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Preface 

 
This volume of Chemical Engineering Research collects the unedited research project reports 
written by 4th year undergraduates (Class of 2024) of the M.Eng. course on Chemical 
Engineering in the Department of Chemical Engineering at Imperial College London. The 
research project spans one term (Autumn) during the last year of the career. It emphasises 
independence, the ability to plan and pursue original project work for an extended period, 
produce a high-quality report, and present the work to an audience using appropriate visual 
aids. Students are also expected to produce a literature survey and to place their work in the 
context of prior art. The papers presented showcase the diversity and depth of some of the 
research streams in the department but only touch on a small number of research groups and 
interests. For a complete description of the research at the department, the reader is referred to 
the departmental website1. 
 
The papers presented are in no particular order, and a manuscript number identifies them. Some 
papers refer to appendixes and/or supplementary information which are too lengthy to include. 
These files are available directly from the supervisors (see supervisor index at the end of the 
book). Some reports are missing and being embargoed, as they contain confidential 
information. A few reports correspond to industrial internships, called LINK projects, in 
collaboration with Shell.  

The cover figure corresponds to a photograph of a flow reactor for water splitting (taken from 
the work of Konrad Reents and Alexander Kovacs, manuscript 62).  

 

London, February 2024 

 

  

                                                
1 https://www.imperial.ac.uk/chemical-engineering 
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PrCa(5%)FeO3 Photocathodes Optimised Through Hole Transport Layers 

and Pt Catalyst 

Di Wen, Zhenran Zhang 
Department of Chemical Engineering, Imperial College London, U.K. 

 
Abstract 
There is continuously increasing demand for green, safe, and efficient energy across the world since many 
countries and multinational companies have committed themselves to a net zero pathway. Solar energy is an 
optimal substitute for the conventional fossil fuel where Solar-to-hydrogen (STH) conversion offers a reliable 
storage method. PEC water splitting, a highly efficient and cost-effective method of generating hydrogen, is 
investigated in this article. A state-of-the-art perovskite oxide photocathode based on Ca-doped PrFeO3 is 
developed and optimized using a number of hole transport layers (HTLs) and Pt catalyst. The FTO / cNiOx 
(annealed at 400 °C) / PrCa(5%)FeO3 / 3-layer Pt (deposited at 400 °C) gives the best photocurrent of ~21 µA 
cm-2 when testing PEC performance under the N2 environment. Data of multiple characterization methods 
including SEM, UV-Vis, and XRD managed to justify the experimental results. Overall, the cNiOx layer is an 
effective HTL when PEC measurements are carried out in atmospheric condition whereas it fails to reduce charge 
recombination in the hydrogen evolution reaction (HER). When the cNiOx is annealed at 600 °C, it loses its 
function as an HTL. When Pt is deposited onto PFO as a catalyst at 100 °C, it can effectively improve the 
selectivity of HER. 
 
Keywords:    Solar-to-hydrogen, PEC water splitting, perovskite oxide, Ca-doped PrFeO3

Introduction 
Ever since the Paris Agreement, over 140 countries 
have set up their net zero targets.1 Various laws and 
policies have been laid out. The demand for 
decarbonisation has prompted huge interest in the 
development of low carbon technologies and 
renewable substitutes of fossil fuels. Solar energy is 
a potential solution to the continuously increasing 
energy needs. However, the utilisation of solar 
radiation is severely hindered by its intermittent 
nature. An efficient and safe storage method is 
required to retain the excess solar energy generated 
in the daytime.2 Solar-to-hydrogen (STH) energy 
conversion has been regarded as a promising method 
to store solar energy through water splitting 
reaction.3,4 A high purity of H2 can be obtained since 
H2 and O2 are readily separated through water 
decomposition. The green hydrogen H2 itself is also 
an efficient and renewable fuel which generates zero 

carbon emissions. It demonstrates a superior 
gravimetric energy of 120 MJ/kg comparing to that 
of gasoline (44 MJ/kg).5 (Hydrogen has a higher 
gravimetric heating value (141.9 MJ kg-1) than most 
of the conventional fossil fuels (methane 55.5 MJ 
kg-1, gasoline 47.5 MJ kg-1, diesel 44.8 MJ kg-1, and 
methanol 20.0 MJ kg-1) There are three main 
approaches to STH energy conversion via water 
splitting, which are the photovoltaic-electrolysis 
(PV-EC), photocatalytic (PC), and 
photoelectrochemical (PEC) ways As a highly 
developed technology, PV-EC system has already 
been partially commercialised. Among the three 
technologies, PEC cell is ranked in the middle in 
terms of overall efficiency, complexity, and choice 
of material.[6] PEC water splitting thus is not only 
highly efficient but also relatively simple and cost-
effective. This article gives more insights into the 
STH energy conversion using PEC water splitting. 

1



 
Background 
According to the Nernst Equation, water is 
converted into oxygen and hydrogen (i.e. Gibbs 
energy = 237.2 kJ/mol) when a minimum energy of 
1.23 eV is applied under atmospheric temperature 
and pressure (i.e. 298 K and 1 bar). The solar 
irradiance with a wavelength of around 1000 nm 
provides the same amount of energy.2,6,7 
Nevertheless, an energy greater than the theoretical 
minimum is required to drive the reaction in practice 
as a result of the energy loss in PEC water splitting.2 
The energy losses accounts for about 0.8 eV, 
including the potential loss because of the electrode 
and contact resistances as well as the electron-hole 
recombination. Thus, in practice, an energy of ~2.0 
eV is needed to initiate PEC water splitting.8 The 
reactions for water splitting are shown below. 
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Figure 1：PEC water splitting mechanism 

A photocatalyst must have a band gap energy of ~2.0 
eV to decompose water due to the significant 
overpotentials of the two half equations. electrons 

(ecb) and holes (hvb
+
) are generated by solar 

irradiation and drive the overall reaction.6  
 

The STH conversion efficiency (ZSTH) is normally 
employed to quantify the PEC performance of solar 
cells.7-14 By definition, the STH efficiency is the 
amount of chemical (H2) energy generated per unit 

incident solar energy. It is obtained under 
normalised solar irradiance with a value of one sun 
(100 mW/cm2).8, 14 The Air Mass 1.5 global (AM 1.5 
G) filter is normally used.  
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Where _{;  is the generated photocurrent density, 
b| is the Faradaic efficiency of O2 or H2 production 
(i.e. the efficiency of holes and electrons 
contributing to OER or HER) 

 
N-type metal oxide and p-type non-oxide 
photocathodes have been intensively visited in the 
field of PEC water splitting. For example, the 
studies on using materials including Si, GaP, and 
InGaN as photocathodes are well-established.15 
However, the research on the novel p-type metal 
oxide semiconductor photocathodes is relatively 
limited, most of which focus on the Cu-based 
photocathodes. The p-type Cu-based metal oxides 
are regarded as reliable photocathodes due to their 
wide bandgaps as well as favourable band edges 
correlated to the water splitting redox couples. 
Nevertheless, the potential of binary and ternary 
copper-based oxides is limited by the chemical 
instability against reduction and non-ideal 
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optoelectronic properties. With buried p-n junctions, 
protective layers, and nanostructures, Cuprous oxide 
Cu2O possesses promising PEC performance.16 It 
has a band gap of 2.0 eV and gives a theoretical ZSTH 
of 18%.6 

 
PrFeO3 is a state-of-the-art metal oxide 
photocathode. Perovskite oxide has favourable band 
gaps for solar illumination absorption and stability 
for aqueous applications.17 However, its PEC 
performance is still hindered by the hole-electron 
recombination and high overpotential. 
 
Aim 
The main objective of this project is to optimize the 
calcium doped (5%) praseodymium orthoferrite 
PrFeO3 (PFO). It is made up of two aspects, in which 
the first one is to reduce the recombination of charge 
carriers (i.e. holes and electrons) using a range of 
hole transport layers (HTLs). The other aspect is to 
boost the selectivity and hence the PEC performance 
using platinum as a photocatalyst. This project aims 
to give a potential option for an efficient, robust and 
environmentally friendly PFO-based photocathode 
for PEC water splitting. 
 
Methodology 
 
Fluorine-doped tin oxide (FTO) 
substrate preparation 
FTO glass substrates were cut to 2.7 cm x 1.5 cm 
and placed in a staining jar. The substrates were 
cleaned by the solution of Hellmanex detergent in 
deionised (DI) water, under ultrasonic water bath for 
10 minutes. To avoid the contamination by detergent, 
the substrates were then rinsed by DI water for 10 
times to ensure that there is no new bubble formed. 
The substrates were subsequently treated with 
acetone and isopropanol for 10 minutes of 
ultrasonification with each solution. After drying 
carefully with the radiation of hot plate (80°C), a 
further 20 minutes of UV-Ozone treatment was 
carried out to increase the wettability of the FTO 
surface for the immediately following spin coating 

steps. An ohmmeter was used to check the side of 
FTO with non-zero resistance, and the FTO side was 
put upwards.  

 
Compact NiOx layer (cNiOx) 
0.01 g of Solaronix Ni-Nanoxide slurry (nickel 
oxide nanoparticle paste) was dissolved in 1g 
(equivalent to 1260 µL) ethanol and vigorously 
stirred for 20 mins. Spin coating was carried out on 
the FTO side at 2000 rpm with 2000 rpm/s 
acceleration for 30 seconds with 0.05ml solution. 
3.5 bar of N2 was used for vacuum for the spin coater. 
Annealing temperatures of 400°C and 600°C were 
both investigated. The maximum temperature of hot 
plate was 500°C. Therefore, the films were heated 
on the hot plate of 400°C for 30 minutes when the 
annealing temperature condition was set to 400°C. 
For the temperature condition of 600°C, these films 
were calcinated in the tube furnace for 30 minutes. 
 
Mesoporous NiOx layer (mpNiOx)   
0.1 g of Solaronix Ni-Nanoxide slurry was dissolved 
in 0.5 g ethanol and mixed with the solution 
prepared by 0.5 g ethanol and a varied mass of 
Triton X-100 (TX100), to achieve different overall 
mass ratio of 1:1, 1:2, 1:5 and 1:10 for TX100: 
ethanol. The mixture was stirred for 20 minutes. 
This was followed by spin coating of the resulting 
mixture on the annealed cNiOx layer at 2000 rpm 
with 2000 rpm/s acceleration for 30 seconds with 
0.05ml solution. The annealing temperature and 
time were 400°C and 30 minutes.  
 
Compact MoOx layer (cMoOx) 
10 nm of MoOx layer was deposited by thermal 
evaporation on the cleaned FTO substrate. 
 
PrCa(5%)FeO3 layer 
4 ml Tetrahydrofuran (THF) was extracted by 
syringe with needle in nitrogen environment, which 
was added to 2ml TX100 and stirred for 1 hour. 
Simultaneously, 0.9 g citric acid powder, 0.5 g 
Fe(NO3)3 ·9H2O and 0.0146 g Ca(NO3)3 ·4H2O 
solids were mixed with 0.51 g Pr(NO3)3 ·6H2O solid. 
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2ml DI water was added to the solid mixture 
immediately to prevent the change in the 
composition of the hydrates and the solution was 
stirred for 1 hour. 4ml of the polymer solution were 
then added to the inorganic solution and stirred for 3 
hours. 0.05ml solution was used per each sample for 
spin coating at 2000rpm with 2000 rpm/s 
acceleration for 30 seconds. The coated films were 
calcinated in three different temperatures (600°C, 
700°C and 800°C) in the tube furnace for 2 hours. 
This method was adapted from Freeman et al.17 

 
Platinum nanoparticles 
8.3mg K2PtCl4 and 223.5mg trisodium citrate were 
dissolved in 20 ml H2O. 0.6 ml of 10mM NaBH4 

solution was then added to the solution as a reducing 
agent and form Pt nanoparticles.18 A 200nm filter 
was used on the syringe to filtrate the large Pt 
particles or agglomerates. Spin coating was 
performed subsequently using 0.02ml at different 
spin speed (2000rpm, 3000rpm and 6000rpm) and 
evaporating the solvent at two different 
temperatures (400°C and 100°C) for 30 minutes.18 
The coating procedure was repeated for adding more 
Pt layers. 

 
Characterisation methods 
Photoelectrochemical measurements 
(PEC) 
 
A PEC cell was set up with a three-electrode 
configuration consisted of an Ag/AgCl reference 
electrode, a Pt counter electrode and a working 
electrode. The tips of the reference electrode and 
counter electrode were immersed in 0.1M Na2SO4 
aqueous electrolyte with pH 12, after adding NaOH 
solution of pH 14 to tune the pH value. The glass 
side of the sample (without coated layers) was faced 
to the light source while the other side was in contact  
with the electrolyte. A 0.28 cm2 mask was used to 
control the illumination area and simulated sunlight 
was introduced by the LOT Quantum Design lamp 
with the filter to control the light intensity to 100 
mWcm-2 (AM 1.5).  

To be able to compare the PEC performances in 
different cell conditions, Nernst Equation at room 
temperature and pressure was applied to convert the 
potentials to reversible hydrogen electrode (RHE): 
 

6}e~ = 6w7/w7Ät + 0.059 ∗ &H + 0.197 
 
The IVIUM potentiostat was connected to the 
IVIUM software and the light was chopped at a rate 
of 2 second. The applied external potential was 
swept from +1.4V to -0.6V S}e~	linearly at a scan 
rate of 10mVs-1. 
 
Ultraviolet-Visible Spectroscopy (UV-
Vis) 
The UV-Vis spectroscopy was investigated through 
a Shimadzu 2500I spectrophotometer. The Kubella-
Munk function was evaluated for wavelengths from 
300 to 800 nm. 
 
X-Ray Diffraction (XRD) 
X-ray diffraction (XRD) was carried out to analyse 
the crystalline structure of perovskite layers. A 
PANalytical X'Pert Diffractometer (Cu Ka, λ = 1.54 
A) was employed at 40 kV and 40 mA. Diffraction 
patterns were taken for 2θ values from 20 – 80° in a 
slope of 0.0170° and then processed by Highscore 
software. 
 
Scanning Electron Microscopy (SEM) 
Field Emission - Scanning Electron Microscopy 
(FE-SEM) was investigated using ZEISS LEO 1525 
with an accelerating voltage of 3KeV. 
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Results and discussion 
PEC measurements 
 
Effect of cNiOx and mpNiOx HTLs 

In order to reduce the electron-hole recombination 
and to increase the photocurrent density, the 
performance of HTLs were investigated by PEC 
measurements with the photoactive layer, 5% 
calcium doped PFO. 
The mass ratio of the surfactants to ethanol was 

varied in the mpNiOx layer with the structure of 

FTO/cNiOx/mpNiOx/PFO and the FTO/PFO 

configuration without the hole transport layers was 

used as a reference. Figure 2(a) and 2(b) showed 

that mpNiOx made with a 1:5 or 1:10 mass ratio 

between polymer TX100 and EtOH demonstrated 

the best PEC performance in air while there was no 

photocurrent can be observed when the ratio 

reached 1:2 and 1:1. Figure 2(b) illustrated the 

photocurrent density when applied a flat baseline to 

Figure 2(a) (i.e. the total current density subtracting 

the dark current density at 0.43V S}e~) 

 

Figure 2(a)：mpNiOx made with different mass 
ratio between polymer TX100 and EtOH 

 

 

 

Figure 2(c) demonstrated the best photocurrent with 

mpNiOx (54 µAcm-2) is still much lower compared 

to the sample without the hole transport layer (87 

µAcm-2). Nevertheless, the effect of cNiOx as HTL 

alone was required to be investigated to conclude the 

effects of mpNiOx on the performance. Figure 3(a) 

and 3(b) illustrated the mpNiOx layer reduced the 

electron-hole recombination as well as the 

photocurrent density. The trend was clearer from 

figure 3(c), adding a cNiOx layer to the structure 

improved the photocurrent density in air, from 87 

µAcm-2 to 106 µAcm-2, while further coating a 1:10 

mpNiOx layer on cNiOx layer reduced it to 54 µAcm-

Figure 2(b): mpNiOx made with 
different mass ratio between polymer 
TX100 and EtOH with flat baseline 

Figure 2(c): Bar chart of mpNiOx 
made with different mass ratio 
between polymer TX100 and EtOH 
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2. Therefore, mpNiOx was not a desired HTL in that 

configuration and cNiOx was promising. 

 

 

 

 

 

 

Effect of cMoOx HTL 

The structure with a thin layer of 10nm cMoOx as 

HTL was investigated to compare its PEC 

measurements with the cNiOx layer. The results in 

figure 4 indicated that the poor performance of the 

cMoOx layer as the photocurrent density was limited 

within 2 µAcm-2, which was significantly lower than 

the samples coated with cNiOx and might be due to 

incompatible structure with PFO. 

 

 

Effect of calcination temperature of the 
photoactive layer 

Temperature of calcination of the photoactive layer, 

5% calcium doped PFO, was studied to optimise the 

configuration and to improve photocurrent density. 

From figure 5(a) and 5(b), with interested voltage 

0.43V vs. RHE, 600°C was the optimal temperature 

since it demonstrated the highest photocurrent 

density with 106 µAcm-2 and it was the lowest 

temperature which saved the energy. 17 Apart from 

the optimal temperature, the photocurrent density 

with calcination temperature of 800 °C was almost 

zero. A possible reason for the PEC performance 

was the cNiOx cannot withstand the temperature of 

800 °C and form cracks, which required further 

justification from SEM results. 

Figure 3(a): mpNiOx and cNiOx 
comparisons  

Figure 3(b): mpNiOx and cNiOx 
comparisons with flat baseline 

Figure 3(c): Bar chart of mpNiOx 
and cNiOx comparisons  

Figure 4: cMoOx PEC performance  
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Effect of spin coating speed for Pt 

The spin coating speed would influence the 

thickness of the coating layers and thus affected the 

distribution pattern of Pt nanoparticles. From Figure 

6(a) and 6(b), The spin coating speed of 3000 rpm 

showed a 25% improvement to the photocurrent 

density compared to 2000 rpm and slightly reduced 

the electron-hole recombination. The photocurrent 

density by using 6000 rpm was almost identical to 

3000 rpm and therefore 3000 rpm was chosen as it 

was more energy efficient. 

 

 

 

 

 

Effect of number of coating layers of Pt 

To coat the Pt nanoparticles more evenly with more 

nanoparticles on the PFO surface, the number of 

coating layers of Pt was varied and studied. Figure 7 

illustrated the photocurrent density in air increased 

as the number of coating layers increased, with 27% 

improvement from 1 layer to 2 layers of Pt and a 

Figure 5(a): Change temperature for calcination 

Figure 5(b): Bar chart for change temperature 
for calcination 

Figure 6: Different spin speed 

Figure 6: Bar chart for different spin speed 
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further 10% improvement from 2 layer to 3 layers. 

 

 

PEC measurements in nitrogen environment were 

performed to exclude the photocurrent density of all 

the other reactions including oxygen reduction 

reaction (ORR) and demonstrated the selectivity to 

hydrogen evolution. The trend in nitrogen 

environment was still hold and can be concluded 

from Figure 8. However, there was no clear 

improvement after adding the Pt layers since 

difference between the photocurrent with Pt layers 

and without Pt layer was within the range of 

experimental error. 

 

 

 

To improve the performance of Pt layers, the 

temperature to evaporate the water after spin coating 

was lower to 100°C to reduce the effect of Ostwald 

ripening and the agglomerations. The temperature of 

cNiOx annealing was increased to 600°C to be 

consistent with the calcination temperature of 5% Ca 

doped PFO layer simultaneously. The PEC results 

under nitrogen environment were shown on Figure 

9. Compared the photocurrent density of sample 

1,2,3 with sample 5 in Figure 9, it illustrated Pt did 

improve the photocurrent since there was an over 50% 

improvement on the photocurrent density from 6 to 

9 µAcm-2 at least. In addition, after changing to the 

new temperatures, the 2 layers of coating of Pt 

demonstrated the best performance. The cNiOx 

might not be effective since there is no obvious 

difference between the results of sample 4 and 

sample 6. 

 

Optimal photocathodes 

A collection of the optimal photocathodes under N2 

condition with FTO/PFO and FTO/cNiOx/PFO as 

reference was shown in Figure 10(a), 10(b) and 

10(c). The best photocurrent density was achieved 

by the sample with lower temperature (100°C) to 

evaporate the solvent and higher temperature 

(600°C) to anneal the cNiOx. It could be explained 

by even though in the lower temperature, the 

performance of Pt was improved and resulted higher 

selectivity, the cNiOx might lost its function as HTL 

to reduce the electron-hole recombination. 

 
 
Characterisation Results 
SEM Results 
FTO 

Figure 7: Bar chart for different coating layers 

Figure 8: Bar chart for different coating layers 
in N2 
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The image demonstrates the scanning electron 
microscope (SEM) result for FTO-coated glass. The 
marble-like pattern of FTO as well as the grain 
boundaries are shown. FTO has an average 
crystallite size of ~0.2 µm. 
 
FTO/cNiOx 
 
cNiOx annealed at 400 °C 

 
The SEM image of FTO/cNiOx composite has a 
similar pattern as the bare FTO one. However, it has 
a smaller crystallite size than that of FTO.  
cNiOx annealed at 600 °C 

 
The SEM image of FTO/cNiOx composite 
demonstrates a similar morphology as the former 
one. The only difference in the preparation of 
sample is the annealing temperature of cNiOx is 
increased from 400 to 600 °C. cNiOx particles start 

to agglomerate at a higher temperature due to the 
Ostwald ripening. As a result, cNiOx loses its 
preferred function as a HTL and fails to reduce 
charge carrier recombination. Moreover, cNiOx 
might diffuse into the PFO layer and thus deactivate 
PFO. Therefore, the PEC performance for samples 
with cNiOx (600 °C) is non-ideal. 
 
FTO/cNiOx/PFO/2-layer Pt 
Pt deposited at 400 °C 

 
Pt deposited at 400 °C 

 
 
Pt deposited at 100 °C 

 
Pt deposited at 100 °C 
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The four images from figure X to X refer to the 
FTO/cNiOx/PFO/2-layer Pt photocathode which 
gives ideal PEC performance. As these images 
shown, there are more cracks on the surface with Pt 
(400 °C). Also, more Pt agglomerations can be 
observed with a higher deposition temperature for Pt. 
The lower layers fail to mechanically support the 
PFO and Pt nanoparticles are spread less evenly in 
figure X and X. Therefore, the samples with Pt 
(100 °C) demonstrate better PEC performance. 

 
UV-Vis Results 
Absorbance 

 
Reflectance 

 
The absorbance and reflectance characteristics were 
investigated using Ultraviolet-visible (UV-Vis) 
spectroscopy. Absorbance increases as the 
wavelength of incident light decreases from 700 to 
300 nm. Absorbance is inversely proportional to the 
reflectance which is desired. The absorption of light 
rapidly increase as the curve enters the ultraviolet 
region (wavelength between 100 and 400 nm). The 
fluctuation of curves possibly indicates the 
iridescence which is the phenomenon gradually 
changing colour due to the change of angle of 
illumination. It is also partially because of the 
intrinsic wave pattern of the incident light. 

 
XRD Results 
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X-ray diffraction was investigated for samples with 
different layers. The XRD data and reference data 
for each material were analysed and plotted using 
OriginLab 2022. Then all the plots are combined and 
shown in the XRD graph. There is not much 
difference between the plots generated by four 
different samples. The six reference peaks of FTO 
are clearly demonstrated on all four plots. The 
reference peaks for NiOx and PFO are partially 
shown (i.e. NiOx: 2θ = ~43.0°, ~78.0°; PFO: 2θ = 
~25.5°, ~32.5°, ~57.5°) while the Pt peaks cannot be 
easily identified. The sharp reflections of FTO peaks 
dominate which indicates the high crystallinity and 
possible desired orientation effects. The sharp peaks 
of FTO indicate a low Full Width at Half Maximum 
(FWHM) value. Since the crystallite size of a 
material is inversely proportional to its FWHM 
value, it can be concluded that FTO has a relatively 
large crystallite size which is consistent with our 
SEM result.19 On the contrary, tiny Pt nanoparticles 
with diameters less than 50 nm result in a large 
FWHM value and hence negligible peaks. The XRD 
patterns of FTO – PFO, FTO – cNiOx – PFO, and 
FTO – cNiOx – PFO – Pt(3) composites all partially 
match with the diffraction pattern of PFO with 
JCPDS no. 00-047-0065. Similarly, the peaks of all 
three samples with cNiOx layer partially match with 
the known cubic phase of NiO (ICSD: 024014) and 
rhombohedral phase of NiO2 (ICSD: 078698).20, 21 It 
demonstrates that PFO, NiO, and NiO2 might not 
have the crystallinity as high as that of FTO. 
 
Conclusion 
This study has investigated the effects of the cNiOx, 
mpNiOx and cMoOx hole transport layers, the 
calcination temperature of calcium doped PFO, spin 
coating speed, number of coating layers of platinum 
with different temperatures to evaporate the solvent 
of Pt nanoparticle solution and presented a 
collection of the optimal photocathodes. 
In conclusion, the cNiOx layer is an effective HTL 
when PEC measurements are performed in 
atmospheric condition, while it fails to reduce 
charge recombination in the HER. mpNiOx and 

cMoOx layers are incompatible with PFO at 600°C 
and gives poor PEC performance. However, when 
the cNiOx is annealed at 600 °C, it loses its function 
as an HTL as well. For tuning the temperature of 
evaporating the solvent in Pt coated film at 100 °C, 
it can effectively improve the selectivity of HER. 
The structure of FTO / cNiOx (400 °C) / 
PrCa(5%)FeO3 / 3-layer Pt (400 °C) gives the best 
PEC performance under the N2 environment among 
all the tested configurations with a photocurrent of 
21 µA cm-2.  
 
Outlook 
The preparation method for cNiOx / PFO based 
photocathode can be further optimized. For example, 
the cNiOx layer might possess a higher activity to 
reduce electron-hole recombination when the 
annealing temperature is lower than 400 °C. 
Furthermore, it would be beneficial if more 
advanced characterization method such as 
transmission electron microscopy (TEM) can be 
used.  Finally, more HTLs and catalysts can be 
examined for the PFO photocathode.  
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Abstract 

The use of wormlike micelles (WLMs) solutions has seen a growth in recent years due to the remarkable 
rheological and viscoelastic properties of these fluids, comparable to the more expensive ultra-high molecular 
weight polymer solutions. To better understand these complex fluids, numerous research had been done to study 
the structural and rheological properties of WLMs solutions. Though, one main gap remained in these studies: 
the extensional rheology– a major flow character that will allow a better characterisation of these fluids for real 
life use. In this paper, we studied cetyltrimethylammonium bromide/sodium salicylate (CTAB/NaSal) solution, 
by fixing CTAB concentration to 0.1M and using different NaSal concentration ratio, R of 1, 2, 3, 4, and 5. 
Formation of WLMs in solutions was confirmed by employing previous molecular structure and shear rheology, 
alongside our own shear rheology and viscoelasticity study before proceeding with extensional rheology study. 
Viscoelasticity studies showed that storage and loss modulus intersection moved towards higher shear rate until 
R=3, before moving towards lower shear rate. Thus, indicated that viscosity of the solution increased until a 
maximum at R=3 and decreased at higher R values. Extensional rheometer-on-a-chip was used to measure 
extensional viscosity with various extensional rates at constant temperature. It was found with R < 5, 
CTAB/NaSal solution exhibited a general tension thinning curve similar to its shear viscosity whereas R = 5 
exhibited a tension thickening pattern before following the general tension thinning behaviour as found in shear 
rheology studies. In addition, our research indicated that extensional viscosity was significantly higher than 
shear viscosity in all R, which was consistent with previous rheological studies. 

Keywords: Wormlike micelles, extensional rheology, CTAB/NaSal solutions, viscoelasticity 

 

1.Introduction and Background 

Amphiphilic molecules garnered attention by 
researchers due to the highly complex nature of the 
molecules when suspended in water. It had been 
known that these molecules were able to self-
organise into many different aggregates, with 
various kinds of geometry, which affected the 
rheology of the fluid significantly. Wormlike 
micelles (WLMs) stood out amongst others due to 
their vast applications including fracturing 
technology in oil industry, template synthesis of 
different nanoobjects, micellar copolymerization of 
hydrophilic and hydrophobic monomers [1].  

WLMs were formed by the self-organisation of 
amphiphiles into an elongated and extremely 
flexible aggregates, capable of forming a network 
of transient and highly entangled chains. Hence, the 
term ‘living polymers’ was often be associated with 
WLMs solutions since they mimic the behaviour of 
water-soluble polymers but apart from the transient 
nature of the WLMs in solution. This was due to 
the hydrophobic interactions holding WLMs 
together are extremely weak relatively to the 
covalent bonds that bond polymer molecules 
together, causing the micelles to break and form 

constantly. Thus, WLMs solutions are extremely 
susceptible to change in temperatures and 
concentrations due to the specific conditions 
required to form these micelles. Hence, the 
rheological properties of WLMs micelles were 
more complex and less predictable than any 
polymer solutions. 

The formation of WLMs is relatively simple, 
requiring only three major components: water, a 
cationic surfactant, and an ionic salt. This, 
combined with WLMs astounding viscoelastic 
behaviour comparable to high molecular weight 
polymers, has attracted numerous research in 
understanding WLMs. 

Cetyltrimethylammonium bromide (CTAB) is one 
of the surfactants that has widely been known to 
form WLMs at a critical micelle concentration of 
1.0M. The addition of ionic salt such as sodium 
salicylate (NaSal) allows the formation of WLMs 
at a lower concentration of CTAB. The presence of 
high electronegative phenyl group in salicylate ion 
reduces the repulsions between polar head of 
CTAB, allowing CTAB molecules to pack closer to 
each other forming thus forming wormlike micelles 
at lower concentration.  
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In recent years, researchers have mostly focused 
their interest in studying the molecular structures of 
various WLMs solutions, and the macroscopic 
behaviour or the rheology of these solutions 
specifically when imposed by a shear stress. These 
studies, especially the shear rheology, are 
important to better characterise these living 
polymers and allow a greater understanding on how 
they behave in real-life situations. Though shear 
rheology of CTAB/NaSal has been extensively 
studied, these studies have failed to address an 
important component to fully characterise the 
rheology of these fluids: their extensional rheology. 

With the recent rise of interest in WLMs solutions, 
we aim to bridge the gap in rheological studies by 
employing CTAB/NaSal solution to understand 
their extensional flow behaviours, which to the best 
of our knowledge has not been investigated 
previously. This research primary goal is to study 
the extensional rheology of CTAB/NaSal solutions 
and using established studies to compare the 
behaviour of these complex fluids. 

2.Methodology 

2.1 Production of CTAB/NaSal Solution 

CTAB, manufactured by ThermoSCIENTIFIC™ 
and NaSal, salts, manufactured by Merck KGaA™ 
were with purity of 99.5% respectively, without the 
need for further refinement or processing. 5 CTAB 
solutions with concentration 0.1M were made by 
measuring a weight of 0.3665g to produce a 0.1L 
solution each. Before addition of deionised water in 
each beaker, 0.1601g, 0.3202g, 0.4803g, 0.6404g, 
and 0.8005g of NaSal salts were measured and 
added to beakers containing CTAB to produce 
concentration ratio, R of 1, 2, 3, 4, and 5. 
Deionised water was added to the 100ml line, and 
solution were then mixed at least overnight under a 
constant stirring speed of 400 rpm and temperature 
of 35 °C before any rheological studies to allow 
solution to equilibrate. 

2.2 Confirmation of WLM Structure Formation 

Physical inspection of solution produced, was used 
as the primary method of confirming the formation 
of WLMs by comparing the physical attributes of 
the solution with multiple available literatures. 

This was done to qualitatively confirm the 
structures formation before proceeding with shear 
viscosity studies that would allow us to 
quantitatively confirm the formation of said 
structures. 

 

2.3 Rotational Shear Rheometry 

Shear rheology studies were mainly done on Anton 
Parr MCR 302 and ThermoSCIENTIFIC™ MARS 
60 shear rheometer with a coaxial cylinder as the 
measuring geometry, where samples were loaded in 
the gap between cylinders. 

2.4 Shear Viscosity and Viscoelastic Behaviour 

To study the behaviour of CTAB/NaSal solution, 
different shear rates were imposed ranging from 
0.01 to 100 s-1 at a fixed temperature of 25 °C. 
Graph of the viscosity obtained were then plotted 
on a logarithmic axes of shear viscosity (Pa s) 
against shear rate (s-1). 

In addition, small amplitude oscillatory test was 
done on the fluid within the linear viscoelastic 
region where samples were sheared in an 
oscillatory manner about the equilibrium position 
at a fixed amplitude. The experiments were carried 
out by manipulating the temperature from 15 to 
30°C and varying frequency of oscillations and 
measuring the maximum shear stress obtained. The 
measurement obtained was used by the software to 
calculate the storage (G’) and loss (G”) moduli by 
using the equations: 

! = #$%&
'$%&

(1) 

Where G is the modulus of spring, #max is the max 
strain and 'max is the maximum measure stress.  

Then, the moduli can then be calculated using: 

!+ = !(,-).
1 + (,-). (2) 

!++ =	 2,
1 + (,-). (3) 

Where ,- is the product of angular frequency and 
the relaxation time of the solution after the imposed 
stress. 

The analysis of the viscoelastic behaviour was done 
by plotting the G’ and G” against frequency of 
oscillation on the same graph. This in turn gave us 
an insight on how fluid behaviour changes with 
different shear rates. 

2.5 Extensional Rheometry 

All extensional rheology studies were done on 
RheoSense e-VROC™ microfluidics chip. The 
channel of the chip was engineered with hyperbolic 
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divots that caused fluid to expand and contract 
thereby producing a constant extension flow 
around the region. The presence of this hyperbolic 
gap caused a significant pressure drop of the fluid, 
which was a characteristic of extensional fluid 
flow, instead of a constant pressure drop when 
shear is the only significant attribute. 

Micro Electronic Mechanical Systems (MEMS) 
pressure sensors were equipped in throughout the 
channel especially upstream and downstream of the 
gap, which allows the measurement of pressure 
drop, subsequently extensional viscosity to be 
done. 

Calculation of apparent extensional viscosity was 
done fully by the proprietary software made by 
RheoSense™, which made use the following 
modified viscosity equation: 

24 =
Δ6
ℇ8ℇ̇

(4) 
Where ;6 is the pressure drop caused by the 
extensional flow through the hyperbolic divots, ℇ8 
is the Hencky strain attributed by the fluid 
contraction/expansion through the divots and ℇ̇ is 
the apparent extensional rate of fluid passing 
through the channel. 

The e-VROC chip used in all extensional studies 
had the same value of Hencky strain of 2.0130, 
which was calculated by the equation: 

ℇ8 = <=>?>@
(5) 

Where >?  is the width of the main flow channel of 
2.994 mm, and >@  is the smallest width of the main 
contraction/expansion zone with a value of 0.400 
mm. 

Fluid was loaded into the chip by use of 1ml 
syringe attached to the inlet of the chip, and 
covered in a temperature controlled thermal jacket, 
connected to Thermocube bath. The syringe 
plunger was attached to a pusher block which acted 
like a pump, delivering the required flow rates as 
specified by the user using the included software. 

To ensure measurement of extensional viscosity to 
be as accurate as possible, the first extensional rate 
was run for an extended period, roughly 1500 
seconds, compared to the 50 to 500 seconds for 
subsequent extensional rates. This was done to 
‘prime’ the sensor, thereby removing any fluids 
and/or air bubbles present in the flow channel, 
disrupting the pressure drop measurements. 

 

3.Results and Discussion 

3.1 Shear Viscosity 

From Figure 1, for R=1-5, shear-thinning 
behaviour was shown for all ratio, shear viscosity 
generally decreases with shear rates. However, 
several waves showed up at shear rates of 16.2/s 
for R=1 and 2.64/s for R=2 and 3 respectively. 
Additionally, an extra fluctuation took place at 
shear rates of 25.1/s for R=3, while there was no 
fluctuation was detected by the rotational 
rheometer at R=5, meaning the worm-like micelle 
structure was not affected by rotational movement. 
This phenomenon indicated that there would be 
shear-induced structure, which CTAB molecules 
aggregated under rotational movement. 
Furthermore, a maximum shear viscosity was 
reached at R=3, 106600 mPa*s particularly. Once 
R became larger than 3, generally the shear 
viscosity started to decrease, possibly due to the 
excess of NaSal dissolved in CTAB aqueous 
solution causing extra repulsion between the salt 
ions and CTAB molecules, making the worm-like 
micelle structure to destruct. In addition, from 
visually observation, high NaSal solution might 
even break caused the CTAB molecule itself to be 
decomposed forming bromine in the solution, as 
the solutions shown in figure 1, were appeared to 
be brownish colour for R=4 and R=5.  

3.2 Viscoelastic Behaviour 

The exchange of viscous and elastic behaviour of a 
fluid was determined by measurement of storage 
modulus and loss modulus. At 25℃, the results 

Figure 1: Shear Viscosity vs. shear Rate for Different R 
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illustrated in figure 2-6 had shown that the left 
most intersection point of G’ and G’’ curve 
occurred at R=3, indicating that the solution with 
R=3 would be the most elastic solution. Apart from 
R=3, the intersection point shifted to left and right 
with increasement in shear rates, for R<3 and R>3 
respectively. Meanwhile, the largest plateau zone 
of G’, which kept stationary after shear rate of 1/s, 
was also found on the curve of R=3, meaning that 
the fluid with R=3 gave the most elastic behaviour 
among all 5 testing samples, the viscoelastic 

behaviour started to stabilise at low shear rates. By 
combining this observation with shear viscosity, 
the limitation of shear rheology and viscoelastic 
behaviour tended to show up at R=3, in another 
word, this ratio for high concentration CTAB 
solution might be an indicator for significant 
changing in properties.  

Besides, temperature also played an important role 
in viscoelastic properties. For each R, the rightward 
shifting of intersection point of the two moduli 

Figure 2-6: Storage & Loss Modulus vs. Shear Rate at Different R for Temperature=25℃ 

Figure 7-10: Storage & Loss Modulus vs. Shear Rate at Different Temperature for R=3. 
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curve indicated that higher temperature would 
encourage more viscous behaviour, as more energy 
got absorbed by the micelle molecule, causing the 
crosslinking and intermolecular interaction 
between molecules to be destructed. For some 
extreme cases, such as for R=3 at 15℃, the G’ and 
G’’ curve did not intersect, meaning that there 
would be negligible viscoelastic behaviour and no 
fluid change from viscous to elastic regime.  

3.3 Extensional Viscosity 

Ranging from R=1 to R=5, a general negative 
relationship between extensional viscosity and 
extensional rate was shown in figure 11, however, 
except for R=5, a relatively small amount of 
increase occurred at low extensional rates. 
Particularly, the viscosity started to decrease at 2.5, 
2.5, 1.4 and 4.6/s corresponding to R=1, 2, 3 and 4 
respectively. The solution with R=5 generated a 
curve with a relatively unique trend, having a 
second maximum viscosity point following the 
increasing after the decreasing at low extensional 
rates where the experiments started. Though the 
rising in viscosity might be considered as due to 
possible tension-induced structure, similar to shear-
induced structure, the uncertainty at low shear rates 
caused by the sensor chip used in the experiments 
should be also taken into account. Nevertheless, the 
second convex shape curve shown in the curve 
representing R=5 might be trustworthily illustrating 
the nature of the fluid. Particularly due to the high 
shear and extensional viscosity of solution with 
R=2 and 3, the test at high extensional rates could 
not be carried out, since the fluids would stick 
inside the sensor chip not only damaging the sensor 
but breaking the gastight syringe, alternative 
methods measuring extensional viscosity might 
need to be discovered.  

Same as shear viscosity, the maximum extensional 
viscosity was also found at R=3 while the lowest 
was at R=5. Although in shear viscosity analysis, 
the curve of R=2 gave the second highest shear 
viscosity, the extensional viscosity curve shown in 
figure 11 illustrating that the curve for R=1 and 2 
had similar results at extensional rates greater than 
1.4/s. At high extensional rates, the gap between 
extensional viscosity for different R tended to 
become narrower, apart from R=5, where a 
relatively more significantly higher extensional 
viscosity was shown in figure 11. This 
phenomenon indicates that extensional viscosity 
might not be necessarily strongly correlated with 
shear viscosity.  

Temperature effects on extensional viscosity were 
also studied for solutions with R=1 and 4. 
Temperature would not have significant effects on 
the fluid viscosity at extensional rates higher than 
27.2 and 9/s corresponding to R=1 and R=4 
respectively. Below the threshold rates, at R=1, the 
extensional viscosity showed an increasing trend 
with temperature, while the opposite was observed 
for R=4.  

Figure 11: Extensional Viscosity vs. Extensional Rate at Different R 

Figure 12-13: Extensional Viscosity vs. Extensional Rate at Different Temperature for R=1 and 4. 
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3.4 Extensional Up-and-Down 

Compared to shear stress thixotropic behaviour, the 
hysteresis effects in extensional viscosity would  

also be worthy to research. Instead of naming 
‘extensional thixotropic’ experiments, extensional 
up-and-down was defined to the test to study the 
hysteresis behaviour. For R=1,2 and 4, there would 

Figure 14-17: Extensional Up-and-Down Curve at Different R. 

Figure 18-22: Shear and Extensional Viscosity vs. Rate at Different R. 
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not be apparent differences between the up and 
down curves shown in figure 14-16, at extensional 
rates above 1.5, 4.1 and 10.7 respectively. 
Meanwhile, the results at R=5 indicated that it the 
micelle structure might get reformed and even 
elongated during ramping down, corresponding to 
the deviation between extensional rates of 3.7 to 
32.4 shown in figure 17. In particular, significant 
difference between positive and negative 
experiments showed in figure 15. Nevertheless, for 
other ratio, the difference between up and down 
curves at low rates could possibly indicating there 
would be hysteresis effects, while the uncertainty 
of sensor chip may not be neglected.  

3.5 Compare Shear and Extensional Viscosity 

Finally, shear and extensional viscosity were 
compared based on the Trouton ratio equation, 
where the shear rates were divided by √3 to match 
extensional rates. As shown in figure 19, 20 and 
21, at high rates for R=2,3 and 4, two curves are 
getting closer, indicating extensional viscosity 
approaching the shear viscosity, indicating the 
effect of viscoelastic behaviour might become 
negligible. 

4. Conclusion 

In conclusion, all solutions are tension-thinning at 
low extensional rates, apart from R>4, where might 
be tension-thickening. Also, temperature does not 
have significant effects at high extensional rates, 
however, it might affect the extensional viscosity at 
low rates. Solutions with R>4 would give different 
results in up-and-down experiments. Both shear 
viscosity and extensional viscosity would have 
maximum at R=3 for CTAB concentration=0.1M. 
Besides the main conclusions for extensional 
rheology, viscoelastic behaviour is not negligible. 
At temperature between 20-35, intersection points 
showed up, indicating there was exchange of 
viscous and elastic behaviour. 
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Abstract  
 
With a growing global interest for sustainable energy coupled with the challenge of underutilised waste, there is a rising 
recognition to the significance of generating low-carbon energy via waste-to-energy power plants. This paper investigates 
the feasibility of retrofitting a post-combustion carbon capture plant using monoethanolamine (MEA) technology to a 
small-scale UK waste-to-energy power plant utilising refuse derived fuel. The overall power generation and carbon 
capture system is simulated on Aspen Plus V11, modelled with a capture efficiency of 95%. Both the energy requirements 
and the economic potential were explored as part of the feasibility study. At the given capture efficiency, when retrofitting 
a post combustion carbon capture (PCC) plant, an energy penalty of 53.3% is imposed, leading to a net energy output of 
5.95MWe and a decreased plant efficiency to 31%. A comparison between refuse derived fuel (RDF) power plants and 
conventional fuel plants such as coal and natural gas combined cycle (NGCC) power plants revealed that the former has 
a significantly larger energy penalty owing to the high energy consumption of the reboiler in conjunction with the low 
thermal efficiency of the RDF fuel. The economic potential is estimated to be -£2.44million for the integrated carbon-
capture plant at this energy capacity. The unfavourable economic prospects coupled with the substantial energy penalties 
pose challenges to the feasibility of this simulated waste-to-energy plant. 

 
1. Introduction 
In the face of escalating concerns about climate change 
and the urgent need to mitigate greenhouse gas 
emissions, carbon capture has emerged as a pivotal 
solution for a more sustainable future. As nations 
worldwide aim to transition towards sustainable energy 
solutions, the exploration of carbon capture 
technologies becomes a focal point. Concurrently, with 
the recent developments at COP28, where the phaseout 
of fossil fuels faced reconsideration, the increasing 
reliance on technologies like carbon capture to mitigate 
emissions becomes evident. As we strive towards 
achieving the ambitious net-zero target by 2050, it 
becomes imperative to recognise that emitting zero CO2 
is only one aspect of the problem. Equally vital is the 
removal of existing CO2 from the atmosphere, marking 
it a crucial component in the pursuit of a sustainable 
future.   

Moreover, rapid urbanisation and population growth 
have contributed to a surge in waste generation, placing 
immense strain on the existing waste management 
infrastructure. Landfills are now facing their limitations, 
with finite capacity and environmental consequences. 
The current trajectory indicates that London's landfill 
capacity is anticipated to reach its threshold by 2026 
(London Assembly, n.d.), necessitating a re-evaluation 
of waste management strategies. As the demand for 
efficient and sustainable waste disposal solutions 
intensifies, the UK finds itself at a critical juncture to 
explore alternatives that not only address the immediate 
challenge of waste disposal but also align with broader 
environmental goals. 

Among the escalating waste management 
challenges, the utilisation of RDF emerges as a 
noteworthy alternative, gaining prominence in the UK's 
pursuit of sustainable waste disposal practices. RDF is 
derived from the processing of municipal solid waste 
(MSW), transforming non-recyclable materials into a  
 

 
valuable energy resource. This approach not only diverts 
waste from landfills but also harnesses its energy 
potential, contributing to the reduction of reliance on 
traditional fossil fuels. 

Although there are references to RDF incineration 
plants for power generation in literature, there are 
limited resources exploring the integrations of an RDF-
to-energy plant with a carbon capture and storage 
system. Successfully bringing together an RDF-to-
energy facility with integrated carbon capture 
technology, not only promotes the utilisation of RDF but 
also enables the production of low carbon energy. An 
investigation of the economic viability and energy 
penalty will offer valuable insights into the feasibility 
and readiness of carbon capture for RDF-to-energy 
power plants, with an aim to advance industrial 
capabilities. 

 
2. Background 

 
2.1. RDF 
MSW represents the diverse range of discarded 
materials from households and institutions, comprising 
of everyday items like packaging, food scraps, 
appliances, and more. The variability in MSW 
composition is intricately linked to diverse 
socioeconomic factors. For instance, affluent areas often 
exhibit lower food waste while lower-income regions 
may have a higher organic content (Chavando et al., 
2022). The variation extends beyond local 
environments, resonating on a global scale. This 
highlights the need for a nuanced examination of MSW 
compositions originating from diverse regions. Given 
that RDF is derived from MSW, its composition is 
dictated by the components of the waste. Table 1 
presents a summary of proximate analysis, ultimate 
analysis, and lower heating values (LHV) of RDF from 
various global locations. 
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Table 1: RDF Compositions Across the World 

   

The production of RDF from MSW, requires a drying 
process to reduce its moisture content. Simultaneously, 
the waste undergoes fragmentation, and any inert 
materials are extracted to enhance its calorific value 
(Jannelli and Minutillo, 2007). Following processing, 
the resultant RDF serves as a fuel source for energy 
production through combustion. This energy can be 
harnessed in a Combined Heat and Power (CHP) plant, 
where steam turbines, coupled with a generator, convert 
it into electrical energy, thermal energy is released via 
the cooling water (Environ Consultants Ltd., n.d.). 
 
2.2. Post Combustion Carbon Capture 
Amidst the continuously growing demand for power 
generation in the UK, reducing the carbon-footprint of 
industries dependent on fossil fuels is crucial for a 
cleaner and more carbon-friendly future. Carbon capture 
and storage not only facilitates the continued usage of 
existing infrastructure but also represents one step closer 
towards a net-zero nation. Among the three primary 
methods of carbon capture – oxy-fuel combustion, pre-
combustion carbon capture, and post-combustion 
carbon capture (PCC) – this paper solely focuses on 
PCC due to its promising industrial advancements. PCC 
can easily be retrofitted and implemented to an existing 
chemical plant without much disturbance to its current 
infrastructure, making this the most economically 
favourable method. In this process, fossil fuels are 
conventionally combusted for energy generation, while 
carbon dioxide in the effluent gas stream is captured 
before being discharged to the atmosphere.  
 
2.3. Solvent Selection 
Monoethanolamide (MEA), an amine-based solvent 
commonly utilised for post combustion carbon dioxide 
absorption due to its high reactivity and low cost (Li et 
al., 2016), is selected as the aqueous solvent for this 
study.  

In addition, MEA stands out as one of the most 
commercially ready technologies for minimising the 
amount of CO2 released to the atmosphere (Jung et al., 
2013). A significant amount of energy is required for 
MEA solvent regeneration when retrofitting a carbon 
capture and storage (CCS) system, in turn imposing a 
heavy energy penalty with a notable decrease in plant 
efficiency (Luis, 2016).  As a result, extensive research 
is being conducted within this field in attempt to 

minimise the energy-intensive CCS process and 
enhance its thermal efficiency.  

In line with ongoing CCS investigations, this study 
focuses on the economic feasibility of retrofitting and 
optimising a MEA-CO2 PCC plant on a waste-to-energy 
(WtE) facility. 
 
3. Methodology 

 
3.1. Power and Heat Generation Plant 
The power and heat generation plant consists of two 
main sections, RDF incineration and then the power 
generation section. 

The feed of RDF was selected based of the 25 MSW 
incinerators with energy recovery in the UK (Nixon et 
al., 2013). Due to the relatively small scale of the plant 
the capacity of the second smallest plant was taken 
which is 30 ktpa. However, due to the plant operating 
for 8000 hrs/yr the capacity was scaled up in accordance 
to 37 ktpa. As a result, a feed of 4600 kg/hr was chosen. 

 
3.1.1. Characteristics of RDF 
In the context of modelling RDF as a non-conventional 
fuel in ASPEN, it is essential to input appropriate values 
for proximate analysis, ultimate analysis, and LHV. 
RDF 1 from Table 1 as the chosen input, selected for its 
relevance due to the location (UK) and its relatively high 
LHV. The emphasis on LHV is particularly crucial, 
considering that it is positively correlated with the 
amount of energy it releases. 
 
3.1.2. Drying 
The RDF incineration modelled in ASPEN Plus shown 
in Figure 1 is similar to that shown in the ASPEN Plus 
user guide (Aspentech, 2013) however, the inputs were 
designed specifically for the RDF plant. 

The first section of the incineration involves pre-
treating the RDF to reduce its moisture content and 
therefore increase its heating value. To model this we 
assume the reaction for coal drying applies to RDF as 
well, where 1 mole of RDF produces 1g of water. 

 
𝑅𝐷𝐹 → 0.0555084 𝐻ଶ𝑂 (1) 

 
The RDF then enters a flash column where RDF is 
separated from the other components present. 

RDF Location 
Proximate analysis (wt%) Ultimate analysis (wt%) LHV 

(MJ/kg) Moisture 
Content 

Ash 
Content 

Volatile 
Matter 

Fixed 
Carbon C H N O S 

1 UK 5.9 12.9 70.0 11.2 58.7 8.4 1.0 16.0 0.4 24.9 
2 Pakistan 8.8 8.3 78.3 9.5 54.2 4.7 0.8 30.4 0.0 22.1 
3 EU 1.6 9.1 80.7 8.7 48.4 6.9 0.4 35.0 0.3 22.2 
4 Kazakhstan 1.5 8.2 86.7 3.6 58.3 9.9 0.6 22.8 0.2 23.4 
5 Spain 8.5 26.0 70.4 3.6 46.8 5.4 1.1 20.4 0.3 11.4 

1 - (Materazzi et al., 2015), 2 - (Mehdi et al., 2020), 3 - (Alfè et al., 2022), 4 - (Botakoz Suleimenova et al., 2022), 5 - (García et al., 2021) 

 
 
 
1 - (Materazzi et al., 2015), 2 - (Mehdi et al., 2020), 3 - (Alfè et al., 2022), 4 - (Botakoz Suleimenova et al., 2022), 5 - (García et al., 2021 

1 - (Materazzi et al., 2015), 2 - (Mehdi et al., 2020), 3 - (Alfè et al., 2022), 4 - (Botakoz Suleimenova et al., 2022), 5 - (García et al., 2021) 
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3.1.3. Combustion 
Given the non-conventional nature of RDF, a two-
reactor system in ASPEN PLUS is necessary for its 
incineration. Illustrated in the figure is the sequential 
operation of a RYIELD reactor followed by a RGIBBS 
reactor. The RYIELD reactor initiates the 
decomposition of RDF into its elemental components, 
aligning with the fuel's ultimate analysis. The heat 
generated during the decomposition is directed to the 
RGIBBS reactor, denoted by heat stream ‘Q-
DECOMP’, supplying the required energy for 
combustion. The decomposed RDF then enters the 
RGIBBS reactor, where combustion occurs. The 
RGIBBS block operates by considering all possible 
products and establishes chemical equilibrium by 
minimising Gibbs free energy, removing the need for 
specifying the reaction stoichiometry. 

A sensitivity analysis was conducted to find a 
suitable trade-off between the carbon dioxide, oxygen 
and carbon monoxide compositions whilst varying the 
air feed stream. This is to ensure that complete 
combustion takes place whilst ensuring that the mass 
flowrate of carbon dioxide is not too high. Subsequently, 
an air flowrate of 50000 kg/hr was chosen. 

The product stream leaving from the RGIBBS 
reactor is at a temperature of 1515oC. This stream is then 
cooled down to 600oC whilst subsequently providing a 
heat duty of 18.07MW to the boiler in the power 
generation cycle. 

 
3.1.4. Exhaust Gas-Solid Separation 
Following the reactor, the stream is used to heat up the 
boiler in the energy generation section whilst 
subsequently getting cooled itself. This cooled stream 
then enters a splitter where the solid ash gets removed 
of the bottom and the exhaust gases come off the top. 
The composition of the exhaust gas stream is outlined in 
table below. This stream is the input stream for the PCC 
process. 
 

Table 2: Outlet RDF Plant Gas Composition  
Gas Mass Fraction 
N2 0.713 
CO2 0.176 
H2O 0.063 
O2 0.045 
SOx, NOx, CO, H2 0.003 

 
3.1.5. Power Generation 
A Rankine steam cycle has been employed for this plant 
to generate power. Two turbines are used for this 
process, a high-pressure (HP) turbine and a low pressure 
(LP) turbine and these both operate with isentropic 
efficiencies of 90% (Fröhling, Unger and Dong, n.d.). 

The boiler is modelled as a heat exchanger which is 
powered by the heat energy released from the hot 
combustion gases. 

Figure 1: Aspen Plus Flowsheet for RDF-to-energy plant 

Figure 2: Aspen Plus Flowsheet of PCC plant Figure 2: Aspen Plus Flowsheet of PCC plant 
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Firstly, the water stream that enters the boiler is 
heated to 600oC and a pressure of 100 bar and is then 
passed through the HP turbine where it is discharged at 
10 bar and 286oC. This creates an electrical output of 
5.01MW. Following from this the stream is split where 
17500 kg/hr is diverted to power the reboiler in the 
stripper whilst the remainder is sent back to the boiler 
which then heats it up to 600oC. Then it is passed 
through the LP turbine from which it gets discharged at 
0.1bar and 88oC. This releases a further electrical output 
of 2.89MW, meaning that the total electrical output 
provided by the plant is 7.90MW. 

The low-pressure steam undergoes complete 
condensation, reaching a temperature of 45°C. 
Following this, the condensed steam is pumped back to 
the boiler at a pressure of 10 bar, along with the recycled 
steam. 

There is a recycle loop of steam used in the power 
generation which is depicted by the two streams 
“RBSTEAM” and “RBSTEAM2” as seen in the 
flowsheet in Figure 1. This steam leaves the system at 
286oC and enters back the system at 179°C, in the 
meantime it provides the duty that is required for the 
reboiler in the stripper in the PCC process. 

 
3.2. Post Combustion Carbon Capture Plant 
The Aspen Plus simulation for PCC with a capture 
efficiency of 95% can be observed on Figure 2. An 
overview of the carbon capture process are as follows: 
 
- Following the incineration plant, exhaust gas is 

compressed and cooled to 40°C before entering the 
bottom of the absorber column. 

 
- MEA entering from the top of the absorber absorbs 

CO2 in the exhaust gas stream, with remaining flue 
gases rising and exiting from the top of the column. 

 
- The MEA rich CO2 leaves the bottom of the 

absorber column and is then pumped through a heat 
exchanger before entering the stripper column. 

 
- Inside the stripper, CO2 is removed from MEA. 

Lean MEA is then recycled and fed back to the 
absorber whilst CO2 exits the top of the stripper to 
be further processed to allow for transportation and 
storage. 

 
3.2.1. Reaction Mechanism 
Vapor-liquid equilibrium and mass transfer from one 
phase to the other is crucial for Aspen Plus operation 
simulations. 

The vapour phase is described via the Soave-
Redlich-Kwong equations of state whilst the formation 
of ionic species in the liquid phase causes the system to 
be highly non-ideal. Consequently, this requires the 
liquid phase to be modelled via the activity coefficient 
Electrolyte-NRTL model. This model uses the local 
electronegativity and strong like-ion repulsion 
assumption (Moioli et al., 2012). 

 
 

The governing equilibrium reactions for the MEA-
CO2-H2O electrolyte system are highlighted in 
equations below, with all species in an aqueous solution 
(Soltani et al., 2017). 

 

2𝐻ଶ𝑂 
𝐾1ርሮ 𝐻ଷ𝑂ା + 𝑂𝐻ି (2) 

𝐶𝑂ଶ + 2𝐻ଶ𝑂 
𝐾2ርሮ 𝐻𝐶𝑂ଷ

ି + 𝐻ଷ𝑂ା (3) 

𝐻𝐶𝑂ଷ
ି + 𝐻ଶ𝑂 

𝐾3ርሮ 𝐶𝑂ଷ
ଶି + 𝐻ଷ𝑂ା (4) 

𝑀𝐸𝐴𝐻ା + 𝐻ଶ𝑂 
𝐾4ርሮ 𝑀𝐸𝐴 + 𝐻ଷ𝑂ା (5) 

𝑀𝐸𝐴𝐶𝑂𝑂ି + 𝐻ଶ𝑂 
𝐾5ርሮ 𝑀𝐸𝐴 + 𝐻𝐶𝑂ଷ

ି (6) 
 
Reaction 2 represents the ionisation of water, and the 
formation and dissociation of bicarbonate are identified 
in Reactions 3 and 4 respectively. Lastly, Reactions 5 
and 6 reflects the reaction of molecular MEA with CO2 
in aqueous solution. 

In addition to these five equations, the following 
kinetically controlled reactions govern the reaction 
mechanism as shown in Equations 7 and 8. 

 
𝐶𝑂ଶ + 𝑂𝐻ି   ⟷ 𝐻𝐶𝑂ଷ

ି (7) 
𝑀𝐸𝐴 + 𝐻ଶ𝑂 + 𝐶𝑂ଶ ⟷ 𝑀𝐸𝐴𝐶𝑂𝑂ି + 𝐻ଷ𝑂ା (8) 

 
3.2.2. Rate Based Model 
A rate-based approach, aligned with Errico et al (2016) 
was employed to rigorously model the various mass, 
heat, and energy transfer phenome intrinsic to the carbon 
capture process. 
 
3.2.3. Cooler 
The exhaust gases are cooled from 162°C to 40°C via a 
two-stage cooling process prior to entering the absorber. 
This is achieved by firstly contacting the exhaust gas 
stream with the air stream utilised for RDF drying in the 
incineration plant, where heat is rejected to warm the air 
stream. The exhaust gas stream is then cooled to 40°C 
by passing through a heat exchanger. 
 
3.2.4. Absorber 
Table 3 below details the absorber design specifications 
modelled in Aspen Plus. The optimum column 
dimensions were obtained using sensitivity analysis, 
avoiding the possibility of hydraulic infeasibility if too 
small of an absorber diameter was selected.  The internal 
structured packing of choice was Sulzer MELLAPAKTM 
250Y due to its high specific surface area, allowing for 
an increased absorbance per unit area of packing 
material (Notz et al., 2012). The recycled lean MEA 
stream entering the top of the absorber has a lean loading 
of 19% and a MEA concentration of 30wt%, which are 
in accordance with values stated in literature (Alie et al., 
2005). Optimal MEA concentration and lean loading 
values were enforced using design specifications within 
Aspen Plus where MEA and water compositions in the 
recycle stream were specified. By optimising these 
values, the total regeneration energy of the overall 
process is minimised, with the stripper reboiler 
consuming the most energy.  
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Table 3: Optimised Absorber Specifications 
Design Variable Specification 
Pressure (bar) 0.75 (isobaric) 
Packing Type MELLAPAKTM 250Y 
Height (m) 12 
Diameter (m) 2.5 
Number of Stages 20 

 
3.2.5. Rich/Lean Heat Exchanger 
The cold CO2-rich solvent stream leaving the absorber 
is heated to 94°C by passing through a shell and tube 
heat exchanger, where the stream is contacted with the 
hot recycled lean solvent stream leaving the stripper 
reboiler. 
 
3.2.6. Stripper 
Table 4 details the stripper design specifications 
modelled in Aspen Plus. Like the absorber, Sulzer 
MELLAPAKTM 250Y was selected as the internal 
packing to facilitate adequate CO2 desorption. 
 

Table 4: Optimised Stripper Specifications 
Design Variable Specification 
Pressure (bar) 2.01 (isobaric) 
Packing Type MELLAPAKTM 250Y 
Height (m) 4.5 
Diameter (m) 2.317 
Number of Stages 25 
Boil Up Ratio 0.131 

 
The stripper reboiler was designed as a kettle-type 
reboiler which operates at 123°C. Both sensitivity 
analysis and Aspen Plus aided optimisation functions 
were run to minimise reboiler energy consumption. As 
a result, table 4 details the most economically favourable 
design specifications. At the given lean loading values 
and MEA concentration as specified in Section 3.2, the 
minimum energy consumption of the reboiler was 
determined to be 3.98GJton-1(CO2), in accordance with 
literature values outlined to be 4.00GJton-1(CO2) 
(Soltani et al., 2017). 
 The reboiler duty provides the heat of CO2 
desorption, the vaporisation of water as well as the 

sensible heat (Lin & Rochelle, 2014). The reboiler 
heating requirement is supplied by bleeding steam 
between the high-pressure and low-pressure turbines in 
the energy generation plant, where total condensation is 
assumed with no further sub-cooling. As a result, a ratio 
of 1.94 ௞௚(௦௧௘௔௠)

௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)
 was obtained for the given 

capture efficiency of 95%, aligning with values reported 
by Idem, Gelowitz and Tontiwachwuthikul of 1.9 −
2.5 ௞௚(௦௧௘௔௠)

௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)
 (Idem et al., 2009). 

 
3.2.7. CO2 Compression 
For carbon dioxide to be transported and further stored, 
CO2 must be compressed to a pressure above its critical 
pressure of 73.8 bar. In this study, a discharge pressure 
of 110bar was chosen in accordance with research 
conducted by Goto, Yogo and Higashii (2013). 
 
3.3. Heat Integration 
To improve the economic potential of the process, heat 
integration was carried out in order to minimise the total 
amount of heat duty required for the heating and cooling 
of streams, by transferring heat between streams. Hot 
and cold streams are to be identified and in the case of 
this plant, 1 cold stream and 3 hot streams were 
identified as shown in the heat exchanger network, 
Figure 3. 

An analysis under the first law of thermodynamics 
was carried out to determine the minimum duty 
requirement after assuming full heat integration. It is 
found that 𝑄௠௜௡ = −8.64𝑀𝑊, indicating that heat 
needs to be removed from the process. Subsequently, a 
further analysis under the second law of 
thermodynamics was conducted which states that heat 
can only flow from hot streams to cold streams and not 
vice versa. A minimum allowable temperature 
difference of 10K is applied to ensure that there is 
enough driving force for effective heat transfer. When 
conducting a Grand Composite Curve, no pinch point 
was present meaning that heat can be transferred across 
all the streams involved.  

Upon completion, a total of 0.68MW is integrated 
for a final cooling duty of 8.64MW which results in a 
7.3% improvement over the non-integrated system.

Figure 3: Heat Exchanger Network 
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4. Economic Study 
To explore the economic feasibility of retrofitting a post 
combustion carbon capture plant on the RDF 
incineration system, both the plant’s capital costs, and 
utility costs were explored.  
 
4.1. Equipment Costing 
Manual equipment costs were interpolated with process 
design correlations (Douglas, 1988), it should be noted 
that the Chemical Engineering Plant Cost Index 
(CEPCI) was employed for updated costings in 
reflection to the year of this study (CEPCI1968 = 113.7, 
CEPCI2023 = 800.8) (University of Manchester, 2023). 
Process units were costed for the UK with an exchange 
rate of $1.00 = £0.79 for 2023. 
 
4.2. Sample Costings – Compressor & Stripper 
The installed cost of the 110bar gaseous compressor was 
calculated using Guthrie correlations in Equation 9. 
 
𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡, $ = 517.5 × 𝑏ℎ𝑝଴.଼ଶ(2.11 + 𝐹௖) (9) 

 
Where Bhp is the brake horsepower, measured at 2415 
on Aspen Plus V11 and Fc is the correlation factor. 
 The equipment cost of the stripper was broken into 
its constituent components, the column and the reboiler. 
 
𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡, $ = 101.9𝐷଴.଼ଶ𝐻଴.଼଴ଶ(2.18 + 𝐹௖) (10) 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡௥௘௕, $ = 101.3𝐴଴.଺ହ(2.29 + 𝐹௖) (11) 

𝑤ℎ𝑒𝑟𝑒 𝐴 =
𝑄

𝑈∆𝑇௅ெ
 (12) 

 
Equation 10 represents the installed cost for the column, 
D is given as the column diameter in feet, H is the 
column height in feet and Fc is the correlation factor 
dependent on the column pressure and shell material. 
 Equation 11 specifies the installed cost of the 
stripper reboiler, where A is the heat transfer area of the 
reboiler in ft2, UΔTLM was approximated as 11,250 
BTU/hr∙ft2 from Douglas. Fc is given as 1.35 for a kettle 
type reboiler, the reboiler heat duty Q was extracted 
from Aspen Plus as 33,473,700 BTU/hr. 
 CEPCI index from the 1968 and 2023 were then used 
to update costings in reflection to the year of this study, 
giving a final installed compressor cost of 
approximately $6,840,000 and stripper cost of $775,000 
prior to GBP conversion. 
 
4.2.1. PCC Plant 
Table 5 details the installed costs of all major process 
units within the PCC plant.  
 

Table 5: Installed Cost for PCC Plant 
Process Unit Installed Cost [£] 
Absorber 418,969 
Stripper 617,118 
Compressors 6,493,183 
Heat Exchangers 180,637 
Coolers 383,496 
Pressure Vessels 58,016 

 
The total installed cost for retrofitting the simulated 
PCC was £8,183,000. The most notable contribution 
attributing to the systems compressors, accumulating to 
over 80% of the total cost as shown on Figure 4. The 
compressor operating at 110bar, amassed to an installed 
cost of £5,450,000 alone. It was impossible to minimise 
the cost of the compressors due to the pressure 
requirements within the pipeline system and final CO2 
gaseous outlet. Despite running computer-aided 
optimisation and sensitivity analysis to achieve the most 
economically favourable column specifications, both 
the absorber and stripper columns combined still 
constitute to over 12% of the overall installed cost. 
 

 
Figure 4: Installed Cost of PCC Plant 

 
4.2.2. WtE Plant 
The installed cost for the WtE plant was evaluated 
similarly to the PCC plant, Table 6 displays the 
equipment breakdown for all major process units, again 
the installed cost of mixers and splitters were deemed 
negligible. The installed cost for the deployment of a 
WtE plant is calculated to be £8,950,000. 

 
Table 6: Installed Cost for RDF Plant 

Process Unit Installed Cost [£] 
Fuel Incinerator 1,594,867 
Furnace 3,156,500 
Pressure Vessels 331,178 
Turbines 3,302,118 
Coolers 424,815 
Cyclone Separator 114,055 
Pumps 22,848 

 
4.3. Annualising Installed Costs 
Installed costs are considered as capital expenditures in 
this study. The following formula was utilised, where 𝑑 
and 𝑛 denote discount rate and expected life of plant in 
years respectively: 
 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =  𝐶𝐴𝑃𝐸𝑋 ×
𝑑

1 − (1 + 𝑑)ି௡  (13) 

 

Compressors
80%

Stripper 7%

Absorber 5%

Coolers 5%
Heat Exchangers 2%

Pressure Vessels 1%
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The annualisation of capital expenditures was executed 
with a conservative strategy, employing a 12% discount 
rate. This decision was prompted by the challenging 
market conditions prevailing in the UK, characterised by 
notably high interest rates of 5.25%. The expected life 
of the plant was considered to be 20 years. After 
applying the formula, annual capital expenditures of 
£1.09 million and £0.99 million are calculated for the 
PCC and RDF plants, respectively. This results in a total 
capital expenditure of £2.08 million. 
 
4.4. Operational Expenditures 
Utilities are essential to provide the required energy to 
operate various units and processes within the plant. For 
the PCC plant, there are three utilities required: cooling 
water, electricity and steam. 

Cooling water is used for the 3 coolers within the 
process which amounts to a consumption of 406 
tonnes/hr at £0.85 per tonne (Driver et al., 2022) 
resulting in a cost of £2.76 million per year. 

The electricity required for the plant is mainly 
required for the compressors with minor amounts 
required by the pumps and this will be provided by the 
RDF to energy plant. This electricity, 1.95MW, will be 
negated from the revenue generated by the plant which 
amounts to £1.88 million per year at 12p per kWh 
(Scottish Power, 2022). 

Steam is required for the reboiler, however, this is 
covered by the steam that is bled from the energy plant. 
An additional operational expense to take into account 
involves the RDF feed, totalling 4.6 tonnes/hr. The RDF 
incurs a cost of £90 per tonne, resulting in an annual feed 
expense of £3.31 million. 
 
4.5. Revenue Generation 
The sole revenue source is the electricity generated in 
the power generation section of the RDF to energy plant. 
While the total power output from this section is 
7.90MW, the PCC plant necessitates 1.95MW, leaving 
a revenue-generating capacity of 5.95MW. This 
produces a total annual energy output of 47.6GWh, 
consequently, the total revenue generated amounts to 
£5.71 million. 

This low revenue generation may be attributed to 
RDF's inefficiency as a fuel coupled with the electricity 
requirement of the PCC plant. 
 
4.6. Economic Potential 
The combined annual cost sums to be £8.15million 
which exceeds the revenue generated, leaving the 
economic potential to be -£2.44million. 
 
5. Energy Penalty 
As a result of integrating CCS on a WtE plant, the 
energy consumption of the plant increases drastically 
contradictory to the main purpose of a power plant by 
imposing an energy penalty on the overall system. One 
way of calculating the impact of CCS is by introducing 
the energy consumption of capture per MWh of 
electrical energy, this is calculated with parameters 
detailed in Section 3.2.7 using equation 14 below 
(Soltani et al., 2017). 

𝐸 ൬
𝐺𝐽

𝑀𝑊ℎ൰ = 𝐴 ቆ
𝐺𝐽

𝑡஼ைమ

ቇ ×
𝐵 ൬

𝑡஼ைమ
𝑀𝑊ℎ൰

𝜂
×

𝐶
100

 (14) 

E is the regeneration energy consumption for capture per 
MWh of electricity produced, A is the energy 
consumption of the reboiler, B is the amount of CO2 
generated per MWh of thermal energy produced, 𝜂 is the 
power plant efficiency and C is the capture rate of CO2. 
 

Table 7: Energy Penalty per MWh Comparison 
Fuel Type GJ/ tCO2 GJ/ MWh 
RDF 3.98 4.52 
CCGT 3.98 1.50 
Coal (bituminous) - fired 3.90 2.33 

 
Table 7 demonstrates the continuation of Soltani, 
Fennell and Dowell’s work on the regeneration energy 
consumption between combined cycle gas turbine 
(CCGT) and coal-fired (bituminous) power plants with 
600MWth capacity at a carbon capture rate of 90%.  
 By comparing the simulated RDF plant with Soltani, 
Fennell and Dowell’s study, integrating PCC on an RDF 
plant incurs the either the same or a greater energy 
penalty per tonne of CO2 captured when compared to 
CCGT (3.98 GJ/tCO2) and coal-fired power plants (3.90 
GJ/tCO2). However, RDF power plants suffer a much 
greater energy penalty with regards to electrical energy 
produced, with the regeneration energy consumption for 
capture per MWh of electricity produced being more 
than double in comparison to CCGT power plants (1.50 
GJ/MWh). This is explained due to the poor efficiency 
of the stimulated RDF power plant (31%), which is 
significantly lower than the efficiency of the CCGT and 
coal-fired power plant which is stated to be 48% and 
60% respectfully. 
 In addition, energy penalty can be measured by 
determining the difference in overall power output of the 
plant before and after retrofitting PCC. For the simulated 
95% capture efficiency, an energy penalty of 53.3% was 
imposed. As demonstrated in Table 8, the energy 
penalty for the WtE plant is more than two-fold in 
comparison to other fuel-powered plants observed in 
literature with a given capture efficiency of 90%.  
 

Table 8: Energy Penalty % Comparison 
Fuel Type Energy Penalty (%) 
RDF 53.3 
NGCC 21 
Coal (bituminous) - fired 29 

 
6. Discussion 
In this study, the primary objectives of assessing carbon 
capture readiness involve an initial analysis of both 
technical and economic feasibility. As depicted on 
Figure 3, retrofitting a PCC plant continues to enable 
over 12.8MW of power generation. Nevertheless, it is 
important to highlight that even with the optimisation of 
the reboiler duty to 3.98GJton-1(CO2), aligned with 
literature values, the overall system still imposes a 
substantial energy penalty of 53.3%. A noticeable 
reduction in the power plant’s electricity output is 
observed before and after retrofitting PCC. 
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Additionally, a significant steam flowrate is bled 
between the series of turbines, as illustrated in Figure 5, 
leading to a decrease in the overall efficiency of the 
power plant. This phenomenon could be explained due 
to the substantial energy regeneration demand of the 
selected MEA solvent. Nevertheless, when compared to 
traditional power plants such as coal and NGCC, RDF-
to-energy plants incur a notably higher energy penalty, 
which could be attributed to the lower efficiency of the 
RDF fuel. The lower efficiency of the fuel results in a 
higher amount of CO2 released for a given MWh of 
electrical energy generated. Consequently, the energy 
required for CO2 capture is inherently higher.  
 

 
Figure 5: Power Output with and without PCC 

 
It is crucial to acknowledge that while these 
comparisons are adjusted for their respective CO2 and 
electrical outputs, there exists empirical distinctions in 
the design parameters among the three different types of 
power plants. Firstly, both CCGT and coal-fired power 
plants boast a significantly higher capacity of 600MW 
compared to the simulated RDF plant. The overall 
efficiency of the RDF plant is likely to improve with a 
proportional increase in capacity. Additionally, if the 
capture efficiency of other fuel-powered plants were 
enhanced to 95%, the energy consumption would 
inherently rise. Despite these variations, the conclusions 
drawn still provide valuable insights for ongoing and 
future research. 

The combined economic potential of the RDF-to-
energy plant with the PCC retrofit is -£2.44 million, 
indicating the economic infeasibility of such a plant. 
Even assuming the existence of an original RDF plant, 
the retrofitted PCC plant remains economically 
unviable, with an economic potential of -£1.45 million. 
To enhance economic feasibility, two potential 
exploration avenues are identified: increasing revenue 
generation and reducing costs. 

In this study, only revenue generated from electricity 
production was considered. However, there was also 
thermal energy that was ejected in the cooling water 
which could be used for the heating of additional 
buildings which could generate additional revenue 
(Environ Consultants Ltd., n.d.).  
 When considering costs, it can be noticed that the 
expense of the RDF feed is notably high. Exploring a 
potential collaboration with a waste-producing company 
could present a mutually beneficial opportunity. By 
collecting waste from this company, both parties stand 
to gain. The waste-producing company can realise 
savings on disposal costs and landfill tax, while the RDF 
to energy plant would see a substantial reduction in its 
operational expenditures.  

7. Conclusion 
In this investigation, a 12.8MW waste-to-energy plant, 
incorporating a retrofitted MEA-based post-combustion 
carbon capture plant, was modelled using Aspen Plus 
V11. The simulation targeted a small-scale UK plant 
processing 4600kg/hr of RDF, aligning with literature 
key operating parameters. The introduction of PCC 
resulted in an overall increase in the plant’s energy 
consumption, imposing an energy penalty of 53.3% on 
the system. The carbon capture efficiency was set at 
95%, with a specified MEA concentration and lean 
loading values of 30wt% and 19% respectively. The 
overall plant efficiency was determined to be 31%, and 
the optimal reboiler duty was established to be 
3.98GJton-1(CO2), supplied by a flow of high 
temperature steam bled between the HP and LP turbines 
at a ratio of 1.94 ௞௚(௦௧௘௔௠)

௞௚(஼ைమ ௖௔௣௧௨௥௘ௗ)
. The findings revealed 

that despite comprehensive optimisation on the overall 
system, the implementation of PCC to a small-scale 
RDF plant had a substantial impact on overall plant 
performance. Whilst 5.95MWe of electrical energy was 
generated, the inherently low efficiency of RDF fuel led 
to a significantly higher energy penalty per MWh of 
electrical energy compared to other conventional fuels. 
Although there was a positive energy generation, the 
overall cost of the system surpassed the revenue 
generated from electrical energy. Consequently, the 
study demonstrated a negative economic potential of       
-£2.44million, highlighting severe challenges in terms 
of economic feasibility. 

27.7MW

12.8MW

Net Power Output
without PCC

Net Power Output
without PCC
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Abstract 
Bayesian Optimization (BO) has emerged as a pivotal tool for effectively navigating the optimization of intricate, 
high-dimensional functions, especially in cases where derivative information is unavailable. This study presents 
a deep dive into the intricacies of BO, starting with a foundational algorithm, and progressing towards integrating 
advanced methods such as multi-fidelity and TuRBO-1 to tackle the key challenges of high computational cost 
and the dimensionality curse, often encountered in machine learning and engineering applications. In this context, 
the study aims to deliver a framework for two robust, scalable, and efficient BO methods to offer a comprehensive 
toolset for real-world applications, while also providing insights into the inner dynamics and behaviour of the 
algorithms. Specifically, a novel acquisition function is developed featuring a γ hyperparameter to provide a more 
flexible and nuanced trade-off between the cost and covariance at different fidelities. The study demonstrates the 
effectiveness of the proposed multi fidelity framework in achieving lower computational cost, and highlights the 
practicality of tuning γ to adapt to any problem. Accurate optima of various test functions in 2, 5, and 10 
dimensions were achieved, consistently beating the cost output of the old methodology. Moreover, the TuRBO-1 
method achieved a complementary solution when dealing with higher dimensions by prioritizing effective local 
optimisation within dynamically controlled trust regions, which allows it to adeptly handle the intricacies of 
complex, high-dimensional spaces. The proposed research therefore highlights the practicality of two adaptable 
strategies designed to address a wide range of challenges, which lays solid foundation for future research and 
application of these frameworks. 

1. Introduction 
Bayesian Optimization (BO), an active learning 
framework, has emerged as a critical tool in complex 
systems design, where direct evaluations of 
complex, often non-linear systems are prohibitively 
expensive (Shahriari et al., 2016). This is 
particularly true when dealing with black-box 
functions, whose underlying relationships are 
unknown or too intricate to be explicitly defined. 
Black-box objective functions are commonly found 
in fields such as robotics, automated machine 
learning (AutoML), engineering, and especially in 
the rapidly evolving domain of the chemical 
sciences (Terayama et al., 2021). Indeed, processes 
in this field can be characterized by high-
dimensional spaces with many governing variables, 
such as reaction conditions and material properties. 
The traditional approach of grid search or random 
sampling is often computationally prohibitive due to 
the high cost of evaluations, either in terms of 
experimental resources or computational time.  

Unlike traditional methods, Bayesian 
Optimization utilizes a probabilistic model, 
typically Gaussian Processes, to create a surrogate 
model of the objective function, which quantifies 
uncertainty in areas where the function is sampled 
less. This surrogate model, unlike the underlying 
objective function, is computationally efficient to 
evaluate, which is the key to BO’s practicality and 
effectiveness, in particular with regards to expensive 
and complex functions. The surrogate model's 
predictive capabilities enable navigation of the 
search space by estimating the outcomes of various 
configurations, thereby focusing the exploration on 
areas with the highest potential for improvement. 
This allows for a more targeted exploration, 

significantly reducing the number of evaluations 
needed to reach optimal or near-optimal solutions. 
As such, BO incorporates a crucial balance between 
exploration of new, potentially promising areas, and 
exploitation of known high-performing regions. 
This balance is key in environments where each 
evaluation is costly, ensuring that resources are 
utilized in the most effective manner. 

The practical implications of Bayesian 
Optimization in chemical engineering and other 
sciences are far-reaching. In an industry where 
precision, safety, and efficiency are paramount, BO 
has the potential to revolutionize the way chemical 
processes are optimized.  

One notable application is the early-stage 
process development of pharmaceutical compounds. 
In a recent study, Braconi et. Al (Braconi and 
Edouard Godineau, 2023) optimised sustainable 
reaction conditions for C-N coupling using copper 
catalysts and non-hazardous solvents through 
Bayesian Optimization. BO was able to efficiently 
explore a vast reaction space of over 138,000 
possible experiments, using only 80 simulations. 
This represents an exploration of less than 0.05% of 
the total space, effectively highlighting its efficiency 
in identifying optimal conditions in complex 
chemical processes by leveraging its probabilistic 
model to iteratively refine and direct the search 
towards the most promising areas. A similar study 
was able to navigate the vast space of potential drug-
like molecules to enable the discovery of 
antimalarial compounds, and molecules with 
targeted activity against pulmonary fibrosis, where 
it outperformed traditional greedy search methods 
(E. O. Pyzer-Knapp, 2018). 
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A different practical application is the optimization 
of wind farm layouts to maximize sustainable power 
output (Bempedelis and Magri, 2023). The authors 
highlight how BO, and the use of Gaussian 
processes enabled the capture and exploitation of 
complex flow dynamics, which are usually 
overlooked in simpler wake models. Bayesian 
Optimization is also used to optimize machine 
learning systems and server performance, as 
demonstrated in real-world applications at Facebook 
where BO was utilized for the optimization of a 
ranking system and server compiler flags (Letham et 
al., 2019). Examples within literature underscore the 
versatility of BO in addressing pressing challenges 
in chemical engineering and beyond, making it an 
indispensable tool in the advancement of the field. 
In this context, the main objective of this project is 
to achieve a working, scalable, and efficient BO 
algorithm capable of optimizing a wide range of 
multimodal and multidimensional test functions. 
Moreover, the aim is to expand the BO capabilities 
by incorporating advanced techniques such as 
Multi-Fidelity and TuRBO-1 for enhanced 
performance and reduced computational cost. As 
such, the objective is to achieve robust solutions 
which can be applied in the field, and contribute 
towards tackling the key challenge of 
computationally expensive problems. Finally, this 
paper aims to provide sensitivity-analysis on key 
parameters to gain valuable insights into the 
algorithm’s behaviour, and lay the foundations for 
its use in real-world scenarios. 

2. Background 
BO is fundamentally about devising a surrogate 
model to navigate an expensive black-box function 
that is potentially non-differentiable. 
Mathematically, the objective function to be 
minimised is 

𝑚𝑖𝑛௫∈௑ 𝑓(𝑥) (1) 

where 𝑓 represents the unknown, expensive-to-
evaluate function. Despite this, the function 𝑓 can be 
probed by costly evaluations at various points within 
its domain 𝑋, with the intent to minimize 𝑓 utilizing 
the least number of evaluations. 

Viewed as a sequence of decisions, BO requires 
selecting the next point- or batch of points- in the 
domain for evaluation in each iteration, guided by 
prior observation. To manage this effectively, a 
representation of the uncertainty about 𝑓 is updated 
progressively with new data. Gaussian Processes 
(GP) are ideally suited for this role.  

Surrogate models lie at the heart of BO and are 
used to model the black-box function. GPs are a 
natural choice for this model, as they estimate the 
function’s value across its domain and, importantly, 
provide a predictive posterior distribution that 
reflects the potential range of function values. They 
are defined by a mean function 𝜇(𝑥) and a 
covariance function 𝑘(𝑥, 𝑥′): 

𝑓(𝑥) ∼ 𝐺𝑃൫𝜇(𝑥), 𝑘(𝑥, 𝑥ᇱ)൯ (2) 

The mean function 𝜇(𝑥) represents the average 
predicted output of the model. The covariance 
function 𝑘(𝑥, 𝑥′), also known as the kernel, is 
parametrised by a variance (𝜎ଶ) and lengthscale (𝜃). 
This function, which can be selected from common 
types such as the Radial Basis Function (RBF) and 
Matérn kernels, defined as 

𝑘ெ௔௧௘௥௡(𝑑) = 𝜎ଶ 2ଵିఔ

𝛤(𝜈) ∙ ൬√2𝜈
𝑑
𝜃

൰
ఔ

∙ 𝐾ఔ ൬√2𝜈
𝑑
𝜃

൰ (3) 

𝑘ோ஻ி(𝑑) = exp ቆ
−𝑑ଶ

2𝜃ଶ ቇ (4) 

where 𝛤 is the gamma function, 𝑑 is the Euclidian 
distance between two points in the input space, 𝐾ఔ is 
the modified Bessel function of the second kind 
(Weisstein, E. W., 2023), and 𝜈 is a parameter from 
the covariance that controls the smoothness of the 
function. The Matérn kernel becomes equivalent to 
the RBF kernel as 𝜈 approaches infinity. The kernel 
dictates how function values correlate across the 
input space, and it encapsulates the assumptions 
regarding the function’s variability and smoothness 
characteristics. To ensure the model aligns 
effectively with the observed data, the tuning of 
hyperparameters is essential. This tuning process 
aims to maximise the log-likelihood, which is 
expressed as 

log[𝑝(𝑌|𝑋)] =  −
𝑛
2

log(2𝜋) −
1
2

𝑙𝑜𝑔(det[(𝐾(𝛩)])

−
1
2

𝑌்[𝐾(𝛩)]ିଵ𝑌 
  (5) 

where Y represents the vector of observed target 
data, X is the matrix of input data where each row is 
an input vector, n is the number of observations, 
𝐾(𝛩) is the covariance matrix derived from the 
covariance function 𝑘(𝑥, 𝑥′) with 𝛩 representing the 
hyperparameters (variance 𝜎ଶand lengthscale 𝜃), 
and the term 𝑌்[𝐾(𝛩)]ିଵ𝑌 represents the ‘goodness 
of fit’. Maximizing this log-likelihood function is 
crucial for refining the model, providing the best 
statistical explanation for the observed data under 
the GP model assumptions.  

This optimisation process is fundamental in fine-
tuning the surrogate model. Such refinement 
enhances the model’s predictive accuracy and 
strengthens the reliability of uncertainty 
quantification. The improved model becomes 
instrumental in the subsequent stage of selecting 
query points. This crucial step employs acquisition 
functions, a methodological approach designed to 
direct the choice of subsequent points to be sampled 
from the objective function.  
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Figure 1 illustrates the Gaussian Process post 
hyperparameter tuning. The figure shows the mean 
function 𝜇(𝑥) as a solid blue line, with the shaded 
region indicating the confidence interval. This 
interval, based on the GP’s predictive variance 𝜎ଶ 
quantifies uncertainty. It facilitates a strategic 
balance in exploring and exploiting the search space 
for the function’s minima.  

The acquisition function integrates both the 
mean (𝜇(𝑥)) and the uncertainty (𝜎ଶ) projections 
derived from the Gaussian process. This integration 
is key to striking a balance between exploration- 
investigating new, potentially promising areas of the 
function’s domain, and exploitation- focusing on 
regions known to yield high values. Such a precisely 
calibrated approach significantly boosts the 
efficiency and efficacy of the exploration process. 
Consequently, this leads to a quicker convergence 
towards the optimal point of the function, thereby 
enhancing the overall effectiveness of the model.  

The landscape of acquisition functions is 
diverse, each with unique benefits and limitations, 
as detailed by (Shahriari et al., 2015). 

Among these functions, the Expected 
Improvement (EI), Probability of Improvement (PI), 
and Upper Confidence Bound (UCB) are defined as 
follows 

𝐸𝐼(𝑥) = 𝐸[𝑚𝑎𝑥(𝑓(𝑥) − 𝑦௕௘௦௧, 0)] (6) 

𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) > 𝑦௕௘௦௧)) (7) 

𝑈𝐶𝐵(𝑥) =  𝜇(𝑥) + 𝛽𝜎(𝑥) (8) 

where 𝑦௕௘௦௧  represents the best observed value, 𝛽 is 
the bonus for exploration and 𝜎 is the standard 
deviation. EI quantifies the anticipated improvement 
over the current best observation, incorporating both 
mean and variance from the Gaussian Process. This 
method balances exploration and exploitation. PI, on 
the other hand, assesses the likelihood of surpassing 
the current best observation, focusing more on 
exploitation. UCB merges the predicted mean and 
variance, adjusting exploration and exploitation 
through the parameter β, with higher values 
favouring exploration. The selection of these 
acquisition functions is contingent on the 
optimization problem's specific needs, particularly 
in balancing exploration of new search areas against 
exploiting known optimal regions. 

Optimizing the acquisition function is a critical 
component of BO. This process often employs 
gradient ascent or evolutionary strategies to navigate 
complex, high-dimensional spaces.  

Subsequently, optimisation algorithms like 
ADAM (Brownlee, 2021) are applied to maximize 
the acquisition function, aiding in the selection of 
the next point evaluation.  

A pivotal extension of the BO framework lies in 
the concept of multi-fidelity optimization. It is an 
approach that introduces an additional layer of 
efficiency by leveraging a range of data sources of 
varying accuracy and cost – the so-called fidelities. 
It combines high-fidelity models, which are accurate 
but expensive to evaluate, and low-fidelity models, 
which are less accurate but cheaper and faster to 
compute. By combining insights from these 
different levels of fidelity, BO can make more 
informed decisions about where to allocate 
resources for evaluation. In practice, this is achieved 
by extending the GP model to incorporate fidelity as 
an additional input dimension. This extension 
affects both the kernel and mean function, allowing 
them to interpret and integrate data across various 
fidelity levels effectively. The acquisition function 
is adapted to evaluate not just the predictive 
performance at each point, but also to consider the 
varying computational costs associated with 
different fidelity levels 

Bayesian Optimization relies heavily on the 
ability to construct a global model that is accurate 
enough to eventually uncover a global optimizer. 
This task presents significant challenges due to the 
curse of dimensionality and the heterogeneous 
nature of the function. In contrast to the approach 
presented by multi-fidelity, another innovative 
strategy in reducing computational costs and 
achieving sample-efficient optimization is the 
application of trust regions (TR). Trust Region 
Bayesian Optimization (TuRBO), unlike traditional 
BO which operates across the entire search space, 
conducts BO within multiple local trust regions. 
This novel use of local BO, combined with 
dynamically adjusting trust regions, effectively 
addresses some of the key challenges that have 
hindered the success of conventional global 
optimization methods, providing a more efficient 
and focused approach to optimization. The key TR 
parameters that should be fine-tuned to the bounds 
and dimensionality of the problem, are the success  
(𝜏௦௨௖௖) and failure  (𝜏௙௔௜௟) threshold, the minimum 
(𝐿௠௜௡) and maximum (𝐿௠௔௫) diameter of the 
ellipsoidal TR, the TR centre (𝑐𝑒𝑛𝑡𝑟𝑒்ோ) and TR 
radius (𝑟 ோ). 
  

Figure 1 – Gaussian Process Regression (D.R. Chanona, 
2023) 
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3. Methodology 
Initial BO 
The initial phase of this research involved the 
development of a Bayesian Optimization algorithm 
from scratch. This foundational step was essential to 
gain a thorough understanding of the underlying 
mechanics of BO and to set the stage for more 
advanced implementations. Starting from basic 
principles, the objective was to gradually 
incorporate more sophisticated techniques to 
achieve a robust and well-rounded algorithm. 

Three n-dimensional test functions were selected 
for the optimization trials due to their varying levels 
of complexity and landscapes, offering a 
comprehensive evaluation platform for the BO 
algorithm. Each represents a unique optimization 
challenge, from simple convex shapes to more 
complex, multimodal landscapes. In order of 
increasing complexity: 
 Sphere function, smooth and convex with a single 

global minimum: 

𝑓(𝑥) = ෍ 𝑥௜
ଶ

௡

௜ୀଵ
(9) 

 Rosenbrock function, known for its long, narrow, 
parabolic shaped flat valley containing the global 
minimum: 

𝑓(𝑥) = ෍ [100(𝑥௜ାଵ − 𝑥௜
ଶ)ଶ + (1 − 𝑥௜)ଶ]

௡ିଵ

௜ୀଵ
(10) 

 Styblinski-Tang Function, defined by a complex 
landscape with multiple local minima: 

𝑓(𝑥) =
1
2

෍ 𝑥௜
ସ

௡

௜ୀଵ
− 16𝑥௜

ଶ + 5𝑥௜ (11) 

Gaussian Process Regression was utilized as the 
surrogate model due to its flexibility and proficiency 
in estimating uncertainty in predictions, and 
multiple kernels were explored, including the Radial 
Basis Function, Matérn kernel, and a combined 
kernel consisting of RBF, white kernel (introducing 
a noise term), and constant kernel (which scales the 
overall variance), each imparting distinct 
characteristics to the surrogate model. 

Three acquisition functions were implemented 
and analysed: Expected Improvement, Probability 
of Improvement, and Upper Confidence Bound.  

Additionally, two distinct search methods were 
used: whole space sampling, where the algorithm 
explored the entire domain of the objective function, 
and focused sampling, which concentrated the 
search around regions that were already identified as 
promising. 

The BO process started by generating a 
randomly distributed set of 5 / 10 / 20 (for 2D / 5D / 
10D) initial samples (in accordance with the chosen 
search strategy) to initialize the gaussian process by 
computing the objective at each point. It then enters 
its iterative phase, where 15 / 40 / 80 iterations are 
performed utilizing the acquisition function’s 

balance between exploration and exploitation. At 
each evaluation, the surrogate is updated, and the GP 
refines its understanding of the objective function's 
behaviour, thus converging towards the optimum.  

The outcomes such as the found optimum, the 
number of iterations, and the overall runtime were 
then analysed for different combinations of 
acquisition function, kernel, and search strategy, 
effectively conveying their strengths and 
weaknesses with regards to different test functions.  

It is worth noting that an early stopping 
mechanism was introduced to enhance 
computational efficiency, particularly in higher 
dimensions where the time started increasing 
rapidly. This mechanism halts the process when the 
improvement of objective value falls below a 
specified threshold over a set number of consecutive 
iterations (defined as patience), effectively avoiding 
unnecessary time loss when the optimum has 
already been found, or when the algorithm gets stuck 
in a local optimum.  
Multi-fidelity  
Building on the foundational knowledge gained 
from the initial algorithm, the research progressed to 
a more advanced stage with the implementation of 
multi-fidelity techniques. This approach 
significantly enhances the BO framework by 
incorporating evaluations at various levels of 
fidelity 𝑧, striking a balance between accuracy and 
computational cost. In this research, the possible 
fidelity levels are defined as 1 ≤ 𝑧 ≤ 10. 

Similar to the initial BO implementation, the 
multi-fidelity version was tested using the Sphere, 
Rosenbrock, and Styblinski-Tang functions. A key 
aspect however, is the modelling of these objective 
functions to account for varying fidelities. The 
objective is augmented to incorporate fidelity levels, 
creating a composite function that simulates the 
objective across different levels of precision. This is 
achieved by scaling the input parameters of the 
objective function based on the fidelity level. The 
higher the fidelity, the more the objective function 
reflects the true, high-resolution behaviour of the 
system being modelled. Conversely, at lower 
fidelities, the function provides a coarser 
approximation. The scale used in this study is 

𝑓(𝑥, 𝑧) = 𝑔൫𝑥 × 𝑠𝑐𝑎𝑙𝑒(𝑧)൯ (12) 

where f is the fidelity augmented objective function, 
and g is the original. The scale is defined as 

𝑠𝑐𝑎𝑙𝑒(𝑧) =  
𝑧

 𝑧•
(13) 

where  𝑧• represents the highest fidelity level (10).  
This approach allows for a simulated fidelity-
adjusted objective, where evaluations at the highest 
fidelity result in the true objective optimum. 

Similar to the simple BO algorithm, a GP model 
is used as surrogate. In this context, a covariance 
function that takes fidelity levels into account has 
been structured as a combination of a spatial kernel 
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𝑘௦ (Matérn) and a fidelity kernel 𝑘௙. This allows the 
model to consider both the distance between points 
in the input space and the difference in their fidelity 
levels. The kernel reflects that the similarity between 
points in the spatial domain is modulated by their 
corresponding fidelity levels. The adopted approach 
was to use a product of these kernels:  

𝑘൫(𝑥, 𝑧), (𝑥,  𝑧•)൯ = 𝑘௦ (𝑥, 𝑥ᇱ) × 𝑘 ௙ (𝑧,  𝑧•) (14) 

Assuming  𝑧• is the highest fidelity, the hypothesis is 
that the correlation induced by the fidelity kernel is 
maximal when  𝑧 = 𝑧• and decreases as z deviates 
from  𝑧•. To model this, a decreasing function of 
the absolute difference between z and  𝑧• is used 
as an exponential decay 

𝑘 ௙ (𝑧, 𝑧•) = exp(− 𝜆|𝑧 −  𝑧•|) (15) 

where 𝜆 is a non-negative parameter that controls the 
rate of decay—larger values of 𝜆 mean that fidelity 
levels significantly different from  𝑧• will have a 
smaller influence on the kernel computation. 

Perhaps the most important aspect of the multi 
fidelity algorithm lies in the modification of the 
acquisition function. As a starting point, an existing 
acquisition function from literature was used 
(Savage et al., 2023) 

𝑥௧ାଵ, 𝑧௧ାଵ = argmax
(௫,௭)∈௑×௓

𝜇௙መ௧(𝑥,  𝑧•)𝛽
ଵ
ଶ𝜎௙መ௧(𝑥,  𝑧•)

𝜇ఒ೟
(𝑥, 𝑧)ට1 − 𝑘൫(𝑥, 𝑧), (𝑥,  𝑧•)൯

ଶ
(16) 

where 𝜇௙መ௧(𝑥,  𝑧•)  is the predictive mean and 
𝜎௙መ௧(𝑥,  𝑧•) is the predictive standard deviation of the 
objective function at the highest fidelity  𝑧•. They 
respectively represent the best estimate of the 
function's output, and the uncertainty in the model's 
predictions given the highest available fidelity 
simulations. 𝜇ఒ೟(𝑥, 𝑧) is the predictive mean of the 
cost associated with a simulation at fidelity z. In this 
study, the cost has been modelled as the square of 
fidelity level, to simulate cost-aggressive 
applications and penalize high fidelity, as real-world 
problems often employ multi-fidelity when 
functions are very expensive and resources are 

limited. ට1 − 𝑘൫(𝑥, 𝑧), (𝑥,  𝑧•)൯
ଶ quantifies the loss of 

information when choosing a lower fidelity level 
compared to the highest one since the covariance 
measures the similarity between current and high-
fidelity evaluations. A high covariance suggests that 
information gained at a lower fidelity is highly 
relevant to higher fidelities, thus indicating less 
information loss. The parameter β acts as the 
exploration bonus as it is multiplied by the 
predictive standard deviation, scaling the influence 
of uncertainty in the acquisition function, thus 
governing the trade-off between exploration and 
exploitation.  

The variables in the denominator are 
instrumental in fidelity selection, as they effectively 

determine cost and loss/gain in accuracy of choosing 
one fidelity over the other, whereas the other terms 
are only functions of x since  𝑧• is fixed. As such, it 
was theorized that a better and more flexible trade-
off management was needed for these terms, 
achieved through weighing them with 
hyperparameter 𝛾:  

𝑥௧ାଵ, 𝑧௧ାଵ = argmax
(௫,௭)∈௑×௓

𝜇௙መ௧(𝑥,  𝑧•)𝛽
ଵ
ଶ𝜎௙መ௧(𝑥,  𝑧•)

𝛾𝜇ఒ೟
(𝑥, 𝑧) + (1 − 𝛾)ට1 −  𝑘൫(𝑥, 𝑧), (𝑥,  𝑧•)൯

ଶ
 

 (17) 
This novel approach allows for more precise control 
on the algorithm’s fidelity selection strategy through 
an improved and more flexible trade-off, which is 
key when tackling different problems with different 
goals, especially given specific budget constraints. 
It dynamically adjusts the weight given to the 
computational cost and the benefit of exploring at 
different fidelity levels. When γ approaches 1, the 
acquisition function gives more weight to 
minimizing the computational cost associated with 
evaluating the objective function at a particular 
fidelity level, which means the algorithm will prefer 
points that are cheaper to evaluate. Inversely, when 
γ approaches 0, the algorithm emphasizes the loss of 
information due to choosing a lower fidelity level. It 
will therefore prioritize points that are expected to 
provide more accurate information, even if they are 
more expensive to evaluate, resulting in higher 
fidelity selection. As such, γ provides an additional 
layer of flexibility. Note that the cost and covariance 
values have been normalized to allow for reasonable 
sensitivity towards γ, since these values differ in 
magnitude.  

A final important component in the context of 
the multi-fidelity algorithm is the fidelity selection 
function, which operates as an extension of the 
acquisition function. Its task is to iterate over 
possible fidelity levels for each candidate sample 
point to maximize the acquisition value, given the 
current budget and the remaining number of 
iterations. 
TuRBO-1 
The project further addressed a significant 
challenge: achieving global convergence in high-
dimensional problems using the TuRBO-1 
algorithm, conducted alongside the development of 
the multi-fidelity approach. Utilizing GPJax, a 
Gaussian Process library which has gained a lot of 
appreciation in recent years. GPJax was chosen for 
its advanced features, including GPU acceleration 
and Just-In-Time (JIT) compilation, which 
substantially enhance computational efficiency. 
Additionally, its mathematical coding closely aligns 
with the mathematical expressions in textbooks, 
particularly regarding log likelihood calculations. 

The methodology involves initializing the 
TuRBO-1 algorithm with a quasi-random Halton 
sequence, ensuring improved coverage of the 
solution space. The number of initial samples is 
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adjusted based on the problem's dimensionality: 5 
samples for 2D, 10 for 5D, and 20 for 10D problems. 
This variation accounts for the exponential increase 
in the search space as dimensions grow. The primary 
focus of the function evaluations lies in the Bayesian 
Optimization (BO) iterations, particularly critical in 
higher dimensions. Once the initial function 
evaluations are completed, the centre of the Trust 
Region (TR) of ellipsoidal shape, is strategically 
positioned around the most promising initial sample. 
The TR radius is meticulously fine-tuned according 
to the problem's dimensionality and bounds of the 
problem.  

The dataset 𝒟௜ is then updated with these initial 
samples, followed by the generation of an optimised 
posterior utilising the Matern5/2 kernel. After 
experiment with various options in the initial 
algorithm, the Matern5/2 kernel, and Expected 
Improvement (EI) as the acquisition function were 
selected. These were found to effectively balance 
exploration and exploitation, and provided the best 
fit for the smoothness of the Gaussian Process. 

The Bayesian optimisation loop proceeds as 
follows 
1. Sample {100d} samples within the Trust Region 

using the GPJax PRNGKey(42) which is a 
pseudo random sampling, where d is the number 
of dimensions.  

2. Evaluate the EI from all the samples on the 
posterior 

3. Extract point with maximum EI on posterior 
function   

4. Choose the next query point 𝑥௜, by maximizing 
the acquisition function 𝛼, using the surrogate 
model ℳ௜ conditioned on the dataset 𝒟௜ for a 
number of samples:  

𝑥௜ = 𝑎𝑟𝑔max
௫

𝛼(𝑥; 𝒟௜, ℳ௜) 
5. Obtain new observations by evaluating the 

objective function at 𝑥௜, yielding 𝑦௜ = 𝑓(𝑥௜). 
 

6. Expand the dataset with the new observation: 
𝒟௜ାଵ = 𝒟௜ ∪ {(𝑥௜, 𝑦௜)}. 

7. Update TR centre and Radius depending on 
whether there was an improvement in the 
objective function value. (TR Dynamics 
discussed in depth in next section)  

 

8. Update the surrogate model with the new dataset 
to produce ℳ௜ାଵ. 

 

The iterative process continues until reaching a 
predefined stopping criterion, such as a specific 
number of function evaluations.  

This was repeated for a total of 3 experiments, 
intended to replicate the effect of TuRBO, which 
runs multiple TRs on the search space. The only 
main difference to note between TuRBO-1 and 
TuRBO is that in TuRBO-1 the Trust Regions are 
not generated simultaneously, each with their own 
posterior, but rather one after the other. This 
inevitably leads to longer computational efforts. 

After establishing a better understanding of  
TuRBO-1, the next step is to cover the dynamics and 
hyperparameters behind the TR that guide the TR. 
(Park, J. 2020) 

TR Dynamics and hyperparameters  
In TR optimisation algorithms, the dynamics of the 
TR play a pivotal role in guiding the search process 
through complex solution landscapes efficiently. 
This section discusses the adaptive nature of the TR 
dynamics, emphasizing its key mechanisms and 
underlying logic, which was inspired by (Eriksson, 
2020). 

In the experiments conducted, the TuRBO-1 
algorithm was configured with specific 
hyperparameters as outlined in the theoretical 
background:  𝜏௦௨௖௖ = 2, 𝜏௙௔௜௟ = ௗ

௤
, 𝐿௠௜௡ = 2ିସ, 

𝐿௠௔௫ = 10, and 𝑟 ோ = 2.0.  
Here, 𝑑 represents the number of dimensions, 𝑞 

denotes the batch size, 𝐿௠௜௡  and 𝐿௠௔௫ denotes the 
minimum and maximum length of the TR, and 𝜏 
indicates the thresholds for success and failure. The 
algorithm's adaptability is crucial, relying on its 
recent performance. An 'improvement'—a superior 
objective function value at iteration n+1—leads to 
an increment in the success counter and an update of 
the Trust Region (TR) centre to this new optimal 
value. (Chen, 2016) 

Expansion of half the search area is considered 
when the current region shows promise, potentially 
yielding superior outcomes. This expansion is 
activated when the success counter equals or 
exceeds the 𝜏௦௨௖௖  threshold. In contrast, if the 
objective function value is unchanged or lower, the 
algorithm's failure counter increases by 1. The Trust 
Region contracts by half whenever 𝜏௙௔௜௟ reaches its 
threshold. This iterative process continues until the 
prescribed number of Bayesian Optimization (BO) 
iterations is completed, or when the Trust Region 
length reaches its minimum or maximum limits, as 
extreme sizes render the sampling ineffective. 

It should be highlighted that these TR 
hyperparameters were meticulously adjusted for 
different bounds and dimensions due to the initial 
challenges in scaling the domain effectively.  
(Diouane, 2022) 

4. Results and Discussion 
Initial BO 
The initial algorithm was used to study the impact of 
different acquisition functions, kernels and search 

Figure 3 – Rosenbrock function 
BO Figure 2 – Sphere function   Figure 3 – Rosenbrock function  
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strategies on the output 
for the three test 
functions. In 2D, it was 
found that the different 
combinations had little 
impact on the found 
optimum, due to the 
simplicity of the 
problem., as each case 
found a very accurate 
optimum. Figures 2, 3, 4 

illustrate an example of the results where the 
combined kernel, expected improvement, and whole 
space sampling strategy were used. 

However, in the case of higher dimensions, 
where the volume of the search space increases 
exponentially and data becomes sparse, the Matérn 
kernel proved to be more advantageous compared to 
the RBF kernel. Its inherent roughness and ability to 
capture less smooth variations in the function 
landscape provided a more robust model of the 
objective function, leading to better exploration in 
vast and complex search spaces. Particularly with a 
ν parameter of 2.5, it provides a compelling choice 
due to its capacity to model functions that are 
sufficiently smooth but have areas of abrupt change, 
making it suitable for the selected test functions. 

As for acquisition functions, a balance between 
exploration and exploitation becomes crucial; 
hence, EI was slightly preferred due to its ability to 
flexibly balance this tradeoff. The Upper 
Confidence Bound was also a solid option due to its 
tunable parameter, which can be adjusted to 
emphasize exploration in early iterations to avoid 
local optima, gradually shifting towards exploitation 
as the algorithm converges. This was particularly 
practical for the Styblinski-Tang function 

Overall, the algorithm had difficulties finding 
the right optimum for the more complex 10D 
functions, which motivated the use of more 
sophisticated approaches.  
Multi-fidelity 

The application of the multi-fidelity BO 
algorithm demonstrated marked variances in 
optimal behaviour across the selected test functions. 
Indeed, each test function required a distinct tuning 
of hyperparameters β and γ, which suggests that 
BO's performance is not only a function of its 
internal mechanics but is also deeply contingent on 
the nature of the optimization landscape it navigates. 

It is important to note that all the presented results 
have been obtained in 10-dimensional functions, as 
lower dimensions yielded less informative results as 
the optimum was very often reached at low fidelities 
due to the simplicity.  

For the sphere function, a simple and convex 
landscape, the algorithm exhibited rapid and 
accurate convergence towards the global minimum. 
Due to the objective’s less complex nature, it did not 
necessitate aggressive exploration, resulting in a 
relatively low β value of 1. Additionally, it was 
found that a higher γ value of 0.75 was preferred, 
resulting in overall lower fidelities, despite a general 
trend of increasing fidelity with iteration number, as 
can be seen from the high-fidelity evaluations 
concentrated around the optimum. The found 
optimum was 0.59, which is very close to the true 
optimum of 0. For reference, the achieved simulated 
cost was 1,793, which is lower than the old approach 
(2,301) for a similar level of accuracy. 

The Rosenbrock function, with its narrow, 
curved valley, presented a greater challenge. The 
multi-fidelity approach proved advantageous, as 
initial lower-fidelity evaluations provided valuable 
insights into the broader landscape, guiding the 
search towards the valley where it started choosing 
higher fidelities, and reached an optimum of 2.36, 
again very close to the true optimum. The γ term of 
0.53 was a conservative approach, as it did not 
greatly emphasize or penalize either term. 
Interesting enough, it was found that even by 
modifying this parameter to emphasize higher 
fidelities, the general behaviour would not deviate 
much, as the acquisition function still intelligently 
navigates all the other parameters to achieve an 
optimal tradeoff – in this case much higher fidelities 
where unjustifiable as the improvement would 
always be suboptimal. Moreover, the beta parameter 
was higher (1.5), as exploration was encouraged to 
navigate the valley. Overall, the optimization path 
demonstrated a more gradual convergence, often 
requiring exploration at various fidelities before 
zoning in on the valley. The algorithm's adaptability 
to the challenging topology of the Rosenbrock 
function was evident in its dynamic fidelity selection 
and thorough exploration, which was better than the 
old approach which achieved this through higher 
cost. 

Figure 6 – Objective value over iterations for the 10D sphere 
function with β=1 , γ=0.7, optimum=0.59, simulated cost=1,793 

Figure 4 – Styblinski Tang 
function BO 

Figure 5 - 10D Sphere function BO 
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The most complex of the test functions, Styblinski-
Tang, with its numerous local minima, put the 
algorithm's exploration capabilities to the test. The 
results indicate that the algorithm successfully 
avoided premature convergence to local minima by 
leveraging the explorative aspect of the acquisition 
function. This was done through a higher beta 
parameter (1.8), and a lower gamma parameter 
(0.32). Overall, the fidelity levels were higher, 
which is to be expected for a more complex function, 
and the optimum found was -384.03, compared to 
the real optimum of -390. This was achieved with a 
cost of 7,593, significantly improving the old 
acquisition function’s implied cost of 9,021. 

Overall, the sensitivity analysis highlights that 
there is no one-size-fits-all parameter setting; 
instead, parameters must be adapted to the 
characteristics of the objective function being 
optimized. This is a particularly interesting feature, 
especially in the context of the developed 
acquisition function which allows for a more 
flexible cost trade-off management through γ. It is 
hypothesized that “simpler” functions benefit from 
a lower β and higher γ, effectively encouraging 
exploitation at low fidelity, whereas more 
“complex” functions benefit from a higher β and 
lower γ, which has inverse implications.  
The novel acquisition function has proven to be 
more effective than the old one, provided that the 
hyperparameters are well-tuned. The findings 
emphasize the importance of an adaptive and 
context-sensitive approach, as flexibility is an 
invaluable tool in real-world scenarios, where each 
problem comes with a different set of constraints and 
goals. It was found that the new method achieved a 
better trade-off between cost and accuracy, 
consistently yielding optimal results with less 
simulated cost.   

Finally, these results underline the need for 
further research into automated or semi-automated 
methods for hyperparameter tuning in multi-fidelity 
BO. Developing strategies to predict optimal 
parameter values based on preliminary assessments 
of the objective function's characteristics could 
significantly enhance the efficiency and 
applicability of BO in diverse fields. 

TuRBO-1 

In this section, the TuRBO-1 algorithm is 
evaluated across various test functions and 
dimensions. It’s performance is compared with the 
initial BO algorithm, a Random Search, and the 
sophisticated multi fidelity approach.  
Starting with the simplest unimodal sphere function 
(Equation 9), characterized by a singular global 
minimum at the origin. This function presented 
intriguing results that deviated from the initial 
expectations. While the TuRBO-1 algorithm was 
anticipated to excel in unimodal functions due to the 
simplicity of the function, the dynamic TR updating 
mechanism and propensity to converge towards the 
centre, the outcomes were somewhat unexpected. 
The algorithm displayed a marked tendency for 
exploration over exploitation, particularly in high-
conditioning scenarios of unimodal functions. This 
was evident in the behaviour of the TuRBO-1, which 
prioritized discovering new promising regions rather 
than quickly converging to the global optimum. This 
is especially true when performing global 
optimisation in the 5D and 10D case.  

A critical illustration of this phenomenon is 
provided in Figure 8. The figure captures a scenario 
where all three TRs initially positioned outside the 
global optimum gradually converge towards the 
centre over several iterations. Notably, the red 
crosses in the figure highlight the algorithm's 
exploratory nature, underscoring that the high 
conditioning of the function does not significantly 
influence its sampling decisions. 

In all three experiments, the initial Halton Sequence 
is represented by dark-coloured samples, with the 
best initial point used as the centre of the TR, 
indicated by the dashed green circle. Grey samples 
within the TR are evaluated for Expected 
Improvement (EI), with the highest EI point utilized 
as a function evaluation, marked by a red cross. The 
global minimum is also highlighted yellow.  

Moreover, Figure 9 presents a comparative analysis 
of the logarithmic regret between the TuRBO-1 
algorithm and the Random Search (RS) strategy. A 
key observation is the dashed red line at the fifth 
evaluation, marking the transition point where initial 
sampling evaluations cease, and BO iterations 
begin. This demarcation provides valuable insights 
into the adaptive response of the TuRBO-1 
algorithm as it shifts from initial exploration to more 
focused optimization efforts.  

Figure 7 – Objective value over iterations for the 10D Styblinski-Tang 
function with β=1, γ=0.6, optimum=-379.93, simulated cost=7,593 

Figure 8 – Contour plot of the 2D Sphere function 
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Nevertheless, the TuRBO-1 algorithm outperforms 
the RS and initial BO algorithm.  

A summary table of all the algorithms, and runtimes 
for the 5D and 10D case are shown in Table 1. 

5D BO From 
Scratch 

Random 
Search 

TuRBO-
1 

Multi 
Fidelity 

Optimum 
found 0.056 0.09 0.036 0.047 

Runtime <1m <1m 5m 2m 

10D  BO From 
Scratch 

Random 
Search 

TuRBO-
1 

Multi 
Fidelity 

Optimum 
found 0.275 0.773 0.07 0.69 

Runtime 2m <1m 11m 3m 

In the 5D and 10D sphere function case, a near 
global optimum was achieved with TuRBO-1 at 
both occasions, although runtime increased linearly 
with dimensionality. This is primarily due to 
TuRBO-1’s single TR BO framework.  

In comparative analyses, both the multi-fidelity 
approach and TuRBO-1 exhibited enhanced 
performance. However, the high conditioning nature 
of the sphere function resulted in no definitive 
superiority of TuRBO-1. The algorithm’s inherent 
exploratory behaviour did not significantly 
contribute to outperforming other methods in this 
context, underscoring the impact of the function's 
characteristics on optimization efficiency. 

The research further delved into the realm of 
multimodal functions by testing the TuRBO-1 
algorithm on the Styblinski-Tang function 
(Equation 10). This function, with its inherent 
nonlinearity and nonconvexity, is particularly 
relevant to the field of chemical engineering. It 
possesses a global minimum at the point (-2.904, -
2.904), with the objective function value at this 
minimum being -39.166 multiplied by the 
dimensionality (d), translating to approximately -78, 
-195 and -390 in the 2D, 5D and 10D respectively. 
in Figure 10, illustrating the 2D case, shows that the 
TuRBO-1 algorithm achieved global convergence 
within a limited number of iterations, effectively 
navigating through local optima to find the global 
minimum with a minimal change in the objective 
function value. This outcome exemplifies the 
algorithm's proficiency in handling complex 
multimodal landscapes, highlighting its potential 

applicability in challenging real-world scenarios 
where optimal solutions are sought despite multiple 
local optima. 
In the analysis of the 5D and 10D Styblinski-Tang 
function, the TuRBO-1 algorithm consistently 
achieved near-global optimum results. The 

function's landscape, characterized by numerous 
local optima, favours an exploratory approach, 
which significantly contributed to TuRBO-1's 
superior performance over other models. This 
advantageous outcome is comprehensively 
documented in Table 2 presents the results for the 
5D and 10D scenarios, highlighting the relatively 
high running times of the TuRBO-1 model, 
attributable to its single TR design. These running 
times could be optimized within the TuRBO-1 
framework by fine-tuning the minimum (𝐿௠௜௡) and 
maximum (𝐿௠௔௫) TR limits. This adjustment would 
allow the TR to terminate more efficiently when the 
input space becomes less effective, followed by the 
generation of a new TR around the next most 
promising initial sample.  

5D BO From 
Scratch 

Random 
Search 

TuRBO-
1 

Multi 
Fidelity 

Optimum 
found -178 -160 -190 -188 

Runtime <1m <1m 7m 3m 

10D  BO From 
Scratch 

Random 
Search 

TuRBO-
1 

Multi 
Fidelity 

Optimum 
found -230 -215 -390 -380 

Runtime 1m <1m 14m 6m 

Conclusions and Outlook 
This study has successfully developed two distinct 
yet complementary Bayesian Optimization (BO) 
algorithms: the multi-fidelity approach and the 
TuRBO-1 method. These algorithms represent 
significant improvements in the field of 
optimization, especially in the context of high-
dimensional and computationally intensive 
problems. 

The multi-fidelity framework has been an 
effective tool for optimizing the range of tested 
functions. By integrating an innovative γ 
hyperparameter in the acquisition function, the 

Figure 9 – Logarithmic regret plot of the RS and TuRBO-1 

Table 1 – 5D and 10DSphere function results for different methods. 

Table 2 – 5D and10D Styblinski- Tang function results for different 
methods. 

Figure 10 – Contour plot of the 2D Styblinski- Tang function 
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computational cost and accuracy are balanced much 
more accurately, and in a way that allows for tuning 
the algorithm to the problem at hand. The strength 
of it lies in the fact that it provides a much more 
flexible approach in tackling functions with 
different levels of complexity and behaviour.  
especially in 10-dimensional spaces. As Bayesian 
Optimization continues to evolve, the multi-fidelity 
approach presents exciting avenues for future 
research. One key area lies in the dynamic tuning of 
hyperparameters. Current methodologies typically 
involve manual or static hyperparameter settings, 
which, although effective, may not always optimally 
exploit the potential of multi-fidelity models. Future 
research could focus on developing algorithms that 
dynamically adjust hyperparameters like β and γ in 
response to real-time feedback during the 
optimization process (Fucci et al., 2022). Moreover, 
another promising direction is exploring different 
methodologies in the acquisition function, which is 
an ongoing process in literature (Takeno et al., 2023) 
(Song, Chen and Yue, 2019).  

The TuRBO-1 algorithm excels in high-
dimensional optimization, adeptly navigating 
complex landscapes and evading early local optima, 
as demonstrated in the Styblinski-Tang function. Its 
dynamic trust region (TR) mechanism surpasses 
traditional Bayesian Optimization methods in 
balancing exploration and exploitation, marking it as 
an effective tool for complex optimization tasks. 
However, its single TR approach limits 
computational efficiency. Introducing simultaneous 
local TRs, each with a distinct posterior, could 
enhance its application in high-dimensional spaces, 
maximizing TuRBOs potential for real-world 
problems.  

References  
Fucci, D., Romano, S., Baldassarre, M., Caivano, D., 
Scanniello, G., Thuran, B. and Juristo, N. (2022). A 
Longitudinal Cohort Study on the Retainment of Test-
Driven Development. 
doi:https://doi.org/10.1145/nnnnnnn.nnnnnnn. 

Takeno, S., Fukuoka, H., Tsukada, Y., Koyama, T., Shiga, 
M., Takeuchi, I. and Karasuyama, M. (2023). Multi-fidelity 
Bayesian Optimization with Max-value Entropy Search and 
its parallelization. [online] Available at: 
https://arxiv.org/pdf/1901.08275.pdf [Accessed 14 Dec. 
2023]. 

Song, J., Chen, Y. and Yue, Y. (n.d.). A General Framework 
for Multi-fidelity Bayesian Optimization with Gaussian 
Processes. [online] Available at: 
https://proceedings.mlr.press/v89/song19b/song19b.pdf 
[Accessed 14 Dec. 2023]. 

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. and de 
Freitas, N. (2016). Taking the Human Out of the Loop: A 
Review of Bayesian Optimization. Proceedings of the IEEE, 
104(1), pp.148–175. 
doi:https://doi.org/10.1109/jproc.2015.2494218. 

Terayama, K., Sumita, M., Tamura, R. and Tsuda, K. 
(2021). Black-Box Optimization for Automated Discovery. 

Accounts of Chemical Research, 54(6), pp.1334–1346. 
doi:https://doi.org/10.1021/acs.accounts.0c00713. 

Braconi, E. and Edouard Godineau (2023). Bayesian 
Optimization as a Sustainable Strategy for Early-Stage 
Process Development? A Case Study of Cu-Catalyzed C–N 
Coupling of Sterically Hindered Pyrazines. ACS Sustainable 
Chemistry & Engineering, 11(28), pp.10545–10554. 
doi:https://doi.org/10.1021/acssuschemeng.3c02455. 

Savage, T., Basha, N., Mcdonough, J., Matar, O., Antonio, 
E. and Chanona, D. (2023). Machine Learning-Assisted 
Discovery of Novel Reactor Designs. [online] Available at: 
https://arxiv.org/pdf/2308.08841.pdf. 

Bempedelis, N. and Magri, L. (2023). Bayesian optimization 
of the layout of wind farms with a high-fidelity surrogate 
model. [online] Available at: 
https://arxiv.org/pdf/2302.01071.pdf. 

Pyzer-Knapp, E.O. (2018). Bayesian optimization for 
accelerated drug discovery. 62(6), pp.2:1–2:7. 
doi:https://doi.org/10.1147/jrd.2018.2881731. 

Letham, B., Karrer, B., Ottoni, G. and Bakshy, E. (2019). 
Bayesian Analysis (0000) 00, Number 0. [online] Available 
at: https://arxiv.org/pdf/1706.07094.pdf [Accessed 13 Dec. 
2023]. 

Jason Brownlee (2017). Gentle Introduction to the Adam 
Optimization Algorithm for Deep Learning. [online] 
Machine Learning Mastery. Available at: 
https://machinelearningmastery.com/adam-optimization-
algorithm-for-deep-learning/.  

Weisstein, E.W. (n.d.). Modified Bessel Function of the 
Second Kind. [online] mathworld.wolfram.com. Available 
at: 
https://mathworld.wolfram.com/ModifiedBesselFunctionoft
heSecondKind.html. 

Diouane, Y., Picheny, V., Riche, R.L. and Perrotolo, A.S.D. 
(2022). TREGO: a trust-region framework for efficient 
global optimization. Journal of Global Optimization, 
[online] 86(1), pp.1–23. doi:https://doi.org/10.1007/s10898-
022-01245-w.J. Snoek, H. Larochelle, and R. P. Adams. 
Practical Bayesian optimization of machine learning 
algorithms. In Advances in Neural Information Processing 
Systems, pages 2951–2959, 2012. 

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. and de 
Freitas, N. (2016). Taking the Human Out of the Loop: A 
Review of Bayesian Optimization. Proceedings of the IEEE, 
104(1), pp.148–175. 
doi:https://doi.org/10.1109/jproc.2015.2494218. 

Eriksson, D., Pearce, M., Gardner, J.R., Turner, R. and 
Poloczek, M. (2020). Scalable Global Optimization via 
Local Bayesian Optimization. arXiv.org. 
doi:https://doi.org/10.48550/arXiv.1910.01739. 

Park, J. (2020). Contextual Bayesian optimization with trust 
region (CBOTR) and its application to cooperative wind 
farm control in region 2. Sustainable Energy Technologies 
and Assessments, 38, p.100679. 
doi:https://doi.org/10.1016/j.seta.2020.100679. 

Chen, R., Menickelly, M. and Scheinberg, K. 
(2016). Stochastic Optimization Using a Trust-Region 
Method and Random Models. [online] arXiv.org. 
doi:https://doi.org/10.48550/arXiv.1504.04231. 

 

41



Stability Study of Dual Drug Delivery Systems under Osmotic Stress 
 

Inny Yeung and Barbara Simonetou 
Department of Chemical Engineering, Imperial College London, U.K. 

 
Abstract It was required to investigate the stability of vesicles under osmotic stress to be employed as dual-drug delivery 
systems. The effects of lipid architecture and encapsulated cargo were studied using DPPC and DOPC, with two 
fluorescent drug mimics - calcein and methylene blue. The stability was analysed through release assays of the fluorescent 
dyes and deviations in size for vesicles in sucrose and KCl buffers of various concentrations. DPPC, which is a saturated 
lipid, was determined to be more optimal for application in a drug delivery system, as it had lower degree of passive 
leakage, despite larger changes in size to counter changes in osmotic pressure. Buffer type and concentration were found 
to have minimal effect on the release efficiencies for both DPPC and DOPC vesicles. However, significant differences in 
the release efficiencies of both encapsulated cargos were noted, with calcein having a lower passive leakage in all 
conditions.  

Keywords: Vesicles, stability, dual-drug delivery system, osmotic pressure, calcein, methylene blue

Introduction 
Widely employed in various applications, liposomes, or 
vesicles1, exhibit outstanding properties, particularly in 
drug delivery systems, where they first gained traction 
in the 1970s2. They are recognised as promising and 
adaptable drug carriers due to their biocompatibility, 
their capability to encapsulate both hydrophilic and 
hydrophobic therapeutic agents, and their ability to 
safeguard encapsulated substances from physiological 
degradation2. With the ability to selectively transport 
payloads to specific sites using passive or active 
targeting, liposomes mitigate systemic side effects, 
boost the maximum-tolerated dosage, and amplify 
therapeutic benefits3. Unstable vesicles, however, pose 
a significant risk as the potential premature release of 
drugs heightens toxicity risks to healthy tissues and may 
limit the treatment’s effectiveness. Hence, maintaining 
vesicle stability is crucial for ensuring the efficacy, 
safety, and targeted delivery of drugs.  

In this investigation, vesicle stability was 
characterised by changes in size and passive leakage of 
encapsulated cargo through the membrane. While 
several factors influence vesicle stability, variations in 
osmotic pressure within the body are particularly 
relevant in drug delivery systems, and therefore a crucial 
consideration. Consequently, this study investigated the 
stability of vesicles with two encapsulated drug mimics 
(calcein and methylene blue) under osmotic stress for 
two lipids, DPPC and DOPC, with varying properties.  

The properties and release mechanisms of these two 
encapsulated molecules were characterised, and the 
effect of lipid architecture, buffer type and concentration 
on vesicle stability was explored. The study aimed to 
determine the limit of drug concentration that can be 
encapsulated such that vesicles have minimal leakage 
after being introduced to the bloodstream, while also 
distributing the required dose at the target site. These 
results were deemed significant in the construction of a 
drug delivery system that can trigger the release of 
temperature, pH or light responsive cargos, whilst also 
minimising the side effects. This would require the 
introduction of the fewest number of vesicles possible, 
as vesicles can clog blood vessels or get attacked by the 
immune system, whilst also delivering the necessary 
drug dosage. 
 

Background 
Liposomes are nano-sized to microsized vesicles 
composed of a phospholipid bilayer, that structurally 
adopt a spherical or multi-layered spherical shape4. 
Phospholipids, typically composed of a glycerol 
backbone, two hydrophobic fatty acid tails, and a 
hydrophilic phosphate group are amphipathic5. In an 
aqueous environment, driven by the hydrophobic effect, 
phospholipids will spontaneously arrange themselves 
into a double-layered structure, known as the 
phospholipid bilayer, with the hydrophilic heads on the 
outside and hydrophobic tails pointing towards the 
inside6. This structural similarity, which mimics the 
structure of natural cell membranes, aids in their 
integration with biological systems and helps reduce the 
likelihood of immune responses or toxicity when used 
in drug delivery systems. For this reason, phospholipids 
are extensively used in liposomes.   

Additionally, lipid bilayers may exhibit different 
phase behaviours depending on lipid tail interactions 
within the bilayer structure7. There are two primary 
phases: a solid (gel) phase, and a liquid phase, which are 
characterised by lipid saturation. Saturated 
phospholipids, such as DPPC, result in straight, 
unkinked tails, that can be packed closer together in a 
crystalline-like matrix, thereby maximising the 
intermolecular interactions between tails and decreasing 
bilayer fluidity. Unsaturated phospholipids, such as 
DOPC, which has two carbon-carbon double bonds, 
present with crooked, kinked tails, resulting in fewer 
intermolecular interactions and increased bilayer 
fluidity. Hence, it is expected that vesicles made with 
DOPC will have a higher degree of membrane fluidity, 
whilst DPPC membranes will be more viscous.  

The lipid saturation will also influence the vesicle’s 
ability to withstand variations in osmotic pressure8, 
which is defined as the amount of force applied to a 
solution, preventing the movement of solvent across a 
semipermeable membrane9. DOPC vesicles, owing to 
their fluid nature, can deform more easily to counteract 
changes in osmotic stress on the membrane.  

Water is transported across a membrane by osmosis, 
which describes the spontaneous net movement of water 
molecules across a semi-permeable membrane from an 
area of high-water potential to low water potential until 
a state of equilibrium is reached9. In isosmotic media, 
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equilibrium is achieved and there is no net movement of 
water in or out of the vesicles, and they are stable in size. 
When vesicles are placed in hyperosmotic media, where 
the concentration of solute is higher on the outside, there 
will be a net movement of water out of the vesicle, 
which results in the vesicles shrinking. Conversely, 
when they are placed in hypoosmotic media, where the 
concentration of solute is higher on the inside, there will 
be a net movement of water into the vesicles, causing 
them to swell. Equilibrium is reached when the force of 
water on the hyperosmotic side of the membrane is equal 
to the force of diffusion on the hypoosmotic side of the 
membrane.  

Osmolarity is a property of a solution that considers 
the number of particles formed when a substance is 
dissolved in water. Whilst molarity is a measure of the 
concentration of a solution in terms of moles per 
volume, osmolarity is a measure of the number of 
particles per volume7. This means that while 2 solutions 
could have the same molarity, they could have different 
osmolarities.   

When ionic compounds are dissolved in water, they 
dissociate to form cations and anions, which contribute 
towards the osmolarity. Hence, it would be expected that 
the osmolarity of KCl buffers to be higher than for 
sucrose buffers of the same molarity. In theory, it was 
also be expected that if a 5mM sucrose solution 
corresponds to 5 mOsm/L, a 5mM KCl solution would 
be 10 mOsm/L as KCl dissociates into K+ and Cl- ions7.  

Furthermore, the rate at which drugs diffuse from the 
vesicle’s membranous lipid bilayer, is another critical 
aspect related to the drug delivery systems under 
investigation10. Understanding the release, or leakage 
mechanism, of the encapsulated cargo is especially 
important, as ideally no passive cargo release, or 
leakage, to the surroundings should occur upon transport 
of the vesicle from the site of administration to the 
target. Cell membranes act as biological barriers, 
selectively restricting the passage of certain molecules 
based on their permeability11. The cell membrane is 
semi-permeable, with only small uncharged molecules 
able to diffuse freely through the phospholipid bilayers, 
in a process known as simple diffusion6. Other 
mechanisms for transport across the cell membrane 
exist, and may be active or passive, depending on their 
energy consumption11. However, most pertinent to this 
study is simple diffusion as a transport mechanism. In 
this mode of transport, nonpolar molecules freely 
diffuse across the lipid bilayer in a process driven by a 
difference in concentration7.   

The rate of diffusion across a cell membrane directly 
relates to this concentration gradient, but is also 
influenced by other factors, such as the molecule’s 
solubility and acidity, as represented by its logP and pKa 
respectively11. Hence, to explore the passive leakage 
mechanism across the membrane, specific to this 
investigation, it is necessary to consider the logP and 
pKa properties of the drug mimic cargos - calcein and 
methylene blue. Calcein and methylene blue are both 
self-quenching dyes. In other words, they are 
nonfluorescent at high concentrations, and fluorescent at 
low concentrations, as demonstrated in figure 1. This 
property enables them to be useful indicators for vesical 
leakage, as related to vesicle stability.  In addition, these 
2 molecules were chosen for their drug-like structures, 
namely, the abundance of aromatic rings and polar 
groups. Furthermore, their different excitation and 
emission wavelengths are crucial to enable them to be 
used in a study for dual drug delivery.  

The partition coefficient, logP, is a measure of the 
hydrophilicity (or hydrophobicity) of a molecule. It is 
measured as the ratio of concentrations of a compound 
that has dissolved into an organic solvent phase and into 
an aqueous water phase. Most commonly, the organic 
partitioning solvent used is octan-1-ol. A negative logP 
value indicates that the compound has a higher affinity 
for the aqueous phase, meaning it is more hydrophilic. 
Conversely, a positive logP value is representative of a 
higher concentration of the substance in the lipid phase, 
meaning the compound is more hydrophobic. A lower 
logP is indicative of higher membrane permeability, and 
it is easier for the molecule to diffuse through the lipid 
bilayer. logP values for methylene blue has been 
reported ranging from -1.1 to -0.62, whilst calcein has a 
logP of 1.56 12. It would be therefore expected that 
methylene blue leaks out or diffuses through the lipid 
bilayer more readily than calcein. The pKa value 
represents the acidity of a molecule. It is the negative 
log of the equilibrium constant for dissociation in acid-
base reactions, which is the concentration of the 
conjugate base, multiplied by the concentration of 
hydrogen ions, divided by the concentration of the acid 
at equilibrium. A lower pKa value indicates a stronger 
acid.  Calcein has a pKa of 2.1, whilst this value is 3.14 
for methylene blue12. Since both cargos were maintained 
at the physiological pH of 7.4, which is higher than their 
pKa values, the cargos should not be in their 
protonated/acidic forms.  
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Figure 1. Schematic showing leakage from vesicles containing 2 drug like dyes (calcein and methylene blue) and their structures. Vesicles are made 
from DPPC or DOPC and diagram showing self-quenching properties of both dyes: As concentration decreases, the fluorescence increases. 
 
Methods 
Since the properties of methylene blue are not well 
documented, it was necessary to characterised its 
fluorescence and absorbance properties. 200 μL of 30 
concentrations between 0mM and 250mM methylene 
blue was placed in a fluorimeter well plate and a clear 
absorbance well plate. The absorbance spectra and 
fluorescence spectra were then measured to determine 
the concentration range of methylene blue that would be 
ideal for the investigation.  

Lipid films were prepared by drying 200 μL of the 
25 mg/mL DPPC or DOPC in chloroform stock under 
nitrogen flow on glass to evaporate the chloroform. The 
films were then dessicated overnight in a vacuum and 
rehydrated with 500 μL of either 500mM calcein 
(20mM HEPES, pH 7.4) or 60mM methylene blue 
(20mM HEPES, pH 7.4). The vials were vortexed to 
ensure they were well mixed, before being heated above 
the transition temperatures of the lipids, at 70 oC. To 
improve the encapsulation efficiency of the dyes, four 
freeze thaw cycles were undertaken, where the vials 
were cooled in liquid nitrogen until frozen, then left in 
the hot plate for at least five minutes. The lipid 
dispersions were then extruded through a 100nm 
polycarbonate membrane 21 times at 70 oC to create 
small unilamellar vesicles. Finally, size exclusion 
chromatography (SEC) was employed to filter the 
sample and remove any unencapsulated dyes. This 
involved adding the samples dropwise to a 5mL SEC 
column made from 0.4g of Sephadex G50, hydrated 
with 12mL of column buffer, which was 500mM 
sucrose, 20mM HEPES for encapsulated calcein and 
60mM sucrose, 20mM HEPES for encapsulated 
methylene blue. Four fractions, each 300 μL, were then 
combined and pipetted up and down to ensure mixing 
before being mixed with 12 different buffers of varying 
sucrose and KCL concentrations for measurements in 
the fluorimeter and dynamic light scatterer (DLS).   

Release assays with the 12 buffers were run 
overnight using a Cary Eclipse fluorimeter. A well plate 
with 96 wells was utilised, with 20 μL of sample mixed 
with 180 μL of buffer in each well. 3 trials were 
conducted for the sample in all buffers, and 2 trials of 
only buffer were tested as a control. Lastly, a gas 

permeable sealing membrane was stuck onto the well 
plate to minimise evaporation. Calcein fluorescence was 
measured at excitation wavelength (𝜆௘௫) of 495nm and 
an emission wavelength (𝜆௘௠) of 515nm, whilst 
methylene blue fluorescence was recorded at 𝜆௘௫= 
668nm and 𝜆௘௠= 688nm.  

The maximum release was then obtained by lysing 
the vesicles with 2 μL of the detergent Triton X-100, and 
measuring the total fluorescence under the same voltage 
conditions. The release efficiency was then calculated 
using equation (1), where 𝐹௦ is the fluorescence at a 
specific time, 𝐹଴ is the initial fluorescence of vesicles in 
isosmotic buffer, and 𝐹௧ is the maximum fluorescence 
after adding Triton7.   

Release efficiency [%]= Fs-F0
Ft-F0

×100% (1) 
The stability of vesicles was also quantified by their 

size deviation from reference values using a Malvern 
Zetasizer DLS. 20 μL of vesicles were mixed with 980 
μL of each buffer in a polystyrene cuvette and covered 
with parafilm overnight. Reference values were taken to 
be the size of vesicles in isomotic buffer before lysis, 
which refers to 350mM sucrose, 20mM HEPES buffer 
for calcein, and 60mM sucrose, 20mM HEPES for 
methylene blue. A fluorescent filter was used as both 
calcein and methylene blue molecules are fluorescent 
dyes at low concentrations. In addition, the 13% sucrose 
dispersant setting was used for the sucrose buffers, 
whilst a water dispersant was used for the 0mM sucrose 
and KCl buffers.    

A freezing point depression osmometer was used to 
test the osmolarity of various buffers used and to 
identify the isosmotic reference point for both 
encapsulated cargos. 25 μL of each buffer was pipetted 
into an Eppendorf tube and attached to the measuring 
head, before being lowered into the cooling aperture, 
which started the supercooling process. The sample was 
supercooled to a predetermined temperature below the 
expected sample freezing point, which is -6.2 oC for the 
Loser Type 7M osmometer. A cooled pre-wetted needle 
with ice crystals was then automatically inserted into the 
sample to initiate freezing. The heat of fusion from the 
cystallisation process increased the sample temperature 
until a plateau point was achieved, where the liquid solid 
equilibrium was maintained 13. This plateau was taken 
as the true freezing point of the sample. A 
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microprocessor then calculated the osmolarity by 
comparing the freezing point measured with the freezing 
point of distilled water and 2 other standard solutions.  
 
Results and Discussion 
Absorbance 
It was decided to use methylene blue at a 60mM 
concentration with 20mM HEPES to rehydrate the lipid 
films based on supplementary figures 1 and 2. Since the 
dye is diluted at least 30 times when encapsulated (1:3 
dilution in the column and 1:10 in the fluorimeter) and 
further diluted by the movement of water molecules 
when mixed with buffer, it was necessary to use a 
concentration of methylene blue that is non fluorescent 
even after being diluted 30 times, so that further 
dilutions result in fluorescence. It was seen that 
methylene blue is quenched at concentrations above 
35mM, so this was the minimum stock concentration 
that was required. Based on the fluorescence and 
absorbance data of various concentrations of methylene 
blue, 60mM methylene blue was used, which 
corresponded to an intermediate level of fluorescence. 

The absorbance spectrum was also used to confirm 
the excitation and emission wavelengths of methylene 
blue, which were 668nm and 688nm, respectively.  
 
Osmolarity 
Figure 2 shows all the osmolarity measurements 
recorded, for buffer concentrations ranging between 0-
250mM for methylene blue and 0-1000mM for calcein.  
  

 
Figure 2. Osmolarity of sucrose and KCl buffers used with both 
calcein and methylene blue. KCl has higher osmolarity for all 
concentrations except 1000mM. Osmolarity of 500mM calcein, 
20mM HEPES was found to be 337 mOsm/L, and closest to 350mM 
sucrose solution. Osmolarity of 60mM methylene blue, 20mM HEPES 
was measured as 66 mOsm/L, and isosmotic reference point was 
therefore taken to be 60mM sucrose solution.  
 

The osmolarity of KCl buffers was higher than those 
of sucrose buffers at almost all concentrations, except at 
1000mM, where sucrose was found to have a higher 
osmolarity. This is likely due to measurements having 
been taken using a freezing point depression osmometer, 
which compares the freezing temperature of the solution 
to reference standards to produce an osmolarity reading.  

When solutes are dissolved, the freezing point of the 
resulting solution will be lower than that of the solvent 
on its own due to changes in chemical potential of the 
solvent. The degree to which the freezing point is 

depressed is directly correlated to the molarity of a 
solution through a cryoscopic constant, which is 
concentration dependent 14. Since sugars are well known 
to have cryoprotectant properties, they can prevent ice 
formation on biological tissues 15, 16. As such, with a 
higher concentration of sucrose, a lower temperature is 
required to freeze the sample, and therefore, a larger 
temperature difference between the freezing point and 
the reference value is recorded, producing a larger 
osmolarity reading. Repeat measurements should be 
taken to confirm the trends observed and alternative 
methods of measuring osmolarity should also be 
explored to negate the cryoprotectant effects of sucrose.  

Further investigation is also required into factors that 
affect osmolarity, as the conversion between osmolarity 
and molarity is not linear as expected. The ratio of 
osmolarities between the investigated sucrose and KCl 
buffers of the same molarity is smaller at low 
concentrations, and appears to deviate to a higher degree 
with increasing concentration. 

As shown in figure 2, 500mM calcein, 20mM 
HEPES solution was found to have an osmolarity of 337 
mOsm/L, which was most closely balanced with the 
350mM sucrose buffer, which had an osmolarity of 371 
mOsm/L. This was therefore taken to be the isosmotic 
reference point for vesicles with encapsulated calcein. 
Similarly, 60mM sucrose solution was considered to be 
isosmotic for vesicles with 60mM methylene blue, 
20mM HEPES solution, which had an osmolarity of 66 
mOsm/L.  
 
Release assays 
The release profiles of both lipids with calcein and 
methylene blue in different buffers were measured in the 
fluorimeter and analysed to determine trends in vesicle 
stability in terms of passive leakage. In drug delivery 
contexts, it is crucial to minimise the passive leakage 
over time.  

Vesicle leakage was found to be independent of time 
for both lipids with encapsulated calcein in sucrose and 
KCl buffers of all concentrations, as seen in figure 3 and 
supplementary figure 3. This suggested that the release 
occurred instantaneously after the vesicles were mixed 
with the buffers and before the well plate was placed in 
the fluorimeter.  

For DPPC, the maximum release was observed for 
vesicles in 0mM solution at 10.8%. The minimum 
release in sucrose buffers was 1.2% for 1000mM 
solution compared to 1.7% for KCl buffers, which 
occurred in the 500mM solution. In hypoosmotic media 
(below 350mM sucrose), the vesicles in sucrose buffers 
of all concentrations consistently have a slightly higher 
release than those in KCl buffers. The opposite effect is 
observed for vesicles in hyperosmotic media, where 
those in KCl buffers are then observed to have higher 
releases. 

In DOPC, the releases for sucrose buffers were 
higher than those in KCl buffers of the same molarity at 
all concentrations, though the difference was smaller at 
both extremes. A larger range of releases was observed, 
with the minimum being 0.4% for 1000mM sucrose, and 
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20.8% for 0mM sucrose. DOPC was found to be more 
sensitive to changes in buffer concentration due to the 
increased membrane fluidity arising from its unsaturated 
lipid tails, therefore, making DOPC more likely to have 
membrane pores through which leakages can occur.  

With both lipids, the maximum release occurred for 
vesicles in 0mM buffer, which is expected as water is 
hypoosmotic relative to the encapsulated calcein. The 
net movement of water into the vesicles causes them to 

swell in an attempt to equilibrate the difference in 
osmotic pressure, which results in a slight increase in the 
fluorescence as the calcein is diluted. However, as the 
vesicle continues to swell to a point where the 
membrane is no longer able to withstand the osmotic 
stress, the distance between adjacent lipid molecules 
will increase, inadvertently forming pores in the 
membrane, through which the calcein is able to leak out.

Release efficiency over time for DPPC and DOPC with calcein or methylene blue in sucrose 

 

 
Figure 3. Release efficiency over time for both DPPC and DOPC with encapsulated calcein and methylene blue in sucrose buffers of varying 
concentrations. (A) Time-dependent release profile for DPPC vesicles with 500mM calcein encapsulated in sucrose. Maximum release was achieved 
for 0mM (orange) at 10.8% and was steady over time. (B) Time-dependent release profile DOPC vesicles with 500mM calcein encapsulated in sucrose. 
Maximum release is 20.8% for 0mM (orange). Larger range and spread of release efficiencies observed for DOPC due to increased membrane fluidity. 
(C) Time-dependent release profile for DPPC vesicles with 60mM methylene blue encapsulated in sucrose. Release increases non-linearly over time 
and plateaus for all concentrations to an average of 23.1%. (D) Time-dependent release profile for DOPC vesicles with 60mM methylene blue 
encapsulated in sucrose. Release increases non-linearly over time and reaches a plateau later in comparison to DPPC. There is a wider range of releases 
observed, ranging between 32.6% and 43.2% on average. 

Furthermore, in both cases, comparing the final 
release efficiencies, shown in figure 4, for both lipids in 
various concentrations of sucrose and KCl buffers, it 
was noted that the presence of ions in the buffer had 
minimal effect on the vesicle leakage. The final release 
had an inverse effect with sucrose concentration, but no 
clear trend was observed for KCl.  

The release profile of methylene blue was found to 
be extremely different from that of calcein for both 
DPPC and DOPC in all buffers.  

Comparing the release profiles of calcein and 
methylene blue using figure 3, sucrose concentration did 
not have much effect on the DPPC vesicle leakage as the 
same trend was observed for all concentrations and they 
all resulted in a final release between 19% and 26%. In 
contrast, for DOPC, the final release ranged between 
34% and 46%, which corresponded to the 0mM sucrose 
and 250mM sucrose buffers. However, there was also 
no clear trend between the sucrose concentration and 
final release observed in DOPC vesicles. Furthermore, 
there was a wider range of releases observed for DOPC 
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than DPPC, which was likely the result of the combined 
effect of increased membrane fluidity and permeability 
of methylene blue. 

The release profiles of both lipids in KCl was 
consequently explored to investigate whether the 
passive leakage of methylene blue could be reduced in 
an ionic buffer. The results can be seen in supplementary 
figure 3. For DPPC, the release ranged between 20% and 
36%, for 500mM KCl and 1000mM KCl respectively. 
For DOPC, the final release had a smaller range between 
37% and 39%, but this was not reflective of the 
maximum release that was recorded before the final 

time. More repeats of this condition are needed as large 
errors were noted in the releases. The release profile for 
both lipids were not improved using KCl and there is a 
very similar trend for both lipids encapsulating 
methylene blue in KCl and sucrose. Larger differences 
in the final releases were noted across the buffer 
concentrations for KCl than sucrose, but more 
investigation is needed to determine if there is a trend in 
the normalised release with varying KCl concentration. 
The results suggest that KCl does not counteract osmotic 
pressure as well as sucrose. 

Final release efficiency against concentration for DPPC and DOPC with calcein and methylene blue in all buffers 

 
Figure 4. Release efficiency against concentration for 500mM calcein and 60mM methylene blue in DPPC and DOPC vesicles. Both lipids have higher 
release efficiencies with encapsulated methylene blue due to its lower logP value. The difference between DPPC and DOPC is larger with methylene 
blue than with calcein. (A) Final release efficiency against concentration for DPPC and DOPC with encapsulated 500mM calcein in sucrose and KCl 
buffers of varying concentrations. At hypoosmotic conditions, DOPC has more leakage than DPPC. Both lipids in sucrose buffers have higher releases 
in hypoosmotic conditions. In hyperosmotic conditions, DPPC vesicles in KCl have the highest release and DPPC has an higher release efficiency than 
DOPC in hyperosmotic conditions.(B) Final release efficiency against concentration for both DPPC and DOPC with encapsulated 60mM methylene 
blue in sucrose and KCl buffers of varying concentrations. DOPC consistently has a higher release at all concentrations than DPPC due to increased 
membrane fluidity. At hypoosmotic conditions, both lipids in sucrose buffers have higher release efficiencies than those in KCl buffers of the same 
concentration. In hyperosmotic conditions, a higher release efficiency is observed for both lipids in KCl than in sucrose.  

From Figure 4, DPPC (blue), in hypoosmotic 
conditions (below 60mM for methylene blue), vesicles 
in sucrose buffers were found to have higher releases 
than those in KCl at the same molarity. However, in 
hyperosmotic conditions, vesicles in sucrose buffers 
were found to have smaller releases than those in KCl. 
In contrast, for DOPC, the trend is unclear as the release 
efficiencies between sucrose and KCl fluctuate. Under 
90mM and above 240mM, DOPC vesicles in sucrose 
have elevated releases when compared with those in 
KCl, but the observation is reversed between these 2 
points. 

The final release efficiencies for methylene blue 
were higher than those for calcein at all concentrations. 
This was explained by the difference in logP of 
methylene blue and calcein. As methylene blue has a 
lower logP value, it is able to diffuse through transient 
pores in the membrane more readily, thus becoming 
diluted in the external environment and fluorescing.  

There was a smaller effect of sucrose concentration 
on the methylene blue release than with calcein, as the 
range of release efficiencies at different concentrations 
is smaller. No significant trends in concentration and 
final release efficiency were recognised. The type of 

buffer had a more significant effect in methylene blue 
encapsulated vesicles than with calcein vesicles.  
 
Size 
The dynamic light scatterer (DLS) was used to measure 
vesicle stability in terms of vesicle size deviations 
between a measured sample and its corresponding 
reference vesicle size.  

The average size of vesicles in the liquid (DOPC) or 
gel (DPPC) phase, and in either type of buffer (KCl or 
sucrose) concentration, was compared to that of vesicles 
of the same phase, and in the same buffer (KCl or 
sucrose), but under isosmotic buffer concentration 
conditions. In the case of calcein encapsulated vesicles 
in sucrose, for instance, the osmometer data presented 
earlier suggests that the osmolarity of the calcein cargo 
is most closely balanced with the osmolarity of the 
350mM sucrose buffer. The reference vesicle size for 
calcein encapsulated DOPC (or DPPC) vesicles in 
sucrose, therefore, corresponds to that of the calcein 
encapsulated DOPC (or DPPC) vesicles in the 350mM 
sucrose buffer. For the case of calcein cargo in KCl, the 
osmolarity of the cargo is most closely balanced with the 
osmolarity of the 250mM KCl buffer. Similarly, for the 
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methylene blue cargo the isosmotic sucrose and KCl 
buffer concentrations, correspond to 60mM and 40mM, 
respectively. Supplementary Table 1 summarises these 
results. 

Further, these reference concentrations are important 
to determine the concentration range for hypo and 

hyperosmotic media, as established within our context. 
More specifically, buffer concentrations below the 
isosmotic concentration and above, refer to 
hypoosmotic and hyperosmotic environments, 
respectively.  

Effect of buffer concentration on average size for vesicles with encapsulated calcein and methylene blue 

 
Figure 5. (A) and (B) respectively refer to calcein and methylene blue encapsulated vesicles, respectively. The figures summarise the average vesicle 
size [nm] for each lipid phase (fluid - DOPC or gel - DPPC), in either type of buffer (KCl or sucrose). The reference average vesicle size for each lipid 
phase and type of buffer is indicated using a star symbol. This reference helps to distinguish the concentration range for hypo and hyperosmotic 
environments as related to the sucrose and KCl buffers. (A) suggests that DOPC in hypoosmotic media is more stable in sucrose, whereas in 
hyperosmotic media it is more stable in KCl. DPPC on the other hand, seems to be more stable in KCl in both hypo and hyperosmotic media. Overall, 
DOPC vesicles seems to be more stable than DPPC, and DPPC vesicles on average tend to be larger in size than DOPC vesicles. In the case of methylene 
blue cargo, (B) suggests that DOPC vesicle stability is unaffected with regards to buffer type and osmotic media. Since, no clear trend for whether 
DOPC in sucrose or DOPC in KCl, is more stable in hypo or hyperosmotic environments. The same may be observed for DPPC. Overall, DOPC vesicles 
seem to be more stable than DPPC vesicles in the ionic (KCl) buffer and once again, DPPC vesicles seem to be larger than DOPC vesicles.  

Figure 5A and 5B refer to calcein and methylene 
blue cargos, respectively. Both figures summarise the 
average vesicle size [nm] for each lipid phase (fluid - 
DOPC or gel - DPPC), in either type of buffer (KCl or 
sucrose). The reference average vesicle size for each 
lipid phase and type of buffer is indicated using a star 
symbol, which further helps to distinguish the 
concentration range for hypo and hyperosmotic 
environments as related to the sucrose and KCl buffers. 
Using Figure 5A to compare the change in vesicle size 
in the sucrose (blue) buffers alone, vesicles appear to be 
more stable under hypoosmotic media, as the (vertical) 
difference in size between vesicles with respect to the 
reference size is smaller than it is for vesicles in 
hyperosmotic media.  This may be explained by the fact 
that in hypoosmotic conditions there’s a net flow of 
water into the vesicles, to equalize the osmotic pressure 
difference between external and interior environments. 
This phenomenon causes the vesicles to swell but also 
potentially reduces the stress applied on the lipid 
bilayer, thereby enhancing stability. However, this is not 
always observed. In KCl (orange), DOPC vesicles seem 
to be more stable under hyperosmotic media. 
Supplementary Figure 4 compares vesicle sizes of 
DOPC in sucrose and KCl buffers, for the calcein cargo, 
and shows these trends clearly. Comparing DPPC in 
sucrose (green) and KCl (red), in both hypo and 
hyperosmotic media, the vesicles seem to be more stable 

in KCl. This result is also illustrated in Supplementary 
Figure 5. Furthermore, a comparison of DOPC (blue) 
and DPPC (green) in sucrose suggests that vesicles in 
the fluid phase (DOPC) are more stable in size than in 
the gel phase (DPPC) in both hypo and hyperosmotic 
media. This may be expected as lipids in the fluid phase 
are mobile compared to the gel phase and may therefore 
more easily adjust to accommodate changes in the 
environment. In the gel phase, lipids are more rigidly 
packed, so it’s possible that alterations in buffer 
conditions can have a more pronounced effect on their 
size.  Supplementary Figure 6 summarises this finding. 
Finally, as shown in Supplementary Figure 7, the result 
that DOPC (orange) is more stable than DPPC (red) 
seems to be true for the KCl buffer as well. In the case 
of the methylene blue cargo, similar comparisons can be 
made using Figure 5B. A comparison of  DOPC vesicles 
in sucrose (blue) or KCl (orange) does not seem to yield 
a clear trend regarding size variations in hypo or 
hyperosmotic media. Therefore, unlike in the case of the 
calcein cargo, the media does not seem to affect vesicle 
size in a particular way. This can be closely observed in 
Supplementary Figure 7, and may be explained by 
considering that methylene blue leaks out more than 
calcein, as suggested by the release assay studies. 
Hence, in the case of methylene blue, the osmotic 
pressure difference that drives the change in size 
decreases over time, so the net water movement is not 
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enough to make significant changes in the size of 
vesicles.  

Likewise, consideration of DPPC in sucrose (green) 
and DPPC in KCl (red) also does not seem to suggest a 
clear trend for changes in vesicle size in hypo or 
hyperosmotic environments. This comparison is also 
shown in Supplementary Figure 8. Furthermore, like in 
the case of the calcein cargo, a comparison of DOPC 
(blue) and DPPC (green) in sucrose suggests that 
vesicles in the fluid phase (DOPC) are more stable in 
size than in the gel phase (DPPC) in both hypo and 
hyperosmotic media. Supplementary Figure 9 illustrates 
this. Similarly, as shown in Supplementary Figure 10, 
the result that DOPC (orange) is more stable than DPPC 
(red) seems to be true for the KCl buffer as well.  

The PDI, or Polydispersity Index, is an important 
parameter to be considered in drug delivery 
applications, as it provides an indication of the quality 
of the average particle size measurement with respect to 
the size distribution17. A low PDI indicates a more 
uniform size distribution, which is desirable for ensuring 
reliable behaviour and performance of the delivery 
system17. Generally, for the purposes of drug delivery 
applications, a PDI value below 0.4 is an acceptable 
measure18. Correlograms for their respective PDI 
measurements followed the expected trend, indicating 
mono sized dispersion. An example of such a 
correlogram can be found in Supplementary Figure 12. 

 
 

Effect of buffer concentration on PDI for vesicles with encapsulated calcein and methylene blue 

 
Figure 6. (A) and (B) refer to calcein and methylene blue encapsulated vesicles, respectively. The plots summarise the average PDI values for each 
lipid phase (fluid - DOPC or gel - DPPC), in either type of buffer (KCl or sucrose). The reference average PDI for each lipid phase and type of buffer 
is indicated using a star symbol. This reference helps to distinguish the concentration range for hypo and hyperosmotic environments as related to the 
sucrose and KCl buffers. (A) suggests that overall PDI values for DOPC are smaller in KCl than they are in sucrose, regardless of hypo or hyperosmotic 
environment. The same trend is observed in the case of PDI values for DPPC. Overall, it may be observed that while the PDI values for the liquid phase 
(DOPC) change more than they do for the gel phase (DPPC) in both hypo and hyperosmotic media, the liquid phase line is always below the gel phase 
line, suggesting lower PDI values. This is the case in both KCl and sucrose buffers. (B) suggests that overall PDI values for DOPC are smaller in KCl 
than they are in sucrose. In the case of DPPC, the opposite is observed, most PDI values seem to be higher for KCl than sucrose. Comparing DOPC and 
DPPC in sucrose, and in KCl, there does not seem to be a clear trend with respect to how PDI changes in the hypo and hyperosmotic media. Overall, 
however it is observed that PDI values for the liquid phase are smaller than the gel phase.  

Key findings from Figure 6A, which relate to calcein 
encapsulated vesicles, suggest that overall, the PDI 
values for DOPC are smaller in KCl (orange) than they 
are in sucrose (blue), regardless of hypo or 
hyperosmotic environment. A similar trend is observed 
in the case of PDI values for DPPC. Furthermore, it may 
be observed that while the PDI values for the liquid 
phase (DOPC) fluctuate more than they do in the gel 
phase (DPPC), in both hypo and hyperosmotic media, 
PDI values for the liquid phase (blue and orange) are 
always smaller than in the gel phase. Overall, average 
PDI values for both lipids and in both buffers seem to be 
below or around the 0.4 reference PDI value mentioned 
previously. 

Figure 6B, as related to methylene blue encapsulated 
vesicles, suggest that overall PDI values for DOPC are 
smaller in KCl than they are in sucrose. However, the 
opposite is observed for DPPC. Comparing DOPC and 
DPPC in sucrose, and in KCl, there does not seem to be 
a clear trend with respect to how PDI changes with 

media. Once again, however it is observed that PDI 
values for the liquid phase are smaller than the gel phase. 
This can be expected as DOPC’s fluid nature enables it 
to withstand changes in osmotic pressure better, and 
therefore experience a smaller degree of deformation, 
which is reflected in a lower PD value.  

It is important to note that even thought he average 
PDI measurements for both lipids in all buffers did not 
significantly exceed the 0.4 reference value, it is 
advisable to repeat measurements due to large 
differences in results recorded.  
 
Conclusions 
Vesicle stability was analysed by considering the extent 
of passive leakage and the deviations in size. The release 
profiles showed that vesicles with methylene blue leak 
over time, which was not seen with encapsulated 
calcein. This suggests that DPPC and DOPC vesicles 
with encapsulated calcein in both sucrose and KCl 
buffers are more stable than those with methylene blue, 
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as the final release is lower, and the release is stable 
(unchanged) over time. Vesicles had lower leakages in 
sucrose than KCl for methylene blue. However, despite 
this observation, no clear trend was established between 
the methylene blue release and concentration for both 
sucrose and KCl with both lipids.  

Buffer concentration was found to have a higher 
effect in DOPC with calcein cargos, but no 
concentration dependence was observed for methylene 
blue with both lipids.  

It was also concluded that DPPC is better than 
DOPC for methylene blue encapsulation as less passive 
leakage is observed. For both calcein and methylene 
blue, DPPC, which has a higher degree of phospholipid 
saturation, and less membrane fluidity, would be the 
more suitable choice for drug delivery purposes. 

Key findings from the DLS explained the effect of 
lipid architecture and buffer on changes in vesicle size. 
For DOPC with encapsulated calcein, vesicles in 
hypoosmotic sucrose media and hyperosmotic KCl 
media were more stable. This distinction of buffer and 
environment was not clear for DOPC with methylene 
blue. Since size seemed to change in a similar manner in 
both types of media for both buffers.  

For DPPC vesicles with calcein, they were more 
stable in KCl regardless of osmolarity, whereas, for 
methylene blue, there was no notable trend regarding 
stability in different buffers and environments. In 
calcein, it seemed as though DOPC vesicles were 
always more stable than DPPC (since smaller deviations 
in vesicle size were observed). In methylene blue, 
DOPC vesicles were only more stable in KCl.  

However, despite DPPC vesicles having larger 
deviations between the reference size and final size with 
both encapsulated cargos in all buffers, this was the 
consequence of the membrane expanding to 
accommodate changes in osmotic stress.  

For drug delivery applications, factors such as drug 
retention time, maximim release at target site, vesicle 
circulation time, likelihood to aggregate and 
macrophage sensitivity are all relevant in selecting the 
appropriate delivery system. Compromises are therefore 
required to maximise the benefits of the selected system. 

Future experiments would focus on encapsulating 
both calcein and methylene blue in the same system to 
investigate vesicle stability under different types of 
buffer and concentrations. It is also imperative to 
explore their release mechanisms to see how the passive 
leakage changes when multiple drugs are combined, as 
dual drug delivery systems often involve the 
simultaneous or sequential release of two different 
drugs. It is also worth exploring the incorporation of 
PEG polymers and to make mixtures of lipids in various 
phases to increase vesicle stability. Other lipid 
architectures can also be explored, such as other 
saturated lipids with different carbon chain lengths 
should be investigated, to see if carbon chain length is 
another factor that influences vesicle stability.  

The next step would then be to apply this research to 
co-delivery systems of different drugs or treatments and 
compare the performance against existing dual drug 
delivery systems. 
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Abstract 
This paper examines the integration of waste heat from the refrigeration cycle of a Sainsbury’s store into the 

building heating, ventilation, and air conditioning (HVAC) system to investigate the potential of electricity consumption 
and carbon footprint reductions. Case studies were proposed with different configurational integration concepts: (0) no 
integration of the waste heat; (1) indirect integration into the ground; (2A) direct integration via a heat exchanger into the 
primary HVAC loop after the ground-source heat pump (GSHP); (2B) direct integration via a heat exchanger into the 
primary HVAC loop before the GSHP. The results then were compared to existing Sainsbury’s store performances based 
on available historical data. 

All cases considered reduced both the cost required to provide space heating, and the carbon dioxide emissions 
produced, compared to the base case. The most beneficial case was the indirect integration, case 1, whereby the 
refrigeration waste heat is directed into the ground near the supermarket, then extracted by the GSHP with an increased 
theoretical coefficient of performance (COP). This case however, due to the requirement of a GHSP, will be difficult to 
retrofit to existing stores. The primary integration cases 2A and 2B, do not suffer this drawback, and can readily be 
implemented into existing stores, including those operating with a gas boiler, providing a reduction in cost and emissions 
of the space heating systems. Our analysis also emphasises the value of government incentives to make renewable energy 
solutions and waste heat integration economically competitive to traditional technologies. 
 
Keywords: Waste Heat Integration, Refrigeration, Ground-source Heat Pump, Supermarket 
 

1. Introduction and Background 
Supermarkets in the United Kingdom consume 

3% of the country’s total electricity, corresponding to 1% 
of the greenhouse gas (GHG) emissions. Refrigeration 
systems within these supermarkets use between 30-60% 
of the electricity, thus meaning supermarket refrigeration 
systems use approximately 1% of total UK electricity 
(Tassou, et al., 2011). As the concerns of rising global 
temperatures and the connection to the burning of fossil 
fuels continue to rise, focus has been put onto reducing 
GHG emissions, hence the UK has a target to reduce 
emissions to 77% of 1990 levels by 2035 (Sunak MP, 
2023). As supermarkets, and notably their refrigeration 
systems, contribute significantly to these GHG 
emissions, reducing this energy consumption 
particularly, is an important area of focus to reach this 
target. One method to aid this is to integrate the 
refrigeration system into space heating, to utilise waste 
heat energy of condensing the refrigerant. This is 
particularly significant as the heating, ventilation, and air 
conditioning (HVAC) systems can use up to 35% of 
supermarkets electricity demand (Tassou & Ge, 2008). A 
study done in 2011 (Ge & Tassou, 2011) suggests that 
heat recovery from CO2 refrigeration systems can satisfy 
up to 40% of the space heating demand within 
supermarkets, thus reducing the overall energy 
requirements. Sainsbury's have gone on to surpass this 
estimate. Sainsbury’s Olney store fulfils all the space 
heating demand using an integrated refrigeration heating 
and cooling system (Sainsbury's, n.d.). However, this is a 
small store, typically associated with a higher proportion 
of refrigeration to space heating demand, meaning this 
integration is much easier to achieve. This does however 
prove the value and validity of integrating refrigeration 
and space heating systems. 

An additional way for supermarkets to reduce 
their greenhouse gas emissions from the HVAC systems 
is to implement a ground source heat pump (GSHP) to 
provide a portion of the space heating demand. The 
temperature of the ground remains steady all year round, 
between 7C and 12C in Britain (NERC, 2011). In 
wintertime when the surface temperature is below this, 
the GSHP can provide heating to the supermarket by 
pumping a working fluid into boreholes within the 
ground, which then extracts thermal energy. This is then 
utilised by the supermarket for space heating. 
Conversely, in summertime the GSHP can be used to 
meet the cooling demand as the working fluid deposits 
thermal energy into the ground (Monschauer, et al., 
2022), this is also essential to avoid excessive fluctuation 
of the ground temperature, and to ensure it remains 
within the expected temperature range (Dalpane, et al., 
2016). This summertime mode of operation has the added 
benefit that thermal storage of the excess heat can be 
extracted by the GSHP in winter improving the 
coefficient of performance (COP) (Maidment, 2013). 
The COP is a metric of performance where the rate of 
thermal heat delivered by the system (kWth) is compared 
to the electrical power input (kW) of the heat pump, as 
shown in equation 1. Typical values of the COP are 
between 3 and 5 (Maidment, 2013). 

 𝐶𝑂𝑃 =  ோ௔௧௘ ௢௙ ு௘௔௧ ஽௘௟௜௩௘௥௘ௗ (௞ௐ೟೓)
௉௢௪௘௥ ூ௡௣௨௧ (௞ௐ)

 (1) 
Ground-source heat pumps have been 

implemented into Sainsbury’s stores to aid net zero 
targets (Silverman, 2020), more specifically the one on 
Kings Lynn Hardwick Road. This store is located near the 
Norfolk coast, opened in late 2012 and has a sales area of 
72,196 m2. Instead of a gas boiler, as would be a 
conventional practise, the space heating is delivered by a 
GSHP. 
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Reaching net zero is not achieved with a 
singular solution. Many different approaches must be 
used in tandem, investigating the coupling of proven 
technologies, a GSHP with a refrigeration waste heat 
integration system is beneficial. The expectation is that 
the waste heat integration lowers electricity consumption 
of the GSHP, thus lowers GHG emissions to a greater 
extent than each solution separately. 

The analysis of this paper was conducted using 
energy consumption data collected from 1st January to 6th 
December 2022 within Sainsbury’ stores. This study 
analyses the performance of GSHP and refrigeration 
integration into the HVAC system in different 
configurations. The cost and carbon dioxide emissions of 
all cases is compared to each other, as well as to a typical 
store obtaining space heating from a gas boiler. 

2. Benchmarking Analysis 
 To gain an insight into the space heating demand 
of Sainsbury’s supermarkets, a comparison of the Kings 
Lynn store, GSHP-supported, was made to other stores 
operating with a conventional gas boiler, before 
considering refrigeration integration. The stores of 
comparison were Hayes, Lincoln, Wandsworth, and 
Washington. All have a comparable sales area but opened 
earlier than Kings Lynn, details are found in table 1. 
Table 1: Overview of Sainsbury’s stores analysed. 

Store Type Opened Sales area 
(m2) Location 

Kings 
Lynn GSHP 2012 72,196 Midlands 

Hayes 

GAS 

1993 76,129 London 
Lincoln 1991 75,678 Midlands 
Washin

gton 1977 69,963 North 
East 

Wands
worth 1987 73,369 London 

 To directly compare the energy consumption 
used by the different stores, the daily space heating 
energy consumption in 2022 (Edaily) was normalised by 
the store area (Astore), and heating degree day (HDD). The 
HDD calculated with equation 2, considers how much 
colder the external temperature is compared to the 
desired internal temperature of the store which is the 
baseline temperature of 15C (Met Office, 2023). The 
final equation to determine the normalised daily space 
heating energy demand (Enorm) is given by equation 3. 

𝐻𝐷𝐷 = 𝑇௕௔௦௘௟௜௡௘ −  𝑇ௗ௔௜௟௬ ௔௩௘ (2) 
 𝐸௡௢௥௠ =  

ா೏ೌ೔೗೤

஺ೞ೟೚ೝ೐∗ு஽஽
 (3) 

 In figures 1-5 all stores exhibit a positive 
correlation between Enorm and HDD. This is as expected, 
as it is typical to invest more in space heating when it is 
colder externally. Another point of significance would be 
that for all HDD values Enorm is much less for Kings Lynn 
than for the other stores. This is due to the higher 
efficiency associated with GSHPs compared to gas 
boilers (Calvillo, et al., 2023) meaning much less energy 
is required to achieve the same amount of heating. 
Washington appears to be anomalous to the other gas 
stores, requiring much more energy for heating for the 
same HDD, this could be due to its comparative age as Figure 5: Enorm against HDD for Washington 

Figure 4: Enorm against HDD for Wandsworth 

Figure 1: Enorm against HDD for Kings Lynn 

Figure 2: Enorm against HDD for Hayes 

Figure 3: Enorm against HDD for Lincoln 
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older buildings are associated with lower energy 
efficiencies (ONS, 2022). 

