900@Co through BET analysis
would have been pivotal in elucidating the notable
results achieved at -0.7V and -0.8V vs. RHE. It is
possible that, despite the complications encountered
during synthesis, TAP900@Co was able to maintain a
sizable fraction of the porosity achieved by
TAP900@Fe. This is because the excessive presence of
02, and subsequent aggregation of Co, likely evolved
from imperfect vacuum conditions during the drying
process. Although this would have diminished the
porosity of the catalyst, TAP900@Co could have
retained reasonable active site exposure as the porous

116



framework originated from the bubble templating effect
during pyrolysis 4. Therefore, the favourable results
could be attributed to the inherent conductivity of the
TAP precursor, with reasonable porosity and the
hypothesised intrinsic activity of cobalt. However, it is
difficult to draw definite conclusions without additional
characterisation to fully understand TAP900@Co.

Table 2: Performance comparisons of TAP900@Co to other Co-
SACs in literature. The compiled data corresponds to measurements
at maximum FEco, reproduced from ref (26 (321331,

Catalyst Potential FEco J
(vs. (%)  (mAcm?)
RHE)
TAP@Co -0.81 97 17.6
Single atom  -0.79 99 10.2
Co-N5S
(HNPCSs)
CoNC -0.48 45 1.0
Co-Tpy-c -0.70 97 ~7.5

Table 2 shows cobalt catalysts tested in
literature, covering a broad spectrum of performance
characteristics. These variations in performance occur
because of structural and chemical differences within
the material that come about due to alternate paths of
synthesis, giving rise to distinct coordination
environments. The performance of TAP900@Co fares
surprisingly well against top performing cobalt
coordinated  eCORR  catalysts, despite  the
complications that may have emerged during synthesis.
The selectivity towards CO is among the top found in
literature, although there is potential for minor
overestimation due to the total FE summing to over
100%, likely through inherent experimental error with
the GC. This error could have risen from inaccurate
parameter calibration during set-up of the GC.

A Co-SAC with atomically dispersed Co sites
anchored on hollow N-doped porous carbon spheres
(HNPCSs) displayed an excellent FEco of 99%, that
seems to arise due to the Co-Ns active centre in the
HNPCS environment ¢, As the coordination number
drops, so does the selectivity towards CO. Remarkably,
in this specific environment, commonly successful
coordination metals such as Fe, Ni and Cu perform
substantially worse. Additional study is evidently
necessary into cobalt, as demonstrated by a Co-doped
zeolitic imidazolate framework (ZIF-8) precursor that
formed Co-Ns atomic structures. This precursor
achieved a maximum FEco of only 45%, despite Fe
coordination in the same structure, exhibiting a FEco of
93% B321. The superior performance of Fe over Co is
generally expected. However, the precedent set by the
HNPCSs presents a unique case where the FEco
remained high when the coordination number changed
from 5 to 4, only dropping from 99% to 91% [, Tt is
possible that the microporosity of the ZIF-8 support
structure does not promote eCO2RR for cobalt-based
catalysts, causing the poor selectivity and lack of
activity towards COz reduction.

Both the Co-HNPCS and Co-Tpy-c catalysts
display significant increases in current density as the
potential was raised past the displayed results in Table
2. This came at the compromise of CO selectivity. The
greater of which, Co-Tpy-c, was able to reach a
maximum current density of 46.6 mAcm? at -1.2V vs.
RHE, producing CO with a selectivity of approximately
72% 1321, The Co-HNPCS was only measured up to a
potential of -0.88V vs. RHE and exhibited a current
density of 17.5 mAcm?®. However, it was still able to
form CO with a selectivity near 90% 261, This indicates
testing TAP900@Co over a wider potential range would
have been useful in determining its full capabilities,
especially to establish the range of potentials that were
able to produce CO with high selectivity. Additionally,
although TAP900@Co has shown high current
densities, long term testing would have given more
meaning to the results, as catalyst stability is a crucial
factor to consider when demonstrating what could make
an ideal industrial catalyst.

4. Conclusion

TAP900@Co was prepared via a decoupled synthesis
approach, which involved the coordination of cobalt
sites into a highly porous nitrogen-doped carbon
structure. The material achieved a high FEco of 97% at
-0.81V vs. RHE, with a total current density of 17.6
mAcm?, making it a competitive catalyst amongst state-
of-the-art cobalt single-atom catalysts in literature.
However, an unexpected high cobalt and oxygen content
was found, as evidenced by the 8.39 wt% of Co and 9.76
wt% of Oz calculated, and large Co2p and Ols peaks.
Further analytical techniques should be employed to
confirm cobalt aggregation and oxidation of species
during the synthesis, and to ascertain their nature and
impact on catalyst performance.  Analysing the
electrolyte post-electrocatalysis via HPLC could
confirm the formation of liquid products, validating the
explanations for total FE remaining below 100% at -
0.6V vs. RHE. Assessing the D/G band intensity ratio
through Raman spectroscopy would have identified
possible defects and grain boundaries within the
material, as well as the degree of graphitisation of
TAP900@Co. Gaining this information would have
given insights into the conductivity of the material.
Additional experiments with varying electrolytic
concentrations or solutions, such as NaHCOs; and
KHCO3, may shed light on the COz reduction conditions
favourable to TAP900@Co, as these would have offered
greater stability than KOH (at the compromise of
conductivity, due to the higher pH of KOH). Further
research is vital to meet the industrial benchmarks for
catalyst performance, which consist of current densities
and selectivity exceeding 200 mAcm? and 90%
respectively, with long term stability greater than 80,000
hours, at minimised overpotentials 4. Despite the
shortcomings Co-SACs face to achieve this criterion,
cobalt has clearly displayed interesting and encouraging
capabilities that this paper set out to find, adding to the
foundation that is currently being set up in the novel
field of electrochemical CO2 reduction.
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Data-driven Modelling and Prediction of Complex Systems Using Neural ODEs
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Abstract Dynamical systems, i.e., systems which involve observable quantities that evolve over time, are
omnipresent in our ever-changing world. From pandemic evolution prediction to weather forecasting, being able
to accurately predict future changes in our environment is crucial for the greater good. Therefore, scientists and
engineers are constantly working on methods to model future outcomes using past data. In fields such as Chemical
Engineering, the ability to precisely model a complex system and its time dependent behaviour leads to a
fundamental understanding of said system, which yields the benefit of facilitating the design of robust and highly
optimal operations. Conventional methods often fail to find solutions to complex engineering problems. Hence,
as part of a rapidly growing field, engineers can harness the power of Artificial Intelligence, particularly that of
Machine Learning, for effective, data-driven approaches to complex problems. One recently developed model of
deep neural networks, Neural Ordinary Differential Equations (Neural ODEs), is used to predict the dynamics of
three prototypical models belonging to distinct generic classes: the Lotka-Volterra system in population biology,
the SIR model in epidemiology and the Lorenz system in chaotic dynamics. This paper serves as a proof of concept
that aims to explore the limitations and capabilities of Neural ODEs. Different validation techniques were used
for each of the three systems, in consideration of their distinct nature. Ultimately, the Neural ODE model was
successful in capturing the underlying dynamics of the Lotka-Volterra and SIR models but shows limitation in
predicting the chaotic dynamics of the Lorenz system.