2.1 Carbon Dioxide Emission Comparison of GSHP 
and Gas Stores 

To provide further insight into the different 
modes of operation, the annual normalised carbon 
dioxide emissions (kgCO2 m-2 HDD-1 year-1) were 
compared. The total normalised energy consumption for 
space heating in 2022 was calculated, then multiplied by 
an emission factor, EF, of 0.19338 kgCO2 kWh-1 for 
GSHP and 0.2 kgCO2 kWh-1 for gas (GOV UK, 2022) to 
determine the kg of CO2 released by the energy 
consumption, shown by equation 4. 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑂ଶ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐸𝐹 ∗ ∑ 𝐸௡௢௥௠ (4) 
All gas stores produced much more CO2 than 

Kings Lynn on a normalised basis. The lowest store, 
Lincoln produced double the CO2 emissions of Kings 
Lynn, whereas Washington produced over four times as 
much CO2 as Kings Lynn, shown in figure 6. The lower 
emissions of Kings Lynn are because of the lower energy 
consumption of the GSHP due to the higher efficiency 
discussed previously, and the influence of the slightly 
lower emission factor of electricity. 

2.2 Economic Comparison of GSHP and Gas Stores 

Analogously, an economic comparison was 
conducted by multiplying the annual normalised energy 
consumption (kWh m-2 HDD-1 year-1) by the unit price of 
each energy type, as shown in equation 5. Electricity was 
taken at a representative price of £0.30 kWh-1 and gas at 
£0.08 kWh-1. 
 𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 ∗  ∑ 𝐸௡௢௥௠ (5) 

The cost of heating the gas stores was comparable or 
more economical than the GSHP store. Hayes and 
Lincoln were around half as costly, whilst Wandsworth 

and Washington were around 10% more costly than 
Kings Lynn, shown in figure 7. This is because despite 
the higher efficiency, the electricity required to operate 
the GSHP is 3.75 times more expensive than gas. The two 
stores more costly to heat than Kings Lynn were the two 
oldest, Washington and Wandsworth. This is unsurprising 
as the lower energy efficiency of older buildings mean 
they require more energy to achieve the same degree of 
heating and hence are more expensive to heat.  

 

Overall, regarding carbon dioxide emissions the 
GSHP store vastly outperforms the gas boiler stores, 
highlighting their relevance to meet net zero targets. 
Economically however, the cost of the GSHP store is less 
competitive. 

3. Refrigeration Integration Cases  
There are many ways in which the refrigeration 

system can be integrated into the HVAC system. 
Different cases, as well as the base case of no integration 
for comparison, are described. Several commonalities 
exist throughout all cases. The space heating duty 
required by the building is assumed constant at 500 kW 
as per the maximum load for the control system. 
Consequently, the building supply and return 
temperatures are set at 45C and 30C, respectively. 

The control volume for the GSHP heat pump is 
the primary heat pump loop (orange) and the GSHP 
extraction loop (purple) on all the schematics below. 

3.1 Base Case – No Integration of Refrigeration System 

In the base case, the building HVAC system is 
supported by the ground-source heat pump, only. The 
base case provides the basis to further comparison, the 
configuration is shown in figure 8. 

‘The use of heat pumps, namely Ground Source 
Heat Pumps (GSHPs), has increased significantly in 
recent decades worldwide due to their low carbon 
footprint and their ability to extract heat from the ground 
for building heating and cooling in different climatic 
typologies.’ (Xian Li, et al., 2023) 

3.2 Case 1 – Indirect Integration 

In case 1, shown in figure 9, the residue 
condensation heat from the refrigeration cycle is supplied 
into the ground. Here, as the temperature difference is 
reduced between the inlet and outlet of the heat pump 
system, the COP is expected to be higher, and thus the 
compressor work is expected to be reduced due to the 

Figure 7: Comparison of the normalised cost production from 
space heating in different stores 
APTION. 

Figure 6: Comparison of the normalised CO2 production from 
space heating in different stores 

Figure 8: Base case schematics (red: HVAC loop, orange: 
primary heat pump loop, purple: GSHP heat pump loop) 
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improved efficiency of the system. This is the current 
configuration of the Sainsbury’s store in Kings Lynn. 

3.3 Case 2A – Primary heat exchanger integration after 
GSHP 

Case 2A, shown in figure 10, integrates the 
waste heat into the primary HVAC loop after the GSHP, 
to directly reduce the heating demand supplied by the 
GSHP. 

The expected benefit of this configuration is the 
reduction in the workload of the heat pump compressor, 
with a small variation in the COP. 

3.4 Case 2B – Primary integration before GSHP 

Similarly, to case 2A, here the refrigeration 
cycle is integrated in the primary thermodynamic loop of 
the HVAC system. The difference is the order of 
reservoirs: refrigeration system before the GSHP, as 
shown in figure 11. 
 This configuration is expected to result in 
similar benefits as of case 2A. 

 

4. Integration Analysis Methods 
4.1 Refrigeration Waste Heat 

As measured telemetry data was not available 
for the refrigeration cycle a primary model of the system 
was developed in Aspen Plus, shown in figure 12. The 
refrigeration system was modelled as a subcritical R744 
(CO2) cycle using specified operating conditions in 
conjunction with thermophysical data from (NIST, 
2021). Only the intermediate temperature refrigeration 
system was included. The Aspen method selected was 
REFPROP. This was developed by NIST to provide 
thermodynamic and transport properties of industrially 
important refrigerants including CO2 (Aspen Plus, 2019). 
Several key assumptions were made, such as the 
isentropic efficiency of the compressor being 0.8 
(Rasmussen & Kurz, 2009). The development of the 
Aspen model ultimately revealed a condenser duty of 
280.00 kW, which is required to lower the inlet 
temperature of 92.23C (stream 7-in) to the outlet 
temperature of 0.55C (stream 8). The duty is the 
maximum amount of waste heat extractable for heating 
in the HVAC system, and the temperatures provide 
constraints to the integration cases. Streams 7-in and 7-
out are the inlet and outlet to the heat exchanger that is 
integrated into the HVAC system. HVAC-IN and HVAC-
OUT and the HVAC supply and return temperatures of 
30C and 45C. 

4.2 Compressor Workload and COP 

Due to the lack of historical data for the GSHP, 
all calculations were based on a theoretical approach with 
the guidance of engineers from the Sainsbury’s team. 

4.2.1 Base case 

As explained in section 3.1 the base case is the 
GSHP system without the integration of the refrigeration 
cycle. The theoretical COP for this case is found to be 
7.52 using equation 6 according to Carnot’s theorem 
(Sidebotham, 2022). 

 𝐶𝑂𝑃௧௛ = ்೓೚೟
்೓೚೟ି்೎೚೗೏

 (6) 
where Thot is the outlet temperature of the heat pump 
compressor, and Tcold is the ground temperature from 
where the heat is extracted. Thot is kept constant at 50C 
due to a 5C approach temperature difference with the 
return temperature to the building of 45C. The ground 
temperature is assumed to be 7C. With the heating duty 
assumed to be a constant 500 kW provided solely by the 
heat pump, 𝑄ு௏஺஼ = 𝑄ு௉ = 500.00. The work of the 
heat pump was calculated to be 66.53 kW by rearranging 
equation 7. 

Figure 9: Case 1 - real case schematics (red: HVAC loop, 
orange: primary heat pump loop, purple: GSHP heat pump loop, 
blue: refrigeration loop) 

Figure 10: Case 2A schematics (red: HVAC loop, orange: 
primary heat pump loop, purple: GSHP heat pump loop, blue: 
refrigeration loop) Figure 12: Aspen model created to determine refrigeration waste 

heat duty. 

Figure 11: Case 2B schematics (red: HVAC loop, orange: 
primary heat pump loop, purple: GSHP heat pump loop, blue: 
refrigeration loop) 
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 𝑄ு௉ = 𝑊 ∗ 𝐶𝑂𝑃 (7) 

4.2.3 Case 1 

 Case 1 is the current configuration of the 
Sainsbury’s store in Kings Lynn as defined in section 3.2. 
The heat from the refrigeration cycle is exerted into the 
ground to raise its temperature from 7C to an estimated 
15C. 
 The theoretical COP from equation 6 is 
calculated to be 9.23 by substituting in 50C as the outlet 
temperature of the compressor and 15C as the ground 
temperature. 
 From equation 7, the work of the heat pump is 
calculated to be 54.15 kW. 

4.2.3 Case 2 

In cases 2A and 2B, the refrigeration cycle is 
integrated into the primary thermodynamic cycle to 
extract heat for space heating in the HVAC system of the 
building. 

The surplus heat of the refrigeration cycle 
provides a maximum of 280.00 kW (section 4.1), which 
can only be fully extracted by subcooling the working 
fluid, CO2, to 0.55C. Thus, exploitation of the latent heat 
of 197.22 kJ kg-1 would be required at the dew point of 
9.98C at 45 bar (NIST, 2021), the operating pressure of 
the refrigeration cycle.  

If the maximum available heat of 280 kW were 
to be able to be extracted, the energy required by the 
GSHP would be 220 kW. This would correspond to a heat 
pump work of 29.27 kW, with a COPth of 7.52 unchanged 
from the base case. Unfortunately, this is unfeasible. 
4.2.3.1 Case 2A 
 The primary integration of the refrigeration 
cycle after the heat pump from the GSHP is case 2A, as 
previously described in section 3.3. The COP for the heat 
pump changes, as the outlet of the compressor cannot 
reach 50˚C like in previous cases. 
 As explained in the previous section, the 
configuration has a constraint due the temperatures of the 
HVAC system. This governs the amount of heat the 
refrigeration system can supply to the building. Due the 
second law of thermodynamics, no temperature 
crossover can occur to maintain a driving force and avoid 
a pinch point (Sidebotham, 2022). In the pinch point 
analysis, an approach temperature difference of 5C was 
used. Via iterative calculations on energy balances the 
minimum outlet temperature, that satisfies temperature 
crossover constraints, was found to be 48.68C. 
Therefore, using the fundamental heat transfer equation 
below (equation 8), the amount of waste heat integrated 
from the refrigeration cycle was found to be 44.04 kW. 
 𝑄 = 𝐹 ∗ 𝐶௣ ∗ ∆𝑇 (8) 
where Q stands for heat in kW, F is the flowrate of the 
working fluid in the refrigeration cycle modelled in 
Aspen, 3000 kg hr-1, Cp is the average heat capacity of 
CO2 over the range of 50 – 92C at 45 bar, (NIST, 2021), 
and ΔT is the temperature difference of the inlet and 
outlet streams for the refrigeration cycle loop from the 
heat exchanger connecting to the HVAC system. 

This vast difference from the ideal case is due to 
large disparity between sensible and latent heat, as the 

temperature is restricted to remain above the pinch point. 
It is, therefore, not possible to exploit the latent heat at 
the specified operating conditions. 

Thus, the heat pump needs to supply 𝑄ு௏஺஼ −
 𝑄௙௥௜௚ = 500.00 − 44.04 = 455.96 𝑘𝑊. The 
theoretical COP is improved slightly to 7.72 as Thot is 
lowered to 48.68C and Tcold remains at 7C. And thus, 
using equation 7, the work of the heat pump is 59.05 kW. 
4.2.3.2 Case 2B 
 In case 2B, the supply temperature from the 
building of 30C again, limits the outlet temperature of 
the CO2 refrigeration loop, here the refrigeration heat 
exchanger outlet temperature is 35C, which gives a 
maximum available heat to be 57.87 kW. The heat 
capacity here is estimated to be the average over the 
range of 35 – 92C, explicitly, 1,21 kJ kg-1 K-1. Thus, the 
remaining heat that the GSHP and its heat pump needs to 
provide is 𝑄ு௏஺஼ − 𝑄௙௥௜௚ = 500.00 − 57.87 =
442.13 𝑘𝑊. Since the COPth is 7.52, the work of the heat 
pump is 58.83 kW. 

5. Results and Discussion of Refrigeration 
Integration 
5.1 Results of Compressor Work and COP 

Overall, following the constraints for each case 
and the configurations, the base case requires a 
theoretical work of 66.6 kW, case 1 requires 54.2 kW, 
whilst with constraints, case 2A requires 60.9 kW and 2B 
58.8 kW, as summarised in table 2. Case 1 leads the 
largest reduction in compressor work, 18.6% less than the 
base case, whilst case 2 configurations lead to a reduction 
of around 10%. Case 1 is also most efficient with a COP 
of 9.23. 
Table 2: Summary of the theoretical heat pump work 
requirements for all cases 

 Base 1 2A 2B 

QHVAC (kW) 500 500 500 500 

Qfridge (kW) - - 42.7 57.9 

QGSHP (kW) 500 500 457 442 

COPGSHP 7.52 9.23 7.52 7.52 
WGSHP (kW) 66.6 54.2 60.9 58.8 
Wtotal Saving (%) - 18.6 8.54 11.6 

5.2 Discussion of Refrigeration Integration 

5.2.1 Effect on Heat Pump Coefficient of Performance 
and Compressor Work 

Shown in table 2, the integration of the 
refrigeration cycle causes a reduction in compressor 
work in all cases, compared to the base case. 

In case 1, the reduction in compressor work is 
due to an increase in the compressor efficiency (COP) 
thanks to the more favourable operating conditions of the 
heat pump. By utilising the heat from the refrigeration 
cycle, the temperature of the ground is raised. Thus, the 
load of the heat pump is lowered by reducing the 
temperature difference between the reservoirs of the heat 
pump, and therefore easing the heat transfer from the cold 
to the hot reservoir. 
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For both scenarios of case 2, the coefficient of 
performance is unchanged or deviates only slightly from 
the base case. The reduction in compressor work is due 
to the integration of the refrigeration cycle in the primary 
loop. Thus, there is a reduction in the amount of heat 
required from the ground by the heat pump, 
consequently, the amount of work that the compressor 
must execute. 

Figure 13 shows all cases compared, relative to 
each other. As demonstrated, case 1 operates at the 
highest compressor efficiency, whilst all other cases 
operate at only around 81% of the efficiency of case 1. 
Compared to the base case, case 2B operates at the same 
efficiency, whilst case 2A introduces a 3% increase, with 
case 1 leading to a 23% increase in compressor 
efficiency. 

Large-scale R717 heat pumps operate in a range 
of 0.50 – 13.00 MW (Aguilera, et al., 2022), whilst the 
heat pumps discussed in this study operate in the range of 
54.1 – 66.6 kW. Yet, as the failure of the compressor is 
the costliest in the operation of a heat pump (Madani & 
Roccatello, 2014), it is sensible to mention that the 
upscaling of such cases for larger stores should be 
mindful of the compressor load. An increase of 23 % in 
compressor duty of the base compared to case 1 can 
reduce the lifetime of the compressor, and thus cause 
undesirable costs, whilst also causing degradations over 
the expected performance. From this perspective, case 1, 
the current structure of the Kings Lynn store, is the most 
desirable configuration. 

5.2. Carbon Dioxide Emission Comparison 

As expected, when refrigeration integration is 
implemented, the compressor work of the GSHP is 
reduced, and the normalised CO2 production is reduced 
by the same amount, as shown in figure 14. The Kings 

Lynn case, case 1, previously produced just 30% the 
carbon dioxide emissions compared to the average gas 
store on a normalised basis.  The base case produces 37% 
of the emissions of the averaged gas stores, whilst cases 
2A and 2B produce 33%. This demonstrates that 

refrigeration integration is valuable to reducing the 
carbon dioxide emissions of a GSHP as all cases lowered 
the emissions compared to the base case. 

5.3. Economic Comparison 

 Similarly, to the carbon dioxide emissions, as 
the compressor work is reduced with each case of 
refrigeration integration the normalised cost of space 
heating also decreases to the same extent compared to the 
base case, shown in figure 15.   

The base case costs 36% more than an average 
gas store to provide space heating on a normalised basis. 
This decreases, yet remains more than the average gas 
stores by 11% for case 1, 21% for case 2A and 20% for 
case 2B. Despite the decrease in cost, all cases of the 
GSHP and refrigeration integration are still more costly 
to heat than the average gas store. 

5.3.1 Renewable Heat Incentive (RHI) 

The non-domestic renewable heat incentive 
(RHI) is a governmental initiative to motivate businesses, 
public sector, and non-profit organisations to reduce 
electricity consumption supplied from the grid. This 
supports the transformation of the UK towards net zero 
targets (UK Gov, n.d.).  

The eligibility criteria for the RHI are listed in 
table 3, which are all met by the configurations discussed 
in this study. 
Table 3: Summary of the eligibility criteria for the non-domestic 
RHI (as of 2023/24) 

 Required Acquired 
Capacity 100 kWth < yes 
COP 2.90 < yes 
SPF 2.50 < yes 

The incentive can be claimed for only ‘naturally 
occurring energy’ and ‘must not be designed to provide 
cooling or to use heat which has been expelled from a 
building or from a process which generates heat’ 
(Ofgem, 2022). According to section 8.13 of the 
governmental specifications, if the amount drawn from 
the ground is measurable for simultaneous operations, the 
natural heat drawn from the ground is still eligible for 
incentive claim. Hence all configurations are eligible to a 
certain amount. As summarised in table 4, the amount of 
incentive for the cases varies, slightly. The highest 

Figure 15: Effect of refrigeration integration cases on cost of 
Kings Lynn space heating 

Figure 13: Relative theoretical coefficient of performance 
against relative compressor duty 

Figure 14: Effect of refrigeration integration on CO2 
production from the Kings Lynn space heating. 
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amount can be claimed via the base case and case 1, 
followed by case 2A, and lastly case 2B. Case 2A is a 3% 
increase compared to the smallest, case 2B, while the 
base and case 1 are an 13% increase. 
Table 4: Summary of RHI for all cases 

 Base 1 2A 2B 
QHP (kW) 500 500 457 442 
RHI (103£) 19.8 19.8 18.1 17.5 

The GSHP in Kings Lynn became accredited 
when the store opened in 2012, as such all eligible heat 
output is at a tariff rate of £0.0452 kWh-1 (Ofgem, 2022). 
The eligible heat output was assumed to be the total heat 
output, QHP, of the GSHP as a best-case estimate. To 
determine the effective cost of running the GSHP with 
the RHI scheme, the annual savings achievable are 
determined by multiplying the eligible heat output by the 
tariff rate. This is subtracted from the annual electricity 
cost for the GSHP, then normalised as before. 

As shown by figure 16 below, the RHI leads to 
a reduction in energy cost for all cases. As the incentive 
is dependent on GSHP heat output, the cases where this 
is larger, the base case and case 1, achieve greater 
savings.  

One note of significance is that with the RHI 
schemes, all cases of integration become more cost 
effective or highly competitive to the average comparable 
gas boiler store. With the RHI scheme, the base case 
reduces to 19% more costly than the average gas store on 
a normalised basis, but case 1 now costs 6% less, case 2A 
5% more, and case 2B 6% more.  

5.3.2 Carbon Emissions Tax 

It is likely for the UK to introduce a scheme 
such as shadow carbon pricing, whereby CO2 emissions 
are taxed (Ferrovial, n.d.), thus an analysis considering 
this was conducted. An expected price of £100 per tonne 
of CO2 emitted was applied to the total annual costs. This 
was applied separately and in conjunction with the 
renewable heat incentive and normalised, as before. 

All integration cases are cost competitive to the 
average gas store, only the base case remains more costly. 
Due to the greater carbon dioxide emissions, as discussed 
in section 2.1, gas stores would be impacted to a greater 
extent by a carbon tax. Table 5 summarises the heating 
costs of the taxed integrated cases with and without the 
RHI to the gas stores. 

Table 5 also highlights the importance of 
government incentives to making renewable energy 

solutions cost competitive to traditional technologies. 
Only with these incentives do the integration cases 
become cost competitive to the gas stores. This is 
noteworthy as it is unlikely that businesses will move 
towards renewable solutions to lower their GHG 
emissions unless it financially benefits them. 
Table 5: Summary of the heating costs of the taxed integrated 
cases with and without the RHI to the gas stores 

 Base 1 2A 2B 
Cost vs. Average Gas 
Store (Carbon Tax) +17% -10% -2% -2% 

Cost vs. Average Gas 
Store (Carbon Tax 

and RHI) 
+3% -23% -14% -14% 

6. Conclusions 
It was found that all feasible cases of 

refrigeration integration led to a reduction in the 
electricity demand required to provide space heating in a 
large UK Sainsbury’s store. This reduced electricity 
demand leads to a decrease of the carbon dioxide 
emissions and cost of operation by the same percentage. 
The integration cases considered include: (1) indirect 
integration whereby heat is deposited into the ground to 
enhance compressor efficiency in the GSHP; (2A,B) 
direct integration of the refrigeration system into the 
building HVAC system via a heat exchanger to lower the 
heating demand of the GSHP. Case 1 was found to reduce 
the GSHP electricity consumption the most, by 19%. 

Comparisons of the integration cases were made 
to the base case of a GSHP, and stores providing space 
heating with a typical gas boiler. It was shown that when 
including the savings achievable with the Renewable 
Heat Incentive scheme of the UK government, all GSHP 
refrigeration integration cases became cost competitive 
to a traditional gas store. This was not quite the case 
without this scheme applied, highlighting the importance 
of governmental schemes to motivate businesses to 
achieve net zero emission targets. The integration cases 
become even more economically competitive to gas 
stores, when considering the RHI scheme and a carbon 
tax, which the UK government will likely introduce in 
the near future. With both these government incentives 
applied, the best-case refrigeration integration, case 1, 
costs 23% less than the average gas store to provide the 
same amount of normalised heating. 

According to existing literature, the reduction of 
electricity consumption is expected by the integration of 
waste heat. In Canada in a similar study to this (Reddick, 
et al., 2020), thermal demands of the building were linked 
to potential heat sources coupled with a pinch analysis. 
The conclusion of said paper was, that the combination 
of greywater and heat pumping reduces the electricity 
costs by 53%. Furthermore, additional solar thermal 
collectors can reduce the consumption up to 64%. In 
another study (Dhole & Linnhoff, 1993), the Total Site 
Heat Integration method was used with mathematical 
optimisation, and an extended pinch analysis. In the 
paper waste heat and renewable energies were integrated 
into an industrial site and were shown to reduce CO2 
emissions. 

The study was conducted by guidance from the 
Sainsbury’s engineering team on a theoretical basis due 

Figure 16: Effect of refrigeration integration cases on cost of 
running the Kings Lynn space heating with (bold) and without 
(shadow) the renewable heat incentive. 
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to the lack of historical data for the refrigeration and 
GSHP systems. Therefore, the confidence of the findings 
is limited. Typical COP values range between 3 and 5 
(Maidment, 2013), whilst the theoretical values in this 
paper range between 7 and 9, and hence the benefits 
drawn are likely overestimations. Yet, previous works 
and research support that integration of waste heat is 
beneficial for both the reduction of electricity 
consumption and the carbon emissions of the system, as 
found in this project. Further studying of the topic is 
highly suggested as explained in sections 7.2 and 7.3 
below, both from a large and small-scale perspective. 
Pressing matters in the net zero transition of the UK 
demand an urgent action in the energy strategy. 

6.1 Retrofitting Refrigeration Integration Cases 

There is much difficultly associated with 
retrofitting ground source heat pumps due to the 
requirement of vast amounts of space or underground 
boreholes to extract the energy held within the ground 
(UK Gov, 2022). This presents a hinderance to case 1, as 
it cannot be easily implemented in existing stores without 
a GSHP. Furthermore, retrofitted GSHPs are associated 
with lower efficiencies (Breembroek, 2002). Hence the 
reductions in compressor work and improvement of COP 
will occur but less impactfully than in case 1. 

The variations of case 2A and B however, could 
potentially be installed to existing gas stores or stores 
with other heating configurations much more easily with 
heat exchangers. This reduces the demand of the gas 
boiler, by supplying a portion of the space heating 
demand by primary refrigeration integration. This 
reduces the amount of gas required, and henceforth the 
associated carbon dioxide emissions and the cost. 

The limitations of retrofitting suggest that case 
2A should be implemented to existing stores in the short 
term to quickly reduce costs and emissions. However, in 
the long term and for all new buildings the configuration 
of case 1 should be installed or retrofitted. 

7. Outlook 
7.1 Analysis Limitations 

Due to the brevity of the project and the 
assumptions made, the model built for the system has 
limitations. Firstly, the assumption of constant building 
heating demand can be improved by introducing diurnal 
and seasonal changes. Coupled with sensitivity, 
consumer and error analysis, an extended model can be 
built based on time-varying demand. 

Additionally, time-varying pricing can be 
introduced to reflect industrial economy mechanisms. 
Capital costs associated with the integration of the cases 
should also be considered. 

7.2 Alternatives and Whole-System Approach 

Many studies have been conducted on the topic 
of thermal storage. In a study of (Ohannessian & 
Sawalha, 2014), similarly, cases of refrigeration were 
proposed and modelled. It is discussed that a GSHP 
operating as a brine thermal storage unit has a higher 
COP than a GSHP operating as a connecting heat pump. 
Another suggestion in the same paper is that a 

supermarket system with heat recovery performs 
significantly more efficiently than the ones relying solely 
on the GSHP. In summary, supermarkets with GSHP can 
further reduce their energy consumption by changes in 
the system. Furthermore, with thermal storage 
alternatives, the dependency of the system on grid supply 
can reduce the need to stabilise with fossil fuels or 
nuclear energy. This strategy is called load shifting from 
the grid to the respective consuming units. Current 
thermal storage alternatives include hydrogen boilers, 
hybrid heat pumps with natural gas boilers (Hoseinpoori, 
et al., 2023), electrochemical batteries (Ghilardi, et al., 
2023). 

Furthermore, other alternatives can be further 
investigated such as thermal storage (Li, et al., 2021) and 
a potential hydrogen technology (Aunedi, et al., 2023). A 
creation of an energy mix was found (Hoseinpoori, et al., 
2023) to be a great solution to increase independency 
from uncontrollable factors and to increase energy 
security for any system. 

In a more detailed model, system flexibility can 
also be investigated, which is ‘the ability of the system to 
reliably and cost-effectively manage the variability and 
uncertainty of demand and supply across all relevant 
timescales’ (IEA, 2018). Thus, from an energy security 
perspective by analysing system flexibility, the pressing 
demands of net zero targets can be aided to be met 
through a smoother transition period. 

7.3 Store-Specific Recommendations 

Above, the potential of further work on large-
scale implementation scenarios were employed on a 
systematic aspect. In the case of small-scale 
opportunities, other configurations can be further 
explored. Different working fluid performances can also 
be further studied like in the work of (Radulovic, et al., 
2023) on refrigeration cycle fluids, where similarly to 
this study, the COP and compression work is analysed. 

As another example, further improvement can 
be made by modelling the ground temperature change 
caused by the heat extracted from the refrigeration cycle. 
Another potential is to implement control systems on 
built models to see if the physical implementation of said 
cases are feasible. 

As discussed here, a healthy amount of potential 
lies in the study of heat integration. It is encouraged for 
this topic to be further examined, as from small-scale 
perspective localised costs can be reduced, and the 
energy security of a store can be established with less 
dependency on district energy supplies. On a large scale, 
by tools discussed above, a smoother systematic 
transition can be established to support the net zero 
targets by 2050 for the UK. 

7.4 Proposed Third Case of Refrigeration Integration 

As discussed in sections 4.2.3.1 and 4.2.3.2, the 
full duty available from the refrigeration system is not 
exploitable via primary integration with the HVAC 
system due to second law of thermodynamic constraints 
preventing temperature crossover. As such in cases 2A 
and 2B only a fraction of available refrigeration waste 
heat is integrated into the HVAC system. A proposed 
third integration case should be developed and 
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investigated as an additional mode of operation, to 
exploit much more of the available waste heat.  
 In case 3, the case 2 configuration is altered with 
a heat pump instead of heat exchanger, shown in figure 
17. This configuration is expected to overcome 
temperature crossover via an additional working fluid, 
and thus increase the amount of heat extracted from the 
refrigeration cycle with a trade-off in the workload of the 
additional heat pump compressor. The drawback is the 
lack of efficiency during the summertime period. 
Furthermore, the work required for this heat pump 
operation is unknown and thus the overall benefit is also 
unknown. 

A quantitative benefit of the configuration is 
that with a double heat pump system, the amount of heat 
extracted from the refrigeration cycle can be controlled 
based on demand or supply. By providing control over a 
range of independent heat sources, the dependency of the 
system on a particular heat source reduces. Therefore, the 
system becomes more independent from factors like 
weather conditions or electricity price variations. 
However, the savings achievable with the renewable heat 
incentive will be lowered, as any heat extracted with this 
second heat pump is not naturally occurring and is 
ineligible for the RHI. 

7.5 Guidance for Sainsbury’s 

 It is strongly recommended for Sainsbury’s to 
collect detailed GSHP and refrigeration data from 
existing stores, to increase the confidence of further 
analysis. 
 As argued in section 2.2, older buildings have a 
lower energy efficiency. Not relying on national 
infrastructure plans and expecting the same efficiency for 
current stores, it is highly recommended to use the Total 
site Heat Integration method referenced above in section 
6, to utilize all available heat sources and heat sinks. 
 It is clear that the GSHP-supported store in 
Kings Lynn performs significantly better compared to the 
averaged gas boiler stores with the available government 
schemes. Therefore, a GSHP with refrigeration 
integration can be an appropriate solution for the energy 
strategy of Sainsbury’s stores. It was found by (Staffell, 
et al., 2012) that the capital costs for ground source heat 
pumps are estimated to be in the region of £2,500 – 
£5,000. Installation costs are estimated to be £500 – £800 
per kW of operation. This means for a heat pump of 54.15 

kW the overall costs would be assumed to be £48,320 for 
the worst-case scenario. Coupled with the Boiler 
Upgrade Scheme, another governmental incentive to 
support homes and non-domestic buildings (Ofgem, 
n.d.), a support of £7,500 can be claimed, reducing the 
costs to £41,320. This amount is comparable to the 
electricity consumption reduction for Kings Lynn 
compared to older buildings, as was discussed and shown 
in section 2.2 figure 7. 
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Abstract: To remain on course to meet the 1.5°C climate goal, industries will be required to substantially decrease their 
carbon emissions. Currently, only 0.7% of hydrogen is produced from low-carbon sources. To achieve these targets, 
technologies such as blue and green hydrogen must be a part of the decarbonisation strategies. A systematic review of the 
literature on these technologies has been carried and costing data have been collected for steam methane reforming with 
and without carbon capture, alkaline electrolysers (AWE), proton exchange membrane electrolysers (PEM), and solid 
oxide electrolyser cells (SOEC). These data are used in a model to harmonise the levelised costs of each technology, and 
project the costs of AWE and PEM electrolysers in 2030. The harmonisation outcome highlights the importance of 
standardisation, and detailed and uniform cost reporting in literature. A sensitivity analysis on the blue hydrogen 
harmonisation identified the natural gas cost and carbon taxation to be the factors with the greatest overall impact on the 
LCOH with 21.24% and 7.82% deviation from the base LCOH. A Projection based on the learning rate approach indicate 
an LCOH reduction of 24% and 36% for AWE and PEM respectively, highlighting the potential of PEM to become an 
attractive investment option, although challenges associated material could limit cost reductions to $4.45/kg H2. 
 

Introduction 
In order to mitigate further climate change and remain 
on course to limit the increase in global temperature 
to 1.5°C, the Intergovernmental Panel on Climate 
Change (IPCC) stated that immediate, rapid, and deep 
reductions in global greenhouse gas (GHG) emissions 
are required in all sectors this decade, with global net 
zero CO2 emissions reached in the early 2050s1. 
Given that approximately 58% of net global GHG 
emissions in 2019 came from the energy sector and 
industry1, it is imperative that society decarbonises 
these sectors by transitioning away from energy 
derived from fossil fuels.  
 
Hydrogen, produced with minimal GHG emissions or 
from renewable energy sources, is one possible 
solution for making this transition, as it has multiple 
potential uses, especially in the energy, industrial and 
transportation sectors. In 2022, almost 95Mt of 
hydrogen was produced worldwide, however low 
emission production only accounted for 0.7% of the 
total, with the rest produced from natural gas without 
carbon capture, utilisation and storage, unabated coal, 
and naphtha reforming2. Production via steam 
methane reforming typically emits around 9kg of CO2 
per kg of H2 produced2 and production via coal 
gasification emits around 20kg of CO2 per kg of H2 
produced50, therefore supply through low carbon 
emissions technology is required for major 
decarbonisation. Blue and green hydrogen have been 
widely investigated as potential solutions. Blue 
hydrogen consists of retrofitting grey hydrogen 
technologies, predominantly steam methane 
reforming (SMR), with carbon capture and storage 
(SMR+CCS). It is known as ‘low-carbon hydrogen’. 
Green hydrogen on the other hand, uses water 
electrolysis systems powered by renewable energy to 
generate an electrochemical reaction splitting water 
molecules into oxygen and hydrogen, and therefore 
producing zero GHG emissions. Typical technologies 
consist of Alkaline Water Electrolysers (AWE), 
Proton Exchange Membranes (PEM), and Solid Oxide 
Electrolyser Cells (SOEC)3. 
 

This study systematically reviews the existing 
academic literature on green and blue hydrogen 
production technologies to understand their present 
status and associated challenges and identify areas of 
development for large-scale deployment of low 
emissions hydrogen. It intends to provide useful 
insights that will direct future research towards 
addressing these limitations. The research places a 
particular focus on costing information to assess the 
competitiveness of low-carbon hydrogen production. 
Current literature reviews predominantly focus on 
technical aspects with little critical analysis of 
literature costs27, 44, 45, 101. Consequently, an economic 
model aimed at reporting and harmonising the 
literature data is developed, and the projection of each 
technology's future costs using predicted input 
parameters is produced. For the first time in this 
subject area to the authors' knowledge, levelised costs 
of hydrogen production (LCOH) are harmonised to 
facilitate direct comparisons across different papers. 
This aims to address the oversight in current literature 
where the LCOHs are compared across papers without 
considering the impact of location-specific factors 
such as electricity and natural gas prices, capacity 
factor, and carbon tax, all of which have significant 
contributions to the LCOH.  
 
Methods 

i. Systematic Review 
A systematic research strategy was created and 
implemented to identify the relevant cost-focused 
literature on hydrogen production. Search terms were 
produced and refined through multiple iterations, with 
each set targeting a specific aspect of the hydrogen 
industry. These topics include green hydrogen 
production, blue hydrogen production, hydrogen 
storage and transport, hydrogen applications in 
industry and hydrogen for power generation. The 
subsequent step involved screening the abstracts using 
a questionnaire and categorising them based on their 
relevance as follow: 
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§ High Relevance: The abstract provided direct 
information about the technology and 
economics of (topic)  

§ Medium Relevance: The abstract provided 
indirect information about the technology and 
economics of (topic)  

§ Low Relevance: The abstract provides 
supporting material that might be utilised to 
contextualise (topic)  

 
Papers categorised as highly relevant were reviewed 
in depth, and summary paragraphs about the 
technologies and costs were produced for each study 
using a newly developed and more focused 
questionnaire. Additionally, references within the 
papers and grey literature were consulted to validate 
assumptions and provide techno-economic 
background. The literature data for each technology 
type was then reported and analysed using the 
economic model below. The search terms and abstract 
screening questionnaire are provided in the 
supplementary information SI 1. This serves as a 
comprehensive resource detailing the methodology of 
the systematic review. 
 

ii. Economic Analysis 
The papers reviewed utilised the Levelized Cost of 
Hydrogen (LCOH) or Net Present Value (NPV) as 
economic metrics for hydrogen production. 
Nonetheless, the majority of the literature 
predominantly utilised the LCOH, with only a few 
articles using NPV. Accordingly, LCOH was selected 
as an economic metric to comprehensively capture the 
costs associated with each technology across their 
lifetime. This avoids uncertainties associated with 
hydrogen selling prices and potential co-produced 
product. 

 
Cost Escalation 

An escalation model based on the Chemical 
Engineering Plant Cost Index (CEPCI)4 was 
developed to compare historically calculated levelized 
costs. The LCOH values were converted into USD 
using the annualised mean exchange rates sourced 
from the International Monetary Fund5. This 
conversion was applied from the initial currency used 
for the year of costing presented or the year of 
publication of the study. The values are subsequently 
escalated from the base year to the comparison year, 
selected as 2022, using equation (1):  
 

!"#$	(2022) = 	!"#$	(!"#$	+,-.) × !01!2(2022)
!01!2(3-#,	+,-.)			(1) 

 
Harmonisation 

The harmonisation of LCOH values across different 
technologies aims to standardise the costs under 
uniform techno-economic conditions. In the analysis, 
intrinsic values, such as specific capital costs 
(CAPEX), operational costs (OPEX), and efficiency, 
remain identical to the values reported in their 

respective papers, while extrinsic parameters are 
modified and made consistent across all papers for 
each technology and energy source. The harmonised 
parameters include the discount rate, cost of electricity 
or natural gas, and the operating hours. 

 
Harmonisation: Blue Hydrogen 

The method, initially presented by Hazrat et al.27, has 
been adapted and applied to evaluate the cost of blue 
hydrogen production, as shown in equation (2). The 
LCOH is defined as the total lifetime cost normalised 
by the total hydrogen production28. Expenditures 
encompass the total capital cost !"#$%  and the 
annual operating costs &#$%!""#!$ , divided into 
variable and fixed costs.  
 

%&'( =		&+,-. × &01 + ',-.!""#!$3%!̇ × 8760 × 	&1
													(2) 

 
Here, '%!represents the hourly hydrogen production 
rate and CF denotes the capacity factor, indicating the 
percentage of operating hours in a year.  
The capital cost is annualized using the capital 
recovery factor (CRF), calculated by the plant lifetime 
( and the discount rate )28, 29, 30: 
 

&01 = <	(1 + <)"
(1 + <)" − 1																													(3) 

 
The fixed operating cost is determined by the annual 
operating and maintenance (O&M) costs, while the 
variable cost is defined as the electricity, natural gas 
costs and carbon tax costs. 
 

',-.!""#!$ =	',-.&'()*, +	',-.,!-'!.$)							(4) 
 

',-.,!-'!.$) = A-01!̇ × *+,01! + -)$̇ × &)$
+ -23̇ × &23B × 8760 × &01	 

 
$&'!̇   denotes the rate of carbon emissions in ton/hr, 
$($̇  and $)*̇  the rate of electricity and natural gas 
consumption kWh/hr and kg/hr, and *+,&'!, !($, and 
!)*  represent their respective costs in $/ton CO2, 
$/kWh, and $/kg.  

 
Harmonisation: Green Hydrogen 

Similarly, the method presented by Scheepers et al.28, 
has been modified to calculate the cost of green 
hydrogen production through water electrolysis. 
Unlike blue hydrogen, the costs utilised are power 
specific. The plant’s power-specific capital cost 
includes the initial investment cost, !"#$%+",, of the 
stack, and balance-of-plant (BOP) associated with its 
procurement and installation, as well as the total stack 
replacement costs, REPEX, over its lifetime. 
 

&+,-. = &+,-.'", + 0-,-.																		(6) 
 
The replacement cost is determined by the number of 
replacements required throughout the plant's lifetime, 
and the stack unit cost, !"#$%-.!/0 , as defined by 

(5) 
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Equation (7), with .*($  denoting the electrolyser 
lifetime in hours. 

0-,-. = &+,-.45!67 ×	
D × 8760 × &1

%E)$
										(7) 

 
The operating cost !"#$!""#!$ is determined by the 
power-specific O&M costs, while the variable costs is 
restricted to electricity only. Notably, water costs are 
excluded from the LCOH for two reasons: several 
papers lack clear information about water costs, and 
literature indicates that water typically accounts for 
only 1-2% of the LCOH31, 32, 33 making its impact 
negligible on the final result. Combining all the 
previously defined parameters, the LCOH is 
ultimately calculated using Equation (8), 
incorporating the efficiency of the plant efficiency of 
the plant /  in percentage, cost of electricity !($  in 
$/kWh, and lower heating value of hydrogen .01%! 
in kWh/kg. 
 
%&'( =	%(F%!G H&+,-. × &01 + ',-.!""#!$8760 × 	&1 + &)$I				 
  

Cost Projection 
The learning curve approach is employed to assess the 
projection of the electrolyser capital expenditure. This 
technique outlines the process of learning by doing, 
which indicates innovation by production that is 
sparked by the competition between companies7. The 
learning curve refers to the reduction in production 
cost as a result of accumulated knowledge. It 
quantifies the relationship between the CAPEX of a 
technology and the cumulative capacity as follow34: 

&+,-.	(J8) = &+,-.	(J9) × K
,(J8)
,(J9)

L
:.
										(9) 

 
!"#$%	(41)  and !"#$%	(42)  represent the capital 
cost in year 1 and 2 respectively, #	(41) and #	(42) the 
cumulative capacity of the electrolyser in year 1 and 2 
respectively, and  6, the learning parameter. 
The learning parameter can be derived from the 
learning rate, which denotes the proportion of cost 
reduction per electrolyser unit for every doubling of 
capacity. 

%0 = 1 − 2:.																																		(10) 
 
Using equation (9), the projected CAPEX values are 
assessed and integrated into the LCOH equations. 
 
Results & Discussion 

I. Demographics Of The Systematic Review 
The papers were initially evaluated and categorised 
into the primary focus topics. In the systematic 
review, 407 papers were evaluated, with 103 
classified as highly relevant. Among these, 38 papers 
focused on green hydrogen, 30 on blue hydrogen, 
while 35 papers covered the remaining topics. Due to 
time limitations, this study's scope was narrowed 
down to blue and green hydrogen exclusively. Out of 
these papers, 30 were not particular to a single 
technology, 20 of which originated from the green 

hydrogen search terms. In this subset, 16 papers 
discussed AWE, 14 focused on PEM, 12 on SOEC, 
and 1 on Anion Exchange Membrane (AEM). The 
uneven focus observed can be attributed to the market 
deployment status of electrolyser technologies. AWE, 
being the most commercially established production 
method7, is more prevalent in the literature, while less 
commercialised technologies currently lack available 
data. For instance, AEM, still in its early development 
stages7, exhibits minimal coverage. 
 
Conversely, 33 papers exclusively focused on a single 
technology: with 20 on SMR with or without CCS, 1 
on AWE, 6 on PEM, 4 on SOEC, and 3 on other 
innovative developments. The abundance of papers on 
SMR and SMR+CCS can be attributed to the 
technological maturity of SMR and the potential of 
CCS to serve as a short-term solution on already 
existing plants. For green hydrogen, the shift in focus 
can be recognised by the technical maturity. Less 
mature technologies such as PEM and SOEC7, attract 
larger research attention investigating their techno-
economic potential, thereby contributing to their 
advancement on the Technology Readiness Level 
(TRL) scale. In contrast, AWE which has reached its 
final stage of technological maturity, demands less 
R&D for improvement. Lastly, four papers discussed 
other topics such as cost projections. SI 5 compiles all 
407 screened papers, along with short summaries of 
their contents and classification. 
 

II. Technology Overview & Analysis 
As each technology has its own characteristics 
affecting the LCOH, it is imperative to consider each 
in turn to evaluate their economic feasibility. In this 
section, only the main technologies are evaluated. 
 

Blue Hydrogen 
In 2021, approximately 62% of hydrogen was 
produced by SMR without the use of carbon capture, 
utilisation, and storage2. If all the existing plants are 
retrofitted with carbon capture technologies, it could 
lead to the capture of 710-880 Mt per year of CO22, 
therefore it is seen as an interim solution until the 
green production technologies develop in scale and 
efficiency. It also offers a sustainable prospect to 
fossil fuel producers such as Canada, Iran, Qatar, 
Norway, the Russian Federation, and the United 
States6.  
 
In the SMR process, natural gas undergoes initial pre-
treatment to remove any sulphur and chlorine to 
prevent any catalyst poisoning downstream. In a pre-
reformer, any C2+ hydrocarbons or olefins are 
converted into methane as well as CO2, CO and H2. 
This is fed with steam into a reformer to produce 
synthesis gas (syngas), a mixture of CO2, CO, H2 and 
residual CH4, which is subsequently fed into a shift 
reactor. This converts the CO and H2O into H2 and 
CO2, which is fed into the pressure swing adsorption 
(PSA) unit, recovering around 85-90% of H2 at a 

(8) 
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purity greater than 99.9%. Therefore, CO2 can be 
captured at three possible locations in the process: 1) 
the reformer flue gas, 2) the shifted syngas, and 3) the 
PSA tail gas35. For merchant plants, where hydrogen 
production is not integrated with the production of 
ammonia or methanol, capturing the CO2 from the 
syngas stream can lead to an emissions reduction of 
up to 60%, at a cost of $53 per tonne of CO2 (/tCO2). 
Emissions reductions can reach up to 90% if capture 
also occurs at the reformer flue gas, however this 
increases the capture cost to $80/tCO26. The TRL of 
SMR+CCS is currently an 836.  
 

Levelised costs of hydrogen production were 
generally in the range of $1.5-$5.0/kg H2, with 
multiple papers having higher values, with the 
maximum cost found being $8.88/kg H237. However, 
these outliers are associated with small scale hydrogen 
production plants, as economies of scale play a large 
part in the LCOH38. As with SMR plants with 
unabated emissions, the most significant factor in the 
LCOH is the natural gas price with Argyris et al.39 
reporting that fuel costs accounted for 50-60% of the 
LCOH. This agrees with grey literature, where the 
IEA states that 45-75% of the LCOH is due to natural 
gas costs6. Given the sensitivity of the natural gas 
price to geopolitical tensions, as observed after the 
beginning of the Russian conflict with Ukraine, future 
conflicts may also cause fluctuations in gas prices and 
therefore LCOH for SMR+CCS plants.  
 

The other significant factor effecting the 
LCOH was found to be the cost of CCUS 
technologies. CO2 capture and compression require 
significant amounts of thermal and electrical energy 
and thus auxiliary utility systems may need to be 
employed to meet the demand, incurring high costs37. 
Large investment and research costs will also be 
required to construct pipelines and storage locations 
as large-scale infrastructure is required for transport 
and storage40 and currently does not exist. Sub-surface 
rock formations are possible storage locations, 
however, it must be ensured that the stored CO2 does 
not leak back into the atmosphere or oceans41. 
Although CCUS has been used in oil production for 
enhanced oil recovery, currently only 2 commercial 
scale hydrogen production plants operate with CCS 
due to its technological immaturity42. Currently, the 
most mature and commercially available capture 
technology is absorption, which produces a CO2 
stream with purities greater than 95%, however have 
the disadvantages of requiring large equipment, 
energy intensive absorbent regeneration, and 
corrosion of equipment if using amine-based 
solvents37. Other capture technologies include 
membranes, cryogenic separation, and adsorption; 
however, they are not commercially available and 
require further development before they can compete 
with absorption37.  
 

Sorption-enhanced SMR is a novel process which has 
the advantages of a low reforming temperature, the 
lack of the need for multiple shift reactors and 
subsequent purification steps and producing high 
purity CO2 streams which can be captured without the 
need for further processing such as absorption36. 
However, to supply the high calcination heat to 
regenerate the CaO sorbent without emitting CO2 
emissions requires energy intensive processes such as 
oxy-fuel combustion or an indirectly heated calciner. 
A feasibility study conducted by Yan et al.36 found 
LCOHs for the process to range from $3.08-$4.46/kg 
H2, which is fairly competitive to the SMR+CCS 
process, however, given a low TRL of 4, no economic 
assessments have been carried out to investigate if it 
is viable at large scale.  

 
Figure 1. Cost ranges for grey and blue technologies 
 
Costs found in grey literature generally agree with 
those from academic literature, however, tend to be on 
the lower end of the range at $1.64-3.14/kg H27. The 
majority of the costs were in the range of $3.00-
5.00/kg H2 and are displayed in Figure 1. 
 
Green Hydrogen 

Alkaline Electrolyser  
Alkaline water electrolysers (AWE) have been used 
since 1920 and therefore are the most mature 
technology for water-splitting, accounting for around 
70% of the total market share43. They typically operate 
at temperatures of 60-80°C and pressures of 5-30 
bar33. The advantages include high durability, large 
scale operation, and low cost due to its inexpensive 
materials, unlike the noble metals required in proton 
exchange membrane electrolysers33. However, they 
operate at low efficiencies (58-70% LHV)44, current 
densities (0.2-0.6A/cm2)45 and partial load range 
(40%-100%)46. In addition, due to the low operating 
pressures, additional compression is required to 
increase the product hydrogen pressure to the required 
levels for current transportation, incurring high costs.  
One option for operating an AWE is to supply the 
electricity through the grid. However, depending on 
the proportion of fossil fuels used to generate the 
electricity, it can have higher emission rates than SMR 
or roughly equal rates to hydrogen production using 
coal at 24kg eCO2/kg H22. Therefore, for low 
emissions electrolytic production, electricity from 
green sources must be utilised. The LCOH for alkaline 
electrolysers utilising grid electricity varied between 
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$4.73-$14.30/kg H2. The large range can be attributed 
to the varying electricity costs in different regions. For 
instance, Khatiwada et al.47 uses a levelised electricity 
cost of $0.121/kWh whilst48 utilised $0.014/kWh, a 
difference of almost an order of magnitude. Given that 
the cost of electricity accounts for 47%-78% of the 
LCOH44, a large disparity is expected.   
 
The main challenge of alkaline electrolysers is their 
low partial load range, meaning that they are unable 
to operate below a certain load factor. This is 
particularly important if the electricity is supplied 
from wind turbines or photovoltaic cells (PV), due to 
their intermittent nature meaning that the electrolyser 
will have a low-capacity factor, and therefore produce 
little hydrogen. For example, Pagani et al. reported a 
capacity factor of 42-43% for an offshore wind farm 
and only 13% for an onshore PV farm. To address this 
challenge, the system can either be connected to the 
grid to supply electricity when the renewable source 
is not generating power, or to a battery, which can 
store excess electricity generated by the turbines or 
PV cells. Superchi et al.49 found that by adding a 
battery to the electrolyser system, the capacity factor 
could be increased by up to 10%. In the same paper, it 
was found that utilising multiple lower capacity 
modules in series, in this case four 1MW modules, led 
to a higher capacity factor than a system with one 
module of a 4MW capacity, at 64% and 62% 
respectively.  

 
Figure 2. Cost ranges for AWE by energy source 
 
The ranges of LCOH found in literature for onshore 
wind, offshore wind and PV powered AWE are $4.63-
$7.25/kg H2, $11.85-$17.36/kg H2, and $8.50-
$13.36/kg H2 respectively. Although offshore wind 
farms have the highest capacity factor amongst the 
three sources, at around 45% compared to 27% and 
13% for onshore wind and PV respectively32, the 
larger installation costs, leads to higher LCOHs. 
Moreover, solar-powered electrolysers can incur large 
costs due to their low-capacity factor requiring a high 
number of cells to meet the energy demands. 
Conversely, if the electrolyser is connected to the grid, 
the PV+grid pairing results in a lower LCOH range of 
$5.53-$9.51/kg H2 due to the increased hydrogen 
production offsetting the PV capital costs. Onshore 
wind has the lowest capital expenditures and 
reasonable capacity factors, resulting in the lowest 
LCOH range of the three sources. 
 

Proton Exchange Membrane  
PEM electrolyser systems were first introduced in the 
1960s by General Electric. They use compact 
membrane electrode assembly with solid polymers as 
both electrolytes and membranes, making them 
suitable for urban use6, and utilise pure water, 
avoiding the recovery of alkaline solutions50. They 
can rapidly ramp up to 160% of design capacity6, 
which is ideal for integration with intermittent 
energy33, 43. Despite being more efficient and 
producing purer hydrogen than AWE, PEM systems 
face challenges with the oxidative conditions created 
by the PFSA membrane7, 29 which reduces their 
lifespan, requiring expensive and robust materials like 
iridium6, 43. Nonetheless, PEM electrolysis is 
approaching its final stage of technical maturity and is 
gaining market share, as demonstrated by the increase 
in PEM installations6, 33.  
 
Hydrogen production using grid electricity found a 
range between $6.53-$16.33/kg H2, largely influenced 
by the varying electricity prices. This mirrors the 
sensitivity of AWE despite PEM’s higher efficiency. 
 

Figure 3. Cost ranges for PEM by energy source 
 
PEM’s load flexibility allows it to utilise better the 
intermittent electricity generated by wind turbines or 
PV in comparison to AWE. The range of costs found 
from literature for PV powered production is $3.59-
$14.53/kg H2, whilst for offshore and onshore wind 
powered production, costs range from $4.53-
$14.49/kg H2 and $7.39-$14.42/kg H2 respectively. 
These large ranges can be associated with the 
electricity cost and capacity factors varying 
substantially across the literature. Examples of 
electricity costs identified in the literature include 
$0.069/kWh77-$0.136/kWh32 for onshore wind. 
 
Moreover, hydrogen storage and end-use application 
often require pressures up to 700 bar. While 
mechanical compression is common, interest in high-
pressure PEM electrolysers is growing due to their 
simple system configuration8, 17, 29, 52 as exemplified 
by IFE's research8 and Honda’s 700 bar smart 
hydrogen station17. Self-pressurised electrolysers, 
despite exhibiting higher energy consumption, offer 
cost advantages by eliminating mechanical 
compressor expenses, with optimal operation between 
30 to 70 bar7. They present a competitive LCOH of 
$13.42-$17.79/kg H2, compared to $14.04-15.85/kg 
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H2 conventionally. Their cost-efficiency nonetheless 
remain highly dependent on the electricity costs. 
Research highlight challenges associated with 
material degradation and gas crossover, which 
exceeds the lower flammability limit of 4 vol% for 
H2 in O217, 18, 19, 52, resulting in safety risks and barriers 
to upscaling. This emphasises the need for mitigating 
measures such as reinforced membranes or 
recombining catalysts 52. 
 

Solid Oxide Electrolyser Cells 
Solid Oxide Electrolyser Cells (SOECs) are amongst 
the least developed technologies for hydrogen 
production, using electricity and heat53. They are 
currently in early-stage laboratory development6 and 
are anticipated to reach market maturity within the 
next decade29. Companies, like Sunfire, are already 
selling small-scale units33, with demonstrations 
reaching up to 1 MW7 SOECs use ceramic membranes 
of yttria-stabilized zirconia (YSZ), enabling high-
temperature operation (600–1000 °C), high electrical 
efficiency33, and advantageous features such as high 
current density and reversible operation. As a result, 
they can provide grid-balancing services alongside 
hydrogen storage facilities. Co-electrolysis of carbon 
dioxide and steam is another application of SOECs6. 
However, challenges with material stability due to 
high operating temperatures often lead to rapid 
component wear and a shorter lifespan54. A 
recommended strategy presented by Zhang et al.55 is 
hot stand-by mode. This method maintains the SOEC 
stack temperature above 600°C, enabling fast load 
variation in response to heat or power availability55. 
Recent developments in proton conducting SOECs 
could address these challenges by operating at lower 
temperatures of around 300°C54.  
 
SOECs require significant energy to generate and 
maintain the high temperatures required. This can be 
supplied from the waste heat of industrial processes, 
solar energy, nuclear energy, or geothermal systems6. 
The literature primarily explored the potential of 
waste heat and solar energy, as well as electric heaters. 
 
Integrating waste heat into the electrolysis system is 
reported by the literature to achieve costs ranging 
from $5.90-7.16/kg H2. This cost-effective technique 
significantly enhances the efficiency by utilising 
readily available heat with no additional charge. In 
contrast, using fossil fuels or grid-connected electric 
heaters leads to higher LCOH values ranging from 
$7.30-10.20/kg H2. The disparity in the literature 
values can be attributed to the electricity cost, which 
doubles across the range. Yet, the enhanced 
efficiency of WH-SOEC makes it less sensitive to 
electricity prices. 
Alternatively, a key area of focus in the literature is 
solar energy, notably photovoltaic (PV) and parabolic 
trough collector (PTC) systems. PTC-powered SOEC 
typically yields a larger LCOH due to its significant 
capital investment. Costs are reported at $4.30/kg H230 

and $11.70/kg H220 in the UAE and Spain 
respectively, reflecting differences in regional solar 
potential. Although PTC-powered SOECs have 
higher upfront costs, they benefit from high 
efficiency. Conversely, PV-powered electrolysers in 
Spain have a lower efficiency but offer lower capital 
costs and a decreased LCOH of $11.49/kg H2. 
Consequently, Lin et al.20 examines a hybrid system 
that combines both PV and PTC, achieving a reduced 
LCOH of $9.00/kg H2. Seitz et al.21 discusses the 
integration of Thermal Energy Storage (TES) to PTC-
powered systems, which can increase the production 
of hydrogen by 50%, and reduce LCOH by 34% with 
an 11-hour discharge. Zhang et al.55 advances this 
concept further by analysing a hybrid system coupled 
with TES and batteries, achieving a competitive 
LCOH of $5.50/kg H2. However, constraints 
associated with the high cost of TES systems makes 
large scale integration impractical, requiring 
operation at minimum load55.  

 
Figure 4. Cost ranges for SOEC by energy source 
 
Nuclear power, for both electricity and heat, could 
reduce hydrogen production costs to $1.40–3.00/kg 
H2 for SOEC, presenting a competitive option. 
However, there is limited cost data in the literature. 
The significant deviations in SOEC outliers relate to 
SOEC's greater investment costs range, which is 
nearly twice as large as the ranges for AWE and PEM 
electrolysers56.  
 
Overall, the data in grey literature is relatively sparse 
and typically provides LCOH values for electrolysers 
powered by different energy sources, with no 
distinction between technologies. Nonetheless, green 
cost data is more readily available compared to blue 
hydrogen. Grey literature data fits well in the middle 
of academic data excluding outliers and pressurized 
systems, reporting renewable hydrogen costs in the 
range of $3.62-12/kg H22,6,7,9. Endpoints of academic 
data, around $1.00-3.00/kg H2 and $20.00-25.00/kg 
H2, are mostly associated with SOEC systems. 
However, as it is not yet commercialised, grey 
literature data mostly represents AWE and PEM 
technologies. 
 
Costs Synthesis 
The LCOH data for each technology are presented in 
Figure 5. The trends observed reveal average costs of 
$8.70/kg H2, $10.20/kg H2, $7.90/kg H2, $3.10/kg H2, 
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$4.00/kg H2, and $7.00/kg H2 for AWE, PEM, SOEC, 
SMR, SMR+CCS, and SE-SMR, respectively. 
Consistent with the previous discussion, SMR and its 
derivatives are identified as the most cost-effective, 
while PEM lies on the higher end. SMR and 
SMR+CCS display low standard deviations of $1.7/kg 
H2 and $2.6/kg H2 as opposed to up to $5.80/kg H2 for 
SOEC, emphasizing their cost stability and reliability.  

 
Figure 5. Cost ranges for all technologies 
 
The green hydrogen cost ranges, including outliers, 
correlate inversely with technology maturity: AWE, 
PEM, then SOEC. As indicated, PEM’s larger 
levelised costs are associated with its material. SOEC 
has the smallest interquartile range (IQR), indicating 
a more consistent cost structure. The lower end of its 
range aligns closely with the costs of SMR, suggesting 
potential competitiveness due to its high efficiency, 
making it a promising technology for future market 
adoption. Nonetheless, SOEC will need to compete 
with the maturity and scalability of more established 
technologies. Furthermore, all technologies, except 
for PEM, exhibit a right-skewed distribution where 
the average is almost twice the median, due to the 
small group of outliers discussed in previous sections. 

 
Figure 6. Mean costs of technology, with bubble size indicating the 
number of references reporting costs for each technology 
 
The cost data were relatively abundant across all 
technologies, however, varies by energy source.  SMR 
displays the largest number of sources per category, 
reflecting its prevalence in the hydrogen production 
market. SMR+CCS has slightly fewer sources, 
attributed to the complexities associated with CCS 
integration. The sources for green hydrogen data show 
a significant number of grid powered electrolysers, 
closely followed by renewable sources, highlighting 
the growing focus on renewable energy integration, 
due to electricity cost reductions. Particularly for 
SOEC, the preference leans towards solar energy, 

with 5 papers, compared to 3 for other energy sources, 
likely due to its potential to enhance electrolyser 
efficiency, especially with PTC solar farms. 

III. Harmonisation 
The levelised costs of hydrogen production display 
wide ranges, primarily due to differences in the 
assumptions associated with the discount rates, energy 
costs, carbon tax, and capacity factors. These 
variables are influenced by the region of operation and 
its economic state, resulting in variations between 
countries and within a single nation. For instance, the 
cost of electricity generated by PV panels can range 
between $10/MWh10 in Saudi Arabia to $42/MWh11 in 
Finland. These yield differing LCOH values, a 
sensitivity underscored in the analysis of several 
papers33,34,44,52. Nonetheless, the fundamental concept 
of the levelised cost remains consistent across the 
papers evaluated, with minor variations in its 
definition. This enables the capturing of the economic 
performance of green hydrogen on a global scale. 
However, to effectively compare the costs associated 
with the present technologies, it is necessary to 
harmonise extrinsic values, unrelated to the 
technologies themselves. 
 
Blue Hydrogen 
Harmonised LCOH 
The harmonised variables were chosen based on the 
modal values found in the literature and are 
summarised in Table SI 3.4. The systematic review for 
blue hydrogen only returned seven papers containing 
all the relevant cost data for the harmonisation. A 
significant number of studies consisted of reviews 
which report referenced LCOHs values and hence do 
not provide any costing information41, 42, 45, 47, 50, 57. 
Other papers omitted certain cost parameters such as 
CAPEX, OPEX or carbon price, preventing the 
harmonisation being carried out40, 58, 59, 60. 

 
Figure 7. Cost ranges for unharmonized and harmonised cases for 
grey and blue technologies 
 
Figure 1 clearly demonstrates the effects of the 
harmonisation. For the grey technologies, an 82.0% 
decrease in the interquartile range (IQR) of the 
LCOHs was observed, highlighting the maturity of the 
SMR technology, as this suggests that the intrinsic 
costs are similar across all papers. For the blue 
technologies, a smaller decrease of 24.8% for the IQR 
was observed, suggesting a variation of the intrinsic 
costs across the papers. This is partly because the data 
points are not separated by capture rate, which 
positively correlate with the LCOH due to the higher 
CCS costs. Additionally, the data points are not 
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separated by technology type (SMR+CCS or SE-
SMR), hence the spread in intrinsic costs is expected. 
 
In addition, a sensitivity analysis on the harmonisation 
variables was carried out to gauge their individual 
influence while keeping all other parameters as 
reported in their respective sources.  
 
As expected, the natural gas price displayed the 
largest difference in IQR to the unharmonized case at 
21.42%, which reflects its significant contribution to 
the LCOH, at 45%-75%6. This highlights the LCOH's 
sensitivity to natural gas prices, a consensus supported 
by the literature. The carbon tax price harmonisation 
yielded a moderate difference of 7.82%, suggesting a 
lower LCOH sensitivity. However, this suggest that 
for green technologies to become more competitive 
with grey and blue hydrogen, radical increases in 
carbon taxation are required to incentivise the 
transition. This aligns with the findings presented by 
George et al.57. The other parameters showed only 
marginal differences; however, this should not be 
interpreted as a general insensitivity of LCOH to the 
parameters. For the discount rate, capacity factor, and 
plant lifetime, the assumed values in each paper were 
either identical or closely matched the harmonised 
value, explaining the minimal differences observed. 
As for the electricity cost, the marginal difference 
relative to the base case can be attributed to the 
negligible consumption of electricity in comparison to 
that of natural gas59. 
 
These results emphasise the significance and necessity 
for a harmonisation to enable a representative 
comparison of the LCOHs across different studies.  

 
Figure 8. Sensitivity analysis of harmonised parameters on the 
LCOH 
 
Green Hydrogen 
Two issues arise when analysing the data for the green 
hydrogen harmonisation: on-grid systems and the 
scarcity of comprehensive data points. Figure 9 
illustrates between one and four harmonisable data 
points within each category, with the bulk found in 
grid energy sources and other combinations. More 
specifically, the focus on renewable hydrogen 
production restricts it to only one data point.  
The predominance of on-grid electrolysers can be 
associated with the broad search terms, which did not 
limit green hydrogen strictly to renewable energy 
sources, and the limitations inherent to the search 
algorithm, which excludes data based on the title, 
abstract, and keywords. This results in the grid 

hydrogen discussions within the bulk of studies to 
bypass the filters. 
 
Moreover, further limitations in the harmonisation are 
linked to the data presented in the papers. While some 
papers provide comprehensive cost data, they often 
overlook intrinsic parameters such as system 
efficiency32, 53, 55, 57 or lack information about the 
lifespan of the electrolyser, plant, and discount rate. 
Although the latter are generally consistent across the 
literature and can be reasonably assumed, papers with 
missing intrinsic data impede this process53, 57. 
Additional challenges arise when the articles present 
total costs that cannot be converted into specific costs, 
rendering them impractical for the selected equation 
in the methodology29, 52, 59, 61. Alternatively, some 
papers include energy plant expenditures that cannot 
be distinctly separated into electrolyser and power 
plant costs62. Finally, several papers are industry 
reviews with no LCOH calculations or projections and 
provide minimal data, making them unsuitable for the 
harmonisation38, 50, 63, 44, 65, 66.  

 
Figure 9. Number of data points with or without discrepancies for 
each technology and energy source  
 
Furthermore, 52% of the harmonisable data points 
exhibit discrepancies that could impact the reliability 
of the collected data. For instance, uncertainties arise 
from the efficiencies reported by Scheepers et al.28, 
where its conversion to electrolyser capacity using the 
hydrogen production rate deviate from the study’s 
reported values. Specifically, capacities of 3.5 MW 
and 119 MW are obtained instead of 1 MW and 100 
MW, respectively. In contrast, applying the same 
conversion process to the studies by Srettiwat46 and 
Jang et al.33 yields identical values. As the capacity 
factor and hydrogen production are set values, this 
indicates a discrepancy in remaining variables: the 
efficiency or the quoted capacity. However, the 
calculation of the LCOH using the study’s respective 
equation and efficiency yields cost of €5.05/kg and 
€4.88/kg, a 3% deviation from the literature's values 
of €5.21/kg and €5.04/kg. This suggests that the 
efficiencies reported are likely true, whereas the 
electrolyser capacities may be less precise. The 
discrepancy could be attributed to the use of multiple 
electrolyser stacks at the reported capacities, however, 
there are no clear indications in this regard. 
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In view of these results, the harmonisation of the green 
hydrogen costs was not pursued. Nonetheless, SI 3 
presents all the calculations and data collected from 
the literature, along with a table detailing the 
limitations and discrepancies identified in each study. 
 

IV. Cost Projection 
The previous sections evaluate the influence of non-
intrinsic data on the LCOH, notably the energy costs. 
However, the literature indicates the system capital 
cost as the second most significant parameter. Thus, 
its reductions will play a crucial role in the 
decarbonisation of the hydrogen production industry. 
Consequently, a model was developed to investigate 
the influence of capital cost reduction on the LCOH in 
2030. The model makes several assumptions; 
therefore, its purpose is to offer a qualitative estimate 
on the market competition based on the anticipated 
deployment of electrolysers and influence of capital 
cost, rather than an accurate cost forecast.  
 
Parametrisation 
The hydrogen council’s 202312 data reveal global 
electrolyser cumulative capacity of 300 MW by the 
end of 2020, expected to increase to 232 GW by 2030. 
However, the report lacks precise data and the plot is 
not drawn to scale for the 2024-2029 period, making 
any findings drawn from the global trends highly 
inaccurate. In the literature, papers often create their 
own cumulative capacities roadmap based on regional 
hydrogen ambitions65 or country-specific data50. 
Therefore, to assess the global state, the projection is 
limited to the base and final years. The distribution of 
the technologies has shown consistency in recent 
years, with AWEs dominating the market at 60%, 
followed by PEM at 30% and SOEC at less than 1%2. 
However, this balance is anticipated to change with 
PEM capturing a larger market share. As several 
projects have not disclosed their technologies, a 
precise estimation is unavailable7, and the current 
technology distribution is assumed to remain constant. 
Consequently, cumulative capacities for AWE are 
estimated at 0.18 GW in 2020 and 139.2 GW in 2030, 
while PEM capacities are 0.09 GW and 69.6 GW in 
2020 and 2030, respectively.  
As blue hydrogen utilises established technologies, 
their cost is only expected to decrease minimally13, a 
reduction which may also be offset by increased 
carbon tax in the future. Therefore, the blue hydrogen 
cost is maintained constant at $4.00/kg H2. 
 
Table 1. Learning rates of electrolysers according to references 
Reference Learning Rate Technology Timeframe 

[20] 9 % Alkaline 2020-2030 
[20] 13 % PEM 2020-2030 
[22] 18+-6 % Alkaline 1956-2014 
[7] 18+-13 % Electrolysers 1972-2004 

[23] 8 % Alkaline - 
[24] 28 % SOEC 1996 - 2008 
[25] 15-22% Electrolysers - 

 
Numerous studies have examined the learning curve's 
impact on the electrolyser unit cost, estimating the 
learning rate over a time span extending from 1956 to 
2030. The learning rates of 9% and 13% for AWE and 
PEM respectively are selected as they provide the 
most up to date data available and align with the 
timeframe.  
 
Moreover, Table SI 4.1 displays the techno-economic 
parameters selected for PEM and AWE, in the base 
and projected year. Parameters, including CAPEX 
costs and system efficiency, are drawn from IRENA7 
as $750/kW and $1050/kW, as well as 64 kWh/kg and 
66.5 kWh/kg for AWE and PEM electrolysers, 
respectively. Techno-economic data for the Solar 
photovoltaic panel is sourced from the IEA2, 
indicating electricity costs at $0.071/kWh and a 
23.5% capacity factor. Energy Education14 suggests 
discount rates for renewable energy installations fall 
between 3% to 10%, consistent with the systematic 
review. Hence, the discount rate is selected as 8% to 
maintain consistency with the literature. Finally, the 
operating cost (OPEX) is calculated as a percentage of 
the capital expenditures, a common approach in the 
literature. A range of OPEX percentages, between 1% 
to 5%, is typically suggested in studies28, 31, 43, 52, 53, 57, 

66, 67 with a modal value of around 3%. Therefore, the 
annual OPEX is defined as 3% of the CAPEX. 
 
Projection

 
Figure 10. LCOH projections for AWE and PEM 
 
The baseline costs for AWE and PEM electrolysers in 
2020 are $7.62/kg H2 and $9.19/kg H2, respectively. 
These costs are projected to decrease by 24% and 
36%, respectively. PEM’s greater cost reduction is 
attributed to its higher learning rate, which is linked to 
its lower technical maturity. This presents PEM as a 
competitive and potentially more attractive 
investment option over AWE, behind blue hydrogen. 
However, long-term cost reductions for PEM may 
face limitations despite growing capacities, mainly 
due to constraints with its scarce and expensive 
materials such as iridium, titanium-based compounds, 
and platinum, for the porous transport layers7, 26, 52. 
The supply of these elements is controlled by a few 
countries, notably South Africa, which contributes 
about 70% of the global platinum supply and 85% of 
iridium. The price of the latter is subject to a high price 
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volatility7, with a ratio of 15:1 between the highest and 
lowest prices in the last two decades. At its peak price 
of $1,480/troy ounce7, Iridium sets a minimum LCOH 
threshold of $1.93/kg. Similarly, platinum yields a 
minimum cost of $2.52/kg at its peak. Combining both 
materials, their cost contribution cannot decrease 
below $4.45/kg, posing a potential bottleneck for 
PEM’s large-scale deployment and competitiveness 
with AWE and blue hydrogen technologies. Minke et 
al.26 proposes solutions such as more efficient PEM 
technologies and recycling material.  
 
Conclusion & Outlook 
In this paper, the results of an in-depth cost-focused 
systematic literature review of blue and green 
hydrogen production technologies are presented. The 
authors reviewed 63 papers from academic research 
along with grey literature to construct a comparative 
cost harmonisation and projection of levelised cost 
values.  
 
Costs from the academic literature were compiled by 
technology and energy source and compared to the 
grey literature where applicable. In general, costs 
were broadly similar, but the academic literature 
presented a larger variety of system configurations. 
Costs for most technologies ranged from $2-18/kg H2, 
resulting in a great amount of uncertainty over their 
true value. Nonetheless, the averages resulted in 
levelised costs of hydrogen of $8.70/kg H2, $10.20/kg 
H2, $7.90/kg H2, $3.10/kg H2, $4.00/kg H2, and 
$7.00/kg H2 for AWE, PEM, SOEC, SMR, 
SMR+CCS, and SE-SMR respectively, with SMR and 
its derivatives leading the market. Thus, SMR+CCS 
can act as an interim solution until green technologies 
reach full technical maturity or economic feasibility.  
 
To narrow down the effective cost range, this study 
has undertaken a cost harmonisation of extrinsic 
variables. Despite a targeted search of the literature, 
only about 23.3% and 13% of the reviewed papers 
contained harmonisable costs for blue and green 
hydrogen technologies respectively, demonstrating a 
lack of rigour and uniformity in the literature. For blue 
hydrogen, the findings demonstrate a substantial 
decrease in cost ranges for SMR technologies once 
region-specific costs and assumptions are 
harmonised. SMR+CCS revealed to be less sensitive 
due to variations in the technologies and CCS capture 
rates. A sensitivity analysis indicated that the 
harmonisation is predominantly impacted by the 
natural gas costs. Nonetheless, this provides investors 
with a benchmark to compare technologies. Unlike 
blue, the green hydrogen harmonisation was 
unfeasible due to a lack of data and discrepancies, 
which prevented the identification of the intrinsic cost 
ranges of each technology. Challenges and areas of 
improvement of each technology are presented, 
providing investors with the required insight to make 
informed decisions.  

 
Finally, a cost projection of the key electrolyser 
technologies identifies PEM as a promising 
alternative over AWE, leading with cost reductions of 
36% by 2030. However, critical analysis emphasise 
the potential challenges imposed by its electrode 
material, which could impose a $4.45/kg H2 threshold 
at peak prices. 
 
Although the production costs for hydrogen have been 
investigated in detail, depending on the location of the 
end user, the levelised costs for transportation and 
storage can exceed those of production16. Therefore, 
research into the technologies surrounding them are of 
paramount importance if large-scale deployment of 
hydrogen is to be achieved. The use of existing natural 
gas pipelines for hydrogen transportation and 
underground salt caverns for storage are possible 
solutions2, however, require substantial research prior 
to commercial use. 
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Effects of Salts on Occurrence Domains of Triglycine Anhydrate and Dihydrate 
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Abstract 

As the peptide therapeutics market expands, crystallisation emerges as a sustainable and cost-effective peptide 
separation technique. To enable critical quality attributes (CQAs), defining occurrence domains of peptide 
polymorphs is thus of increasing interest. In this study, the effect of salts ((NH4)2SO4, Li2SO4 and MgSO4, 
common industrial precipitants) on the occurrence domains of recently discerned anhydrous and dihydrated 
triglycine polymorphs is investigated in the 10-30C temperature range. Triglycine solubility is shown to increase 
monotonically with concentration of MgSO4 and up to a threshold with concentrations of (NH4)2SO4 and 
Li2SO4, after which specific cation effects appear to reverse. The transition temperature, at which the anhydrate 
stabilises, is shown to decrease with salt concentration and to the extent: Li2SO4 > (NH4)2SO4 >> MgSO4. 
Experimental results are investigated in terms of molecular mechanisms. 

Keywords: peptides, triglycine, crystals, hydrates, solubility, stability, salts, cations 

 

1. Introduction 

Peptides present unique therapeutic advantages. 
Their intermediate size enables desirable properties 
of both small molecules and biologics. Like small 
molecules, peptides offer low production costs, low 
immunogenicity and high bioavailability; like 
biologics, they are highly specific and can act as 
inhibitors of peptide-peptide interactions [1]. As a 
result, their market is large and expanding – 
estimates for its value in 2022 and its compound 
annual growth rate over 2023-2032 are USD 42.05 
billion and 10%, respectively [2]. Though the 
average peptide length entering clinical 
development has increased each decade since the 
1980s, the most common range remains 2-10 amino 
acid residues [3]. 

Peptide manufacturing encounters a significant 
bottleneck in the separation process, primarily 
addressed via chromatography, associated with 
high solvent usage and high costs of 
chromatographic adsorbents [4]. Crystallisation has 
thus received attention as a more sustainable and 
cost-efficient alternative; additionally, it can offer 
higher peptide stability and purity [4]. 

In peptide crystallisation, polymorphic control 
is critical. Peptides have been shown to exist in 
polymorphic forms [5] – differing solid forms, 
including crystalline and amorphous forms, as well 
as solvates [6]. Polymorphs possess differing 
physicochemical properties, such as stability and 
solubility, which affect the bioavailability and 
efficiency of the therapeutics and downstream 
operations [7]. 

The present study investigates co-solutes' effect 
on the occurrence domains of anhydrous and 
hydrated peptide crystal forms. Sulphate salts 
(((NH4)2SO4, Li2SO4 and MgSO4) have been 
chosen as model co-solutes for their prominent use 
in protein crystallisation as precipitants [5]. 
Triglycine is selected as a model peptide for its 
simplicity and as it has recently been observed to 
exist both in folded anhydrous and unfolded 
hydrated crystal forms (Figure 1), stable above and 
below 30C, respectively [8] [9]. 

 

 

Figure 1: Hydrogen bonding motifs of triglycine 
anhydrate and dihydrate (TGDH) in the single crystal 
structure. Reproduced from ref. 8. 

 

2. Background 

It has long been appreciated that salts have 
significant effects on peptide solubility. 

In the 1880s, Hofmeister and collaborators 
observed that salt ions could increase or decrease 
the solubility of proteins in aqueous solutions – 
‘salt-in’ or ‘salt-out’, respectively – and defined 
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series – later called Hofmeister series – for cations 
and anions (Figure 2) [10]. Specific ion effects 
(SIEs [11]) were first attributed to specific abilities 
to adsorb water: small, charge-dense ions – 
‘kosmotropes’, adsorbing water molecules better 
than large, charge-diffuse ions – ‘chaotropes’, 
dehydrated proteins, favouring their aggregation 
[10]. However, this explanation already eludes the 
series for cations: it is not ‘kosmotropic’ ions like 
Mg2+ or Li+ but ‘chaotropic’ ions like NH4

+ that are 
on its salting-out end [10]. 

Since the 1960s, several studies have attempted 
to rationalise the Hofmeister series in terms of 
specific ion-peptide interactions [10]. Salting-in is 
now understood to arise from ion-peptide 
interactions, most favoured for strongly hydrated 
cations at negatively charged side chains and 
backbone carbonyls and for weakly hydrated 
anions at backbone amines [10]. Preferential 
interactions of positively charged side chains with 
strongly hydrated anions determine a reversal of 
the anion series for positively charged peptides 
[12]. 

In addition, the limitations of treating salt ions 
separately are emerging, with ion-counterion 
pairing shown to lead to substantial deviations from 
the Hofmeister series [11]. 

The effects of ions on peptide polymorphic 
outcome have also been studied. In particular, the 
contributions of cations to peptide folding have 
been shown to correlate to salting-out and depend 
on the balance between advantageous cation-
mediated peptide dehydration and disadvantageous 
cation-peptide binding effects [13] [14]. Observed 
equilibrium shifts toward unfolded conformations 
have been attributed to the latter [15] [16]. 

 

 

Figure 2: Modern version of the Hofmeister series. 
Reproduced from ref. 10. 

 

3. Methodology 
3.1 Materials 

Triglycine (Gly-Gly-Gly, anhydrous, > 98% purity) 
and salts – ammonium sulphate ((NH4)2SO4), 
lithium sulphate (Li2SO4), magnesium sulphate 
(MgSO4), sodium sulphate (Na2SO4), sodium 
chloride (NaCl) and sodium bromide (NaBr), (all 
anhydrous, > 98% purity) – were purchased from 
Sigma-Aldrich and used as received. Deionised 
water was produced in the laboratory. 

 

 

Figure 3: Chemical structure of triglycine. 

 

3.2 Sample Preparation and Equilibration 

A stock 2.5M solution of each salt in deionised 
water was diluted with a liquid handler (Opentrons 
OT-2) into Eppendorf tubes to obtain 0.5mL 
samples at 5 concentrations in the range from 0.5 to 
2.5M with an increment of 0.5M; a 0.5mL sample 
of pure deionised water served as control. 

After introducing excess amounts of triglycine, 
the tubes were transferred to a thermostatic mixer 
(DLAB Scientific HMC100-Pro Thermo Mix) 
operated at 1500rpm. For (NH4)2SO4, Li2SO4 and 
MgSO4, at least two trials were performed at 
temperatures of 10, 20 and 30C; due to time 
constraints, single trials were conducted at 
intermediate temperatures of 15 and 25C, and 
results were deemed accurate when fitting with 
those from adjacent temperature values. For 
sodium salts, a single trial was performed at 20C. 

If, after 30 minutes, a sample appeared clear, 
additional triglycine was introduced, and the 
procedure was repeated until the appearance of a 
suspension. 

Phase equilibrium was deemed reached within 
the following 48 hours (as ref. 9 suggests for an 
aqueous triglycine solution), after which the 
samples were left quiescent until all solids 
appeared to have settled upon visual inspection. 
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3.3 Measurement of Triglycine Solubility 

From the supernatant, 100μL were transferred via a 
micropipette to a second Eppendorf tube. From 
this, 10μL were diluted via the liquid handler in 
490μL of deionised water in a third Eppendorf tube 
to prevent further crystallisation and set the 
triglycine concentration within the limits of 
calibration. The concentration was thus measured 
with UV-vis spectroscopy, and its average over five 
repeats was used to calculate the concentration of 
the original sample – i.e. the solubility.  

A calibration curve was constructed for a 
microvolume UV-vis spectrophotometer (Thermo 
Fischer Scientific NanoDrop One C). Absorbance 
spectra were measured at 230nm for known 
concentrations of triglycine in deionised water (8 in 
the range from 0.25 to 2 mg/mL). A linear relation 
between absorbance and concentration, in 
accordance with the Beer-Lambert Law, was 
defined (Figure 4). 

 

 

Figure 4: Calibration curve of triglycine (GGG). 

 

3.4 Determination of Stable Triglycine 
Polymorph 

Solids were filtered with filter paper and 
characterised by optical microscopy (CX-41 
Olympus) and PXRD (PANalytical X’Pert PRO X-
Ray) to determine their crystal form. 

Anhydrous and dihydrated crystals were 
differentiated by their rod and needle 
morphologies, respectively, with optical 

microscopy (Figure 5.a)) and by characteristic 
XRD patterns with PXRD (Figure 5.b)) [8]. 

 

Figure 5.a) Optical microscope images (at 10x 
magnification) of triglycine anhydrate (left) and 
dihydrate (right) b) The XRD pattern of triglycine 
anhydrate and dihydrate. 

 

4. Results and Discussion 
4.1 Effects of Salts on Triglycine Solubility 

Figure 6 illustrates measured triglycine solubilities 
(normalised over the solubility of the stable form – 
dihydrate in the cases considered) at salt 
concentrations 0.5-2.5M and temperatures 10-30C. 

All salts are observed to salt-in triglycine in the 
entire concentration and temperature ranges. 
Salting-in can be attributed to the screening of 
peptide dipoles, which would otherwise drive 
aggregation [17]. Dipoles are expected: all salts 
used are either neutral or weakly acidic, so their 
aqueous solutions should have a pH close to the 
5.56 triglycine isoelectric point [18]. Ion-peptide 
interactions are further aided as triglycine is poor in 
hydrophobic moieties – apolar side chains and 
backbone methyl groups – which would expel ions 
[19] [20]. These ion-peptide interactions seem to 

 
a) 

b) 
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offset the ion-water interactions leading to salting-
out (and argued to cause negligible disruption to 
water structure beyond the first ion hydration shell 
[21]). 

Solubility shows a maximum with (NH4)2SO4 
and Li2SO4 concentrations and a monotonic 

increase with that of MgSO4. Maxima are 
understood to result as the primary salt contribution 
shifts from ion-peptide interactions-driven salting-
in to ion-water interactions-driven salting-out at 
increased concentrations [17]. Before maxima, the 
salting-in rate is higher for Li+ than for NH4

+– as is 
the expected strength of interactions with the 

Figure 7: Triglycine relative solubility vs concentration of sulphates (NH4)2SO4, Li2SO4 and MgSO4,) at temperatures, from 
left to right and top to bottom, 10C, 15C, 20C, 25C and 30C and vs concentration of sodium salts (Na2SO4, NaCl, NaBr)) at 
25C at the bottom right. Error bars represent the standard deviation among the five repeats that were averaged to measure 
solubility. 
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peptide, while after maxima, it is the salting-out 
rate to be higher for Li+ than for NH4

+ – as is the 
predicted strength of interactions with water. 

The different behaviour with MgSO4 can be 
attributed to the stronger interactions with C-
termini and carbonyls of its cation, which arise 
from the higher charge density (Figure 2). 
However, differing stoichiometries impede direct 
comparison of specific cation effects. Indeed, 
another explanation accounts for the differing 
stoichiometries themselves. As salt concentration 
increases, increasing ion-ion interactions favour the 
formation of ion pairs [22]. For 1:1 MX (MgSO4) 
salts, ion pairs are neutral and thus easily partition 
toward backbones while interacting poorly with 
water [23]. Meanwhile, as dissociation of 2:1 M2X 
salts ((NH4)2SO4 and Li2SO4) occurs via a two-step 
process: 

MଶX ↔ Mା + MXି;   Kଵ   (1) 

MXି ↔ Mା + Xଶି;   Kଶ   (2) 

and, typically, K1 >> K2, increased salt 
concentration favours an increase in MX- ion pairs, 
negatively charged [22]. This explanation extends 
to the observed behaviours of sodium salts (Figure 
6)). Theories such as the Law of Matching Water 
Affinity [24] (Figure 7), capture the extent of ion 
pairing and predict strong ion pairing for MgSO4, 
observed in past studies [25]. 

 

With temperature, maxima appear to shift to 
higher concentrations, the relative solubility with 
MgSO4 to decrease, and the relative solubilities 
with all salts to converge. At higher temperatures, 
triglycine dissolution is favoured [9], so the effect 
of salt addition might then be reduced. 

4.2 Effects of Salts on Stable Triglycine 
Polymorph 

The observed stable triglycine crystal forms are 
illustrated in Table 1.a) – c) at salt concentrations 
0.5-2.5M and temperatures 10-30C. 

The transition temperature – above which 
anhydrous are favoured over hydrate crystals – 
appears to decrease with salt concentration. This 
can be explained as folded configurations are 
favoured as ions deplete the peptide hydration shell 
of water molecules [13][14]. Indeed, transition 
temperature lowers with increased expected water 
depletion effects. At 1M and 1.5M is highest with 
MgSO4 (30C and 25C vs 25C and 15C with 
(NH4)2SO4 and Li2SO4) and at 2.5M higher with 
(NH4)2SO4 than with Li2SO4 (20C vs 15C). 

In addition, though cation binding is typically 
understood to favour the unfolded conformation 
[15][16], this might not be the case when the latter 
is strongly dependent on buried water networks, 
such as for triglycine [8]. Cation binding might 
reduce repulsions between carbonyls and between 
carboxylates, which has been shown to contribute 
strongly to buried water networks in peptide 
hydrates [26], including triglycine dihydrate [8]. 
The transition temperature decreases more with 
Li2SO4 than with (NH4)2SO4, as the expected 
strength of cation-peptide binding increases. 
However, it decreases the least with MgSO4, 
suggesting that cation-peptide binding, if 
favourable, is still not as favourable as salt-water 
binding to anhydrate stabilisation. 

 

 

Figure 7: Ordering of interactions in aqueous water 
solutions from strongest to weakest. According to the Law 
of Matching Water Affinity, small-small ion pairs are 
energetically favoured as their interactions are strong, 
whereas large-large ion pairs are favoured as, even though 
their interactions are weak, their dehydration leads to 
water-water interactions stronger than large ion-water 
interactions. In contrast, small-large ion interactions are 
not energetically favoured, as their weak interactions do 
not compensate for the work required to dehydrate small 
ions. Reproduced from ref. 24. 
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(NH4)2SO4 10C 15C 20C 25C 30C 
0.5M 

     
1M 

    

  

1.5M 

     
2M 

     
2.5M 
 

a) 
     

 

Li2SO4 10C 15C 20C 25C 30C 
0.5M 

     
1M 

     
1.5M 

     
2M 

     
2.5M 
 

b) 
     

 

Table 1: Optical microscopy 
images (at 10x magnification) of 
the triglycine crystal outcomes at 
temperatures 10-30C and 
concentrations 0.5-2.5M of salts a) 
(NH4)2SO4, b) Li2SO4 and c) 
MgSO4. Red lines mark 
boundaries between anhydrate 
(right) and dihydrate (left) 
occurrence domains. 

MgSO4 10C 15C 20C 25C 30C 
0.5M 

     
1M 

     
1.5M 

     
2M 

     
2.5M 
 

c) 
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5. Conclusion and Outlook 

Sulphates have been shown to affect triglycine 
anhydrate and dihydrate occurrence domains 
significantly. 

Triglycine solubility appears to increase to a 
maximum with (NH4)2SO4 and Li2SO4 
concentrations. After maxima, specific cation 
effects appear to reverse. This is attributed to the 
dominant effect of salt addition shifting from ion-
peptide interactions-driven salting-in to ion-water 
interactions-driven salting-out with increasing 
concentration. That this shift is not observed with 
MgSO4 is explained in terms of its stronger cation-
peptide interactions and its different 
stoichiometries. Salt addition effects appear to be 
mitigated as peptide dissolution is favoured at 
higher temperatures. 

The transition temperature, at which the 
anhydrate becomes the stable crystal form, is 
shown to lower with salt concentration, to the 
extent: Li2SO4 > (NH4)2SO4 >> MgSO4. This 
decrease is attributed to salt-water interactions 
depleting the peptide hydration shell and, to a 
lesser extent, reduced electrostatic repulsions 
between charged groups, such as carbonyls and 
carboxylates, thought to favour buried water 
networks in the hydrate. 

While these results enable predictions about the 
effect of salts on crystal occurrence domains of 
triglycine and affine molecules (e.g., longer 
uncharged peptides), their accuracy and 
significance could be improved. The individual 
contribution of salt stoichiometry and salt ion 
affinity with peptide, water and counterion could be 
elucidated. This could be done via molecular 
dynamics (MD) simulations and further 
experimentation – e.g., over more salt species and 
with kinetic and more precise and continuous 
measurements of solubility and transition 
temperatures via techniques such as Fourier-
transform infrared (FTIR) spectroscopy. 
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Abstract 
Pot-ale is one of the most abundant waste products within the global whisky industry. Most commonly used as low-
grade animal feed/fertiliser or disposed to land/sea, it is considered to be inefficiently utilised. This paper presents 
a techno-economic analysis of a novel process to separate pot ales volatile fatty acid content, specifically hexanoic 
acid for later sale. Two designs were modelled, one where the pot ale is sent straight to the separations system, and 
one where it is first fermented to concentrate its hexanoic acid content in order to determine if this fermentation is 
worthwhile. A design of hexanoic acids separation sequence has been built on the process simulation software Aspen 
Plus v11 using the NRTL-HOC property model under continuous operation. The route the process stream takes is 
as follows: First as the fermentation is a batch process, the stream is sent to a storage vessel to act as a buffer and 
allow for a continuous model to be designed. This effluent is then sent to an extraction unit where hexyl acetate, 
acting as the solvent, removes the high-water content in the stream. The wastewater is sent to a treatment facility 
and the acid/solvent stream is sent to distillation column where hexanoic acid is isolated in the bottoms and the 
solvent is recovered in the distillate and recycled back to the extractor. Finally, an economic analysis is presented 
for both designs over a 25-year lifetime, where typical tax/interest rates and other such charges have been assumed. 
From this analysis it was determined that fermentation of the pot ale is necessary to build a profitable design, with 
an estimated rate of return of 68%. Whereas with no fermentation the cost of operation outweighs the revenue seen 
and thus is not a financially acceptable design.  

 
Keywords: pot ale, hexanoic acid, VFAs, Aspen Plus, property model, solvent extraction, distillation 
 
1. Introduction 
The production of whisky dates back to the early 1000s 
in Scotland and Ireland, with both nations claiming they 
were the original producers. With limited access to 
grapes for the production of wine, these early day 
Europeans decided to ferment grains such as wheat, 
barley, or rye for alcohol. This alcohol was then distilled 
to produce the first recorded cases of whisky [1]. Since 
then the whisky industry has grown exponentially, with 
improvements in technology and understanding of the 
process, more complex flavours and production 
techniques have been refined and perfected. Today 
whisky is exported and enjoyed all over the globe with 
the largest producers being the UK, USA, and the EU. 
The Scotch whisky association reported over £6bn 
worth of exports in 2022 comprising a quarter of all UK 
food and drink exports, with roughly 1.6bn bottles being 
shipped yearly [2]. Although this remains a huge market 
globally, it has been suggested that the market is 
currently saturated in the world’s major economies [3]. 
Due to the large numbers of producers in the world there 
is not much possibility for a unique selling point to 
separate one business from another. The market is 
dominated by competition and its growth within the 
domestic business segment is restricted to the general 
economic growth of roughly 1~3% per year [3]. 
 
    One way a business can expand within the industry is 
to improve on the efficiency of one’s process. An 
effective way to do this could be to make use of an 
otherwise disregarded side product and turn it into a 

throughput for another process. If designed correctly 
this new process will diversify your revenue streams and 
lead to a stable increase in economic growth. For the 
whisky industry the obvious candidate for this is pot ale. 
Pot ale is the principal effluent by-product of the whisky 
industry with estimates ranging from 1.4 to 2.7 billion 
litres produced annually by just Scottish SME distillers 
[4, 5]. Most commonly pot ale is recycled into animal 
feed, or it is spread to land as a low-grade fertiliser 
incurring a disposal cost to the business. In some cases, 
the pot ale is disposed at sea however this is only 
available to distilleries located on the coast and a 
specific discharge licence is required [4]. These are 
inefficient uses of pot ale and do not provide the industry 
with any additional income. A newer and potentially 
better application of pot ale is to concentrate it into a 
syrup and treat it through anaerobic digestion (AD). This 
processes the biomass into a biogas which can be used 
as an alternative energy source to fossil fuels. This is 
significant as the Scottish Whisky Association (SWA) 
has issued targets to source 80% of the industries energy 
from non-fossil fuel sources by 2050 [5] and thus the 
generation of biogas can help to reach this target. 
Furthermore there is evidence suggesting that the 
digestate post AD is a more effective fertiliser than pot 
ale itself. 
 

As detailed, there are many ways you can process 
your pot ale with new methods and processes being 
developed all the time. This paper presents a novel 
process for the treatment of pot ale whereby it is sent to 
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a secondary fermenter to produce and concentrate its 
volatile fatty acid (VFA) content, specifically hexanoic 
acid. This hexanoic acid is then isolated and purified 
allowing it to be commercially sold. Hexanoic acid is a 
valuable feedstock in the chemical and biofuel industry, 
as well as having application as an antimicrobial agent, 
animal feed additive and flavour additive [6]. The aim 
of the report is to decide whether this secondary 
fermentation is worth the investment or if it would be 
financially preferable to separate off the lower 
concentration hexanoic acid directly from the pot ale. 
With this in mind, two designs shall be built, one where 
initial acid concentrations reflect no secondary 
fermentation (case 1) and one where hexanoic acid 
concentrations have been optimised to reflect the 
secondary fermentation (case 2). 
 
2. Background 
Pot ale is one of the three main side products within 
whisky production, the others being spent lees and draff. 
It is comprised of a mixture of Volatile Fatty Acids 
(VFAs), water, minerals such as Cu, P and K, and a solid 
fraction mainly consisting of yeast [4]. For Scottish 
SME malt distillers pot ale has a production rate of 
roughly 1.4 to 2.7 billion litres per year [4, 5], this is 
often then concentrated into a syrup through evaporation 
and used as animal feed selling at roughly £60-200/ton 
[4,7]. There are several drawbacks to this method such 
as the presence of copper in pot ale. Ingesting high 
amounts of copper can lead to copper poisoning causing 
haemolysis, which is potentially fatal to the animal, the 
copper content must therefore be regulated before pot 
ale is allowed to be sold as feed. Furthermore, the syrups 
high viscosity presents issues with transportation and 
storage making it an unfavourable choice of feed to 
farmers [4]. All in all, the low sales price of syrup 
coupled with energy demanding evaporation and poor 
transportation and storage make this a bad processing 
method.  Other common practises for the utilisation of 
pot ale are land and sea disposal. This is also 
unfavourable as it incurs a disposal fee and is only 
approved for distilleries located in a suitable location.  
 

The current practises for pot ale utilisation are 
out-dated and inefficient. Pot ale is constituted of 
valuable VFAs which if isolated, can be sold 
commercially. Hexanoic acid sells for roughly 
£2000/ton [7], 10x that of animal feed and its 
concentration within pot ale can be greatly improved by 
fermentation. We are proposing two processes for 
generating a high purity hexanoic acid stream, both aim 
to separate off hexanoic acid from pot ale syrup with one 
having undergone secondary fermentation and the other 
not. The aim is to determine whether this secondary 
fermentation is financially favourable. There are several 
factors to consider here when designing a process like 
this. The equation of state and activity model used in our 
calculations and predictions is vitally important as this 
influences the binary interaction parameters and details 
how the system will behave and how different 
components will interact. Due to the high-water content 
of pot ale syrup LLE extraction is utilised within the 
separation process to reduce the volume of process fluid. 

Therefore, care must be taken in your choice of solvent 
and a recycle stream must be designed to allow for 
solvent recovery. Finally, the order of separation must be 
considered, and it should be determined if there are any 
other worthwhile components other than hexanoic acid 
to isolate for commercial sale. 
 

The process proposed within this report details the 
separation of hexanoic acid from fermented and 
unfermented pot ale syrup. We do not detail the 
evaporation of pot ale into said syrup or the actual 
fermentation process itself. Should you want to design 
this part of the process then you need to consider the 
extent of evaporation as a lower water content will 
reduce the cycle time within the fermenter but too low a 
water content results in a highly viscous fluid that is 
difficult to process. You also need to select the bacteria 
used for fermentation. In our case we are considering a 
water content of 85% by mass and bacteria that was 
chosen by the Biorenewables Development Centre 
(BDC) in York, UK. The identity of this bacteria is 
protected under a non-disclosure agreement. 
 
3. Methods 
All process simulations are done in Aspen Plus v11 
under the NRTL-HOC property model. 
 

3.1. Initialising design 
A continuous feed basis of 1000L/hr is assumed, as this 
is a reasonable amount of waste produced by a medium 
sized distillery [8]. Because fermentation is a batch 
process, a buffer vessel is installed to allow for 
continuous feed. The feed is at 35 ℃ and 1 atm and the 
mass composition table 3.1.1 was calculated from the 
acid concentration profile displayed by figure 3.1.1 at 
time t=0 and t»20 hours for cases 1 and 2 respectively 
along with the assumption of 85 wt% water content. 

 
Figure 3.1.1: Acid concentration profile with time spent 
fermenting [7] 

 
Table 3.1.1: Compositions of feed for both designs by mass   

 
Water Hexanoic Acetic Lactic Butyric Propionic 

Case 
1 (-) 

0.85 0.0062 0.0175 0.0667 - 0.0596 
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Case 
2 (-) 

0.85 0.071 0.051 0.019 0.009 - 

 
 

A preliminary separation design is started out via 
distillation, as this is the most used process for this type 
of mixture [9,10]. First results indicate that the 
separation is extremely inefficient due to the large water 
content and high process stream volume. 
 

3.2. Extractor design 
Liquid-liquid extraction was found suitable for 
removing water from a mixture of organic acids as found 
in literature precedents [11]. An adiabatic extractor 
using n-hexyl acetate solvent is simulated, and the 
number of stages is optimized through trial and error 
with respect to the amount of fresh solvent required to 
achieve at least 99%wt water removal.  
 

Three different extractants were modelled, two 
physical extractants, hexyl and nonyl acetate and one 
reactive extractant, trioctylamine (TOA) with 1-octanol 
acting as an active diluent. They were modelled in 
identical extractors and after considering aspects such as 
its extraction efficiency and ability to be recovered, 
hexyl acetate was deemed the most suitable. 
 

3.3. Distillation Column Design 
Distillation is firstly designed via a RADFRAC block 
with an arbitrary number of stages. The defining 
operating specifications are chosen to be the reflux ratio 
and distillate to feed ratio, both on a molar basis. Both 
are subsequently manipulated to meet a design 
specification of 99%wt hexanoic acid purity in the 
bottoms. Performance metrics are recorded (table 3.3.1): 
heating/cooling duty per amount of hexanoic acid 
produced, solvent recovery, hexanoic acid recovery. 
Afterwards, a sensitivity analysis is performed to find 
the minimum number of stages that maintains this 
performance. 
 
Table 3.3.1: Distillation column design and performance 
metrics 

Design 
No. of 
stages 

Reflux 
ratio 

Heating 
duty/mass 
of product 
[kWh/kg] 

Cooling 
duty/mass 
of product 
[kWh/kg] 

Solvent 
recovery 

[%] 

Hexanoic 
acid 

recovery 
[%] 

Case 1 18 1.5 4.31 3.81 96.9 98.5 

Case 2 20 2 0.72 0.59 97.4 99.9 

 
 

3.4. Recycle, Purger & Mixer Design 
The recovered solvent stream needs purging to prevent 
build-up of residual VFAs. Through trial and error, a 
split ratio of 5% is optimal amount able to converge the 
simulation whilst minimising loss of solvent. This 
recycle is mixed with the fresh solvent feed and fed to 
the extractor. 

 
3.5. Sizing Units 

Various methods were employed in sizing the units for 
our proposed design. First off, when sizing the buffer 
vessel the only important parameters are its volume, to 
facilitate a continuous feed of fermentation broth, and its 
diameter to height ratio, to ensure a stable and space 
efficient column. As the feed flowrate from the buffer 
vessel is already specified as 1,000L/hr, it was decided 
that a column with 10x the volume of this required feed-
rate would be suitable to ensure continuous flow. The 
columns volume was therefore specified as 10,000 L. To 
design a stable column it was decided to aim for a 
diameter to height ratio of roughly 1 < DT/HT < 1.2. Now 
by just specifying either the height or the diameter, the 
column can be sized. In this case a height of 7ft was 
selected resulting in a diameter of 8.01 ft. 
 

The extractor column was sized based off of its 
number of stages and stage efficiency. By assuming a 
stage efficiency, Eo, of 0.7 the actual number of stages, 
Nact, could be calculated using Eq. 1. 
 

"!"# =
"
$$
					$&. 1 

 
The columns height was then calculated through Eq. 2 
[12]. 

)% =
1.1"!"#*% −	*%

0.9 				$&. 2 
 
Where CT is the tray spacing and is assumed to be 0.5m 
(1.64ft), as specified by Aspen, and all length 
measurements are given in feet. By multiplying by a 
factor of 1.1, an empty space allowance of 10% for 
vapour disengagement and liquid sump has been 
accounted for. For this column of 5 stages, it equates to 
a height of roughly 18ft and lacking a predicted diameter 
from Aspen, one was set to be 5ft.  
 

The distillation column was designed in a similar 
way. Eq. 2 was again used to calculate the height 
however a factor of 1.15 was used instead of 1.1 to 
accommodate the increased vapour disengagement and 
liquid sump seen in a distillation column. Aspen 
predicted a diameter of 1.5ft, tray spacing of 2ft and 
again a tray efficiency of 0.7, leading to a column height 
of 62.43ft. 
 

Finally, the mixing and purging vessel were not 
specified by Aspen and lacked correlations to size them. 
All that is known is they both process roughly 1.5L of 
fluid an hour and therefore must be large enough to 
accommodate this flowrate. Both vessels are assumed to 
be negligible in price compared to the other three 
columns and therefore their exact sizing is not relevant 
to the economic model. 

 
 

3.6. Economic Analysis 
To build the economic model, several assumptions had 
to be made. It was first decided that a ‘harsh’ analysis 
was to be built with interest rates and other such costs 
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being overestimated to model a worst-case scenario. If 
this worst-case proved profitable it would mean that in 
actual practise the profit margins would be higher. 
 

To start off the model a 25-year lifetime was 
assumed. An operation time of 8000 hours per year was 
set. This is around the 10% allowance figure based on a 
365-day year and should provide sufficient downtime 
for the plant. It was then assumed that the project 
would be geared and fully financed by a loan with 
12% interest [13] and a target to pay off the principle 
and investment payments within 5 years. This target 
was set arbitrarily and is up to the company to decide. 
A location factor of 1.3 [14] was used to account for the 
plant being built in the UK. A linear depreciation of 
assets was assumed and finally a consumer price index 
of 5% [15], and tax rate of 25% [16] was used. 
 

To calculate the capital expenditures (CAPEX), 
correlations from Douglas [17] were utilised: 
 
!"#$%&&'(	*+#$	+,	*+&-."	#ℎ'&&

= 1&3
280 101.9:!

".$%%;!$.&$'(2.18 + >()			@A. 3	 
 

!"#$%&&'(	*+#$	+,	$C%D# = 1&3
280 4.7:!

".));*+,-.>( 			@A. 4 
 
Where M&S is the Marshall Swift index, used to update 
the correlation to today’s prices. A value of 1800 was 
used [18]. Fc is the cost factor and relates to the 
materials used, a value of 1 was selected corresponding 
to a carbon steel column [19]. The capital costs for the 
distillation columns condenser, reboiler and reflux pump 
were calculated within Aspen and an estimate of the 

mixer’s capital was made based off the prices of other 
similar vessels. 
 

The operating expenditures (OPEX) only stem 
from the distillation columns utility requirement as well 
as the cost of solvent. The column used cooling water 
for the condenser, high pressure steam for the reboiler 
and required electricity to operate the reflux pump. The 
respective requirements for these were calculated using 
equations 5 and 6. 
 

G+"('"#'C	HI@J
= −L( ∗ +N'C%$O"P	$O.' ∗ NCO*'	+,	*++&O"P	Q%$'C

G/,1,+23 ∗ ΔS1,+23 ∗ T1,+23
			@A. 5 

 

V'W+O&'C	HI@J = L3 ∗ +N'C%$O"P	$O.' ∗ NCO*'	+,	#$'%.
Δ;4,/

			@A. 6 

Where QC and QR are the heat duties of the condenser 
and reboiler respectively and were calculated by Aspen. 
∆T is the temperature difference of the cooling water, set 
to be 11.11 K by Aspen. Cp and r are the heat capacity 
and density of water respectively and finally ∆Hvap is the 
heat of vaporisation of water. 
 

Finally, to predict the revenue streams, a price of 
$2000/tonne hexanoic acid was used [7] and the cost 
hexyl acetate (solvent) was set as $4/kg [20]. 
 
4. Results 

4.1. Final Design 
The final design of both of our proposed processes is 
displayed by figure 4.1.1, where parameters relating to 
case 1 are displayed in blue and for case 2 in red. F 
represents the mass flowrate and x the mass 
composition. 

 
Figure 4.1.1: Process flow diagram for designs 1&2 (blue and red respectively) 
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4.2. Solvent selection 
Table 4.2.1 presents the performance of the modelled 
solvents, nonyl and hexyl acetate, and TOA with 1-
octanol. 
 
Table 4.2.1: Tested solvents performance. 

Solvent Nonyl Acetate 
(physical) 

Hexyl 
Acetate 
(physical) 

TOA – 1-
octanol 
(reactive) 

Distribution 
coefficient  
(-) 

0.999 0.999 0.975 

Solvent : feed 
ratio 

0.06 0.06 0.015 

Water leeching 
(wt%) 

1.35 0.58 0.75 

Recovery 
ability 

Challenging 
recovery 

Easily 
recovered 

Challenging 
recovery 

 
 

4.3. Sizing 
The estimated dimensions of each vessel are laid out in 
table 4.3.1:   
 
Table 4.3.1: Process unit design dimensions 

Process 
Unit 

Buffer 
vessel 

Mixer Extractor Distillation column Purger 
Case 1 Case 2 

Volume (L) 10,000 n/a ~10,000 ~3000 ~3300 n/a 
Diameter 

(ft) 
8.01 n/a 5 1.5 1.5 n/a 

No. of 
stages 

n/a n/a 5 18 20 n/a 

Tray 
efficiency 

n/a n/a 0.7 0.7 0.7 n/a 

Stage 
spacing (ft) 

n/a n/a 1.64 2 2 n/a 

Tangential 
height (ft) 

7 n/a 18.28 59.14 65.71 n/a 

 
4.4. Economics 

With the sizing of each unit complete the CAPEX can 
be estimated. Table 4.4.1 presents each units predicted 
capital based on Guthrie’s correlation from Douglas’ 
(Eq. 3 & 4), Aspen provided values and predictions 
based off similar sized vessels. 
 
Table 4.4.1: CAPEX for each unit and its constituents 

Unit Buffer Mixer Extractor Distillation Purger 
1 2 

Shell cost /$ 119,000 / 119,000 84,600 92,00
0 

/ 

Trays cost /$ / / 6,700 2,900 3,200 / 

Condenser cost 
/$ 

/ / / 55,000 54,80
0 

/ 

Condenser acc. 
Cost /$ 

/ / / 110,000 110,00
0 

/ 

Reboiler cost 
/$ 

/ / / 68,700 69,20
0 

/ 

Reflux pump 
cost /$ 

/ / / 29,500 29,40
0 

/ 

Total /$ 119,000 8,500 
[21] 

125,700 350,700 358,6
00 

n.a 

 
Table 4.4.2 provides the material and utility 

costs associated with the process. 
 
 

Table 4.4.2: Utility and raw material costs 

Cost of cooling water ($/m3) 6.46 [22] 
Cost of HP steam ($/kg) 0.0244 [22] 
Electricity cost ($/kWh) 0.0775 
Cost of hexyl acetate ($/kg) 4 

 
Using equations 5 and 6 along with the material 

prices outlined in table 4.4.2 the OPEX of each plant 
design could be calculated and is presented in table 
4.4.3. For the electricity charge, Aspen provided an 
electricity usage of 0.09 kW and a 20% ancillary service 
charge was accounted for. 
 
Table 4.4.3: Summary of OPEX of both designs 

OPEX Yearly charge ($/yr) 
Case 1 Case 2 

Raw materials 
(hexyl acetate) 

160,000 160,000 

Electricity 66.96 66.96 
Condenser 61,100 163,000 
Reboiler 6,300 17,800 

Total 230,000 350,000 
 

Finally, the revenue that can be expected is 
outlined in table 4.4.4. 
 
Table 4.4.4: Summary of the revenue to be expected for both 
designs. 

Design Hexanoic 
acid 
production 
rate (kg/hr) 

Hexanoic 
acid sales 
price 
($/kg) 

Yearly 
revenue 
($/yr) 

Ratio of 
yearly 
revenue 
to yearly 
solvent 
costs (-) 

Case 1 6.1 2 97,500 0.609 

Case 2 69.7 2 1,115,000 6.97 

 
With all the cash flows accounted for a full 

economic analysis over the 25-year lifetime could be 
produced.  
 

Presented in tables 4.4.5 and 4.4.6 are a 
summary of the expected cash flows for both case 1 and 
case 2 respectively. 
 
Table 4.4.5: Summary of cash flows for case 1 

Present Cash 
Flow 

-$1,600,000 Real AT 

NPV -$2,350,000 Real AT 
Present Value 

Cashflow 
-$2,200,000 Nominal AT 

NPV -$3,000,000 Nominal AT 
IRR n/a  
ROI -27%  
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Table 4.4.6: Summary of cash flows for case 2 

Present Cash 
Flow 

$4,000,000 Real AT 

NPV $3,250,000 Real AT 
Present Value 

Cashflow 
$6,300,000 Nominal AT 

NPV $5,550,000 Nominal AT 
IRR 103%  
ROI 68%  

 
Where AT stands for after tax, NPV for net 

present value, IRR for internal rate of return and ROI for 
return of investment. All calculations were done on 
excel and make use of the ‘NPV’ and ‘IRR’ functions 
within the programme.   
 

Figures 4.4.1 and 4.4.2 present the real 
cashflows after tax for case 1 and 2 respectively. 
 

 
Figure 4.4.1: Real cash flow over plant lifetime for case 1 

 

 
Figure 4.4.2: Real cashflows over plant lifetime for case 2 

 
5. Discussion 
There were several areas of research involved in the 
process design. Figure 4.1.1 presents the final flowsheet 
but does not show the finer details that went into its 
creation. First off, when simulating a process on Aspen, 
an accurate property model and Equation of State (EoS) 
must be selected to model how the systems components 
interact with one another. Furthermore, thought must go 
into the choice of solvent used to ensure an efficient 
separation and later recovery. Finally, the economic 
projection of each design must be accurately built to 
predict the cash flows over both plants’ lifetime, whilst 
also considering its limitations. The areas of research 
considered are discussed below. 
 
 
 

5.1. Property model 
The simulation results are fundamentally linked to the 
choice of property model. For polar or highly non-ideal 
systems, the “dual approach” [23] is used to choose the 
property model. This means that an activity model for 
liquid phases is used in parallel with an EoS that 
characterizes vapour fugacity. This way, both LLE and 
VLE applications can be modelled.  
 

After consulting guidelines for choosing 
property models that are supported by Aspen [24, 25], it 
was established that NRTL is the most suitable activity 
model. 

 
NRTL (Non-Random Two-Liquid model) is 

widely used in process simulations and can be trusted to 
accurately characterize non-ideality and thus is 
appropriate to model a system of volatile fatty acids 
(VFA’s) that have complex interactions due to their 
varying sizes and ability to hydrogen bond. The equation 
of the NRTL activity model, as developed by Renon and 
Prausnitz [26] is: 
 
ln [5 =

∑ ]6 6̂5_656
∑ ]._.5.

+` ]6_56
∑ ]._.6.

a^56 −
∑ ]7^76_767
∑ ]._.6.

b 			@A. 7
6

 

!!" = ##$!"%!" 			%&. 8 

Aspen Plus predicts α and τ using a regression (Eq. 9 & 
10) with parameters a, b, c, d, e, f, trained on the 
corresponding EoS databank. Ultimately, the values of 
these parameters direct the simulation results.  

)!" =	*!" +	
,!"
- +	#!" ln - +	0!"-			%&. 9 

2!" =	3!" +	4!"(- − 273.15)				%&. 10 

As discussed above, it is of great importance to also 
choose an adequate EoS. Hayden-O’Connell (HOC) 
equation of state is recommended for mixtures of 
carboxylic acids, as it can characterize the complex 
dimerization behaviour of short chain carboxylic acids 
(C2-C4) in the gas phase [27].  
 

In order to validate the choice of NRTL-HOC 
and to have a base of comparison, it was decided to 
investigate other equations of state. At the moment, 
Aspen does not fully support the implementation of 
other adequate EoS’s. This limitation is mitigated by 
outsourcing the VLE data via the state-of-the-art 
Clapeyron.jl package [28]. This open-source package 
provides access to numerous thermodynamic models, 
complementing Aspen. However, since it is still 
developing, Clapeyron.jl is lacking models for lesser-
known chemical substances. 
 

Other equations of state have been 
investigated: SAFT (namely PC-SAFT and SAFT γ-Mie 
variants) for their reported ability to handle a great 
variety of non-ideal compounds. Peng Robinson was 
also investigated, because it is also a widely used 
adaptation of Van Der Waals, this is less sophisticated 
but more user-friendly for simulations. SAFT γ-Mie is 
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also easy to implement thanks to the group contribution 
method making it applicable to any molecular structure. 
 

Having created NRTL models paired with the 
above equations of state, the VLE data is manually 
regressed in Aspen to compute binary parameter values 
and subsequently plot VLE envelopes. Table 5.1.1 
shows the predicted boiling points for each model. Some 
notable inconsistencies: PC-SAFT prediction for 
hexanoic acid is an outlier; SAFT gamma Mie model 
predicts abnormal boiling points for propionic and acetic 
acid (as well as acetate esters). This can be explained by 
the fact that the current implementation of this equation 
of state fails to account for the strong polarity of the 
methyl and methylene groups adjacent to the COOH 
group in short chain carboxylic acids [29]. Therefore, 
SAFT γ Mie was disregarded from further investigation. 
For the remaining models, there is a general good 
agreement, and the standard deviations are relatively 
low, thus the models are accepted. 
 
Table 5.1.1: Predicted boiling points from each equation of 
state to test their validity. 

 

Component 

Pure component boiling 
points [K] 

STD  
PR PC-

SAFT 
SAFT γ 

Mie 
HOC  

Lactic acid 485.571 - 476.76 490 5.5115 

N-
hexanoic acid 

477.82 405.34 476.50 478.85 0.9611 

N-
hexyl acetate  

443.82 444.25 444.26 444.65 0.3348 

N-butyric acid 435.59 - 435.72 436.42 0.3410 

Acetic acid 391.95 392.04 213.28 

 

391.05 0.4560 

Water 374.60 373.272 373.62 373.15 0.5805 

Propionic acid 413.68 - 202.94 414.32 0.32 

N-
nonyl acetate 

495.77 - 257.70 

 

497.1 0.67 

 
Isobaric (1 atm) VLE envelopes of each model 

for the relevant binary pairs have been superimposed 
and compared against NIST experimental data where 
available (figures 5.1.1 to 5.1.7).  

For some pairs, there is agreement between the 
different models (figures 5.1.1, 5.1.2), the diagram 
having similar shapes, and some curves even looking 
identical. For other pairs (figure 5.1.4) the NRTL-HOC 
model looks much different not only in terms of position 
in the Txy space but also in terms of convexity of the 
curves, which could be explained by the fact that only 

HOC EoS can characterize acetic acid’s dimerization 
behaviour. 

In the cases where the NRTL-HOC model 
predicted a visibly different VLE envelope, the HOC 
model had better agreement with experimental data 
(figures 5.1.3, 5.1.5, 5.1.7). Mean square error analysis 
yielded relatively low values: 0.018, 0.034, 0.013, 
respectively, showing that the NRTL-HOC model is a 
good fit for mixtures containing acetic and butyric acids. 

The influence of HOC on short chain acids is 
validated. Although there is not enough empirical 
evidence to totally validate NRTL-HOC, it is the most 
suitable approach currently. 

 

 
Figure 5.1.1: Hexyl acetate - hexanoic acid binary pair T-xy 
VLE for HOC and PR models superimposed. 

 
Figure 5.1.2: Hexyl acetate – acetic acid binary pair Txy VLE 
for HOC, PC-SAFT, PR models superimposed. 

 
Figure 5.1.3: Hexyl acetate – acetic acid binary pair Txy VLE. 
Experimental data plotted against NRTL-HOC model at 0.9 
bar. 

86



 
Figure 5.1.4: Acetic acid – water binary pair Txy VLE for 
HOC, PCSAFT, PR models superimposed. 

 
Figure 5.1.5: Acetic acid – water binary pair Txy VLE. 
Experimental data plotted at atmospheric pressure plotted 
against NRTL-HOC model. 

 
Figure 5.1.6: Butyric acid – water binary pair Txy VLE for 
HOC and PR models superimposed.  

 
Figure 5.1.7: Butyric acid – water binary pair Txy VLE. 
Experimental data at atmospheric pressure plotted against 
NRTL-HOC model. 

5.2. Solvent selection 
As previously stated, hexyl acetate was selected as the 
solvent for the LLE extractor. Solvent selection is an 
important aspect of any design as it determines the 
recovery of your desired product. Several aspects need 
to be considered when selecting your solvent including, 
its distribution coefficients, its extraction efficiency, and 
its ability to be recovered. 
 

All 3 solvents demonstrated high distribution 
coefficients allowing for almost 100% recovery of 
hexanoic acid as shown in table 4.2.1. Although, the 
TOA-octanol solvent had a slightly lower recovery of 
hexanoic acid, it displayed far better extraction 
efficiency due to its much lower solvent to feed ratio. 
This would suggest that this is the best choice, however 
when it came to recovering the solvent it displayed poor 
separation from the hexanoic acid. This is due to the 
strong complexation that occurs as a part of the reactive 
extraction [30]. Furthermore, as octanol is considered an 
active diluent, it is able to hydrogen bond with 
carboxylic acids which contributes to the improved 
extraction yet also leads to worse solvent recovery. Poor 
solvent recovery leads to a lower purity product as well 
as a higher raw materials cost and thus the TOA-octanol 
was disregarded. 
 

Nonyl acetate was also disregarded for a 
similar reason, when the solvent recovery column was 
designed it appeared that this solvent had a very high 
affinity for hexanoic acid [11] and therefore presented a 
challenging separation that would require multiple 
distillation columns and a high capital investment. The 
poor recovery could also be a result of the higher levels 
of water leeching associated with nonyl acetate. 
 

Hexyl acetate however demonstrated efficient 
extraction and was easily recovered downstream and 
thus it was chosen as the solvent. 
 
 

5.3. Economics 
As is immediately evident from figures 4.4.1 and 4.4.2 
along with tables 4.4.5 and 4.4.6, case 1 is not a 
financially acceptable endeavour. At no point in the 
entire lifetime are any profits to be expected. This can 
be explained by the ratio of yearly revenue to yearly 
solvent costs as presented in table 4.4.4. This is a ratio 
of income to expense and thus the only way a profit 
would be seen is if this value is >1. Furthermore, this 
ratio does not account for capital and utility costs and 
thus the fact that for case 1, with a value of ~0.6, there 
is no opportunity to make a profit even though it has a 
lower utility requirement and thus operating costs.  
 

Case 2 however is much more promising and 
shows that fermentation of the pot ale syrup is necessary 
for the plant to be profitable. In the first year due to 
capital expenditures a loss of roughly $400,000 can be 
expected but in subsequent years a profit can be 
expected of roughly $600,000 a year, after the P&I 
payments have been repaid in full. Over the whole 
lifetime an ROI of 68% and IRR of 103% can be 
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expected for this specific design, and therefore it is 
considered a worthwhile investment. 
 

As mentioned, case 1 had a lower associated 
OPEX at roughly $230,000 a year compared to 
$350,000 a year for case 2, as shown in table 4.4.3. This 
is due to the lower utility requirement of case 1. The 
distillation column designed was able to reach the same 
desired recovery and purity of hexanoic acid as case 2 
with a lower reflux ratio. This results in lower reboiler 
and condenser heat duties being observed, and thus less 
cooling water and high-pressure steam is needed. The 
distillation column is the only process unit that require 
utility and is the only source of the varying OPEX. 
Similarly, it is the only source of a difference in CAPEX 
between designs. For case 1, the column could be built 
with slightly fewer stages and thus is smaller and has a 
lower installed shell and tray costs. Again, as all the 
other units like extractor and buffer vessel had the same 
design between cases, their CAPEX remains constant 
between the two scenarios. This only results in a column 
roughly $10,000 cheaper to build but as stated above is 
inconsequential to the suitability of case 1 due to the 
ratio of yearly income vs solvent costs being <1. 
 

There are some limitations to the economic 
projection presented that result in an overestimate of 
cashflows. First off, due to a lack of necessary data, a 
full cash cost of production could not be estimated. 
Fixed costs of production such as labour or maintenance 
costs were unknown and thus left out of the model (some 
fixed costs such as taxes were included). The operating 
expenditures presented are the variable costs of 
production such as utility and raw material prices. 
Furthermore, the cost of the fermentation unit associated 
with case 2 has not been included as this was designed 
by the BDC in York, UK and details of its design are 
protected under a non-disclosure agreement. All of this 
will result in an actual ROI and IRR lower than what has 
been presented. However, due to their magnitude it is not 
expected that these extra expenses will result in a 
negative return. Typically, annual ROIs of 7% or higher 
are considered a good investment [31]. 
 
 
6. Conclusion 
This report designed two scenarios of a separation route 
for hexanoic acid from bio-based distillery waste and 
conducted a techno-economic analysis to support design 
choices. Research was conducted to validate simulation 
results and to identify n-hexyl acetate as the best solvent 
for liquid-liquid extraction due to its efficient capability 
at extracting hexanoic acid as well as later recovery from 
said acid. After having planned a preliminary flowsheet, 
simulations were run numerous times to find and obtain 
the optimal design specifications: number of stages in 
the separation units, reflux ratio in RADFRAC, 
percentage of purge stream, solvent make-up and 
recycle configuration. The equipment was mapped 
according to industry standards, either provided by 
Aspen or discovered in literature, and costing was 
computed through correlations commonly used in 

academia. NRTL-HOC was found as the current most 
suitable property model available on Aspen. 
 

The results clearly show that case 2 is more 
financially sensible, producing larger amounts of 
hexanoic acid at a negligible increase in both capital and 
operating expenses. This is the profitable design, with an 
estimated rate of return of 68% over the plant’s 25-year 
lifetime. A negative net cash flow will be seen in the first 
year due to the initial capital investment however this is 
offset in subsequent years as the profits substantially 
outweigh the expenses. Real-life implementation of this 
process would provide whisky distilleries with a diverse 
income stream and improve on their financial growth as 
it converts an underutilised waste product into a 
valuable throughput. 
 

Going forward the design can be further 
developed to generate a more accurate economic model. 
The fixed costs of production such as labour or 
maintenance should be accounted for as this will give a 
better representation of cash flows. Furthermore, better 
estimates are required for the mixing and purging units 
as currently their capital is either not accounted for or a 
rough estimate. For the process simulation on Aspen, 
SAFT type property models should theoretically predict 
more accurate component interactions. However, before 
this can be implemented, a wider range of components 
need to be modelled within its database – this can be 
done on the property package, Clapeyron.jl. Finally to 
just improve the process as a whole, it could be 
redesigned to also isolate the other fatty acids present in 
the fermentation broth and thus generate a more diverse 
income stream. 
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Abstract

The rate at which plastic waste is accumulating in landfills is posing a significant threat to ecosystem and human health.
The use of chemical recycling for the treatment of post-consumer plastics has become increasingly popular, including
hydrogenolysis, favoured for its mild operating conditions and valuable products. In this report, a hypothetical industrial
hydrogenolysis process is designed and analysed. Aspen HYSYS is used to design and model a converged flow-sheet
before both a techno-economic analysis (TEA) and a life cycle assessment (LCA) are carried out. Both assessments help
determine the feasibility of the scaled-up process and how its performance might compare to current end-of-life pathways,
including other chemical recycling technologies. The results demonstrate that the scaled-up hydrogenolysis process is
profitable overall with a positive NPV of $120.5 million. A cost of $0.46/kg of polypropylene feed and a break-even
price of $0.74/kg of polypropylene were determined. The LCA demonstrates that the proposed design has a significantly
lower environmental impact than current recycling processes, particularly concerning human health and resource depletion.
However, certain areas of the process require investigation and improvement, from the high capital cost to the low readiness
level and uncertainty surrounding the performance at scale. These limitations are discussed in the paper.

Keywords: Hydrogenolysis, Polypropylene, Chemical Recycling, Circular Economy

1 Introduction

Annually, approximately 400 million metric tonnes of syn-
thetic polymers are produced worldwide [1] with polyolefins
such as polyethylene (LDPE) and polypropylene (PP) ac-
counting for roughly 60% of the global plastics [2]. These
polyolefins have low recycling rates due to strong C–C bonds
which make them di�cult to break down [2]. Primary
recycling of plastics typically occurs through mechanical
recycling which despite being comparatively cost-e↵ective,
results in the contamination and degradation of the plastic
(downcycling) making it ultimately unsustainable [3]. In
any case, currently only approximately 18% of plastics are
recycled, leaving 24% to be incinerated and 58% sent to
land-fill or discarded [1]. The continuous production and
accumulation of plastic waste results in a sustained loss of
resources and poses a serious threat to the environment and
human health; for instance through the formation of harmful
microplastics which are dangerous both when ingested or
upon entering ecosystems[4].

As a result, chemical recycling methods have gained
attention for their ability to transform polyolefins into
valuable products that can then be re-integrated into a range
of industrial processes [5]. Thermal cracking and pyrolysis
are currently popular examples of chemical recycling but
are limited by their high operating temperatures (400 �C to
900 �C) and poor product selectivity [5]. Hydrogenolysis is
promising as it not only produces high-value products but
has been shown to operate in a milder temperature range of
200 �C to 300 �C [6].

Hydrogenolysis uses a metal catalyst and high-pressure

hydrogen to cleave the C–C bonds in the polymer chains to
break them down into shorter hydrocarbons. In the case
of polypropylene, alkanes of varying lengths are formed.
Catalyst selection is therefore crucial in process design and
determines reaction conditions, kinetics and degradation
time [7]. Noble metal catalysts are particularly favourable
for hydrogenolysis, particularly platinum (Pt) and ruthe-
nium (Ru) based catalysts [6]. Pt-based catalysts perform
very well in thermal cracking reactions but fail to e↵ectively
break the C-C bonds at low reaction temperatures without
added acid sites [7]. Ruthenium catalysts are currently being
investigated as a cheaper alternative, operating at 200 �C
to 250 �C whilst still producing promising distributions
of useful products. The Rosseinsky catalyst group at
the University of Liverpool demonstrated that a Ru/CeO2

catalyst could produce large yields of useful alkanes from
polypropylene waste, with an enhanced selectivity towards
liquid alkanes. Thus, suppressing excess methane generation
which to date has been a common problem of plastic
hydrogenolysis [6].

This report aims to take hydrogenolysis at its low readi-
ness level and to assess its viability as a plastic treatment
process. To achieve this, the process is scaled up to
meet pre-defined plastic treatment goals by extrapolating
experimental data to create a flow-sheet in Aspen HYSYS
V11. The approach in this report is ”best-case” and uses the
highest conversion achieved at laboratory-scale conditions
that is realistic at scale. The distribution of products is
modelled based on the laboratory data from the Rosseinsky
group at the University of Liverpool [6], supplemented by
data from a literature review. A comprehensive techno-
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economic assessment (TEA) is carried out using data from
both literature and the HYSYS model, and a comparative
life cycle analysis (LCA) is carried out to analyse the
environmental impact of the hypothetical industrial process.
Both analyses aim to evaluate the feasibility and sus-

tainability of the final flow-sheet. In the TEA, capital
expenditure (CAPEX) and operating expenditure (OPEX)
values are calculated to determine the Net Present Value
(NPV) and investigate the profitability of the process. The
cost to produce 1kg of polypropylene and the polypropylene
break-even price is also calculated in the economic assess-
ment. The CAPEX is then compared to other chemical
recycling technologies to assess the initial costs. In the LCA
analysis, the ReCiPe 2016 method [8] is used in OpenLCA
to compare hydrogenolysis to the common recycling meth-
ods of incineration and landfill, assessing the performance
of each process against common environmental indicators
and identifying key problem areas. This paper aims to
lay out a comprehensive model whilst acknowledging the
limitations that call for further research; suggestions for
intermediate investigations and pilot-scale experiments are
laid out throughout and summarised in the outlook.

2 Background

With growing discourse on the advantages of chemical
upcycling and its ability to produce various value-added
products [3], hydrogenolysis has gained attention as a route
to transform plastic waste into valuable chemical feedstocks,
contributing to a circular economy. Hydrogenolysis com-
petes with several types of chemical recycling at di↵erent
stages of development. Some methods are non-catalytic,
generally operating at higher temperatures, these include
pyrolysis, hydrothermal liquefaction and gasification [9].
Others also involve catalysts, for example, hydrocracking,
which operates at lower temperatures and uses hydrogen
at high pressure and a noble metal catalyst, making it
similar to hydrogenolysis [10]. Crucially, hydrogenolysis can
be conducted under relatively mild conditions, minimising
energy consumption and associated environmental impacts
in comparison to other chemical recycling methods [11].
Recent literature on the hydrogenolysis of plastic waste

predominantly involves laboratory-scale experiments explor-
ing catalytic mechanisms and assessing their impacts on the
hydrogenolysis process [7]. They also explore the optimisa-
tion of laboratory conditions, comparing the e↵ectiveness of
the di↵erent set-ups [12]. However, there is limited informa-
tion regarding the scalability of the reaction mechanism and
no existing design of an industrial hydrogenolysis process.
Despite its promise, the hydrogenolysis of plastic is

complex and challenging. Catalyst development, selectivity
of the reaction towards desired products and the behaviour
at scale are among the key areas for investigation and im-
provement. Additionally, understanding the environmental
and economic impact of a large-scale hydrogenolysis process
are vital for the widespread adoption of this technology and
for informing the policy and investment decisions that must
be made with the implementation of a novel technology.
One research group working on the development of

hydrogenolysis is the Rosseinsky catalyst group at the
University of Liverpool which in 2023 conducted a study on
hydrogenolysis of polypropylene at a laboratory scale under

batch conditions [6]. Results from the cited paper were
supplemented with literature data to form the foundations
for this report. The Rosseinsky group carried out a range
of tests on polypropylene hydrogenolysis involving di↵erent
catalysts and varying temperatures to investigate conversion
and catalytic properties. Data from these experiments are
used in the modelling in this report, taking into account that
the process is at a low readiness level.

3 Methodology

3.1 Process Design

3.1.1 Overall Design

The basis for the analysis was the flow-sheet developed on
Aspen HYSYS which models an industrial-scale hydrogenol-
ysis process. Some basic parameters were derived from lab-
oratory data, such as the conversion (90%) and the process
conditions within the reactor (220�C, 30 bar Hydrogen) [6].
Specific design goals were established, including the ability
to process 25 kilo-tonnes (kt) of polypropylene yearly to
align with a comparable assessment of chemical recycling
technologies [9], 8000 hours of operation based on guidelines
for life-cycle cost analysis [13] and purity of useful product
of above 95% as a first pass.

A hypothetical solid was modelled in HYSYS to represent
polypropylene, defining the molecular weight, the density
and the heat of formation from the Polymer Handbook [14].
The products were grouped according to standard crude
oil fractions and the midpoint properties of the class were
used to define the class, based on a similar methodology
found in previous reports [15]. The Rosseinsky group paper
contains product yield ranges for the hydrogenolysis reaction
[6] which were used to estimate the product distribution,
finding average product yields for the conditions selected.
Additional data was obtained from the Rosseinsky group
to facilitate the estimation of the product splits and this
was verified against data from previous hydrogenolysis
experiments such as that carried out by Wang et al. [2].
The distribution used is summarised in table 1. The Peng-
Robinson fluid package was chosen for its general accuracy in
determining phase equilibria for a range of substances given
the phase transitions in our reactor, as well as its wide usage
in the oil and gas industry [15].

Table 1: Chosen product splits for the hydrogenolysis reactor
estimated from literature data

Product Percentage

Light Gases 22.0%
Gasoline 13.2%
Kerosene 19.8%
Diesel 29.8%

Waxes and Lubricants 15.3%

3.1.2 Reactor Design

The reactor is modelled as a simple conversion reactor in
HYSYS as in similar studies [9]. The kinetics of the reaction
have not been investigated so the reaction equations mod-
elled on HYSYS were designed to represent the distribution
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of products found in the literature. Hydrogen consumption
was estimated from the equivalent stoichiometric amounts
of hydrogen needed for the separation into each product
class. By creating a representative balanced stoichiometric
reaction in HYSYS the reactor was designed to consume re-
actants and generate products at ratios proportional to those
at the laboratory scale, providing a first-pass prediction
for reaction behaviour. For costing purposes, the reactor
was sized as a gasification reactor, which has previously
been applied in waste treatment [16], as laid out in section
3.2. This provides an order of magnitude estimate for the
cost, but would undoubtedly be further refined in advanced
reactor design.
Note that several types of reactors could be considered

in this process. Agitation, even heat distribution, ability to
withstand pressure increases and ability to handle viscous
mixtures are key requirements. Spinning basket or screw
feeder reactors are commonly used in high viscosity appli-
cations [17], whereas a fluidised bed would provide e↵ective
contact between the gaseous and solid reactants. Further
knowledge of kinetics would inform whether a cascade is
desirable. Currently, the data available is insu�cient to
ascertain which of these options would be ideal. Specific
reactor design is therefore not only beyond the scope of this
report but it also not necessarily useful given that any design
would largely be lacking the core engineering data required,
it is, therefore, important to emphasise these knowledge gaps
to work towards a robust intermediate scale, this is further
addressed in the discussion (Section 4.1.1).

3.1.3 Separation Design

The order of the distillation train is based on standard
heuristics to minimise the di�culty of each separation. Light
gases are separated o↵ first as the di↵erence in boiling point
is the largest. The di↵erence between gasoline to kerosene
and diesel to lubricants is small, but gasoline has a molar
flow of approximately three times that of the lubricant flow,
so this separation is prioritised, subsequent separation order
is also based on boiling point di↵erences. Aspen HYSYS is
used to design each column, using the shortcut column to
estimate the column sizing before fine-tuning it in the flow-
sheet. The final separation train is presented in Appendix
1.
A component splitter is used to remove the remaining

solid polypropylene after the reactor. By decreasing pressure
and temperature after the reactor, most of the hydrogen
produced can be flashed out, which decreases the overall
energy requirement and makes the separation train easier
to converge. A component splitter is also used to model a
pressure swing adsorption (PSA) in the HYSYS flow-sheet
as HYSYS can not handle non-steady state operations, this
PSA is modelled to have 82.5% separation of Hydrogen as
the midpoint of the range for typical hydrogen PSA [18].

3.1.4 Recycle and Purge and Conditions

Both the hydrogen and polypropylene were recycled to min-
imise waste and improve the economic and environmental
feasibility of the process. Purge streams were added to both
recycle loops to mitigate the build-up of impurities, maintain
process e�ciency and ensure the quality of products. The
hydrogen obtained after the PSA was of high purity, thus a

purge of 1% was deemed su�cient, whereas due to the large
uncertainty of the quality and nature of the polypropylene
recycle, a purge of 10% was used as an estimate.

3.2 Heat Exchanger Network

Conditions are moderated in the process using compressors,
turbines, coolers and heaters to make separations easier
and to meet the reaction conditions. These were designed
and implemented in HYSYS. Aspen Energy Analyzer is
used to analyse net heat and cooling duty and to design
a heat exchanger network using Aspen’s in-built utilities.
Multiple designs are simulated in Aspen Energy Analyzer
but the design with the biggest energy savings and lowest
cost is chosen. Conventional and readily-available utilities
are prioritised.

3.3 Techno-Economic Analysis

3.3.1 Costing and Economic Analysis

A techno-economic analysis (TEA) is used to assess the
feasibility of the hydrogenolysis flow-sheet. Aspen Economic
Analyzer V11 is used to obtain CAPEX values for all process
equipment besides the PSA and the reactor which are sized
and costed using methods found in literature. The PSA
unit is sized and costed as a packed bed pressure vessel
using the Guthrie method [19]. The reactor is costed with a
gasification reactor correlation which is scaled based on the
dry solid feed to the reactor [20]. This method is chosen
because the solid polypropylene reactor feed rate can be
modelled more accurately than the residence time, favouring
this correlation over others considered. A comprehensive
description of the sizing and costing of each unit and
associated economic assumptions can be found in Appendix
3.

The catalyst Ru/CeO2, from the Rosseinsky group paper,
is di�cult to cost due to the catalyst being prepared in
the laboratory and therefore not being directly purchasable.
In the experimental set-up of the Rosseinsky paper, the
catalyst mass is 5% of the polymer mass [6], it is uncertain
how this would scale or how the specialised catalyst could
be produced industrially. For estimation, a cost heuristic
was used based on a previous TEA [9], assuming that
the ratio of the catalyst cost would be comparable given
the similarity of the experiment which used ruthenium
on platinum/tungstated zirconia as the catalyst in the
hydrogenolysis reactor, operating at 250�C and 30 bar. This
allows for an estimation of the proportional cost of the
catalyst despite the significant uncertainty surrounding the
eventual industrial catalyst. Using the cost correlation, the
catalyst is calculated to be 18% of the total reactor cost.

All capital costs are updated using the Chemical En-
gineering Plant Cost Index (PI) [21]. For data acquired
from HYSYS and for the PSA unit, the PI from 2019 to
2023 is used, whereas for the reactor the PI from 2014 to
2023 is used to align with the current economic market.
OPEX values are also derived from HYSYS, thereby taking
into account the heat integration results and utilities. The
remaining capital costs and annual costs are calculated as
functions of the HYSYS and custom data. These include
contingency fees, labour, depreciation, taxes, insurance,
general administration, research and development. The
labour costs are calculated assuming an average salary
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of $65,000 [22] and that the facility runs on a four-shift
schedule with one set of workers per shift. The number
of workers required to operate the plant is determined using
Perry’s coe�cient [23]. An in-depth calculation for labour
and other annual costs can be found in Appendix 4.

3.3.2 Profitability Analysis

The profitability of the process is assessed through the
calculation of the Net Present Value (NPV), a positive NPV
suggests the investment is financially viable and anticipated
to yield a higher return than its expenses. A cost per
kilogram of polypropylene feed is also calculated, using
CAPEX, OPEX and total kilograms of solid polypropylene
fed to the system annually. To determine the price at which
polypropylene must be purchased to attain a Net Present
Value of zero, the break-even point for the chosen design is
investigated. The break-even point and price per kilogram
are important indicators that enable the comparison of
hydrogenolysis to similar technologies for the treatment of
polypropylene.

3.3.3 Chemical Recycling Comparison

There is inconclusive information regarding which recycling
method has the most overall promise, but some initial cost
indicators have been calculated. HYSYS CAPEX values
taken from the supplementary material of the Hernandez et

al report [9] are used to evaluate hydrogenolysis relative to
emerging ”competitors”. From there, the same capital cost
correlations used on the hydrogenolysis data are applied to
the literature data to ensure consistent results. Understand-
ing the upfront investment required helps assess whether the
project is financially viable and whether it can ultimately
generate a satisfactory return on investment whilst also
highlighting areas for potential improvement.

3.4 Life-Cycle Assessment

LCA is employed in this study to assess the environmen-
tal impact of the process designed, particularly relative
to similar plastic recycling processes. The ReCiPe 2016
Endpoint method [8] is used on OpenLCA to quantify the
impacts of a given process using 18 indicators which are
subsequently grouped into three impact areas: damage to
human health, damage to ecosystem quality and damage
to resource availability. The functional unit is 1 kg of
polypropylene processed and the scope of the study was end-
of-life treatment. Data is obtained from the comprehensive
Ecoinvent v3.6 database [Ecoinvent]. Results from the
LCA are analysed to compare di↵erent waste treatment
methods to identify ’hotspots’ of environmental impact and
therefore areas for improvement. Using only data from
Ecoinvent minimised issues around data integration.
The ReCiPe method can be applied through three

’cultural perspectives’, the ’hierarchist’ framework was se-
lected, as it is commonly encountered in similar scientific
models mainly due to it aligning closely with the timescale
of policy development processes. Ecoinvent does not contain
a process flow for hydrogen production such that water
electrolysis was simulated using water and electricity in-
puts. The rest of the inputs and outputs for this process
including utilities can be found in the Ecoinvent database.
Incineration and landfill of polypropylene are also modelled

in OpenLCA by adapting processes defined on the Ecoinvent
database for validation and relative impact analysis.

For comparability, the impacts are converted from the
endpoint units in the ReCiPe method into equivalent mone-
tary values using the externalities monetisation method laid
out in Dong et al. [24]. The Dong et al. paper converts
the metrics to 2003 Euros, such that the metrics are first
converted to 2003 US dollars using data from the OECD
[25] and subsequently converted to 2023 US dollars using
data from the Bureau of Labour Statistics [26].

Table 2: Conversion factors from ReCiPe environmental impact units
to $2023

Impact
Category

Result €2003 $2023

Human
Health

DALY 7.40� 104 1.40� 105

Ecosystem
Quality

Species.yr 9.50� 106 1.79� 107

Resource
Availability

$2013 N/A 1.32

4 Results and Discussion

4.1 Process Design

4.1.1 Process Overview
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Figure 1: Process flow diagram of designed hydrogenolysis process
for treatment of polypropylene waste

The process flow diagram in Figure 1 depicts the main
functions of the designed process as described in Section
3, a complete flow-sheet can be found in Appendix 1.
Table 2 contains the key process indicators obtained from
the HYSYS flow-sheet. The high conversion and carbon
e�ciency are a result of the small purges, a high reac-
tion conversion and all the products being useful alkanes,
however, it is important to emphasise here that this is a
best-case scenario and it is likely that in the final process,
there will be more impurities, that the splits will not be
as ideal and that the catalyst will vary, all of which would
lower these indicators and would have to be accounted for in
future iterations. At this stage, a significant error margin is
expected, the priority of this work is to develop a framework
that can be fine-tuned with more inputs as described in the
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introduction. Note also that the natural gas purity is lower
due to the presence of the hydrogen from the incomplete
separation in the pressure-swing adsorption, the further
processing of products was beyond the scope of this project
but this stream could either be further separated or sold as
low-quality natural gas.

Table 3: Key process technical indicators of hydrogenolysis of
polypropylene waste

Indicator Result

Polypropylene Conversion 99.5%
Carbon E�ciency 98.6%
Work Requirements 0.383 MW
Energy Consumption 3.94 MW
Natural Gas Purity 80.2%
Gasoline Purity 99.9%
Kerosene Purity 99.9%
Diesel Purity 99.9%

Lubricants Purity 99.6%

Before implementation at any scale nearing the hypothet-
ical scale presented in this paper, extensive research must be
conducted into several aspects of the process. More informa-
tion on kinetic data and the reaction mechanism is required
to predict behaviour at scale. In addition, the catalysts used
by the Rosseinsky group are shaped catalysts produced on-
site using raw materials obtained from Sigma Aldrich [6],
the final catalysts are therefore not available commercially
so catalyst preparation would have to be adapted to a
large-scale supply chain. Also, more information is required
regarding the material properties within the reactor which
are especially relevant given that there is a solid-to-gas-and-
liquid transition and that the reaction temperature is above
the melting temperature of polypropylene [14]. The current
residence time at laboratory-scale conditions investigated in
this paper is 16 hours [6], although this would change at scale
with optimisation and catalyst improvement, it introduces
significant uncertainty which should be addressed by kinetic
modeling and pilot-scale experiments. Dichloromethane,
which has a range of associated health risks [27], is often
used to clean the vessel in the laboratory post-reaction and
would have to be substituted before implementation at scale.
In summary, experiments at laboratory scale and pilot scale
are needed to provide a more comprehensive view of the
scale-up behaviour which will enable realistic process design.

The data obtained are important as order-of-magnitude
predictions are a key objective of this project. However, de-
spite HYSYS allowing flexibility in design, time constraints
meant that there was a limit on the number of configurations
that could be tested, for example, a full sensitivity analysis
of this design or future designs could help identify improve-
ment areas. There are also some limitations to this software,
although HYSYS produces a robust high-level model, other
modelling methods such as computational fluid mechanics
or density functional theory could be used to give a more
granular understanding of the molecular-level mechanisms
of hydrogenolysis as has been done for comparable processes
such as hydrocracking [28], this would supplement large-
scale investigations such as this one, giving the modelling
a more interdisciplinary perspective, therefore, making it
more capable of preempting issues in the process.

4.1.2 Heat Integration

Table 4: Industrial hydrogenolysis process heating and cooling duties

Heat
Integration

Heating
Duty (MW)

Cooling
Duty (MW)

Before 1.65 3.56
After 0.94 3.00

Energy Analyzer calculates a net heating duty of 1.96
MW and a net cooling duty of 3.56 MW. Despite favouring
conventional and readily available utilities, fired heat is
required to meet the highest reboiler temperatures in the
columns which went up to 478.5�C. The cooling duties
are supplied by cooling water and the rest of the heating
and cooling duties are provided by exchange with other
process streams. The largest heat duty was from the heater
directly before entering the hydrogenolysis reactor and also
the reboiler in column three which account for 32% and 36%
of the total heat duty respectively. The largest cooling duty
is from the hydrogenolysis reactor which accounts for 43% of
the total cooling duty. Heat integration reduced the heating
duty to 0.94 MW and the cooling duty to 3.00 MW as shown
in Table 4. Appendix 2 provides a detailed explanation of
the heat integration used and details the exact changes. The
integrated network uses 18 heat exchangers with a total area
of 194.7 m2. Data from Aspen Energy Analyser suggest that
the integrated network will save $109,500/yr and reduce
heat and cooling duty demand by 21%. From this, the
amount of cooling water was estimated using the correlation
in Turton’s textbook [29] to inform the LCA and costing.
Further investigation should be done to minimise the use of
fired heat as combustion is not a sustainable way to heat
a system and is detrimental to the environmental impact
of the process as further discussed in section 4.3. If it is
not possible to eliminate fired heat, the light gases from
hydrogenolysis could be used for energy recovery similar
to other chemical recycling processes such as gasification
[9]. This would not only reduce the environmental impact
associated with acquiring the fuel for fired heat but also
reduce the costs of the process overall.

4.2 Economic Assessment

4.2.1 Capital Investment Cost

Summing the working capital and total fixed capital costs
gives a total capital expenditure for the industrial process
of $34,000,000. The total fixed capital costs include process
capital, general plant capital (15% of process capital) and
contingency costs (25% of the fixed capital cost) [19]. In
this model, the working capital only includes adjuvants such
as the initial catalyst cost, it does not include accounts
receivable or inventory. The total capital cost breakdown is
depicted in Figure 2, and in-depth calculations can be found
in Appendix 5. As expected, the largest process capital cost
comes from the compressors at 42%, given that compressors
are one of the most expensive pieces of equipment in a
plant operation. Also, since the process requires gas as
a reactant, multiple compressors are needed to get the
hydrogen to reaction conditions. The reactor cost is also
a large percentage of the capital cost (32%), polypropylene
hydrogenolysis reactors would undoubtedly be complex as
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discussed in section 4.1 and there is no research on an
industrial design. Additional column internals would likely
be needed to handle the solid plastic similar to a screw-
feed gasification reactor device [30]. The hydrogenolysis
reactor operates at a comparatively high pressure (30 bar)
so it would be costly to find specialized material capable of
withstanding these conditions. Also, hydrogenolysis relies
on a heterogeneous catalyst, so the reactors must be built
to allow for the introduction and regeneration of catalysts,
which adds to the total complexity and cost. In summary,
the customisation of this reactor is ultimately the reason for
the larger capital cost contribution.

Figure 2: Capital cost breakdown of hydrogenolysis process

4.2.2 Total Manufacturing and Annual Expenses

Adding the total manufacturing costs to additional annual
charges gives total annual expenses for the industrial process
of approximately $9,707,000. The total manufacturing
cost includes maintenance, depreciation, labour, taxes and
insurance, waste disposal and utility costs [19]. Summing
these expenses gives a manufacturing cost of approximately
$8,072,000. It was estimated that the maintenance cost is
2.5% of process capital cost and taxes and insurance are 3%
of the total capital expenditure. Additionally, depreciation
was worked out to be 6.67% of the total capital investment
cost. Other annual expenses include general administration
and research and development, which are both assumed to
be $10,000/year [19]. The total annual expenses breakdown
is shown in Figure 3, this methodology and estimations are
based on Systematic Methods of Chemical Process Design

[19] and full calculations can be found in Appendix 5.
Labour is the highest operating cost due to the number

of distillation columns and the fact that Perry’s coe�cient
method [23] used to calculate labour costs gives a larger
weighting to distillation columns, necessitating a greater
number of people. Also, the other operating costs for the
process are relatively small thus labour constitutes a larger
proportion; the utility costs for the process make up only
5% of total costs due to the process operating at mild
conditions and the use of heat integration which decreases
the total heat duty by 21%. Feedstock cost is not large as the
only feedstock purchased is hydrogen and the cost of waste
polypropylene is considered negligible. It is also assumed
that the cost of pre-treatment and separation to get the

polypropylene to reaction conditions is met by the gate fees
companies would pay to have their plastic waste recycled.
The waste cost is also a small portion due to the process
only requiring two small waste streams; one hydrogen purge
stream and one reactor polypropylene waste stream.

Figure 3: Operating cost breakdown of hydrogenolysis process for the
treatment of polypropylene waste

It would be beneficial to compare the calculated OPEX to
other recycling methods, but this risks inconsistent results
as di↵erent reports use di↵erent costing methodologies and
correlations. Data consistency is important along with data
quality, in future, it would be useful to carry out a standard-
ised study of OPEX costs for chemical recycling technologies
using a pre-determined methodology for reliable comparison.
Consistent data is currently not available in the chemical
recycling literature and this investigation was beyond the
scope of this report.

4.2.3 Revenue

The sources of revenue are light gases (methane to pentane),
diesel, gasoline, kerosene, wax, and lubricants from the
various distillation columns, amounting to a total revenue
of $33,600,000. Kerosene produces the most revenue, con-
tributing $18,000,000 to the total. The detailed calculations
for the revenue value can be found in Appendix 5. The light
gas stream is costed as natural gas as although the stream
contains 18.2% hydrogen, the heating value is 50,000 kJ/kg
which is similar to the net heating value of actual natural gas
at 41,000 kJ/kg [31]. Note that these revenues assume that
the products are of marketable standard when in reality fur-
ther refining would likely be required constituting additional
costs. These costs would increase if the products were used
as feedstock for virgin polymer production requiring the
breakdown and further processing of the alkanes produced,
although these steps are beyond the pre-defined scope of this
report they are important for future consideration as they
would determine the wider circular economy context of this
process. This is further discussed in section 4.3.
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4.2.4 Profitability Analysis

Net present value (NPV) is calculated using equation 1,
assuming constant revenue and expenses.

NPV = �Ci � Cw + (R�X)(1� t)
1� (1 + it)�n

it

+Dt

1� (1 + it)�nt

it
+

Cs + Cw

(1 + it)n
(1)

The NPV was calculated to be $120.5 million. The param-
eters used to calculate these values can be found in Table
13 in Appendix 5 13. To calculate the NPV, the following
assumptions were made: the working capital is equal to the
initial catalyst cost as explained in section 3.2; the tax rate
was assumed to be 21% [9]; the interest rate was assumed
to be 15% [19]; project lifetime was assumed to be 20 years
with straight-line depreciation; and salvage value is assumed
to be $0. The large positive NPV suggests that this process
is economically favorable.
Despite Net Present Value’s (NPV) usefulness as a fi-

nancial metric for assessing profitability, it has certain
drawbacks. When comparing projects of varying sizes or
timescales, hydrogenolysis included, NPV might not be
appropriate. This is because larger projects that have higher
absolute Net Present Values (NPV), do not necessarily have
higher percentage profits. In these situations, metrics such
as the Internal Rate of Return (IRR) may o↵er a more
comparable measurement. Also, the NPV can be sensitive
to assumptions such as interest rate and changes in the
market, although a sensitivity analysis partially mitigates
this e↵ect, it is nonetheless particularly di�cult to predict
future cash flows of such a novel process. Using risk-adjusted
metrics such as a Risk-Adjusted Return on Investment or
a more complex scenario analysis such as a Monte Carlo
simulation could complement the use of NPV for highly
uncertain processes such as the one presented in this report.
These analyses are beyond the scope of this report and
in any are currently lacking the reliable inputs needed for
their computation. Instead for comparability with other
processes, the cost per kilogram of polypropylene and the
break-even cost of polypropylene were calculated.

4.2.5 Polypropylene Costs

A cost of $0.46/kg of polypropylene feed was calculated for
the hydrogenolysis process. This is comparable to the cost of
recycling plastic in landfills at $0.77/kg and incineration at
$0.56/kg [32] which partly justifies treating plastic through
hydrogenolysis, although this is only indicative as the
cited values are for a mixture of plastics as opposed to
polypropylene specifically, with the error margin expected it
cannot be said with certainty that hydrogenolysis is cheaper
than conventional alternatives. However, this only considers
economic capital whereas there is a trend in environmental
policy discourse towards ”natural” capital, that is the
economic equivalent value of protecting nature [33]. If
the environmental benefits of switching to hydrogenolysis
were adequately quantified and considered, the process may
be favourable overall despite its potentially lower economic
value.
Figure 4 indicates that a polypropylene feedstock price of

$0.74/kg is required to break even. The price to purchase
virgin polypropylene is approximately around $1.46/kg [34].

The lower break-even point of industrial hydrogenolysis
provisionally confirms that it has potential for use in plastic
production.

Figure 4: Break-even analysis of NPV with variation in polypropylene
price

4.2.6 Sensitivity Analysis

Figure 5: NPV sensitivity analysis of the polypropylene process with
10% parameter change

A sensitivity analysis for the NPV against revenue, interest
rate, OPEX, CAPEX, compressor cost, reactor cost, and
raw material cost is depicted in Figure 5, computed by
varying each variable value by 10%. As expected, revenue
has the biggest positive e↵ect on NPV, with a 10% revenue
change causing a corresponding 10% NPV change. Thus
to increase the NPV, research into reactor conversion and
product selectivity towards kerosene and other high-value
products could help improve the profitability. The NPV
changes by approximately 6% with a 10% interest change,
indicating that the interest rate assumption influences the
NPV as predicted. NPV assumes a constant interest rate
throughout the project because as mentioned it is di�cult
to predict future scenarios, particularly for new processes,
as a result, this may not be an accurate representation of the
changing economic market. To make a more well-informed
investment decision, NPV should be used in conjunction
with other financial indicators such as the Rate of Return
(ROI) or the Internal Rate of Return (IRR) as described
in section 4.2.4. Changing the OPEX causes a 5% change
in NPV, whereas the CAPEX only causes a 2% change.
This highlights that to increase the profitability of the
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process, focus should be put on reducing the OPEX costs.
The OPEX cost is likely to change throughout the project
lifetime as it is a↵ected mainly by changing electricity costs,
wages and feedstock prices all of which have a degree of
variability, this should be considered when laying out an
implementation plan.

4.2.7 CAPEX Comparison

Figure 6: CAPEX comparison of chemical recycling methods

Figure 6 compares the CAPEX for the di↵erent chemical
recycling technologies. Hydrogenolysis and hydrocracking
have high CAPEX values mostly due to the use of expensive
catalysts, high hydrogen pressures and complex reactors.
To reduce these costs, research could be done to explore
alternative catalyst options, particularly favouring milder
conditions, increasing the selectivity of desired products,
decreasing CAPEX and increasing revenue. The simplicity
of the HTL process and the feedstock flexibility are the
main reasons for the low capital costs. This flexibility can
reduce the need for extensive pre-processing facilities and
reduce the number of unit operations required. Pyrolysis
and gasification have similar CAPEX and are likely the
closest to widespread use compared to the others because the
reactors used are low-cost and operate at lower pressures (1
bar). Also, since gasification directly burns leftover gases
in a gasification furnace, it does not require any energy
recovery equipment. These features could be integrated
into future iterations of the hydrogenolysis process provided
they satisfy economic and environmental requirements as
discussed in section 4.1.2.

4.3 Environmental Assessment

Figure 7 illustrates the endpoint analysis conducted on the
process that was calculated using the ReCiPe 2016 method.
The negative values represent the negative impact that is
avoided, for example by the use of waste polypropylene or
the generation of useful products [35]. The generation of
valuable products is what acquires most of the environ-
mental ”credit” as these products are otherwise generally
environmentally damaging to obtain.
The most significant beneficial environmental impact is

to human health with $0.313 of ”credit”, as opposed to
resource availability which was hypothesised to be the
leading indicator of hydrogenolysis due to the replacement
of environmentally damaging processes such as mining. This

is likely due to the health-threatening impacts of processes
such as crude oil extraction but could also be attributed
to the hierarchist perspective as its timescale aligns with
the timescale for which climate change will have the worst
e↵ects on human health [24]. The only notable negative
impact is from the utilities. This is expected as the use of
fired heat is damaging; its emissions are estimated to be 1.10
kgCO2/kgpolypropylene [31] and it releases toxins, highlighting
the need to investigate alternative heat sources.

Figure 7: Comparison of endpoint indicators using the ReCiPe 2016
method

Figure 8: ReCiPe 2016 midpoint indicator breakdown for end-of-life
processes

Figure 8 displays the midpoint indicator breakdown of
the total externalities costs as represented by the endpoint
indicators converted to a monetary basis. For all indi-
cators, the designed hydrogenolysis process is either less
environmentally ”damaging” than landfill and incineration
or comparably ”damaging”.

The most notable indicators fall into 3 key areas: climate
change, because the process avoids climactically damag-
ing end-of-life processes and sustainably produces valuable
products; land occupation and resource use metrics, as
hydrogenolysis eliminates the need for separate facilities;
and the human health indicators, as expected hydrogenolysis
produces less health-threatening substances than landfill
and incineration. These results are indicative and the
large numerical di↵erences in the environmental impacts
of the processes should be viewed critically as the LCA
is subjective and may be easily skewed by assumptions
made. This is not only a best-case scenario, but the
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lack of standardised methodologies for the comparison of
plastic waste makes it di�cult to draw robust comparisons
as the outputs are limited by the quality of the data.
Despite the reputability of Ecoinvent, variations in process
e�ciency, regional disparities, socio-economic factors, costs
of retrofitting and product and feedstock quality are di�cult
to model but can a↵ect results.
There are several ways to strengthen the LCA analysis in

future iterations: carrying out a sensitivity analysis to iden-
tify key parameters, comparing with alternative chemical
recycling technologies to validate the preferential investment
in hydrogenolysis, comparing di↵erent frameworks beyond
ReCiPe or carrying out a scenario analysis assessing di↵erent
scales, future innovations and locations. This model, like
the flow-sheet and the TEA, is static and does not take into
account variability in parameters such as availabilities and
prices and therefore has a limited ability to predict future
scenarios. Processes that have been simplified, such as the
electrolysis of water, should also be investigated and fully
specified as key decisions such as the source of the electricity
used can have a significant impact on the sustainability of
the process.
Chemical recycling is currently energy-intensive and is

therefore unlikely to serve as a direct replacement for simple
and cost-e↵ective mechanical recycling, however, mechanical
recycling is inherently non-circular as we cannot downcycle
indefinitely and that is where hydrogenolysis could be
critical if its products are used for the production of virgin
polymers and not as combustible fuels.

5 Conclusion

This paper presents a first estimate of the design and enviro-
economic assessment of an industrial-scale hydrogenolysis
process for the chemical recycling of polypropylene waste.
A process flow-sheet is designed based on extrapolations
from lab-based data, predominantly those generated by the
Rosseinsky group at the University of Liverpool [6]. The
flow-sheet is converged with high conversion, carbon e�-
ciency and product purities. A techno-economic assessment
is used to summarise the capital and operations cost of the
process, suggesting that the process is viable as evidenced
by a high NPV and low cost per kilogram, largely owing to
the production of useful products. Making it a competitive
option amongst emerging chemical recycling processes. The
environmental assessment also provisionally suggests that
the process is superior to other plastic end-of-life processing
methods particularly concerning climate change, resource
use and human toxicity.
However, this theoretical analysis, like any model, has

inherent limitations. The assumptions made in models
often do not align with reality, particularly those concerning
complex and under-specified themes from reactor design
to policy-making. Any uncertainties in the hydrogenolysis
process should be addressed before implementation at any
scale nearing the industrial process presented in this report.
Despite the use of well-established methods in this report,
the results are indicative and not conclusive as several ap-
proximations had to be made as a result of the low readiness
of the process discussed. Ultimately, the contribution of
hydrogenolysis to a circular economy depends on the context
of its use, hydrogenolysis is a promising technology but how

and why it will be used will define its wider impacts.

6 Outlook

There are significant areas to be addressed before a decision
is made on the investment in hydrogenolysis, beginning
with investigations into the kinetics and properties of the
hydrogenolysis reaction and how it behaves at scale before
subsequent pilot-scale experiments. Additional catalyst
design and optimisation could help address current issues
surrounding product distribution and residence time whilst
allowing for more precise costing. One of the main
strengths of this process is the generation of useful and
marketable products, the refinement of which could enhance
the profitability of the process and further help o↵set the
environmental impact. A weaker area of the process is also
the utilities used; investigating other heat sources would also
be an important research area.

More information should also be gathered on the process’
social, environmental and economic impact. Given the
complexity of the process, variability and future changes
should be taken into account when assessing its future
implementation. Modelling should be holistic and diverse
ensuring future studies carry out scenario and sensitivity
analyses. Additionally, a more in-depth comparison to
alternative chemical recycling technologies could help inform
future investment decisions and policy-making regarding
plastic waste treatment.

Like any novel technology, hydrogenolysis of plastic waste
has its limitations and disadvantages as discussed in this
report. It should therefore be subject to standard regulation
with careful attention to its integration into the current
waste disposal infrastructure, accounting for sources of elec-
tricity, delivery of feed stock and perhaps most importantly
the usage of its products. With these factors considered,
hydrogenolysis could become a core part of sustainable waste
handling and contribute to building a circular economy.

7 Acknowledgements

Acknowledgements go to Dr. Andrea Bernardi and Mr. Ben

Lyons for continued assistance in modelling practice. Acknowl-

edgments also to Prof. Clemens Brechtelsbauer for advice on

scale-up and to the Rosseinsky Group at the University of

Liverpool for supplementary data.

References

[1] Ali Chamas et al. “Degradation Rates of Plastics in the En-
vironment”. In: ACS Sustainable Chemistry & Engineering
8.9 (2020), pp. 3494–3511. doi: 10.1021/acssuschemeng.
9b06635.

[2] Cong Wang et al. “Polyethylene Hydrogenolysis at Mild
Conditions over Ruthenium on Tungstated Zirconia”. In:
JACS Au 1.9 (2021), pp. 1422–1434. doi: 10.1021/jacsau.
1c00200.

[3] Tian Tan et al. “Upcycling Plastic Wastes into Value-
Added Products by Heterogeneous Catalysis”. In: Chem-
SusChem 15.14 (2022), e202200522.

[4] Winnie W. Y. Lau et al. “Evaluating scenarios toward zero
plastic pollution”. In: Science 369.6510 (2020), pp. 1455–
1461. doi: 10.1126/science.aba9475.

9

98



[5] D. P. Serrano, J. Aguado, and J. M. Escola. “Developing
Advanced Catalysts for the Conversion of Polyolefinic
Waste Plastics into Fuels and Chemicals”. In: ACS Catal-
ysis 2.9 (2012), pp. 1924–1941. doi: 10.1021/cs3003403.

[6] Ajay Tomer et al. “Enhanced production and control
of liquid alkanes in the hydrogenolysis of polypropylene
over shaped Ru/CeO2 catalysts”. In: Applied Catalysis A:
General 666 (2023), p. 119431. issn: 0926-860X. doi: 10.
1016/j.apcata.2023.119431.

[7] Wei-Tse Lee et al. “Catalytic hydrocracking of synthetic
polymers into grid-compatible gas streams”. In: Cell Re-
ports Physical Science 2.2 (2021), p. 100332. issn: 2666-
3864. doi: 10.1016/j.xcrp.2021.100332.

[8] Mark Huijbregts et al. “ReCiPe2016: a harmonised life
cycle impact assessment method at midpoint and endpoint
level”. In: The International Journal of Life Cycle Assess-
ment 22 (Dec. 2016). doi: 10.1007/s11367-016-1246-y.

[9] Borja Hernández et al. “Techno-Economic and Life Cycle
Analyses of Thermochemical Upcycling Technologies of
Low-Density Polyethylene Waste”. In: ACS Sustainable
Chemistry & Engineering 11.18 (2023), pp. 7170–7181. doi:
10.1021/acssuschemeng.3c00636.

[10] Sibao Liu et al. “Plastic waste to fuels by hydrocracking
at mild conditions”. In: Science Advances 7.17 (2021),
eabf8283. doi: 10.1126/sciadv.abf8283.

[11] Pavel Kots, Brandon Vance, and Dionisios Vlachos. “Poly-
olefin plastic waste hydroconversion to fuels, lubricants,
and waxes: A comparative study”. In: Reaction Chemistry
& Engineering 7 (Jan. 2022), pp. 41–54. doi: 10.1039/
D1RE00447F.

[12] Masazumi Tamura et al. “Structure-activity relationship
in hydrogenolysis of polyolefins over Ru/support cata-
lysts”. In: Applied Catalysis B: Environmental 318 (2022),
p. 121870. issn: 0926-3373. doi: 10.1016/j.apcatb.2022.
121870.

[13] “Chapter 12 - Life-cycle cost analysis”. In: Maximizing
Machinery Uptime. Ed. by Fred K. Geitner and Heinz P.
Bloch. Vol. 5. Practical Machinery Management for Process
Plants. Gulf Professional Publishing, 2006, pp. 201–228.
doi: 10.1016/S1874-6942(06)80014-3.

[14] J. Brandrup, E.H. Immergut, and Eric A. Grulke. Polymer
handbook. eng. 4th ed. New York ; Wiley, 1999. isbn:
0471166286.

[15] Jesse Sarpong-Mensah. Crude Oil Distillation Using Aspen
Hysys. June 2023.

[16] Apinya Chanthakett et al. “Performance assessment of
gasification reactors for sustainable management of mu-
nicipal solid waste”. In: Journal of Environmental Man-
agement 291 (2021), p. 112661. issn: 0301-4797. doi: 10.
1016/j.jenvman.2021.112661.

[17] Thierry Meyer. “Scale-Up of Polymerization Process: A
Practical Example”. In: Organic Process Research Devel-
opment 7 (May 2003). doi: 10.1021/op025605p.

[18] Satish Reddy and Sunil Vyas. “Recovery of Carbon Dioxide
and Hydrogen from PSA Tail Gas”. In: Energy Procedia 1.1
(2009). Greenhouse Gas Control Technologies 9, pp. 149–
154. issn: 1876-6102. doi: 10.1016/j.egypro.2009.01.
022.

[19] L.T. Biegler, I.E. Grossmann, and A.W. Westerberg. Sys-
tematic Methods of Chemical Process Design. Physical and
Chemical Engineering Sciences. Prentice Hall PTR, 1997.
isbn: 9780134924229.

[20] Alexander M. Niziolek et al. “Municipal solid waste to
liquid transportation fuels – Part II: Process synthesis and
global optimization strategies”. In: Computers & Chemical
Engineering 74 (2015), pp. 184–203. issn: 0098-1354. doi:
10.1016/j.compchemeng.2014.10.007.

[21] Chemical Engineering Essential for the CPI Pro-
fessional. Chemical Engineering Plant Index.
https://www.chemengonline.com/site/plant-cost-index/.
Accessed: (Accessed 30/11/2023). 2023.

[22] U.S. Bureau of Labor Statistics. Occupational Employment
and Wages. Accessed: 2023-12-01. url: https://www.bls.
gov/oes/current/oes518091.htm.

[23] R.H. Perry and D.W. Green. Perry’s Chemical Engineers’
Handbook, Eighth Edition. McGraw-Hill chemical engineer-
ing series v. 8, pt. 2008. McGraw-Hill Education, 2008.
isbn: 9780071422949.

[24] Yan Dong et al. “Evaluating the monetary values of
greenhouse gases emissions in life cycle impact assessment”.
In: Journal of Cleaner Production 209 (2019), pp. 538–549.
issn: 0959-6526. doi: 0.1016/j.jclepro.2018.10.205.

[25] Exchange Rates. Accessed: 2023-12-01. doi: 10 . 1787 /
037ed317-en. url: https://data.oecd.org/conversion/
exchange-rates.htm.

[26] Inflation Calculator. Accessed: (Accessed 30/11/2023).
url: https : / / www . bls . gov / data / inflation _
calculator.htm.

[27] N. Yang. “Dichloromethane”. In: Encyclopedia of Toxicol-
ogy (Third Edition). Ed. by Philip Wexler. Third Edition.
Oxford: Academic Press, 2014, pp. 99–101. isbn: 978-0-12-
386455-0. doi: 10.1016/B978-0-12-386454-3.01218-5.

[28] Bay Van Tran et al. “Computational fluid dynamics of gas-
liquid bubble column with hydrocracking reactions”. In:
Computer Aided Chemical Engineering 44 (2018). Ed. by
Mario R. Eden, Marianthi G. Ierapetritou, and Gavin P.
Towler, pp. 313–318. issn: 1570-7946. doi: 10.1016/B978-
0-444-64241-7.50047-1.

[29] Richard Turton. Analysis, synthesis, and design of chemi-
cal processes. eng. 4th edition. India: Prentice Hall, 2012.
isbn: 0132618125.