Keywords Neural Ordinary Differential Equations, SIR Model, Lotka-Volterra System, Lorenz System

1. Introduction

Nowadays, the society faces many dynamic
challenges such as pandemics and climate change.
For the most part of the last 4 years, the Covid-19
pandemic has had devastating impacts on our daily
lives, and it has been necessary to take a plethora of
precautions, such as lockdowns, to control and
prevent the spread of the virus. At the same time,
Earth’s climate is changing, resulting in extreme
temperature fluctuations, which in turn increase the
frequency of severe weather phenomena. Both of
these natural phenomena have something in
common: they are complex dynamical systems with
numerous intricate interactions and dependencies.

Dynamical  systems are  time-dependent
mathematical models that illustrate the behaviour of
an artificial or natural system [1]. Fundamental
understanding of dynamical systems is crucial if the
aim is to predict its behaviour, and thus engineer a
highly optimal and robust system in order to respond
to the challenges imposed by said behaviour.

There are numerous systems that interact with one
another and change as a result of their interactions.
The vast majority of these systems are characterised
by non-linearity and high dimensionality. Thus, the
task of modelling and predicting them with
traditional methods is strenuous. Scientists and
engineers continuously try to find patterns based on
past data from these systems, to understand their
behaviour and make predictions by using data-
driven techniques. Artificial Intelligence (AI) and
Machine Learning (ML) in particular, is a current
trend and a rapidly growing field with numerous
applications regarding the modelling of complex
engineering problems which cannot be solved with
conventional methods. It allows for rapid and

accurate decision-making, comparable to human
analysis, especially when processing large amounts
of data. Specifically, ML can be applied on a wide
spectrum of problems, ranging from modelling,
pattern recognition and classification to forecasting
and estimation, with outstanding performance.
While achieving precise predictions with absolute
certainty might be impossible for some systems,
e.g., chaotic systems, ML techniques still enable a
basic understanding of the system’s governing
principles.

For the scope of this research paper, a novel type
of neural network models, called Neural Ordinary
Differential Equations (Neural ODEs), was
employed for the modelling and prediction of
prototypical systems, each representative of a
generic field of science: population biology,
epidemiology, and chaotic dynamics. This proof-of-
concept approach is performed to illustrate the
capabilities and limitations of Neural ODEs. All the
systems that were modelled come in the form of a
system of ODEs. The solutions to said systems of
ODE:s yield the datasets that are then used for the
validation of the effectiveness of their
corresponding Neural ODEs in reconstructing the
underlying dynamics. Furthermore, these solutions
represent a time-dependent trajectory, and the data
is therefore time series data. Hence, appropriate
validation methods were selected in order to take
into account the time dependency of the data.

2. Background

2.1 Neural Networks

Neural Networks are a subset of ML algorithms
whose origin can be traced back to the development
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of the perceptron in the 1950s [2]. They were
originally modelled to loosely represent the human
brain [3], as they are composed of interconnected
neurons, which vaguely represent the neurons in our
brains, and the connections between them represent
the synapses. Said neurons and connections can be
structured in many ways, that is to say that neural
networks have many different architectures.

The most basic example of a neural network
architecture is that of a Feedforward Neural
Network, or FNN, which consists of a series of
layers, where the first and last layers are those
corresponding to the input and output layers,
respectively. In between said layers are additional
layers, called hidden layers. Each layer contains a
series of neurons, where each neuron is connected to
all neurons in the previous and next layer. A
characteristic of FNNs, is that the flow of
information is unidirectional, i.e., the inputs
sequentially go through the layers of the network,
where a series of transformations are applied to
them, until they reach the output layer. Said
transformations are linear, such as those resulting
from the weights and biases, which are the
parameters of a neural network, and nonlinear, such
as those applied by an activation function at each
neuron.

In the context of this paper, neural networks can
be thought of as a means of non-linear regression,
and their role is to accurately predict the underlying
dynamics of some data. Neural networks are capable
of doing so given that, under certain conditions, they
have been proven to be universal function
approximators [4]. Therefore, in theory, a neural
network should be able to model and fit any possible
trajectory to a given dataset.

Neural networks achieve this by learning as a
result of training. The first step of training is the
forward pass, where the data passes through the
network from the input to the output layer. Once the
information has reached the output layer, the
network makes a prediction, which is then compared
to the true data of the input layer. The comparison
yields some error, typically quantified by a loss
function. Said loss function is then minimised using
optimisation algorithms such as stochastic gradient
descent, in order to obtain the values of the
parameters at the minimum of the loss function.
Next, the parameters of the network are updated via
a process called backpropagation. Lastly, the
process is repeated in an iterative fashion for a given
number of steps, called epochs, or until the network
predictions are within some specified tolerance.

Oftentimes, especially in fields such as Chemical
Engineering, the raw time-series input data stems
from highly complex, nonlinear systems of
differential equations. Therefore, in order to uncover
the relationships present in these highly complex
datasets, the number of hidden layers in a network is

increased, with the purpose of introducing a larger
number of transformations and increase the
dimensionality, so that the network will be able to
interpret the more intricate dynamics of the system.
The procedure of creating and training networks
with more than one hidden layer is called deep
learning, which has gained significant momentum in
recent decades [2].

2.2 Neural Ordinary Differential Equations

At the 2018 conference on Neural Information
Processing System (NIPS), Chen et al. introduced a
new family of deep neural network models, called
Neural Ordinary Differential Equations [5]. The
main characteristic of these models is that the
networks are of continuous depth, rather than
composed of discrete layers, as all standard neural
networks are. This is illustrated in Figure 1. The idea
originates from an observation that there exists and
inherent similarity in the structure of ODEs and
Residual Networks (ResNets).

ResNets are a type of FNN first introduced in 2015
[6], which utilise skip connections such that the
output of a layer is added to the output of the next
layer, therefore skipping the transformation of this
next layer. Hence, a discrete step in a ResNet
network is described by:

Ziy1 = Z; + f(zil tiﬂe) (1)

where z; is the input to the current layer, z;+; is the
layer’s output and f the transformation applied by
some network’s layer i, and 0 represents said layer’s
weights. If we multiply a small constant / to the
function £, this can be seen as a single step of Explicit
Euler method:

Ziy1 = Z; + hf(zi’tilg) (2)
y = f(Ziﬁ til 9)' (3)
where:
dzi(t) _
dt - f(Zitti’ 9) (4)

Based on this observation, in the limit, the
continuous derivative can be parameterised by a
neural network by an ODE:

dz(t) 0 .
= F(2(0,6,6). ®)

A parametrised derivative is a derivative function
where the exact form of the function is not known a
priori but is instead determined (parametrised) by a
set of parameters that are learned through a training
process. Therefore, in a Neural ODE, the derivative
of the state of a system with respect to time is
represented by a function, which is not explicitly
defined as in traditional theoretical models, but
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Figure 1: (a) Feedforward neural network with one hidden layer. (b) Neural ODE.

rather represented by a neural network. Therefore,
Neural ODEs are called augmented ODEs, since
they can uncover dynamics even when dealing with
the noisy data that one collects in practice.