[30] G Seely, C Miller, and K Square. Solids feed to a pressurized
reactor. Accessed: 2023-12-01. url: https : / / patents .
google.com/patent/US3841465A/en.

[31] The Engineering ToolBox. Fuel Gases - Heating Val-
ues. https://www.engineeringtoolbox.com/heating-values-
fuel-gases-d823.html. Accessed: (Accessed 30/11/2023).
2005.

[32] Raymond H.J.M. Gradus et al. “A Cost-e↵ectiveness Anal-
ysis for Incineration or Recycling of Dutch Household Plas-
tic Waste”. In: Ecological Economics 135 (2017), pp. 22–28.
issn: 0921-8009. doi: https : / / doi . org / 10 . 1016 / j .
ecolecon.2016.12.021.

[33] Arjan Ruijs et al. “Natural capital accounting for better
policy.” In: Ambio 48 (2019), pp. 714–725. doi: https:
//doi.org/10.1007/s13280-018-1107-y.

[34] Pınar Polat and Esra Ersöz. PP, PE producers cut run
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Abstract Canadian Deuterium Uranium Nuclear reactors (CANDU) form an essential power generation source for 
Canada and a multitude of European countries. CANDU reactors are characterised by their use of deuterium oxide as 
coolant as opposed to conventional light water of carbon dioxide coolants used in most nuclear reactors. However, 
CANDU reactors suffer from deuterium oxide radiolysis - the splitting of coolant to deuterium and oxygen gas. This 
poses a major threat to the safe and economic operation of CANDU reactors over their lifetime. Hence, clear separation 
and recombining process of deuterium and oxygen back to deuterium oxide is essential. In light of this, this research 
paper proposes the first theoretical models of deuterium oxide and the deuterium oxide + oxygen + deuterium mixture 
present in CANDU reactors. The models of the pure components and mixtures were devised using the SAFTVR – Mie 
equation of state along with computational techniques to estimate the parameters required by the equation of state to 
generate the complete pure and mixture models. The models are used to predict crucial physical properties of deuterium 
oxide and the vapour-liquid mixture under standard operating conditions as well as CANDU operating conditions. The 
devised models demonstrate excellent accuracy, providing <5%AAD for the pure deuterium oxide, oxygen and deuterium 
models as well as the mixture system. The aim of devised models is to be used in shortlisting the possible separation and 
recombining techniques possible.  
 

I. Introduction 
Choosing a nuclear reactor coolant is a crucial part of 
the nuclear reactor design. The power output of any 
nuclear reactor is determined by the rate of heat removal 
from the core via the primary coolant loop. In light of 
this, choosing an effective coolant is crucial for the safe 
operation of a nuclear power plant.  

An effective coolant will potentially have a high 
isobaric heat capacity and thermal conductivity (rapidly 
removing plenty of heat from the reactor core), 
radiolysis resistance (not readily decomposing under the 
harsh radiation intensive conditions of nuclear reactor 
core (NRC)), and a low neutron absorption cross section 
(lower tendency of absorbing neutrons), meaning more 
of the generated neutrons are reserved for fission 
reactions. These essential physiochemical properties, 
amongst many others, (chemical inertness, critical point, 
cost) form the multi-variate problem of choosing a 
primary coolant for a nuclear power plant.  

With the plethora of industrial coolants present, it is 
highly desirable to obtain models that can accurately 
predict their thermophysical properties under reactor 
conditions without the need for costly and time-
consuming experimentation – this is especially true 
under the severe nuclear reactor core conditions which 
may entail pressures of up to 120 bar and extreme 
temperatures radiation. 

Canada Deuterium Uranium Nuclear Reactor 
(CANDU) is a type of nuclear reactor that utilises 
deuterium oxide as its primary coolant – Figure 1. It 
currently provides 15% of Canada’s electrical power1. 
Deuterium oxide is primarily used due to its reduced 
likelihood of absorbing neutrons (neutron absorption 
cross section) compared to light water, the primary 
coolant used in the most common nuclear reactor types, 
the Pressurised Water Reactor (PWR) and Boiling 
Water Reactor (BWR). Deuterium oxide’s lower 
neutron absorption cross section allows for the use of 
much lower uranium fuel enrichment (natural uranium 
enrichment of 0.7%, instead of 4-5% enrichment used in 
a typical PWR) as less neutrons are absorbed by the 

coolant, leaving more neutrons to be absorbed by the 
uranium fuel.  

 
 
Fig 1. A schematic of a typical CANDU nuclear reactor. Deuterium 
oxide flows through the calandria, a series of small channels passing 
through the reactor core. Deuterium oxide also passes through the 
steam generators (carried by the orange pipes) boiling the secondary 
coolant water to be sent to the generator. A pressuriser ensures 
CANDU’s high operating pressure while coolant pumps ensure 
deuterium oxide’s circulation around the reactor. (Spinks 2011) 
 

 
However, deuterium oxide undergoes radiolysis – 

splitting to form oxygen and deuterium upon gamma 
radiation absorption. The following reactions are the 
primary radiolysis reactions taking place in CANDU 
reactors2: 

                     DଶO (γ, n) → Dଶ +
1
2

Oଶ                      (1) 

 
                           DଶO (n) → DTO                              (2) 
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Deuterium oxide is a costly coolant, amounting up to 
20% of the initial nuclear power plant capital cost3. 
Hence, it is of paramount importance to limit its 
depletion from radiolysis and ensure its maximum 
recovery. The recovery of deuterium oxide is achieved 
by separating the deuterium-oxygen vapour mixture 
from other vapours present and recombining deuterium 
and oxygen back to deuterium oxide3. Therefore, the 
objective of this research is to develop a model for the 
mixture generated in CANDU’s reactor core to predict 
its physical properties, aiding in the choice of separation 
and recombination techniques of the deuterium and 
oxygen generated.  

Previous attempts on generating empirical equations 
of state of pure deuterium oxide, deuterium, and oxygen 
have been made with great success, predicting physical 
properties under a wide range of conditions and with 
excellent accuracy. Interest in deuterium oxide’s 
physical and nuclear properties began in the 1950s. With 
the advent of the cold war, interest in nuclear weapons 
programs led to extensive research in deuterium oxide’s 
physical properties and eventually, the development of 
its correlations. Kirschenbaum, I.4 began the discussion 
on the need for accurate deuterium oxide experimental 
data and an accompanying empirical correlation. 
Kesselman, P. M5, Mamedov, A. M6, Plank et al7 and 
Suvorov8 followed by devising the first empirical 
equation of state for liquid deuterium oxide. A series of 
improvements to the existing equations of state using the 
growing experimental data available at wider operating 
conditions followed by Ikeda et al.9, Juza et al.10 and P.G 
Hill et al11. The final deuterium oxide equation of state 
was generated by W. Lemmon et al12 reducing the 
number of terms found in the previous equation of state. 
Oxygen and deuterium follow a similar path with the 
latest empirical equations of states generated by 
Weber13, Wagner14 et al, and Lemmon et al15. 

All the aforementioned equations of state are 
empirical, using experimental data fitting to generate 
correlations. Although exceptionally accurate, these 
equations of state do not give much insight into the 
quantum interactions present. Furthermore, a model for 
the deuterium oxide + deuterium + oxygen mixture is 
still absent. Hence, the work to be presented will provide 
the first theoretical models, using the Statistical 
Associating Fluid Theory (SAFT) equation of state for 
pure deuterium oxide and the deuterium oxide + 
deuterium and deuterium oxide + oxygen mixtures. 

The report is structured as follows: in section II we 
provide the theoretical background of Statistical 
Associating Fluid Theory and the SAFT-VR Mie’s 
equation of state and we describe the procedure we 
followed to develop the pure and mixture models. In 
section III the models’ performances are presented and 
discussed by comparing the model predictions to 
experimental data graphically and quantitatively using 
%AADs. Lastly in section IV we summarise our key 
findings, as well as the implications of our research, and 
we discuss possible developments and improvements on 
our current work. 

 
 
 

II. Methodology 
In this section, we describe the background theory and 
the procedure we followed for developing the pure 
component models for deuterium oxide, deuterium, and 
oxygen, as well as the two binary mixture models of 
deuterium oxide + deuterium and deuterium oxide + 
oxygen. Initially, the background theory of Statistical 
Associating Fluid Theory (SAFT) is provided 
(subsection II.A), followed by a description of the 
SAFT-VR Mie equation of state and its molecular 
parameters (subsection II.B). Finally, the procedure for 
developing the molecular models using the 
SAFT-VR Mie equation of state is outlined - subsection 
II.C.  
  
II.A Statistical Associating Fluid Theory 
The molecular framework underlying the Statistical 
Associating Fluid Theory (SAFT) is a chain of fused 
spherical segments that represent a molecule. The 
segments interact with each other through an interatomic 
potential. Numerous SAFT equations of state have been 
developed16, 22, 25, each using varying types of potentials 
to describe the segment-segment interactions. 
Association interactions – strong, directional 
intermolecular bonds – are modelled as interactions 
through a square-well potential between association 
sites on the segments16.  

The SAFT equations of state are expressed in terms of 
the fluid’s total Helmholtz free energy A. The Helmholtz 
free energy is given as a sum of contributions16: 

 
𝐴 =  𝐴ideal +  𝐴mono + 𝐴chain + 𝐴assoc     (3) 

Aideal is the free energy of an ideal gas mixture of the 
molecules in the fluid. It incorporates the contributions 
from the translational, rotational, and vibrational modes 
of motion. Amono is the residual free energy of each 
segment. It incorporates the segment-segment 
interactions taking place within the molecule. Achain is 
the contribution from the fusing of the segments forming 
a chain. Aassoc is the free energy from the strong 
intermolecular association interactions, like hydrogen 
bonding, in the fluid16.                                                                            

Wertheim’s Thermodynamic Perturbation Theory 
(TPT) provides the basis for describing the relation 
between site-site interactions and bulk fluid properties 
of associating molecules17. In his theory, molecules are 
represented as single spheres. To model the strong 
attractive interactions of associating fluids, he defines 
acentrically positioned attractive sites. These sites 
interact through a short-range square-well potential. 
Wertheim takes advantage of the short range of the 
interactions to introduce steric hindrance effects and 
limit the number of intermolecular bonds each 
association site participates in. This led to the 
development of his Thermodynamic Perturbation 
Theory. For particles with two attractive sites, Wertheim 
derives the first-order TPT1 equation of state18. 
Chapman et al. restates the TPT1 into a form which can 
be used to describe mixtures of species of different sizes, 
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with a non-spherical molecular shape, as well as with 
different numbers of association sites19. This is 
incorporated in the SAFT equation of state18.  
 
II.B SAFT-VR Mie equation of state 
SAFT Variable Range (VR) Mie is one of the many 
equations of state belonging to the SAFT equation of 
state family. The underlying molecular framework is a 
chain of homonuclear (identical) segments. 
SAFT-VR Mie enables the manipulation of the range of 
the segment-segment dispersion interactions, rendering 
it a “variable range” equation of state. The 
SAFT-VR Mie equation of state incorporates the Barker 
and Henderson high-temperature perturbation 
expansion of the Amono term. In this perturbation 
expansion, the segment-segment interactions are 
described by the Mie potential (Figure 2) – a generalised 
form of the Leonard-Jones potential20: 

 

𝜙Mie(𝑟) =
𝜆୰

𝜆୰ − 𝜆ୟ
൬

𝜆୰
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൰
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𝜎
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቉        (4) 

 
where ε is the depth of the potential well, σ is the 
segment diameter, λa and λr are the attractive and 
repulsive exponents, respectively20. 

SAFT-VR Mie’s improvements from its predecessor 
equation of state make it an attractive option to model 
the species of interest of this study. In general, a good 
description of phase behaviour is easily achievable 
through any potential with fixed attractive and repulsive 
exponents, but most equations of state struggle around 
the critical region. The thermodynamic property 
prediction around the critical region is one point that 
SAFT-VR Mie excels in. Additionally, most equations 
of state struggle with the prediction of second-derivative 
properties like isobaric heat capacity. Second derivative 
properties are sensitive to the nature of the repulsive 
interactions, captured by the repulsive exponent, λr. 
Thus, a more versatile potential, like the Mie potential, 
which allows adjustment of the repulsive exponent, can 
offer a better description of second derivative 
properties21. The SAFT-VR Mie equation of state serves 
the purposes of this research well, as it enables accurate 
phase behaviour prediction up to the critical point. It 
also provides the means to achieve better predictions of 
heat capacity, which is of interest in a nuclear reactor 
setting.  
 

Fig. 2 Mie intermolecular potential, where ε is the depth of the 
potential well, σ is the segment diameter. (Sikorska 2020) 

 

A set of molecular parameters need to be defined to 
describe a pure component using the SAFT-VR Mie 
equation of state – Table 1. Four of these parameters can 
be seen in equation 4. These are the energetic parameter 
ε/kB (K), the size parameter σ (Å), and the attractive and 
repulsive exponents, λa and λr, respectively. 
Additionally, the molecular weight and the number of 
segments comprising the molecule need to be specified. 
For associating species, like deuterium oxide, the 
association energy εassoc/kB (K), the bonding volume 
parameter K (Å3), and the number of attractive 
(hydrogen sites) N STa, and repulsive (electron sites) 
N STe association sites, also need to be specified20, 22. 
 

Table 1 SAFT-VR Mie molecular parameters 
Parameter Units Description 
m - Number of spherical segments 
ε/kB K Depth of Mie potential-well 
σ Å Segment diameter 
𝜆ୟ, 𝜆୰ 
 

- Attractive and repulsive exponents 
of the Mie potential 

εassoc/kB K Depth of association square-well 
potential 

K Å3 Bond volume parameter 
N STe - Number of site types corresponding 

to lone a lone electron pair 
N STa - Number of site types corresponding 

to H atom 
 
II.C Parameter estimation procedure 
To develop equations of states to describe the target pure 
components and binary mixtures, we used experimental 
data to regress the molecular parameters of the SAFT-
VR Mie equation of state. This section describes in 
detail the parameter estimation procedure for the pure 
components and for the mixtures.  

 Firstly, we modelled deuterium oxide – the key 
component found in the primary coolant of CANDU 
nuclear reactors. We collected pseudo-experimental data 
from NIST23 for the saturation pressure (𝑃sat), saturated 
liquid density (ρsat)17, isobaric heat capacity (CP) at 
100 μbar, 1 bar, and 100 bar.  
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Important to any equation of state is the ideal 
contribution. There are various ideal gas models 
available, which can be implemented in a SAFT 
equation of state. We used the Reid ideal model, which 
accounts for the translational, rotational, and vibrational 
modes of motion of the ideal gas24. The Reid coefficients 
were obtained by fitting the Reid heat capacity 
polynomial to the vapour phase heat capacity data at 
100 μbar data, as the heat capacity is approximately that 
of an ideal gas at this pressure. The molecular interaction 
parameters were then estimated by regressing the 
saturation and heat capacity data at 1 bar.  The saturation 
pressure and saturated liquid density were given a 
weighting of 1.0 while the heat capacity was given a 
weighting of 0.1 in the objective function. The 
parameters estimated were the potential-well depth ε, 
the segment diameter σ, the repulsive exponent λr, and 
association energy εassoc. The existing SAFT-VR Mie 
light-water parameters22 were used as initial guesses for 
the parameter estimation.  

SAFT models of deuterium and oxygen have already 
been developed.  Deuterium was modelled using another 
SAFT equation of state – the SAFT-VRQ Mie equation 
of state25 – while oxygen was modelled using the 
SAFT-VR Mie equation of state21. The SAFT-VRQ Mie 
parameters of deuterium were implemented in the 
SAFT-VR Mie equation of state. To improve their 
performance in predicting the heat capacity, we 
implemented the Reid ideal contribution in the 
SAFT-VR Mie models of the two components.  
   Additional data was collected from NIST23 for the 
evaluation of the pure component models. For 
deuterium oxide, the saturated molar volume and the 
liquid density and heat capacity at 1 bar and 100 bar, 
were collected. For deuterium and oxygen, data of 
vapour density and heat capacity at 1 bar were collected. 
The models were evaluated quantitatively with the 
percent average absolute deviation %AAD and 
qualitatively by examining the graphs of the properties 
of interest. 
  We developed the binary mixture models of deuterium 
oxide + deuterium and deuterium oxide + oxygen using 
the finalised pure component models. Experimental data 
for the mole fraction of deuterium and oxygen dissolved 
in deuterium oxide at varying temperatures were 
obtained from Scharlin et al.26 and Setthanan et al27. In 
addition to defining the pure component parameters 
when modelling a mixture, it is required to estimate 
unlike molecular interaction parameters to describe the 
interactions between the different species present in the 
mixture. In this study, we defined the ε and λr unlike 
parameters. There are two approaches of doing so. The 
first approach uses combining rules – an augmented 
geometric-mean rule20 and the Berthelot rule16 to 
estimate the unlike ε and λr respectively. The second 
method involves regression of the parameters using 
experimental data. Initially, combining rules were used. 
The combining rules underpredicted all experimental 
data sets. Hence, they were used as lower bounds in the 
parameter estimation, which was subsequently 
conducted. The parameter estimation for the mixtures 
was done by experimental data regression, similar to the 
pure components. Finally, the mixture models’ 

performance was evaluated using average absolute 
deviation (AAD) and %AAD values and graphs.  

III. Results and discussion 
In this section, we present the molecular parameters of 
the SAFT-VR Mie equations of state for the pure 
component (deuterium oxide, deuterium, and oxygen) 
and binary mixture (deuterium oxide + deuterium, 
deuterium oxide + oxygen) models. Additionally, we 
evaluate the models’ performance in predicting 
thermophysical properties. We first evaluate the pure 
components in subsection III.A and then proceed to 
discussing the mixture models in subsection III.B. For 
each model we report the average absolute deviation 
(AAD) or the percentage average absolute deviation 
(%AAD) between the experimental data points and the 
model predictions: 

%AAD = 100 × ቌ
1

𝑁data
෍ ቤ

𝑍௜
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ቍ                       (5)   
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                                            (6) 

where Ndata is the number of data points and Zexp and 
Zmodel are the experimental and predicted values of 
property Z, respectively. Along with the models 
developed, we present the existing model and 
experimental data of light-water in order to compare it 
with deuterium oxide to demonstrate that the deuterium 
oxide model can capture the slight differences in 
thermophysical properties between the two isotopes. 
 
III.A Pure component models 
This section discusses all the pure component models 
with a focus on the deuterium oxide model and its 
performance in predicting liquid properties at 1 bar and 
at 100 bar – CANDU reactor operating conditions. The 
SAFT-VR Mie molecular parameters for each 
component are reported in Table 2. The %AAD of the 
pure component models’ predictions from pseudo-
experimental data are reported in Table 3. It should be 
noted that the uncertainty of the NIST pseudo-
experimental data is reported to be below 0.1% for the 
saturation and density data used, and 1% for the heat 
capacity data23. 
 
III.A.1 Deuterium oxide model performance for 
saturation properties 
The deuterium oxide model provides highly accurate 
predictions of the saturation properties. The molar 
volume in the temperature-molar volume saturation 
envelope (Figure 3a) is predicted with a 2.1% AAD. 
Small deviations are noticeable near the critical region 
and in the low temperature region of the gas phase 
branch. The saturation pressure (Figure 3b) is also 
predicted with outstanding accuracy up to the critical 
region – with 1.0% AAD. In both the saturation 
envelope and the saturation pressure curve, the 
deuterium oxide model is able to capture the slight 
differences of deuterium oxide’s physical properties 
when compared with light-water’s.  
 
III.A.2 Deuterium oxide model performance for 
liquid properties at 1 bar 
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The liquid phase of deuterium oxide is the most 
interesting, yet challenging to model, as complex  
intermolecular and intramolecular interactions play a 
deterministic role in its thermophysical properties. In 
this section we examine deuterium oxide’s model 
predictions of the heat capacity and density of the liquid 
phase at 1 bar. We examine limitations that the 
SAFT-VR Mie equation of state faces when predicting 
these liquid properties, as well as the implications this 
has for the estimated SAFT-VR Mie molecular 
parameters.  

The deuterium oxide model predicts with exceptional 
accuracy the pseudo-experimental liquid density at 1 
bar, (1.1% AAD), capturing the subtle differences 
between deuterium oxide and light-water – Figure 4a. 
However, it is also observed that the model does not 
capture the liquid density maximum, which is an 
inherent limitation of the SAFT-VR Mie theory. By 
closely examining the liquid density data of the two 
components, one can make an interesting observation – 
the heavier deuterium oxide has a lower density than its 
light-water counterpart. This anomaly in the density 

indicates that the arrangement of the molecules in the 
liquid is what has a determining effect on its density.                   
Deuterium oxide forms on average more hydrogen 
bonds per molecule (3.76) than light-water (3.62)28, 
giving it a more organised, tetrahedral structure 
(Figure 5) when compared to light water. Deuterium 
oxide’s tetrahedral structure has a greater intermolecular 
void, as opposed to light water’s more disordered 
structure, causing deuterium oxide to have a lower 
density29. The density anomaly is analogous to the more 
familiar phenomenon observed in light-water and ice; 
upon freezing of light-water to form ice, all molecules 
participate in four, tetrahedrally-oriented hydrogen 
bonds30. The molecules become arranged with a low 
packing efficiency, resulting in a less-dense solid phase 
compared to the liquid phase28. To capture this effect 
when modelling the liquid density, the four-body 
intermolecular interactions would have to be 
considered. 

 

  

Fig. 3. SAFT-VR Mie’s model predictions for the saturation envelope (a) and vapour pressure (b) variation with temperature of light-water (blue 
solid) and deuterium oxide (red solid) along with the respective experimental data – blue circle and red triangle. The model accurately predicts the 
pressures and saturation molar volumes even in near the critical point – a region notoriously difficult to accurately predict physical properties for. 
 
 

  
Fig. 4. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for light-water (blue solid) and 
deuterium oxide (red solid) at 1 bar in the liquid phase along with the respective experimental data - blue circle and red triangle. The model predicts 
light water and deuterium oxide’s molar density with exceptional accuracy while it slightly underestimates deuterium oxide’s heat capacity for the 
same temperature range indicating the presence of nuclear quantum effects unaccounted for by the model. 
 
 

(a) (b) 

D2O 

H2O 

(a) (b) 

D2O 

H2O 
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Fig.5. Tetrahedral hydrogen bond network of liquid deuterium 
oxide, where each deuterium oxide molecule participates in four-
body interactions (Physics Open Lab)31. 
 
 
SAFT-VR Mie faces a limitation when it comes to 

modelling fluids when many-body interactions are 
present. These many-body interactions have a prominent 
effect on the physical properties of the components they 
are affecting, as observed in deuterium oxide.  

SAFT uses an effective-pair-density function to 
describe associating fluids. It assumes that only two-
body intermolecular, association interactions are taking 
place in the hydrogen-bonding liquid. As a result, the 
hydrogen-bonding molecules in the liquid phase are 
modelled as dimers, instead of tetrahedrals17, 18. Since 
SAFT-VR Mie does not incorporate many-body 
interactions, it implicitly accounts for the density in the 
association energy parameter, εassoc, which relates to the 
hydrogen bond strength. We speculate that when 
regressing the SAFT-VR Mie molecular parameters, the 
association energetic parameter, εassoc, is estimated to 
have a lower value than it would have if it were 
modelled taking the tetrahedral arrangement into 
consideration. This is further supported by regressing 
the experimental data for the pure model using a lower 
relative weighting on the density data – the quantum 
effects introduced by the density data, including the 
strength of the hydrogen bonds, will have less of an 
effect on the model parameters32. The resulting model 
parameters predict a stronger hydrogen bond strength 
than the previous model, reducing the effect of the 
tetrahedral structure formation on the hydrogen bond 
strength as excepted.  

The isobaric heat capacity is predominantly defined by 
the ideal contribution, with the remaining residual 
contribution being affected by the hydrogen bond 
strength33 – εassoc. The model consistently underpredicts 
the pseudo-experimental liquid heat capacity data at 1 
bar (Figure 4b) with a 5.4% AAD. The underprediction 
of the heat capacity is speculated to be a byproduct from 
the model’s interpretation of the intermolecular 
interactions present when regressing the density data – 
interpreting the lower deuterium oxide density 
compared to light water as weaker hydrogen bonds. 
This, in turn, causes the underprediction of the heat 
capacity by the model. 

Studying the performance of other classical 
thermodynamic models of water, it becomes evident that 

without quantum treatment and consideration of many-
body interactions, it proves challenging to reproduce the 
heat capacity with greater accuracy34, 35 – the light water 
model proposed by Graham et al22 uses alternative, more 
sophisticated parameter estimation techniques to reach 
the excellent light-water model performance 
demonstrated (Figure 4b). The SAFT-VR Mie equation 
of state does not explicitly account for quantum effects. 
They are to an extent implicitly incorporated in the 
molecular parameters, as heat capacity was used to 
regress the model parameters. To predict the heat 
capacity with greater accuracy, the heat capacity data 
should be given a greater weighting in the optimisation 
function used to optimise the deuterium oxide model 
parameters. Quantum effects would then be implicitly 
accounted for in the molecular parameters. This, 
however, results in poor modelling of the phase 
behaviour and loss of physical meaning of the molecular 
parameters.  

Comparing deuterium oxide’s model with the light-
water model developed by Graham et al22 (Table 2), it is 
observed that deuterium oxide’s association parameter, 
εassoc, is slightly lower than light water’s association 
parameter. This suggests weaker hydrogen bonding in 
deuterium oxide when compared with light water. This 
is contrary to literature belief – X-ray spectroscopies and 
observations of physical properties, like the higher 
melting point of deuterium oxide32.  
 
III.A.3 Deuterium oxide model performance at 
operating conditions 
Once we have tested and validated the performance of 
the deuterium oxide model for saturation and liquid 
properties at 1 bar, we then examined how the model 
performs under CANDU reactor operating conditions – 
100 bar and 500 K – 550 K 3. The model predicts the 
liquid density remarkably well across the liquid 
temperature range. The model’s predictions of heat 
capacity become increasingly more accurate as 
temperature increases, with a perfect prediction of the 
heat capacity within CANDU’s operating temperature. 
Pressure, as expected, does not have a significant effect 
on the liquid properties, as the values and curvature of 
the experimental data and model prediction curves at 
100 bar closely resemble the model predictions at 1 bar 
over the same temperature range (figures 6a and 6b).  

Temperature, by contrast, has a significant effect on 
the physical properties and accuracy of the deuterium 
oxide model. The heat capacity remains relatively 
steady and begins to gradually increase around 450 K. 
This gradual increase in heat capacity can be attributed 
to the nuclear quantum vibrational modes of motion 
(stretching and bending) beginning to activate as the 
temperature increases23. The vibrational modes of 
motion introduce their contribution to the heat capacity 
through the ideal gas heat capacity contribution.  

Another interesting effect is the SAFT-VR Mie 
model’s increasingly improving performance with the 
increase in temperature. The model initially 
underpredicts the heat capacity identically to the model 
predictions at 1 bar – the effect of the tetrahedral 
structure of deuterium oxide on the heat capacity 
prediction is still present. Yet, at higher temperatures,  
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where the liquid is more disordered, the intermolecular 
attractions more closely resemble two-body 
interactions32. Thus, at higher temperatures the model’s 
predictions become more accurate, as SAFT’s 
interactions more closely resemble two-body 
interactions.  
 
III.A.4 Deuterium and oxygen models performance 
for vapour-phase properties at 1 bar 
To complete the CANDU reactor primary coolant 
mixture that occurs due to deuterium oxide radiolysis, 
we test the deuterium and oxygen model performances. 
The two models demonstrate perfect performance in 
predicting the vapour phase density and heat capacity – 
Figures 7a and 7b. The gases display close to ideal 
behaviour, which is why in the data points have almost 
identical values.  

In the total Helmholtz free energy expression of a 
component, the ideal contribution, Aideal, is the most well 
understood and well-defined. The gases at 1 bar behave 
almost ideally. Thus, the model’s predictions perfectly 
overlap with the gaseous density data points. The same 
applies to the heat capacity33. Since the Reid ideal heat 
capacity coefficients were fitted specifically for oxygen 
and deuterium, as expected, the models match the data 
exactly. Comparing the deuterium and the hydrogen heat 
capacity data, it is clear that there are differences in their 
values, which are captured by the deuterium model. 
 
III.B Binary mixtures models performance 
This section presents and discusses the two binary 
mixture models (deuterium oxide + deuterium, 
deuterium oxide + oxygen) and their performance in 
predicting the mole fraction of deuterium and oxygen in 
deuterium oxide. The additional unlike molecular 
interaction parameters describing the mixtures and the 
corresponding AAD values are presented in Table 3. 

The model predicts the amount of deuterium and 
oxygen dissolved in deuterium oxide with %AADs of  
 

 
5.1% and 17%, respectively. It is worth noting that the 
%AADs are misleadingly high, due to the very small 
order of magnitude of the mole fraction values of 
dissolved deuterium and oxygen in deuterium oxide.  

The observed disparity between the theory and the 
experimental data (Figure 8) could firstly be attributed 
to the structure and dynamics of deuterium oxide. The 
limited insight into the hydrogen bond network in 
deuterium oxide impedes the accurate modelling of the 
interactions of the dissolved gases in deuterium oxide29. 
Additionally, information regarding the accuracy of the 
experimental data is lacking. As outlined in Scharlin et 
al27, ideality is assumed initially, when determining the 
amount of gas dissolved in the solvent. The mole 
fraction values are later corrected for non-ideality. 
However, the accuracy of this approximation is not 
stated. Instead, only the error associated with the 
experimental procedure is given.  
   The optimal unlike parameters for the mixture were 
obtained by regression of the experimental data. 
Initially, though, combining rules were used to estimate 
the unlike parameters. The combining rules tended to 
underpredict the experimental data. When the 
combining rules were used, the predictions generated 
70% %AAD for the mole fraction of deuterium 
dissolved in deuterium oxide and 29% for the mole 
fraction of oxygen dissolved in deuterium oxide. The 
unlike parameters obtained from the combining rules 
were not chosen as the optimal parameters, since 
experimental data and a better parameter estimation tool 
are available. However, combining rules demonstrate 
that even if there are no experimental data available to 
regress the unlike parameters, the theory can provide 
reliable predictions. It is not uncommon that in the 
absence of experimental data, combining rules would be 
relied on for unlike parameter estimations16.   
 
 

 
 

 
 

Fig. 6. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for light-water (blue solid) and 
deuterium oxide (red solid) at 100 bar (CANDU operating pressure) in the liquid phase along with the respective experimental data – blue circle and 
red triangle. The model predicts light-water and deuterium oxide’s density with exceptional accuracy across the liquid phase temperature range. 
Deuterium oxide’s heat capacity is predicted by the model with an increasing improvement, starting with a slight underestimation and progressively 
improving with a perfect prediction at CANDU’s operating temperature (500-550 K and depicted in a green band) indicating the presence of nuclear 
quantum effects at lower temperatures unaccounted for by the model. 
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Fig. 7. SAFT-VR Mie’s model predictions of the molar density (a) and heat capacity (b) variation with temperature for deuterium (red solid) and 
oxygen (black solid) at 1 bar in the vapour phase along with the respective experimental data – red triangle, black diamond and blue circle for 
hydrogen. The model predicts the molar density and heat capacity with exceptional accuracy for all the species across the whole tested temperature 
range – a tribute to the ideal behaviour of the vapours. 
 

 
Table 2. SAFT-VR Mie parameters for the pure components: deuterium oxide, deuterium, oxygen and light-water  

Model Parameters 

  m (ε/kB)/K σ/Å λr λa (εassoc/kB)/K Κ/Å3 N STe N STa 

D2O 1.257 382.0 2.824 27.98 6.000 1590 177.6 2 2 
D2 1.000 21.20 3.154 8.000 6.000 - - - - 
O2 1.000 81.48 2.967 8.922 6.000 - - - - 
H2O * 1.257 351.2 2.802 25.13 6.000 1630 177.6 2 2 

* H2O model by Graham et al22 for comparison with D2O model 

 
 
Fig. 8. SAFT-VR Mie’s solubility prediction of the solubility variation with temperature for deuterium (red solid) and oxygen (black solid) 

vapour mixture in liquid deuterium oxide along with the respective experimental data – red and blue triangle for deuterium and black diamond for 
oxygen. The different triangle colours represent the different deuterium solubility data sources with the red and blue triangle being from Setthanan26, 
and Scharlin27. The two SAFT-VR Mie models (DଶO + Dଶ and DଶO + Dଶ) exhibit a concave shape while the experimental data for both components 
exhibit a convex shape. Although the difference in shape between the experimental data and the model is noticeable, the scale at which the solubility 
data is exhibited is extremely small, demonstrating a significantly accurate mixture model.  

 
 
Table 3. Mixture model unlike parameters and absolute average deviations (AAD) and %AAD from mole fraction, x, experimental data 

Model Unlike Parameters   AAD × 107 AAD(%) 

  (ε/kB)/K λr  x x 

D2O + D2 136.9 20.97  9.2 5.1 

D2O + O2 183.5 15.16   45 17 
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IV. Conclusions 
To conclude, this research sought to generate theoretical 
models capable of predicting thermophysical properties 
of the nuclear coolant mixture found in CANDU reactor 
cores. We established a deuterium oxide SAFT-VR Mie 
model and improved upon existing deuterium and 
oxygen SAFT models. The pure models predict heat 
capacities and densities with excellent accuracies, both 
at 1 bar and at CANDU reactor operating conditions – 
100 bar. The mixture models predict the deuterium + 
deuterium oxide and oxygen + deuterium oxide binary 
mixture solubilities with slightly less accuracy. 
Nevertheless, the mixture model performance is more 
than adequate for an engineering purpose. 

The research’s significance lies in its aid in the 
selection of separation techniques of the generated 
vapours in CANDU reactors and the added insight into 
the quantum effects present in the coolant mixture. The 
models will reduce the need for experimental data under 
CANDU operating conditions for deuterium and oxygen 
to determine their physical properties and hence decide 
on the suitable recombination methods. Furthermore, 
deuterium oxide’s SAFT-VR Mie model parameters and 
their comparison to light water’s parameters, provide 
insight on the quantum effects present and their 
respective strengths, indicating that hydrogen bonding is 
weaker in liquid deuterium oxide compared to light-
water hydrogen bonding. Furthermore, deuterium 
oxide’s parameters validate the observed differences in 
physical properties between deuterium oxide and light 
water – the differences in liquid densities and heat 
capacities. 

In the greater picture, this research further validates 
SAFT-VR Mie’s theoretical model of molecules and 
their interactions by demonstrating highly accurate 
predictions of physical properties in both pure and 
mixture systems. Furthermore, this research introduces 
a starting point for theoretical analysis of fluids in 
nuclear reactor settings. 

Nuclear reactors contain a complex mixture of many 
fluids. Hence, the mixture models devised can be greatly 
improved by introducing the missing components found 
in CANDU liquid coolant mixtures. The introduction of 
tritium oxide, TଶO, and deuterium tritium oxide, DTO, 
into the liquid phase can be an area of further study, 
probing into their effect on the mixture physical 
properties. Additionally, including interactions between 
deuterium and oxygen in the vapour phase may prove 
beneficial to the prediction performance of the model. 
Finally, compiling further experimental data for the 
current mixture system will prove valuable in improving 
the current mixture model as well as be used to validate 
the model performance in a wider range of operating 
conditions. 
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Abstract Electrochemical CO2 reduction offers a sustainable solution to environmental challenges by converting CO2 
emissions into valuable chemicals and fuels, using excess renewable energy to close the anthropogenic carbon cycle. This 
study explores single metal atom catalysts embedded in nitrogen-doped carbon (MNC), with emphasis on cobalt due to 
its potential high activity for the reduction of CO2 to CO. Employing a two-step decoupled synthesis method, the aim was 
to successfully integrate cobalt into the highly porous nitrogen-doped carbon matrix, while preventing nanoparticle 
formation that typically limits SACs efficiency. Characterisation of the catalyst material using X-ray Photoelectron 
Spectroscopy (XPS) suggests high metal and oxygen content (8.39 wt% cobalt and 9.76 wt% oxygen respectively), which 
often entails moderate catalytic performance due to nanoparticle formation. However, electrochemical testing exhibited 
high CO faradaic efficiency (FE), reaching a maximum value of 97% at -0.8V vs. RHE, with a total current density of 
17.6 mAcm-2. These results positioned TAP900@Co as a competitive alternative amongst other state-of-the-art Co-SACs. 
Future work should include advanced analytical techniques to confirm cobalt aggregation into the formation of other 
species and elucidate their role in the catalyst’s performance.  
 
Keywords: electrochemical CO2 reduction, single atoms catalysts, cobalt, transmetalation 
 
 
1. Introduction  
 
In 2015, leaders from 55 countries worldwide agreed on 
an international treaty aimed at combatting global 
warming, famously known as the Paris Agreement. This 
pact aspires to limit the increase of the global average 
temperature to no more than 1.5⁰C 	by the end of this 
century, primarily through the reduction of greenhouse 
gases (GHGs) emissions [1]. Fast forward to 2021, the 
AR6 Climate Change report predicted a concerning 
increase of 0.45℃ for every 1000Gt of cumulative CO2 
emissions [2]. Furthermore, the International Energy 
Agency (IEA) recorded a significant 36.8Gt of CO2 
emissions in 2022, originating from global energy-
related sources like power plants, automobiles and 
airplanes [3]. This data serves to reveal the role of CO2 as 
one of the primary anthropogenic contributors to GHG 
emissions and emphasizes the necessity of long-term 
approaches for full decarbonisation, such as CO2 capture 
and utilisation, in addition to emission reduction 
technologies [4].   

The electrochemical CO2 reduction reaction, or 
eCO2RR, has emerged as a promising technology to 

address these environmental concerns and to ultimately 
close the anthropogenic carbon cycle [5]. As seen in 
Figure 1, by utilizing electricity derived from renewable 
sources and protons from an aqueous electrolyte, the 
eCO2RR can transform CO2 into a wide variety of 
feedstock chemicals, valuable for processes like fuel 
production, thereby standing as a promising way to 
eliminate our dependence on fossil fuels at a commercial 
scale. Nevertheless, the scale-up of this technology faces 
several barriers, including the thermodynamics and 
kinetics of the reaction, catalytic efficiency and stability, 
product separation and the purity and sourcing of CO2 
[5].  

One of the main challenges arises from the 
competition of eCO2RR in aqueous electrolytes with the 
hydrogen evolution reaction (HER), due to the 
overlapping of their thermodynamic potentials [6]. In 
addition, the reduction of CO2 itself can result in 
multiple products (Figure 1) which share similar 
thermodynamic potentials [7], causing them to compete 
during the reduction process. Over time, researchers 
have explored different catalysts, reaction conditions 
and electrochemical set-ups with the aim of achieving 
high activity and stability catalysts that can selectively 
produce desired products, at low overpotentials.  

Despite the difficulties in the development of 
these catalysts, the economic value of e CO2RR products 
remains an incentive to continue the pursuit of more 
effective alternatives [8].  As illustrated in Figure 2, 
formic acid and propanol emerge as the most profitable 
eCO2RR products. Metals such as Sn, Bi, Hg, In and Pb 
have been shown to produce formic acid as their main 
product [7],[9], due to their weak adsorption energy with 
the CO2•– intermediate radical. Despite the high 
profitability of formic acid and propanol, their current 
low production levels (0.2MtC/yr and 0.1MtC/yr 
respectively) [8], are insufficient to meet the targets of 
the Paris Agreement. In contrast, C2+ products like 
ethylene (120MtC/yr) and ethanol (40MtC/yr) offer a 
balance between profitability and the potential for an 
impactful eCO2RR [8].  

Figure 1. Schematic of the electrochemical set-up for the eCO2RR. 
Reprinted from Ref [1]. 
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The state-of-the art catalyst for hydrocarbons 

containing more than one carbon is copper (Cu), since it 
has demonstrated a unique ability to facilitate C-C 
coupling [10]. It is the only metal that has weak binding 
to H2 and moderate binding to CO2, facilitating the 
further reduction of *CO into C2+ products, rather than 
the desorption and subsequent formation of CO2 or the 
HER. However, Cu is still far from an ideal solution. 
The main issue lies in its lack of selectivity due to its 
involvement in several reaction pathways, resulting in a 
wide range of products which diminishes its 
effectiveness in selectively yielding a single desired 
product. This was illustrated in the work of Kuhl et al., 
who identified a total of 16 products when studying Cu 
across a range of potentials. The highest faradaic 
efficiency (FE%) for a C2+ product was the one for 
ethylene, 23% approximately [11].  Additionally, the 
production of longer chain hydrocarbons includes 
multiple proton and electron transfer steps, which 
require high overpotentials (> than 1V), leading to 
energy inefficiencies within the process [12].  

 

The formation of CO is a simpler 
electrochemical process involving the transfer of two 
protons and two electrons, making it a more practical 
option for study and application. Furthermore, it is 
usually accompanied by the HER resulting in syngas 
production, which can be used as feedstock in synthetic 
fuels production via the catalytic Fischer-Tropsch 
process [13]. Currently, precious metals like gold (Au) 
and silver (Ag) are the state-of-the art catalysts for CO 
formation, achieving high selectivity towards CO at low 
overpotentials [14]. For example, ultrathin Au nanowires 
have shown the ability to reduce CO2 to CO with a 
selectivity of 94%, at a potential of -0.35V vs. RHE [15]. 
Silver nanoparticles have achieved greater than 95% 
selectivity towards CO2, at a potential of -0.8V vs. RHE 
[16]. Despite their high performance, earth-abundant 
catalysts are being studied as an alternative to reduce the 
reliance on these expensive and limited metals.   

Single-metal-atom catalysts (SACs) offer a 
promising option. Isolated single-metal-atoms are 
evenly distributed on a conductive support, typically 
made of carbon-based materials such as carbon 
nanotubes, graphene or amorphous carbon [17]. The 

uniqueness of these catalysts lies in their configuration. 
Each metal atom is individually anchored to the support, 
ideally allowing every metal atom to act as an active site, 
thus maximising the utilisation of the material. This 
minimises metal wastage that is typically present in 
conventional, aggregated metal catalysts, where a 
significant number of metal atoms are rendered inactive 
due to lack of accessibility [18].  

Building upon the promise of SACs as optimal 
catalysts for eCO2RR, efforts have been directed 
towards metal-nitrogen-doped-carbon (MNC) catalysts. 
These MNC materials can be sustainably prepared from 
sources like biomass and feature porous structures that 
ensure active sites are electrochemically exposed and 
conductive, as they are supported on a carbon substrate 
[19]. A range of metal centres in MNC catalysts, 
including Mn, Fe, Ni, Co and Cu have been investigated 
to demonstrate their effect on activity and selectivity [20]. 
The comparison between these metals is depicted in 
Figures 3a-d. Fe is the most active catalyst and has the 
ability to initiate eCO2RR at low overpotential, due to 
the strong binding affinity to *COOH.  Ni presents the 
highest selectivity towards CO, attributed to the weak 
bond with *H, hindering the HER. As a result, Ni and 
Fe containing catalysts are considered some of the most 
promising materials  

In the synthesis of SACs, the final treatment 
often involves heating the catalyst material, which 
already contains the metal centre integrated in the 
nitrogen-doped carbon support, to temperatures ranging 
from 600°C to 1000°C. These high temperatures are 
known to enhance the conductivity of the material [21]. 
However, they can also lead to the formation of metal 
oxides, nitrides and carbides, creating a diverse range of 
active sites, and thereby complicating the ability to draw 
clear conclusions regarding catalyst performance. 
Furthermore, such elevated temperatures can also 
facilitate the carbothermal reduction of metal ions into 
pure metal, which lacks functionality as an active site. 
At temperatures exceeding 800°C, it has been shown 
that a thin carbon layer can form on the elemental metal 
[22]. This protects the metal atoms from being removed 
during acid washing and leads to their retention in the 
final catalyst, reducing the efficiency and utilisation of 
the catalyst material.  

A new synthesis method (Figure 4) was 
proposed recently to prevent these challenges and limit 
the undesired aggregation of active sites, which occurs 
due to the system’s inclination towards stability and the 
high surface energy of free-standing atoms [22]. This 
approach decouples the synthesis of the support material 
from the low temperature metal coordination step 
through transmetalation, avoiding the production of 
metal oxides, nitrides and carbides. One recent study 
following this method showed promising outcomes for 
Ni and Fe metal centres, leveraging exceptional porosity 
to both inhibit aggregation of single atoms and 
maximise active site utilisation. However, such high 
active site utilisation comes at the compromise of site 
density, which inhibits the catalytic activity of the 
material [23]. Future work should aim to enhance metal 
loading without sacrificing performance to establish the

Figure 2. Market price of select CO2 recycling products as a 
function of energy content. Reprinted from Ref [8].  

111



3 
 

 
method as a commercially viable option for catalyst 
production. 

The synthesis mentioned involves pyrolysis of 
the organic precursor 2,4,6-triaminopyridimine (TAP) 
and a MgCl2.6H2O templating agent at 900°C to provide 
an adequate balance between nitrogen content, 
electricalconductivity, and porosity [24]. This is followed 
by transmetalation, where a desired metal atom is 
coordinated through low temperature wet impregnation 
in methanol reflux, replacing Mg. This process led to 
59±6% and 45±14% electrochemical utilisation for 
TAP900@Ni and TAP900@Fe respectively, which are 
unprecedented figures for MNC catalysts [25]. 
TAP900@Fe displayed a slightly lower utilisation, 
which can be attributed to the inherent contamination of 
inactive Fe sites within the uncoordinated TAP900 as 
shown in Figure 5, where the metal content was 
calculated from inductively coupled plasma mass 
spectrometry (ICP-MS) measurements. 

The notable utilisation is a result of the high 
mesoporosity of the catalyst, which arises from the 
interaction between TAP and Mg2+ salt. Upon heating, 
TAP organises around the salt’s water molecules  

through hydrogen bonds, melting together to form a 
homogeneous liquid that polymerizes without forming 
grain boundaries. This process yields a material with 
high porosity once acid washed, hindering aggregation 
and facilitating a relatively high density of 
electrochemically active sites on the nitrogen-doped 
carbon support (~3295m2g-1) [25]. The selectivity 
improvements are apparent when comparing with the 
previous data displayed in Figure 3, as TAP900@Fe 
presents a FECO of 93.5±3.7% at -0.55V, while 
TAP900@Ni displays a FECO of 95.3±4.7% at -0.59V, 
both at stable current densities of approximately 
15mAcm-2 [25] 

The acute sensitivity of cobalt to different 
coordination environments has been a subject of 
interest, with recent studies highlighting its potential for 
high FE in CO production. Although the CoNC material 
in Figure 3c displays a poor performance over the 
potential range applied, research investigating alternate 
support structures has achieved efficiencies towards CO 
exceeding 99% between -0.73V and -0.77V vs. RHE [26]. 
The inconsistent performance between materials 
underscores the need for further investigation into the  

 

Figure 3. a-b Binding energies of CO2 for elemental and MNC reduction electrocatalysts, towards *COOH, *CO and *H. c Faradaic Efficiencies (FE) 
vs. applied, IR-corrected electrode potential of CO. d Catalyst surface area-normalized CO partial currents vs. applied potential for the 6 catalysts. 
Reproduced from Ref [14],[19]. 

Figure 4. Schematic of the synthesis for the preparation of pyrolyzed TAP 900 and the subsequent low temperature metal coordination M. Reproduced 
from Ref [25].   
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intrinsic catalytic abilities of cobalt for the eCO2RR. The 
synthetic method used in this paper that coordinates 
cobalt into TAP900 through transmetalation, seeks to 
clarify these ambiguities. By leveraging the material’s 
inherent high porosity, the intrinsic activity of cobalt can 
be accurately quantified, due to the direct interaction of 
e CO2RR intermediates with fully exposed Co single 
atom sites. Research conducted into the d-band centres 
of Ni, Fe and Co supports the premise that cobalt’s 
intrinsic activity is high [27], as opposed to showing good 
performance only in specific tailored environments. 
This is evidenced by the proximity of cobalt’s d-band 
centre to the fermi level, which facilitates the electron 
transfer from the metal d-band to the adsorbate. 
Characterisation showed that the d-band of Ni was 
closest to the fermi level, followed by Co and Fe. The 
CO2 adsorption energy on the Co active site tested was 
also significantly stronger than that of the Ni active site, 
further substantiating the appeal of cobalt as a high 
performing electrocatalyst for CO2 reduction.  

 
 

 
2. Experimental procedure 

 
Synthesis. TAP (97% Sigma Aldrich) and magnesium 
chloride hexahydrate (99% Sigma Aldrich) were 
measured in a weight ratio of 1:8, then ground to a 
homogenous powder with a pestle and mortar. The 
mixture was then pyrolysed in a ceramic crucible that 
was filled to 1/3 capacity. The pyrolysis was conducted 
at 900⁰C for 3 hours in a N₂ atmosphere (>99.998%, 
BOC). The N₂ flowrate was maintained at 300mlmin-1 
and the heating rate was set at 5Cmin-1. The material was 
collected, ground to a fine powder, and then acid washed 
overnight in 2M HCl, (prepared by dilution of fuming 
37%, Merck), to eliminate any residual MgCl2 and 
MgO. After acid washing, the powders were filtered 
extensively with DI water, then dried at 80⁰C under 
vacuum conditions. The final product was designated as 
“TAP900”.  
 
Cobalt Coordination. To coordinate cobalt into the 
material, 60 mg of TAP900 were added to a 250ml 
round-bottom flask containing 75ml of MeOH (AnalaR 
NORMAPUR Reag. Ph. Eur., ACS, VWR). This 
mixture was stirred until a uniform dispersion was 
achieved. Following this, a 75ml solution of 25 × 10-3 
M CoCl2.6H2O (98% Sigma Aldrich) in MeOH was 
prepared. The flask was connected to a reflux condenser 

and subjected to a low temperature wet impregnation 
method, where it was continuously stirred at 90⁰C for 24 
hours. Next, the material was filtered and rinsed with 
MeOH. It was then washed overnight with 0.5M H2SO4 
(95-98% Sigma Aldrich) to remove any aggregated Co 
species. The cobalt coordinated catalyst, 
(TAP900@Co), was filtered thoroughly with DI water 
to remove the acid and dried at 80⁰C under vacuum.  
 
Electrode preparation. To prepare the cathode ink, 
12mg of TAP900@Co, and 40 mg of ball milled 
polytetrafluoroethylene, (PTFE), were ground to a 
homogenous powder with a pestle and mortar. PTFE 
was employed to act as a binder, due to its adhesive 
characteristics, and provide a hydrophobic layer 
between the electrolyte and catalyst. The hydrophobicity 
of PTFE prevents the electrolyte flooding onto the 
electrode, therefore allowing for the formation of a 
three-phase interface between the CO2 passing through 
the flow field, the cathode, and the aqueous electrolyte 
[25]. Since the solubility of CO2 presents mass-transport 
limitations, it was crucial to form this interface as a way 
of ensuring consistent supply of gaseous CO2 to 
maintain the concentration gradient that allows for 
diffusion from the bulk of the electrolyte to the catalyst 
surface. The mixture was dispersed in 10mL of 
isopropanol and spent 10 minutes in a sonication bath, 
followed by 10 minutes under probe sonification for 
further homogenisation. The probe sonicator followed a 
pattern of 5s on 5s off to avoid excess heat generation 
that could possibly damage the sample. The cathode ink 
was then air-brushed onto the hydrophobic side of 4x4 
cm carbon paper, (GDL – Sigracet 39BB), which was 
then cut into 16 cathodes, each measuring 1 cm2. The 
dilution with IPA and subsequent homogenisation 
served to reduce the probability of the air-brush 
clogging, and effectively disperse the particles in the ink 
for even spraying onto the electrode. For the anode ink, 
100 mg of 40wt% Pt/C was dispersed in a 12mL solution 
of 80% DI water and 20% ethanol by volume. The 
ensuing steps taken were identical to the cathode 
preparation. 

Cell assembly. The electrolyte was prepared from 30ml 
of 0.5M KOH. It was placed in a centrifuge and 
saturated with CO2 for 30 minutes to ensure sufficient 
supply of CO2 at the electrode surface. The 
electrochemical cell used had a gas diffusion 
configuration and consisted of a flow field, catholyte 
compartment, anolyte compartment, 4 gaskets, a 
FUMASEP membrane that has been wet with DI water 

Figure 5. Metal loadings calculated through ICP-MS of different 
TAP900-derived catalysts. Reproduced from Ref [25].  

Figure 6. Image of the electrochemical setup.  
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in advance, and an anode end plate. Copper tape was 
added around the flow field and end plate to ensure 
efficient current distribution, improving contact with the 
electrodes. The compartments were then assembled as 
shown in Figure 6. Each compartment was separated by 
a gasket, which provided an additional seal to the cell, 
preventing any liquids or gases from escaping or 
entering. Once the cell was put together and tightened, 
the Ag/AgCl reference electrode was screwed into the 
catholyte compartment, and 1.5 ml of KOH electrolyte 
was added to the catholyte and anolyte compartments. 
 
Electrochemical tests. Gas chromatography (GC) was 
paired with chronoamperometry (CA) at varying 
potentials utilizing an AUTOLAB PGSTAT302N 
potentiostat. This configuration enabled the 
simultaneous analysis of gaseous products and 
assessment of the electrocatalyst's performance. The GC 
is equipped with a Flame Ionisation Detector (FID), 
which is highly sensitive, for the detection of carbon-
based products, alongside a Thermal Conductivity 
Detector (TCD) for sensing H2. Before electrochemical 
measurements were taken, the GC was conditioned to 
remove any residual contamination from prior 
experiments. This required raising its temperature to 
210℃ and letting in Ar, H2 and air at 10psi, 20psi and 
5psi respectively.  

Prior to CA, Frequency response analysis 
(FRA) and cyclic voltammetry (CV) measurements 
were conducted to correct the resistance of the 
electrolyte between the electrodes and stabilise the 
catalyst surface by forming an interface between the 
electrode and the electrolyte. All three tests were run 
using NOVA 2.1.4 software. Post-resistance adjustment, 
CV was conducted between 0 and -0.5V vs Ag/AgCl for 
10 cycles with a 50% internal resistance (iR) 
compensation. Subsequently, CA was performed at -1.2, 
-1.3, and -1.4V vs. Ag/AgCl, each for 2400 s. The 
overpotential conversion to vs. RHE, is defined as:  
 

$!"# = $$%/$%'( + 0.59+ 
 

(1) 

The gas chromatography (GC) system 
performed three injections during each CA run, each 
lasting 16 minutes, (13.25 min injection and 2.75 min 
cooling down), to monitor the formation of gaseous 
products, with peaks and currents noted at 300, 1260, 
and 2220 s into the CA. Each peak is proportional to the 
concentration of the detected gaseous species. Partial 
currents ,) 	for each product	- were calculated as follows:   
 

,) =
. × / × 0*(+,

+-
 

 

(2) 

where .	is the integrated area under the peak for each 
gas - from the GC data, / is the calibration constant 
specific to each gas -, +- is the total volume of gas - that 
passes through the GC and  0*(+, is the rate at which 
gas - is passed through the GC. Partial current densities 
were found by dividing ,) by the surface area of the 
working electrode 1 (1cm²). The Faradaic efficiency 
(%) of each product - was then found with: 

 

/$) =
,)

,.+./(
× 100 

 

(3) 

where ,.+./( is the total current density measured during 
each CA.  
 
Material Characterisation. X-ray Photoelectron 
Spectroscopy (XPS) was performed in a Thermo Fisher 
K-Alpha XPS system and analysed using Avantage 
software. All spectra were calibrated relative to the 
carbon C1s peak at 284.8 eV for correcting for charging 
effects. 
 
3. Results and Discussion 
 
Characterisation Results. XPS confirms the 
incorporation of Co into the TAP900 framework, 
quantifying elemental composition in TAP900@Co by 
both weight (wt) and atomic (at) percent, as detailed in 
Table 1. The at% is derived by normalizing the wt% 
with the atomic mass of each element. This shows the 
primary constituents of TAP900@Co: carbon, followed 
by nitrogen, oxygen and cobalt.  
 
Table 1: Compositions by weight % and atomic % of TAP900@Co, 
calculated from XPS data. 

Element Weight % Atomic % 
C1s 72.64 81.1 
O1s 9.76 8.18 
N1s 9.21 8.82 
Co2p 8.39 1.91 

 
TAP900@Fe synthesized in another work from 

TAP900 with 0.18 wt% Fe (from contamination of the 
TAP precursor) following the same method, allowed the 
coordination of 0.520 wt% of Fe single atoms [25]. This 
low metal content, characteristic of SACs, indicates the 
formation of highly dispersed single metal atoms on the 
surface of the catalyst. In contrast, TAP900@Co’s high 
metal content of 8.39 wt% implies significant cobalt 
aggregation and the consequent formation of 
nanoparticles. This is further supported by the 
pronounced peak for Co2p in the XPS spectrum in 
Figure 7, where the peak’s magnitude correlates with 
elemental concentration [28]. The O1s spectrum 
additionally indicates a high oxygen content, suggesting 
substantial oxidative characteristics of the sample.  

The synthesis of TAP900@Co includes several 
critical steps where any slight deviation could introduce 
undesired high metal content. A crucial aspect is 
achieving the proper nitrogen content, around 4.5 at% 
[24], which provides the necessary number of lone 
electron pairs for the coordination of cobalt within the 
TAP framework. This step requires precise pyrolysis 
conditions. Should the furnace fail to reach or maintain 
the necessary temperature, or if the sample tube is not 
sealed properly, it could detrimentally impact the 
structural properties of TAP900. Other analytical 
techniques should be used to confirm the findings of 
XPS. Inductively coupled plasma mass spectroscopy 
(ICP-MS) could be applied to verify the chemical 
composition of the catalyst, since it is highly sensitive 
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and can detect trace metals within the bulk composition 
of the measured material, as opposed to XPS, which is a 
surface analytical technique. The oxidation state and 
coordination environment around TAP900@Co could 
be further assessed by X-ray absorption spectroscopy 
(XAS) and extended X-ray absorption fine structure 
(EXAFS). To show the distribution of single atoms and 
verify the existence of metallic nanoparticles, high angle 
annular dark field scanning transmission electron 
microscopy (HAADF- STEM) should be employed, as 
well as X-ray diffraction (XRD). It would also be 
beneficial to quantify the porosity of TAP900@Co 
through Brunauer–Emmett–Teller (BET) analysis. 

XPS spectra in Figure 7c and 8d confirm the 
metal loading after metal coordination, and the common 
features of MNC materials. The C1s spectrum of 

TAP900@Co shows three different contributions that 
correspond to C-C, C-N and C-O bonding. In the N1s 
spectrum, a peak arises at 399 eV that corresponds to N-
Co coordination. The N1s spectrum also presents three 
other contributions that stand for pyridinic, pyrrolic and 
graphitic. Compared to TAP900 in Figure 8, the total 
contribution of the pyrrolic moieties decreases and the 
one corresponding to nitrogen coordinated to metals 
increases (Mg in the case of TAP900 and Co in the case 
of TAP900@Co), while the other components remain 
similar. This fact suggests that Co is coordinated via 
pyrrolic N rather than pyridinic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Electrochemical testing results. In eCO2RR, current 
density is a key metric that indicates the rate of flow of 
electrons with respect to the working electrode. 

Figure 7. X-ray photoelectron spectra of TAP900@Co a Co2p spectrum, b O1s spectrum, c TAP900 C1s spectrum and d TAP900@C C1s spectrum 
c TAP900@Co N1s spectrum. 

Figure 8. TAP900 N1s spectrum. Reproduced from Ref [24].  Figure 9. General structure of TAP900, reproduced from Ref 
[12]. 
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Applying a negative potential to the electrode increases 
the energy of electrons, which can reach such a high 
energy that they transfer into the vacant states in the 
electrolyte [29], causing the reduction to take place. As 
the applied potential is increased, the reactants receive 
additional energy which facilitates their ability to 
overcome the activation energy barrier. Electrons are 
transferred more energetically and the mass transport of 
reactants to and products away from the electrode 
surface is enhanced, thereby increasing the reaction rate 
and, as a result, the current density.  

Current density reaches a relatively steady state 
after 300s approximately, implying that the 
electrochemical environment has stabilised. The 
observed fluctuations in current density, specially at 
higher potentials suggest concentration overpotential, 
where the consumption rate of reactants exceeds their 
supply rate to the catalyst [30]. This is evident in Figure 
9, where current oscillations could be attributed to the 
dynamic formation and detachment of gas bubbles that 
intermittently block and unblock electrode active sites. 
At -0.71V vs. RHE, the frequency of these fluctuations 
is increased. This implies that smaller gas bubbles are 
formed, which quickly detach. The quick detachment 
helps to avoid larger bubbles that can disrupt the 
process. Therefore, -0.71V vs. RHE is high enough to 
accelerate the reaction, while avoiding the limitations 
imposed by mass transport when reactants cannot reach 
the electrode fast enough, allowing the reaction to run 
with less disruption. 

Partial current density represents the current 
associated with the formation of a specific product, 
serving as an indicator of a catalyst’s activity. FE, on the 
other hand, measures the proportion of the total amount 
of current that contributes to the formation of a product, 
thus serving as an indicator of selectivity. It is also a 
significant parameter when it comes to industrial 
scalability. Although low faradaic efficiency towards 
CO can indicate the production of more profitable 
hydrocarbons, such as ethylene or ethane, the 
implications can include much greater separation and 
purification costs. To assess the performance of 
TAP900@Co, both factors were considered in this 
analysis, as shown in Figure 10.  

With rising potentials, an increase in partial 
current densities was observed for both H2 and CO, 
aligning with the general trend of current density 
increasing as a result of elevated energy received by 
electrons and reactants. The partial current of CO grows 
more sharply with higher potential, reaching a value of 
17.1 mAcm-2 at –0.8V vs. RHE, indicating a dominance 
over H2 formation and therefore, the inhabitation of the 
HER. In contrast, the marginal increase in H2 partial 
currents up to 1.7-2.5 mAcm-2 implies that HER’s 
dependency on applied potential is minimal, suggesting 
its occurrence regardless of potential adjustments. 

At –0.6V vs. RHE, TAP900@Co displayed a 
relatively low FECO of 66%, without the presence of any 
other profitable products. One possible reason for this, 
in addition to the inadequate energy received by 
reactants mentioned earlier, could be insufficient 
structural changes in the catalyst surface. These 
structural changes, which lower the activation energy 

for CO2 reduction to CO by exposing desirable active 
sites, could become more pronounced as the applied 
potential is increased. This is proven as the chemical 
environment surrounding Co active sites in 
TAP900@Co can promote CO2 reduction towards CO 
with approximately 82% and 97% selectivity at the 
potentials of -0.7V and -0.8V vs. RHE respectively.   

The potential of -0.6V vs. RHE displays 

approximately 90% total FE. The discrepancy could be 
due to the formation of liquid byproducts, such as 
formate, which due to their anionic character [31] are not 
entirely constrained by the anion exchange membrane 
(AEM). At higher current densities and CO2 flowrates, 
product concentration at the electrolyte increases. This 
can cause product crossover through the AEM and 
consequent oxidation at the anode, due to a greater 
diffusion rate. This suggests that a portion of liquid 
products may have formed because of the low CO2 
flowrate used. The fraction of liquid products caused by 
this electromigration effect was not significant, 
presumably as a result of the relatively lower current 
densities measured. Typically, electromigration is more 
impactful at current densities greater than 50 mAcm-2 
[31]. Considering the summation of total FE at -0.7V and 
-0.8V vs. RHE, it is possible that the structural changes 
that enhance CO formation begin to dominate over the 
electromigration effect at higher potentials. This finding 
can be supported by additional evidence, where similar 
TAP900 materials coordinated with Fe and Ni also 
experienced discrepancies in the summation of FE at 
only low potentials [25].  

Assessing the specific surface area and total 
pore volume of TAP900@Co through BET analysis 
would have been pivotal in elucidating the notable 
results achieved at -0.7V and -0.8V vs. RHE. It is 
possible that, despite the complications encountered 
during synthesis, TAP900@Co was able to maintain a 
sizable fraction of the porosity achieved by 
TAP900@Fe. This is because the excessive presence of 
O2, and subsequent aggregation of Co, likely evolved 
from imperfect vacuum conditions during the drying 
process. Although this would have diminished the 
porosity of the catalyst, TAP900@Co could have 
retained reasonable active site exposure as the porous 

Figure 10. Catalytic performance of TAP900@Co as a 
function of applied potential (vs. RHE). 
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framework originated from the bubble templating effect 
during pyrolysis [24]. Therefore, the favourable results 
could be attributed to the inherent conductivity of the 
TAP precursor, with reasonable porosity and the 
hypothesised intrinsic activity of cobalt. However, it is 
difficult to draw definite conclusions without additional 
characterisation to fully understand TAP900@Co. 

 
Table 2: Performance comparisons of TAP900@Co to other Co-
SACs in literature. The compiled data corresponds to measurements 
at maximum FECO, reproduced from ref [26], [32], [33]. 

Catalyst Potential 
(vs. 
RHE) 

FEco  
(%) 

J 
(mAcm-2) 

TAP@Co -0.81 97 17.6 

Single atom 
Co-N5 
(HNPCSs) 

-0.79 99 10.2 

CoNC -0.48 45 1.0 

Co-Tpy-c  -0.70 97 ~7.5 

 
Table 2 shows cobalt catalysts tested in 

literature, covering a broad spectrum of performance 
characteristics. These variations in performance occur 
because of structural and chemical differences within 
the material that come about due to alternate paths of 
synthesis, giving rise to distinct coordination 
environments. The performance of TAP900@Co fares 
surprisingly well against top performing cobalt 
coordinated eCO2RR catalysts, despite the 
complications that may have emerged during synthesis. 
The selectivity towards CO is among the top found in 
literature, although there is potential for minor 
overestimation due to the total FE summing to over 
100%, likely through inherent experimental error with 
the GC. This error could have risen from inaccurate 
parameter calibration during set-up of the GC. 

A Co-SAC with atomically dispersed Co sites 
anchored on hollow N-doped porous carbon spheres 
(HNPCSs) displayed an excellent FECO of 99%, that 
seems to arise due to the Co-N5 active centre in the 
HNPCS environment [26]. As the coordination number 
drops, so does the selectivity towards CO. Remarkably, 
in this specific environment, commonly successful 
coordination metals such as Fe, Ni and Cu perform 
substantially worse. Additional study is evidently 
necessary into cobalt, as demonstrated by a Co-doped 
zeolitic imidazolate framework (ZIF-8) precursor that 
formed Co-N4 atomic structures. This precursor 
achieved a maximum FECO of only 45%, despite Fe 
coordination in the same structure, exhibiting a FECO of 
93% [32]. The superior performance of Fe over Co is 
generally expected. However, the precedent set by the 
HNPCSs presents a unique case where the FECO 
remained high when the coordination number changed 
from 5 to 4, only dropping from 99% to 91% [26]. It is 
possible that the microporosity of the ZIF-8 support 
structure does not promote eCO2RR for cobalt-based 
catalysts, causing the poor selectivity and lack of 
activity towards CO2 reduction. 

Both the Co-HNPCS and Co-Tpy-c catalysts 
display significant increases in current density as the 
potential was raised past the displayed results in Table 
2. This came at the compromise of CO selectivity. The 
greater of which, Co-Tpy-c, was able to reach a 
maximum current density of 46.6 mAcm-2 at -1.2V vs. 
RHE, producing CO with a selectivity of approximately 
72% [32]. The Co-HNPCS was only measured up to a 
potential of -0.88V vs. RHE and exhibited a current 
density of 17.5 mAcm2.  However, it was still able to 
form CO with a selectivity near 90% [26]. This indicates 
testing TAP900@Co over a wider potential range would 
have been useful in determining its full capabilities, 
especially to establish the range of potentials that were 
able to produce CO with high selectivity. Additionally, 
although TAP900@Co has shown high current 
densities, long term testing would have given more 
meaning to the results, as catalyst stability is a crucial 
factor to consider when demonstrating what could make 
an ideal industrial catalyst. 
 
4. Conclusion 
 
TAP900@Co was prepared via a decoupled synthesis 
approach, which involved the coordination of cobalt 
sites into a highly porous nitrogen-doped carbon 
structure. The material achieved a high FECO of 97% at 
-0.81V vs. RHE, with a total current density of 17.6 
mAcm-2, making it a competitive catalyst amongst state-
of-the-art cobalt single-atom catalysts in literature. 
However, an unexpected high cobalt and oxygen content 
was found, as evidenced by the 8.39 wt% of Co and 9.76 
wt% of O2 calculated, and large Co2p and O1s peaks. 
Further analytical techniques should be employed to 
confirm cobalt aggregation and oxidation of species 
during the synthesis, and to ascertain their nature and 
impact on catalyst performance.  Analysing the 
electrolyte post-electrocatalysis via HPLC could 
confirm the formation of liquid products, validating the 
explanations for total FE remaining below 100% at -
0.6V vs. RHE. Assessing the D/G band intensity ratio 
through Raman spectroscopy would have identified 
possible defects and grain boundaries within the 
material, as well as the degree of graphitisation of 
TAP900@Co. Gaining this information would have 
given insights into the conductivity of the material. 
Additional experiments with varying electrolytic 
concentrations or solutions, such as NaHCO3 and 
KHCO3, may shed light on the CO2 reduction conditions 
favourable to TAP900@Co, as these would have offered 
greater stability than KOH (at the compromise of 
conductivity, due to the higher pH of KOH). Further 
research is vital to meet the industrial benchmarks for 
catalyst performance, which consist of current densities 
and selectivity exceeding 200 mAcm-2 and 90% 
respectively, with long term stability greater than 80,000 
hours, at minimised overpotentials [34]. Despite the 
shortcomings Co-SACs face to achieve this criterion, 
cobalt has clearly displayed interesting and encouraging 
capabilities that this paper set out to find, adding to the 
foundation that is currently being set up in the novel 
field of electrochemical CO2 reduction. 
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Abstract   Dynamical systems, i.e., systems which involve observable quantities that evolve over time, are 
omnipresent in our ever-changing world. From pandemic evolution prediction to weather forecasting, being able 
to accurately predict future changes in our environment is crucial for the greater good. Therefore, scientists and 
engineers are constantly working on methods to model future outcomes using past data. In fields such as Chemical 
Engineering, the ability to precisely model a complex system and its time dependent behaviour leads to a 
fundamental understanding of said system, which yields the benefit of facilitating the design of robust and highly 
optimal operations. Conventional methods often fail to find solutions to complex engineering problems. Hence, 
as part of a rapidly growing field, engineers can harness the power of Artificial Intelligence, particularly that of 
Machine Learning, for effective, data-driven approaches to complex problems. One recently developed model of 
deep neural networks, Neural Ordinary Differential Equations (Neural ODEs), is used to predict the dynamics of 
three prototypical models belonging to distinct generic classes: the Lotka-Volterra system in population biology, 
the SIR model in epidemiology and the Lorenz system in chaotic dynamics. This paper serves as a proof of concept 
that aims to explore the limitations and capabilities of Neural ODEs. Different validation techniques were used 
for each of the three systems, in consideration of their distinct nature. Ultimately, the Neural ODE model was 
successful in capturing the underlying dynamics of the Lotka-Volterra and SIR models but shows limitation in 
predicting the chaotic dynamics of the Lorenz system. 
 
Keywords   Neural Ordinary Differential Equations, SIR Model, Lotka-Volterra System, Lorenz System

1. Introduction 
Nowadays, the society faces many dynamic 
challenges such as pandemics and climate change. 
For the most part of the last 4 years, the Covid-19 
pandemic has had devastating impacts on our daily 
lives, and it has been necessary to take a plethora of 
precautions, such as lockdowns, to control and 
prevent the spread of the virus. At the same time, 
Earth’s climate is changing, resulting in extreme 
temperature fluctuations, which in turn increase the 
frequency of severe weather phenomena. Both of 
these natural phenomena have something in 
common: they are complex dynamical systems with 
numerous intricate interactions and dependencies. 
   Dynamical systems are time-dependent 
mathematical models that illustrate the behaviour of 
an artificial or natural system [1]. Fundamental 
understanding of dynamical systems is crucial if the 
aim is to predict its behaviour, and thus engineer a 
highly optimal and robust system in order to respond 
to the challenges imposed by said behaviour.  
   There are numerous systems that interact with one 
another and change as a result of their interactions. 
The vast majority of these systems are characterised 
by non-linearity and high dimensionality. Thus, the 
task of modelling and predicting them with 
traditional methods is strenuous. Scientists and 
engineers continuously try to find patterns based on 
past data from these systems, to understand their 
behaviour and make predictions by using data-
driven techniques. Artificial Intelligence (AI) and  
Machine Learning (ML) in particular, is a current 
trend and a rapidly growing field with numerous 
applications regarding the modelling of complex 
engineering problems which cannot be solved with  
conventional methods. It allows for rapid and 

 
 
accurate decision-making, comparable to human 
analysis, especially when processing large amounts 
of data. Specifically, ML can be applied on a wide 
spectrum of problems, ranging from modelling, 
pattern recognition and classification to forecasting 
and estimation, with outstanding performance. 
While achieving precise predictions with absolute 
certainty might be impossible for some systems, 
e.g., chaotic systems, ML techniques still enable a 
basic understanding of the system’s governing 
principles. 
   For the scope of this research paper, a novel type 
of neural network models, called Neural Ordinary 
Differential Equations (Neural ODEs), was 
employed for the modelling and prediction of 
prototypical systems, each representative of a 
generic field of science: population biology, 
epidemiology, and chaotic dynamics. This proof-of-
concept approach is performed to illustrate the 
capabilities and limitations of Neural ODEs. All the 
systems that were modelled come in the form of a 
system of ODEs. The solutions to said systems of 
ODEs yield the datasets that are then used for the 
validation of the effectiveness of their 
corresponding Neural ODEs in reconstructing the 
underlying dynamics. Furthermore, these solutions 
represent a time-dependent trajectory, and the data 
is therefore time series data. Hence, appropriate 
validation methods were selected in order to take 
into account the time dependency of the data. 
 
2. Background 
2.1 Neural Networks 
Neural Networks are a subset of ML algorithms 
whose origin can be traced back to the development 

120



 2 

of the perceptron in the 1950s [2]. They were 
originally modelled to loosely represent the human 
brain [3], as they are composed of interconnected 
neurons, which vaguely represent the neurons in our 
brains, and the connections between them represent 
the synapses. Said neurons and connections can be 
structured in many ways, that is to say that neural 
networks have many different architectures.  
   The most basic example of a neural network 
architecture is that of a Feedforward Neural 
Network, or FNN, which consists of a series of 
layers, where the first and last layers are those 
corresponding to the input and output layers, 
respectively. In between said layers are additional 
layers, called hidden layers. Each layer contains a 
series of neurons, where each neuron is connected to 
all neurons in the previous and next layer. A 
characteristic of FNNs, is that the flow of 
information is unidirectional, i.e., the inputs 
sequentially go through the layers of the network, 
where a series of transformations are applied to 
them, until they reach the output layer. Said 
transformations are linear, such as those resulting 
from the weights and biases, which are the 
parameters of a neural network, and nonlinear, such 
as those applied by an activation function at each 
neuron.  
   In the context of this paper, neural networks can 
be thought of as a means of non-linear regression, 
and their role is to accurately predict the underlying 
dynamics of some data. Neural networks are capable 
of doing so given that, under certain conditions, they 
have been proven to be universal function 
approximators [4]. Therefore, in theory, a neural 
network should be able to model and fit any possible 
trajectory to a given dataset.   
   Neural networks achieve this by learning as a 
result of training. The first step of training is the 
forward pass, where the data passes through the 
network from the input to the output layer. Once the 
information has reached the output layer, the 
network makes a prediction, which is then compared 
to the true data of the input layer. The comparison 
yields some error, typically quantified by a loss 
function. Said loss function is then minimised using 
optimisation algorithms such as stochastic gradient 
descent, in order to obtain the values of the 
parameters at the minimum of the loss function. 
Next, the parameters of the network are updated via 
a process called backpropagation. Lastly, the 
process is repeated in an iterative fashion for a given 
number of steps, called epochs, or until the network 
predictions are within some specified tolerance. 
   Oftentimes, especially in fields such as Chemical 
Engineering, the raw time-series input data stems 
from highly complex, nonlinear systems of 
differential equations. Therefore, in order to uncover 
the relationships present in these highly complex 
datasets, the number of hidden layers in a network is 

increased, with the purpose of introducing a larger 
number of transformations and increase the  
dimensionality, so that the network will be able to 
interpret the more intricate dynamics of the system. 
The procedure of creating and training networks  
with more than one hidden layer is called deep 
learning, which has gained significant momentum in 
recent decades [2].  
 
2.2 Neural Ordinary Differential Equations 
At the 2018 conference on Neural Information 
Processing System (NIPS), Chen et al. introduced a 
new family of deep neural network models, called 
Neural Ordinary Differential Equations [5]. The 
main characteristic of these models is that the 
networks are of continuous depth, rather than 
composed of discrete layers, as all standard neural 
networks are. This is illustrated in Figure 1. The idea 
originates from an observation that there exists and 
inherent similarity in the structure of ODEs and 
Residual Networks (ResNets).  
   ResNets are a type of FNN first introduced in 2015 
[6], which utilise skip connections such that the 
output of a layer is added to the output of the next 
layer, therefore skipping the transformation of this 
next layer. Hence, a discrete step in a ResNet 
network is described by: 
 

𝒛௜ାଵ = 𝒛௜ + 𝑓(𝒛௜, 𝑡௜ , 𝜃) (1) 
 
where zi is the input to the current layer, zi+1 is the 
layer’s output and f the transformation applied by 
some network’s layer i, and 𝜃 represents said layer’s 
weights. If we multiply a small constant h to the 
function f, this can be seen as a single step of Explicit 
Euler method: 
 

𝒛௜ାଵ = 𝒛௜ + ℎ𝑓(𝒛௜, 𝑡௜ , 𝜃) (2) 
𝒛௜ାଵ − 𝒛௜

ℎ
= 𝑓(𝒛௜, 𝑡௜ , 𝜃), (3) 

where: 
𝑑𝒛௜(𝑡)

𝑑𝑡
= 𝑓(𝒛௜, 𝑡௜ , 𝜃). (4) 

 
Based on this observation, in the limit, the 
continuous derivative can be parameterised by a 
neural network by an ODE: 
 

𝑑𝒛(𝑡)
𝑑𝑡

= 𝑓(𝒛(𝑡), 𝑡, 𝜃). (5) 

 
A parametrised derivative is a derivative function 
where the exact form of the function is not known a 
priori but is instead determined (parametrised) by a 
set of parameters that are learned through a training 
process. Therefore, in a Neural ODE, the derivative 
of the state of a system with respect to time is 
represented by a function, which is not explicitly 
defined as in traditional theoretical models, but 
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rather represented by a neural network. Therefore, 
Neural ODEs are called augmented ODEs, since 
they can uncover dynamics even when dealing with 
the noisy data that one collects in practice. 
   Given an initial condition z(0), the output z(T) is 
specified as the solution of the ODE at time T. The 
output can be computed with any desired accuracy 
using an ODE solver as: 
 

𝒛(𝑇) = 𝒛(0) + න
𝑑𝒛(𝑡)

𝑑𝑡
𝑑𝑡

்

଴
 

= 𝒛(0) + න 𝑓(𝒛(𝑡), 𝑡, 𝜃)𝑑𝑡
்

଴
. (6) 

 
Neural ODEs come with several benefits. Since the 
network can be defined and evaluated using an ODE 
solver, it can take advantage of the error control and 
adaptive strategies of modern ODE solvers. 
Additionally, these models have constant memory 
cost and can explicitly trade numerical precision for 
speed [5]. Most importantly, due to their continuous 
nature, Neural ODEs can naturally incorporate data 
which arrives at arbitrary times, i.e., irregular 
interval time-series data, as opposed to traditional 
discrete neural networks, which impose a 
predefined, fixed time step. Neural ODEs are 
therefore ideal for complex systems in engineering 
as they can handle noisy, irregularly sampled data 
whose dynamics are complex, highly non-linear and 
previously unknown or not accurately modelled. 
 
3. Application in Population Dynamics: 
Lotka-Volterra system 
The Lotka-Volterra system, often referred to as the 
predator-prey equations, is a model in mathematical 
biology, specifically the field of population 
dynamics, developed in the 1920s, which consists of 
a pair of first-order nonlinear differential equations. 
This system describes the population dynamics of 
two interacting species, where one acts as a predator 
and the other acts as prey, i.e., the model describes 
how the populations of said species evolve over time 
under the influence of their mutual interactions. 

If we denote the populations of the prey and predator 
by 𝑥 and 𝑦 respectively, the Lotka-Volterra 
equations are: 
 

𝑑𝑥
𝑑𝑡

= 𝛼𝑥 − 𝛽𝑥𝑦 (7) 

  
𝑑𝑦
𝑑𝑡

= −𝛾𝑦 + 𝛿𝑥, (8) 

 
where 𝛼 and 𝛾 describe, respectively, the maximum 
prey per capita growth rate, and the effect of the 
effect of the presence of predators on the prey 
growth rate, and 𝛽 and 𝛿 represent the predator's per  
capita death rate, and the effect of the presence of  
prey on the predator's growth rate, respectively. All 
parameters are positive and real. 

   The goal is to employ a Neural ODE to model the 
predator prey dynamics. Firstly, the system is solved 
in order to generate the dataset, and then Gaussian 
noise, with a standard deviation of 0.1, was added to 
the population data, in a way that no datapoint can 
take negative values, as that would be unphysical. 
This was done by forcing any negative values to be 
zero. Then, the resulting data is converted into 
tensors and divided into two categories: the first one 

Figure 1: (a) Feedforward neural network with one hidden layer. (b) Neural ODE. 

 
 
 
 
 
 
 

Figure 2: Noisy data generated for the Lotka-Volterra 
system. Prey and predator data shown in blue and orange, 
respectively. 
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contains the first 80% of the data, which will be used 
for training, whilst the second one contains the rest 
of the data, which will be used for validation. This is 
done so that the validation is performed on unseen 
data, therefore evaluating the model’s ability to 
generalise. Generalisation is a key aim of neural 
network training as it ensures that the model will 
function in a live environment.  
   The training-validation strategy chosen for the 
Lotka-Volterra system was random time series 
batching. This method involves dividing the training 
and validation datasets into smaller batches, such 
that each batch contains a sequence of datapoints 
from the time series data. The continuous and 
sequential nature of the original dataset is conserved 
within each batch. Next, in order to avoid overfitting 
to a sequence of data, a batch is selected randomly 
from the training data. Overfitting occurs when a 
model memorises the data and fits exactly to said 
data, such that it also memorises the noise in the data 
rather than the actual dynamics of the system. As a 
result of overfitting, the model will perform 
extremely well on the training set but poorly on the 
validation set.  
   Training is then performed on the randomly 
selected batch, followed by validation on a different 
random batch, this time selected from the validation 
set. This constitutes a single epoch, and the process 
continues until a specified number of epochs have 
passed. Random time series batching essentially 
guarantees that the model does not memorise the 
order of the data in the dataset, resulting in a more 
robust model.  
   Given that the Lotka-Volterra system is ultimately 
a simple system, and since this work is a proof of 
concept, the network only has a single layer of 100 
neurons. The activation function was chosen to be 
ReLU, simply due to the fact that it is 
computationally inexpensive and, when it comes to 
deep learning, it is the most used in practice [7]. The 
weights of the network were initialised with a 
normal distribution centred around zero, with a 
standard deviation of 0.1.  
   The biases were initialised as a constant value of 
0. The optimiser used was Adams and the solver 
used was dopri5, formally known as Dormand-Price 
method. Dopri5 was chosen as it is an explicit, 
adaptive solver of high order with good error 
control. Weight decay was added to discourage 
overfitting, and early dropout was implemented to 
reduce training time by stopping the training process 
if the model performed well enough before the 
training loop finished. 
 
4. Application in Epidemiology: SIR 
Model 
Until today, the world has experienced many types 
of infectious diseases which were caused by viruses 
and bacteria. Since the onset of the COVID-19 
pandemic, there has been a global focus on 

preventing the virus' spread for over two years. 
Understanding how populations respond to such 
outbreaks is critical and has direct implications for 
our daily lives. The time evolution of these 
population dynamics can be modelled using non-
linear dynamical systems. In this section, an 
epidemic model proposed by Kermack and 
McKendrick was investigated and modelled using 
Neural ODEs. 
   Epidemics are sudden outbreaks of diseases, in a 
specific region, where the number of disease cases 
grows quickly [8]. In 1927, Kermack and 
McKendrick introduced a mathematical model that 
accurately captures the dynamic patterns observed 
in epidemiological studies. Their model, which 
aligns closely with the trends observed in multiple 
epidemics, reduces the complex interactions into a 
simple system consisting of three distinct population 
groups: susceptible, infected, and removed which  
are denoted by S, I and R respectively. The SIR 
model is an epidemiological model based on simple 
assumptions on the rates of flow between different 
classes of members of the population. In this model, 
it was assumed that the population size remains 
constant (meaning no entry or departure from the 
population) and that, when individuals recover, they 
gain immunity against the re-infection, and are thus 
removed from the susceptible population [9]. 
   Usually, the SIR system can accurately model 
viral diseases’ behaviour [9]. S(t) shows the number 
of individuals who are susceptible to the disease but 
who are not infected yet. I(t) number individuals 
who are infected and have the chance to spread the 
disease through various ways such as contact. R(t) 
number of individuals who were infected but then 
removed from the possibility of spreading the 
disease or being infected again [9].  
   The SIR model used in this paper consists of a set 
of three ordinary differential equations: 
                               

     
𝑑𝑆
𝑑𝑡

=  −𝛽𝑆𝐼 (8) 

          
𝑑I
𝑑𝑡

= 𝛽𝑆𝐼 − 𝛼𝐼 (9) 

𝑑R
𝑑𝑡

= 𝛼𝐼, (10) 

 
where α is a positive real parameter which represents 
the rate of infected individuals leaving the infective 
class per unit time and β is a parameter which 
denotes the contact rate among the individuals who 
are in susceptible and infective class. With these 
parameters and initial conditions, the basic 
reproduction number (R0) can be calculated by 
R0 =  βS0

α
  where S0 = S(0). If R0 > 1, the infection 

spreads and if R0 < 1 the infection dies out [9]. 
Neural ODEs were trained and tested on this simple 
epidemic model to observe the predictions of the 
neural network. Firstly, before the training process, 

123



 5 

SIR data were generated with an ODE solver with 
the assumptions that the time span is 50 days, α=0.1 
and β=0.001. Moreover, it was assumed that the 
total number of individuals (N) in a population is 
1000 where N = S + I+ R and 𝑆଴  =  997, 𝐼଴  =  3 to 
make this specific case an epidemic, 𝑅଴  >  1. 

Finally, Gaussian noise was added with a standard 
deviation of 5 to emulate a real-world example and 
to make network predictions more robust. This was 
implemented in a way that there are no negative 
values, as that would be unphysical. This was done 
by implementing a constraint similar to that used in 
Lotka-Volterra. Additionally, mass is conserved by 
equating the summation of all standard deviations at 

each time step to zero.  
   Unlike Lotka-Volterra model, random time-series 
batch technique was not utilised and instead a 
“extending window” strategy was employed to 
improve the learning. Since the trajectories of the 
Lotka-Volterra system are inherently cyclical, the 
neural network can capture the trend despite being 
trained with random batches of data. This is not true 
for the SIR model, and it cannot predict accurately 
when the batches are selected randomly. In the 
extending window strategy, a window of data is 
divided into training set and validation set. This 
means that, right at the beginning, the training 
window consists only of the first datapoint for 
training, and the datapoint immediately after for 
validation. Figure 4 depicts that at each timestep, the 

number of training data increases by 1 and the 
validation data moves one step along the window, 
expanding the window size. This way, network uses 
the weights and biases from the previous data to 
predict the unseen validation data. 
This network involves a single layer of 100 neurons 
and the activation function was chosen to be ReLU, 
due to the same reasons stated in Lotka-Volterra. 
The weights and biases of the network were 
initialised with a normal distribution centred around 
zero, with a standard deviation of 0.1 and 0.06 
respectively. The biases were initialised as a 
constant value of 0.06. The optimiser used was 
Adams and the solver used was Dopri5. Finally, 
weight decay was also added to discourage 
overfitting. 
 
5. Application in Chaotic Dynamics: 
Lorenz System 
The Lorenz system is a system of three nonlinear 
ODEs developed by mathematician and 
meteorologist Edward Lorenz in 1963 [10]. It is a 
simplified mathematical model for atmospheric 
convection, in which the equations relate the 
properties of a two-dimensional fluid layer which is 
uniformly warmed from below and cooled from 
above. The variable x is proportional to the rate of 
convection, and y and z are proportional to the 
horizontal and vertical temperature variation, 
respectively: 
 

𝑑𝑥
𝑑𝑡

= 𝜎(𝑦 − 𝑥) (11) 

       
𝑑𝑦
𝑑𝑡

= 𝑥(𝑟 − 𝑧) − 𝑦 (11) 

𝑑𝑧
𝑑𝑡

= 𝑥𝑦 − 𝛽𝑧. (12) 

 

Figure 3: Generated true SIR model dataset with Gaussian 
noise, blue for Susceptible, orange for Infected and green for 
Removed. 
 

Figure 4: Yellow blocks representing training data whereas blue 
blocks representing validation data. 
 

Figure 5: Trajectories resulting from the data generated for the 
Lorenz system. X, Y and Z components shown in blue, red and 
green, respectively. 
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The constants 𝜎, 𝑟, and 𝛽 are system parameters 
proportional to the Prandtl number, Rayleigh 
number, and certain physical dimensions of the layer 
itself. There exists some critical value for the control 
parameter r: 
 
 

𝑟 > 𝑟௖ = 𝜎
𝜎 + 𝛽 + 3
𝜎 − 𝛽 − 1

. (13) 

 
When r > rc, the model becomes chaotic. Chaos, or 
state of disorder, is a very common phenomenon in 
fields such as chemistry and physics [11]. Chaotic 
systems are very complex systems that appear to be 
random in nature. Such systems, including the 
Lorenz system, are actually deterministic. 
Therefore, for a given set of initial conditions, a 
solution to the system can be found. However, these 
systems are extremely sensitive to initial conditions, 
and are very difficult to predict, as small numerical 
errors in the prediction of a trajectory will result in a 
totally different outcome to that expected for the 
initial conditions used. Lorenz himself coined the 
term butterfly effect to describe this extreme 
sensitivity to initial conditions when he noticed that 
tiny, butterfly-scale changes to the initial conditions 
of his weather model simulations resulted in 
anything from sunny skies to violent storms. 
Additionally, when the dynamics become chaotic, 
the Lorenz system is characterised by two strange 
attractors, around which the phase trajectories will 
oscillate but never converge to. 
    Given that chaotic systems are often present in 
real world systems, it was decided to attempt the 
prediction of the Lorenz system with a vanilla 
Neural ODE, in order to test the limitations and 
capabilities of this neural network model. In order to 
see if the plain vanilla Neural ODE model can learn 
chaotic dynamics, the control parameter 𝑟 was 
chosen to have a value of 28, which together with 
the values of 𝜎 = 10 and 𝛽 = 8/3, ensures that the 
system is chaotic as the critical control parameter 
value for the aforementioned parameter values is 
24.74.  
   The data was then generated, and Gaussian noise 
was added. The training was performed using the 
same extending window strategy that was used for 
the training of the SIR model. Given that the Lorenz 
system dynamics have much higher rates of change 
than any of the two models covered in this paper, the 
dataset generated was much larger. A dataset 
consisting of 1000 datapoints was generated, it was 
clear that the training was going to be 
computationally expensive.  
   Therefore, the model only has a single layer of 100 
neurons, and the activation function was chosen to 
be ReLU. The weights of the network were 
initialised with a normal distribution centred around 
zero, with a standard deviation of 0.1. The biases 
were initialised as a constant value of 0. The 

optimiser used was Adam, and the solver used was 
midpoint, which was chosen over dopri5 since it is 
second order, and therefore less computationally 
demanding. Lastly, weight decay was added to 
discourage overfitting. 
 
6. Results and Discussion 
Regarding the Lotka-Volterra system, the network 
proved to be very good at uncovering the underlying 
dynamics in the data despite the noise, whilst 
showing no major signs of overfitting, as shown in 
Figure 6. However, a few steps were taken to arrive 
at such a result. At first, the network refused to 
capture the full height of the peaks of both the prey 
and predator populations. Upon plotting the 
generated data to explore this issue, it became clear 
that, relative to the rest of the trajectory, the peaks 
were sparsely populated with datapoints. Hence, the 
data resolution was doubled, i.e., twice as many 
datapoints were generated for the same time horizon, 
such that the network would be penalised much 
more for ignoring the datapoints at the peaks.   
    Doubling the batch size from 10 to 20 also 
increased the quality of the network prediction, 
which makes intuitive sense since the network will 
train on twice the amount of data per epoch. 
However, further increases in batch size did not 
yield any improvement. Hyper parameter tuning was 
not performed as trial and error proved to be 
sufficient for such a simple system. Should the data 
have been noisier, and the timespan explored longer, 
hyper parameter tuning might have been necessary, 
although perhaps not achievable due to the long 
computation times. 

   When considering our epidemic case, as depicted 
in Figure 8, network was able to capture the 
behaviour of the SIR model very accurately. At first 
the model was attempted to be done with random 
time series batch validation technique, but after 
plotting due to its non-periodic nature it has failed to 
make as accurate predictions as it did with Lotka-

Figure 6: True prey data (blue) and true predator data (yellow) 
of the Lotka-Volterra system, plotted with their corresponding 
predicted trajectories (solid black lines). 
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Volterra. Because of this, extending window 
strategy was employed. The neural network was able 
to learn from the previous parameters and predict the 
next unseen data. This is an iterative process, where 
if the datapoint at t = 13 is for validation, it will be 
used as a training data when the dataset is expanded 
to first 14 datapoints. To achieve the final result, 

parameters were tuned manually. Although 
decreasing the number of data points had a negative 
impact on data resolution, it was reduced from 200 
to 50 and the network still managed to capture the 
dynamics at the peak with a shorter computational 
time. For future applications, if the standard 
deviation of the Gaussian noise and the number of 

Figure 7: True data – dots, Network predictions – crosses, Test data predictions for validation - dashed lines, Blue (Susceptible), Red 
(Infected), Green (Removed) plotted to observe the training process with “extending window”. 
 

 Figure 8: True data – dots, Network predictions – crosses, Test data predictions for validation - dashed lines, Blue (Susceptible), Red 
(Infected), Green (Removed) 
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validation points in the extending window strategy 
is increased, it will be harder to train the network for 
the same time-period. 
   With our final system, the network was ultimately 
incapable of accurately fitting to the chaotic 
dynamics of the Lorenz system. However, many 
attempts were made to overcome the challenges 
imposed by said system. Since the Lorenz system, 
unlike the Lotka-Volterra system, is not cyclical in 
nature but instead ever changing, random time series 
batching was not an appropriate training and 
validation method. Hence, the training was initially 
performed using K-fold blocked cross validation. K-
fold blocked cross validation is a variant of K-fold 
cross-validation.  The latter consists of randomly 
shuffling the dataset and splitting it into K equally-
sized folds. Said folds are then further divided into 

train and validation partitions [12]. This is done to 
prevent overfitting. However, since the data for the 
Lorenz system is of a sequential nature, it cannot be 
randomly shuffled since the network might then try 
to predict past dynamics from future dynamics.            
Blocked K-fold cross validation omits the shuffling 
step to avoid this [13]. The 5-fold cross validation 
strategy, which was used in the initial training 
attempts, failed due to exploding gradients. Gradient 
explosion occurs when the gradients keep on getting 
larger and larger as the backpropagation algorithm 
progresses. This, in turn, causes very large weight 
updates and causes the gradient descent algorithm to 
diverge [14].  Several measures were taken to avoid 
the issue. Firstly, proper weight initialisation was 
implemented to alleviate the gradient explosion 
issue by ensuring the proper flow of information 

 Figure 10: True data of the x, y and z components (blue, red and green data points respectively) of the chaotic Lorenz system, plotted with 
their corresponding predicted trajectories (dashed lines) for the training window extending up to time t = 7.125. 
 
 
 

 Figure 9:  True data of the x, y and z components (blue, red and green data points respectively) of the chaotic Lorenz system, plotted with 
their corresponding predicted trajectories (dashed lines) for the training window extending up to time t = 7. 
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through the network by ensuring that: the variance 
of outputs of each layer is equal to the variance of its 
inputs and that the gradients have equal variance 
before and after flowing through a layer in the 
reverse direction [15]. This is called Glorot 
initialisation. A variant of Glorot initialisation, 
Kaiming He initialisation, which is tailored 
specifically to the ReLU activation [16], was used. 
However, this method yielded results that were no 
better than those obtained when initialising the 
weights using normal initialisation. Batch 
normalisation, introduced in 2015 to address the 
gradient explosion issue [17], was not successful 
either. This did not come as a surprise, as this 
technique is not usually applied to Neural ODEs 
[18]. The gradient explosion issue was solved by 
clipping the norm of the gradients if the threshold of 
1 was exceeded.  
   Unfortunately, despite solving this issue, training 
would be interrupted very early on due to an 
underflow in dt, i.e., the time step of the ODE solver. 
This could be due to the fact that the Lorenz system 
exhibits high sensitivity to initial conditions, and as 
a result the solver required extremely small steps to 
capture the dynamics. Loosening the absolute and 
relative error tolerances of the solver in order to 
allow for larger timesteps did not work either. As a 
last resort, it was decided to use the extending 
window strategy that was used for the SIR model. 
   Additionally, dopri5 was substituted by the 
midpoint solver, since this extending window 
training method involves longer training times. 
Interestingly, this new model resulted in better 
results than any of the previous model. It was 
capable of accurately predicting the Lorenz system 
up to time t = 7, after which the model completely 
failed to capture the initial oscillations of the system 
and would instead predict a horizontal line that 
passes through the midpoint of the highs and lows of 
the oscillations.  
   This result was not surprising, as that exact 
behaviour has been previously observed when 
attempting to capture the Lorenz system’s chaotic 
dynamics using a plain vanilla Neural ODE [19]. 
Perhaps if the network was deeper and the hyper 
parameters were tuned, better results would be 
obtained. But since the backpropagation step of the 
Neural ODE model entails solving an augmented 
ODE backwards in time [18], deeper networks and 
larger datasets would result in extremely long 
computation times which are simply not feasible. 

7. Conclusion 
The objective of the paper was to demonstrate 
Neural ODEs’ ability to reconstruct the hidden 
dynamics of prototypical systems by means of 
empirical, noisy datasets. The Neural ODEs 
achieved the desired objective for the Lotka-
Volterra and SIR models. The predictions were 
accurate, and the trained models proved to be robust 

to unseen, noisy data. Both of these models were 
simple, but despite their simplicity, the dynamics of 
these systems is highly nontrivial. The Lorenz 
system in particular, a set of three ODEs with a 
quadratic nonlinearity, the simplest nonlinearity one 
can think of, exhibits chaotic behaviour, and thus is, 
as Lorenz himself concluded, inherently 
unpredictable. This was confirmed by the results 
obtained, which show that the data-driven Neural 
ODE approach presents some limitations for such 
chaotic systems.  
   Moreover, it is clear this plain vanilla Neural ODE 
approach is computationally demanding, and 
therefore training times are a severe limitation. 
Ultimately, the results in this paper show that Neural 
ODEs hold substantial promise for real-world 
applications, as the increased complexity of real-
world system dynamics could be modelled using 
deeper, finely tuned Neural ODEs, which could be 
successfully trained given enough computational 
time and resources. Furthermore, this approach 
requires very small amounts of data for training, as 
the Lotka Volterra and SIR datasets were 200 and 
100 datapoints in size, respectively, whereas 
traditional neural network approaches are much 
more data hungry.  
   Given that the time available for the completion of 
this work, the scope was severely limited. Should 
there be an opportunity to continue this work, there 
are many closely related, interesting areas of 
research. An example would be to delve into Physics 
Informed Neural Networks (PINNs), which are a 
type of universal function approximator that can 
embed the knowledge of the physical laws that 
govern a given dataset in the learning process. They 
are a popular line of work because they overcome 
the low data availability of some biological and 
engineering systems that makes most state-of-the-art 
ML techniques lack robustness [18]. It would also 
be interesting to explore other types of Neural 
Differential Equations, such as Controlled 
Differential Equations, which are often used to 
model systems where you have some degree of 
control over the system's dynamics and could 
therefore be applied to any practical Chemical 
Engineering process. Furthermore, the work could 
be extended to cover Stochastic Differential 
Equations. They are a natural extension of ODEs for 
modelling systems that evolve in continuous time 
subject to uncertainty, and they have seen 
widespread use for modelling real-world random 
phenomena [18]. 
   Lastly, since the computation time was the main 
obstacle when training the Neural ODEs, different 
but faster methods for backpropagation could be 
explored in order to reduce training times and allow 
for deeper networks. 
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Abstract  

The use of Reinforcement Learning for the control of HVAC systems in buildings is of growing interest – its ability to 
adapt to different environments, without the need to exhaustively fine-tune key parameters for each individual 
environment, has sparked the interest of many. This paper investigates the use of Tabular and Deep Q-Learning for the 
control of the HVAC system of a supermarket store. A Tabular Q-Learning controller and a Deep Q-Learning controller 
are developed and tested over an existing simulation environment of the store. Both controllers use 21 states, 11 actions, 
a learning rate (α) of 0.001, a discount factor (γ) of 0.99 and an exploration probability (ε) of 0.4, and are trained using 
an equivalent of 18 years of historical data. The Deep Q-Learning algorithm comprises of a neural network with 2 hidden 
layers. It is found that the Tabular Q-Learning controller outperforms the existing PI controller by 4% in energy efficiency 
and 12% in user comfort. However, the Deep Q-Learning does not present any improvement over the baseline PI control, 
and requires further fine tuning. Overall, this paper demonstrates the potential for Tabular Q-Learning for the control of 
HVAC systems in buildings, with potential improvements in both energy and comfort metrics. 
 

1. Introduction  

Climate change and global warming have been the 
subject of many political and public concerns in recent 
years. In 2019, the United Kingdom became the first 
major economy to legislate for net zero by 2050 [1]. 
Buildings are currently responsible for 30% of global 
final energy consumption and 26% of global energy-
related emissions [2]. In UK supermarkets, Heating, 
Ventilation and Air Conditioning (HVAC) systems 
account for 20 to 30% of total energy consumption [3].  

Sainsbury’s Supermarkets Ltd, one of the largest food 
retailers in the UK, is committed to reach net zero 
emissions by 2035 [4], and optimising energy 
consumption in their stores is key in reaching this goal. 
It is therefore of high interest to investigate the potential 
benefits of transitioning their existing HVAC systems to 
smart energy management controls to enhance the 
control process.  

1.1 Reinforcement Learning  

Reinforcement Learning (RL) is a Machine Learning 
technique where an agent is trained within a set 
environment using a trial-and-error approach. This is 
achieved by allocating rewards based on the agent’s 
actions [5]. The fundamental principles of Reinforcement 
Learning can be attributed to a Markov Decision Process 
(MDP), where a system exists in states (quantified 
conditions a system can be in), while actions taken by the 
agent can move the system from one state to another. The 
policy defines how the agent behaves in a particular state 
and aims to maximise the reward – it can be a function, a 
table or a neural network. For an MDP, actions and states 
are discrete, or need to be discretised. Moreover, the 
future state of the system only depends on the current 
state and action; it is independent of the previous states 
and actions [6].  

 
 

 
Figure 1: A schematic of Reinforcement Learning. The loop represents 
the agent continuously learning from the environment by taking actions 
and receiving feedback in the form of rewards. 

1.1.1. Value-based Reinforcement Learning 

Value-based RL methods focus on learning a value 
function which estimates the expected cumulative reward 
of the agent being in a particular state, or taking a specific 
action in a particular state. The agent makes decisions 
based on this value function. The value qπ(s, a) of taking 
action a in state s under policy π is given by: 

q஠(s, a) ≐ 𝔼஠ [ ∑ γ୩ஶ
௞ୀ଴ R୲ା୩ାଵ | S୲ = s,  𝐴௧ = 𝑎 ]        (1) [7] 

where γ denotes the discount factor and St , At and Rt 
denote the state, action and reward at timestep t 
respectively. The algorithm ultimately seeks to find the 
optimal value function qπ*(s, a) corresponding to an 
optimal policy π*. Examples of value-based methods 
include Tabular Q-Learning and Deep Q-Learning. 

1.1.2. Tabular Q-Learning (TQL) 

Q-learning methods aim to find the optimal policy by 
finding the optimal Q-value for each state-action pair. 
The Q-value Q(s, a) measures the desirability of taking 
action a in state s, and is updated as follows [8]: 

New Q(s, a) 
                     = Q(s, a) + α [R + γ maxQᇱ(sᇱ, aᇱ) − Q(s, a)]    (2)  
where α and γ denote the learning rate and discount factor 
respectively, R represents the reward for the current run 
and max Q’(s', a') corresponds to the future Q-value with 
the highest expected reward.  
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In Tabular Q-Learning (TQL), the Q-values are 
stored in an Ns × Na table (known as the Q-Table or look 
up table), where Ns and Na are the number of states and 
actions respectively.  

1.1.3. Deep Q-Learning (DQL) 

Deep Q-Learning (DQL) uses a neural network (known 
as the Q-Network) instead of a table to approximate the 
Q-value function. The use of neural networks allows the 
algorithm to process data more effectively and increase 
the efficiency of multi-dimensional processes. 

DQL uses a replay buffer which stores the agent's past 
experiences et = (St, At, Rt, St+1) in a data set Dt = 
{e1,…et}, where St, At and Rt denote the respective state, 
action and reward at timestep t. Instead of training the 
model with experiences in the order that they occur, the 
DQL algorithm randomly selects experiences from the 
replay buffer during the learning process [9]. This 
decoupling of temporal correlations in the data reduces 
the likelihood of overfitting, allows for more stable and 
efficient learning, enhances the controller’s ability to 
handle non-stationary environments and improves 
overall convergence [10]. DQL works by adjusting the 
parameters θ of the Q-network to minimise the loss 
function, defined for a sample (s, a, R, s') ~ U(D) and 
iteration i as follows [9]:  

L୧(θ୧) =  
𝔼(ୱ,ୟ,ୖ,ୱᇱ ) ~ ୙(ୈ)[(R + γ max Q′(s′, a′; θ୧

ି) − Q(s, a; θ୧))ଶ]   (3) 

where γ denotes the discount factor and S, A and R are 
the respective state, action and reward. θ୧ and θ୧

ି 
represent the network parameters and the target network 
parameters respectively. 

1.2. Literature Review 

The interest in Reinforcement Learning for energy 
systems has increased exponentially in recent years, with 
approximately 20 research papers published on the topic 
in 2010 to almost 400 in 2020 [11]. Research has shown 
that RL can easily adapt to dynamic environments 
(changing weather conditions, for example) and might 
therefore prove beneficial in controlling the heating rates 
of HVAC systems to achieve energy-efficient 
temperature control in buildings [12]. 

Value-based RL methods can become 
computationally less efficient for large action-state 
spaces [13] (large usually regarded as more than 50). As 
a result, this field has received less research interest 
compared to other RL methods [14]. However, research 
is actively ongoing for relatively simple systems. In 
2018, S. Baghaee and I. Ulusoy [15], implemented a 
Tabular Q-Learning method for the ventilation control 
system of a building and justified its use due to the 
relative simplicity of the model. It was reported that the 
RL agent only consumed marginally less energy than the 
existing PID controller. In 2015, E. Barrett and S. Linder 
[16] combined Tabular Q-Leaning with an occupancy 
prediction method for the control of a building’s heating 
systems. This was achieved by simplifying the model and 
discretising external temperatures ranges. This controller 

achieved a reduction of approximately 10% in operating 
costs without compromising comfort standards.  

Recent developments in computational capabilities 
have proven beneficial for Deep Reinforcement Learning 
(DRL) methods, allowing them to process larger sets of 
data within more expansive environments [17]. DRL 
algorithms are commonly being tested in self-driving 
vehicles and open-world games amongst other 
applications [18]. They have also been reviewed for 
complex control systems with continuous environments 
[19].  

S. Brandi. et al. [17] investigated the use of a Deep 
Q-Learning algorithm in buildings to maximise user 
comfort and minimise energy consumption, and reported 
energy savings of between 5% and 13% based on the 
occupancy and season amongst other factors. In 2021, Z. 
Jiang et al. [20] implemented a DQL controller in an 
office building space using 4 months of historical 
temperature and energy data, and found that the energy 
efficiency of the DQL controller exceeded that of a 
baseline PI controller by 6% to 8%. Further research into 
DQL for energy efficiency in office spaces was 
conducted in 2022 by X. Zhong et al. [21], who noted an 
increase in energy efficiency of 12.8% compared to the 
existing fixed-schedule control strategy. 

It is important to note that models from literature use 
different technologies – results are not standardised. As 
such, a higher increase in efficiency does not necessarily 
imply a better model [12]. In general, research on Tabular 
Q-Learning is limited, with the method generally 
dismissed for being too simple for complex control 
systems. While the performances of different RL 
algorithms were compared, no direct quantitative 
comparisons between Tabular and Deep Q-Learning 
have been made.  

Reinforcement Learning represents a significant 
potential for the control of HVAC systems as it allows 
for relatively simple and fast implementation of a control 
system across stores. This can be attributed to its ability 
to adapt to different environments, without the need to 
exhaustively fine-tune key parameters for each 
individual environment [11]. It is therefore of value to 
explore the potential of Tabular Q-Learning in HVAC 
systems as they are generally less dynamic than other 
processes and do not require complex algorithms to 
account for various sensitivities [22]. Moreover, the 
simplicity of Tabular Q-Learning would offer a more 
computationally efficient method, allowing for less 
powerful computers to run simulations. It is also of 
interest to train a Deep Q-Learning agent to determine 
how a more complex model compares. 

1.3. Project Scope 

This paper aims to train, tune and test a Tabular Q-
Learning controller and a Deep Q-Learning controller for 
the HVAC system of a supermarket store to qualitatively 
and quantitatively assess their performances against a PI 
controller. 
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2. Methods 
2.1. System Specifications 

2.1.1. Simulation Environment  

An existing ‘living-lab’ pilot [23] is used as simulation 
environment. This simulation environment replicates the 
temperature dynamics of a supermarket store building 
with 4 walls and a floor space surface area of 7600m2, 
located 100 miles north of London. A resistance 
capacitance (RC) network approach is used for this 
purpose. The network uses 3R2C models for the external 
walls and the roof, and an additional 2R2C model to 
represent the building’s internal heat capacity. The model 
collects internal temperature data from 16 temperature 
sensors from different parts of the store. However, a 
uniform temperature distribution is assumed, with every 
part of the store having the same internal temperature.  

 

 
 
Figure 2: Thermal model of the supermarket store [23]. R and C 
represent resistance and capacitance values respectively, T is the 
temperature, and subscripts wi, r, m and in denote the ith wall, the roof, 
internal mass of the building and internal air of the building 
respectively. 

2.1.2. The PI controller 

To assess the performance of the RL algorithms, it is 
necessary to compare their performance against a 
baseline controller. An existing Proportional-Integral 
(PI) controller [24] is used for this purpose.  

A PI controller aims to minimise the differences 
between a system's output and the desired setpoint by 
employing two parameters: a proportional-gain (P) 
parameter, which responds to the current error, and an 
integral (I) parameter, which addresses past errors 
accumulated over time. These parameters contribute to 
the controller's output to regulate the system's behaviour 
and are described by constants [20].  

The PI controller used in this paper was tuned to a P 
value of 1×106 and an I value of 5×104 for optimal 
performance in the simulation environment described in 
section 2.1.1.  

2.1.3. Environment Dynamics 

An effective approach to assess the environment 
dynamics involves investigating its time constant τ, 
defined as the time taken to move 63% closer to the new 

value following a step change. This is achieved using the 
existing PI controller and a setpoint change of 16°C to 
19°C. Based on the graphical method described by C. 
Kontoravdi [25], the value of τ for the thermal model is 
determined as approximately 3 hours. 

Due to the slow dynamics of the environment, 
changing the HVAC heat load at small intervals (every 
minute, for example) resulted in overfitting and unstable 
temperature oscillations [26]. It is determined that a 
heating interval of 1 hour performed best, as this 
maintained the stability of the system while adjusting the 
heating regularly enough. 

2.1.4. External Temperatures and Setpoints 

Eleven months of hourly measured external temperature 
data for the supermarket store (ranging from May 2022 
to March 2023) [23] were available for use. The store 
aims to maintain an internal temperature of 19°C from 7 
a.m. to 12 a.m. (operating hours) and at 16°C between 12 
a.m. and 7 a.m. (non-operating hours). 

2.1.5. States and Actions 

States were described as deviations of the internal 
temperature from the setpoint (setpoint deviations). 
Setpoint deviations directly relate to the amount of heat 
that should be added to the system, unlike the internal 
temperatures themselves. Since the setpoint changes 
across hours of the day, the measured temperature does 
not provide a good indication of how close the internal 
store temperature is to the temperature setpoint [27]. A 
total of 21 states were used, corresponding to temperature 
deviations from the setpoint ranging from –10°C to 
+10°C, with temperature increments of 1°C between 
states. Using a state range of this magnitude allowed the 
controller to account for various scenarios, including 
cold winter months where constant heating is required, 
and hot summer months where no heating is necessary. 
Temperatures above or below the maximum setpoint 
deviations were approximated as the largest possible 
deviation states (+10°C and –10°C respectively). This is 
because the best actions at these temperatures correspond 
to the best actions as at the largest possible deviation 
states: the maximum possible amount of heating is 
required for a setpoint deviation of -10°C or more 
negative values, while no heating is required at a setpoint 
deviation state of +10°C or more. 

Actions were described as changes in the power 
output of the HVAC system. J. da Silva and A. Secchi 
[27] established that describing the actions in such a way 
is effective to maintain a stable setpoint in the context of 
a process production plant. Designating the actions as 
changes in the heat loads instead of the heat load values 
themselves improved the stability of the control system, 
as shown in the Supplementary Information section. A 
total of 11 actions were used, corresponding to changes 
in the power output of the HVAC system ranging from –
250kW to +250kW, with increments of 50kW between 
actions. Using changes of magnitude 250kW prevented 
the HVAC system from directly switching its power 
output between 0 and 500kW, over the concern that this 
could result in significant instability, similar to cases 
presented in [25].  
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Table 1: Effect of action on HVAC power output 

HVAC Power Output 
(Timestep = t-1) Action, at 

HVAC Power Output 
(Timestep = t) 

𝑄̇ு௏஺஼ Δ 𝑄̇ு௏஺஼ 𝑄̇ு௏஺஼ + Δ 𝑄̇ு௏஺஼ 

2.1.6. Reward function 

The reward function ensures that the actions taken by the 
controller are as close as possible to the desired outcome. 
An iterative approach is taken to fine-tune the reward 
function for optimal results. It is common to set the 
rewards as negative values, favouring rewards closest to 
zero [7]. The absolute value of each term in the reward 
function represents a penalty which needs to be 
minimised. 

The reward function aims to simultaneously penalise 
two separate metrics: the temperature deviation from the 
setpoint and the HVAC heat load relative to the 
maximum. These two metrics were specifically chosen as 
they gauge the user comfort and thermal energy usage 
respectively. Both metrics were standardised with 
adequate weights.  

Table 2: Temperature and energy rewards for different deviations from 
the setpoint ΔT, where  𝛥𝑇 = 𝑇௜௡௧௘௥௡௔௟ – 𝑇௦௘௧௣௢௜௡௧ 

ΔT (°C) ΔT > 0 -2 < ΔT < 0 ΔT < -2 

Temperature 
reward −𝑤ଵ|𝛥𝑇| −𝑤ଷ|𝛥𝑇| −|𝛥𝑇|ଷ 

Energy 
reward −𝑤ଶ ⋅

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 −𝑤ସ ⋅

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 −5 ⋅

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 

As explained in section 2.1.4., setpoint deviations 
directly relate to the amount of heat that should be added 
to the system. Accounting for setpoint deviations instead 
of internal temperatures values in the reward function 
prevents the internal temperature from converging at the 
weighted average value of the two setpoints.  

The constraint for ΔT < -2 is implemented to prevent 
the model from converging around the 16°C setpoint. A 
setpoint change from 16°C to 19°C would activate the 
cubic temperature factor. This would in turn prompt the 
controller to increase the internal temperature to the new 
setpoint and prevent the algorithm from taking enormous 
penalties. This constraint proves particularly useful in 
cold temperature conditions, during which the controller 
would otherwise tend to minimise the energy usage and 
incidentally prioritise the 16°C setpoint over the 19°C 
setpoint. 

2.1.7. Exploration Probability (ε)  

A significant aspect of RL involves the distribution of 
training between exploration (investigating actions with 
unknown outcomes) and exploitation (taking the best-
known action, based on the current estimated Q-values 
[12]). A balance between these must be achieved to 
optimise performance and computational cost.  

The Epsilon Greedy method is the most common 
approach to strike this balance  [20]. In this method, the 
exploration probability parameter ε is set between 0 and 
1. As its name suggests, the probability of the agent 
exploring new state-action pairs stands at ε, while the 
agent exploits the known state-action space (1-ε) of the 
time. 

2.1.8. Learning Rate (α) 

The learning rate α is also set to a value within the range 
0 to 1. A learning rate close to 0 corresponds to a slow 
rate of learning during which the system tends to stabilise 
its Q-estimates; Q-values only undergo small changes 
when updated. However, this may result in the algorithm 
taking a significant amount of time before converging to 
the optimal solution. A learning rate close to 1 results in 
faster learning, with the Q-values undergoing more 
significant updates. This can however increase the 
likelihood of unstable and oscillatory learning, and the 
possibility of overshooting the optimal solution [7].  

2.1.9. Discount Factor (γ) 

The discount factor γ measures the importance of future 
rewards for the agent. It is also designated a value 
between 0 and 1. A discount factor close to 1 implicates 
giving more importance to long-term consequences. This 
encourages the agent to consider future rewards in 
decision-making. A discount factor close to 0 
corresponds the algorithm prioritising short-term gains 
and mostly ignoring long-term consequences. In most of 
the literature [12], γ values between 0.9 and 0.99 were 
used to prioritising future rewards. It would therefore be 
sensible to use γ values of similar magnitudes as a 
guideline [20]. 

2.2. Training the Tabular Q-Learning Controller 

A Q-Table is first initiated with Q-values for all state-
action combinations being zero. This ensures a neutral 
starting point and prevents biases in the learning process 
[7].  

The controller is then trained on the eleven months of 
available external temperature data ran 20 times, 
equating to 18 years’ worth of training data. This is 
consistent with how RL agents should be trained, often 
requiring numerous time steps to provide meaningful 
results [6]. Opinions in literature vary regarding how 
much data suffices for training, ranging from 3 months to 
100 years. However, it is determined that an equivalent 
of 18 years of data is enough. 

The TQL controller is then tested for different 
scenarios, including periods of extreme heat and extreme 
cold to assess its robustness. Plots for these scenarios can 
be found in the Supplementary Information section. 

2.3. Training the Deep Q-Learning Controller  

A Deep Q-Learning algorithm is trained with the same 
system specifications as described in Section 2.1., with 
the same 18 years equivalent of training data used to train 
the TQL controller. The controller is modelled after N. 
Joshi’s Deep Q-Network [28] and makes use of two 
hidden layers in its neural network. 
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Figure 3: A neural network with two hidden layers used as Q function. 
The input layer is the state; the output layer is the Q-values 
corresponding to every possible action 

2.4. Key Performance Indicators (KPIs) 

2.2.1. Comfort Violation 

The Comfort Violation is calculated using Equation 4, 
based on M. Bird’s definition of comfort violations [23]. 
Only deviations below the setpoints were considered. In 
Equation 4, N represents the number of timesteps of 
duration 1 hour each and ΔTi is the deviation from the 
setpoint at timestep i. The Comfort Violation is 
normalised per year, and 1Kh/yr corresponds to 
deviations from the temperature setpoint of 1 Kelvin for 
1 hour within 1 year [23].  

Comfort Violation = 

               ൞ 

ଶସ ⋅ ଷ଺ହ.ଶହ
୒

∑ |ΔT୧|  , T୧୬୲ୣ୰୬ୟ୪ < Tୱୣ୲୮୭୧୬୲
୒
୧ୀ଴

0                                   , T୧୬୲ୣ୰୬ୟ୪ > Tୱୣ୲୮୭୧୬୲ 
       (4) 

2.2.2. Total Energy Usage 

The total thermal energy produced by the HVAC system 
QHVAC (kWhthermal/𝑦𝑟) over N timesteps of length 1 hour 
each is given by Equation 5, where Q̇HVAC,i (kWthermal) is 
the thermal power into the building during timestep i. The 
total thermal energy value is normalised to obtain the 
energy produced per year.  

Qୌ୚୅େ  =  ଶସ ⋅ ଷ଺ହ.ଶହ
୒

∑ Q̇ୌ୚୅େ,୧
୒
୧ୀ଴                                (5) 

The total electrical energy consumed by the HVAC 
system (kWhୣ୪ୣୡ୲୰୧ୡୟ୪/𝑦𝑟)  can then be determined from 
Equation 6, where the Coefficient of Performance (COP) 
of a typical HVAC system is 3 kWhthermal/kWhelectrical [3].  

Q୉୪ୣୡ୲୰୧ୡୟ୪ = ୕ౄ౒ఽి
େ୓୔

                                (6) 

2.2.3. Total Energy Cost 

The total electricity cost (£) is calculated using:  
Total Electricity Cost =  Qୣ୪ୣୡ୲୰୧ୡୟ୪ ⋅ Pୣ ୪ୣୡ୲୰୧ୡ୧୲୷                  (7) 

where the price of electricity Pelectricity can be 
approximated as £0.20/ kWhelectrical. [3]. A fixed price is 
used rather than real time data (from the N2EX database 
for example) as energy consumption and user comfort 
constitute the primary objectives of the model. If the 
model was constructed to also include an electricity cost 
minimisation target, the comfort target would have risked 
being compromised in scenarios where electricity prices 
surge (during the Russia-Ukraine war in 2022, for 
example).  

2.2.4. CO2e emissions 

The UK Government Department for Energy Security 
and Net Zero [29] reports that 0.207 kg of carbon dioxide 
equivalent is released on average per kWh of electrical 
energy used. As a result, the total mass of CO2e released 
(kg/yr) can be calculated using Equation 8 below. 
𝑚஼ைమ௘ =  0.207 ⋅ 𝑄ா௟௘௖௧௥௜௖௔௟                  (8) 

2.5. Sensitivity analysis  

After tuning a controller, it is of value to perform a 
sensitivity analysis on its different model specifications. 
This helps to analyse the most sensitive hyperparameters 
and offers an opportunity to further understand the 
dynamics of the reward function. Sensitivity analyses are 
independently performed on w1, w2, w3, w4, α, γ and ε for 
the Tabular Q-Learning controller.  

3. Results 

3.1. System Specifications 

In most cases, it is necessary to take an iterative approach 
and manually tune the reward function term weights and 
the model hyperparameters. Table 3 shows the 
temperature and energy rewards with optimal w1 to w4, 
while Table 4 displays the optimal hyperparameters, 
which are used in for both TQL and DQL controllers. 
Table 3: Temperature and energy reward terms, with optimal w1=0, 
w2=0.3, w3=2 and w4=1  

ΔT (°C) ΔT > 0 -2 < ΔT < 0 ΔT < -2 

Temperature 
reward 0 −2|𝛥𝑇| −|𝛥𝑇|ଷ 

Energy 
reward −0.3 ⋅

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 −

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 −5

𝑄̇ு௏஺஼

𝑄̇୫ୟ୶
 

Table 4: Optimal values for hyperparameters α, γ and ε. 

α γ ε 
0.001 0.99 0.4 

 
Figure 4 depicts how the total reward for a training 

run varies, where each run corresponds to one training 
loop where the 11 months of training data described in 
Section 2.1.4. is used. The total reward plateaus before 
20 training loops. 
 

 
Figure 4: Total reward plotted against training run number for 20 runs 
for TQL controller 

3.2. Tabular Q-Learning 

The Q-Table contains 231 entries (21 states × 11 actions), 
which is considered a reasonable Q-Table size [7]. 
Figure 5 depicts the temperature profile of the baseline 
PI controller and the trained TQL Controller tested in 
May 2023, with Figure 6 presenting a more detailed 
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analysis over a 48-hour period. It can be observed that 
the TQL controller maintains the internal temperature 
closer to the 19°C setpoint compared to the baseline PI 
controller. 

The Tabular Q-Learning controller is also proven 
versatile, performing efficiently in both the warm 
summer 2022 and the cold winter 2023, as shown in the 
Supplementary Information section.  

 
Figure 5: Testing plots for the TQL controller in the period 1 to 15 May 
2023. In the two bottom plots, the orange and blue lines illustrate the 
performance of the TQL and PI controllers respectively. The black 
dashed line in the bottom plot represents the temperature setpoint. 

 
Figure 6: Testing plots for the TQL controller in the period 8 to 10 May 
2023. In the two bottom plots, the orange and blue lines illustrate the 
performance of the TQL and PI controllers respectively. The black 
dashed line in the bottom plot represents the temperature setpoint. 
 

Quantitative results shown in Table 5 demonstrate 
that the Tabular Q-Learning agent outperforms the PI 
controller in every metric. As the total energy cost and 
CO2e emissions are directly proportional to the total 
thermal energy produced by the HVAC system, these 
indicators will all experience the same percentage change 
across models. 

Table 5: TQL quantitively compared to PI control 

 PI TQL % Reduction 

Comfort Violation 
(Kh/year) 710 626 12% 

Total Thermal 
Energy (kWh/year) 1.09 × 106 1.04 × 106 4% 

Total Energy Cost 
(£/year) 7.25 × 104 6.96 × 104 4% 

CO2e Emissions 
(kg CO2e/year) 7.50 × 104 7.20 × 104 4% 

3.3. Deep Q-Learning 

Figures 7 and 8 depict the performance of the DQL 
controller compared to the baseline PI controller, tested 
over the first two weeks of May 2023. It is found that 
training a DQL controller takes on average 7 times longer 
than a TQL controller. 

The DQL controller displays significantly less 
dynamic behaviour compared to the TQL controller. 
However, it did not perform as well as the TQL agent, 
improving energy savings by only less than 1%, while 
increasing the comfort violation by 22% compared to the 
baseline PI controller.  

 
Figure 7: Testing plots for the DQL controller in the period 1 to 15 
May 2023. In the two bottom plots, the orange and blue lines illustrate 
the performance of the DQL and PI controllers respectively. The black 
dashed line in the bottom plot represents the temperature setpoint. 
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Figure 8: Testing plots for the DQL controller in the period 8 to 10 
May 2023. In the two bottom plots, the orange and blue lines illustrate 
the performance of the DQL and PI controllers respectively. The black 
dashed line in the bottom plot represents the temperature setpoint.  

Table 6 shows a direct comparison between the PI, 
TQL and DQL controllers. The TQL controller 
outperforms the DQL controller in every metric. 
Table 6: DQL quantitatively compared to TQL and PI control 

 PI TQL DQL 

Comfort Violation 
(Kh/year) 710 626 865 

Total Thermal 
Energy (kWh/year) 1.09 × 106 1.04 × 106 1.07 × 106 

Total Energy Cost 
(£/year) 7.25 × 104 6.96 × 104 7.15 × 104 

CO2e Emissions  
(kg CO2e/year) 

7.50 × 104 7.20 × 104 7.40 × 104 

3.4. Sensitivity analysis  

The tuned values for the system parameters are presented 
in Section 3.1. It is found that the w1, α and ε parameters 
play a critical role in the dynamics and robustness of the 
system. Factors including stability and values used in 
literature are used to determine optimal values for the 
hyperparameters.  

The temperature penalty weight w1 is identified as the 
most sensitive of all the weights. Increasing its value by 
small increments significantly impacted the controller 
performance, as shown in Figure 10 

Learning rate (α) values larger than 1×10-3 result in 
internal temperatures deviating from the setpoints, as 
shown in Figure 9, while smaller values result in 
overfitting, leading to poor control in extreme winter and 
summer conditions.  

The exploration probability ε is varied between 0.01 
and 0.6 to experiment with training scenarios with almost 
no exploration, and scenarios where the majority training 
consists of exploration. The system does not consistently 
converge to the setpoints at ε values close to 0.01. The 
RL agent performs better at larger ε values. However, it 
is found that ε values greater than 0.5 result in system 

instability. An ε value of 0.4 is determined optimal for 
the environment. 

The Supplementary Information section includes 
sensitivity analysis plots for the remaining weights and 
hyperparameters, which do not impact the system at the 
same level.  

 
Figure 9: Plots of Comfort Violation and Total Thermal Energy against 
the learning rate (α) from testing in May 2023. Red data points 
represent the total thermal energy from the HVAC system in MW/yr. 
Blue data points indicate the Comfort Violation in Kh/yr. 

 
Figure 10: Plot of Total Thermal Energy against Comfort Violations 
for different w1 values and a constant weight of w2=0.3 from testing in 
May 2023. Blue data points represent the total thermal energy from the 
HVAC system in MW/yr and comfort violations in Kh/yr multiplied by 
a factor of 10-3. 

4. Discussion 

4.1. System Specifications 

From Figure 4, it is seen that the total reward plateaus 
before reaching the 20th training loop. This indicates that 
20 training runs (corresponding to 18 years’ worth of 
data) prove well sufficient to fully optimise the Q-Table 
and provide adequate training. A similar trend is also 
seen with the DQL controller. 

Increments of 1°C between states might initially 
appear too large. However, using such increments does 
not hinder the control system. To confirm this 
hypothesis, both the DQL agent and the TQL agent are 
trained using state increments of 0.5°C and 0.2°C; no 
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visible impact on the controller performance is observed. 
Instead, the model takes significantly longer to train due 
to the larger number of states, indicating that increments 
of 1°C prove more efficient. Although using state 
increments of 2°C further improves the computation 
time, such a large temperature difference between states 
leads to a decline in performance. These results prove 
surprising for the DQL agent, as DQL usually performs 
better when state values are more granular [21]. This 
suggests that other factors may lead to its 
underperformance.  

The reward function owes its effectiveness to the 
weights in its respective terms. From an iterative 
approach, it is found that for ΔT > 0, w1 and w2 should 
be tuned such that energy penalties outweigh temperature 
deviation penalties.  For -2 < ΔT < 0, the temperature 
deviations should be penalised more heavily than energy 
use. As such, values of w2 > w1 and w3 > w4 should be 
used to ensure stable control. 

4.2. Controller Performance Analysis   

Section 3.2. establishes that the TQL agent outperforms 
the PI controller in every metric. This is indicative of the 
superior decision-making capabilities of the Tabular Q-
Learning agent compared to the baseline PI controller. 
Superior energy efficiency not only aligns with 
Sainsbury’s sustainability goals, but also represent 
savings in operational costs.  

Both TQL and DQL models exhibit more stable 
behaviours compared to the PI controller. It can be seen 
from Figure 5 and Figure 7 that both the TQL and DQL 
controllers display more consistent HVAC power output 
profiles compared to the PI controller. This is due to the 
fundamental differences in the control systems. The 
HVAC heat load for the PI controller is proportional to 
the setpoint error (as discussed in section 2.1.2), while 
the RL agents can choose between a limited number of 
actions (as discussed in section 1.1.1. ). This more 
consistent heating pattern reduces the wear and tear effect 
in the HVAC system and helps to improve its lifespan. It 
also leads to higher user satisfaction [19]. 

A look at Figure 8 indicates that the subpar 
performance of the DQL in terms of comfort can be 
attributed to a time lag between the setpoint change and 
the start of heating. This time lag might be due to an 
inadequate neural network structure, which might be too 
simple for this particular problem. A neural network that 
lacks capacity can struggle to identify the intricate 
patterns, knowledge of which is required for effective 
control [7]. 

The DQL algorithm is further tested with changes in 
the reward function and individual hyperparameters. 
However, no attempted combination of these results in a 
superior outcome. As such, it is deduced that the issues 
most probably originate from the structure of the neural 
network, which usually represents the greatest challenge 
in DRL methods [7]. Finding an optimal solution for this 
problem can prove expensive and time consuming, as no 
universal structure exists for a neural network. Neural 
networks are constructed for specific problems and are 
thus dependent on the characteristics of the problem in 
question [20]. Due to time constraints, attempting to 

restructure the neural network was not possible. It was 
not considered worthwhile to conduct a sensitivity 
analysis on the constraints and hyperparameters used for 
the DQL agent as their ideal values were still unknown.    

The much longer time to train the DQL compared to 
the TQL highlights the greater complexity of the former: 
the forward and backward passes in DQL prove 
computationally more intensive and time consuming [17] 
than the more straightforward table updates in TQL. 
Experience replays also constitute an additional step and 
requires management of the replay buffer, which leads to 
further increases in computational overhead.  

By allowing the model to learn from a more diverse 
set of experiences, incorporating experience replays 
generally results in an improved controller performance 
in complex and dynamic environments. However, this 
does not prove true in this particular case due to the 
relative simplicity of the environment dynamics [17]. 
Moreover, Deep Q-Learning algorithms can struggle 
with relatively simpler environments because of the 
approximations made to the state-action spaces. Tabular 
Q-Learning, on the other hand, reviews every state-action 
combination independently, leading to more optimal 
results. Although TQL might prove computationally 
demanding for models comprising a large number of 
states and actions, it can demonstrate superior 
performance for cases involving a relatively small 
number of actions and states.  

It is important to note that the Results section only 
illustrates some typical trained models. Results may 
slightly vary each time the agent is trained due to the 
mildly stochastic nature of Q-Learning, as explained by 
R. Sutton and A. Barto [7].  

4.3. Sensitivity Analysis 

4.3.1. Temperature Penalty Weight w1 

The system behaves counterintuitively as w1 is varied. 
Using a larger w1 value implies more importance placed 
on the comfort metric compared to the energy term, 
usually corresponding to smaller comfort violations and 
more energy used. However, the opposite is observed. A 
value of w1 = 0 is deemed optimal as larger values w1 
result in monumental deviations from the setpoints and 
comfort violation. Although time constraints did not 
allow for a full investigation of this temperature penalty 
weight, this unusual behaviour could benefit from further 
research. 

4.3.2. Learning Rate (α) 

As described in section 2.1.8, a higher learning rate leads 
to very poor convergence of Q-values in the Q-Table. In 
the TQL model, it is found that in such a scenario, Q-
values for different actions in a given state remain almost 
identical, and the action with the highest Q-value does 
not always correspond to the best action. This effectively 
results in fully stochastic control behaviour, independent 
of the amount of training data used. This explains why 
past research often considers very small α values as 
optimal. N. Ali and T. Tahir, for example, used a learning 
rate of 3×10-5 as they found that a value of this magnitude 
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significantly improved the performance of their model 
[30]. 

4.3.3. Exploration Rate (ε) 

For ε values close to 0.01, the system would not 
consistently converge to the setpoints as a result of the 
agent not sufficiently exploring the environment during 
the training set, and prevents the agent from successfully 
finding the optimal actions as a result. The controller 
performance improves at larger ε values, as the model 
requires less training data to converge. S. Ghode and M. 
Digalwar [31] advise against using ε values greater than 
0.5 value as this would risk erratic behaviour in the 
system – they were proven right. The ε value of 0.4 leads 
to optimal system performance as it most successfully 
balances exploitation and exploration within the 
environment. Instead of using a fixed exploration rate, T. 
Wei et. al. [19] experimented with an ε value which 
gradually decreased after each training loop. This 
approach was tested but did not impact the controller 
performance; it is therefore disregarded. 

5. Conclusion 

This paper demonstrates a tangible approach of Tabular 
Q-Learning (TQL) and Deep Q-Learning (DQL) to 
optimise the control of the HVAC system of a 
supermarket store. It is found that the TQL controller 
outperforms the existing PI controller by 4% in energy 
efficiency and 12% in user comfort. However, the DQL 
controller did not present any improvement over the 
baseline PI controller, and performs 2% worse in energy 
efficiency compared to the TQL controller. This suggests 
that further fine tuning of the DQL controller is required 
to unlock its full potential. Overall, this study 
demonstrates the potential of TQL for the control of 
energy systems in buildings. It would therefore be 
sensible to further investigate TQL as it offers a relatively 
simple solution to reduce improve the energy efficiency 
of HVAC systems.  

The work from this paper could be extended by fine-
tuning the neural network of the DRL agent and assessing 
whether it could exceed the performance of the TQL 
controller. Further research could investigate the 
potential of the TQL agent trained in this paper on similar 
processes, such as refrigeration, which uses significantly 
more energy compared to heating systems, indicating a 
greater energy saving potential. It can also prove 
beneficial to train the TQL agent on a Model Predictive 
Control (MPC) controller. MPC controllers often require 
a significant amount of time to fine tune, and RL can 
offer a solution to this problem. Finally, the TQL 
controller should be tested in real world environments, as 
the simulation environment used is heavily idealised. A 
real-life store may behave differently when accounting 
for a non-uniform temperature distribution or large 
unforeseen fluctuations in internal temperature and such 
factors need to be considered carefully before 
implementing the model in the real world. 
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A Flexible Calcium Ion Holographic Sensor for Wound Monitoring  

via Smartphone Readout 

 
Shihabuddeen Waqar and Ali Fadlelmawla  

 
Abstract Chronic wounds pose significant challenges to patients and healthcare systems alike. Continuously 
monitoring the changing calcium ion (𝐶𝑎ଶା) concentration in the wound milieu, using a holographic calcium ion 
sensor integrated in a bandage via smartphone readout, can allow patients and doctors to monitor the progress of 
wound healing. The smartphone application is user friendly and limits the requirement for the intervention of 
medical professionals to obtain accurate results, thereby having the potential to reduce the burden on the healthcare 
system. Herein, a double photopolymerisation method is used to fabricate a holographic calcium ion sensor, which 
is the hydrogel poly (HEMA-co-PEGDA-co-MAA). The fabricated free standing holographic calcium ion sensor is 
attached to the flexible substrate, Polydimethylsiloxane (PDMS). The sensor replays a total Bragg peak shift of -
18.53 ± 0.51 nm upon varying the calcium ion concentration in the biological contaminant free buffer solution 
between 0.0 − 4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ at a pH of 8.0 and wound model diameter of 70mm. Individual selectivity tests in the 
presence of various biological contaminants at physiological concentrations in the buffer solutions show that the 
sensor maintains a notable selectivity towards calcium ions. The sensor also preserves its sensitivity when subjected 
to various levels of bending as the diameter of the wound models is varied. The smartphone application is capable 
of detecting and processing the holographic reflection spectrum, using region of interest detection (ROID) and 
thresholding algorithms, to quantify the calcium ion concentration in buffer solutions.   

Keywords Continuous monitoring, Region of interest detection (ROID), Poly (HEMA-co-PEGDA-co-MAA), 
holographic sensor, Polydimethylsiloxane (PDMS), thresholding algorithm 

 
1. Background and Introduction 

1.1 Wound healing 
Wound healing is a complex physiological process that 
results in tissue reconstitution in response to injury. 
Wound healing initially restores the protective epithelial 
barrier, which is the body’s primary defence against 
infection from external pathogens and prevents fluid loss. 
The wound healing process typically consists of four 
distinct, but overlapping stages: haemostasis, 
inflammation, proliferation, and remodelling.1 Wounds 
that take longer than 3 months to heal are classified as 
chronic wounds.2 Chronic wounds stagnate in the 
inflammatory phase without further healing which 
predisposes patients to further complications such as 
disfigurement, loss of function and  amputation.1 In the 
US alone, chronic wounds affect over 6.7 million people 
annually, incurring an annual cost in excess of 50 billion 
US dollars, underscoring the need for effective and 
accessible wound monitoring and treatment.3 The current 
standard for wound assessment relies heavily on the 
clinician’s observations, which are prone to subjective 
errors based on the clinician’s experience and judgement. 
Biomarkers provide an indication of a patient’s biological 
state and are potentially useful for understanding, or 

predicting, the healing trajectory of a wound. 
Conventional biomarker quantification in wound fluids 
requires time-consuming and costly laboratory testing, 
such as enzyme-linked immunosorbent assays (ELISAs), 
which do not enable real-time monitoring or on-demand 
quantification of wound healing progress.4 This presents 
the need for objective wound healing assessments that 
can be quantified without the need for complex laboratory 
equipment and the limited intervention of medical 
professionals. The accurate monitoring of biomarkers is 
critical for deploying effective treatment and patient 
recovery. 
 

1.2 Importance of calcium ions (Ca²⁺) 
Calcium ions (Ca²⁺) play a critical role in a range of 
physiological processes, including blood coagulation, 
enzyme activity, the release of neurotransmitters and 
hormones. A deficiency in calcium can lead to various 
health complications, such as rickets in children and 
osteomalacia in adults.5 Calcium has also shown to be 
effective in promoting wound healing when used in 
wound dressings.6 Research indicates that calcium 
concentration in the wound area varies with biochemical 
activities during the healing process. The extracellular 
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calcium ion concentration increases upon injury, 
persisting through the inflammatory and proliferative 
phases and declining during the remodelling phase.7 In 
the haemostasis phase, calcium facilitates blood clotting, 
while in the inflammatory phase, it modulates the 
function of immune cells like neutrophils. Extracellular 
calcium is essential for the proliferation and 
differentiation of skin cells involved in the wound healing 
process.8 The change in concentration that occurs during 
wound healing provides the opportunity for calcium ions 
to act as effective biomarkers to monitor the progress of 
healing. 
 

1.3 Current methods to monitor calcium ions (Ca²⁺) 
Current methods for monitoring the calcium ion levels 
include the use of fluorescent, electrochemical and 
colorimetric sensors.  A coumarin based fluorescent 
sensor for calcium ion has been proven to work within 
living cells.9 Whilst it has proven to detect calcium ions, 
the fluorescence spectroscopy requires specialised 
equipment and trained personnel for analysis, in addition 
to high cost, which makes it a widely inaccessible form 
of monitoring biomarkers like calcium ions in patients.10 
Moreover, fluorescent sensors are vulnerable to 
photobleaching over time due to the destruction of 
fluorophores.11 Electrochemical sensors are also 
effective in calcium ion detection and monitoring. 
Electrochemical sensors offer many advantages over 
other classes of calcium ion sensors owing to their 
affordability, high sensitivity, selectivity, rapid response 
time and low power consumption.12,13 However, 
electrochemical sensors have drawbacks, including a 
lower shelf life and the occurrence of signal drift, which 
requires regular recalibration.14 A colorimetric sensing 
system measures the calcium ion concentration, where 
the calcium ions react with Arsenazo III and form a 
coloured complex which absorbs light in the visible 
spectrum. Through the use of a 650nm LED as a light 
source and a high-speed photodiode as a detector, the 
absorbance can be measured using Beer Lambert’s law.15 
Whilst the calorimetric sensors are generally promising, 
the lack of reversibility renders this class of sensors 
unsuitable for real time monitoring. Moreover, 
calorimetric sensors require the use of valuable 
laboratory equipment to obtain results, reducing its 
suitability for continuous monitoring.   
 

1.4 Holographic sensors 
While holograms are mostly known for their data storage 
and artistic capabilities, they have managed to find other 
uses in modern science such as holographic sensors. 
Holographic sensors utilise two coherent laser beams 
interfering in a photosensitive substance, triggering a 

photochemical reaction that generates interference 
fringes that store the original light information.16 The 
colour observed is determined by the fringe spacing 
between changes in refractive index of these scales, as 
given by Bragg’s law (Equation 1). 
 
                             𝑛𝜆௠௔௫ = 2𝑑𝑠𝑖𝑛𝜃               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)  
 
Where 𝜆௠௔௫  is the Bragg peak wavelength, n is the 
diffraction order, d is the grating spacing, and θ is the 
angle of incident light from the normal. By varying the 
grating spacing according to the environment, a 
hologram can function as a sensor and convey 
information about the environment. The observed colour 
is redshifted if the grating spacing increases, giving a 
visual indication of the environment’s state. This 
approach has been previously used for a wide variety of 
holographic sensors including pH, alcohol, temperature 
and humidity, glucose, strain, drug detection and ion 
sensors such as Cu2+ and Fe2+.17  Holographic sensors 
provide label free sensing that removes several complex 
processing steps required by conventional chemical 
analysis, therefore reducing the level of training required 
and removing the need for specialist laboratory 
equipment for users to obtain reliable data. Holographic 
sensors have many advantages over the variety of sensors 
discussed earlier due to their low cost and reversibility. 
Additionally, holographic sensors do not require 
electrical currents or large metallic components, allowing 
them to have a reduced impact on the environment. 
Holographic sensors are also free of the need to regularly 
re-calibrate like electrochemical sensors and are not 
impacted by photobleaching. In this work, a double 
photopolymerisation process was used to fabricate a  
hydrogel based holographic calcium ion sensor. Double 
photopolymerisation removes the need for nanoparticles 
in holographic gratings, reducing the complexity of the 
process, thus making mass production more achievable.17 
Additionally, nanoparticle-free systems avoid the 
potential health risks of nanoparticle leaching.18 This 
work investigates the reliability of the sensor by 
measuring the influence of factors such as the pH 
environment, the level of bending the sensor experiences 
and the presence of biological contaminants on the 
sensor’s sensitivity. 
 

1.5 Hydrogel based holographic sensors 
The holographic sensor in this work is hydrogel based. 
Hydrogels are three-dimensional networks of hydrophilic 
polymers that swell in water and retain water whilst 
maintaining their structural integrity because of chemical 
or physical cross linking of individual polymer chains. 
Hydrogels undergo reversible volume phase transition in 
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response to physical and chemical stimuli including 
temperature, solvent composition, pH and ions.19 In 
chemically cross-linked hydrogels, the polymer chains 
are covalently linked, providing excellent mechanical 
strength. Photoinitiated chemical cross-linking occurs 
through radiation exposure, where photo initiators absorb 
the photons and form free radicals, which in turn can react 
with vinyl bonds in monomers and form a polymer 
network that preserves its structure in an aqueous 
medium. This cross-linking technique was applied in the 
fabrication of poly (HEMA-co-PEGDA-co-MAA) 
hydrogels in this work. A unique property of hydrogels 
includes non-solubility in water while remaining 
hydrophilic due to the presence of hydroxyl, carboxylic 
and amidic groups.20 Non-solubility in water is desirable 
as it allows for the sensor to monitor the calcium ion 
concentration in an aqueous environment. Additionally, 
poly (HEMA-co-PEGDA-co-MAA) hydrogels are 
flexible, biocompatible and transparent making them 
suitable for applications to wounds and skin. The free-
standing poly (HEMA-co-PEGDA-co-MAA) hydrogel is 
then attached to a flexible substrate Polydimethylsiloxane 
(PDMS) that provides it with mechanical stability. 
Moreover, Polydimethylsiloxane (PDMS) is flexible, 
biocompatible and closely resembles the skin, making it 
suitable for skin adhesion and decreases discomfort as 
wound sites are particularly sensitive regions. 
2. Methods 

2.1 Materials  
All chemicals were analytical grade. 3-(trimethoxy silyl)-
propyl methacrylate, acetone, hydroxy ethyl methacrylate 
(HEMA), ethylene glycol dimethacrylate (EGDMA), 2-
(dimethyl amino) ethyl acrylate (DMAEA), 2-hydroxy-2-
methylpropiophenone (HMPP), isopropanol, 
tris(hydroxymethyl)amino methane (TRIS), TRIS 
hydrochloride (TRIS HCl), potassium chloride, calcium 
chloride, magnesium chloride, sodium bicarbonate, urea, 
uric acid, sodium lactate, and hydrochloric acid (1M) 
were purchased from Sigma Aldrich. Methanol, glucose, 
and sodium chloride were purchased from VWR. 
Aluminised polyester films were purchased from HiFi 
Industrial Film Ltd. SYLGARD 184 Silicone Elastomer 
Kit 1.1Kg was purchased from Dow. Cotton layers were 
purchased from Synergy Health (UK) Ltd. 
 

2.2 Equipment  
Microscope slides were purchased from Fisher Scientific, 
cover glass slides from VWR and UVP crosslinker from 
Analytik Jena. Nd: YAG frequency tripled Quantel Q- 
smart (5 ns, 355 nm) solid-state laser purchased from 
Lumibird, France. The drying oven UN30 used for 
hydrogel drying was purchased from Memmert. The 
plano-concave lens (−75.0 mm, Ø1″ UV fused silica 
plano-concave lens, uncoated), optical posts (Ø12.7 mm, 
L = 20 mm), pedestal post holder (L = 20 mm, Ø12.7 

mm), power and energy meter interface (PM100USB), 
UV extended Si photodiode, motorized precision rotation 
stage (Ø1"), collimated laser-diode-dumped DPSS laser 
module (532 nm, 4.5 mW), laser diode module mounting 
Kit (Ø11 mm), and iris (mounted standard iris, Ø12 mm 
max aperture, TR3 Post) were purchased from Thorlabs, 
United States. A 25 mm dielectric 355 nm Nd: YAG laser 
line mirror was purchased from Edmund Optics, UK. 
Fisherbrand classic vortex mixer was purchased from 
Fisher Scientific, Bishop Meadow, UK. The Mettler 
Toledo FiveEasy Plus™ pH benchtop meter was 
purchased from Mettler-Toledo Ltd. Orion Star A212 
Benchtop Conductivity Meter from ThermoFisher. 
Holographic responses were analyzed using UV-VIS 
bifurcated fibre optical cables, a 20 W tungsten halogen 
broadband light source, Flame-S-VIS-NIR-ES 
spectrophotometer, and Oceanview software (2.0.8) 
purchased from Ocean Insight.  
 

2.3 Free-standing holographic calcium ion sensor 
fabrication.  

The holographic calcium ion sensor was fabricated using 
two different monomer solutions. The primary monomer 
solution (P1) contains 63 mol% 2-hydroxyethyl 
methacrylate (HEMA), 6 mol% polyethylene glycol 
diacrylate (PEGDA 700), 30 mol% methacrylic acid 
(MAA), and 1 mol% 2-hydroxy-2-methylpropiophenon 
(HMPP). The P1 solution is then diluted at a ratio of 1:1 
v/v with isopropanol. The secondary monomer solution 
contains 55 mol% HEMA, 40 mol% ethylene glycol 
dimethylacrylate (EGDMA), and 5 mol% HMPP. The 
secondary monomer (P2) solution monomers are then 
diluted with 90 vol% methanol at a ratio of 1:1 v/v. 
 

 
Figure 1.   Schematic representation of the structure of a holographic 
calcium ion sensor. a) Composition of P1 solution. b) Composition of 
P2 solution. c) Composition of the responsive matrix. 
Figure 1c depicts the formation mechanism of the 
responsive matrix. Exposing the HMPP to incoherent UV 
light leads to its rapid decomposition into highly active 
free radicals, which initiates a polymerisation chain 
reaction of monomers in the P1 solution (Figure 1a) and 
MAA in the responsive matrix. EGDMA was used as the 
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crosslinker in secondary monomer (P2) solution (Figure 
1b) due to its mechanical stiffness, which prevents any 
volumetric change. While the surface of healthy human 
skin is acidic, the wound’s nature is alkaline due to the 
underlying tissues of the body being exposed, which 
typically have a pH of 7.4.21,22 This alkaline environment 
leads to the rapid deprotonation of MAA. Calcium ions 
that penetrate the hydrogel are able to coordinate with the 
carboxylate ions to form ionic bonds. This ionic bonding 
results in the hydrogel shrinking, which leads to the 
interference layer (IL) stripes narrowing and the observed 
wavelength blue shifting, as shown in Figure 2. As the 
ionic bonding results in a volumetric change in the 
hydrogel, the shift in the observed peak wavelength can 
be used to quantify the calcium ion concentration in the 
wound. 
 

 
Figure 2. Working principle of hydrogel shrinking due to the ionic 
bonding of MAA and calcium ions, leading to a blue shift in the peak 
wavelength. 
On the polyester side of a flat aluminized polyester film, 
40 μL of the primary monomer solution was pipetted, and 
a clean untreated glass slide was placed onto the droplet. 
It was then exposed under 4 UV (A) strip lights for 30 
minutes. The polymerized primary hydrogel layer was 
then removed from the polyester film and washed in 
methanol and water at a ratio of 1:1 (v/v) for 30 minutes 
to remove any by-products and unpolymerized monomers 
from the hydrogel layer. The hydrogel was then wiped 
dry, and 150 μL of the P2 solution was pipetted onto a 
clean, flat, aluminized polyester film.  
 
Hydrogel side facing downward, the slide was then 
placed on the droplet to allow the hydrogel to be soaked 
in the P2 solution for 5 minutes. The hydrogel surface was 
then given a single wipe to remove excessive secondary 
monomer solution. The hydrogel was then dried in an 
oven at 55 ℃ for 4.5 minutes. The hydrogel was then left 
to cool down to 25 ℃. Since the thickness of hydrogel at 
laser exposure is a critical factor affecting replay 
wavelengths of holographic sensors, these steps must be 
maintained at the same temperature and humidity. Slides 
were kept under safe lighting and exposed to a single UV 
pulse from an Nd: YAG laser (355 nm, 5 ns, 30 μs delay) 

on the planar mirror with the hydrogel side facing 
downwards with a tilted angle of 5° from the mirror. 
While maintaining safe lighting, hydrogels were washed 
in methanol and DI water (1:1 v/v) overnight. This setup 
is shown in Figure 3. 
 

 
Figure 3.  A photograph of the laser arrangement showcasing the 
sample positioned at a 5° elevation from one side and undergoing 
exposure to a single UV pulse (355 nm, 5 nanoseconds, with a 30-
microsecond delay). 
 

2.4 PDMS substrate fabrication 
The siloxane was mixed with the curing agent at a mass 
ratio of 10:1. The mixture was degassed using a vacuum 
desiccator, poured into a mould, and covered using clean 
microscope glass slides to fabricate a PDMS sheet with a 
thickness of 80 μm. The mould was then placed in an 
oven at 80 ℃ for 1 hour. The fabricated PDMS sheet was 
then removed from the mould, treated using the plasma 
cleaner, and silanised using a 3-(trimethoxysilyl) propyl 
methacrylate in acetone at 1:50 (v/v) overnight. 
 

2.5 Attach free-standing holographic sensor on 
PDMS substrates 

Both free-standing holographic calcium ion sensors and 
PDMS substrates were rinsed with methanol to clean 
surfaces. An adhesive monomer solution was prepared by 
mixing PEGDA 700 and 3 vol% HMPP in DI water at a  
ratio of 2:1 v/v.  The diluted PEGDA 700 solution was 
pipetted on the free-standing holographic calcium ion 
sensor surface. The PDMS substrate was then placed on 
top of the PEGDA 700 solution droplet. A pressure of 1 
kPa was applied to facilitate the attachment. The sample 
was then placed under 4 UV (A) strip lights for 15 
minutes. The PDMS substrate holographic calcium ion 
sensor was then carefully removed from glass slides and 
washed with in methanol and DI water (1:1 v/v) for 30 
minutes. The two distinct layers of the dried holographic 
calcium ion sensor and PDMS can be seen in Figure 4.  
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Figure 4.  A photograph of the hydrogel based holographic calcium 
ion sensor attached to PDMS Substrate, under a microscope. 
 

2.6 Buffer solution formulation 
The buffer solutions used to perform all experiments 
contain calcium chloride (0.0 − 4.0 mmol Lିଵ) dissolved 
in deionized water (DI). TRIS, TRIS HCl and potassium 
chloride ( 4.40 mmol Lିଵ ) were added to the buffer 
solutions, maintaining TRIS concentration at 50 mmol L-

1 at a constant pH of 8.00 to stabilise the pH of the buffer 
solutions. To stabilise the calcium concentration, 3 mmol 
L-1 citric acid was added. The pH value of buffer 
solutions was corrected using 1.0 mol Lିଵ hydrochloric 
acid and 3.0 mol Lିଵ  potassium hydroxide confirmed 
using the pH meter. To perform the pH test, the buffer 
solutions’ pH values were corrected using the same 
method to prepare solutions in the pH range of 7.0-9.0. 
Buffer solutions used to perform the selectivity test 
contain physiological concentrations of common 
electrolytes and biological contaminants. The buffer 
solutions were prepared by dissolving the following 
contaminants separately into buffer solutions with the 
same composition used in the sensitivity and pH tests; 
sodium chloride ( 128.33 mmol Lିଵ ), magnesium 
chloride ( 0.94 mmol Lିଵ ), potassium chloride 
( 4.40 mmol Lିଵ ), urea ( 8.90 mmol Lିଵ ), uric acid 
(0.35 mmol Lିଵ) and sodium lactate (10.90 mmol Lିଵ) 
in DI water. The calcium ion concentration was tested at  
0.0  mmol Lିଵ  and 4.0 mmol Lିଵ . On each change of 
calcium ion concentrations, the artificial wound model 
was rinsed using the next buffer solution three times to 
ensure a reliable calcium concentration in the artificial 
wound model. 
 

2.7 Statistical analysis 
Spectra taken by the spectrophotometer were firstly 
processed by the Savitzky–Golay filter and then 
subtracted by broadband light spectra taken before the 

measurement. The processed spectra were then 
normalized to [0,1]. All replay wavelength and Bragg 
peak shift data were expressed as mean ± standard error. 
All the above-mentioned data processing was carried out 
using Origin 2020. The data processing was carried out 
on Python 3.9.7 using NumPy, OpenCV and Pillow 
libraries. 
 
3. Results & Discussion 

3.1 Sensitivity test 
To quantify the calcium ion concentration at the site of 
the wound, a calibration curve was generated using 
experimental results so that the Bragg shift values can be 
converted into the calcium ion concentration. The blood 
calcium ion concentration is maintained within a narrow 
range of 2.2 − 2.7 mmol Lିଵ .23 The calcium ion 
concentration increases during the inflammatory and 
proliferative phases, the two phases that this work seeks 
to monitor and address. The inflammatory phase is when 
extracellular calcium enters neutrophils, increasing 
intracellular calcium concentration which modulates the 
neutrophil function.24 The proliferative phase is 
characterised by the resurfacing of the wound with a new 
epithelium, where the increase in the concentration of 
calcium ions at the site of the wound initiates epithelial 
healing.25,26 Due to the variation in calcium ion 
concentration, the sensitivity test was performed across a 
concentration range of 0.0 − 4.0 mmol Lିଵ  of free 
calcium ions in buffer solutions where 3 mmol Lିଵ citric 
acid was added to stabilise the calcium ion concentrations 
in the buffer solutions. The pH at the site of chronic 
wounds have been recorded to be in the range of 7.15-
8.90.27 In order to replicate the alkaline environment at 
the site of wounds, the  50 mmol Lିଵ  TRIS buffer 
solutions were prepared to be at a pH of 8.0. A Bragg shift 

 
Figure 5. Calibration curve of  0.0 − 4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ calcium ion 
concentration by observed Bragg shift in nm. The error bars represent 
the standard error. 
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of -18.53 ± 0.51 nm was measured across the range of 
calcium ion concentrations as shown by Figure 5. The 
negative Bragg shift (blue shift) is expected as an increase 
in calcium ion concentration causes the hydrogel 
networks to decrease in volume, reducing the spacing 
between the IL stripes. Two main trends can be observed 
from Figure 5. Firstly, the Bragg shift exhibits an 
approximately linear trend between the calcium ion 
concentrations of 0.0 − 1.0 mmol Lିଵ. The second trend 
is one resembling exponential decay across the entire 
range of calcium ion concentrations, where the size of the 
change in Bragg shift appears to decrease as the calcium 
ion concentration increases. The first trend can be 
explained by an abundance of deprotonated MAA within 
the hydrogel matrix that can form ionic bonds with the 
free calcium ions, therefore increasing the calcium ion 
concentration leads to a proportional Bragg shift. 
However, a factor limiting the Bragg shift achievable is 
the availability of deprotonated MAA that can to bond to 
the free calcium ions. As more calcium ions form ionic 
bonds with the deprotonated MAA, less sites are available 
for calcium ions to bond to, hence the change in Bragg 
shift becomes less significant, as not all the calcium ions 
are able to participate in ionic bonding. This limits the 
volumetric change in the hydrogel structure, and this is 
reflected in an exponential decay in the impact increasing 
calcium concentration has on the observed Bragg shift. 
 

   
Figure 6. Holographic calcium ion sensor integrated into a bandage. 
(a) Sensor fitted into the bandage cut-out. (b) Black cotton on the 
underside of the bandage prevents light scattering.  
 

3.2 Prototype and bending test 
As the location of the wound can vary across the body, so 
will the bending the sensor integrated into the bandage 
(Figure 6a) experiences. For example, wounds on regions 
with a greater amount of curvature, including fingers and 
the brow ridge, will cause the hydrogel to bend more than 
flatter surfaces like the legs and torso. The prototype of 
the sensor integrated into a bandage has black cotton on 
the underside of the bandage. As the wound dressing is 
worn on the skin, light is reflected off the skin which 
causes light scattering that is much greater than the 
holographic signal. Using black cotton prevents light 
scattering, which simplifies the detection of the 
holographic signal. To investigate any changes in the 
hydrogel sensitivity with the extent of bending, a bending 

test was conducted. The diameters of the artificial wound 
site ranged from 30mm to 70mm and were tested at 
10mm increments. The results in Figure 7 show that as 
the diameter of the wound model is reduced, the 
magnitude of the Bragg shift also reduces. There is an 
average decrease of 2.86 nm in sensitivity across the 
range of non-zero calcium ion concentrations. The reason 
for this is because bending increases the distance between 
adjacent holographic gratings. Increasing bending, 
increases the resistance to the opposing hydrogel 
shrinkage when the calcium ion concentration is 
increased. As a result, the holographic signal is altered so 
that the peak wavelength of light in the reflection 
spectrum is greater. This effectively reduces the 
magnitude of the Bragg shift observed at higher levels of 
bending (smaller diameters).  
 

 
Figure 7. The Bragg shift achieved at different calcium ion 
concentrations  (0.0 − 4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ)  at different diameters of the 
artificial wound model. The error bars represent the standard error. 
 

3.3 Selectivity test 
Calcium ions are one of many cations in the blood that 
can form ionic bonds with deprotonated MAA. Various 
components aside form calcium ions in blood can impact 
the Bragg shift values obtained as calcium ions will not 
exclusively be responsible for any volumetric change in 
the hydrogel matrix.  Some of the biological contaminants 
present in blood that were tested in the form of a 
selectivity test at physiological concentrations alongside 
calcium ions at concentrations of 0.0 mmol Lିଵ  and 
4.0 mmol Lିଵ in buffer solutions including sodium ions 
(𝑁𝑎ା ), magnesium ions (𝑀𝑔ଶା ), Urea, Uric acid and 
Lactate.28-30  
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Figure 8.  The Bragg shift measured between calcium ion 
concentrations of  0.0 − 4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ  in the presence of various 
biological contaminants in the buffer solutions. The error bars 
represent the standard error. 
 
Figure 8 shows the total observed Bragg shifts observed 
in buffer solutions with the biological contaminants 
present, and a blank sample which provides a benchmark 
for the expected Bragg shift with no biological 
contaminants present, which was -18.53 ± 0.51 nm. The 
results in Figure 8 show that the calcium ion sensor 
consistently achieves a Bragg shift of a smaller 
magnitude with the biological contaminants present 
compared to the blank sample. The samples with 
magnesium ions present showed the greatest change in 
Bragg shift, -9.14 ± 0.90 nm. Magnesium ions possess 
the same positive charge as the competing calcium ions, 
and readily form ionic bonds with the deprotonated 
MAA’s carboxylate group too. This explains the 
reduction in sensitivity in the sensor. Similarly, the 
monovalent sodium cations reduce the sensor’s 
sensitivity for the same reason as magnesium ions, 
resulting in a Bragg shift of -11.52±  0.25 nm.  The 
presence of Urea and Uric acid did not result in a 
significant reduction in the sensitivity of the sensor. 
Finally, the presence of sodium lactate decreased the 
sensitivity of the sensor, exhibiting a Bragg shift of -
9.29± 1.80 nm. This can be explained by the combination 
of the presence of sodium ions in the compound and, to a 
lesser extent, the lactate anions. The sodium ions compete 
with calcium ions when forming ionic bonds with the 
deprotonated MAA. Also, the lactate ions possess a 
carboxylate group that the calcium ions can also form 
ionic bonds with instead of with the deprotonated MAA.  
 

3.4 pH test 
The pH of a wound varies during healing, initially intact 
skin has a pH of 5.4-5.6, upon injury the pH increases 
resulting in an increasingly alkaline environment. The pH 
of chronic wounds is in the range of 7.15-8.9 when 
wounds are still undergoing the inflammatory and 
proliferative phases of healing where wounds have yet to 
restore epithelial tissue .1 As epithelial tissue is restored, 
the wound environment shifts to a slightly acidic pH of 
6.0. As this project focuses on addressing chronic wounds 
delayed in the inflammatory and proliferative stages, a pH 
test was conducted in the pH range of 7.0-9.0 to 
investigate any changes in the sensor’s sensitivity. 
 

 
Figure 9.  The Bragg shift achieved between calcium ion concentrations 
of  0.0 − 4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ in pH environments ranging from 7.0-9.0 in the 
buffer solutions. The error bars represent the standard error. 
 
The results in Figure 9 show that overall, the sensor is 
moderately resistant to changes in the pH environment.   
As the pH increases the Bragg shift achieved increased in 
magnitude between pH values of 7.0-8.5. The Bragg shift 
at a pH of 7.0 was measured to be an average of -13.07± 
1.70 nm, and steadily blue shifts to -15.039± 0.71 nm at 
a pH of 8.5. This is because the deprotonation of 
carboxylic acid groups in MAA can be affected by the pH 
value.31 As the buffer solution environment becomes 
more basic, the MAA deprotonates to a greater extent, 
allowing for a greater proportion of carboxylate ions to 
be available to form ionic bonds with the free calcium 
ions. The increase in coordination between the calcium 
ions and deprotonated MAA results in a more significant 
volumetric change in the sensor’s hydrogel matrix. 
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3.5 Smartphone application 
A smartphone application was developed to detect and 
interpret the holographic signal from the sensor to 
quantify the calcium ion concentration at the site of a 
wound. The user interface is shown in Figure 10. The 
smartphone application demonstrated proficiency in 
conducting Region of Interest Detection (ROID) to 
effectively isolate the hologram from the surroundings. 
Initially, the image underwent a conversion from Red, 
Green, and Blue (RGB) values to Hue, Saturation and 
Brightness (HSB) values as a pre-processing step to 
facilitate ROID. Given that the hologram typically 
exhibits elevated saturation and brightness compared to 
the overall image, thresholding algorithms were 
employed. An OTSU threshold was first applied to the 
saturation channel to identify pixels with significantly 
high saturation. The remaining pixels were filtered using 
a basic thresholding algorithm to eliminate dark spots 
with brightness values falling below a predetermined 
threshold. The assessment of ROID effectiveness 
involved the utilisation of 10 images, revealing a success 

rate of 90%. Some examples of the ROID can be seen in 
Figure 10j, Figure 10k and Figure 10l. 
 
The changes in hue values resemble changes in 
wavelength, so it can be theoretically used to quantify the 
Bragg shift in the isolated region. However, the practical 
application of this approach encountered substantial 
challenges. The application faced challenges in 
consistently determining calcium concentration, 
attributed to various factors. Firstly, a maximum Bragg 
shift of -18.53nm, achieved at a concentration of 
4.0 𝑚𝑚𝑜𝑙 𝐿ିଵ, was determined to be too small. Such a 
shift is susceptible to errors due to viewing angle and 
lighting variations. This issue was complicated further as 
several different colours are reflected by the hologram, as 
seen in Figure 10g. Finally, due to the non-linear 
correlation between hue and wavelength, the hue changes 
tend to be lower when the light is redshifted, a prevalent 
characteristic in the holograms used.32  

Figure 10.  Images taken on the smartphone showcasing the mobile application and the ROID. (a) Main Page. (b) Second Page to capture 
image. (c) The chosen image is cropped. (d) The cropped image is processed. (e) The calcium concentration is displayed. (f) Instructions Page. 
(g, h, i) Examples of images taken before ROID. (j, k, l) Examples of images taken after ROID. 
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4. Conclusion 
In this work a flexible hydrogel-based holographic 
calcium ion sensor was successfully fabricated and tested 
alongside a developed smartphone app designed to 
interpret the holographic output and relay results. 
Overall, the sensor proved to be moderately resistant to 
various levels of bending, experiencing an average 
decrease of 2.86 nm in sensitivity across the range of 
calcium ion concentrations. The sensor also showed a 
limited change in sensitivity when tested in various pH 
environments. In the individual selectivity tests the sensor 
showed good selectivity towards calcium ions apart from 
sodium, magnesium and lactate ions, where the sensor 
demonstrated limited selectivity towards calcium ions, 
dropping by approximately 50% in sensitivity. A small 
decline in sensitivity due to various factors is an issue in 
this project as the sensitivity of the sensor is low to begin 
with, resulting in a Bragg shift of -18.53nm at a pH of 8.0 
and artificial wound site diameter of 70mm (little to no 
bending). This ultimately limits the use case of the sensor 
in its current state as the Bragg shift achieved is not large 
enough to be reliably and accurately detected and 
processed by the smartphone application. Accuracy of 
data is highly important when providing medical data to 
patients and doctors, inaccuracy may lead to unnecessary 
cause for concern or a failure to alert patients with 
deteriorating wound health. The low sensitivity can be 
addressed in further research by investigating alternative 
flexible and bio-compatible substrates to PDMS and 
altering the hydrogel composition. Additional factors that 
complicate the use of the sensor that should be noted and 
resolved is the limited viewing angle to observe the 
reflection spectrum from the holographic sensor, which 
requires time consuming alignment to obtain results. The 
limited selectivity of the sensor towards calcium ions can 
also be improved by investigating alternatives receptor 
chemicals to MAA. Prospective receptor chemicals 
would ideally be strongly selective towards calcium ions 
by reacting based on properties unique to calcium ions, 
like specific charge or ionic radius. The responsive sensor 
and capable smartphone app developed lay the foundation 
to a flexible, accessible, and reusable wound monitoring 
system that can reduce the burden on the healthcare 
system if the aforementioned shortcomings are addressed 
in further research.  
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Abstract Perovskite solar cells (PSCs) are an emerging technology in the field of renewable energy. One of the 
primary challenges encountered with organic-inorganic metal halide perovskites is their instability, especially 
when exposed to humid air or water. Layering a 2D perovskite on top of a thicker 3D perovskite crystal has been 
shown to improve moisture stability in addition to passivating defects in the crystal structure resulting in less 
recombination and higher performance. The primary objective of this project was to investigate the effects of the 
thickness of the 2D layer on the overall performance as both photoelectrochemical (PEC) and photovoltaic (PV) 
devices. This was done using a (FAPbI3)0.99(MaPbBr3)0.01 perovskite that underwent chemical dipping in an FEAI 
solution. The results showed that there is an improvement in the performance up to the thickest 2D layer that was 
investigated, with power conversion efficiencies of up to 15.9% and onset potentials (Von) of 0.614 VRHE. The 
main conclusion is that dipping time of 30 seconds showed the best performance. 
 
 
Introduction 
The most urgent and defining crisis of the 21st 
century is climate change. With urban population 
growth and socio-economic development comes a 
surge in energy demand, resulting in the release of 
billions of tons of carbon dioxide from burning fossil 
fuels. Developing renewable energy technologies 
plays a crucial role in replacing fossil fuels and 
stabilising climate change. Solar power shows 
promise, owing to the large amount of sunlight that 
reaches the Earth’s surface annually [1]. However, 
effective energy storage solutions must be employed 
to address its intermittent energy generation. One 
notable solution is photoelectrochemical (PEC) 
water-splitting, whereby semiconductor electrode 
materials drive the electrolysis of water to produce 
green hydrogen. Hydrogen stands in contrast to 
conventional lithium-ion batteries, which rely on 
materials with limited resources and may not be 
environmentally friendly.  
    In recent years, perovskite solar cells (PSC) have 
received much attention, with a lot of the research 
centred around 3D organic-inorganic metal halide 
(OIMH) perovskites. Due to their outstanding 
optoelectronic properties, these OIMH PSCs have 
achieved remarkable power conversion efficiencies 
(PCE) of up to 25.7% [2]. They also have enormous 
potential for commercialisation due to their 
solution-processibility at low temperatures, 
allowing for the production of PSCs through cost-
effective and scalable methods. 
    Despite their rapid development in photovoltaics, 
they remain relatively unexplored in other solar 
applications, such as photoelectrochemistry. This is 
because OIMH perovskites are very susceptible to 
water degradation, significantly impacting 
performance [3]. These effects would only be 
exacerbated when in direct contact with water for 
PEC applications.  
    There is also the presence of defects within 3D 
perovskite and on its surface that encourage the 

recombination of charge carriers, lowering 
performance. 
    A novel concept involves creating a 2D/3D 
perovskite structure composed of a thick 3D 
perovskite layer and a thin 2D perovskite layer. It 
has been demonstrated that 2D treatment of 3D 
perovskites can passivate defects at the surface and 
within the 3D structure [4]. The thin 2D layer also 
protects the device from water degradation, 
improving stability [5]. As such, 2D/3D devices 
could pave the way for efficient PEC water-splitting. 
However, research is still in its experimental stages, 
with much trial and error. One variable that needs to 
be investigated is the effect of the 2D layer thickness 
on device performance. While 2D treatment can 
enhance performance via passivation, if the 2D layer 
is too thick, there will instead be a drop-off in 
performance caused by a decrease in charge carrier 
mobility [6].  
    Hypothetically, there is an optimal 2D layer 
thickness that balances these opposing effects. 
Therefore, the aim of this project is to improve the 
performance of 2D/3D perovskites by studying the 
effects of 2D layer thickness on PEC and PV 
performance parameters in order to find an optimal 
thickness. 
 
Background 
3D Perovskites 
3D perovskites have the general formula ABX3 
where (1) the A-site is occupied by a monocation 
such as caesium (Cs+), methylammonium (MA+), 
or formamidinium (FA+), (2) the B-site is a divalent 
metal cation, usually lead (Pb2+), or tin (Sn2+), and 
(3) the X anion is often a halide ion, such as iodide 
(I-) or bromide (Br-).  
    OIMH perovskites in particular have shown 
exceptional performance in photovoltaic (PV) 
applications. They possess high absorption 
coefficients, making them highly efficient at 
generating electron-hole pairs (excitons) [7]. 
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Additionally, they exhibit long carrier diffusion 
lengths, allowing photogenerated charge carriers to 
travel considerable distances without recombination 
[8]. Their low exciton binding energies facilitate 
efficient charge separation and minimize the 
likelihood of recombination [9,10]. Other than that, 
many of the constituent materials of perovskites 
devices are relatively abundant and inexpensive. 
The bandgap of OIMH perovskites can be tuned by 
varying the organic cation composition. Lead-free 
compositions also mitigate the environmental and 
health concerns of lead-based materials. 
    Nevertheless, when it comes to 
commercialisation, one of the major concerns of 
OIMH perovskite solar cells is the vulnerability of 
their organic constituents. FA, MA, and mixed 
FAMA configurations have all been shown to 
degrade when exposed to light, humidity, and 
elevated temperatures. For instance, MAPbI3 PSCs 
show significant degradation when varying 
temperatures up to 85°C and humidity up to 80% 
[11]. On the other hand, FAPbI3 has the potential for 
higher thermal stability while still improving 
performance due to its narrower bandgap and a 
higher absorption coefficient. Despite this, FAPbI3 
still suffers due to the phase transition from the 
photoactive α-perovskite polymorph to the yellow, 
photoinactive δ-phase under humid air, making 
water-based degradation one of the biggest 
challenges for OIMH perovskites [3,12]. 
    There are also defects that occur throughout the 
3D perovskite crystal structure, such as 
mismatches/dislocations between grain boundaries 
and ionic vacancies [13]. The surface is also highly 
defective, mainly because of the interruption in the 
crystal structure that causes dangling bonds 
(unpaired electrons). 
    These defects introduce electronic trap states 
within the bandgap of the perovskite, which can 
capture charge carriers, leading to non-radiative 
recombination—i.e., the electron-hole pairs 
generated from sunlight are not converted into 
electricity. A higher defect density would increase 
the recombination rate, leading to a decrease in 
voltage, photogenerated current, and hence power 
output. 
 
2D Perovskites 
The basic structure of 2D perovskites consists of 
alternating organic spacer layers and 3D perovskite 
layers [14]. The organic spacer layers are formed 
from large organic spacer ions and are intercalated 
in between each octahedral slab. The octahedral 
layer can be pure 2D (n=1) or quasi-2D (n>1) where 
n is the number of octahedral layers in each slab, 
representing thickness and dimensionality [15]. 
 
2D/3D Perovskites 
One way of forming the 2D/3D perovskite is by 
dipping pre-synthesized 3D perovskite crystals into 

a solution containing the organic spacer cations, 
allowing them to intercalate into the 3D structure 
[16]. The extent to which this occurs (2D layer 
thickness) depends on the dipping time. 
    The 2D layer formed protects the 3D perovskite 
from water degradation, improving stability [5]. 
This is due to the large organic cations that provide 
both steric hindrance and hydrophobic resistance, 
preventing water molecules from penetrating deep 
into the device. 
    This stability increase is not without its 
drawbacks. 2D perovskites tend to exhibit decreased 
charge carrier mobility, for instance. The 
intercalated organic cations act as insulating barrier 
hinder movement across the spacer layer. 
 
Methods 
Preparation of Substrates 
To begin with, FTO-coated glass was cut into 25x27 
mm rectangles and placed into staining dishes for 
cleaning. These staining dishes were filled with 
deionised water and a drop of detergent (Hellman) 
and sonicated for 10 minutes. After sonication, they 
were rinsed until there were no bubbles. The 
sonication process was repeated with acetone and 
finally isopropanol before the substrates were dried 
with compressed air. 
 
Electron Transport Layer 
The electron transport layer (ETL) included two 
layers: a thin compact TiO2 layer (c-TiO2) and a 
thicker mesoporous TiO2 layer (m-TiO2). 
    The c-TiO2 precursor solution was produced by 
first adding 284 mg of titanium isopropoxide 
(Sigma-Aldrich), which is kept in a glovebox to 
prevent oxidation, and 105 mg of diethanol amine 
(Alfar-Aesar) into 2 mL of ethanol (Fisher Science), 
which was then mixed for 20 minutes, filtered and 
used within a day. Before spin coating, the top 2 mm 
of the substrate was covered with CAPTON tape to 
allow electrical contact with the FTO during testing. 
65 μL of the precursor solution was dropped onto the 
substrate before it was spin-coated at 7000 rpm with 
an acceleration of 7000 rpm/s for 30 seconds. It was 
ensured that the precursor was mixed between each 
spin coat to prevent comets [17]. This layer was 
annealed starting at 100°C, then increasing the 
temperature by 100°C every 5 minutes until it 
reached 500°C, at which point it was left to anneal 
for 2 hours. 
    The precursor solution for the m-TiO2 was made 
by mixing 300 mg of 30 N-RD Dyesol TiO2 paste 
(30 NR-D, Greatcell Solar) with 2 mL ethanol. This 
solution was stirred overnight to ensure a uniform 
concentration of nanocrystals. Before spin-coating, 
2 mm of the substrate was once again covered by the 
CAPTON tape and 65 μL was dropped on before 
being spin-coated at 4000 rpm with an acceleration 
of 2000 rpm/s for 10 seconds. This layer was 
annealed using the same temperature sintering as in 
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the c-TiO2 layer, however, instead of 2 hours of 
annealing at the end, the m-TiO2 layer was annealed 
for 30 minutes. 
    A further lithium-based dopant was applied to the 
ETL. This dopant was produced by adding 10 mg of 
bis(trifluoromethane)sulfonimide lithium salt 
(LiTFSI) to 1 mL of acetonitrile [18]. This was then 
spin-coated onto the m-TiO2 at 3000 rpm with 1000 
acceleration for 10 seconds. The annealing process 
for this is identical to the m-TiO2 layer. 
 
FAMA Perovskite layer 
A 1.81 M FAMA precursor solution was made using 
two precursor solutions, all within a glovebox. The 
first solution (FAPbI3 with MACl) consists of 384 
mg of PbI2 (TCI), 567 mg of FAI (GreatCell Solar) 
and 78.3 mg of MACl dissolved in 2 mL of an 8:1 
v/v DMF:DMSO (dimethylformamide: 
dimethysulfonimide) solution. The second solution 
(MAPbBr3) consists of 122 mg of MABr (GreatCell 
Solar) and 367 mg of PbBr2 (TCI) dissolved in 1 mL 
of the same 8:1 DMF:DMSO solution. Both 
solutions were vigorously stirred for 1 hour before 
28 μL of the MAPbBr3 solution was added to the 
FAPbI3 solution and the resulting mixture was 
filtered. 
    70 μL of the FAMA precursor was distributed 
across the substrates and was then spin-coated with 
the method shown in Table 1 [16]. 
    In order to get a uniform crystalline layer, the 
antisolvent deposition was optimised to remove the 
solvent. The antisolvent chosen was chlorobenzene 
(CB), which was applied via an automatic solvent 
dispenser built into the spin coater. A syringe 
pressure of 0.7 psi dispensing for 0.1 seconds was 
found to produce a continuous drop without any 
defects in the perovskite.  
 
Table 1 – Program used to disperse antisolvent and spin-coat 
FAMA perovskite 

Step Duration rpm Acceleration  
1 10s 5000 2000 
2 0.1s 

(antisolvent 
dispensed) 

5000 2000 

3 30s 5000 2000 
 
These substrates were then annealed at 150°C for 15 
minutes.  
    To prevent defects within the perovskite, a solvent 
filter regeneration was done overnight. Furthermore, 
during the spin-coating, the glovebox was purged 
every 2 spin-coats, and 2-minute breaks were taken 
between each spin-coat during which a handheld 
battery-powered fan was used to evaporate any 
leftover solvents and allow the circulation reactor to 
remove them from the system. This prevented any 
crystallisation of the perovskite prior to spin coating 
because of the ambient chlorobenzene within the 
confined space of the glovebox. 

 
2D Perovskite Layer 

 
Figure 1: 2-(perfluorophenyl)-ethanaminium iodide (FEAI) 

 
To create the 2D/3D layer, a chemical bath of 2-
(perfluorophenyl)-ethanaminium iodide (FEAI) 
(shown in Figure 1) dissolved in isopropanol was 
used [5]. This was made by dissolving 152 mg of the 
FEAI (synthesized in-house) in 15 mL of 
isopropanol to create a 30 mM solution before being 
left to stir overnight. 
    As the independent variable of this experiment, a 
range of 2D layer thicknesses were required. This 
was achieved by varying the length of time that the 
chemical bath was applied to the devices within each 
batch. The 3D FAMA perovskites were dipped for 5 
seconds, 10 seconds and 30 seconds. Some of the 
substrates were left as 3D perovskite as a reference.  
    To dry the substrate of any leftover FEAI 
solution, the substrates were spin-coated at 2000 
rpm with acceleration of 2000 rpm/s for 20 s before 
being annealed at 120°C for 10 minutes. 
 
Hole Transport Layer 
The chosen HTL was oxygen doped Spiro-MeTAD. 
The oxygen doped Spiro-OMeTAD solution 
consists of two precursor solutions. The first 
solution requires 72.3 mg of Spiro-OMeTAD 
(Luminescence technologies) to be dissolved in 1 
mL of acetonitrile, before being doped with 35 μL 
of 4-tertbutylpyridie. The second solution consists 
of 13 mg of LiTFSI dissolved in 250 μL of 
acetonitrile. Both solutions are stirred before 25 μL 
of the LiTFSI solution is added to the Spiro-
OMeTAD solution. This was then left stirring 
overnight. The deposition of the layer was done by 
spreading 30 μL onto the substrate, before spin-
coating at 5000 rpm at 5000 rpm/s for 30 seconds, 
with no annealing required. These substrates were 
then placed in a desiccator outside of the glovebox 
to allow exposure to oxygen for doping. 
 
Gold Layer 
A thin 80 nm gold layer was plated on top of the 2D 
layer by thermal evaporation. 
 
Functionalisation of Graphite 
Two graphite layers were used to protect the 
perovskite. The first being a 30 μm (G3) thick layer 
applied directly onto the gold, followed by a 150 μm 
(G15) thick layer which was functionalised by a 
NiFeOOH catalyst by electrodepositing onto the 
surface [19]. Both graphite layers had an adhesive 
layer to make application easier. The 
electrodeposition was completed by preparing a 
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solution of 139 mg of FeSO4.7H2O (Sigma-Aldrich) 
and 525 mg of NiSO4.7H2O (Sigma-Aldrich) 
dissolved in 50 mL of deionised water. This was 
then bubbled through with nitrogen for 20 minutes 
to remove any dissolved oxygen as well as mix it 
thoroughly. The G15 graphite sheets were cut into 
3x3 cm squares, and the bottom 2 cm were marked 
for deposition. The marked area was then held in the 
solution while a linear sweep from 1 to 0.4 
V(Ag/AgCl) was performed at a scan rate of 50 
mV/s. The excess solution was washed off with 
deionised water, and they were allowed to dry. 
 
Preparation for Testing 
For the devices to be tested, electrical contact to the 
FTO must be established and any potential holes 
should be removed. This was done by first 
scratching off the top 2 mm of the device that were 
covered during the ETL deposition with a scalpel 
until the FTO was exposed, before scratching off the 
perovskite around the edges of the device, resulting 
in a square in the centre. The resistance between the 
gold layer and the FTO was then measured to ensure 
the device was acting as a semiconductor with a 
resistance in the kΩ-MΩ range. If not, a visual 
inspection of the device was performed, and any 
holes and visual imperfections identified were 
scratched off. Once a reasonable resistance was 
measured, the G3 layer could be cut and applied 
directly onto the gold surface, making sure not to 
accidently remove any gold with the adhesive. The 
functionalised G15 sheet was then cut and applied 
on top of the G3 layer, although this was not 
required for PV testing. 
 
Photovoltaic (PV) Testing 
In order to prevent water degradation of the 
perovskite, photovoltaic testing was performed first. 
The device was treated as a two-electrode setup, 
with the working electrode wire connected to the 
FTO and the reference electrode wire connected to 
the G3. A linear sweep was then performed from -
0.2 to 1.2 V at a scan rate of 10 and 50 mV/s with a 
further reverse scan at 50 mV/s. The power density 
of the light for both PEC and PV was 100 mW/cm2. 
 
Photoelectrochemical (PEC) Testing 
A three-electrode setup was chosen to test the 
photoelectrochemical performance of the devices. 
This consisted of a platinum counter electrode, an 
Ag/AgCl reference electrode saturated in 3.5 M KCl 
and a pH 14 aqueous NaOH supporting electrolyte. 
The electrolyte was made by dissolving 20 g of 
NaOH in 500 mL of deionised water and testing with 
a calibrated pH probe. Linear sweep voltammetry 
was then performed between -0.4 to 1.2 V with a 
scan rate of 50 mV/s. All PEC data was converted 
from Ag/AgCl to VRHE using the Nernst equation:  

𝑉ோுா = 𝑉஺௚/஺௚஼௟ + 0.0592 ∗ 𝑝𝐻 + 0.1976. 

Stability measurements were performed at an 
applied bias of 1.23 V and the measurements were 
again converted to VRHE. A stirrer bar was added to 
disrupt bubbles forming and keep a uniform 
electrolyte concentration. 
    All structural and energy characterisation was 
done on samples of structure: FTO/c-TiO2/m-
TiO2/FAMA/2D layer.  
 
Scanning Electron Microscope (SEM) 
For characterisation of the device structure, SEM 
(Zeiss) imaging was used at 5 kV accelerating 
voltage to measure samples of different 2D layer 
thickness. 
 
UV-Vis Spectroscopy 
UV-Vis (Shimadzu) absorbance spectra were 
obtained on the different thickness 2D films. 
 
Photoluminescence (PL) 
Steady state PL measurements were obtained on the 
samples with an FLS1000 ‘Edinburgh Instruments’ 
photoluminescence spectrometer, which used a 450 
W xenon arc lamp with a 405 nm excitation 
wavelength. Time correlated single photon counting 
(TCSPC) measurements were also obtained using a 
long-pass filter with a 45.5 nm cutoff and a 405 nm 
pulsed diode laser. 
 
Energy Level Measurements 
Ambient pressure photoemission spectroscopy 
(APS) was done on the samples with UV light 
energies of 4.8-6.0 eV. Fermi levels were measured 
using a vibrating tip Kelvin probe. 
 
X-ray Diffraction (XRD) 
X-ray diffraction was performed on the samples 
with an automatic ‘Malvern Panalytical’ machine. 
 
Results and Discussion 
Photoelectrochemical Performance 
To investigate the impact of the 2D layer and its 
thickness, the 2D/3D devices were configured as 
photoanodes for PEC water-splitting. Key 
parameters to assess performance can be extracted 
from linear sweep voltammetry J-V curves. These 
include the onset potential, Von, and the photocurrent 
produced at 1.23 VRHE, Jph, which are used to 
calculate the fill factor, FF. 
    The onset potential represents the voltage at 
which the photoanode starts to generate a 
photocurrent under illumination. On its own, the 
devices do not generate enough voltage to drive the 
oxygen evolution reaction (OER) at 1.23 VRHE. 
Thus, additional voltage must be supplied to start the 
reaction. Achieving a lower onset potential is 
desirable in PEC water-splitting because it reduces 
the energy input required to drive the OER. The Jph 
represents the rate of reaction when the additional 
voltage supplied is equal to 1.23 VRHE, so a higher 

153



 5 

Jph would indicate a better performing device. The 
FF represents the squareness of the J-V curve, 
correlating with the efficiency of the device. 
    The Von and Jph was recorded for each working 
device and any data points that were more than one 
standard deviation from the median were 
determined to be anomalies. The statistical analysis 
of the onset potential is shown in Figure 2.a and the 
mean onset potentials and photocurrents are 
summarised in Table 2. 
 
Table 2 – Mean values of PEC parameters measured from 3D 
and 2D/3D PSCs   

PSC Von (VRHE) Jph (mA/cm2) 
3D 0.6201 17.61 
2D/3D (5s) 0.6641 17.19 
2D/3D (10s) 0.6293 19.41 
2D/3D (30s) 0.6236 19.97 

 
    The 3D perovskite had the lowest mean onset 
potential of 0.620 V, meaning that it had the best 
average performance compared to all the 2D treated 
devices. However, this is unlikely to be the case 
based on the literature surrounding 2D/3D devices. 
For example, under 10 seconds of 2D treatment, it 
was demonstrated that a similar composition of 3D 
FAMA benefited from 10 seconds of 2D treatment, 
with an increase in PCE of 1.54% [5]. Furthermore, 
there were only two data points for the 3D reference 
devices, and it had a significant range of 0.080 VRHE. 
This suggests that the onset potential of 0.580 VRHE 
is most likely anomalous as it is far lower than all 
the other devices tested. Therefore, more data needs 
to be collected for the 3D perovskite devices to 
accurately assess the effect of 2D treatment relative 
to the 3D perovskite. 
    Nonetheless, when focusing on the average 
performance of the 2D devices, there is a far clearer 

trend produced. The mean Von falls by 0.036 V when 
changing the dipping time from 5 to 10 seconds. 
Whereas from 10 to 30 seconds, there is a relatively 
smaller decrease of 0.006 V in the mean Von. 
    The overall improvement shown from increasing 
the 2D treatment time can be attributed to the 
passivation of defects which improves with 2D layer 
thickness. As the defect density decreases, the rate 
of non-radiative recombination falls, meaning that 
less energy is lost from the solar cell. Instead, more 
electron-hole pairs contribute to the voltage and 
photocurrent, leading to improved performance. 
This is especially clear from 5 to 10 seconds. The 
smaller increase in performance from 10 to 30 
seconds, however, reveals the diminishing 
improvement associated with a longer 2D treatment. 
After 10 seconds of 2D treatment, the 2D layer is 
beginning to grow too thick, leading to decreased 
charge mobility and higher rates of recombination, 
counteracting the benefits derived from 2D 
treatment passivation. 
    It can be speculated that, since the increase in 
performance at 30 seconds was very small, the 
optimum dipping time would be somewhere around 
30 seconds. Acquiring more data at 20 seconds and 
40 seconds may confirm this.  
    For the Jph, as shown in Figure 2.b and Table 2, 
the mean of the 2D treated devices follows a similar 
trend to the Von with an increase of 2.22 mA/cm2 
from 5 to 10 seconds and a smaller increase of 0.56 
mA/cm2 from 10 to 30 seconds. However, the trend 
is less likely to be accurate because of the wide 
spread of data for the 5 and 10 second 2D treated 
devices.  
    This could be due to the functionalised graphite 
layer. Some PEC measurements were conducted a 
day after functionalising the G15 graphite, which 

Figure 2 – Box plots of PEC and PV measurements of 3D FAMA and 2D/3D FAMA+FEAI. (a-b) Effect of 2D treatment time on the Von and 
Jph, (c-d) Effect of 2D treatment time on Voc and Jsc 

(a) (b) 

(c) 

(d) 
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may have caused the catalyst to degrade. Moreover, 
the graphite layers are not of the highest quality as 
they were meant for commercial use, which could 
have introduced random errors that could be 
eliminated if more data was collected. As such, 
whether the 2D treatment had any effect on the 
photocurrent generated is inconclusive. 
 
Photovoltaic Performance 
The devices were also configured as photovoltaic 
solar cells and J-V curves were produced to 
determine the performance of the devices. The 
parameters used to assess performance are the open-
circuit voltage, Voc, and the short-circuit current, Jsc. 
The Voc is defined as the voltage across the terminals 
of a solar cell when there is no external load 
connected to it, representing the maximum voltage 
that the solar cell can produce. The Jsc is the current 
that flows through a solar cell when its output 
terminals are short-circuited. It represents the 
maximum photocurrent that the device can produce. 
Both a higher Voc and Jsc is indicative of better 
performance. 
    Box plots were also produced for each of these 
parameters as shown in Figure 2.c and 2.d and the 
mean values are presented in Table 3.  
 
Table 3 – Mean values of PV parameters measured from 3D and 
2D/3D PSCs   

PSC Voc (V) Jsc (mA/cm2) 
3D 0.8973 27.23 
2D/3D (5s) 0.7618 22.30 
2D/3D (10s) 0.8858 24.15 
2D/3D (30s) 0.8949 25.80 

 
Note that the same devices were used to produce 
both the PEC data and the PV data, to ensure a fair 
comparison. Unfortunately, this meant that the 3D 
perovskite devices were anomalous for the PV data 
as well and only the trend of the 2D treated devices 
could be analysed.  
    For these devices, the Voc and Von should follow 
a similar trend, which is the case. Again, the Voc 
improves substantially by 0.124 V from 5 to 10 
seconds, but only 0.009 V from 10 to 30 seconds. 
Therefore, the data supports the original hypothesis 
that there is a balance between the passivating effect 
of defects and the reduced charge carrier mobility 
with a thicker 2D layer. The optimum dipping time 
should also be approximately 30 seconds, but more 
data is needed to confirm this. 
    The Jsc box plot is shown in Figure 2.d. The results 
also show that a longer 2D treatment time increases 
the Jsc of the device by 3.50 mA/cm2 from 5 to 30 
seconds. Again, the trend does not correspond to Voc 
and Von as the photocurrent increases somewhat 
linearly. While the functionalised G15 graphite layer 
was not used for PV measurements, the G3 layer 
could have still affected performance, leading to the 

wider range in data shown for the 5 and 10 seconds 
2D treatments. 
    Other characteristics measured by the PV 
measurements include the PCE and the FF. The best 
FF was shown to be 0.698 and the best PCE was 
15.91%. Both the FF and the PCE are significantly 
lower than results in literature with similar device 
structures, indicating that this experiment could be 
far more impactful with a larger dataset that’s closer 
to the optimum.  
 

Figure 3 –Normalised stability data for the best samples tested, 
with the t50 indicated. 
 
Stability 
As a secondary objective for the experiment, the 
effect of the 2D layer on stability was investigated. 
These results, shown in Figure 3, were primarily 
characterised by the t50, which is the time taken for 
the current to reach half of the initial current. Despite 
there being a minor trend, the best result for the t50 
on a 3D sample was less than one hour, which is 
significantly lower than similar cells in literature, 
which reached up to 83 hours in some cases [17]. 
The 2D samples were slightly better, with 12.15 
hours being the best for the 30s sample and 13.81 
hours for the 10s sample. Due to the large disparity 
between this data and the data obtained from 
literature, a trend cannot be established confidently. 
 

Figure 4 – X-ray diffraction data, showing diffraction of 
perovskites with different dipping times 
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Characterisation 
In order to analyse the phase composition and crystal 
structure of the 2D/3D layers, X-ray diffraction 
(XRD) was performed on a representative sample of 
devices, as shown in Figure 4. The primary 
difference found between them is the far smaller 
peak for the 10 second 2D treated sample at 13 
degrees. This is likely to be a peak for PbI2, which is 
a degradation product of the FAPI perovskite, 
indicating that the 10 second sample degraded less 
than the others. Disregarding this difference, the 
spectra are almost identical, with similar large 
peaks, suggesting a uniform perovskite layer. 
    This trend is further confirmed in the SEM 
images, shown in Figure 5, zoomed in with a 
magnification factor of 50000. All the samples show 
small imperfections in the grains except for the 10 
second sample, in which almost no visible 
imperfections are present, indicating the presence of 
degradation products in the other results. 

    

 
Figure 6 – Steady state photoluminescence showing the optical 
bandgap of perovskites with different dipping times 
 
 To measure the dynamics of charge carriers within 
the perovskites, steady state and time resolved 
photoluminescence were performed to measure the 
light emitted by radiative recombination. This is 
generally slightly lower energy than the optical 
bandgap of the material [20]. A clear trend is 
obtained through the steady state PL on Figure 6, 
whereby the 2D samples show a larger bandgap than 
the 3D perovskite, with the 30 second and 5 second 
sample showing a peak wavelength of 778 nm (1.60 
eV) and the 3D reference showing a peak 

wavelength of 786 nm (1.58 eV). However, the 10 
second sample shows a smaller bandgap than either 
of the other 2D samples or the reference 3D sample, 
as well as a narrower full width half maximum 
(FWHM), which suggests it is closer to an ideal 
perovskite [21]. This further confirms that the 10 
second sample has degraded less than the other 2D 
samples and it is therefore reasonable to predict that 
it would follow the trend of the other 2D samples if 
it had been degraded to the same extent.  
    

 
Figure 7 – Time correlated single photon counting (TCSPC) 
showing the decay of charges in perovskites with different 
dipping times 
 
As shown in Figure 7, TCSPC was performed on the 
samples to determine the rate of charge carrier 
extraction as well as the charge carrier mobility. 
Literature would suggest that the 2D layers would 
show lower charge carrier mobility and poorer 
extraction [6]. All samples showed steep decay 
rates, indicating effective charge carrier extraction 
[22]. The 10 second sample had the steepest initial 
decay rate, however, over time it became less 
effective and the 5 second sample and the 3D 
reference became the most effective. Due to the 
large variation in performance of each sample over 
the period, no significant trend can be determined. 

 
Figure 8 – UV-Vis spectrometry of perovskite films with different 
dipping times 
 

Figure 5 – SEM microscopy of 10s sample (left) and 5s sample 
(right) 
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UV-vis spectroscopy was used to measure the 
absorbance of the samples to light in the UV and 
visible range; this is used primarily to characterise 
the bulk of the perovskite. As shown in Figure 8, the 
30 second sample shows slightly lower absorbance 
across the range displayed and the 10 second shows 
slightly higher absorbance than the 3D reference and 
the 5 second sample. As this trend is not consistent 
with the other trends obtained through 
characterisation, it is likely that this is a result of 
random variations in the perovskite that can impact 
the absorption coefficients, such as film thickness 
[23]. As such, it can be inferred that there is little to 
no trend and that the bulk of the perovskite is largely 
unaffected by the presence of the thin 2D layer. 

 
Figure 9 - Ambient pressure photoelectron spectrometry (APS) 
displaying the valence band edge (Ev) of perovskite films with 
different dipping times 
    

 
Figure 10 - Energy level diagram of each layer, derived from APS 
 
The final characteristic measured was the energy 
levels of each layer. This is primarily done through 
the valence band edge (Ev), which was measured 
using ambient pressure photoelectron spectrometry 
(APS), shown on Figure 9. The Ev showed a 
decrease when 2D treated although 10 second 
treatment was once again anomalous, showing an Ev 
in between the 3D reference and the other 2D 
samples. The decrease in Ev for the 2D layer implies 
a slight reduction in charge carrier mobility, as it’s 

energetically favourable for electrons to go down in 
energy levels, which is consistent with literature and 
the initial prediction of the 2D layer’s properties [5].  
    As shown in Figure 10, Fermi level (EF) data was 
also obtained and showed that as the 2D layer 
increases in thickness, EF gets close to the 
conduction band, which is indicative of a lower 
charge carrier mobility. This further confirms effects 
of the 2D layer on the optoelectronic properties of 
the perovskite. 
    Owing to the nature of the characterisation 
techniques requiring the devices to be only built to 
the 2D layer, the devices can’t be tested afterwards. 
As such, any anomalous behaviour is unable to be 
compared to linear sweeps on the same samples. As 
shown in the 10 second sample, there is a lot of 
variability in between perovskites that should be 
similar and as such, large datasets would ideally be 
obtained to offset the presence of random or 
systematic errors within each set of datapoints. 
Furthermore, the batch system that was used in this 
experiment meant that each batch could have 
systematic errors in different parts of the devices. 
This means that the devices that were explored in 
PEC and PV likely would have exhibited a similar 
quality distribution as the samples that were 
characterised and may have been imperfect or 
degraded at the time of testing, resulting in 
inconsistent datasets that make it challenging to 
identify trends. 
 
Conclusion 
In conclusion, this study revealed a trend based on 
differing the thickness of a 2D layer formed on a 
FAMA-based perovskite by varying the dipping 
time in a FEAI + IPA solution. It was shown that 
increasing the 2D layer thickness via the dipping 
time achieves an improvement in the Von and the Voc 
but with diminishing improvement. For this 
particular 2D/3D material system and 2D treatment 
process, it was revealed that the optimum dipping 
time was approximately 30 seconds, because of the 
minimal performance gains from increasing the 
dipping time from 10 to 30 seconds. This confirms 
the idea that there is a clear trade-off between the 
passivating effects and the decreased charge 
mobility with increasing 2D layer thickness. 
    However, more data needs to be collected on the 
same and different 2D treatment spans, as well as the 
reference 3D perovskite to improve the quality of the 
data. The stability of the devices would be an 
interesting insight as well, as the purpose of the 
2D/3D perovskite is to highlight the increased 
resistance to water degradation when being used as 
a photoanode. However, due to time constraints it 
was difficult to show this expected improvement. 
Additionally, other types of 2D layers such as 3F-
PEA could be explored to verify whether they follow 
the same trend as the FEAI. 
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Abstract 
As carbon emissions are rising at an alarming rate, CO2 capture through solid adsorption can be an important technology to 
our journey to net-zero. However, despite the increased spotlight that this technology has been receiving, the general public 
is not familiar with it. The goal of this project is to educate the general public on this topic. Here we create an outreach video 
on CO2 capture using adsorption, by using an experimental set-up initially designed by Dr. Petit’s research group. In the video, 
we aim to demonstrate how CO2 adsorption works, explain the science behind it and highlight its potential in reducing CO2 
emissions. In this paper, the material selection process for the material used in the demonstration is analysed, taking into 
consideration the constraints of our experimental set-up. To make the video impactful and to demonstrate the power of 
adsorption to the public, the selection of an appropriate material is crucial. The adsorbent selected had to show high CO2 
uptake and fast adsorption kinetics, while being available in the lab at large enough quantities for the demonstration. This 
involved extensive screening of materials, modelling the datapoints from their adsorption isotherms, validating the adsorption 
behaviour of the materials at our disposal and finally testing the selected materials in our experimental set-up and operating 
conditions. The material selected for the outreach demonstration is Zeolite 13X. 

 

1. Introduction 
Anthropogenic emissions are currently responsible for the 
alarming concentration of greenhouse gases (GHGs) in the 
atmosphere. These contribute greatly to global warming 
and are some of the main causes of climate change. 
Namely, the energy sector is responsible for 
approximately 75% of GHG emissions, which continue to 
increase due to the increased world energy demand, 
leading to rising global temperatures (IEA, 2023). To 
control global warming and limit the temperature rise to 
2℃, as decided in the Paris Agreement in 2015, global 
emissions need to be reduced by 45% by 2030 and reach 
net zero by 2050. Achieving this requires governments to 
commit to emission reduction policies and take active 
steps to invest in technologies that can remove GHG 
emissions from the atmosphere. (United Nations, 2023) 

Carbon dioxide (CO2) is one of the most concentrated 
anthropogenic greenhouse gases in the atmosphere, owing 
to the extensive emissions by the utilities, manufacturing 
and energy sectors, mainly through the production of oil, 
gas, cement and steel. The burning of fossil fuels for 
power generation and the manufacturing of goods resulted 
in the emission of 36.8 Gtonnes of carbon dioxide in 2022 
(IEA, 2023). Despite efforts to make these processes more 
environmentally friendly, the reliance on fossil fuels emits 
CO2. To counteract these emissions, carbon capture and 
storage (CCS) or utilisation (CCU) projects are explored, 
aiming to capture the CO2 from the emission sources and 
inject it in the subsurface or reuse it in other processes. 
There are many technologies available to achieve that, 
which rely on the separation of CO2 from the remaining 
stream gases - nitrogen, methane and hydrogen. Solid 
adsorption is a promising technology for carbon capture 

that researchers have been working on increasingly to 
apply it on larger scales. 

The objective of this report is to demonstrate the 
importance of CO2 capture using solid adsorption to raise 
awareness to the public on its potential to reduce CO2 
emissions. This is done by creating an outreach video and 
recording a CO2 adsorption demonstration on an 
experimental set-up inherited by Dr Petit’s group to show 
the public how adsorbents can be used to capture CO2. To 
successfully demonstrate the potential of adsorption, the 
right adsorbent material had to be selected in order to show 
a high CO2 uptake. This involved extensive screening of 
materials, modelling the datapoints from their adsorption 
isotherms, validating the adsorption behaviour of the 
materials at our disposal and finally testing the selected 
materials in our experimental set-up and operating 
conditions. 

2. Motivation for the Outreach Project 
As part of our investigation, we conducted a survey among 
a group of 25 randomly selected students at Imperial 
College London to evaluate their understanding of 
methods to capture CO2, focusing on adsorption. Their 
knowledge of anthropogenic emissions was evaluated. As 
shown in the Supplementary Information (SI), Figure S1, 
68% know that the most emitted anthropogenic 
greenhouse gas is CO2. However, almost an equal 
percentage (64%) was not familiar with the concept of 
carbon capture to reduce its atmospheric concentration 
and adsorption was not mentioned as a capture 
technology. This is a first insight into the necessity of 
educating people on the power of adsorption for CO2 
capture. To examine their adsorption knowledge, we 
asked the following question: “Imagine 2 vessels: one 
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empty and one filled with porous beads. If they were both 
filled with CO2 at the same pressure, which one would 
store more CO2?”. The group was uniformly divided as 
50% thought the empty vessel would store more CO2 than 
the packed one. This reinstated the importance of this 
project in increasing awareness on the potential of 
adsorption as a carbon capture technology. 

This survey served as a motivation to educate the general 
public on how CO2 can be captured via solid adsorption. 
We produced a video with a live demonstration that built 
upon an existing experimental set-up made by Dr Petit’s 
group which we updated. The demonstration shows how a 
column filled with a porous adsorbent material stores more 
CO2 than an empty one. The set-up and the experiment are 
described further in Section 4.4. However, for the 
demonstration to be impactful, the packed column should 
store a significant quantity of CO2 and therefore the 
adsorbent material had to be carefully chosen to have a 
high CO2 uptake. To do so, different adsorbent materials 
were analysed to compare their adsorption capacity and 
kinetics. Based on this investigation and on availability, an 
adsorbent was selected for the demonstration.  

3. Background on Adsorption  
3.1 Adsorption Process  

Adsorption through solid sorbents is an effective solution 
for CO2 capture. It is a spontaneous process through which 
solid substances attract to their surface gas molecules for 
which they have high affinity. The process thus relies on a 
porous adsorbent material which preferentially binds with 
the desired gas, in this case CO2.  The gas molecules are 
binded on the active sites which may be packed much 
closer together than molecules dispersed in a gaseous 
state, allowing for more gas to be captured (The Editors of 
Encyclopaedia Britannica, 2023). Depending on the 
regeneration scheme, meaning how the adsorbent will 
desorb the adsorbed molecule and become reusable, 
adsorption can be broadly classified as pressure swing 
adsorption, temperature swing adsorption and 
electrothermal swing adsorption (Sharma, et al., 2021). 
Solid adsorption is a straightforward process with no 
liquid waste generation and appears as a promising 
technique due to its low cost, low energy requirement and 
applicability over a wide range of temperatures and 
pressures (Gunawardene, et al., 2022).  

3.2 Adsorption Types 
Adsorption is highly dependent on surface properties and 
can occur through physisorption or chemisorption. In 
physisorption, the CO2 molecules attach to the pore walls 
of the adsorbent through weak intermolecular forces such 
as Van der Waals and pole-pole interactions. It is a 
naturally reversible process through which gas molecules 
can be adsorbed and desorbed under pressure or 
temperature, having a low regeneration cost. Equilibrium 
can be reached very quickly and increasing temperature 
leads to reduced surface coverage.  

In chemisorption, the surface pores of the adsorbent 
material undergo chemical grafting or coating by 
incorporating basic groups, such as amines, in order to 
interact with the acidic CO2 molecule. This means that 
bonding is stronger and has a shorter range, having 
covalent bonding characteristics. It is exothermic like 
physisorption. However, it may not be fully reversible and 
requires high energy for regeneration. Chemisorption 
usually has an activation energy barrier so equilibrium can 
be slow and thus increasing the temperature can favour it. 
Despite its higher energy cost, it is advantageous as it can 
offer high specificity, through which molecules can be 
selectively adsorbed (Williams, 2023). 

3.3 Solid Sorbent Criteria 
There are several criteria to be met to select the most 
effective CO2 adsorbent. Depending on the objective of the 
adsorption process, different characteristics are 
prioritised. For our experimental demonstration, the most 
important factors are high CO2 adsorption capacity, fast 
adsorption kinetics and safety. This ensures that high 
amounts of CO2 gas are captured with an increased speed 
of adsorption.  

Other set-ups might prioritise other criteria. High 
selectivity towards the gas molecule is often desired to 
preferentially bind and separate it from the other 
molecules.  Good regeneration ability is also important in 
many processes as it guarantees a long lifetime of the 
material, allowing for it to be reused. Cost effectiveness, 
material sustainability, thermal stability and availability 
are also important factors (Gunawardene, et al., 2022).  

3.4 Common Adsorbent Materials 
Promising adsorbent materials that show these properties 
are activated carbons, metal-organic frameworks (MOFs) 
and zeolites. Activated carbon materials are advantageous 
due to their wide commercial availability at a low cost. 
They are a porous form of carbon which can be 
manufactured from a variety of carbonaceous raw 
materials, so depending on the adsorption process, 
materials of different pore size, structure and specific 
surface area can be selected. Their hydrophobic nature 
repels water molecules which would otherwise be in 
competition with CO2 for the binding sites. They show 
high thermal stability but low adsorption capacity and 
selectivity towards CO2 at low pressures due to their weak 
interaction with CO2.  

MOFs are also a large group of materials that have the 
potential for efficient CO2 adsorption. These are 
crystalline porous materials that consist of positively 
charged metal ions surrounded by organic 'linker' 
molecules, forming a repeating, cage-like structure. 
Specifically tuned MOFs have high CO2 adsorption 
capacity as pressure increases due to electrostatic CO2-
CO2 interactions and high surface areas. However, at 
lower pressures their interaction with CO2 usually 
weakens. They are also not as commercially available, 
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have high synthesis costs and low thermal stability hinting 
to harder regeneration.  

Zeolites are a class of materials that are widely 
commercially available at a low cost. They are made of 
aluminosilicates of various structures. The aluminum 
atoms create a negatively charged framework which is 
balanced by supplementary non-framework cations like 
sodium or calcium. They offer moderate CO2 adsorption 
capacity at low pressures but high structural stability and 
very high CO2 selectivity following appropriate tuning of 
their properties. However, as they are hydrophilic in 
nature, competition between H2O and CO2 due to the 
similar size of the molecules can occur. They also require 
more energy for regeneration due to the very strong 
interaction of CO2 with the zeolite framework.  

The three adsorbent categories present different 
advantages and disadvantages, but zeolites are particularly 
attractive due to their high stability, low cost and the 
possibility to tune their physicochemical properties to 
support the desired adsorption process objectives (Boer, et 
al., 2023). 

3.5 Adsorption Separation Types 
There are three main types of molecular separations: 
equilibrium, kinetic and molecular sieving separation, 
shown in the SI, Figure S2. These happen depending on 
the adsorbent properties, the kinetic diameter of the 
molecules involved, their quadrupole moment and their 
polarisability.  

Equilibrium separation relies on the electric field gradient 
of the adsorbent surface and the electrostatic interaction 
between the gas molecules and the surface, which is based 
on the polarisability of the molecules. This type of 
separation can take place in materials of all pore sizes – 
micro, meso and macro - as all molecules have access to 
the pores. 

In adsorbents having micropores, kinetic and molecular 
sieving separation take place. During kinetic separation, 
the molecule that has a smaller kinetic diameter diffuses 
faster through the pores and gets more adsorbed. As the 
pore size becomes smaller, molecular sieving separation is 
reached, in which the pore size of the adsorbent only 
allows for the smaller molecules to access its micropores, 
preventing the larger ones from entering (Boer, et al., 
2023). 

4. Method 
To select the appropriate material for the outreach video 
demonstration, literature and experimental analysis were 
combined. The material selection process is shown in 
Figure 1. The process is limited by some constraints. To 
begin, the material should be available in the lab. It should 
have high adsorption capacity and fast adsorption kinetics 
for a pressure from 0 to 9 bar and a temperature of 298 K 
which are the experimental conditions of the 

demonstration. That way, we can show high CO2 uptakes 
with a short time required to reach equilibrium at 9 bar. 
Finally, it should be safe for the demonstration, so the 
physical form and volatility of the material should be 
considered. Taking all these constraints into account, the 
selection process was the following: material screening, 
isotherm modelling of literature data, experimental 
validation of the available materials, and experimental 
trials in the conditions of the demonstration. 

 
Figure 1: Material selection process for the video demonstration. 

4.1 Determination of CO2 Adsorption Capacity 
from Literature 

As the goal of this project is to show how adsorption can 
play an important role in CO2 capture, it was crucial to 
select a material with high adsorption capacity for the 
demonstration. Several adsorbent materials such as 
zeolites, MOFs and activated carbons, were screened 
using the NIST adsorption data base (NIST, 2023). The 
purpose was not to find the best material possible, but 
instead one that performs well in our experimental set-up. 
Thus, the search was refined and focused on materials that 
could be readily available in quantities large enough for 
the demonstration. Given that the demonstration displays 
the CO2 uptake of a porous material at 9 bar and 298 K, 
adsorption isotherms for pure CO2 were examined at that 
temperature for a pressure range of 0-9 bar. As our 
demonstration set-up could not be subjected to vacuum, it 
was desired that the selected material showed a high CO2 
adsorption uptake at a pressure range of 1-9 bar rather than 
0-1 bar, in order to show a larger amount of CO2 adsorbed 
in the demonstration and highlight the effect of adsorption 
to the viewers. From this search, isotherm datapoints from 
different papers were obtained for each material. 

4.2 Equilibrium Isotherm Modelling – 
Determination of Parameters 

A range of variation had to be created to clearly visualise 
the range of validity of the adsorption capacity of each 
material and to allow for a more accurate comparison 
between the materials. This is because the datapoints for 
the different papers are obtained using different synthesis 
processes and thus have different CO2 uptakes for the 
same material. Using the datapoints obtained from the 
previous step, the isotherms of the materials that looked 

Material screening 
using NIST 

adsorption database
Isotherm modelling 
through DSL model

Validation of 
available material 

adsorption behaviour
Out-reach trials for 
selected materials
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promising for the demonstration were modelled through 
the Dual Site Langmuir model (DSL). The DSL model is 
given by the following equations:  

 𝑞௝
∗ =

𝑞௦௕,௝𝑏௝𝑝
1 + 𝑏௝𝑝

+
𝑞௦ௗ,௝𝑑௝𝑝
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For a pure component j, qj
* is the amount of gas j adsorbed 

(mmol/g) at pressure p (bar) and temperature T (K), qsb,j 
and qsd,j are the saturation capacities (mmol/g), bj and dj 
are adsorption coefficients (/bar) described by an 
expression with two constants, b0,j and d0,j respectively 
which are the pre-exponential factor (/bar) and ΔUb,j and 
ΔUd,j respectively which is the adsorption energy (J/mol).  

The isotherms for each research paper along with their 
modelling parameters were obtained using a MATLAB 
code created by Dr Petit’s research group (Hwang, et al., 
2022). The derived isotherms for each research paper were 
then averaged per material to obtain an average Langmuir 
isotherm. Their standard deviation was also calculated to 
obtain a variation envelope for the average Langmuir 
isotherm. The envelope was then used as the range of 
validity for the CO2 uptake of a material. These equations 
are shown in the SI, Equations S.1 and S.2. 

4.3 Adsorption Isotherms Measurement 
Having selected the potential materials from this literature 
analysis, we needed to ensure that the materials at our 
disposal matched the envelope of variation. To do so, CO2 
adsorption isotherms for the available materials were 
measured using the 3Flex Sorption Analyzer. The samples 
were initially ex-situ degassed overnight and then in-situ 
degassed for 6 hours at specified temperatures, ranging 
from 393 K to 623 K, based on their thermal stabilities 
which are provided in the SI, Table S1. CO2 gas (research 
grade, 99.999%, BOC) was used to measure CO2 
adsorption isotherms at 298 K for pressures from 0 to 1 
bar. These were compared to the adsorption isotherm 
envelopes modelled using the literature data in order to 
ensure the materials selected in the forms available in the 
lab match our literature results. 

4.4 Experimental Trials on the Outreach 
Demonstration Set-Up 

As a final step, the materials were tested experimentally in 
the set-up for the demonstration to select a final material 
for the video. Their CO2 uptakes were measured at 9 bar 
and compared to each other as well as to their values from 
the literature search.  

The set-up was inherited from Dr Petit’s research group. 
A schematic of it is shown in Figure 2. 

 
Figure 2: Basic schematic of the set-up for the experimental 
demonstration, showing the compressed CO2 tank whose flow 
was controlled using manual valves and a pressure indicator, the 
vessel containing the adsorbent, and the mass balance to weigh 
the amount of gas stored in the vessel. 

The main piece of equipment is the pressure vessel, shown 
in Figure 3. This was filled by the adsorbent material up 
to a volume of 120 ml for safety reasons. It was sealed 
with a piece of equipment consisting of metallic tubes 
from which pure CO2 gas could be supplied and vented 
using the inlet and outlet valve respectively, as shown in 
Figure 2. The pressure could be monitored using the 
pressure indicator located at the top.  

 
Figure 3: The pressure vessel used in the experimental 
demonstration. 

Prior to conducting the trials, the adsorbent materials are 
degassed in the vacuum oven at their regeneration 
temperatures as described in Section 4.5, to ensure their 
pores are empty and no gases are present. The transparent 
container is then filled with the degassed adsorbent. The 
container is initially weighed, the scale is tared and the 
cable from the compressed CO2 tank is connected at the 
inlet tube of the equipment. Compressed CO2 gas is then 
introduced in the vessel until it reaches equilibrium at a 
pressure of 9 bar. The mass of CO2 adsorbed in the vessel 
is recorded by weighing it again.  
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For each material 3 trials were conducted to increase 
accuracy. This stage allowed for comparison between the 
possible materials in the conditions that the demonstration 
would be performed. The final material could then be 
selected by comparing the CO2 uptake as well as the 
kinetics. 

4.5 Materials and Gases 
The materials used in the experiments described in Section 
4.3 and 4.4 are ZIF-8 (40 g, MOF Technologies), Zeolite 
13X (50 g, N/A), Zeolite 5A (60 g, N/A), Zeolite 4A (60 
g, N/A), Zeolite 3A (60 g, N/A) and carbon dioxide (CO2) 
gas (99.995%, BOC). The adsorbent materials and CO2 
gas were used as received, with no further purification. For 
safety reasons, the materials were in the form of beads and 
rods rather than powder to reduce their volatility. 

At the stage of the experimental trials, before performing 
the adsorption measurements, the materials had to be 
reactivated for more than 12 hours under continuous 
vacuum (4×10-4 mbar) at their activation temperatures. 
The ZIF-8 sample was used in the form of rods and was 
activated at 408 K. The zeolite 13X, 5A, 4A and 3A 
samples were used in the form of beads of different 
particle sizes and were activated at temperatures of 523 K. 
The activation temperatures for all adsorbent materials 
were within their range of thermal stability and above the 
activation temperatures suggested by the manufacturers. 
This information can be found in the SI, Table S1. 

4.6 Video Recording of the CO2 Adsorption 
Demonstration 

Having selected the material for the video demonstration, 
the procedure mentioned in Section 4.4 was repeated and 
recorded. The process was also recorded for an empty 
container with no adsorbent material inside. This served as 
a control experiment to allow for comparison between 
CO2 capture with and without an adsorbent. In that way, 
the increased uptake of the adsorbent is highlighted to 
show the power of adsorption. The video was edited 
through the DaVinci Resolve 18 Editor. 

The recording of the experimental demonstration was part 
of the outreach video created for the public. The final 
video contained basic information on CO2 capture and 
adsorption, followed by the video from the laboratory. The 
final video was created using a software called Animaker. 

5. Results and Discussion 
5.1 Determination of CO2 Adsorption Capacity 

The CO2 uptakes were identified for different materials at 
298 K and pressures of 0, 1 and 9 bar from different 
research papers available on NIST. These are shown in the 
SI, Tables S2, S3, S4 and S5. By taking the average of 

these for each material, the materials could be compared 
by examining their CO2 uptake. 

The screening of 20 materials on the NIST adsorption 
database showed many promising CO2 absorbents. The list 
of materials is available in Table S6 in the SI. Materials 
that showed low CO2 uptakes were eliminated as, for the 
purpose of the demonstration, it was desirable to have a 
material that is highly adsorbent at the operating 
conditions. Thus, considering the experimental conditions 
and material quantity and availability, 4 potential 
materials were selected: ZIF-8, Zeolite 13X, Zeolite 5A 
and Zeolite 4A. Table 1 shows the average CO2 adsorption 
capacities obtained from different papers for these 
materials at 0, 1 and 9 bar and the difference in CO2 uptake 
between them. 

Table 1: CO2 adsorption capacities for the most promising 
materials at 0, 1 and 10 bar as well as the change in CO2 uptake 
between from 0 to 1 bar and 1 to 9 bar. 

Material 

Average uptake 
at a pressure of: 

Average change for 
pressures between: 

 0 
bar 

1 
bar 

9 
bar 0-1 bar 1-9 bar 

ZIF-8 0 0.6 4.2 0.6 3.7 
Zeolite 
13X 0 4.6 6.1 4.6 1.5 

Zeolite 
5A 0 3.8 4.6 3.8 0.8 

Zeolite 
4A 0 3.2 4.3 3.2 1.0 

The isotherms datapoints derived from the research papers 
investigated are shown in Figure S3 in the SI. This allowed 
for a better visualisation of the CO2 uptake of the chosen 
materials at 298 K for pressures between 0 and 9 bar. 

5.2 Equilibrium Isotherm Modelling 
The CO2 isotherm datapoints obtained from the research 
papers mentioned in Section 5.1 were modelled using the 
Dual Site Langmuir model (DSL). The isotherms for each 
research paper, their modelling parameters and the 
average Langmuir isotherm along with the envelope of 
variation were obtained as described in Section 4.2. The 
fitted isotherms and their fitting parameters are shown in 
Figure S6 and Tables S7, S8, S9 and S10.  

Figure 4 shows the average Langmuir isotherm lines in red 
and the variation ranges in grey. The envelopes enable a 
good visualization of the adsorption capacities for each of 
the chosen materials. As they clearly show a high CO2 
uptake at the experimental conditions, with an evident 
difference between the uptakes at 1 and 9 bar, it was 
decided that they were in fact good potential materials for 
the demonstration. 
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Figure 4:Average isotherm modelled using the DSL model and envelope of variation for (a) ZIF-8, (b) Zeolite 13X, (c) Zeolite 4A 
and (d) Zeolite 5A, including datapoints from different papers referenced in the legend and in the SI.

From this analysis, the behaviour of the 4 potential 
materials can be analysed. All isotherms in Figure 4 
are Type I. However, ZIF-8 shown in panel (a) shows 
a different isotherm shape than the zeolites shown in 
panel (b), (c), and (d), hinting towards the type of 
adsorption that takes place in each material. The 
gradient of the isotherm for ZIF-8 is slightly 
decreasing as pressure increases, meaning that the 
kinetics are relatively constant, which is a sign of 
physisorption. On the 3 other isotherms, a sharp 
increase in the adsorption uptake is detected from 0 to 
1 bar, while at higher pressures the uptake has reached 
a maximum distinguished by the flat plateau, which is 
a sign of chemisorption. In general, a sharp increase is 
more favourable, but for the purpose of our 
demonstration we are interested in the final uptake at 
9 bar, which is why all materials show good adsorption 
behaviour considering they reach an average CO2 
uptake in the range of 4.0-6.0 mmol/g. Because of that, 

all 4 materials are still considered as potential 
candidates for the video demonstration. 

5.3 Adsorption Isotherms Measurement 
The selected materials are available in the lab in 
different forms and from different manufacturers than 
the materials in the research papers. To ensure that 
available materials behaved in the same way as the 
literature suggested, their CO2 adsorption isotherms 
were measured using the 3Flex Sorption Analyzer. 
The results obtained for ZIF-8, Zeolite 13X and 
Zeolite 4A ranged from a pressure of 0 to 1 bar at 298 
K and are shown in Figure 5. The measurements were 
compared to the literature data by superimposing them 
on the Figure 4 from Section 5.2, containing the 
isotherm envelope. The x-axis was limited to 1 bar to 
show the experimental points more clearly and 
contrast them to literature. Zeolite 5A was not 
analysed at this stage due to availability limitations of 
the 3Flex Sorption Analyzer. 
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Figure 5: Measured data superimposed on the variation envelopes for (a) ZIF-8, (b) Zeolite 13X and (c) Zeolite 4A. 

The isotherms obtained from our measurements are a 
good match to the literature data. As pressure 
increases, the measured datapoints are well within the 
envelope of variation. However, for the zeolites shown 
in plots (b) and (c), at very low pressures the measured 
datapoints show higher CO2 uptake than the literature. 
This can be explained by the increased amount of 
datapoints collected by our instrument compared to the 
literature data. This suggests that the 3Flex instrument 
has high precision. It can take measurements at small 
increments of pressure which explains the increased 
amount of time that was required for the lower 
pressure measurements as observed during data 
collection. As the quantities adsorbed at 1 bar fall 
within the envelopes and the shape and slope of the 
datapoints approach the literature, the materials 
available were considered to match with the literature. 
It was thus assumed that they would also have similar 
uptakes at higher pressures, if the datapoints were to 
be extrapolated. Therefore, experimental testing at 9 
bar was conducted for each of these materials to select 
one. 

5.4 Experimental Trials on the Outreach 
Demonstration Set-Up 

As ZIF-8, Zeolite 13X and Zeolite 4A performed 
satisfactorily in the validation analysis, they were 
examined in the set-up designed for the demonstration 
to finally determine the ideal one. Zeolite 5A was also 
investigated in experimental trials as it has similar 
properties to 4A and showed good adsorption 
capacities from the literature review. As Zeolite 3A 
was also available in the lab and has a structure similar 
to the Zeolites 4A and 5A, it was decided to test it even 
though no data on its CO2 capacity were found in the 
literature. Given that it has a much smaller pore 
diameter of 3 Å, it was expected that CO2, whose 

kinetic diameter is 3.3 Å, would adsorb much less on 
it. Zeolites 4A and 5A, however, would adsorb much 
more CO2 as they have larger pore diameters of 4 Å 
and 5 Å respectively.   

The experiment described in Section 4.4 was 
conducted on these 5 adsorbents. As each trial was 
conducted 3 times per material, Figure 6, panel (a), 
shows the averaged CO2 uptakes at 9 bar and 298 K of 
the materials with error bars. These values can be 
compared to the values in Figure 6, panel (b), which 
show the averaged CO2 uptakes at 1 and 9 bar at 298 
K as obtained from research papers as analysed in 
Section 5.1. 

Comparing the two figures, the experimental data 
match with the literature data as they fall within the 
error bars of the literature data. It should be noted that 
the error bars are relatively large due to the different 
properties and synthesis routes of each material in the 
different research papers examined, which led to a 
large standard deviation. It is interesting to note that 
the trend for the zeolites is similar in trials and 
literature, but the literature data shows higher values 
overall. This can be attributed to the form of the 
materials, given that in literature they were usually 
powdered samples, while in our experiments we used 
shaped beads for safety reasons. The powdered 
samples have a higher surface area and thus a higher 
adsorption capacity, in the case of pure CO2 injection, 
as there are more binding sites available. However, 
ZIF-8 did not follow a trend compared to the other 
materials. It had the highest average CO2 adsorption 
capacity in trials and the lowest in literature. 
Nevertheless, its experimental value is close to its 
literature value.
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Figure 6: (a) Experimentally determined average CO2 uptake for the potential materials when reaching equilibrium at 9 bar with 
error bars and (b) literature determined average CO2 uptake for the same materials when reaching equilibrium at 1 and 9 bar with 
error bars.

The experimental results in Figure 6 confirm our 
theory that Zeolite 3A is a bad CO2 adsorbent, as it 
adsorbs less than 1.0 mmol/g. Despite having a smaller 
pore size than the kinetic diameter of CO2 it still 
adsorbs a small amount, owing to the different types 
of binding sites, and thus pore windows, on its surface. 
The remaining materials can be considered as high 
performing CO2 adsorbents. Comparing the results for 
the 3 zeolite materials - Zeolite 13X, 4A and 5A - it 
was determined that 13X shows the highest CO2 
adsorption capacity in both experimental and literature 
results.  Therefore, Zeolites 4A and 5A were 
eliminated for the purposes of the demonstration.  

The final material options remaining were thus Zeolite 
13X and ZIF-8. During the trials, we noticed that 
Zeolite 13X reaches equilibrium faster than ZIF-8, but 
ZIF-8 shows a bigger CO2 uptake as shown in Figure 
6(a). However, the measurement of the uptake is 
shown in units of mmol/g. As the outreach experiment 
displays the CO2 uptake as measured on the scale, it is 
more relevant to compare the CO2 uptakes in mass 
units while keeping the volume of the material 
constant. The units are thus consistent with what the 
audience will directly observe: the mass of CO2 stored 
in the vessel. For an initial packed material volume of 
120 ml the average CO2 uptakes in grams are shown 
in Table 2. 

Table 2: Average experimentally determined CO2 uptakes in 
mass units at 298 K and 9 bar for the materials tested in the 
demonstration set-up. 

Material CO2 Uptakes (g) at 
298 K and 9 bar 

ZIF-8 5.9 
Zeolite 13X 7.4 
Zeolite 5A 7.1 
Zeolite 4A 6.9 
Zeolite 3A 1.7 

From the results relative to mass units, Zeolite 13X 
will adsorb more mass of CO2 at the demonstration 
conditions of 298 K, 9 bar and a volume of 120 ml of 
adsorbent. Zeolite 13X was therefore chosen for the 
outreach video.  

5.5 Video Recording Outcome 
Having selected Zeolite 13X as the adsorbent material 
for our demonstration, the video was recorded and 
combined with the general background information 
regarding CO2 capture and adsorption. The final video 
can be found on: Final Year Research - Maria 
Pakradouni & Mikaela Zafet.mp4. 

The difference in the mass of the two containers 
following the addition of CO2 illustrated the much 
higher mass in the vessel containing the porous 
adsorbent, Zeolite 13X. This highlights the 
effectiveness of CO2 adsorption given that it has the 
capacity to store more CO2 than the empty container.  

(a)Trials (b) Literature 
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6. Conclusion 
As a result of this project, an outreach video was 
created. The goal of the video is to educate the general 
public on the necessity of reducing carbon emissions 
and the role adsorption can have in carbon capture. 
The video includes general information on climate 
change, background information on adsorption and a 
live demonstration highlighting the power of 
adsorbent materials in action. For the demonstration to 
be impactful, a large amount of CO2 had to be 
captured. For that, the adsorbent had to be carefully 
selected. The chosen adsorbent material was Zeolite 
13X. 

7. Outlook 
With respect to the CO2 outreach aspects of the 
project, further engagement of the public can be 
achieved. More people can be surveyed to raise 
awareness of CO2 capture. Given that many people 
submitted wrong answers, upon completion of the 
survey the participants can be directed to our video 
demonstration. Simultaneously, the outreach can 
become more engaging through live demonstrations, 
by participating in science fairs, so that people can 
directly see the experiment take place. Finally, to 
promote the video to more people, organisations such 
as climate and sustainability NGO's can be contacted 
to share it on their websites and show it at their events.  

As it was important to select the appropriate material 
for the outreach demonstration video, extensive 
adsorption screening was conducted. However, for 
future work more adsorbents could be screened, 
especially from other classes of materials. Given the 
tight timeframe, we focused mostly on zeolites given 
their aforementioned advantages. However, more 
focus could be placed on MOFs and activated carbons 
as these materials can also show high adsorption 
capacities, are abundant and their physicochemical 
properties can be tuned. 
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Abstract

Pressure-Vacuum Swing Adsorption (PVSA) shows great potential in post-combustion carbon capture. However, accurately
modelling it requires a large amount of computational time using detailed process models, and screening large numbers of
adsorbents becomes computationally prohibitive. Using data-driven neural network models have great potential to solve this
problem and is the focus of this paper. We build and adapt the previously established machine-assisted adsorption process
learning and emulation (MAPLE) framework by using the dual-site Langmuir model, expanding the number of features used,
and predicting capture costs, to demonstrate the benefits of using a neural network to make fast and accurate assessments of a
PVSA process. A detailed mathematical process model was used to generate training data for our neural networks and a case
study was performed to compare the performance of our neural network with that of the detailed model. Our results indicate
that our neural networks have performance comparable to that of the detailed model with acceptable levels of uncertainties up
to around 14% whilst requiring up to 25,200x less computational time. This vast reduction in computational time shows the
great potential of this tool in solving process optimisation problems compared to when using traditional process modelling.

1. Introduction

Carbon capture is a tested method to aid in the decarboni-
sation of the energy industry that most processes will have
to implement in some sort of capacity to achieve net-zero
(Allen et al., 2018). Pressure-vaccuum swing adsorption
(PVSA) is shown to have great potential compared to stan-
dard amine-based chemisorption for post-combustion capture
of CO2 (Ruthven et al., 1996). Whilst detailed mathemati-
cal modelling is an e↵ective method to describe and predict
the behaviours of an adsorption process, it also requires many
time-consuming simulations (Haghpanah et al., 2013; Lep-
eri et al., 2019), and is further exacerbated when looking at
multi-objective optimisation that requires thousands of oper-
ating points (Agarwal et al., 2010). A standard approach is
to couple a detailed process model with an optimisation algo-
rithm, allowing the model to generate operating points for the
algorithm to refine to an optimum (Capra et al., 2018).

The limitations of this approach are apparent when eval-
uating the performance of adsorbents from large databases.
There is an ever-increasing number of real and hypothetical
adsorbents being synthesised and attempts have been made to
conduct large scale screening (Leperi et al., 2019). Simpli-
fied models try to circumvent this issue but full process sim-
ulations are still required for accurate predictions of certain
parameters (Burns et al., 2020). Multiple machine learning
(ML) models have also been developed to solve this issue:
Subraveti et al. (2019) introduced an optimisation method us-
ing a neural network (NN) to simplify the complexity of the
problem and enhancing optimisation speed by reducing the
complex pressure swing adsorption (PSA) process to a lower

dimensional model. In another development, Leperi et al.
(2019) established a NN model that mimics a reduced-order
PSA process to reduce computational time.

As such, our goal is to solve this optimisation problem
through the use of a NN model that builds on the ML frame-
work detailed by Pai et al. (2020). The machine-assisted
adsorption process learning and emulation (MAPLE) frame-
work di↵ers from the aforementioned ML approaches in that
the training of the model is not based on the properties of ac-
tual adsorbents; instead, it involves parameterising the Lang-
muir adsorption isotherm itself and using that as an input vari-
able to create a generalised model that does not need training
for particular adsorbents. We aim to build on the MAPLE
framework by using the more complex dual-site Langmuir
(DSL) form rather than a single-site Langmuir (SSL) form, al-
lowing us to better represent the adsorption process and com-
plicated adsorbents (Ritter et al., 2019; Wilkins and Rajen-
dran, 2019). Our model will also be able to make an eco-
nomic assessment based o↵ the detailed process model from
Ward and Pini (2022) and predict the capture cost of CO2 de-
fined as the number of dollars required to capture one tonne
of CO2 ($/tonne). This is an aspect that has not been inte-
grated into other previous adsorption-based NNs. As with
all ML approaches, an initial investment in computational
time for producing the training data is required. Once the
NN is trained, it can rapidly make new predictions and solve
the multi-objective optimisation problem in significantly less
time than numerical methods. We extend the framework es-
tablished by Ward and Pini (2022) and utilize their detailed
process model and optimisation outcomes as a foundation for
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constructing and validating our NN. The detailed model will
be used to train and validate our NN, followed by a cost op-
timisation case study of Zeolite 13X, a promising adsorbent
that is commonly used for separation of N2 to produce high
purity O2 (Tong et al., 2018). We then compare our results to
Ward’s results to verify the accuracy of our NN.

2. Background
2.1. Pressure-Vacuum Swing Adsorption

PVSA is a capture technology that shows great potential es-
pecially for post-combustion capture. It o↵ers significant ad-
vantages, especially in retrofitting existing plants and provid-
ing good capture capacity in comparison to other technolo-
gies such as chemical absorption (Riboldi and Bolland, 2017).
This study will focus on modelling a typical 4 stage PVSA
process; Figure 1 shows a schematic detailing each step of
the cycle. The first adsorption step involves passing the CO2
rich feed gas into the column packed with adsorbent at a high
pressure (pH) in which the CO2 is preferentially adsorbed.
Once the adsorbent is saturated with CO2, the second forward
blowdown step involves closing the feed end and depressuris-
ing the column to an intermediate pressure (pI). A N2-rich
product is then expelled from the product end. During the
third reverse evacuation step, the feed end is then opened and
the product end closed while depressurising the column even
further to a low pressure (pL). This step desorbs the CO2 from
the adsorbent and allows a CO2 rich gas to be collected from
the feed end. The final feed pressurisation step involves pres-
surising the feed and repeating the cycle until a cyclic steady
state is reached.

Figure 1: A schematic of the 4 steps of the PVSA process along with the
pressure profile during each step

2.2. Detailed Model

We use the numerical model developed and outlined by Ward
and Pini (2022) to apply a PVSA process to post-combustion

carbon capture from a coal-fired power plant using dry flue
gas and a fixed bed adsorber packed with Zeolite 13X. The
flue gas is assumed to be in a 15:85% molar mixture of CO2
to N2 and under standard ambient conditions, specifically at
a pressure of 1 bar and a temperature of 298.15K. For simu-
lating the adsorption process on the adsorbent bed, the dual-
site Langmuir (DSL) isotherm model is employed, where the
amount of substance adsorbed by a species i at equilibrium is
given by:

q⇤i =
qb,ici

1 +
Pnc

j=1 b jc j
+

qd,idi

1 +
Pnc

j=1 d jc j
(1)

The saturation capacities of species i on site 1 and site 2 of the
solid surface are denoted as qb,i and qd,i, respectively. The ad-
sorption equilibrium constants for each adsorption site, repre-
sented by bi and di, are expressed as functions of temperature
through the utilization of the van’t Ho↵ equation,

bi = bi,0 exp(
�Ub,i

RT
) (2)

di = di,0 exp(
�Ud,i

RT
) (3)

The change in molar internal energy for species i during ad-
sorption at site 1 and site 2 is denoted as �Ub,i and �Ud,i,
respectively. To determine the molar concentration of species
i in the gas phase, the ideal gas law is utilized.

ci =
yi p
RT

(4)

Table 1 contains the parameters for the extended DSL model,
which characterizes the adsorption equilibrium of CO2/N2 on
zeolite 13X (Haghpanah et al., 2013).

Material Parameter CO2 N2

Zeolite 13X qb [mol/kg] 3.09 5.84
qd [mol/kg] 2.54 -
b0 [m3/mol] 8.65 x 10�7 2.50 x 10�6

d0 [m3/mol] 2.63 x 10�8 -
�Ub [J/mol] -36,600 -15,800
�Ud [J/mol] -35,700 -

Table 1: DSL parameters of CO2 and N2 (Haghpanah et al., 2013)

The achievement of cyclic steady state is determined by
tracking 5 key performance indicators (KPIs): purity (PuCO2 )
, recovery (ReCO2 ), productivity (Pr), total energy usage (ET)
and capture cost (Ccap

CO2
). The simulation concludes once the

relative error for each of the 5 KPIs remains below 0.5 percent
across 10 successive cycles. The purity represents the per-
centage of the number of moles of CO2 compared to the total
number of moles of both CO2 and N2 present in the product
stream. The recovery represents the percentage of moles of
CO2 present in the product stream of the reverse evacuation
step compared to the amount in the feed stream. The produc-
tivity is defined as the amount of CO2 (in moles) coming out
during the reverse evacuation step, divided by the volume of

2
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Operating parameter Lower bound Upper bound
pH [bar] 1 10
pI [bar] 0.12 3
pL [bar] 0.02 0.1

vF [ms�1] 0.1 2
tads [s] 20 100
tbd [s] 30 100

tevac [s] 30 100
L [m] 1 12
y1,F 0.03 0.30

Table 2: Operating parameters bounds for neural network data set

the adsorbent and the total time of one cycle, which is the cu-
mulative duration of all four steps in the process. The energy
usage is defined as the sum of the energy usage of all 4 steps
divided by the mass of CO2 coming out of the product stream
during the reverse evacuation step.

2.3. Detailed model data set

A large data set is needed to create a NN, containing a
set of inputs (referred to as features) and expected outputs
(referred to as the labels). The labels are the KPIs from
the detailed model (Ward and Pini, 2022), while the fea-
tures for the data set are various parameters specified for the
PVSA process. The high pressure (pH), intermediate pres-
sure (pI), and low pressure (pL), time for the first adsorption
step (tads), second blowdown step (tbd), third evacuation step
(tevac), and feed velocity (vF) are used as features describing
the PVSA process operating parameters. The adsorbent pa-
rameters (⇢, qb,i, qd,i, b0,i, d0,i,�Ub,i, and �Ud,i) from the DSL
isotherm model are added as features describing the adsorbent
used. Finally, the column length L, inner radius rin, outer ra-
dius rout, and feed composition y1,F are added as parameters
related to the adsorption column configuration. In total there
are 24 features in the data set and 5 di↵erent labels.

A range for most of the operating parameters, except the
adsorbent parameters, was created to encapsulate the possi-
ble values they could take shown in table 2. The adsorbent
parameters were taken from an adsorbent database containing
72 di↵erent adsorbents (Ward and Pini, 2022). rin and rout are
calculated based on the column length L:

rin =
L
6
, (5)

rout = rin + 0.0175. (6)

3. Neural Networks
This section gives a background on the mathematics behind
NNs, training, validation and testing of the NN, and NN hy-
perparameters.

3.1. Basic neural network structure

NNs can create surrogate models with a large data set, using
the features to generate predicted labels and then using the
true labels from the data set to improve the accuracy of its

Figure 2: Simple NN diagram

predictions. Figure 2 is used to discuss the structure and com-
ponents within a NN. The NN comprises of an input layer,
m hidden layers containing n neurons, and an output layer.
Every layer in the NN is made up of neurons which function
di↵erently depending on which layer the neurons are in.

The neurons in the input layer represent each input variable
or feature in the input data set. For an input data set con-
taining l features, the input layer will contain l neurons and
produce an input vector x. It is typical to normalise all input
data using the mean, µ, and standard deviation, �, of each
feature before passing it through the NN as it helps train the
NN faster and scales inputs equally preventing features with
large values dominating over other features. The normalised
feature xnorm is given by,

xnorm =
x � µ
�
. (7)

The neurons in the hidden layers have an associated weight
vector, w, and a bias term, b that are used to compute an out-
put vector a. The weight vector represents the strength be-
tween connections of neurons between layers, while the bias
term helps shift the output to better model the outputs. First,
each neuron in the hidden layer calculates a value z. For the
neurons in a layer m,

z = x · w[m]
n + b[m]

n , (8)

where w[1]
n is the weight vector for the nth neuron in the mth

hidden layer, and b[1]
n is the bias term for the nth neuron in the

mth hidden layer. x ·w[m]
n is the dot product between the input

vector x and weight vector w[m]
n : For the first neuron in the

first hidden layer, the dot product is,

x · w[1]
1 = x1w[1]

1,1 + x2w[1]
1,2 + · · · + xlw[1]

1,l . (9)

Note that the weight vector for the first neuron has the same
amount of terms as the input vector x so the dot product can be
computed. Therefore, all the weight vectors in the first layer
have l weight terms and the dot product for the nth neuron in
the first hidden layer is,

x · w[1]
n = x1w[1]

n,1 + x2w[1]
n,2 + ... + xlw[1]

n,l . (10)

3
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The number of weight terms in the weight vector w for a neu-
ron depends on the number of neurons in the previous layer.
The weight vectors for each neuron in the rest of the hidden
layers all have n number of weight terms in their weight vec-
tor w.

An activation function g(z) is used to add non-linearity to
the NN model and help it capture complex relations between
the features and labels. For our NN, we use the Rectified Lin-
ear Unit (ReLU) function as the activation function for all
neurons in the hidden layers as it only outputs non-negative
values leading to faster training of the NN,

g(z) = max(0, z). (11)

Using the ReLU function, the neurons in hidden layer m com-
putes the output vector terms a[m]

n ,

a[m] =

2
66666666666666664

a[m]
1

a[m]
2
...

a[m]
n

3
77777777777777775
, a[m]

n = g(z) = max(0, x · w[m]
n + b[m]

n ). (12)

The first hidden layer produces the output vector a[1] from the
input vector x, the second hidden layer produces a[2] from a[1],
and so on until the mth hidden layer produces a[m] from a[m�1].

The final output layer consists of only one neuron and takes
a[m] from the mth hidden layer to calculate the final output
value being the KPIs for our NNs. The neuron in the out-
put layer also contains an activation function that can di↵er
depending on it use case. We use the ReLU function in the
output layer for the productivity, energy usage, and capture
cost NNs as the predicted values should only be positive, but
for purity and recovery we instead use the sigmoid function
as the output activation function,

g(z) =
1

1 + e�z =
1

1 + e�(a[m]·w[m+1]+b[m+1])
, (13)

Where w[m+1] is the weight vector for the output layer neuron,
and b[m+1] is the bias term for the output layer neuron. The
sigmoid function calculates a value between 0 and 1 which
is useful for the purity and recovery NNs as these values also
range only from 0 to 1 making it much more suitable for these
NNs.
3.2. Neural network training
The NN uses a cost function C measuring the error between
the predicted labels from the NN and the true labels from the
output data set to train the NN. A commonly used cost func-
tion is the mean squared error (MSE) function:

C =
1
N

NX

i=1

(yi � ŷi)2, (14)

where y is the true label from the output data set, ŷ is the pre-
dicted label from the NN, and N is the total number of points
in the training data set. ŷi is a function of all the weight terms
w in the weight vectors w and all the bias terms b for each

neuron in all the layers. An optimisation algorithm is cho-
sen to minimise the cost function C and train the NN, find-
ing the optimal values for all w and b. The Adam (short for
adaptive moment estimation) optimiser algorithm is known
for its adaptive learning rates that change while training the
NN allowing it to quickly converge to find optimal parameters
(Kingma and Ba, 2017). The learning rate is a hyperparame-
ter that controls how much w and b change as the algorithm
tries to minimise the cost function. Further hyperparameters
are discussed in Section 3.4.
3.3. Validating and testing the neural network
The total data set is usually split into parts; a large part of the
data set goes to the training set which is used to train the NN,
while the rest is split into a validation set and test set. The
usual split for these sets is 80% goes to the training set, while
10% set goes to the validation and test set each.

The validation set prevents the NN from learning the train-
ing data set too well. If the loss function continually decreases
while training the NN, it could lead to overfitting where the
NN would only be accurate in predicting points from the train-
ing data set, but poor in predicting new points that it has not
encountered before. Every time the NN is trained, the NN is
used on the validation set to check the accuracy of its predic-
tions and evaluate the NNs ability to generalise new data it
has not seen before.

There are various metrics used to measure the accuracy of
the NN. One such metric that is usually used for the validation
set is the Root Mean Squared Error (RMSE) function,

RMSE =

vut NX

i=1

(yi � ŷi)2

N
. (15)

Note that N, yi, and ŷi in this equation and all the other metrics
discussed in this section refer to the variables in the valida-
tion/test data set. The RMSE equation is similar to the MSE
equation in penalising larger errors more than small errors,
but may be hard to interpret as it depends on the scale of the
output. Other metrics that are used to determine the accuracy
of each NN are the mean absolute percentage error (MAPE)
function, and coe�cient of determination R2, a widely used
metric that measures how well a model predicts an output:

MAPE =
1
N

NX

i=1

�����
yi � ŷi

y

����� . (16)

R2 = 1 �
PN

i=1(ŷi � y)2

PN
i=1(yi � y)2

, (17)

Where y is the mean of the true labels in the validation/test set.
The MAPE gives the spread of the errors in a relative percent-
age making it easier to understand the total error in predictions
for each NN and compare the errors easily between NNs.

The NN is then used on the final test data set to see its final
predictive abilities on a completely new, unseen data set. Note
that the test set is only used once the NN has been fully opti-
mised to give an unbiased measure of the NN’s performance.

4
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3.4. Optimising the neural network

The validation set is also used to tune and optimise the hyper-
parameters of the NN, optimising the performance of the NN
further. Hyperparameters refer to variables that do not change
while the NN is being trained, and are usually specified before
training a NN. There are several hyperparameters that can be
changed that help to improve the predictive abilities of the
NN:
• Number of neurons: The number of neurons in the hid-

den layers helps with capturing complex relationships
between the input and output data.
• Number of layers: The number of layers refers to the

number of hidden layers in the NN and also helps capture
complex relationships like the number of neurons
• Learning rate: Learning rate controls the rate at which

the weight w and bias b parameters in the neurons are
updated during training.
• Epochs: An epoch refers to the number of times the input

data is passed through the NN to predict the output, and
minimise the cost function.
• Batch size: Batch size refers to the number of samples

from the training set that is used while training the NN.
• Regularisation: Regularisation is a term that is added to

the cost function that helps to prevent the NN from over-
fitting.
• Output layer activation function: The output layer ac-

tivation function discussed in Section 3.1 can also be
treated as a hyperparameter that is configured before the
NN is trained.

3.5. TensorFlow implementation

For our project, we chose to code the NNs in Python as it
o↵ers a package that extensively supports NN creation, hy-
perparameter tuning, and hyperparameter visualisation. Ten-
sorFlow is an open source machine learning package that sup-
ports a wide array of machine learning applications including
making NNs.

4. Methods
4.1. Data set creation

To create the data set for the NN to be trained, validated, and
tested on, the following steps were used:

1. Values for each feature were pseudo-randomly picked
from the ranges in Table 2 and the adsorbent database
mentioned in Section 2.3 using Latin hypercube sam-
pling to generate a uniform data set. pI was always less
than pH as these ranges overlap and would not help the
NN to learn how to accurately predict the KPIs.

2. The data set of operating points was evaluated by Ward’s
detailed adsorption model to produce the value of each
KPI. The use of Imperial College London’s High Com-
puting Performance (HPC) was used which significantly
reduced the evaluation time for each set of operating
points. The data set was then filtered to remove any sets
of operating points that exceeded the satisfactory ranges
for each KPI shown in Table 3. After filtering, a data

KPI Acceptable range
Productivity, Pr 0 - 9

[mol/m3/s]
Energy usage, ET 0 - 5000

[kWh/tonne]
Purity, PuCO2 0 - 100

[%]
Recovery, ReCO2 0 - 100

[%]
Capture cost, Ccap

CO2
0 - 600

[$/tonne]

Table 3: Acceptable range for each KPI, the ranges used to remove points
outside the acceptable range as these values were outliers produced from the
detailed model

Hyperparameter Values
# of neurons 10, 20, 30, 40
# of layers 2, 4, 6, 8
# of epochs 500, 1000, 1500, 2000

Learning rate 0.1, 0.01, 0.001, 0.0001
Batch size 250, 500, 750, 1000

Regularisation 0.1, 0.01, 0.001, 0.0001

Table 4: Discrete values randomly picked for hyperparameter tuning

set of 11,454 operating points with their associated KPIs
was created.

3. Finally, the features were normalised using Equation 7.
80% (9,163) of the total data set was used for training
the NNs, 10% (1,145) for validating the NNs, and the
last 10% (1,146) for testing the NNs.

4.2. Neural network training, validating, and testing

Using the data set, the NNs for each KPI were created and the
general structure of these NNs can be seen in Figure 3.

To tune the hyperparameters discussed in Section 3.4, a
technique known as random search was used. The hyper-
parameters were randomly selected from a range of discrete
values in Table 4 500 times for each KPI, totalling 1500 NN
models. All the NNs were then trained on the training set, op-
timising all the weight w and bias b terms in each neuron of
every layer in the NN, and the performance was evaluated on
the validation set using the RMSE (Equation 15). The set of
hyperparameters with the lowest RMSE was selected as the fi-
nal NN model hyperparameters for each KPI, narrowing down
the 1500 NNs to just 5. Lastly, the MAPE (Equation 16) and
R2 (Equation 17) were then used to test the final performance
of the NNs using the test set.

4.3. Optimisation Case Study

Three optimisation case studies were performed to validate
the performance of our NNs against the performance of
Ward’s detailed model. The industry standard NSGA-II algo-
rithm implemented in Python was used to perform these opti-
misation studies. The NSGA-II algorithm was initialised with
72 initial samples, running for 50 generations with 72 o↵-
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Figure 3: General NN structure for predicting the KPIs from the detailed model

springs per generation. The results were then compared with
Ward’s own cost optimisation results that used the Thompson
Sampling E�cient Multiobjective Optimisation (TSEMO) al-
gorithm.

4.3.1. Unconstrained purity/recovery optimisation
The first optimisation problem involved maximising both the
purity and recovery of the PVSA process to check the feasibil-
ity of the chosen adsorbent. Post-combustion carbon capture
is subject to regulatory requirements of at least 90% recov-
ery and 95% purity for the captured CO2, so performing this
optimisation will reveal whether there exists operating points
that satisfies both of these requirements. If not, the chosen ad-
sorbent is considered infeasible, deeming the next two steps
redundant and a new adsorbent would have to be chosen. The
problem is formally defined as follows:

min
✓

(F1 = �PuCO2 , F2 = �ReCO2 ) (18)

s.t. ✓L  ✓  ✓U (19)

Where PuCO2 and ReCO2 are the purity and recovery of CO2
respectively. F1 and F2 are the two objectives function that
we wish to minimise. Note that minimising the negative of
a function yields the same result as maximising the positive
of the function. ✓L and ✓U are the lower and upper bounds
of each feature respectively. The list of features that were
varied along with their accompanying bounds are shown in
Table 2. The adsorbent parameters were fixed for zeolite 13X
shown in Table 1, while PL and y1,F were fixed to 0.05 bar and
0.15 respectively to simulate the same optimisation problem
that Ward’s detailed model solved. Upon solving this multi-
objective problem, a Pareto front is generated that represents
the set of solutions with the best trade-o↵ between the two

objective functions. If the Pareto front passes through the fea-
sible region of PuCO2 � 95% and ReCO2 � 90%, then it can be
concluded that the chosen adsorbent is feasible and the next
optimisation case can be performed.

4.3.2. Constrained productivity/energy usage optimisation
A constrained productivity/energy usage optimisation is per-
formed next. It is desired to maximise the productivity to
achieve the highest CO2 capture whilst using the least amount
of adsorbent, reducing the length of each cycle. We also min-
imise the total energy consumed for each tonne of CO2 cap-
tured to increase profitability and commercial attractiveness
of the process. A set of constraints are also introduced to en-
sure that the set of solutions found by the algorithm will abide
by the aforementioned purity and recovery requirements, and
solving the multi-objective problem will once again yield a
set of optimal Pareto solutions. The full optimisation problem
is defined as follows:

min
✓

(F1 = �Pr, F2 = ET) (20)

s.t. ✓L  ✓  ✓U (21)

PuCO2 � 95% (22)

ReCO2 � 90% (23)

A penalty function is implemented to impose the constraints
and sums a large value into the objective function when a con-
straint is violated, making sure that the algorithm avoids such
operating points and focuses more on points that do not vio-
late the constraints. Thus, the problem is formulated as fol-
lows:

F1 = �Pr + �1 (24)

F2 = ET + �2 (25)
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� =

8>>>><
>>>>:

max(0, 0.95 � PuCO2
100 +max 0, 0.9 � ReCO2

100 )2

0.25 ⇥max(0, 95 � PuCO2 ) +max(0, 90 � ReCO2 )2

9>>>>=
>>>>;

(26)

4.3.3. Capture cost optimisation
The final step of the case study involves solving a single-
objective optimisation problem minimising capture cost of the
process to screen out economically unviable adsorbents and is
an important factor when choosing an adsorbent for the pro-
cess. This step also signifies an advancement in current litera-
ture as there is little work using surrogate NN models to eval-
uate industrial-scale economic performance of a PVSA pro-
cess. The cost optimisation problem also involves a penalty
function which is applied when one or both of the constraints
are violated. The purity and recovery constraints are identical
as per previous problems:

min
✓

Ccap
CO2
+ � (27)

s.t. ✓L  ✓  ✓U (28)

� = 10 ⇥ [max(0, 95 � PuCO2 ) +max(0, 90 � ReCO2 )]2 (29)

5. Results
5.1. Optimised neural networks
Table 5 shows the optimised hyperparameters for the NNs of
each KPI and the RMSE on the validation set. It may seem
that the energy usage and capture cost NNs performance may
be poor as the validation RMSE values are much larger than
the NNs for productivity, purity, and recovery, but it should be
noted again that the RMSE is scale dependent. Considering
the range of acceptable values for each KPI from Table 3, the
RMSE values are much smaller than the overall KPI ranges
that the NNs predict over.

Table 6 shows the RMSE, MAPE, and coe�cient of deter-
mination R2 of each NN on the test set. Again, the ability to
interpret the performance of the NNs using the RMSE is di�-
cult without knowing the scales of the KPIs, so the MAPE and
R2 o↵er better understanding of each NN’s predictive abili-
ties. The MAPE of each NN is below ranges from 6 - 14%
while the R2 of the NNs are greater than 0.9 suggesting that
the NN’s can accurately predict each KPI.
5.2. Optimisation case study
5.2.1. Unconstrained purity/recovery optimisation

The results of the optimisation study are compared with
Ward and Pini’s study in Figure 4. The blue triangles show the
Pareto front obtained from our NN coupled with the NSGA-
II algorithm whereas the orange triangles show the optimi-
sation results obtained by Ward and Pini using the TSEMO
algorithm coupled with their detailed model. The black dot-
ted lines represent the boundaries of the purity and recovery
constraints described in Section 4.3.2, and the red shaded re-
gion represents the area of uncertainty of our model based on
the MAPE from Table 6. The Pareto front generated by our
NN model is in good agreement with Ward and Pini’s Pareto
front following the same trends. It can also be concluded that

Figure 4: Unconstrained purity/recovery Pareto fronts for Zeolite 13X at a pL
of 0.05 bar.

Zeolite 13X is a feasible adsorbent for this process as there
are several points that satisfy the process requirements. More
importantly, using the NN model proved to be monumentally
quicker in terms of computational time as it took roughly 50s
for the algorithm to finish running whereas the detailed model
took around 23-24hrs. This represents a 1600x reduction in
computing time and demonstrating the great potential of this
approach.

5.2.2. Constrained productivity/energy usage optimisation
The results of the constrained productivity/energy usage op-
timisation step are shown in Figure 5. Again, there is good
agreement from the two Pareto fronts and both exhibit similar
shapes, with our NN exhibiting vastly shorter computational
times: around 50s compared to the 350hrs taken for the de-
tailed model (Ward and Pini, 2022).

Figure 5: Unconstrained purity/recovery Pareto fronts for Zeolite 13X at a pL
of 0.05 bar
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KPI Hyperparameter Validation
RMSE

Neurons Layers Epochs Learning Batch Regular- Output
rate size isation activation

function

Productivity, Pr 40 8 2000 0.001 250 0.001 ReLU 0.09
[mol/m3/s]

Energy usage, ET 40 4 500 0.1 750 0.01 ReLU 258
[kWh/tonne]
Purity, PuCO2 40 6 2000 0.001 500 0.0001 Sigmoid 4

[%]
Recovery, ReCO2 40 8 1500 0.0001 250 0.0001 Sigmoid 5

[%]
Capture cost, Ccap

CO2
40 8 1500 0.01 750 0.1 ReLU 25.9

[$/tonne]

Table 5: Optimised hyperparameters for each neural network with validation set RMSE of each KPI

KPI Test Test Test R2

RMSE MAPE [%]

Productivity, Pr 0.10 10 0.987
[mol/m3/s]

Energy usage, ET 258 12 0.943
[kWh/tonne]
Purity, PuCO2 4 6 0.981

[%]
Recovery, ReCO2 5 10 0.972

[%]
Capture cost, Ccap

CO2
27.6 14 0.906

[$/tonne]

Table 6: Test set RMSE, MAPE, and R2 for each KPI’s neural network

5.2.3. Capture cost optimisation
The results from the single-objective problem of minimis-

ing capture cost are shown and compared to Ward and Pini’s
results in Table 7. Again the KPIs are similar to those of Ward
and Pini’s showing that the NN can be used e↵ectively to
screen adsorbent based on their techo-economic performance.
It is also noted that running this optimisation only took around
57s exhibiting exponentially faster computational times with
an acceptable level of error.

6. Discussion
6.1. Comparison to MAPLE framework neural networks

To compare our NNs with the MAPLE NNs from Pai et al.
(2020), we use the adjusted coe�cient of determination R2

adj:

R2
adj = 1 � (1 � R2)(N � 1)

(N � k � 1)
(30)

Output Neural Network Detailed Model
w/ NSGA2 w/ TSEMO

Capture cost 41 ± 5 45.80
[$/tonne]

Productivity 1.18 ± 0.1 1.27
[mol/m3/s]

Energy usage 753 ± 75 693
[kWh/tonne]
Purity [%] 94.9 ± 6 96.5

Recovery [%] 90.1 ± 9 89.3

Table 7: Constrained capture cost optimisation results

where N is the number of samples in the test set, and k is
the number of features. The R2

adj can be considered to be
a better predictor of accuracy for our NN models as it also
takes into consideration the number of features that go into
the model, while penalising features that may not contribute
as much. While the productivity, purity, and recovery all have
R2

adj greater than 0.94, the energy usage and capture cost NNs
have R2

adj values lower than 0.90. It should be noted that the
training set used on the NNs was only 9163 points, so a larger
data set would increase the accuracy of the capture cost and
energy usage NNs, while also improving the productivity, re-
covery, and purity NNs. The R2

adj also questions whether some
features in the data set may not be contributing to the perfor-
mance of the NNs. Two such features are the column radii, rin
and rout as these are dependent on the column length L based
on Equations 5 and 6. These three variables have the same
value when normalised so the NNs do not get any further use-
ful information from rin and rout, introducing extra complex-
ity to the NNs without improving the performance of them.
Therefore, it is important to feed the NNs independent fea-
tures that provide useful information related to the labels, and
to verify how the features themselves are related to each other
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KPI R2
adj

Productivity 0.976
Energy usage 0.887

Purity 0.962
Recovery 0.945

Capture cost 0.817

Table 8: Adjusted coe�cient of determination for each neural network

so as to not introduce redundant features.
Finally, Table 9 shows a summarised list of comparisons

with the MAPLE NNs. First, the number of inputs that can be
specified for our NN is more than 2x the number of inputs the
MAPLE NNs use allowing for greater flexibility in defining
the PVSA process for a wide range of adsorbents.

Second, we employ the DSL isotherm model instead of the
SSL model allowing us to better model the equilibrium be-
tween CO2 and N2 better while also modelling more com-
plex adsorbents. Although this may introduce more complex-
ity into the NNs, this allows our NNs to better repsresent a
wider range of adsorbents giving it much greater applicability
to screen various adsorbents for various operating conditions.

Third, we build on the simple sensitivity analysis that was
performed for the MAPLE NNs that only looked at optimis-
ing the number of samples used in the training set and number
of neurons in each layer to improve R2

adj. We instead opti-
mise multiple hyperparameters essential to the configuration
of each NN. However, the optimal number of neurons shown
in Table 5 is also the upper bound of discrete values it could
take, suggesting that exploring a higher number of neurons
could further increase the accuracy of the NNs by modelling
any complex relationships between the features and true la-
bels better.

Last, we compare the R2
adj of our NN with the MAPLE

framework NNs which shows that our NNs have a lower accu-
racy than the MAPLE NNs. However, the complexity of our
NNs is much greater and they were trained on a smaller train-
ing set than the MAPLE NNs, so a much larger data set would
be required to reach the accuracy of the MAPLE NNs. Nev-
ertheless, the NNs developed over the course of the project
perform very well considering the complexity of the NNs and
the small training set size.

6.2. Reduction in computational time

It is clear through the results of this study and through others
such as Pai et al. (2020) that utilising NNs for optimisation of
an adsorption process require significantly less computational
time than incumbent methods that use detailed process mod-
elling. Figure 6 shows that our NNs have the capability to
solve optimisation problems tens of thousands of times faster
than a detailed model can with similar outcomes and accuracy.
As such this tool has great potential to vastly shorten compu-
tational e↵orts in adsorption process optimisation problems,
feasibility studies and large-scale adsorbent screening. The

Figure 6: Single core CPU times of our NN vs the detailed model

uncertainties detailed in 6 are reasonable and comparable to
that described in Cleeton et al. (2022), suggesting that exper-
imental uncertainties that arise from adsorption isotherm pa-
rameters being determined empirically will influence the un-
certainties of the Pareto front. Hence, we conclude that the
uncertainties in our NN predictions is a potential point of im-
provement - through the use of more training data or by fur-
ther hyperparameter tuning. However, there will always exist
some intrinsic uncertainties that are outside of the scope of
this study, so it is important to not be overly analytical about
the nominal values that we obtain but rather focus on the va-
lidity and great potential of the approach.

7. Conclusion

In conclusion, this research has demonstrated the significant
advantages of utilising data-driven NN models in optimising
PVSA processes for carbon capture. Our study, building on
the MAPLE framework, shows that NNs can o↵er rapid as-
sessments of PVSA processes with accuracy comparable to
that of a traditional process model. The model is a signifi-
cant leap forwards in terms of its ability to predict the eco-
nomic aspect of carbon capture, specifically the capture cost
of CO2. Similarly it represents an improvement from the
MAPLE framework through its ability to capture more com-
plex adsorption behaviours through the use of the dual-site
Langmuir model and the inclusion of more operating param-
eters.

Our models show acceptable uncertainty levels of around
14% at the highest, comparable to other similar works. These
uncertainties have potential for improvement through the use
of more training data or further optimisation of the NNs hy-
perparameters.

In light of these findings, it is evident that ML, especially
NN, can play a pivotal role in advancing carbon capture tech-
nologies. By significantly reducing the time and computa-
tional resources required for process optimisation, this tool
opens up potential for rapid screening of large adsorbent
databases and will surely be useful for the deployment of ef-
fective carbon capture solutions.
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Abstract: Liquefied natural gas (LNG) has grown to account for a much larger part of global natural gas (NG) supply chains 
in recent years with Europe’s demand skyrocketing in 2022. With the onset of the Russia-Ukraine war and increasing 
geopolitical tensions globally, sourcing energy from further supply regions to ensure reliable energy supply has become more 
common. LNG is a highly efficient and economical way of transporting energy across vast distances especially when there is 
lack of access to traditional gas pipelines. Current processes fail to utilise the cold energy of LNG with roughly 13% energy 
equivalent of the gas consumed throughout the supply chain. Studies have mainly focused on cold energy extraction during 
regasification of LNG. This paper introduces an integrated LNG supply chain that reduces energy requirements by 29.7% and 
carbon emissions by 30.8%. The economics of this proposed design is analysed and assessed against current industry leading 
processes. The results show a 29.1% reduction in capital expenditure and 20.1% reduction in operating expenditure. 
Additional income is generated through the integration of the LNG supply chain with a valuable cryogenic process. 
Keywords: Natural Gas, Liquefied Natural Gas, Cold Energy, Supply Chain Integration, Air Separation

Introduction:  
Natural gas is considered the lowest carbon content fossil 
fuel with approximately 52.91 kg CO2/MMBtu compared 
to coal and oil which has an average CO2 content of 95.92 
and 70.07 kg CO2/MMBtu respectively[1]. Natural gas 
composition can vary depending on region but typically 
consists of 85-95%[2] methane with small proportions of 
ethane, propane, butane and nitrogen. Since natural gas is 
primarily methane, the calorific value of natural gas is 
therefore greater than other fossil fuels at roughly 50-55 
MJ/kg[3]. This makes natural gas an ideal fuel for 
electricity power generation compared to conventional 
coal fired power plants. Ultimately natural gas is a fossil 
fuel, its impact on climate change and overall carbon 
emissions is considerably greater than that of renewable 
energy alternatives. However, the benefits of increasing 
natural gas as a proportion of a country’s energy 
composition especially in the mid-term is undeniable. 
Natural gas has the potential to play a pivotal role in 
enabling a smoother transition to a greener economy as it 
is a reliable and abundant source of energy. In 2021 the 
global proven natural gas reserve stood at 188.1 trillion 
cubic metres[4] with Russia, Iran and Qatar accounting for 
half of global reserves.  
 

Regions Production  Consumption 
North America 1203.9 1099.4 
S. & Cent America 162.0 161.7 
Europe 220.4 498.8 
CIS 805.9 551.2 
Middle East 721.3 560.6 
Africa 249.0 162.5 
Asia 681.3 907.1 
World 4043.8 3941.3 

Table 1: Table showing  production and consumption of natural gas in 
billion cubic metres by region in 2022[5]. Notably, North America, CIS 
and Middle East are the main supply regions. Europe and Asia are the 
main demand regions. This imbalance in supply and demand of energy 
product is what drives international trade of natural gas. 
 

The UK is a large consumer of natural gas with 
approximately 72 bcm consumed in 2022[5]. Prior to the 
invasion of Ukraine in 2022, most natural gas imports to 

continental Europe and the UK were primarily through 
traditional gas pipelines specifically from Russia. This 
reliance caused natural gas prices to spike to €300/MWh 
in August 2022 compared to 2020 levels of $30/MWh[6]. 
In response to wean itself from Russian gas, the UK sought 
to find alternatives to traditional pipeline natural gas. One 
alternative was to source energy supplies from further 
afield in the form of liquefied natural gas (LNG). LNG is 
natural gas that has been cooled to approximately -161C 
at atmospheric pressures which turns natural gas into the 
liquid state. LNG has significant advantages compared to 
traditional natural gas as its volume is approximately 
1/600th of natural gas. It is an efficient method of 
transporting energy across vast distances where pipeline 
options are not available or are not economical. However, 
current technologies employed in industry have significant 
energy requirements. Typically, natural gas is consumed 
to provide energy. Roughly 13% of the energy of LNG is 
consumed during the liquefaction, shipping and 
regasification process[7]. 

The UK increased LNG imports in 2022 by 74% from 
the previous year to 25.6 bcm, which accounted for 45% 
of total natural gas imports in the year[8]. The United States, 
Qatar and Peru are the primary import sources of LNG to 
the UK importing 50%, 30% and 8% respectively in 2022. 
The UK has the second largest LNG regasification 
infrastructure in Europe after Spain with sites located in 
Milford Haven and Isle of Grain. One prominent trade 
route and the basis of this study is the Qatargas 2 Ras 
Laffan LNG terminal delivering LNG to South Hook LNG 
terminal in Milford Haven. 

The global demand for LNG has surged in recent years 
with demand maintaining an average growth rate of 5.3% 
between 2012-2022[5]. Most of this demand has been from 
Asian countries such as Japan and China who are either 
lacking in domestic natural resources or are trying to move 
away from traditional fossil fuels which are more polluting. 
Even when considering improvements in existing energy 
technologies, global energy demand is projected to grow 
by 15% by 2050[9]. Since the commencement of the Paris 
agreement in 2016 many countries have had greenhouse 
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gas emission targets at the forefront of their minds. One 
method of meeting these targets is to increase the usage of 
LNG which will ultimately drive demand for LNG and 
funnel investments into technological developments. The 
primary drivers for LNG growth are liquefaction and 
regasification capacity, rising energy consumption fuelled 
by a growing population and fast approaching emissions 
target milestones. To confront these challenges face on, 
optimisation of the individual parts of the LNG supply 
chain as well as utilisation of cold energy of LNG have 
been analysed. Developing an integrated supply chain has 
the ability to further enhance energy efficiency. The 
potential to integrate other value generating processes 
with the LNG supply chain to produce marketable 
products is also analysed. 
 
Background: 
Current LNG supply chains consist of a liquefaction site 
at the region of production where LNG is then loaded onto 
a carrier bound for the importing country. Upon arrival the 
LNG is piped off the carrier and into a regasification site. 
The LNG is evaporated back into natural gas and 
configured to specific country grid specifications before 
delivery to end customers. Significant infrastructure is 
required to facilitate this supply chain and so ensuring 
minimal energy loss during these processes is of great 
importance.  

Different liquefaction processes are used in industry 
today with APCI accounting for the majority of the market. 
There are typically three main liquefaction processes: pure 
refrigerant cascade, mixed refrigerant and nitrogen 
expander cycles. The most widely used process is APCI - 
C3MR by Air Products which utilises a propane 
precooling loop followed by a  mixed refrigerant to 
provide cooling. This process accounts for 41% of the 
world’s installed capacity in 2018[10]. The Conoco Philips 
optimised cascade process is the second most utilised 
process accounting for 22% of installed capacity globally. 
This process utilises a pure refrigerant three stage cascade 
process. The technology of focus for this paper and the 
current leader in terms of LNG production capacity is the 
AP-X process which utilises a propane precooling loop 
followed by a mixed refrigerant loop to provided cooling 
and a nitrogen expander loop to enable subcooling of the 
natural gas. This technology has a maximum capacity of 
10Mtpa per train and the first deployment of this 
technology was at the Qatargas 2 Ras Laffan site, where 
two trains produce a combined capacity of 15.6Mtpa. This 
site is part of an integrated energy supply chain connecting 
Qatar’s north field gas fields to the UK. It is serviced by a 
fleet of 14 Q-Max and Q-Flex LNG carriers which can 
hold 266,000m3 and 216,200m3 respectively[11]. At the 
regasification site, LNG can be evaporated back into 
natural gas through two common methods. Open rack 
vaporisers can utilise sea water to raise the temperature of 
LNG. This method however requires a slightly elevated 
sea temperature which the UK does not have. The South 
Hook LNG terminal uses a submerged combustion 

vaporiser which uses fuel gas to heat up water in order to 
raise the temperature of LNG. The entire process from 
liquefaction to regasification consumes roughly 13%[7] of 
the total available energy with liquefaction consuming 10% 
of the energy. Shipping and regasification both consume 
roughly 1.5% of the equivalent gas energy. 
 

Process Technology 
Liquefaction AP-X 
Shipping Q-Max/Q-Flex 
Regasification Submerged Combustion Vaporiser 

Table 2: Table showing specific technologies employed at each stage of 
the Qatar to UK LNG supply chain. 
 

One method of reducing this energy consumption is by 
utilising the LNG cold energy for other valuable processes 
that require a high degree of cooling or for cold storage 
facilities. Significant research has been conducted on the 
utilisation of cold energy of LNG at the point of delivery. 
The first ideas stemmed from Nakaiwa et al. where a 
system to integrate LNG delivery with an air separation 
unit combined with a conventional LNG combined cycle 
was studied. The research found that thermal efficiency of 
the power generator could be increased from 40% to 
46.8%[12] through the introduction of oxy-fuel combustion 
and that the CO2 emissions would be reduced by 13%. 
Research conducted by Xiong and Hua analysed a 
cryogenic air separation unit utilising LNG cold energy to 
produce liquid nitrogen and oxygen gas. Their study found 
that LNG cold energy could be fully utilised when 
recycled nitrogen was compressed to above 6.5MPa[13]. 
This paper showed that utilisation of LNG cold energy was 
not only technically and economically feasible but also 
decreases energy consumption compared to conventional 
cryogenic air separation processes by more than half. 
Other studies such as the one done by Shingan et al used 
exergy analysis and parametric optimisation to design an 
optimal air separation process integrated with LNG 
regasification[14] but did not take into account the natural 
gas delivery requirements for importing countries which 
would result in more energy needed to vaporise the LNG. 

Prior studies primarily focused on extracting cold 
energy utility from the regasification side but missed the 
opportunity to reduce energy consumption throughout the 
whole LNG supply chain. By integrating an air separation 
unit with LNG regasification to produce nitrogen and 
oxygen, the nitrogen product stream can be used as a 
medium to transport cold energy back to the liquefaction 
site. Liquid nitrogen can then be used to support the 
cooling of natural gas during liquefaction. Nitrogen is 
easier to transport in its liquid state as it occupies roughly 
1/700th of the volume as gaseous nitrogen. The benefit of 
doing this is that it will reduce energy requirements on the 
liquefaction side which typically contributes the most to 
total energy consumed in LNG production (10%[7]) and 
also ensure full utilisation of shipping vessels on the return 
journey. Once the cold energy has been utilised, the 
ambient nitrogen can be sold as feedstock into various 
industries such as fertiliser, mining, metals and electronics. 

181



` 

With Qatar being located in the middle east, many 
channels for trade and shipping are available.  

The oxygen on the other hand can be sold to natural 
gas-powered power plants utilising a combined cycle gas 
turbine (CCGT). Oxygen can be used for oxy-fuel 
combustion which enables the fuel to combust at greater 
temperatures which results in greater energy efficiency. 
This also eliminates the need for amine scrubbing which 
is a notoriously expensive process. The fuel burns cleaner 
than in air with the flue gas containing primarily CO2 and 
H2O which can be separated relatively easily. The CO2 can 
be capture and stored using existing carbon capture and 
storage (CCS) technologies such as sequestration in saline 
aquifers. A potential site for such an integrated supply 
chain is Teesside in the northeast of England where 
clusters of industries and businesses utilising CCS 
technology are already located.  

Oxygen can also be sold to highly polluting industries 
such as the cement manufacturing industry which 
accounts for approximately 7% of total global 
emissions[15]. This enables further value extraction from 
the LNG supply chain and creates an integrated supply 
chain that is capable of producing marketable products and 
provides an additional source of income. Figure 1 below 
shows the entire value chain and proposed integrated 
supply chain. Previous works have focused on extracting 
cold energy utility of LNG from the regasification side to 
increase energy efficiency. However, there has been little 
analysis around the costs associated with implementing 
these proposed designs. There has also been little 
consideration into the additional income generated 
through introduction of an air separation unit. This is vital 
if organisations and businesses were to actually consider 
pursuing this cold energy supply chain integration. This is 
the primary objective of this study. An analysis of costs 
associated with implementation as well as energy and 
emissions intensities will be quantified through 
assessment against leading industry processes. 
 

Methodology: 
Following the main objective of this project, current 
industry processes were selected and recreated in Aspen 
Plus V11 to analyse the performance of  the existing 
supply chain. Aspen is generally good at modelling 
hydrocarbons as well as heat exchange, compression and 
expansion processes. The Peng-Robinson thermodynamic 
equation of state was used to calculate thermodynamic 
properties since it was designed to calculate fluid 
properties for all natural gas processes. The LNG supply 
chain is characterised by three main stages: 

 Liquefaction: AP-X process consisting of a pre-
cooling propane loop, mixed refrigerant 
refrigeration cycle and a nitrogen expander loop. 

 Transportation: QatarEnergy Q-Max LNG 
vessel. 

 Regasification: Submerged combustion 
vaporiser. 

In addition, a conventional cryogenic separation 
process was modelled and analysed in order to provide a 
basis for comparison with the integrated supply chain. 
Energy requirements for each process and the costs 
associated with them were modelled using Aspen’s built 
in economic analyses functions in tandem with 
calculations performed utilising reported numbers from 
market insight and industry. Both the standalone and 
integrated process were designed to produce and deliver a 
capacity of 15.6Mtpa of LNG to the UK at the UK’s 
natural gas delivery requirements. Table 3 shows the 
assumptions for various parts of the supply chain as well 
as different components modelled with their respective 
operating parameters. Equation 1 was used to carrying out 
energy balances around control volumes within the 
processes to calculate unknown parameters. Where 𝑄̇஼௏ 
denotes heat supplied, 𝑊̇஼௏  denotes work done, 𝑚̇ refers 
to the mass flowrate and ℎ  refers to the enthalpy of 
component entering and leaving the control volume. 
 

Figure 1: Diagram showing integrated LNG supply chain versus current supply chain. The integrated supply chain includes an additional air separation 
unit at the regasification site which produces oxygen and nitrogen products. Oxygen can be sold domestically whilst nitrogen is transported back to the 
liquefaction site. 
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0 = 𝑄̇஼௏ + 𝑊̇஼௏ + ∑ 𝑚̇௜௡ ℎ௜௡ − ∑ 𝑚̇௢௨௧ ℎ௢௨௧  (1) 
 

Assumptions 
Liquefaction Values 
NG feed temperature 43C 
NG feed pressure 65 bar 
LNG outlet temperature -166C 
LNG outlet pressure 1.05 bar 
HX min approach temperature 100C 
Isentropic efficiency of compressor (C3 cycle) 78% 
Isentropic efficiency of compressor (MR cycle) 75% 
Isentropic efficiency of compressor (N2 cycle) 85% 
Isentropic efficiency of expander (N2 cycle) 
Mechanical efficiency 

85% 
90% 

Transportation  
Boil rate per day 0.15 %/vol  
Average transit time 18 days 
Regasification  
HX min approach temperature 100C 
Pump outlet pressure 88.8 bar 
Delivery temperature of NG 100C 
Air separation   
Air inlet temperature 300C 
N2 rich stream outlet temperature -1960C 
O2 rich stream outlet temperature -1910C 
LPC pressure 5.8 bar 
HPC pressure 1.3 bar 

Table 3: Table showing process design assumptions used in the 
modelling for each part of the supply chain within Aspen Plus V11. 
These assumptions are assumed across both standalone and integrated 
designs for fair comparison. 
 
Liquefaction 
Natural gas enters a liquefaction plant after being pre-
treated through the removal of  hydrogen sulphide, slug 
and mercury. Carbon dioxide, water and heavy 
hydrocarbons are also removed before the liquefaction 
process as these impurities can cause freezing issues. The 
AP-X process is known for being the liquefaction 
technology with the greatest production capacity. It is 
comprised of three cycles: a propane precooling cycle; a 
mixed refrigerant   liquefaction cycle and a nitrogen 
expansion cycle for subcooling. Ambient natural gas is 
precooled to -30°C before entering the mixed refrigerant 
loop. The phase change of propane at different pressures 
provides the cold energy to cool down the natural gas and 
mixed refrigerant. Once precooled the natural gas is heat 
exchanged with the cold mixed refrigerant stream via two 
heat exchangers until -110C. A Brayton gas expansion 
cycle utilising nitrogen is then used to enable subcooling 
of the natural gas to -166C before going to a flash 
separator to remove any boil off gases. The use of nitrogen 
improves efficiency and greatly increases capacity 
compared to its predecessor, the C3MR process. In 
addition, the use of nitrogen also reduces the required 
flowrates of the other refrigerants.  

The Qatargas 2 site has a production capacity of 
15.6Mtpa of LNG. Using a cost assumption of $482/tonne 
per annum of LNG[16]

, the capital expenditure to construct 
the site can be calculated. The operating cost for the 
liquefaction site can be calculated through summation of 

utility duty which includes cooling, heating and electricity. 
The industrial electricity costs in Qatar were reported to 
be 0.07 QAR/kWh[17]. Water and steam utility pricing was 
assumed to be 2.12 × 10-7$/kJ and 1.9 × 10-6 $/kJ 
respectively based on Aspen’s default energy pricing. 
Other significant costs considered included operation and 
maintenance costs which was assumed to have a yearly 
cost equal to 3% of total capital expenditure. Equation 2 
shows how the energy intensity of the process can be 
calculated through dividing the total energy consumption 
𝑇𝐸  by the mass flowrate of liquified natural gas 𝑚̇௅ேீ . 
Total energy consumption for the process is simulated by 
Aspen. 
 
𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ቂ୩୛୦

୲୐୒ୋ
ቃ = ்ா

௠̇ಽಿಸ
   (2) 

 
Using equation 3 the carbon intensity associated with the 
duty was calculated through using net equivalent mass of 
carbon dioxide emissions and the mass of LNG) involved. 
𝐸௜is the CO2 emission intensity of utility 𝑖, 𝑚̇௕௣is the net 
mass flowrate of by-product stream and 𝐸௕௣  is the CO2 
emission intensity of by-product stream. 
 
𝐶𝑎𝑟𝑏𝑜𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ቂ୲େ୓మୣ

୲୐୒ୋ
ቃ =

∑ ா೔ொ೔ାா್೛௠್̇೛

௠̇ಽಿಸ
          (3) 

 
The emission intensity of electricity generation in Qatar is 
reported to be 489.87g of CO2e/kWh[18] for gas generated 
electricity. Water and steam carbon emissions can be 
calculated using the carbon tracking function in Aspen. 
This function uses the recommended US-EPA-Rule which 
assumes natural gas as the fuel source and 8000 operating 
hours per year[19]. 
 
Transportation 
LNG is predominantly transported via oceanic shipping 
routes via large LNG carriers capable of withstanding the 
cryogenic temperatures of the product. The tanks on these 
carriers must be heavily insulated and capable of 
maintaining the LNG at -162°C to prevent unnecessary 
boil off gas. Most do this via onboard reliquefication 
systems which condenses the boil off gas back into LNG. 
The boil off gas can also be used as fuel to provide ship 
propulsion. The Q-Max and Q-Flex vessels used by 
QatarEnergy are membrane type LNG carriers capable of 
transporting up to 266,000m3 and do not use boil off gas 
as fuel to limit energy loss from transportation. These 
vessels can be modelled as large storage containers with a 
constant rate of boil off, which has been shown to be 
approximately 0.1-0.15% volume per day of the tank’s 
capacity[20]. The typical cost of one of these vessels is 
$1,500 per m3 to construct[21]. The average daily freight 
charge is assumed to be $112,000, based on industry 
averages, and a charge of $500,000 for passage through 
the Suez Canal. Other costs associated with operations 
were not considered for simplification. The average transit 
time between Qatar and the UK is 18 days[22]. The average 

183



` 

carbon intensity of these vessels arriving in the UK is 
reported to be 79 kgCO2/boe[23]. 
 
Regasification 
Upon arrival, LNG is pumped into a regasification plant 
where LNG is vapourised back into natural gas via heat 
exchange typically with sea water in an open rack 
vaporiser. In south hook, the regasification site of focus, 
sea water temperatures are too low for open rack 
vaporisers to be deployed. LNG throughput would need to 
be throttled significantly for effective heat transfer. 

Instead, submerged combustion vaporiser typically 
powered by natural gas is used to heat up a water bath that 
evaporates the LNG.  
Figure 2: Schematic showing  a standard regasification facility utilising 
submerged combustion vaporiser to convert LNG back into natural gas[24]. 
 

This results in roughly 1.5%[7] of the fuel being 
consumed during regasification. This stage of the process 
is also the point in which the natural gas is configured to 
the delivery specifications of the receiving country. In the 
case for the UK, natural gas outlet temperatures should be 
1-38C and must not exceed maximum operating 
pressures at the delivery point[25]. The capital expenditure 
for the site in south hook was reported to cost $1bn to 
construct[26]. Yearly operational and maintenance 
expenses can be estimated based on similar assumptions 
made for the liquefaction process. The cost of electricity 
utility is calculated to be $0.18/kWh assuming power to be 
generated on site using a gas turbine generator with a 49% 
thermal efficiency[27]. The average UK gas price in 2023 

is £0.07/kWh[28]. Carbon intensity associated with 
electricity consumption can be calculated using the UK’s 
grid emission factor in the manufacturing sector reported 
to be 0.21kg CO2e/kWh[29].   
 
Cryogenic air separation  
In a conventional cryogenic air separation unit, air is first 
compressed to the desired pressure before being purified 
of any dust, water and oxides that may cause freezing 
problems. The air stream is then cooled and separated to 
form an oxygen enriched stream and a nitrogen enriched 
stream. The oxygen rich stream then gets passed through 
an expander and fed into a low-pressure distillation 
column. The nitrogen rich stream is distilled in a high-
pressure distillation column and then flows into the low-
pressure distillation column to form a high purity nitrogen 
product stream. This process requires a large amount of 
energy to provide cooling to the gases which is 
approximately 0.55kWh/Nm3[30]. Having a source of cold 
energy to assist in this process would reduce energy 
intensity greatly but careful heat exchanger design is 
required. A balance between the minimum temperature to 
achieve a liquid nitrogen stream and sufficient subcooling 
is desired. This would enable efficient transfer of cold 
energy back to the liquefaction site without excessive 
cooling. A gaseous oxygen stream capable of supplying 
nearby industries is desired. The oxygen can be utilised by 
industry clusters via pipelines such as the ones found at 
Teesside, UK. 
 
Integrated regasification  
Using Aspen, the LNG liquefaction process is integrated 
with a conventional cryogenic air separation process to 
create an integrated regasification process seen in figure 3. 
By specifying the inlet and outlet temperature of the 
natural gas, the total cold energy available for air 
separation can be calculated. Using the desired outlet 
conditions of the nitrogen and oxygen streams, the 
maximum production capacity of the integrated 
regasification process is found. In this process, pre-
purified and filtered ambient air at 30°C is cooled using 
HX1 and HX2 before being separated into two streams 
enriched in oxygen and nitrogen. Two columns at high and  
low pressures are used to perform the separation, splitting 

Figure 3: Diagram showing the integrated regasification process of LNG coupled with a cryogenic air separation unit which utilise the cold energy of 
LNG to split air into nitrogen and oxygen product streams.  
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Figure 4: Diagram showing the integrated liquefaction of LNG utilising the liquid nitrogen produced in the integrated regasification process in the UK. 
The liquid nitrogen stream replaces the Brayton gas expansion cycle which enables the subcooling of natural gas. The liquid nitrogen stream also replaces 
the mixed refrigerant refrigeration cycle. 

the air into 3 streams: a nitrogen rich stream at -196°C; an 
oxygen rich stream at 15°C and a waste stream. In this 
configuration LNG is heated to 10°C using ambient air 
and some additional glycol water which has enhanced heat 
transfer properties. The liquid nitrogen is then transferred 
back onto the LNG carrier to be returned back to Qatar 
where the nitrogen can be harnessed to provide cooling to 
the natural gas.  

The estimated capital expenditure for equipment costs 
was calculated using the cost of process equipment 
reported on cost estimation websites and through quotes 
obtained from industrial suppliers. The equipment 
purchasing cost 𝐸𝑃𝐶  then needs to be scaled using 
equation 4 to account for other major costs associated with 
capital expenditure, such as material and engineering costs. 
Bejan, Tsatsaronis and Moran.[31] considered direct costs 
𝐷𝐶  and indirect costs 𝐼𝐶  as a function of equipment 
purchasing costs which yielded a Lang factor of 4.4. The 
utility costs and carbon intensity can be found in the same 
way as the standalone regasification and air separation 
process for comparison. Due to the cryogenic conditions 
required for the air separation, the cooling utility required 
to achieve extremely low temperatures was high and thus 
would result in high energy costs which Aspen V11 built 
in function calculated.  
 
𝐶𝐴𝑃𝐸𝑋($) = 𝐷𝐶 + 𝐼𝐶 ≈ 4.4𝐸𝑃𝐶   (4) 
 
Integrated liquefaction 
The AP-X process uses a mixed refrigerant loop to provide 
cooling of natural gas and a nitrogen expansion 
compression loop to provide subcooling. This requires 
immense amounts of energy to get the refrigerants to low 
enough temperatures to enable heat transfer. With the 
integrated liquefaction process liquid nitrogen can be 
delivered at -196C directly into the Ras Laffan site 
reducing the huge energy requirements. The replacement 
of the Brayton gas expansion cycle with a simple heat 
exchange process drastically decreases the energy 
requirements to cool the natural gas. The mixed refrigerant 
loop can also be replaced with a liquid nitrogen stream that 

is still sufficiently cold to enable the refrigeration of 

natural gas. Once utilised the nitrogen leaves the system at 
ambient conditions which can then be sold on to other 
industries. The estimated capital expenditure is calculated 
from the net elimination of process equipment from the 
standalone AP-X process. The sizing parameters of new 
equipment introduced was used to calculate the cost in the 
same manner stated in the integrated regasification design. 
The utility required for the system was simulated in Aspen 
and the corresponding costs was calculated using Qatari 
electricity tariffs of $0.019/kWh. The carbon intensity was 
also calculated based on the electricity used in the process 
using the report carbon intensity of gas generated 
electricity in Qatar[18]. 
 
Results and Discussion: 
Once the standalone and integrated supply chains were 
modelled and simulated on Aspen, the results were 
compared against one another to evaluate the benefits of 
the integrated system. Performance metrics were 
calculated for both systems, specifically focusing on 
energy consumption, cost of production and carbon 
emissions.  

Energy requirements of the integrated system were 
29.7% lower than the standalone processes which included 
the cryogenic air separation unit. Without accounting for 
the air separation unit in the baseline standalone process, 
the reduction in energy intensity from the integrate process 
would be 11.9%. The main source of decrease in energy 
consumption came from the replacement of the nitrogen 
subcooling loop in the traditional AP-X process, which 
contributed to 51.1% of total liquefaction energy 
consumption prior to integration. Analysis was conducted 
to evaluate the effect on energy intensity from the 
replacement of just the nitrogen subcooling loop, the 
subcooling loop plus the mixed refrigerant cooling loop as 
well as replacement of the whole AP-X process with liquid 
nitrogen as the cooling medium. The maximum cold 
energy available from the integrated regasification site 
could only replace fully the refrigeration and subcooling 
loops with the whole process needing 334.8 MW of cold 
energy.  

 
 

 
 

185



` 

Stream 𝑇 °C 𝑃 bar 𝑚̇ kg/s 𝑥 

LNG inlet -166 2.2 436.3 0.000 

LNG post HX 
with air -21.5 2.2 436.3 1.000 

NG outlet 10 2.2 436.3 1.000 

Air inlet 29.9 1.0 1450 1.000 

Air post 
compression 27 5.9 1450 1.000 

Air post HX 
with LNG -173.7 5.8 1450 1.000 

O2 rich into 
LPC -190.8 1.3 707.3 0.102 

O2 rich out of 
LPC -191.7 1.3 275.8 0.000 

O2 outlet 15 1.2 275.8 1.000 

N2 rich into 
HPC -173.7 5.8 486.5 1.000 

N2 rich out of 
HPC -193.4 1.3 486.5 0.999 

N2 rich out of 
LPC -191.7 1.3 800.2 1.000 

N2 outlet -196.0 1.0 800.2 0.000 

Table 4: Table showing key integrated regasification stream data. The 
table provides data on temperature 𝑇, pressure 𝑃, mass flowrate 𝑚̇ and 
vapour fraction 𝑥. 
 

Table 5: Table showing key integrated liquefaction stream data. The 
table provides data on temperature 𝑇, pressure 𝑃, mass flowrate 𝑚̇ and 
vapour fraction 𝑥. 

The cold energy available was also constrained by the 
number of shipping vessel available for the return journey 
back to Qatar. The new system should not exceed the 
current number of vessels arriving from Qatar into the UK 
as this would incur additional shipping costs and result in 
more complex transportation requirements. 

The biggest improvements in costs can be seen at the 
liquefaction site (figure 5) where capital expenditure 
decreased by 33.5% primarily due to the removal of the 
nitrogen subcooling loop which consisted of capital-
intensive compressors and expanders corresponding to an 
equipment purchasing cost of $562 million. Annual 
operating costs for the liquefaction process was calculated 
to be 36.1% lower compared to the conventional AP-X 
process primarily due to the decrease in utility costs which 
is composed of steam, water and electricity. The total cost  
of electricity decreased by 36.8% due to needing less 
electricity to drive the compressors and expanders for the 
cooling of nitrogen. The decrease in electricity 

consumption also resulted in a decrease in carbon 
emissions which was calculated to be 25.6% lower than 
the AP-X process. Tables 4 and 5 below summarise the 
operating conditions for the integrated design on both the 
regasification and liquefaction side. The key performance  
metrics is summarised in table 6 and shown side by side 
for the standalone and integrated process. The standalone 
process considers the addition of an air separation unit at 
the regasification site as the baseline for comparison.  
 

Key metrics Standalone Integrated 

Capex ($bn) 10.93 7.66 

Opex ($bn) 1.42 1.13 

Carbon intensity (tCO2/tLNG) 1.127 0.781 

Energy intensity (kWh/tLNG) 2205 1550 
Table 6: Table comparing the key performance metrics between the 
standalone current LNG supply chain and the integrated supply chain. 

Stream 𝑇 °C 𝑃 bar 𝑚̇ kg/s 𝑥 

NG inlet 43.0 65.0 448.5 1.000 
NG post 

precooling -33.2 65.0 448.5 0.996 
NG post 

refrigeration -111 65.0 448.5 0.000 
NG post 

subcooling -166.0 4.5 448.5 0.000 

LNG outlet -165.9 1.1 448.5 0.000 

N2 inlet -195.8 1.0 772.0 0.000 
N2 post 

subcooling -195.7 1.0 772.0 0.547 
N2 post 

refrigeration -33.6 1.0 772.0 1.000 

N2 outlet 15 1.0 772.0 1.000 
Propane into 
precooling 17.6 7.9 4000 0.110 

Propane into 
HX2 6.8 5.8 400 0.078 

Propane into 
HX3 -17.2 2.7 160 0.149 

Propane post 
precooling -26.2 1.3 72 1.000 

Figure 5: Graph showing changes in capital and expenditure, carbon 
intensity and energy intensity between the integrated and standalone 
process for the liquefaction process. 
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Figure 6: Graph showing changes in capital and expenditure, carbon 
intensity and energy intensity between the integrated and standalone 
process for the regasification process. 
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Opportunities in O2 and N2 
Once the cold energy has been extracted during the 
liquefaction process, ambient nitrogen is then available to 
be sold as a feedstock at >99.95% purity into a wide 
variety of industries. The fertiliser industry is a huge buyer 
of nitrogen gas for the Haber-Bosch process which 
produces ammonia. Ammonia is then used to make 
ammonium nitrate; the most common fertiliser used in 
industry and contains roughly 33.5% nitrogen[32]. Upon 
analysing the prices of nitrogen feedstock into various 
industries, it was determined the most economical option 
was to sell into the fertiliser industry. Currently, prices for 
ammonium nitrate have averaged around £360 per ton[33] 
and demand for the product is expected to grow by 3.6% 
over the next 10 years[34]. The average prices of nitrogen 
purchased by each industry was calculated and shown in 
table 6. With the capacity of the integrated regasification 
process in mind, the expected additional annual income is 
found to by $230m. Due to the location of Qatar, flexible 
delivery into the market with the most opportunities is 
easily adaptable.  
 

Industry Price 
Fertiliser $9.4/tonne 

Mining  $6.5/tonne[35] 

Electronics manufacturing $5.2/tonne[36] 

Table 7: Table showing different purchasing prices for various industries 
for >99.95% purity of nitrogen per tonne. 
 

In addition, the production of high purity oxygen is 
also an exciting opportunity. Oxygen can enable oxy-fuel 
combustion which eliminates the need for expensive 
amine scrubbing units used to remove CO2 from flue gas. 
For perspective, a 1.4GW air-fuelled coal fired power 
plant can expect to pay upwards of $50/tonne CO2 
captured using amine scrubbing[37]. Oxy-fuel combustion 
produces flue gas, consisting of CO2 and water, reducing 
SOx and NOx emissions due to removal of pollutants and 
nitrogen in the gas feed. With oxy-fuel combustion, CO2 
produced during combustion can be easily separated from 
water and captured for CCS processes, decreasing capital 
expenditure for post combustion capture. Current oxy-fuel 
CCGT demonstrates power plant efficiencies up to 55% at 
a turbine inlet temperature of 1625K[38]. Combustion can 
also occur at higher temperatures netting a higher thermal 
efficiency. Based on the research conducted by Nakaiwa 
et al., 1996 it has been shown that the efficiency 
improvements of oxy-fuel combustion in a natural gas 
CCGT increase by 1 percent per 36.6K increase in 
temperature. A decrease in CO2 exhaust emission of 0.054% 
per Kelvin increase[12] can also be expected. To reach 
similar power plant efficiencies of current air fuelled 
CCGT (up to 62.2%[39]), turbine inlet temperature will 
need to be raised to 1888K which would net a 14.2% 
decrease in CO2 exhaust emissions.  

Another industry of interest is the cement industry, 
which accounts for 7% of global emissions. By utilizing 
oxy-fuel combustion they can reduce CO2 emissions, 
supporting efforts to decarbonise the heavily polluting 

industry. Current high purity oxygen market prices range 
from £25-£40 per tonne[40], expecting $353m in additional 
income generated per year through the sale of oxygen gas. 
 
Sensitivity analysis 
In the base case only the nitrogen subcooling loop in the 
liquefaction process was replaced. This would use only 
75.5% of the produced nitrogen from the integrated 
regasification site. Operating expenditure and carbon 
intensity was sensitised by the amount of LIN flowing into 
the liquefaction plant and replacing the mixed refrigerant 
loop as shown in figure 7. The operating expenditure is 
directly related to the cost of utility and therefore the 
amount of energy needed to cool down the natural gas. The 
graph shows the sensitivity analysis for varying LIN 
flowrates. With full utilisation of LIN at 797kg/s which is 
the maximum carrying capacity of the LNG vessels over a 
year, assuming 131 ships. Below 772kg/s there is a cross 
over in temperature within the heat exchangers therefore 
this range was not considered. 

Figure 7: Graph showing changes in operating expenditure (left) and 
carbon intensity (right) at various liquid nitrogen flowrates. 
 
Carbon dioxide reduction 
Net carbon intensity for the integrated supply chain was 
30% lower compared to the current supply chain. Even 
after considering the addition of an air separation unit. The 
transfer of cold energy back to the liquefaction site 
resulted in a decreased of 35% in carbon emissions from 
the liquefaction process, the most emissions intensive part 
of the supply chain. This reaffirms the hypothesis that the 
energy and emissions improvement through integration 
can not only be realised at the regasification site like most 
studies focus on, but also at the liquefaction site. 
 
Conclusion 
The integrated system shows a 29.1% decrease in capital 
expenditure, 20.1% in operating expenditure, 29.7% 
energy consumption as well as 30.8% in carbon emissions 
which were the main criteria when assessing the feasibility 
of the new design. Through implementation of this 
integrated design, additional value can be extracted from 
the cold energy of LNG whilst reducing the effects on the 
environment. The integration is easily adaptable from 
current industry processes due to the simplicity of the 
design and the implementation of an air separation unit can 
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be justified when the regasification site is located nearby 
heavily polluting industries that could take advantage of 
the oxygen produced. The integrated design will have a 
total capital expenditure of $7.66bn. Employee, utility and 
material cost is estimated to be $1.31bn per annum. 
Additional income generated from the sale of nitrogen and 
oxygen stands at $583m per annum. Using a conservative 
estimate for the price of LNG at $3.5/MMBtu the cost of 
investment can be recuperated after 4 years of operation 
from implementing this new design. It has been shown that 
through integration of the supply chain, greater energy 
efficiencies can be achieved leading to notable cost 
savings. 
 
Outlook 
Additional considerations need to be investigated further 
regarding the use of current LNG vessel to contain LIN 
instead. New vessels may need to be developed and the 
cost associated with these new builds need to be 
considered. A possible implementation of this new supply 
chain is in the Teesside net zero cluster as it is nearby 
industries that could benefit from the products produced at 
the integrated regasification site. However, Q-type LNG 
vessels are notoriously large and sufficient berthing depth 
at Teesside may not be available to enable delivery of 
LNG and other alternatives such as offshore floating 
regasification terminals could be explored.  

In addition, implementation of oxy-fuel combustion in 
CCGT is constrained a 55% thermal efficiency due to 
materials used in construction. Until better materials are 
developed that can operate at the upper temperature limits 
of oxy-fuel combustion, the efficiency gains offered may 
not be realised.  

Whilst the integrated process offers carbon emissions 
reduction of 30% the emissions from the return journey 
and additional journeys to deliver products as well as to 
construct infrastructure may lower this saving 
significantly. Further analysis is required for specific use 
cases to justify the implementation of the new design.  

As prices for deployment of renewable energy surges 
due to supply constraints, inefficient government policies 
and geopolitical tension, demand for natural gas in the 
medium term will increase. Since the invasion of Ukraine, 
OECD nations are looking toward the US and Middle East 
for natural gas alternatives which cannot be delivered by 
pipeline therefore the need to an efficient LNG supply 
chain will become even more important. 
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Abstract mRNA vaccines and therapies such as COVID-19 vaccines demonstrate significant potential in treating 
and preventing diseases. Lipid Nanoparticles (LNP) are crucial for encapsulating, protecting, and facilitating the 
endosomal escape and release of mRNA. Within the LNP, the most important ingredient is the ionizable lipid 
which has a major impact on delivery. This study utilised machine learning to optimize LNP design, focusing on 
ionizable lipid features. Delivery was quantified using the transfection efficiency metric. Having reviewed over 
35 research papers, 439 data points were collected, encompassing 291 LNP formulations and 208 unique ionizable 
structures. These were categorized into in vivo, in vitro, and specific cell and organ type datasets. A Random 
Forest model, developed using these categorized datasets, identified crucial ionizable lipid features affecting 
transfection efficiency, notably 'Tail Length', 'Unsaturated', and 'Number of Tails', aligning with existing literature. 
This coherence indicates the model's potential in capturing essential characteristics of ionizable lipids. However, 
there existed discrepancies, primarily due to data limitations. This suggested the need for a more robust dataset to 
enhance predictive accuracy. The inclusion of additional LNP features like pKa and relative abundance further 
demonstrates the potential for a more comprehensive analysis. The study's trajectory points towards the creation 
of a more extensive dataset and refinement of the predictive model, highlighting the potential of machine learning 
in advancing ionizable lipid-based delivery systems.  
Keyword – Drug Delivery, Lipid Nanoparticles, Ionizable Lipid, Machine Learning, Random Forest, Modelling   
 
1 Introduction and Background 
 
The success of the Pfizer-BioNTech and Moderna 
COVID-19 vaccines showed the great potential and 
crucial role of RNA-based therapeutics in the 
prevention and treatment of future diseases. 
However, the cytosolic delivery of the active 
ingredients remains a serious challenge. Genetic 
material is fragile and can be easily broken down 
before reaching the target cell. 

Nanoparticle-based drug delivery systems 
have emerged as a method of encapsulating RNA 
therapeutics and enabling efficient delivery to target 
cells.  In 2018, ONPATTRO (Patisiran) became the 
first small interfering RNA-based therapeutic to be 
approved by the U.S. Food and Drug Administration 
(FDA).[1] To date, three more medications have 
followed: Givosiran, Lumasiran, and Inclisiran.[2] - 
all of which have been designated by the FDA as 
First-in-Class Medication. 
 However, with new global challenges 
emerging, acceleration in the development of this 
technology is crucial for the success of upcoming 
pharmaceuticals.  

Ionizable Lipid Nanoparticles (LNPs) are a 
pH responsive nanoparticle technology. LNPs 
structure consists of four main ingredients: 
Phospholipid, Cholesterol, PEGylated lipid, and 
arguably most important: Ionizable lipid. Whilst the 
other components offer many structural and 
mechanical advantages[1], the ionizable lipid plays a 
key role in ensuring successful transfection of the 
genetic payload. After endocytosis, the ionizable 

lipid facilitates the release of the cargo from the 
endosome into the cytosol - a process commonly 
known as endosomal escape.[3],[4],[5] 

In recent years, many ionizable lipids have 
been experimented with, resulting in a vast amount 
of literature detailing ionizable lipid structures and 
their transfection success rates. Currently, laborious 
synthesis techniques are used to generate ionizable 
lipids. Whilst combinatorial chemistry may offer a 
way of rapidly producing ionizable lipid libraries[6], 
the synthesis process for many ionizable lipids 
remains time consuming and costly. With so much 
literature in this area, there is potential for 
computational methods to aid in the development of 
successful ionizable lipids. 

There exist previous works that explore the 
possibility of applying machine learning algorithms 
such as lightGBM and artificial neural networks to 
build a prediction model on the Lipid Nanoparticle 
(LNP) performance.[7],[8] Moreover, some looked 
into the ionizable lipids’ feature importance score 
and identified that the “outside carbons” which is 
number of carbons in tails, as the important feature 
when it comes to designing ionizable lipid.[8] 

This study investigated the most critical 
attributes of ionizable lipid design based on relevant 
literature. Distinct datasets were formulated 
containing the ionizable lipids and there 
corresponding efficacy. In addition, other datasets 
containing LNP properties were formulated, and the 
development of a predictive model was attempted. 
Figure 1 shows the workflow of the process. 

190



 

 2 

 
Figure 1. The workflow of the predictive model building process 

 
2 Materials and Methods 
 
2.1 Software  
 
Python 3.9 (64-bit) was used throughout this project 
for all data processing and modelling purposes. The 
scikit-learn package was used to develop and 
validate machine learning models. The graphical 
analyser WebPlotDigitizer-4.6 was used to 
interpolate data reported in graphics. 

 
2.2 Data selection from available literature 
 
Data was collected from articles using PubMed, 
Google Scholar data base. To be considered for this 
study they satisfy the following criteria: 
1. mRNA/siRNA payload delivered by LNPs 

containing the ionizable lipid. 
2. All LNPs contain ionizable lipid, PEGylated 

lipid, phospholipid, and cholesterol. 
3. The structure of the ionizable lipid is reported 

in graphics. 
4. The paper compared the ionizable lipid to an 

appropriate benchmark (commercially 
available ionizable lipid). 

5. Study reported results on LNP efficacy in either 
text or graphics. 

The above aspects were either reported in the main 
text, citations or supplementary materials of the 
article. 
 
2.3 Data preprocessing 
 
2.3.1 Identification of input variables 
Through literature review, data on several different 
ionizable lipid and LNP features were gathered. For 
the ionizable lipid this consisted of areas such as 
structural classes, size, and functional groups. 
Features were created based on already established 
ideas in literature such as biodegradable or branched 
tails. For LNPs, features such as the composition of 

different ingredients and pKa were collected, as well 
as other parameters such as the loading degree (N/P). 
 
For the sake of this preliminary investigation, a 
feature would only be implemented into the model 
if a significant number of sources containing the 
feature were found. The criterion of at least ten 
sources was decided using engineering judgement.  
 The following ionizable features are 
defined the following way: 
1. “Tail Length” number of carbons in the tail. If 

the tails are identical use one of them otherwise 
use the longer tail.  

2. “Biodegradable” means a lipid that contains 
ester bond. 

 After the final features were established, 
any incomplete datapoints with missing features 
were removed from the dataset. 
 
2.3.2 Transfection efficiency standardization 
Transfection efficiency is defined as a measure of 
the successful delivery and expression of genetic 
material into cells. It is a very important metric for 
quantification of the LNPs performance. Due to ease 
of visualization, most papers report delivering 
mRNA for Fluorescent Proteins and observe the 
level of luminescence. Hence this is selected as the 
indication of transfection efficiency in this research. 
However, it is acknowledged that different groups’ 
work under different laboratories can bring 
significant variance even for the same type of 
experiment. So, to prepare the data for comparison 
standardisation was a compulsory step.  
 The following equations were used to 
calculate the Relative Performance (RP) depending 
on the payload investigated:  
 

RP (mRNA) =
Transfection efficiency of the LNP
Benchmark transfection efficiency

(1) 

RP (siRNA) =
Benchmark Transfection Efficiency
Transfection efficiency of the LNP

(2) 
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The ‘benchmarks’ in Equation (1) and (2) above are 
usually the commercially available ionizable lipids 
reported such as MC3, SM-102, ALC-0315, etc. The 
performance of LNP were then classified to 
“GOOD”, “MEDIUM”, “BAD” within each paper 
according to their RP score. [9],[10],[11],[12] 
 
 
2.4 Principle Component Analysis (PCA) of the 

dataset 
 
PCA was conducted on both In vitro and In vivo 
datasets using the Scikit-Learn package in Python. 
 
2.5 Machine Learning Modelling  
 
2.5.1 Random Forest 
Random Forest models were built from Scikit-Learn 
package in python. sk.learn_model_selection was 
used to split the data into a training and validation 
set of ratio 80:20. 
 
2.5.2 Performance Metrics 
The following metrics were used to assess the model: 
 
Confusion matrix:  
∀𝐶𝑙𝑎𝑠𝑠𝑒𝑠 "1", "2", "3": 

൥
1 predicted as 1 1 predicted as 2 1 predicted as 3
2 predicted as 1 2 predicted as 2 2 predicted as 3
3 predicted as 1 3 predicted as 2 3 predicted as 3

൩ 

  
This was used to calculate the Accuracy, shown in 
Equation (2), and the Mean Square Error, shown in 
Equation (3). 
 
Accuracy: 

Accuracy =
No. of accurate predictions

No. of data points in testing set
(2) 

 
MSE: 

MSE =
1
n

෍൫Y୧ − Y෡୧ ൯
ଶ 

୬

୧ୀଵ

(3) 

Where: 
n is the number of data point; 
Y୧ is the observed value; 
Yన෡  is the predicted value. 
 
Cross-validation (CV) was performed, and the 
average CV score was calculated using Equation (4). 
5 validations were used for all models. Furthermore, 
the feature importance was calculated using 
Equation (5). This was done to mitigate the impact 
of anomalies on the model's performance. Then an 
Average of CV score was calculated to be used as 
the final accuracy for the model, shown in Equation 
(4): 
 
 
 

Average CV score: 

Average CV score =
∑CV scores

Number of validations
(4) 

 
Equation (5) was used to calculate the feature 
importance in the Random Forest model: 
 
Feature Importance[13]: 

f୧౟ =
∑ n୧ౠ୨:୬୭ୢୣ ୨ ୱ୮୪୧୲ୱ ୭୬ ୤ୣୟ୲୳୰ୣ ୧

∑ n୧ౡ୩∈ୟ୪୪ ୬୭ୢୣୱ
(5) 

 
3 Results 
 
3.1 Features 
 
The following Figure 2 and Figure 3 showed all of the 
ionizable features and LNP features considered and 
implemented. 
 

 
Figure 2. Considered and implemented ionizable features 

 
Figure 3. Considered and implemented LNP features 

 
 
The following tree diagram Figure 4 shows the 
features established after literature review: 
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Figure 4. Tree Diagram of output categories 

 
3.2 Overview of dataset 
 
There were in total 439 data points collected from 
literature which included 291 different LNP 
formulations Among these LNPs, 208 distinct 
ionizable lipid structures were covered. And the 
distribution of these data is shown in Figure 5

 

 
Figure 5. Overview of dataset statistics for (A) Ionizable lipid feature present; (B) Tail Length; (C) Payload; (D) Number of tails 

 
3.3 PCA results 
 

  
Figure 6. Principal Component Analysis of  (A) In vitro Features. Principal Component 1 (PC1) and Principal Component 2 (PC2) 

accounted for 44% and 21% of total variance, respectively; (B) In vivo Features. Principal Component 1 (PC1) and Principal Component 
2 (PC2) accounted for 71% and 18% of total variance, respectively. 
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3.4 Modelling 
 
3.4.1 Ionizable Lipid Features 
 

 
Figure 7. Feature importance scores for: (A) in vivo overall; (B) in vivo spleen; (C) in vivo liver; (D) in vitro HepG2 

 
Table 1. Accuracies and ranges of validity of Random Forest model trained with ionizable lipid features data 

 
3.4.2 LNP Feature 
 

Table 2. Accuracies and ranges of validity of Random Forest model trained with LNP feature data 

 
 

Models Data point Accuracy 
Range of Validity 

Tail Length Multi-tails 

In vivo (Overall) 70 0.5429 9 - 31 2 - 5 

In vivo (Liver) 101 0.5648 6-25 2 - 5 

In vivo (Spleen) 76 0.5000 6-31 2 - 5 

In vitro (Overall) 192 0.2960 6 - 18 2 - 6 

In vitro (HepG2) 68 0.6011 12-17 4 - 6 

Models Data 
point Accuracy 

Range of Validity 

pKa PEG % Phospholipid % Ionizable 
Lipid % 

Cholesterol % 

In vitro 
(Overall) 

60 0.4333 4.60 - 9.18 1 - 3 8 - 56.5 16 - 61 6 - 60 

In vivo 
(Overall) 

54 0.5182 5.83 - 9.18 1.1 - 2.5 8 - 46.5 35 - 55 10.9 - 38.5 

In vivo 
(Liver) 

62 0.5269 5.4 - 9.18 1.1 - 2.5 8 - 46.5 35 - 55 10.9 - 38.5 

In vivo 
(Spleen) 

55 0.5636 4.4 - 7.25 1.5 - 2.5 10 - 32.8 40 - 54.6 11 - 42.67 

194



 

 6 

4 Discussion 
 
4.1 Input features 
 
Many of the features chosen resemble those 
associated with clinically approved lipids Dlin-
MC3-DMA, ALC-0315, and SM-102. This included 
unsaturated, branched, and biodegradable tails.[14] 
Furthermore, the multi-tail feature associated with 
commercial lipids such as C12-200 was captured 
through the Number of Tails feature. Amongst the 
ionizable lipids collected, the number of tails varied 
from 2-6. To capture this variety, the feature was 
treated as continuous. Due to lack of available data, 
polymeric tails were not included in the model. 

Numerous studies have investigated 
optimisation of the tail length for delivery. [15],[16],[17] 
Many trends have been hypothesized in the literature 
and this was investigated by accounting for the tail 
length as a feature.  

Piperazine was chosen due to its ability of 
stabilising the LNP and as well as improving the 
transfection efficiency mainly by enhancing cellular 
uptake and endosomal escape.[18] This means a more 
efficient release of drug encapsulated within the 
LNP.  

Hydroxyl groups on the tail chosen due to its 
association with increased transfection. Previous 
studies have shown the promotion of hydrogen 
bonding can enhance ionizable lipid performance.[19] 
Many other functional groups were considered such 
as hydroxyl in the head group, however lack of 
availability of lipids containing these groups led to 
them not being included in the modelling section. 

Regarding the LNP properties, relative 
abundance of its ingredients is included as an 
attempt to optimise composition. pKa is commonly 
cited as one of the determining factors of 
transfection.[20] To account for variability due to the 
wide range of ionizable lipids in the dataset, it was 
included in the LNP model. 

Many other features were considered during 
literature review. Despite loading degree (N/P) and 
mRNA/LNP ratio being an important parameter [21], 
the lack of availability of this data meant it was not 
sensible to be included for modelling.  
 
 
4.2 PCA 
 
The principal component analysis was the first step 
in the modelling process. It provided an opportunity 
to get a good visualization of the different features 
reduced to two dimensions. Figure 6 depicts the PCA 
and shows clear sparsity in the dataset. Clusters of 
the same colour are not distinguishable based on this 
visualisation. 
 
 
 

4.3 Model selection  
 
When approaching the modelling, the sparse result 
from the PCA suggests a linear regression tool such 
as partial least squares regression would not be the 
most suitable.[22] 
 Due to the use of both discrete and 
continuous inputs and outputs, a classification 
model was implemented. Given the sparsity of the 
dataset, a Decision Tree would likely to overfit. In 
such dispersed dataset Decision Tree might capture 
the noise and outliers and hence lead to poor model 
accuracy. Hence, a random forest was the most 
suitable model to use. 
 
4.4 Random Forest 
 
 As Table 1 and Table 2 shows, the accuracy 
of the in vivo Random Forest models ranges from 
50-60%. This shows moderate reliability when used 
as a predictive tool. This is likely due to the 
dispersity of the training dataset observed earlier in 
the PCA. Data are collected for several types of cells 
such as HEK, HeLa and HepG2, as well as both 
payload: mRNA and siRNA. This is depicted in  
Figure 5 (C). 

 Whilst the in vitro model gave a very low 
accuracy, when looking at the specific cell type 
HepG2, the model accuracy increased more than 
two-fold. This shows that cell type has big impact on 
the output of the model and hence in vitro model 
should be based on the same type of cell. This leads 
a clear pathway of further improvement of the model 
accuracy via data collection.  
 
4.4.1 Ionizable Lipid Models 
 
From the feature importance graphs in Figure 7 it can 
be seen that “Tail Length” is the critical feature 
across the three in vivo model. According to 
literature the rule of thumb when designing an 
ionizable lipid is with a small head group and a big 
tail group.[7] According to another study using 
similar approach it is found that the “Tail Length” 
has the highest importance score.[8] 
 It is also reported that drugs containing 
piperazine derived structure are mainly metabolised 
in liver,[24] which can be substantiated from Figure 
7(c) that according to our model the importance 
score of piperazine is higher than that in the spleen.  

If taking a closer look at Figure 7 (A) it is 
found that apart from “Tail Length”, the other most 
important features in order are branched and 
unsaturated tails which are in line with the common 
features of commercialised LNPs and even FDA 
approved ionizable lipids such as MC3 (unsaturated), 
ALC-3015 (branched) and SM-102 (branched).  
 Furthermore, the in vivo models show that 
biodegradable ionizable lipids has relative low 
importance score across the three models given that 
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there is a good split of 121 to 170 data it can be 
concluded from the model that biodegradability (i.e., 
ester bond) doesn’t have an as great impact on the 
transfection efficiency. This prediction is also in line 
with literature reporting an ester bond is more 
readily hydrolyzed in vivo and hence would be more 
likely to break down which affects the delivery 
efficiency.[25] The primary role of the biodegradable 
lipid is to improve clearance and reduce cytotoxicity 
of the LNP.[14] 
 For in spleen Figure 7 (B). The model 
showed that “Tail Length” is dominantly the most 
important feature followed by “No. of tails” all the 
other data shows less than 0.1 importance score. 
However, there are quite limited amount of data on 
the short tail ionizable lipid (number of carbons < 9) 
so the reliability of the importance score can 
potentially be improved by collecting data 
selectively on more short tailed ionizable lipids.  

When viewing Figure 7(C) and Figure 7(D), it 
is shown that there isn’t comparability between the 
in vivo and in vitro model by comparison between 
liver and HepG2 (cell line that is often used to 
replicate the in vivo liver activities). Noticeably the 
data used for HepG2 are LNPs loaded with siRNA 
while for in vivo liver data the LNPs are loaded with 
mRNA. This might explain the discrepancies 
between the two sets of data. 
 At this stage, due to the limitations and 
biases present in the dataset, it would not be possible 
to comment on the comparability of the HepG2 cells 
and in vivo liver experiments. Notice that there are 
very little data on branched tail for in vivo liver and 
HepG2 cells, which is the leading cause of 0 
importance score for those two graphs Figure 6 (C)(D). 
The accuracy and reliability of these two models can 
potentially be further improved by collecting data on 
branched tail ionizable lipids and other features. 
 
4.4.2 LNP Models 
 
Table 1 shows the results of evaluate LNP properties, 
despite differences in ionizable lipids. It shows a 
certain level of correlation between pKa, relative 
abundances and the transfection performance of the 
LNP as a whole. This was driven by the recognition 
that LNP performance is a result of a complex 
interplay of various factors. The observed 
correlation between features highlights the role of 
LNP features such as relative abundances and pKa 
play alongside ionizable lipids. This approach 
enriches our understanding of LNPs, demonstrating 
that while ionizable lipids are crucial, there is also 
potential for optimising LNP composition. This 
underscores the importance of considering all 
aspects of LNP design for optimal performance. 
  
 
 
 

4.4.3 Limitations and Recommendations 
The primary limitation identified in this study is the 
constrained scope of our dataset. To enhance the 
robustness and performance of our model, 
particularly for in vivo liver and in vitro HepG2 
analysis, it is recommended to target data collection 
to fill existing gaps. Specifically, there's a notable 
deficiency in data regarding branched tail ionizable 
lipids. Proactively acquiring this data could 
significantly enrich our dataset, leading to more 
comprehensive insights and potentially improved 
model accuracy. 

Moreover, the method used to standardise 
the transfection data as discussed in 2.3.2 can be 
further improved by comparing the transfection 
efficiency between the benchmark lipids. The in vivo 
transfection data of all the common benchmarks 
including MC3, SM-102, ALC-0315 and cKK-E12 
were reported in a paper[23] and hence can be used as 
a base of comparison to re-calculate the relative 
transfection efficiency of all the lipids across papers. 
 One of the other limitations of this study is 
the sole reliance on the Random Forest model, 
without exploring alternative machine learning 
algorithms. When sufficient data is gathered, it is 
beneficial to compare the results of multiple models, 
such as lightGBM and artificial neural networks.  
Also, the scikit-learn package was treated as a 
“black box” which limits our insight into how the 
decision-making process was carried out by the 
model. 
 It should be noted that the model was built 
based on the assumption that the features of LNPs 
were not significant to the output. From Table 2, the 
LNP features did affect the output, and in future 
study it will be necessary to compare the results 
obtained from the ionizable lipid model against the 
same LNP features (e.g. relative abundance) across 
the experiments for a more accurate model.  
 The gaps in the dataset limited the number 
of features used in the models. Of the 20 features 
considered only 9 were implemented into the 
modelling stage due to the lack of available data. 
The subsequent dataset represents some of the most 
relevant ionizable lipid designs in the field however 
less mainstream and more niche features are not 
accounted for. Further features to include may be 
more to do with size – accounting for both the head 
and tail. This could be incorporated as a head to tail 
ratio, and an overall lipid size parameter such as 
molecular weight or carbon number.[6] 
 The enhancement of our dataset with more 
comprehensive and representative data could 
significantly advance our modelling efforts. A 
refined model, encompassing a broader array of 
ionizable lipid and LNP features, has the potential to 
uncover deeper correlations among these variables. 
Such an enriched model is expected to not only 
provide a more nuanced understanding of the 
underlying mechanisms but also markedly improve 
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our predictive capabilities in the realm of LNP-
based delivery systems.  
 

 
5 Conclusions and Outlook 
 
This study, through the establishment of a Random 
Forest model, reinforced the significance of 'Tail 
Length' as the paramount feature, which align with 
existing research. Branched tails and unsaturated 
tails are identified as secondary yet crucial features. 
The current model, while demonstrating moderate 
accuracy in predicting LNP transfection 
performance, aligns well with established literature 
in terms of feature importance.  
 This coherence suggests that the model has 
successfully captured key aspects of ionizable lipid 
characteristics. The discrepancies observed, 
primarily attributed to data limitations, highlight the 
potential for enhanced predictive accuracy with a 
more robust dataset. Thus, this study underscores the 
viability of machine learning approaches in this 
domain and indicates that refining the model and 
enriching the dataset could significantly advance our 
predictive capabilities in ionizable lipid-based 
delivery systems.  
 LNP models, incorporating additional 
characteristics, such as pKa and relative abundance, 
demonstrated the potential for a more holistic 
analysis. The future trajectory of this research 
involves creating a more robust dataset and refining 
the predictive model. This approach holds promise 
as a preliminary screening tool for designing new 
ionizable lipids, as detailed in section 4.4.3. 
Implementing these recommendations could 
significantly improve our understanding and 
application of machine learning in LNP-based 
delivery systems. 
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oligonucleotide structure on gel mobility 
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Abstract  
Polyacrylamide gel electrophoresis (PAGE) is a common laboratory technique, favoured for its straightforward operation, 
used to analyse and separate oligonucleotides, with the variation in gel mobility that distinguishes samples from one 
another depending on the size – or steric bulk – of molecules. However, it is often the case where oligonucleotides 
hybridise in unexpected manners, leading to a wide range of possible 3D structures. As a result, there remains a degree 
of ambiguity when interpreting PAGE results. In order to quantify structural effects on gel mobility, oligonucleotides 
were purposefully manipulated with the hybridisation between single-stranded DNA (ssDNA) to form double-stranded 
DNA (dsDNA) studied. The two main structures explored were branched and looped oligonucleotides, with decreases in 
gel mobility observed as the branched overhang length and loop circumference increased. Next, this study investigated 
the impact of multiple poly(A) strands binding to a single complementary poly(dT) by increasing the proportion of 
poly(A) to poly(dT), as well as increasing adenine content within the poly(A): both changes resulted in an exponential 
reduction in gel mobility as multi-strand formation is favoured. Ultimately, this study’s data demonstrates that steric bulk 
arising from non-linearities in structures has the greatest effect on gel migration compared to molecular weight, which 
was negligible. This study thus lays the groundwork for future studies exploring the impact of complex oligonucleotide 
structures on gel mobility. 
 
Keywords: DNA hybridisation, Gel Mobility, PAGE, Secondary Structures, Steric Bulk 
 

1. Introduction  
1.1 Background 

The SARS-Cov2 pandemic triggered a record-breaking 
speed in the history of RNA and DNA drug 
development, prompting the advancement of analytical 
technologies such as electrochemical biosensors to 
quickly determine features of interest such as sample 
size and structure [1]. However, these technologies are 
relatively nascent, presenting issues such as extensive 
sample processing steps and limited appropriate target 
analytes [1]. As such, more traditional techniques such 
as polyacrylamide gel electrophoresis (PAGE), which 
can be conducted in the majority of biochemistry 
laboratories, are still relied upon. 
 
PAGE is a widely-used laboratory technique to separate 
biological macromolecules, including proteins and 
oligonucleotides, in an electric field. Oligonucleotides - 
short single- or double-stranded DNA or RNA 
molecules – have a negatively charged phosphate 
backbone, thus they will be attracted to and migrate to 
the positively charged anode placed at the bottom of the 
gel [2]:  
 

 
Figure 1 from [3]: Schematic of a PAGE protein 
separation 
 
It is understood gels act as a size-selective sieve, that the 
rate of gel migration is a combination of characteristics 
of the electrophoresis system and the sample analyte, 
including the size and conformation of the nucleotide 
sample, concentration of the gel (i.e., size and density of 
the gel) and strength of the electric field [3]. As a result, 
the finished gel will present bands at varying heights. Of 
all the contributing factors above, the ‘size’ of the 
sample is the most ambiguous term and is hardest to 
quantify, as this is not merely the length of the 
oligonucleotide, which may present different spatial 
orientations.  
 
The exact mechanism by which DNA fragments migrate 
through the gel is still up to debate, with the “biased 
reptation” model developed by Noolandi et al. currently 
prevailing.  In free solutions, the mobility of DNA 𝜇଴ is 
size-independent, however, electrophoretic gels reduce 
DNA mobility by decreasing the volume available 
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during migration [4]. To understand the model, two 
characteristic dimensions for DNA are needed: the 
contour length 𝐿, which for DNA is equal to the number 
of the bases in the chain times the distance per base, and 
the persistence length 𝑝 describing the bending stiffness 
of DNA [5]. Linear DNA fragments of negligible width 
and length smaller than the average gel pore size 𝑎ത act 
as a rod that can enter all pores and mobility as if 
unaffected by the gel. 
 
For 𝐿 > 𝑝, the fragment folds on itself and assumes a 
globular shape with radius of gyration 𝑅௚, with 
migration only occurring if enough pores with radius 
𝑎 ≥ 𝑅௚ exist. For globular fragments, separation occurs 
via a sieving-like process and is described by the Ogston 
model [6]. For 𝑅௚ ≫ 𝑎ത, the Ogston model predicts 
dramatically reduced gel mobility. However, this is not 
the case as large DNA fragments can migrate through 
the gel: this is explained by reptation theory, wherein 
molecules follow wormlike displacements within paths 
laid out within the cross-linked polymeric gel, moving 
headfirst through gel pores instead of migrating as a 
globule from one pore to another [7]. At this transition 
between Ogston and reptation theory, the mobility is 
given by [4]: 
 

𝜇(𝑁)
𝜇଴

∝
1
𝑁

∝
1
𝐿

    𝐹𝑜𝑟 𝑅௚ > 𝑎ത 

, where 𝑁 is the necessary number of pores to house the 
fragment. This inverse relationship between DNA 
length and its electrophoretic mobility in gels was first 
documented by de Gennes [7]. 
 
For significantly large molecules, the DNA globule 
deforms, and a non-linear mobility-size relationship 
appears, wherein mobility of large fragments in finite 
electric fields is affected more by field strength than 
fragment size: Lumpkin, Dejardin and Zimm (LDZ) 
proposed that the head of the DNA fragment aligns itself 
to the field and mobility should decrease monotonically 
yet non-linearly, eventually plateauing [8]. However, 
the biased reptation model from Noolandi et al. found 
by simulation that the end-to-end length in direction (x) 
of the electric field ℎ௫ changes during migration, with 
intermediate-sized molecules occasionally compacting 
with small end-to-end vectors rather than the expected 
elongated, linear form [9]. Compact configurations 
move much slower than their elongated counterparts and 
thus bands travelling faster do not always correspond to 
lower molecular weight DNA: this is known as band 
inversion and is less commonly seen for very long 
chains as they are less likely to compact [8].  
 
Therefore, biased reptation offers a model for all 
regimes of DNA gel migration (Figure 2). However, the 
model is predominantly founded on computer 
simulation and as such, “systematic experimental 
studies of the full mobility versus molecular size” 
spectrum would greatly further understanding of DNA 
gel electrophoresis. Furthermore, the band inversion 
behaviour was only verified for linear ds-DNA 
fragments in agarose gels, thus mitigations suggested to 

eliminate band inversion may be limited to experiments 
using similar structures, opening up many avenues of 
exploration. For example, de Gennes has demonstrated 
that melting DNA strands to cause unravelling and thus 
branched structures drastically reduces mobility, with an 
exponential decline in reptational transport as the length 
of the branch attached to the principal chain increases 
[4].  

 
Figure 2 from [4]: Biased Reptation Model of DNA Gel 
Electrophoresis: log-log graph of relative mobility 
versus number of DNA segments 
 
One should also note the biased reptation model utilises 
agarose as the gel medium. Compared to agarose, which 
has a larger pore size and are thus suitable for separating 
nucleic acids and larger proteins, polyacrylamide has a 
smaller pore size and is ideal for separating smaller 
proteins and nucleic acids. It has been observed that 
curved DNA molecules preferentially interact with the 
curved polyacrylamide gel matrix, thus presenting 
abnormally slow mobilities [10]. The added complexity 
of polyacrylamide gels motivates further research into 
this PAGE specifically, as well as the effect of other 
operating conditions such as temperature and salt 
concentration on DNA mobility. 
 

1.2 Aims and Objectives 
Hence, the aim of this study is to identify additional 
factors that influence oligonucleotide hybridisation and 
secondary structure formation as well as the effect that 
different resultant structures have on gel migration, 
aiming to reduce ambiguity in qualitative and 
quantitative DNA PAGE analysis. Different spatial 
conformations leading to steric hindrance have even 
been demonstrated to affect oligonucleotide function 
[11], further motivating deeper understanding of this 
behaviour to pave the way for the engineering of better 
characterised DNA products. 
 

2. Materials and Methods 
2.1 Designing oligonucleotides 

As outlined above, previous experiments investigating 
band inversion only utilised linear dsDNA. As the 
combinations of different DNA/RNA products has 
evolved rapidly over recent years, it is more pertinent 
now to extend these experiments to a wider range of 
oligonucleotides. 
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During the course of this investigation into PAGE, 
various sequences of oligonucleotides were designed: 
Table S1 contains the list of all the oligonucleotides used 
in this study that will be referred to throughout this 
report. Of particular note are the poly(A) 
oligonucleotides consisting of repeated adenine (A) 
nucleotides and poly(dT)s consisting of repeated 
thymine (T) nucleotides, with A and T bases bonding 
with two hydrogen bonds; DNA nucleotides were used 
instead of RNA for increased stability and ease of 
storage [12]. Oligonucleotides were ordered from 
Integrated DNA Technologies (IDT) [13]. 
 
Linear oligonucleotides 
Various linear oligonucleotides had to be designed. For 
this purpose, random DNA sequences were generated 
using the random DNA tool on Bioinformatics [14]; 
sequences were inputted into VectorBuilder to ensure 
that the linear structure would be the most likely to form, 
as molecules will stabilise themselves to form the lowest 
free energy configuration [15]. 
 
“Looped” oligonucleotides 
Oligonucleotides that would form a heteroduplex with 
one loop were designed; a randomised opening 
sequence followed by a string of thymine bases and 
concluding with a reverse complementary sequence to 
the opening sequence would lead to a single thymine 
loop pinched at the top by a complementary backbone. 
As the number of consecutive thymine bases in the 
nucleotide sequence increases, so does the diameter of 
the loop. 
These sequences were inputted into VectorBuilder to 
ensure the Gibbs free energy of formation was 
sufficiently negative so that these looped structures 
would be likely to form. 

 
Figure 3: Designed looped secondary structure: 
loop(20). All oligonucleotides were drawn on 
BioRender. Blue: thymine; green and orange: reverse 
complementary sequences 
 

2.2 Gel Preparation 
Native-Polyacrylamide Gel Electrophoresis (PAGE) 
was used to separate oligonucleotide structures, more 
specifically, 15% PAGE gel was prepared (containing 
10%vol of 10x TBE, 50%vol of 30% Acry/Bis, 39%vol 
of DI Water, 1%vol of 10% APS, 0.04%vol of TEMED) 
and for experiments which required a denaturing gel, a 
15% PAGE gel with 8M urea was used (same 
composition as above with urea added). Note that a 15% 
gel was chosen as this concentration provides optimal 
resolution for the size range of oligonucleotides 
explored [16]. The gels were then transferred to a 
casting stand and left to polymerise for 30-45 minutes, 

at which point full solidification had occurred and the 
gels had distinguished wells.  
 

2.3 Sample preparation 
Oligonucleotides were dissolved in phosphate-buffered 
saline (PBS) and all sample concentrations were 
measured using a UV-Vis spectrometer. Samples were 
then prepared to contain a fixed amount of material: 
500ng of oligonucleotide and/or 550ng of poly(dT) 
unless specified otherwise, as well as a 1x concentration 
of Purple RNA Loading Dye. 
 
Denaturation 
For denaturing PAGE gel, samples were incubated in a 
thermocycler at 72°C for five minutes, then kept at 20°C 
for 5 min before being put on ice for 5 min to facilitate 
denaturation and ensure that all oligonucleotides would 
be linearised so that no secondary structures may form 
[17]. 
 
Hybridisation 
For samples requiring hybridisation (e.g. poly(A)s with 
poly(dT)s), samples were incubated in a thermocycler at 
40°C for 5 min and then kept at 20°C for 5 min. 
 

2.4 PAGE Procedure and Analysis 
Once fully solidified, gels were transferred to a BioRad 
Vertical Electrophoresis Cell [18], which was then filled 
with TBE 1x, where the samples were loaded after 
having washed out the wells. The electrophoresis cell 
was then run at a fixed voltage of 100V until the purple 
loading dye neared the bottom of the gel, indicating 
completion. 
 
Staining 
Gels were then removed from the gel box and stained by 
placing them in a solution of 50mL TBE 1x with 5µL of 
SYBR Safe, and agitating them for 30 min. 
 
Visualisation and ImageJ analysis 
Gels were imaged using a NuGenius+ UV 
transilluminator [19]: the fluorescent intensity of each 
gel band corresponds directly to the density of that 
sample within the gel. Image analysis was conducted 
using ImageJ with the mean gray scale or intensity of 
each band corresponding to the concentration of each 
complex formed. This was verified by analysing the 
brightness of linear oligonucleotide comp2 at different 
sample masses. As seen in Figure 4, the mean gray scale 
or brightness is directly proportional to an increasing 
sample mass, thus this is a valid tool of measurement for 
subsequent quantitative analysis. 
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Figure 4: Brightness Calibration Curve of comp2 at 
three different sample masses 
 
Note that each experiment was conducted twice to 
mitigate the effect of any random errors. Brightness 
measurements taken for each band were an average of 
both equivalent gels and background readings were 
subtracted to get the raw brightness of bands. 
Furthermore, final images presented in the body of this 
report were colour inverted from their original scans, 
thus the term ‘brightness’ is used throughout despite gel 
figures consisting of black bands. 

3. Results and Discussion 
Firstly, the matter of increasing size was explored. In the 
Noolandi model, DNA size was equivalent to contour 
length and varied by continuously adding segments of 
fixed length [4]. However, structure conformation can 
occur via multiple pathways and as such band inversion 
may occur to different extents depending on the way 
DNA is synthesised. For example, in the formulation of 
double-stranded DNA/RNA products via the 
hybridisation of single complementary 
oligonucleotides, there is the possibility of mismatched 
base pairing, leading to unexpected sequence 
conformations [20]: the distortions of these 
“heteroduplexes” cause them to have reduced mobility 
compared to “homoduplexes”, which have perfectly 
paired bases from end to end [21]; the reduction in 
polyacrylamide gel mobility is proportional to the 
degree of divergence between the two constituent 
single-stranded sequences [22]. 
 

3.1 Experimenting with overhangs 
To initially determine the effect of different 
oligonucleotide hybridised structures on gel mobility, an 
experiment was devised wherein gel electrophoresis 
would be used to visualise hybridised structures 
between dT(60) and oligonucleotides with increasing 
poly(A) content (see supplementary Table S1). The 
expectation was that a band would show at 110 bases if 
the 50 base-long poly(A) and 60 base-long poly(dT) had 
hybridised, alongside one band at 50 bases representing 
leftover non-hybridised poly(A) and one band at 60 
bases representing leftover non-hybridised dT(60). This 
expectation is based on the common assumption that 
PAGE separates samples based on their molecular 

weight. 

 
Figure 5: Hybridisation of poly(A)s with dT(60) in 
PAGE 
 
After hybridising the poly(A)s with dT(60), it was 
concluded that poly(10) contains insufficient adenine 
bases to hybridise properly with the poly(dT), with at 
least twenty hydrogen bonds being necessary to 
maintain the hybridised structure. An extremely bright 
stairwell can be seen (Figure 5) for poly(20) to poly(50): 
this will become a recurring theme in many 
experiments. Despite all poly(A)s hybridising to form an 
oligonucleotide complex of equal 110 bases weight, 
only the poly(20) well displayed a bright band around 
110 bases, with bands for subsequent samples falling in 
this stairwell. It can also be observed that the wells 
present with a second bright band above the “hybridised 
band” and that those higher bands not only also form a 
stairwell but are decreasing in brightness between 
poly(20) and poly(50). One can also observe that the 
dT(60) control has seemingly disappeared. This will be 
further discussed in Section 3.4. 
 
Thus, two hypotheses were posed. Firstly, that the main 
contributor to mobility within the gel was the amount of 
resistance that the sample would present, which would 
be related to its surface area or ‘steric bulk’. Secondly, 
that a fraction of poly(dT)s had more than one poly(A) 
attached to it and this was the source of the second 
higher bands with drastically reduced mobility. 
 