Given an initial condition z(0), the output z(7) is
specified as the solution of the ODE at time 7. The
output can be computed with any desired accuracy
using an ODE solver as:

T = 2(0 TdZ(t)d
Z( )—Z( )+ : 7 t
T
—20+ [ fa@.od.  ©
0

Neural ODEs come with several benefits. Since the
network can be defined and evaluated using an ODE
solver, it can take advantage of the error control and
adaptive strategies of modern ODE solvers.
Additionally, these models have constant memory
cost and can explicitly trade numerical precision for
speed [5]. Most importantly, due to their continuous
nature, Neural ODEs can naturally incorporate data
which arrives at arbitrary times, i.e., irregular
interval time-series data, as opposed to traditional
discrete neural networks, which impose a
predefined, fixed time step. Neural ODEs are
therefore ideal for complex systems in engineering
as they can handle noisy, irregularly sampled data
whose dynamics are complex, highly non-linear and
previously unknown or not accurately modelled.

3. Application in Population Dynamics:

Lotka-Volterra system

The Lotka-Volterra system, often referred to as the
predator-prey equations, is a model in mathematical
biology, specifically the field of population
dynamics, developed in the 1920s, which consists of
a pair of first-order nonlinear differential equations.
This system describes the population dynamics of
two interacting species, where one acts as a predator
and the other acts as prey, i.e., the model describes
how the populations of said species evolve over time
under the influence of their mutual interactions.

If we denote the populations of the prey and predator
by x and y respectively, the Lotka-Volterra
equations are:

dx _ ;
26 = ox — Bxy @)
Yyt (8)
dt - }/y X,

where a and y describe, respectively, the maximum
prey per capita growth rate, and the effect of the
effect of the presence of predators on the prey
growth rate, and § and § represent the predator's per
capita death rate, and the effect of the presence of
prey on the predator's growth rate, respectively. All
parameters are positive and real.
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Figure 2: Noisy data generated for the Lotka-Volterra
system. Prey and predator data shown in blue and orange,
respectively.

The goal is to employ a Neural ODE to model the
predator prey dynamics. Firstly, the system is solved
in order to generate the dataset, and then Gaussian
noise, with a standard deviation of 0.1, was added to
the population data, in a way that no datapoint can
take negative values, as that would be unphysical.
This was done by forcing any negative values to be
zero. Then, the resulting data is converted into
tensors and divided into two categories: the first one
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contains the first 80% of the data, which will be used
for training, whilst the second one contains the rest
of the data, which will be used for validation. This is
done so that the validation is performed on unseen
data, therefore evaluating the model’s ability to
generalise. Generalisation is a key aim of neural
network training as it ensures that the model will
function in a live environment.

The training-validation strategy chosen for the
Lotka-Volterra system was random time series
batching. This method involves dividing the training
and validation datasets into smaller batches, such
that each batch contains a sequence of datapoints
from the time series data. The continuous and
sequential nature of the original dataset is conserved
within each batch. Next, in order to avoid overfitting
to a sequence of data, a batch is selected randomly
from the training data. Overfitting occurs when a
model memorises the data and fits exactly to said
data, such that it also memorises the noise in the data
rather than the actual dynamics of the system. As a
result of overfitting, the model will perform
extremely well on the training set but poorly on the
validation set.

Training is then performed on the randomly
selected batch, followed by validation on a different
random batch, this time selected from the validation
set. This constitutes a single epoch, and the process
continues until a specified number of epochs have
passed. Random time series batching essentially
guarantees that the model does not memorise the
order of the data in the dataset, resulting in a more
robust model.

Given that the Lotka-Volterra system is ultimately
a simple system, and since this work is a proof of
concept, the network only has a single layer of 100
neurons. The activation function was chosen to be
ReLU, simply due to the fact that it is
computationally inexpensive and, when it comes to
deep learning, it is the most used in practice [7]. The
weights of the network were initialised with a
normal distribution centred around zero, with a
standard deviation of 0.1.

The biases were initialised as a constant value of
0. The optimiser used was Adams and the solver
used was dopri5, formally known as Dormand-Price
method. Dopri5 was chosen as it is an explicit,
adaptive solver of high order with good error
control. Weight decay was added to discourage
overfitting, and early dropout was implemented to
reduce training time by stopping the training process
if the model performed well enough before the
training loop finished.

4. Application in Epidemiology: SIR
Model

Until today, the world has experienced many types
of infectious diseases which were caused by viruses
and bacteria. Since the onset of the COVID-19
pandemic, there has been a global focus on

preventing the virus' spread for over two years.
Understanding how populations respond to such
outbreaks is critical and has direct implications for
our daily lives. The time evolution of these
population dynamics can be modelled using non-
linear dynamical systems. In this section, an
epidemic model proposed by Kermack and
McKendrick was investigated and modelled using
Neural ODEs.

Epidemics are sudden outbreaks of diseases, in a
specific region, where the number of disease cases
grows quickly [8]. In 1927, Kermack and
McKendrick introduced a mathematical model that
accurately captures the dynamic patterns observed
in epidemiological studies. Their model, which
aligns closely with the trends observed in multiple
epidemics, reduces the complex interactions into a
simple system consisting of three distinct population
groups: susceptible, infected, and removed which
are denoted by S, I and R respectively. The SIR
model is an epidemiological model based on simple
assumptions on the rates of flow between different
classes of members of the population. In this model,
it was assumed that the population size remains
constant (meaning no entry or departure from the
population) and that, when individuals recover, they
gain immunity against the re-infection, and are thus
removed from the susceptible population [9].

Usually, the SIR system can accurately model
viral diseases’ behaviour [9]. S(z) shows the number
of individuals who are susceptible to the disease but
who are not infected yet. /(#) number individuals
who are infected and have the chance to spread the
disease through various ways such as contact. R(?)
number of individuals who were infected but then
removed from the possibility of spreading the
disease or being infected again [9].

The SIR model used in this paper consists of a set
of three ordinary differential equations:

ds
—= —BsI ®)
dl
= BsI—al 9)
dR
E =al, (10)

where a is a positive real parameter which represents
the rate of infected individuals leaving the infective
class per unit time and B is a parameter which
denotes the contact rate among the individuals who
are in susceptible and infective class. With these
parameters and initial conditions, the basic
reproduction number (R;) can be calculated by
Ry =20 where S, = S(0). If Ry > 1, the infection
spreads and if R, < I the infection dies out [9].
Neural ODEs were trained and tested on this simple

epidemic model to observe the predictions of the
neural network. Firstly, before the training process,
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SIR data were generated with an ODE solver with
the assumptions that the time span is 50 days, a=0.1
and $=0.001. Moreover, it was assumed that the
total number of individuals (N) in a population is
1000 where N =S + I+ Rand S, = 997, = 3to
make this specific case an epidemic, R, > 1.

006 weg L eean
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GO0
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Figure 3: Generated true SIR model dataset with Gaussian
noise, blue for Susceptible, orange for Infected and green for
Removed.

Finally, Gaussian noise was added with a standard
deviation of 5 to emulate a real-world example and
to make network predictions more robust. This was
implemented in a way that there are no negative
values, as that would be unphysical. This was done
by implementing a constraint similar to that used in
Lotka-Volterra. Additionally, mass is conserved by
equating the summation of all standard deviations at

split1 | [
Split 2 [ ]
split 3 [ ]

Figure 4: Yellow blocks representing training data whereas blue
blocks representing validation data.

each time step to zero.

Unlike Lotka-Volterra model, random time-series
batch technique was not utilised and instead a
“extending window” strategy was employed to
improve the learning. Since the trajectories of the
Lotka-Volterra system are inherently cyclical, the
neural network can capture the trend despite being
trained with random batches of data. This is not true
for the SIR model, and it cannot predict accurately
when the batches are selected randomly. In the
extending window strategy, a window of data is
divided into training set and validation set. This
means that, right at the beginning, the training
window consists only of the first datapoint for
training, and the datapoint immediately after for
validation. Figure 4 depicts that at each timestep, the

number of training data increases by 1 and the
validation data moves one step along the window,
expanding the window size. This way, network uses
the weights and biases from the previous data to
predict the unseen validation data.

This network involves a single layer of 100 neurons
and the activation function was chosen to be ReLU,
due to the same reasons stated in Lotka-Volterra.
The weights and biases of the network were
initialised with a normal distribution centred around
zero, with a standard deviation of 0.1 and 0.06
respectively. The biases were initialised as a
constant value of 0.06. The optimiser used was
Adams and the solver used was Dopri5. Finally,
weight decay was also added to discourage
overfitting.

5. Application in Chaotic Dynamics:

Lorenz System

The Lorenz system is a system of three nonlinear
ODEs developed by mathematician and
meteorologist Edward Lorenz in 1963 [10]. It is a
simplified mathematical model for atmospheric
convection, in which the equations relate the
properties of a two-dimensional fluid layer which is
uniformly warmed from below and cooled from
above. The variable x is proportional to the rate of
convection, and y and z are proportional to the
horizontal and vertical temperature variation,
respectively:

dx

E=U(}’—x) (11)
Yo -2 - 11)
dt_x(r z)—y (
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Figure 5: Trajectories resulting from the data generated for the
Lorenz system. X, ¥ and Z components shown in blue, red and
green, respectively.

dz

Frint Bz. (12)
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The constants o, r, and f are system parameters
proportional to the Prandtl number, Rayleigh
number, and certain physical dimensions of the layer
itself. There exists some critical value for the control
parameter r:

o+ +3

o1 (13)

r>r=0

When » > r., the model becomes chaotic. Chaos, or
state of disorder, is a very common phenomenon in
fields such as chemistry and physics [11]. Chaotic
systems are very complex systems that appear to be
random in nature. Such systems, including the
Lorenz system, are actually deterministic.
Therefore, for a given set of initial conditions, a
solution to the system can be found. However, these
systems are extremely sensitive to initial conditions,
and are very difficult to predict, as small numerical
errors in the prediction of a trajectory will result in a
totally different outcome to that expected for the
initial conditions used. Lorenz himself coined the
term butterfly effect to describe this extreme
sensitivity to initial conditions when he noticed that
tiny, butterfly-scale changes to the initial conditions
of his weather model simulations resulted in
anything from sunny skies to violent storms.
Additionally, when the dynamics become chaotic,
the Lorenz system is characterised by two strange
attractors, around which the phase trajectories will
oscillate but never converge to.

Given that chaotic systems are often present in
real world systems, it was decided to attempt the
prediction of the Lorenz system with a vanilla
Neural ODE, in order to test the limitations and
capabilities of this neural network model. In order to
see if the plain vanilla Neural ODE model can learn
chaotic dynamics, the control parameter r was
chosen to have a value of 28, which together with
the values of 0 = 10 and B = 8/3, ensures that the
system is chaotic as the critical control parameter
value for the aforementioned parameter values is
24.74.

The data was then generated, and Gaussian noise
was added. The training was performed using the
same extending window strategy that was used for
the training of the SIR model. Given that the Lorenz
system dynamics have much higher rates of change
than any of the two models covered in this paper, the
dataset generated was much larger. A dataset
consisting of 1000 datapoints was generated, it was
clear that the training was going to be
computationally expensive.

Therefore, the model only has a single layer of 100
neurons, and the activation function was chosen to
be ReLU. The weights of the network were
initialised with a normal distribution centred around
zero, with a standard deviation of 0.1. The biases
were initialised as a constant value of 0. The

optimiser used was Adam, and the solver used was
midpoint, which was chosen over dopri5 since it is
second order, and therefore less computationally
demanding. Lastly, weight decay was added to
discourage overfitting.

6. Results and Discussion
Regarding the Lotka-Volterra system, the network
proved to be very good at uncovering the underlying
dynamics in the data despite the noise, whilst
showing no major signs of overfitting, as shown in
Figure 6. However, a few steps were taken to arrive
at such a result. At first, the network refused to
capture the full height of the peaks of both the prey
and predator populations. Upon plotting the
generated data to explore this issue, it became clear
that, relative to the rest of the trajectory, the peaks
were sparsely populated with datapoints. Hence, the
data resolution was doubled, i.e., twice as many
datapoints were generated for the same time horizon,
such that the network would be penalised much
more for ignoring the datapoints at the peaks.
Doubling the batch size from 10 to 20 also
increased the quality of the network prediction,
which makes intuitive sense since the network will
train on twice the amount of data per epoch.
However, further increases in batch size did not
yield any improvement. Hyper parameter tuning was
not performed as trial and error proved to be
sufficient for such a simple system. Should the data
have been noisier, and the timespan explored longer,
hyper parameter tuning might have been necessary,
although perhaps not achievable due to the long
computation times.

30
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Figure 6: True prey data (blue) and true predator data (yellow)
of the Lotka-Volterra system, plotted with their corresponding
predicted trajectories (solid black lines).

When considering our epidemic case, as depicted
in Figure 8, network was able to capture the
behaviour of the SIR model very accurately. At first
the model was attempted to be done with random
time series batch validation technique, but after
plotting due to its non-periodic nature it has failed to
make as accurate predictions as it did with Lotka-
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(Infected), Green (Removed) plotted to observe the training process with “extending window”.
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Figure 8: True data — dots, Network predictions — crosses, Test data predictions for validation - dashed lines, Blue (Susceptible), Red

(Infected), Green (Removed)

Volterra. Because of this, extending window
strategy was employed. The neural network was able
to learn from the previous parameters and predict the
next unseen data. This is an iterative process, where
if the datapoint at # = 13 is for validation, it will be
used as a training data when the dataset is expanded
to first 14 datapoints. To achieve the final result,

parameters were tuned manually. Although
decreasing the number of data points had a negative
impact on data resolution, it was reduced from 200
to 50 and the network still managed to capture the
dynamics at the peak with a shorter computational
time. For future applications, if the standard
deviation of the Gaussian noise and the number of
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Figure 9: True data of the x, y and z components (blue, red and green data points respectively) of the chaotic Lorenz system, plotted with
their corresponding predicted trajectories (dashed lines) for the training window extending up to time ¢ = 7.
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Figure 10: True data of the x, y and z components (blue, red and green data points respectively) of the chaotic Lorenz system, plotted with
their corresponding predicted trajectories (dashed lines) for the training window extending up to time 7= 7.125.

validation points in the extending window strategy
is increased, it will be harder to train the network for
the same time-period.