The first hypothesis would explain the presence of the 
stairwell. Indeed, when mixed, the poly(A)s and 
poly(dT)s may not fully hybridise but rather only 
partially do so, resulting in structures with a short 
double-stranded segment and single-stranded 
overhangs. This was corroborated by IDT’s 
OligoAnalyzer tool [23], with these branched 
heteroduplex structures having extremely low Gibbs 
free energies of formation and thus formation is very 
likely. Additionally, the brightness of each band was 
compared to the free energy of its suspected 
corresponding structure to demonstrate that the 
probability of each structure forming does in fact match 
the observed abundance following brightness analysis. 
Note that the poly(50) result was treated as anomalous 
as the presented brightness was abnormally low, as the 
band appears more as a smear in Figure 5. As seen in 
Figure 6, brightness decays rapidly as structures 
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becoming less thermodynamically favourable, with an 
x-axis intercept of Δ𝐺 = −21.22 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. This is 
notably more negative than the expected free energy for 
a hybridisation between poly(10) and dT(60) where 
Δ𝐺 = −17.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, suggesting that this 
combination is below a threshold necessary for the 
hybridised structure to form and thus does not present in 
the gel. However, note that the extrapolated line of best 
fit in Figure 6 is only based on three data points and 
further experiments involving poly(A)s with a wider 
range of adenine content should be conducted to confirm 
this theory. 

 
Figure 6: Comparing free energy to brightness of main 
duplex bands 
 
Bulkier complex structures with more nucleotide 
overhangs are hypothesised to have higher resistance, 
migrate more slowly through the gel and hence present 
bands near the top. Thus, structures with the same 
molecular weight can present different results following 
PAGE analysis. The length of the overhang is expected 
to decrease from poly(20) to poly(50), as modelled in 
Figure 7, which would thus explain why they present a 
descending stairwell as the mobility increases 
accordingly. This corroborates experimental findings 
from de Gennes, whereby DNA mobility decreases as 
the length of the overhang branching off the main strand 
increases [24].  

 
 

 
 

Figure 7: From top to bottom: hybridised poly(20) with 
dT(60);  hybridised poly(30) with dT(60); hybridised 
poly(40) with dT(60); hybridised poly(50) with dT(60). 
Blue: thymine; red: adenine; green: random non-
complementary sequence 
 
The second hypothesis would explain the presence of 
the higher stairwell as perhaps multiple poly(A)s attach 
to a single poly(dT) to form higher molecular weight 
structures (Figure 8). These would still present 
decreasing overhangs between poly(20) to poly(50) and 
thus the same stairwell behaviour.  
 

 

 
Figure 8: Top: Two poly(20)s attached to a single 
dT(60); Bottom: Three poly(20)s attached to a single 
dT(60) 

Furthermore, it is hypothesised that poly(A)s with 
greater adenine content are less likely to exhibit these 
multi-strand complexes as more thymine bases on the 
dT(60) strand would be occupied by a single poly(A), 
discouraging an additional one from attaching. This in 
turn would explain the decreasing brightness of the 
secondary stairwell bands between poly(20) to poly(50). 
Following ImageJ analysis comparing the formation of 
the proposed multi-strand complex with the expected 
duplex (Figure 9), this hypothesis was supported, with 
an exponential decrease in the brightness and thus 
abundance of multi-strand duplexes as the number of 
adenine bases increased. 

 
Figure 9: Fraction of multi-strand to main heteroduplex 
formation between poly(A)s and dT(60) 
 

Unfortunately, OligoAnalyzer was unable to predict the 
formation of these multi-strand complexes and thus the 
analysis from Figure 6 could not be applied here. This is 
an area of improvement for future oligonucleotide 
modelling tools.  

3.2 Hypothesis 1: Steric bulk is the 
main driver of gel mobility 

To thoroughly investigate the first hypothesis and 
determine whether gel electrophoresis distinguishes 
samples based on molecular weight or steric bulk, two 
experiments were designed. The first involved running 
single-stranded and double-stranded DNA fragments of 
the same length in the gel and the second entailed 
purposefully exploring secondary structures and 
heteroduplexes to quantify the impact of steric bulk on 
gel mobility. 

Single-strand versus double-strand 
The first experiment was conducted as follows: a 50 
base long single-stranded oligonucleotide sequence 
(comp1) was randomly generated alongside its reverse 
complementary counterpart (comp2). Both strands were 
designed to be linear with no other secondary structures 
forming. When both complementary strands are mixed, 
this should result in a fully hybridised 50bp 
homoduplex. Single-stranded oligonucleotide comp2, 
as well as the hybridised double-strand, were run in the 
same gel (Figure 10). 
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Figure 10: Comparing single stranded and double 
stranded oligonucleotides of equal length 
 

From Figure 10, indicates that the single-stranded and 
double-stranded samples both show a single band at 
around 50 bases, despite the dsDNA being twice as 
heavy as the single-stranded comp2. Additionally, the 
linear dsDNA 50bp duplex has greater gel mobility than 
even the poly(50) & dT(60) branched duplex from 
Figure 5, with duplexes exhibiting greater branching 
decreasing in mobility further still. This supports the 
theory that weight had little to no impact on gel mobility. 
Thus, the focus of this study will continue to be the 
effect of oligonucleotide structure on mobility. 

Looped Oligonucleotides 
The second experiment devised to confirm that steric 
bulk is the main driver behind gel mobility, was to test 
the effect of “looped” oligonucleotide structures on gel 
migration.  

 
Figure 11: Formation of looped oligonucleotide 
secondary structures 
 
In this experiment, all loop sequences are 50 bases long 
but form a thermodynamically favourable secondary 
heteroduplex structure, wherein the circumference of 
the looped portion increases from 10 to 40 bases. 

The result of this experiment is that loop(10) and 
loop(20) present two bands which form stairwells of 
decreasing mobility, as well as extremely bright bands 
at the top of the gel, loop(30) shows a smear and 
loop(40) does not appear at all. This phenomenon is 
addressed in Section 3.4. 

The existence of multiple stairwells likely arises from 
the fact that the loops are able to attach to each other in 
more linear configurations instead of forming the 
desired secondary structure. From IDT’s OligoAnalyzer 
tool [23], up to 19 alternate homo-dimers – duplexes 
resulting from hybridisation of identical strands - 
structures are possible, although it is important to note 
that many of these structures have small free energies of 
formation and are not as likely to form. These kinked 
alternative structures, such as in Figure 12, may also 
present overhangs, adding further resistance similarly to 
the structures discussed in Section 3.1.  

 

 
Figure 12: Two possible kinked homo-dimer formed 
from loop(10)s. The top structure is the most stable and 
thus likely to form 
 

As an experimental control to compare the looped 
oligonucleotides to their linear counterparts, this 
experiment was repeated using urea as a denaturing 
agent. Urea is used in PAGE to denature secondary and 
hybridised structures by reducing them to single-
stranded fragments [17], thus separating samples purely 
on molecular weight. It was thus expected that all 
samples would present bands at a single height. 
However, this was not the case. As seen in Figure 13, a 
similar lower stairwell may be seen, whereas all other 
structures have been eliminated. 

 
Figure 13: Looped Oligonucleotides in denatured gel 
 
Mickel et al. have demonstrated previously that circular 
closed DNAs do not follow the same wormlike 
mechanism proposed by the reptation model, due to the 
lack of free ends on the DNA chain. Below a critical 
molecular weight, the reduced radius of gyration 𝑅௚ 
compared to its linear counterpart leads to greater 
mobility for circular DNAs, suggesting that the greater 
mobility bands seen in Figure 13 could be the expected 
looped secondary structure. However, this phenomenon 
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is dependent on the size of the loop, as well as the gel 
concentration, with the exact relationship dictating this 
balance not fully understood [25]. 
 
Compared to the aforementioned kinked alternative 
structures, the main looped secondary structure of 
interest is expected to demonstrate the least steric bulk 
and thus migrate furthest down the gel. To further 
support this, the Gibbs free energy of formation is lower 
for the expected loop structure (Δ𝐺 = −39.2 𝑘𝑐𝑎𝑙/
𝑚𝑜𝑙) compared to even the most stable kinked structure 
(Δ𝐺 = −36.91 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙) [23]. As result, this loop 
structure would be the least susceptible to urea 
denaturation. However, these values are not dissimilar, 
and this should by no means be seen as a definitive 
proof, with further quantitative structure analysis 
recommended to confirm this hypothesis, as discussed 
in Section 4.2. 
 
Going by this explanation, the secondary stairwells of 
loop(10) and loop(20) at 70b and 80b respectively likely 
correspond to the top diagram of Figure 12, whereby 
instead of folding to form the expected looped 
secondary structure in Figure 3, two identical 
oligonucleotides hybridise together to form a homo-
dimer, with the reverse complementary sequences 
interrupted by the thymine loop causing a kink that 
occupies additional space in an otherwise linear 
structure: this ‘kinked’ structure has reduced gel 
mobility compared to the linear poly(20) structure. From 
Section 3.2, it has been demonstrated that molecular 
weight has a negligible effect on mobility compared to 
structure. As a result, it is most likely that the space 
occupied by the kink is the main contributor to the 
decreased mobility. This kink expands as the size of the 
loop increases, offering further gel resistance and 
explaining the decrease in the secondary stairwell 
mobility from loop(10) to loop(20). The same trend is 
observed for the structures within the denatured gel 
(Figure 13). 

Finally, the bright cluster at the top of loop(10) and 
loop(20) wells arising from the stacking of multiple 
bands are likely due an agglomeration of the remainder 
of the extremely bulky kinked structures predicted by 
OligoAnalyzer. The smear from loop(30) may have 
resulted from these structures eventually migrating into 
the well rather than being stuck at the top, although the 
exact reason for this is unknown and again necessitates 
further quantitative structure analysis. Despite these 
extraneous features, the main feature of interest, namely 
the decreasing mobility of larger loops, further supports 
Hypothesis One.  

 

3.3 Hypothesis 2: Oligonucleotides 
form multi-stranded structures 

Addressing Hypothesis Two, it is clear that it is incorrect 
to assume that a single poly(A) strand always binds with 
a single poly(dT) strand. In this study, a simplified 

approach was taken to infer the probability of these 
different structures forming.  
 
Redesigned poly(dT)s 
Instead of using dT(60), new poly(dT) oligonucleotides 
were designed so that there is the same number of 
thymine bases as adenine for each poly(A) strand such a 
perfectly complementary A-T sequence forms, with the 
remaining bases made up of repeating randomly 
generated 10bp strands (Table S1) to form a non-
complementary overhang:  

 
Figure 14: Poly(20) with new designed dT(20) 
 

As illustrated in Figure 14, this should guarantee the 
binding of a single poly(A) to a single poly(dT), whilst 
still presenting the stairwell resulting from overhang 
resistance: experiments verified this.  

   
Figure 15: Hybridisation of poly(A)s with 
accompanying poly(dT)s 
 

From Figure 15, one can see that the secondary stairwell 
has been eliminated whilst still maintaining a primary 
stairwell, supporting the hypothesis that multiple 
poly(A)s can bind to a single poly(dT) and that this was 
the cause for the secondary ladder. One can also observe 
that the poly(10) is still not hybridising, confirming that 
a 10 base bond is not stable enough. Finally, one can see 
that dT(40) did not stain. This is explored in further 
details in Section 3.4. 
 
One should also note that the primary ladder now starts 
slightly lower around 90b; a decrease was expected as 
hybridised should now present less resistance due to 
minimised overhang (now 10 bases shorter than before 
as the tailored poly(dT)s are 50 bases long where dT(60) 
was 60 bases long), thus travelling faster down the gel. 
 
Varying ratios 
Another factor hypothesised to contribute to this multi-
strand complex formation is the ratio of poly(dT) to 
poly(A) mixed in each aliquot: having excess poly(A) is 
likely to lead to more than one poly(A) binding to a 
single poly(dT). 
 
To test out this hypothesis, an experiment was designed 
wherein poly(20) and dT(60) were used as this would 
leave the greatest number of thymine bases available for 
bonding from multiple poly(A)s whilst also ensuring the 
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resulting complex would be stable. From Figure 16, 
several phenomena may be observed. Firstly, the 
expected main hybridised structure at 110bp that was 
also observed in Figure 5 presented more intense bands 
when dT(60) was in excess, with this structure 
disappearing completely in an excess of poly(A) with 
ratios 1:5 and 1:10.  Conversely, the band corresponding 
to the secondary stairwell multi-strand complex 
increased in brightness as poly(A) was added in excess.  
With an excess of poly(A), significant smearing at the 
very top of the well can be observed, showing an 
abundance of heavy structures which get stuck at the top 
of the well.  

 
Figure 16: Hybridisation between dT(60) and poly(20) 
with changing sample ratios. From left to right: 10:1, 
5:1, 2:1, 1:1, 1:2, 1:5, 1:10 
 

3.4 Nucleic Acid Staining Dye 
As alluded to throughout this report, a recurring 
phenomenon that may be seen in Figures 5, 15 and 16 is 
the disappearance of poly(dT)s, as well as loop(40) in 
Figure 11. The common denominator between these 
cases is that involve species with a greater number of 
repeating bases, prompting the question of whether this 
affects the nucleic staining method, rendering them 
invisible in the gel results.  

Nucleic acid staining dyes operate via either 
intercalation or minor groove binding, with the former 
involving insertion of a small molecule between 
adjacent base pairs, causing structural changes in the 
nucleic acid [26]. Minor Groove Binders (MGBs), such 
as SYBR Safe [27], hydrogen bond to base pair edges - 
especially A-T - alongside non-covalent interactions 
with the minor groove wall of the DNA [28].Various 
factors, including the dye’s physicochemical properties 
and geometry, affect the mode of nucleic acid binding 
[29] and future studies could well benefit from testing 
of a variety of staining dyes on the structures discussed 
in this report. 

4. Conclusions and Outlook 
4.1 Conclusion 

With its main strengths laying not only in its low cost, 
but its extreme simplicity and accessibility, lending to 
its prevalence as a ‘litmus test’ to determine basic 
nucleic acid properties, PAGE is an invaluable 
technique that is still not fully understood. 
 

In this study, the effect of oligonucleotide structures on 
polyacrylamide gel mobility was explored, with the aim 
of raising awareness towards potential challenges that 
could cause ambiguity when interpreting results. It was 
demonstrated, by purposely introducing complexity in 
hybridised and secondary structures, that the steric bulk 
is the main contributor to gel retardation. This was 
demonstrated with both branched and looped 
oligonucleotides, with both instances showing that any 
spatial deviations from a purely linear structure led to 
changes in gel mobility, despite having the same 
molecular weight. As the region of interest introducing 
steric bulk, namely the branch length and loop 
circumference, was increased, the gel mobility was 
reduced. 
 
From the experiments conducted, the gel mobility for 
structures of similar molecular weight is lowest for the 
branched structures, followed by the linear dsDNA 
equivalent. Looped structures displayed the greatest gel 
mobility although it is important to note that, due to time 
constraints, only a limited number of looped structures 
were explored. Future studies could entail investigating 
oligonucleotides with loop circumference increasing in 
finer increments, as well as increasing the number of 
bases of the oligonucleotide, allowing for larger loops. 
 
A second hypothesis proposed the existence of alternate 
hybridisation structures, such as the case where multiple 
poly(A)s hybridise onto a single poly(dT). Not only was 
this hypothesis supported by the existence of multiple 
gel stairwells corresponding to bulkier structures, but 
also multi-strand complex formation was encouraged by 
increasing the ratio of poly(A)s to a single poly(dT). 
Furthermore, the probabilities of these different 
complexes forming was inferred by using online tools 
such as VectorBuilder and OligoAnalyzer to predict 
their Gibbs free energy of formation, with further 
definitive evidence via quantitative ImageJ analysis 
provided, wherein the brightness of measured bands 
corresponds directly to the abundance of sample present. 
This conclusion highlights the importance of proper 
oligonucleotide design and consideration of sample 
preparation, as the formation of multiple, unexpected 
bands can lead to ambiguous gel results and incorrect 
structure identification. 
 
Overall, this study opens up many avenues for 
exploration, especially as the surge in DNA/RNA 
product interest, such as mRNA vaccines or CRIPSR-
Cas9 gene editing and its applications, will require clear 
analytical understanding of these structures. As the ease 
of use and low cost of PAGE lend to its attractiveness as 
a laboratory-scale technique, it is important now more 
than ever to ensure that PAGE results can be relied upon. 
 

4.2 Limitations and Future Work 
As mentioned briefly when analysing the looped 
oligonucleotide structures, this study would further 
benefit from an alternative technique to accurately and 
quantitatively determine the structure of resultant 
hybridised fragments to predict the effect on its mobility 
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within electrophoretic gels; single-molecule localisation 
microscopy (SMLM) can fluorescently label 
oligonucleotides with a single dye and measure intensity 
of dye [30], however this method is extremely expensive 
and relatively inaccessible. On the other hand, PAGE 
and other electrophoretic gel techniques are relatively 
fast and simple to conduct.  
 
Although ImageJ analysis was treated as a quantitative 
method to determine band brightness, band selection 
was still determined manually and thus a degree of 
human error was introduced. This again encourages the 
use of more objective techniques such as SMLM to 
support this study’s findings. 
 
Finally, as a direct continuation of this study, further 
experiments should be conducted with an increased 
range of oligonucleotide structures, not only branched 
and looped. It would be interesting to quantitatively 
measure the mobility of different structures, both within 
the same family and universally, to draw comparisons to 
the theoretically biased reptation model. 
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Abstract Predicting the solubility of cholesterol is important due to its role in the pathogenesis of gallstones and 
atherosclerosis. This is in particular due to the solid–solid phase transition that occurs at around body temperature. In this 
work, we develop a predictive model for the solubility behaviour of cholesterol in primary alcohols including 1-butanol, 
1-pentanol and 1-hexanol by employing the SAFT-γ Mie group-contribution approach. For longer chain alcohols, solvate 
influences on the crystalline structure become significant which our solid phase description does not account for. We 
validate the use of combining rules by modelling the vapour pressure and isobaric vapour-liquid phase equilibria of pure 
2,2-dimethylcyclohexanol and cyclohexanol + isophorone respectively, as these contain the uncharacterised moieties of 
cholesterol. We demonstrate the transferability of these parameters by obtaining an excellent prediction for the liquid heat 
capacity of cholesterol prior to modelling cholesterol solubility. The robustness of the model is quantified by comparing 
theoretical predictions with experimental data. Excellent agreement between the calculations and experimental data are 
observed for cholesterol in 1-butanol, along with good agreements for cholesterol in 1-pentanol and 1-hexanol. For these 
systems, the SAFT-γ Mie approach captures the correct order of magnitude of solubility and trajectory of the solubility 
curves. We thus demonstrate the versatility of the SAFT-γ Mie approach in modelling the solubility of large molecules. 
 

 
1. Introduction 

 
Cholesterol plays an essential role in biological 

membranes and is a precursor for the synthesis of steroid 
hormones and bile acids [1]. It is an organic molecule 
consisting of a steroid nucleus, a rigid tetracyclic 
hydrocarbon structure, in between an aliphatic 
hydrocarbon tail on one end, and a hydroxyl group on 
the other. This hydroxyl group contributes to the 
amphipathic nature of the molecule [2].  

The presence of cholesterol crystals in gallstones and 
atherosclerotic plaques [3], makes the solubility 
behaviour of cholesterol particularly relevant. The 
existence of a solid-solid phase transition around body 
temperature is a central feature of this solubility 
behaviour, with both solid phases having been detected 
in gallstones [4], and has been the focus of many 
experimental studies [4]–[6]. This polymorphic nature 
of cholesterol arises due to the rotational isomerism 
exhibited by the aliphatic tail  [7].   

The crystalline properties of cholesterol have been 
shown to be influenced by the solvent itself [6], [8]. It 
is, therefore, interesting to study the solubility of 
cholesterol in a homologous series of solvents as they 
exhibit regular patterns in chemical and thermodynamic 
properties. This provides a basis by which the solvent 
effects on the crystalline structure can be assessed. 
Primary alcohols are a pertinent homologous series due 
to their polarity which decreases with carbon chain 
length. Consequently, the amphipathic nature of 
cholesterol may lead to an interesting relationship 
between solubility and alcohol chain length. This allows 
for systematic solvent selection in physiological 
applications, including the dissolution of gallstones.  

The development of theoretical tools to accurately 
model the thermodynamic behaviour of substances is 
valuable insofar as it can alleviate the need for 
experimental efforts. Equations of state (EoS) are 
particularly useful for this. The statistical associating 
fluid theory (SAFT) is one such example and can be 
used to model complex fluids including associating 

fluids, such as those exhibiting hydrogen bonding. 
Several iterations of SAFT have been developed since 
its inception by Chapman et al. in 1989 [9]. These 
include SAFT-VR, which treats molecules as 
homonuclear chains of bonded segments interacting 
through a square-well potential [10], and PC-SAFT 
which uses a hard-chain reference fluid [11]. In this 
study, we utilise the SAFT-γ Mie EoS, comprising of a 
group-contribution approach, whereby molecules are 
broken down into their constituent functional groups 
which interact via a Mie potential (a generalised 
Lennard-Jones potential) [12]. By employing this 
group-contribution approach, we eliminate the need for 
experimental data specific to the molecules of interest. 
This is particularly useful in our case, due to the scarcity 
of pure cholesterol data. This highlights a key strength 
of the EoS. Additionally, this EoS has been shown to 
accurately model the thermodynamic properties and 
fluid-phase behaviours of complex mixtures [13]. 

In Sections 2 and 3, we present the SAFT-γ Mie 
theory and model as well as the solid-liquid phase 
equilibria relations utilised. In Section 4, we validate the 
use of combining rules as sufficient initial estimates for 
the underlying group parameters within the SAFT-γ Mie 
EoS. We also present the prediction of the liquid heat 
capacity of pure cholesterol using the SAFT-γ Mie 
approach, in addition to the predictions for solubility of 
cholesterol in primary alcohols. Concluding remarks are 
provided in Section 5. 
 
2. Theory  

 
2.1 SAFT-γ Mie Theory and Model 

 
At the foundation of the SAFT-γ Mie Equation of 

State, molecules are depicted as associating 
heteronuclear chains of fused-spherical segments 
interacting through variable-range Mie potentials [12]. 
These segments are accompanied by associative sites 
representing short-range interactions (i.e. hydrogen 
bonding) modelled by the square-well potential. Based 
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on a perturbation approach, the total Helmholtz free 
energy A, of a fluid mixture consisting of non-ionic, 
associating chains of fused-spherical segments, is 
expressed as a sum of four contributions [14]: 

A = Aideal + Amonomer + Achain + Aassociation       (1) 

where Aideal is the free energy of an ideal gas mixture, 
Amonomer accounts for the repulsive and attractive 
interactions of monomeric segments through the Mie 
potential,  Achain is the change in free energy when chains 
(molecules) are formed from fusing Mie segments and 
Aassociation is the contribution to the free energy upon the 
association. Detailed expressions for each of these 
contributions are delineated in previous works [12], 
[15], [16]. 

 Utilising the group-contribution approach, identical 
segments can be used to model distinct functional 
groups within a molecule [12]. An example of this is 
demonstrated in Figure 1 for the breakdown of 
cholesterol (our main compound of study) into its 
resultant functional groups. 
 
 

 
 
Figure 1: SAFT-γ Mie molecular model of cholesterol. This is 
modelled as one cCHOH (in yellow), eight cCH2 (in purple), four cCH 
(in dark blue), five CH3 (in green), three CH2 (in brown), two CH (in 
light blue), one CH= (in grey), one C= (in pink) and two C (in orange)  
groups. Smaller red and blue circles indicate association sites, with the 
former labelled e, representing electronegative (acceptor) sites and the 
latter labelled H, representing hydrogen (donor) sites. Note, spheres 
are not to scale and are drawn for illustrative purposes. 
 

 Groups are considered to act in isolated and 
individual interactions with other groups, unaffected by 
all other interactions within the system. Thus, individual 
group parameters are transferable across systems 
(molecules or mixtures) containing these groups. This 
simplifies molecule characterisation given a robust 
database is established. By accumulating the appropriate 
groups of a specified molecule, it is assumed its gross 
thermodynamic properties can be evaluated and 
attained.   

In view of the transferability, we also consider the 
systems of 2,2-dimethylcyclohexanol and cyclohexanol 
+ isophorone as they contain relevant moieties of 
cholesterol, making them appropriate for validating 
combining rules utilised.  

The dispersion force between two segments of 
groups k and l is a function of the distance between both 

segments and is the overall combination of attractive 
and repulsive effects. This is delineated through the Mie 
(pair) potential ΦMie 

Φkl
Mie(rkl)=Cklεkl ቈቀσkl

rkl
ቁ

λkl
r

− ቀσkl
rkl

ቁ
λkl

a

቉         (2) 

where rkl is the distance between the centers of two 
segments, εkl is the dispersion energy and depth of the 
potential well, σkl is the size parameter (specifically the 
segment diameter in this case), and λkl

r  and λkl
a  are the 

repulsive and attractive exponents of the intersegment 
interaction. The prefactor Ckl is a function of the 
exponents and ensures −εkl is the minimum of the 
interaction despite the respective attractive and 
repulsive effects: 

Ckl = λkl
r

λkl
r ିλkl

a ൬ఒkl
ೝ

ఒkl
ೌ൰

λkl
a

λkl
r షλkl

a
                   (3) 

The strong associating interactions, typically 
hydrogen bonding, are depicted as extra, eccentric 
associating sites affixed on segments that express such 
interactions. The amount of different site types NST,k 
within a group k, and the number of sites of each type, 
nk,a, nk,b, …, NST,k, are further included to fully 
characterise associating groups. Short-ranged square-
well potentials model the interactions between site type 
a on segment k and site type b on segment l: 

ϕkl,ab
HB ൫rkl,ab൯ = ቊ

−εkl,ab
HB       if rkl,ab ≤ rkl,ab

c

0               if rkl,ab > rkl,ab
c       (4) 

where −εkl,ab
HB  is the association energy and depth of the 

square-well potential well, rkl,ab is the center–center 
separation of the two sites a and b, and rkl,ab

c  is the cutoff 
range of the interaction, which can also be depicted in 
terms of bonding volume, Kkl,ab [17]. The distance of site 
a from the center of segment k is given by rkk,aa

d  and a 
similar term is given for site b on segment l.  Following 
Wertheim’s thermodynamic perturbation theory (TPT1) 
[18], the relative locations of sites on a segment are not 
considered because discrete sites are independent of one 
another in their bonding effect.  
 
2.2 Solid–Liquid Equilibria 

 
The total Helmholtz free energy expression 

presented in Equation (1) is in fact a function of the 
temperature T, volume V and number of molecules N, 
represented as a vector. Calculating standard 
thermodynamic relations with respect to each of these 
variables leads to equations in common state variables. 
For example, pressure is the first order derivative of A 
with respect to the volume V as shown by  

P.= − ቀ ∂A
∂V

 ቁ
T,N

                          (5) 

and chemical potential of compound i is the first order 
derivative of A with respect to the composition  

μi= − ቀ ∂A
∂Ni

 ቁ
T, V, Nj≠i

                (6) 
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Developing these relations further gives rise to the 
derivation of phase equilibrium properties. For instance, 
of initial relevance to this study is the liquid heat 
capacity cP

L and vapour pressure Psat.  
The main equilibrium quantity of interest is the 

solubility, which is denoted as the molar fraction xsat of 
the compound of interest in a given solvent at a 
particular temperature T and pressure P. This arises from 
the chemical equilibrium condition whereby the pure 
solid phase (S) chemical potential 𝜇i

∗ୗ of the compound 
is equated with the liquid phase (L) chemical potential 
μi

L. The liquid phase chemical potential is given by 

 μi
L(T, P, xsat) = μi

*(T, P) + RT ln ai
sat(T, P, xsat)    (7)   

where μi
*(T, P) is the pure liquid chemical potential as a 

reference state, R is the molar gas constant and 
ai

sat(T, P, xsat) is the activity of compound i in solution. 
The activity models the non-ideal behaviour of real 
fluids and is given as the product of the solute mole 
fraction  xi

sat(T, P, xsat) and activity coefficient γi(T, P, 
xsat), ai

sat = 𝑥iγi. It is therefore logical to express activity 
in this way as it exhibits the solubility explicitly as the 
molar fraction. Equating Equation (7) to the pure solid 
chemical potential (since its activity is 1, the natural log 
term would disappear) as discussed previously, we 
obtain  

ln xi
sat(T, P, xsat) + ln γi(T, P, xsat)= μi

*S(T, P)ିμi
*L(T, P)

RT
  (8) 

where the difference in the pure chemical potentials of 
the liquid and solid phase can be reformulated as the 
partial molar Gibbs free energy of fusion −Δgi

fus(T, P)  
of pure compound i as presented below  

ln xi
sat(T, P, xsat) + ln γi(T, P, xsat)= − Δgi

fus(T, P)
RT

  (9) 

and this can further be expressed utilising the 
fundamental relation Δgi

fus(T, P)=Δhi
fus(T, P) −

TΔsi
fus(T, P) to attain  

ln xi
sat(T, P, xsat)+ln γi(T, P, xsat)=                        

− Δhi
fus(T, P)

RT
+ Δsi

fus(T, P)
R

     (10) 

where Δhi
fus(T, P) is the enthalpy of fusion and 

Δsi
fus(T, P) is the entropy of fusion. 
Since the system is residing at a temperature T below 

the fusion temperature Ti
fus, it is impracticable to 

explicitly measure the fusion enthalpy Δhi
fus(T, P) and 

entropy Δsi
fus(T, P) experimentally. However, as the 

system is a supercooled liquid at these conditions, it 
suggests a thermodynamic cycle can be followed 
instead. This involves taking an alternative path to reach 
the same desired state, by employing known expressions 
and values at ambient conditions. Ignoring pressure 
effects by assuming ambient pressure and solution 
incompressibility, expressions are extracted invoking 
values at the fusion temperature Ti

fus: 

Δhi
fus(T, P)=Δhi

fus(Ti
fus, P) − ∫ ∆cP,i(T', P) dT'Ti

fus

T     (11) 

and 

Δsi
fus(T, P)=Δsi

fus(Ti
fus, P) − ∫ ∆cP,i(T', P)

T'  dT'Ti
fus

T   (12) 

where ∆cP,i(T, P) is the difference between the heat 
capacity of the pure liquid phase 𝑐P,i

L (T, P) and the pure 
solid phase 𝑐P,i

S (T, P). At the fusion point, Δgi
fus(T, P)=0 

and therefore 

Δhi
fus(T, P) = TΔsi

fus(T, P)                   (13) 

Substituting Equations (11), (12) and (13) into 
Equation (10), we obtain a form of the solubility 
equation for solid–liquid equilibria [19] as 

ln xi
sat(T, P, xsat)+ln γi(T, P, xsat) =  

− Δhi
fus(Ti

fus, P)
R

ቀ1
T

− 1
Ti

fusቁ  

    + 1
RT ∫ ∆cP,i(T', P) dT'Ti

fus

T     

− 1
R ∫ ∆cP,i(T', P)

T'  dT'Ti
fus

T                    (14) 

In this study, the value of the heat capacity difference is 
known at Ti

fus, hence the approximation 
∆cP,i(T, P)≈∆cP,i(Ti

fus, P) is used, conveying the 
assumed T insensitive nature of ∆cP,i. This allows for 
convenient integration of Equation (14) to the desired 
form of the solubility equation for solid–liquid 
equilibrium, given as  
 

xi
sat(T, P, xsat) ∙ γi(T, P, xsat) = 

exp

⎣
⎢
⎢
⎡

Δhi
fus(Ti

fus, P)
R

ቀ 1
Ti

fus − 1
T
ቁ

+ ∆cP,i(Ti
fus, P)

R
ቆTi

fus

T
− 1 − ln ൬Ti

fus

T
൰ቇ

⎦
⎥
⎥
⎤
     (15) 

Equation (15) has been further rearranged to resemble 
the form present within gPROMs [20] our main SAFT 
predictions tool. For the remainder of this study, we 
shall refer to Equation (15) as the standard SLE 
equation. 
 
3. Methods 
 
3.1 SAFT-γ Mie Group Parameters 
 

In Table 1, we present the relevant SAFT-γ Mie 
group interactions for the systems of interest in a 
triangular matrix. This includes the groups of 2,2-
dimethylcyclohexanol, cyclohexanol, isophorone as 
well as the groups pertaining to the main systems of 
study, cholesterol with the primary alcohols. (Note that 
the molecular depiction of cholesterol, illustrating its 
corresponding groups is presented in Figure 1. Cells 
coloured blue indicate previously published work [12], 
[13], [15], whilst cells coloured grey containing a “CR” 
indicate the use of combining rules. This is seen in the 
cCHOH-C and cCHOH-C= unlike interactions 
respectively. Due to Table 1 existing as a triangular 
matrix, the leading diagonal, therefore, contains the like 
interactions, whilst all other cells are unlike interactions 
between distinct groups. 
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Table 1: Group interactions required to model cholesterol in primary 
alcohol solvents along with 2,2-dimethylcyclohexanol, cyclohexanol, 
isophorone using the SAFT-γ Mie approach. Blue cells represent 
interactions previously published work [12], [13], [15], grey cells 
containing "CR” represent interactions calculated using combining 
rules and white cells represent interactions that are not needed in this 
work. 
_______________________________________________________________ 

 
 
 

In Section 2.1 prior, we introduce the idea that 
segments interact through pair potentials, specifically 
the Mie potential for dispersion interactions and the 
square-well potential for strong, associative 
interactions. In order to obtain the parameters that 
underpin these potentials, combining rules are 
employed. These provide estimates of unlike 
interactions, utilising expressions of their like 
analogues. Starting with the Mie parameters, the unlike 
segment diameter σkl is obtained using the Lorentz rule. 
This is an arithmetic mean of the parallel like diameters 
presented as   

σkl = σkkାσll
2

                                (16) 

In contrast, geometric-mean criterion are applied for the 
remaining parameters. The unlike dispersion energy εkl 
is obtained through an altered Berthelot-like geometric 
mean rule which rationalises the irregularity in segment 
sizes [12]. This is given as 

εkl = ඥఙೖೖయఙ೗೗య

ఙೖ೗య ඥεkkεll                    (17) 

Again, a geometric-mean rule is applied for the 
calculation of the unlike repulsive and attractive 
exponents, λkl

r  and λkl
a  respectively. This is applied on the 

van der Waals energy as follows [21] 

λkl
j = 3 + ට൫λkk

j − 3൯൫λll
j − 3൯,    where j = (a,r)    (18) 

The associative square-well parameters can be 
calculated in very similar fashion, employing geometric 
and arithmetic mean expressions. The unlike association 
energy εkl,ab

HB  is conveyed through a geometric-mean as 
[15]  

εkl,ab
HB = ටεkk,aa

HB εll,bb
HB                        (19) 

whilst the unlike bonding volume Kkl,ab is conveyed 
through an arithmetric-mean as [15] 

Kkl,ab = ൬ ඥKkk,aa
3 ା ඥKll,bb

3

2
൰

3
                  (20) 

In practice, combining rules are typically exploited 
as an initial approximation of the unlike parameters [12]. 
More sophisticated optimisation methods are favoured 
to refine these estimates with greater accuracy using 
experimental data i.e. parameter estimation. However, 
in the discussion that follows, it can be argued that 
parameter estimation would perform similarly to the 
combining rules in our case.  

Shape factors indicate the contribution of each group 
to the overall thermodynamic property of the compound 
they reside in. A value of 1 indicates a very strong 
contribution, whereas a value close to 0 indicates 
negligible contribution. For the unlike interaction 
between distinct groups, the relevant indicator of this 
effect is the product of the shape factors. In Table 2, we 
present the individual and appropriate cross interactions 
for the groups currently utilising combining rules. As 
can be observed, the shape factor products ScCHOHSC= 
and ScCHOHSC are small and very small respectively. We 
can, therefore, denote that the contributions to the free 
energy of these interactions are also small. Therefore, 
the unlike dispersion energies, εcCHOH,C= and εcCHOH,C, 
can in theory have any value because it is predicted that 
the results will not change (significantly) for properties 
considered. Thus, it is deemed that the combining rule 
values are good enough and parameter estimation is not 
required. Additionally, parameter estimation will not be 
significant for the same reasons; it is improbable to 
optimise a parameter if it is almost independent of the 
result obtained.  Furthermore, utilising combining rules 
demands less computational effort which simplifies the 
characterisation process. 
 
Table 2: Shape factors for the cCHOH, C= and C groups along with 
the shape factor products for the cCHOH-C= and cCHOH-C unlike 
interactions. 

Group k Shape factor Sk ≠ cCHOH × ScCHOH 
cCHOH 0.68123 - 

C= 0.15330 0.10443 

C 0.040720 0.027739 

 
3.2 Solid-Solid Phase Transition 
 

Due to the enantiotropic nature of cholesterol, the 
standard SLE equation (Equation (15)), in isolation, is 
not sufficient to describe the entire solubility curve. In 
order to depict the additional solid form cholesterol 
possesses, another SLE equation is required. Thus, 
Domanska et al. [22] empirically modified the standard 
SLE equation as follows [22] 
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xi
sat(T, P, xsat) ∙ γi(T, P, xsat) =

exp

⎣
⎢
⎢
⎡
Δhi

fus(Ti
fus, P)

R
ቀ 1

Ti
fus − 1

T
ቁ + Δhi

tr(Ti,s
tr , P)

R
൬ 1

Ti,s
tr − 1

T
൰

+ ∆cP,i(Ti
fus, P)

R
ቆTi

fus

T
− 1 − ln ൬Ti

fus

T
൰ቇ

⎦
⎥
⎥
⎤
      (21)   

This incorporates two additional variables; Δhi
tr(Ti

tr, P), 
which is the enthalpy of the solid–solid phase transition 
and Ti

tr, which is the solid–solid transition temperature. 
Whilst Ti

tr is system dependent (its value changes 
depending on the solvent in system with a solute), in the 
case of cholesterol, Δhi

tr(Ti
tr, P) is currently reported as 

the pure transition enthalpy Δhcholesterol
tr (Tcholesterol

tr , P). 
This is because the mixture effects upon the property 
have not yet been investigated. For the remainder of this 
study, we shall refer to Equation (21) as the Domanska’s 
SLE equation and subscripts denoting cholesterol as 
“chol”.  

Both the standard SLE equation (Equation (15)) and 
Domanska’s SLE equation (Equation (21)) [22] are used 
in tandem to produce the correct solubility curve for 
systems experiencing solid–solid phase transitions 
before fusion. For temperatures below Tchol

tr , polymorph 
β described by Domanska’s SLE equation (Equation 
(21)) [22] is the most stable, since this achieves the 
minimum Gibbs free energy of the system. In contrast, 
for temperatures above Tchol

tr , polymorph α, described by 
the standard SLE equation (Equation (15)), is now the 
most stable. Visually, this appears as a kink like curve 
in a temperature–composition phase diagram. The 
collective use of Equations (15) and (21) shall form the 
basis of our SLE model.  

Our SLE model is highly sensitive to Δhchol
fus (Tchol

fus , P), 
due to its high order of magnitude. Therefore, we 
emphasise the importance of using the true value of 
Δhchol

fus (Tchol
fus , P). As eight distinct measurements for 

Δhchol
fus (Tchol

fus , P) were reported by eight different authors 
without uncertainties [23]–[30], we find it necessary to 
model a confidence interval for which the true value of 
Δhchol

fus (Tchol
fus , P) resides in. Due to the limited sample 

size, a student-t distribution is the most appropriate 
probability distribution to employ. Our confidence 
interval for a t-distribution is defined such that the 
probability the true value lies between the upper and 
lower bounds is 95%. This is expressed as  

𝑃. ቂXഥ − tα 2⁄ ,n-1
S

√n
 ≤ μ ≤ Xഥ + tα 2⁄ ,n-1

S
√n

ቃ =1 − α  (22) 

where 1 − α represents the chosen confidence level of 
95%, n is the sample size represented by the 8 
measurements, Xഥ is the mean of the sample computed as 
25.8 kJ mol-1, S is the sample standard deviation 
calculated as 3.49 kJ mol-1, μ is the true value of 
Δhchol

fus (Tchol
fus , P) and tఈ ଶ⁄ ,n-1 is the t – score for a two-

tailed test with n -1 degrees of freedom. This is obtained 
from statistical tables as a value of 2.365, for the 
aforementioned parameters. Evaluating Equation (22) 
further, we obtain a confidence interval for the true 
value of Δhchol

fus (Tchol
fus , P) as [22.9, 28.7] kJ mol-1. 

The sample mean along with the upper and lower 
bounds of our confidence interval are inputted into our 

SLE model to produce three solubility curves for each 
cholesterol + primary alcohol system. The latter form 
the upper and lower bounds of the confidence region, 
within which, the true solubility curve based on the true 
Δhchol

fus (Tchol
fus , P) value lies, and the curve produced from 

the mean value is that which is used in direct comparison 
with experimental data. This allows for a more justified 
evaluation of our predictions.  

 
3.3 Absolute Average Deviations 
 

To assess the accuracy of the theoretical approach 
provided by the SAFT-γ Mie Equation of State, average 
absolute deviations are calculated for all systems of 
interest. The percentage absolute deviation (%AAD) of 
a property p for a system s is given by 

%AADs[𝑝]= 1
Ns,p

D ∑ ฬ
Xs,p,i

 exp ି Xs,p,i
 calc

Xs,p,i
 exp ฬNs,p

D

i=1 ×100       (23) 

where Ns,p
D  is the total number of experimental points for 

the property, p, of interest, Xs,p,i
 exp is the ith measured value 

in the property p data vector and Xs,p,i
 calc is the analogous 

value, calculated with the SAFT-γ Mie approach.  
%AAD, however, normalises the deviation with respect 
to the experimental value. In the case of our solubility 
calculations, this results in considerably large deviations 
due to the low orders of magnitude observed. Therefore, 
we favour assessing the crude average absolute 
deviation (AAD) given by  

AADs[𝑝]= 1
Ns,p

D ∑ หXs,p,i
 exp  − Xs,p,i

 calcหNs,p
D

i=1         (24) 

 

4. Results & Discussion 
 
4.1 Combining Rule Evaluation of Small Systems 
 

In Figure 2, we present the results for the small 
systems, namely, pure 2,2-dimethylcyclohexanol and a 
binary mixture of cyclohexanol + isophorone. This is to 
evaluate the use of combining rules for the cCHOH-C 
unlike interaction in the case of the former, and both the 
cCHOH-C and cCHOH-C= unlike interactions in the 
case of the latter. In Figure 2(a), we present the 
prediction of vapour pressures for pure 2,2-
dimethylcyclohexanol. Whilst there are only two 
experimental values to compare this to, the order of 
magnitude and general trend is correctly captured by the 
SAFT-γ Mie approach. With a moderately large %AAD 
of 12.78%, the importance of using larger data sets is 
noted to distinguish between an accurate trend and 
anomalous results. This was, however, the only 
experimental data set found for this system. As such, 
particular emphasis is placed on Figure 2(b) which 
presents a larger data set in the form of the isobaric 
vapour-liquid phase equilibria for cyclohexanol + 
isophorone. Furthermore, this system contains both the 
unlike interactions of interest, and is therefore, more 
relevant to our work. Despite a slight deviation from the 
experimental data for the pure saturation temperature of 
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isophorone, we obtain an excellent description of the 
binary mixture using the SAFT-γ Mie approach. This 
slight deviation remains systematic throughout the 
entire phase envelope. With %AADs of 1.05% for the 
bubble temperatures Tbub, and 1.29% for the dew 
temperatures Tdew, these results reaffirm the negligible 
contribution of the cCHOH-C and cCHOH-C= unlike 
interactions to the total free energy, deduced by the 
small shape factor products presented in Table 2 in 
Section 3.1. The %AADs are summarised in Table 3. In 
light of these results, the use of combining rules for these 
two unlike interactions is considered appropriate and is 
therefore used for predicting the properties of systems 
involving cholesterol.  

 
(a) 

 
 
(b) 

 
 
Figure 2: (a) Vapour pressures for 2,2-dimethylcyclohexanol. Circles 
represent experimental data [31]. (b) Isobaric vapour-liquid equilibria 
of cyclohexanol + isophorone at P = 101.33 kPa. Circles and triangles 
represent experimental bubble and dew temperatures respectively 
[32]. The continuous curves represent the SAFT-γ Mie calculations.  
 

 
Table 3: Percentage absolute average deviations from experimental 
values of calculated vapour pressures for 2.2-dimethylcyclohexanol, 
and bubble and dew temperatures for cyclohexanol + isophorone. 

Compound or system Property %AAD 

2,2-dimethylcyclohexanol Pvap 12.78 
Cyclohexanol + isophorone Tbub 1.05 

Cyclohexanol + isophorone Tdew 1.29 
 
 
 

4.2 Heat Capacity 
 
Pure cholesterol data is extremely scarce, with only 

one reliable source reporting the molar heat capacity 
cP, chol found in the literature [29]. However, this was 
primarily for heat capacity in the solid phase cP, chol

S , with 
only one measurement reported for the heat capacity in 
the liquid phase cP, chol

L  (at T = 424.44 K, just above the 
fusion temperature, Tchol

fus  = 421.15 K). We present this 
data in Figure 3 alongside the SAFT-γ Mie prediction 
for cP, chol

L  (note that the SAFT-γ Mie approach cannot 
be applied to solids). Although, there is only one data 
point to compare this to, we observe an excellent 
prediction at that corresponding temperature with a 
%AAD of 1.49%. This promising result for a pure 
property of cholesterol gives us confidence in the use of 
the SAFT-γ Mie approach in predicting the properties of 
cholesterol in mixtures, e.g. solubility.  
 

 
 
Figure 3: Molar heat capacity of cholesterol. Circles represent solid 
phase data and the triangle represents liquid phase experimental data 
[29]. Continuous curve represents SAFT-γ Mie calculations. Dashed 
red line denotes Tchol

fus . 
 
In Figure 3, we observe a peak in cP, chol at 310.2 K 

(note the proximity to body temperature). Miltenburg et 
al. [29] attributes this to the solid-solid phase transition 
which has also been observed by Domanska et al. [22]. 
Indeed, the temperature at which this peak occurs 
roughly corresponds to the transition temperatures 
reported by Domanska et al. [22] at which this solid-
solid phase transition occurs. 

In Figure 3, we also denote the difference between 
the heat capacity of the liquid phase and the heat 
capacity of the solid phase at the fusion temperature 
∆cP, chol(Tchol

fus ). However, the heat capacity data was not 
reported at Tchol

fus  exactly. The closest temperature to Tchol
fus  

for which cP, chol
S  was reported was 418.92 K, with a 

value of 795.19 J mol-1 K-1 and as mentioned previously, 
the only value of cP

L was reported at 424.44 K, with a 
value of 936.75 J mol-1 K-1 [29]. Since these 
temperatures are only within a few Kelvin of Tchol

fus
,, their 

corresponding heat capacity values can be approximated 
as the values at Tchol

fus . We, therefore, calculate that 
∆cP, chol(Tchol

fus ) is approximately equal to 141.56 J mol-1 
K-1.   

Knowing the value of ∆cP, chol(Tchol
fus )  is important as 

it is needed in the prediction of solubility. A term 
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involving ∆cP, chol(Tchol
fus ) appears in both the standard 

SLE equation (Equation (15)) and Domanska’s SLE 
equation (Equation (21)) [22]. However, often this 
∆cP, chol(Tchol

fus )   term is neglected, particularly when 
experimental values for ∆cP, chol(Tchol

fus ) are unknown 
[33]. In Figure 4, we present two solubility predictions 
for cholesterol in 1-butanol: the red curve denotes the 
solubility prediction which neglects the ∆cP, chol(Tchol

fus ) 
term, and the blue curve denotes the solubility prediction 
which accounts for it. Not only do we observe a large 
deviation between the two curves, but the blue curve is 
also in much better agreement with the experimental 
data, denoted by the circles and squares [8], [22]. 

 

 
 
Figure 4: Solid-liquid equilibria for cholesterol in 1-butanol at P = 
101.325 kPa. Continuous curves represent the SAFT-γ Mie 
calculations including (blue) and neglecting (red) the heat capacity 
term. Circles [22] and squares [8] represent experimental data. 
 

The deviation between the two curves can be 
quantified using the absolute relative deviation (%ARD) 
given by 

%ARD = ฬxchol
sat, NOିxchol

sat, YES

xchol
sat, YES ฬ × 100,          (25)  

where xchol
sat, NO is the solubility prediction of cholesterol 

at a given T, neglecting ∆cP, chol(Tchol
fus , P) and xchol

sat, YES is 
the solubility prediction of cholesterol at a given T 
which accounts for it. We calculate a %ARD of 73.6% 
at 298.15 K. This follows the trend reported by Febra 
[33], whereby, the contribution of the ∆cP, chol(Tchol

fus , P) 
term is large for compounds with a large Ti

fus and 
∆cP,i(Ti

fus, P). Although, Tchol
fus  is not particularly large, 

the ∆cP, chol(Tchol
fus , P) certainly is. We, therefore, observe 

a large contribution of the ∆cP, chol(Tchol
fus , P) term when 

predicting the solubilities of cholesterol. Consequently, 
it is important to account for this term when carrying out 
such predictions. 
 
4.3 Solubility Predictions 
 

In Figure 5, we present the solubility of cholesterol 
in different primary alcohols (1-butanol to 1-decanol) at 
body temperature (T = 310.15 K). We present the 
predictions for this using the SAFT-γ Mie approach 
(black circles), alongside experimental data from 

Domanska et al. (blue squares) [22] and Flynn et al. (red 
triangles) [8].  

 

 
 
Figure 5:  Solubility profile of cholesterol in primary alcohols at T = 
310.15 K. Black circles represent SAFT-γ Mie calculations. Blue 
squares [22] and red triangles [8] represent experimental data. Straight 
lines have been drawn to guide the eye. 
 

Both Domanska et al. [22] and Flynn et al. [8] 
observed a general increase in solubility for an increase 
in alcohol chain length, from 1-butanol to 1-heptanol. 
However, we observe a noticeable scattering in the 
experimental data with the exception of the 1-butanol 
and 1-hexanol systems. We, therefore, present the 
predicted SLE curves as a function of temperature for 
these systems (Figures 6(a) and 6(c) respectively). We 
also choose to present the predicted SLE curve for the 
1-pentanol system (Figure 6(b)) to highlight this degree 
of scattering and the challenge in conducting 
experimental measurements at the low concentrations 
observed. This may explain the limited experimental 
data available for these systems. Furthermore, the 1-
pentanol system falls in between the 1-butanol and 1-
hexanol systems with regards to chain length. We, 
therefore, present these three systems for continuity. 

Beyond 1-heptanol, both Domanska et al. [22] and 
Flynn et al. [8] observed erratic trends in solubility for 
increasing alcohol chain length. Flynn et al. [8] 
attributes this to the significant effects of solvate 
formation. The formation of these solvates result in 
crystalline changes, thereby altering the structure of the 
solid phase. These changes become significant for larger 
solvents [8].This may explain the significant deviation 
between the experimental data and the SAFT-γ Mie 
calculations for chain lengths beyond 1-heptanol and 
why the solubility predictions remain almost constant 
for increasing chain length. Without knowing the fusion 
properties of these solvates from experimental data, the 
solid phase cannot be modelled accurately, since the 
SAFT-γ Mie approach is only applied in the modelling 
of fluids (note that our current description of the solid 
phase relies on parameters obtained experimentally e.g. 

∆hchol
fus , Tchol

fus , ∆hchol
tr , Tchol

tr  and ∆cP, chol(Tchol
fus )). 

Consequently, we do not consider systems beyond 1-
heptanol.  
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(a) 

 
(b) 

 
(c) 

 
 
Figure 6: Solubilities of cholesterol in (a) 1-butanol, (b) 1-pentanol, 
and (c) 1-hexanol. Solid curves represent the SAFT-γ Mie calculations 
using the sample mean ∆hchol

fus  value. The dashed curves represent 
SAFT-γ Mie calculation using the limits of the 95% confidence 
interval for the true value of ∆hchol

fus . Circles [22] and squares [8] 
represent experimental data. 
 

For the cholesterol + 1-butanol system, Domanska et 
al. [22] reports a solid-solid phase transition occurring 
at Tchol

tr  = 337.4 K. In Figure 6(a) we present an excellent 
prediction of the solubility of cholesterol in 1-butanol, 
with a %AAD of 19.28% and an AAD xchol

sat  of 0.005324 
(all AAD xchol

sat  values reported are with respect to the 
calculated SLE curve using the mean ∆hchol

fus  value i.e. the 
solid blue curve). Although this %AAD may seem large, 
it should be noted that %AAD is not an appropriate 
measure of deviation in this context due to the extremely 
low orders of magnitude of solubilities. A slight 
deviation from the experimental data in absolute terms, 
can result in a significant %AAD. When considering the 
AAD xchol

sat  for this system, an excellent prediction can 

still be concluded since the order of magnitude of the 
AAD xchol

sat  is lower than that of the measured/predicted 
solubilities as highlighted by observing the x-axis of 
Figure 6(a). 

In Figures 6(b) and 6(c), we present poorer, albeit 
slightly, solubility predictions for cholesterol in 1-
pentanol and 1-hexanol respectively. These systems 
exhibit a solid-solid phase transition at Tchol

tr  = 314.2 K 
and Tchol

tr  = 326.0 K respectively [22]. In both cases, the 
SAFT-γ Mie approach underpredicts the solubility of 
cholesterol. The latter (Figure 6(c)) appears to be 
particularly poor when considering its larger deviation 
from the wider confidence region. Nevertheless, with an 
AAD xchol

sat  of 0.02654 and 0.03707 for the 1-pentanol 
and 1-hexanol systems respectively, the prediction 
captures the correct order of magnitude as well as the 
correct trajectory of the SLE curves. Additionally, with 
such a wide confidence region due to the variation in 
experimental values of ∆hchol

fus , the true value of ∆hchol
fus  

could result in an SLE curve closer to the upper bound 
of the confidence region i.e. the dashed curve furthest to 
the right. This would result in lower AAD xchol

sat   values. 
We, therefore, conclude a good agreement observed for 
these systems. The %AADs and AAD xchol

sat  values are 
summarised in Table 4. 

 
 

Table 4: Absolute average deviations from experimental values of 
calculated solubilities of cholesterol in 1-butanol, 1-pentanol and 1-
hexanol. 

System %AAD xchol
sat

 AAD xchol
sat  

Cholesterol + 1-butanol 19.28 0.005324 
Cholesterol + 1-pentanol 59.71 0.02645 

Cholesterol + 1-hexanol 68.32 0.03707 

 
 
In Figure 5, increasingly large deviations between 

the SAFT-γ Mie prediction and the experimental data 
are observed for increasing alcohol chain length. These 
deviations become significant and erratic from 1-
heptanol onwards, which is attributed to significant 
solvate formation effects. The case for this argument is 
now strong when we consider the excellent agreement 
between the solubility prediction and experimental data 
for the 1-butanol system and reasonable agreements for 
the 1-pentanol and 1-hexanol systems (refer to Figure 
6). This would suggest that our description of the liquid 
phase (provided by the SAFT-γ Mie approach) for these 
systems is accurate. Hence, we can assume the 
underlying parameters e.g. εkl, σkl and λkl

r , are also 
accurate. This is supported by the accurate modelling of 
small systems in Figure 2 and the excellent prediction of 
pure liquid heat capacity of cholesterol in Figure 3. 
Following these results, we would expect our liquid 
phase description to be accurate when predicting the 
solubility of cholesterol in longer chain alcohols i.e. 
beyond 1-heptanol. With an accurate liquid phase 
description for these systems, we identify the poor 
description of the solid phase as the main drawback of 
our SLE model. This reinforces the idea that the 
formation of solvates in longer chain systems result in 
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significant crystalline changes impacting the properties 
of the solid phase. Since these properties are unknown, 
we cannot capture their effects in our current description 
of the solid phase. 

Indeed, there is a high degree of uncertainty in our 
description of the solid phase, with significant variation 
found amongst experimental values of ∆hchol

fus  and ∆hchol
tr . 

Variation was also found amongst experimental values 
of Tchol

tr , however, only Domanska et al. [22] reported 
solvent specific values of Tchol

tr  relevant to our work but 
made no mention of the uncertainty in their 
measurements. We, therefore, have a lack of confidence 
in the true values for these parameters and note this as 
another drawback of our SLE model.  

 
5. Conclusions 

 
Understanding the thermodynamic properties of 

cholesterol is important due to its role in the behaviour 
of biological membranes and the pathogenesis of 
gallstones [8]. The existence of a solid-solid phase 
transition at approximately body temperature (T = 
310.15 K), makes the solubility behaviour of cholesterol 
particularly relevant. 

The SAFT-γ Mie calculations reported in this work 
expand our understanding of the thermodynamic 
properties of systems involving cholesterol. We validate 
the use of combining rules for the cCHOH-C and 
cCHOH-C= unlike interactions by presenting an 
excellent prediction of the bubble and dew temperatures 
of a binary cyclohexanol + isophorone system, with 
%AADs of 1.05% and 1.29% respectively.  

 We obtain an excellent prediction for the liquid heat 
capacity of cholesterol at T = 424.44 K, with a %AAD 
of 1.49%. We also observe a significant contribution of 
the difference in the heat capacity of the liquid and solid 
phases (at fusion temperature) to the solubility 
prediction of cholesterol in primary alcohols, 
highlighting its necessity in our SLE model.  

We present the solubility predictions of cholesterol 
in primary alcohols, 1-butanol to 1-decanol, at body 
temperature (T = 310.15 K), as well as the predicted SLE 
phase diagrams for cholesterol in 1-butanol, 1-pentanol 
and 1-hexanol. With AAD xchol

sat   values of 0.005324, 
0.02645 and 0.03707, we present an excellent prediction 
for the 1-butanol system and good predictions for the 1-
pentanol and 1-hexanol systems respectively. The 
SAFT-γ Mie approach, therefore, captures the order of 
magnitude of cholesterol solubility and the trajectory of 
these SLE curves correctly. However, for longer chain 
alcohols, the formation of solvates becomes significant, 
influencing the crystalline structure, which our solid 
phase description does not capture. We highlight this as 
the main drawback of our SLE model, but not of the 
SAFT-γ Mie approach. Understanding the properties of 
these solvates would enable us to provide a better 
description of the solid phase leading to more accurate 
solubility predictions. 

The results from this work demonstrate the 
versatility of the SAFT-γ Mie approach, insofar as it 
enables us to model molecules for which experimental 

data is scarce, thus solidifying its status as a state-of-the-
art equation of state.  
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Abstract: Polyethylene terephthalate (PET) is the largest single fibre type used in the global textile industry. To dye 
PET’s hydro-phobic fibres, complementary disperse dyes and numerous auxiliary agents are utilised. Current garment 
production and dyeing processes consume vast quantities of water, energy, and dyestuff materials with little effort to 
recycle the dye, discarded PET and abate their water and chemical usage. Leaching of wastewater containing harmful 
chemicals into the environment ensues. Since PET and disperse dyes do not readily biodegrade, it has spurred innovation 
to recycle the disperse dyes extracted from PET textile fibres by employing ionic liquids (ILs) and eliminating auxiliary 
chemical usage. This study explored a step towards a closed-loop dye recycling process by developing a washing method 
to maximise IL recovery and minimise water consumption. Recoveries of [DMBA][MeSO3] and [TEA][MeSO3], which 
were employed in the extraction of C.I. Disperse Blue 56 from PET and the resulting dye bath’s reuse in dyeing virgin 
PET was compared, while varying the increment volume of wash water. The minimum IL loss achieved was 3.35%, 
utilising the smallest increment of wash water volume investigated (5 ml/gfabric) and implementing [DMBA][MeSO3]. 
Similar [DMBA][MeSO3] and [TEA][MeSO3] retrieval rates in the wash waters indicate the washing process is not mass 
transfer limited. UV-vis spectroscopy concluded that incremental wash water volume sizes and type of IL does not affect 
the dyed fabric’s colour strength. Partition coefficient evaluation suggests the stagewise washing procedure is physically 
limited.

1. Introduction 
To suit economic objectives, negligent practices by the 
fashion industry have encouraged user overconsumption, 
making it the second most polluting industry [1]. Annually, 
it expends a staggering 79 trillion litres of water, 
accounting for approximately 20% of total global 
wastewater production [1].  From fibre to textile 
production, over 15,000 chemicals are involved during 
clothing manufacture: consisting of sizing agents, 
dyestuffs, pigments, basic chemicals and auxiliary 
chemicals for pretreatment, dyeing and finishing [2]. As 
many textile mills are in developing countries, most do not 
possess advanced wastewater treatment units, so the 
environmentally hazardous wastewater is discharged 
directly into rivers and seas, seriously harming aquatic 
life, exacerbating eutrophication and threatening human 
health [3]. Aside from compounds that do not easily 
biodegrade, others participate in destructive reactions, 
such as disperse azo dyes, which can be reduced to 
carcinogenic amines and non-aromatic dyes, that contain 
toxic heavy metals [4]. Alongside production emissions, 
the industry manages its unused pre-consumer waste, like 
unsold or returned garments and fabric off-cuts by 
incineration and landfill deposition, recycling only 14.7% 
in 2018 according to the EPA [5].  

Polyester dominates the textile market, comprising 
54% of global fibre production [6] and around 80% of 
synthetics, due to its relative low cost, performance and 
versatility. To match polyester’s hydrophobic properties, 
complementary disperse dyes which are sparingly soluble 
in water, are used to dye its hydrophobic fibres [7]. The two 
main classes of disperse dyes, divided by their functional 
groups, are azo-dyes and anthraquinone dyes. Their 
synthesis requires hydrocarbons derived from non-
renewable petroleum sources. Although, stricter 
environmental regulations are encouraging textile 
manufacturers to adopt effluent treatment and water 
recycling systems to mitigate the industry’s environmental 
impact, these are costly solutions and will propagate to 
increase the purchase price for consumers. 

 Inherent change in the textile industry will be 
achieved when responsibility of a garment is maintained 

all the way to the end of its life and extended past the 
manufacturing stage. Synthetic dye recycling and their 
extraction “as a pretreatment for material recycling 
methods and their subsequent reuse to dye new fibres 
provides a new circularity dimension in the textile 
industry” [7]. This dye recycle process invented by 
Abouelela et al. [7], aims to curb the environmental dangers 
posed by leaching harmful disperse dyes found in PET 
manufacturing wastewater, by using low-cost protic ionic 
liquids (ILs) to selectively extract dyes from synthetic 
textile fibres and recycle them. Once optimised, the 
technology intends to provide a way to recycle decoloured 
PET which meets recycling criteria and achieve a 
sustainable circular dyeing route by utilising textile waste 
and reducing virgin synthetic dye consumption [7].  

Figure 1. Schematic diagram of dye recycling process 
 

       The research contained in this report seeks to help 
streamline the IL, water and energy usage throughout the 
closed loop process, recycling resources where possible 
by using a Design of Experiment approach. The principal 
focus of the experiments was to gauge the feasibility of 
achieving near complete recovery of IL, minimising 
losses, by varying the incremental wash water volume. A 
second IL was also investigated. The experiments 
consisted of selective extraction of dye from polyester 
fabric. This uncontaminated decoloured PET can be 
hypothetically sent to recycling facilities and the extracted 
dye-rich solution was used as a colour specific dye bath 
for dyeing virgin polyester. The whole dye recycling 
process is shown in Figure 1. The effect of the washing 
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procedures on dyeing performance was also investigated 
using UV-vis spectrometry.  

2. Background 
The dyeing process is the dispersion of dye into liquid 
solvent, followed by diffusion of the dye molecules from 
the solvent to the substrate, which is the free space volume 
of the fabric fibres [8]. In batch dyeing, textile is loaded into 
the dyeing vessel and allowed to reach equilibrium with 
the solution containing the dye and other auxiliary 
chemicals. When the desired shade of textile is achieved, 
the textile is washed to remove unfixed dye molecules and 
chemicals. Solid loading is the ratio of the mass of the 
substrate fabric to the volume of the solution containing 
the dye. Notably, the solid loading correlates with dyeing 
vessel size, water and energy consumption of the process 
and therefore influences process economics considerably 
for exhaustion methods. Continuous and semi-continuous 
dyeing processes are used for meeting high production 
volumes, in which the dyestuff is applied to the textile as 
it is passed through rollers rotating at speeds of 50-250 
m/min [9]. Heat is applied to fix the dyes to the fabric by 
drying or steam, consuming a large amount of energy. 
Instead of the solid loading parameter, the wet pickup 
percentage is used to measure the mass of dye-containing 
solution picked up by 100 grams of fabric [9]. Typical 
polyester dyeing uses pressurised jet-dyeing machines in 
batch operation. The high temperature (120-150 ℃) 
employed in this process enables sufficient swelling of the 
fibres to allow dye penetration, by exceeding the glass 
transition temperature of polyester (60-80 ℃) [10]. After 
heating, the polyester cools and returns to its crystalline 
structure with the dye molecules trapped between the 
fibres. This method eradicates the need for various carriers 
and phenol-based swelling-agents that were used prior to 
its invention. However, removal of the unfixed dye 
sometimes requires alkaline chemicals in reduction 
cleaning for darker coloured textiles [10] and the process 
still has a significant carbon footprint due to its energy 
requirements.  Other common polyester dyeing methods 
are the Carrier, High Pressure High Temperature (HTHP) 
and Pad thermosol [11]. These conventional methods are 
resource intensive and rely on the additional polluting 
auxiliary chemicals, discussed earlier, to increase 
dyeability and improve dispersion of the low solubility-
disperse dyes in solvents like water. 

Consumer demand, regulatory pressure, competitive 
advantage, and innovation in the fashion industry are all 
playing a part to dismantle the fashion industry’s 
traditional dyeing processes for textiles and are 
accelerating the development of environmentally 
conscious dyeing processes that consume less synthetic 
auxiliary chemicals and have lower carbon and water 
footprints. One such dyeing process uses supercritical CO2 
(sCO2) as a solvent for disperse dyes, that are utilised for 
hydrophobic polymers like PET and other synthetic fibres 
[12]. The dissolved dye in the circulating CO2 can penetrate 
the PET fibres as they swell, aiding dye diffusion and its 
even distribution. Expansion at low pressure facilitates 
easy removal of sCO2 and recovery of excess dye [12]. The 
end product is comparable in colour strength, and fastness 
to conventional wet dyeing methods. As it is a dry process, 
it consumes zero water and therefore also eliminates the 

energy-consuming drying step [13]. Another advantage is 
that it employs a simpler dye concoction, with the absence 
of auxiliary chemical, has quicker dyeing times, making 
this process extremely efficient and eco-friendly. 
However, the high capital needed for equipment costs and 
process construction, alongside the operating costs 
associated with the elevated pressures (100-300 bars) the 
process requires, impede commercialisation of sCO2 
dyeing in the industry’s low-cost dyeing landscape [12]. 
Migration of polymers from inside the fibres to the PET 
fabric’s surface as well as its transfer to dyeing equipment 
also presents a technical issue [14]. Other, dry techniques 
like digital micro-printing and microencapsulation suffer 
from similar disadvantages due to their complexity [11]. 
Another dyeing method that minimises water usage is 
solvent-assisted dyeing. An important advantage of this 
technique over sCO2 dyeing, is that in principle adaptation 
of aqueous dyeing machinery can be achieved relatively 
easily with minor modifications and lower costs. Solvent 
selection for fibre dyeing, benefits from increased dye 
bath reusability and increased dye uptake as they 
explicitly influence colour fastness, dyeing cost and 
effluent control.  Initially chlorinated hydrocarbons were 
proposed as suitable solvents for polyester but 
understandably did not popularise, due to their toxicity 
and flammability [15]. Elimination of auxiliary chemicals 
like wetting and levelling agents and improved diffusion 
of disperse dyes in water-alcohol solvent mixtures, is 
causing alcohol-assisted dyeing to gain recognition more 
recently [16]. Alternative solvents to volatile organic 
alcohols, investigated by Ferrero and Periolatto, found that 
glycerol as an additive, is as effective as ethanol in 
replacing auxiliary chemicals [16].  

Although extensive research has been conducted into 
dye removal methods from textile wastewaters due to their 
devastating environmental impact, little investigative 
efforts have gone into dye removal technologies from 
solid substrates, like textile fibres. Robinson [17] briefly 
mentioned the possible use of ILs to preserve the 
colouring of cotton fibres or remove their original 
colouring, to produce neutral fibres [17]. However, the 
paper largely focused on using ILs to separate and recycle 
polymer fibres from polymer-cellulose textile blends. 
Xiuzhu et al. investigated dye removal from polyester 
fibres employing much harsher sodium formaldehyde 
sulfoxylate and acetone chemicals [18]. Despite this 
method’s effectiveness at decolourising a range of 
polyester fabric shades, it does not preserve the dye 
chemistry whatsoever, and the investigation’s sole aim 
was to enable polyester textile recycling. 

Ionic liquids are a group of salts that have bulky anions 
and cations and don’t possess much symmetry in their 
structure, sterically limiting their ability to form ordered 
structures [19]. Meaning at temperatures less than 100 ℃, 
they exist in the liquid state and have low melting points. 
Another reason for this, is the delocalisation of the 
cationic and anionic charges spreading over more than one 
atom (apart from halides), which induces a reduction in 
lattice energy. Varying alkyl chains can be substituted 
with the hydrogen atoms to introduce rational degrees of 
freedom at low temperatures. These alkyl chains are less 
symmetric, thus decreasing the melting point of the ionic 
liquid [20]. The cation in ILs is usually comprised of a per 
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alkylated organic ion like amines, imidazoles or 
pyrimidines, and the anion is usually polyatomic and can 
be either inorganic or organic such as [MeSO3

-] [21]. A key 
advantage of ILs is that they can be specifically tailored 
for a particular application due to the unique properties 
experienced from pairing different anions and cations. 
Applications include their use as solvents, catalysts, in 
electrochemistry and lignocellulose pretreatment [7][21]. 
Their combined ionic-organic nature enables their 
engagement in a variety of inter and intra-molecular 
interactions from weak isotropic forces to strong, specific 
and anisotropic forces [22]. As a result, they are often 
referred to as “designer solvents”. Unlike organic 
solvents, ILs are not flammable due to their negligible 
vapour pressures, they do not require vapour disposal 
measures. However, the immediate toxic risk they pose to 
aquatic life when released into the environment, in some 
instances is higher than molecular solvents, deeming 
quantitative recovery necessary. Thus, efficient separation 
of products, such as dyed fibres, from the IL, is essential 
to optimise recovery and curtail water consumption during 
the washing stage. Their largely involatile disposition also 
means the amount of IL able to be recovered and recycled 
is increased, which is advantageous, because of their 
associated high cost. Despite this fact, there is a subclass 
of ILs, called protic ILs (PILs) which cost substantially 
less than conventional aprotic ILs and whose price is 
comparable with common inexpensive organic 
solvents[21]. PILs are conceived by proton transfer from 
the acid to the base via an acid-base neutralisation 
reaction[22] (Equation 1), causing availability of the proton 
which allows formation of inter and intra hydrogen 
bonding between the anions and cations as well as 
dissolved solutes [23]; the principal characteristic of PILs. 

                       𝐻𝐴 + 𝐵 ↔ 𝐵𝐻ା + 𝐴ି                       (1) 
[DMBA][MeSO3] and [TEA][MeSO3] are two PILs that 
share the aforementioned IL properties and have high 
solubility for disperse dyes [24], facilitating efficient 
extraction of the dyes from the fabric and enhancing the 
dyeing process on polyester fabric. Their relatively low 
viscosities aid the mass transport rate of the reaction and 
dyeing process [24]. Furthermore, they possess good 
thermal stability [25], enabling dyeing processes at higher 
temperatures required for dye fixation on polyester, 
contributing to better dye adsorption and colour fastness. 
Moreover, their chemical compatibility with polyester 
fabric and disperse dyes, to minimise adverse reactions 
that could affect the quality of dyeing or the fabric itself, 
makes them suitable for this projects’ purpose. Figure 2 
shows their chemical structures. 

 
               (a)                                        (b) 

Figure 2. Chemical structure of IL. (a) [DMBA][MeSO3]. (b) 
[TEA][MeSO3] 
 
Dyeing using ionic liquids has multiple advantages over 
sCO2 dyeing and alcohol-based dyeing, as the dyeing 
process can be operated at atmospheric pressure and 
existing aqueous dyeing machinery can be easily modified 

for IL-assisted dyeing, costing much less than sCO2 
dyeing implementation. Compared to IL applications in 
various other fields, research for their use in dyeing 
textiles is still relatively scarce and they have only been 
studied modestly. Opwis et al. conducted a study 
exploring the efficacy of commonly utilised aprotic ionic 
liquids in dyeing polyester. The ionic liquids tested were 
comprised of a 1-ethyl-3-methyl-imidazolium cation 
combined with various anions including acetate, chloride, 
sulfate, methyl sulfate, and phosphate. Among these, 
methyl sulfate-based ionic liquids exhibited superior 
performance, showcasing enhanced dyeing outcomes and 
achieving deeper shades particularly at elevated 
temperatures ranging from 140 to 160 °C [26]. Moreover, 
their research highlighted that dyeing in the ionic liquid 
medium yielded superior colour shades and comparable 
fastness results in comparison to conventional aqueous-
based dyeing techniques. Separate studies by Yuan et al. 
demonstrated the utility of [C4C1im]Cl for enhancing 
dyeing of wool [27]. Meanwhile, Bianchini et al. conducted 
a more extensive examination, screening eight aprotic 
ionic liquids for dyeing cotton, wool, and polyester. 
Among the tested compounds, the 1-(2-hydroxyethyl)-3-
methylimidazolium chloride IL demonstrated the most 
promising dyeing results across various fabrics under 
atmospheric pressure at 100 °C in initial screening tests[28]. 

3. Methodology 
3.1 Materials  
N-Butyldimethylamine (DMBA) and triethylamine (TEA) 
were obtained from TCI Chemical (Tokyo, Japan) while 
methanesulfonic acid (MeSO3H) was obtained from 
Sigma Aldrich (Missouri, USA). Disperse blue 56 (spun 
polyester woven) and white (100% polyester) fabrics were 
purchased from Testfabrics, Inc (USA). Deionised water 
was provided in the laboratory. DMSO NMR solvent was 
purchased from Sigma-Aldrich (USA). 
3.2  Making Ionic Liquid Solution 
For [DMBA][MeSO3] synthesis, dropwise equimolar 
MeSO3H was added to DMBA in a round bottom flask and 
cooled in an ice bath. It was left to stir continuously 
overnight. Deionised (DI) water was added to the solution 
until it had a composition of 80 wt% ionic liquid and 20 
wt% water. It was proved that high ionic liquid 
concentration can achieve high efficiency of dye 
extraction [7].  Volumetric Karl Fischer titration (V20 
Mettler Toledo, USA) was used to measure the water 
content while 400 MHz 1H-NMR spectrometer (Tokyo, 
Japan) was used to ensure the acid-base ratio of the 
solution is 1. The same procedure was used to synthesise 
[TEA][MeSO3]. 
3.3 Conductivity Calibration Curve 
Pre-measured deionised (DI) water was added to a 50 ml 
beaker. The conductivity of DI water using a conductivity 
meter was measured. A quantity of the ionic liquid (IL) 
solution was taken using a 1 ml syringe. Then, known 
mass (1 to 2 drops) of IL solution from the syringe was 
added into the water.  The conductivity of the solution was 
measured, ensuring the solution was well-mixed before 
the reading was taken. These steps were repeated, 
gradually increasing the amount of IL solution added to 
the water until the conductivity reading was out of the 
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instrument’s range (0 – 2 mS). Equation 2 was used to 
determine the concentration of IL in the solution. 
Enabling, a linear graph of conductivity against IL 
concentration to be plotted. 
                         𝐶ூ௅ =  ଴.଼௠಺ಽ,ೞ೚೗

൫௠಺ಽ,ೞ೚೗ା௠ವ಺൯
× 100                           (2) 

where 𝐶ூ௅ is the IL concentration in wt%, 𝑚ூ௅,௦௢௟ is the 
mass of IL solution added while 𝑚஽ூ is the mass of DI 
water. The 80 wt% of IL in the initial IL solution was 
considered in the calculation. The conductivity calibration 
curve was carried out for both [DMBA][MeSO3] and 
[TEA][MeSO3], respectively. 
3.4 Dye Extraction Process 
Three samples with 10 g IL solution in each pressure tube, 
were prepared. (From section 3.4 to 3.6, IL refers to 
[DMBA][MeSO3] unless stated otherwise.). The blue 
polyester fabric was cut into small pieces (approximately 
1 × 1 cm) to increase the surface area for dye extraction 
and mixed in the IL solutions with a fabric loading of 15% 
(1.5 g of fabric in each sample) as commercially, the fabric 
loading ranges from 10% to 30% [29]. Equation 3 was used 
to obtain the mass of fabric. The oven was preheated to 
150 ℃ and the pressure tubes were put into the oven for 1 
hour. This temperature proved to have high efficiency of 
dye extraction without decomposing the dye [7]. The 
pressure tubes were taken out of the oven using gloves and 
left to cool before starting the washing process.  
                               𝑚௕௙ = ி௅ 

ଵ଴଴
× 𝑚ூ௅,௦௢௟

௙                                     (3) 
where 𝑚௕௙ is the mass of blue fabric used, 𝐹𝐿 is the fabric 
loading in % while 𝑚ூ௅,௦௢௟

௙  is the feed mass of IL solution. 
3.5 Washing Procedure 
After the pressure tubes had cooled down, the post-
extraction solutions were decanted into empty falcon tubes 
and the mass of these solutions was measured. The fabric 
was squeezed using a spatula to ensure as much of the 
solutions were decanted. Then, 20 ml/gfabric (30 ml) of DI 
water was used in each sample to wash the fabric. They 
were mixed well using a spatula to ensure the fabric was 
fully immersed in the solution. Following this, the 
pressure tubes were put into the sonicator (Fisherbrand) 
for 2 minutes to further ensure the solution was well-
mixed. After that, they were placed back in the oven 
(temperature fixed at 150 ℃) for 10 minutes. They were 
then taken out and allowed to cool.  Following this, the 
first washing solutions were collected into empty falcon 
tubes and the mass of these solutions was measured. These 
steps were repeated with the second and third washes until 
the total volume of water used to wash the fabric reached 
60 ml/gfabric (90 ml) for each sample. The mass of the 
fabric was recorded after the fabric completely dried. The 
procedures described in sections 3.4 and 3.5 were repeated 
for 10 ml/gfabric (15 ml) and 5 ml/gfabric (7.5 ml) volumes 
of water used in each wash by keeping the total wash water 
volume constant at 60 ml/gfabric. Thus, the number of 
washes was 6 for 10 ml/gfabric and 12 for 5 ml/gfabric. 
3.6 Dye Recycling Process    
The post-extraction solutions (concentrated with blue 
dyes) were recycled to dye virgin fabric. These solutions 
were diluted using the wash water collected from the 1st 
wash, so its composition became 60 wt% IL and 40 wt% 
water. Equation 4 was used to determine the mass of the 
1st washing solution required for dilution.  

                           𝑚௪ଵ = 𝑚ா௫,௦௢௟(
஼೚ 
஼ವ

− 1)                            (4) 
where 𝑚௪ଵ is the mass of first washing solution required 
to dilute the post-extraction solution, 𝑚ா௫,௦௢௟  is the mass 
of post-extraction solution, 𝐶௢ is the initial IL 
concentration which is 80 wt% while 𝐶஽ is the desired IL 
concentration which is 60 wt%. 
    After the dilution, these solutions were referred to as 
dyeing solutions. The total mass of dyeing solutions was 
determined using Equation 5 below. Dyes are insoluble in 
water. Therefore, higher dyeing efficiency can be 
achieved by increasing the water content to reduce the 
solubility of dye, shifting the equilibrium towards 
dyeing[7]. The dyeing solutions were then transferred to 
the dyeing pots. Then, a piece of white fabric was added 
into each dyeing pot with a fabric loading of 15%. 
Equation 6 was used to obtain the mass of white fabric 
required for dyeing.  
                              𝑚ௗ௦ = 𝑚ா௫,௦௢௟ + 𝑚௪ଵ                             (5) 
                              𝑚௪௙ = ி௅ 

ଵ଴଴
× 𝑚ௗ௦                                           (6) 

where 𝑚௪௙ is the mass of white fabric used, 𝐹𝐿 is the 
fabric loading in % while 𝑚ௗ௦ is the mass of dyeing 
solution. 
     The dye pots were then loaded into the dyeing machine 
(Roches Pyrotec4, Yorkshire, UK) with a rotation speed of 
40 RPM and heating speed of 3.1 ℃/min to the set 
temperature (130 ℃). After that, the dyeing machine was 
cooled down to 30 ℃ at cooling speed of 3 ℃/min. After 
the process finished, the dye pots were taken out from the 
machine and the post-dyeing solutions were removed into 
empty falcon tubes, respectively. The mass of these 
solutions was measured. The dyed fabrics were transferred 
into pressure tubes to start the washing process, which had 
the same procedure as in section 3.5. Similarly, the 
volume of water in each wash was also varied (20 
ml/gfabric, 10 ml/gfabric and 5 ml/gfabric). This entire process 
(section 3.4 to 3.6) was repeated using [TEA][MeSO3] as 
the IL. 
3.7 Measuring the Conductivity 
The conductivity of IL can be measured directly using 
conductivity meter, which has range of 0 to 2 mS. 
However, some of the solutions were too concentrated 
with IL such that the conductivity meter reading was out 
of range. Therefore, the solutions had to be diluted first 
with known mass of DI water. Calibration curve obtained 
from section 3.3 was used to determine the IL 
concentration, based on the conductivity reading. 
Equation 7 was also used for the solutions that required 
dilution. 
                   𝐶ை,ூ௅ = (௠ೞ೚೗ା௠ವ಺)

௠ೞ೚೗
× 𝐶஽,ூ௅                       (7) 

where 𝐶ை,ூ௅ is the actual IL concentration in the original 
solution before dilution while 𝐶஽,ூ௅ is the diluted 
concentration of IL, both in units of wt%. 𝑚௦௢௟ is the mass 
of solution used for dilution while 𝑚஽ூ is the mass of DI 
water used to dilute the solutions.  
3.8 Colour Strength of Dyed Fabric 
UV-Vis spectroscopy was used to measure the reflectance 
of the dyed fabrics. A background spectrum was first 
acquired from an empty sample holder. The Kubelka-
Munk function was used to obtain the colour strength 
(K/S) [29] (Equation 8).   
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                                𝐾 𝑆⁄ = (ଵିோ೘೔೙)మ

ଶோ೘೔೙
                                      (8)     

where 𝐾 is the absorption coefficient of light, 𝑆 is the 
scattering coefficient of light while 𝑅௠௜௡  is the minimum 
reflectance in the spectrum (highest absorbance) at 
wavelength range of 620 to 650 nm. The larger the K/S 
value, the higher the intensity of the dye in the fabric. 

4. Results and Discussion 

From this point forward in the report [DMBA][MeSO3] 
will be referred to as DMBA and [TEA][MeSO3] will be 
referred to as TEA. The term ‘IL’ refers to either 
[DMBA][MeSO3] or [TEA][MeSO3] and similarly ‘ILs’ 
refers to both [DMBA][MeSO3] and [TEA][MeSO3]. 
4.1 Calibration Curve 
Ionic compounds conduct electricity when they are in 
solution form as ions can move freely and carry the 
charge[30]. Thus, the correlation between conductivity and 
concentration of ionic liquid solutions of DMBA and TEA 
respectively can be determined, as shown in Figure 4.1. 
Both ionic liquids showed linear relationship, but DMBA 
has higher conductivity compared to TEA. Types of ions 
in solutions will affect the conductivity as they have 

different ability to transmit the charge due to the sizes and 
interaction with water molecules [31]. DMBA is larger 
since the arrangement of its carbon chain is longer 
compared to TEA, which has more compact carbon chain, 
seen in Figure 2. Therefore, the bond strength between 
DMBA and water molecules is weaker, enables the ions to 
move more freely in solution. The equations shown in 
Figure 4.1 were used to obtain the concentration of IL. 

 
Figure 4.1. Conductivity calibration curve for [DMBA][MeSO3] 
and [TEA][MeSO3] 
 
4.2 Concentration of IL in Solutions 
As explained in section 3.5, the total amount of water used 
for washing the IL off the post-extraction decoloured 
fabric and post-dyeing dyed fabric was set at 60 ml/gfabric. 

(a) (b) 

(c) (d) 
Figure 4.2. IL concentration in solutions post-extraction and post-dyeing. (a) Comparison of DMBA extraction and dyeing. (b) 
Comparison of TEA extraction and dyeing. (c) Comparison of DMBA and TEA extractions. (d) Comparison of DMBA and TEA dyeings 
 
          Figure 4.2 shows the concentration of IL removed 
from the fabrics, into the wash waters post-extraction and 
post-dyeing, for both ILs tested. A first glance at Figure 
4.2 solidifies the intuitive prediction of there being a 
progressive decrease in IL concentration in the wash 
waters after each wash.  At constant volumes of wash 
water in Figure 4.2a, there is a reduction in the DMBA 
concentration as the stagewise increment wash water 

decreases from 20 ml/gfabric to 10 ml/gfabric to 5 ml/gfabric. 
This is seen zooming in at 20 ml/gfabric cumulative wash 
water volume, examining the extraction data in Figure 
4.2a. The DMBA concentration is 6.28% for 20 ml/gfabric, 
2.81% for 10 ml/gfabric and 0.70% for 5 ml/gfabric. This 
occurs because when reaching 20 ml/gfabric cumulative 
wash water volume, there are four times as many washes 
in the stagewise operation employing 5 ml/gfabric water-
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fabric ratio and twice as many for the 10 m/gfabric 
compared to the 20 ml/gfabric increment. Consequently, 
each time new wash water is added, at each wash stage, 
the concentration difference of IL between the fabric and 
the surrounding water is reset, re-establishing the driving 
force for the IL to migrate into the water and out of the 
fabric. This concentration difference lessens over 
subsequent wash stages, as the fabric retains less IL from 
the previous washes, translating to less IL being removed 
in the subsequent washes individually. Although, this is 
true for all three water-fabric ratios investigated, it is 
deduced that washing in 5 ml/gfabric increments of water 
was the most effective at removing IL into the wash water. 
This is due to its higher frequency of washes, which 
resulted in 0.00% IL being washed out in its last 4 washes 
(Figures 4.2a and 4.2b). This is supported by comparing 
the DMBA concentrations in the last wash waters at the 
end of the washing process, as being 0.24%, 0.01% and 
0.00% for the 20 ml/gfabric, 10 ml/gfabric and 5 ml/gfabric 
stagewise operations, respectively. Another way to think 
of this, is the cumulative recovery of IL, explained later in 
section 4.3.2. As expected, this is also seen in the DMBA 
dyeing profiles in Figure 4.2a as well as, the TEA 
extraction and dyeing profiles shown in Figure 4.2b, since 
all the conditions for washing were kept constant. The data 
points plotted at 0 ml/gfabric wash water represent the IL 
concentration of the dye baths directly after the extraction 
and dyeing processes, before washing. At 0 ml/gfabric, the 
extraction profiles, for the three different water-fabric 
ratios, should all start at 80% IL concentration, confirmed 
using the Karl-Fischer machine. However, the data 
expressed in these graphs at 0 ml/gfabric was deduced by 
recording the conductivity of the solutions using a 
conductivity meter which, although has an R2 > 0.999 
(Figure 4.1), did introduce uncertainty, which permeated 
through the calculations to the IL concentrations (79.09 ± 
2.84%). The conductivity meter’s uncertainty was 
suspected during lab experiments and confirmed by 
measuring the conductivity of tap water, which produced 
a reading of 0 mS, contrary to its actual conductivity. 
Nonetheless, the uncertainty’s manifestation in the IL 
concentrations of the solutions is consistent across all the 
processed data as the conductivities were recorded by the 
same conductivity meter. Therefore, this does not affect 
the conclusions drawn from these figures. 

Figures 4.2c and 4.2d demonstrate the near identical 
removal ability of DMBA compared to TEA from the 
fabric, employing the same washing procedure across the 
extraction and dyeing processes, evident in the profiles 
closely overlapping one another. In Figure 4.2c this is 
apparent for the 10 ml/gfabric and 5 ml/gfabric increments. 
There is a noticeable difference in the post-extraction 
wash 1 TEA concentration compared to DMBA for the 20 
ml/gfabric water-fabric ratio. This is because during the 
extraction process employing DMBA, a smaller pressure 
tube was used initially. After extraction, it was realised 
that the smaller size could not accommodate the 30 ml of 
wash water needed for the 1.5 gfabric corresponding to the 
20 ml/gfabric water-fabric ratio. As a result, after squeezing 
the post-extraction dye bath (DMBA-dye mixture) in the 
smaller pressure tube, the fabric was transferred to a larger 
pressure tube for the 1st wash. As the TEA experiments 
were conducted after the DMBA experiments, this 

foresight led to the use of the larger pressure tube for the 
TEA-extraction process (20 ml/gfabric water-fabric ratio) so 
it could accommodate enough water for the washing 
process after extraction. This was decided in accordance 
with the standard operating procedure (in section 3.4), of 
performing the extraction step and post-extraction washes 
in the same pressure tube, for each sample being 
investigated. However, in hindsight, the method used for 
the 20 ml/gfabric TEA extraction and washing should have 
been carried out in the same way as the 20 ml/gfabric 
DMBA extraction and washing, done prior, for their 
concentrations after the 1st wash to be comparable.  
Manual recovery of the TEA post-extraction dye bath 
(TEA-dye mixture) for the 20ml/gfabric sample proved to 
be more difficult with the use of the larger pressure tube. 
This is due to the inconsistency of the manual wringing-
action employed between the washes for the 20 ml/gfabric 
DMBA and TEA samples. In the larger pressure tube 
(TEA), the spatula used, was not long enough to allow the 
remaining fabric to be squeezed in the same manner as in 
the smaller pressure tube (DMBA) which resulted in less 
force being applied, by hand, and transmitted via the 
spatula to the fabric, during coercion of the extracted dye 
bath out of the fabric, for collection. Thus, leaving more 
of the extracted dye bath, containing TEA within the 
fabric and on its surface. As a result, when water was 
added to the pressure tube for the 1st wash, it appears in 
Figure 4.2c as more than double the amount of TEA 
(13.09%) being removed than DMBA (5.57%). Thus, the 
deviation between those two points was because more 
TEA was left in the fabric before the 1st wash and not due 
to TEA being easier to remove. TEA’s greater viscosity, 
which entailed more difficulty in its detachment from the 
fabric as well as being responsible for leaving residual 
solution on the inner walls of the pressure tubes, reinforces 
this reasoning. Unexpectedly, the similar gradients of the 
slopes between the wash stages in the profiles in Figure 
4.2c indicates that this property did not affect TEA’s 
washing rate, showing as very similar to DMBA’s 
washing rate. Hence, suggesting that the wash stages in 
the washing procedure removed the same amount of IL for 
both ILs and implies that the washing process is not mass 
transfer limited. This conclusion can only be drawn for the 
5ml/g and 10ml/gfabric profiles as the 20 ml/gfabric profiles 
are incomparable due to the procedural inconsistency, 
associated with its 1st wash, explained earlier. Figure 4.2d 
confirms this behaviour for the post-dyeing washing 
process, also displaying similar washing rates between 
both ILs, after the 1st wash, in which the 20 ml/gfabric 
profiles are valid for comparison, as the pressure tube size 
during dyeing was consistent for both TEA and DMBA. 
 It is important to remember that, as described in section 
3.6, the 60% IL concentration of the dye bath employed in 
the dyeing process, was made by diluting the post-
extraction dye bath with calculated amounts of wash water 
(Equation 4) from the 1st wash, for each of the three 
increment volumes. As a result, the systematic error 
introduced by the conductivity meter, explained earlier, 
has impacted the data points at 0 ml/gfabric, in Figure 4.2d, 
in which all the dyeing profiles should start at 60%, but 
range from 56.74% to 70.57%, because of this. Particular 
to the dyeing profiles, it was assumed that the wash water 
from the 1st washes, used for dye bath dilution, was pure 
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DI water, however it discernibly contained IL and some 
extracted dye that was washed off during the 1st post-
extraction wash, thereby altering the actual concentration 
of the dye bath prepared for the dyeing process. Equation 
4 (section 3.6), which was used to obtain the 
corresponding mass of wash water required for the 
dilution of the post-extraction dye bath samples, did not 
account for this. Another source of error was fabric mass 
loss due to loose threads separating from the fabric pieces 
during cutting, transfer and squeezing actions described in 
the methodology, section 3, which was also unaccounted 
for in the mass balance. The error bars on Figure 4.2, also 
represent minor deviations induced from water 
evaporating during wash water retrieval from the pressure 
tubes. This is because although, the sealed pressure tubes 
were allowed to cool after coming out of the oven, they 
were still warm while the pressure tubes were opened to 
retrieve the wash waters into the falcon tubes. Thus, 
slightly changing the IL concentration.  

Despite the 5 ml/gfabric stagewise operation suggesting 
complete removal of all the IL from the fabric from its last 
four washes (washes 9, 10, 11 &12) containing 0% IL for 
both DMBA and TEA across the extraction and dyeing 
processes across Figure 4.2. Through performing mass 
balances around the processes, it was deduced that 
although marginal, there were still small quantities of IL 
remaining in the fabric. This is understandable because of 
the difficulty in removing IL trapped between the fibres of 
the fabric’s structure. This was to be expected but is not 
seen in Figure 4.2 because of the functional limits 
associated with the conductivity meter. It is only able to 
produce a reading if a solution’s conductivity is between 
0 and 2 mS. Further, the length and diameter of the outer 
casing surrounding the actual probe, limited the depth the 
conductivity probe could reach inside the falcon tube to 
encounter the solution inside. Coupled with the smaller 
stagewise wash water volume of 7.5 ml (1.5 gfabric) 
corresponding to the 5 ml/gfabric water-fabric ratio, the 
amount of sample was relatively little. During 
experiments, it was deduced that at least 10 ml of sample 
solution had to be in the falcon tube for the probe to be 
able to reach the sample. Ostensibly, this could not be 
done unless dilutions were performed to increase the 
volume of sample. Small quantities of DI water were 
added incrementally to the sample until the diluted 
solutions were enough quantitatively and within range of 
the conductivity meter, in a trial-and-error fashion. As the 
IL concentration decreased in the latter washes, dilution 
was not required to obtain a reading from the conductivity 
meter. However, without increasing the volume of the 
sample by diluting with DI water, the probe was not able 
to contact the sample. So, dilution was continued until the 
diluted samples’ IL concentrations produced a reading of 
0 mS. With a reading of 0 mS, back calculation of the 
diluted samples’ IL concentration to find the actual 
solutions’ IL concentration was not possible, thereby 
giving a reading of 0% for the 5 ml/gfabric samples’ last 3-
4 washes. Moreover, the conductivity meter’s functional 
limits and concentrated samples also necessitated 
dilutions for the 10 ml/gfabric and 20 ml/gfabric increments 
too, as explained in section 3.7. Although, the experiments 
were repeated 3 times for each sample, experimental error 
during sample collection via volumetric pipettes and 

weighing using the mass balance while performing 
dilutions of the samples add to the uncertainty of the actual 
IL concentrations of the solutions.  
4.3 Recovery of IL 
Equations 9 and 10 were used to determine the recovery 
of IL in the process. To obtain the crude IL recovery, the 
terms for IL in the washing solutions were ignored. 
                 𝑅ூ௅,ா௫ = (஼಺ಽ,ಶೣ×௠ಶೣ,ೞ೚೗)ା∑ ஼಺ಽ,೔௠೔

೙
೔సభ

(଼଴×௠಺ಽ,ೞ೚೗
೑ )

                    (9) 

                𝑅ூ௅,஽௬௘ =
(஼಺ಽ,ವ೤೐×௠ವ೤೐,ೞ೚೗)ା∑ ஼಺ಽ,ೕ௠ೕ

೙
ೕసభ

(଺଴×௠೏ೞ)
           (10) 

where 𝑅ூ௅,ா௫ and 𝑅ூ௅,஽௬௘  are the recoveries of IL after 
extraction and dyeing, respectively in wt%, 𝐶ூ௅,ா௫ and  
𝐶ூ௅,஽௬௘ are IL concentration in the post-extraction and 
post-dyeing solutions, respectively in wt%, 𝑚ா௫,௦௢௟ is the 
mass of post-extraction solution, 𝑚ூ௅,௦௢௟

௙  is the feed mass 
of IL solution that was 10 g, 𝑚஽௬௘,௦௢௟ is the mass of post-
dyeing solution, 𝑚ௗ௦ is the mass of dyeing solution, 𝐶ூ௅,௜ 
and 𝐶ூ௅,௝  are the IL concentrations in the washing solutions 
in wt%, 𝑚௜  and 𝑚௝  are mass of washing solutions wherein, 
𝑖 and 𝑗 are the wash stage numbers after extraction and 
dyeing (1 to n), respectively. 
4.3.1 Crude Recovery of IL 
The crude recovery of IL in the post-extraction solutions 
should be similar regardless of the three interval wash 
water volumes used (20 ml/gfabric, 10 ml/gfabric and 5 
ml/gfabric) since the initial conditions were the same. 

 
Figure 4.3.1. Crude recovery of IL  
 
Observing Figure 4.3.1, this is true for the crude recovery 
of DMBA in post-extraction solutions as they are almost 
the same at 64.44 ± 1.39%. On the other hand, there are 
significant differences between the crude TEA recoveries 
for the post-extraction solutions specifically, for the 
sample that was washed with 20 ml/gfabric incremental 
water. As mentioned in section 4.2, the use of a larger 
pressure tube during the extraction process of the TEA-
20ml/gfabric sample posed increased difficulty while 
recovering the crude IL-dye mixture. This rationalises the 
observed low crude recovery of TEA (37.19%) in the post-
extraction solution for the 20 ml/gfabric sample. Variations 
in the crude IL recoveries for the post-dyeing solutions 
have primarily arisen due to irregularities in extracting the 
liquid from the fabric via manual squeezing. Transfer of 
the solutions from the pressure tubes to the falcon tubes 
also contributed to this.  It also depends on the mass of the 
dyeing solution (Equation 10), which differs if the mass of 
the post-extraction dye bath varies (Equation 5). Overall, 
a greater crude recovery of DMBA was attained compared 
to TEA. Branching of alkyl side chains in TEA (Figure 2) 
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leads to its reduced rotational freedom, resulting in TEA 
possessing higher viscosity than DMBA [32]. This made the 
process of removing the solutions more challenging for 
the TEA experiments, which led to a notable amount of 
TEA remaining on the inner side walls of the pressure tube 
and residing on the fabric’s surface. This loss of solution 
mass, coupled with some droplets of the solution not being 
caught in the falcon tubes, which is relevant to both ILs’ 
samples, during collection, accounts for the errors 
displayed in Figure 4.3.1. 
4.3.2 Total Recovery of IL  
Despite not achieving high crude recovery of IL, the 
remaining IL was recovered in the washing solutions. 
From Figure 4.3.2, the recovery of IL in the system 
increased with increasing wash stages, demonstrating a 
notable higher rate of recovery in the initial washes before 
reaching a plateau. 

 
Figure 4.3.2. Total recovery of IL in the system 
 
A greater IL recovery was also obtained using smaller 
wash water volume increments. This is evident as 100% 
of DMBA was recovered in the post-dyeing process after 
12 washes using 5 ml/gfabric water while only 95.02% of 
DMBA was recovered when 20 ml/gfabric water was used 
(3 washes). Allowing the deduction to be made that the 5 
ml/gfabric water-fabric ratio was the most effective at 
removing IL from the fabric as almost all the IL was 
recovered, in total, at the end of the washing procedure.  
The recovery of DMBA was also higher in the post-dyeing 
process when compared to the post-extraction process. In 
contrast, the recovery of TEA was lower at the end of the 
post-dyeing washes. This is seen as the recovery of TEA 
post-dyeing and after the washing process is 70.67% 
whereas it is 95.72% post-extraction and after washing, 
using the same wash water volume (20 ml/gfabric). 
4.4 IL Lost in System 
The total IL lost in the whole system was obtained using 
Equation 11 below.   
                   𝐿 =

(௠಺ಽ,೏೐೎೑ೌ್ା௠಺ಽ,೏೤೐೏೑ೌ್)

଴.଼௠಺ಽ,ೞ೚೗
೑ × 100                (11) 

where 𝐿 is the total IL lost in the whole process from initial 
IL solution and 𝑚ூ௅,ௗ௘௖௙௔௕ and 𝑚ூ௅,ௗ௬௘ௗ௙௔௕ are the mass of 
IL in decoloured and dyed fabrics, respectively. 
     For simplicity, it was assumed that the IL was retained 
in the decoloured and dyed fabrics after both the post-
extraction and post-dyeing processes. An increase in the 

IL recovery in overall washing solutions reduces the IL 
lost in the system. As seen in Figure 4.4, using 5 ml/gfabric 
of water in both post-extraction and post-dyeing processes 
indeed results in the lowest amount of DMBA lost in the 
system (3.35%), whereas 20 ml/gfabric shows the highest 
TEA loss in the process (15.26%). From further 
inspection, DMBA exhibits lower loss compared to TEA. 
Although, 3.35% is already the minimum loss of IL that 
can be achieved in this experiment, this value still 
represents a considerable quantity of IL loss and implies 
that the system must continuously supply an extra 3.35% 
of fresh DMBA to compensate for the IL loss. 

 
Figure 4.4. Total IL lost in the process 
 
4.5 Colour Strength 
The dyeing performance of the extracted dye bath that was 
recycled and used to colour virgin polyester was analysed 
using its colour strength (K/S) as described in section 3.8.  

 
Figure 4.5. K/S of dyed fabric 
 
The near constant K/S values (Figure 4.5) ranging from 
39.66 ± 0.08 for the 5 ml/gfabric DMBA sample to 38.29 ± 
0.45 for the 5 ml/gfabric TEA sample calculated for the three 
different increment wash water volumes and the two 
different ILs tested, demonstrates that the number of 
washes and stagewise wash water volumes did not affect 
the colour strength of the dyed polyester fabric. In 
addition, there is no trend in the K/S data to suggest that 
DMBA is better than TEA or vice versa, in their dyeing 
performance. One explanation for the minor differences in 
the K/S values across Figure 4.5 and the error bars shown, 
is how the fabric samples were placed inside the UV-vis 
spectrometer. This is because it relies on a laser hitting the 
fabric sample at an angle to record the samples’ 
reflectance. The fabrics were subjected to an intensive 
washing procedure where between each wash, the fabric 
was being prodded by a spatula in the pressure tube to 
wring out as much of the IL-wash water solution, and 
reheated in the oven for 10 minutes, resulting in the final 
dried fabrics being very creased. The randomness of the 
creases and folds produced between the fabric samples 
may have impacted the angle the laser hit each fabric 
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sample causing slight variations in the reflectance (R), 
used in the calculation (Equation 8). 
4.6 Partition Coefficient 
The distribution of IL from the fabric into the wash waters 
during the washing process was investigated by 
calculating the partition coefficients (Equation 12) used in 
the stagewise washing operations for DMBA and TEA.  
                                    𝐾 = ஼಺ಽ,ೞ೚೗

஼಺ಽ,೑ೌ್
                                          (12) 

where 𝐾 is the partition coefficient, 𝐶ூ௅,௦௢௟ is the IL 
concentration in the washing solutions while 𝐶ூ௅,௙௔௕ is the 
IL concentration in either decoloured or dyed fabric. 

 
Figure 4.6. K values in the system 
 
Figure 4.6 shows the partition coefficient decreasing with 
progressive wash stages meaning the washing process is 
physically limited. This can be explained because of the 
reducing concentration gradient associated with 
subsequent wash stages coupled with, the difficulty the IL 
experiences to dislodge itself from between the fabric’s 
fibres and allow its migration into the wash water because 
of their bulky structures (Figure 2), making it easier for 
the IL molecules to get caught in the fibres. For DMBA, 
the dyeing data points all have a higher partition 
coefficient than their extraction counterparts. This can be 
understood because after the dyeing process, the fabric is 
saturated with dye molecules, so there is less volume 
within the fabric’s structure that is occupied with IL and 
more of it is either on the surface or in the surrounding 
solution. This trend not seen in the TEA profiles, possibly 
due to its higher viscosity. Contrastingly, in post-
extraction, the dye molecules are drawn out of the fabric 
so there is more IL occupying and trapped in the fibre’s 
free space volume before the washing starts, therefore 
more IL is drawn out in the washes after dyeing, than after 
extraction. Contrary to expectation, the TEA extraction 
and dyeing profiles appear to have higher partition 
coefficients than DMBA when comparing each sample, 
which conflicts with TEA’s more bulky chemical structure 
and lower IL recovery. But, upon deeper inspection of the 
data points at 0 ml/gfabric, this transpires because the K 
values for DMBA are higher in the extraction solutions. 
Meaning, that most of the DMBA was removed in the 
extracted dye baths before the washing commenced. So, 
during the washing, since less IL was present in both the 
wash water solutions and in the fabric for DMBA, the K 
values are lower in comparison to TEA.  

5. Conclusions and Outlook 
In conclusion, DMBA performed superior to TEA by 
inducing minimum loss of IL during its employment. 

Therefore, it is the preferred ionic liquid for the dye 
recycling process, from the two ILs investigated overall. 
Furthermore, higher IL recoveries were achieved using 
smaller increment volumes of wash water, with the lowest 
increment of 5 ml/gfabric being the most effective at 
removing IL from the fabrics. It was also proved that the 
colour strength of dyed fabric remains unaffected by the 
stagewise wash water volumes and type of IL. Sought to 
prevent requirement of fresh IL in the system which would 
incur additional costs, the objective of attaining negligible 
(less than 1%) IL loss was not reached in this study.  
     Refinement of the methods utilised while conducting 
experiments, to reduce errors may improve IL recovery.  
Replacement of the manual squeezing action used to 
extract the liquid mixtures from the fabrics, with less 
aggressive vacuum filtration, press machine/hydraulic 
press or simply using pipettes to absorb the remaining 
liquid residing on the fabric’s surface and inner apparatus 
walls would help to reduce the human error and procedural 
error reflected in IL concentrations. They would also 
prevent the fabric fibres from experiencing unnecessary 
mechanical stress which is an important factor to consider 
for commercialisation purposes. Measures to minimise 
accidental sample loss, residual sample loss on equipment 
and fabric mass loss that were unaccounted for in the mass 
balance, are also necessary to increase IL recovery. 
Systematic error introduced by the measuring instruments, 
mainly from the conductivity meter, which was employed 
to ascertain the IL concentrations of solutions, propagated 
into the results. Also, its functional limitations called for 
dilutions of most samples, which increased the uncertainty 
of the results (explained in section 4.2). Volumetric Karl 
Fischer titration would offer more precise determination 
of IL concentrations of solutions, albeit requiring frequent 
calibration before its use (once a week). This is achieved 
by measuring the water content in the IL solutions and 
with a simple calculation, the IL concentration can be 
obtained. After the washing stage, it was assumed that the 
remaining IL was lost within the fabric. Scanning Electron 
Microscopy (SEM), along with Fourier Transform 
Infrared Spectroscopy (ATR-FTIR) can be used to 
quantitatively verify the presence of IL in the fabric. SEM 
can capture the surface morphology of the fabric and 
ATR-FTIR would be useful for identifying the chemical 
structure (functional group) and composition of the IL, 
provided it is indeed present in the fabric [33]. The obtained 
results can be compared with the calculated data in section 
4.4 to further validate this assumption. Counter current 
washing is a method that could improve the recovery of 
IL. The least contaminated water from the final wash is 
recycled for the second-to last wash and this continues, in 
sequence, until it reaches the initial wash stage, at which 
point it is discharged [34]. This method is cost-effective and 
relatively straightforward to implement in multi-stage 
washing processes. However, it is not applicable for this 
experiment because the partition coefficient varies in each 
washing stage, as explained in section 4.6. Thus, further 
studies need to be performed before its implementation. It 
is also useful to investigate the impact of auxiliary 
chemicals circulating in the process, that are leached into 
the extracted dye bath and solutions from the textile waste 
starting material, and how they affect IL recovery as the 
wash waters containing IL will be evaporated. 
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Abstract 
Bacterial cells have proven to be useful for several therapeutic and diagnostic applications. These cells have the 

potential to have a significant positive impact on areas of treatment within the medical field such as the treatment of tumours, 
autoimmune diseases, and targeted drug delivery. Creation of bacterial biohybrids, done by the attachment of synthetic 
material to the bacteria, expands the scope of applications in which these cells can be used. For instance, bacterial biohybrids 
can be made to respond to external stimuli and thus be used in therapeutics for the controlled delivery of cargo to target sites 
within the body. However, current biohybrids underperform in this area, hence, it is within this that the work presented in this 
paper lies. In this paper, we report on engineering magnetically steerable biohybrid cells by interfacing E. Coli bacteria with 
magnetoliposomes and by interfacing lipid encapsulated bacteria with magnetic nanoparticle (cationic exchange). When 
placed in a microfluidic cell and a magnetic field applied, biohybrids prepared using both methods responded favourably, 
moving towards the magnet. Additionally, when comparing the optical density of the bacteria before interfacing with 
nanoparticle to that after magnetic separation it was clear that some bacteria became magnetised and responded positively to 
the applied magnetic field.  This work illustrates favourable methods for the preparation of magnetically steerable bacterial 
biohybrid cells. 
Key Words: Bacterial biohybrids; Magnetic nanoparticle (MNP); Magentotaxis; Liposome; Encapsulation; Optical density 
(OD). 
 

1 Introduction 
Bacterial cells have been widely studied for centuries, 

and in more recent times, there has been extensive work 
on the use of bacteria in therapeutics. One approach to this 
is the use of bacterial biohybrids which are bacterial cells 
interfaced with synthetic material in an attempt to increase 
their functionality. Extensive work has been done on the 
use of bacterial biohybrids as carriers in the form of 
microrobots. In this application, the intrinsic propulsion, 
targeting and sensing abilities of the bacteria aid in their 
successful application as micro-swimmers [1].  

In nature, there exists bacterial magnetic 
nanoparticles (BNPs), which are another class of 
nanoparticles widely utilized in therapeutic applications. 
These are produced within naturally occurring 
magnetotactic bacteria which contain magnetosomes 
which are organelles that consist of a magnetic 
nanoparticle core surrounded by a lipid bilayer. These 
naturally occurring particles have been used for 
applications in targeted drug delivery, magnetic resonance 
imaging (MRI) and magnetic hyperthermia [2,3].  

Overtime, bacterial cells have evolved to swim 
efficiently using food sources within their environment at 
the micrometre scale as an energy source [4]. This self-
propulsion capability makes it advantageous to use 
bacteria in therapeutics. When coupled with magnetic 
control, this property can be significantly improved, 
making the movement of bacteria more efficient while 
allowing for increased control of the bacteria’s special 
positioning.  

The research presented in this paper is aimed towards 
coupling the self-propelling abilities of bacterial cells with 

magnetic control through attachment with magnetic 
nanoparticles (MNPs) thus developing magnetically 
steerable biohybrid cells. This would allow for bacteria to 
be used for applications such as targeted drug delivery and 
the treatment of tumours. Being able to successfully guide 
these bacterial biohybrids can also reduce some 
deleterious effects of present biohybrids including 
premature cargo release and non-specific treatment due to 
an inability to guide bacteria to a target site. Two 
approaches were investigated in this research. The first 
approach involves interfacing bacterial cell with 
magnetoliposomes (encapsulated nanoparticles) based on 
electrostatics.  The second involves interfacing lipid 
encapsulated bacteria with MNPs through carbodiimide 
facilitated coupling.  

 

2 Background 
The use of magnetotactic bacteria in therapeutics is 

an area of research with growing interest. Several 
applications of this have been studied. Bacterial 
therapeutics have proven useful in areas such as treating 
autoimmune and inflammatory disease, cancer treatment, 
combatting viral and bacterial infections and treatment of 
metabolic disorders [5]. One notable application involved 
using these bacterial cells to enhance image contrast for 
magnetic resonance imaging (MRI) [6]. The research 
presented in the mentioned paper, by  M. R. Benoit et al, 
gave light to several positive aspects with the targeting 
ability of the bacteria being at the forefront.  This targeting 
ability is one of the many features that makes bacterial 
therapeutics advantageous. In this research, it was found 
that 2-6 days after being administered intravenously to 

 

229



mice, the bacteria had accumulated in tumours thus 
increasing MRI signal.  

Due to the self-propelling nature of bacteria, they 
have proven to enhance the delivery of therapeutics to 
hypoxic tumour regions as they can counteract tumour 
interstitial fluid pressure (TIFP). This pressure is 
responsible for preventing the efficient delivery of 
therapeutics by liposomes [7]. Research has shown that 
the propensity of bacteria to seek out, via aerotaxis, the 
hypoxic regions in tumours, makes it suitable for 
applications in delivering cargo to these regions that 
otherwise go untreated [8]. In the same paper, the 
magneto-aerotactic behaviour of Magnetococcus marinus 
strain MC1 bacteria was used to successfully guide drug-
loaded nanoliposomes to the target tumour site. When 
compared to passive agents the MC1 cells had superior 
penetration due to magnetotaxis and aerotaxis. Further to 
this, other bacteria genera such as Escherichia Coli (E. 
Coli) and Salmonella have been found to preferentially 
accumulate in tissues due to chemotaxis and aerotaxis [8]. 
This gives insight into the applicability of coupling 
magnetic guidance with the natural motility of bacterial 
cells for targeted drug delivery to deep tumours.  

In addition to the benefits in targeted drug delivery, 
the use of bacteria can aid in increasing the efficacy of 
drug delivery. Bacteria can be used to deliver drugs that 
are easily degraded in the stomach, bloodstream or in 
transit through the upper gastrointestinal tract [9]. 
Additionally, this method of drug administration reduces 
systemic drug exposure and has potential to decrease the 
number of side effects experienced by patients when 
compared to other administration methods [9]. 

The work of Akolpoglu et. al, 2022 speaks to the 
development magnetically steerable bacterial biohybrids 
as microrobots. They stated that when interfaced with 
therapeutics, contrast agents and targeting components 
bacterial biohybrids become ideal candidates for medical 
micro robotics. In this work, they presented one method of 
developing magnetic bacterial biohybrids which involved 
using MNPs with covalently bound streptavidin. To 
increase functionality by including nanoliposomes, a 
biotin-streptavidin-biotin complex was used thus allowing 
for the integration of artificial units onto the bacterial cells. 
This paper reported a 92.2 % success with conjugating the 
MNP cells and 86.3 % success with conjugating both 
MNPs and nanoliposomes indicating that engineering 
magnetotactic bacterial biohybrids in this way is viable.  

One area of concern surrounding the use of bacteria 
in therapeutics is their survival when facing extreme 
conditions within the body such as strong acids and 
alkalis, antibiotics, and ethanol [10]. The work done in this 
paper highlights the benefits of coating bacteria with lipids 
to combat these negative effects thus increasing their 
resistance to these conditions while maintaining their 
viability.  

While there has been substantial research on the use 
of bacteria in therapeutics, there is limited research 
available on the specific topic of magnetotactic bacterial 
biohybrids for similar applications. The aim of our 

research is to engineer magnetically steerable biohybrid 
cells using MNPs. While there has been some work in this 
area, our aim is to encapsulate either the bacterial or MNP 
component of the biohybrid to determine the viability of 
these methods of biohybrid engineering.  

 

3 Materials and Methodology 
3.1 Materials 

Chemicell fluidMAG-Amine 25 mg/mL magnetic 
nanoparticles, Chemicell fluidMAG-PAS 25 mg/mL 
magnetic nanoparticles, 25 mg/mL Avanti Polar Lipids 
18:1 (∆9-Cis) PC (DOPC), 25 mg/mL Avanti Polar Lipids 
18:1 TAP (DOTAP), 25 mg/mL Avanti Polar Lipids 18:1 
(∆9-Cis) PE (DOPE), Rhodamine B, Phosphate Buffered 
Saline (PBS), Ampicillin-resistant E. Coli (MG1655), 
GFP-expressing E. Coli, 2% Uranyl Acetate (UA), 0.1% 
Phosphotungstic Acid (PTA). 

 

3.2 Equipment  
Zetasizer Ultra – Malven Panalytical, UK, Avanti 

Mini-Extruder – Avanti Polar Lipids, UK, JEOL STEM 
2100Plus Electron Microscope, Nikon Eclipse Ti2 Light 
Microscope, VWR Digital Vortex Mixer, VWR 
Ultrasonic Cleaner, Eppendorf Centrifuge 5415 D, WPA 
CO8000 Cell Density Meter, NanoDrop One 
Microvolume UV-Vis Spectrophotometer. 
 

3.3 Nanoparticle characterization 
3.3.1 Dynamic Light Scattering (DLS) 

Prior to dilution, the MNP stock solution was 
vortexed for 2 minutes at 2500 rpm using the digital vortex 
mixer to ensure homogeneity. Once competed, 1 mL 
samples of varying concentrations were produced by 
diluting the stock solution in predetermined volumes of 
water. The concentrations produced were: 10 mg/mL, 5 
mg/mL, 2.5 mg/mL, 1 mg/mL, 0.5 mg/mL, and 0.25 
mg/mL. These samples were vortexed for 2 minutes and 
sonicated for 10 minutes using the ultrasonic cleaner to 
ensure thorough mixing. To acquire the desired 
information regarding particle size, concentration, particle 
count rate and zeta potential, dynamic light scattering 
(DLS) was employed using the Zetasizer Ultra machine 
and following the standard DLS procedure outlined in the 
Zetasizer manual. 
 
3.3.2 UV-Vis Spectroscopy  

Three samples of diluted MNP stock solution were 
prepared at concentrations of 5 mg/mL, 0.5 mg/mL, and 
0.05 mg/mL. These samples were added to a cuvette and 
the UV-Vis spectrum obtained by measuring them using 
the MicroDrop One Microvolume UV-Vis 
Spectrophotometer.  
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3.4 Effects of salt-based dispersants on 
Nanoparticles 

The stock solution of MNPs was vortexed for 2 
minutes at 2500 rpm using the digital vortex mixer. The 
solution was then diluted to a concentration of 2.5 mg/mL 
using PBS. This sample was vortexed for 2 minutes and 
sonicated for 10 minutes to ensure thorough mixing. 
Particle size, concentration and particle count rate data 
was gathered using DLS. 

 

3.5 Nanoparticle encapsulation 
3.5.1 Sample Preparation 

Four vials containing 5 mg of lipid solution were 
prepared by combining DOPC and DOTAP in a 90:10 
mol% ratio (respectively). This mixture was then dried 
utilizing a stream of nitrogen gas, rotating continuously to 
form a film along the walls of the vial, and placed in a 
desiccator overnight. After 3 hours, each batch was 
rehydrated by adding 1 mL of fluidMAG-Amine MNP 
solution at various dilutions (0.5 mg/mL, 1.0 mg/mL, 2.5 
mg/mL, and 5 mg/mL) and the mixture vortexed for 2 
minutes and sonicated for 10 minutes. The mixture was 
then left for another 24 hours [11]. Once rehydration was 
completed, the samples were analysed using DLS.  

 
3.5.2 Sample Imaging – Transmission 

Electron Microscopy (TEM) 
Samples of concentration 2.5 and 5 mg/mL were 

prepared as described in section 3.5.1 and imaged using 
TEM.300-mesh grid size carbon support grids (Agar 
Scientific) were used, and these were glow discharged for 
1 minute. Following this, 2 μL of UA solution was added 
to 4 μL of the prepared MNP samples and thoroughly 
mixed. 4 μL of this mixture was swiftly added to the 
discharged grid and it was stained for 1 minute. The 
solution was blotted away using a piece of Whatman 1 
filter paper and the grid was left in the air until fully dried. 
This process was repeated using PTA. TEM imaging was 
carried out under 200 kV. 

 
3.6 Magnetoliposome Size Reduction – 

Extrusion  
Following the encapsulation of the MNPs, the 5 

mg/mL solution of magnetoliposomes was vortexed for 2 
minutes then sonicated for 15 minutes. The sample was 
then extruded 21 times through a membrane with pore size 
of 1 μm. Following this, the sample was further extruded 
through a membrane of pore size 0.2 μm. 

 

3.7 Magnetoliposome Purification  
5 mg of 90:10 mol% DOPC: DOTAP lipid film was 

prepared and dried in the desiccator for 2 hours. A 5 
mg/mL solution of MNPs was prepared and this was 
sonicated for 15 minutes. Following this, the lipid film was 

rehydrated with 1 mL of the MNP solution, and this 
mixture was again sonicated for 15 minutes.  

 
3.7.1 Magnetic separation  

400 μL of the rehydrated lipid mixture was added to 
an Eppendorf tube and a magnet placed below the tube. 
The sample was allowed to separate for 25 minutes 
forming a pellet of magnetic material at the bottom of the 
tube. Following this, the supernatant was extracted and 
added to another Eppendorf tube and the remaining pellet 
was resuspended in 300 μL of DI water. The fractions 
were then analysed using UV-Vis’s spectroscopy.  

 
3.7.2 Size Exclusion Chromatography (SEC) 

The SEC column was first filled with resin and 
allowed to settle for 1 hour. Following this, 200 μL of the 
rehydrated lipid mixture was added to the column and 
excess fluid removed from the bottom. Once the sample 
was approaching the bottom of the column, DI water was 
added to the column in 200 μL increments and 200 μL of 
sample was collected from the bottom of the column. 12 
samples were collected and were then analysed using UV-
Vis spectroscopy.  
 

3.8 Nanoparticle encapsulation 
optimization 

3.8.1 Low-volume rehydration 
A batch of a 90:10 mol% DOPC: DOTAP lipid 

mixture corresponding to a mass of 5 mg was prepared 
(with 10 µl of fluorescent dye for future imaging 
purposes), dried using a stream of nitrogen gas to form a 
lipid film on the walls of the vial and placed in a desiccator 
for 3 hours. This film was then rehydrated with 100 µl of 
the 25 mg/mL stock MNP solution. This mixture was 
vortexed for 4 minutes and sonicated in a warm water bath 
for 15 minutes, then vortexed for a further 4 minutes. Once 
thoroughly agitated the sample was stored for 24 hours. 
Finally, the sample was diluted by the addition of 900 µL 
of DI water and analysed using the DLS. 

 
3.8.2 High-concentration hybrid film 

A 100 µl sample of the 25 mg/mL stock MNP 
solution was dried in a vial via a stream of nitrogen gas. 
Following this, a 5 mg batch of a 90:10 mol% DOPC: 
DOTAP lipid mixture was prepared (with 10 µl of 
fluorescent dye for future imaging purposes), dried using 
a stream of nitrogen gas to form a lipid film on the walls 
of the vial and on top of the MNP film and placed in a 
desiccator for 3 hours. To the hybrid film, 100 µl of the 25 
mg/mL stock MNP solution was added. The mixture was 
vortexed 4 times for 2 minutes each time and between each 
round of vortexing, the mixture was sonicated (15 minutes 
then two rounds of 5 minutes each). This mixture was then 
diluted by first adding 900 µL of DI water to a MNP 
concentration of 5 mg/mL, then diluted further by adding 
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1 mL to a concentration of 2.5 mg/ml. Analysis using DLS 
was done after each dilution. 

 

3.9 Bacteria Preparation 
3.9.1 Bacteria fermentation  

The bacteria cells used in this process are stored at -
80℃. These cells were thawed on ice and then inoculated. 
The inoculation medium consisted of Lysogeny broth 
(LB) supplemented with ampicillin (1000x diluted). The 
cells were inoculated in 5 mL of this medium then 
incubated at 37℃ and shaken at 200 rpm for 2 hours. 
Following this, the cells were inoculated on an LB-
Ampicillin ager and incubated overnight. These plates 
were stored at 4℃ for up to four months.  
When needed, a single colony was inoculated from the 
plate and added to 5 mL of medium in a 50 mL Falcon 
tube. This was left in a shaking incubator at 37℃ and 200 
rpm overnight. The following day, 50 μL of this culture 
was added to 5 mL of medium in a 50 mL Falcon tube and 
left in a shaking incubator at 37℃ and 200 rpm until the 
desired optical density (OD600 or OD) was achieved. 
  
3.9.2 Bacteria purification  

500 μL of bacteria stock was added to an Eppendorf 
tube. This sample was then centrifuged at 5 RCF for 5 
minutes. Once the separation was complete, the 
supernatant was extracted and discarded leaving the 
bacteria pellet behind. The pellet was then initially 
redistributed in 500 µl of DI water and the OD measured. 
Further dilution was done, if necessary, to achieve the 
desired OD. 
 

3.10 Biohybrid Formation – via 
Encapsulated Nanoparticles 

3.10.1 Interfacing Bacteria with 
Magnetoliposomes 

A 100 μL sample of the purified bacteria was added 
to a new Eppendorf tube. To this tube, 100 μL of 
magnetoliposomes, produced using the Low-volume 
rehydration method, were added and the contents agitated 
for 10 seconds using a vortex mixer to achieve 
homogeneity. The Eppendorf tubes containing bacteria 
and magnetoliposomes were centrifuged for 5 minutes at 
5 RCF twice, discarding the supernatant and rehydrating 
with 200 µl of DI water each time. 

 
3.10.2 Control Preparation 

A 100 μL sample of purified bacteria was added to 
a new Eppendorf tube. To this tube 100 µl of fluidMAG-
Amine MNPs at a concentration of 2.5 mg/mL was added 
and the mixture agitated via vortex for 5 seconds to ensure 
mixing. The Eppendorf tube containing the bacteria and 
the free MNPs was centrifuged for 5 minutes at 5 RCF 
twice, discarding the supernatant and rehydrating with 200 
µl of DI water each time. 

 

3.11  Biohybrid Formation – via 
Carbodiimide Facilitated Coupling 

3.11.1 Bacteria encapsulation 
Three batches of 5 mg/mL lipid vesicle solutions with 

compositions of 85:10:5 mol % DOPC: DOTAP: DOPE, 
80:10:10 mol % DOPC: DOTAP: DOPE and 50:50 mol% 
DOTAP: DOPE were prepared. This was done by adding 
the required volume of each lipid to a vial with 7.5 μL of 
Rhodamine B and vortexing the mixture for 2 minutes. 
The mixture was then dried to create a lipid film on the 
walls of the vial. These vials were then placed in the 
desiccator for 3 hours to allow for complete drying. After 
drying the films, they were rehydrated using 1 mL of 
deionized water, vortexed for 2 minutes, sonicated for 15 
minutes and finally extruded through a 100 nm membrane. 

200 μL of bacteria stock were extracted and added to 
an Eppendorf tube. This was centrifuged for 5 minutes at 
5 rcf. The supernatant was extracted and 800 μL of 
deionized water was added to the Eppendorf tube. The 
mixture was agitated to dissolve the bacteria bead and 
ensure homogeneity. The OD of the redistributed bacteria 
was measured, and the solution was diluted to the required 
OD (1.1 for OD experiment and 0.7 for light microscopy). 
Following this process, three Eppendorf tubes were 
prepared with 200 μL of purified bacteria. To these tubes, 
200 μL of each liposome formulation was added and they 
were labelled accordingly. 

 
3.11.2 FluidMAG-PAS Nanoparticle activation 

 10 mg of EDC was added to a vial and 150 μL of 
deionized water was added. This mixture was vortexed for 
2 minutes to ensure homogeneity. Following this, the 
fluidMAG-PAS MNP stock was vortexed as 
recommended by the manufacturers and 400 μL were 
added to the vial containing EDC. This mixture was then 
vortexed for 2 minutes. [12] 

 
3.11.3 Interfacing encapsulated bacteria with 

activated nanoparticles 
For each lipid composition, 200 μL of encapsulated 

bacteria was added to an Eppendorf tube with 200 μL of 
activated MNPs. The mixture was vortexed for 5 seconds. 
Following this, the samples were centrifuged for 5 minutes 
at 5 rcf to help remove any free MNPs. The supernatant 
was then extracted, and the sample was redistributed in 
400 μL of DI water. 

 
3.11.4 Control preparation 

200 μL of encapsulated bacteria with 200 μL of non-
activated MNP solution (the MNP solution was vortexed 
for 2 minutes before use). The mixture was vortexed for 
10 second then centrifuged for 5 minutes at 5 rcf. The 
supernatant was extracted and discarded, and the sample 
redistributed in 400 μL of DI water. This was done for 
each lipid solution composition. 
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3.12 Biohybrid Confirmation 
3.12.1 Light microscopy 

Light microscopy was employed to confirm the 
presence of bacterial biohybrids. A microfluidic assay was 
filled with DI water and 20 μL of a sample was added to 
one of the wells. Following this, a magnet was placed 
downstream of the added sample, the response of the 
sample was observed, and a video recorded. This 
procedure was used for both the nanoparticle 
encapsulation and carbodiimide facilitated coupling 
approaches and all corresponding controls.  

 
3.12.2 Optical Density experiment  

This method was utilized for confirmation of 
biohybrids formed through the cation exchange approach. 
Prior to encapsulation, the bacteria was diluted to an OD 
of 1.1. 200 μL of encapsulated bacteria plus 150 μL of 
activated MNPs was added to an Eppendorf tube. The 
mixture was vortexed for 10 seconds then a magnet was 
placed below the sample for 15 minutes allowing for a 
pellet of magnetic material to be formed. Following this, 
the supernatant was extracted and to this 175 μL of DI 
water was added. The OD of the supernatant was then 
measured. This procedure was conducted for each of the 
lipid compositions and corresponding controls. 

 

4 Results  
4.1 Nanoparticle characterization 
4.1.1 FluidMAG-Amine 

The MNPs in solution had a red-brown colour which 
decreased in intensity with dilution. It was observed that 
the size measurements obtained for each sample varied 
with sizes ranging from 200 nm ± 30 nm to 5000 nm ± 30 
nm. The measured size for each concentration is presented 
in figure 1 below.  

 
Figure 1: Size distribution of MNPs at different concentrations 

The focus when collecting concentration and count 
rate data was whether at a given concentration, DLS could 

give a reliable result. It was clear the higher the 
concentration, the less likely it was that DLS would give 
any results – made apparent by the equipment not being 
able to provide concentration or count rate data for the 10 
mg/mL concentration or higher. As a result, it was 
determined that concentrations of 5 mg/mL and below 
would be used to ensure the reliability of data. The zeta 
potential was found to be ≅ -2.54 mV.   

Unsing UV-Vis spectrometry, it was determined 
that these nanoparticles give a characteristic peak 
between 290 nm and 390 nm. At a concentration of 5 
mg/mL, there was saturation observed indicating that 
UV-Vis measurements for these nanoparticles should 
be done at lower concentrations. The spectrum 
obtained can be found in the supplementary 
information provided.  

 
4.1.2 FluidMAG-PAS 
Size measurements of the activated MNPs were conducted 
at concentrations of 1 mg/mL and 0.5 mg/mL. In both 
cases, a size measurement of 218 nm which was above the 
manufacturer specified size of 100 nm was obtained. At 
both concentrations, it was possible to obtain count rate 
and concentration data for these nanoparticles. The zeta 
potential was found to be ≅ -32.01 mV.   
 

4.2 Effects of salt-based dispersants on 
Nanoparticles 

4.2.1 FluidMAG-Amine 
The results obtained after carrying out DLS 

measurements showed a significant increase in particle 
size with the average size being 4600 nm. The change in 
particle size when dispersed in PBS in place of DI water 
is shown in figure 2. There was also significant 
aggregation and settling observed when looking at the 
sample. Concentration measurements for this sample did 
not give meaningful data as the particle count and 
concentration measurements both gave a result of 0 
particles/mL.  

 
Figure 2: Comparison of measured particle size when dispersed 
in water and PBS. 
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4.2.2 FluidMAG-PAS 
The effect of PBS on this particle was less prominent 

than that observed with the fluidMAG-Amine MNPs. 
There were two size populations observed after DLS with 
average sizes of 270 nm and 4600 nm. This shows that 
there is aggregation within the sample. However, this was 
time dependent, and became more significant over time.  

 

 
Figure 3: Effect of PBS on fluidMAG-PAS MNPs 

4.3 Nanoparticle encapsulation 
There was limited initial success observed with the 

method of MNP encapsulation utilized. The average sizes 
of the encapsulated MNPs can be seen in table 1 below.  
Table 1: Average size of lipid encapsulated MNPs. 

MNP Concentration 
(mg/mL) 

Encapsulated Size 
(nm) 

5 2200 
2.5 3500 
1 420 and 2990 

0.5 890 
 
Through imaging via transmission electron microscopy of 
2.5 and 5 mg/mL samples, it was possible to confirm that 
there was some encapsulation taking place, however, the 
efficiency of encapsulation was notably low. Most of the 
structures visible upon imaging were either empty vesicles 
or free nanoparticles with encapsulated nanoparticles 
being a rarity. From the images obtained, the size of the 
successfully encapsulated MNPs is within the desired size 
range. Figure 4 below shows the images obtained using a 
2.5 mg.ml PTA-stained sample.  Images obtained using 
other samples are included in supplementary information.

 

   

    
Figure 4: a. Free Liposome, b. free MNP, c. cluster of liposomes, d. MNPs, Encapsulated MNPs 

 
4.4 Magnetoliposome size reduction – 

Extrusion  
The particle size of the magnetoliposomes was 

measured using DLS and was found to be ≅ 2300 nm. 
This sample was extruded through a 1 μm extrusion 
membrane and the obtained particle size was ≅ 870 
nm. As the desired size was ≅ 200 nm, the sample was 
then extruded through a 200 nm extrusion membrane. 

After just 4 passes through the extrusion membrane, 
the characteristic red-brown colour of the MNPs was 
removed from the sample leaving behind the bright 
pink colour of the Rhodamine B fluorescent dye. The 
size of the sample was measured using DLS and there 
were two size populations with averages sizes of 244 
nm and 21 nm. This confirmed that when considered 

a b 

c
a 

d 
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with the colour of the sample indicated that most of the 
MNPs had been removed from the sample.  

 
4.5 Magnetoliposome purification 
4.5.1 Magnetic separation  

The spectra obtained gave a characteristic peak for 
the MNP fraction at a wavelength of 350 nm (Figure 5). A 
characteristic peak for the liposome fraction could also be 
seen at approximately 575 nm.  

 

 
Figure 5: Absorption spectrum obtained after magnetic 
separation. 

4.5.2 Size Exclusion Chromatography  
The spectra obtained after conducting UV-Vis 

spectroscopy on the SEC fractions showed that for the first 
collected fraction (A1), there were MNPs present but there 
was no characteristic peak for the liposomes. However, the 
intensity of the spectrum for both MNPs and liposomes 
increased through fractions 2-4. Following this, there was 
a notable decrease in intensity for both components with 
the final fraction again having no liposomes with MNPs 
present. The obtained spectrum is presented in figure 6 
however, some fractions are excluded to improve the 
clarity of the illustration. A complete spectrum could be 
found in the supplementary information provided.   

 

 
Figure 6: Absorption spectrum obtained for SEC fraction. 

4.6 Nanoparticle encapsulation 
optimization 

4.6.1 Low-volume rehydration 
DLS analysis of this sample gave an average particle 

size of 260 nm which suggests that there was successful 
encapsulation of the MNPs as the size was similar to that 
obtained from the sample which was visualised using 
TEM. Based on this positive result, this method of 
magnetoliposome preparation was deemed suitable.   

 
4.6.2 High-concentration hybrid film  

After being left overnight for rehydration, this sample 
was diluted using 1 mL of DI water. It was then vortexed 
for 2 minutes and sonicated for 10 minutes however, 
significant sedimentation was observed. DLS analysis of 
this sample gave a notably large particle size of 
approximately 1200 nm. To reduce sedimentation and 
therefore reduce the particle size, the sample was further 
diluted, vortexed for 2 minutes and sonicated for 5 minutes 
however, the size obtained was of the same magnitude. 
This suggests that this method gives rise to significant and 
irreversible aggregation and as such, it is not a viable 
method for magnetoliposome preparation.  

 
4.7 Biohybrid Confirmation 
4.7.1 Light Microscopy 

For the biohybrid cells formed using nanoparticle 
encapsulation, it was observed that there was successful 
biohybrid formation as clear motion of the rod-shaped 
bacteria was observed after the purification of the sample 
(removing excess nanoparticles) by centrifugation. This 
when compared to uncentrifuged sample and the control 
which displayed a cloud of motion gave a clear indication 
of successful biohybrid formation. Videos of the observed 
motion can be found in the supplementary information.  

For the cells prepared via carbodiimide facilitated 
coupling, similar results were obtained for the 85:10:5 and 
80:10:10 DOPC: DOTAP: DOPE lipid films. In both cases 
there was clear and distinct movement of the bacterial cells 
in response to the applied magnetic field. When compared 
to the control there was a noticeable difference - in these 
samples, as with the sample prepared with the first 
method, there was again a cloud of motion as opposed to 
clear motion of individual cells. For the 50:50 DOTAP: 
DOPE lipid film, an anomalous result was obtained as 
there was far less fluorescence observed in the sample and 
the control than expected. Barring this, there was still 
some apparent movement in response to the applied 
magnetic field.  

 
4.7.2 Optical Density 

Measuring the OD of the supernatants obtained after 
magnetic separation showed that when compared to the 
prepared controls, the OD of the samples was consistently 
lower. This result is favourable suggesting that there is less 
bacteria present in the supernatant of the samples when 
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compared to their corresponding controls. This points to 
successful formation of bacterial biohybrid cells when in 

the presence of activated MNPs. These results are 
presented in figure 7 below.  

 

 
Figure 7: Graph comparing the measured optical densities of the tested supernatants. 

5 Discussion 
The goal of the project is to form magnetically 

steerable biohybrids via the attachment of magnetic 
material to the surface of bacteria. To achieve this, two 
routes were taken into consideration: nanoparticle 
encapsulation and carbodiimide facilitated coupling. The 
first route involved the use of fluidMAG-Amine MNPs. 
Upon carrying out characterization of these nanoparticles, 
we observed a time dependent nature of the size 
measurement – when measured after dilution we saw that 
the size was larger than expected and this was believed to 
reflect the aggregation of the nanoparticles. Considering 
this observation, it was imperative that for each 
experiment, the dilution of nanoparticles was done 
immediately prior to use. Characterization of the 
fluidMAG-Amine nanoparticles also illuminated a zeta 
potential that, though slightly negative, corresponds to a 
neutral charge. This, neutrality provides some explanation 
for the tendency of the nanoparticles to exhibit 
aggregation as particles with such zeta potentials tend to 
aggregate faster. Additionally, low zeta potential values 
(<5 mV and >-5 mV) can lead to agglomeration [13]. 
However, we hoped this characteristic would prevent any 
adverse interactions between the MNPs and any other 
components.  

To bind synthetic structures to the surface of the E. 
coli bacteria, due to their gram-negative character [14], the 
structure must possess a positive charge. Therefore, for 
fluidMAG-Amine MNPs to achieve binding with the 
bacteria, they were encapsulated within cationic lipid 
vesicles. The vesicles used for encapsulation were 
composed of 90 mol% DOPC and 10 mol% DOTAP, with 
DOPC being needed to establish the structure of the 
vesicles and DOTAP being the component that provides 
the cationic nature needed to facilitate the interaction with 
the bacteria [15]. Due to the size of the bacteria, a metric 

used for evaluating the success of the encapsulation was 
whether the average size of the encapsulated MNPs 
produced was ≅200 nm. Using the initial method of 
encapsulation outlined in section 3.5, we found that the 
size of the encapsulated MNPs was significantly larger 
than desired – as per the results given in section 4.3. We 
believe this could be attributed to aggregation of the 
nanoparticles in the time between dilution to desired 
concentrations and using these solutions for rehydration of 
the lipid film. As a result of this observation in addition to 
the images acquired using transmission electron 
microscopy, which showed limited encapsulation 
efficiency, it was deemed necessary that the method of 
encapsulation be reviewed.  

The methods proposed for encapsulation 
optimization were intended to encourage an increase in the 
interactions between the MNPs and the lipid films. 
Furthermore, using stock MNPs for the lipid film 
rehydration in each case would have eliminated the issue 
of a time delay between dilution and use of the MNPs 
which was speculated to be the cause of the aggregation of 
the MNPs. With limited access to TEM, it wasn’t possible 
to confirm whether the encapsulation efficiency was 
improved, however, when quantified by size, using the 
low volume rehydration method resulted in an increase in 
the quality of the MNP encapsulation. As such, all 
subsequent MNP encapsulations were done using this 
method. 

With MNP encapsulation completed, the next stage 
of the process was the interfacing of the bacteria with the 
produced magnetoliposomes. Using light microscopy, 
movement of the bacteria in response to an applied 
magnetic field could be confirmed. Initially, the exact 
cause of the observed movement was indistinguishable as 
there were two possible causes – movement due to the 
formation of biohybrids or due to unbound bacteria being 
pulled towards the magnet by the drag force created 
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through the bulk motion of free MNPs. This uncertainty 
was further enforced by observing that the control 
samples, which should not have been capable of forming 
biohybrids, displayed the same response to the presence of 
a magnetic field. On the other hand, after centrifuging it 
was observed that the motion still occurred even when it 
was apparent that the number of free MNPs present in 
solution had been reduced. Since it was not possible to 
remove all the free MNPs from the solution, it may be fair 
to consider the motion observed as being a combination of 
biohybrids being formed as well as bacterial cells being 
dragged along by the motion of the free MNPs. 

The second method of biohybrid formation that was 
attempted involved the use of fluidMAG-PAS 
nanoparticles. Upon conducting characterisation of these 
MNPs, a similar time dependence regarding the particle 
size was observed - which indicated that, much like the 
fluidMAG-Amine MNPs, any dilutions must be done 
immediately before use. From the zeta potential 
measurement, it was observed that these MNPs were 
highly anionic. With a zeta potential value of -32.01 mV, 
the solution is not expected to aggregate as solutions with 
zeta potential values < −30 mV or > 30 mV are considered 
stable [16]. In this case, the MNPs would be likely to repel 
each other and aggregation to the extent observed with the 
fluidMAG-Amine nanoparticles would not be expected. 
However, as these MNPs have a density of 1.25 g/cm3 [18] 
which is slightly larger than that of the dispersant (water) 
they will eventually begin to settle therefore leading to 
aggregation [16]. 

The activation of these nanoparticles involved the 
incorporation of a carbodiimide group, leading to the 
formation of a highly reactive intermediate O-acylisourea 
group on the surface of the MNP [18]. Once activated, the 
MNPs can now very thermodynamically favourable 
reactions with amine groups. As such, in this method, the 
bacteria was encapsulated as opposed to the nanoparticles. 
The vesicles used for encapsulation of the bacteria were 
composed of DOPC, necessary for vesicle formation, 
DOTAP, to provide the cationic charge needed for 
interaction between the vesicles and the bacteria, and 
DOPE, which provided the amine group needed for 
interaction between the encapsulated bacteria and the 
MNPs. 

 Without imaging via electron microscopy or any 
other super-resolution microscopy, prior to interfacing 
with the MNPs it is difficult to evaluate the degree of 
success of the encapsulation. It was possible to infer 
success, however, through light microscopy, as it was 
observed that bacteria responded to the presence of the 
magnetic field. From visual observation, the 
characteristics and behaviour of bacteria encapsulated in 
vesicles with the composition 85:10:5 DOPC: DOTAP: 
DOPE and bacteria encapsulated in vesicles with the 
composition 80:10:10 DOPC: DOTAP: DOPE appeared 
to be indistinguishable. Bacteria encapsulated in the 
fusogenic, 50:50 DOTAP: DOPE vesicles, however, 
exhibited clearly different behaviour from the other 
compositions. Specifically, it was clear that although the 

bacteria were present and responded to the presence of a 
magnetic field, they were no longer GFP expressing. 
Within the limits of this project, it was difficult to infer 
with 100% certainty the reason for this occurrence. 
However, we speculate that the fusogenic nature of the 
vesicles resulted in the destabilization of the outer 
membrane of the bacteria which resulted in the formation 
of a pore. This either led to the leaking of GFP from the 
bacteria, or the dilution of GFP within the bacteria due to 
the release of the contents of the vesicle (deionised water) 
into the cell upon fusion [15]. 

On the other hand, it was possible to observe a 
correlation between the OD measurements and the 
concentration of DOPE present in each vesicle 
composition. This observation further helps to confirm 
that the encapsulation was a success. Additionally, it was 
observed that with greater concentrations of DOPE, the 
OD was lower. This implied that more biohybrids were 
formed and upon the introduction of the magnetic field, 
more bacteria were removed from the supernatant. Based 
on this, it can be inferred that higher DOPE - though 
potentially detrimental to the survival of the bacteria due 
to destabilization of the membrane - results in a greater 
efficiency of biohybrid formation. This is expected as 
DOPE is the lipid that provides the amine functional group 
that is necessary for the interfacing of the bacteria and the 
MNPs to take place.  
 

6 Conclusion 
It was determined that low volume rehydration 

allowed for the best control of the size of encapsulated 
nanoparticles when measured using DLS. This gives a 
feasible approach to MNP encapsulation and provides a 
basis for future encapsulation protocols.  

Through light microscopy and OD measurements, it 
was confirmed that the employed methods lead to the 
formation of bacterial biohybrids which are capable of 
being guided by a magnetic field. However, the efficiency 
of formation could not be determined using these methods 
and further confirmation should be obtained using a viable 
form of super-resolution microscopy such as TEM. 

When encapsulating bacteria with lipids, it was 
found that, although increasing the percentage of DOPE 
present in the lipid film led to increased interaction 
between the encapsulated bacteria and the MNPs, high 
concentrations of DOPE have potentially detrimental 
effects on the bacteria. As such, it is important to 
determine the optimal liposome composition for 
encapsulating bacterial cells.  

In conclusion, the methods employed in this study 
for forming bacterial biohybrids were successful in 
producing magnetically steerable bacterial cells. Further 
work is needed to confirm the efficiency of biohybrid 
formation and confirm that motion in the samples is due to 
the effect of the magnetic field on the biohybrid cells as 
opposed to bulk motion caused by the movement of the 
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MNPs. Following this, the behaviour of the bacteria when 
guided through a more complex system should be studied.  
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Data driven modelling using time series recurrent neural 
networks (RNN) for glycosylation prediction in mAbs 

Final year research project, Group 79: Minqi Wang and Putian Yao 
Department of Chemical Engineering, Imperial College London, U.K. 

Abstract 
N-linked glycosylation is a critical post-translational process that greatly affects the efficacy and efficiency of 
monoclonal antibodies (mAbs). Previous researchers have published a hybrid modeling system combining a 
mechanistic kinetic model and a static Artificial Neural Network (ANN), to predict the glycan distribution through 
intracellular states. However, as glycosylation is a sequential process, Recurrent Neural Network (RNN) seems 
more suitable as past information is also taken into account in future prediction. Hence, this project focuses on 
replacing the ANN model with an RNN to predict glycan distribution through time-series nucleotide sugar donor 
(NSD) concentrations in Chinese hamster ovary (CHO) cells. Two RNN units were connected, forming a new 
RNN-in-series system. The first unit was responsible for predicting time-series NSD concentration, the result of 
which was provided as the input of the second unit to predict glycan distribution. The model was trained and 
validated by the Keras tuner library, with Long Short-Term Memory (LSTM) selected in specific for RNN. The 
model accurately predicts the glycan distribution which closely followed the trend of the test data, with an average 
absolute error of 1.19%. The RNN-in-series model's success offers a new depth of predicting in the dynamic 
glycosylation process, with significant benefits for optimizing mAb bioprocessing feeding strategies, and hence 
meeting the growing demand for high-quality therapeutic proteins. 
Keywords: N-linked Glycosylation, monoclonal antibodies (mAbs), Nucleotide sugar donor (NSD), Artificial 
Neural Network (ANN), Recurrent Neural Network (RNN), Deep-learning, Machine learning, Multiscale, 
Dynamic modelling

1. Introduction
Over the past few years, monoclonal antibodies 
(mAbs) are the most successful type of drug used in 
the biopharmaceutical industry (Kontoravdi & 
Jimenez del Val, 2018). They can be used to treat a 
large variety of diseases, such as cancer, 
autoimmune and infectious diseases. Glycosylation 
in the constant fragment, as shown in Figure 1, is the 
key product quality of mAbs. The presence of 
terminal galactose residues on mAb Fc glycans 
plays an important role in complement-dependent 
cytotoxicity (CDC) and antibody-dependent cell-
mediated cytotoxicity (ADCC) functions (Kotidis et 
al., 2019). High mannose N-glycans produced can 
also influence immunogenicity and biological 
activity and stability (Buettner et al., 2018). As its 
critical role, achieving optimal glycosylation level is 
of great interest to the biopharmaceutical industry. 

 
Figure 1: mAbs structure and 6 major N-linked glycans (del Val 
et al., 2012) 

Glycosylation is a post-translational 
modification process, happening in the endoplasmic 
reticulum (ER) and Golgi apparatus within cells. 
Instead of template-driven, glycans produced are the 
result of a complex network of metabolic and 
enzymatic reactions influenced by a variety of 
factors, including nucleotide sugar donors (NSDs) 
(Harnish Mukesh Naik, Majewska & Betenbaugh, 

2018) and the extracellular environment (Hossler, 
Khattak & Zheng Jian Li, 2009). Figure 2 shows 
how the glycosylation profile links to the 
extracellular metabolites through NSDs. 

Considering that biological experiments are 
expensive and time-consuming, researchers in the 
past have built a mechanistic kinetic model and 
succeeded in predicting the experimental 
glycosylation level (Kotidis et al., 2019) with many 
kinetic parameters. However, background 
information and knowledge of computational tools 
and bioprocess are required. To tackle this problem, 
researchers proposed the use of machine learning to 
describe the glycosylation process, which requires 
less bioprocess knowledge (Lancashire, Christophe 
Lemetre & Ball, 2008). A static artificial neural 
network (ANN) was proposed to accurately predict 
glycan distributions in the products with an average 
absolute error of 1.1% (Pavlos Kotidis & 
Kontoravdi, 2020), but with no dynamic information 
provided.  

Given that glycosylation is defined as a 
sequential process, it is critical to consider historical 
data for accurate predicting of future glycan profiles. 
Therefore, the research in this project aims at 
advancing the existing model by replacing the static 
ANN with a Recurrent Neural Network (RNN). By 
considering previous metabolites, NSD levels in 
Golgi, and previous glycan data, the RNN can 
predict the next day or next few days of glycans. 
Following this improvement, the research may be 
beneficial in designing an optimal feeding strategy 
that aims to maximise the final glycosylation 
contents through dynamic optimisation. 
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Figure 2: The relationship between extracellular metabolites, NSDs in Golgi and the glycans produced (del Val et al., 2012)

2. Methodology  
2.1 System description 
The biological system involved in this project is 
Chinese Hamster Ovary (CHO) cells producing an 
IgG antibody. The cell culture is fed with glucose 
and amino acid nutrients every 2 days (Kotidis et al., 
2019). To improve product quality, i.e. 
glycosylation, additional galactose and uridine are 
fed on day 4, day 6, day 8, and day 10. They are the 
metabolic precursors needed for uridine diphosphate 
galactose (UDP-Gal) synthesis, which is the specific 
type of NSD required for galactosylation (Grainger 
& James, 2013). 

2.2 Machine learning (ANN) model 
Data used for machine learning was generated using 
the mechanistic kinetic model proposed by Kotidis 
et al. (2019). 10 groups of data were simulated, each 
containing extracellular metabolites concentrations, 
NSDs concentrations, and glycan distributions from 
Day 0 to Day 12.   

For the ANN model, the input variables 
containing 7 types of NSDs, namely CMPNeu5Ac, 
UDPGal, UDPGlc, UDPGalNAc, UDPGlcNAc, 
GDPMan, GDPFuc, while the output are the 6 major 
N-linked glycans: Man5, G0, G0F, G1F, G2, G2F. 
The structure of ANN is shown below in Figure 3. 

 
Figure 3:Schematic representation of ANN used for predicting N-
linked glycosylation using NSDs from (Pavlos Kotidis & 
Kontoravdi, 2020) 

The whole dataset was split into three portions. 
70% of the data was used to train the model, while 
23% was used for validation and the remaining 7% 
for testing of the model. The ANN model was 

trained and validated by the Keras tuner library, 
which determines the number of hidden layers and 
the number of neurons inside each hidden layer. The 
best model was selected based on minimum average 
absolute error while ensuring the total parameters 
used were within acceptable range. 

When using Keras in determining the optimal 
model for the neural network, usually challenges 
arise due to noise and issues related to the size of the 
dataset. As shown in Figure 4, the validation error 
tends to increase after a point, whereas the training 
error continues to decrease. This phenomenon is 
known as overfitting. An approach called ‘early-
stopping’ was implemented, which is suggested as 
one of the most effective solutions to prevent 
overfitting (Xue, 2019). 

 
Figure 4: Training example illustrating the underfitting and 
overfitting regions and the optimal epoch to stop (Igareta, 2021). 

2.3 Recurrent neural network model 
Recurrent neural network (RNN) is a type of neural 
network used to process sequential data. By 
replacing ANN with RNN models, the glycosylation 
results predicted are presented in the time series. 

Various architectural forms can be employed in 
recurrent neural networks, such as gated recurrent 
units, bi-directional RNNs, long short-term memory 
(LSTM), etc. For a better performance, LSTM is 
selected for the RNN models due to its advantage in 
addressing the challenges of gradient vanishing or 
exploding during training (Trupti Katte-Bangayya, 
2018). Additionally, compared to standard RNN, 
LSTMs have better performance on longer 
sequences as it has long-term memory ability to 
store past data and proceed with fresh input and 
working memory. Basically, the repeating block in 
standard RNN consists of a very simple structure, 

Cellular glycosylation
HCP N-linked and O-GalNAc
Glycolipids
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like a single activation function layer. The LSTM 
has a much more complicated structure within the 
block(Olah, 2015), which is shown in Figure 5. 

 
Figure 5: A.) The core idea of Standard RNN (left) and LSTM 
(right) (Olah, 2015). B.) compare RNN and LSTM (Robail 
Yasrab & Pound, 2020) 

2.4 RNN-in-series system 
To predict glycans through time-series NSDs, an 
RNN-in-series system was implemented. The 
system consists of two distinct RNN units (RNN 
unit 1 and RNN unit 2), each specialized in handling 
a different aspect of the glycosylation prediction 
process. As shown in Figure 6, two RNN units were 
connected. The first one is to predict NSD in time 
series and the second one is responsible for 
predicting the glycan distributions using the 
prediction results from the previous unit.  

 
Figure 6:RNN-in-series system 

The details of the two units are shown in Figure 
7. The RNN unit 1 uses the NSD data from day 0 to 
day 11 as the input, while the output is from day 1 to 
day 12. The daily NSD concentration is predicted 
using concentration from the previous day. The 
output of RNN unit 1 is stored and serves as the 
input for the second RNN unit. Glycan information 
memorized and passed down through hidden states 
are used together with the inputs to predict the 
glycan distribution outputs on Days 1 to 12. 

  
Figure 7: Detailed scheme of RNN unit 1 (above) and RNN unit 
2 (below) 

3. Results and discussion 
3.1 ANN & RNN comparison 
The primary comparison consisted of evaluating the 
prediction result of the Artificial Neural Network 
(ANN) with that of RNN Unit 2, both of which are 
implemented for predicting glycan distribution 
profile from Day 0 to Day 12 using NSD data. 

 
Figure 8:ANN prediction results in different phases 

To ensure the robustness and predictability of 
machine learning, the ANN was reconstructed based 
on the architectural principles presented in the 
previous paper (Pavlos Kotidis & Kontoravdi, 2020). 
In the 12-day period of the biology experiment, 
CHO cell culture can be divided into three major 
different culture phases: an exponential growth 
phase, a stationary phase, and a death phase with the 
two transition days being day 8 and day 10. The 
exponential phase is divided into the number 
increasing phase (the number of cells increases 
exponentially from day 0 to 4), and size increasing 
phase (Pan et al., 2017). Considering this and 
feeding strategies, 4 days after number increasing 
phase (day 5, day 7, day 9, and day 12) were chosen 
for ANN model results presenting, to evaluate 
ANN’s predictive performance at each phase after 
feeding. The prediction results for these days are 
compared with experimental data, as shown in 
Figure 8. The average absolute errors are calculated 
in Table 1. As clearly displayed, the results are on 
independent days and not connected to previous 
results. This is indicated by the structure of the ANN. 
As characterized by its direct feedforward topology, 
ANN is adept at processing static inputs to generate 
only present outputs.  
Table 1: Error analysis of ANN on selective days 

ANN Average 
Absolute error 

Day 5 (Size increasing phase) 1.48% 

Day 7 (Size increasing phase) 1.17% 

Day 9 (Stationary Phase) 0.85% 

Day 12 (Death phase) 0.76% 

Overall 0.97% 
 

 

NSD(t-1) NSD(t1) Glycan(t1)

Day 1 Day 2 Day t Day 12

NSD 0 NSD 1 NSD t-1 NSD t

NSD 12NSD 1 NSD 2 NSD t
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Table 2: Error analysis for RNN unit 2 for each glycan 

Glycans Average absolute error 
Man5 0.74% 

G0 0.54% 
G0F 1.34% 
G1F 1.26% 
G2 0.03% 

G2F 0.42% 
Overall 0.72% 
In contrast, RNN Unit 2 is adept at temporal 

data integration, which allows it to predict glycan 
distributions over the entire experimental period 
(From day 0 to day 12). Glycan distribution 
predictions are not only based on the current NSD 
values but also enriched by the historical glycan 
information provided by the hidden states. The 
results are shown in Figure 9. Despite some minor 
differences, RNN can predict the overall trend of 
glycan distributions accurately.  

The mean absolute error of RNN unit 2 for each 
glycan was calculated and shown in Table 2. 
Ranging from 0.03% for G2 to 1.34% for G0F, the 
overall average absolute error is 0.72%, which is 
lower than that of ANN (0.97%). Beyond the error 
analysis, it is essential to recognize the proficiency 
of RNNs in time-series modelling. This attribute is 
particularly beneficial for dynamic glycosylation 
prediction tasks where temporal dependencies are 
crucial. Consequently, the RNN is identified as 
having a distinctly superior performance in 
modelling glycosylation dynamics. 

The hyperparameters summary in Figure 10 
shows that RNN has a higher number of parameters. 
This is justified by the complexity and richness of 
the datasets used for RNN training. The expansive 
parameter set of the RNN considers the breadth of 
data points and incorporates the necessary recurrent 
connections that are critical for capturing the 
temporal sequences inherent in the glycosylation 
process. 

 
Figure 9:Example RNN results for glycans distribution. 

 
Figure 10: Hyperparameters Comparison for ANN model and RNN-unit-2 

 

3.2 RNN Unit 1 prediction 
RNN Unit 1 is responsible for predicting time series 
NSD concentrations. The prediction result is 
compared with experimental data (test data) as 
shown in Figure 11. Levels of metabolites and 

several important indicators relative to the 
glycosylation process are also predicted. These 
include, but are not limited to, glucose and ammonia 
concentrations, because these two are important 
nutrients needed for cell growth. The viable cell 
density (Xv) and concentration of monoclonal 
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antibodies (mAb) are also included as they indicate 
the product quantity. The results are shown in Figure 
12.  

In general, the NSD predictions align well with 
the trend observed in the experimental test data, 
indicating a good foundation for the glycosylation 
prediction by RNN unit 2 in the next step. However, 
gaps between the two lines are also significant. The 
percentage error of RNN unit 1 for each NSD was 
calculated and shown in Table 3. Even though the 
overall error is within an acceptable range (3.70%), 
the average percentage error for each NSD varies a 
lot, ranging from 0.33% for GDPFuc to 9.67% for 
UDPGal. This large difference in error implies 
further optimization of the RNN model. The 
complexity of the NSD synthesis is also evidenced 
by the fact that the error varies so much.  

For this RNN unit 1, the hyperparameters 
summary is also displayed in Figure 13. RNN unit 1 
has 547 parameters, which is more than twice as 
much as RNN unit 2. This outcome is anticipated 
considering there are nearly 2000 data points used 
for RNN unit 1 training, whereas only around 900 
data points are involved in unit 2. 
Table 3: Error analysis for RNN unit 1 for each NSD 

NSD Average percentage error 
UDPGal 9.67% 
UDPGlc 2.06% 

UDPGlcNAc 5.91% 
GDPMan 0.55% 
GDPFuc 0.33% 
Overall 3.70% 

 
Figure 11: Significant NSD prediction 

 
Figure 12:Example results for important parameters and metabolites. 

 

 
Figure 13:RNN unit 1 Hyperparameters Summary 

3.3 RNN-in-series performance 
As mentioned before, in the RNN-in-series model, 
the predicted NSD output from Unit 1 is stored and 
fed continuously into RNN Unit 2 as input for the 
glycosylation predictions. The result of this system 
is compared with the result from RNN unit 2 only, 
as presented in Figure 14. Analyzing these two sets 
of graphs, it is evidenced that the predictions are in 
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good agreement with the test data, reflecting high 
accuracy in predicting the glycan distribution and 
reflecting the fact that the RNN-in-series model 
performs well across a wide range of variables and 
conditions. 

By comparing the glycosylation predictions 
side-by-side between the results of RNN unit 2 alone 
and RNN-in-series, it is worth noticing that the gap 
between prediction results and test data becomes 
larger. The error analysis is carried out, with the 
average absolute error for each glycan calculated in 
Table 4. Ranging from 0.09% for G2 to 2.65% for 

G0F, the overall error is 1.19%, which is indeed 
higher than that of RNN unit 2 alone (0.72%). The 
reason for this phenomenon is error accumulation 
(error propagation) from RNN unit 1 to RNN unit 2. 
According to the error analysis, where errors in Unit 
1's results are carried over to Unit 2, impacts the 
precision of Unit 2's glycosylation predictions. The 
increase in final glycosylation prediction error 
indicated the need for more comprehensive 
optimization for the model to improve the predictive 
accuracy for future glycosylation. 

 
Figure 14:Glycosylation prediction from RNN unit 2 only (left) and RNN-in-series (Right) 

 
Table 4: Error analysis for RNN-in-series system 

Glycan Average absolute error 
Man5 1.64% 

G0 0.75% 
G0F 2.65% 
G1F 1.73% 
G2 0.09% 

G2F 0.26% 
Overall 1.19% 

4. Outlook       
By comparing the RNN-in-series predictions against 
the experimental data, it is agreed that the system 
can predict the overall trend of glycosylation. 
However, the model could be improved to reduce 
the error propagation issue. Referring to the 
approach suggested by (Liu, Nathan & Brunton, 
2020), the error propagation in the RNN models 
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could be handled by applying a multiscale system. 
As shown in Figure 15, The principle behind a 
multiscale system is that instead of training one 
neural network with one time step, more neural 
networks with different time steps could be trained 
and combined. The smaller the time step, the more 
accurate the local prediction is. Combining models 
with different time steps is expected to predict both 
overall trends and more precise local points. 

 
Figure 15: Basic idea about how multiscale works (Brunton, 2021) 

In addition, it has been verified that unit 1 of 
this RNN-in-series model is also able to predict 
metabolites and other important indicators of 
glycosylation with high accuracy. Those predictions 
could be used in the future. For example, viable cell 
density is highly dependent on specific culture 
conditions for the glycosylation process and is an 
indicator of overall health and growth (Jong Hyun 
Nam et al., 2008). Maintaining an optimal viable cell 
density ensures that cells are in proper physiological 
state for efficient glycosylation. Apart from that, the 
concentration of metabolites is one of the few 
possible steps that could be controlled by human 
beings in the glycosylation process. Therefore, these 
concentrations can be monitored and predicted to 
optimize feeding strategies in the near future, 
thereby influencing the overall glycosylation 
process. The ability to predict and regulate 
glycosylation contributes to the efficiency and cost-
effectiveness of biomanufacturing. 

5. Conclusion 
In conclusion, due to the importance of 
glycosylation in influencing the efficacy and 
efficiency of monoclonal antibodies, it is important 
to predict the glycan profile in mAbs. The ability to 
trace glycosylation trajectory is critical for 
understanding and optimizing the bioprocessing 
conditions. This project aims at predicting glycan 
levels through time series NSDs. Recurrent neural 
network, which requires minimal biological 
knowledge and specializes in handling sequential 
data, is applied. Two RNN units are implemented 
and connected, forming a novel RNN-in-series 
system, with the first one to predict time-series NSD 
levels and the second one to predict glycans profile. 
Experimental data containing NSD concentrations 
and glycan distributions in CHO cells are provided 
for training and testing the data-driven model. Keras 
library is used to tune the parameters, with the 

LSTM method selected specifically for the RNN 
units. The glycan predictions of the system follow 
the experimental trend very well, with an average 
absolute error of 1.19%. The significance of this 
research is not limited to the replacement of ANNs 
with RNNs in time-series glycosylation, but also to 
the potential of integrating dynamic modelling 
approaches into various aspects of bioprocessing 
and biomanufacturing. In the future, the model will 
be improved and applied to relevant industries by 
applying multi-scale algorithms for careful 
optimisation and manual control of metabolic levels. 
For the pharmaceutical industry in particular, this 
dynamic prediction approach will help meet the 
growing demand for high-quality therapeutic 
proteins.  
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Abstract
Decarbonising the UK’s residential buildings is a critical challenge due to the substantial contribution of domestic
heating to greenhouse gas emissions. Current reliance on fossil fuel-based technologies highlights the need
for low-emission alternatives. Among these alternatives, the adoption of heat pumps, particularly Ground
Source Heat Pumps (GSHPs), has emerged as a promising alternative over natural gas boilers in households.
This study evaluated the suitability of GSHPs as a low-carbon technology within the UK’s residential sector.
Utilising two bespoke models, a household model and a Heat energy System Optimisation model (HeSO),
this research analysed GSHP penetration and the influential factors that characterise this deployment. The
household model constructed a comprehensive database of Ground Source Energy Systems (GSESs), including
GSHPs and thermal batteries, serving as a foundation for the HeSO model to perform a total system cost
minimisation to select cost-e�ective technologies. By adjusting parameters such as the natural gas price and
GSES capital expenditure (CAPEX) subsidy level, reflecting the extent of governmental incentives, findings
indicated that optimal GSHP penetration occurred with higher natural gas prices and lower CAPEX for the
majority of buildings. Despite some degree of adoption within the domestic sector, this study exposed a
discrepancy between current market and policy conditions and those required for widespread GSES adoption.
Addressing this gap is pivotal for achieving substantial reductions in household carbon emissions and advancing
towards national net-zero objectives. Further study into measures to ensure the economically feasible mass
deployment of low-carbon technologies is essential for making tangible progress towards net zero and fulfilling
long-term environmental targets.

1 Introduction

Mitigating climate change and transitioning to sus-
tainable energy systems have become crucial global
objectives. In 2015, parties from across the world
formed the Paris Agreement which set a global warm-
ing limit to below 2�C compared to pre-industrial lev-
els [1] and stated that above 1.5�C there are risks of
hitting climatic tipping points such as melting arc-
tic permafrost which would release stored greenhouse
gases [2]. The UK has set its own internal requirements
such as: reducing greenhouse gas emissions by 100%
from 1990 levels by 2050 [3], ensuring that by 2035 the
UK will be powered entirely by clean electricity, and
the deployment of new flexibility measures through
resource storage to smoothen future price spikes [2].
Current heating technologies rely on the combustion
of fossil fuels and have a high carbon footprint, there-
fore for improvements to be made here, new and novel
technologies, with low carbon footprints, will need to
be adopted.

Residential and commercial heating contributes to
a substantial portion of global greenhouse gas emis-
sions. In 2017, the combustion of natural gases for
space heating and hot water contributed 14.3% of the
total greenhouse emissions in the UK [4]. The UK re-
lies on fossil fuels with 95% of homes being centrally
heated with 81% of heat demand being met by gas

boilers on natural gas networks [5]. Homes are either
heated with a natural gas boiler, which on average
requires 78% of energy consumption to be used on
heating, or with electric heaters, which only require
12%. [6] The UK government has set ambitious tar-
gets to achieve net-zero emissions through the 6th car-
bon budget, which highlights the immediate require-
ment for a transition to low-carbon technologies and
a reduction in demand for carbon-intensive activities.
This would facilitate a 78% reduction in UK terri-
torial emissions between 1990 and 2035 and another
goal is to achieve between 65-125GW of low-carbon
electricity by 2050 [7].

In the residential sector, initiatives and policies
have been laid out to reduce the emissions from homes.
Aims such as ensuring all homes have an Energy
Performance Rating (EPC) of band C or higher by
2035 [8], and the gas boiler ban in new homes to start
as early as 2025 [6]. Further policies include the re-
moval of VAT on new solar panels until 2027 and on
the installation of heat pumps and insulation until
March 2027 [9]. Other government schemes that have
been implemented include the Heat Pump Ready pro-
gram, a funding pot of £60 million for the installa-
tion of 600,000 heat pumps by 2028, and the Boiler
Upgrade Scheme - a UK government grant which of-
fers £7,500 towards the cost and installation of a heat
pump or a biomass boiler in homes [10]. One scheme al-
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ready in place is the Green Deal scheme, where home-
owners can obtain a loan for certain energy e�ciency
measures and pay o� the loan later via their energy
bills. The main initiative that will be considered in
this study is the replacement of domestic gas boilers
with ground source heat pumps.

Heat pumps coupled with the use of clean renew-
able energy o�er a compelling low carbon solution.
There are two main forms of heat pumps: electrically
and thermally driven heat pumps. This paper focuses
on electrically driven heat pumps, specifically Ground
Source Heat Pumps (GSHPs). GSHPs make use of
thermal energy stored in the ground. They do this by
circulating a refrigerant fluid through the ground col-
lectors which absorb thermal energy from the ground.
The compressor inside the heat pump increases the
temperature and passes the fluid through a heat ex-
changer. This transfers heat to the hot water cylinders
and radiators to provide space heating. Once the fluid
has been delivered heat to the distribution system it is
passed through an expansion valve and then the cycle
restarts. The heat pumps are connected to a series
of pipes, known as the ground collectors, either laid
out horizontally (often referred to as slinkies) or verti-
cally (through the drilling of boreholes). These pipes
are located underground where the average tempera-
ture is typically between 10-12�C [11]. The implemen-
tation of heat pumps has many complications that
may make them inaccessible to the whole population.
These complications include the high initial capital in-
vestment, the complexities of government incentives,
and extra capital costs that are incurred from instal-
lation. Understanding the appropriate size of heat
pump is complex due to the regional climate and EPC
rating variations, this demands tailored strategies for
optimising heat pump performance.

Several studies assessed various aspects of heat
pump implementation and the related challenges.
Petrovic and Karlsson assessed the penetration of heat
pumps into the Danish heating network [12]. In this
study, a constraint on the available ground area was
considered. GIS tools were used to determine if build-
ings had su�cient area to place the required horizon-
tal pipes. If this constraint was ignored it resulted in
a 0.3% lower system cost and a 2.7 times higher up-
take of GSHPs. The study was then extended using
the TIMES-DK model, which optimised both invest-
ment and operation for electrically driven heat pumps.
This predicted that heat pumps would be responsible
for 66-70% of heat production from individual heat
sources. This corresponds to 24-28% of total heat de-
mand after 2035 and without residential heat pumps,
total system costs would increase by 16% and biomass
usage by 70% [12].

Brenn et al. supported electrically driven heat
pumps for low CO2 intensity electricity sources, while
advocating for natural gas-driven heat pumps’ eco-

nomic e�ciency for space heating [13]. Another study
by Wang et al. found that the use of GSHPs achieved
70% fuel saving and reduced greenhouse gases by 45%
when compared to natural gas furnaces. Wang et al.
found that the use of heat pumps in Iran was low
due to the low natural gas price and the high elec-
tricity price, therefore favouring gas boilers [14]. This
was opposed by the paper by Mersch et al. which
found that the required installed grid capacity can
be more than twice as high in scenarios with high gas
prices when compared to low gas prices. Although the
size of the power sector increases significantly with in-
creasing gas prices, the optimal deployed technology
portfolio does not change fundamentally [15]. This in-
dicated that with suitable policies and subsidies, heat
pumps could become a favourable technology.