With our final system, the network was ultimately
incapable of accurately fitting to the chaotic
dynamics of the Lorenz system. However, many
attempts were made to overcome the challenges
imposed by said system. Since the Lorenz system,
unlike the Lotka-Volterra system, is not cyclical in
nature but instead ever changing, random time series
batching was not an appropriate training and
validation method. Hence, the training was initially
performed using K-fold blocked cross validation. K-
fold blocked cross validation is a variant of K-fold
cross-validation. The latter consists of randomly
shuffling the dataset and splitting it into K equally-
sized folds. Said folds are then further divided into

train and validation partitions [12]. This is done to
prevent overfitting. However, since the data for the
Lorenz system is of a sequential nature, it cannot be
randomly shuffled since the network might then try
to predict past dynamics from future dynamics.
Blocked K-fold cross validation omits the shuffling
step to avoid this [13]. The 5-fold cross validation
strategy, which was used in the initial training
attempts, failed due to exploding gradients. Gradient
explosion occurs when the gradients keep on getting
larger and larger as the backpropagation algorithm
progresses. This, in turn, causes very large weight
updates and causes the gradient descent algorithm to
diverge [14]. Several measures were taken to avoid
the issue. Firstly, proper weight initialisation was
implemented to alleviate the gradient explosion
issue by ensuring the proper flow of information
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through the network by ensuring that: the variance
of outputs of each layer is equal to the variance of its
inputs and that the gradients have equal variance
before and after flowing through a layer in the
reverse direction [15]. This is called Glorot
initialisation. A variant of Glorot initialisation,
Kaiming He initialisation, which is tailored
specifically to the ReLU activation [16], was used.
However, this method yielded results that were no
better than those obtained when initialising the
weights using normal initialisation. Batch
normalisation, introduced in 2015 to address the
gradient explosion issue [17], was not successful
either. This did not come as a surprise, as this
technique is not usually applied to Neural ODEs
[18]. The gradient explosion issue was solved by
clipping the norm of the gradients if the threshold of
1 was exceeded.

Unfortunately, despite solving this issue, training
would be interrupted very early on due to an
underflow in dt, i.e., the time step of the ODE solver.
This could be due to the fact that the Lorenz system
exhibits high sensitivity to initial conditions, and as
a result the solver required extremely small steps to
capture the dynamics. Loosening the absolute and
relative error tolerances of the solver in order to
allow for larger timesteps did not work either. As a
last resort, it was decided to use the extending
window strategy that was used for the SIR model.

Additionally, dopri5 was substituted by the
midpoint solver, since this extending window
training method involves longer training times.
Interestingly, this new model resulted in better
results than any of the previous model. It was
capable of accurately predicting the Lorenz system
up to time ¢ = 7, after which the model completely
failed to capture the initial oscillations of the system
and would instead predict a horizontal line that
passes through the midpoint of the highs and lows of
the oscillations.

This result was not surprising, as that exact
behaviour has been previously observed when
attempting to capture the Lorenz system’s chaotic
dynamics using a plain vanilla Neural ODE [19].
Perhaps if the network was deeper and the hyper
parameters were tuned, better results would be
obtained. But since the backpropagation step of the
Neural ODE model entails solving an augmented
ODE backwards in time [18], deeper networks and
larger datasets would result in extremely long
computation times which are simply not feasible.

7. Conclusion

The objective of the paper was to demonstrate
Neural ODEs’ ability to reconstruct the hidden
dynamics of prototypical systems by means of
empirical, noisy datasets. The Neural ODEs
achieved the desired objective for the Lotka-
Volterra and SIR models. The predictions were
accurate, and the trained models proved to be robust

to unseen, noisy data. Both of these models were
simple, but despite their simplicity, the dynamics of
these systems is highly nontrivial. The Lorenz
system in particular, a set of three ODEs with a
quadratic nonlinearity, the simplest nonlinearity one
can think of, exhibits chaotic behaviour, and thus is,
as Lorenz himself concluded, inherently
unpredictable. This was confirmed by the results
obtained, which show that the data-driven Neural
ODE approach presents some limitations for such
chaotic systems.

Moreover, it is clear this plain vanilla Neural ODE
approach is computationally demanding, and
therefore training times are a severe limitation.
Ultimately, the results in this paper show that Neural
ODEs hold substantial promise for real-world
applications, as the increased complexity of real-
world system dynamics could be modelled using
deeper, finely tuned Neural ODEs, which could be
successfully trained given enough computational
time and resources. Furthermore, this approach
requires very small amounts of data for training, as
the Lotka Volterra and SIR datasets were 200 and
100 datapoints in size, respectively, whereas
traditional neural network approaches are much
more data hungry.

Given that the time available for the completion of
this work, the scope was severely limited. Should
there be an opportunity to continue this work, there
are many closely related, interesting areas of
research. An example would be to delve into Physics
Informed Neural Networks (PINNs), which are a
type of universal function approximator that can
embed the knowledge of the physical laws that
govern a given dataset in the learning process. They
are a popular line of work because they overcome
the low data availability of some biological and
engineering systems that makes most state-of-the-art
ML techniques lack robustness [18]. It would also
be interesting to explore other types of Neural
Differential Equations, such as Controlled
Differential Equations, which are often used to
model systems where you have some degree of
control over the system's dynamics and could
therefore be applied to any practical Chemical
Engineering process. Furthermore, the work could
be extended to cover Stochastic Differential
Equations. They are a natural extension of ODEs for
modelling systems that evolve in continuous time
subject to wuncertainty, and they have seen
widespread use for modelling real-world random
phenomena [18].

Lastly, since the computation time was the main
obstacle when training the Neural ODEs, different
but faster methods for backpropagation could be
explored in order to reduce training times and allow
for deeper networks.
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Abstract

The use of Reinforcement Learning for the control of HVAC systems in buildings is of growing interest — its ability to
adapt to different environments, without the need to exhaustively fine-tune key parameters for each individual
environment, has sparked the interest of many. This paper investigates the use of Tabular and Deep Q-Learning for the
control of the HVAC system of a supermarket store. A Tabular Q-Learning controller and a Deep Q-Learning controller
are developed and tested over an existing simulation environment of the store. Both controllers use 21 states, 11 actions,
a learning rate (a)) of 0.001, a discount factor (y) of 0.99 and an exploration probability (g) of 0.4, and are trained using
an equivalent of 18 years of historical data. The Deep Q-Learning algorithm comprises of a neural network with 2 hidden
layers. It is found that the Tabular Q-Learning controller outperforms the existing PI controller by 4% in energy efficiency
and 12% in user comfort. However, the Deep Q-Learning does not present any improvement over the baseline PI control,
and requires further fine tuning. Overall, this paper demonstrates the potential for Tabular Q-Learning for the control of

HVAC systems in buildings, with potential improvements in both energy and comfort metrics.