The aim of this study was the examination of heat
pump adoption within the UK domestic heating sec-
tor. This was done using two bespoke optimisation
models, one focusing on individual households and the
other taking a comprehensive whole-system perspec-
tive, which forms the core of this study.

As of the current writing, the integration of
GSHPs within these model types remains unexplored.
This represents a research gap in the existing liter-
ature. Consequently, this study evaluated the neces-
sary conditions for widespread heat pump deployment
across the UK, understanding sensitivity to various in-
fluencing factors.

The outcomes of these models were rigorously eval-
uated, both independently and comparatively. The
findings emphasise the impracticality of mandating a
singular technology for all end-users at a given time,
suggesting a phased approach for end-user adoption.

2 Methodology

The novel approach taken in this study was the inte-
gration of two bespoke models. The first model con-
sidered was the household model and the second was
the Heat energy System Optimisation model (HeSO).
Parameters including natural gas price and Capital
Expenditure (CAPEX), to reflect government sub-
sidies, were varied to map the penetration of heat
pumps in the domestic heating sector. To model the
UK’s domestic heating sector five typical buildings
were used. These buildings were chosen using a clus-
tering algorithm on data from the Cambridge hous-
ing model [16] to have varying total heat demands and
space heating to hot water ratios. These five buildings
give a representative sample of all UK homes.

2.1 Household Model

The household model, as shown in Figure 1, is an
optimisation framework that relies on first-law de-
sign models and data-driven component costing meth-
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Figure 1: The block diagram of the structure of the HeSO model. The model takes inputs such as total thermal demands, initial
renewable and non-renewable resource availability, fuel prices, and availability of current technologies. From this, the model does
a simultaneous optimisation for the minimisation of the total system cost while ensuring all demands are met.

ods to optimise: (i) the design of ground-source heat
pumps; and (ii) the year-round operation of ground-
source energy systems (GSESs) with integrated ther-
mal energy storage.

This optimisation framework is built upon an ex-
tensive database collected from various manufacturers
of reciprocating-piston, scroll, and rotary-vane com-
pressors. The model assesses the o�-design and part-
load performance using data obtained from these man-
ufacturers. A GSHP is designed for each compressor
held in the database; the condenser and evaporator
units are sized to minimise the specific cost of the heat
pump. The depth and diameter of the required bore-
hole are determined based on the heat pump’s nomi-
nal operating conditions (with brine water circulating
in underground heat exchangers at 0 °C, hot water
supplied at 35 °C and compressor running at 50 Hz).
The wide range of GSHPs thus obtained are integrated
with thermal batteries of various sizes (ranging from 5
to 50 kWh) to provide a portfolio of over 100 ground-
source energy systems (GSESs) for each typical build-
ing. These candidates supplied the heat demand for
the 5 buildings considered in the whole-energy system
model. It is worth noting that not all GSESs will be
suitable for all 5 buildings and that only those with
powerful enough compressors or large enough thermal
stores, that can meet the required heat demand, will
be selected.

The optimisation of the year-round operation of
each GSES to minimise the operating costs (namely,
the cost of electrical energy consumed throughout the
year) while supplying the building-specific heat de-
mand is a highly non-linear problem (NLP). The non-
linearity is due to the dependency of the heat pump
coe�cient of performance (COP) not only upon the
instantaneous ground temperature but also upon the
heating rate. Since the HeSO optimiser is based on a

linear problem solver, it is proposed to optimise the
charging schedule of the thermal batteries for each
building and each GSES with time-varying electricity
tari�s extracted from the HeSO model using the ipopt
NLP solver and provide the whole-system model with
fully-optimised candidates. In summary, year-round
hourly-defined power consumption signals were pro-
vided along with the capital cost associated with each
GSES candidate. Another output of the model was
the Levelised Cost Of Heating (LCOH) which consists
of the CAPEX of the GSES combined with the sum-
mation of the operation cost over the GSES’s lifetime,
this is all divided by the summation of the specific heat
demands over the system’s lifetime. This information
is displayed mathematically in Equation 1.

LCOH =
CAPEX +

R tf
ti

OPEX(t) dt
R tf
ti

HeatDemand(t) dt
(1)

2.2 HeSO Model

The whole system, or HeSO, model is designed as a
capacity expansion and unit commitment optimisa-
tion tool. Its primary goal is to minimise the overall
cost associated with transitioning entire energy sys-
tems in alignment with net-zero policies. Based on
the ESO model developed by Heuberger et al. [17], this
model pursues the most cost-e�ective transformation
of the energy system up to 2050. It achieves this by
optimising technology investments, decommissioning
strategies, and yearly adjustments, while also using
hourly dispatch profiles to ensure alignment with de-
mand patterns.

The HeSO model includes several parameters that
can be changed with each run. The initial parameter
that was considered was the number of typical days
considered. This can be varied between 2 and 365
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Figure 2: The block diagram of the structure of the HeSO model [15]. The model takes inputs such as total thermal demands,
initial renewable and non-renewable resource availability, fuel prices, and availability of current technologies. From this, the model
does a simultaneous optimisation for the minimisation of the total system cost while ensuring all demands are met.

days with a greater number improving accuracy but
significantly increasing the computation time. This
comes in addition to 4 extreme days which the model
always includes, this ensures that any suggested so-
lution is robust enough to deal with the days with
even the most significant heat demands and the days
where renewable electricity is at the lowest availabil-
ity. In this report, 4 representative days in addition to
the 4 extreme days were used to reduce the required
computation time while still maintaining an accurate
representation of the di�erent conditions that occur
throughout the year.

Some of the considerations that applied in the
model were: individuals were assumed to have per-
fect knowledge and make timely, cost-minimising deci-
sions; investment and decommissioning decisions were
to be made every five years; dispatch was optimised
over 4 representative days; and technology deploy-
ment was limited by build rate constraints. Although
this model also considers commercial and industrial
heating demands, the focus of this paper is strictly on
the heat demand in the residential sector.

The model accounts for carbon emissions within
the constraint of pre-set targets. Specifically, a linear
reduction in permissible CO2 emissions occurs every 5
years up until net zero in 2050. These reductions are
motivated by the emissions targets outlined on the UK
government website to target emissions reductions of

68% by 2030 compared to 1990s levels and ultimately
net-zero by 2050 [18]. The constraint on CO2 emis-
sions acted as one of the driving factors for the in-
creased uptake of low-emission heating technologies
within the residential sector.

Within the model, all forms of fuel have a carbon
dioxide footprint attributed to them and additionally,
electricity has an aggregated CO2 footprint per unit of
power produced. These feed into the aforementioned
permissible carbon dioxide emissions constraints. The
model also includes several financial metrics with both
interest rates and slack penalties for domestic heating
values, which can be altered based on changing poli-
cies. Slack penalties provide a financial penalty when
heating demands are not met.

2.3 Model Integration

In this study, the two models are used in succession
starting with the household model and then using its
outputs as parameters in the HeSO model. This is
necessary as the HeSO model is a linear program op-
timiser but the optimisation of heat pumps is nonlin-
ear, therefore the heat pump optimisation is done in
the household model and the output is used as an in-
put into the HeSO. Figure 3 shows the integration of
the two models to get the final result of heat pump
penetration.
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Figure 3: A block diagram showing the integration of both
the household and HeSO model, showing the inputs and out-
puts for each model with heat demand being the primary input
and LCOH and GSHP penetration being the primary outputs

The HeSO model was first executed with its preset
library of heating technologies to provide the non-heat
electricity consumption values which, combined with
the heat demand, were used as proxies to calculate
the time-resolved electricity tari�. Both head demand
profiles and time-varying electricity tari�s were fed
into the household model, which in turn provided a
set of year-round optimised GSES for each of the typ-
ical buildings. The fully-optimised GSESs were then
added back to the HeSO library as an available tech-
nology for the HeSO model to choose from. Through
successive run iterations of the HeSO model, it suc-
cessfully selected heat pumps from the available li-
brary, alongside the originally provided gas boilers, in
order to comply with the specified constraints. The
total system cost was minimised and the heat pump
penetration was calculated. Other preset technologies
in the HeSO library had their CAPEXs set at an ar-
bitrarily high value to ensure they were not picked in
the minimisation.

One parameter which was manipulated, to analyse
the impact of cost reductions and incentives, is the
CAPEX of the GSES. Every optimised heat pump
has a representative cost, which was calculated by
the household model, and an additional cost which is
dominated by the underground heat exchanger cost.
Upgrade and installation costs are also included but
to a much lesser magnitude. These additional costs
typically range between £8000-£12000 [19] depending
on the nature of the ground source heat exchanger
(slinky versus borehole) and how many home upgrades
need to be made (including better radiators and in-
sulation). The sum of these two costs aggregates to
the total CAPEX of installing a new ground source
heat pump. The total CAPEX, with consideration of
government subsidies/incentives, has the potential to
become less expensive so by varying the percentage of
heat pump CAPEX their uptake in di�erent scenarios
can be investigated.

Another parameter that significantly a�ects the

uptake of GSESs within the model is the natural gas
price. Past data has shown that natural gas price is
unpredictable and is susceptible to price shocks which
can be unexpected and significant. Consequently,
modelling some variation in gas prices and the change
in uptake gives valuable insight into how the demand
for GSESs may change.

To see the e�ect that the variation of both of these
parameters would have on GSES penetration, the pen-
etration of a single high-performance heat pump and
thermal battery combination was mapped and then
the results were compared from 2020 to 2050 to eval-
uate the deployment of that GSES. The CAPEX was
given a subsidy percentage of 0, 50, or 90 percent re-
sulting in the model being able to select the heat pump
at a full, or a variation of a discounted price. Addi-
tionally, natural gas prices were varied from 5 to 50
£/MWh at intervals of 5 £/MWh.

Following this, a more rigorous study into the ex-
tent of penetration in the UK with a larger library of
GSESs for each of the five typical buildings was com-
pleted. Here, an optimised set of GSESs, consisting of
over 100 units for each building type, from the house-
hold model were implemented directly as options to
be selected from the whole system model. However,
to present the findings more clearly, the library was
simplified to showcase only the top 10 most frequently
chosen GSESs. The total penetration of GSESs in the
domestic heating system was then able to be mapped
with a breakdown of specific GSESs. The study was
also extended and natural gas prices were varied from
10 to 150 £/MWh at intervals of 10 £/MWh but un-
der the same CAPEX subsidy level.

The whole system HeSO model has several limita-
tions. It operates agnostically of many real-world re-
quirements such as di�culties regarding installation,
variability between houses, only selecting representa-
tive days to reflect the year, and considering humans
as perfectly rational agents. The model assumes that
individuals have access to and fully understand the
quantity of information required to make the opti-
mal decision on what GSESs to get and make such
a decision promptly. When it comes to investigating
which GSESs are selected over others, it is di�cult
to account for such di�culties. Hence, the solutions
reached may di�er from what is observed in the real
world.

3 Results & Discussion

3.1 UK-Wide GSHP Penetration

The initial study, mentioned in Section 2.3, was com-
pleted with a single optimal GSES to verify that the
parameters chosen had the desired e�ect on GSES
penetration. Building on this a full library of GSESs
were then implemented into the HeSO model and the
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model was run from 2020 to 2050 at 5-year intervals
and 2030, 2040 and 2050 were chosen as representa-
tive years. Figure 4 shows the total penetration of the
GSESs across the whole UK, done by summing the to-
tal uptake per typical building for each representative
year.

Figure 4: Penetration of all GSESs for the five typical build-
ings across the 3 representative years of 2030 (Top), 2040 (Mid-
dle), and 2050 (Bottom). The x-axis portrays the natural gas
price (£/MWh) and the y-axis displays the % of total CAPEX
(£). Red represents 75% penetration and blue represents 0%
penetration.

Penetration increased predictably with higher nat-
ural gas prices and CAPEX subsidy levels, displaying
a positive correlation with deployment. In 2030 there
was minimal uptake of GSESs in all typical buildings,
with adoption only starting at 100 £/MWh at 90%
subsidy to a maximum value of around 5% penetra-
tion at 150 £/MWh with 90% subsidy. In 2040, there
is greater penetration than in 2030. The penetration
now starts at a lower natural gas price of 70 £/MWh
and reaches a maximum penetration value of 45%, at
150 £/MWh and 90% subsidy. 2050 has the largest
penetration across the natural gas price range, with
slight penetration starting at 10 £/MWh at 90% sub-
sidy and at 50 £/MWh at the 0% subsidy mark. For
the highest subsidy and natural gas price, the pene-
tration of GSESs reaches 70%, with 50% penetration
being reached from 100 £/MWh across all subsidy val-
ues.

With a higher CAPEX subsidy level, the GSES
is more likely to be picked during the total system
cost-minimisation. Increasing natural gas prices will
increase the operational expenditure (OPEX) of the
gas boiler, but since this does not a�ect the OPEX of
the GSES, GSESs become the lower-cost technology.
Therefore the trend that penetration increases with
natural gas price and CAPEX subsidy was validated.
The variations in penetration levels amongst di�erent
buildings were not uniform; some of the buildings ex-
perienced notably higher penetration levels compared
to others.

3.2 Comparison of Penetration Be-
tween Two Building Types

To further analyse the penetration of GSESs across
the UK, two of the typical buildings were chosen to il-
lustrate their individual penetration. Buildings 2 and
4 were picked as they have a large variation in uptake
both over the representative years and in comparison
to each other. Buildings 2 and 4 also have di�erent
heat demands and hot water to space heating demand
ratios, ensuring a notable comparison in the energy re-
quirements and the proportional allocation of energy
usage.

In 2030, Building 2 shows minimal penetration
over the whole range of natural gas prices as seen by
the constant blue penetration map. Penetration in
Building 4, on the other hand, started at 100 £/MWh
increasing to 100% penetration at 140 £/MWh. The
shape seen in the top map of Figure 4 (2030 total) is
dictated by the shape of Figure 5a (Building 4) since
the other buildings exhibit minimal penetration, sim-
ilar to Building 2. Therefore the majority of GSES
penetration in 2030 is from Building 4. The rea-
son why there was minimal uptake in the majority
of buildings is due to the annual emission limit set
in 2030. It is at a comparatively relaxed value of
160 MtCO2-equivalent leading to the preexisting gas
boilers being the technology with the lowest cost in
houses, showing that there is no strong driving force
to remove the gas boiler and replace it with a GSHP.
Uptake in Building 2 was equivalent to about 1 heat
pump of each type reflecting a very small proportion of
the millions of representative buildings in the system.
Building 4 has a much greater uptake of GSES than
Building 2 due to the larger heat demand in Building
4 and the ability to have a combination of a GSES
with an immersion heater. This lowered the total cost
of the system and allowed for a significantly improved
penetration.

In 2040 there was greater penetration across all
of the typical buildings in comparison to 2030. This
was expected since the annual CO2 emission limit has
linearly decreased from 2030 to a value of 80MtCO2,
driving the implementation of more heat pumps. In
Building 4, there is a more significant threshold of
where the GSESs are used. Penetration spikes to 40%
penetration at 70 £/MWh for the highest CAPEX
subsidy and 50% penetration at 80 £/MWh for the
other CAPEX subsidies. There is then 100% penetra-
tion from 100 £/MWh onwards. Building 2 shows a
significantly smaller uptake in the GSESs with pen-
etration only starting at the 120-130 £/MWh mark
for the 50% and 90% subsidy rate, and only reaching
around 20% total penetration at the highest natural
gas price and subsidy. This lack of uptake is similar
to that in 2030 where gas boilers can meet the heat
demand for Building 2 more economically than the
GSESs therefore the gas boilers are chosen.
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(a) Total Penetration in 2030 (b) Total Penetration in 2040 (c) Total Penetration in 2050

Figure 5: GSES penetration over 2030 (Left), 2040 (Middle), and 2050 (Right) for Building 2 (Top) and Building 4 (Bottom).
Natural gas price is varied on the x-axis, and % of total CAPEX is varied on the y-axis, with red representing 100% penetration
and blue representing 0% penetration.

The deployment in 2050 shows a similar trend to
that in 2040 but to a greater extent. 2050 is the end
point of the net zero transition so it is expected that
more heat pumps will be implemented. Building 4 has
the greatest total uptake, with penetration starting at
20 £/MWh for 90% CAPEX subsidy but only starting
at 40 and 50 £/MWh for 50% and 0% CAPEX sub-
sidy respectively. Building 4 reaches 100% penetra-
tion onwards from 50 £/MWh for 90% CAPEX sub-
sidy and 70 £/MWh for 0% CAPEX subsidy. Build-
ing 2 shows the least penetration but has a significant
increase from 2040, with 10% penetration only start-
ing at 50 £/MWh for the 90% subsidy and at 120
£/MWh for the 0% subsidy. Penetration reaches a
maximum value of around 40% at the expected high
end of natural gas prices. This trend supports the
previous discussion that it is simply not economical
to use the designed GSESs in Building 2.

3.3 LCOH as a Selection Variable in
GSES Uptake

The HeSO model minimises the total system cost
therefore it picks the GSESs with a cheaper CAPEX,
which is reflected in a smaller thermal battery size
and lower heat pump nominal power. This generally
aligns with the prediction from Figure ref, the LCOH
contour plot produced from the building model but
should not be used as a sole factor. The LCOH, as
mentioned in Section 2.1, is simply the sum of the
CAPEX and the annual OPEX.

Building 2 observes a general trend that all the
GSESs that were selected lie around the contours with
the smallest LCOH. But none of the selected GSESs
lie within the minimum LCOH contour but instead
lie mainly within the 2nd and 3rd smallest contours
of 9.6 and 9.8 p/kWh respectively. Since the lowest
LCOH contour is centred at a nominal heat pump
power of around 6 kW, it was expected that pumps
in this size would be picked. In contrast to that, the
chosen GSESs have a nominal power between 2.9 kW

and 3.4 kW with varying thermal battery sizes from
5-25 kW. With the most selected GSES, with an adop-
tion ratio of 52%, of pump power 2.9 kW and 15 kWh.

Building 4 has much fewer chosen GSESs, only
having three in comparison to Building 2 which had
eight. The minimum LCOH contour is much greater
than the Building 2 minimum and lies over a large
range of nominal power between 7.5 kW and 20 kW
and between 30 kWh and 40 kWh thermal battery
size. The most selected GSES, with an adoption rate
of 81%, has a nominal pump power of 1.6 kW and a
thermal battery size of 20 kWh. The other selected
heat pumps have the same nominal power but larger
thermal battery sizes. The pump power chosen for
Building 4 is surprising, considering for a building
with a larger heat demand it has a smaller heat pump
than Building 2. If the minimum LCOH cannot be
found for the required pump size, in the household
model, then an immersion heater can be used with
the heat pump to meet the heat demand. This option
was only available for Buildings 4 and 5 due to the
high heat demand. Being able to use the additional
heater decreases the total GSES CAPEX in compar-
ison to solely using a heat pump of appropriate size.
Therefore the cost minimisation chooses to take the
backup heater option preferentially.

This discrepancy between the minimised LCOH
and the chosen GSES is due to the minimisation that
the HeSO model performs. The HeSO model min-
imises cost while meeting the required heat demand
so as the heat demand is met the model then chooses
the GSES with the lowest CAPEX, which is typically
the smallest thermal battery size and lowest nominal
power. As seen in Building 4, the adoption percentage
decreases as thermal battery size increases since the
CAPEX is greater. Due to the low uptake of GSESs,
Building 2 has a larger variety of selected options.
Although the trend can still be seen in Figure 6a,
the most selected options are of the smallest nomi-
nal power and thermal battery size. This trend shows
that LCOH cannot solely be used to determine GSES
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(a) (b)

Figure 6: Levelised cost of heat (LCOH) as a function of the heat pump nominal power, Q̇h (which includes both the mechanical
vapour compression heat pump and immersion backup heater) and size of the thermal battery, Qst, reported as contour maps for:
(a) Building 2; and (b) Building 4. The contour lines show the iso-LCOH values based on 2023 electricity tari↵s. GSES candidates
actually picked by the whole-system optimisation model are reported as bubbles, the sizes of which represent their adoption ratio
(in %). Red bubbles represent the most likely adopted GSES configuration for each building, while other selected candidates are
represented with blue bubbles.

selection. Instead, CAPEX is the driving factor for
which GSESs are selected.

In summary, GSES penetration is highest at high
CAPEX subsidies and high natural gas prices and in-
creased from 2030 to 2050. Although there is a great
amount of penetration in Building 4 there is signif-
icantly less penetration in the other buildings show-
ing that even though the GSESs are optimised they
are still not chosen over gas boilers. In June 2023
natural gas was priced at 4.56 p/kWh (equivalent to
45.6 £/MWh) [20], so if this price and the 90% subsidy
were maintained until 2050 then there would be var-
ied penetration over the buildings with a high amount
in Building 4 but minimal in Building 2. Natural gas
prices are near impossible to predict and have been
inaccurately forecasted in the past, therefore it would
be crass to assume what the price will be in 2050.
But what can be said for the GSESs to become viable
in the UK, there needs to be either large natural gas
price shocks or a reduction in CAPEX through subsi-
dies or simply tech becoming cheaper, or for greater
penetration a combination of the two.

4 Conclusions

This study assessed the penetration of Ground Source
Energy Systems (GSESs) in the UK domestic heating
sector. This was done firstly through the use of the
household model. Several GSESs were optimally de-
signed with varying heat pump powers and thermal
storage sizes and added to a library. This library was
then used as a database, amongst other available tech-

nologies, for the HeSO model to pick from during the
minimisation of the total system cost. The findings
presented in Section 3 highlight significant insights
into how varying fuel prices and CAPEX subsidies
significantly influence optimal net-zero energy system
transition strategies over the key years of 2030, 2040
and 2050.

It was found that the penetration of the GSESs
was greatly a�ected by both the natural gas price and
also the level of CAPEX subsidy, which acted as a gov-
ernment incentive. The general trend seen throughout
all the typical buildings was that penetration was the
greatest for high natural gas prices combined with a
high subsidy percentage and lowest at no subsidy and
low natural gas prices. When examined individually,
the extent to which natural gas prices would need to
increase for greater GSES penetration is considerable
and only previously observed during natural gas price
shocks, which historically have not resulted in a per-
manent price increase. But if balanced with strong
governmental policies and incentives, the gas price
does not need to be as high for the same amount of
uptake. This shows that, under the correct conditions,
heat pumps can become a viable low-carbon heating
option in the domestic sector.

Previous assumptions suggested that the levelised
cost of heating would be the primary factor influencing
the choice of Ground Source Energy Systems. How-
ever, although Building 2 primarily favoured GSES
options located in the lowest LCOH range, other
buildings, including Building 4, opted for GSES se-
lections that deviated from the lowest LCOH region
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illustrated on their respective contour plots. To bring
GSES options within the minimum LCOH range, ad-
justments such as an increase in nominal pump power,
a larger thermal battery, or a combination of both ad-
justments would be necessary. Notwithstanding, im-
plementing these changes would significantly escalate
the system’s CAPEX.

Initial expectations assumed that GSES within the
lowest LCOH range would inevitably possess the low-
est lifetime costs for the system. On the contrary,
it became evident that the CAPEX held greater sig-
nificance in the selection of GSES over the LCOH.
Consequently, relying solely on LCOH as the decisive
factor for choosing GSES is not viable within the lim-
itations of this study. This finding indicates that the
heat pumps were already optimised with a high coe�-
cient of performance, e�ciently and a�ordably meet-
ing heat demands from an overall system perspective
without the need for larger compressors.

Although heat pumps o�er a compelling solution
to the decarbonisation of the UK’s domestic heating
sector, they are not always appropriate. For the build-
ings with smaller heat demands, even at extremely
high natural gas prices and high CAPEX subsidy lev-
els, there was still very little GSES penetration. This
is due to the buildings’ heat demand being met by
another technology at a lower total system cost. This
shows that when the GSESs are not optimally priced
for the specific heat demand, they will not be blan-
ketly chosen over natural gas boilers.

5 Outlook

Ideally, this study would be repeated with a wider se-
lection of GSESs. The GSESs that were designed for
the buildings were not always contained within the
lowest LCOH contour. With more configurations of
GSESs with nominal powers that are aligned with the
lowest LCOH, as well as other alternative test cases,
a relationship between which heat pumps are selected
for each building and its respective LCOH can be bet-
ter determined.

Another aspect of the study that could be ex-
tended is looking into more CAPEX subsidies. Due
to the intensity of the computation only a 0%, 50%
and 90% CAPEX subsidy was chosen to model. These
subsidies capture the whole range of possible subsidies
but may not have been reflective of what the govern-
ment can o�er through schemes or initiatives. With
a larger range of subsidy percentages, a more precise
prediction of penetration can be made for a given level
of government support.

The HeSO model reflects an inherently compli-
cated situation and contains assumptions to permit its
function. These assumptions may introduce deviation
from the decision-making expected in applied situa-
tions. Firstly, an assumption was made about the end

user, assuming perfect foresight and knowledge when
picking technologies to provide rational cost minimisa-
tion. Further analysis into the end-user’s perspective
and buyer psychology is necessary to accurately pre-
dict the deployment. Another assumption that was
made was that the CAPEX of technologies remains
the same over time. Some of the constraints set on
the model were that investment and decommissioning
decisions happen every five years, the dispatch opti-
misation was over four typical days and the technol-
ogy deployment was limited by build rate constraints.
These may not be reflective of real-world conditions
which may either exceed or fall short of these build
rate constraints.

The scope of this study was refined to only look at
GSHPs. Therefore an extension of this study would be
to add a larger library of technologies for the HeSO
model to pick from. Many other available heating
technologies such as Air Source Heat Pumps (ASHPs)
and hydrogen boilers may be well-equipped to cost-
e�ectively meet the housing heat demands within en-
vironmental constraints. Doing this would allow for
more specialised renewable options that can replace
gas boilers to increase the uptake of low-carbon heat-
ing solutions in the domestic sector.

Currently, the HeSO model is used to identify high
and low electricity demand periods. These high and
low periods then get assigned electricity tari�s from
Octopus Energy. These tari�s are then used as an
input in the household model for the design of the
GSESs. The extension in this study would be to in-
tegrate the variable electricity tari� from the HeSO
model into the household model. This would allow
for a potentially more accurate LCOH calculation and
the start of a more detailed investigation into the e�-
cacy of LCOH in determining which technologies are
more likely to be selected.
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Abstract  
Recent research has identified aqueous amino-acid salt (AAS) solutions as potential CO2 absorbents for 
post-combustion capture (PCC). This study investigates the CO2 cyclic absorption capacity by potassium 
glycinate (KGly) over a temperature range of 40°C – 120°C. To achieve this, a bespoke synthetic vapour-
liquid equilibrium (VLE) apparatus was employed. Prior to conducting measurements with amino-acids, it 
was crucial to validate the set-up’s operation using monoethanolamine (MEA), a well-studied CO2 
absorbent. Many modifications were made to the standard operating procedure (SOP) and the VLE 
apparatus to obtain results consistent with literature. The obtained results showed a slight deviation from 
literature data, which was attributed to poor heat transfer causing the temperature of the CO2 added to the 
VLE cell to be overestimated. A sensitivity analysis confirmed this temperature discrepancy. By applying a 
temperature correction, experiments of 1.930 mol·kg-1 KGly were performed over the temperature range 
specified. As the set-up is close to validation, it is anticipated that the equipment can be used to investigate 
AAS as carbon capture solvents in the near future.  
 
Keywords: vapour-liquid equilibrium, monoethanolamine, potassium glycinate, amino-acids, carbon 
capture 
 
 
1. Introduction 
1.1. Motivation 
The past two centuries have seen an 
unprecedented rise in anthropogenic carbon 
dioxide greenhouse gas emissions, which has led 
to escalating global temperatures and 
detrimental environmental impacts  
(Wilberforce et al., 2021). The United Nations 
Intergovernmental Panel on Climate Change has 
advised to limit global warming to 1.5°C by the 
end of this century to avoid severe climate 
change impacts  (UNFCCC, 2023). 

To achieve the required level of 
decarbonisation, carbon capture and storage 
(CCS) is a key technology. Post-combustion 
capture (PCC) is the most mature method 
employed to date and involves capturing carbon 
dioxide from the exhaust gases of fossil fuel 
power plants or other industrial sources prior to 
release into the atmosphere. The currently most 
well-studied technique in PCC is chemical 
absorption using aqueous amine solvents, such 
as monoethanolamine (MEA), or blends of 
aqueous amines, to selectively remove CO2. This 
is followed by heating the CO2-loaded solvent to 
strip it of CO2. The lean solvent is recycled back 
for the absorption step, while the highly 
concentrated CO2 may be geologically 
sequestered or processed for utilisation in 
industrial processes. 

MEA is a well-studied benchmark 
solvent for PCC, which exhibits favourable 
properties such as high CO2 selectivity, high 
absorption rate and affordability. However, the 
solvent also possesses significant drawbacks 

including high energy requirement, corrosivity, 
poor stability and environmental issues  (Sang 
Sefidi & Luis, 2019).   

Amino-acid salt (AAS) solutions have 
recently been identified as promising solvents 
for PCC. They demonstrate low volatility, 
resistance to thermal and oxidative degradation, 
and high biodegradability. On the other hand, 
amino-acids are expensive, as they are currently 
produced primarily at high purity in the food and 
pharmaceutical industries. Amino-acid solvents 
have been commercialised to an extent for acid 
gas removal, but further development is needed 
to improve their affordability (Sang Sefidi & Luis, 
2019). Therefore, although the performance of 
AAS for carbon capture is less well-studied, its 
potential could pave the way towards efficient 
CCS technologies and its deployment at scale.  
 
1.2. Objectives 
The aim of this work is to evaluate the cyclic CO2 
absorption capacity by aqueous AAS. This is 
achieved by designing a bespoke experimental 
set-up and validating using 30 mass% aqueous 
MEA at 40°C, comparing to literature data and 
modifying the set-up as appropriate.  
 The equipment can then be used to 
assess the performance of potassium glycinate 
(KGly) solution, as an initial AAS of interest. CO2 
absorption over a temperature range of 40°C – 
120°C will be investigated as this encompasses 
both absorption and stripping conditions for 
PCC. The loading of CO2 in the solvent is 
quantified using a thermodynamic model for the 
gaseous phase. 
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Glycine was chosen as it is the simplest 
amino-acid and provides a point of reference 
from which amino-acids with more complex 
structures can be studied. 
 
2. Background 
2.1. Mechanisms of CO2 Absorption 
CO2 is captured by the solvent via both physical 
and chemical absorption. Physical dissolution is 
dependent on gas solubility within the solvent, 
temperature and pressure. In chemical 
absorption, CO2 undergoes chemical reaction 
with the solvent  (Stewart, 2014). This enables 
chemical solvents to perform well even at low 
CO2 partial pressures, which is important for 
maximal CO2 removal from flue gas streams.  
The overall chemical reaction between CO2 and 
an amino-acid salt, or primary or secondary 
amine, is given by: 
 

2𝑅𝑁𝐻ଶ + 𝐶𝑂ଶ ⟺  𝑅𝑁𝐻𝐶𝑂𝑂ି + 𝑅𝑁𝐻ଷ
 ା (1) 

 
Where, for example, R ≡ CH2CH2OH for MEA, and 
R ≡ CH2COO- K+ for potassium glycinate.  

The two main reaction pathways for the 
absorption of CO2 by amino-acid salts are the 
zwitterion and termolecular mechanisms  
(Vaidya et al., 2010), as described below: 
 
Zwitterion mechanism: 
 

𝐶𝑂ଶ + 𝑅𝑁𝐻ଶ ⇔ 𝑅𝑁𝐻ଶ
ା𝐶𝑂𝑂ି (2) 

𝑅𝑁𝐻ଶ
ା𝐶𝑂𝑂ି + 𝐵 →  𝑅𝑁𝐻𝐶𝑂𝑂 ି + 𝐵𝐻ା (3) 

 
Termolecular mechanism: 
 

𝐶𝑂ଶ + 𝑅𝑁𝐻ଶ + 𝐵 ⇔ (𝑐𝑜𝑚𝑝𝑙𝑒𝑥) 
→ 𝑅𝑁𝐻𝐶𝑂𝑂ି + 𝐵𝐻ା 

(4) 
 
where B denotes a base. 
 
2.2. Thermodynamic Modelling  
While the thermodynamic modelling of amine 
solvents, and specifically aqueous MEA, has been 
extensively studied, modelling for amino-acid 
salt solutions is still under development. 
Important obstacles to this research are the 
limited range of experimental phase data 
available and the difficulty in determining the 
required chemical equilibrium constants 
(Suleman et al., 2018).  
  The overall reaction occurring between 
alkaline amino-acid salts and CO2 is given by 
equation (1), however, to develop the framework 
for a thermodynamic model, the individual 
chemical reactions occurring in solution must be 
defined:   

 
The corresponding equilibrium constants are: 
 

 
𝑎௪  represents the activity of water, and  𝑚௜  and 
𝛾௜  represent the molality and activity coefficient 
of species 𝑖, respectively.  An overall equilibrium 
constant for the reaction given by equation (1), is 
proposed by  (Kumar et al., 2003): 
 

𝐾௢௩ =
𝐾ଷ

𝐾ଵ𝐾ଶ
 (15) 

 
To relate the molality of CO2 with its partial 
pressure, Henry’s law can be employed to 
describe the vapour-liquid equilibrium: 

𝑝஼ைమ = 𝐻 ∙ 𝑚஼ைమ  (16) 
𝐻 is Henry’s constant, here defined in terms of 
molality instead of volume concentration, as 
volume is temperature-dependent.   

Many empirical correlations have been 
developed to calculate the equilibrium constants 
for carbamate hydrolysis (K1) and amine 
deprotonation (K2) for different amino-acids as 
functions of concentration and temperature.  
 Several models have been developed to 
model the vapor-liquid equilibrium (VLE) of 
these systems. Perhaps the simplest, is the Kent-
Eisenberg model, which considers the liquid 
phase as ideal, thus all the activity coefficients are 
set to unity. This model is widely used on account 
of its computational simplicity, however, 
depending on the amino-acid salt, the average 
deviation of the model can be poor, especially at 
low CO2 loadings. Other, more complex models 
being studied are the UNIQUAC and Deshmukh-
Mather models which are based on activity 

𝑅𝑁𝐻𝐶𝑂𝑂ି + 𝐻ଶ𝑂 
௄భ⇔ 𝑅𝑁𝐻ଶ + 𝐻𝐶𝑂ଷ

 ି (5) 
𝑅𝑁𝐻ଷ

 ା  
௄మ⇔ 𝑅𝑁𝐻ଶ + 𝐻ା (6) 

𝐶𝑂ଶ + 𝐻ଶ𝑂 
௄య⇔ 𝐻𝐶𝑂ଷ

ି + 𝐻ା (7) 
𝐻𝐶𝑂ଷ

ି  
௄ర⇔ 𝐶𝑂ଷ

ଶି + 𝐻ା (8) 
𝐻ଶ𝑂 

௄ఱ⇔ 𝐻ା + 𝑂𝐻ି (9) 

𝐾ଵ =
𝑚𝑅𝑁𝐻2

𝑚𝐻𝐶𝑂3
 −

𝑚ோேு஼ைைయ
 ష

𝛾ோேுమ𝛾ு஼ைయ
 ష

𝑎௪𝛾ோேு஼ைைయ
 ష

 (10) 

𝐾ଶ =
𝑚ோேுమ𝑚ுశ

𝑚ோேுయ
 శ

𝛾ோேுమ𝛾ுశ

𝛾ோேுయ
 శ

 (11) 

𝐾ଷ =
𝑚𝐻𝐶𝑂3

−𝑚𝐻+

𝑚𝐶𝑂2

𝛾𝐻𝐶𝑂3
−𝛾𝐻+

𝑎௪𝛾𝐶𝑂2

 (12) 

𝐾ସ =
𝑚𝐶𝑂3

  2−𝑚𝐻+

𝑚𝐻𝐶𝑂3
 −

𝛾𝐶𝑂3
  2−𝛾𝐻+

𝛾𝐻𝐶𝑂3
 −

 (13) 

𝐾ହ = 𝑚ுశ𝑚ைுష
𝛾ைுష𝛾ுశ

𝑎௪
 (14) 
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coefficients and the Electrolyte-NRTL model 
based on excess Gibbs energy, which relate the 
activity coefficients to the composition without 
replacing the overall reaction equation. 
Additionally, Artificial Neural Network models 
are also being explored. These complex models 
often offer a more accurate representation of the 
absorption phenomena occurring (Ramezani et 
al., 2022).    
 
2.3. Alkanolamine Solvents 
Aqueous alkanolamines have frequently been 
used in natural gas sweetening: the removal of 
acidic gases, such as CO2 and H2S from gas 
streams in the refinery industry (Benamor, 
Aroua & Aroussi, 2012). More recent studies 
have shown that their applications extend to 
carbon capture by gas-liquid absorption and is 
considered the most viable technology for large-
scale deployment. The performance of these 
solvents is evaluated using parameters such as 
loading, energy consumption and environmental 
impact. Alkanolamines can be classified by the 
number of alkyl groups bonded to the amine 
group’s nitrogen atom  (Tong et al., 2013). 

Monoethanolamine (MEA) is a primary 
amine with well-documented VLE and 
thermodynamic data. Aqueous MEA absorbs CO2 
through physical dissolution and chemical 
reaction. It is used as a benchmark in carbon 
capture research as it reacts rapidly with CO2, has 
high absorption capacity on a mass basis on 
account of its low molecular weight, and is 
straightforward to regenerate. Its disadvantages 
include high energy consumption in the 
desorption step, corrosivity and loss of solvent at 
higher vapour pressures (Ma'mun et al., 2005). 
Here, MEA at 30 mass% and 40°C is used to 
validate the accuracy and reliability of the 
experimental set-up. 

As reference data for the validation, 
three sources of literature data in agreement 
were taken from different time periods with 
different experimental set-ups. This ensures a 
high level of accuracy when comparing the MEA 
absorption results obtained in this study with the 
literature values  (Tong et al., 2012; Aronu et al., 
2011; Jou et al., 1995).  

 Another amine studied for carbon 
capture purposes is methyldiethanolamine 
(MDEA), a tertiary amine which captures CO2 by 
catalysing the hydrolysis of CO2. Compared to 
MEA, its advantages include lower regeneration 
energy, high resistance to thermal degradation 
and lower corrosivity  (Song et al., 2006). 
However, reaction rates of tertiary 
alkanolamines are slower and at low CO2 partial 
pressures, absorption capacity is poor (Ma'mun 
et al., 2005).  
 2-amino-2-methyl-1-propanol (AMP) is 
the simplest hindered form of MEA and shows a 
high potential cyclic absorption capacity  (Sartori 
& Savage, 1983; Xu et al., 1996). However, 
reaction kinetics are slow with a notably lower 
extent of reaction  (Tong et al., 2013). 
  Piperazine (PZ) is a diamine with a cyclic 
structure. A blend of aqueous AMP+PZ was found 
to have over twice the theoretical CO2 absorption 
capacity of MEA at the same mass concentration. 
The reaction was also over five times faster than 
AMP alone (Tong et al., 2013). Despite PZ 
enhancing kinetics by promoting CO2 mass 
transfer rates, its drawbacks include high 
volatility and high viscosity, similar to those of 
MEA  (Freeman et al., 2010). PZ also precipitates 
at high concentrations and low temperatures, 
which poses challenges in process operations, 
flow assurance and safety (Gaspar et al., 2014).  
 
2.4. Aqueous Amino-acid Salt Solvents 
Recently, researchers have sought alternative 
compounds with an amine group for use in CO2 
capture to mitigate against the disadvantages of 
conventional alkanolamine solvents. One such 
group of compounds is amino-acid salt solutions, 
which presents environmental advantages such 
as synthesis from biological sources and 
biodegradability, as well as higher surface 
tension, low volatility and resistance to 
degradation (Sang Sefidi & Luis, 2019). The 
performance of these solvents in carbon capture 
is less studied. The measured VLE parameters 
from experimentation on a selection of amino-
acid salt solutions used for CO2 absorption is 
presented in Table 1. 

 
Table 1: Summary of VLE data of amino-acid salt solutions in literature 

Source Amino-acid Salt 
Solution 

VLE Data Set-up 
Type Temperature 

Range /K 
CO2 Pressure 
Range /MPa 

Concentration 
Range (mol·kg-1) 

Loading Range 
(mol/mol) 

Song et al., 
2006 Sodium glycinate 303.15 – 323.15 0.0001 – 

0.2135 1.14 – 4.42 0.170 – 1.075 Analytical 
Hamzehie and 

Najibi, 2016 
Potassium 
glycinate 293.15 – 323.15 0.0051 – 

2.5087 0.09 – 0.98 0.885 – 6.948 Synthetic 
Chang at al., 

2015 
Potassium 
prolinate 313.15 – 353.15 0.0003 – 

0.9286 0.53 – 2.46 0.242 – 1.160 Analytical 
Garg et al., 

2017 
Sodium 

phenylalinate 303.15 – 333.15 0.2 – 2.5 0.00 – 0.01 0.164 – 1.750 Synthetic 

260



 

 4 

3. Methods 
3.1. Experimental Principle 
The set-up can be classified as a synthetic VLE 
apparatus since the compositions of the co-
existing phases were not measured directly. 
Rather, a mixture of known mass and 
composition was brought to equilibrium within a 
vessel of known volume. Using a thermodynamic 
model for the gas phase, the compositions of both 
phases were evaluated.  
 Figure 1 illustrates the experimental set-
up used. Vessel E-1 stored compressed CO2 gas, 
maintained at 30°C, to reduce effects of 
fluctuations in the ambient temperature. VLE 
was established within temperature-controlled 
vessel E-2. Degassed solvent was added to E-2 
using a syringe with a hypodermic needle, 
through a custom port which accommodated a 
septum. Vessel E-2 contained a magnetic stirrer, 
connected to a magnetic stirrer plate on which 
the vessel rested. After equilibrium was reached 
in E-2, CO2 was added stepwise from E-1 by 
manually controlling flow using V-4.  
 Using temperature and pressure 
measurements, as well as the known volume of E-
1, the amount of CO2 contained in the cylinder 
and how much CO2 was transferred to E-2, were 
calculated through the equation of state  (Span & 
Wagner, 1996). Although most of the CO2 
transferred dissolved in the solvent, some 
remained in the headspace region of E-2, which 
signified the need for an equation of state for the 
gas phase. Based on density measurements of the 
unloaded solvent, pressure and temperature, the 
equation of state was employed again to calculate 
the actual quantity of CO2 dissolved. After each 
transfer step, the system was allowed to reach 
equilibrium.  
  
3.2. Apparatus Description  
Vessel E-1 was a stainless-steel cylinder 
(Swagelok 316L-HDF4-150), surrounded by an 
insulated thick-walled aluminium sleeve. The 
sleeve was fitted with a low-voltage electric 
heater pad and a K-type thermocouple to control 

the vessel temperature. A platinum resistance 
thermometer (PRT) was also placed in the sleeve 
for accurate temperature measurement (TT-1). 

Vessel E-2 was a custom-made stainless-
steel cell, comprising a main body, a seal-
retaining ring and a closure plate.  The closure 
plate was fitted with two threaded fluid ports: 
1/8” outer diameter (OD) for the pressure sensor 
(PT-2) and 1/16” OD to transfer CO2 into the 
vessel. The main body had two more ports: one 
held a plug and the other fitted a custom-made 
septum holder, through which the degassed 
solvent was injected into the cell. To control the 
temperature precisely, E-2 was placed in an 
insulated, thick-walled aluminium jacket, 
covering the entire surface of the vessel. The 
jacket was fitted with four electric cartridge 
heaters and a PRT for temperature control. The 
vessel itself housed an axial thermowell, which 
allowed for an additional PRT to be inserted to 
measure the vessel temperature (TT-2). The 
vessel was placed on a magnetic stirrer plate.   

Both vessels were fitted with high-
precision digital pressure transmitters (Keller, 
33X series), with an expanded uncertainty of 
0.05%. PT-1 had a range of 0 – 60 bar and PT-2 
had a range of 0 – 10 bar. A scroll pump (Edwards 
XDS35) was used to evacuate the system, which 
had an ultimate vacuum of 1 mbar.  

Other apparatus used included an Anton 
Paar SVM 3001 density meter and a degassing 
apparatus comprising an electric heating mantle, 
a round-bottomed flask, a water-cooled reflux 
condenser, and a mini-cooler. 
 
3.3. Standard Operating Procedure 
Before the solvent can be added to the VLE cell, it 
must be degassed to remove any CO2 and other 
non-condensable gases already dissolved.  A 
500ml round-bottomed flask was filled with 
approximately 75ml of solvent and anti-bumping 
granules. The flask was fitted with a cold-water 
reflux condenser, and cold water was supplied at 
5°C from a mini cooler. At the start of the 
degassing, a nitrogen line was placed close to the 
solvent surface, to displace all the air from the 
flask. After a few minutes the nitrogen line tube 
was moved to the top of the condenser, to 
maintain the nitrogen blanket. A heating mantle 
was used to boil the solvent for 60 minutes, then 
allowed to cool for 60 – 90 minutes, under 
continuous nitrogen flow. A 60ml syringe flushed 
with nitrogen was filled with the degassed 
solvent. The remaining solvent was used for 
density measurements. 
 To begin the VLE experiment, the whole 
set-up must first be under vacuum conditions. 
With all the valves open, including V-1 open to 
the CO2 supply gas line, the vacuum pump was Figure 1: Diagram of VLE apparatus 

261



 

 5 

tuned on until ultimate vacuum was reached. To 
ensure no contaminants remained in the system, 
it was first entirely flushed with CO2. Vessel E-1 
was filled with approximately 10 bar of CO2 from 
the gas cylinder. Using valve V-4, E-2 was 
carefully filled with CO2. Care should be taken to 
not exceed the maximum allowable pressure 
reading of 10 bar. Using V-1, the contents of first 
E-1 and then E-2 were vented to atmosphere 
until PT-1 and PT-2 read just above atmospheric 
pressure. The vacuum pump was switched on 
until ultimate pressure was achieved again. The 
next step was to fill E-1 with CO2 to 30-40 bar, 
then slowly meter CO2 into E-2 until PT-2 read 
just above atmospheric pressure. This created a 
CO2 blanket in E-2. Using the syringe, fitted with 
a hypodermic needle, the degassed solvent was 
transferred into E-2 by piercing the septum. The 
syringe was weighed before and after the 
injection to calculate the quantity of solvent 
added. The amount of CO2 present in E-2 and 
which dissolved in the solvent was also 
calculated. Temperature control was turned on 
for both E-1 (usually at 30°C) and E-2 (at the 
temperature under investigation), and the 
system was allowed to equilibrate. CO2 was then 
added in steps of 2 bar from E-1, with the flow 
manually controlled by V-4. The system was 
allowed to equilibrate between steps. 
 
3.4. Data Analysis and Uncertainty 
The aim of the experiment was to determine how 
the loading, 𝛼, of the solvent varies with the 
partial pressure of CO2.  The loading is defined as: 
 

𝛼 =
𝑛஼ைమ

𝑛ௌ,଴
 (17) 

 
𝑛஼ைమ  is the moles of dissolved CO2 and  𝑛ௌ,଴ is the 
initial moles of unloaded solvent. 𝛼 can also be 
reported on a mass basis.  
 To calculate the amount of CO2 
transferred from E-1 to E-2 at each step, equation 
(18) is used. 

𝑛஼ைమ
ᇱ = ൣ𝜌൫𝛵ଵ, 𝑝ଵ,௜൯ − 𝜌൫𝛵ଵ, 𝑝ଵ,௙൯൧ ቆ

𝑉ଵ − 𝑉ௗ,ଵ

𝑀஼ைమ

 ቇ  

            +ൣ𝜌൫𝛵௔, 𝑝ଵ,௜൯ − 𝜌൫𝛵௔, 𝑝ଵ,௙൯൧ ൬ ௏೏,భ
ெ಴ೀమ

 ൰  
(18) 

 
𝑇ଵ , 𝑝ଵ are the temperature and pressure of the 
reservoir E-1, respectively. The subscripts 𝑖, 𝑓 are 
used to denote the initial and final pressure of E-
1, before and after each equilibrium step. Here, 
the volume 𝑉ଵ is the total volume between valves 
V-3 and V-4.  𝑉ௗ,ଵis the dead volume of 𝑉ଵ, i.e., the 
overhead tubing (including the tubing of 
pressure transmitter PT-1). This volume was not 
temperature-controlled, hence why the overhead 

temperature associated with E-1, 𝑇௔ , is defined. 
This often equals the ambient temperature. To 
calculate the density of CO2 at the points defined, 
the NIST REFPROP function is applied, that uses 
the equation of state of (Span & Wagner, 1996). 
𝑀஼ைమ_is the molar mass of CO2.  
 The amount of CO2 transferred to E-2, 
does not entirely dissolve, with some remaining 
in the headspace volume. The amount dissolved 
is given by: 
 

𝑛஼ைమ = 𝑛஼ைమ
ᇱ − 𝜌(𝑇ଶ, 𝑝ଶ) ൬௏మି௏ೞି௏೏,మ

ெ಴ೀమ
൰ −

              𝜌(𝑇௔, 𝑝ଶ) ൬ ௏೏,మ
ெ಴ೀమ

൰  (19) 

where 𝑇ଶ , 𝑝ଶ are the temperature and pressure 
of the reservoir E-2 respectively. 𝑉ଶ is the total 
volume between V-4 and V-5, 𝑉ௗ,ଶ is the dead 
volume (overhead tubing) of E-2 and 𝑉௦ is the 
volume of the liquid solvent. 
 When loading the solvent with CO2, the 
density can vary. This change in density is 
represented by equation (20) as a linear function 
of 𝑎. 𝑉௦ can be evaluated from equation (21). 
 

 𝜌௦ = 𝜌ௌ,଴(1 + 𝑏𝛼) (20) 
 

𝑉௦ =
𝑚ௌ,଴(1 + 𝑀஼ைమ𝛼)

𝜌ௌ,଴(1 + 𝑏𝛼)
 (21) 

 
𝜌ௌ,଴ is the initial solvent density, 𝑏 is a constant 
and 𝑚ௌ,଴ is the initial mass of unloaded solvent. 

Notably, when the solvent was an 
aqueous solution of potassium glycinate (KGly), 
the solution was assumed to be incompressible, 
hence the value of constant 𝑏 was set to zero. 
Density measurement of the loaded solvents at 
the tested temperatures were not measured, 
hence 𝑏 could not be determined experimentally. 
Aldenkamp et al. (2014) also assumed the 
incompressibility of KGly solution. Moreover, 
since the pressure of the VLE cell was kept below 
10 bar, the compressibility was neglected.  
 The partial pressure of CO2 is given by: 
 

 𝑝஼ைమ = 𝑝ଶ − 𝑝௩௔௣  (22) 
 
where  𝑝௩௔௣  is the pressure of the VLE cell at the 
beginning of the experiment.  
 To calculate the standard uncertainty for 
a quantity 𝑦, denoted 𝑢(𝑦) , where 𝑦 is a function 
of other measured quantities, the equation for 
combined variance was used. 
 

 
𝑢ଶ(𝑦) = ෍ ൬

𝜕𝑓
𝜕𝑥௜

൰
ଶே

௜ୀଵ

𝑢ଶ(𝑥௜) (23) 

 𝑦 = 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥ே) (24) 
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Using equation (23),  𝑢(𝑛஼ைమ), 𝑢ᇱ(𝑛஼ைమ), 𝑢(𝑉௦) and 
finally 𝑢(𝛼) can be calculated.  
  
3.5. Validation of VLE apparatus 
Before conducting experiments with aqueous 
amino-acid solutions, it was imperative to first 
validate the bespoke set-up. CO2 loading of 30 
mass% aqueous MEA at 40°C was chosen, since 
this solvent is widely studied in literature.  

In this work, although originally not the 
main objective, validating the operation of the 
system became such. Experimental results did 
not agree with literature initially (Aronu et al., 
2011; Jou et al., 1995; Tong et al., 2012), hence 
modifications to the set-up and experimental 
procedure were made as needed. The experiment 
was repeated for each change.  
 
3.5.1. Experimental Modifications  
An early observation was that the vapour 
pressure of CO2 was higher than expected 
according to literature, for all loadings. This 
suggested that impurities remained in the 
system. The most significant change was altering 
the SOP to include the CO2 blanket. Initially, the 
SOP detailed injecting the sample into a nitrogen-
filled E-2. A vacuum pump was then used to 
remove this nitrogen after the solvent is 
introduced. The downside to this was that a small 
amount of nitrogen remained in the system, but 
also, some of the solvent would evaporate due to 
the vacuum conditions. Therefore, filling E-2 with  
CO2 eliminates the presence of nitrogen gas as an 
impurity and enables an accurate recording of 
the solvent mass.  
 Other changes to the SOP also aimed to 
remove impurities. For example, a higher 
performance scroll pump replaced the original 
two-stage diaphragm pump, reducing the 
ultimate vacuum from 4 mbar to 1 mbar. 
Moreover, during the degassing stage, the solvent 
was boiled more strongly and for a longer 
duration (from 30 minutes to 60 minutes) to 
ensure that any dissolved CO2 and other non-
condensable gases would be removed. The 
temperature of the water used in the reflux 
condenser was also reduced to 5°C using a mini 
cooler, having used ambient temperature water 
prior to this. Additionally, to remove doubt of a 
contaminated gas supply, new research-grade 
CO2 and N2 cylinders were tested and used. 
 All aforementioned modifications had a 
positive impact that brought the experimental 
data in closer agreement with literature data on 
CO2 absorption by MEA, but some disparity still 
remained. The purity of the MEA solution was 
investigated.  Through titration, the purity was 
found to be 28.8 mass%, rather than the assumed 

30 mass%. A new solution was prepared, using 
higher purity MEA (Sigma Aldrich 99.5 mass%), 
and the concentration was verified through 
titration to be 29.9 mass%.  
 The final modifications included altering 
the experimental apparatus. Poor thermal 
contact between the reservoir and thermostatic 
sleeve, and heat loss to the environment due to 
insufficient insulation, were suspected. This 
would result in the temperature of the vessel 
being lower than the controlled temperature of 
the sleeve. Therefore, temperature control of the 
gas reservoir E-1 was investigated. Even though 
the dead volume in the headspace was negligible 
in comparison to the gas reservoir E-1, insulation 
was placed to cover all tubing. Moreover, to 
improve contact between the vessel and the 
aluminium sleeve, liquid dodecane was added as 
a thermal compound to improve heat transfer.  
 Although dead space volume calibration 
had already been performed, an additional 
calibration was also carried out to verify the 
results. High-pressure CO2 was used to fill the 
vessels E-1 and E-2 and associated tubing 
separately. The vessels were weighed before and 
after filling using a high-precision scale 
(uncertainty of ±0.001g). Using the equation of 
state (Span & Wagner, 1996), the density was 
found, and the volume was calculated. 
 The outcomes of the previous volume 
calibration and the second calibration described 
in this work are shown in Table 2. 
 
Table 2: Comparison of apparatus volume calibrations /ml 

 
3.5.2. E-1 Temperature Sensitivity Analysis 
A sensitivity analysis was performed to 
investigate discrepancies between the actual 
temperature of the CO2 in the gas reservoir and 
the temperature of the aluminium sleeve. The 
system was allowed to remain at 30°C for several 
days, therefore it was assumed that the CO2 
reached thermal equilibrium. The temperature of 
the sleeve (TT-1) was then increased in steps up 
to 70°C, and the system was then allowed to 
equilibrate for 30 minutes between steps, which 
was representative of the time needed for the 
VLE cell (E-2) to reach equilibrium. The total 
amount of CO2 contained between V-3 and V-4 
was calculated. Using the pressure, volume and 
the density through the equation of state, the 
actual temperature of the reservoir E-1 could be 
calculated.  

 Gas reservoir VLE cell 

Vtotal Vcell Vtubing Vtotal Vcell Vtubing 
Calibration 
with water 149.193 146.281 2.912 79.420 77.920 1.500 

Calibration 
with CO2 150.015 148.271 1.744 78.554 77.699 0.855 
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3.6. Potassium Glycinate Experiments 
The pressure transmitter PT-2 is rated for only 
10 bar with an uncertainty of 0.05%, or 5 mbar. 
This error is significant for pressures below 10 
mbar. In this range, it was initially thought that 
the results from the MEA experiment agreed with 
the literature data. Hence the system was 
thought validated and experiments with KGly 
were performed.   

For these experiments, a batch solution 
of KGly with a molality of 1.930 𝑚𝑜𝑙 ∙ 𝑘𝑔ିଵ was 
prepared. Three experiments were conducted, 
using the same experimental apparatus and SOP 
as the MEA. The temperature of the VLE cell (T2) 
was varied, with experiments carried out at 40°C, 
90°C and 120°C. The rationale behind the choice 
of temperatures, was to replicate the conditions 
of a carbon capture plant. An absorption column 
would operate at 40°C, and a stripping column at 
120°C. To explore the effects of temperature on 
CO2 loading, 90°C was chosen as an intermediate 
temperature.  
 
4. Results 
4.1. MEA Validation Results 
Figure 2 illustrates the experimental results for 
the VLE apparatus validation experiments with 
MEA. The partial pressure of CO2 is plotted 
against the solvent loading, for both an initial 
experiment prior to the modifications detailed in 
section 3.5.1, and a subsequent experiment after 
the modifications to the SOP. The results are 
compared with experimental values from 
literature. The effects of implementing changes 
can be clearly observed between the two 
experiments. Moreover, the size of the error bars 
demonstrates how the uncertainty decreases 
with increasing partial pressure of CO2.   

Figure 3 again displays the experimental 
results for MEA, at high partial pressures of CO2. 
The values plotted are the final results obtained, 
after applying the modifications to the VLE 
apparatus and SOP. 

After the sensitivity analysis on the 
temperature of the gas reservoir E-1 was 
performed, it was found that the actual 
temperature of the CO2 and the measurement 
from the PRT in the aluminium sleeve (TT-1) 
showed a discrepancy at all temperature 
setpoints investigated. For a 2 bar increase in the 
gas reservoir pressure (the size of the pressure 
steps usually made in loading experiments), the 
temperature discrepancy was approximately 
2°C.  Hence, CO2 partial pressure against solvent 
loading is plotted again in Figure 3, with a 
correction for temperature correction. Through 
trial and error, it was found that a temperature 
reduction of 3°C in T1, shifts the data in alignment 
with the literature.  

 
4.2. Sensitivity Analysis Results 
The results of the sensitivity analysis are 
illustrated in Figure 4. The temperature of the 
CO2, initially at 30°C, was raised in steps, with the 
measured (assumed) temperature of the vessel 
E-1 labelled on the x-axis. For each step, the 
actual temperature of CO2 was calculated and the 
difference between the measured and calculated 
values is plotted on the y-axis.  

Figure 2: Semi-log plot of the solubility of CO2 in 30 mass%. 
MEA solution at 40°C, before and after modifications - 
comparison with literature 

Figure 3: Semi-log plot of the solubility of CO2 in 30 mass% 
MEA solution at 40°C, before and after temperature 
correction - comparison with literature 

Figure 4: Sensitivity analysis of the CO2 gas reservoir 
temperature (𝑇ଵ) 
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4.3. Potassium Glycinate Results 
Figure 5 illustrates the VLE results for the loading 
experiments of KGly at 40°C, 90°C and 120°C. The 
trend of how the partial pressure of CO2 varies 
with loading at different temperatures is in line 
with expectations. At low temperatures, the 
loading capacity is greater at each partial 
pressure. To interpolate between data points, a 
smoothing function was used, given by: 
 

ln (𝑝஼ைమ) = 𝐴଴ + 𝐴ଵ𝛼 + 𝐴ଶ𝛼ଶ + 𝛢ଷ𝛼ଷ (25) 
 
where the parameters, 𝐴௜ , were found using a 
least squares regression. 𝐴௜  and the standard 
deviation, 𝜎, of the fit are given in Table 6. 

 It should be noted that there is an 
uncertainty regarding the temperature of the CO2 
gas reservoir E-1, as was the case for MEA. This 
will only affect the values of 𝛼 at each partial 
pressure measured. To account for this error, the 
loadings were re-calculated for a temperature 
correction of 3°C (the same as the MEA 
temperature correction), and the difference was 
added as a positive horizontal error bar. The 
results of the experiments are reported in Tables 
3-5. 
 
Table 3: VLE data for 1.930 𝑚𝑜𝑙 ∙ 𝑘𝑔ିଵ KGly solution at 40°C 

 
Table 4: VLE data for 1.930 𝑚𝑜𝑙 ∙ 𝑘𝑔ିଵ KGly solution at 90°C 

pCO2 α u(pCO2) u(α) 
bar mol/mol bar mol/mol 

0.00001 0.174 0.00849 0.009 

0.02479 0.283 0.00849 0.012 
0.11628 0.431 0.00849 0.016 
0.80640 0.571 0.00849 0.020 
3.54932 0.704 0.00849 0.023 
7.84032 0.796 0.00849 0.027 

 
Table 5: VLE data for 1.930 𝑚𝑜𝑙 ∙ 𝑘𝑔ିଵ KGly solution at 120°C 

pCO2 α u(pCO2) u(α) 
bar mol/mol bar mol/mol 

0.00001 0.096 0.00849 0.007 
0.02875 0.174 0.00849 0.009 
0.07025 0.252 0.00849 0.011 
0.15360 0.329 0.00849 0.013 
0.32460 0.400 0.00849 0.015 
1.56994 0.541 0.00849 0.019 

 
Table 6: Parameters of equation (25) 

T/°C A0 A1 A2 A3 σ/bar 
40 -30.228 60.582 -25.161 -3.166 0.351 
90 -2.112 13.820 -7.519 - 0.341 

120 0.543 10.457 -5.368 - 0.007 
 
5. Discussion 
5.1. Apparatus Validation with MEA 
The series of experimental modifications 
undertaken through the course of this 
investigation were crucial in making the 
apparatus viable to study CO2 absorption 
experimentally.  

The most significant change was 
introducing the solvent into CO2 rather than N2. 
The presence of nitrogen as an impurity had 
caused an increase in the observed partial 
pressure of CO2 with each addition of CO2 into the 
VLE cell, which led to the error compounding 
with an increasing number of data points. This 
can be observed in the data before modifications 
being greatly shifted left and in poor agreement 
with the trend found in literature, shown in 
Figure 2. The elimination of this source of 
impurity increased the accuracy of the expected 
data closer to the results observed in literature.  

The investigation of MEA purity by 
titration showed a notable discrepancy between 
the target concentration and the actual 
concentration. Adjusting the MEA purity also led 
to a significant improvement of the collected 
experimental data with that of literature.  

The additional volume calibration 
confirmed that the volume of E-2 was close to the 
original calculation, done by calibration using 
water, and was useful to ensure that the vessel’s 
volume was validated by a second measurement. 
The introduction of more rigorous degassing is 
good practice to rule out imperfect degassing as 
a source of error. However, these modifications 
did not make as significant an improvement in 

pCO2 α u(pCO2 ) u(α) 
bar mol/mol bar mol/mol 

0.00001 0.193 0.00849 0.010 
0.00288 0.333 0.00849 0.014 
0.00915 0.501 0.00849 0.018 
0.15060 0.651 0.00849 0.021 
0.90514 0.787 0.00849 0.024 
3.29893 0.918 0.00849 0.028 
8.45072 1.142 0.00849 0.035 

Figure 5: Semi-log plot of the solubility of CO2 in 1.930 𝑚𝑜𝑙 ∙
𝑘𝑔ିଵ aqueous KGly at 40°C, 90°C and 120°C.  
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the data’s agreement with literature as the two 
aforementioned changes. 

The final modification which is yet to be 
made is improved temperature control of E-1. As 
shown by the temperature sensitivity analysis, 
the temperature of the CO2 in the reservoir does 
not match that of the aluminium sleeve around it, 
and an accurately quantified discrepancy 
remains unknown.  

The discrepancy then leads to an 
inaccurate calculation of the amount of CO2 
dissolved, based on erroneous temperature and 
pressure data. This is the likely source of the 
remaining deviation from the literature values, as 
the temperature-adjusted data in Figure 3 aligns 
with the expected trend. 

This source of error must first be 
corrected by further modification to the 
apparatus or SOP, or by quantifying the 
temperature discrepancy and accounting for it in 
calculations. Only when the experimental set-up 
can be verified as valid can it be used to collect 
viable data on AAS absorption of CO2. 
 
5.2. KGly Experiments 
In the literature, there are no references for 
potassium glycinate at the concentration and 
temperatures tested in this work. While this 
means it difficult to judge the validity of the 
measurements obtained, the apparatus is close to 
satisfactory validation when a plausible 
adjustment of the reservoir temperature is 
considered. The VLE data collected on KGly can 
tentatively be taken as valid with the 
temperature adjustment applied, but further 
experimentation should be conducted once 
sufficient modifications are made to accurately 
quantify this temperature adjustment and 
confirm the accuracy of the results. 
 The results show that the error is 
greater when the VLE cell is at lower 
temperatures. The error also increases 
throughout the progression of the experiment. 
However, even with a 3°C temperature 
correction, the measurement uncertainty is 
relatively small.   
 
6. Conclusions 
An experimental set-up has been designed to 
evaluate the cyclic absorption capacity of amine-
based solvents for carbon capture through the 
collection of high accuracy VLE data. Two such 
solvents studied in this work are aqueous MEA, 
an alkanolamine, and aqueous potassium 
glycinate, an amino-acid.  

The design is in its early stages and 
underwent several modifications to improve the 
accuracy of the data collected. The apparatus’ 
validity was tested using 30 mass% aqueous 

MEA solution, a well-studied CO2 absorbent, and 
the results were compared to three literature 
data sources. The set-up is currently not in 
sufficient agreement with literature data to be 
deemed valid for use in investigating the CO2 
absorption capacity of AAS solutions. 

However, assessing the impact of 
temperature discrepancy in the CO2 reservoir 
shows strong indication that it is the remaining 
source of error. This can be corrected for in 
future modifications to the method. Possible 
solutions include implementing a more complete 
thermal enclosure, such as investigating the 
addition of a more effective thermal contact 
liquid between vessel E-1 and the sleeve around 
it and improving insulation over the sleeve, 
fittings and tubing. An alternative approach may 
be to quantify the amount of CO2 in the vessel 
through calculations independent of 
temperature, such as by taking mass readings. 

Further testing should be carried to 
confirm that this temperature discrepancy is the 
key source of error. Once corrected by the 
modifications suggested and shown to be valid 
with MEA, the apparatus can be used to achieve 
the objective of studying the cyclic absorption 
capacities of amino-acid salt solutions.   
 The validated set-up will be able to 
contribute to the understudied area of 
alternative carbon capture solvents. 
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Abstract 

The global market of lithium-ion battery (LiB) was fuelled by the growing demand of the consumer electronics and 

electric vehicle. Therefore, investigation of scaling-up of battery recycling was necessary. In this field of study, researchers 

aimed to investigate the electrochemical kinetics and thermodynamics of the prevalent cathode materials in LiBs, namely 

NMC 111, NMC 622 and NMC 811, in the presence of Al3+ and Cu2+ impurities. This study emphasised the recovery of 

Ni2+ and Co2+ through the application of cyclic voltammetry into electrodeposition experiments. From the cyclic 

voltammetry tests, neutral condition and glassy carbon as the working electrode were found to be able of minimising the 

impact of hydrogen reduction (side reaction). Additionally, reduction of Ni2+ and Co2+ to their metallic states both occurred 

at an electrode potential at ca. -0.7 V vs. Ag/AgCl in the solutions of NMC 111 and NMC 811 containing Al3+ and Cu2+ 

impurities, where separation of Co and Ni was not feasible via electrodeposition on a carbon paper. Cu can be separated 

through electrodeposition at -0.1V vs. Ag/AgCl whilst Al was concluded to have a negligible effect on Ni and Co recovery. 

Keyword: Cyclic Voltammetry, ElectrodeposiƟon, Pourbaix diagram, Lithium-ion baƩery recycling 

1. Introduction 

The increasing demand for lithium-ion batteries, as one 

of the irreplaceable components for electric vehicles 

(EVs) and renewable energy storage, has brought a 

substantial growth in future demand, sales of electric 

vehicles (EVs) reached the highest value of 10 million 

in 2020, and it was estimated that 230 million EVs will 

be circulating by 2030 [1]. The main components 

include anode, cathode, electrolyte, current collector 

and separator, where the anode was typically made of 

graphite and the most common cathode material was 

composed of metal oxides, such as lithium cobalt oxide 

(LiCoO2), lithium manganese oxide (LiMn2O4) and 

lithium nickel manganese cobalt oxide (LiNiMnCoO2 or 

NMC) [2]. NMC made up 30% of the global demand for 

cathode materials in all applications in 2017. Among the 

NMC compositions, LiNi1/3Mn1/3Co1/3O2 (NMC111) 

was the most in-demand dominant market, accounting 

for about 50% of the total NMC demand [3]. The 

recycling of cathode materials in spent lithium-ion 

batteries, with a particular emphasis on recovering 

nickel, cobalt and manganese, is a significant area of 

focus in the renewable battery industry.  

Various methods were commonly employed for 

recycling battery, the common approaches are 

pyrometallurgy, hydrometallurgy and direct recycling 

[4]. Hydrometallurgical leaching was the most used 

industrial technique to recycle Ni2+ and Co2+ in LiB due 

to its efficiency, simplicity, and ability to produce high-

quality recycled metals [5]. On the other hand, 

pyrometallurgy and direct recycling were less 

discovered due to its high energy intensive and scale-up 

issue [4][6]. It is noteworthy that the lithium-ion battery 

recycling market was estimated at $4.2 billion in 2022, 

with an expected growth rate of 21.43% by 2030. The 

collection of 108,000 tonnes of used portable batteries 

as recyclable waste in 2021 according to the European 

Union [7], highlighting the significance of 

implementing and improving the recycling processes for 

spent lithium-ion batteries. 

The primary objective of this study was to investigate 

the recovery of valuable materials from spent lithium-

ion batteries through electrodeposition with a specific 

focus on widely used cathodic materials such as lithium, 

nickel, cobalt and manganese. This study involved the 

use of glassy carbon and platinum as working electrodes, 

along with different composition solutions such as NMC 

111 (LiNi0.33Mn0.33Co0.33O2), NMC622 (LiNi0.6Co0.2Mn0.2O2) and 

NMC811 (LiNi0.8Co0.1Mn0.1O2) at pH3 and pH7 during 

cyclic voltammetry (CV) tests. A key objective of this 
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research is to mitigate the impact of the hydrogen 

evolution reaction (HER) during the electrodeposition 

for nickel and cobalt recovery. This strategic approach 

enables the enhancement of the recovery efficiency of 

nickel and cobalt metal, in order to obtain a holistic 

overview of the recycling performance of spent lithium-

ion batteries. 

2. Background 

Building up upon the prior research led by Ms. Yutong 

Ji and Dr. Xiaochu Wei, which primarily addressed the 

recovery of manganese through electrodeposition on the 

anode, the current investigation extends its scope. This 

research emphasised broadening the understanding of 

nickel and cobalt recovery by implementing 

electrodeposition on the cathode through negative 

potential. Electrodeposition is a significant technique 

for recycling and recovering nickel, cobalt coatings 

from spent lithium-ion batteries (LiBs), it is an 

environmentally friendly technique due to its high 

recovery efficiency for valuable metals, selectivity of 

recovery for specific metals, minimal waste production 

and low environmental impact [8]. Those ions can be 

oxidised or reduced on carbon paper, depending on the 

amount of potential applied to the solutions and the 

nature of thermodynamic properties shown in a 

Pourbaix diagram.   

The charge and current response from electrodeposition 

are influenced by several factors such as temperature, 

composition of solutions, deposition time and pH [9]. 

The optimal condition of electrodeposition, where 

valuable metal ions can be oxidised or reduced in 

aqueous solutions, can be obtained by implementing 

Pourbaix diagrams and cyclic voltammetry tests. These 

contain graphical representation of the thermodynamic 

stability and kinetics of electrochemical reactions [10], 

a comprehensive analysis of electrodeposition process 

can therefore be obtained, this allows for the 

optimisation of the process parameter, such as the 

applied potential and pH, to maximise the efficiency of 

metal ion recovery from spent lithium-ion batteries. 

2.1 Electrodeposition on Li 

Electrodeposition of lithium involves the reduction of 

Li+ ion to metallic lithium, as represented by the 

following equation: 
 𝐿𝑖ା + 𝑒ି → 𝐿𝑖 

 
(1) 

The standard half-cell potential of Li+ reduction is -3.3 

V vs the standard hydrogen electrode (SHE). On the 

other hand, the hydrogen evolution reaction (HER), with 

an electrode potential of -0.6 V [11], is 

thermodynamically dominant relative to lithium 

reduction, which is described as the following reaction: 
 2𝐻ା + 2𝑒ି → 𝐻ଶ 

 
(1) 

2.2 Electrodeposition on Ni and Co 

Electrodeposition of nickel and cobalt mainly depends 

on the applied potential at which its reduction and 

oxidation occur. Therefore, Pourbaix diagram is 

necessary to obtain a holistic electrochemical stability 

analysis for different redox states as a function of pH. In 

this study, reduction of Ni2+ and Co2+ to Ni and Co were 

investigated, which are given in the following equations: 
 𝑁𝑖ଶା + 2𝑒ି → 𝑁𝑖 (3) 

 𝐶𝑜ଶା + 2𝑒ି → 𝐶𝑜 (4) 

During cyclic voltammetry measurements, an Ag/AgCl 

reference electrode was used, and solutions were tested 

under pH7 and pH3. The Pourbaix diagrams in Figure 

1a and 1b indicate the standard half-cell potential 

against SHE of the two reactions, which are -0.25 V and 

-0.28 V under neutral condition. However, it is worth 

noting that an Ag/AgCl reference was used in the 

experiment, the standard half-cell potential against 

Figure 1: (a) Pourbaix diagram (nickel/concentration: 0.01 mol dm-3, 298.15K, 

1.0 bar) (a) nickel-water solution. (b) cobalt-water solution [11]  
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Ag/AgCl are corresponding to -0.987 V and -1.017 V 

respectively. Since the electrodeposition potential of 

Ni2+ and Co2+ reductions remain constant approximately 

against pH, solutions with neutral conditions primarily 

serve to make the reduction of metal ions more prevalent 

than HER according to Figure 1, this hypothesis was 

further validated by the research conducted by Nicolas 

Dubouis [12]. 

2.3 Electrodeposition on Mn 

The electrodeposition of manganese via a negative 

potential involves the reduction of Mn2+ ion to 

manganese metal, as depicted by the following equation: 
 𝑀𝑛ଶା + 2𝑒ି → 𝑀𝑛 (5) 

The Pourbaix diagram of manganese reveals the 

electrode potential associated with the Eq.5 is -1.2 V vs. 

SHE. under neutral condition [11]. Hence, this 

electrochemical reduction is thermodynamically 

unfavourable relative to hydrogen evolution reaction.  

3. Methodology  

3.1. Materials 

Lithium sulphate monohydrate, nickel (II) sulphate 

hexahydrate, cobalt (II) sulphate heptahydrate, 

manganese (II) sulphate monohydrate, sulphuric acid 

(95%), copper (II) sulphate pentahydrate, anhydrous 

aluminium sulphate was used. 

3.2 Cyclic Voltammetry Test 

The cyclic voltammetry (CV) test is a vital technique in 

the study of electrochemical reactions, where the redox 

processes inherent to materials. This approach provided 

the characteristic current responses by the material that 

was investigated when a range of applied potential 

across an electrochemical cell in a cyclic variation. The 

purpose of utilising CV test in this study was to identify 

the redox reaction of nickel, cobalt and manganese at an 

applied potential.  

3.3 Experimental Setup and Solutions Preparation 

In this study, different electrolyte solutions were 

investigated, as shown in Table 1, which contains 

NMC111, 622, 811 and addition of impurities. The 

impact of pH on cyclic voltammetry results was also 

examined by using solutions at pH7 and pH3, prepared 

with 0.1 M H2SO4 which was diluted from 95% 

sulphuric acid. All solutions were prepared with 

deionised water to ensure analytical purity.  

Table 1: Solution Composition of Different Solution in Ambient Conditions 

Solution category Solute Concentration 
NMC 111 Li2SO4 = 0.25 M, 

NiSO4 = 0.01 M, 
MnSO4 = 0.01 M, 
CoSO4 = 0.01 M 

NMC 622 Li2SO4 = 0.025 M, 
NiSO4 = 0.03 M, 
MnSO4 = 0.01 M, 
CoSO4 = 0.01 M 

NMC 811 Li2SO4 = 0.05 M, 
NiSO4 = 0.08 M, 
MnSO4 = 0.01 M, 
CoSO4 = 0.01 M 

Impurities Test Al2(SO4)3 = 0.005 M, 
CuSO4 = 0.000125 M 

A 100 mL glass beaker filled with a 50 mL electrolyte 

solution was used in each measurement, it acted as a 

conductive medium for redox reactions during the cyclic 

voltammetry test. The electrochemical cell 

configuration included glassy carbon (diameter = 3 mm) 

or platinum (diameter = 1.6 mm) working electrodes, an 

Ag/AgCl reference electrode and a platinum counter 

electrode (13 mm x 10 mm). Platinum was selected for 

its properties of being highly electrically conductive, 

have a short response time and high chemical stability 

while resistant to corrosion [13]. However, one 

drawback could be its relatively small surface area. This 

resulted in a limitation that suppressed the growth of 

layer deposition on the electrode [13]. Additionally, the 

glassy carbon electrode was used with its large surface 

area and high hardness and smoothness, which 

contributes to its durability [14,15]. A pre-treatment 

through polishing with silicon carbide (SiC) paper and 

polishing powders of alumina (1µm, 0.3 µm and 0.05 

µm) was done on the working electrodes. While the 

counter electrode was polished using silicon carbide 

paper with 1 µm polishing powders, and the reference 

electrode was rinsed with deionised water before each 

measurement. The potentiostat (Metrohm AUTOLAB 
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PGSTAT) interfaced with Nova software was utilised for 

real-time monitoring of the working electrode’s current 

and charge responses. A cyclic voltammetry scan, 

starting from 0 V to -1.2 V, followed by -1.2 V to 0.2 V, 

and returning to 0 V in a loop, was executed at a scan 

rate of 50 mV/s for five consecutive scans.  

3.4 Electrodeposition Experiment – High Recovery  

Nickel and cobalt, as primary materials being 

investigated, were recovered via the electrodeposition. 

Formation of side-products and recovery efficiency of 

nickel and cobalt were examined during the 

electrodeposition. Experiments were conducted with 

NMC 111 and NMC 811, containing aluminium and 

copper impurities under neutral conditions. 

The experiment procedures were performed using 50 

mL of solutions in a 100 mL beaker. A reference 

electrode of Ag/AgCl, working and counter electrode 

composed of thermally pre-treated carbon papers were 

used. Carbon paper, configured in a rectangular shape 

were prepared with an area of 7.5 cm2 (2.5 cm x 3 cm) 

and an attached copper tape. An insulted tape was 

attached on the interconnecting part of the copper tape 

and carbon paper, resulting in an effective surface area 

of 5 cm2 (2.5 cm x 2 cm). The electrodeposition 

experiment was conducted using Nova software with 

potentiostat (Metrohm AUTOLAB PGSTAT), the 

electrodeposition was operated under a constant 

potential setting to achieve a 100% recovery of nickel 

and cobalt, assuming reduction of nickel and cobalt 

were the only cathodic products. However, side 

reactions, such as HER, could be thermodynamic 

feasible under that applied potential. Hence, an actual 

recovery efficiency of the Ni and Co were estimated. 

Eq.6 and 7 below outlined the charge of the nickel and 

cobalt reduction and the actual recovery efficiency 

respectively: 

𝑄௧௢௧௔௟ = 𝑛௘𝐹𝑉([𝑁𝑖ଶା] + [𝐶𝑜ଶା]) 
 

(6) 

η =
𝐹𝑉൫∆[𝑁𝑖ଶା]௧బ→௧ + ∆[𝐶𝑜ଶା]௧బ→௧  ൯

𝑄௧௢௧௔௟
 

(7) 

Where Q is the total charge, ne is the number of electron, 

F is the Faraday constant, [Ni2+] and [Co2+] are 

concentration, η  is the efficiency of nickel and cobalt 

recovery. 

3.5 Electrodeposition Product Characterisation 

Inductively coupled plasma mass spectrometry (ICP-

MS) and UV-Vis spectroscopy was the intended method 

for analysing and quantifying the concentrations of 

nickel and cobalt recovered on the carbon papers after 

electrodeposition. However, due to the malfunction of 

ICP-MS and UV-Vis spectroscopy, further study on the 

concentration of nickel and cobalt recovered after 

electrodeposition is required. 

4. Results for CV test 

Graph of current density against applied potential vs. 

Ag/AgCl was plotted to visualise when redox reaction 

occurs. Optimal point at the negative range of current 

density (the local minimum point) represents a reduction 

reaction and optimal point at the positive range in 

current density (the local maximum point) represents an 

oxidation reaction. CV analysis for cathode in NMC was 

complicated as Ni2+, Co2+ and H+ reduce at similar range 

of potential as shown in the Figure 1. This makes the 

smaller peak in the graph difficult to be distinguished 

when one reaction dominates the other. Peak in graph 

were labelled as PA,x for anodic peak and PC,x for 

cathodic peak. The remaining reaction that was not 

mentioned above were described as follows: 
𝑂ଶ + 4𝐻ା + 4𝑒ି → 2𝐻ଶ𝑂 (8) 

𝐶𝑢ଶା + 2𝑒ି → 𝐶𝑢 (9) 

𝑁𝑖ଶା + 2𝐻ଶ𝑂 → 𝑁𝑖(𝑂𝐻)ଶ + 2𝐻ା (10) 
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4.1 Discussion on the Effect on Different Type of 
Electrode Used in Electrolysis (Pt vs. GC) 
As shown in Figure 2 and Figure 3, PC,H corresponded to 

HER. Platinum electrode yielded a much higher value for 

current density ca. 40 mA cm-2 as compared to carbon 

electrode ca. 0.13 mA cm-2 which indicates a higher rate 

of HER in platinum electrode. This result was reasonable 

as platinum acts as a catalyst for HER which was 

unfavourable for the efficiency of recovery for nickel and 

cobalt metal from NMC solution, due to its excellent 

electrical conductivity [13].  In addition, glassy carbon is 

simply a more economical option compared to platinum 

[14,15]. The cost for electrode is crucial criteria as a large 

surface area electrode is preferred for higher efficiency of 

recovery for Ni and Co metal in electrodeposition. 

Therefore, glassy carbon as an electrode will be a more 

efficient and economical option for electrodeposition. 

4.2 Discussion for NMC111 
There was no peak corresponding to the reduction of Li+. 

This can be explained by the Pourbaix diagram for lithium, 

which shows that lithium ion can have a reduction reaction 

only when the potential difference exceeds ca. -3.3 V vs. 

SHE [11]. 

PA,O is a peak corresponds to oxygen reduction (Eq.8). 

Although oxygen reduction (Eq.8) existed in all the CV 

analysis performed, it was negligible as the amount of 

dissolved oxygen was very low and contributed to 

negligible current loss. 

In Figure 4, PC,Ni only occurred in the first scan which 

corresponds to the reduction of Ni2+ (Eq.3). PC,H 

corresponds to HER (Eq.2) in the first scan, this increases 

the local pH and promotes Ni2+ to form Ni(OH)2 via Eq.10. 

Consequently, in the second to fifth scan, PC,1 would be 

dominated by HER and possibly reduction of Ni(OH)2, 

resulting in greater current response at potential of -1.2 V. 

This hypothesis was made due to the possibility of 

reduction of Ni(OH)2 as shown in Figure 1(a). PA,Ni 

corresponds to oxidation of Ni, the reverse reaction for 

Eq.3. 

Cobalt reduction can be seen clearly on Figure 5 in PC,Co. 

In the first scan PC,Co is at potential ca. -0.95 V and then 

the peak shifted to ca. -0.9 V. This phenomenon can be 

commonly seen on deposition of metal in electrolysis 

because nucleation of solid requires high activation 

energy [16], which was observable in the first scan of CV. 

An anodic peak, PA,Co was also observed at potential ca. -

0.2 V, this peak also corresponds to oxidation of Co2+. 

There was no reaction involving Mn2+ within the potential 

range of the CV analysis, which was similar to Li+ as 

discussed before. Therefore, the graph of current density 

against applied potential vs Ag/AgCl for solution 

containing Li and Mn had similar trend as Figure 3, no 

extra peak observed. 

When Ni and Co are both present in the solution, the 

kinetics of the reactions change as both metal ions 

competes at the anode for electrons [17]. Two peaks, PC,2 

and PC,3 were observed in Figure 6 which were coherent to 

the peak shown in Figure 4 and Figure 5. The difference 

between them was the magnitude of the peak which 

increased significantly. This was caused by the merging of 

two peaks for reaction Eq.3 and Eq.4. 

While recognising the peak for Co and Ni reduction, 

Figure 7 shows a reasonable trend for both reactions. The 

addition of Mn changes the kinetic of the reaction by 

further increasing the conductivity of the solution, 

increasing the peak intensity for PC,5.  

PC,4 at ca. -0.9 V has lower peak intensity compared to PC,2 

in Figure 6. Reaction mainly happened at ca. -1.2 V, which 

involved HER, Eq.3 and Eq.4. 

4.3 Discussion for pH3 CV analysis 
The main difference in a pH3 and pH7 solution was the 

increase in H+ concentration, leading to an increase in 

concentration gradient of H+ to the site of reaction leading 

to an increase in the mass diffusion of H+ [18]. From 

Figure 8, solutions with presence of Ni showed an 

interesting trend, that had a peak at ca. -1.2 V. The peak 

increases over scan 1 to scan 5. This trend demonstrates 

the increase in rate of reaction in nickel reduction (Eq.3) 

when the reaction in Eq.3 was limited by nucleation of Ni 

metal on the site of reaction. More Ni metal deposited on 

the reaction site after each scan, increasing the reaction of 

Eq.3, because the nucleation energy was not needed after 

nickel being deposited. The anodic peak, PA,Ni in Figure 8 

also validates the explanation by having an increasing 

peak over each scan since oxidation of Ni metal is not 
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affected by the increase in H+ concentration, therefore the 

PA,Ni indicates the amount of Ni metal that is available for 

oxidation. 

In Figure 9, a shift of peak PC,Co in the x-axis was observed. 

Indicating that higher energy was required to deposit Co 

metal in higher concentration of H+. 

The trend for PC,6 in Figure 8 also can be observed from 

PC,8 in Figure 10, showing that the increase in H+ also gave 

a significant effect in LNMC solution. 

4.4 CV discussion for NMC622 and 811 
From Figure 11 and Figure 13, PC,Ni showed a similar 

trend as PC,Ni in Figure 4 for NMC111. However, PC,Ni in 

NMC622 and 811 had a higher peak intensity. This 

highlighted that these three peaks correspond to Ni2+ 

reduction (Eq.3) as increase in concentration of Ni2+ 

effectively increases the rate of Eq.3 as discussed in 

Section 4.3. The peak intensity for PC,9 and PC,11 also 

increases when the concentration of Ni2+ becomes higher. 

The reason being more Ni(OH)2 was formed after the first 

scan and was reduced at potential of -1.2 V in the 

following scan. 

For LNMC solution in NMC 622 and 811 shown in Figure 

12 and Figure 14, the trend was similar for Li-Ni solution 

as the peak intensity for Ni reduction was greater 

compared to the peak of cobalt reduction. 

4.5.1 CV Discussion with Impurities   
The Pourbaix diagram for aluminium outlines that the 

reduction of Al3+ ions was thermodynamically feasible at 

ca. -2 V vs. S.H.E. under neutral condition [20]. On the 

other hand, the Pourbaix diagram for copper shows that 

the reduction of Cu2+ ions to metallic copper is feasible at 

ca. 0 V vs. S.H.E [21]. These hypothesises derived from 

the Pourbaix diagrams, were validated by CV tests in 

which aluminium or copper were introduced as impurities. 

The CV test of the solution containing Li+ and Al3+ ions is 

similar to the one in pure Li2SO4 (Figure 3), indicating no 

further reduction of aluminium. On the other hand, Figure 

15 highlighted an addition PC,Cu peak at ca. -0.07 V, 

corresponding to the reduction of Cu2+ ions to copper 

metal. Subsequent tests were conducted on LNMC 111 

and LNMC 811, both containing aluminium and copper 

impurities. Figures 16 and 17 both outline an additional 

Pc,Cu peak at ca. -0.1 V. However, current density was 

getting less negative after each scan was observed at Pc,14, 

corresponding to ca. -3.0 mA cm-2 for the first scan and ca. 

-0.75 mA cm-2 for the last scan, whereas Pc,16 was 

observed at a constant potential of ca. -4.5 V for each scan. 

This phenomenon can be attributed to the limitation of 

mass transport in the case of LNMC 111 with impurities 

[18]. Given that the concentration of Ni2+ is smaller 

compared to LNMC 811 with impurities, resulting to 

lower concentration gradient between the bulk solution 

and the electrode surface, leading to a lower diffusion rate. 

Hence, hydrogen evolution reaction would become 

predominant, resulting in an increased pH. As described 

by the Figure 1a, Ni(OH)2 formation is 

thermodynamically feasible when pH increases from 7. 

Hence, hypothesis was made that the electrode was not 

fully covered by glassy carbon electrode, leading to a 

smaller surface area available for the reduction to take 

place and small current response. This phenomenon also 

validated a stronger response in current density of PC,16 

than PC,14 by 50% due to higher nickel concentration. 

Hence, faster diffusion rate to the electrode surface [18]. 

Additionally, noting that cathodic peaks of PC,13 and PC,15 

at an electrode potential of ca. -0.7 V vs. Ag/AgCl were 

primarily due to the reduction of Ni2+ and Co2+
. This was 

supported by the CV results of Li-Ni and Li-Co solutions, 

as discussed in Section 4.2. On the other hand, Figure 

16,17 highlights that the cathodic peaks of PC,14 and PC,16 

were resulted from the reduction of nickel, cobalt and 

hydrogen reduction, with the HER being the predominant 

reaction. 

5. Electrodeposition Results and Discussion 

Electrodeposition experiments were done on both 

NMC111 and NMC 811 at applied potential of 1.0 V and 

-0.7 V vs. Ag/AgCl, which are for recovery of Mn and 

Ni/Co respectively. The Mn recovery at the potential of 

1.0 V was supported by the research conducted by Dr. 

Xiaochu [11], while the Ni/Co recovery at the potential of 

-0.7 V was supported by PC,13 and PC,15 in Figure 16 and 

17. However, the ICP-MS machine was down and was not 

able to generate any results from it. UV-vis spectrometry 

was not available to be used within the timeframe 

designed for characterisation of results as well. ICP-MS 
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analysis will be carried on in the future to obtain the 

concentration of nickel and cobalt deposited on the carbon 

paper after electrodeposition. Hence, recovery efficiency 

of Ni and Co could be obtained by Eq.7 and to predict the 

impact of HER on Ni and Co recovery. 

6. Conclusion 

In this study, the electrochemical kinetics and 

thermodynamics of Li-Ni-Mn-Co system in water 

solutions were investigated within the applied potential 

range of -1.2 V to 0.2 V vs Ag/AgCl. Neutral condition 

and glassy carbon working electrode were the optimal 

condition for electrodeposition, in order to maximise the 

recovery efficiency of Ni and Co metal. In another word, 

suppressing the effect of HER by decreasing the 

concentration of H+ ion and inhibiting the usage of 

platinum as working electrode could facilitate reduction 

of Ni2+ and Co2+. During the cyclic voltammetry tests for 

the solutions of NMC 111 and NMC 811 with impurities 

(Al and Cu), the cathodic peak at ca. -0.7 V vs. Ag/AgCl 

was concluded to be the optimum reduction potential 

point of Ni2+ and Co2+ ions. Being able to separate Cu 

selectively at electrical potential.pa. -0.1V vs. Ag/AgCl, 

Al and Cu was concluded to have a negligible effect for 

nickel and cobalt recovery due to the large potential 

difference of its cathodic peak from nickel and cobalt 

cathodic peak. Hence, impurities of Cu could be extracted 

by applying a much lower potential (ca. -0.1 V vs. 

Ag/AgCl) compared to the reduction potential of -0.7 V 

vs. Ag/AgCl, while Co and Ni peak merged at ca. -0.7 V 

vs. Ag/AgCl and separation of these metal could not be 

done by electrodeposition. Additionally, an electrode 

potential of -1.0 V vs Ag/AgCl was also concluded to be 

a point where Ni and Co reduction occurred the most, as 

supported by the CVs test of Li-Ni and Li-Co aqueous 

solution. Consequently, final condition of pH7, working 

electrode of glassy carbon with the applied potential -0.7 

V and -1.0 V vs Ag/AgCl was selected in 

electrodeposition which would carry on in the future study. 

7. Outlook 

Further research could be conducted to further enhance 

the recovery efficiency of Ni and Co. It is crucial to obtain 

an optimum potential that minimise the rate of HER. 

Product characterisation of the solution after 

electrodeposition was required, which could be done by 

ICP-MS  to obtain the concentration of nickel and cobalt 

after electrodeposition, and hence to obtain the recovery 

efficiency. Additionally, sensitivity analysis of electrode 

potential around -0.7 V and -1.0 V vs. Ag/AgCl during 

electrodeposition could also be conducted. Hence, optimal 

recovery efficiency could be obtained. Lastly, the effect of 

leaching could be investigated to extract nickel and cobalt 

separately, recovery of Ni and Co would be achieved by 

extracting metal ions from a solid material by selectively 

dissolving it in an acid due to solubility differences. 
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Derivative-free Optimisation of Neural Networks in

Reinforcement Learning for Process Control
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Abstract

The paper explores methods of training neural networks to control process units as an alternative to standard
Proportional-Integral-Derivative (PID) controllers. Neural networks have theoretical potential in handling
plant-wide control better than standard PID controllers, due to the complex dynamics of multivariate control.
Several derivative-free optimisation algorithms were tested on a model of a Continuous Stirred-Tank Reactor,
with the most promising algorithms being selected for further testing against a more complicated Multistage
Extraction model with challenging set point changes. The algorithms were susceptible to pitfalls, such as failure
to control multiple set-points at once. A hybrid algorithm that introduced more exploration into its decision
process was proposed, with limited improvement in performance. However, using a Bayesian Optimisation
algorithm to optimise the structure of the neural network along the algorithm itself proved to be a viable
method, with the algorithms seeing a stark improvement in performance, managing to consistently adhere to
multiple set-points. This demonstrates the potential capabilities of neural networks to learn the dynamics and
the methods of controlling a variety of processes.

Keywords: Reinforcement Learning, Machine Learning, Process Control, Derivative-free Optimisation

1 Introduction

Control systems are an integral aspect of any chem-
ical manufacturing environment, and have broad
applications outside of chemical engineering, such as
in the automotive, aerospace and robotics industries
[1]. Therefore, new methods of establishing and
maintaining quality control are of high interest to
the scientific community and beyond.

The most common and widely accepted method of
automatic control of systems is PID control, where
the controller uses the current error and the history of
errors in the past to determine the appropriate action
to take. PID controllers have been widely accepted as
the most e�cient way to control industrial processes
due to their simplicity and robustness [2]. However,
while PID control equations provide a good frame-
work for quality control, tuning a controller can be
a challenging and time-consuming process [3]. There

has been extensive research dedicated to the most
e�cient ways of tuning a PID controller, such as the
Ziegler-Nichols method [4]. More modern methods
make use of optimisation techniques [5], wherein the
e↵ectiveness of process control is represented as a
function of the PID parameter space to be optimised.
This is an example of a Reinforcement Learning
problem (see Section 2.2).

Neural networks can also be used to control pro-
cesses, by training them to take appropriate actions
given the current state of the system. The advantage
of tuning a neural network over a PID controller is
that in order to e↵ectively tune a PID controller, the
dynamics of the system must be known in advance.
This requires experimentation and can be time-
consuming. In contrast, a neural network learns
the dynamics of the system and how to control the
system simultaneously, through exploring the param-
eter space. This project builds on the idea of using
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optimisation techniques to tune a controller, focusing
on implementing an Artificial Neural Network into
a Reinforcement Learning loop, and optimising the
neural network’s parameters.
The objective of the project is to develop an

algorithm that can be used to train a neural network
to control any set-point changes in any process.
The project makes use of two models of chemical
engineering process units to achieve this - a simple
first-order Continuous Stirred-Tank Reactor (CSTR)
model as a proof of concept, and a more complex
Multistage Extraction model as a benchmark. Six
derivative-free optimisation algorithms were tested
on a neural network controlling the CSTR model,
and compared with the performance of a tuned
PID controller. Algorithms that showed promise
were further tested against the Multistage Extraction
model. Finally, an algorithm that incorporated
optimisation of the neural network structure itself
was developed, and its performance compared to the
standard derivative-free optimisation algorithms that
used more conventional neural network structures.
Section 2 focuses on the Background of the projects

and the algorithms used, Section 3 outlines the
dynamics of the two models that were used, Section
4 outlines the procedures for the tests and their
reasoning, and Sections 5 and 6 demonstrate the key
outcomes and insights of the project.

2 Background

2.1 PID Controller

A Proportional-Integral-Derivative (PID) controller
is a system that monitors and regulates a crucial
process state, x, to match desired process set-point,
xsp, by taking appropriate control actions u. The
action that the controller takes is a sum of three
functions of the error:

u(t) = Kp e(t) +Ki

Z t

0
e(⌧) d⌧ +Kd

de(t)

dt
(1)

where error is defined as

e(t) = x(t)� xsp (2)

and Kp, Ki, Kd are the control system parameters
that need to be tuned, or optimised, in order to
achieve stable and e↵ective control. In real-world
applications, the state is a continuous function of
time, but due to the computational nature of the
project, the states are simulated at discrete time-
steps (see Section 4.1).

2.2 Reinforcement Learning

A Markov Decision Process (MDP) is a control
process where a system, or agent, uses a policy

⇡✓ to select actions at every discrete time step
that have a certain probability of influencing the
environment. These actions cause a corresponding
change in the environment, which is then observed by
the agent which calculates a corresponding reward.
This relationship can be expressed mathematically
as a 4-tuple:

(X ,U , P (xt+1 = x
�|xt = x, ut = u), Rt) (3)

where X is the state space, U is the action space,
P (xt+1 = x

�|xt = x, ut = u) is the probability of
action u to alter state x to x�, and Rt is the calculated
reward at that iteration. Reinforcement Learning
(RL) is a subset of machine learning which makes
use of the Markov Decision Process. In RL, the
agent is a neural network, the policy is the network’s
parameters, and crucially, the reward for a particular
action is not known prior to taking said action [6]. In
every iteration of the reinforcement learning loop, the
agent interacts with the environment according to its
policy and calculates the total reward for following
this policy after t time steps. Then, the agent
updates its behaviour, or policy, with the goal of
maximising future rewards. This loop is represented
visually in Figure 1.

Figure 1: A representation of the Reinforcement Learning
loop. ’Policy Optimisation’ image source: [7]

2.3 Derivative-free Policy Optimisation

Derivative-free optimisation (DFO) methods are al-
gorithms that do not use derivative information or
finite di↵erences to optimise functions. Instead,
they usually operate by sampling data from the
objective function, and applying metaheuristics to
approach an optimal point. This presents several
advantages that DFO holds over policy gradients.
For instance, since DFO relies solely on objective
function values, backpropagation is not required,
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which can significantly reduce computational de-
mand for the policy search. Additionally, due to its
reliance on gradient information, policy gradients can
be prone to getting stuck in local optima (however
this is very unlikely, given a high enough number of
dimensions). This makes derivative-free optimisation
an attractive option to explore for relatively low-
dimensional reinforcement learning problems, such as
process control for a reactor. There are a number
of metaheuristic algorithms developed, this paper
included Generalised Policy search, Particle Swarm
Optimisation, Simulated Annealing, Genetic Algo-
rithm, Artificial Bee Colony and Firefly algorithms,
with the first two explained in detail in Sections 2.3.1
and 2.3.2.

Table 1: Generalised Policy Search pseudocode

Algorithm 1 Generalised Policy search

Input:
shrink ratio (�shr), radius (r), evaluations shrink
(eshr), evaluations (e), search ratio, bounds min

and max

Output:
✓⇤ - Best Policy Parameters, R⇤ - Best Reward
Start:
Initialise R⇤, ifail, divide e into ers and els

for i = 0 to ers do
Sample search space and evaluate reward:
✓i  U [min,max], Ri  Evaluate ⇡✓i
if Ri < R⇤ then

Update best policy and reward:
✓⇤  ✓i, R⇤  Ri

end if
end for
r0,min  r ⇥min, r0,max  r ⇥max

while i < els do
if ifail � eshr then

Reset ifail and reduce radius:
ifail  0, r  r ⇥ �shr

r0,min  r ⇥min, r0,max  r ⇥max

end if
Sample local points and evaluate reward:
✓i  L[✓⇤, r0,min, r0,max], Ri  Evaluate ⇡✓i
if Ri < R⇤ then

R⇤  Ri, ✓⇤  ✓i, ifail  0
else do

ifail  ifail + 1
end if
Update counter i i+ 1

end while
return R⇤, ✓⇤

2.3.1 Generalised Policy Search

Generalised Policy Search (GPS) is a hybrid algo-
rithm that consists of two phases - random search and
local search. In the random search phase, the search
space is populated with random guesses, and the
point with the lowest reward is chosen as the starting
point of the local search. In the local search phase,
guesses are made randomly within a certain radius of
the current best guess. With every guess, the current
best guess value updates if there was improvement,
and the radius around which the guesses are made
is shrunk if there was no improvement for pre-
determined number of iterations [8]. The pseudocode
for GPS algorithm is given in Algorithm 1.

Table 2: Particle Swarm Optimisation pseudocode

Algorithm 2 Particle Swarm Optimisation

Input:
number of particles (S), inertia (W ), cognitive
(�p), social (�g), iterations (e), bounds min and
max

Output:
✓⇤ - Best Policy Parameters, R⇤ - Best Reward
Start:
Initialise R⇤, Rbest

for p = 1 to S do
xp  U [min,max]
vp  U [min/100,max/100]

end for
for p = 1 to S do
pbest,p  xp, Rbest,p  Evaluate ⇡xp

end for
R⇤  min[Rbest], ✓⇤  argmin[pbest]
for i = 0 to e do

r1  U [0, 1], r2  U [0, 1]
v  W · v + r1�p(pbest � x) + r2�g(✓⇤ � x)
x x+ v
R Evaluate ⇡x for all particles
if Rp < pbest,p then

pbest,p  xp, Rbest,p  Rp

end if
if Rp < R⇤ then

✓⇤  xp, R⇤  Rp

end if
end for
return ✓⇤, R⇤

2.3.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a global
derivative-free optimisation algorithm [9]. Particles
are initialised with a random position and velocity,
and after each iteration, each particle updates its
position according to its velocity value. Additionally,
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the velocity of each particle gets updated every
iteration according to the specified hyperparameters.
The inertial coe�cient makes the particle velocity
more resistant to change, the cognitive coe�cient
directs the particle’s velocity to its last recorded
best point in the parameter space, and the social
coe�cient directs the particle’s velocity to the best
point detected across all particles in the parameter
space. The pseudocode for PSO is given in Algorithm
2.

Table 3: Bayesian Optimisation pseudocode

Algorithm 3 Bayesian Optimisation Algorithm

Input:
ncalls - number of BO calls, Un - acquisition
function, hyperparameter space
Output:
y⇤ - Best Reward, ✓⇤ - Best hyperparameters
Start:
Initialise hyperparameters ✓⇤ = ✓0, current best
value y⇤ = f(✓0), S0 = {✓0, y0}
for n = 1 to ncalls do

Fit a Gaussian process to sample Sn:

f(✓) ⇡ f̂(✓) ⇠ GP(µf̂ (✓), �f̂ (✓))

Select new hyperparameter set optimising Un:
✓n = arg max Un(✓, Sn)
yn = f(✓n)
Update sample set:
Sn+1 = Sn [ {✓n, yn}
if yn < y⇤ then

y⇤  yn, ✓⇤  ✓n
end if

end for
return y⇤,✓⇤

2.3.3 Bayesian Optimisation

Bayesian Optimisation (BO) is global optimisation
strategy that is commonly used for optimising com-
putationally expensive functions [10]. It relies on
building a Gaussian processes regression from the
current sampled data points, and using a certain
acquisition function to choose a next point to sample.
The computational demand for building a Gaussian
process scales rapidly with every additional point,
which is why this algorithm is only typically used for
problems with expensive functions which require less
than 100 iterations. The pseudocode for BO is given
in Algorithm 3.

3 Case Studies

Two case studies were used for testing purposes -
a CSTR model for initial testing and a Multistage

Extraction model for more thorough evaluation.

Figure 2: CSTR Model Process Flow Diagram

3.1 First Order CSTR

The first case study was based on a Continuously
Stirred-Tank Reactor (CSTR) model taken from the
dynamic optimization web course [11]. The simplified
process flow diagram is outlined in Figure 2. The
reaction taking place in the reactor is a simple first
order reaction:

A! B (4)

With the reaction rate given as:

rA = k0 e
�E
RT CA (5)

Where rA is the reaction rate in [kmol/s], k0

denotes a pre-exponential factor in [1/s], E is the
activation energy in [J], T refers to reactor tempera-
ture in [K], and CA is the concentration of substance
A in CSTR [mol/m3]. The equations for mass (6)
and energy (7) balance equations are given below:

dCA

dt
=

F

V (CA,in � CA)
� rA + �CA (6)

dT

dt
=

F

V (Tin � T )
+

�H

⇢ABCp,AB
rA

+
UA

V ⇢ABCp,AB(Tc � T )
+ �T

(7)

Where t denotes time in [s], F is the volumetric
flow rate in [m3

/s], V refers to reactor volume in
[m3], CA,in is the feed concentration of substance A
in [mol/m3]. T and Tin refer to reactor and feed
temperatures in [K] respectively, �H denotes heat
of reaction 4 in [J/mol], ⇢AB and Cp,AB are the
density and heat capacity of components A and B
mixture in [kg/m3] and [J/(kgK)], U and A are the
heat transfer coe�cient area in [W/(m2K)] and [m2],
and Tc denotes the cooling jacket temperature in
[K]. The noise for CA and T are denoted as �CA

and �T , which both are distributed uniformly with
�CA ⇠ U [�0.01, 0.01] and �T ⇠ U [�0.5, 0.5].
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Table 4: Nominal values of the key states and actions of the
CSTR model

Variable x xLB xUB Setpoint xsp
T 315 330 325 ! 320 ! 330
CA 0.7 0.9 0.85 ! 0.9 ! 0.8
TC 295 305 -

Table 5: Parameters for the CSTR model

Parameter Value
Tf 350
q 100

CA,in 1
V 100
⇢AB 1000
Cp,AB 0.239
�H 50000
E
R 8750
k0 7.2⇥ 1010

UA 50000

In this model, the key states to be controlled were
the temperature (T ) and concentration of A (CA)
in the reactor, and the action taken to control these
states was the temperature of the cooling fluid (Tc).
The bounds of these variables, as well as the set-point
for the desired states are outlined in Table 4. The
process parameters that were chosen for this model
are shown in Table 5.

Figure 3: Multistage Extraction Process Flow Diagram

3.2 Multistage Extraction

The model for multistage extraction is based on
page 471 of J. Ingham’s book ”Backmixing in a
Multi Stage, Multi-mixer Liquid-liquid Extraction
Colum” [12]. The model has five stages. A simplified
diagram is shown in Figure 3. For a stage n,

Table 6: Table showing the nominal values of the key states
and actions of the Multistage Extraction model

Variable x xLB xUB Setpoint xsp
X5 0.05 0.55 0.3 ! 0.4 ! 0.4 ! 0.3
Y1 0.05 0.75 0.3 ! 0.3 ! 0.35 ! 0.35
L 5 500 -
G 10 1000 -

the equilibrium solute concentration in liquid Xn,eq

[kg/m3] is calculated as:

Xn,eq =
(Yn)exponent

m
(8)

Where Yn is the concentration of solute in gas
phase of stage n in [kg/m3], exponent is the change
of nonlinearity of the equilibrium equation [-], and
m is the equilibrium constant [-]. The mass transfer
rate Qn [kg/hr] for stage n is calculated as:

Qn = kla(Xn �Xn,eq)Vl (9)

Where kla is the mass transfer capacity constant
in [1/hr], Xn is the concentration of solute in liquid
phase of stage n in [kg/m3], and Vl denotes the
liquid volume in each stage in [m3]. The di↵erential
equation used to calculate concentration of solute in
liquid phase at stage n is given as:

dXn

dt
=

1

Vl
(L(Xn�1 �Xn)�Qn) + �Xn (10)

And for a solute concentration in gas phase at stage
n:

dYn

dt
=

1

Vg
(G(Yn+1 � Yn) +Qn) + �Yn (11)

Where Vl and Vg refer to liquid and gas volumes at
each stage in [m3], L and G are solute-free liquid and
gas flow rates in [m3

/hr] respectively, and subscripts
n�1 and n+1 denote the previous and the next stage.
�Xn ⇠ U [�0.01, 0.01] and �Yn ⇠ U [�0.01, 0.01] are
the added noise to liquid and gas phase at stage n.
As per mass balance, Lin = Lout = L and Gin =
Gout = G.
For this model, the outlet concentration of solute

in liquid (X5) and gas (Y1) phases are controlled
variables with desired set points, with both liquid (L)
and gas (G) flow rates being manipulated variables.
The controlled and manipulated variable ranges with
a tested set point changes are given in Table 6, The
numerical values used in simulations are outlined in
Table 7.

4 Methodology

4.1 Problem Statement

The reinforcement learning problem in question was
the control of a process governed by certain model
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Table 7: Parameters for the Multistage Extraction model

Parameter Value
Vl 5
Vg 5
m 1
kla 5

exponent 2
X0 0.6
Y6 0.05

equations. Given certain key process states and a set-
point to adhere to for each of those states, the neural
network agent was required to learn how to optimally
control the process by outputting actions that would
keep the process states steadily at the set-point, as
well as follow any desired set-point change. Optimal
control was approached by minimising the reward
function through optimising the policy parameters.
The optimisation problem is formulated as following:

minR(xt,ut)

s.t. x0 = xt0

ut = ⇡✓(xt)

xt+1 = f(xt,ut, dt)

0  t  100

(12)

Where total reward associated with that set of
policy parameters was calculated as:

R =
tmaxX

t=1

(
X

i

kxi,t � xi,spk
wi

+
X

j

kuj,t � uj,LBk
wj,mag

+

X

j

kuj,t � uj,t�1k
wj,ch

) (13)

Where the first term records the error accumulated
over the course of the simulation, the second term
penalises actions of high magnitude (using up a lot
of cooling water or fuel to achieve a desired set-point
is expensive), and the third term penalises rapidly
changing actions, as that could damage whatever
actuators are simulated in the system. Each of these
costs is weighted with their respective coe�cients for
each state i and action j. These coe�cients varied
across the two case studies in the project, as shown
in Tables 8 and 9.

4.2 Algorithm Test on CSTR Case Study

The optimisation algorithms from Section 2.3, as well
as the Simulated Annealing, Artificial Bee Colony,
Genetic, and Firefly algorithms were implemented
into a reinforcement learning loop similar to the one
illustrated visually in Figure 1. Initially, a two-layer
neural network with the configurations specified in
Table 10 was used as the agent in the reinforcement

Table 8: Reward split coef-
ficients for CSTR case study

Coe�cient Value
wCA 0.2
wT 15

wTC ,mag 10
wTC ,ch 10

Table 9: Reward split co-
e�cients for multistage ex-
traction column case study

Coe�cient Value
wX5 0.2
wY1 0.2

wL,mag 20000
wG,mag 20000
wL,ch 20000
wG,ch 20000

Table 10: Neural network architecture for CSTR model

Layer Layer size Activation
Activation
argument

Input 4 - -
Hidden 1 8 LeakyReLU 0.1
Hidden 2 2 LeakyReLU 0.1
Output 1 ReLU6 -

loop. The agent neural network took in as inputs the
state x and set-point error x� xsp for the two vari-
ables it had to control, namely reactor temperature
and reactant concentration, and returned an action
u in response. This was done according to the neural
network’s set of policy parameters ✓, and after every
simulation, a cost was calculated using equation 13,
which was used by the optimisation algorithm to
update to its next set of parameters. This process
would repeat for a specified number of iterations, at
which point the best recorded set or parameters and
the corresponding costs were returned.
In order to appropriately compare the performance

and e↵ectiveness of di↵erent algorithms, each al-
gorithm was allocated an equal amount of com-
putational time to optimise the neural network.
Furthermore, due to the stochastic nature of the
models and the algorithms, single results may not
be reliable enough for comparison, as they are not
reproducible. Hence, an average optimal cost across
10 runs was used to compare the performance of each
algorithm. Finally, the algorithms optimising the
Neural Network were compared with a tuned PID
controller to assess their viability in industry, as PID
is a widely accepted method for process control.

4.3 Algorithm Test on Multistage Extrac-

tion Case Study

Two more promising algorithms - GPS and PSO
- were also benchmarked against a more complex
Multistage Extraction model with 10 states and 2
actions, the dynamics of which are outlined in Section
3.2. The neural network structure used for initial
evaluation is outlined in Table 11. Out of 10 states,
only two (X5 and Y1) were controlled and used as

6

283



Table 11: Neural network architecture for Multistage Extrac-
tion model

Layer Layer size Activation
Activation
argument

Input 4 - -
Hidden 1 8 ELU 0.1
Hidden 2 4 LeakyReLU 0.1
Output 2 ReLU6 -

neural network inputs with the corresponding set
point error x�xsp. To account for nonlinear system,
the first hidden layer used exponential linear unit
(ELU) as activation function instead of leaky ReLU.
The network had two actions, L and G, as outputs.
The performance of selected algorithms were tested

with equal computational time. The parameters for
Generalised Policy Search were selected as �shr =
0.9, r = 0.1, eshr = e/30 and search ratio of 0.1.
Particle swarm used 50 particles, W = 0.6, �p = 0.2
and �g = 0.2. Due to inherent stochastic behaviour
of the models and algorithms, an average of 10 runs
were used to compare the performance of algorithms.

4.3.1 Hybrid algorithm - Random PSO

The performance of PSO algorithm was unsatisfac-
tory, which lead to a hybrid RandPSO algorithm,
that combined the explorative nature of Random
Search with the exploitative behaviour of the PSO
algorithm. The algorithm initialises as Random
Search, up to a certain amount of iterations, after
which it populates a radius around the best guess
with several particles, and activates the PSO al-
gorithm. This algorithm was also tested on the
Multistage Extraction model.

4.4 Neural Network Architecture Opti-

misation

The number of layers in the neural network, the size
of each layer and the activation function, as well
as the DFO algorithm hyperparameters used for the
agent in the Multistage Extraction case study were
reconsidered as a set of hyperparameters to be opti-
mised. Algorithm 4 combines DFO methods explored
thus far for parameter optimisation with Bayesian
Optimisation for hyperparameter optimisation. The
input and output layer structure were fixed at nx +
nx,sp neurons for input and nu neurons with ReLU6
activation function for output layer, where nx, nx,sp

and nu is the number of states, set points and actions,
respectively. The number of neurons per layer varied
between 1 and 16, number of layers between 1 and
4, and the activation functions available were tanh,
sigmoid, ELU, ReLU, and leakyReLU. In order to
ensure the reliability of each sample in the BO

Table 12: Hyperparameter optimised policy search pseu-
docode

Algorithm 4 Hyperparameter Optimisation Al-
gorithm

Input:
ncalls - number of BO calls,
niter - number of DFO iterations,
nrep - number of DFO epoch repetitions
Un - acquisition function,
DFO algorithm
Output:
y⇤ - Best Average Reward, ✓⇤ - Best hyperparam-
eters
Start:
Initialise hyperparameters ✓⇤ = ✓0, current best
value y⇤ = Algorithm(✓0), S0 = {✓0, y0}
for n = 1 to ncalls do

Use BO algorithm (Algorithm 3) to select new
hyperparameters to sample
Initialise set of results, R = {}
for nr = 1 to nrep do

Evaluate algorithm with chosen ✓:
Rnr  Algorithm(✓n)
R R [ Rnr

Evaluate average performance across
repetitions:
yn  mean(R)
Sn  Sn�1 [ {✓n, yn}
if yn < y⇤ then

y⇤  yn, ✓⇤  ✓n
end if

end for
return y⇤,✓⇤

loop, each set of hyperparameters was tested on the
algorithm of choice nrep times.

5 Results

5.1 CSTR Case Study Results

The mean rewards and standard deviations for the
initial screening of the algorithms are presented in
Table 13. Figure 4 demonstrates the performance
di↵erence of a good control algorithm with a sub-
optimal algorithm. In this case, the good control is
represented by a PID controller with PSO parame-
ter optimisation, the sub-optimal control by Firefly
algorithm. The first two subplots show the mean
trajectory of concentration of A (CA) and reactor
temperature (T ) with a distribution of runs. The
subplot below demonstrates the trajectory of reactor
cooling jacket (Tc) in time.
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Table 13: CSTR Case Study Results

Algorithm Mean Reward Std Dev
PID with PSO 18.9 0.28

Artifcial Bee Colony 23.8 1.00
Particle Swarm 21.4 1.72

Genetic 22.4 2.84
Firefly 52.9 14.56

Simulated Annealing 45.8 25.40
General Policy Search 18.2 0.60

Figure 4: Comparison of PID controller and Firefly perfor-
mances

5.2 Multistage Extraction Case Study

Results

The mean rewards and standard deviations of results
of Multistage Extraction case study are presented in
Table 14.

Table 14: Multistage Extraction Case Study Results

Algorithm Mean Reward Std Dev
Particle Swarm 44.9 21.8

General Policy Search 12.2 4.90
Random PSO 26.8 4.55

5.3 Bayesian Optimisation of Neural Net-

work Architecture

Table 15 shows the results for determining the op-
timal number of layers with Bayesian optimisation.
Table 16 demonstrates the variance of optimal set
of neural network and GPS hyperparameters for
two-layer neural network optimised with Bayesian
Optimisation. r is radius, � is search ratio, R denotes
reward, and Std is standard deviation. Figure 5
shows the improvement of BO optimised GPS com-
pared to GPS without hyperparameter optimisation.
The upper two subplots depict the trajectory of
controlled variables (X5 and Y1), and lower two of
the actions L and G.

Table 15: Screening Results for Optimal Number of Layers

Hidden Layers Reward
1 23.4
2 14.7
3 27.1
4 23.0

Table 16: Variance of Bayesian Optimisation Results (r
= radius, � = search ratio, R = reward, Std = standard
deviation)

Layer 1
Layer 2

r � R Std

16 ⇥ tanh
4 ⇥ sigmoid

0.208 0.388 7.62 1.97

10 ⇥ tanh
4 ⇥ leakyReLU

0.273 0.298 9.1 2.62

8 ⇥ leakyReLU
5 ⇥ leakyReLU

0.5 0.279 11.7 2.58

16 ⇥ ReLU
8 ⇥ sigmoid

0.417 0.173 7.9 1.17

6 Discussion

6.1 CSTR Case Study Insights

The CSTR Case Study served as a preliminary low-
computational demand measure to disregard unsuit-
able algorithms from being explored. As Table 13
shows, Simulated Annealing and Firefly algorithms
had a high standard deviation and reward, making
them a poor fit for this model. In the case of
Simulated Annealing, its main disadvantage to most
other algorithms is in the fact that it is a single-point
algorithm, and one point is insu�cient to explore
a high-dimensional parameter space. Furthermore,
there are insu�cient mechanisms built in to exploring
the parameter space in Simulated Annealing, as the
algorithm only explores the parameter space through
small perturbations in each dimension.

The best performing algorithms were the standard
PID controller tuned using the PSO algorithm, and
the GPS algorithm, both of which had a low standard
deviation, indicating the consistency of their per-
formance. This again demonstrates the robustness
of PID control, and why it should be used when
applicable. However, this data doesn’t take into
account the time required to establish an appropriate
search space for all of the parameters in PID control.
In the case of multivariate control, where multiple
states and multiple actions are involved, PID control
becomes significantly harder to tune; as establishing
approximate starting guesses for all of the parameters
in PID control requires thorough experimentation
with process dynamics. On the other hand, the
neural network approach automates the exploration
of the process dynamics by incorporating the model
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Figure 5: Comparison of Generalised Policy Search perfor-
mance with and without Bayesian optimisation performances

equations into the parameter search space.
From the data shown in Table 13, the PSO and

GPS algorithms were chosen for further testing on
the multistage extraction model. The main advan-
tage of these algorithms is their simplicity, which
is especially the case for the GPS algorithm. The
PSO algorithm is easy to vectorise, making it more
computationally e�cient, enabling it to run more
iterations within the given time frame. Likewise,
GPS involves a simple Random Search followed by
a Local Search, which is easy to run, enabling it to
carry out many function evaluations which allows the
algorithm to explore the search space further.

6.2 Multistage Extraction Case Study In-

sights

Table 14 shows the results of testing the afore-
mentioned algorithms on the multistage extraction
model. Due to the higher computational demand, the
runtime for each search was set to 300 seconds. It can
be observed that the PSO algorithm’s performance
su↵ers significantly from this increase in complexity,
especially given its impressive performance in the
CSTR case study, as shown in Section 5.1. A likely
cause of this is the nature of the model that the
neural network interacts with. Given 2 set-points to
adhere to in the multistage extraction model and 2
actions to use, the agent has enough degrees of free-
dom to achieve any configuration of set-points and
set-point changes. However, during its exploration,
the agent has a high probability of coming across
a sub-optimal solution that consists of using both
actions to control the ’easier’ set-point, and ignore
the existence of another one. In order to find a

solution that improves upon this, the agent would
have to first give up control of the ’easier’ set-point,
and adjust the actions that look to control the second
state, while simultaneously keeping the first state
satisfied. In that sense, this sub-optimal solution is
a local optimum, and the PSO algorithm is under-
equipped to handle local optima when compared to
the GPS or Genetic algorithms, which have random
co-ordinate generation at every step. On the other
hand, the GPS algorithm performed much better:
as the algorithm is essentially a simple Random
Search followed by a Local Search, there is a lot
of randomness involved, which helps the algorithm
avoid the pitfalls of sub-optimal solutions. It must
be noted that due to di↵erent weights being used
to calculate the reward for the multistage extraction
model seen in Table 9, the rewards of algorithms
cannot be compared across case studies. Therefore,
while the mean reward for the GPS algorithm was
lower in the Multistage Extraction model compared
to the CSTR model, this does not indicate a better
performance in the more complex model. These
results inspired the testing of a hybrid ’Random
PSO’ algorithm that incorporated Random Search
in an attempt to initially set the algorithm on the
correct path, by initially exploring the search space
through a Random Search before activating the more
exploitative PSO algorithm. This gave the algorithm
a marginal boost in performance and removed some
cases where the PSO algorithm was getting ’stuck’
- both the mean and the standard deviation of the
reward decreased. However, the algorithm was still
unable to consistently control both set-points, which
required further investigation.

6.3 Neural Network Bayesian Optimisa-

tion Insights

Due to the superiority of the GPS algorithm com-
pared to the other algorithms in the Multistage
Extraction case study, it was further improved on
by incorporating it into an outer hyperparameter
optimisation loop, as described in Section 4.4. The
result was a significant improvement in control, as
seen in Figure 5. Qualitatively, the algorithm is
able to handle conflicting set-point changes, and
keep track of both state variables simultaneously. In
contrast, the GPS algorithm can handle controlling
one of the variables very well, but struggles to keep
the second one under control at the same time. Table
16 also shows optimal hyperparameters yielded by
the BO algorithm, and it is evident from the rewards
that there is a large improvement in performance.
It should be noted that the optimal initial radii r
and shrink ratios � are all relatively low, meaning a
more exploitative variation of the local search stage

9

286



is desirable for this model. Furthermore, the best
performing neural network architecture uses the tanh
and sigmoid activation functions. This is justified
by the core equations that the multistage extraction
model is governed by - the phase equilibria for each
stage are based on an exponential correlation, and
both tanh and sigmoid activation functions make
use of the exponential function. This facilitates the
learning process of the neural network by adjusting
the parametrisation of the neural network to fit the
process dynamics.

7 Conclusions and Future Work

This project explores the novel concept of using
trained neural networks, as opposed to tuned PID
controllers, to control chemical process units. The
main goal was to develop an algorithm that is
sophisticated enough to train a neural network to
control a range of process units and models. Various
algorithms were used for training a neural network
that acted as an agent in a reinforcement learning
loop of controlling a process. The most prominent
algorithms were the General Policy Search, due to
low computational cost, and Particle Swarm Optimi-
sation, due to it being parallelisable. These two algo-
rithms were further tested against a more challenging
model, where the General Policy Search algorithm
outperformed the Particle Swarm algorithm signif-
icantly. One possible cause of this was the PSO’s
tendency to converge on local optima, and two main
approaches were used to improve the performance of
the algorithms. For the case of the PSO algorithm,
it was merged with a Random Search to form a
hybrid algorithm with more exploring traits. This
yielded marginal improvements to the performance
of the algorithm, but still resulted in unsatisfactory
control of the process. Therefore, the GPS algo-
rithm, optimising the neural network parameters,
was combined with a Bayesian Optimisation algo-
rithm, which changed the GPS algorithm hyperpa-
rameters to improve its performance. The Bayesian
Optimisation algorithm yielded hyperparameters for
the GPS algorithm and the neural network that
led to a significant and sustained improvement of
the GPS algorithm, showing capability of controlling
multiple states at once with multiple actions, thereby
successfully creating an algorithm that can control
a range of processes. Further research could be
done on the Bayesian hyperparameter optimisation
algorithm, such as looking at ways of making it more
e�cient. Furthermore, further testing could be done
on this algorithm with even more convoluted models,
such as plant-wide models that include controlling
multiple process units at once.
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Characterisation of a Complex Mixture of Tri-, Di- and Monoacylgylcerols from 
Ethanolysis of Sunflower Oil by NMR Spectroscopic Techniques 
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Abstract In this study, several characterisation techniques were employed to analyse the composition of a glyceride 
mixture obtained by mechanochemical ethanolysis of triacylglycerols (TAGs) contained in sunflower oil. The desired 
products for this reaction were mono- and diacylglycerols (MAGs and DAGs). The focus was placed on 1D and 2D NMR 
techniques, specifically 1H-NMR, DEPT-135 13C-NMR and HSQC. The efficacy of GPC and FTIR for characterisation 
was also tested. GPC analysis proved to be inefficient due to co-elution of species. FTIR analysis identified the hydroxyl 
group characteristic of MAGs and DAGs in the purified product. It also revealed the presence of water and absence of 
glycerol. However, it did not enable complete characterisation of the product mixture. 1H-NMR confirmed the absence 
of glycerol and the presence of 1,2-DAG. More detailed characterisation was not possible with this technique due to 
significant signal overlap which arises from complex mixtures. The 2D NMR technique HSQC was therefore performed 
which successfully separated the signals overlapped in 1D NMR. This allowed the identification of the remaining species 
present in the mixture and the determination of the product composition, given on a water-free basis, by semi-quantitative 
analysis. It was found that the purified product contained unreacted triglycerides (6 mol%), 1,2-diglycerides (6 mol%), 
1,3-diglycerides (40 mol%), fatty acid ethyl esters (33 mol%) and unevaporated ethanol (15 mol%). 
 
Keywords: Ethanolysis, MAGs, DAGs, TAGs, 1H-NMR, DEPT-135, HSQC, GPC, FTIR

 
1. Introduction 
Mono and di-acylglycerols (MAGs and DAGs), also 
known as mono- and diglycerides, are compounds 
classified as non-ionic surfactants which are widely used 
in many industries such as the food and pharmaceutical 
sectors due to their stabilising, emulsifying and 
thickening properties. Mixtures of food grade MAGs 
and DAGs are valued at around £1.0/kg[1], whereas those 
of analytical grade are valued at £189/kg[2]. The global 
market for these surfactants is expected to grow 
significantly in the next decade, at a CAGR (Compound 
Annual Growth Rate) of 7.20% between 2024 and 
2032[3]. Thus, further research into the synthesis of these 
products is valuable from an economic standpoint. 
These compounds can be produced by 
transesterification of vegetable oil containing 
triacylglycerols (TAGs) with a short chain alcohol - 
such as methanol, ethanol or glycerol - in the presence 
of a suitable catalyst. This is a stepwise reaction 
mechanism and is shown in Figure 1 below, where the 
reactants and products involved at each reaction step are 
identified.  
 

 
Figure 1. The stepwise ethanolysis reaction mechanism adapted from 
Yusoff et al.[4] 

 
Ethanol (EtOH) was used in this study and thus the fatty 
acid alkyl ester produced at each step is fatty acid ethyl 
ester (FAEE). Ethanol was chosen over methanol due to 
the toxicity of the latter since MAGs and DAGs are used 
in cosmetics and edible products. Sodium hydroxide 
(NaOH) was used as the catalyst because it allows for 

shorter reaction times, milder reaction conditions and 
smaller alcohol volumes compared to an acid catalyst[5].  

MAGs and DAGs present in two positional isomeric 
forms depending on the location of the ester bonds. 
Therefore, from the reaction mechanism shown in figure 
1 and the sample work-up, a total of up to 9 species 
could be present in the product mixture: 1-MAG, 2-
MAG, 1,2-DAG, 1,3-DAG, TAG, FAEE, glycerol, 
ethanol, and water. This results in a very complex 
mixture that must be characterised. The structures of 
these molecules are given in figure 2 below.  

 
Figure 2. Reactant and product structures for the ethanolysis of TAGs. 
The carbons of interest for the NMR analysis are numbered. The 
substituents labelled “R” refer to the fatty acid chains.  

 
The initial intention of our research was to study the 
feasibility of mechanochemical catalysis for DAG and 
MAG synthesis by surveying various reaction 
conditions and comparing results to those obtained by 
the conventional heating and stirring methods[6]. 
However, the complexity of our product mixture and 
thus of the spectroscopic data obtained did not yield 
rapid conclusions regarding the product composition. 
Therefore, the research focus was switched to NMR 
(Nuclear Magnetic Resonance) spectroscopic analysis 
of the product mixture. Gel Permeation 
Chromatography (GPC) and Fourier Transform Infrared 
Spectroscopy (FTIR) experiments were also conducted, 
but to a lesser extent. It was deemed useful to compare 
the efficacy of each technique for the characterisation of 
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our mixture. The characterisation by NMR involved 1H-
NMR, DEPT-135 (Distortionless Enhancement by 
Polarisation Transfer) 13C-NMR and HSQC 
(Heteronuclear Single Quantum Coherence) analyses. 
Data processing was carried out with the aid of predicted 
and experimental chemical shifts from ChemDraw® and 
literature, respectively. Using semi-quantitative HSQC 
analysis, the purified product was found to contain 40 
mol% 1,3-DAG and 6 mol% 1,2-DAG on a water-free 
basis. 4.05g of purified product was collected. No 
presence of monoglycerides was detected.  

The aim of our work was to help speed up this 
characterisation process for future research into the 
ethanolysis of TAGs by highlighting some of the key 
issues that may be encountered. 

 
 

2. Background 
Spectroscopic techniques, such as high resolution 1H- 
and 13C-NMR, paired with computational methods, are 
key experiments that have been employed to study the 
composition of vegetable oils and other complex lipid 
mixtures[7]. 1H-NMR is a particularly useful technique 
due to its non-invasiveness, rapidity, and sensitivity[8].   

Numerous papers[9],[10] have been published on the 
characterisation of glyceride mixtures. Notably, 
Hatzakis et al.[8] offers a detailed comparison of 
spectroscopic techniques useful for characterisation 
including 1H-NMR and 13C-NMR data. However, the 
use of 1D 1H-NMR spectra alone is often insufficient for 
unambiguous identification of complex molecules[11]. 
This difficulty is enhanced for mixtures, specifically 
mixtures of structurally related molecules[12] such as 
mono- and diglycerides because significant signal 
overlap can be observed.  

Advances have been made in the automation of 
NMR spectrum processing to facilitate these issues, 
such as the use of deep neural network (DNN)-based 
approaches for peak picking and spectral 
deconvolution[13],[14]. However, these are still in early 
stages of development. Therefore, the ability to 
characterise mixtures manually and to understand which 
factors may affect the spectroscopic results is still of 
great importance.  

To overcome the limitations of 1H-NMR 
experiments, multiple NMR analysis techniques can be 
used in conjunction for complete characterisation of 
complex mixtures[8]. For example, 13C-NMR 
experiments are known for their characterisation 
efficacy as they enable the identification of the carbon 
atoms of each species in the mixture. The wider spectral 
range of 13C-NMR experiments[15] compared to that of 
1H-NMR greatly reduces the incidence of peak overlap. 
However, 13C-NMR experiments are lengthy because 
long relaxation delays are necessary to obtain a 
satisfactory signal to noise ratio[8]. Therefore, it is useful 
to analyse the performance of faster 1D and 2D-NMR 
experiments, such as DEPT (Distortionless 
Enhancement by Polarisation Transfer) 13C-NMR and 
HSQC (Heteronuclear Single Quantum Coherence). 
DEPT 13C-NMR shows signals for protonated carbons 
and is faster than traditional 13C-NMR because it is a 
double resonance program. It transfers the polarisation 

from one excited nucleus to another, specifically from 
1H to 13C, which results in sensitivity enhancement 
compared to the decoupled 1D 13C-NMR experiment[16]. 
Specifically, 13C DEPT-135 is a useful experiment as it 
uses a proton pulse angle of 135° and thus results in a 
spectrum in which CH2 signals have an opposite phase 
orientation to those of CH and CH3. This allows for 
easier identification of groups.  

HSQC is a 2D NMR technique based on the 
magnetisation transfer from a 1H nucleus to a 
neighbouring 13C nucleus and back to the former after a 
time delay t1. This last transfer is detected and creates 
the signal that is recorded on the spectrum[17]. 
Specifically, it determines single bonded C-H 
correlations by plotting the 1H- and DEPT-135 13C-
NMR spectra on separate axes. In this way, cross-peaks 
are determined which enables the separation of signals 
that appear overlapped in 1D 1H-NMR spectra. Thus, 
species characterisation is greatly facilitated for 
complex mixtures.  
 
 
3. Methods 
3.1. Chemicals 
Ethanol (96.3 v/v%, C2H5OH), sodium hydroxide 
pellets (99.1%, NaOH), anhydrous sodium sulphate 
(100%, Na2O4S), deuterated chloroform (99.8% D, 
CDCl3), and sodium chloride (99.5%, NaCl) were 
purchased from VWR Chemicals®. Acetone (≥99.5%, 
C3H6O), Ion exchanger Amberlite® IR-120 (100%), and 
N,N-Dimethylformamide (≥99.9%, C3H7NO) were 
purchased from Sigma-Aldrich®. Vegetable glycerol 
(99.9%, C3H8O3) was purchased from Onyx®. 
Commercial grade sunflower oil was purchased from 
KTC®. 

 
3.2. Reaction Conditions 
47.51 g of sunflower oil, 2.49 g of EtOH and 0.13 g of 
NaOH[18] were introduced into each of the two milling 
beakers. The oil was weighed using an A&D® GX-6000 
balance. The NaOH catalyst was crushed to a fine 
powder using a mortar and pestle. The EtOH and NaOH 
were weighed using an A&D® BM-252 microbalance. 
The catalyst was dissolved in the ethanol in a glass vial 
by intermittent manual shaking and gentle heating using 
an IKA® RH-Digital magnetic hotplate where the 
temperature was controlled with an IKA® ETS-D5 
thermocouple.  

Five stainless steel milling balls of 10mm diameter 
were used in each beaker. The shaker mill (Retsch® 
Mixer Mill MM 500 nano) was set to a frequency of 
30Hz. The reaction duration was 5 minutes.  

 
3.3. Purification  
To quench the reaction, the crude product was stirred 
with a 10% excess of Amberlite® IR 120 with respect to 
the stoichiometric amount required on an IKA® RH-
Digital magnetic hotplate at 70 ºC for 10 minutes. The 
temperature was controlled with an IKA® ETS-D5 
thermocouple. The mixture was then separated from the 
Amberlite® IR 120. The following methodology was 
adapted from Hobuss et al.[19]. The product was washed 
twice with a 5 w/w% aqueous NaCl solution to break the 
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emulsion and remove any potential glycerol. The mass 
of solution used equalled the mass of the product. This 
step involved heating the mixture to 70 ºC and stirring it 
for 5 minutes. It was then cooled in an ice bath to 
facilitate phase separation. 

The upper phase was collected and centrifuged in a 
Sigma® 3-18 centrifuge at 8000 rpm for 5 minutes. 
Then, the post centrifugation upper phase was weighed 
and stirred with an equal mass of ethanol for 5 minutes 
at 2000 rpm. The mixture was then added to a 100 mL 
decanter and the bottom phase, predominantly oil, was 
removed. It was washed with ethanol again in the same 
manner to extract any remaining product.  

The upper phase, containing ethanol and the product, 
was collected each time from the decanter. The solution 
was dried using anhydrous sodium sulphate until it was 
free-flowing. It was then collected by pipetting to avoid 
transfer of the sodium sulphate and placed in a 
Heidolph© Rotacool rotary evaporator at 170 mbar, 50.5 
ºC and 120 rpm for 50 minutes to remove the ethanol. 
Finally, the product was filtered using a syringe filter tip.  

 
3.4. Analytical Procedures  
3.4.1. FTIR Experiments 
To prepare the samples for FTIR, 1 mL of analyte was 
transferred to Eppendorf tubes. A droplet of each sample 
was used for analysis by an Agilent Technologies© Cary 
630 FT-IR spectrometer. The results were viewed using 
the MicroLab FT-IR software. 

 
3.4.2. GPC Experiments 
To analyse the samples by GPC, 10-20 mg of sample 
were introduced into Eppendorf tubes containing 1 mL 
of the mobile phase (N,N -Dimethylformamide). The 
analysis was performed by a Shimadzu© High 
Performance Liquid Chromatography Workstation with 
an autosampler (SIL-20AHT), oven (CTO-20A), 
PDA(SPD-M20A), and RI detector (RID-20A). The 
injection volume was 5 µL, the separation was 
performed on a set of M and L Polar Gel columns 
(300mm×7.8mm, Agilent) operating at 60°C with a 
mobile phase flow of 1 mL/min. The results were 
processed using the LabSolutions GPC software.  
 
3.4.3. NMR Experiments  
The samples for NMR analysis were prepared by 
introducing 30 µL of analyte into a 5 mm diameter tube 
containing 1000 µL of CDCl3. The techniques employed 
were 1H, 1H-13C HSQC and DEPT-135 13C-NMR 
spectroscopy. The analyses were performed in a JEOL© 
400 MHz spectrometer operating at 400 and 100 MHz 
for proton and carbon-13 nuclei, respectively. All 
experiments were performed at 25 °C.  

1H-NMR spectra were recorded with the following 
acquisition parameters: 2 scans; relaxation delay 4 s; 
pulse width 3.2 
µs; acquisition time 5.46 s; spectral width 15 ppm; 
acquired data points 40960.  

13C-NMR spectra for the DEPT-135 experiments 
were recorded with the following acquisition 

parameters: 512 scans; relaxation delay 2 s; pulse width 
11.1 µs; acquisition time 1.30 s; spectral width 200 ppm; 
acquired data points 40 960.  

HSQC spectra were recorded with the following 
acquisition parameters: 16 scans; relaxation delay 1.5 s; 
pulse width 6.4 µs; acquisition time 0.29 s; spectral 
width 9.5 ppm for 1H-NMR and 170 ppm for 13C-NMR; 
acquired data points 1280 for 1H-NMR and 32 for 13C-
NMR.  
 
3.4.4. Spectrum Processing using MestReNova© 
The obtained spectra were processed using 
MestReNova© by Mestrelab Research®. The chloroform 
signal was used as the reference and set at 7.26 ppm and 
77.16 ppm for 1H- and DEPT-135 13C-NMR spectra, 
respectively. For the 1H- and DEPT-135 13C-NMR 
experiment, spectral data points were increased to 52 
430 and 104 858, respectively, using zero filling. For the 
HSQC experiment, spectral data points were increased 
to 1640 for 1H-NMR and 1024 for 13C-NMR using zero 
filling. Baseline correction was performed by applying 
a polynomial third order function for 1H-NMR spectra 
and a Berstein Polynomial third order function for 
DEPT-135 13C-NMR spectra. The latter were denoised 
to a 0.3 noise factor. Automatic phase correction was 
sufficient for 1H-NMR spectra, but manual phase 
correction was required for DEPT-135 13C-NMR 
spectra.   

For HQSC spectra, the DEPT-135 13C- and 1H-NMR 
files must be open and adequately processed in the same 
document, so the HSQC spectrum shows the correct 
horizontal and vertical traces which allows for phase 
adjustment and accurate cross-peak to species 
assignment. Exponential apodization of 3 Hz and 5 Hz 
was performed along axes f1 and f2 respectively. Phase 
correction was applied manually.  
 
3.4.5. ChemDraw® Predictions 
Predictions of the 1H- and 13C-NMR spectra in CDCl3 
for an applied field of 400 MHz and 100 MHz, 
respectively, were performed with ChemDraw®. For 1H-
NMR, it estimates approximately 90% of C-Hx groups 
with a standard deviation of between 0.2 and 0.3 ppm. 
For 13C NMR, it estimates 95% of the shifts with a 
standard deviation of 2.8 ppm[20]. The simulations were 
carried out for linoleic glycerides since linoleic acid is 
the predominant fatty acid present in sunflower oil 
(71.73%)[21]. 
 

 

4. Results and Discussion  
The crude product mixture was very viscous and had a 
fruity smell characteristic of FAEE[22] which 
qualitatively indicated product formation. 
 
4.1. GPC Analysis 
GPC analysis was conducted on the crude product prior 
to oil separation. Further GPC analysis could not be be 
conducted due to solubility issues of the purified product 
in DMF and tetrahydrofuran (THF).
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Figure 3. Superposition of the GPC spectra of the crude product 
mixture, pure glycerol and pure sunflower oil.  

 
One high and one low intensity peak at the retention 
times of 17.2 (peak 1) and 18.2 minutes (peak 2) are 
determined, respectively. Peak 1 corresponds to an 
overlap of the pure sunflower oil and product signals. 
However, the product signal is broader than that of the 
sunflower oil. This suggests co-elution of species in the 
column. 

GPC is a technique that identifies compounds by 
molecular weight separation. Larger molecules have 
shorter retention times than smaller molecules because 
they cannot penetrate the pore size of the column 
packing[23]. This means that the hydrodynamic radius of 
the species is a key factor in the separation efficacy, not 
only its molecular weight. The hydrodynamic radius of 
a molecule in solution, also known as Stokes radius, is 
the radius of a sphere whose diffusion coefficient is 
equivalent to that of the molecule[24]. 

Given this, and by contrasting with our NMR results 
discussed in section 4.3, we expect the co-elution of 
TAG and 1,3-DAG, whose hydrodynamic radii are 
reasonably similar, to result in peak 1. Similarly, peak 2 
is expected to correspond to the co-elution of FAEE and 
1,2-DAG. Their hydrodynamic radii are smaller than 
those of TAG and 1,3-DAG so are retained longer in the 
column packing. The higher intensity of peak 1 
compared to peak 2 can be explained by the large 
amounts of unreacted oil present in the crude product, as 
discussed in section 4.4.  

Co-elution occurs when the difference in the 
retention times of the analytes is inferior to the 
resolution of the analysis[25]. It is therefore a severe 
limitation of GPC analysis which does not allow for 
accurate identification of species in the product mixture. 
Co-elution could be overcome by using a higher 
resolution column[26]. However, the variation of column 
resolution to suit a new type of mixture is both time and 
cost-intensive[27]. Therefore, GPC is not recommended 
as a characterisation technique for complex glyceride 
mixtures.   

 
4.2. FTIR Analysis 
From the analysis of figure 4, some of the signals in the 
glycerol spectrum do not match those of the purified 
product. Therefore, as detected by GPC analysis, 
glycerol is absent in the product. 

 
Figure 4. Superposition of the FTIR spectra of the purified product, 
pure glycerol and pure sunflower oil. 

 
Peak 1 of the product spectrum is a broad signal at 3550-
3200 cm-1 which corresponds to the intermolecular 
bonded alcohol group[28]. This suggests the presence of 
MAG and/or DAG in the product because TAG does not 
contain hydroxyl groups. Peaks 2 and 3 correspond to 
exact superpositions of the signals in the sunflower oil 
and the product spectra. This indicates shared moieties 
between compounds in the mixture and in the pure 
sunflower oil. However, it does not confirm the presence 
of oil in the product as all glycerides share similar 
structures, namely the glycerol backbone and fatty acid 
chains[29]. Finally, peak 4 is a weak signal at 1645 cm-1 
and indicates the presence of water as it corresponds to 
its bending mode of vibration[30].    

We can conclude that FTIR is an effective 
characterisation technique but is not detailed enough for 
complete characterisation of complex glyceride 
mixtures. It mainly enables the determination of 
functional groups and does not inform on the total 
hydrogen and carbon content in the mixture[31]. 
Therefore, the use of NMR techniques is required.  

 
4.3. NMR Analysis 
The structures of the species that may be present in our 
product are shown in figure 2, which includes the carbon 
numbering convention used in this report. These 
labelled groups will be referred to in the following 
sections. For example, when referring to group C3-H2 of 
1,2-DAG, C3 corresponds to the terminal carbon on the 
glycerol backbone that is bonded to the hydroxyl group.  
 
4.3.1. 1H-NMR Analysis 
In figure 5, the signals from glycerol are not observed 
on the product spectrum, for example in the 3.3-3.6 ppm 
region. Therefore, 1H-NMR results confirm the absence 
of glycerol in the product mixture, as also found from 
the GPC and FTIR results. Two signals at 3.72 ppm and 
5.08 ppm, which do not appear on the sunflower oil or 
glycerol spectra, are observed. These are specific to 1,2-
DAG so its presence is identified in the product. 

Nevertheless, determining the presence or absence 
of unreacted sunflower oil as well as of the different 
product species is not as unequivocal. There is a severe 
overlap of the signals from the oil and product spectra in 
the 4.1-4.3 ppm and 5.2-5.4 ppm regions. In the former 
region, there is an overlap between the signals from the 
protons bound to the terminal glyceryl carbons (C1/C3-
H2) of both TAG and the products. In the latter, the 
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signals from the protons bound to the central glyceryl 
carbon (C2-H) of TAG overlap with those from the fatty 
acid chain unsaturations, which are present in all 
glycerides. 

 

 
Figure 5. Superposition of the 1H-NMR spectra of the purified product 
(red), pure glycerol (blue) and pure sunflower oil (green). 

 
To facilitate the analysis of overlapping peaks, the in-
built GSD (Global Spectral Deconvolution) method in 
MestReNova© was employed. It successfully revealed 
distinct peaks hidden under apparent envelopes. 
However, given the significant overlap between the 
signals, clear multiplet patterns could not be inferred. 
Moreover, the singlet corresponding to H2O at 1.6 ppm 
is overlapped with signals from the methylene groups in 
the fatty acid chains present in all glycerides and is thus 
difficult to identify from 1H-NMR. The presence of 
residual water in the product mixture is known from the 
FTIR results. Therefore, limiting the analysis of 
complex mixtures to solely 1H-NMR experiments does 
not allow for accurate product characterisation. The 

overlap of signals is a significant limitation of this 
technique which justifies the need for complementary 
techniques such as DEPT-135 13C-NMR or 2D NMR to 
accurately assign the signals to the correct species. 
HSQC (Hetereonuclear Single Quantum Coherence) is 
a 2D method which is particularly useful, since it 
indicates which protons are attached to which carbons 
via 1JC-H coupling.  

 

 
Figure 6. Assignment of 1H-NMR signals of the purified product 
mixture to species. The signal boundaries are shown by the colour 
bands.  

 
The 1H-NMR spectrum signals were assigned to each 
species after contrasting the 1H, DEPT-135 13C and 
HSQC spectra and comparing their data with literature. 
These assignments are shown in figure 6. Table 1 
correlates the labels in the figure to the corresponding 
protons in each species. It also summarises the chemical 
shift data obtained from 1H-NMR experiments, 
ChemDraw® predictions and literature. 

Table 1 Experimental, Predicted and Literature Results for the 1H-NMR Analysis of the Purified Product. 

Species Group Label 
1H-NMR Chemical Shift (ppm) 

Experimental ChemDraw® Literature 

1,2-DAG 
 

C3-H2 A 3.72 3.68;3.62 3.72[8] 
C1-H2 B 4.30;4.23 4.42;4.17 4.31;4.23[8] 
C2-H C 5.08 5.26 5.08[8] 

1,3-DAG C2-H and C1/C3-H2 D 4.04-4.20 4.21-4.78 4.07-4.18[8] 
TAG 

 
C1/C3-H2 E 4.30 4.30 4.29[8] 

C2-H F 5.26 5.85 5.26[8] 
FAEE C1-H2 G 4.12 4.01 4.13[32] 

Ethanol C1-H2 H 3.70 3.59 3.63[33] 

The groups labelled C1/C3-H2 correspond to the two identical CH2 groups of the species. aTwo signals are observed for the C1-H2 group of 1,2-DAG. 
This is because the protons of this group are diastereotopic[34].  

 
4.3.2. DEPT-135 13C-NMR Analysis 
The signals in figure 7 are assigned using ChemDraw® 
predictions and literature[8]. On DEPT-135 13C  spectra, 
methine group signals appear downfield whereas those 
of methyl appear upfield. Quaternary carbons do not 
produce a signal as they are not bonded to protons.  

13C-NMR has a much larger spectral width than that 
of 1H-NMR, 200 ppm compared to 15ppm[15]. This is an 
interesting feature of 13C-NMR since it greatly reduces 
the incidence of overlaps. DEPT-135 13C-NMR is faster 
than decoupled broadband 13C-NMR and presents the 

additional advantage of differentiating the signals from 
methylene groups from those of methine and methyl 
groups since they are shown in opposite orientations on 
the spectrum, as seen in figure 7. However, the study of 
DEPT-135 13C-NMR on its own did not yield insight on 
which carbon groups correspond to which glyceride 
species given their structural similarity. Therefore, 2D 
NMR was required for a more complete analysis. 
Nevertheless, the DEPT-135 13C-NMR spectrum was 
useful for accurate processing of the HSQC spectrum, as 
mentioned in section 3.4.4.  
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Figure 7. Assignment of DEPT-135 13C-NMR spectrum signals. 
Negative phase signals correspond to CH2 groups. Positive phase 
signals correspond to CH and CH3 groups. 
 
4.3.3. 1H-13C HSQC Analysis 
The HSQC spectrum presents cross peaks, where the 
vertical axis corresponds to the 13C-NMR chemical 
shifts and the horizontal axis to those of 1H-NMR. Thus, 
identification of which protons are bonded to which 
carbons through a single bond is possible. Specifically, 
this spread of signals along two dimensions allows the 
separation of signals which appear overlapped on 1D 
NMR spectra[35].  

From figure 8, we see that there is significant overlap 
of 1H-NMR signals between 4.05 ppm and 4.35 ppm 
which HSQC has been able to resolve through the 
plotting of cross peaks. Specifically, these overlaps 
occur between 4.09 ppm and 4.16 ppm for FAEE and 
1,3-DAG; between 4.2 ppm and 4.35 ppm for 1,2-DAG 
and TAG; and between 3.68 ppm and 3.75 ppm for 
ethanol and 1,2-DAG.  

Indeed, the terminal glyceryl methylene groups of 
TAG and the terminal glyceryl methylene group in 
position 1 of 1,2-DAG present signals which are 
overlapped on the 1H-NMR spectrum around 4.30 ppm 
(signals E and B in figure 6 and table 1). The overlap 
between the signals from 1,3-DAG and the methylene 
group from the ethyl chain of FAEE between 4.09 ppm 
and 4.16 ppm is also evidenced (signals D and G). 
Furthermore, HSQC analysis allowed the separation of 
the single signal for 1,3-DAG obtained from 1H-NMR 
analysis (signal D) into individual cross peaks at 
(4.15ppm; 65.07ppm) for the terminal glyceryl 
methylene groups and at (4.07ppm; 68.39ppm) for the 
central glyceryl methine group. 

HSQC analysis also revealed the presence of ethanol 
whose methylene group signal overlaps with that of 
terminal glyceryl methylene group in position 3 of 1,2-
DAG at 3.72 ppm (signals H and A). These findings 
confirm the necessity of 2D NMR techniques to achieve 
more accurate signal identification. The signals 
corresponding to MAGs, at 3.65 ppm, 3.94 ppm and 
4.18 ppm for 1-MAG[9] and 3.84 ppm and 4.28 ppm for 
2-MAG[9], are absent on figure 8. These species are thus 

not present in the product mixture. The reasons for this 
will be explained in section 4.4. Table 2 summarises the 
chemical shift data obtained from HSQC experiments, 
ChemDraw® predictions and literature. 
 

 
Figure 8. 1H-13C HSQC spectrum of purified product. Red signals 
correspond to positive phase (CH or CH3). Blue signals correspond to 
negative phase (CH2). Unlabelled red signals correspond to residual 
noise after apodization was applied.  
 
Therefore, HSQC analysis gives conclusive evidence of 
the presence of 1,2-DAG, 1,3-DAG, FAEE, TAG and 
ethanol in the final product. 

It is worth noting that there is still overlap of 13C-
NMR signals between 1,2-DAG and TAG (signals B 
and E) on the HSQC spectrum at 62 ppm. This overlap 
can be resolved by using a higher frequency 
spectrometer, as was done by Hatzakis et al.[8] In their 
experiments, a 600 MHz spectrometer was employed 
whereas a 400 MHz machine was used in our study. 
Thus, it is evidenced that the use of a spectrometer of 
sufficiently high frequency is of great importance when 
dealing with complex mixtures. This results in higher 
resolution spectra, as can be seen in figure 9[8], which 
greatly facilitates analysis.  

 

 
Figure 9. 600 MHz HSQC-DEPT spectrum of DAG olive oil in 
CDCl3 solution taken from Hatzakis et al.[8]. 
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Table 2 Experimental, Predicted and Literature Results for the 1H-13C HSQC Analysis of the Purified Product. 

 
Species 

 
Group 

1H-NMR 
Chemical Shift 

(ppm) 

13C-NMR Chemical Shift (ppm) 
 

Experimental Experimental ChemDraw® Literature 

1,2-DAG 
 

C3-H2 3.72 61.58 61.5 61.49[8] 
C1-H2 4.27 62.08 62.5 61.98[8] 
C2-H 5.06 72.21 72.3 72.09[8] 

1,3-DAG C1/C3-H2 4.15 65.07 65.4 65.01[8] 
C2-H 4.07 68.39 67.6 68.34[8] 

TAG C1/C3-H2 4.13;4.22a 62.08 62.7 62.07[8] 
C2-H 5.24 69.05 69.0 68.85[8] 

FAEE C1-H2 4.11 60.25 61.3 60.20[32] 
Ethanol C1-H2 3.71 58.42 57.9 58.2[33] 

aTwo signals are observed for these CH2 groups of TAG. This is because the protons of this group are diastereotopic[34].  
 
4.3.4. Semi-Quantitative HSQC Analysis 
In 1H-13C HSQC experiments, the 1JCH coupling 
constant of a group relates to its chemical environment 
and is affected by atoms up to one bond away from the 
carbon. The 1JCH value of each group affects the 
correlation peak volume Vc of its cross peak on the 
HSQC spectrum, as seen in figure 10. This is due to a 
strong dependence between Vc and 1JCH in conventional 
HSQC where an average 1JCH value, 1JCHtune, is used for 
analysis. This usually allows for a sufficient qualitative 
analysis where all correlation peaks can be detected on 
the spectrum. However, it significantly impacts the 
quantitative analysis. In figure 10, strong deviations in 
Vc are observed at 1JCH values different to 1JCHtune. 
Therefore, to achieve a semi-quantitative analysis of our 
mixture, it is necessary to compare peak volumes 
between similar groups of different species. The 
assumption is that groups in a similar chemical 
environment will have similar 1JCH constants and 
therefore their correlation peak volumes will be reduced 
by comparable amounts. 
 

  

 
Figure 10. Simulated J-dependence of conventional (thin line) HSQC 
and Q-HSQC (thick line) taken from Heikinnen et al.[36]. The 
conventional HSQC method uses 1JCHtune=145Hz. The Q-HSQC 
method uses iterative optimisation in the 1JCH range of 115 – 190 Hz.  

 

 
For our analysis, we compared integrals between groups 
C1-H2 of FAEE and 1,2-DAG; C2-H of TAG, 1,2-DAG 
and 1,2-DAG; C3-H2 of 1,2-DAG and C1-H2 of ethanol. 
This allowed us to determine integral ratios of each 
species with respect to 1,2-DAG which is shown in 
equation 1.  
 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑟𝑎𝑡𝑖𝑜 =  
ூೞ೛೐೎೔೐ೞ ೔,   ೒ೝ೚ೠ೛ ೕ

ூభ,మషವಲಸ,   ೒ೝ೚ೠ೛ ೕ
      Eq. 1 

 
These were used to calculate the final molar 
composition of the mixture, presented in table 3. The 
results are given on a water-free basis as non-carbon 
containing compounds, such as H2O, do not appear on 
HSQC spectra. The results are reported to their integer 
values due to the semi-quantitative nature of the 
analysis. 

 
Table 3 Molar composition of the purified product on a water-free 
basis, obtained by semi-quantitative HSQC analysis. 

Species Integral Ratio Content (mol%) 
1,2-DAG 1.00 6 
1,3-DAG 6.39 40 

TAG 1.02 6 
FAEE 5.20 33 

Ethanol 2.39 15 
 

From this table we see that the purified product mixture 
is composed of 46 mol% DAG and 33 mol% FAEE. 
Since no MAGs were produced, we know that the 
reaction, shown in figure 1, did not exceed the first step. 
Therefore, we would expect to find FAEE and the DAG 
isomers in stoichiometric proportions. 1.4 times more 
DAG than FAEE was determined but this deviation can 
be explained by the approximations made for the semi-
quantitative analysis.   

It should be noted that Heikinnen et al.[36] achieved 
a quantitative-HSQC (Q-HSQC) method which greatly 
minimises the dependence of the correlation peak 
volume on 1JCH, as can be seen in figure 10. This was 
achieved by an iterative optimisation method to obtain a 

294



 8 

uniform intensity response for Vc for a given 1JCH range. 
In this way, all the peak integrals of species in this 1JCH  
range can be directly compared, avoiding the drawbacks 
of our semi-quantitative method.  

Another method to achieve better quantification 
could be to conduct 13P-NMR experiments. These have 
proven to be the most effective at determining the 
concentration of glycerides[8]. Drawbacks include long 
experiment durations since phosphitylation of the 
sample is required. Additionally, phosphitylation 
destroys the sample. However, it is highly accurate due 
to its signals being singlets which are spread over a wide 
spectral range. Moreover, they offer reduced analysis 
costs since they can be conducted using cheaper lower 
frequency spectrometers[8]. 
 
4.4. Insight into the Reaction Mechanism 
The characterisation of the mixture provides some 
insight into the ethanolysis reaction mechanism. Due to 
the absence of MAGs and glycerol in the product, we 
were able to confirm that the reaction did not exceed the 
first step. This could be due to the use of insufficient 
ethanol and/or the short reaction time of 5 minutes 
tested. These conditions likely resulted in insufficient 
formation of DAGs to push the formation of MAGs in 
the second step. Specifically, 37.4g of unreacted oil was 
collected during purification and 4.05g of purified 
product, consisting of 46 mol% DAGs. Therefore, a 
much higher number of TAGs compared to DAGs 
would have been available for reaction with ethanol at 
the time the reaction was quenched, leading to the 
preferential formation of DAGs instead of MAGs. 

 
 

5. Conclusions 
The characterisation of the glyceride mixture was 
effective and showed preferential synthesis of the 1,3-
DAG isomer compared to the 1,2-DAG isomer. No 
MAGs or glycerol were produced so the reaction did not 
exceed the first step. Therefore, the characterisation 
enabled clearer insight into the reaction mechanism. The 
purified product contained significant quantities of 
FAEE and residual amounts of unreacted oil, ethanol, 
and water. Improvements in the purification procedure 
would be beneficial to increase the purity of DAGs in 
the mixture.  

The key difficulties encountered during 
characterisation were highlighted. Specifically, the 
comparison of analytical techniques demonstrated that 
GPC was ineffective for the characterisation of the 
glyceride mixture due to the co-elution of species. FTIR 
was an effective technique but did not give detailed 
enough information because it does not inform on the 
hydrogen and carbon contents of the mixture. Thus, 
NMR proved to be the most effective technique but the 
combination of 1D and 2D methods is necessary. 1H-
NMR alone was ineffective due to the complexity of the 
mixture resulting in many peak overlaps. This 
complexity was not only due to the number of species 
present in the mixture but was enhanced by their 
structural similarity. The use of 2D techniques, 
specifically 1H-13C HSQC, was successful at resolving 

most of these overlaps and enabled semi-quantitative 
analysis.  
 
 
6. Outlook 
More accurate quantification could be achieved using 
the Q-HSQC method developed by Heikinnen et al.[36] 
or by conducting 13P-NMR experiments[8]. 
Alternatively, 13C-NMR experiments could be 
performed which, similarly to 13P-NMR, have a wider 
spectral range compared to 1H-NMR. This enables 
unequivocal signal to species assignment and thus better 
quantification. If the 1H-NMR data for each of the pure 
components in the mixture is available, the 
MestReNova© software SMA (Simple Mixtures 
Analysis) plug-in allows for easier characterisation and 
quantification[37].  

To overcome the remaining peak overlaps in the 
HSQC spectrum, a higher frequency spectrometer could 
be employed to improve spectral resolution. From 
literature, a 600 MHz frequency seems to be 
sufficient[8].   

After achieving accurate quantification, the study of 
mechanocatalysis as a feasible method for ethanolysis 
could be addressed. Specifically, the reaction conditions 
for this process could be optimised and its energy 
efficiency compared to that of conventional methods. 
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Abstract 

Polycyclic aromatic hydrocarbons and their derivatives (PAHDs) are a class of organic compounds of which 
many are toxic, mutagenic and/or carcinogenic. . Given their toxicological pertinence it is of interest to be 
able to assess their behaviour in water systems; this can be done through an understanding of their aqueous 
solubilities. However, experimental methods can be expensive in both time and cost, and hence, 
computational methods are being increasingly used.  

An ML-QSPR model to predict the aqueous solubilities of PAHDs from Mordred descriptors was produced. 
The model utilised an XGBoost regressor, of which the hyperparameters were tuned by a cross-validated 
grid search. Euclidean distances were also used as a metric to remove outliers. The results of the final model 
(mean absolute error of 0.633, a root mean squared error of 0.906, and an R2 of 0.870) are comparable with 
similar models that predict the aqueous solubilities of other organic compounds. Further work should be 
done to explore the mitigation of propagated experimental error, as well as the implementation of different 
models and descriptor packages. 

1. Introduction 
Polycyclic aromatic hydrocarbons (PAHs) are a 
class of organic compounds found both naturally 
occurring in crude oil, coal, and gasoline, as well as 
being artificially produced for use as chemical 
precursors [1]. PAHs are composed of multiple 
fused aromatic rings, and hence, are relatively 
stable, however, given the correct conditions they 
can be reactive [2]. Such reactivity can lead to the 
formation of reactive metabolites which have the 
ability to covalently, and hence irreversibly, bind 
to DNA, proteins and other macromolecules [3]. 
Their planar structure also allows for intercalation 
with DNA [4]. Both of these processes are known 
to have adverse effects on humans and thus many 
PAHs have received the classification of being 
toxic, mutagenic and/or carcinogenic [5].  

PAHs are primarily formed as a result of 
incomplete combustion during both natural and 
anthropogenic processes; this includes the burning 
of fossil fuels, vehicle emissions, industrial 
processes, and volcanic eruptions [5]. Such 
activities contribute significantly to the pollution of 
the atmosphere, pollution which includes PAHs 
and PAH derivatives (PAHDs). PAH derivatives, 
also known as substituted PAHs, arise as a result 
of the presence of impurities during the 
combustion process [6]. PAH derivatives include 

base PAH structures with additional groups such 
as acids and amines. 

These derivatives have been found to be equally, if 
not more, toxic than unsubstituted PAHs [7] and 
yet little research has been conducted to better 
understand them. Pollutant particulates are subject 
to deposition, whereby they are returned to the 
ground either by gravity or precipitation, thus 
leading to the direct contamination of bodies of 
water, or indirect via surface runoff. A quantitative 
measure of the deposition of PAHs and their 
derivatives, relative to their airborne 
concentration, is hard to ascertain as it varies 
widely depending on environmental conditions 
and other local factors [8]. Regardless, given their 
toxicological pertinence it is of interest to be able to 
assess their behaviour in water systems. 

In order to understand PAHs’ and their 
derivatives’ relationships with water, a 
fundamental property to consider is their aqueous 
solubility. The ability to estimate their dissolution 
in water allows for their transportation as well as 
their bioavailability in waterways to be better 
understood. Generally, PAHs and their derivatives 
have low aqueous solubilities [5], resulting in 
relatively low levels of direct water contamination. 
However, due to their lipophilic nature, small 
quantities can bioaccumulate in the fatty tissue of 
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organisms inhabiting aquatic ecosystems [5]. This 
poses increasing risk to each additional stage of the 
trophic system, with humans susceptible to the 
highest accumulated concentrations. Therefore, 
due to their aforementioned toxic nature, even 
small quantities have the capacity for damage and 
hence should be accounted for to adequately assess 
the risk they impose and facilitate the exploration 
of remediation techniques. 

The determination of aqueous solubility by 
experimental means has the potential to be 
expensive, both in time and cost. It requires pure 
compounds that may be difficult to synthesize and 
given the tendency for PAHs and their derivatives 
to form naturally, in mixed compositions, this is 
particularly prevalent [5]. Thus, the 
implementation and utilisation of predictive 
models has become increasingly popular in the 
estimation of thermophysical properties for the 
majority of molecules and compounds, with 
increasing degrees of accuracy as technologies and 
datasets are continually developed. Predicting the 
aqueous solubilities of many classes of organic 
compounds has been explored using both 
theoretical and data-driven approaches, however, 
there is limited research with regards to PAHs, 
especially substituted ones. In terms of theoretical 
approaches, group contribution models such as 
UNIFAC and SAFT have proven highly successful 
in their abilities to predict thermophysical 
properties, however, their current ability to predict 
the aqueous solubilities of substituted PAHs is 
limited [9].  

An established data-driven method being 
increasingly utilised as advancements in the 
capabilities and accessibility of machine learning 
(ML) are being made are ML-QSPR (machine 
learning–quantitative structure-property 
relationship) models. QSPRs mathematically link 
thermophysical properties of molecules and 
compounds with descriptors based on intrinsic 
structural information. Descriptors range from 
basic properties such as molecular weight and 
number of functional groups to more complex 
variables concerning the fragmentation and 
fingerprints of given compounds; the calculation 
of each, insofar with regards to computation, 
relatively simple. The implementation of QSPR 
within ML models enables complex relationships 
between descriptors and target variables, as well as 
the significance of descriptors, to be found. As a 
result of this, aqueous solubility predictions of 

organic compounds using these models have been 
extensively explored. However, relatively few 
have been developed with the objective of 
predicting the solubilities of PAHs, and even fewer 
for PAH derivatives. One pioneering model 
utilized partial least squares (PLS) to predict the 
solubilities of PAHs with reasonable accuracy, 
however, the sample size was relatively small with 
little variance, and contained no substituted PAHs 
[10].  Nonetheless, this provided valuable insight 
into the capabilities of such models and provided 
a foundation on which to develop. More recent 
solubility prediction models [11] [12] [13], not 
developed exclusively for PAHs or their 
derivatives, provide benchmark values of expected 
accuracies of predictions given the current 
available technologies. However, considerations 
must be made when comparing the accuracies of 
models given inconsistencies between the number 
of compounds and their variance within datasets, 
along with the different ML models used. 

Taking all of this into account, this study aims to 
implement an ML-QSPR model that is capable of 
correlating the aqueous solubilities of both 
substituted and unsubstituted polycyclic aromatic 
hydrocarbons to their descriptors. This, in an effort 
to understand the relationships between such, and 
hence, be able to accurately predict the aqueous 
solubilities of unseen PAHDs in an effort to better 
understand their potential impacts as pollutants. 

2. Methodology      
2.1. Data Collection 
In this work, the AqSolDB dataset was employed – 
a curation of experimental aqueous solubilities of 
9982 organic compounds ranging from alkanes to 
aromatics . It was formed with the intention for use 
in data-driven model development. The aqueous 
solubility values in the dataset are standardised to 
log[S/(molL-1)] units for consistency, as well as 
allowing for better visualisation and comparison. 
AqSolDB also includes the Simplified Molecular 
Input Line Entry System (SMILES) string  for each 
of the compounds, easing the generation of 
molecular descriptors. 

During the curation of AqSolDB efforts were made 
to reduce the errors in the database, utilising an 
algorithm to select the most accurate experimental 
solubility value when duplicates were found. 
However, regardless of its effectiveness, there is 
still an error associated with experimental results 
which must be considered in any subsequent 
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predicted values using the dataset. Furthermore, in 
an effort to maximise the sample space, solubility 
values measured at 25 ± 5 °C were included, 
despite solubility being a function of temperature, 
as the range was considered acceptably small. 

2.2. Molecular descriptor calculation 
The molecular descriptor values of each 
compound were to act as their respective feature 
values during the machine learning process. It was 
therefore important to generate relevant 
descriptors, that adequately represented the 
individuality of each compound. Multiple 
descriptor packages are available, the two most 
widely used being Mordred and PaDEL. They are 
both open source and can generate large numbers 
of both 2D and 3D descriptors. Of the other 
available packages many often utilize proprietary 
software, are unavailable or deprecated in Python, 
or calculate significantly fewer, less varied 
descriptors . 

In the interest of computational simplicity, given 
the size of the dataset, only one of the 
aforementioned packages was to be used. The 
selected package was Mordred due to its ability to 
calculate descriptors for larger molecules than 
PaDEL is capable of, furthermore, each descriptor 
calculation requires under half the computational 
time to that of PaDEL . Both factors were 
significant given the size and variance of the 
dataset. 

The descriptors were generated from the SMILES 
of each compound, using the Mordred package in 
Python generating 1,613 two-dimensional (2D) 
descriptors with 3D descriptors being disregarded 
to increase prediction speed and avoid 
repeatability problems regarding 3D descriptor 
values. Compounds for which descriptors could 
not be calculated were removed leaving 8149 
compounds, of which 436 were identified as 
PAHDs. These PAHDs were then used as the basis 
for processing the data. The removal of the PAHDs 
left a remaining set of 7,713 non-PAHD 
compounds. 

2.3. Data Processing 
Following this, categorical variables and low 
variance features were removed, utilising a 
threshold of 0.1, as these features do not vary 
enough to effect the solubility and would increase 
computational intensity. This left 603 descriptors. 
The descriptor pair correlation matrix was then 
calculated and descriptors with an absolute 

Pearson correlation coefficient value greater than 
0.8 were removed. This prevented particular 
descriptors from dominating the model and 
causing the model to overfit. Following this, 130 
descriptors remained for use in the model. An 
additional step was taken to remove descriptors 
that were uncorrelated to solubility, with a 
threshold of less than 0.2 absolute Pearson 
correlation coefficient being set. This created a 
dataset of 43 descriptors. These two datasets were 
tested against each other to find the best 
performing set to continue with, as some 
important descriptors could have been removed. 

2.4. Machine Learning Overview 
The machine learning algorithm used in this study 
was a regressor of gradient-boosted decision trees 
(XGBRegressor) from the XGBoost library . 
XGBoost is an implementation of gradient 
boosting, which is an ensemble learning technique 
where models are added to correct the errors of 
previous models. It uses decision trees as base 
learners and combines these to create a strong 
predictive model., choosing how to build a more 
powerful model by using the gradient of a loss 
function, which captures the performance of the 
model. XGBoost was chosen in this study as it 

Figure 1: Absolute correlations to solubility for each 
descriptor with different numbers of descriptors. 
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gives state-of-the art results on a wide range of 
problems . The XGBoost regressor has several 
hyperparameters which can be tuned to optimise 
performance on a given dataset. 

During this study 4 different hyperparameters 
were studied to optimise the model, those being, 
the number of estimators, the learning rate, the 
maximum depth and the minimum child weight. 

The number of estimators is the number of trees 
which are fit during training. The more estimators, 
the more complex patterns can be found in the 
data, however if the number of estimators is set too 
high it can lead to overfitting, reducing the 
predictive capability of the model. 

The learning rate determines the step size at each 
iteration while moving towards the minimum of 
the loss function. It is used to prevent overfitting in 
the model and determines how quickly the model 
will train. 

The maximum depth hyperparameter determines 
the maximum depth of each tree. Deeper trees can 
find more intricate relationships in the data but can 
lead to the model overfitting to the training data 
and fail to find the underlying patterns. 

The minimum child weight hyperparameter 
controls the minimum sum of instance weights 
needed in a child (nodes formed when a tree is 
split). This stops the creation of nodes with very 
few instances, and therefore acts as a form of 
regularisation to prevent overfitting . 

The model also included early stopping, which 
stops the model training once the performance of 
the test dataset has stopped improving for a certain 
number of boosting rounds. In this study a value 
of 5 was set in order to prevent the model from 
overfitting and to reduce the computational 
complexity by stopping the training once the 
training loss begins to increase . 

In order to optimise the hyperparameters for each 
dataset used in this study, two grid searches were 
conducted which tested different combinations of 
hyperparameters using 5 cross validation folds, to 
provide a more robust measure of the model’s 
performance. The performance of the model 
during the grid search was scored by the negative 
mean absolute error. The first grid search ranged 
over a wide range for the hyperparameters with 
the second one using smaller increments to 
attempt to get closer to an optimum.  

2.5. Machine Learning Application 
From the 436 PAHDs found in AqSolDB 25% (109) 
were completely removed from the dataset to 
create a test set, to determine the predictive 
capability of the model on completely unseen data. 
It was ensured that the test set would have a 
representative range of solubilities, to demonstrate 
predictive capabilities across a wide range of 
PAHDs. This left a training set of 327 PAHDs.  

Initially, only the set of 327 PAHDs was used to 
train the model, testing with both 43 descriptors 
and 130 descriptors. The number of descriptors 
which gave the best performance at this stage 
would be used moving forwards.  

Following this, the 327 PAHDs were combined 
back into the non-PAHD dataset and this dataset 
would be run with the previously best performing 
features. This was done as some features of the 
PAHDs, especially the additional functional 
groups, may have been poorly represented within 
the PAHD dataset, so the non-PAHDs were 
included to provide a more complete set of features 
for the model to train on. After training this model, 
it was tested against the test set of PAHDs again.  

After each training of the model the model was 
evaluated with the Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE) and R2. 

Table 1: Equations for the different metrics used in this work. 
Predictioni is the ith model prediction and truei is the 
corresponding experimental value 

Metric Equation 
Mean 
Absolute Error  

∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛௜ − 𝑡𝑟𝑢𝑒௜|௡
௜

𝑛
 

Root Mean 
Squared Error ඨ∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛௜ − 𝑡𝑟𝑢𝑒௜)ଶ௡

௜

𝑛
 

R2 1 −
∑ (𝑡𝑟𝑢𝑒௜ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛௜)ଶ௡

௜

∑ (𝑡𝑟𝑢𝑒௜ − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑟𝑢𝑒)ଶ௡
௜

 

 

The MAE was the primary metric used in this 
study, as it allowed the best comparisons between 
this model and others from literature and provided 
the best real-world interpretation of the 
predictions.  

The RMSE was also utilised as larger errors have a 
larger impact on the RMSE, making it more 
sensitive to outliers. This allows for identification 
of models that have several large errors, which 
may not be visible from MAE alone. 
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R2 was employed to measure the goodness of fit of 
the XGBoost regressor. A higher value meaning a 
higher proportion of the variance in the dependent 
variable, in this case solubility, is explained by the 
model.  

The feature importance was visualised using 
SHapley Additive exPlanation (SHAP) values. 
SHAP values are based on game theory to assign 
the importance of each feature in the model, with 
the value showing the contribution of that feature 
to the specific prediction. The average SHAP value 
is therefore a measure of each features average 
contribution to the model’s predictions, with larger 
average SHAP values meaning that the feature is 
more important . 

2.6. Euclidean Distances 
Given the variety within the dataset, it was 
hypothesized that some metric to categorize the 
data could be used to better represent the PAHDs 
in the training set by adding similar non-PAHD 
compounds and excluding dissimilar ones. To do 
this, the Euclidean distances between each of the 
PAHDs and each of the non-PAHDs from the 
dataset were calculated. The Euclidean distances 
considered the difference between each value of 
the 130 descriptors for every combination of PAHD 
and non-PAHD compound, outputting a single 
value for each pair.  

These values could then be used to determine a 
non-PAHD’s similarity to each of the PAHDs, with 
a lower Euclidean distance indicative of a more 
similar compound. Increasing threshold values of 
Euclidean distance were iterated through, 
increasing the ‘radius’ around each PAHD, 
encompassing increasing amounts of decreasingly 
similar non-PAHDS. This was done over 10 
percent increments, with the first iteration adding 
the most similar 10 percent of non-PAHDs, and the 
last adding most similar 90 percent of non-PAHDs, 
to the training set. May it be noted that this was 
carried out in the absence of the test set, to ensure 
that the non-PAHDs selected had no 
predetermined relationship with them.  

Taking advantage of this enabled exploration into 
how formulating the dataset, in an effort to 
reinforce the characteristics of PAHDs, affected 
predictions. 

2.7. y-Randomisation 
After the best model was found, a y-
Randomisation was carried out to validate the 

robustness of the model. y-Randomisation works 
by randomly shuffling the target variable, while 
keeping the feature variables unchanged, and is 
used to determine whether the model is capturing 
actual relationships between the features and the 
target variable, or the predictions are due to 
chance. To show that the model is capturing actual 
relationships, the performance of the model should 
be poor with the randomised sets.  The target 
variable was randomised 50 times with the average 
MAE, RMSE and R2 of the models being reported.  

3. Results and Discussion 
3.1. Feature selection 
The results of using 130 features and 43 features, 
showed that the set of 43 features performed 
worse, as shown in Table 2: Comparison of the 
datasets using different numbers of features. MAE 
and RMSE values in units of log[S. This is due to 
some of the most important features being 
removed which are not linearly correlated with 
solubility, such as the ECIndex and ABC. This 
demonstrates a limitation in the calculation of the 
correlation coefficient as it only accounts for linear 
relationships, and it is likely that many of the 
features are not linearly related to solubility. Due 
to this, the 130 features were chosen to move 
forwards with as it allowed for better PAHD 
prediction.  

Table 2: Comparison of the datasets using different numbers 
of features. MAE and RMSE values in units of log[S/(molL-1)]   

Number 
of features  

MAE 
(Test) 

RMSE 
(Test) 

R2 (Test) 

43 0.743 1.01 0.838 

130 0.663 0.892 0.874 

  

3.2. Comparison with whole dataset 
The results shown in Table 2 demonstrate that 
training the model on the whole dataset provides 
better predictions for the PAHDs. This is due to the 
non-PAHD dataset having a larger range of 
different structures and functional groups, 
allowing the model to learn more complex patterns 
within the dataset. This allowed for better 
predictions for the test set as some of the 
compounds in it show features that are not found 
in the rest of the PAHD dataset.  
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Table 2: Comparison of utilising the whole dataset in training 
versus using just the PAHD set. MAE and RMSE in units of 
log[S/(molL-1)]  

Dataset  MAE 
(Test) 

RMSE 
(Test) 

R2 (Test) 

PAHD 0.663 0.899 0.868 

Whole set 0.655 0.890 0.871 

 

3.3. Euclidean distances 
Analysing the MAEs at increasing threshold 
increments showed little consistency in either 
reinforcing the characteristics of the PAHDs or 
diluting the training set, increasing, or decreasing 
the MAE respectively. The values fluctuated 
displaying no discernible trend, which upon 
inquiry could be a result of the following. 

The calculation of Euclidean distances was done 
irrespective of feature importance, and hence, a 
compound could be classified as ‘similar’ based on 
descriptors that had little influence on the model. 
Therefore, the addition of ‘similar’ compounds to 
the training set, with the intention of reinforcing 
the characteristics of PAHDs, could have added 
compounds with little similarity with regards to 
the features pertinent to the model, reducing the 
effectiveness of the training set. 

This possibly explains the lack of any trend found 
using this approach as, given the lack of explicit 
relationships between descriptors, a compound 
could be deemed ‘similar’ to a PAHD whilst 
having contradicting values for the most 
influential descriptors to the model. Therefore, 
given the current method, there is no reliable 
correlation between ‘similarity’ and individual 
descriptors, resulting in the possibility for 
influential descriptor values to arise at any 
threshold of ‘similar’ compounds. 

Upon plotting the Euclidean distances by Principal 
Component Analysis (PCA) it becomes 
increasingly apparent how little distinction there is 
between most compounds, further helping to 
explain the absence of any distinct trends using 
this method in its current configuration. However, 
upon visualization of the data, clear outlying non-
PAHDs can be identified. 

 
Figure 2: PCA plot displaying 130 descriptors in 2 dimensions 

Euclidean distances were therefore employed once 
again but this time as a means to remove such. 
Non-PAHDs in the training set with the greatest 
Euclidean distances were found and new datasets 
were formed by iteratively removing an additional 
percentage of the remaining farthest values. The 
model was retuned and retrained for each 
iteration. 

 
Figure 3: MAE from each dataset produced during outlier 
removal. Minimum MAE in units of log[S/(molL-1)]  

Figure 3 demonstrates the that best model found 
was when 3% of the outlying non-PAHDs were 
removed. The performance of this model is 
detailed in Table 3.  

Figure 4: PCA plot with 3% greatest outliers removed 

Figure 4 shows the distribution of compounds 
when the 3% of compounds with the greatest 
Euclidean distances were removed. It likely gives 
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the best result as all PAHDs are encompassed in 
the applicability domain and unrelated non-
PAHDs that add unnecessary noise are removed. 

3.4. Best Model Analysis  
Table 3: Summary of performance of the best model 
produced in this study. MAE and RMSE in units of 
log[S/(molL-1)]  

 

The hyperparameters of the best model were, 5000 
estimators, a learning rate of 0.01, a maximum 
depth of 11, and a minimum child weight of 15.   

The performance of the model is comparable with 
other machine learning models in literature which 
predict aqueous solubility of organic compounds, 
with the MAEs of some models shown in  Table 4. 

 Table 4: Comparison of this work with other literature 
machine learning models. MAE in units of log[S/(molL-1)], 
MLR-Multilinear regression, Ensemble-Combination of 
artificial neural network, random forest and XGBoost 

 

 
Figure 5: Parity plot showing the correlation of the predicted 
and experimental solubility values 

Figure 5 and the R2 value in Table 3 demonstrate 
that the predictions have a good fit to the actual 
aqueous solubility values in the test set. The plot 
shows that at lower solubility values the model is 
more likely to underpredict the solubility. This is 
likely due to the lack of compounds in the training 
set that have positive solubility values. This may 

mean that the model fails to learn relationships 
between the descriptors and aqueous solubility 
that led to higher solubilities, causing an 
underprediction at low experimental solubilities.   

 
Figure 6: Distribution of the errors between the experimental 
values and predicted values for the test set using the best 
model 

Figure 6 shows the distribution of the errors in the 
test set when using the best model. The errors are 
concentrated towards the lower errors with 56% of 
errors being less than 0.5 log[S/(molL-1)]. There is 
one error of 3.81 log[S/(molL-1)] which shows a 
very poor prediction. This point represents 1-
{bis[4-(diethylamino)phenyl]methyl}naphthalene-
2,7-disulfonic acid. A reason for the poor 
prediction of this molecule is that it contains 
groups that are poorly represented in the training 
dataset. For example, it contains 2 sulfonic acid 
groups which are not well represented in the 
training dataset, appearing only 5 times. Presence 
of sulfonic acid groups increases aqueous 
solubility of compounds, due to their large polarity 
which allows for stronger interactions between the 
compound and water [22]. The model may not 
have been able to capture this relationship, and 
therefore it underpredicted the solubility, 
predicting a value of -4.51 log[S/(molL-1)] when the 
actual value was -0.698 log[S/(molL-1)].  

3.5. y-Randomisation 
Table 5: Results of y-Randomisation. MAE and RMSE in units 
of log[S/(molL-1)]  

Model MAE 
(Test) 

RMSE 
(Test) 

R2 (Test) 

Original Model 0.633 0.906 0.870 

Average from 
Randomisation 

2.28 3.00 0.224 

 

Model MAE 
(Test) 

RMSE (Test) R2 (Test) 

97% 
retained 

0.633 0.906 0.870 

Developer ML Method MAE 
(Test) 

Yan  MLR 0.68 
Sorkun  Ensemble 0.40 
Ali  MLR 0.72 
This work XGBoost 0.63 
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The results of the y-Randomisation showed that by 
randomising the target variable the model 
performed much worse than the original model. 
This demonstrates that the model is finding actual 
relationships between the features and aqueous 
solubility, rather than just being by chance. This is 
evidence that the model is robust.  

3.6. Feature analysis 

 
Figure 7: Absolute Average SHAP value for the 10 most 
important descriptors of the XGBoost model 

Figure 7 shows the descriptors that have the largest 
influence on the predictions from the best model 
found. It is important to understand the most 
important descriptors, not just to gain a better 
understanding of the model, but to also verify that 
each of these features makes physical sense. The 
meanings of the most important descriptors are 
detailed below. 

AATS0i corresponds to an Autocorrelation 
descriptor which represents the average Bronto-
Moreau autocorrelation with lag 0, weighted by 
the first ionisation potential [23]. It captures the 
distribution of the first ionisation energy across the 
molecular structure. This influences how the 
compound will interact with water, as water is a 
polar molecule. Furthermore, AATS0i provides 
information about the compounds shape, size, and 
symmetry, which influences how the compound 
interacts with water, and therefore its solubility.  

The ECIndex is the Eccentric Connectivity Index 
and is a topological descriptor [23].  It considers the 
connectivity of the atoms and their eccentricity, 
which is a measure of how far an atom in the 
molecule is from other atoms in the molecule [24]. 
It captures information about the size and shape of 
the molecule, which influences how it will interact 
with water, depending on if it is large and 
complex, or small and simple, with simpler 
molecules tending to be more soluble [25]. The 

connectivity also impacts the polarity of the 
compound which will affect its interaction with 
water.  

The nAcid descriptor is a count of the number of 
acidic groups in a molecule, meaning those that 
can donate a proton in a reaction [23]. Acidic 
groups can form hydrogen bonds with the water 
molecules, which allows the compound and water 
to interact more strongly and increases solubility 
[26]. 

3.7. Comparison with SAFT-γ-mie 
The SAFT-γ-Mie equation of state is a group 
contribution method that allows for the calculation 
of thermodynamic properties, including aqueous 
solubility. It is based on the Statistical Associating 
Fluid Theory (SAFT) and utilises the Mie potential 
to describe the interactions between the Mie 
segments of the molecules [27]. Mie segments are 
the individual units that make up a molecule, with 
the molecule being represented as chains of these 
segments. The Mie potential is a generalised form 
of the Lennard-Jones potential, with variable 
exponents for the repulsive and attractive terms, 
allowing for a more accurate representation of 
intermolecular forces for a wider range of 
substances [27].  

SAFT-γ-Mie is considered the “Opus Magna” of 
the SAFT equation of state and can be used in the 
prediction of the solubility of PAHs and was 
therefore compared with the best model found in 
this work [28].  An MAE for the aqueous solubility 
of PAHs of 0.42 was found across a set of 22 PAHs, 
clearly demonstrating superior accuracy to the 
data-driven model [9]. However, the SAFT- γ-Mie 
model is more complex than the machine learning 
model and it is challenging to introduce new 
groups due to the need to estimate the interaction 
parameters, which is a very intensive and requires 
large amounts of data. This makes it difficult to 
predict the aqueous solubility of the more complex 
PAHDs as they have much more complex 
interactions than the simpler PAHDs. Due to this, 
the machine learning model still has applicability 
when it comes to more complex molecules.  

4. Conclusion 
To conclude, an ML-QSPR model to predict the 
aqueous solubilities of PAHs and PAH derivatives 
(PAHDs) has been produced, with comparable 
accuracy to other aqueous solubility models  . 
Thus, aiding in the understanding of their 
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behaviour in water. Furthermore, the use of 
SMILES as a means of descriptor generation allows 
for the descriptor values of novel PAHDs to be 
found, and therefore, an estimation of their 
aqueous solubility to be made. This is useful as it 
bypasses the need to synthesise such compounds 
to find their aqueous solubility experimentally, a 
costly and time intensive process. 

The final model utilised an XGBoost regressor, a 
tree-based algorithm, to predict aqueous 
solubilities of PAHDs, using 130 Mordred 
descriptors [16]. An additional dataset of non-
PAHD organic compounds was also available to 
supplement the training set [14], of which the 
closest 97% by Euclidean distance to the PAHDs, 
were employed. This resulted in a mean absolute 
error (MAE) of 0.633, a root mean squared error 
(RMSE) of 0.906, and an R2 of 0.870. These metrics 
indicated a better performance than using solely 
PAHDs in the training set (MAE:0.663, 
RMSE:0.899, R2:0.868), and hence, supports the 
idea of using similar compounds to aid the model’s 
predictive capabilities. However, the use of 
Euclidean distances to execute this did not behave 
exactly as expected and would potentially be 
improved in future works by accounting for the 
varying feature importance by assigning 
representative weights in the calculations. 

The model in its current form is capable of 
producing results on a par with similar models, 
however, the error of predictions combined with 
the experimental error propagated from the 
training data leads to limited application where 
precise values are required. The model therefore 
serves better as a tool to gain an initial 
understanding of the aqueous solubility of a given 
PAHD, and if within a range of interest, further 
research should be conducted to verify the value. 

That being said, with the continuous development 
of the capabilities of machine learning, the use of 
data-driven models will most likely remain at the 
forefront of thermophysical property prediction. 
As technology evolves, refinements to model 
architectures and training methodologies may 
contribute to mitigating errors, thereby expanding 
the scope of applications where precise values are 
achievable. The ongoing integration of advanced 
techniques and increased data availability holds 
promise for further enhancing the accuracy and 
versatility of such models in the realm of 
thermophysical property prediction. 

With regards to expanding the applicability of the 
PAHD prediction, further models should be 
investigated. For instance, an ensemble of an 
artificial neural network, a Random Forest and an 
XGBoost regressor could be used, as this has 
shown the best performance in prediction of the 
aqueous solubility of general organic compounds . 
Furthermore, different descriptor packages could 
be investigated, such as PaDEL, as they may 
generate descriptors that better represent the 
structure and properties of PAHDs with respect to 
their aqueous solubility. This would allow the 
model to better relate the solubility of PAHDs to 
these descriptors and therefore improve 
predictions. 
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Abstract  
Hydrothermal Carbonisation (HTC) has gained interest due to its mild operating conditions. It allows energy densification 
of wet biomass through formation of hydrochar, a solid product valuable for soil remediation, biofuel production and 
adsorption. HTC is a complex mix of competing parallel reactions that is influenced by factors such as feed species, 
residence time, temperature, and solids loading (SL). This research develops a unified lumped kinetic model for HTC of 
microalgae, aiming for applicability across a wide range of microalgal species, providing initial estimates for key results 
such as hydrochar yield, carbon (C) content, higher heating value (HHV), and energy trade-offs. It considers the 
dissolution of macromolecules into monomers, and the formation of gas and secondary char. Two modelling approaches 
were used, resulting in the Multi-Step Optimisation (MSO) model and Direct Optimisation (DO) model. The former used 
experimental dissolutions to obtain kinetic parameters for the hydrolysis steps of the biomolecules through global 
optimisation. These were then used, in subsequent optimisations, to attain the rest of the kinetic parameters for hydrochar 
and gas formations. On the contrary, the DO Model directly obtained all kinetic parameters at once. Due to the limited 
species included in the hydrolysis set, research was focused on the DO Model to allow for wider applicability. The model 
provided good initial estimates for the hydrochar yield but tended to overpredict across microalgal species. Further model 
iterations are expected to improve the current restricted ability in predicting C content and HHV accurately. To reach 
energy neutrality quicker, higher temperatures, higher SL, and algae with higher total content of carbohydrates and 
proteins are suggested to be used. 
 
Keywords – Hydrothermal Carbonisation (HTC), Hydrochar, Microalgal biomass, Lumped kinetic model, Carbon (C) 
Content, Higher heating value (HHV)  

 

1. Introduction 
here currently exist several industrial processes that 
can be used to produce char from biomass. Biochar 

is a solid product derived from biomass that is rich in 
carbon content. It has large surface area, high porosity 
high cation exchange capacity, and high stability. These 
properties have led to its wide applications such as soil 
remediation, activated carbon preparation, biofuel 
production, and materials synthesis (Yang, et al., 2023). 
Two of the most-promising processes are pyrolysis and 
hydrothermal carbonisation (HTC). HTC is a relatively 
new method using sub-critical water as a reaction 
medium, typically operating at lower temperatures 
between 180-250°C with pressures between 10-40 bar 
to produce hydrochar (Bevan, et al., 2021). Compared to 
pyrolysis, HTC stands out as it allows the utilisation of 
wet biomass, resulting in improved process efficiency 
and cost-effectiveness. In addition, hydrochar from 
HTC exhibits benefits over biochar from pyrolysis, as it 
has a reduced metal content and higher calorific value 
when formed from similar operating conditions (Liu, et 
al., 2018) (Kambo & Dutta, 2015). Between algal and 
lignocellulosic biomass, algal biomass stands out for its 
negligible recalcitrant biomass fraction, higher growth 
rate (Zhang, et al., 2023), and higher energy content with 
a greater photosynthetic efficiency. (Chen, et al., 2022). 
Although use of biomass char would be an eco-friendly 
approach for sustainable energy production, scaling up 
these processes is largely hindered by varieties in 
biomass (Cao, et al., 2021). Previous research has 

investigated methods such as pre-treatments to 
homogenise the system to process feedstocks composed 
of materials from different sources (Adam, et al., 2023).  

This research paper focuses on the development of a 
unified kinetic model for the HTC process, that would 
be applicable across a wide range of microalgal biomass 
species. This is a novel model in which lumped kinetics 
were used to provide a simple tool to obtain sound initial 
estimates of key parameters such as hydrochar yield, 
carbon content & energy neutrality points. Two 
modelling approaches were used to construct the 
predictive model: A Direct Optimisation (DO) model 
that involved the direct optimisation for the hydrochar 
mass and gas yield and a Multi-Step Optimisation 
(MSO) model which employed a more nuanced 
approach. This considered an initial kinetic parameter 
estimation of the hydrolysis steps of the biomolecules 
followed by an estimation for the hydrochar mass and 
gas yield. 
 
2. Background 
The HTC process involves several complex chain 
reactions which include hydrolysis, dehydration, 
decarboxylation, polymerisation, and aromatisation 
(Czerwińska, et al., 2022) and form several intermediate 
products. 

The process is influenced by many factors with the 
predominant being the feedstock species, solid loading 
(SL), temperature, and residence time. Differences in 
algal biomass species used for HTC affect the formation 
of biochar including the yield and properties. This is 
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largely due to their difference in biochemical 
compositions. For example, for the same operational 
conditions of HTC, under the same temperature, 
residence time and SL, the hydrochar yield for Chlorella 
Spp. is 9.7% higher than that of Dunaliella (Heilmann, 
et al., 2010). When comparing the average compositions 
of carbohydrates, proteins, and lipids of these two algae, 
it is observed that the carbohydrate content in Chlorella 
Spp. is almost 4 times that of the Dunaliella, whilst the 
protein and lipid content is lower than the Dunaliella. 
The relationship between the hydrochar yield and the 
species is challenging to determine due to the 
complexity of the reactions. There are studies on the 
effects of the removal of lipids (Broch, et al., 2014) or 
ash (Liu, et al., 2019) from the biomass on the qualities 
of hydrochar produced. These were used as insights on 
how the hydrochar is affected by the compositions of 
biomass used. An increase in SL and residence time 
increases the hydrochar yield (Aragón-Briceño, et al., 
2020). In contrast, an increase in temperature decreases 
the hydrochar yield but creates a more stable product 
(Chen, et al., 2021). 

Different approaches have been made on modelling 
the HTC process with only lignocellulosic biomass. The 
most common methods include statistical modelling 
with response surface methodology, computational 
modelling with software such as COMSOL, and 
mathematical optimisation modelling with lumped 
reaction networks (Alberto Galifucoco, 2019). Most 
mathematical models are based on pseudo-first-order 
reaction kinetics, neglecting higher-order reactions like 
polymerisation. Some have found that first-order 
models fit better than second-order models, and give the 
same square error as the higher-order models to 2 
significant figures (Jung, et al., 2018). Despite the 
complex modelling technique, most research simplifies 
the process into a reaction scheme as shown in Figure 1 
(Ischia & Fiori, 2021).  

 
 
3. Methods 
3.1 Data Collection 
Experimental data was collected from literature for 
various algae species. The data gathered was in the 
temperature range of 453 - 573K, residence time range 
of 15 -240 minutes and SL range of 1 - 25%. Table 1 
shows the number of data points each species is 
contributing to the three models. A large range of 
biomass compositions were covered. Data on gas yields 
were also collected for 9 different macroalgae species 
across a range of temperatures, residence time and SL. 

 

Table 1: Summary of the calibration data set used. (For detailed 
calibration & validation data sets, see supplementary materials.) 
Species Hydrochar C HHV 
Dunaliella Salina 13 13 1 
Aphanizomenon Flos-aquae 1 1 1 
Synechocystic Spp. 1 1 1 
Spirulina Spp. 3 3 3 
Chlorella Spp. 49 3 3 
Nannochloropsis Oculata 7 7 0 
Chlamydomonas Reinhardtii 1 1 1 
Gelidium Sesquipedale 4 4 4 
Mixed Species (Polyculture) 18 18 18 
 
3.2 Model Assumptions 
During HTC, the reactions are carried out in a 
heterogenous system. However, this was simplified into 
a model with constant volume due to the presence of a 
large volume of water (low SL). To reduce the model 
complexity, no mass transfer limitations were 
considered, and simplifications described in the 
following sections were made.  
 
3.2.1 Hydrolysis Simplifications 
The algal biomass mainly consists of three components: 
carbohydrates, lipids, and proteins. The first step of 
HTC reactions is the hydrolysis of these components, 
where carbohydrates convert into glucose, proteins 
convert into amino acids, and lipids convert into fatty 
acids and glycerol. 
 

 
In practice, the hydrolysis process would also result 

in by-products such as 5-HMF as seen in Figure 2. When 
proteins hydrolyse into the liquid phase, they undergo 
polymerisation to form insoluble grains. As the 
temperature increases the peptide bonds break and 
further decompose into amino acids. At temperatures 
above 220°C, by-products form from deamination and 
decarboxylation reactions. When oligosaccharides 
hydrolyse, the main product is glucose with the 
possibility of bio-methane production. At temperatures 
above 180°C, glucose may hydrolyse further into by-
products, which limit the methane potential. Similarly, 
amino acids can perform Maillard reactions with 
saccharides, which happen at temperatures over 160°C 
(Chen, et al., 2022). However, implementing these side 
reactions in the model would heavily increase its 
complexity. Therefore, no side reactions or by-products 
were considered.  

Figure 1: Simplified HTC reactions scheme. 

Figure 2: Reaction pathways for hydrothermal hydrolysis of algal 
biomass. Taken from (Chen, et al., 2022). 
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3.2.2 Lipids Simplifications.  
The lipids contained in microalgae were modelled as 
entirely being retained on the solid primary hydrochar.  
During the HTC of microalgae, most lipids adsorb onto 
the hydrochar surface while some remain in the aqueous 
phase (Valentas, 2011). Experimental work from 
various groups have reported lipid retention for N. 
Oculuta for the residence time of 30 minutes between 
80-100% in the hydrochar (Levine, et al., 2013) (Friedl, 
et al., 2005). Given the above findings, the assumption 
of no lipids being lost to the aqueous phase was 
imposed. 
 
3.2.2 Ash Simplifications 
Ash composition varies significantly between the 
different microalgal species, and there are limited 
studies on ash dissolution in HTC. However, it is known 
that HTC reduces the ash content in hydrochar as the 
inorganics in biomass dissolve in the aqueous product 
(Akbari, et al., 2019) (Yoshimoto, et al., 2023). It is also 
known that temperature and residence time are the main 
factors affecting the percentage of ash remaining in the 
hydrochar. Another crucial factor for the fate of ash 
found in the raw biomass is whether it consists more of 
water-soluble or insoluble chemicals (Mäkelä, et al., 
2015). In addition, as there are limited studies on ash, it 
would be difficult to generate a model which includes a 
mechanism for its dissolution. As a result, it was deemed 
appropriate to assume that ash remains in the aqueous 
phase since a more complex model would be susceptible 
to overfitting. 
 
3.2.3 Gas formation & gas yield approximations  
The gas was characterised as pure CO2. This is because 
the concentration of CO2 was substantially higher than 
of any other species (Bevan, et al., 2021). Literature 
suggests that the gas fraction resulting from the HTC of 
microalgae is small (Lachos-Perez, et al., 2022). 
However, there was a notable absence in literature of 
quantified experimental gas yields, especially for 
microalgae. Consequently, it was necessary to resort to 
gas yields from macroalgae (multicellular organisms) 
for the purpose of modelling the gas formation. 
However, this approach introduces uncertainty and 
results in gas formation being less reliable in 
comparison to hydrochar formation. 
 
3.3 Reaction Kinetics 
3.3.1 Reaction Schemes 
Various reaction schemes were investigated as potential 
candidates for representing the HTC process. The 
primary scheme considered is portrayed by Figure 3. 
Five elementary reactions were adopted to build up the 
lumped model, which all followed Arrhenius kinetics 
(Equation 1). Glucose and Amino acids were used as the 
precursors to describe a series of parallel and competing 
reactions with various intermediate products that 
eventually form hydrochar alongside CO2.  

𝑘௜ = 𝐴௢೔𝑒
ି

ாೌ೔
ோ்  (1) 

 
The reactions are as follows: 
 Reaction 1: Gas evolved through decarboxylation 

and decarbonylation reactions to produce CO2.  
 Reaction 2: Polymerization reactions (of 

intermediate products) which utilise glucose to form 
secondary char. 

 Reaction 3: Polymerization reactions (of 
intermediate products) which utilise amino acids to 
form secondary char. 

 Reaction 4: Hydrolysis of carbohydrates to glucose 
monomers. 

 Reaction 5: Hydrolysis of proteins to amino acids 
monomers. 

 
An alternative model of greater complexity was also 

explored. The main distinction was that the gas 
evolution resulted from both the hydrochar and the 
dissolved species, which is likely be more representative 
of the realistic process of HTC. However, its adoption 
was hindered due to concerns of overfitting given the 
limited availability of microalgae data for HTC. 

 
3.3.2 Material Balances 
Most experimental work found in literature pertains 
exclusively to batch reactors, especially in the case of 
microalgal feedstocks. Therefore, the following material 
balances were formulated to describe HTC as per the 
primary reaction scheme investigated. Note that because 
gas was formed from both amino acids and glucose, it 
was assumed that they contribute equally to the gas 
production.  

𝑟ଵ =
𝑑𝑀௚௔௦

𝑑𝑡 = 𝑘ଵ(𝑀௔
௡య + 𝑀௚௟

௡ర) (2) 

𝑟ଶ =
𝑑𝑀௚௟

𝑑𝑡 = 𝑘ସ൫𝑀஼ೞ ൯
௡ర − 𝑘ଶ൫𝑀௚௟൯௡మ − 0.5𝑘ଵ൫𝑀௚௟൯௡భ (3) 

𝑟ଷ =
𝑑𝑀௔

𝑑𝑡 = 𝑘ହ൫𝑀௣൯௡ఱ − 𝑘ଷ(𝑀௔)௡య − 0.5𝑘ଵ(𝑀௔)௡భ (4) 

𝑟ସ =
𝑑𝑀஼௦

𝑑𝑡 = −𝑘ସ൫𝑀஼ೞ൯௡ర (5) 

𝑟ହ =
𝑑𝑀௣

𝑑𝑡 = −𝑘ହ൫𝑀௣൯௡ఱ  (6) 
𝑑𝑀ௌ௢

𝑑𝑡 = +𝑘ସ൫𝑀௚௟൯௡ర + 𝑘ହ(𝑀௔)௡ఱ 
(7)

  
𝑀ௌଵ = 𝑀ௌ௢ + 𝑀஼௦ + 𝑀௣ + 𝑀௟௜௣ (8) 

 
 

Carbohydrates

Proteins

Lipids

Glucose

Amino Acids

Secondary Char

Primary Char

Gas

𝑘2𝑘4

𝑘1

𝑘5 𝑘3

Unreacted

Figure 3: Model reaction scheme with rate constants labelled for 
each reaction. 
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3.4 Optimisation Algorithms 
3.4.1 Algorithm & Problem Formulation 
To carry out the estimation of process parameters an 
optimisation problem was set up with the objective 
being formulated as a cost function which minimises the 
Mean Square Error (MSE). The formulation utilizes the 
difference between predicted and experimental 
hydrochar masses rather than yield to allow for the 
optimiser to have inherent information regarding SL. 
The choice of MSE was due to the significantly different 
number of experimental results available for the mass 
and gas yields. This aided in placing equal importance 
to the cost contributions. In subsequent optimisations, 
weightings were further placed to alter the influence of 
the contributions and encourage gas evolution. Finally, 
the mean experimental values for the hydrochar mass 
and gas yield appear in the objective function for 
normalisation purposes. 
Objective function:  

𝑀𝑆𝐸 =
1
𝑛

෍
൫𝑀௦ଵ

௣ − 𝑀௦ଵ
௘ ൯

 𝜇ெೞభ

ଶ

+
1
𝑚

෍
൫𝑌௚

௣ − 𝑌௚
௘൯ଶ

𝜇௚

௠

ଵ

௡

ଵ

 (9) 

The ‘GlobalSearch’ optimiser from MATLAB’s 
Global optimisation toolbox was implemented to 
identify a global minimum. This optimiser falls under 
the asymptotically complete search methods which can 
only guarantee global optimality under infinite 
completion time. The local algorithm of choice used to 
solve the optimisation problem was the interior point 
and the feasible search space was set up as:  

10 ≤ 𝐴௢೔ ≤ 10ଵଶ  ∀𝑖  𝑖 𝜖 {1, … ,5} (10) 
0.5 ≤ 𝑛௜ ≤ 5  ∀𝑖  𝑖 𝜖 {1, … ,5} (11) 

10ସ ≤ 𝐸௔೔ ≤ 10଻  ∀𝑖  𝑖 𝜖 {1, … ,5} (12) 
 

3.4.2. Evaluation of Model Performance 
To evaluate the model performance the coefficient of 
determination was used which describes the goodness of 
model fit (Hukkerikar, et al., 2012) as well as the RMSE. 

𝑅ଶ = 1 − ൥
∑ ൫𝑥௜

e − 𝑥௜
p൯ଶ

௜

∑ (𝑥௜
e − 𝜇)ଶ

௜
൩ = 1 −

𝑅𝑆𝑆
𝑇𝑆𝑆

. (13) 

𝑅𝑀𝑆𝐸 = ඨ
1
𝑁

෍൫𝑥௜
௘ − 𝑥௜

௣൯ଶ

௜

 (14) 

 
3.5 Carbon Content and HHV Predictions 
After the development of the model, predicted mass 
outputs for glucose, amino acids, hydrochar, gas, 
carbohydrates, and protein were obtained. The 
proportions of carbohydrates and proteins that reacted to 
form char were calculated using Equations 15 and 16. 
The percentage of char formed from those two 
biomolecules, was determined by Equation 17.  

𝑀஼௦ = 𝑀େୱ,଴ − 𝑀୥୪ − 0.5𝑀୥ୟୱ (15) 
𝑀௣ = 𝑀୮,୭ − 𝑀௔ − 0.5𝑀୥ୟୱ (16) 

𝑦୧,char =
𝑀௜

𝑀ௌଵ
 𝑤ℎ𝑒𝑟𝑒 𝑖 = {𝐶𝑠, 𝑝, 𝑙𝑖𝑝} (17) 

  

Next, two different approaches were taken to build a 
model for C content predictions. The initial approach 
was to find an average C content for carbohydrates, 
proteins, and lipids individually, and then use their 
contributions to find out how much of the carbon was 
accumulated in the char. However, due to the large 
variation in the types of carbohydrates, proteins, and 
lipids in different algal species, this model was found to 
be very difficult to balance regarding the accuracy and 
model applicability across a wide variety of species, 
even for the calibration data set. 

The alternative method for modelling the carbon 
content of char was performed via Equation 18, where 
the artificial parameters 𝐴௜,௝ and 𝑛௜,௝ were optimised 
with the objective function of minimising the Sum of 
Squared Residuals (SSR) shown in Equation 20. This 
optimisation was carried using the GRG nonlinear 
solver with 84 data points. The same approach was also 
applied to find the predicted hydrogen content, 
minimising the SSR. 

𝑦௝,௖௛௔௥
௣ = ෍ 𝐴௜,௝𝑦௜,char

௡೔,ೕ

௜

   (18) 

𝑓𝑜𝑟 𝑖 = {𝐶𝑠, 𝑝, 𝑙𝑖𝑝}, 𝑗 = {𝐶, 𝐻, 𝑂} (19) 

𝑆𝑆𝑅௝ = ෍൫𝑦௝,char
௣ − 𝑦௝,char

௘ ൯ଶ
௡

ଵ

 𝑓𝑜𝑟 𝑗 = {𝐶, 𝐻} (20) 

  
Finally, HHV was formulated as a function of the 

predicted carbon, hydrogen, and oxygen content using 
Dulong’s empirical equation (Smitha, et al., 2016). 
From this, the oxygen content parameters were 
optimised by minimising the SSR shown in Equation 22.  

𝐻𝐻𝑉𝑐ℎ𝑎𝑟
௣ = 100 × ቌ0.338𝑦஼,ୡ୦ୟ୰

୮ + 1.428 ቆ𝑦ு,௖௛௔௥
୮ +

𝑦ை,௖௛௔௥
୮

8 ቇቍ (21) 

𝑆𝑆𝑅ுு௏ = ෍൫𝐻𝐻𝑉௖௛௔௥
௣ − 𝐻𝐻𝑉௖௛௔௥

௘ ൯
ଶ

௡

ଵ

  (22) 

 
3.6 Energy Balance 
An energy balance was performed to calculate the total 
energy input required for the system. The system was 
assumed to be under isothermal steady state operation 
with no heat losses to the surroundings. The total energy 
supplied to heat up the slurry from ambient to the set 
operating temperature was modelled as a constant: 

𝑄௛௘௔௧௜௡௚ = 𝑀biomass∆𝑇𝑐௣ഥ  (22) 
∆𝑇 = 𝑇set − 𝑇ambient (23) 

𝑐௣ഥ = ൣ(1 − 𝑆𝐿)𝑐௣,water + (𝑆𝐿)𝑐௣,algae൧ (24) 
 

The overall enthalpy of reaction was calculated from 
Hess’s law using the heat of combustions of the 
components, where 𝛾௜ was defined as the extent of 
reaction 𝑖.  

𝐻௥௘௔௖௧௜௢௡ = ෍ 𝐻௜
௜

 𝑓𝑜𝑟 𝑖 = {1𝑎, 1𝑔, 2, 3, 4, 5,6} (25) 

𝐻௜ = 𝛾௜(𝐻𝐻𝑉௣௥௢ௗ௨௖௧,௜ − 𝐻𝐻𝑉௥௘௔௖௧௔௡௧,௜) (26) 
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The amount of energy in debt was then calculated 
using Equation 27. When 𝐸ௗ௘௕௧  is positive, the system is 
in energy deficit, meaning energy input is higher than 
energy produced by the reactions; when 𝐸ௗ௘௕௧ is 
negative, the system is in energy surplus. 

𝐸ௗ௘௕௧ = 𝑄௛௘௔௧௜௡௚ + 𝐻௥௘௔௖௧௜௢௡  (27) 
  

 
 
4. Results & Discussion 
4.1 Multi Step Optimisation (MSO) Model  
Encouraging yet modest results were observed for the 
integration of the Multi Step Optimisation model 
(Figure 5). The overall coefficient of determination (R2) 
for the hydrochar mass was evaluated to be 0.245 while 
the RMSE was 0.041. As expected, these were worse in 
comparison to the DO model that involved direct 
optimisation. Further, it was apparent that the trained 
MSO model resulted in systematic overpredictions. 

 
To gain insight to the outlying behaviour of the 

system, examining the respective parity plots of the two 
biomolecules is necessary. The R2 values obtained, 
suggest that the estimated kinetic parameters (see 
Supplementary Section S1) provide a good fit to the 
experimental hydrolysis data (Figure 6). Additionally, is 
evident that carbohydrates are predicted to undergo a 
more rapid dissolution comparatively to proteins as also 
documented in literature (Qian, et al., 2021).Thus, the 
overprediction was understood to stem from the 
assumption of isothermal conditions and the skewed 
temperature range that the hydrolysis training data 
spanned (393K-453K). The typical operating envelope 
for the HTC of microalgae is between 453-523K and 
because no heating up stage was assumed; the 
hydrolysis of the macromolecules was systematically 
underestimated. As the model considered that the 

unreacted biomolecules constitute to the formation of 
primary char, inevitably overpredictions would be 
observed. Further, the hydrolysis training data 
originated from only two microalgal species (Chlorella 
Vulgaris and Scenedesmus Spp.). Therefore, efforts 
shifted towards the development of the DO model to 
allow for wider applicability.  

 
 

4.2 Direct Optimisation (DO) Model 
4.2.1 Calibration Model Performance. 
Moving to the DO model there were still hints of 
overprediction present (Figure 7). However, the extent 
of it was limited, which was reinforced by the RMSE of 
0.023 and the much-improved R2 coefficient of 0.774 
compared to the MSO model. This highlighted that the 
DO model was successful in providing sound 
predictions across the microalgae species that it was 
calibrated against. 

 
4.2.2 Hydrochar yield Calibration Profiles 
Examinations of the DO model concluded that the direct 
optimisation for the hydrochar conformed with the 
expectation set from literature that the hydrolysis of 
carbohydrates would be faster than that of proteins 
(Figure 8). However, the model also predicted a more 
delayed hydrolysis of proteins than anticipated. This 
revealed some of the limitations of not using hydrolysis 
data for training purposes for the DO model. 

Figure 4: Enthalpy changes map with enthalpy changes labelled 
for each reaction. 
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Figure 5: MSO model calibration parity plot. 
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Figure 7: DO model calibration parity plot. 
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Figure 9 depicts 4 hydrochar yield profiles obtained 

from the DO model (further profiles can be viewed in 
the supplementary section S5). The model predicts that 
different microalgae species undergo carbonization in 
similar but distinct ways. This is due to the variations in 
composition as described previously. In addition, it 
illustrates that the performance of the model is improved 
for higher temperatures and that the hydrolysis of 
carbohydrates is less temperature dependent in 
comparison to protein hydrolysis and secondary char 
formation.  

The initial drop in hydrochar yield can be traced to 
the more rapid dissolution of the carbohydrates whilst 
the second drop can be attributed to the delayed 
dissolution of proteins. Notably, there were periods of 
time that the hydrochar yield observed for the 
microalgae polycultures increased. This can be 
explained by the secondary char formation beginning to 
dominate for polycultures that were high in 
carbohydrate content at longer residence times. This is 
promising because mixed cultivating ponds are expected 
to be used in industry. Limited secondary char formation 
was observed from high protein microalgal species. This 
was because gas evolution depleted the glucose formed 
from the more rapid dissolution of carbohydrates, while 
the residence times was not sufficient for protein 
dissolution to take place. The approach of using 
macroalgae that are high in carbohydrate content for the 
gas formation may have exacerbated this behaviour 
(Cai, et al., 2013). 
 
4.2.3 Validation of hydrochar yield 
Analysis on the predictive capabilities of the DO model, 
reveals that the tendency to overestimate the hydrochar 

yields carries forward to the validation sets as depicted 
in Figure 10. The coefficient of determination R2 was 
evaluated to 0.37. This was considered satisfactory 
considering the inherent variability of microalgal 
species, generalised nature of the model and 
simplifications introduced. 

 
Figure 11 suggests that the model predicts an 

increase in hydrochar yield with SL, as has previously 
been observed by (Aragón-Briceño, et al., 2020). In 
contrast, an increase in operating temperature leads to a 
decrease in the hydrochar yield owing to further 
degradation arising from gas formation and protein 
dissolution. Notably, the DO model performs well for 
deashed Scenedesmus across the temperatures 
examined, while also being able to capture SL variations 
for Nannochloropsis. On the other hand, for the same 
microalgal species the model poorly encapsulates the 
effect of temperature on hydrochar yield at lower 
operating temperatures. Improvements in predictive 
accuracy emerge at elevated thermal conditions. This 

 

Figure 8: DO model hydrolysis profile of 
polyculture for (Top) carbohydrates at SL=0.16, 

τ=240 min (Bottom) proteins SL=0.16, τ=240 min. 
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may be an indication of the limited capabilities of the 
model at accurately predicting the protein hydrolysis for 
certain microalgae at lower temperatures.  

 
Validation under simultaneous variations of thermal 

and SL conditions was performed as shown in Figure 12. 
Chlorella Vulgaris is evidently one of the species that 
the DO model overpredicts the hydrochar yield for. The 
largest deviation is depicted to occur at experimental 
conditions of 453K and 5% SL. This once again 
highlights that at lower temperatures the performance of 
the model suffers compared to higher temperatures. 
However, this is not significant because HTC typically 
operates at higher temperatures to benefit from energy 
neutrality. Overall, the DO model captures well the 
effect of temperature and SL variations on the hydrochar 
yield. 

 
4.3.1 Carbon Content & HHV Model 
Ensuring model consistency, the carbon (C) content and 
HHV models were both exclusively trained using 
microalgae experimental data. The C content model 
achieved an 𝑅ଶ value of 0.75 and a 𝑅𝑀𝑆𝐸 of 0.04, which 
is half of the 𝑅𝑀𝑆𝐸 when using the average of the 
experimental data (0.08). The hydrochar HHV model on 
the other hand exhibited a lower 𝑅ଶ value of 0.50, and a 
𝑅𝑀𝑆𝐸 of 2.6 that was 30% lower than when comparing 
with the use of the average. This disparity in model 
performance was deducted to be caused by the limited 
availability of experimental data for the HHV model 

calibration, which were even fewer than that for the 
carbon content.  

An examination of the parity plots reveals distinct 
patterns (Figure 13). The carbon content model tends to 
overpredict when values are low, and underpredict when 
values are high. This can originate by the absence of ash 
content in the solid fraction. The HHV plot indicates to 
an underfitting of the data set, which could be attributed 
to both the low number of data available, and the 
absence of ash.  

 
4.3.2 Validation of C Content & HHV 
The obtained 𝑅ଶ values of -18 and -3.8 respectively 
suggested a significant degree of model overfitting. To 
comprehend the shortcomings of the model, a detailed 
analysis was conducted to assess its performance across 
different variations. The findings, as illustrated in Figure 
14, reveal notable inadequacies, particularly when 
attempting to account for variances attributed to 
temperature.  

The model has diametrically opposite trends when 
explaining temperature-induced variations. Interestingly 
when considering the joint influence of temperature and 
residence times the model closely aligns with the trend 
in C content, albeit with an inclination to slightly 
overpredict. Nevertheless, the model struggles in 
predicting HHV. The absence of experimental data 
specifically isolating the effects of residence time, SL, 
and algal species complicates diagnosing the reasons 
hindering the model performance.  

 

Figure 11: Effects of temperature and solid loading individually on 
hydrochar yield. 
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Figure 13: Parity plots for (Left) carbon content (Right) hydrochar 
HHV. 
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Some of the hindrances of the model can be 
attributed to three main factors. Firstly, local 
optimisation was employed for the determination of C 
content, and hence better solutions might be available. 
Secondly, both the calibration and validation data sets 
are small, and there are many varieties of algae with 
different types of carbohydrates, proteins, and lipids 
each containing different compositions of C, H and O. 
Hence, larger data sets would help provide a better 
explanation of the variance. Finally, the ash content was 
not considered, which is expected to worsen the HHV, 
meaning overpredictions are expected especially for 
those with high ash content in the biomass feed (Akbari, 
et al., 2019). 

 
4.2.3 Energy Debt 
The energy balance profiles over the HTC reactor 
implies that there are endothermic hydrolysis reactions 
initially, resulting in an energy deficit within the system. 
Then, as the exothermic reactions take precedence, 
energy is generated by the system. The residence time 
necessary to reach energy neutrality varies and is 
influenced by the algae species in the feed, the operating 
temperature, and SL.  

In figure 15, three ED profiles are depicted for 
different algae species, all conducted at 240°C with a SL 
of 15% over a total residence time of 2 hours. Notably, 
Nannochloropsis Oculate demonstrates the earliest 
attainment of energy neutrality, followed by Chlorella 
Ssp. This trend in neutrality times may be attributed to 
their different compositions, particularly the highest 
total content of proteins and carbohydrates in 
Nannochloropsis, and the second most in Chlorella Spp. 
This implies a more abundant availability of amino acids 
and glucose, expediting the formation of char and gas, 
which are both exothermic reactions that help the system 
payback the energy debt.  

 
Figure 16 illustrates on the left the ED profiles for 

Chlorella across five distinct temperatures, maintaining 
a SL of 15% over a 2-hour period. The graphical 
representation underscores a relationship between 
temperature variation and the speed at which energy 
neutrality is achieved. Higher temperatures result in a 
more rapid attainment of energy neutrality. Notably, any 
temperature below 230°C results in a continuous energy 
deficit throughout the entire process. 

On the right of Figure 16 are the ED profiles for 
Chlorella at a constant temperature of 240°C across 

various SL over 2 hours. This reveals a nuanced 
relationship between SL and the time required to reach 
energy neutrality. Higher SL was found to result in a 
more rapid realization of neutrality, primarily attributed 
to the increased in biomass available for reactions. 
However, this trend diminishes over time.  

It is interesting to observe that at a SL of 0.3, the 
system exhibits an endothermic domination for 
residence times between 75-95 minutes. This is 
inherited from the kinetic model, where the proteins 
hydrolysis predictions are delayed, the secondary 
hydrolysis region creating a second peak in the ED 
profile. The starting energy debt is larger at higher 
temperatures as a larger amount of energy is needed to 
heat the reactants to the required temperature. 

 

 
 
4.4.1 Limitations of the Direct Optimisation Model 
The current iteration of the unified model is limited to 
only hydrochar yield predictions. For the HHV and C 
content, predictions were only made for the set of data 
for Spirulina in the validation data set. Furthermore, the 
ash simplifications introduced may hinder the use of the 
unified models for environmental and life cycle 
assessments, as there is limited information regarding 
the end state of the inorganic ash components.  This 
would indicate that these environmental assessments 
would over-estimate the environmental impact of the 
overall process, as all the ash is assumed to be dissolved 
in water. 
 
4.4.2 Reasons for Model Limitations 
Scarce availability of experimental dissolution yields 
hindered the performance of the MSO model. Therefore, 
the hydrolysis of the macromolecules was entirely 
governed from the best performing model. This 
impacted the performance of the model at lower 
temperatures as the hydrolysis of proteins was 
underestimated. Furthermore, the assumption that lipids 
remain entirely in the hydrochar begins to falter at 
higher temperatures. This may have contributed to the 
systematic overestimation of the hydrochar yields. 
Moreover, as the ash content would contribute 
negatively to the HHV value (Timilsina, et al., 2024) the 
model predicts a better-quality product char than would 
be expected and may have hindered the optimisation 
algorithm form converging to a better solution. Finally, 
utilizing macroalgae that contain higher carbohydrates 
content for the representation of the gas yields hindered 

Figure 15: Energy debt profile for different microalgae species. 

Figure 16: Energy debt profile for (Left) different temperatures 
(Right) different solid loadings. 

315



Page 9 of 10 
 

the accuracy of the predictions on microalgae species 
that conversely have higher protein content.  
 
5. Conclusion 
Unified kinetic models have been demonstrated to 
reasonably model the dynamics of the HTC of algae, 
which may prove useful in avoiding the need to develop 
a separate model for each individual microalgal species. 
Instead, unified models for groups of microalgal species 
could be developed based on higher carbohydrate or 
protein content, saving time and resources. 

The results shown suggest that the DO model is a 
promising approach, but future work should revisit the 
Multistep Optimisation model to consider a wider 
variety of data. The models develop perform best for 
polycultures at higher temperatures, which is where 
HTC reactors are expected to be operated in industry, 
using multiple microalgal species at once. 

Further work could also consider the collection of in-
house data with a particular focus on, obtaining gas and 
hydrolysis yields for a wide range of microalgae to aid 
wider applicability. The standardisation of data 
collection could limit the underlying uncertainty arising 
from utilising experimental data from several different 
researchers with different experimental set-ups. 
Additional model complexity could also be considered 
by removing the simplifications made on lipids and ash. 
 
5. Nomenclature 

Symbol Definition 
𝑨𝒐𝒊  Pre exponential factor for reaction i 
𝒄𝒑തതത Specific heat capacity of slurry 

𝒄𝒑,water Specific heat capacity of water 
𝒄𝒑,algae Specific heat capacity of algae 

𝑬𝒂𝒊 Activation energy of reaction 𝑖 
𝑬𝒅𝒆𝒃𝒕 Energy in debt  

𝑯𝒊 Enthalpy of reaction 𝑖 
𝑯𝑯𝑽𝒄𝒉𝒂𝒓 Higher heating value of hydrochar 

𝒌𝒊 Rate constant of reaction 𝑖 
𝒌𝒐 Reference rate constant 

𝒎 Number of gas yield experiment data 
points 

𝑴𝒊 Mass of component 𝑖 
𝑴𝑺𝑬 Mean square error 

𝒏 Number of hydrochar yield experiment 
data points 

𝒏𝒊 Order of reaction 𝑖 
N Number of experiments for property i 

𝑸𝒉𝒆𝒂𝒕𝒊𝒏𝒈 Energy supplied via heating 
𝒓𝒊 Reaction rate of reaction i 
𝑹 Gas constant 

𝑹𝟐 Coefficient of determination 
𝑺𝑳 Solid Loading 

𝑺𝑺𝑹𝒊 Sum of Squared Residuals of 𝑖 
𝝉 Residence Time 

TSS Total Sum of Residuals 
𝒚𝒊,𝒄𝒉𝒂𝒓 Mass fraction of 𝑖 in char 

𝒀𝒊
𝒋 Yield of 𝑖 resulted from method  𝑗 

𝜸𝒊 Extent of reaction 𝑖 

∆𝑻 Temperature change of reactor by 
heating 

𝝁 Experimental mean 
 
Subscripts: 

Symbol Definition 
𝒙𝒂 Property of amino acid 
𝒙𝑪 Property of carbon 
𝒙𝑪𝒔 Property of carbohydrates 

𝒙𝒈𝒂𝒔 Property of gas 
𝒙𝑯 Property of hydrogen 
𝒙𝒈𝒍 Property of glucose 
𝒙𝒊,𝟎 Initial value of the property of 𝑖 
𝒙𝒍𝒊𝒑 Property of lipids 
𝒙𝑶 Property of oxygen 
𝒙𝒑 Property of proteins 
𝒙𝑺𝒐 Property of secondary hydrochar 
𝒙𝑺𝟏 Property of total hydrochar 

 
Superscripts: 

Symbol Definition 
𝒙𝒆 Value obtained from literature 

experiments 
𝒙𝒑 Value predicted from model 
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Abstract: A thermodynamically consistent machine learned equation of state (EoS) is developed for the 
two-dimensional Lennard-Jones (2D-LJ) fluid. A database of 9116 data points of thermophysical properties 
for the 2D-LJ fluid is created using molecular dynamics simulations. A physics informed neural network 
(PINN) is then trained on the database of: compressibility factor, internal energy, heat capacities, thermal 
expansion coefficient, isothermal compressibility, thermal pressure coefficient and Joule-Thomson 
coefficient. The EoS property prediction performance is in agreement with the simulation data. The phase 
equilibria prediction of the EoS is compared to previously published EoS, where it outperforms them 
around the critical region. 

Introduction 
Fluid property prediction is essential to chemical 
engineering. Modelling heat transfer, separation 
systems, and reactors rely on accurately predicting 
fluid properties. 

Thus, centuries of research have occurred in this 
field, starting with the ideal gas relation, formed by 
amalgamating Boyle’s law, Charles’ law, and Gay-
Lussac’s law (1). Further developments were made 
to produce the van der Waals equation of state (EoS) 
(2) which is the basis for advancements today by 
introducing intermolecular force contributions. A 
notable ongoing development is that of Statistical 
Association Fluid Theory (SAFT)(3), which adds 
association theory to these models (4). 

Many methods of fluid property prediction 
exist, empirical EoS’ such as the Redlich–Kwong 
EoS (RK EoS) (5), theoretical  EoS’ such as SAFT-γ-
Mie  (6), molecular dynamics (MD) simulations (7) 
and machine-learning approaches.  

Empirical approaches can accurately predict 
fluid properties within their range of validity, 
provided that experimental data exists to calculate 
the required parameters. However, there is a trade-
off between critical point estimation and density 
estimation between the methods used to calculate 
these parameters (8).  

MD simulations attain total system properties 
by averaging a sum of microstates (individual 
particle arrangements), encompassing total system 
behaviour (9). Given that an accurate model of the 
forces between molecules in the system exists, 
simulations can produce more accurate datapoints 
than experiments due to the lack of human error. A 
downside to MD simulations is that only properties 
at discrete temperatures and densities can be 
calculated; thus, to model a system with a gradient 
in temperature or density, the properties must be 
calculated at intervals along the temperature 
profile, and properties between these intervals must 
be interpolated. Unphysical behaviour may be 

observed if thermodynamically consistent 
interpolation isn’t used (10). 

Previous studies (11),  propose implementing a 
feed-forward artificial neural network (ANN) as an 
equation of state. Whilst Zhu’s approach proved the 
viability of ANNs and Gaussian Process Regression 
(GPR), it fitted generated data without a theoretical 
foundation. Chaparro resolved this using MD and 
calculating the various Helmholtz derivatives (12). 
This methodology ensures thermodynamic 
consistency of the predicted properties since the 
relations used to predict the properties from the 
Helmholtz free energy satisfy Maxwell’s relations.  
Given this approach worked well for the Mie fluid, 
testing this approach on other fluids is the next 
logical step. 

This paper uses this methodology on the two-
dimensional Lennard Jones (2D-LJ) fluid. 
Applications of the 2D-LJ include modelling 
colloidal systems (13), surfactant adsorption (14) 
and soft matter applications (15). Utilising the same 
workflow as Chaparro, this paper aims to produce 
an EoS for the 2D LJ using molecular dynamics and 
machine learning for accurate property prediction. 

Background 
The Lennard Jones (LJ) potential is a theoretical 
model of spherical particles with a soft-sphere 
reference state, representing intermolecular 
interactions. This model is based on van der Waals 
theory and consists of strong repulsion forces at 
short distances and attractive forces at longer 
distances, obeying equation [1]. 

 𝑉(𝑟) = 4𝜖 ൤ቀ஢
௥
ቁ

ଵଶ
− ቀ஢

௥
ቁ

଺
൨  [1] 

 
 

𝑉(𝑟) represents the LJ potential, σ is the effective 
diameter of each particle, 𝑟 is the distance between 
centres of the particles, and ϵ is the potential well 
depth.  
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In the current literature, the EoS shown in Table 
1 have been proposed for the 2D LJ EoS. 

 

Table 1: Available EoS for 2D-LJ 

Whilst theoretical models are based on theories, 
such as perturbation theory and integral equations, 
forming a theoretical EoS is laborious. An 
alternative to creating a theoretical equation of state 
is to use empirical approaches such as least-squares 
regression. 

The Helmholtz free energy is defined by 
equation [2]: 

 𝐴 =  𝑈 − 𝑇𝑆 [2] 
Here, 𝐴 is the Helmholtz free energy, 𝑈 is the 
internal energy, 𝑇 is the temperature and 𝑆 is 
entropy. 

The basis for developing the EoS in this paper is 
to use MD to generate a database of properties 
defined by the partial derivatives of the Helmholtz 
free energy. The EoS is then set up such that the 
density and temperature are inputs to an ANN, 
which predicts the residual Helmholtz free energy. 
Automatic differentiation is then used to calculate 
the partial derivatives of the residual Helmholtz 
free energy with respect to density and 
temperature. These partial derivatives are then 
combined using the thermodynamic relations 
shown in equations [13]-[24] and their ideal 
contribution to predict the properties in the 
database. 

With an ANN that has learned the Helmholtz 
free energy surface, this method leads to a 
thermodynamically consistent equation of state, as 
demonstrated by Rosenberger (21).  
Artificial Neural Network 
An artificial neural network (ANN) uses layers of 
connected neurons to map inputs to targets. The 
type of ANN used in this paper is a multilayer 
perceptron (MLP). This consists of layers of neurons 
where all the neurons in each layer connect to all the 
neurons in the next layer. A neuron consists of a 
weight vector, bias, and activation function. The 
values sent to the neuron from the previous layer 

are multiplied by the weight vector, the sum of the 
values in this vector is then computed, the bias is 
then applied, and this value is then input to the 
activation function, which applies a nonlinear 
transformation. This output is then sent to every 
neuron in the next layer. The structure of an ANN 
is shown in Figure 1. 

 
Figure 1: Diagram of ANN structure (23) 

According to the Universal Approximation 
Theorem (24), given a continuous mappable route 
from input to output, an ANN exists to 
approximate this relation. A caveat to this lies in the 
neural network architecture, where the requirement 
for this can be many neurons per layer and many 
layers requiring strong computational power. 
Given that Chaparro’s workflow is used in this 
study, the same ANN architecture is considered 
with six linear layers, all layers using the Tanh 
activation function with 45 neurons per layer.  

When training, the difference between the 
desired output and the output from the ANN is 
computed, this is called a loss. The loss can be 
calculated in many ways however, it is typical in 
regression to use a mean squared error (25). When 
an ANN “learns“, or is “trained”, it uses the 
gradient of the loss with respect to the weights and 
biases in the layers of neurons, along with a 
gradient descent algorithm to change the weights 
and biases to decrease the loss.  

Methods 
 Datapoint distribution creation 

To fit the ANN on the Helmholtz free energy 
surface, a database of derivative properties was 
created at varying reduced temperatures (𝑇∗) and 
reduced densities (𝜌∗). To identify the region to 
generate data, the vapour-liquid equilibrium (VLE) 
and fluid-solid equilibrium (FSE) curves were 
plotted from existing simulation data.  

No datasets for the solid, liquid, and vapour 
phase envelope of the 2D-LJ fluid exist in the 
literature thus, the envelope was modelled (26). The 
VLE and critical point data were used to fit 

2D LJ Equation of 
State 

Type 
Year of 

Publication 
Percus - Yevick(16) Theoretical 1977 

Reddy and O’Shea(17) 
(ROS) 

Semi-Empirical 1986 

CMO(18) Theoretical 1999 

Hypernetted – Chain 
(HNC3)(19) 

Semi-Theoretical 2012 

2PT(2D)(20) Semi-Theoretical 2018 
Semi-empirical EoS are correlated to simulation data with no 
theoretical basis; Semi-theoretical EoS are correlated to 
simulated data using a theoretical basis (22).  
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arctangent functions from the critical point to the 
minimum saturated vapour point, and from the 
critical point to the minimum saturated liquid point 
(27,28). FSE data was used to fit an exponential 
function to represent the FSE curve (29).  

The triple point was found at ρ*=0.768, T*= 0.405 
by solving for where the FSE curve intersects the 
VLE curve. The phase envelope is shown in Figure 
2. 

A distribution of datapoints was then generated 
in the ranges ρ* ∈ (0,1) and T* ∈ (0.4,10). The 
distribution of the datapoints was generated with a 
Sobol’ sequence. Sobol’ sequences are 
“characterised by low ‘discrepancy’”; this 
maximised the exploration of the space but 
minimised the number of data points which 
explored the same region (30). The distribution was 
then scaled such that the number of data points at a 
given temperature was inversely proportional to 
the temperature. This was desired as the low-
temperature region is expected to be where “the 
Helmholtz free energy changes the most due to the 
presence of phase instability and the transition from 
subcritical to supercritical behaviour” (31). 
Isotherms were added to the distribution of points 
so that the performance of the equation of state 
could be evaluated against the MD data.  

 
Figure 2: Phase envelope for the 2D-LJ fluid. Red triangles show 
VLE and SLE data, black star shows critical point, green triangle 
shows triple point, and blue lines show VLE and FSE curve.  

Points were included if they were within 2.5% of 
the saturation temperature near the critical point, 
with this percentage linearly increasing to a 
maximum of 10% at the triple point temperature. 
This resulted in 13870 discrete points where MD 
simulations would be performed. The distribution 
of the data points where MD simulations were 
performed are shown in Figure 3. 

 

Figure 3: Desired data point distribution. Datapoints are shown 
in blue dots. X-axis plot shows the distribution of data points 
with respect to density. Y-axis plot shows kernel density estimate 
for the distribution of data points with respect to temperature. 
Lower subplot shows subcritical region and phase envelope 
from Figure 2. 

Molecular Dynamics Simulations 
The 2D-LJ fluid was simulated using molecular 
dynamics to obtain the thermophysical properties 
at each temperature and density. The parameters of 
the simulations are shown in Table 2.  
 

Table 2: Parameters of the molecular dynamics simulations 

Parameter Setting 
Number of particles 2048 
LJ cut-off radius 5𝜎 
Timestep 0.002 
Thermostat damping constant 0.2 
Barostat damping constant 2.0 
Number of equilibration timesteps 10଺ 
Number of production timesteps 40଺ 
Number of timesteps over which 
average properties were calculated 

1000 
 

The simulations were performed using the 
Large-scale Atomic/Molecular Massively Parallel 
Simulator code (LAMMPS)(32) 

The simulations were first run in the canonical 
(NVT) ensemble where the internal energy (𝑈∗), 
isochoric heat capacity (𝐶௩

∗) , and thermal pressure 
coefficient (𝛾௩

∗) were calculated using equations [3]-
[5] respectively  (33). 
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 𝑈∗ = 〈ℋ〉  [3] 
 

𝐶௩
∗ =  

〈[ℰ − 〈ℰ〉]ଶ〉ே௏்

𝑘௕ ∗ 𝑇ଶ  [4] 

 𝛾௩
∗ =

〈[𝒱 − 〈𝒱〉] ∗ [𝒫 − 〈𝒫〉]〉ே௏்

𝑘௕ ∗ 𝑇ଶ + 𝜌 ∗ 𝑘௕ [5] 

Where 〈𝑋〉 is the mean of property 𝑋 and 〈𝑋〉ே௏் 
indicates that the mean of property 𝑋 was 
calculated from the results of the NVT ensemble. ℋ 
is the Hamiltonian, ℰ  is the instantaneous total 
energy, 𝑇 is the mean temperature, 𝑘௕ is the 
Boltzmann constant, 𝒱 is the instantaneous 
potential energy, 𝒫 is the instantaneous pressure, 
and 𝜌 is the mean density. The units’ style was set 
to LJ (Lennard Jones) in LAMMPS. This sets the 
reported properties to be unitless (reduced units) as 
the mass of the particles, potential well depth, 
characteristic length scale, and Boltzmann constant 
are set to one. 

The final pressure from the NVT ensemble was 
then used as the pressure for the isobaric-
isothermal (NPT) ensemble.  From the NPT 
ensemble, the isobaric heat capacity (𝐶௣

∗), thermal 
expansion coefficient (𝛼௣

∗ ), isothermal 
compressibility (𝛽்

∗ ), Joule–Thomson coefficient 
(𝜇௃்

∗ ), and compressibility factor (𝑍∗) were 
calculated using equations [6]-[10]. 

 

𝐶௣
∗ =

〈ቂℰ + 𝑃
𝜌 − 〈ℰ + 𝑃

𝜌〉ቃ
ଶ

〉

𝑘஻ ∗ 𝑇ଶ  [6] 

𝛼௣
∗ =

〈ቀℰ + 𝑃
𝜌 − 〈ℰ + 𝑃

𝜌〉ቁ ∗ (𝑣 − 〈𝑣〉)〉

〈𝑣〉 ∗ 𝑇ଶ   [7] 

 𝛽்
∗ =

〈[𝑣 − 〈𝑣〉]ଶ〉
〈𝑣〉 ∗ 𝑇

 [8] 

 𝜇௃்
∗ =

1
𝜌 ∗ 𝐶௣

∗ 
∗ (𝑇 ∗ 𝛼௣

∗ − 1) [9] 

 𝑍∗ =
𝑃

𝜌 ∗ 𝑇
 [10] 

 
Where ℰ  is the instantaneous total energy, 𝑃 is the 
mean pressure, 𝜌 is the mean density, 𝑇 is the mean 
temperature, 𝑘௕ is the Boltzmann constant, 𝑣 is the 
instantaneous volume. 

Post-Processing of Simulation Results 
Due to unstable NPT ensembles, some simulations 
produced partial results. Thus, the results of these 
simulations were discarded.  

To remove any data points where the fluid 
vaporised when changing from the NVT to NPT 
ensemble, convergence criteria that the mean 
density and mean temperature of both ensembles  
must be within 1 ∗ 10ିଷ was imposed. 

To remove any datapoints where the properties 
reported from the simulation were not converged, 
criteria that the absolute difference in relative 

standard deviation for every property between the 
first half and the second half of the production 
timesteps must be less than 0.05 was imposed. 

To remove any non-converged derivative 
properties for a given datapoint, the properties 
were calculated over the period shown in equation 
[11]. Criteria that the relative standard deviation for 
each calculated property over this period must be 
less than 0.05 was imposed. However, if the 
computed property was not converged, the 
property was replaced with a “NaN”, which was 
then caught in the loss function of the ANN. This 
maximised the amount of information which was 
obtained from each simulation as properties which 
were converged were retained while properties 
which weren’t converged were rejected. 

𝑛 ∈ (0,100),
2
3

𝑡௠௔௫ +
𝑛

100
∗

1
3

𝑡௠௔௫  [11] 

Where 𝑡௠௔௫ is the maximum timestep in the 
simulation. 

To remove outliers in the derivative properties 
from the dataset, LocalOutlierFactor from Scikit-
Learn was used (34). Outliers were replaced with 
“NaN” which were caught in the loss function of 
the ANN. Simulations which produced negative 
pressures were also discarded.  

Artificial Neural Network 
As established in previous literature, the ANN was 
used to predict the residual Helmholtz free energy. 
Training on the total Helmholtz free energy is 
difficult for the ANN as the ideal contribution 
diverges around the zero-density limit (31). In 
addition, analytical expressions exist for the ideal 
contribution to the Helmholtz free energy and its 
derivative properties, thus they need not be learned 
by the ANN. The residual Helmholtz free energy 
was obtained using equation [12].  

𝐴௥௘௦
∗ = 𝐴𝑁𝑁(𝜌∗, 𝑇∗) − 𝐴𝑁𝑁(𝜌∗ = 0 , 𝑇∗) [12] 

 

It is important to note that both ANN terms in this 
equation are the same ANN, evaluated at different 
conditions. 

Once the residual Helmholtz free energy was 
obtained, automatic differentiation was used to 
obtain the derivatives and hessian with respect to 
reduced temperature and reduced density. These 
derivatives were then used to calculate the 
derivative properties using equation [9] and 
equations [13]-[24]. 

 𝑆௥௘௦
∗ = − ൬

𝜕𝐴௥௘௦
∗  

𝜕𝑇∗ 
൰

ఘ∗
  [13] 

 𝑈∗ = 𝐴௥௘௦
∗ + 𝑇∗𝑆௥௘௦

∗ + [𝑇∗] [14] 
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 𝑃∗ 
𝜌∗ = 𝜌∗ ൬

𝜕𝐴௥௘௦
∗  

𝜕𝜌 
൰

்∗
+ [𝑇∗] [15] 

 𝑍∗ =
𝑃∗

𝜌∗
1

𝑇∗  [16] 

 
𝐶௩

∗ = −𝑇∗ ቆ
𝜕ଶ𝐴௥௘௦

∗

𝜕𝑇∗ଶ ቇ
ఘ∗

  [17] 

 ൬
𝜕𝑃∗

𝜕𝑇∗൰
ఘ∗

= 𝜌∗ଶ ቆ
𝜕ଶ𝐴௥௘௦

∗

𝜕𝑇∗𝜕𝜌∗ቇ + [𝜌∗]  [18] 

 

 

൬
𝜕𝑃∗

𝜕𝜌∗൰
்∗

= 

2𝜌∗ ൬
𝜕𝐴௥௘௦

∗  
𝜕𝜌∗ 

൰
்∗

+ 𝜌∗ଶ ቆ
𝜕ଶ𝐴௥௘௦

∗

𝜕𝜌∗ଶ ቇ
்∗

+ [𝑇] 

[19] 

 𝛼௣
∗ =

ቀ𝜕𝑃∗

𝜕𝑇∗ቁ
ఘ∗

𝜌∗ ൬𝜕𝑃∗

𝜕𝜌∗൰
்∗

 [20] 

 𝛽்
∗ =

൬𝜕𝑃∗

𝜕𝜌∗൰
்∗

ିଵ

𝜌∗  [21] 

 𝛾௩
∗ =  

𝛼௣
∗

𝛽்
∗  [22] 

 𝐶௣
∗ = 𝐶௩

∗ + ቆ
𝑇∗ ∗ 𝛼௣

∗ ଶ

𝜌∗ ∗ 𝛽்
∗ ቇ [23] 

 𝛾௜
∗ =

𝐶௣
∗

𝐶௩
∗ [24] 

 
[…] indicates that this portion of the equation is the 
ideal contribution to the property at 𝑘஻ = 1. 

At low density, the values of 𝛽்
∗  increased 3-4 

orders of magnitude relative to high-density 
regions. 𝐶௣

∗ also increased by one order of 
magnitude from low-temperature to high-
temperature regions Using 𝜌∗𝛽்

∗  as a target variable 
instead of  𝛽்

∗ , and using 𝛾௜
∗ as a target variable 

instead of 𝐶௣
∗  , as reported in previous literature, 

resolved these issues (31). This method acted as 
batch normalisation and decreased the time to 
convergence (35).  
For each mini-batch of data, several derivative 
properties were replaced by “NaN” in the pre-
processing stage. For each derivative property, if 
the target value at that density and temperature 
contained a “NaN”, the predicted and target value 
for that density and temperature were discarded for 
that property.  The individual loss for each property 
is calculated using equation [25], and the total loss 
is calculated from the loss of each property using 
equation [26]. 
 𝑁௫ is the length of the tensor containing only non- 
“NaN” values of property 𝑋, 𝑋௜௣௥௘ௗ௜௖௧௘ௗ is the 

predicted value of property 𝑋, 𝑋௜௧௔௥௚௘௧   is the target 
value of property 𝑋. 𝜎௑

ଶ is the variance of property 
𝑋 in the mini-batch 𝑤௑ is the weight of property X 
which was set at 1 for 𝑋 ∈ (𝑍∗, 𝑈∗) and set to 1/20 
when X was any other property. This allows the 
ANN to accurately predict the first derivatives of 
the Helmholtz free energy, which are used to 
recover the chemical potential and pressure. These 
are then used to predict phase equilibria. However, 
information from the second derivates improves 
the prediction of the first derivatives. Thus, they are 
added but at a lower weight so to not detrimentally 
affect the prediction of the first derivatives (31).  

 𝐿𝑜𝑠𝑠௑ = 

1
𝑁௑

𝑤௑

𝜎௑
ଶ  ෍ ቀ𝑋௜௣௥௘ௗ௜௖௧௘ௗ − 𝑋௜௧௔௥௚௘௧ቁ

ଶ
ே೉

௜ୀଵ

  
[25] 

  
𝐿𝑜𝑠𝑠்௢௧௔௟ = 𝐿𝑜𝑠𝑠௓∗ + 𝐿𝑜𝑠𝑠௎∗ + 𝐿𝑜𝑠𝑠஼ೡ

∗

+ 𝐿𝑜𝑠𝑠ఈ೛
∗

+ 𝐿𝑜𝑠𝑠ఘ∗ఉ೅
∗

+ 𝐿𝑜𝑠𝑠ఊೡ
∗

+ 𝐿𝑜𝑠𝑠ఊ೔
∗

+ 𝐿𝑜𝑠𝑠ఓ಻೅  

[26] 

The model was implemented using PyTorch-
Lightning and Ray Tune (36,37). The model used 
one input layer, four hidden layers and one output 
layer with 45 neurons each. Tanh activation 
functions were used for all layers except the output 
layer. This architecture was previously applied to 
the Mie fluid (31). As the Lennard-Jones potential is 
a special case of the Mie potential, this model 
should be more than sufficient to model the 2D 
Lennard-Jones fluid. 

The database was split into 70% training data 
and 30% validation data using train-test-split from 
Scikit-Learn (34). The training data was used to 
calculate the training loss. The validation data was 
used to calculate the validation loss, which was 
used to check if the model was overfitting and 
provided a way to assess the model on data on 
which it was not trained on. 

The final model was trained with a maximum of 
200,000 epochs, along with early stopping if the 
validation loss did not decrease for 500 epochs. The 
model also terminated if the wall time exceeded 24 
hours. During training, the AdamW optimiser was 
used with a learning rate of 10ି଺, batch size of 256, 
and weight decay coefficient of 10ିଶ. AdamW 
incorporates decoupled weight decay as a form of 
regularisation into the standard Adam optimiser 
(38). A batch size of 256 was used as this decreased 
the probability of a batch containing only NaNs for 
a property. A learning rate of 10ି଺ is used as the 
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derivative properties vary significantly when the 
weights are updated. Models ran with a high 
learning rate tended to cause the loss to diverge.  

Results and Discussion 
2D-LJ Fluid Properties Database 
Of the 13870 datapoints at which the MD 
simulations were ran, after postprocessing of the 
simulation results, 9116 datapoints remained. The 
distribution of the data points in the database is 
shown in Figure 4. 
 

 
Figure 4: Datapoint distribution in the database after 
postprocessing. Datapoints shown in blue dots. X-axis plot 
shows distribution of data points with respect to density. Y-axis 
plot shows kernel density estimate for the distribution of data 
points with respect to temperature. Lower subplot shows 
subcritical region and phase envelope from Figure 2. 

When comparing the distributions of desired 
data points to the data points after postprocessing 
Figure 3 and Figure 4 respectively, the distribution 
of the data points is similar in the supercritical 
region. The inverse relationship between 
temperature and number of data points is retained. 
However, when comparing the area around and 
inside the VLE region, the postprocessed 
distribution contains only 14 of the original 948 
from the desired data points. The results at 44% at 
these data points were removed due to failed NPT 
simulations from unstable ensembles causing 
unphysical results thus, LAMMPS terminates the 
simulation. The other 56% of the data points inside 
the VLE region were removed due to the 
convergence tolerance that the difference in relative 
standard deviation of the properties between the 

first and second half of the simulations must be less 
than 0.05. This tolerance was too restrictive, 
however, we believe that it was best to have fewer 
total data points but higher quality data points. 
The count of non-NaN properties for the 9116 data 
points in the database are shown in Table 3. 
Table 3: Count of properties in the property database used for 

training the EoS. 

Property Count 
Internal energy 9116 
Compressibility factor 9101 
Isochoric heat capacity 9070 
Isobaric heat capacity 9070 
Thermal pressure coefficient 9092 
Thermal expansion coefficient 9093 
Isothermal compressibility 9051 
Joule–Thomson coefficient 7525 

 

EoS performance 
The final model was trained for 32361 epochs and 
was terminated after being trained for 24 hours due 
to time constraints.  

The performance of the EoS on the 1st derivative 
properties was assessed by plotting heatmaps of the 
mean squared error (MSE) between the predicted 
and target values of internal energy and 
compressibility factor for the validation dataset in 
Figure 6. 

Greater accuracy was seen in the lower 
temperature region (𝑇∗ < 2) and higher error was 
seen in the higher temperature region (𝑇∗ > 2). This 
was expected as the lower temperature region had 
significantly more data due to the inverse scaling; 
thus the Helmholtz free energy surface was better 
defined in this region. Both plots showed lower 
error in the low-density region. This was expected 
as the fluid behaves as an approximately ideal gas 
in the low-density region, and the formulation of 
the model accounts for the ideal contribution to the 
properties analytically. The highest error in the 
validation set for both properties was seen in the 
high-density and high-temperature region.  

The ability of the EoS to predict pressure 
isotherms was assessed by plotting two sub-critical 
(𝑇∗ = 0.450 & 0.511), one critical (𝑇∗ = 0.522) and 
two supercritical (𝑇∗ = 2.247 & 4.504) isotherms as 
shown in Figure 5. As discussed in relation to the 
heatmaps of the error in the first derivative 
properties, the EoS’ predictions were better in the 
low-density region. This was best shown in the 
black and magenta lines, which intersected the 
points at the low-density region, then deviated at 
the higher-density region. 
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The EoS was able to predict the existence of van 

der Waals loops in the subcritical region and a 
turning point in the critical isotherm, as shown in 
the lower subplot of Figure 5. This was impressive 
as the database only contained 14 data points in the 
VLE region, of which none were on the vapour side. 
This ability to predict the existence of van der Waals 
loops was understood to be a result of the ANN 
being trained on the second derivative properties, 
which encouraged the ANN to predict the 
curvature of the Helmholtz free energy surface 

correctly and thus encourages accurate property 
predictions in regions which the model wasn’t 
trained. 

The predicted turning point at the critical 
isotherm implied that the model could accurately 
predict the critical point, and the predicted van der 
Waals loops implied that the model could predict 
the VLE envelope. The predicted VLE envelope, 
VLE envelopes from other 2D-LJ EoS, and predicted 
critical point from literature are shown in Figure 7. 

It was seen from Figure 7 that the EoS from this 
paper correctly predicts the shape of the VLE 
envelope. The predicted envelope is in better 
agreement with the simulated VLE data from 
literature in the vapour region, with a mean 
absolute percentage error (MAPE) of 4%, than in the 
liquid region, with a MAPE of 56%, this was 
attributed to the fact that all the data inside the VLE 
envelope in the database was in the liquid region. 
Therefore, the Helmholtz free energy surface was 
better defined in the liquid region than the vapour 
region.  

It was also seen from Figure 7 that the predicted 
critical point from the EoS from this paper is in good 
agreement with the critical point from literature 
with an absolute percentage error of 0.3%. 

The predictions of the VLE envelope of other 
EoS for the 2D-LJ fluid were also shown in Figure 7. 
All the EoS’ had good agreement with the 
simulated data in the low density and low-
temperature region (𝜌∗ < 0.05 ,𝑇∗ < 0.46). In the 
high-temperature region (𝑇∗ > 0.46) both EoS’ from 
the literature overpredict the liquid and vapour 
densities, while the EoS from this paper 
underpredicts both the liquid and vapour density. 
It was understood that the liquid region was 
underpredicted to a greater degree due to the lack 
of data points in the database in this region. 

Figure 1: Pressure isotherms. Circles are MD data, lines 
are EoS prediction. Colours indicate temperature of the 
isotherm; red: 𝑇∗ = 0.450, blue: 𝑇∗ = 0.511, green: 𝑇∗ =
0.522, magenta: 𝑇∗ = 2.247 , black: 𝑇∗ = 4.504. Lower 
subplot shows region around the critical point. 
 

Figure 2:  Heatmaps of the MSE of the validation dataset. More orange coloured datapoints are worse predictions, more purple coloured 
datapoints are better predictions. (a) shows the MSE of the compressibility factor. (b) shows the MSE of the internal energy. 
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Figure 7: VLE envelope. Black line is predicted VLE envelope 
from the EoS from this paper. Black star is the predicted critical 
point from the EoS from this paper. Red star is the critical point 
from literature.(27) Red triangles are simulated VLE data from 
literature.(27,28) Blue line shows the RO EoS data from 
literature.(39) Green line shows CMO EoS data from 
literature.(39) 

Isotherms for the second derivative properties 
were plotted, these are shown in Figure 8. The EoS 
accurately predicted the thermal expansion 
coefficient and the isothermal compressibility over 
the range of densities and temperatures. The 

predictions of the thermal pressure coefficient 
agreed with the MD data until 𝜌∗ = 0.5 where the 
EoS’ deviation increased with increasing density 
however, the EoS captured the correct shape of the 
isotherms. When predicting the isobaric heat 
capacity, the EoS showed the same trend, accurate 
predictions in the low-density region and 
increasing deviations as density increased. The 
predictions of the Joule-Thomson coefficient agreed 
with the MD data in the supercritical and subcritical 
region however the EoS deviated from the MD data 
around the critical point. The EoS predicts the 
isochoric heat capacity poorly at all temperatures 
above 𝜌∗ = 0.1. The turning point at high densities 
in the subcritical region is not present in the model. 

These poor performing properties have not been 
fitted adequately by the model. This is believed to 
have occurred due to the low weighting of these 
properties in the loss function combined with the 
termination of the training before the loss had 
stopped decreasing. It is likely that the model may 
have been able to predict these properties better, 
given a longer training period and higher weighting 
in the loss function.   

 

Conclusions 
This paper implements MD simulations and an 
ANN to produce an EoS for the 2D-LJ fluid.  This 
approach was previously used in Chaparro’s study 
on the Mie fluid (40). Given the 2D LJ fluid is a 
specific case of the Mie fluid, this paper investigated 
the use of this for a 2D-LJ EoS.  

This ANN was trained on both the first and 
second derivatives of the Helmholtz free energy to 
learn the Helmholtz free energy surface. Training 
on second derivative properties improved the 
ability of the EoS to extrapolate the first derivative 
properties. This was best seen in the ability of the 
model to predict the existence of van der Waals 
loops in the subcritical region despite being trained 

Figure 3: Isotherms of isochoric heat capacity, isobaric heat capacity, Joule-Thomson coefficient, thermal pressure coefficient, 
thermal expansion coefficient, and isothermal compressibility Circles are MD data, lines are EoS prediction. Colours indicate the 
temperature of the isotherm; Red: 𝑇∗ = 0.450, Blue: 𝑇∗ = 0.511, Green: 𝑇∗ = 0.522, Magenta: 𝑇∗ = 2.247 , Black: 𝑇∗ = 4.504. 
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on only 14 data points in the VLE region. This 
model accounts for the ideal gas limit analytically, 
thus has great performance at low densities. The 
performance of the EoS was good for first derivative 
property prediction and phase behaviour, as seen in 
Figure 7. For phase prediction, this EoS 
outperforms existing EoS in the critical region, 
performs as well in the vapour branch with a MAPE 
of 4% and performs poorly in the liquid branch with 
a MAPE of 56%.  

 Shortcomings of our methodology were 
identified, such as overcleaning of the data, leading 
to a lack of data points in the VLE region and 
weaker performance in the VLE region. Future 
work should consider the effect of loosening these 
convergence tolerances. This could result in more 
subcritical points to aid the prediction of the phase 
envelope.  

To improve property prediction around the VLE 
envelope, an additional loss could be implemented 
where the current predicted VLE envelope is 
compared to the VLE data. This would need to be 
implemented such that this training only occurs 
after the model can predict any phase behaviour. 
Improvements could also be had if hyperparameter 
optimisation was performed. For future research, 
developing upon these areas and testing this 
framework on other fluids is encouraged.   
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Optimising Detergent Formulation: A Bi-Objective Computer-Aided Molecular 
Design Approach 

David Ke and Esha Langi 
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Abstract Surfactants, essential in the cleaning industry, face increasing demands for higher cleaning efficiency, as well 
as more stringent environmental and health regulations. The shift towards synthetic derivation has been significant due 
to the time-consuming nature of empirical solutions, resulting in continuous innovation becoming imperative. This study 
presents a bi-objective computer aided molecular design approach for the optimisation of detergent formulations, with 
particular emphasis placed on a binary mixture of non-ionic and anionic surfactants. The methodology addresses the 
critical aspect of maximising cleaning efficiency whilst complying with evolving consumer preferences for a reduced 
environmental impact. Alongside maximising cleaning power, the design of surfactants is tailored for a range of specific 
industries through consideration of associated soils. Trade-offs between properties have been quantified and their effects 
minimised so as to allow for the design of a more robust final surfactant. It is found that linear alkyl ethoxylate structures 
are optimal for achieving these objectives, but three other non-ionic surfactant types are also investigated in this paper. 
This research not only offers a pragmatic solution to the challenges faced by the detergent industry, but it also significantly 
accelerates the surfactant development process through the integration of advanced computational algorithms. These 
findings provide a framework for the future development of effective, industry specific, environmentally sustainable 
cleaning agents. 
 
1 Introduction 
Detergents are a type of surfactant which are specifically 
catered to the cleaning industry. Their primary purpose 
is to remove dirt, grease and other impurities from 
substances and often include additional features ranging 
from fragrance to fabric softeners. 

Cleaning agents serve a vital purpose in 
society, with the two types of surfactants – soaps and 
detergents – standing above the rest for their widespread 
usage. Although soaps, which are derived from natural 
fats and oil, initially held majority of the market 
following the second world war, by the 1970s their total 
market share had decreased to under 20% (Myers, 
2020). This is largely attributed to the rise of synthetic 
detergents driven by various economic and cultural 
changes. 

As of 2012, the global market for laundry 
detergents is estimated to have reached a value of $60.9 
billion (O. Bianchetti et al., 2015) and although trends 
may point to the surfactant industry slowing down, there 
are still various factors that ensure companies must 
quickly and continuously develop new products in order 
to capture the largest market share (Fung et al., 2007). 

For the successful development of a detergent 
product, maximising cleaning power is naturally 
essential for a successful formulation, but with the 
growing consumer conscience paired with increasingly 
strict government regulations, it is getting increasingly 
infeasible to meet every demand. Examples include 
consumer desires for non-toxic and biodegradable 
products that make use of renewable feedstocks with 
less energy demanding processes, whilst restrictions 
enforced by the government involve reducing VOC 
emissions in the manufacturing process. (Myers, 2020). 

A major aspect for developing detergent 
products is deciding the chemical structure of the 
surfactant that should be involved. Developing novel 
molecule structures via empirical means can be 
especially laborious as experimenting on a large and 
diverse set of novel components can be time consuming, 

especially considering the various combinations of 
surfactants and additives in multicomponent mixtures. 
Not only this, but maximizing the cleaning power of the 
surfactants, whilst still considering secondary 
parameters, such as toxicity and biodegradability, can 
make finding the best surfactant to meet specific 
consumer needs especially difficult or even impossible 
without compromise. 

In order to provide an alternative, more robust, 
approach, this paper employs a computer aided 
molecular design (CAMD) methodology for the creation 
of novel structures. Multiple properties that are typically 
associated with their effectiveness are optimised, with a 
large emphasis on safety and environmental parameters 
also being considered. 

2 Background 

2.1 Surfactant Classification 

A surfactant, short for ‘surface-active agent’, is a 
chemical compound which lowers the interfacial tension 
at the boundary between two immiscible phases, 
consequently allowing them to interact with a variety of 
substances (Kruglyakov, 2000). They do this through 
the creation of micelles, which are self-assembled 
molecular clusters, in a solution. Surfactant molecules 
have an amphiphilic structure meaning they consist of 
both a hydrophobic alkyl chain, which does not show 
affinity to water, and a functional hydrophilic group, 
which conversely does have an affinity for water.  

Surfactants can then be classified into either 
ionic or non-ionic, with the former being further 
subclassified into anionic, cationic, and amphoteric. 

Ionic surfactants have high cleaning efficiency, 
good foaming properties and the electrostatic 
interactions with oppositely charged particles allow 
them to effectively bind to and remove charged soils - 
an example of this would be anions being able to remove 
positively charged clay particles.  

In aqueous solutions, the hydrophilic group in 
anionic surfactants dissociates into anions, cations in 
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cationic surfactants and a mixture of anions and cations 
in amphoteric surfactants, depending on the pH. In 
general, anionic surfactants are most widely used due to 
them being both easy and cheap to manufacture. 

On the other hand, non-ionic surfactants do not 
dissociate into ions in aqueous solutions and are rather 
subclassified depending on the type of their hydrophilic 
group. The types of non-ionic surfactants that will be 
examined in this paper include linear alkyl ethoxylates 
(LAE), branched alkyl ethoxylates (BAE), ethoxylated 
amides (EA) and carbohydrate-derivative ethoxylates 
(CDE). This type of surfactant is frequently used as 
modifying their physical properties is as simple as 
adjusting the length of their hydrophilic chain. What is 
more, non-ionic surfactants are highly versatile and 
much more stable than their ionic counterparts (Chen 
and Schechter, 2021). 

A binary mixture of non-ionic and anionic 
surfactants is chosen as the non-ionic component is not 
affected by hard waters, which is ideal in the context in 
cleaning products. Unlike the non-ionic, the anionic 
component is very effective at removing soils but does 
not cope well in hard water due to the multivalent ions 
present (Cheng et al., 2020). Combination of the two 
produce a detergent which has an overall performance 
greater than those of its individual components. With 
regards to this paper, binary mixtures of the anionic 
surfactant of choice, sodium dodecyl sulfate (SDS), and 
each of the four types of non-ionic surfactants will be 
analysed in relation to a variety of properties. 

2.2 Surfactant Properties 

When designing a surfactant molecule, an important 
initial consideration is the quality factors which are most 
ideal for the product’s use case and their corresponding 
performance indices. Quality factors can be divided into 
two different types – primary and secondary (Fung et al., 
2007). Primary factors represent the minimum 
requirement for a detergent product. Examples of these 
in detergents include fast dissolution, powerful cleaning, 
and general product stability. High performance in both 
cold temperatures and hard water and versatility against 
various soils area also key considerations. 

 Meanwhile, secondary factors provide 
additional advantages for the consumer, ultimately 
setting that product above the rest. In the past, 
environmental and safety impacts such as 
biodegradability and toxicity might have been 
considered secondary quality factors, but with growing 
consumer awareness leading to stricter governmental 
regulations these could also be argued to be necessary 
traits when formulating novel detergents. 

The key surfactant properties considered in this 
detergent formulation include critical micelle 
concentration (CMC), Hansen solubility parameters 
(HSP), hydrophilic-lipophilic balance (HLB), cloud 
point (CP) and toxicity parameters (TP). 

2.2.1 Critical Micelle Concentration (CMC) 

CMC marks the threshold at which the surfactant 
molecules begin to aggregate into micelles with 
hydrophobic tails and hydrophilic heads (Esmaeili et al., 
2021). These work to remove soils such as dirt and 

grease by binding to the interface between the 
immiscible phases with their hydrophobic tails. The 
hydrophilic head of the micelle then allows for the 
whole structure to be soluble in water and subsequently 
carried away. 

Without being able to form micelles, the 
surfactant is effectively rendered useless- a low CMC is 
vital. It is worth noting that the CMC also varies with 
temperature, pressure and the presence and 
concentration of other substances such as salts. 

2.2.2 Hansen Solubility Parameters (HSP) 

The investigation of solubility parameters is typically 
done in the context of solvents and solutes. The ‘like 
dissolves like’ rule of thumb (Barton, 2017) states that 
solutes with similar intermolecular forces to the solvent 
have a high likelihood of being dissolved in it, which 
suggests that if the surfactant and the soil have similar 
HSP values, then it would make for an effective 
detergent. (Abbott and Hansen, 2013). 

The Hildebrand total solubility parameter is a 
standard way of representing these intermolecular 
forces, but its inability to distinguish the solubility 
behaviour for polar and hydrogen-bonded molecules 
makes the additional partial solubility parameters 
developed by Hansen a much better approach (Hansen, 
2007). These HSP account for all three types of 
intermolecular forces- dispersion, polar and hydrogen 
bonding- and thus have considerably higher predictive 
capabilities than using just the Hildebrand total 
solubility parameter. 

Although the usage of HSP values in the 
context of surfactant and detergent product design is 
surprisingly absent, Abbot and Hansen demonstrate a 
similar process for choosing the best surfactant based on 
the specific soils (Abbott and Hansen, 2013). 

By considering the three HSP values of a 
substance as its coordinates in a three-dimensional 
Euclidian space, theoretically minimising the distance 
between the surfactant and soil points maximises the 
cleaning power of the detergent. This also allows for the 
detergent to be tailored to specific use cases and 
environments, making this approach especially useful. 

2.2.3 Hydrophilic-Lipophilic Balance (HLB) 

HLB is a measure of the balance between the 
hydrophilic and lipophilic groups of a surfactant 
molecule. This is an effective way of quantifying the 
effectiveness of a surface structure as an emulsifier 
(Rosen and Kunjappu, 2012). It also allows prediction 
of both the solution appearance, as well as its product 
application, both very important when it comes to 
meeting consumer demands – the ranges for these are 
shown in Table 1 (Fung et al., 2007). 
Table 1: HLB range for product application and solution appearance  

Production 
Application 

HLB 
Range 

Solution 
Appearance 

HLB 
Range 

W/O emulsifiers 3-6 Insoluble 1-4 
Wetting agents 7-9 Unstable dispersion 4-7 

O/W emulsifiers 8-18 Stable dispersion 
(opaque) 7-9 

Detergents 3-15 Hazy solution 10-13 
Solubilizing 15-18 Clear Solution 13+ 
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With regards to the design of a detergent product, the 
target HLB is commonly reached through the mixing of 
multiple surfactants. This is because mixtures are 
generally more effective at stabilising the emulsion in 
comparison to individual surfactants (Fung et al., 2007). 

2.2.4 Cloud Point (CP) 

The CP of a non-ionic surfactant represents the 
boundary at which the surfactant begins to form a 
separate phase as the temperature increases, causing the 
solution to appear cloudy. Although in some instances 
this appearance may be preferred over a clear solution, 
an insoluble surfactant has a lower cleaning efficiency 
and therefore must be avoided. This is done by ensuring 
that the CP is sufficiently above the wash temperature 
during use (Smulders et al., 2007). 

2.2.5 Toxicity Parameters (TP) 

LC50 focuses on the lethal concentrations in a medium, 
with FM standing for flowing medium, such as a stream 
or river, and DM for a diffusing medium, such as still 
water or soil (Hukkerikar et al., 2012). Meanwhile, 
LD50 quantifies the dose of substance required to result 
in mortality in 50% of the test subjects through either 
inhalation, ingestion, or dermal exposure after a 
specified time duration. While this is primarily a 
measure of acute toxicity of a substance to living 
organisms, it can be also used to indirectly quantify the 
potential environmental impact of a substance. For 
example, values obtained from experiments with aquatic 
organisms quantifies the harm of the substance on 
ecosystems. 

Development of these models allows for reliable 
estimates of the environmental impact of the surfactants 
through allowing the health of various ecosystems, as 
well as the effects on certain species to be monitored. 
Ensuring non-toxicity is important- the further away the 
values are from predetermined hazard classification 
values, the smaller the detrimental effect on the 
environment. 

2.3 Evaluation of an Existing Approach 

The article titled ‘Design and performance optimisation 
of detergent product containing binary mixture of 
anionic-non-ionic surfactants’ by Cheng et al. was used 
as the foundation for this research (Cheng et al., 2020). 
Cheng focuses on the development of a methodology to 
design a hospital detergent using CAMD tools. This is 
done with the main objective being the optimisation of 
CMC, alongside CP, HLB and MW to make the overall 
detergent better suited for a hospital. 

Four types of non-ionic structures – LAE, 
BAE, EA and CDE – are considered and later optimised. 
Additionally, the use of binary mixtures of anionic and 
non-ionic surfactants is explored to enhance their 
individual properties, with the anionic surfactant of 
choice being sodium dodecyl sulfate (SDS). 

Cheng utilises a methodological approach to 
detergent design and successfully quantifies the 
enhancement a binary system of surfactants has on a 
purely anionic or non-ionic surfactant system through 
the integration of computational tools such as group 

contribution methods. This has been coupled with a 
multi-objective optimisation approach to account for the 
trade-off between different surfactant properties, with 
CMC being the main property of interest. Not only this, 
but Cheng also acknowledges the significance of 
additives such as antimicrobial agents and specific 
enzymes to strengthen the practical relevance of the 
research for a hospital setting. 

However, there is a limited focus on 
environmental impact – considering the growing 
emphasis on sustainability, quantifying, and addressing, 
this would be valuable. Moreover, modelling the non-
linear mixing capabilities of the different properties, and 
including higher order groups would all have resulted in 
a more robust final solution. Similarly, as stated by 
Cheng, the final selection of surfactant mixture and 
product composition could have been validified through 
experiments to eliminate the possibility of any 
undesirable interaction effects. In addition to this, an 
analysis of cost factors would have been an effective 
method of ensuring the product provided value for 
money, as well as whether alternative components were 
worth exploring. 

2.4 Problem Statement 

This research paper aims to employ a combination of bi-
objective optimisation and CAMD techniques to both 
address the gaps in Cheng’s paper, as well as provide 
novel work compared to existing approaches in the field. 
The environmental impact of the surfactant mixture will 
be quantified through the calculation of the TP. As there 
are no predictive models for these properties, their 
values will be considered based on databases of 
contributions. Similarly, HSP will be incorporated so as 
to be able to target the surfactants to specific soils – this 
will allow us to cater the final surfactant to a wide 
variety of industries, rather than just Cheng’s hospital 
setting. 

In essence, the proposed objectives of this 
research are as follows: 
• Design feasible binary surfactant mixtures with 

non-ionic and anionic surfactants to meet current, 
and future, surfactant demands in a more 
environmentally sustainable manner 

• Satisfy the primary objective of minimising the 
CMC for each of the four non-ionic structure types 
to maximise cleaning power 

• Fulfil the secondary objective of HSP to better 
quantify industry specific cleaning power 

• Meet the design constraints of the remaining 
properties 

3 Methodology 
Bi-objective optimisation was performed in GAMS 
Studio 40 with the intent of improving the binary 
mixture of non-ionic and anionic surfactants over CMC, 
HSP and the other relevant properties. 

3.1 Surfactant Design 

In Cheng’s work, a total of 4 properties were prioritised, 
where optimizing CMC was the main objective, while 
HLB, CP and MW were taken as lower-level problems 
to be optimised independently using constraints. These 
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constraints are a certain fraction of the optimal values of 
the lower-level properties. 

This method similarly takes into consideration 
multiple properties, whilst paying particular attention to 
the implementation of HSP, a property lacking sufficient 
research in the area of detergent formulation. 

Since additional properties were considered in 
the formulation of this problem, the HLB and CP 
constraints were relaxed and fixed to a satisfactory value 
to prevent the problem from becoming infeasible. The 
reasoning behind each constraint choice is outlined in 
the subsequent sections. 

3.2 Non-ionic Surfactant Design 

3.2.1 Modelling Critical Micelle Concentration 

CMC was modelled using the Mattei group contribution 
method shown in Equation 1 (Mattei et al., 2014). 
 

− log(𝐶𝑀𝐶) =  ෍ 𝑁௜𝐶௜,௖௠௖
௜

+ ෍ 𝑀௝𝐷௝,௖௠௖
௝

+ ෍ 𝑂௞𝐸௞,௖௠௖
௞

 

[1] 

Where 𝐶௜,௖௠௖  is the contribution of the first-order group, 
𝑖 , that is present 𝑁௜ times in that structure. This is 
similarly the case for the range of second-order groups, 
𝑗, and third-order groups, 𝑘, but only the first-order 
group contribution was calculated in practice. 

When data from this group contribution 
method wasn’t available, the missing values were 
instead calculated using a Quantitative Structure 
Property Relationship (QSPR) model (Huibers et al., 
1996). QSPR is another property prediction model 
which relies on signature descriptors that represent the 
unique structural features of individual molecules. 

For the same alkyl chain length, non-ionic 
surfactants tend to have a lower CMC compared to their 
anionic counterpart, so the upper boundary for the CMC 
of the non-ionic surfactant was set to be the CMC value 
of the anionic surfactant SDS (Tadros, 2013). 

3.2.2 Modelling Hansen Solubility Parameters 

The HSP values of the surfactant and soil can by 
interpreted as points in Euclidian space and the closer 
the points are, the more effective the surfactant is at 
removing the soil. This distance between the two points 
is denoted by 𝑅௔ as shown by Equation 2. 

𝑅௔
ଶ = 4(𝛿ௗଵ − 𝛿ௗଶ)ଶ + (𝛿௣ଵ − 𝛿௣ଶ)ଶ

+ (𝛿௛௕ଵ − 𝛿௛௕ଶ)ଶ 
[2] 

The distance term, 𝑅௔, may also be used interchangeably 
with the HSP distance, or HSP 𝑅௔ for clarity throughout 
this paper. 𝛿ௗ, 𝛿௣ and 𝛿௛௕ are the HSP for dispersion, 
polar and hydrogen bonding, and the 1 and 2 denotes soil 
or surfactant. The 4 in the equation allows for more 
convenient representation of the solubility data as a 
sphere that surrounds a point. 

The HSP values are predicted using the group 
contribution method developed by Stefanis and 
Panayiotou where the model equation and group 
contribution data change depending on the size of the 
parameter. Further details can be found in their work 
(Stefanis and Panayiotou, 2008). 

The soil that was focused on was butyl stearate 
because of its presence across a variety of industries. In 
addition to this, its HSP similarity to all the other soils 
made it a good candidate as the “average” soil. The 
optimisation algorithm was also tested on other soils to 
take into account a wide variety of industry use cases- 
the soils used are shown in Table 2. 

Table 2: HSP data for a range of common soils (𝑀𝑃𝑎଴.ହ) 
Soil 𝜹𝒅 𝜹𝒑 𝜹𝒉𝒃 

ASTM Fuel "A" 14.3 0.0 0.0 
Butyl Stearate 12.6 6.3 6.1 

Castor Oil 13.6 6.0 10.5 
Ethyl Cinnamate 16.0 10.8 7.5 

Linseed Oil 13.5 3.5 3.7 
Tricresyl Phosphate 15.9 13.9 13.5 

 
An 𝑅௔ value of 8 𝑀𝑃𝑎଴.ହ or less is considered to have a 
very good cleaning performance where at least 95% of 
the soil is removed (Hansen, 2007). This breakpoint 
indicates that above 8 𝑀𝑃𝑎଴.ହ, the resultant cleanliness 
is “unacceptable”, and so this is initially used as the 
maximum boundary value for 𝑅௔ before being 
independently optimised as the secondary objective. 

3.2.3 Modelling Hydrophilic-Lipophilic Balance 

HLB takes into account the ratio between the molecular 
weight of the hydrophilic portion compared to the total 
molecular weight of the whole molecule. The HLB 
system was found to have great utility, leading multiple 
empirical and theoretical methods to be developed 
(Rosen and Kunjappu, 2012). 

Equation 3 can only be utilised under the 
condition that the HSP are matched between the 
surfactant and the soil. When 𝑅௔ is minimised, HSP 
values between the surfactant and soil are close, and 
therefore use of Equation 3 is valid for this research. 

𝐻𝐿𝐵 =  
20𝑀ு

𝑀௅ + 𝑀ு
=  

20𝑀ு

𝑀ௐ
 [3] 

In this equation, the 𝑀ு is the molecular weight of the 
hydrophilic group and 𝑀௅ is the molecular weight of the 
lipophilic or hydrophobic portion of the molecule. It is 
assumed that the summation of these is equal to the 
overall molecular weight, 𝑀ௐ. 
 The bounds for this property are on the mixture 
rather than the non-ionic surfactant- these are outlined 
later in the report.  

3.2.4 Modelling Cloud Point 

The Mattei group contribution method in Equation 4 
was applied to model CP (Mattei et al., 2014). 

𝐶𝑃ଶ = ෍ 𝑁௜𝐶௜,஼௉
௜

+ ෍ 𝑀௝𝐷௝,஼௉
௝

+ ෍ 𝑂௞𝐸௞,஼௉
௞

 [4] 

The nomenclature of this equation directly mirrors that 
for CMC in Equation 1, with only the first order group 
contribution data being taken into account once again. 
 A lower CP constraint of 55°𝐶 was employed 
to enable stable performance under different 
temperature conditions. This value was chosen as it was 
the target constraint used in the collation of the database 
of contributions for non-ionic surfactants for the overall 
group-contribution method (Mattei et al., 2014). 
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3.2.5 Modelling Toxicity Parameters 

The Marerro and Gani group contribution method 
(Hukkerikar et al., 2012) was used to model each TP as 
shown in Equation 5. 

𝑇𝑃 =  ෍ 𝑁௜
௜

𝐶௜,்௉ + 𝑤 ෍ 𝑀௝𝐷௝,்௉
௝

+ 𝑧 ෍ 𝑂௞𝐸௞,்௉
௞

 [5] 

The nomenclature of this equation once again mirrors 
that for CMC in Equation 1, with only the first order 
group contribution data being taken into account – w and 
z have values of zero. Simultaneous regression was used 
to calculate these contributions so all predictors can be 
considered in the model simultaneously, as opposed to 
stepwise regression which only incorporates the most 
significant predictors in the regression model. 

Lower bounds of 5 𝑚𝑔 𝐿ିଵ on the LC50 values 
and 5 𝑔 𝑘𝑔ିଵ on the LD50 values (Choi and Byeon, 
2020) were also set on these parameters, with these 
values categorised as only being potentially harmful. 
Meanwhile, values below this range would be classified 
as toxic, and values even further below this range 
classified as fatal- the higher the value, the less harmful 
the substance is. 

3.3 Anionic Surfactant Choice 

Laundry detergents are typically formulated using a 
mixture of a non-ionic and anionic surfactant in order to 
increase product performance. With the focus of this 
project being on the non-ionic surfactant, selecting an 
anionic surfactant that would work with a large 
combination of non-ionic surfactants was the most 
effective approach. 

SDS’s widespread usage in both research and 
industry makes it the surfactant of choice with its 
properties outlined in Table 3 (Bhattarai et al., 2014).  

Table 3: Relevant property data for the anionic surfactant 
SDS Property Data 

CMC [𝑀] 8.20E-03 
HLB [−] 40.0 
CP [°𝐶] 100 

MW [𝑔 𝑚𝑜𝑙ିଵ] 288 
Although SDS is known to be an irritant at high 
concentrations, the toxicity level on humans is 
drastically lower in practice due to its diluted nature in 
detergent formulations. Similarly, the release of SDS 
into the environment as part of a consumer product is 
typically non-toxic to aquatic life. Furthermore, 
biodegradability means that SDS does not persist in the 
environment (Bondi et al., 2015). 

3.4 Surfactant Binary Mixture 

Equations for the binary mixture of surfactants were 
essential for constructing the final detergent product. 
Although ideal mixing was assumed for the majority of 
properties, CMC was modelled using Equation 6, 
developed by Rubingh (Rubingh, 1979).  

1
𝐶ଵ,ଶ

=
𝛼

𝑓ଵ𝐶ଵ
+

1 − 𝛼
𝑓ଶ𝐶ଶ

 [6] 

Where 𝐶 is the CMC value, 𝑓 is the activity coefficients 
of the surfactant and 𝛼 is the ratio of the non-ionic 
surfactant- 1 and 2 denote the non-ionic and anionic 
surfactant respectively. Due to lack of data present, the 
ideal approximation is assumed where 𝑓ଵ = 𝑓ଶ = 1. 

𝛼 was modelled as a continuous variable, 
constrained from 0.6 to 0.9 to give the mixing ratios 
more flexibility to meet the product constraints (Azzam, 
2001). Since the CMC from mixing non-ionic and 
anionic surfactant counterparts tend to be lower than 
their pure counterparts (Myers, 2020),  the upper 
constraint for the CMC of the mixture was also set to the 
anionic surfactant’s CMC, similar to the non-ionic 
surfactant’s CMC constraint. 

Although the HLB parameters show evidence 
of non-linearity when being mixed (Myers, 2020) it was 
assumed that ideal mixing occurred for simplicity. As 
shown in Table 1, to achieve detergency, a HLB range 
of 3-15 for the mixture was required. For the appearance 
of the product to meet consumer requirements, a clear 
product was required, which corresponds to HLB values 
above 13, so the final HLB constraints on the surfactant 
mixture are 13-15. 

An overview of the constraints being enforced 
on just the non-ionic surfactant, as well as those placed 
on the final mixture is shown in Table 4. 

Table 4: Optimisation constraints on relevant properties 
Property Constrained Lower Upper 
CMC [𝑀] Both 0 8.20E-03 

Ra [𝑀𝑃𝑎଴.ହ] Non-ionic 0 8 
HLB [-] Mixture 13 15 
CP [℃] Non-ionic 55 - 

LC50(FM) [𝑚𝑔 𝐿ିଵ] Non-ionic 5 - 
LC50(DM) [𝑚𝑔 𝐿ିଵ] Non-ionic 5 - 

LD50 [𝑔 𝑘𝑔ିଵ] Non-ionic 5 - 

3.5 Bi-Objective Optimisation 

It must be recognized that for any bi-objective 
optimisation problem, the primary objective is 
influenced by the lower-level objectives. Minimising 
CMC acts as the primary objective and minimising HSP 
𝑅௔ distance the secondary objective – this must be 
independently optimised along with the further design 
constraints. 

The secondary objective optimisation approach 
involved multiplying a weighting, 𝑤ுௌ௉, against the 
theoretically ideal HSP distance of 8 𝑀𝑃𝑎଴.ହ. 

The optimisation was performed with 
weightings in the range 0.8125 – 1.125 which accounts 
for an 𝑅௔ distance range of 6.5 – 9 𝑀𝑃𝑎଴.ହ. 
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4 Results & Discussion 
Table 5: Initial optimisation results with integer cuts implemented 

Structure Type MW 
[𝒈 𝒎𝒐𝒍ି𝟏] 

CMC 
[𝑴] 

HSP Ra 
[𝑴𝑷𝒂𝟎.𝟓] 

HLB 
[-] 

CP 
[𝑲] 

LC50(FM) 
[𝒎𝒈 𝑳ି𝟏] 

LC50(DM) 
[𝒎𝒈 𝑳ି𝟏] 

LD50 
[𝒈 𝒌𝒈ି𝟏] 

LAE 

421 3.04E-07 6.44 13.0 254 1880 860 248 
485 4.01E-08 6.71 13.0 261 2300 1560 531 
576 7.49E-07 6.65 14.4 308 2530 1360 379 
551 5.53E-06 6.51 14.9 314 1690 755 231 
563 2.04E-06 6.56 14.7 311 1850 737 183 

BAE 423 6.70E-03 6.43 14.9 329 450 47.4 322 

CDE 

324 2.00E-04 7.96 13.0 307 1250 905 109 
313 4.00E-04 7.90 13.0 313 1070 688 56.1 
286 2.00E-04 7.95 13.0 288 1280 1040 161 
353 4.00E-04 7.97 13.5 327 1100 809 98.3 
275 4.00E-04 7.87 13.0 293 933 605 47.8 

4.1 Initial Optimisation 

Table 5 represents the results obtained after an initial 
optimisation of the mixed-integer programming (MIP) 
problem with the addition of integer cuts. These were 
implemented so as to obtain the top 5 surfactants for 
each structure type, but this was only fully successful for 
LAE and CDE. This optimisation didn’t allow for any 
EA solutions, but it was later concluded that this was due 
to the tight constraint of the HSP 𝑅௔. Similarly, the LAE 
structures all display HSP 𝑅௔ values near the upper 
constraint value of 8 𝑀𝑃𝑎଴.ହ. This implies the potential 
existence of surfactants with lower CMC values, and 
thus higher cleaning power, that have narrowly been 
missed due to the strict HSP 𝑅௔ constraint. 

In the case of BAE, there was only one feasible 
structure. After closer analysis of the code, one potential 
cause could have been the 𝛼 value. The 𝛼 value for BAE 
is its upper constraint of 0.9 implying that a binary 
mixture even more heavily weighted by the non-ionic 
surfactant would have been preferable for meeting the 
main objectives as well as the design constraints. 

However, it is still important to note that the 
mixture results in lower CMC values as opposed to the 
individual non-ionic or anionic surfactants, proving that 
they are still more effective in combination than alone. 
Additionally, the HLB values of the non-ionic 
surfactants pre-mixing were much lower than the 
desired 13-15 range where the anionic surfactant was 
instrumental in bringing the value of this parameter up 
to the required level. This is representative of the fact 
that anionic surfactants, such as SDS, are readily 
employed as solubilising agents in order to increase the 
solubility of otherwise poorly soluble compounds in 
aqueous environments (Perinelli et al., 2020). 

As part of an external analysis, these results 
were also compared on a multi-variable plot with the 
axis range representing the corresponding constraints to 
allow examination of multiple variables simultaneously. 
From this, it was clear to see that the optimal MW values 
were around 400 𝑔 𝑚𝑜𝑙ିଵ, HLB around 13 and CP 
around 300𝐾 – these values were all consistent to that of 
Cheng. However, one area where there was a slight 
difference was the CMC values. While the remaining 
structures seemed to result in CMC values within at 

most two factors of 10 to that of Cheng, the results were 
on average a thousand times smaller for the LAE 
structures. A key reason for this is the literature-backed 
relaxation of Cheng’s constraints that was employed 
before the addition of the further constraints. 

The toxicity parameters values are all much 
higher than their lower bounds of 5 proving that the 
environmental impacts of all the surfactants is 
negligible, as is the case with the pre-determined anionic 
surfactant, with CDE structures being the least harmful 
overall. These surfactants are in general considered to be 
more environmentally friendly in comparison to other 
surfactants as they are derived from renewable feedstock 
and thus readily biodegrade into non-toxic compounds 
(Ortiz et al., 2022). 

Another essential takeaway is that attempts to 
change the relative termination tolerance and scale the 
final results to be in the range of 0-1 in order to remain 
within the optimality criteria using BARON were 
largely unsuccessful. Consequently, ANTIGONE was 
used, where the issue of the solutions only being local, 
despite using a global solver likely rise due to overly 
complex nature of certain property models used. 
4.2 HSP Weighting 

As found from the initial optimisation, the TP values are 
all so far away from the design constraint that further 
relaxation to these properties was deemed unnecessary. 
On the contrary, the effect of the addition of a weighting 
to the HSP constraint was further explored in order to 
observe the effect of changing the maximum 𝑅௔ value 
from 8 𝑀𝑃𝑎଴.ହ. 

The tightening of this constraint would allow 
for theoretically better cleaning. However, this 
simultaneously makes finding solutions less likely, or 
even infeasible in some cases, due to over constraining. 
Conversely, relaxation of this constraint would mean a 
drop in cleaning effect but would allow for more 
flexibility in the design of novel surfactant structures. 
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Figure 1: Plot to show effects of changing max Ra value on CMC for 

each structure type 
The graph in Figure 1 was plotted in order to 

successfully quantify this trade-off. It shows that the 

results for BAE remained consistent. This structure 
being unaffected by ranging the 𝑅௔ max value between 
6.5 and 9 𝑀𝑃𝑎଴.ହ meant that the effects on LAE and 
CDE were able to be focused on. As seen in the graph, 
there are much steeper gradients, and thus much larger 
changes to the overall CMC for 𝑅௔ max values above 8 
𝑀𝑃𝑎଴.ହ. This shows that a slight relaxation of this 
constraint allows for structures with greatly reduced 
CMC values.  

As minimising the CMC is the primary 
objective, it was decided that only a 10% relaxation of 
the constraint would be proceeded with to remain close 
to the theoretical ideal value. This 10% relaxation 
corresponds to an 𝑅௔ max value of 8.8 𝑀𝑃𝑎଴.ହ using a 
weighting (𝑤ுௌ௉) of 1.1.

 

4.3 LAE Bi-Objective Optimisation 

Figure 2: Multi-variable plot of the properties of LAE structures for varying Ra max values 

A further analysis was carried out into binary mixtures 
with LAE structures specifically due to them being the 
most common non-ionic surfactant used in industry 
(Evans et al., 1994). Figure 2 is a multi-variable plot 
which allowed simultaneous examination of multiple 
variables. The axis range represents the corresponding 
constraints for all properties except for CMC since the 
results were far below the upper constraint. 

As seen in this figure, the optimal surfactants 
generated for 𝑅௔ max values of 7 and 7.5 𝑀𝑃𝑎଴.ହ, the 
blue line, and 8 and 8.5 𝑀𝑃𝑎଴.ହ, the green line, were 
identical – only changes greater than the value of 0.5 
𝑀𝑃𝑎଴.ହ from the original 8 𝑀𝑃𝑎଴.ହ had any significant 
impact. The lines on the graph not aligning suggests 
different levels of solubility and micelle formation 
behaviour for each surfactant due to different 
interactions with their environments. 

As minimising CMC is the primary objective, 
and minimising HSP the secondary, the existence of a 
potential relationship between the two would be 
beneficial in accounting for any trade-offs within the 
optimisation. In theory, a relationship between the two 

would be possible as both properties are related to the 
interactions of the surfactant molecules – with 
themselves in the case of CMC, and with soils in the case 
of HSP. It’s also important to note that this relationship 
relies heavily on the intermolecular forces as these are 
additionally influenced by a variety of other factors 
including temperature and pH. 

Based on the compatibility of surfactants with 
soils, it would be expected that more optimal CMC 
solutions could be found for an increased overall 
solubility parameter radius. In essence, as the surfactant 
becomes less compatible with the soil, it can form 
micelles at lower concentrations. One possible cause of 
this is the stronger hydrophobic effect driving the 
surfactant molecules to aggregation, rather than soil 
contact (Kronberg et al., 1995).  

In the process of micellisation, there are two 
opposing forces at work- the hydrophobicity of the tail 
which favours micelle formation, as well as the 
repulsion between the hydrophilic head groups. 
However, the former of these is strong enough to 
overcome the electrostatic repulsion of the latter, 
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resulting in the formation of micelles. This demonstrates 
that the hydrophobic effect plays a significant role in the 
favouring of surfactant molecule aggregation over direct 
soil contact. 

On the graph, this relationship would be 
represented by the surfactants with the highest 𝑅௔ values 
having the lowest CMC values, which is true for the 
most part. Swapping of the green and blue lines would 
mean that all the results were representative of this 
relationship. The green line having very similar results 
as the yellow line for the remaining properties further 
supports that a slight relaxation in the 𝑅௔ max value does 
not have too much of an effect on the overall structure, 
while still allowing for optimal solutions. Subsequently, 
it is more probable that the error lies within the blue line. 
A potential reason for a higher-than-expected 𝑅௔ is that 
this structure has a considerably higher MW than the 
others. This would result in a highly different molecular 
structure, and thus a longer length of hydrophobic tail 
and greater size and charge of hydrophilic head- these 
factors significantly influence the surfactants overall 
performance. Alternatively, this could also be due to the 
ANTIGONE solver, and further supports the conclusion 
of local solutions having been obtained. 

Following on from that, Figure 3 was plotted 
after the elimination of confirmed anomalous results. 
This was done to gain an insight into the actual trade-
offs between CMC and HSP and to better understand the 
boundary of achievable solutions. 

The line that would be used to join these points 
encapsulates the complexity of this relationship, with  
the optimal CMC solution being obtained from a HSP 
𝑅௔ value of approximately 6.5 𝑀𝑃𝑎଴.ହ. Meanwhile, the 

area on right-hand side of the graph represents the 
feasible region- the optimised 𝑅௔ value of 8.8 𝑀𝑃𝑎଴.ହ 
lies within this range. As a result, in order to not over-
constrain the problem based on only one structure, it was 
decided to proceed with the previously determined, still 
feasible, 𝑅௔ value of 8.8 𝑀𝑃𝑎଴.ହ. 

However, since each point represents an 
individual and optimal solution, interpolation, and 
extrapolation, through the drawing of a connecting line 
is not feasible until additional data points are collected. 
This will also be beneficial in determining whether the 
solutions obtained are global optimums. In the case they 
are not, this would further support the fact that 
ANTIGONE provided local solutions- an initialisation 
approach of the variables in GAMS would be the first 
step of checking whether this issue persists with 
different starting points.

 

4.4 Final Bi-Objective Optimisation 

Table 6: Final optimised solutions for each surfactant type with the implementation of the HSP weighting 

 
 The final solutions are displayed in Table 6, having 
been optimised bi-objectively and then subject to further 
design constraints. Their respective structural formulae 
are also included, with the red numbers outside of the 
brackets indicating the change from the general case.  

It is essential to note that the culmination of this 
constrained bi-objective optimisation approach has 
resulted in achieving solutions for EA- this was not the 
case after the initial optimisation. This shows that 
widening the range of effective novel constraints 
through the relaxation of the HSP 𝑅௔ constraint was a 
worthwhile alteration as it resulted in a surfactant with 
the second-most optimal CMC value of 3.97x10-8 𝑀. 

Overall, LAE displays the lowest CMC value 
of 1.7x10-8 𝑀 which goes to prove that not only is it the 
most common, but it is also the best performing with 

regards to the primary optimisation. A key contributor 
to this could be that its linear structure promotes close 
packing of the molecules in the micelle core, 
contributing to their overall stability, subsequently 
resulting in a lower CMC value. 

LAE also has the second lowest HSP 𝑅௔ value 
of 8.05 𝑀𝑃𝑎଴.ହ, with BAE having the lowest, with a 
value of 6.43 𝑀𝑃𝑎଴.ହ. However, the BAE structure has 
a significantly higher CMC value than that of the LAE 
which is a clear example of the trade-off between these 
two properties. It is impossible to have the most optimal 
solution for both of them at once, but the LAE structure 
results in reasonably optimal values for each property. 

Structure 
Type Structural Formula 𝜶 

[-] 
MW 

[𝒈 𝒎𝒐𝒍ି𝟏] 
CMC 
[𝑴] 

HSP Ra 
[𝑴𝑷𝒂𝟎.𝟓] 

HLB 
[-] 

CP 
[𝑲] 

LC50 
(FM) 

[𝒎𝒈 𝑳ି𝟏] 

LC50 
(DM) 

[ 𝒎𝒈 𝑳ି𝟏] 

LD50 
[𝒈 𝒌𝒈ି𝟏] 

LAE CH3 – (CH2)19 – (OCH2CH2)1 – 
OCH2CH2OH 0.758 373 1.70E-08 8.05 13.0 210 1880 860 248 

BAE (CH2CH2CH3)2 – CH - CH2 – O – 
(CH2CH2O)7 – H 0.900 423 6.70E-03 6.43 14.9 329 450 47.4 322 

EA CH3 – (CH2)17 – CH2NH – 
CH2COO – (CH2CH2O)3 – H 0.878 451 3.97E-08 8.25 13.0 227 3220 2150 628 

CDE CH3 – (CH2)18 – CH2COO – 
(CH2CH2O)2 – CH3 

0.814 402 1.50E-07 8.78 13.0 275 3750 3490 718 

Figure 3: Plot representing the optimal CMC values for ranging 
Ra max values for LAE surfactants 
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4.4.1 Experimental Comparison 

The final surfactant solutions are compared to empirical 
results, with specific attention paid to the analysis of 
LAE structures due to their availability in literature. 
According to Cox, physical properties are influenced 
primarily by ethylene oxide (EO) chain length. Carbon 
chain length is equally as important for performance- its 
optimum is shown to depend strongly on surfactant 
concentration (Cox, 1989). 

The optimum LAE solution for this paper is 
CH3 – (CH2)19 – (OCH2CH2)1 – OCH2CH2OH with a 
carbon chain length of 19. This is similar to the carbon 
chain lengths of the commonly used ceteareth-n 
molecule, which typically range from 16-18 (Śliwa and 
Śliwa, 2020). The EO chain length is typically very large 
for these molecules, but the optimum surfactant had a 
length of only 1. Although not shown in this paper, there 
were various other, less optimal, solutions generated 
which better corresponded to empirical surfactant data. 
While these structures had a lower carbon chain length, 
they had much larger EO chain lengths- these would be 
an overall better fit for the ceteareth-n molecule. 

4.5 Uncertainty Analysis 

An analysis of the accuracy for the models is vital for 
understanding the limits associated with this 
optimisation process. 

If the development of the HSP group 
contribution data is taken as an example, the potential 
drawbacks that should be taken into consideration for 

any model can be observed. Developing group 
contribution data requires a set of data in which to base 
the model off. In Stefanis’ case, a both large and diverse 
set of compounds are considered (Stefanis and 
Panayiotou, 2008). Utilisation of a broad dataset is great 
in theory but due to it being inaccessible, it is still 
unknown as to whether it incorporates the desired types 
of surfactants. 

The average absolute error (AAE) for the first 
and second groups taken from Stefanis are in Table 7.  

Table 7: Absolute error for first and second order groups for HSP 

HSP 
AAE [𝑀𝑃𝑎଴.ହ] 

% Change 
First-Order  Second-Order  

𝛿ௗ 0.44 0.41 -6.80 
𝛿௣ 1.05 0.86 -18.10 
𝛿௛௕ 0.88 0.80 -9.10 

Although the percentage change appears to have quite 
an effect when using second order groups, the absolute 
change for a structure is ultimately small, agreeing with 
the choice to eliminate higher order groups. 

Furthermore, the maximum absolute error in 𝑅௔ 
as a product of the error of the combined 𝛿 parameter is 
1.63 𝑀𝑃𝑎଴.ହ. Although the 𝑅௔ constraint could have 
been extended to 9.63 𝑀𝑃𝑎଴.ହ to ensure all feasible 
structures were considered, the converse could occur 
where less than satisfactory structures are accepted. 
Therefore, it is essential that a compromise is and a 
value of 8.8 𝑀𝑃𝑎଴.ହ is sufficient until better models are 
developed.

 

 

4.6 Other Industries 

Table 8: Ra and CMC values for a variety of industries and their associated soils 

 
One of the key strengths of using HSP is its ability to 
measure a cleaning agent’s effectiveness against 
specific soils which allows the detergent to be tailored 
towards specific targets in the design process. 

Following the successful optimisation of the 
surfactant structure against butyl stearate, this approach 
was tested against each of the other soils in Table 2 using 
the LAE structure, with the results shown in Table 8. It 
is interesting to note that despite similarly low values of 
CMC for some of the soils, the 𝑅௔ values are 
considerably smaller than that of butyl stearate. For 
example, despite ASTM and butyl stearate having 
almost identical CMC values, ASTM’s 𝑅௔ value is over 
25% smaller. This suggests that the optimal LAE 
structure for ASTM is significantly better than the 
optimal structure for butyl stearate - further 
investigation into potential structures would be required 
to reach the same level of cleaning power. 

5 Conclusion 
A wide range of properties are implemented into an 
optimisation framework as an alternative way of 
developing novel, better suited surfactant molecules for 
the cleaning industry. To cater to the growing demands 
of consumers, particular emphasis is placed on cleaning 
power and its relation to CMC and HSP, whilst 
simultaneously increasing safety and reducing 
ecological impact through the implementation of TP. 

This paper details the innovative use of HSP to 
predict a surfactant’s affinity towards a specific soil, 
allowing a non-ionic surfactant to be tailored to specific 
use cases. This is done before its combination with the 
anionic surfactant, SDS, as part of a binary mixture. 
Furthermore, the ratio of the non-ionic surfactant in this 
binary mixture is also optimised to allow for a higher 
probability of all of the constraints being met. 

Industry Soil Ra CMC [𝑴] 
Fuel ASTM Fuel "A" 5.60 1.84E-08 
Foods, textiles, lubricants, paint, ink, perfume agriculture Butyl Stearate 8.05 1.70E-08 
Soaps, lubricants, hydraulics, paints, dyes, coatings, ink, plastics, waxes, polishes, 
pharmaceuticals, perfumes Castor Oil 6.96 3.04E-07 

Fragrance, flavouring component Ethyl Cinnamate 7.68 4.18E-08 
Painting Linseed Oil 5.71 5.53E-06 
Metalworking, lubricants, plasticizer, detergent, fire-safety Tricresyl Phosphate 8.42 2.00E-03 
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After the bi-objective optimisation process was 
conducted, the theoretical best non-ionic structure for 
tackling butyl stearate, was an LAE structure. Our 
process was also easily modified to target other soils 
which produced more promising structures. 

The availability of a more comprehensive and 
accurate dataset when modelling parameters would 
improve the validity of results. Further consideration of 
the non-linearity of mixing relationships for each of the 
properties would also result in a higher validity. 

To comprehensively measure the 
environmental and cost impacts of the optimised 
surfactant, a life cycle assessment of the process 
synthesis could be carried out. This would allow for the 
identification and analysis of processing paths and 
designs, which are essential when it comes to the 
creation of new cleaning products. 

The potential for the tailoring of new 
surfactants to meet demand is a useful tool for the 
detergent industry as it vastly reduces the large number 
of surfactant combinations, resulting in experimental 
validity becoming a much more plausible option. 
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Abstract
Hydroxymethylfurfural (HMF) is a promising chemical for the future, with potential to be used as an inter-
mediate or starting material for functional polymers, pharmaceutical ingredients and biofuels. However, HMF
separation from reaction effluents is challenging due to its susceptibility to thermal degradation, and such
requires further research. This paper focuses on the separation of HMF via two separation methods: vacuum
distillation, and cooling crystallisation. It was found the cooling crystallisation with acetone, was not feasible
for temperatures as low as -70 °C. As such recovery of HMF via vacuum distillation with acetone was inves-
tigated more thoroughly, with particular focus of the impact of distillation time on recovery. Ultimately, it
was found that up to 96 % could be recovered from a reaction effluent, demonstrating that low-boiling point
solvent systems are beneficial in optimisation through humin minimisation.

1 Introduction
In recent years, due to the various climate-related
initiatives such as the UK’s 2050 Net Zero Target,
the need for renewable resources to produce energy
and various chemicals, has been a topic of increas-
ing interest. One of the potential routes for moving
away from the current dependence on fossil fuels
is biomass-derived resources, which are available in
abundance and at a relatively low cost. As such,
these types of materials would allow a more sus-
tainable supply of essential precursors and interme-
diates for the manufacture of pharmaceuticals, poly-
mers, fuels, and other chemicals [1].

Prime examples of a biomass-derived substance
that could shape the future of these sectors, are fu-
rans. In fact, furans have been named one of the ’Top
12 Biochemicals from Renewable Resources’ by the
United States Department of Energy (USDOE) [2],
indicating the magnitude of the potential for them
in the aforementioned sectors. The USDOE go on
to discuss examples of useful substances with furan
rings such as furfural and 5-hydroxymethylfurfural
(HMF), which was referred to as a ’chemical plat-
form for a lignocellulosic biomass biorefinery’ [2].

In addition to a furan ring, HMF also contains two
other functional groups (as seen in Figure 1), there-
fore making it desirable for its versatility to be sub-
jected to a wide range of reaction pathways [3]. To
name a few reaction types, HMF can undergo hy-
drolysis, hydrogenation, and oxidation [4]. There-
fore, it can be transformed into numerous useful
products, for example, precursors for biofuels and
plastics, within the biorefinery sector [1].

HMF is frequently produced via acid-catalysed
dehydration of saccharides, such as cellulose, glu-
cose, fructose, or sucrose [5]. Due to its low cost and
abundance, glucose is often favoured as the feed-
stock for said reaction but has typically been shown
to produce lower yields, compared to its structural
isomer, fructose. This observation has been at-
tributed to the stability of the pyranoside ring glu-

cose, which therefore does not form as much open-
chain form glucose within solution [6].

Figure 1: Skeletal Structure of HMF with key functional
groups circled; 1: Aldehyde group, 2: Furan ring, 3: Hydroxy

group

However, despite these huge benefits, there are
some drawbacks to HMF production which pose
challenges to its application on a larger scale. HMF
is thermodynamically unstable [4], and therefore
quite susceptible to side reactions, and in turn by-
product formation. Levulinic acid and formic acid
are common by-products which are formed via the
rehydration of HMF [7]. In addition, the cross-
polymerisation of reaction intermediates leads to
condensation products – a range of soluble poly-
mers, but also some insoluble humins [6]. The typi-
cal reaction pathway to form HMF and its common
by-products are illustrated in Figure 2.

Figure 2: Typical reaction pathway for HMF production from
D-Fructose as well as how some of the most common

by-products form; Adapted from [5]

2 Background
Previous work has looked extensively into maximis-
ing selectivity towards HMF and therefore obtain-
ing higher yields through research experimentation

1
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with various catalysts, solvents and operating condi-
tions. A popular method of generating higher HMF
yields is via fructose dehydration reaction using an
aprotic solvent such as dimethyl sulfoxide (DMSO)
because it can somewhat repress undesired site reac-
tions (such as HMF rehydrations, condensation reac-
tions, and acyclic reaction sequences), thereby gener-
ating higher yields of HMF [8]. Alternatively, other
papers have discussed effective reactions of fructose
using a simple low boiling solvent system, of ace-
tone and water, [9]; this method has the added ben-
efit of lower costs compared to DMSO.

However, many of the hindrances to the
widespread industrial application of HMF are not
related to the reaction itself. It is in fact the sepa-
ration of HMF from reaction mixtures which is so
complex, for a number of reasons including: the re-
activity and thermodynamic instability of HMF and
therefore, the formation of by-products. An example
of a common undesirable by-product are humins.
These are carbonaceous polymers which are thought
to be formed from condensation reactions, between
a carbohydrate and some intermediates during their
conversion to a particular product, such as HMF
[10]. Although HMF yields and recoveries are of-
ten said to be impeded by humin formation, the ex-
act reaction pathways and changes in morphology
and structure, are not fully understood. As a result,
the impact of this substance on the separations of
HMF from reaction effluents is yet another complex-
ity. Other crucial considerations for HMF isola-
tion, are the reaction and separation conditions. For
example, as aforementioned, high boiling points are
often favoured for their high yields of HMF (around
90%). In turn, higher temperatures are required for
solvent removal. However, this also causes difficul-
ties because HMF itself has a high boiling point and
is also susceptible to thermal degradation. There-
fore, separation processes such as vacuum distilla-
tion, which have been tested for reaction effluents
containing DMSO, have often led to sizeable losses
of HMF of around 30% [9]. Ultimately, the low re-
coveries, high energy intensity and high costs asso-
ciated with high boiling point solvents would not be
adequately profitable on a production scale.

Given the challenges with separation even on a
small scale, it is evident that a lot more research is re-
quired in this field to inform the design of industrial-
scale HMF production processes. Furthermore, out
of the large number of papers surrounding HMF, it
has been reported by Trapasso et al. [4] that “less
than 10% address HMF isolation [. . . ] from the re-
action mixture”. There are wide range of separa-
tion techniques which have been discussed for HMF
isolation, including crystallisation, adsorption, vac-
uum distillation and variations of extraction (liquid-
liquid, reactive, in-situ etc.) [3]. However, there has
not been much experimental data to address these
techniques, thus providing the motivation for this
line of research.

Due to the lack of experimental data for the sep-

aration of HMF with low boiling systems, the main
aim was to establish if it was possible to separate
HMF from such solutions, and if so, which separa-
tion techniques would be feasible. Furthermore, rhe
scope of this project covers lab-scale vacuum distilla-
tion, as well as cooling crystallisation. The key met-
ric used to assess the success of separations was the
recovery of HMF.

Initially, the recovery of HMF was investigated for
solutions of pure HMF dissolved in acetone, before
moving on to fructose dehydration reaction efflu-
ents. The aim of doing so was to assess the impact, if
any, of the presence of reaction by-products or unre-
acted reactants on product separation. Throughout
all experiments, the final goal was to work towards
was gathering data which could eventually be used
to inform the process design of HMF production on
a larger scale.

3 Method
3.1 Chemicals

All chemicals which were used for this project are as
listed in Table 1.

Table 1: Summary of Chemicals Used

Chemical Purity Supplier

Hydroxymethylfurfural >99% Sigma Aldrich
Dimethylsulfoxide �99.5% Sigma Aldrich

Acetone �99.9% VWR Chemicals
Ethanol �99.9% VWR Chemicals

Deionised (DI) Water �99% N/A 1

Fructose �99% Sigma Aldrich
Amberlyst-15 2 N/A Sigma Aldrich
Sulfuric Acid 99% Sigma Aldrich

Furfural >99% Sigma Aldrich

1 Onsite purification using Veolia Purelab Chorus
2 Hydrogen Form (Dry)

DMSO and Acetone were used as solvents for
this research, whilst Sulfuric Acid and Amberlyst-
15 were used as acid catalysts. Amberlyst-15 is a
strongly acidic cation-exchange resin that is com-
monly used as a heterogeneous catalyst in acid-
catalysed reactions, especially in organic synthesis.

3.2 Experimental Setup
3.2.1 Vacuum Distillation

Solutions of 0.88wt% of HMF in acetone-water
(80/20 vol%), a low-boiling solvent and 2.08wt% of
HMF in DMSO, a high-boiling solvent, were pre-
pared based on the literature yields of the dehydra-
tion reaction of 1wt% fructose in respective solvents
[7] [9]. These solvents were selected due to their
ability to yield high quantities of HMF hence good
potential for production.

The main separation process investigated, vac-
uum distillation was performed with Buchi Rotava-
por R-100 under reduced pressures using vacuum
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pump V-100 and heated up to a given operating tem-
perature. These temperatures were determined by
trial runs with only pure solvent, ensuring that the
entirety of the solvent could be distilled. Starting
temperature and pressures were taken from a simi-
lar study conducted on the rotavapor [11].

To carry out a fair experiment, several operating
conditions on the rotavapor were kept constant such
as the flask’s rotational speed (level 6 of Buchi Ro-
tavapor R-100) and the cooling water flowrate (max-
imum). The operating distillation temperature of
220°C for DMSO at reduced pressures was higher
than the boiling point of DMSO at atmospheric pres-
sure (189°C), may seem counterintuitive. However,
this can be attributed to the loss of heat to the sur-
roundings as proper insulation was infeasible in this
setup, suggesting that the temperature of the solu-
tion itself may be lower. Due to the limitations of
the water bath, a heating plate as seen in Figure 3
was used for DMSO system instead. The water level
in the water bath for the acetone-water solvent setup
was maintained throughout all separations.

10mL of HMF mixture/reaction effluent were
added to a 500mL round-bottomed flask for the sep-
aration process. All separations were carried out un-
til the entirety of the bulk solvent was eliminated
from the product flask as illustrated in Figure 4. The
duration of the distillation process was recorded.
Subsequently, the post-rotavap product was redis-
solved in 10 mL of solvent (either ethanol or acetone)
for analysis using analytical equipment mentioned
in Section 3.3.

(a) Acetone Solvent System;
operating conditions of 85°C and

50mbar, heated with a water
bath

(b) DMSO Solvent System;
operating conditions of 220°C

and 35 mbar, heated with a
heating plate

Figure 3: Rotavap Set-Up

Figure 4: The target end product of distillation, where only
small yellow/orange droplets are left and most of the solvent has

been removed

3.2.2 Cooling Crystallisation

To investigate cooling crystallisation, initially, 10mL
of HMF in acetone-water was used for this process.
Further experiments were also conducted in order
to understand the effect of varying furan concen-
trations on the crystallisation process. However, as
HMF is very expensive, owing to the high produc-
tion costs, furfural was used as a substitute. Fur-
fural was considered a good alternative to HMF for
this feasibility study because of its structural simi-
larities to HMF; both structures contain an aldehyde
functional group, but most importantly a furan pen-
tose ring. 10mL of furfural (0.1, 1 and 10 wt.%) were
then prepared in pure acetone. All samples were
placed at room temperature, -20°C and -70°C (Ther-
moScientific Cryogenic Freezer) and examined after
24 hours, and again after 3 days.

3.2.3 Dehydration Reaction Effluents

One of the most common pathways to produce HMF
is via the dehydration of reducing sugars in the pres-
ence of an acid [5]. Therefore, to reflect a typical in-
dustrial manufacturing route, reactions to produce
HMF were carried out. The aim was to understand
the impact of the presence of reaction by-products
on HMF separation, as well as to assess whether
there were additional degradation effects as a result.

As described in Section 1, a widely available, and
relatively sustainable reactant for this reaction path-
way is fructose, which can be produced via the hy-
drolysis and subsequent isomerisation of cellulose.
For the purposes of this project, D-fructose was used
directly. The sugar was dissolved into an 80/20 vol%
solution of acetone and deionised water to create a
fructose solution, with a concentration of 1 wt%.

Subsequently, per 5mL of the 1 wt% fructose so-
lution, 0.01g of catalyst was added; both homoge-
neous and heterogeneous catalysts were used for
different reactions, namely Amberlyst-15 and Sulfu-
ric Acid (1M). These were then reacted in an An-
ton Paar Microwave Synthesis Reactor, at a temper-
ature of 140°C, for time intervals of 5, 15, 30 and
60 minutes. Prior to separation via vacuum distilla-
tion, as described in Section 3.2.1, Amberlyst-15 was
filtered out of the reaction effluent. As the sulfuric
acid could not be removed as easily, it was possible
to assess the impact of the presence of residual acid
on the distillation products.

3.2.4 Investigation on Distillation Time

The effects of distillation time towards recovery was
also of interest. 45mL of HMF reaction effluent from
a 30-minute dehydration reaction catalysed by sulfu-
ric acid was prepared as described in Section 3.2.3.
This would be sufficient for three different distilla-
tions, ensuring that a fair test would be carried out
in assessing the impacts of distillation time on recov-
ery, as initial HMF concentration could also effect
the recovery of separation.
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From the distillations in previous parts of the ex-
periment, 60-second distillations were found to re-
sult in satisfactory recoveries. Thus, recoveries of
HMF at half (30s) and double (120s) the time along-
side the 60s distillation were chosen to be observed.

3.3 Analytical Techniques
In order to assess the products obtained by: dissolv-
ing HMF, dehydration reactions to produce HMF,
and separations to isolate HMF, a variety of analyt-
ical techniques were used, each with slightly differ-
ent purposes.

High-Performance Liquid Chromatography with
a Variable Wavelength Detector (HPLC-VWD), set
to detect l = 254nm, was used to quantify the con-
centration of HMF within samples before (i.e. dis-
solved HMF, or reaction effluents) and after sepa-
ration process (vacuum distillation and crystallisa-
tion). A standard error of ± 0.005 gL�1 for the con-
centrations of HMF was due to this instrument.

Gas Chromatography with a Flame-Ionisation De-
tector (GC-FID) was mainly used in comparing the
compounds found in the samples of reaction feed,
effluent and redissolved post-rotavap product. More
specifically, it was used to qualitatively observe com-
pounds which were not UV-active, and therefore
went undetected in the HPLC-VWD. It was later
also used to quantify the concentration of a well-
known by-product of HMF production, Levulinic
Acid, within the samples.

The conversion of sugar, fructose, was quantified
by utilising a HPLC with Refractive Index Detector
(HPLC-RID), alongside a calibration curve. A stan-
dard error of ± 0.926 gL�1 due to this instrument
was considered in all fructose concentrations.

Finally, Gas Chromatography Mass Spectrometry
(GC-MS) was utilised to identify the unknown com-
pounds detected in post-rotavap products.

Table 2 summarises all of these techniques, as well
as details of the equipment model, configurations
and operating conditions.

3.4 Quantification of Results
A HMF concentration calibration curve was pre-
pared to quantify the concentration of HMF based
on the area of absorption on the HPLC by process-
ing different concentrations of HMF (ranging from
0.01 to 1 wt%) in deionised water.

As the HMF used was purchased around a year
ago and stored in a freezer, it was expected that
some degradation would occur due to HMF’s un-
stable nature. By producing a calibration curve and
comparing it to one created last year, it was con-
firmed that some degradation had occurred. As a re-
sult, throughout the project, any calculated concen-
trations of HMF were adjusted to account for degra-
dation by considering the difference in gradient of
the calibration curves made this year as compared
to last year when it was new.

The recovery of HMF from rotavap was calcu-
lated from Equation 1 where CHMF is the concen-
tration of HMF post-rotavap in gL�1, CHMFi corre-
sponds to the initial concentration of HMF solution
in gL�1,Vsol represents the volume of solvent in L
used to redissolve post-rotavap product and Vi the
initial volume of HMF-solvent mixture/effluent in
L. In Section 4.1.1, the errors of the percentage re-
coveries were calculated from repeated distillation
runs whereas standard errors of ±3.6% were imple-
mented in Section 4.3.2 attributed to the errors from
the analytical equipment, different reaction effluents
and distillation times.

RecoveryHMF(%) =
CHMFVsol
CHMFi Vi

(1)

Besides recovery, another factor that was of interest
is the purity of the HMF which was calculated by
Equation 2. The mass of product left in the flask af-
ter the separation is represented by m f . The errors in
the purity calculations in Section 4.1.1 were obtained
from repeated distillation runs.

PurityHMF(%) =
CHMFVsol

m f
(2)

To further investigate the carbon balance of the reac-
tion and separation process, a calibration curve for
fructose and levulinic acid, were prepared using LC-
RID and GC-FID respectively. This allowed for the
quantification of said compounds.

4 Results & Discussion
4.1 Pure HMF - Solvent Systems
To investigate the feasibility of separations in a low
boiling-solvent system, acetone-water (80/20 vol%)
was chosen to be investigated. A high-boiling-point
solvent, DMSO was also tested to observe the im-
pact of solvent systems of different boiling points
on HMF recovery. All separations were conducted
until the bulk solvent was removed from the prod-
uct flask, as depicted in Figure 4. The time taken to
reach this point was measured where the acetone-
water system required an average of 170 seconds
and the DMSO system 451 seconds.

4.1.1 Recovery and Purity of Product

Due to HMF’s thermal instability, it was anticipated
that recovery from a high-boiling solvent would be
lower as observed in Figure 5. HMF recovery in
acetone-water was 90%, while in the DMSO sys-
tem, it was only 62%. As both HMF (291.5 °C) and
DMSO (189 °C) have high boiling points, the sepa-
ration would imminently be harder than with HMF
and acetone-water. The high operating temperature
of the DMSO system enhances the degradation of
HMF, a thermally unstable compound, leading to
significant HMF loss. Nevertheless, a 10% loss in
the low-boiling solvent system was also observed,
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Table 2: Summary of Analytical Instruments

possibly resulting from the degradation of HMF into
larger carbon compounds known as humins or the
rehydration process of HMF as shown in Figure
2. Further testing of by-products was conducted in
Section 4.1.2 using GC-FID, considering HMF’s ten-
dency to react with water to form levulinic acid and
formic acid under thermal conditions.

Figure 5: Comparison of recovery and purity of HMF from
low-boiling and high-boiling solvents of 0.88wt%

(Acetone-Water) and 2.08wt% (DMSO); equations used to
calculate these values are in Section 3.4

In addition to understanding the recovery rates
of the separation process, attempts were made to as-
sess the purity of the separation product using Equa-
tion 2. Purity values of 31% and 22% were obtained
for the acetone-water and DMSO systems, suggest-
ing that additional refining process post-distillation
would be necessary to obtain purer HMF. However,
as depicted in Figure 5, large error bars were ob-
served due to challenges in measuring the mass
of the product; this was due to the vapour con-
densation which occurred once the vacuum pres-
sure from the flask had been released, which there-
fore added further complexity. Due to these diffi-
culties in obtaining a reliable purity measurement,
cooling crystallisation, as described in 3.2.2, was
employed. Since it is evident that higher recover-
ies were achieved in the lower-boiling solvent sys-
tem, further investigations were conducted using an
acetone-water solvent system.

4.1.2 Identifying Degradation Products

GC-FID was utilised in the attempt to detect degra-
dation products from the pure HMF-solvent system
as a loss of 10% HMF was observed. A comparison
between the GC chromatogram at retention times
before and after distillation is shown in Figure 6.
The peaks before the 18-minute retention time was
not shown because it consisted of only the solvents.
The most dominant peak in the chromatogram was
at a retention time of 24.8 minutes which is HMF,
suggesting that no other detectable compounds were
generated in a traceable amount during the distilla-
tion process. This implies that the degradation of
HMF resulted in the formation of large carbon poly-
mers instead, as levulinic acid and formic acid, if
present, would have been identified by the GC-FID.

Figure 6: GC-FID chromatogram of pure HMF in
acetone/water before and after rotavap

4.2 Cooling Crystallisation
As mentioned in Section 4.1.1, the purity of HMF
in vacuum distillation suffered quite largely. There-
fore, the HMF solution was placed in a cryogenic
freezer for 24 hours, as described in Section 3.2.2.
The results of this initial experiment, are pictured in
Figure 7.

Though the results seemed promising at first
glance, the colour of the liquid indicated that there
was a significant amount of HMF in the solution.
Furthermore, when the vial was inverted, it became
evident that the solid matter was almost completely
clear. Within less than 5 minutes at room temper-
ature, whilst the samples were being handled, the
solid had melted completely. As a result of these
observations, it was eventually concluded that the
solid matter was actually just ice, due to a form of
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immiscibility between acetone and water at this tem-
perature range. Ultimately, all the HMF appeared to
remain dissolved in acetone; therefore, HMF isola-
tion was unsuccessful.

Figure 7: HMF Effluent from Amberlyst-Catalysed Reaction
after 24 hours at -70°C. At the top of the vial, a yellow-brown
liquid, whilst at the bottom, a solid can be seen covered in the

yellow liquid

There are a large range of reasons which could
have caused the results aforementioned; to name a
few, it may have been due to a much slower rate of
crystallisation or perhaps an insufficient initial HMF
concentration. As a result, a feasibility study using
furfural, as described in 3.2.2, was set up. In order
to eliminate the effects of acetone-water separation,
pure acetone was used as the solvent.

After 24 hours, none of the samples (at any of the
3 temperatures, or 3 concentrations) showed any for-
mation of crystals. Consequently, the samples were
left for a further 2 days, yet even at -70°C, with a
10 wt% solution of furfural in acetone, the solution
remained in liquid state. Due to the lack of success
in crystallisation using acetone as the solvent, the
remainder of the research was centred around the
vacuum distillation process with acetone-water.

4.3 Dehydration Reaction Effluent

4.3.1 Reaction Effluent Yield

As aforementioned in Section 3.2.3, all reactions
were prepared with 1wt% fructose solution, and
either a homogeneous or heterogeneous catalyst, for
a few different reaction times. As depicted in Figure
8, a range of reaction yields were observed; these
corresponded to reaction effluents of concentrations
ranging from 0.4gL�1, to 3.5gL�1.

Generally, for up to 60 minutes, reaction yields
seemed to increase with the reaction time. How-
ever, the HMF yield with sulfuric acid seemed to
decrease again once reaching a 60-minute reaction
time. Again looking at the HMF yield, a homoge-
neous acid (sulfuric acid) seemed to perform very
similarly to the heterogeneous one (Amberlyst-15)
for a 30-minute reaction, suggesting that the de-
creased surface area to volume ratio of the solid acid
did not lead to significant mass transfer limitations,
and therefore had minimal impact to the rate of
reaction for this amount of time.

4.3.2 Recovery of Reaction Effluents
The recovery of HMF from reaction effluents was
carried out successfully with recoveries as high as
94.3% and as low as 72.6% with a standard error

Figure 8: Impact of Reaction Time on HMF Yield at 140°C
Reaction

of ± 3.6%. As the separations were carried out to
a certain end-point determined by qualitative ob-
servation, different distillation times were recorded
for each separation. The recovery of HMF from
acid-free reaction effluents (Amberlyst-15) resulted
in a similar range of recoveries to the product from
pure HMF solvent. Although the distillation time
of the pure HMF-acetone system was much larger,
a higher recovery would be expected if it were to
be distilled at a lower distillation time, similar to
the ones of Amberlyst-15 products, as discussed in
Section 4.6. Considering that the error bars overlap,
the difference in their recoveries is statistically in-
significant. Qualitatively similar observations were
made on the product from pure HMF-acetone sys-
tem and from amberlyst-catalysed reaction by com-
paring Figure 4 and Figure 10a. Both products ob-
served yellow/orange droplets with varying intensi-
ties depending on the initial concentration of HMF.
This indicates that the presence of unreacted fruc-
tose and reaction by-products such as but not lim-
ited to levulinic acid and formic acid does not have
a significant impact on the recovery of HMF through
vacuum distillation.

Figure 9: Comparison of HMF Recovery from Pure-HMF
Solvent and HMF Eflluents from Amberlyst-15 and Sulfuric

Acid catalysed Reactions

The acid from sulfuric acid-catalysed reactions
was not removed before the separation process to
understand the impact of acid on the recovery
of HMF. By comparing the recoveries of the 30-
minute reaction between amberlyst and sulfuric acid
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catalysed reactions, as they have similar distillation
times, it can be concluded that the acid too does not
have a significant impact towards recovery. While
there appears to be a disparity in their recoveries
upon initial observation, the overlapping of the er-
ror bars implies that the distinction is statistically in-
significant. A previous study on the impact of acid-
catalyst on the separation process of HMF also saw
similar results [11]. Thus, the choice of heteroge-
neous or homogeneous acid catalyst would not be a
factor to be considered in reaching high recoveries.

(a) Amberlyst-15 (b) Sulfuric Acid

Figure 10: Product of Separation from Different Reaction
Catalysts

However, the presence of acid poses an additional
challenge as black particles were formed during the
distillation process as seen in Figure 10b. The black
particles formed from the product of sulfuric acid re-
action effluent are presumed to be the large carbon
polymer, humins as they were insoluble in ethanol.
Nevertheless, recovery of HMF is satisfactory de-
spite the formation of black particles. Although no
observable humins were detected in the separation
product of the acetone/water reaction effluent, the
possibility of HMF degradation into humins should
not be disregarded. It is conceivable that the formed
humins are in a soluble state, potentially serving as
intermediates for the subsequent formation of solid
humins, as suggested by a study [12].

The presence of acid in reaction effluents does
not impact the recovery however, it adds additional
complexity go the separation process due to the for-
mation of black carbon particles. This further sug-
gests that an additional separation unit would be re-
quired in the scale-up of this process to remove the
unwanted black particles from the final product.

4.4 Impact of Solvent Used For Analysis
The formation of ethoxymethylfurfural (EMF) was
identified on the GC-MS when the separated prod-
uct was redissolved in ethanol. This is a result of the
etherification reaction between the ethanol and HMF
which is common with furans [13]. Further details
of how this was found are in the supplementary in-
formation. Although the formation of ether did not
significantly impede the analysis on the recovery of
HMF, as can also be seen in the supplementary in-
formation, the production of it should be avoided.
Hence a different solvent that would not form reac-
tions with HMF should be used.

Acetone was chosen to redissolve the separation
product as a better alternative to ethanol. It was also
observed that acetone helps to agglomerate the solid
particles in the product, hence a better qualitative
observation can be easily seen if needed.

4.5 Understanding Carbon Loss
To further understand the relation between the de-
hydration reaction to the subsequent downstream
process of isolation of the desired HMF product,
carbon balance calculations were employed. This
enabled a clear depiction of the carbon ’losses’ in
both the reaction and separation processes but also
highlighted the impact of reaction yield on the final
product purity.

Figure 11: Proportion of Known Carbon in the Reaction
Effluents Before Separation (Left) and After Separation (Right)

Assuming that no acid leached out of the solid cat-
alyst, amberlyst-15, it would have been expected that
the amount of fructose would have remained con-
stant through the separation process. However, this
expectation is contradicted by the actual results. The
percentage of fructose post-separation decreased by
a constant amount of approximately 10% across both
catalysts investigated. Considering an error of ±14%
in the percentage of fructose due to the high sen-
sitivity of the LC-RID, the 30-minute reaction with
amberlyst would show the same trend. This sug-
gests that the decrease in fructose during separation
is attributed to the formation of humins and not a
result of further dehydration reactions in the distil-
lation process within the specified conditions and
distillation time.

Even at a reaction time as short as 15 minutes,
the by-product of the dehydration reaction, levulinic
acid, could be detected and quantified using GC-
FID. Analysis of Figure 11 indicates that levulinic
acid primarily forms during the reaction effluent,
with a portion lost after the separation process due
to degradation. This observation suggests that re-
hydration of HMF is not the primary cause of the
degradation in the distillation process at this scale.

A key observation that can be made from the
two 30-minute reaction in Figure 11, is that for a
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homogeneous-catalysed process, the amount of car-
bon which could not be accounted for was higher.
This behaviour is backed up by previous research,
which found that the formation of humins is 50%
higher on a carbon basis in a homogeneous reaction
than a heterogeneous reaction [10]. As humins can-
not be detected by any of the analytical methods,
there is a possibility that a big portion of the unac-
counted carbon is made up of this compound. De-
spite having carbon losses of around 15% in the dis-
tillation process, only a small portion of that loss is
from HMF, suggesting that the distillation process is
effective in recovering the desired product. This fur-
ther supports the good recovery of HMF despite the
formation of black particles in the distillation pro-
cess from sulfuric acid-catalysed reactions as seen in
Figure 10b.

The percentage of fructose gradually decreases
over longer reaction times as seen in Figure 11 in-
dicating that higher fructose conversions were ob-
tained. This corresponds well to the percentage
yields of HMF observed in Figure 8 within the in-
vestigated reaction times. Thus, achieving a higher
fructose conversion, and consequently, a higher
yield of HMF, is pivotal in obtaining a final prod-
uct with a high HMF purity. Since fructose cannot
be separated during the distillation process, it would
be efficient to decrease the amount of fructose before
the separation process through reactions that lead to
high fructose conversions and HMF yield. However,
further investigations would need to be done in the
future to address this.

4.6 Investigating Distillation Time
Distillation time is one of the factors that signifi-
cantly impact the recovery of HMF in the separa-
tion process. From Figure 12, it can be concluded
that the recoveries reduce at higher distillation times
for both catalysts. Thus, further investigations were
carried out to understand why more HMF is lost at
longer distillation times.

Figure 12: Recovery of HMF from Acid-Catalysed Reactions
Across Distillation Times

As black particles were formed in the separation
product of the sulfuric acid-catalysed reaction, fur-
ther investigations on the impact of distillation time

on the formation of humins were also conducted.

4.6.1 Carbon Loss at Varying Distillation Times

For a distillation time of 30 seconds, the evaporation
of the solvent was incomplete as there was an ob-
servable amount of solvent left in the flask as seen
in Figure 14. When redissolved in acetone, the solu-
tion formed had a light yellow colour with no parti-
cles observed as seen in (a) of Figure 14. The recov-
ery of HMF as expected was high at 90.6% but with
low product purity as observed qualitatively. Con-
trary to this, the 120-second distillation run resulted
in dark-coloured droplets alongside insoluble black
particles on the walls of the flask. When redissolved
in 10mL acetone, most of the particles agglomerated
with an observable amount of smaller particles float-
ing independently.

As seen in Figure 13, the recovery of distillation
time at 120s went down to as low as 49.3% as com-
pared to the higher recoveries at lower distillation
times. Overall, the 30s and 60s distillation times had
almost similar recoveries with both achieving over
90% recoveries. However, the 60s distillation run
did appear to outperform the 30s one by just over
6%, and as a result, further optimisation should be
carried out to investigate more distillation times be-
tween the range of 30s and 120s.

Figure 13: Comparison of the Carbon Balance Before and After
Rotavap Assessed at Different Distillation Times

Due to the lack of research on the formation of
humins, it is hard to understand the characteristics
of these compounds and how they react to different
stimuli. Nevertheless, longer exposure to heat was
proven to promote greater formation of humins, as
observed in this investigation.

As seen in Figure 14, more humins were formed
at higher distillation time which corresponds to the
high amount of carbon unaccounted for especially
shown in the 120s distillation. Not only was there an
increase in humin formation, but a substantial por-
tion of HMF was also lost referring to Figure 13, pos-
sibly contributing to the humin formation. This is
because once most of the solvent has been distilled,
higher concentrations of carbon components are left
in the flask. Thus, there would be a greater contact
area between the carbon-containing components, in-
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creasing the probability of the formation of long car-
bon chains, humin. Despite the 60-second distilla-
tion proving optimal for recovery, humins were still
present, as depicted in (e) of Figure 14.

Figure 14: Product of Rotavap. a-c, product left after
distillation. d-f, product after dissolving in 10mL acetone; a
and c are the products of 30s of distillation, b and e are the

products of 60s of distillation, c and f are the products of 120s
of distillation

Consequently, addressing the challenge of min-
imising humin formation while achieving high re-
covery becomes even more complex when dealing
with acid-present reaction effluents. This under-
scores the importance of finding an optimal point
that balances both high recovery and low humin for-
mation.

4.7 Analysis of Solids

Figure 15: Comparison of the Proportion of Carbon
Compounds in the Product that are Soluble in Acetone and
Overall Product Including the Water-Soluble Part of Solid

The solids formed in Figure 14 were further anal-
ysed by filtering out the solid and redissolving
it in water. Although the separation product of
amberlyst-catalysed reactions did not produce visi-
ble black solid particles, an orange-yellow solid was
formed when redissolving in acetone. It was found
that the detectable soluble portion of the solid con-
tained HMF, fructose and levulinic acid. This is
probably because the carbon components may have
formed bonds and agglomerated together with the

solid. For scale-up, where the solids would need to
be removed, this would indicate that a portion of
HMF may also be removed together with the solids.

As seen in Figure 15, the recovery of HMF includ-
ing the portion from the solid would be higher. The
recovery of HMF improved from 79% to 85%, when
including the portion of HMF in the solids for the
product of the amberlyst-catalysed reaction. Further
research on these solids is suggested to be carried
out to increase the efficiencies of HMF separation in
obtaining a more economically feasible production
route.

5 Conclusions & Outlook
It was found that low-boiling solvent systems par-
ticularly acetone-water (80/20 vol%) were a viable
alternative to some of the solvents which are cur-
rently favoured. The method and conditions used
to attempt cooling crystallisation separation proved
unsuccessful which could be simply down to insuf-
ficient time to crystallisation (i.e. a slow crystalli-
sation process), or the process could be infeasible.
Nevertheless, vacuum distillation showed promising
results with such solvent systems, achieving values
of over 90% recovery although with low purities. To
allow the use of HMF in industry, particularly in
polymers, plastics and pharmaceuticals, the impuri-
ties would need to be removed to prevent adverse
effects. As a result, optimisation of the final product
purity would require more investigation.

Another important consideration in a scaled-up
production would be the catalyst used. In line with
previous research, the presence of an acid catalyst
within reaction effluents had minimal impact on the
recovery of HMF when using a low boiling point
solvent. However, holistically the use of a hetero-
geneous catalyst, such as Amberlyst-15, would be
preferable due to the challenge of insoluble humin
formation when acid is present, and as such would
necessitate an additional separation process unit.
Additionally, homogeneous acids are also more dif-
ficult to separate from solutions, hence would lead
to some losses over time if separation were to be car-
ried out. Therefore, the need to continuously pur-
chase more catalyst, would add yet another cost to
the separation process. Generally shorter distilla-
tion times were shown to result in higher recoveries
as seen in Figure 12. However, further investigations
on the same reaction effluent, found that the optimal
distillation time concerning recovery occurred for a
60-second run, as opposed to a shorter 30-second
run. Thus, further experiments similar to those de-
scribed in Section 4.6.1 is suggested to be carried out
at smaller intervals between 30 and 120 seconds, to
establish the point of maximum recovery. The exis-
tence of an optimal distillation time on a lab scale
is indicative of the behaviour that could be expected
when scaled up. Consequently, it would be neces-
sary to test a few different distillation times to in-
form some of the parameters required to design a
distillation column (such as the number of stages or
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hold-up times).
Furthermore, by using carbon balance calcula-

tions, it can be said that the degradation of HMF
mainly leads to the formation of large carbon poly-
mers, as opposed to rehydration products.

It is evident from the conclusions stated, that there
is a lot more research to be done before HMF can be
used more widely. To address the issue of purity
of the end product, a range of factors could be im-
proved. Firstly, improvements to the unsuccessful
crystallisation method could be made. An example
would be to change the solvent from acetone to an
organic one such as Methyl Tertbutyl Ether (MTBE),
which based on patent literature, supposedly allows
crystallisation to occur within the temperature range
tested [14]. Alternatively, seeding is a common prac-
tice in crystallisation, particularly for longer crys-
tallisation times or solutions with a low concentra-
tion; this is because seeding can promote further nu-
cleation of new crystals. Since this is widely used for
semi-batch pharmaceutical applications nowadays,
there is certainly some scope for similar industrial
applications for HMF.

Potentially, crystallisation could be used as a
downstream purification step after another separa-
tion technique (such as vacuum distillation). Fi-
nally, as much of the previous literature relates to
the fact that many of the separation techniques pro-
posed would result in high energy intensity and
costs, there is limited information regarding the es-
timated quantities. Therefore, an investigation into
the capital expenditure, operating expenditure, and
energy usage should be assessed for separations us-
ing the acetone-water low-boiling point solvent sys-
tem.
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Abstract: The spectral beam splitting concentrated photovoltaic-thermal (SBS CPVT) collector technologies are 
attracting more attention for their potential to meet the increasing energy demand. The SBS CPVT collector can 
effectively decouple the thermal and electrical energy generation by employing the spectral beam splitter, 
directing specific spectral bandwidths to the PV cells and others to generate heat, mitigating the efficiency loss 
due to overheating for conventional PV-T collectors. A SBS CPVT collector is designed in this study, which 
consists of a parabolic trough, a film-based optical filter, a thermal receiver at the bottom, and a triangular top 
channel where solar cells are attached to the two faces of the channel. Modelling and simulation of this study was 
conducted in COMSOL physics. A 2D model of the collector was built to investigate geometrical optics, followed 
by developing a 3D model for collector performance evaluation. An ideal interference filter and a low emissivity 
glass develop by Saflex was implemented separately as optical filter material in the simulation. Simulation results 
yield the following maximum efficiencies: 91.86% for ideal filter collector optical efficiency, 17.36% for PV cell 
electrical efficiency, 33.13% for top channel thermal efficiency, and 41.37% for bottom thermal receiver 
efficiency. For the Saflex SH filter collector, the corresponding efficiencies are 55.81%, 10.10%, 24.77%, and 
20.94%, respectively. 
 
1. Background and Introduction 
As a renewable source of power, solar energy plays 
an important part in mitigating climate change by 
reducing greenhouse emissions, which is crucial in 
protecting humans, wildlife, and ecosystems [1]. 
Solar energy has become one of the most common 
renewable energy sources. Solar photovoltaic (PV) 
accounted for 4.5% of total global electricity 
generation in 2022, and it remains the third largest 
renewable electricity technology behind 
hydropower and wind [2]. Silicon cells are by far the 
most common solar cells studied due to their low 
cost, large availability, and reasonable efficiency 
[3]. Research showed that typical commercial panels 
have electrical efficiencies from 17% to 20%, where 
the rest of the solar energy absorbed cannot be 
harnessed by the PV panel and is dissipated as heat 
instead [4]. For example, a typical silicon cell can 
utilize a bandgap wavelength of between 550 and 
1000 nm [5] while the spectrum out of this range is 
converted to heat. To utilize the waste heat from the 
solar cells, the photovoltaic-thermal (PV-T) hybrid 
collectors were developed.  
      By integrating a heat exchanger containing heat 
transfer fluid (HTF) to the back of the PV cells [6,7], 
the PV-T collectors enabled the waste heat from the 
solar cells to be effectively converted into thermal 
energy. Waste heat collection has a notable positive 
impact on the overall energy efficiency [8] as 
electricity and valuable thermal energy are produced 
simultaneously. PV-T collector can cover the energy 
uses of considerable fields, ranging from domestic 
uses [6] to large-scale industrial facilities, for 
instance, sports centres [9]. Despite overall energy 
efficiency is higher than PV cells alone, 
conventional hybrid PV-T collectors have 
limitations. PV-T collectors are thermally coupled, 
where the thermal and electrical energy outputs are 
correlated [10]. High solar irradiance leads to a 
significant temperature increase in solar cells [5]. 