1. Introduction

Climate change and global warming have been the
subject of many political and public concerns in recent
years. In 2019, the United Kingdom became the first
major economy to legislate for net zero by 2050 [1].
Buildings are currently responsible for 30% of global
final energy consumption and 26% of global energy-
related emissions [2]. In UK supermarkets, Heating,
Ventilation and Air Conditioning (HVAC) systems
account for 20 to 30% of total energy consumption [3].

Sainsbury’s Supermarkets Ltd, one of the largest food
retailers in the UK, is committed to reach net zero
emissions by 2035 [4], and optimising energy
consumption in their stores is key in reaching this goal.
It is therefore of high interest to investigate the potential
benefits of transitioning their existing HVAC systems to
smart energy management controls to enhance the
control process.

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning
technique where an agent is trained within a set
environment using a trial-and-error approach. This is
achieved by allocating rewards based on the agent’s
actions [5]. The fundamental principles of Reinforcement
Learning can be attributed to a Markov Decision Process
(MDP), where a system exists in states (quantified
conditions a system can be in), while actions taken by the
agent can move the system from one state to another. The
policy defines how the agent behaves in a particular state
and aims to maximise the reward — it can be a function, a
table or a neural network. For an MDP, actions and states
are discrete, or need to be discretised. Moreover, the
future state of the system only depends on the current
state and action; it is independent of the previous states
and actions [6].

Agent

State S, Reward R, Action A,

Rini

Environment

Sl'!

Figure 1: A schematic of Reinforcement Learning. The loop represents
the agent continuously learning from the environment by taking actions
and receiving feedback in the form of rewards.

1.1.1. Value-based Reinforcement Learning

Value-based RL methods focus on learning a value
function which estimates the expected cumulative reward
of the agent being in a particular state, or taking a specific
action in a particular state. The agent makes decisions
based on this value function. The value qa(s, a) of taking
action a in state s under policy z is given by:

An(s,@) = E [ X720 Y Resiar [ Se =5, Ac =al  (D[7]

where y denotes the discount factor and S;, A; and R;
denote the state, action and reward at timestep t
respectively. The algorithm ultimately seeks to find the
optimal value function q:*(s, a) corresponding to an
optimal policy n*. Examples of value-based methods
include Tabular Q-Learning and Deep Q-Learning.

1.1.2. Tabular Q-Learning (TQL)

Q-learning methods aim to find the optimal policy by
finding the optimal Q-value for each state-action pair.
The Q-value Q(s, a) measures the desirability of taking
action a in state s, and is updated as follows [8]:

New Q(s,a)

=Q(s,a) + a [R+ymaxQ'(s’,a") — Q(s,a)] (2)
where o and y denote the learning rate and discount factor
respectively, R represents the reward for the current run
and max Q’(s', a') corresponds to the future Q-value with
the highest expected reward.
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In Tabular Q-Learning (TQL), the Q-values are
stored in an N x N, table (known as the Q-Table or look
up table), where Ns and N, are the number of states and
actions respectively.

1.1.3. Deep Q-Learning (DQL)

Deep Q-Learning (DQL) uses a neural network (known
as the Q-Network) instead of a table to approximate the
Q-value function. The use of neural networks allows the
algorithm to process data more effectively and increase
the efficiency of multi-dimensional processes.

DQL uses a replay buffer which stores the agent's past
experiences e = (S, Ay, Ry, Sw1) in a data set Dy =
{ei,...ei}, where S;, Acand R; denote the respective state,
action and reward at timestep t. Instead of training the
model with experiences in the order that they occur, the
DQL algorithm randomly selects experiences from the
replay buffer during the learning process [9]. This
decoupling of temporal correlations in the data reduces
the likelihood of overfitting, allows for more stable and
efficient learning, enhances the controller’s ability to
handle non-stationary environments and improves
overall convergence [10]. DQL works by adjusting the
parameters 6 of the Q-network to minimise the loss
function, defined for a sample (s, a, R, s') ~ U(D) and
iteration i as follows [9]:

Li(8;) =
Esars)~um[R+ymax Q'(s',a’;67) — Q(s,2;6:))%] (3)

where y denotes the discount factor and S, A and R are
the respective state, action and reward. 6; and 6;
represent the network parameters and the target network
parameters respectively.

1.2. Literature Review

The interest in Reinforcement Learning for energy
systems has increased exponentially in recent years, with
approximately 20 research papers published on the topic
in 2010 to almost 400 in 2020 [11]. Research has shown
that RL can easily adapt to dynamic environments
(changing weather conditions, for example) and might
therefore prove beneficial in controlling the heating rates
of HVAC systems to achieve energy-efficient
temperature control in buildings [12].

Value-based RL  methods can  become
computationally less efficient for large action-state
spaces [13] (large usually regarded as more than 50). As
a result, this field has received less research interest
compared to other RL methods [14]. However, research
is actively ongoing for relatively simple systems. In
2018, S. Baghaee and I. Ulusoy [15], implemented a
Tabular Q-Learning method for the ventilation control
system of a building and justified its use due to the
relative simplicity of the model. It was reported that the
RL agent only consumed marginally less energy than the
existing PID controller. In 2015, E. Barrett and S. Linder
[16] combined Tabular Q-Leaning with an occupancy
prediction method for the control of a building’s heating
systems. This was achieved by simplifying the model and
discretising external temperatures ranges. This controller

achieved a reduction of approximately 10% in operating
costs without compromising comfort standards.

Recent developments in computational capabilities
have proven beneficial for Deep Reinforcement Learning
(DRL) methods, allowing them to process larger sets of
data within more expansive environments [17]. DRL
algorithms are commonly being tested in self-driving
vehicles and open-world games amongst other
applications [18]. They have also been reviewed for
complex control systems with continuous environments
[19].

S. Brandi. et al. [17] investigated the use of a Deep
Q-Learning algorithm in buildings to maximise user
comfort and minimise energy consumption, and reported
energy savings of between 5% and 13% based on the
occupancy and season amongst other factors. In 2021, Z.
Jiang et al. [20] implemented a DQL controller in an
office building space using 4 months of historical
temperature and energy data, and found that the energy
efficiency of the DQL controller exceeded that of a
baseline PI controller by 6% to 8%. Further research into
DQL for energy efficiency in office spaces was
conducted in 2022 by X. Zhong et al. [21], who noted an
increase in energy efficiency of 12.8% compared to the
existing fixed-schedule control strategy.

It is important to note that models from literature use
different technologies — results are not standardised. As
such, a higher increase in efficiency does not necessarily
imply a better model [12]. In general, research on Tabular
Q-Learning is limited, with the method generally
dismissed for being too simple for complex control
systems. While the performances of different RL
algorithms were compared, no direct quantitative
comparisons between Tabular and Deep Q-Learning
have been made.

Reinforcement Learning represents a significant
potential for the control of HVAC systems as it allows
for relatively simple and fast implementation of a control
system across stores. This can be attributed to its ability
to adapt to different environments, without the need to
exhaustively fine-tune key parameters for each
individual environment [11]. It is therefore of value to
explore the potential of Tabular Q-Learning in HVAC
systems as they are generally less dynamic than other
processes and do not require complex algorithms to
account for various sensitivities [22]. Moreover, the
simplicity of Tabular Q-Learning would offer a more
computationally efficient method, allowing for less
powerful computers to run simulations. It is also of
interest to train a Deep Q-Learning agent to determine
how a more complex model compares.

1.3. Project Scope

This paper aims to train, tune and test a Tabular Q-
Learning controller and a Deep Q-Learning controller for
the HVAC system of a supermarket store to qualitatively
and quantitatively assess their performances against a PI
controller.
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2. Methods
2.1. System Specifications
2.1.1. Simulation Environment

An existing ‘living-lab’ pilot [23] is used as simulation
environment. This simulation environment replicates the
temperature dynamics of a supermarket store building
with 4 walls and a floor space surface area of 7600m?,
located 100 miles north of London. A resistance
capacitance (RC) network approach is used for this
purpose. The network uses 3R2C models for the external
walls and the roof, and an additional 2R2C model to
represent the building’s internal heat capacity. The model
collects internal temperature data from 16 temperature
sensors from different parts of the store. However, a
uniform temperature distribution is assumed, with every
part of the store having the same internal temperature.
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Figure 2: Thermal model of the supermarket store [23]. R and C

represent resistance and capacitance values respectively, T is the

temperature, and subscripts w;, r, m and in denote the " wall, the roof;

internal mass of the building and internal air of the building
respectively.

2.1.2. The PI controller

To assess the performance of the RL algorithms, it is
necessary to compare their performance against a
baseline controller. An existing Proportional-Integral
(PD) controller [24] is used for this purpose.

A PI controller aims to minimise the differences
between a system's output and the desired setpoint by
employing two parameters: a proportional-gain (P)
parameter, which responds to the current error, and an
integral (I) parameter, which addresses past errors
accumulated over time. These parameters contribute to
the controller's output to regulate the system's behaviour
and are described by constants [20].

The PI controller used in this paper was tuned to a P
value of 1x10° and an I value of 5x10* for optimal
performance in the simulation environment described in
section 2.1.1.

2.1.3. Environment Dynamics

An effective approach to assess the environment
dynamics involves investigating its time constant T,
defined as the time taken to move 63% closer to the new

value following a step change. This is achieved using the
existing PI controller and a setpoint change of 16°C to
19°C. Based on the graphical method described by C.
Kontoravdi [25], the value of t for the thermal model is
determined as approximately 3 hours.

Due to the slow dynamics of the environment,
changing the HVAC heat load at small intervals (every
minute, for example) resulted in overfitting and unstable
temperature oscillations [26]. It is determined that a
heating interval of 1 hour performed best, as this
maintained the stability of the system while adjusting the
heating regularly enough.

2.1.4. External Temperatures and Setpoints

Eleven months of hourly measured external temperature
data for the supermarket store (ranging from May 2022
to March 2023) [23] were available for use. The store
aims to maintain an internal temperature of 19°C from 7
a.m. to 12 a.m. (operating hours) and at 16°C between 12
a.m. and 7 a.m. (non-operating hours).

2.1.5. States and Actions

States were described as deviations of the internal
temperature from the setpoint (setpoint deviations).
Setpoint deviations directly relate to the amount of heat
that should be added to the system, unlike the internal
temperatures themselves. Since the setpoint changes
across hours of the day, the measured temperature does
not provide a good indication of how close the internal
store temperature is to the temperature setpoint [27]. A
total of 21 states were used, corresponding to temperature
deviations from the setpoint ranging from —10°C to
+10°C, with temperature increments of 1°C between
states. Using a state range of this magnitude allowed the
controller to account for various scenarios, including
cold winter months where constant heating is required,
and hot summer months where no heating is necessary.
Temperatures above or below the maximum setpoint
deviations were approximated as the largest possible
deviation states (+10°C and —10°C respectively). This is
because the best actions at these temperatures correspond
to the best actions as at the largest possible deviation
states: the maximum possible amount of heating is
required for a setpoint deviation of -10°C or more
negative values, while no heating is required at a setpoint
deviation state of +10°C or more.

Actions were described as changes in the power
output of the HVAC system. J. da Silva and A. Secchi
[27] established that describing the actions in such a way
is effective to maintain a stable setpoint in the context of
a process production plant. Designating the actions as
changes in the heat loads instead of the heat load values
themselves improved the stability of the control system,
as shown in the Supplementary Information section. A
total of 11 actions were used, corresponding to changes
in the power output of the HVAC system ranging from —
250kW to +250kW, with increments of S0kW between
actions. Using changes of magnitude 250kW prevented
the HVAC system from directly switching its power
output between 0 and S00kW, over the concern that this
could result in significant instability, similar to cases
presented in [25].
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Table 1: Effect of action on HVAC power output

HVAC Power Output . HVAC Power Output
. Action, a; )
(Timestep = t-1) (Timestep = t)
QHVAC A QHVAC QHVAC + A QHVAC

2.1.6. Reward function

The reward function ensures that the actions taken by the
controller are as close as possible to the desired outcome.
An iterative approach is taken to fine-tune the reward
function for optimal results. It is common to set the
rewards as negative values, favouring rewards closest to
zero [7]. The absolute value of each term in the reward
function represents a penalty which needs to be
minimised.

The reward function aims to simultaneously penalise
two separate metrics: the temperature deviation from the
setpoint and the HVAC heat load relative to the
maximum. These two metrics were specifically chosen as
they gauge the user comfort and thermal energy usage
respectively. Both metrics were standardised with
adequate weights.

Table 2: Temperature and energy rewards for different deviations from
the setpoint AT, where AT = Tinternar =~ Tsetpoint

AT (°C) AT>0 -2<AT<0 AT <-2
Temperature _ _ _ 3
reward w, |AT| ws|AT| |AT|
Energy QHVAC QHVAC QHVAC
—-W, ——— —W, = -5.—
reward 0 0 0
max max max

As explained in section 2.1.4., setpoint deviations
directly relate to the amount of heat that should be added
to the system. Accounting for setpoint deviations instead
of internal temperatures values in the reward function
prevents the internal temperature from converging at the
weighted average value of the two setpoints.

The constraint for AT < -2 is implemented to prevent
the model from converging around the 16°C setpoint. A
setpoint change from 16°C to 19°C would activate the
cubic temperature factor. This would in turn prompt the
controller to increase the internal temperature to the new
setpoint and prevent the algorithm from taking enormous
penalties. This constraint proves particularly useful in
cold temperature conditions, during which the controller
would otherwise tend to minimise the energy usage and
incidentally prioritise the 16°C setpoint over the 19°C
setpoint.

2.1.7. Exploration Probability (¢)

A significant aspect of RL involves the distribution of
training between exploration (investigating actions with
unknown outcomes) and exploitation (taking the best-
known action, based on the current estimated Q-values
[12]). A balance between these must be achieved to
optimise performance and computational cost.

The Epsilon Greedy method is the most common
approach to strike this balance [20]. In this method, the
exploration probability parameter ¢ is set between 0 and
1. As its name suggests, the probability of the agent
exploring new state-action pairs stands at €, while the
agent exploits the known state-action space (1-g) of the
time.

2.1.8. Learning Rate (o)

The learning rate a is also set to a value within the range
0 to 1. A learning rate close to 0 corresponds to a slow
rate of learning during which the system tends to stabilise
its Q-estimates; Q-values only undergo small changes
when updated. However, this may result in the algorithm
taking a significant amount of time before converging to
the optimal solution. A learning rate close to 1 results in
faster learning, with the Q-values undergoing more
significant updates. This can however increase the
likelihood of unstable and oscillatory learning, and the
possibility of overshooting the optimal solution [7].

2.1.9. Discount Factor (y)

The discount factor y measures the importance of future
rewards for the agent. It is also designated a value
between 0 and 1. A discount factor close to 1 implicates
giving more importance to long-term consequences. This
encourages the agent to consider future rewards in
decision-making. A discount factor close to 0
corresponds the algorithm prioritising short-term gains
and mostly ignoring long-term consequences. In most of
the literature [12], y values between 0.9 and 0.99 were
used to prioritising future rewards. It would therefore be
sensible to use y values of similar magnitudes as a
guideline [20].

2.2. Training the Tabular Q-Learning Controller

A Q-Table is first initiated with Q-values for all state-
action combinations being zero. This ensures a neutral
starting point and prevents biases in the learning process
[71.

The controller is then trained on the eleven months of
available external temperature data ran 20 times,
equating to 18 years’ worth of training data. This is
consistent with how RL agents should be trained, often
requiring numerous time steps to provide meaningful
results [6]. Opinions in literature vary regarding how
much data suffices for training, ranging from 3 months to
100 years. However, it is determined that an equivalent
of 18 years of data is enough.

The TQL controller is then tested for different
scenarios, including periods of extreme heat and extreme
cold to assess its robustness. Plots for these scenarios can
be found in the Supplementary Information section.

2.3. Training the Deep Q-Learning Controller

A Deep Q-Learning algorithm is trained with the same
system specifications as described in Section 2.1., with
the same 18 years equivalent of training data used to train
the TQL controller. The controller is modelled after N.
Joshi’s Deep Q-Network [28] and makes use of two
hidden layers in its neural network.
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Hidden layers

Output layer
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= =l P

Figure 3: A neural network with two hidden layers used as Q function.
The input layer is the state; the output layer is the Q-values
corresponding to every possible action

2.4. Key Performance Indicators (KPlIs)
2.2.1. Comfort Violation

The Comfort Violation is calculated using Equation 4,
based on M. Bird’s definition of comfort violations [23].
Only deviations below the setpoints were considered. In
Equation 4, N represents the number of timesteps of
duration 1 hour each and AT; is the deviation from the
setpoint at timestep i. The Comfort Violation is
normalised per year, and 1Kh/yr corresponds to
deviations from the temperature setpoint of 1 Kelvin for
1 hour within 1 year [23].

Comfort Violation =

24 -365.25

N
N i:olATil ) Tinternal < Tsetpoint

“)

0 ’ Tinternal > Tsetpoint

2.2.2. Total Energy Usage

The total thermal energy produced by the HVAC system
Quvac (KkWhyerma/y7) over N timesteps of length 1 hour
each is given by Equation 5, where Qnvaci (KWihermal) 18
the thermal power into the building during timestep i. The
total thermal energy value is normalised to obtain the
energy produced per year.

Quvac = @Z%ﬂ:o QHVAC,i (5)
The total electrical energy consumed by the HVAC
system (KWhejectrical/Yr) can then be determined from
Equation 6, where the Coefficient of Performance (COP)
of a typical HVAC system is 3 kKkWherma/KWheieetrical [3].

_ Quvac
QElectrlcal ~ cop (6)

2.2.3. Total Energy Cost

The total electricity cost (£) is calculated using:
Total Electricity Cost = Qejectrical * Pelectricity @)

where the price of electricity Pelecriciy can be
approximated as £0.20/ kWheiectrical. [3]- A fixed price is
used rather than real time data (from the N2EX database
for example) as energy consumption and user comfort
constitute the primary objectives of the model. If the
model was constructed to also include an electricity cost
minimisation target, the comfort target would have risked
being compromised in scenarios where electricity prices
surge (during the Russia-Ukraine war in 2022, for
example).

2.2.4. COze emissions

The UK Government Department for Energy Security
and Net Zero [29] reports that 0.207 kg of carbon dioxide
equivalent is released on average per kWh of electrical
energy used. As a result, the total mass of CO,e released
(kg/yr) can be calculated using Equation 8 below.

Meo,e = 0.207 - Qgiectricar (8

2.5. Sensitivity analysis

After tuning a controller, it is of value to perform a
sensitivity analysis on its different model specifications.
This helps to analyse the most sensitive hyperparameters
and offers an opportunity to further understand the
dynamics of the reward function. Sensitivity analyses are
independently performed on w1, wa, w3, wa, o, v and € for
the Tabular Q-Learning controller.

3. Results
3.1. System Specifications

In most cases, it is necessary to take an iterative approach
and manually tune the reward function term weights and
the model hyperparameters. Table 3 shows the
temperature and energy rewards with optimal wi to wa,
while Table 4 displays the optimal hyperparameters,
which are used in for both TQL and DQL controllers.

Table 3: Temperature and energy reward terms, with optimal w;=0,
wr=0.3, ws=2 and w,=1

AT (°C) AT>0 -2 <AT<0 AT <-2
Temperature 0 —2147)| —|ATP?
reward
Energy 03 Qnvac Qnvac 5 Qnvac
d —VU. b e e— — T
rewar Qmax Qmax Qmax

Table 4: Optimal values for hyperparameters a, y and &.

o v €
0.001 0.99 0.4

Figure 4 depicts how the total reward for a training
run varies, where each run corresponds to one training
loop where the 11 months of training data described in
Section 2.1.4. is used. The total reward plateaus before
20 training loops.
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Figure 4: Total reward plotted against training run number for 20 runs

for TOL controller

3.2. Tabular Q-Learning

The Q-Table contains 231 entries (21 states x 11 actions),
which is considered a reasonable Q-Table size [7].
Figure 5 depicts the temperature profile of the baseline
PI controller and the trained TQL Controller tested in
May 2023, with Figure 6 presenting a more detailed
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analysis over a 48-hour period. It can be observed that
the TQL controller maintains the internal temperature
closer to the 19°C setpoint compared to the baseline PI
controller.

The Tabular Q-Learning controller is also proven
versatile, performing efficiently in both the warm
summer 2022 and the cold winter 2023, as shown in the
Supplementary Information section.
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Figure 5: Testing plots for the TOL controller in the period 1 to 15 May
2023. In the two bottom plots, the orange and blue lines illustrate the
performance of the TOL and PI controllers respectively. The black
dashed line in the bottom plot represents the temperature setpoint.
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Figure 6: Testing plots for the TOL controller in the period 8 to 10 May
2023. In the two bottom plots, the orange and blue lines illustrate the
performance of the TOL and PI controllers respectively. The black
dashed line in the bottom plot represents the temperature setpoint.

Quantitative results shown in Table 5 demonstrate
that the Tabular Q-Learning agent outperforms the PI
controller in every metric. As the total energy cost and
CO2e¢ emissions are directly proportional to the total
thermal energy produced by the HVAC system, these
indicat