Although the PV-T collector can achieve a high 
thermal efficiency, nevertheless, for a 1 K increase 
in PV temperature, electrical efficiency is reduced 
by approximately 0.5% [11]. Overheating also leads 
to a reduced life span of PV cells [12,13], making it 
capital intensive. Hence, generating high 
temperature thermal outputs and maintaining a high 
electrical efficiency simultaneously is the key to 
greater overall energy output and efficiency.  
     Spectral Beam Spitting (SBS) design is a strong 
solution to this challenge. An optical splitting film 
separates solar radiation based on photon energy: 
directing photons near the PV cell bandgap energy 
to the solar cells, while directing photons below and 
above the bandgap energy to a thermal receiver.[11]. 
Integration of SBS allows PV cells and thermal 
receivers to operate in different temperatures since 
they can be placed spatially separated. Therefore, 
SBS PV-T can achieve higher thermal efficiency 
than conventional PV-T [12]. In addition, utilisation 
of SBS leads to increased electrical efficiency as the 
filter directs away unabsorbed solar irradiance that 
could heat the PV element. [14]. 
     Recent research explored the possibility of 
combining concentrating photovoltaic (CPV) with 
spectral splitting. The resulting spectral beam 
spitting concentrating photovoltaic-thermal (SBS 
CPVT) collectors have several advantages. Firstly, 
the utilization of CPVT collectors enables a high CR 
to be achieved [15], hence solar PV cells with 
smaller surface area and higher efficiency could be 
used instead of standard ones [15, 16, 17]. In 
addition, the high CR also enables the SBS CPVT 
collectors to achieve a high-temperature HTF [18]. 
High-temperature HTF could be delivered to a steam 
Rankine Cycle for further application [3].              
     The design and selection of the concentrator is a 
vital step for designing a SBS CPVT collector. 
Parabolic trough is one of the most common 
concentrators used for SBS CPVT collectors [15, 
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19]. Parabolic trough SBS CPVT collectors present 
a good balance of optical efficiency, investment 
cost, and operational stability [18].  Plenty research 
was done on parabolic trough. Wingert et al 
proposed a collector using silicon cell, which 
achieved a PV cell module electrical efficiency of 
12.4% [20]. Zhang et al proposed a collector using 
plasmonic solar cell that achieved a 21.97% 
electrical efficiency overall [21]. The collector 
designed by Wang et al achieved a thermal 
efficiency of 26.7% [22]. Zhang et al designed a 
dichroic filter-based collector that achieved a 55% 
thermal receiver efficiency at an HTF flowrate of 
10000 kg/day [23].  Results of aforementioned 
research are significantly different. Therefore, other 
than concentrator type, factors including collector 
structure, component geometry, PV cells, filters etc 
are also important in SBS CPVT collector design. 
     Selecting a suitable optical filter is also crucial 
for the SBS CPVT design. Under the same solar 
irradiance, integrating CPV without an effective 
optical filter would lead to a lower electrical 
efficiency than using a PV-T collector alone [17, 
24], because a greater spectrum intensity further 
increases PV cell temperature.  Spectral-splitting 
technologies can alleviate the excessive heating on 
PV cells [14, 25]. Many research focus on 
investigating the performance of interference filters 
(dichroic filter) and liquid absorptive filters. Film-
based filters including interference filters directs 
part of the spectrum to the PV while reflecting the 
rest to the thermal receiver [12]. Interference thin 
film has the advantages of high optical efficiency, a 
well-defined reflection band, and low polarization 
dependence [26]. SBS CPVT with an interference 
filter could achieve high energy and exergy 
efficiency [11] with a relatively low optical loss of 
3% [3]. With the design of multiple thin film layers 
to cover different bandwidths, interference filter 
demonstrates greater conversion efficiencies than 
systems with novel semi-transparent, back-
reflecting solar cell beam splitters [27], as well as 
showing a substantial improvement over a simple 
bandpass filter [28]. Liquid absorptive filters work 
similarly to film-based filters, but they absorb part 
of the spectrum as heat energy instead of reflection 
[12]. The liquid absorptive filter has the advantages 
of a low operating temperature for the PV cells and 
a high energy output [29]. Liquid absorptive filters 
can act as both HTF and optical filters [30], thus 
resulting in a high thermal efficiency. In addition to 
filter type, the structure of the filter is also worth 
considering. The path of filtered sunlight is 
dependent on the parabolic curvature of the spectral 
splitting filter [31]. Therefore, fabricating the 
dichroic filter on a curved substrate can improve 
spectral matching to the focused incident light, 
despite having increased fabrication cost and 
complexity [26].  

      Structural design is also a crucial aspect that 
affects performance of SBS CPVT. Various 
collector structures are proposed by the previous 
research. For example, Wang et al developed a 
collector where PV cells are located on the 
concentrator [22]. Li et al developed a collector that 
have a secondary reflector, while the PV cells is 
located next to the filter [32]. Nevertheless, few 
studies investigate how the collector behaves if PV 
cells are placed at focal point of the concentrator. 
Therefore, an SBS CPVT collector with PV cells 
placed at the focal point of the parabolic 
concentrator was designed to fill the research gap. 
To carry out the study, the SBS CPVT model was 
built in COMSOL. Then, a simulation of the model 
using an ideal filter and a real-life filter was 
conducted. Based on the simulation results, the 
electrical, thermal, and combined optical 
efficiencies of the 2 models were calculated and 
compared afterwards. 

2. Methodology 
2.1 SBS CPVT Collector Description 
The SBS CPVT collector was designed to split the 
concentrated solar spectrum into 2 bands, one of 
which is directed to the PV cells for electricity 
generation and the other to the bottom thermal 
receiver to generate heat. This achieves thermal 
decoupling to reduce the overheating of PV cells, 
which would prevent the reduction in electrical 
efficiency.           

     As described in Figure 2.1, a parabolic trough    
concentrator was designed to concentrate the solar 
spectrum before being directed to the SBS filter. Part 
of the spectrum transmitted through the SBS filter 
enters the low iron glass envelope before it can reach 
the triangular-shaped PV channel where the silicon 
PV cells are placed.  The triangular shaped PV 
channel was designed as it can increase the light 
receiving area. Also, this design is more suitable for 
parabolic troughs [33]. The silicon cells used in this 
study operate between the band gap wavelength of 
350-1200 nm [34]. A vacuum gap is placed between 
the PV channel and the outer glass envelope to 
prevent heat loss. The top PV channel acts as the top 
channel thermal receiver to utilize the waste heat and 
prevent the heating up of PV modules. The 
remaining spectrum reflected by the filter is then 
directed to the bottom thermal receiver for heat 

Figure 2.1 SBS CPVT Collector Model 

349



 3 

generation. The bottom thermal receiver was 
modelled as a rectangular aluminium heat exchanger 
to receive the thermal energy transmitted to the 
bottom channel. Water was chosen to be the HTF for 
both top and bottom channel thermal receivers. 
     The material of the concentrator, the PV channel 
and the heat exchanger is aluminum while silicon 
was selected to be the material to model the low iron 
glass envelop. The detailed modelling parameters 
are presented in Table 2.1. Lengths for all 
components of the CPVT collector were fixed to 3 
m. 

Table 2.1 Modelling Parameters for the SBS CPVT Collector 

 
 2.1.1 SBS CPVT Collector Geometry  
The 2D geometrical model layout is illustrated in 
Figure 2.2 and the geometrical parameters are 
presented in Table 2.2. The thermal receiver width 
(wt) was kept the same as the filter (wf) to allow the 
full reception of the reflected spectrum. 

Table 2.2 Modelling Geometrical Parameters 
Parameters  Symbol Values 
Concentrator Focal Length fc 340 mm 

Filter Focal Length fs 60 mm 
Filter Aperture 

Concentrator Aperture 
wf 

wc 

192 mm 
1088 mm 

Thermal Receiver Width wt 192 mm 

2.2 Simulation Model in COMSOL  
2D simulation of the model was first conducted in 
COMSOL to test the model against the geometrical 
optics by observing the ray trajectories. Based on the 
geometrical optics of the 2D model, a 3D model was 

developed to evaluate the collector performance 
with coupled heat transfer and surface radiation. A 
physics-controlled finer mesh was implemented for 
the finite element analysis of the model in COMSOL 
to generate stable and accurate results with a short 
computation time. Two separate models were built 
for top and bottom channel thermal receivers and 
their thermal efficiencies were evaluated separately. 
The volume average temperature of the PV channel 
was approximated as PV cell temperature.  
     The SBS CPVT model simulation was first 
conducted with an ideal filter, where the 
transmittance was assumed to be 1 for the bandwidth 
between 500 and 1100 nm and 0 for the rest of the 
spectrum. Since it is not possible to get an ideal filter 
in real life, the performance of a real-life optical 
filter collector was also evaluated. Low emissivity 
glass (LEG) which would provide a similar 
transmitting range as the ideal filter was selected as 
real-life example. 
    Numerical modelling was conducted in 
MATLAB and the reference electrical efficiency 
was computed for each LEG base on its 
transmittance profile and the LEG which has the 
highest electrical efficiency was selected as the real-
life filter. For the selected LEG, average 
transmittance was calculated within the silicon cell 
bandgap to estimate the transmittance of the material.  

2.3 Numerical Model of SBS CPVT Collector  
In the SBS CPVT collector, one should consider 
both photoelectrical and photothermal processes in 
the simulation. Numerical models for electrical and 
thermal efficiency calculations are explained in this 
section.  

2.3.1 Electrical Efficiency  
The Electrical Efficiency model was referred to the 
work of Ni et al [8]. Solar spectrum intensity 
reaching PV cells (Gpv) was calculated: 

	"!"	(λ) = ' × )$%&.((λ) × * × +!)*+ × ,*, ×
																																											,*-(λ)																														  (1) 

where C is the geometrical concentration ratio, 
)$%&.( is solar spectrum intensity at air mass (AM) 
1.5, Fpack is the packing fraction of solar cell, TRg is 
transmittance of low iron glass, TRf is the 
transmittance of optical filter and R is the reflectance 
of the concentrator mirror. The geometrical 
concentration ratio C was calculated by:  

																																								' =
.!
.!"##

																																(2) 

where Ac is the aperture area and Acell is the total PV 
cell area.  

  Modelling 
Parameters 

Value  

Glass Envelope Transmittance 
Thickness  

0.91 
2 mm  

  
Triangular PV 
Channel 

Thickness 5 mm 
 

  
Bottom Thermal 
Receiver 
  

Thickness 
 

2 mm 

SBS Filter 
  

Thickness 3 mm  

Concentrator Thickness 
Reflectivity 

2 mm 
0.93 

Figure 2.2 Collector Geometry 
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     Solar spectrum intensity and transmittance of 
optical filter varies with respect to spectrum 
wavelength, hence they are functions of -. The dark 
saturation current (J0) was calculated as: 

																			// = 00,!"/
$
% exp 4−

1&
23'4()*

6																		(3) 

where 00, b and n are empirical parameters defined 
by the specific PV cell, Tpv0 is cell temperature at 
298 K, Eg is the bandgap of the cell and kB is the 
Boltzmann constant. Then, the short circuit Current 
(Jsc) was calculated by:  

	"!" = $"#$$ ∫ %!
&"#$.&(()

× '*+()) × +,,---
./- ())	-)	       (4) 

where G0 = 1000 W/m2 was set as the direct solar 
irradiance, assuming an ambient condition of AM 
1.5. SR is the spectral response of the cell at each 
wavelength. After that, open circuit voltage of cells 
(Voc) could be calculated by: 

																				75* =
.+3'4()

6 ln :
7,!
7*
+ 1=																					(5) 

where >0  is the cell’s ideality factor, and e is the 
charge of an electron. Fill factor (FF) could be 
therefore calculated by:   

																									++ =
8-.9:;(8-.=/.>?)

8-.=&
																					   (6) 

where ?5* =
A/!
A01

 is defined as normalized open 

circuit voltage with 7BC =
.+3'4()

D . Then reference 
electrical efficiency (@6E,/) at 298 K is calculated by: 

																										@6E,/ =
?;!"##A/!7,!GG

H.!
																										(7) 

where 2ncell represent the total number of cells at 
both sides of the PV channel, >* represents aperture 
area. The refence electrical efficiency is then used to 
calculate electrical efficiency @6E  at different 
operating temperature afterwards. 
     The electrical efficiency @6E at a specific PV cell 
temperature ,IJ is given below: 

																@6E =	@6E,/[1 + B(,IJ − ,K6-)]																(8) 

where @6E  is the PV electrical efficiency at the 
corresponding ,IJ,L,	B is the temperature coefficient 
of power of PV cells. The COMSOL simulation was 
first performed with the collector reference electrical 
efficiency (@6E,/), and the simulation was repeated 
by replacing the @6E,/ with the electrical efficiency 
calculated from Eqn. 8. The iteration process is 
conducted due to the initial calculation of the @6E,/, 
which was performed assuming a constant average 
cell temperature of 298.15 K. However, in reality, 
the photovoltaic cell temperature (,!") varies based 

on its inlet conditions. Therefore, iterations were 
performed until the difference of ,!" between each 
iteration was negligible. Two iterations were 
performed with COMSOL to get @6E	in this study as 
they gave fairly accurate results. 
 
2.3.2 Heat Transfer and Thermal Efficiency  
To evaluate the thermal performance and the 
temperature distribution of the collector, the heat 
transfer within the collector was studied, which is 
characterized by convective and radiative heat loss 
from the surface of thermal receivers and convection 
heat transfer between HTF and thermal receivers.  
     Both continuity and Navier-Stokes equation were 
solved to demonstrate the conservation of mass and 
momentum of the flow of HTF within the top and 
bottom channel thermal receivers, where an 
additional convective term was added to the Navier-
Stokes equation to describe the convective 
acceleration of incompressible fluid of the HTF.	
DM ,EM  are the density and dynamic viscosity of 
water and ∇u- represents the velocity gradient of the 
flow. I is the identity matrix. Equations used are 
presented below: 

																																						∇ ∙ (DMI-) = 0																									(9) 

																			DM(I- ∙ ∇)I- = ∇ ∙ [−K) + L]															 (10) 

									L = EM(∇I- + (∇I-)N) −
?
O EM(∇ ∙ I-))							 (11) 

where the stress tensor term κ  accounts for both 
shear stresses due to velocity gradients and 
volumetric change in the HTF and the correlation is 
given in Eqn. 11. The HTF is assumed to be acting 
on with no external force and the outflow pressure is 
assumed to be 0 Pa. Non-slip boundary conditions 
were assumed at the wall. The convective heat 
transfer between the HTF and the thermal receiver 
surface is described as: 
																							N!,MI- ∙ ∇,- + ∇ ∙ OPNQ = 0                 (12)     
																															OPNQ = −0-∇,-																											  (13) 
where cp,w is the specific heat capacity of water and 
0-  is the heat conductivity of water. ∇,-  describes 
the temperature gradient within the fluid and qHTF is 
the heat transfer from the thermal receiver to the 
HTF.  
      The collector is assumed to be fully thermally 
insulated and the boundary condition is defined as:  

																																				−P ∙ OK = 0																																					(14)		

where qr is the heat radiating across the boundary. 
     The heat generated at the PV cell	O,6R due to the 
radiation from the transmitted spectrum is described 
as:  

O,6R = ("/>S) × ,*T × * × RIJ × (1 − @6E6)			(15) 
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where RIJ is the absorptivity of the PV channel and 
the term ("/>S),*T*  describes the part of the 
radiation reaches the solar cell by accounting for the 
transmittance	,*T 	of	 the	 glass	 envelope	 and	 the	
reflectance	* 	of	 the	 concentrator. According to 
Kirchhoff’s law: 

																														RUA(-, ,) = _(-, ,)																					 (16) 

where _	  is the PV cell emissivity. The PV cell 
absorptivity is therefore determined to be the same 
as the PV cell emissivity of 0.88 [35].  
     The collector does not have an external heating 
source and the collector is assumed to operate at 
steady state where the temperature does not change 
with time.  
     By conducting the heat balance between the HTF 
inlet heat flux and specific enthalpy change at the 
inlet, the thermal boundary condition of the fluid 
inflow is described as: 

																			−P ∙ OLRE6B = DM∆aI- ∙ P																						 (17) 

																																∆a = 	∫ '!c,
42
43% 																									 (18) 

where n is the normal vector and qinlet is the inlet flux.	
∆a	describes	the	specific	enthalpy	change	at	the	

inlet.	,- 	and	I- 	are	 temperature	 and	 velocity	 of	
the	HTF	flow	respectively.		

					For	the	outlet	thermal	boundary	condition	of	

the	 HTF,	 no	 heat	 flux	 is	 considered	 across	 the	

outlet	 boundary	 in	 the	normal	 direction,	 and	 it	

can	be	characterized	as:		

																																		−P ∙ O5VBE6B = 0																							 (19)	

where	O5VBE6B is the outlet outflow heat. The main 
causes of the heat loss are convective heat loss	O*5R" 
and radiative heat loss OK)W which can be described 
as: 

																									O*5R" = ℎ(,)XY − ,Z)                         (20)  

																					OK)W = _*6EE0[	p,Z+\
] − ,Z]q										         (21)   

where _SD:: denotes the surface emissivity of the PV 
cell and h is the convective heat transfer coefficient. 
The correlations for top and bottom convective heat 
transfer coefficients htop [36], hbot [37] and sky 
temperature Tsky are shown below:  

																																ℎY5B = 2.8 + 3?																									 (22) 

																																ℎB5! = ?/.(^c,59/.]?																						(23) 

																											,Z+\	 = 0.0522,)XY
&.( 																							 (24) 

where v is the windspeed from surrounding which 
was taken as 1m/s in the simulation, dgo is the outer 
diameter of the glass envelop.  
     The thermal efficiency of the collector was split 
into top and bottom channel thermal efficiency, for 
PV cell and thermal receiver respectively. 
Temperature measurements were taken from the 
COMSOL simulation results. The equations for top 
and bottom channel thermal efficiencies @BC,B5! and  
@BC,Y5B calculations are: 

											@BC,B5! =
_0/(̇ ×b(,5×c40/(,/60940/(,3%d

.!×e789.;
											  (25) 

											@BC,Y5B =
_</0̇ ×b(,5×c4</0,/6094</0,3%d

.!×e789.;
             (26) 

     Aperture area >*  was obtained from the total 
projection area of the concentrator, which is 3.264 
m2 according to the COMSOL simulation model.	
vB5!̇ 	and vY5Ḃ 	are mass flowrates of top and bottom 
channels respectively.  

2.4 Thermal and Electrical Efficiency Plot  
Thermal and electrical efficiencies characteristic 
tests were done for each model by varying the inlet 
temperatures of the HTF at either the top or the 
bottom thermal receiver while keeping other 
parameters constant. The HTF velocities of top and 
bottom channels were kept at 0.01 m/s and ambient 
temperature was kept at 298.15 K throughout the 
simulation. Electrical efficiencies and Thermal 
efficiencies are plotted against reduced temperature 
for evaluation, where the reduced temperature ,K 
was calculated by: 

																															,K =
(4/6094=><)

H*
                        (27) 

where Tout is outlet temperature of thermal receiver 
HTF. 
 
3. Results and Discussion 
3.1 SBS CPVT Model Validation 
The coupled electrical and thermal model was 
validated against the work from Bahaidarah et 
al. [38]. Parameters such as location, time, 
temperature, tilt angle, wind speed, irradiance, and 
ambient electrical efficiency at STC conditions from 
the study were used as input parameters of the model 
for PV cell temperature estimation. Figure 3.1 shows 
the comparison of cell temperatures between the 
PV-T COMSOL simulation and the experimental 
results of the unglazed photovoltaic compound 
parabolic concentrator (PV-CPC) system.  A relative 
error below 8% was obtained which indicates a good 
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match between the simulated thermal and electric 
model with the experimental results.  

 
3.2. Ideal Filter SBS CPVT Collector Efficiency 
In this section, the simulation performance of the 
ideal filter collector is presented and discussed. By  
varying inlet temperatures from 288.15 K to 328.15 
K, outlet temperatures of HTF and the average 
temperature of the PV channel were obtained from 
COMSOL and efficiencies for top and bottom 
channels were calculated. Reduced temperature Tr 

was calculated using the aforementioned method. 
Top and bottom channels temperature profiles of the 
ideal filter collector at an inlet temperature 298.15 K 
and 323.15 K are presented in Figure 3.2. With the 
same temperature scale, it can be seen that both 
channels exhibit a uniform temperature profile and 
the average HTF temperature is higher with a higher 
inlet temperature.  

      Figures 3.3 and 3.4 show the electrical efficiency 
of PV cells, the thermal efficiency of the top thermal 
receiver and bottom receiver against the reduced 
temperature. Electrical efficiency decreased from 
17.0% to 13.7% with Tr increases from 0.0044 
K/(Wm-2) to 0.04736 K/(Wm-2). This can be 
explained by the nature of silicon PV cells, where an 
increase in PV cell temperature lowers the electrical 

efficiency. The thermal efficiency of the top receiver 
decreased from 32.9% to 29.3% with Tr increases 
from 0.0044 K/(Wm-2) to 0.04736 K/(Wm-2). The 
thermal efficiency of the bottom thermal receiver at 
the bottom channel decreases from 40.9% to 30.7% 
with Tr increases from 0.0042 K/(Wm-2) to 0.049 
K/(Wm-2). The decreases in thermal efficiencies of 
both receivers at a higher reduced temperature are 
due to increasing heat loss. However, the heat loss 
from the bottom receiver is greater than the top part, 
which is indicated by a larger gradient in thermal 
efficiency profile. This is because the bottom 
thermal receiver is not protected by a cover glass, 
resulting in a more significant convection heat loss 
than the top thermal receiver.  
      The PV cells and the bottom thermal receiver are 
effectively thermally decoupled. Therefore, a higher 
output temperature can be achieved in the bottom 
receiver without compromising electrical efficiency. 
By plotting best fit lines and extrapolate to Tr=0 for 
each efficiency plot, the maximum optical efficiency 
@5!B of the collector could be calculated by 
																		@5!B = @B5! + @Y5BB5X + @6																		(28) 
where @B5!  is efficiency for top thermal receiver, 
@Y5BB5X  is the efficiency for bottom thermal 
receiver, and @6	is the PV cell electrical efficiency. 
Optimum efficiencies are achieved when ,K = 0 due 
to the negligible heat loss. Table 3.1 presents 
optimum  @L of collector using ideal filter. 

Figure 3.1 Model Validation Against Experimental Results 

Figure 3.2 Temperature Distribution Profile of SBS CPVT 
Collector of (a) Top Channel (b) Bottom Channel 

(a) 298.15K (left) 323.15K (right) 

(b)     298.15K (left) 323.15K (right) 

Figure 3.3 Electrical and Thermal Efficiencies against 
Reduced Temperature for Ideal Filter Collector Top Channel 

Figure 3.4 Thermal Efficiencies against Reduced 
Temperature for Ideal Filter Collector Bottom Channel 
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Table 3.1 Optimum Electrical, Top Thermal Receiver, Bottom 
Thermal Receiver Efficiency of Ideal Filter Collector 
xfgh xigffgj xk 

33.13% 41.37% 17.36% 
       For collector using ideal filter, optimum optical 
efficiency was calculated to be @5!B =91.86%. 
@B5!	has a lower value than @	Y5BB5X at ,K = 0, since 
part of the radiation reflected to the top channel is 
converted into electricity by the PV cell. Moreover, 
there is an extra optical loss caused by the glass 
envelope and the vacuum gap from the top channel.  

3.3 Selection of Real-life Optical Filter 

Reference electrical efficiency calculation of SBS 
CPVT collector using LEGs was carried out using 
MATLAB. Figure 3.5 describes spectrum reaches 
the solar cell for ideal dichroic filter and different 

types of LEGs. The ideal filter transmittance data 
was sourced from the research conducted by 
Wingert et al. [20], and the transmittance data for 
LEGs was obtained from OTM Solutions Pte Ltd, 
Wang et al and Saflex [39,40,41,42]. The 
proportion of the solar spectrum reaching the 
solar cell is approximately 40%-50% when using 
LEGs, in comparison to the fraction observed 
with an ideal dichroic filter. The results of 
electrical efficiency of PV cells of using test 
optical filters are presented in Table 3.2. with 
Saflex SH having the highest efficiency of 
10.4422%. Therefore, Saflex SH was selected as the 
real-life filter for simulation in COMSOL.  
     Figure 3.6 shows the transmittance curve of 
Saflex SH. This filter has a high transmittance 
between 400-1200 nm, which partially aligns with 
silicon cell’s bandgap wavelength 350-1200 nm. 
     Average transmittance and reflectance in 
different wavelength ranges are calculated instead of 
implementing the whole spectrum in COMSOL to 
save modelling time. The average transmittance 
between 400-1200 nm is 0.48, while the reflectance 
for the rest of the spectrum is 0.80.  

3.4. Thermal and Electrical Efficiency for Saflex 
SH Filter SBS CPVT Collector 

     The efficiencies showed a similar trend to ideal 
filter collector discussed in 3.1. As shown in Figure 

Figure 3.8 Thermal Efficiencies against Reduced 
Temperature for Saflex SH Collector Bottom Channel 

Figure 3.7 Electrical and Thermal Efficiencies against 
Reduced Temperature for Saflex SH Collector Top Channel 

Figure 3.5 Solar Intensity against different wavelengths using 
different optical filters 

Figure 3.6 Transmittance curve for Saflex SH filter 

Table 3.2 Reference Electrical Efficiencies of Different LEGs 
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3.7 and 3.8, the electrical efficiency and top thermal 
receiver efficiency decreased from 10.00% to 9.12% 
and 24.46% to 21.03% respectively with Tr increases 
from 0.0045 K/(Wm-2) to 0.0425 K/(Wm-2) for 
Saflex SH filter. The bottom thermal receiver 
efficiency decreased from 21.20% to 12.22%, with 
Tr increases from 0.000002 K/(Wm-2) to 0.0408 
K/(Wm-2). Table.3.3 presents optimum @L  of 
collector using LEG filter at ,K = 0. 
     For collector using Saflex SH filter, optimum 
optical efficiency was @5!B =55.81% at ,K = 0 , 
which is 36.05% lower than that of the ideal filter 
collector. The optimum electrical efficiency and top 
thermal receiver efficiency of Saflex SH filter are 
7.26% and 8.36% lower than ideal filter collector’s 
respectively, which is due to the real-life filter 
having a lower transmittance within the Si-band gap 
wavelength range. 
Table 3.3 Optimum Electrical, Top Thermal Receiver, Bottom 

Thermal Receiver Efficiency of Saflex SH Collector 
xfgh xigffgj xk 

24.77% 20.94% 10.1% 
     On the other hand, the bottom thermal receiver 
efficiency was 20.94% at ,K = 0, which is 20.43% 
lower than that of the ideal filter collector. This is 
because Saflex SH has a lower reflectance than ideal 
optical filter outside the bandgap wavelength of 
silicon cell, which would be heating up the top 
channel instead. 
 
5. Conclusions 
Numerical modelling of SBS CPVT collector. The 
optical filter transmits the spectrum within the 
bandgap of Si-cells (350-1200 nm) while reflects the 
rest to a thermal receiver. The heat generated by PV 
cells are absorbed by the top thermal receiver at the 
back of the solar cell panel. The parabolic trough for 
this collector had a concentration ratio (CR) of 8.69. 
By varying HTF inlet temperature, simulations of 
ideal optical filter collector and Saflex SH filter 
collector were conducted in COMSOL for top and 
bottom channels respectively. Both simulations 
were conducted at an ambient temperature 298.15 K, 
HTF flowrate 0.01 m/s, wind speed of 1m/s and 
solar irradiance of 1000 W/m2. For ideal filter, 
spectrum transmittance between 500-1100 nm is 1, 
and reflectance is 1 at other wavelengths. For Saflex 
SH filter, average transmittance of filter is 0.48 
between 400-1200 nm and average reflectance is 
0.80 at other wavelengths.  
     At reduced temperature  ,K = 0 , the optical 
efficiency @5!B  of ideal optical filter collector and 
Saflex SH collector are 91.68% and 55.81% 
respectively; top thermal receiver efficiency, bottom 
receiver efficiency and electrical efficiency 
(@B5!, @Y5B @6)	for ideal filter collector are 33.13%, 
41.37% and 17.36% respectively; @B5!, @Y5B  and 
@6	for Saflex SH collector are 24.77%, 20.94% and 
10.1% respectively. For both collectors, 

@6, @B5!	@Y5B  decreases when ,K  increase; @B5! 
decreases more rapidly than @Y5B. 

6. Outlook 
Some potential improvements are worth considering 
for a more reliable result, when similar research is 
conducted in future. A more accurate electrical 
efficiency at each HTF inlet temperature could be 
obtained by doing more iterations until each HTF 
outlet temperature between iterations is less the 1 
°C. A more sensible bottom thermal receiver design 
could be proposed in the future, which could 
possibly lead to a more realistic result. However, to 
the structural model complexity may cause a 
significantly longer simulation time in COMSOL. In 
addition, implementing the full transmittance profile 
in COMSOL instead of using the average 
transmittance for real-life filter could also be 
explored.  
     For system performance enhancements, one can 
explore the following aspects which are not included 
in this study. In terms of geometry, the curvature and 
position of the optical filter and parabolic trough 
could be modified for a compact system design, 
potentially reducing the space taken and capital cost. 
Different combinations of filter, thermal receiver, 
concentrator types and solar cells materials are also 
worth exploring to achieve a higher optical 
efficiency. For instance, Zhang et al proposed a 
Thermal-Electric Generator [34], which could be 
used as a replacement of the top thermal receiver in 
this research. This would potentially reduce the 
operation cost since HTF is not required. 
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Abstract  
Hydrodynamics is an important step in the transesterification of sunflower oil for Fatty Acid Methyl Ester 
(FAME) production. Agitation is important to overcome the mass transfer limitations associated with the 
immiscible nature of the reactants, sunflower oil and methanol, to maximise the yield of FAME. However, the 
precise link of the hydrodynamics with the chemical kinetics is poorly understood. Here we show the effect of 
hydrodynamics on the FAME yield, interfacial surface area and energy consumption. By measuring the formation 
of FAME over time, we were able to directly link how the interfacial surface area controls the rate and yield of 
FAME. We found that by varying the impeller type, agitation speed and clearance, a 6-bladed Rushton Turbine, 
with an agitation speed of 600 RPM, and a clearance of 0.75 C/H, was optimal to overcome the mass transfer 
limitations compared to a 3-bladed Marine Impeller. This is due to the creation of smaller dispersed methanol 
droplets, increasing the interfacial surface area. Furthermore, we established how the formation of mono and 
diglyceride intermediates, directly affects the stabilisation of microdroplets, and how stopping the agitation after 
the stabilisation, can lead to large energy savings of 83% for FAME production. Our results demonstrated that the 
type of impeller is the most significant factor affecting FAME production. 
 

1. Introduction 
Global biodiesel production has increased significantly 
over the last two decades. In 2022, total biodiesel 
production reached over 1.9 million barrels of oil 
equivalent per day, and the largest producers are the 
United States, Brazil, and Indonesia [1]. The global 
biofuel market is expected to reach more than $200 
billion by 2030 [2].  Biodiesel has up to 74% less carbon 
dioxide emissions than conventional fossil diesel. It is 
used as a drop-in fuel and blended into diesel to reduce 
its overall lifecycle emissions [3]. 

Biofuels such as Fatty Acid Methyl Esters (FAME), 
are predominantly produced from waste oils and fats [4]. 
The production of FAME is a relatively simple process 
involving the transesterification of oils and fats, high in 
triglycerides, with methanol, to produce FAME and 
glycerol. Most commercial FAME production is done 
batch-wise through transesterification in stirred tanks at 
atmospheric pressure, and a temperature between 40 to 
60OC [5]. Mixing has been identified as a crucial 
processing step, due to the mass transfer limitations 
caused by the immiscibility between the polar methanol 
and non-polar oil phase. However, there has been a lack 
of research into the effects of hydrodynamics, with 
previous studies only focusing on the effect of agitation 
speed on FAME production [6]. 

This paper focuses on the effect of hydrodynamics, 
including the impeller type, agitation speed, and tank 
geometry, on FAME production. If a noticeable effect 
were to be observed at the laboratory scale, this would 
have far-reaching impacts on the commercial biodiesel 
industry. 

 
2. Background 
2.1 Transesterification 
Transesterification is a reaction between triglycerides 
and methanol, to produce FAME in the presence of a 
catalyst. It consists of three consecutive stepwise 
reversible reactions, where mono and diglycerides are 
produced as intermediates and glycerol as a byproduct. 

From stoichiometry, one mole of triglyceride reacts with 
three moles of methanol to produce three moles of 
FAME and one mole of glycerol, as seen in Figure 1.  
 

 
 
Figure 1. Stepwise transesterification of triglycerides, forming 
intermediates of mono and diglycerides with methanol in the presence 
of a catalyst, to produce FAME and glycerol [7] 
 

A base catalyst is used, as opposed to an acid 
catalyst, due to its high reactivity and its ability to 
enhance nucleophilic attack. Sodium hydroxide is 
dissolved in methanol to produce a methoxide ion 
(CH3O-), which is a powerful nucleophile. The 
methoxide ion (CH3O-) is formed from the dissociation 
of the catalyst, as shown in Equation 1 [8]. 
 

𝐶𝐻ଷ𝑂𝐻 + 𝑁𝑎𝑂𝐻 ⇌ 𝐶𝐻ଷ𝑂ି + 𝑁𝑎ା + 𝐻ଶ𝑂 (1) 
 
However, the presence of water generated by the 
disassociation of the catalyst can lead to saponification, 
which is the production of soap by-products due to the 
reaction between FAME and water, as shown in 
Equation 2 [8]. 

 
(2) 
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2.2 Nature of the droplet system over time 
 

   
Initial Heterogeneous 

 System: 
Dispersed red methanol droplets in 

the continuous oil phase 

Intermediate Pseudo-
homogeneous System:  

Mono and Diglyceride stabilised 
microdroplets 

Final Reformed Heterogeneous 
System:  

FAME soluble in methanol and 
insoluble in glycerol 

   
Figure 2. Photographs of the changes in phase nature of the transesterification of sunflower oil over time. A Sudan III dye has been added to methanol 
and catalyst solution, which turns red in the presence of FAME, to aid the differentiation in the phase of the system 
 

 
Figure 3. Overall kinetic concentration profile of transesterification 
reaction for the Marine Impeller at an agitation speed of 600 RPM and 
a clearance of 0.33 C/H. Positions 1, 2 and 3 directly relate to the 
system photographs seen in Figure 2 
 
From the kinetic concentration profiles, generated from 
the experimental data, the change in reactant, 
intermediates, and product concentration can be 
observed. The sigmoidal shape of FAME is explained 
by an initial mass transfer-controlled region followed by 
a kinetically controlled region [9]. From Figures 2 and 
3, initially, the reaction system is heterogeneous 
consisting of two immiscible phases, a dispersed polar 
methanol phase and a continuous nonpolar triglyceride 
phase. The methanol and catalyst solution exist as 
dispersed droplets due to the formation of reverse 
micelles. The triglyceride possesses a hydrophilic head 
that surrounds the methanol solution, and the 
hydrophobic tails are exposed [10]. Therefore, mass 
transfer limitations exist due to the immiscibility of 
methanol and oil, which can be overcome with sufficient 
agitation. Mixing aids the reaction by creating 

dispersion, which increases the interfacial area between 
the phases, directly controlling the rate of reaction [6]. 

 As the reaction progresses, the mono and 
diglyceride intermediates are formed. These 
intermediates are soluble in methanol and act as 
surfactants to stabilise microdroplets, which begin to 
remove the phase boundary, forming a pseudo-
homogenous system [11]. At the end of the reaction, the 
byproduct glycerol, is produced, and a heterogeneous 
system is reformed. Glycerol is a polar molecule and is 
insoluble in non-polar FAME, and this leads to phase 
separation.  

However, if the agitation is too high, this may lead 
to the formation of a stable emulsion making it difficult 
to separate FAME from glycerol, leading to a more 
energy-intensive separation [12]. 

 
3. Methodology 
3.1 Feedstocks and reaction conditions 
Sunflower oil (KTC) was chosen as the feedstock due to 
its high concentration of triglycerides, low cost, and 
widespread availability [13]. Methanol and sodium 
hydroxide were used as the alcohol and catalyst 
respectively. A methanol-to-oil molar ratio of 6:1 was 
employed to ensure there was an excess of methanol to 
drive the reaction to produce FAME. A 0.75 wt% 
catalyst loading was chosen to minimise saponification. 
The reaction occurred at atmospheric pressure and a 
temperature of 40oC [14]. 
 
3.2 Experimental set-up  
3.2.1 Reactor configuration 
An unbaffled 500ml ‘Applikon Minibio Reactor M2’ 
was used and kept at a constant temperature using the 
integrated heating pad and thermometer. The lid and 
ports were sealed to minimise methanol loss to the 
atmosphere due to evaporation. Two ports remained 
open to introduce the reactants and take samples as the 
reaction progressed.  
 

1 2 3 
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Figure 4. Experimental Set-up. A) Motor, B) Heating Plate, C) 
‘Applikon MiniBio Reactor M2’, D) Camera, E) Impeller, F) ‘Applikon 
my-Control’, G) Backlight, H) Thermometer 
 
3.2.2 Standard geometry 
The tank geometry must be in standard dimensionless 
configurations to ensure suitability for scale-up to 
industry. Standard configurations were applied to the 
reactor, as seen in Figure 5, and this exists when the 
height of the liquid level is approximately equal to the 
tank diameter. 
 

 
Figure 5. Reactor standard geometry 

 
The clearance is the ratio of the impeller height from 

the bottom of the tank to the height of the liquid level 
(C/H). A standard clearance of 0.33 C/H is 
recommended [15]. However, other sources recommend 
placing the impeller at the interface for liquid-liquid 
systems [12]. Three clearances were investigated for 
each impeller as shown in Table 1: 
 
Table 1. Impeller clearance ratios used in experiments. 

 Standard Mid-Point Interphase 

Rushton 
Turbine 0.33 C/H 0.42 C/H 0.75 C/H 

Marine 
Impeller 0.33 C/H 0.51 C/H 0.62 C/H 

 
 

3.2.3 Impeller design 
 

Rushton Turbine 
Radial Flow 

Marine Impeller 
Axial Flow 

  

  

  
 
Figure 6. Mechanical drawings and images of the Rushton Turbine 
and the Marine Impeller with labelled dimensions 
 

The choice of impeller is essential for promoting 
efficient mixing and distribution of reactants. Common 
impellers used for liquid-liquid reactions are Disk 
Turbines and Pitched Impellers [12]. Hence, two 
different impellers were selected, a 6-bladed Rushton 
Turbine and a 3-bladed Marine Impeller to satisfy the 
recommendations respectively, as seen in Figure 6. 
 

Rushton Turbine 
Radial Flow 

Marine Impeller 
Axial Flow 

  
 
Figure 7. Radial and axial flow patterns created by the Rushton 
Turbine (600 RPM and 0.75 C/H) and Marine Impeller (600 RPM and 
0.33 C/H) respectively. A Sudan III dye has been added to methanol 
to improve droplet identification 
 

Axial flow is where the fluid flows parallel to the 
shaft, therefore the fluid rises and falls colliding with the 
bottom of the vessel. Whereas radial flow is the 
movement of fluid perpendicular to the shaft, hence the 
fluid collides with the vessel wall [12]. A Rushton 
Turbine promotes radial flow whereas a Marine Impeller 
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causes axial flow, as seen in Figure 7. Therefore, the 
different mixing types could be explored to evaluate the 
most effective. It is recommended that the ratio of the 
diameter of the impeller (D) to the tank diameter (T) is 
within, 0.2 < D/T < 0.5 [12]. For both impellers, D/T 
was equal to 0.4. This provides space for flow patterns 
to form [15]. 

 
3.3 FAME synthesis 
3.3.1 Experimental procedure for FAME synthesis 
The speed of the agitator was controlled using the 
‘Applikon my-Control’ web UI and varied between 200 
to 1000 RPM, for each impeller type and clearance. 
Sunflower oil (200 g) was added into the bioreactor and 
heated to 40oC. Sodium hydroxide (1.85 g) was 
dissolved in methanol (44 g) to produce a 0.75 wt% 
catalyst solution and preheated to 40oC. The dissolved 
catalyst mixture was added into the reactor and a timer 
and camera were started. Ten samples (1 ml) were taken 
from the reaction mixture over 10 minutes, using 
syringes. The samples were transferred into Eppendorfs 
and immediately neutralised with acetic acid (0.25 ml) 
to quench the reaction. The samples were centrifuged 
(6000 RPM for 8 minutes) using an ‘IKA mini G’. The 
upper FAME layer was pipetted out and transferred into 
new Eppendorfs. Deuterated chloroform (0.5 ml) was 
added, and the samples were then pipetted into NMR 
tubes.  
 
3.3.2 Analytical method for FAME content using 1H 
NMR spectroscopy 
 

 
Figure 8. 1H NMR spectrum of upper FAME layer with peak 
identification 
 
The yield of FAME was calculated using 1H NMR 
spectroscopy. The spectrums, seen in Figure 8, were 
produced by the ‘JeolJNM-ECZS 400-MHz Routine 
NMR Spectrometer’ and analysed using ‘MestreNova’. 
The chloroform peak appeared as a singlet at 7.26 ppm 
and was used as a reference point when calibrating the 
spectrum. 
 

 
Figure 9. Chemical structure of FAME and mono, di and triglycerides, 
with the corresponding signals, in ppm, present in the NMR spectrum 
[16]  
 

An integration was completed across the singlet at 
3.7 ppm (A1), relating to the methoxy group found only 
in FAME, as seen in Figure 9. An integration was also 
completed across the triplet found at 2.3 ppm (A2), 
which relates to the alpha carbonyl which exists in all 
the substances present in the upper phase, specifically 
FAME, mono, di, and triglycerides. The FAME content 
can be quantified by comparing the areas of the peaks 
and normalising by the number of hydrogens [16]. It is 
calculated as shown in Equation 3.  

 
𝐹𝐴𝑀𝐸 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  

2𝐴ଵ

3𝐴ଶ
 𝑋 100 (3) 

 
An estimation of the mono and diglyceride content 

was calculated following a similar procedure. The 
multiplet between 4.1 and 4.4 ppm (A3) corresponds to 
the glyceryl group and was also normalised by the 
number of hydrogens associated with the peak. It is 
calculated as displayed in Equation 4. 

 
𝑀𝑜𝑛𝑜 𝑎𝑛𝑑 𝐷𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  

2𝐴ଷ

5𝐴ଶ
 𝑋 100 (4) 

 
Manual integration of all areas was repeated three 

times to calculate an average and standard deviation. 
 
3.4 Droplet size and interfacial surface area 
3.4.1 Experimental procedure for droplet size 
measurement 
Two experiments were conducted to observe the effects 
of hydrodynamics on the dispersed methanol droplets in 
the reactor. The first experiment, with the sodium 
hydroxide catalyst, the reactive system, was carried out 
to observe the effects of the reaction with dispersion. 
The second experiment, without the presence of a 
catalyst, the non-reactive system, was performed to only 
observe the effects of dispersion. The impeller type, 
speed, and clearance were changed, and a video was 
taken of the first 10 seconds using the camera from an 
‘iPhone 13’. A backlight was used to improve the image 
quality of the droplets and ten random frames were 
selected. 
 
3.4.2 Analytical method for droplet diameter 
An open-source software, ‘Bubble Analyser’, was used 
to quantify the droplet diameters and distribution. A 
background correction image was used to remove 
artifacts, reducing the error in measurement.  
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Figure 10. Histogram of droplet diameter generated by ‘Bubble 
Analyser’ software for the Marine Impeller at 600 RPM and a 
clearance of 0.33 C/H 
 

A histogram showing a droplet size distribution was 
generated, seen in Figure 10, and from this, the Saunter 
Mean Droplet Diameter, 𝑑ଷଶ, was calculated, along with 
the standard deviation. It is a measure of average droplet 
size and is equivalent to the diameter of a sphere that has 
the same volume-to-surface area ratio [12]. It is a 
common measure of droplet size for liquid-liquid 
dispersion and is calculated using Equation 5. 
 

𝑑ଷଶ =
∑ 𝑛௜𝑑௜

ଷ

∑ 𝑛௜𝑑௜
ଶ   (5) 

 
Where 𝑛௜ is the number of droplets and 𝑑௜ is the nominal 
diameter of the droplets. 
 
3.4.3 Analytical method for the interfacial surface area 
The saunter mean droplet diameter was used to calculate 
the interfacial surface area, 𝑎௩ [17]. The interfacial 
surface area governs the rate of reaction and is 
calculated from Equation 6. 

 
𝑎௩ =

6𝜙
𝑑ଷଶ

 (6) 

 
Where 𝜙, is the volume fraction of the dispersed 
methanol phase. This was determined from 
photographic images.  
 
3.5 Energy Consumption 
3.5.1 Experimental procedure for energy consumption 
During the FAME synthesis reactions, the total 
electrical energy consumption of the reactor, 𝐸்,  was 
measured for both impellers at each speed and clearance, 
using an ‘Energenie Energy Saving Power Meter’, with 
a resolution of 0.001 kWh. 
 
3.5.2 Analytical method for impeller efficiency 
Efficiency is defined as the useful power output over the 
total electrical energy consumed [18]. The useful power 
output is the power of the impeller supplied to the fluid. 
This is determined from the flow regime and the 
Reynolds number.  
 
 

The Reynolds number is calculated by applying 
Equation 7. 
 

𝑁ோ௘ =  
𝜌𝑁𝐷ଶ

𝜇
    (7) 

 
Where the density, 𝜌, and viscosity, 𝜇,  of the reactant 
mixture were averaged on a mass basis at 40oC, using 
the initial composition. The Reynolds number for all 
agitation speeds, from 200 to 1000 RPM, corresponded 
to a Reynolds number between   87 and 434 respectively. 
This is entirely within the transitional regime, which 
occurs at Reynolds numbers in the range of 10 to 104 
[12]. The power output of the impeller is calculated 
using Equation 8. 

 
𝑃 = 𝜌𝑁௣𝑁ଷ𝐷ହ (8) 

 
Where 𝑁, is the impeller speed, measured in revolutions 
per second and 𝐷, is the diameter of the impeller. The 
power number, 𝑁௣, is determined using correlations 
from literature for unbaffled reactors in the transitional 
regime [19]. The power number for the 6-bladed 
Rushton Turbine is given by Equation 9. 
 

𝑁௣ = 12.2𝑁ோ௘
ି଴.ଶସଵ (9) 

 
The power number for the 3-bladed Marine Impeller is 
given by Equation 10. 
 

𝑁௣ = 3.77𝑁ோ௘
ି଴.ଵଽଷ (10) 

 
Lastly the impeller efficiency is determined from 
Equation 11. 
 

𝜂 =
𝑃 𝑡
𝐸்

 (11) 

 
Where 𝑡, is the duration of the FAME synthesis 
production (10 min). 
 
4. Results and Discussion 
4.1 FAME production  
4.1.1 Final FAME yield  
 

 
 
Figure 11. Effect of agitation speed and clearance for the Rushton 
Turbine on the final FAME yield 
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Figure 12. Effect of agitation speed and clearance for the Marine 
Impeller on the final FAME yield 
 
There is a strong relationship between the final FAME 
yield and agitation speed for the Rushton Turbine, 
Figure 11, and the Marine Impeller, Figure 12. The 
FAME yield increases significantly with higher 
agitation speed and plateaus at speeds higher than 600 
RPM for both impellers. For the Rushton Turbine, the 
yield is highest at a clearance of 0.75 C/H, and this is 
when the turbine is on the interphase. As methanol is 
less dense than sunflower oil, the methanol droplets rise 
and coalesce at the top of the reaction mixture. Hence, 
placing the Rushton Turbine at the interface generated 
strong radial flow patterns. This prevented the 
coalescence of droplets, which allowed for efficient 
breakup and dispersion, as the number of collisions with 
the impeller blades and reactor walls increased.  

However, for the Marine Impeller, the greatest yield 
occurred at a clearance of 0.33 C/H. When the impeller 
was at higher clearances, a stagnant laminar region was 
present at the bottom of the reactor, which is typical of 
the transitional regime [12]. Consequently, reducing the 
impeller clearance resulted in a more uniform dispersion 
of droplets. This phenomenon occurs as the pitch of the 
Marine Impeller forces the methanol droplets to break 
up on collision with the bottom of the reactor, which is 
characteristic of axial flow. Therefore, reducing the 
impeller clearance increased the frequency of droplet 
collisions at the bottom of the reactor, causing a greater 
breakup and dispersion of methanol. 

 
4.1.2 FAME formation profiles 
 

Figure 13. FAME yield against time for varying impeller speeds at an 
impeller clearance of 0.75 C/H for the Rushton Turbine 

 
Figure 14. FAME yield against time for varying impeller speeds at an 
impeller clearance of 0.33 C/H for the Marine Impeller 
 
The FAME yield was monitored throughout the reaction 
time of 10 minutes and was investigated under varying 
agitation speeds for the optimum clearance, where the 
highest yields were produced. For the Rushton Turbine 
this was at a clearance of 0.75 C/H, Figure 13, and at a 
clearance of 0.33 C/H for the Marine Impeller, Figure 
14. The FAME formation profiles show that increasing 
agitation speeds leads to greater yields, since there is a 
greater dispersion of methanol. There exists a critical 
agitation speed, between 200 to 300 RPM for the 
Rushton Turbine and between 200 to 400 RPM for the 
Marine Impeller. This is the agitation speed required to 
produce a significant yield of FAME.  

A sigmoidal formation profile was seen at 300 and 
400 RPM for the Rushton Turbine and Marine Impeller 
respectively. This is consistent with a slow initial mass 
transfer-controlled region, followed by a faster 
kinetically controlled region which plateaus upon 
reaching an equilibrium, due to a slow reaction rate [9]. 
At higher agitation speeds, there is a conversion of the 
final FAME yield since the reactant conditions are 
constant for all experiments. At higher agitation speeds 
the kinetic profiles become second order in nature, since 
there is an elimination of the initial mass transfer-
controlled regime, as it has been overcome by the high 
levels of dispersion [20].  
 
4.1.3 Initial rate of FAME formation 
 

 
Figure 15. Initial rate of FAME formation against agitation speed 
and clearance for the Rushton Turbine 
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Figure 16. Initial rate of FAME formation against agitation speed 
and clearance for the Marine Impeller 
 
From the FAME formation profiles, the initial rate of 
reaction was calculated for varying agitation speeds and 
clearances for the Rushton Turbine, Figure 15, and the 
Marine Impeller, Figure 16. There is a significant rise in 
the initial rate as the mass transfer region is overcome, 
and the reaction is dominated by the kinetic terms. The 
impeller type has the largest effect on the initial rate. The 
Rushton Turbine is drastically higher than the Marine 
Impeller, resulting in the faster formation of FAME. For 
the Rushton Turbine, the maximum rate is seen at an 
agitation speed of 600 RPM and at a clearance of 0.75 
C/H, which aligns with the highest FAME yield seen in 
Section 4.1.1. This is followed by a decrease after 600 
RPM which was caused by the formation of a vortex. 
For the Marine Impeller, the highest rates are seen at a 
clearance of 0.33 C/H, which also corresponds with the 
highest FAME yield.  

 
4.2 Droplet size and interfacial surface area  
4.2.1 Saunter mean droplet diameter 
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Figure 17. Photographs of the dispersed methanol droplets at 600 
RPM at a clearance of 0.75 C/H for the Rushton Turbine, and a 
clearance of 0.33 C/H for the Marine Impeller, for both the reactive 
and non-reactive systems  
 
Analysis of the photographic images from the initial 10 
seconds show the effect of the droplet sizes with a 
reaction and dispersion, compared to the system with no 

catalyst, to view the effect of dispersion only, seen in 
Figure 17.  

The expected droplet size for the reactive system 
with a catalyst was simulated using the correlation 
developed by McManamey, Equation 12 [21]. 
 

𝑑ଷଶ = 0.221 ൬
𝜎
𝜌

൰
଴.଺

𝑃ெூ
ି଴.ସ (12) 

 
Where, σ, is the interfacial surface tension, 𝜌, is the bulk 
density and 𝑃ெூ , is the power input per unit mass of the 
volume swept by the impeller. This was calculated using 
Equation 13. 
 

𝑃ெூ = ൬
4
π

൰ 𝑁௣ ൬
D
W

൰ 𝑁ଷ𝐷ଶ (13) 

 
The McManamey correlation is a well verified 

correlation to describe the droplet size for fully 
dispersed liquid-liquid systems [12].  
 

 
Figure 18. Effect of agitation speed on the saunter mean droplet 
diameter for reactive systems at varying clearances and a non-reactive 
system at a clearance of 0.75 C/H for a Rushton Turbine 
 

 
Figure 19. Effect of agitation speed on the saunter mean droplet 
diameter for reactive systems at varying clearances and a non-reactive 
system at a clearance of 0.75 C/H for a Marine Impeller 
 

The reactive system is shown for the three 
clearances, and the non-reactive system at a clearance of 
0.75 C/H for the Rushton Turbine, Figure 18, and 0.33 
C/H for the Marine Impeller, Figure 19. There is a trend 
of decreasing droplet diameter with increasing agitation 
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speed for both impellers, and this aligns closely with the 
simulated McManamey droplet sizes when the system is 
fully dispersed after 600 RPM.  

For both the reactive and non-reactive systems the 
droplet size decreases with agitation speed, as the 
droplets collide more frequently with the impeller and 
walls. The droplet size plateaus at high speeds, due to 
higher surface tension which increases the droplet 
uniformity and resistance to fragmentation. For the 
reactive system, the Rushton Turbine has smaller 
droplet sizes compared to the Marine Impeller for all 
agitation speeds. The radial flow ensures the droplets 
collide more frequently with the impeller and walls, 
preventing coalescence. For the Marine Impeller, 
initially, there is very poor mixing as demonstrated by 
the close droplet sizes between the reactive and non-
reactive system. However, at higher agitation speeds, 
clearance has a secondary effect, causing the droplet 
sizes to be smaller at lower clearances. This is due to the 
axial flow produced by the Marine Impeller which 
results in a greater breakup of methanol droplets due to 
increased collisions with the bottom of the reactor.  
 
4.2.2 Interfacial surface area 
 

 
Figure 20. Effect of agitation speed of a Rushton Turbine on the 
interfacial surface area for reactive systems at varying clearances and 
a non-reactive system at a clearance of 0.75 C/H  
 

 
Figure 21. Effect of agitation speed of a Marine Impeller on the 
interfacial surface area for reactive systems at varying clearances and 
a non-reactive system at a clearance of 0.33 C/H  
 
As the reaction happens at the interface between 
triglycerides and methanol, it is important to observe the 
effect of the hydrodynamics on the interfacial surface 

area. A high interfacial surface area is desired since it 
directly controls the rate of reaction [22]. 

As the interfacial surface area is inversely 
proportional to droplet diameter, there is a trend of 
increasing interfacial surface area with agitation for the 
reactive and non-reactive systems for the Rushton 
Turbine, Figure 20, and the Marine Impeller, Figure 21. 
The interfacial surface area plateaus at high speeds due 
to the droplets approaching a constant size. For reactive 
systems, as the Rushton Turbine produces smaller 
droplets, there is a significantly higher interfacial 
surface area than the Marine Impeller. Although both 
systems follow a similar trend, there is a larger 
improvement in interfacial surface area, for the reactive 
system, compared to the non-reactive system, at higher 
agitation speeds for both impellers. This is due to the 
higher concentration of mono and diglycerides, acting 
as surfactants to stabilise microdroplets. Consequently, 
this increase in interfacial surface area leads to an 
enhancement in mass transfer and directly explains the 
higher initial rate of reaction for the Rushton Turbine 
over the Marine Impeller, as seen in Section 4.1.3. 
Clearance also has a secondary effect when compared to 
the type of impeller used, which was also seen in Section 
4.2.1.  

The error bars are significantly larger for the reactive 
system using a Rushton Turbine, due to the smaller 
droplet sizes and the interfacial surface area being the 
inverse of the droplet diameter. 
 
4.3 Energy Consumption 
4.3.1 Efficiency 
 

 
Figure 22. Effect of agitation speed on efficiency for the Rushton 
Turbine and the Marine Impeller  
 
From Figure 22, efficiency increases with agitation 
speed for both impellers. Additionally, the Rushton 
Turbine has a higher efficiency at lower agitation 
speeds. This occurs since the initial rate is higher for the 
Rushton Turbine, and so there is a faster formation of 
FAME. Consequently, there is a higher reduction in the 
overall viscosity of the system since FAME is less 
viscous than sunflower oil [23]. This reduces the overall 
resistance faced by the impeller, leading to a lower 
power consumption for the same agitation speed. The 
efficiency of the Rushton Turbine plateaus at 600 RPM, 
signifying that this agitation speed will produce optimal 
efficiency for the lowest energy consumption. 
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4.3.2 Effect of agitation time 
To minimise energy consumption, agitation can be 
stopped when mass transfer limitations have been 
overcome, and this was identified as the time when 90% 
of the final yield was achieved. Hence, two experiments 
at the optimal configuration for each impeller were 
undertaken. The first, when agitation was continuous 
throughout the 10 minutes, and the second, where 
agitation was halted when 90% of the final yield was 
achieved. 
 

 
Figure 23. FAME, mono and diglyceride yield over time with 
identification of the time when agitation was stopped 
 

 
Figure 24. Total energy consumption for the Rushton Turbine and 
Marine Impeller for the reaction with an agitation time of 10 minutes 
compared to a reaction with an agitation time corresponding to mass 
transfer effects being overcome  
 

The optimal configuration for the Rushton Turbine 
was identified as having an agitation speed of 600 RPM, 
and a clearance of 0.75 C/H. For the Marine Impeller, 
the optimal configuration was identified at an identical 
agitation speed of 600 RPM, but a clearance of 0.33 
C/H. For these configurations, the corresponding time to 
stop the agitation was 80 seconds for the Rushton 
Turbine and 3 minutes for the Marine Impeller. The 
reason for this choice is further demonstrated in Figure 
23. For the optimal configuration of the Marine 
Impeller, it has a peak yield of mono and diglyceride 
intermediates later in time, and they remain higher 
throughout. This results in the stabilisation of the 
microdroplets later compared to the Rushton Turbine. 

Hence, the Marine Impeller needs a longer agitation 
time to overcome the mass transfer limitations. 

Comparing the total energy consumption, seen in 
Figure 24, when running the impeller for 10 minutes 
against the shorter agitation time, the Rushton Turbine 
had a large reduction in energy consumption of 83.3%, 
whereas the Marine Impeller had a 55.6% energy 
reduction. A comparison of the final yields for each of 
the experiments revealed that both impellers were 
unaffected by the reduced agitation time. The yields for 
all four experiments were calculated at 91.4 +/- 0.7 %.  
Therefore, a reduction in the Rushton Turbine’s 
agitation time produces the greatest decrease in energy 
consumption, whilst still achieving a very high yield.  

 
5. Conclusion 
This research has demonstrated that hydrodynamics has 
a vital effect on FAME production, specifically the 
impeller type. By providing a direct link between the 
hydrodynamics with the chemical kinetics, a molecular 
foundation was formed. The link between the 
hydrodynamics with FAME yield, interfacial surface 
area, and overall energy consumption has been 
established. The optimal impeller configuration was 
identified as a 6 -bladed Rushton Turbine, at a clearance 
of 0.75 C/H and an agitation speed of 600 RPM. It is 
found that the agitation of the impellers could be stopped 
at 90% of the final yield, as this is when the mono and 
diglyceride intermediates had stabilised microdroplets. 
These conditions significantly reduced the overall 
energy consumption whilst achieving a high yield. This 
has wide-reaching implications for commercialised 
biodiesel production and the potential for large energy 
savings of up to 83%. This investigation has bridged the 
gap between the impeller type, tank geometry and 
agitation speed with the chemical kinetics, for the 
transesterification of sunflower oil to produce FAME.  
 
6. Outlook 
There is additional scope for exploration, to optimise the 
hydrodynamics and minimise total energy consumption. 
The implementation of baffles, such as beaver tail or 
finger, would aid in enhancing turbulence by disrupting 
flow patterns and stopping vortex formation. This could 
reduce the time for mass transfer limitations to be 
overcome [12]. Additional impeller types such as 
Pitched Blade Turbines would also enable the 
characterisation of mixed flow patterns and the use of 
hydrofoils could significantly reduce energy 
consumption due to their lower power numbers [12]. 

Lastly an investigation into additional reactor 
configurations could provide a more energy efficient 
production of FAME. Static inline mixers include 
obstructions to induce turbulence without agitation, and 
therefore require no mechanical energy input [12]. An 
additional agitation mode could also be investigated 
using an ultrasonic mixer. They produce high and low-
pressure waves forming cavitations which produce 
shockwaves, eliminating the phase boundary. Ultrasonic 
mixers are more energy efficient as they do not lose 
energy to frictional heat from rotational equipment [24]. 
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Screening the chemical space: An ML Approach to
Predicting the Prices of Chemical Compounds

Cahan O’Driscoll, Denzel Martin Teow

Abstract

Computational techniques in the field of chemical synthesis are constantly improving. As a result, the number of possible
molecules is ever-increasing. This makes synthesis of novel compounds highly challenging, as methods are needed to
evaluate if production of a molecule is economically desirable compared to others. Current computational methods for
determining molecule cost use select features of synthesis routes, but the accuracy of these algorithms could be improved,
and they provide limited insight into how these features correlate with cost predictions. In our report, we use a novel
approach which utilised a wider range of features as compared to previous literature. These were extracted from a selected
retrosynthesis algorithm, AiZynthFinder, and used to train an artificial neural network (ANN) via PyTorch to estimate
molecule price. A model was designed and optimised but produced poor prediction accuracy with a mean absolute error
of 220 $/mmol. Results implied that the major contribution to this was an insu�cient amount of data points that failed
to represent patterns for expensive molecules. Further investigation revealed that the synthesis score input feature was
highly redundant and most features were partially correlated, thereby causing lower prediction accuracy. Whereas, the
number of precursors was identified as a highly promising model feature as it was shown to have a significant impact on
molecule price. These conclusions on feature choice will help guide future research in this field to find the best set of
features for accurate price prediction.

Keywords— De-Novo Molecules, Retrosynthesis, Molecular Screening, Machine Learning, Feature Analysis

1 Introduction

In recent decades there has been a stagnation in new drug
development in the pharmaceutical industry, with success
rates in phase 1 clinical trials remaining at approximately
10% causing drug development investment to increase [1]. In
2004 the estimated cost to bring a new drug to the market
was $800 million and was predicted to double every 5 years[2].
The amount of work that goes into developing novel drugs for
most to be discarded is a result of poor resource allocation
based on limited insight. For a new drug to be viable for fur-
ther development, it should meet several feasibility criteria.
The criteria of focus for this research is financial feasibility,
which projects profitability based on assumed prices for prod-
ucts and cost of production [3].However, the challenge lies in
the absence of reliable methods for accurately predicting the
prices of products and by-products [4]. This leads to reduced
precision in early-stage molecule screening for eliminating fi-
nancially unviable options. Identification of new techniques
to determine the price of molecules solely based on their struc-
ture or synthesis method would therefore prove a highly valu-
able tool in the early design phases.

Previous research in this field has explored and compared
both structural and synthesis route based techniques using
a variety of di↵erent approaches. Research to identify the
most cost-e�cient synthesis route has been conducted using
the prices of feed stock chemicals and intermediates scaled by
reaction yield [5], this inspired a simplified method used by
other researchers that only used precursor chemical prices to
predict product molecule price. This simplified method was
shown to outperform a structural based approach in terms

of prediction accuracy, but could still be improved [6]. An-
other promising research study found that an artificial neu-
ral network was able to learn to predict, with high accuracy,
the synthesis scores for compounds based on data about their
synthesis routes [7]. The main disadvantage of collecting data
on synthesis routes is that it is computationally intensive and
slow, the neural network in comparison was shown to be much
faster.

These research studies all made use of retrosynthesis algo-
rithms to obtain data about molecule synthesis routes, these
are an attractive option for this study as these can be used
make predictions for de-novo molecules. Retrosynthesis anal-
ysis is a computational technique where a target molecule is
recursively broken down into commercially available precur-
sors, there currently exists retrosynthesis software that utilize
various algorithms based on encoded chemistry knowledge to
e�ciently determine optimal synthesis routes. These algo-
rithms allow the generation of synthesis routes for de-novo
molecules based o↵ only their chemical structure and remove
the reliance of experienced chemists to create synthesis routes
from experience and heuristics while also having the advan-
tage of providing quantifiable justification for choosing an
optimal route, such as with a synthesis scoring function[8].
After comparing various retrosynthesis planners for feature
extraction, AiZynthFinder was chosen. Other retrosynthesis
planners were either inaccessible, such as Synthia, or were too
slow, such as Reaxys. In contrast, AiZynthFinder has a rel-
atively fast solving speed, provides in depth documentation
[9] and its open-source access allowed for multiprocessing to
speed up data generation. This algorithm uses a Monte Carlo
search tree to recursively break down molecules into precur-
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sors, during synthesis route generation the most promising
leaf nodes are expanded and a neural network policy is used
to shortlist the possible reaction templates and guide the de-
composition of the target molecule [9].

Figure 1: Example of retrosynthesis search tree (output

from AiZynthFinder)

The hypothesis investigated within this study is the that
molecule price can be predicted using correlations with its
synthesis route data from retrosynthesis. Price has been pre-
dicted before using precursor price, but this research will
build upon this literature and aim to achieve higher predic-
tive accuracy using a wider range of synthesis route data, the
model will then be analysed to find the correlations between
price and each feature. Due to previous reported success of
neural network integration with retrosynthesis, this method
was incorporated into the research in hopes of generating ac-
curate and fast price predictions.

2 Methodology

2.1 Data Pre-processing

AiZynthFinder software is trained on built-in data sets, such
as ZINC the molecule reference database that contains com-
mercially available compounds and is often used for structure-
based virtual screening [10]. To increase the e�ciency of data
generation, Python multiprocessing was introduced to uti-
lize several computer cores simultaneously. Initially, the de-
fault AiZynthFinder solving configuration settings were used
to generate synthesis routes, but several modifications were
made to reduce processing time. The first modification in-
volved analysing each molecule only until the first successful
synthesis route was identified, rather than the default ap-
proach of finding multiple solved and unsolved routes. The
maximum time allocated per molecule was originally 50 sec-
onds as AiZynthFinder can complete searches in under a
minute [10], but this was changed to 20 seconds as analysis
in the early stages found that 97% of molecules were solved
in this time frame. The compiled synthesis routes were then
filtered in two stages. The first stage removed unsuccess-
ful solutions based on several criteria: unfeasible synthesis
as per scoring function, unrecognized precursors in the ZINC
database, no solution found within the allocated time. The
second stage discarded any routes that had precursors which
could not be cross-referenced with the synthesis cost dataset
from Molport [11] as calculating mean, max and min cost
would not be possible. To promote e�cient training not ef-
fected by data distribution, the features were Z-score nor-
malised. To reduce the bias when training and evaluating
the neural network, the data was randomly split into train-
ing, validation or test using the recommended proportions

7:2:1 [12] respectively. With all data processing complete,
data sets for number of precursors, synthesis score, number
of reactions, mean precursor price, maximum precursor price
and minimum precursor price were ready to be used as model
input features.

2.2 Neural Network Training

2.2.1 How a Neural Network Works

This study relied on the application of an artificial neural
network (ANN), which are analogous to biological neural net-
works and contain neurons communicating through a connec-
tion network.Python 3.10 and the python library PyTorch
were used to create the Neural network models. Figure 2
shows the basic structure of a neural network. To train a
neural network, input features must be put into a numerical
format, this is represented by the nodes at in the first layer.
The number assigned to each node is then multiplied by a
weight which is represented by the arrows before being a par-
ticular bias is added to it upon reaching a particular node in
the next layer to the right. The sum of all these values at each
node is passed through an activation function as detailed in
Equation 1 below [13] :

a(z) = a(

nX

i=1

(xi ⇥ wi + b)) (1)

Based on the value of this sum, the activation function will de-
termine if a node will activate. If activated, it will repeat this
process and propagate it through all subsequent layers until
the output layer. This is known as forward propagation. In
the final output layer, a prediction is made. This prediction
will be compared against the true value, and a loss function
calculates a metric to show how incorrect it is. The level of
error is then used to review the model and change the values
of the weights and biases. For the purpose of this project,
there are known molecule prices as output, therefore this is
a supervised machine learning algorithm and the model will
learn by minimizing the error between the network’s output
and known true results [14].

Figure 2: Example of a Neural Network[15]

2.2.2 Base Model Design

The approach taken to design the most suitable neural net-
work for the problem can be separated into two parts. First, a
base neural network model is designed to be used as a control
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and make preliminary design choices. In conjunction, essen-
tial hyperparameters such as batch size, data size and epochs
are tuned alongside with regularization technique parameters.
In the second part, steps are taken to generate various model
architectures and compare their performance to the control
model.

Designing the base model involves selecting a model ar-
chitecture and choosing a loss function and optimiser. The
optimal choice of other hyperparameters such as the number
of hidden layers, hidden layer size cannot be determined from
research as their values depend on the data provided to the
neural network, however general design heuristics found in
literature were utilized to guide the initial experimentation
of network architecture. Heuristics suggest the use of hidden
layers with 2n+1 number of neurons where ‘n’ is number of
input features [16], so 13 neurons were first trialed. Theo-
retical work suggests 1 hidden layer is su�cient to predict
nonlinear functions, but research has found using 2 results
either causes no improvement or achieves higher e�ciency, so
for initial trials 2 layers was deemed appropriate [4]. Several
layers were not used at the beginning of testing, as too many
cause models to overfit [16].

The loss function used for calculating model prediction er-
ror during training was mean squared error, seen in equation
2. It is the default choice for PyTorch regression problems,
and its quadratic nature incentivizes the removal of large mis-
takes over small mistakes during training [17]. The optimizing
algorithm used to train the algorithm was the stochastic gra-
dient descent method known as the ADAM optimizer because
of its high computational e�ciency, low memory storage and
frequency as a utilized optimiser [18][19]. Heuristics set the
learning rate at 0.01 and betas at (0.9, 0.999)[20]. The num-
ber of epochs, batch size and dataset size chosen during model
training were found through experimenting and based on bal-
ancing e�cient use of time and minimizing the loss function

L =
1
n

nX

i=1

(xi � yi)
2 . (2)

As mentioned, this study incorporated various techniques
such as drop out, weight decay and early stopping regulariza-
tion. This is in an e↵ort to prevent overtraining. Drop out
causes the random and temporary deactivation of neurons
during training, this causes training a di↵erent thinned net-
work on each training epoch and causes neurons to be less de-
pendent on their neighbours, resulting in an overall more ro-
bust model [21]. The disadvantage this adds to model design
is adding another hyperparameter to specify dropout proba-
bility. Weight decay reduces the size of the weights and pre-
vents them from becoming too large [22]. Early stopping sim-
ply prevents further training once a plateau has been reached
in training loss, thereby saving time. As weight decay and
dropout e↵ect the model randomly, these were implemented
after the best model architecture was found. Further, find-
ing the optimal value for these parameters is a time-intensive
process due to the number of possible permutations, so the
Hyperopt python Library was used to optimise these. Hyper-
opt was also used to find the ADAM optimiser parameters of
learning rate and betas [23].

2.2.3 Neural Network Architecture Design

Neural network architecture design is essentially varying the
number of nodes, hidden layers and the activation function
of the layer. Preliminary testing and heuristics indicated the
(rectified linear unit) ReLU function as the most viable option
compared to functions such as sigmoid, Leaky ReLU, due to
its simplicity and e�ciency in accelerating the convergence of
stochastic gradient descent [24]. To systematically determine
the ideal configuration, experiments were conducted by alter-
nately modifying either the number of hidden layers or the
number of nodes, while keeping the other parameter constant.
For the experiments varying the number of nodes, the use of
a single hidden layer was decided to reduce model complexity
such that the number of nodes would be the main influenc-
ing factor to any changes in performance. The node numbers
tested started from 13 and multiplied by 2, up until 13056.
The reason for this was that preliminary test runs revealed
larger di↵erences in magnitude indicated clearer trends. How-
ever, there is no set rule in neural network training that the
ideal configuration would consist of the ideal number of layers
and the ideal number of nodes within those layers. To stress
test this, and the 2n+ 1 and 2 layer heuristic supporting the
base model, a further iterative method was designed to gener-
ate various model structures based on a maximum number of
weight and bias parameters, max number of layers and max
number of nodes. The method creates number of node values
in powers of 2 up to the max number of nodes, then shuf-
fles those between hidden layers exhaustively to generate the
model structures. The optimal model generated is then fur-
ther optimised by Hyperopt and trained to obtain its average
performance data for analysis.

2.3 Model analysis

Neural networks models act like ‘black boxes’ and do not
provide much explanation to their reasoning for producing
a specific result, so a range of di↵erent analysis techniques
were incorporated to extract more information on how the
models predicted price. The first method used was permuta-
tion feature importance, this general analysis aims to iden-
tify the relative importance of each feature on model accu-
racy. This was conducted using the trained optimal model
and randomly shu✏ing each feature separately when making
predictions, the average increase in error for each feature in-
dicates how much the model depends on it for its baseline
accuracy. A limitation of this method is that it is not a local
analysis method that expresses the e↵ect of individual data
points, to overcome this barrier a di↵erent method was incor-
porated called SHAP Value analysis. This uses Shapely val-
ues from coalition game theory where each value of a feature
is ‘player’ for a game where the payout is the predicted out-
put, this breaks down the output predictions into individual
contributions from each feature [25]providing more informa-
tion on how they increase or decrease price predictions. A
source of inaccuracy for permutation importance and SHAP
value analysis is the in-built assumptions of feature indepen-
dence, If dependencies do exist, then these analysis techniques
will su↵er from outlier data points [25]. SHAP values can be
used in a clustering function that provide insight into the re-
lationship between input features of a neural network, the
clustering algorithms will group features together if they are
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below a threshold distance from each other. This distance is
scaled from 0 to 1, 0 means the two features are redundant
with each other due to being highly correlated and 1 suggests
complete independence. This analysis produces a hierarchy
of features by their correlation and can give more information
of hidden correlations within features and feature redundancy
[26].

3 Results and Discussions

Several models were successfully implemented into PyTorch
and trained on the feature data, evident by the loss function
decreasing per epoch until improvement plateaued. To gauge
the accuracy of the trained models, both the mean absolute
error (MAE) and MSE were used to intuitively express the
average error in predictions of price. The R2 statistic between
true target prices and predicted values was also incorporated,
as these ideally produce a straight line, so linear regression
metrics can be used. As the value of the R2 statistic increases,
it implies that the model can explain more of the variation
in the feature data and therefore predicts prices with higher
accuracy. The ideal model would produce a high R2 but low
MSE and MAE [5]. Section 3.1 details the results of neural
network experiments, having designed the model section 3.2
displays the analysis of the model features.

3.1 Neural Network Training

3.1.1 Base-Model Results

During the process of collating retrosynthesis results, the ef-
fect of data set size on the performance of neural networks
could be appreciated. Retrosynthesis is a relatively slow pro-
cess even with the augmentations made to increase e�ciency,
so analysis with the beginning heuristic model was conducted
as the data set grew with time, as indicated in Figure 3.
Training with 5000 data points produced the results R2 value
of 0.390 and a test MSE loss of 129181, in comparison to
the improved performance at 50,000 data points where test
loss decreased to 112627 and R2 increased to 0.476. This is
because more data points reinforce patterns within the data
recognized by the neural network, increasing prediction accu-
racy.

Figure 3: E↵ect of Dataset Size on R2

Figure 4: Train Loss (MSE) of Baseline Model

The initial value for number of epochs for this study was
set arbitrarily to 100. Figure 4 shows that the training loss
plateaus quickly for the basic model and by the 6th epoch
shows very marginal improvements, if any. This prompted
to test early stopping regularisation, and the patience level
was set at 20.0, meaning if no improvement is made within
20 epochs after the last best training loss, then training is
stopped. This often activated in the range of 20 to 30 epochs,
providing an ample bu↵er for training the model, and thus
100 epochs was used for following experiments and was never
reached for any of the other training runs. Batch sizes 2
{8,16,32,64,128,256} were tested on the basic model to de-
termine which provided the minimal time to train the model
while not sacrificing accuracy, the results in Figure 5 dis-
play no apparent correlations. After averaging multiple runs,
batch size 8 and 256 took the least time at approximately 32
and 34 seconds respectively and had equivalent R2 values of
0.469. The other batch sizes on average took considerably
longer, up to 72 seconds per run, and did not provide better
R2 results. To ensure experiments were more time e�cient
the batch size was set to 256, 8 was not chosen as it may make
the model more susceptible to noise in the data depending on
the train-test split. Combining all the results of design spec-
ification, the 6-13-13-1 model with batch size 256 and 100
epochs produced an average R2 value of 0.434 and test MSE
Loss of 122846.

Figure 5: E↵ect of batch size on R2
and time taken to

train basic model

4

371



3.1.2 Network Architecture Optimization

With training hyperparameters completed and the best pa-
rameters chosen, exploration of more complex network archi-
tecture was conducted in the aim of increasing prediction ac-
curacy. Varying the number of nodes for a single layer model
as shown in Figure 6, it can be observed that increasing the
number of nodes exhibits a trend of improving performance
with the peak point at 6528 nodes in the first layer. It is pos-
sible that increasing the number of nodes by doubling it fur-
ther might improve performance and should be investigated
further. The average results for the varying the number of 13-
node hidden layers on the basic model is depicted in Figure
7. It shows that having 3 hidden layers produces the best R2

value of 0.466, the second best is 6 hidden layers. However,
the model with 6 13-node hidden layers does take 94 seconds
to train, as compared to the 77 seconds it took to train the
basic model of 3 hidden layers. The data does suggest that
increasing the number of hidden layers past 3 might have a
detrimental e↵ect on model performance, although more data
points are needed to verify this. As the 3 hidden layer model
produced the best performance, this was used as an input
for the maximum number of layers into the model generator,
which produced models like those seen in Table 1.

Figure 6: E↵ect of nodes on R2
value

Figure 7: E↵ect of number of layers on R2
value

Figure 8 depicts the performance of 77 models with di↵er-
ence structures that have a test MSE loss range of 103491 to
125088 and R2 range from 0.396 to 0.495. The tables 1 and 2
contains the statistics of the 5 best and worst network archi-
tectures. The optimal design in this generation utilized the
hidden layer sizes 64-32-128, had a test MSE loss of 103491
and R2 of 0.495. After further tuning the parameters for im-
plementing regularization via dropout and weight decay on
this optimal model and obtaining an average, the result is

test MSE loss of 109560 and R2 of 0.481. Comparing this
to the average performance of the base model performance
of MSE Loss of 122846 and R2 value of 0.434, improvement
can be observed. However, the R2 value for both models is
still low. It indicates the existence of a correlation between
true prices and predictions, but not a strong one. The MAE
of the tuned and optimised model shows that predictions are
on average 220$/mmol above or below the true price. The
large discrepancy between MAE and MSE is indicative of
either outliers or specific instances where the model’s predic-
tions are significantly o↵. This could be due to limitations in
the model’s architecture, insu�ciently representative training
data, or the inherent complexity of the prediction task.

Table 1: Table of best performing models by R2

Model R2 MSE loss MAE loss
64 32 128 4.95E-01 1.03E+05 2.19E+02

64 32 32 4.89E-01 1.09E+05 2.23E+02

128 16 32 4.87E-01 1.05E+05 2.18E+02

128 16 128 4.87E-01 1.08E+05 2.19E+02

64 16 128 4.85E-01 1.09E+05 2.19E+02

Table 2: Table of worst performing models by R2

Model R2 MSE loss MAE loss
64 32 3.96E-01 1.23E+05 2.41E+02

32 64 3.98E-01 1.23E+05 2.43E+02

16 16 16 4.10E-01 1.25E+05 2.42E+02

64 16 4.14E-01 1.22E+05 2.43E+02

16 32 4.17E-01 1.20E+05 2.45E+02

Even though heuristics recommend single and double hid-
den layer structures, the experiments for Tables 2 show that
the best models instead all have 3 hidden layers, which could
be due to more layers being able to detect the complex pat-
terns being present within the data. This correlates well with
the previous experiment, where solely the number of hidden
layers are varied. An interesting observation is that the ma-
jority of the most accurate models have 3 hidden layers with
a smaller central layer instead of an even distribution. The
dwarfed middle hidden layer may be acting as a bottleneck
and restricting the information the model can learn from the
training data, causing the neural network to prioritise only
the most important patterns and mitigating overfitting.

Figure 9: Plot of true prices against predicted prices
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Figure 8: Performance of the 77 generated model architectures

Figure 9 is the parity plot of true prices and predicted
prices, along with the straight line the data should lie upon.
This plot highlights a major issue with this study, that is the
lack of representation for higher prices. For molecules priced
below $1000/mmol the predictions gather close around the
expected straight line correlation, but as you go past this
point the data starts to veer to the right and not increase
in predicted price above approximately $2000/mmol. This
highlights that the data obtained for this study is too small
to express patterns for more expensive molecules, as data
in this region becomes scarce, causing the average accuracy
to be very low. However, even when cherry-picking the re-
sults and using data below $1000/mmol using the best model
structure, the average R2 is only 0.632. This is still not a
convincing level of accuracy, so there may be limitations with
this approach, which the following section explores in more
depth.

3.2 Feature Analysis

Permutation feature analysis was simulated using several ran-
dom shu✏es for each feature to find the average increases in
error. The main findings of this analysis were that number
of precursors was the most important feature for price pre-
diction whereas minimum price of precursors was least, with
relatively little variance in error for the other 4. It would be
expected that number of reaction steps would be of similar
importance to number of precursors, as more reaction steps
would generally imply having more chemicals to react. But
the large di↵erence in importance implies that these are de-
coupled for patterns for predicting price. Another interesting
decoupling of expected relationships is that mean precursor
price is ranked third most important, but the minimum and
maximum price are least influential. One would expect the
average price of precursors to be more important, as spend-
ing more money on feed precursors should be o↵set by selling
at a higher price, but this model argues it is less influen-
tial than theorised. The minimum and maximum feed stock
price would not have been predicted the least influential, as
one sets the minimum expenditure on feed materials and one

measures the relative magnitude of capital expenditure, sim-
ilar to mean price you would expect more spending on feed
material needs to be o↵set with higher price.

Figure 11: Permutation Importance of Features

The results of SHAP value analysis are seen in Figure
10, this summary plot is based on the optimal model where
each point is a data point from our data set. The x-axis
value is the e↵ect on the predicted price, the colour shows
the relative magnitude of the feature value. Before investi-
gating feature correlations, cross-reference with permutation
importance can be conducted as the top to bottom ordering of
features in the plot is the SHAP estimation of feature impor-
tance. The overall ranking for feature importance is gener-
ally the same over both techniques, the only di↵erence being
the rankings of score and mean precursor price are swapped,
which is likely due to di↵erences in fundamental theory be-
hind the techniques, nevertheless most placements are iden-
tical and confirms that random results were not being pro-
duced by the permutation method. The SHAP plot displays
that the number of precursors increasing causes an increase
in molecule price, possible reasoning for this is that more pre-
cursors implies a more complex product structure, regardless
of number of reactions as mentioned above, and that there is
some price premium that comes with complexity. A chemical
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Figure 10: SHAP value analysis - Summary plot

engineering approach to this correlation is that more precur-
sors requires a more intricate separation system for high pu-
rity, which raises capital and operation costs which need to be
o↵set with a higher product price. Surprising correlations are
obtained for maximum and minimum precursor price, as dis-
cussed for permutation importance, one would expect these
to increase in price as they increase due to more operational
costs. However, the opposite is displayed in the results, this
may be due to the lack of patterns in the data for price predic-
tion as surmised by its low importance, so the theory is that
these trends are the product of data noise. Number of reac-
tions increasing appears to cause an increase in price, this may
be explained by more reaction vessels and equipment being
required to synthesise the product which, similar to needing
more separation equipment, increases molecule price to o↵set
capital/operation costs. Synthesis score provided a surpris-
ing result of having a positive result with price, implying a
molecule more likely to be synthesised is more likely to be ex-
pensive. However, it should be noted that the correlations for
score and number of reactions are less likely to be as accurate
as the other correlations for reasons discussed below.

The charts in Figure 12 are clustering hierarchies using
di↵erent threshold clustering distances. The main inference
from this analysis is that synthesis score and number of reac-
tions are highly correlated, being clustered at distances as low
0.1 and implying high partial redundancy. The redundancy
between them means the model receives the same patterns
from both and fundamentally removes the amount of input
features by 1. High correlation also e↵ects SHAP summary
plot analysis for score and number of reactions, as their re-
lationships to price are more likely to be e↵ected by data
set outliers [26]. This may be the result of using the same
scoring function used by the AiZynthFinder as it finds syn-
thesis routes, causing some unknown bias towards reaction
steps when results are generated.The second limitation of this
approach is apparent from the 0.5 clustering cuto↵ graph, it
shows that most features exhibit 50% partial redundancy with
at least one other feature. This will cause the model to be less
sensitive to data patterns, as each feature is partially corre-

lated and providing less unique information than if they were
independent.

Figure 12: SHAP cluster analysis

4 Conclusion

A retrosynthesis algorithm, AiZynthFinder, was utilized to
generate synthesis routes for a range of commercially avail-
able chemicals, which were converted to quantifiable statistics
such as number of reaction steps, number of precursors and
mean precursor price among others. These were used as in-
put features for training an artificial neural network to predict
molecule price. A range of neural network architectures were
systematically tested and models were refined using hyper-
parameter tuning methods. The optimal model was found to
provide low accuracy predictions, with mean average errors of
220 $/mmol. It is implied that the data set size used in this
research was too small to encapsulate patterns across a wide
range of molecule prices. Even when analysing molecules with
prices below 1000 $/mmol, which had better predictions, the
accuracy was still inadequate, suggesting limitations in the
novel approach attempted in this research. To identify factors
limiting model performance, a range of neural network analy-
sis techniques were utilized to investigate feature importance,
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how features a↵ected price predictions and feature indepen-
dence. Permutation importance and SHAP value analysis in-
dicated that the number of precursors was the most important
feature for making price predictions, and the other features
did not contribute significantly to the models’ performance.
Correlations between each feature and price predictions were
analysed and used to connect possible real world explana-
tions for these patterns emerging. Feature redundancy found
that 2 features, score and number of reactions were incredi-
bly correlated and that most features had significant partial
redundancy with one another, which could have contributed
to the limited model accuracy and highlights potential issues
with the feature selection.

5 Research recommendations

Having concluded the findings of this research, a variety of
possible recommendations for future work in this field were
identified. Firstly, the search space for possible chemical
structures is very large so more data is required to find
the necessary patterns to predict the price of a wider range
of molecules, this involves increasing computation time and
power to retrieve results. A large limitation of data genera-
tion was the filtering process, 115,000 molecules were analysed
but only 51,383 were eligible for use in the neural network.
This can be improved by increasing AiZynthFinder’s success
rate by configuring its code to use deeper search trees and
training the algorithm on larger data sets, the other major im-
provement would to increase the size of the pricing index, so
more precursors can be identified. The results from the neu-
ral network experiments imply that the use of several hidden
layers with a small central layer may improve model accuracy
when creating network architectures for this type of research.
Future research could focus on training more complex model
architectures with a much larger number of nodes and hidden
layers to better establish trends in performance of the models.
Feature analysis highlighted that the number of precursors
exhibited potential for e↵ectively predicting molecule price
from retrosynthesis features, and its use in future research is
recommended. Synthesis score and number of reactions were
highly correlated so their use together in future models is not
advised, this may be mitigated using a scoring function inde-
pendent of the retrosynthesis algorithm to generate synthesis
routes, but this requires more research to prove. The overall
significant partial redundancy implies that di↵erent features
that are independent of the ones researched in this study may
improve prediction accuracy as more patterns in the data can
be identified, preliminary literature identifies some machine
learning algorithms that predict reaction yields and temper-
atures that could be promising choices.
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ABSTRACT 

The potency of active pharmaceutical ingredients (APIs) is directly related to their bioavailability, that is, how 
easily the drug reaches the biological site of interest. Currently, experimentally determined pH-Solubility 
profiles are used to access this metric, however a significant number of APIs have extremely low solubilities in 
water, making experiments a difficult process. In this study, we explore the use of computational 
thermodynamics, in particular the SAFT-γ Mie group-contribution equation of state combined with quantum 
mechanical calculations to generate pH-solubility profiles. Ibuprofen and mefenamic acid were explored in this 
study, both showing very good accuracy on pKa prediction and the qualitative shape of their pH-solubility 
profiles. Reasonable quantitative accuracy was observed on solubility values against experimental data.  

1. Introduction 

The efficacy of substances and active pharmaceutical 
ingredients (APIs) is undoubtedly affected their 
properties, with solubility being one of most 
importance as it determines the extent to which the 
drug is completely accessible to the desired biological 
destination (Price & Patel, 2023). Ambient conditions 
as a result also affect drugs, since temperature, pressure 
but also pH will influence solubility. The pH in the 
human body ranges greatly, going from a value of 
roughly 2 in the stomach, to 7 in the blood and around 
8 in the colon (Surat, 2022). It is therefore of great 
necessity to accurately determine the relationship 
between pH and solubility to help determine 
bioavailability across various regions of the body. 

There are a few experimental methods to 
create pH-solubility profiles. These include: the 
saturation shake-flask (SF) method, where a flask 
containing the API and buffer solution are shaken 
together and let to reach saturation. pH is then typically 
measured with a pH electrode, and the concentration is 
determined by performing a liquid chromatography on 
a sample of the supernatant (liquid left behind after 
precipitation), and UV spectrophotometry (Raja & 
Barron, 2023)– Drug solutions at various pH levels are 
created, and the absorbance of the solution is 
measured, meaning the concentration of the API can be 
evaluated using Beer-Lambert's law (Shoghi, et al., 
2013). 

While these techniques are all relatively 
straightforward, the determination of pH-dependent 
solubility is still a time-intensive and expensive 
process. Most APIs have extremely low solubilities, 
especially in water, complicating matters further as 
results between independent sources usually differ 

considerably. Experimental data on the salts of APIs 
and other valuable data, such as temperatures of 
melting, and heats of fusion, which are important 
parameters in general, are also very sparce. This 
motivates the work towards creating theoretical 
methods that can efficiently and accurately predict the 
behaviour of APIs and other substances of interest. The 
development of advanced theories such as density 
functional theory and solvation models have made 
computational prediction of important thermodynamic 
parameters possible in recent years (Gui, et al., 2023), 
and in this work, these quantum mechanical 
calculations were used to estimate pKa, which directly 
relates to solubility, alongside the state-of-the-art 
Statistical Associating Fluid Theory (SAFT) equation 
of state (EoS) to attempt to predict the pH-dependent 
solubility of APIs.  

SAFT is an EoS based on Wertheim's 
perturbation theory with the ability to model large and 
complex molecules, including species with strong 
intermolecular interactions such as hydrogen bonding 

(Febra, et al., 2021). It is important to note that there 
are a multitude of SAFT models, such as: perturbed 
chain (PC)-SAFT, which uses spherical particles in the 
context of hard chains as a reference fluid for the 
dispersion term (Gross & Sadowski, 2001), soft-SAFT, 
which uses  the Lennard–Jones intermolecular potential 
for the reference fluid in the equation, with dispersive 
and repulsive forces explicitly considered into the same 
term, instead of the perturbation scheme based on a 
hard-sphere reference fluid plus dispersive 
contributions to it (Belkadi, et al., 2010) , or SAFT-VR 
(variable range) which models chains as homonuclear, 
and allows attractive potentials with variable widths, 
hence the name (Lafitte, et al., 2013). Each of these 
versions of SAFT have distinct properties and 
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advantages, however the model used in this study is the 
SAFT-γ Mie group contribution approach, chosen as it 
has been shown to be able to predict, to a high degree 
of accuracy, a wide-range of thermodynamic 
properties, including phase equilibria and excess 
properties of mixing for a plethora of mixtures (Wehbe, 
et al., 2022). 

The pH-dependent solubility of two non-steroidal 
anti –inflammatory drugs (NSAIDs) are explored in 
this study: ibuprofen, and mefenamic acid, primarily 
used for pain relief. Ibuprofen is the weaker agent out 
of the two and is usually the first form of pain relief 
taken by individuals since it can be purchased over the 
counter. Mefenamic acid is much stronger and requires 
prescription, however it is still very commonly used 
especially in comparison to more intense analgesics 
such as opioids. 

2. Theory and Methods 

2.1 pKa Estimation 

A substance’s solubility is defined as the amount of 
substance that will form a saturated solution in a 
specified amount of solvent, at a given temperature and 
pressure (Soult, 2023). For an API, solubility will be 
related to its inherent pKa value, a measure of how 
strongly the acid dissociates into its respective ionic 
elements, and the pH of the environment. pKa was 
quantified computationally in this study, using the 
thermodynamic cycle method reported by Ho & Ertem, 
where the Gibbs free energy of deprotonation in the 
aqueous phase, directly related to pKa, can be 
calculated through the free energies of solvation of the 
reacting species and of deprotonation in the gas phase.  
These free energies can in turn be calculated from the 
solute electronic energies (Raamat, et al., 2012) 
computed on geometries primarily optimised in 
Gaussian 16, a general-purpose computational 
chemistry software.  

In this work, the geometries were initially 
optimised through a GMMX conformational search 
within Gaussview 6, using a MMFF64 molecular 
mechanics force field, in which each heavy atom of the 
molecule is moved a small distance in each Cartesian 
dimension, allowing for an exploration of the 
conformational space (Gaussian, n.d.). The 
conformational search then provides a set of candidate 
conformations, with the most stable confirmation being 
continued with. Two further optimisations were then 
performed using Gaussian 16, first using a low-level of 
theory, specifically Hartree-Fock with a limited basis 
set (3-21g), using SMD as the solvation model. This 
provided a good starting guess for a more rigorous 
optimisation using SMD as the solvation model, in 
conjunction with the M062X level of theory and 6-
31+G(D) basis set. As mentioned, electronic energies 
calculated by Gaussian were then used to find pKa 

following the method outlined by Ho & Ertem, a more 
detailed explanation of which now follows. 

𝑝𝐾𝑎 = ௱ீೌ೜
∗

ோ் ୪୬ ଵ଴
  (1), 

where 𝛥𝐺௔௤
∗  is the (Gibbs) free energy change of the 

reaction. This is illustrated in the diagram below. 

Figure 1. Generic thermodynamic cycle reproduced from: 
(Ho & Ertem, 2016) 

As the cycle shows, 

𝛥𝐺௔௤
∗ =  − 𝛥𝐺௦

∗(𝐻𝐴)[௅] + 𝛥𝐺௚௔௦
∗[ு] + 𝛥𝐺௦

∗(𝐻ା) +
𝛥𝐺௦

∗(𝐴ି)[௅](2), 

where 𝛥𝐺௦
∗(𝐻𝐴) is the free energy change of solvation 

of the acid, 𝛥𝐺௚௔௦
∗  is the free energy change of 

ionisation of the acid, and 𝛥𝐺௦
∗(𝐻ା), 𝛥𝐺௦

∗(𝐴ି) are the 
free energy changes of solvation of hydrogen, taken as 
equal to -265.9 kcal/mol (Kelly, et al., 2007), and the 
conjugate base respectively. The superscripts [L] and 
[H] indicate the level of theory used to calculate each 
term, referring to low and high levels of theory 
respectively.  

2.2 pH-Solubility Profile Prediction 

With the computationally determined value of pKa, 
pH-dependent solubility could be modelled. To best 
capture bodily conditions, predictions were performed 
at 298.15K and atmospheric pressure. An explanation 
of the system of equations used for modelling follows. 
We begin by considering the acid dissociation reaction: 

𝐻𝐴 + 𝐻ଶ𝑂 
௄ೌ⇔ 𝐴ି + 𝐻ଷ𝑂ା  (3), 

note that the API is depicted as a weak protic acid 𝐻𝐴, 
which forms a conjugate base 𝐴ି. 

𝐾௔,ு௔ =  
௔ಲష௔ಹయೀశ

௔ಹಲ௔ಹమೀ
  (4), 

𝐾௔,ு௔ being the acid dissociation constant. The term 𝑎௜ 
refers to the activity of a species 𝑖, which is essentially 
the effective concentration of the species. 

𝜇௜(𝑇. 𝑃, 𝑥) = 𝜇௜
∅ + 𝑅𝑇 ln 𝑎௜(𝑇, 𝑃, 𝑥)  (5), 

where 𝜇௜ is the chemical potential (a thermodynamical 
property) of a species 𝑖, and 𝜇௜

∅ is the chemical 
potential at a reference state. 
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To be consistent with thermodynamical expressions, 
molal units were used instead of molar units: 

𝐾௔,ு஺
௠ = 𝐾௔,ு஺𝑎ுమை  (6), 

Where 𝐾௔,ு஺
௠  is the acid dissociation constant in molal 

units, which was calculated from pKa as shown in 
equation 7 below:  

𝑝𝐾𝑎 =  −logଵ଴ (𝐾௔,ு஺
௠ )  (7). 

In this study, compounds which are chemically and 
structurally similar to the API of interest (referred to 
subsequently as moieties) were used as a means of 
calibrating the pKa value obtained from Gaussian to 
experimental data. This was done through regression 
plots. 

Above, the solubility of the API has been 
considered; however, at low pH, the API will not 
dissociate meaning the intrinsic solubility, 
corresponding to the solid-liquid equilibrium of the 
API in solution, must also be considered (Wehbe, et al., 
2022). This is calculated via the following equation: 

𝑙𝑛𝑥ு஺
௅ (𝑇, 𝑃) =  

∆௛ಹಲ
೑ೠೞቀ ಹ்ಲ

೑ೠೞ,௉ቁ

ோ
ቆ ଵ

ಹ்ಲ
೑ೠೞ − ଵ

்
ቇ +

ଵ
ோ் ∫ ∆𝐶௣,ு஺(𝑇ᇱ, 𝑃)𝑑𝑇ᇱಹ்ಲ

೑ೠೞ

் −
ଵ
ோ ∫

∆஼೛,ಹಲ൫்ᇲ,௉൯ௗ்ᇲ

்ᇲ
ಹ்ಲ
೑ೠೞ

் 𝑑𝑇ᇱ − 𝑙𝑛𝛾ு஺(𝑇, 𝑃, 𝒙௅)  (8), 

with 𝒙௅ being the composition vector of the liquid 
phase containing the solvent, buffer ions, and API (in 
molecular and dissociated form). ∆ℎு஺

௙௨௦ is the molar 
enthalpy of fusion of the API at the melting 
temperature , 𝑇ு஺

௙௨௦ . R is the universal gas constant, 
∆𝐶௣,ு஺ is the difference between the isobaric heat 
capacity of the API in the liquid and solid phases, and 
𝛾ு஺ is the symmetric activity coefficient of HA in the 
liquid phase at the given T and P.  

The heat capacity terms have been left in 
equation 8 for completeness, however their 
contribution was found to be negligible and increased 
the likelihood of computational errors. These terms 
were removed from calculations. This simplification is 
commonly done in literature, as supported in the paper 
by (Febra, et al., 2021). The activity coefficient 𝛾ு஺ is 
also related to the fugacity coefficient 𝜑ොு஺, (a quantity 
calculated by SAFT) through the relationship: 

𝛾ு஺ = ఝෝಹಲ(்,௉,𝒙ಽ)
ఝෝಹಲ

∗ (்,௉)
 (9), 

with 𝜑ොு஺
∗  being the fugacity coefficient of pure HA at 

the specified T and P. In this solvation model, we take a 
reference state as an infinitely dilute solution in water 
meaning: 

𝑎௜ =  𝑥௜𝛾ప෥ =  𝑥௜
ఊ೔

ఊ೔
ಮ  (10), 

where 𝑎௜ is the activity as above, 𝛾ప෥ is the asymmetric 
activity coefficient, 𝛾௜

ஶ the symmetric activity 
coefficient at infinite dilution and 𝑥௜ the mole fraction, 
of species 𝑖. 

As aforementioned, molal units are used for 
quantities instead of molar units but these can be 
approximated as equal for very dilute aqueous systems 
(where the density of the solution is virtually equal to 
that of pure water), allowing for the following equation 
to be derived: 

𝐾௔,ு஺
௠ = (

௠ಲష ௠ಹయೀశ

௠ಹಲ
)(

ఊ෥೘,ಲషఊ෥೘,ಹయೀశ

ఊ෥೘,ಹಲ
) (11), 

where 𝑚௜ is the molality of species 𝑖 and 𝛾෤௠,௜ is the 
molal asymmetric coefficient calculated as: 

𝛾෤௠,௜ =  𝑥ுమை𝛾෤௜   (12). 

Water also undergoes a small reaction with itself 
regardless of the other ions and species present: 

2𝐻ଶ𝑂 ⇔ 𝐻ଷ𝑂ା + 𝑂𝐻ି (13). 

The degree of dissociation of water (in the reaction 
shown above) was quantified through the ionic 
product, 𝐾௪, found using an analogous method to 𝐾௔, 
as is shown below: 

𝐾௪ = (𝑚ுయைశ𝑚ைுష)(𝛾෤௠,ுయைశ𝛾෤௠,ைுష)  (14). 

From this point, we can consider the action of the base, 
which is added to increase the pH of the solution 
(which moves the system from intrinsic solubility to 
‘solubility’). For a weak base 𝐵, the dissociation 
reaction is as follows: 

𝐵𝐻ା + 𝐻ଶ𝑂 ⇔ 𝐵 +  𝐻ଷ𝑂ା  (15). 

For a strong base, we can assume complete 
dissociation: 

𝐵௩ಳ𝑂𝐻௩ೀಹ → 𝑣஻𝐵௭ಳା +  𝑣ைு𝑂𝐻ି (16), 

where 𝐵௭ಳାis the anion of the strong base added, 𝑧௜, 𝑣௜ 
is the charge and stoichiometric coefficient of species 𝑖 
respectively. It is important to highlight, that lowering 
the pH below the pKa requires the action of an acidic 
buffer. It is also needed if the API was a base, since: 

𝐻𝑋 + 𝐻ଶ𝑂 
௄ೌ,ಹ೉
ሯልልሰ 𝑋ି + 𝐻ଷ𝑂ା  (17), 

which is virtually identical to the equation for the API 
above. If a strong acid is used, complete dissociation 
can be assumed once again, where: 

𝐻𝑋 → 𝐻ା + 𝑋ି (18). 

Eventually, the pH of the solution reaches a value 
where the API-salt (𝐴௩ಲ𝐵௩ಳ) precipitates out. This 
occurs when the solubility product 𝐾௦௣,஺ೡಲ஻ೡಳ

 is 
reached, the pH at which is occurs was described by 
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Wehbe as pHmax (Wehbe, et al., 2022) and the same 
nomenclature will be used in this work. The 
precipitation reaction and equation used to calculate the 
solubility product are shown in equations 19 and 20: 

𝐴௩ಲ𝐵௩ಳ(𝑠)
௄ೞ೛,ಲೡಲಳೡಳ

 
ሯልልልልልልልሰ 𝑣஺𝐴௭ಲି(𝑎𝑞) +  𝑣஻𝐵௭ಳା(𝑎𝑞) 

(19), 

𝐾௦௣,஺ೡಲ஻ೡಳ
=  (𝑚஺೥ಲష𝑚஻೥ಳశ )(𝛾෤௠,஺೥ಲష𝛾෤௠,஻೥ಳశ) (20), 

the solubility product 𝐾௦௣,஺ೡಲ஻ೡಳ
. Note that this 

equation is different to the one referenced in Wehbe’s 
paper. This reformulation was chosen due to a lack of 
information on the solubility limit, one of the terms in 
Wehbe’s formulation. 

All the necessary equations, quantities and 
values for modelling are expressed above; with the 
addition of the condition of charge electroneutrality: 

∑ 𝑞௜𝑚௜
ே
௜ୀଵ = 0 (21), 

where 𝑞௜ is the charge of species 𝑖 and N being the total 
number of species in the model, allows for a profile of 
pH-dependent solubility to be found, pH and solubility 
were calculated as: 

𝑝𝐻 =  −𝑙𝑜𝑔ଵ଴(𝑎ுయைశ) (22), 

𝑆஺௉ூ =  𝜌𝑀௪(𝑚ு஺+𝑚஺ష) (23), 

𝑆஺௉ூ,௟௜௠ =  𝜌𝑀௪𝑚஺ష,௟௜௠  (24), 

where 𝑆஺௉ூ , 𝑆஺௉ூ,௟௜௠ is the solubility of the API and 
solubility of API at the solubility limit (in moles per 
volume) respectively, 𝜌 is the molar density of the 
solution and 𝑀௪is the molecular mass of water can be 
produced. 

Experimental values from literature were used to 
obtain the values of 𝐾௔,ு஺

௠ , 𝐾௪, and 𝐾௦௣,஺ೡಲ஻ೡಳ
 used in 

the model. SAFT-γ Mie GC calculated the activity 
coefficients and the density of solution, and in this 
study, gPROMS was the software used to 
simultaneously solve these equations and generate the 
profile. 

 

2.3 SAFT-γ Mie GC model and theory 

SAFT-γ Mie GC (group contribution) is an EoS that 
models chemical species as segmented, round and 
fused heteronuclear chains, with each of these 
segments being depictions of the functional groups 
existing in the species. Interactions between these 
segments are then modelled through Mie potentials of 
variable range. Close range directional forces are 
considered by association sites found on the segments. 
The Mie potential is a pair potential, representing the 
potential energy relationship between two particles. A 
diagram of the Mie potential is shown in Figure 2 
below:  

 

Figure 2. Example of the Mie potential used in the SAFT-γ 
Mie GC EoS. Reproduced from (University of Liverpool, 

2023). The x- axis is the intersegment distance and the y-axis 
the intermolecular potential energy. 

It is a generalised version of the more commonly 
known Lennard-Jones potential, where the repulsive 
and attractive exponents are adapted depending on the 
behaviour of the segments within each compound 
(Wehbe, et al., 2022). The potential is a function of the 
intersegment distance 𝑟௞௟  , it is of the form: 

𝛷௞௟
ெ௜௘(𝑟௞௟) = 𝐶௞௟𝜖௞௟ ቈቀఙೖ೗

௥ೖ೗
ቁ

ఒೖ೗
ೝ

− ቀఙೖ೗
௥ೖ೗

ቁ
ఒೖ೗

ೌ

቉  (25), 

where 𝜎௞௟is the segment diameter, 𝜖௞௟is the depth of the 
potential well and 𝜆௞௟

௔  , 𝜆௞௟
௥  are the attractive and 

repulsive exponents respectively. The coefficient 𝐶௞௟ is 
present to mathematically satisfy the minimum energy 
being - 𝜖௞௟. It is a function of the exponents: 

𝐶௞௟ = ఒೖ೗
ೝ

ఒೖ೗
ೝ ିఒೖ೗

ೌ ൬ఒೖ೗
ೝ

ఒೖ೗
ೌ ൰

ഊೖ೗
ೌ

ഊೖ೗
ೝ షഊೖ೗

ೌ
  (26). 

380



2.4 Thermodynamic Relationships 
 
The total Helmholtz free energy of these molecules is 
expressed as the summation of six independent terms, 
five of which capture the deviation from ideality the 
molecule will intrinsically exhibit: 

𝐴 = 𝐴௜ௗ௘௔௟ + 𝐴௠௢௡௢ + 𝐴௖௛௔௜௡ + 𝐴௔௦௦௢௖. + 𝐴௜௢௡ +
𝐴௕௢௥௡  (27). 

𝐴௜ௗ௘௔௟  represents the contribution to the Helmholtz free 
energy assuming the individual segments can be taken 
as ideal gas molecules, with no interparticle interaction. 
𝐴௠௢௡௢ considers the interaction between these 
segments via a Mie potential. 𝐴௖௛௔௜௡  handles the effect 
of the formation of chains and 𝐴௔௦௦௢௖. quantifies the 
energy due to the association of molecules via bonding 
sites. 𝐴௜௢௡ embodies the Columbic ion-ion interactions 
using the Mean Spherical Approximation, and 𝐴௕௢௥௡ 
examines the ion-solvent electrostatic interactions 
through the Born model (Wehbe, et al., 2022).  

 Following from this, the pressure, 𝑃 , residual 
chemical potential, 𝜇௜

௥௘௦ , and fugacity coefficient, 𝜑ො௜,  
were all obtained through the following 
thermodynamic identities:  

𝑃 = − డ஺(்,௏,𝒙)
డ௏

ቚ
்,𝑵

  (28), 

𝜇௜
௥௘௦(𝑇, 𝑃, 𝒙) = డ஺ೝ೐ೞ(்,௏,𝒙)

డே೔
ቚ

்,௏,ேೕಯ೔
−

𝑅𝑇 ln 𝑍(𝑇, 𝑃, 𝒙) (29), 

ln 𝜑ො௜(𝑇. 𝑃, 𝒙) = ఓ೔
ೝ೐ೞ(்,௉,𝒙)

ோ்
  (30), 

where 𝐴௥௘௦ = 𝐴 − 𝐴௜ௗ௘௔௟ is the residual free energy, 
𝑍 = ௉௩೛

ோ்
 is the compressibility factor, with 𝑣௣ =  ௏೛

ே೘೚೗
 

as the molar volume at the specified pressure, 𝑵 is the 
vector of moles, 𝑁௠௢௟  is the total number of moles and 
𝒙 = 𝑵

ே೘೚೗
  is the vector of the mole fraction. 

2.5 Group Contributions 

As SAFT-γ Mie GC is a group contribution approach, 
the groups within each compound, and the parameters 
governing their interactions with one another, needed 
to be characterised. The groups used to model each 
API, as well as the solvent and buffers, are detailed in 
Figures 3 and 4, with the interaction parameters 
between each group being taken from prior work in 
which the SAFT-γ Mie GC was used to successfully 
model thermodynamic properties of ibuprofen and 
mefenamic acid in water (Febra, et al., 2021) (Wehbe, 
et al., 2022). 

 

Ibuprofen, in its neutral form, was broken down into 
the following groups: 3 x CH3, 4 x aCH, 1 x aCCH, 1 x 
aCCH2, 1 x CH, and 1 x COOH. In its deprotonated 
form, the COOH group was replaced by a COO- group. 
The groups for mefenamic acid were: 1 x aCCOOH, 1 
x aCNHaC, 7 x aCH, and 2 x aCCH3, with its anion 
being modelled with: 1 x aCNHaC, 7 x aCH, 2 x 
aCCH3, 1 x C and 1 x COO-instead. Using an aCCOO- 
group to represent the aromatic carbon attached to the 
speciated carboxylic acid is likely more accurate, but 
due to a lack of experimentally determined 
thermodynamic data of the required quality on the 
behaviour of mefenamic acid or other benzoic acid 
derivatives, this group is yet to be parametrised within 
the SAFT-γ Mie GC framework. Furthermore, 
combining rules currently must be used to model the 
interaction parameters between the aCNHaC group of 
mefenamic acid and water, again due to the lack of 
experimental data on compounds containing this group. 
In addition, to model the pH-dependent solubility of 
compounds of interest, one needs to also characterize 
the interactions between the solute, solvent, and buffer. 
The solvent, water, was modelled using a H2O group, 
with the acid dissociation reaction then producing a 
hydronium and hydroxide ion, modelled by H3O+ and 
OH- groups respectively. Below the value of pKa for 
each API, the variation of pH was modelled by the 
addition of a HCl buffer, represented by the H3O+ and 
Cl- groups. Above the value of pKa, pH variation was 

Figure 4. (Going left to right, bottom to top) SAFT representation 
of mefenamic acid, sodium cation, hydroxide ion, hydronium ion, 

water, chloride anion and mefenamic acid’s anion. 

Figure 3. (Going left to right, bottom to top) SAFT representation 
of ibuprofen, sodium cation, hydroxide ion, hydronium ion, water, 

chloride anion and ibuprofen’s anion. 
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achieved by modelling the addition of NaOH as a 
buffer, itself represented by the OH- and Na+ groups. 
Figures 3 and 4 also indicate the association sites 
present for each group, marked by e and H, which 
allowed for representation of association interactions 
by the model. 

Note that, to analyse the quantitative 
difference between the theoretically determined 
relationship of pH against solubility versus 
experimental results, the percent average absolute 
deviation (%AAD) of a property, 𝑥 was used: 

%𝐴𝐴𝐷{𝑥} =  ଵ଴଴
ேೣ

ವ ∑ ฬ
ோೣ,೔

೐ೣ೛ି ோೣ,೔
೎ೌ೗೎

ோೣ,೔
೐ೣ೛ ฬேೣ

ವ

௜ୀଵ   (31), 

with 𝑁௫
஽being the number of data points of the property 

of interest 𝑥, 𝑅௫,௜
௘௫௣being the 𝑖 th measured value of 

property 𝑥, and 𝑅௫,௜
௖௔௟௖  being the respective value 

calculated by SAFT-γ Mie GC. 

3. Results & Discussion 

3.1. Ibuprofen 

 

Figure 5. Chemical structure of ibuprofen 

3.1.1. Initial pKa Prediction 

Utilising Gaussian 16 and the thermodynamic cycle 
method, the value of pKa for ibuprofen was initially 
found to be 7.03, far from any reported value of pKa at 
298.15K in literature (Wehbe, et al., 2022) (Raamat, et 
al., 2012) (Sangster, 1994). This is an expected 
difference however, as Ho & Ertem reported that the 
thermodynamic cycle method, when used in 
conjunction with the SMD-M062X solvation model, 
has a mean absolute error of 2.0 pH points from the 
experimental value (Ho & Ertem, 2016).  

 3.1.2. Correction of pKa Using Experimental Data 

Due to the large error in the initially calculated value of 
ibuprofen’s pKa, a regression was performed to correct 
the value of pKa closer to experimental values. 
Moieties of ibuprofen, that is, smaller, simpler 
compounds similar in structure to the parent molecule, 

are listed below. The goal of this is to remove any error 
present in Gaussian’s optimisations of geometry due to 
the groups specifically within ibuprofen, whilst also 
accounting for any additional systematic error. 

The selected compounds for the regression 
were: acetic acid, propanoic acid, phenylacetic acid, 2-
phenylpropanoic acid, 4-methylbenzoic acid, and 4-
tert-butylbenzoic acid. 

Each of these molecules’ pKas was calculated 
by the same method as performed for ibuprofen, using 
a thermodynamic cycle, with the SMD-M062X 
solvation model again being used in this work to 
compute molecular geometries and free energy 
changes. The value of pKa calculated from Gaussian 
for each compound is reported in Table 1 below, along 
with the experimentally determined values of pKa for 
each compound from literature, used in the regression 
(Haynes, 2015). 

Table 1. Calculated versus experimental pKa (sourced from: 
(Haynes, 2015)) for ibuprofen moieties. 

Notably, both phenylacetic and 2-phenylpropanoic acid 
were outliers: with phenylacetic acid having the lowest 
experimental value of pKa, but a middling value for the 
dataset of pKa calculated from Gaussian, and 2-
phenylpropanoic acid having the largest calculated 
value of pKa, but only the third largest experimental 
pKa of the compounds reported. As such, to ensure a 
strong correlation between the experimental and 
calculated values, these two compounds were removed 
from the set used in the regression. A polynomial 
regression was also performed as opposed to a linear 
one to further improve the R2 value of the regression, 
which is shown in Figure 6. 

Compound  Acetic 
acid 

Propanoic 
acid 

Phenylacetic 
acid 

Calculated 
pKa 

6.93 6.98 6.77 

Experimental 
pKa 

4.76 4.87 4.31 

Compound  2-phenyl-
propanoic 
acid 

4-
methylbenzoic 
acid 

4-tert-
butylbenzoic 
acid 

Calculated 
pKa 

7.21 5.79 6.05 

Experimental 
pKa 

4.66 4.37 4.38 
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As Figure 6 shows, the regression model for ibuprofen 
shows a great correlation between the experimental and 
calculated values of pKa, with an R2 of 0.9901, 
appearing to remove much of the systematic error 
present in the calculations. This is further supported by 
the corrected value of ibuprofen’s pKa, which is used 
throughout the rest of this section, falling well within 
the range of reported values from literature, lying only 
0.05 pH points from the mean of the experimental 
pKas reported in Table 2. However, it must be noted 
that, due to none of the calculated pKas exceeding that 
of ibuprofen, to obtain the corrected value of pKa, an 
extrapolation of the regression model outside of the set 
of moieties was performed. Despite this, the adjusted 
value of pKa for ibuprofen is likely still valid as this 
extrapolation was only by 0.05 pH points.  

Experimental Values of 
Ibuprofen’s pKa 

Corrected 
Calculated Value of 
Ibuprofen’s pKa 

4.45 4.91 5.17 4.89 

Table 2. Comparison of ibuprofen pKas, experimental data 
was sourced from (from left to right) (Raamat, et al., 2012) 

(Sangster, 1994) (Wehbe, et al., 2022) 

3.1.3. pH-dependent Solubility Profile 

Utilising the corrected calculated value of pKa for 
ibuprofen alongside the model presented earlier in the 
report, the pH-dependent solubility profile for 
ibuprofen can be calculated, shown in Figure 7 below, 
compared to experimental data (Wehbe, et al., 2022), 
with pH being plotted against the logarithm of 
solubility to improve the legibility of the figure. 

 

 

 

As highlighted by Figure 7 above, an entirely 
computational approach to modelling solubility as a 
function of pH produced a decent qualitative result for 
ibuprofen, with the profile, especially for pH values 
between 4 < pH < 7, fitting well to experimental data. 
In this region, the %AAD in calculated solubility from 
the reported literature data is 53.7%, compared to 
125.6% across the entire pH range, although this value 
for the full region is inflated by the poor representation 
of solubility above pHmax by the model. pHmax was 
calculated by the simultaneous solution of the regular 
model equations in addition to the equation for 
solubility product, producing a value of 7.16, falling 
short of the measured value of 8.55 (Wehbe, et al., 
2022), explaining why the profile fails to accurately 
predict solubility at these higher pHs. There was also a 
discontinuity produced by the model, shown by the 
dotted line on Figure 7, between the regions above and 
below pHmax, where the model fails to represent the 
“tailing-off” nature of the profile as pH approaches 
pHmax, as is seen in the experimental data. Furthermore, 
the model over-predicted solubility at low pH, likely 
due to the calculated value of pKa, equal to 4.89, being 
below the value reported alongside the experimental 
data shown in the figure, equal to 5.17 (Avdeef, 2007). 
If the experimental value of pKa is used instead when 
modelling, the profile’s fit improves significantly, 
reducing the AAD for the solubility prediction from 
0.18 mol/L to 0.05 mol/L, although still marginally 
overpredicting solubility generally.  

The solubility of ibuprofen can also be 
modelled with the inclusion of the ∆𝐶௣,ு஺ terms of the 
solubility equation, but their addition, which is 
frequently neglected in literature (Febra, et al., 2021), 
makes no apparent difference to the predicted value of 
solubility. However, using these terms does 
surprisingly lead to numerical convergence issues 

Figure 7. Regression plot for ibuprofen. The moiety data 
is denoted by the empty black circles, and the regression 
line is in blue. The dotted line displays how the corrected 

pKa was found. 

Figure 6. Regression plot for ibuprofen. The moiety data 
is denoted by the empty black circles, and the regression 
line is in blue. The dotted line displays how the corrected 

pKa was found. 
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within gPROMS, causing the model to fail at values of 
pH close to the value of pKa, in the acidic region. It 
then may be of great interest to future work to directly 
quantify the importance of these terms to the modelling 
of thermodynamic properties, as if they provide little to 
no benefit, it is likely that removing them results in 
increased computational efficiency and may eliminate 
non-convergent regions when modelling.  

3.2 Mefenamic Acid 

 

Figure 8. Chemical structure of mefenamic acid 

3.2.1. Initial pKa Prediction 

As with ibuprofen, the thermodynamic cycle method 
from Ho & Ertem was used to predict the pKa of 
mefenamic acid, utilising geometries optimised within 
Gaussian 16. From this, the initially calculated pKa for 
mefenamic acid was 5.68, outside of the range of 
reported experimental pKas from literature (Haynes, 
2015) (Avdeef, 2007). 

3.2.2. Correction of pKa Using Experimental Data 

Due to the significant error present between the 
initially calculated pKa value and experimental data, a 
regression to correct the error generated by the 
thermodynamic cycle method was also performed for 
mefenamic acid. Due to its particularly unique 
structure however, only 3 moieties for mefenamic acid, 
with reliable literature-reported pKas, were considered 
in this study. These being: benzoic acid, 2-
aminobenzoic acid, and fenamic acid. Values of 
experimental pKa (Haynes, 2015) (Kortum, et al., 
1960) (Zapata, et al., 2014) and calculated pKa, found 
using same thermodynamic cycle method as for 
mefenamic acid, are reported in Table 3.  

Compound Benzoic 
acid 

2-Aminobenzoic 
acid 

Fenamic 
acid 

Experimental 
pKa 

4.20 4.95 2.86 

Calculated pKa 5.77 6.30 5.16 

Table 3. Experimental versus calculated pKas for mefenamic 
acid moieties 

Due to only 3 moieties being considered, only a linear 
regression could be performed for mefenamic acid, 
which is shown in Figure 9 below:  

The correction of pKa to experimental values for 
mefenamic acid, as with ibuprofen, was very 
successful, exhibiting a good fit, with an R2 value of 
0.9839. The corrected pKa value of mefenamic acid, 
used in the rest of the paper, was 4.22, 0.01 pKa points 
away from the average of the available values of pKa 
from literature, reported in Table 4. The improvement 
seen on Ho & Ertem’s thermodynamic cycle method 
here was very encouraging, with the AAD from the 
average experimental pKa of the two compounds being 
0.03 pKa points, a marked improvement from using the 
thermodynamic cycle method alone, which was 
reported to produce results with an AAD of 2.00 pKa 
points in literature. 

Experimental Values of Mefenamic 
Acid’s pKa 

Corrected Calculated 
Value of Mefenamic 
Acid’s pKa 

3.88 4.20 4.54 4.22 

Table 4. Comparison of mefenamic acid pKas, with 
experimental values from: (Domanska, et al., 2010), (Haynes, 

2015), and (Avdeef, et al., 2007) respectively 

3.1.3 pH-dependent Solubility Profile 

With mefenamic acid’s corrected calculated value of 
pKa obtained, the prediction of pH-dependent 
solubility for the compound could now be performed. 
Notably, due to a lack of experimental data on the 
solubility product of mefenamic acid, likely due to its 
extremely low solubility (Avdeef, et al., 2007) 
(meaning its dissolution into an ionic salt could not 
previously be analysed), there is no region of pH > 
pHmax modelled in this work. However, plots of 

 

Figure 9. Regression plot for mefenamic acid. The empty 
black circles represent the moiety data with the regression 
line plotted in blue. The dotted line shows how mefenamic 

acid's corrected pKa was found. 
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solubility against pH using experimental data from 
literature also do not exhibit this region (Avdeef, 2007), 
meaning mefenamic acid’s precipitation into a salt may 
not occur physically because of the limited amount of 
the API available in solution, causing the idea of 
mefenamic acid having a value for pHmax to likely be 
incorrect. As with ibuprofen, the ∆𝐶௣,ு஺ terms of the 
solubility equation were neglected when modelling 
mefenamic acid, and although, as previously stated, 
removing these terms may lead to easier model 
convergence, this was done out of necessity due to a 
lack of reported data on the value of ∆𝐶௣,ு஺ for the 
compound (Febra, et al., 2021). The pH-dependent 
solubility profile for mefenamic acid, compared to 
reported experimental values of solubility at various 
pHs (Avdeef, et al., 2007), is shown in Figure 10. 

Similar discussion around the prediction of solubility 
as a function of pH for ibuprofen also applied to 
mefenamic acid. The entirely computational method 
produced a decent fit to values of experimentally 
determined solubility, and the shape of the profile 
corroborated well qualitatively to pH-solubility profiles 
for mefenamic acid produced using the Henderson-
Hasselbalch equation in literature (Avdeef, et al., 2007). 
Although the apparent underestimation of solubility by 
the model may seem significant from the profile alone, 
the reader is reminded that the plot is against the 
logarithm of solubility, meaning the distance between 
the experimental points and the curve is enlarged, and 
that both the experimental and calculated values for 
mefenamic acid’s solubility are extremely low. This 
means that, despite the %AAD of the profile from the 
experimental data being 98.57%, the AAD in solubility 
was only 1.53x10-6 mol/L, meaning, in terms of 
absolute values, the calculated solubility was close to 
that of the experimental data.  

The model used to quantify the solubility of 
mefenamic acid used was also suboptimal, with the 
interactions between the aCNHaC group and water 
being found using combining rules, and, for the anion, 

the deprotonated carboxylic acid group and its adjacent 
aromatic carbon being modelled with a C and COO- 
group, as opposed to the more accurate depiction using 
one aCCOO- group. We attribute much of the error 
from experimental data to these shortcomings of the 
model, and as such, the accuracy of the model to 
experimental data despite these issues is highly 
promising for the efficacy of the use of the 
thermodynamic cycle method and SAFT-γ Mie GC in 
combination to predict pH-dependent solubility 
computationally. 

4. Conclusion 

As can be seen from the data presented, an entirely 
computational approach to predicting pH-dependent 
solubility can provide a good qualitative estimate of 
solubility for active pharmaceutical ingredients, even 
for nearly insoluble compounds such as mefenamic 
acid. However, the method outlined in this paper likely 
does not achieve the required precision in solubility 
prediction by the pharmaceutical industry and 
traditional experimental techniques such as the 
saturation shake-flask method or UV 
spectrophotometry should still be used to ensure an 
entirely accurate assessment of solubility as a function 
of pH. The method presented can however act as an 
initial screening step in the process of drug 
development in which candidate compounds too 
insoluble to be bioavailable could be identified without 
the need for the expensive and time-consuming 
methods outlined above, and with computational 
methods and SAFT constantly improving, extensions 
of the method detailed in this work will only continue 
to increase in accuracy.  

The improvements on the prediction of pKa 
from the thermodynamic cycle method first presented 
by Ho & Ertem through an additional regression step 
are significant, with the deviation in calculated pKa 
from experimental values falling from 2.0 pH points 
for carboxylic acids (Ho & Ertem, 2016) to 0.05 and 
0.01 pH points for ibuprofen and mefenamic acid 
respectively. Notably, the pKa and pH-dependent 
solubility prediction outlined in this work was only 
performed at 298.15K and atmospheric pressure in 
water and as such it may be of interest to future work 
to assess the viability of the methods presented at 
different temperatures and pressures as well as with 
different solvents. A major contributor to the error seen 
in the solubility prediction for mefenamic acid was 
attributed to the use of combining rules and improper 
modelling of the groups within the anion, and as such, 
more work must be done to expand the library of 
groups, and the parameters of their interactions with 
one another, to improve the predictive capacity of the 
SAFT-γ Mie GC EoS. The introduction of new 
parameters and groups to the framework does, 
however, still require more experimental assessments 

Figure 10. pH-dependent solubility profile for mefenamic acid. 
Experimental data is displayed as the empty black circles, and 

the calculated plot is in blue. 
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of the thermodynamic properties of compounds to be 
performed. Furthermore, the impact of including 
the ∆𝐶௣,ு஺ terms in the solubility equation should be 
assessed more thoroughly as, for ibuprofen, no benefits 
were seen in this work by the introduction of these 
terms on the predictive ability of SAFT.  
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Abstract 

The solubility of calcium sulphate dihydrate, commonly known as gypsum, was investigated in two ionic liquids: 
triethylammonium hydrogen sulphate [TEA][HSO4] and monoethanolamine citrate [MEA][Cit.], with water as a 
co-solvent. A design of experiments was employed to systematically evaluate the influence of varying water 
content, temperature, acid-base ratio, and solid loading on gypsum solubility. Results indicated limited solubility 
in [TEA][HSO4] ionic liquid, while [MEA][Cit.] exhibited, based on visual observations, remarkable gypsum 
solubilization, reaching preliminary estimates of up to 81 gCaSO4 kgIL

-1. The study also explored antisolvents and 
additives for solvent recovery, including acetone, ethanol, methanol, ammonium hydroxide, and sulfuric acid. 
Unfortunately, none of the tested antisolvents allowed for simultaneous recovery of solute and solvent. While 
[MEA][Cit.] IL presents a promising avenue for gypsum removal in industrial applications, further research is 
essential to devise efficient methods for solvent recycling. These findings underscore the potential of ionic liquids 
in addressing challenges associated with gypsum solubility, while highlighting the need for continued 
investigation into solvent recovery strategies.
 

Introduction  
Calcium sulphate dihydride [CaSO4•2H2O], better 
known as gypsum, is encountered in a multitude of 
industries; its uses include construction material in 
drywall, mineral removal in hydrometallurgical 
processes, and water treatment[1-3]. However, 
gypsum’s relatively low solubility in aqueous 
solutions and propensity to precipitate poses 
operational issues. The inorganic salt is known to 
form blockage-inducing crud as well as hold 
principal responsibility for scaling in reverse 
osmosis and desalination processes, and in unit 
equipment such as heat exchangers. The presence of 
gypsum in these systems thusly decreases efficiency 
and exacerbates maintenance costs[4-7]. Estimates 
place the cost fouling in major industries at USD 4.4 
billion annually[8]. As such, gypsum’s widespread 
commercial usage and challenges justifies further 
investigation into its solubility.  

In recent years, there has been much 
excitement on the use of ionic liquids (ILs) as 
solvents. ILs are organic salts which remain in liquid 
form below an arbitrary temperature limit, usually 
Tm<100 ˚C.  This comparatively low melting 
temperature is possible due the constituent ions’ 
bulkiness and asymmetry resulting in weakened 
ionic interactions and lattice energy, see Figure 1. 
ILs may be regarded as designer solvents in which 
the selection and properties of the constituent ions 
may be altered to formulate an optimised solvent. 
For example, the acid-base ratios may be 
manipulated to produce non-stoichiometric ILs[9-10]. 
This has led to research into the effect of using IL 
additives in brine solutions to dissolve gypsum[11-12]. 
Yet, no investigation has been undertaken to test the 
solubility of gypsum in ILs doped with H2O. To 
bridge this gap, this paper will study the solubility 
of calcium sulphate dihydride in triethylammonium 
hydrogen sulphate IL [TEA][HSO4] and 
monoethanolamine citrate IL [MEA][Cit.] with 
varying water contents, acid-base ratios, solid 
loadings, and temperatures as well as explore 
appropriate antisolvents for solvent recovery.  

Background 
A considerable portfolio of research has been 
accumulated over the years on the solubility of 
calcium sulphate. Taherdangkoo et al. (2022) 
compiled 42 of these papers into a detailed literature 
review on the dissolution of gypsum and anhydrous 
calcium sulphate in aqueous brine solutions[13].   
 Given the composition of ionic liquids, 
works relating to acidic solutions were of particular 
significance; few investigations have developed 

 

Figure 1. Comparison of ionic liquids and common salts 
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alkaline solvents. In studies where H2SO4 solutions 
were used to solubilize gypsum, it was found that 
solubility increases with increasing acidity at 
constant temperature up to ⁓0.6M. Above this 
threshold, increases in acidity are instead inversely 
proportional to solubility. This is believed to be 
caused by the common ion effect of deprotonated 
H2SO4 forming SO4

2- in tandem with a salting out 
effect. A similar trend was observed with 
temperature at constant acidity: increasing solubility 
up to 80˚C after which further raising the 
temperature will reduce the dissolved gypsum 
content[14-19]. Muhammed & Zhang (1989) detailed 
that at 80˚C gypsum converts into its even more 
insoluble anhydrous form, explaining the witnessed 
result[20].  
 Most studies, however, have focused on 
using salt solutions to dissolve gypsum. Solutions of 
NaCl specifically are most prominently featured 
within literature. Zhang et al. (2013), Kumar et al. 
(2005), Li & Demopoulos (2005), and Nakayama 
(1971) all recognized the relationship of increasing 
gypsum solubility with increasing NaCl in 
solution[21-24]. It was within this context of NaCl 
solutions that the effect of IL addition was first 
investigated. Shukla et al. (2018) and Shukla et al. 
(2019) studied the dissolution of gypsum in NaCl 
aqueous solutions upon the introduction of up to 
15wt% IL. Shukla et al. (2018) employed 
ethylammonium lactate IL and imidazolium-based 
hydrogen sulphate ILs while Shukla et al. (2019) 
used hydroxyalkyl ammonium acetate ILs. It was 
found that imidazolium-based hydrogen sulphate IL 
additives reduced the solubility of gypsum by ⁓60% 
attributed to the common ion effect of SO4

2-. 
Oppositely, the ILs utilizing carboxylic acids as 
anions instead experienced a significant increase in 
solubility. Moreover, the effect of acetate was less 
pronounced than that of lactate[11-12]. 

A possible explanation lies in the chelating 
properties of lactate. Chelation arises when an 
organic complexing agent, known as a chelating 
agent, forms multiple encircling bonds with a single 
metal ion. A chelating agent is a complex with 
several bonding sites; denticity is the measure of 
bonding sites in a given complex. Bidentate 
describes a complex with two possible bonding 
sites, for three or more sites, tridentate and 
polydentate can be used. Carboxylic and hydroxyl 
groups are both known as possible bonding sites 
contributing to chelation[25-26]. Bidentate lactate has 
been shown to chelate to Cu2+, Ni2+, Co2+, and Zi2+ 
hence supporting the hypothesis of Ca2+ 
simultaneously coordinating to the deprotonated 
oxygens of the carboxylic and hydroxyl groups[27]. 
Hence, chelating complexes can form the basis for 

sequestering agents of metals. For example, Murtaza 
et al. (2022) used a strong chelating agent, 
hexadentate EDTA, at high temperatures to 
solubilize gypsum with superb results[28]. Of course, 
chelating agents are not without complications. 
These compounds may form gels or gelatinous 
precipitates when introduced to metallic cations. 
The gelation mechanism is explained by the metal 
ions acting as crosslinking agents for chelates which 
promotes hydrolysis, condensation, and finally 
polymerisation. This gelation reaction is favoured 
by high temperatures. Indeed, EDTA and tridentate 
citrate, due to their chelating properties, can form 
such polymers, and Ca2+ has been shown as a 
crosslinking agent[29-31], for example in inducing 
pectate gelation[32].  

Lastly, good solvents should be recyclable 
which entails describing routes for the removal of 
the dissolved solutes in solution. One such route is 
the employment of antisolvents to facilitate 
precipitation. The basic principle involves a 
reduction in solute solubility caused by the addition 
of the antisolvent which, through a salting out effect, 
results in the precipitation of the dissolved 
compound of interest. This antisolvent should then 
be easily separated from the solution to allow for the 
repetition of the process. A major disadvantage of 
antisolvent solute removal is the high dependency 
on good mixing; otherwise, a heterogeneous mixture 
may form with remaining solute in solution[33-34].  

Methods 
For the synthesis of triethylammonium hydrogen 
sulphate [TEA][HSO4], a round bottom flask 
containing triethylamine (TEA) was placed in an ice 
bath for temperature control and concentrated 
sulfuric acid (97%) was introduced drop wise using 
an addition funnel. The reaction mixture was left to 
stir overnight to ensure a complete reaction takes 
place. 

In the case of monoethanolamine citrate 
[MEA][Cit.] synthesis, a similar procedure was 
followed with the addition of monoethanolamine 
(MEA) dropwise, via an addition funnel, to the 
round bottom flask containing solid citric acid. The 
round bottom flask was once more immersed in an 
ice bath to control temperature and prevent the 
decomposition of amines. The reaction mixture was 
also stirred overnight. 

To determine water content of the 
synthesized ILs, volumetric titration was employed, 
using a Mettler Toledo Karl Fischer volumetric 
titrator. Acid-base ratio of [TEA][HSO4] was 
quantified using a Mettler Toledo KF benchtop 
titrator and NMR was employed to determine 
[MEA][Cit.]’s acid-base ratio.  
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An initial 2 level, 4 factor experimental 
design (DoE) was configured for [TEA][HSO4], 
where four selected variables were employed to 
ascertain the predominant factor influencing 
solubility. The 4 variables under investigation 
include acid-base ratio, water content, reaction 
temperature, and solid loading. A 2 level, 4 factor 
DoE requires 16 experimental runs. Table 1 displays 
the 16 necessary experimental runs along with their 

respective configurations. Table 2 outlines the 
positive, negative and centre levels for each variable 
in the DoE. Replicates were carried out for each 
experiment to increase validity. Triplicate centre 
level experiments were carried out to further reduce 
errors. The total weight of all samples was 10g. 

 

Table 1: [TEA][HSO4] DoE 
2 level, 4 factor  

(24 = 16) 
Acid – base 

ratio 
Water content 

(%) 
Experiment Temperature  

[C] 
Solids loading  

(%) 

1 + + + + 
2 + + - + 
3 + - + + 
4 - + + + 
5 - + - + 
6 - - + + 
7 + - - + 
8 - - - + 
9 + + + - 

10 + + - - 
11 + - + - 
12 - + + - 
13 - + - - 
14 - - + - 
15 + - - - 
16 - - - - 

Table 2: Levels of DoE 

Variable Positive 
level 

Negative 
level 

Centre 
level 

Acid - base 
ratio 1.50 1.00 1.25 

Water 
content (%) 80 20 50 

Temp. [C] 100 20 60 
Solid 

loading (%) 20 10 15 

 
Preliminary testing with the citrate ionic 

liquid showed gelation at elevated temperatures. 
Thus, a 2 level, 3 factor DoE was devised for 
[MEA][Cit.] IL, excluding temperature as a 
variable. Table 3 details the necessary experimental 
runs and Table 4 specifies the positive, negative and 
centre levels. Note that for the first DoE, acid-base 
ratio was the first variable, whilst for the second 
DoE the variable becomes MEA-Citrate ion ratio, 
more akin to base-acid ratio. This was due to the 
poor results acidic conditions gave and thus a 
change in approach was needed. All sample weights 
were again 10g.  

Figure 2: Experimental setup 

Figure 2 shows the experimental setup. To 
quantify solubility of CaSO4 in the ionic liquids, 
inductively coupled plasma mass spectrometry 
(ICP-MS) was employed to measure concentrations 
of Ca2+ ions in solution. Serial dilutions at a factor 
of 100,000 were carried out to ensure sufficiently 
low concentrations of IL in the solutions, thereby 
securing optimal results from the ICP analysis.  

Antisolvents and additives, including, 
ethanol, acetone, methanol, ammonium hydroxide 
(NH4OH, 37%), and sulfuric acid (72%), were 
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investigated to assess their ability to precipitate 
dissolved CaSO₄. Methanol, NH4OH and sulfuric 
acid were miscible, whilst ethanol and acetone were 
immiscible. For immiscible systems, thorough 

mixing was employed with a vortex machine to 
enhance the dispersion and emulsification of the two 
phases. 

 
Table 3: [MEA][Cit.] DoE 

2 level, 3 factor (23 = 8) MEA – citrate ion ratio Water content (%) Solids loading (%) 

1 + + + 
2 + - + 
3 + + - 
4 + - - 
5 - + + 
6 - - + 
7 - + - 
8 - - - 

 
Table 4: Levels of DoE 

Variable Positive 
level 

Negative 
level 

Centre 
level 

MEA – 
citrate ion 

ratio 
3 1 2 

Water 
content (%) 80 40 60 

Solid 
loading (%) 7.5 2.5 5.0 

 
 

Results 
Figures 3, 4, 5 and 6 show samples post-experiment. 
As seen in Figures 3 and 4, [TEA][HSO4] exhibited 
minimal dissolution of CaSO4. Figures 5 and 6 
however, shows [MEA][Cit.]’s significantly 
improved results. Although the intention was to 
employ ICP-MS for precise analysis, due to 
technical failures experienced by the detector at the 
time of writing, the analysis of samples was not 
possible. In light of this, an estimation of the 
maximum concentration of dissolved CaSO4 in 
[MEA][Cit.] was derived based on the known 
information that 9.25g of [MEA][Cit.] fully 
dissolved 0.75g of CaSO4 in sample 2. This equates 
to 81.10 gCaSO4/kgsolvent. Gelation was apparent in 
sample 1, and samples containing excess MEA 
displayed superior solubility of gypsum. A dataset 
containing solubilities of CaSO4 in many different 
solvents from 42 studies complied by Taherdangkoo 
et al. (2022)[11] was analysed and represented 
graphically in Figure 11. Only studies that 
investigated gypsum (CaSO4•2H2O) were included 
in the analysis.  
 
 

Figure 3: [TEA][HSO4] post-experiment (1-8) 
 

 
Figure 4: [TEA][HSO4] post-experiment (9-16) 

 

 
Figure 5: [MEA][Cit.] post-experiment 
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Figure 6: [MEA][Cit.] post-experiment 

Out of the immiscible systems, only 
acetone resulted in the precipitation of CaSO4. A 
triphasic system emerged after vortex mixing, with 
acetone constituting the uppermost layer, the lower 
layer comprising the ionic liquid, and CaSO4 
interposed in the intermediary layer, as seen in 
Figure 7. Different amounts of acetone were 
investigated to examine potential effects on 
precipitation and no discernible effect was observed.  

Ethanol, when subjected to vortex mixing, 
also formed a triphasic system, as shown in Figure 
9; however, following a short settling period, the 
system reverted back to a biphasic state.  

Ammonium hydroxide (37%) resulted in 
the gelation of samples after vortex mixing, as seen 
in Figure 8. 

Sulfuric acid and methanol showed the 
most promising results. Concentrated sulfuric acid 
(97%) resulted in the immediate precipitation of 
CaSO4, as seen in Figure 10.  

Methanol caused precipitation of solute 
after vortex mixing, and the resulting system can be 
observed in Figure 8.  

Table 5 provides a summary of the 
antisolvents employed and their corresponding 
effects. 

 
Figure 7: Antisolvent - acetone 

 
Figure 8: Antisolvent - NH4OH (37%) (Left)                       

and methanol (Right) 

 

 
 

Figure 9: Antisolvent – ethanol 
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Figure 10: Antisolvent: H2SO4 (97%) 
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Table 5: Solvent summary 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Solvent Number of phases Precipitation 
Methanol 1 Yes 

Sulfuric acid (97%) 1 Yes 
NH4OH (37%) 1 No – gelation 

Ethanol 2 No 
Acetone 3 Yes 

Ling and Demopoulos 
(2004)

Mabon and Zhuang (2023)

Yuan et al. (2010) 
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Figure 11: Semi-logarithmic comparative plot of solubilities of gypsum in literature[13, 17 ,19 ,35-43] 
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Discussion 
As seen in Figures 3 and 4 there is a large quantity 
of solid gypsum in solution implying poor solubility 
in [TEA][HSO4] IL. This result agrees with that 
determined in Shukla et al. (2018) which utilized 
imidazolium-based hydrogen sulphate IL added to 
brine solution leading to a decrease in solubility of 
gypsum[11]. This low solubility may be explained 
through a combination of the common ion effect of 
SO4

2- formed from deprotonated hydrogen sulphate 
shifting the equilibrium to solid gypsum and a 
salting out effect caused by the large concentration 
of ions in solution (see Figure 12). This theory 
concurs with the solubility of gypsum witnessed in 
solutions of high molarity H2SO4

[14-20].  

Figures 5 and 6 demonstrate the high affinity of 
gypsum to solubilize in the newly synthesised IL 
[MEA][Cit.]. As seen in Figure 11, [MEA][Cit.] IL 
could potentially hold up to 81 gCaSO4 kgIL

-1. Shukla 
et al. (2018) and Shukla et al. (2019), which also 
employed carboxylic acids as anions, likewise noted 
an increase in gypsum dissolution[11-12]. Promising 
results were similarly detailed by Murtaza et al. 
(2022) using EDTA at high temperatures[28]. This 
may be described by the chelating properties of the 
above compounds, also found in citrate. Crucially, 
citrate composes of three carboxylic groups and one 
hydroxyl group, all of which may deprotonate to 
form bonding sites in the form of negatively charged 
oxygen atoms. These bonding sites then allow the 
simultaneous encircling coordination of the cationic 
divalent calcium in solution to form a chelate 
complex thus solubilizing gypsum[25-26], an adapted 
schematic of which is seen in Figure 13.  

Another observation made evident by 
Figures 5 & 6 and Table 3 is the dependency of base 
ratio on solubility: with excess base, the solubility 
increases. This relationship could be explained 
through the accompanying increase in denticity by 
introducing proton receptors. The samples with 
excess alkaline MEA likely experienced a 
heightened deprotonation of the carboxyl and 
hydroxyl groups present in citrate hence increasing 
the possible number of bonding sites to chelate to 
Ca2+. As such, these samples seemingly displayed 

superior solubility of gypsum as compared to those 
using stoichiometrically proportionate ILs[25-26]. 
Citrate’s deprotonation dependency on pH is 
visualized in Figure 14. 

The gelation observed in high temperature 
preliminary tests of [MEA][Cit.] IL may be 
explained by the reaction being favoured at elevated 
temperatures. Furthermore, the gelation witnessed in 
Figures 5 and 6 in sample 1, representing high water 
content and solid loading with excess base (see 
Table 3) may be interpreted through a combination 
of denticity, crosslinking agents, and steric 
hindrance. Firstly, an excess of base leads to an 
increase in citrate denticity, as detailed previously, 
which forms more chelate complexes[25-26]. 
Secondly, metallic ions, such as Ca2+ [32], can act as 
crosslinking agents between chelate complexes 
hence causing a polymerisation reaction which 
ultimately constructs a gel or gelatinous precipitate. 
The higher solid loading used in the sample thusly 
ensures there is a sufficient amount of Ca2+ to form 
chelates and to function as crosslinking agents in 
this polymerisation[29-31]. Although both acid-base 
ratio and solid loading were identical in sample 2, 
no gelation was observed. It is hypothesized that the 
effect on gelation of increased water content lies in 
a reduction of steric hindrance. In low water content 

 

Figure 13: Proposed Cit-Ca2+ chelate complexes[44] 

Figure 14: Cit’s deprotonation dependency on pH[45] 

Figure 12: Equilibrium of H2SO4 & CaSO4 
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conditions, it is believed that the bulky constituent 
ions of the IL introduce steric hindrance to the 
formation of the 3D structures necessary for the 
polymerisation to progress. Studies have shown that 
gelation may be supressed by steric hindrance of 
bulky molecules, bolstering this theory[46] .  

Regarding the performance of the tested 
antisolvents, it was found that acetone, ethanol, and 
methanol were all ineffective at precipitating 
gypsum to allow for solvent recycling, see Figures 
7, 8, and 9. Antisolvents function by invoking a 
salting out effect of the solute; however, this effect 
can be inhibited by poor mixing[33-34]. This is the 
believed reasoning of the dissatisfactory 
performance of the above antisolvents. The 
immiscibility of the antisolvents in the high ionic 
strength IL solution is believed to be due to their 
relatively low dielectric constants of 21.1, 24.5, and 
33 respectively as compared to H2O at 78 which is 
fully miscible[47]. Therefore, these antisolvents 
induce constant demixing promoting a 
heterogeneous mixture. The comparatively higher 
dielectric constant, leading to superior mixing, of 
methanol may describe its improved performance. 
Couple this with the high stability of the chelate 
complex, due to the simultaneous coordination of 
several ligands to the Ca2+ [28], and a sparingly 
precipitable metal complex is formed. Alkaline 
ammonium hydroxide NH4OH was similarly 
inefficient in precipitating gypsum; instead forming 
a gel, see Figure 8. Briefly explained, this is 
hypothesized to be due to the basic salt causing 
deprotonation of the citrate, thus increasing the 
denticity and number of chelates to polymerize[25-26, 

29-31]. The delivery in 37% aqueous solution is 
postulated to also limit steric hindrance via the 
introduction of H2O[46]. These factors function in 
tandem to form a gel. Lastly, using sulphuric acid as 
an additive was recognized as precipitating 
considerable amounts of gypsum, see Figure 10. It 
is posited that this is caused by a trinity of 
complimentary effects. Most prominently, the high 
acidic strength of H2SO4 is believed to protonate the 
citrate hence reducing its denticity and ability to 
chelate[25-26]. Moreover, the addition of sulphate ions 
in solution, as seen in many other solubility studies, 
leads to the precipitation of gypsum due to the 
combined common ion effect and salting out 
effect[14-24]. Although sulphuric acid allows for 
excellent solute recovery, the presence of SO4

2- in 
solution prevents full solvent recycling. 

Conclusion & Outlook 
To address the potential challenges posed by 
gypsum in industry, this study has delved into the 
solubility of calcium sulphate dihydrate in IL 

solvents and explores potential antisolvents. The 
findings reveal that gypsum exhibits limited 
solubility in [TEA][HSO4] IL, while [MEA][Cit.] IL 
demonstrates significant promise, reaching 
preliminary estimates of up to 81 gCaSO4 kgIL

-1 at 
mild conditions. Despite these encouraging results, 
the study identifies a lack of suitable antisolvents or 
additives for solvent recovery, hindering the 
potential industrial applicability of [MEA][Cit.]. 
Thus, an emphasis is placed on the need for further 
exploration into developing effective antisolvent or 
electrochemical separation techniques. 

This paper suggests a potential future 
avenue: the alternating introduction of H2SO4 for 
solute recovery and Ca(OH)2 for solvent recovery 
and gypsum formation. Additionally, this study 
proposes experimenting with lower-order 
polydentate chelating agents like lactate in IL 
solvents to weaken the chelate complex, facilitating 
more readily precipitable solutions. Furthermore, 
optimization of reaction conditions is highlighted as 
a crucial aspect to maximize solubility while 
minimizing the risk of gelation. These insights 
underscore the potential of ILs in addressing 
gypsum solubility challenges, prompting further 
research to refine and expand the practical 
applications of this novel approach. 
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Abstract

Lead-free halide perovskites have received significant attention in photocatalytic reduction of
CO2 to CO due to their good optoelectronic properties. Despite having suitable properties,
challenges associated with low photocatalytic performance are posed such as instability in H2O
and high charge recombination. To boost the photocatalytic performance, better charge sepa-
ration and effective suppression of charge recombination are necessary to enhance the overall
efficiency of photocatalyst. Heterojunctions proposed a propitious solution to enhance spatial
charge separation. This report demonstrates the synthesis of a heterojunction of Cs3Bi2Br9 and
multilayer Ti3C2TX at different ratios, achieved by anti-solvent crystallisation process. Charac-
terisation techniques such as scanning electron microscopy, x-ray photoelectron spectroscopy
and x-ray diffraction were utilised to demonstrate the successful synthesis of the photocatalytic
materials. The optimal Cs3Bi2Br9 composite of 11.31 at % Ti showed an enhanced CO2

reduction performance of (5.94 ± 0.18) µmol CO g
�1

h
�1 over pure Cs3Bi2Br9 of (1.33 ±

0.27) µmol CO g
�1

h
�1 in the presence of water as a proton donor. Photoelectrochemical

measurements have also displayed enhanced photocurrent density in composites, indicating
improvement in charge separation.

Keywords

Lead-free halide perovskites, MXene, metal-semiconductor junction, photocatalysis, CO2 reduction

1 Introduction

In the pursuit of addressing challenges posed by global
warming, finding a sustainable energy source is one of
the biggest challenges faced by mankind at present.[1]
Extensive efforts have been devoted to the CO2 emission
reduction, carbon capture and storage (CCS), and the
conversion of CO2 into valuable carbon-based products
such as methanol, formic acid, and formaldehyde. As
a renewable, inexhaustible energy source, solar energy
shows great potential in energy conversion. Photocataly-
sis is a green technology that converts solar energy into
chemical energy. Developing new photocatalysts is a
central focus in advancing photocatalytic technology. To
enable CO2 reduction, the selected photocatalyst must
possess a band structure that encompasses with redox
potentials of the target reactions. To achieve a high
photocatalytic performance, the photocatalyst should
have strong visible light absorption, good generation of
electron-hole pairs, good charge separation, and a low
recombination rate.

In the recent years, halide perovskites have recently
emerged as a promising candidate in photocatalysis
because of their exceptional optoelectronics properties,
great light-harvesting capabilities, efficient charge gen-
eration, extended carrier diffusion lengths, a perfectly
aligned redox potential of CO2.[2][3] As one of the
rising stars, caesium bismuth bromide (Cs3Bi2Br9) has
received great interest, due to their low cost, low toxicity,
and relative stability against air, light, heat [4]. To
further enhance the charge separation and reduce charge
recombination in lead-free perovskites, a solution has
been proposed to couple perovskites with other materials
such as oxides, semiconductors, and metal nanoparticles
to form heterojunctions [4]. The heterojunction forms a

built-in electric field at the interface which enhances the
separation and transportation of charge carriers. [5]

Ti3C2TX, a two-dimensional (2D) nanomaterial also
known as MXene, has also attracted notable attention due
to their outstanding properties including superior metal-
like conductivity, outstanding chemical and mechanical
stability, and excellent hydrophobicity [4][6]. Moreover,
with precise control over surface termination groups,
the work function of Ti3C2TX is tuneable at the surface
contacts in the effort of improving charge separation [7]
and has theoretically shown that it can be potentially
tuned from less than 2 eV to above 6 eV.

2 Experimental Details

2.1 Materials

CsBr (99%, Sigma-Alrich), BiBr3 (99%, Alfa-Aesar),
anhydrous dimethyl sulfoxide (� 99.9%, Sigma-
Aldrich), anhydrous 2-propanol (99.9%, Sigma-Aldrich),
LiF (300 mesh, Sigma-Alrich), HCl (37 wt% in H2O,
Fisher Chemical), Ti3AlC2 (400 mesh, Xinxi Technology
Co,. Ltd), acetone (� 99%, VWR Chemicals), Nafion®
perfluorinated resin solution (5 wt% in lower aliphatic
alcohols in water, Sigma-Aldrich), anhydrous acetonitrile
(98.%, Sigma-Aldrich), and tetrabutylammonium hex-
afluorophosphate, TBAPF6, (98%, Sigma-Aldrich) were
used without any further purification. CsBr and BiBr3
were stored in a nitrogen regulated glovebox (< 0.5 ppm
H2O, < 0.5 ppm O2). LiF and TBAPF6 were stored in a
desiccator.

2.2 Synthesis of Ti3C2TX nanocrystal (Multilayer)

Multilayer titanium carbide (M-Ti3C2TX) was synthe-
sised by acid etching. 2 g of LiF was added into
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Figure 1: Schematic representation of the synthesis process of CBT composites

a 100mL Teflon vessel containing 50mL of 9M of
HCl. The mixture was stirred at 1500 rpm for
30min. 2 g of titanium aluminium carbide Ti3AlC2 was
slowly introduced under stirring. The acid etching was
maintained at 35 �C for 36 h to completely remove the
aluminium layer. The resulting precipitate underwent
two rounds of centrifugation with 160mL of 1M HCl
each time to eliminate fluoride anions. The precipitate
was then washed with deionised water (DI water) six to
eight times until the pH exceeded 6. The final precipitate
was vacuum dried at 60 �C for 12 h, yielding M-
Ti3C2TX. Ti3C2TX nanocrystals (TNC) were produced
through solvothermal treatment. 2 g M-Ti3C2TX is
dissolved in 50mL of anhydrous dimethyl sulfoxide
(DMSO) by stirring for 1 h at room temperature. The
mixture is transferred into an autoclave and placed in
an oven at 120 �C for 6 h. After the mixture has
cooled down, the transparent supernatant is obtained
through centrifugation at 10100 rpm for 2min and
repeated twice for thorough collection. The resulting
supernatant was filtered with a 0.22 µm syringe filter to
ensure the removal of any remaining particulate matter.
To adjust the concentration of TNC, 1mL of TNC in
DMSO underwent drying in a vacuum oven, and the
mass difference before and after the drying process was
calculated. The TNC concentration was then adjusted to
1mgmL�1 for further use.

2.3 Synthesis of Cs3Bi2Br9 (CBB) nanocrystals

CBB was synthesised using an anti-solvent crystallisation
process. The CBB precursor was prepared using
1.2 µmol of CsBr and 0.8 µmol of BiBr3, and the solids
were introduced into 20mL of DMSO. The resulting
mixture was sonicated for 30min until a homogenous
solution was achieved. 4mL of the solution was swiftly
injected into 100mL of 2-propanol (IPA), yielding a
yellow-coloured solution. The precipitate was separated
through centrifugation at 4500 rpm for 2min. The
supernatant was disposed of, and fresh IPA was added.
This centrifugation process was repeated twice. The final
precipitate was then placed in a vacuum oven at 40 �C
and left overnight to facilitate the evaporation of any
remaining IPA.

2.4 Synthesis of CBB/TNC composites

To prepare CBB/TNC composites, 0.1mL of TNC
solution was added to 10mL of CBB precursor to form
a CBT precursor. The newly formed precursor was
sonicated for 10min. Following this, 4mL of the CBT
precursor is injected into 100mL of IPA. The CBT
sample was obtained through a process of centrifugation
and subsequent drying. The specific experimental
conditions remained consistent with those used in the
synthesis of CBB.

In this work, 4 CBB/TNC composites were synthe-
sised with CBB precursor and Ti3C2TX, in which the
volume of TNC added into the making CBT precursor
differ. 0.1, 0.25, 0.5 and 1mL of TNC added to the CBB
precursor were abbreviated to CBT-1, CBT-2.5, CBT-5,
and CBT-10 respectively.

2.5 Characterisation

To understand about the morphology of the pure CBB,
Ti3C2TX, and composites, scanning electron microscopy
(SEM) was performed with ZEISS AURIGA Cross Beam
at 5 kV with 15 nm of gold coating. The powders were
deposited onto a carbon conductive tape as support, and
the liquid was drop casted onto a silica glass before
placing onto the support. X-ray diffraction (XRD) was
conducted with Malvern PANalytical Aeris at 40 kV and
15mA using Cu K↵ radiation (� = 1.54Å) in the 2✓
range 5� to 70�. X-ray photoelectron spectroscopy (XPS)
was conducted to understand the elemental composition
of the samples by using Thermo Fisher K-Alpha+ with
a monochromatic Al K↵ X-ray source. Valence band
XPS measurement for CBB was also taken with the same
machine and situate the valence band edge from the
fermi level. All data processing and peak deconvolution
were performed with Avantage and all binding energies
were carbon calibrated to 286.8 eV. Ultraviolet-visible
spectroscopy (UV-Vis) was performed, with barium
sulfate (BaSO4) as a reference, using the SHIMADZU
UV-2600 UV-Vis spectrophotometer with an integrated
sphere to understand the reflectance of the materials and
the material band gap (Eg) of CBB and the synthesised
composites.

2

398



2.6 Photocatalytic performance

Photocatalytic CO2 reduction was conducted in a 20mL
gas-tight stainless steel photoreactor with a quartz
window. The samples were tested by using 32mm
Cytiva Whatman™ quartz filter. 1mgmL�1 of the
desired sample was prepared using the powder sample
and anhydrous IPA. The filter paper was weighed, and
the solution was drop casted evenly onto a filter paper
at 70 �C by utilising a hot plate. The filter paper with
the deposited catalyst is placed in a vacuum oven at
40 �C overnight for drying. The dried filter paper is
weighed again to acquire the deposited catalyst mass.
The photoreactor is cleaned with and the test filter paper
is placed carefully in the centre of the photoreactor.
40 µl of distilled H2O is added at the side of the
photoreactor as hole scavenger (proton source). With
the quartz window firmly secured in place and valve to
the gas chromatography (GC) is closed, the photoreactor
is evacuated twice by using a vacuum pump and refill
of CO2. Once the pressure is at 0 bar, the valve to
the GC is opened and the system and GC were purged
further at 20mLmin�1 for 15min to equilibrium and
to ensure no remaining unwanted gases were left in the
GC. This was also to fully saturate the CO2 with H2O.
The adjacent valves to the photoreactor were closed and
an initial GC measurement was taken. Finally, a 300W
Xe source from LOT-Quantum Design equipped with
AM 1.5 G filter was shone onto the sample for 1 h,
such that the sample was subjected to an intensity of
100mWcm�2 (equivalent to 1 sun). After 1 h of light
exposure, both valves before and after were opened, and
5mLmin�1 of CO2 was pumped for 2.5min. An after-
reaction GC measurement was taken immediately after
2.5min. A batch 5 h recyclability test was also conducted
to determine the stability of CBT-2.5.

2.7 Photocurrent measurement

The suspension of the desired sample was prepared
mixing 50mg of the powder sample, 50 µL of Nafion,
1mL of anhydrous IPA. The suspension is sonicated until
a homogeneous liquid is formed. The fluorine-doped tin
oxide (FTO) coated glass was cut into 2.5 ⇥ 2.5 cm2

pieces and were cleaned with three consecutive stages
of sonication by using DI water, acetone, and IPA for
10min each. The cleaned FTO glass is left to dry at
80 �C. The 1mL of solution is uniformly drop casted
at 80 �C onto the conductive side of the FTO glass, with
one edge untouched for later electrical connection. The
catalyst deposited FTO glass is left on the hot plate for
further evaporation of IPA solvent. Photoelectrochemical
(PEC) measurements were conducted using a half cell
configuration. The electrolyte was a solution of 0.1 M of
TBAPF6 in anhydrous ACN. The non-aqueous Ag/Ag+

reference electrode and a Pt wire counter electrode were
used. The prepared FTO glass was used as a working
electrode with an area of 0.28 cm2. Sunlight was
simulated with a Lot Quantum Design Xe Lamp equipped
with a AM 1.5 G filter and a potentiostat from the Ivium
Technologies was used to control the applied potential of
the working electrode.

3 Results and Discussion

3.1 Materials characterisation

Figure 2: SEM micrographs of (a-b) CBB, (c) CBT-1, (d-
e) CBT-2.5, (f) CBT-5, (g) CBT-10, (h) Ti3C2TX, and (i)
CBT-2.5 after 5 h of recyclability test.

The morphology of the above samples were characterised
by SEM (Figure 2). For pure CBB, the surface
morphology had a big deviation. Different sizes of
plates and clusters of CBB were seen, this suggested
the sample was not homogenous. This happens in anti-
solvent process as the stirring can cause inhomogeneities.
In CBT-1 (Figure 2c), Ti3C2TX is surrounded by CBB
bulk while in CBT-5 (Figure 2f) and CBT-10 (Figure
2g), a large bulk of Ti3C2TX is attached to the CBB
were spotted. In CBT-2.5 (Figures 2d & 2e), appropriate
amount of Ti3C2TX attached to CBB is recognised.
In Figure 2h, it can be seen clearly that M-Ti3C2TX
was successfully synthesised. However, the synthesised
sheets were not nanocrystals, with a diameter of 5.66 µm,
indicating that the syringe filtration was insufficient to
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achieve nanocrystals. The spacing between the layers
were quite small, this could potentially suggest the acid-
etching wasn’t as successful. After the recyclability test,
the CBT-2.5 showed no major change in morphology,
despite having a lower photocatalytic performance over
repeated cycles. Charging of samples were seen in
some SEM images despite coating the sample with gold.
This was a piece of evidence to demonstrate that the
synthesised material had a bandgap.

Figure 3: XRD spectra of Ti3C2TX [8] and Cs3Bi2Br9
[9] in comparision to the synthesised Ti3C2TX, CBB and
their composites.

XRD technique was utilised to determine the crystal
structure of photocatalyst materials synthesised and
enhance the successful synthesis of target catalysts. The
reference peaks of Cs3Bi2Br9 and Ti3C2TX are shown
at the bottom of Figure 3 to represent the position of
intrinsic crystal planes. The experimental data of pure
Cs3Bi2Br9 and Ti3C2TX were obtained and portrayed a
consistent trend with their reference peaks respectively.
The peaks for CBT photocatalysts highly align with both
experimental and reference data for Cs3Bi2Br9, which
emphasised that there is a significant amount of CBB
in CBT catalysts and CBB acts as the main component
of CBT catalysts. The main diffraction peaks were
centered at 15.6�, 22.1�, 27.4�, 31.6�, 39.0� and 45.0�

(2✓), corresponding to the planes (1,0,1), (1,0,2), (2,0,1),
(2,0,2), (1,0,4), and (2,0,4), respectively. The highest-
intensity peaks for all CBT composites were present at
31.6� corresponding to the (2,0,2) crystal plane which
belongs to Cs3Bi2Br9, which further proved the clear
presence of CBB in CBT photocatalysts. The fact
that CBT-2.5 showed the largest intensity for (2,0,2)
plane compared to other CBT samples indicated that
it contained the highest amount of CBB.The deviation
between experimental peaks and reference crystal planes

peaks can be explained by the difference in sample holder
height during XRD reflection-mode operation for CBT
powders [10] as the change in angle of 2✓ leads to the
shifting in XRD pattern.

XPS was conducted to further understand the surface
composition of Ti3C2TX, CBB, and the composites.
Wide scan was conducted to gain insight in the surface
composition(Figure 4a). The wide spectra have detected
the elements Cs, Bi, Br, C and O in CBB and in all
composites. Ti was also detected in the composites. In
addition, F and Cl were both detected in the Ti3C2TX
survey, this was likely residue left from the washing step
in the Ti3C2TX synthesis. The elemental XPS spectra
were illustrated in Figure 4. The C 1s scan showed four
types of bonding. In Ti3C2TX, a binding energy (BE)
of 282.08 eV can be corresponded to Ti-C (purple). The
pure CBB and composites have shown an additional C
species, around 286.74 eV, which was attributed to the C-
O (yellow) bonding. A BE of 284.80 and 288.60 eV were
attributed to the C-C (red) and O-C=O (green) bonding
respectively. In the O 1s spectrum, two different peaks
were observed. Both peaks are represented the Ti-O
bonding, with the difference in BE caused by oxygen
bounded to titanium at different lattice sites [11]. The
Ti 2p scan revealed 3 possible bonding, which were Ti-
O (red), Ti-O (yellow), Ti-C (green), and Ti-F (purple).
A doublet peak of 724.44 and 738.40 eV was observed
in the Cs 3d scan, attributed to the Cs 3d5/2 and Cs
3d3/2 respectively. The presence of the Bi3+ species
was demonstrated in the Bi 4f scan, with a doublet
at 159.16 and 164.46 eV 159.16 and 164.46 eV, which
was attributed to Bi 4f7/2 and Bi 4f5/2 respectively.
Finally, the Br 3d scan demonstrated Br 3d5/2 (red)
and Br 3d3/2 (green) respectively. For CBT-10, higher
shifts in BE were identified in the Cs 3d and Bi 4f
scans. The higher shift in BE implied a lower electron
density in those atoms. This highlighted the electrons
flowed from the CBB to Ti3C2TX, suggesting that there
were more electrons on the metal side to participate
in the CO2 reduction. The elemental composition of
the semiconductors were also acquired from XPS and
compared to the theoretical compositions (Table 1).
XPS showed that the experimental compositions do not
reassemble with the theoretical compositions. However,
as expected, the Ti at % in the composites increased with
the addition of Ti3C2TX.

Semiconductor band gaps can be categorised into two
types, direct and indirect. Direct band gap is when the
maximum energy of valence band and minimum energy
of conduction band occur at the same value of momentum
(k). If the maximum and minimum lie at different values
of k, then it is indirect. Direct band gap is always larger
than indirect band gap.

The Tauc plot of (F (R)h⌫)(1/�) vs h⌫, where
h, ⌫, F(R) and � represent the Planck’s constant,
frequency, Kubulka-Munk function, and a constant which
is equivalent to 0.5 for direct and 2 for indirect Eg

calculations.
The Kubulka-Munk function is known as

F (R) =
K

S
=

(1�R)2

2R
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Figure 4: XPS of (a) survey scans, (b) C 1s, (c) O 1s, (d) Ti 2p, (e) Cs 3d, (f) Bi 4f, and (g) Br (4d) of the pure CBB
semiconductor and their composites with Ti3C2TX.

Table 1: Theoretical composition of CBB and their composites compared to XPS experimental composition.

Sample
Composition [at %]

Theoretical Experimental
Cs Bi Br Ti Cs Bi Br Ti

CBB 21.43 14.29 64.29 0 15.41 6.34 43.89 0
CBT-1 21.42 14.28 64.26 0.04 5.65 2.86 18.09 6.67

CBT-2.5 21.41 14.27 64.23 0.09 11.79 5.15 33.55 11.31
CBT-5 21.39 14.26 64.17 0.19 19.14 6.68 41.74 11.55

CBT-10 221.35 14.23 64.05 0.37 14.92 6.51 39.34 14.95

where K, S, and R correspond to molar absorption coef-
ficient, scattering coefficient, and diffused reflectance of
the material respectively.

Reflectance of all powder samples are plotted and
presented in Figure 5a and the visible light region from
380 to 700 nm were also outlined. Ti3C2TX had a
relatively high reflectance when compared to CBB and
their composites. CBB and all composites had a good
absorption performance in the lower wavelength, up to
450 nm. Moreover, all showed similar reflectance results
throughout the different wavelengths. Thus, no trend for
the CBB and composites were observed. Through the
extrapolation of a tangent to the onset linear region in
the Tauc plot (Figure 5b & 5c), the material Eg were
obtained. For the Eg calculations, CBB has a direct and
indirect Eg of 2.70 and 2.63 eV respectively. The indirect
calculation of CBB was better fitted with a tangent than

the direct calculation, therefore the material Eg was
determined to be indirect.

3.2 Photocatalytic performance

The testing of different photocatalysts with various
TNC loading on CBB has been conducted to optimise
the CO production rate Figure (6a). CBT-1, CBT-5,
CBT-10 and CBB were tested at the first stage which
demonstrated that CBT-1 had a relatively higher CO
production rate, which led to the further manipulation of
CBT-2.5. After optimisation, CBT-2.5 showed the best
performance for CO2 reduction at 5.94 µmol CO g�1h�1

which was more than three times larger compared to
pure CBB samples. The increasement in photocatalytic
performance can be attributed to the appropriate TNC
loading and regular morphology. As presented previously
in SEM micrographs, CBT-1 was shown to have Ti3C2TX
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Figure 5: (a) Reflectance of Ti3C2TX, CBB, and composites. Tauc plot of CBB assuming (b) direct and (c) indirect
behaviour.

was surrounded by CBB bulk. As the contact of the
metal and semiconductor formed active sites for CO2
reduction, too much CBB attached to Ti3C2TX will lead
to insufficient active sites for the reduction, resulting to a
lower photocatalytic performance. For CBT-5 and CBT-
10, the lower photocatalytic performance was explained
by excessive Ti3C2TX attached to CBB, leading to
potential blockage of light absorption. The error bars,
which indicated the stability of photocatalytic perfor-
mance of each sample, were calculated by repeating
the experiments for over three times under the same
conditions. Selectivity towards CO, H2, and CH4 were
also calculated and presented in Table 2. The optimal
sample, CBT-2.5, also yielded the highest selectivity of
CO with 97.43%.

To investigate the stability of the optimal sample, a
recyclability test was conducted over five consecutive 1 h
cycles with cleaning and adding fresh water drops into the
reactor after each run (Figure 6b) . The overall decrease
in CO production rate was tested to be approximately
69% after five cycles with most of the loss taking place
after the second hour. This may be due to the degradation
of CBB or the filter was damaged by the water vapour.

Table 2: CBB and their composites selectivity towards
CO, CH4, and H2.

Sample Selectivity [%]
CO H2 CH4

CBB 95.14 2.82 2.03
CBT-1 97.18 0.41 17.57

CBT-2.5 97.43 0.44 2.13
CBT-5 50.24 49.40 0.37

CBT-10 95.45 6.57 6.22

PEC tests were operated to determine the per-
formances in terms of current generation and charge
separation ability of photocatalysts. The photocurrent
density-voltage curves (Figure 7a) demonstrated the
higher photocurrent of CBT composites compared to
CBB under the same chopped-light irradiation and
applied potential range. The intensity of the photocurrent
was calculated by subtracting the dark current from

the photocurrent. Although the CBT composites did
not show an obvious trend in photocurrent density, all
composites showed a more obvious ‘jump’, illustrating
the CBT photocatalysts contain more photogenerated
electrons compare to CBB, which can be attributed
to the better charge separation. The higher negative
photocurrent under a large negative applied potential
could be contributed by the potential reduction of thin-
film samples and the change in the composition of the
cell electrolyte.

Figure 7b illustrated the significant improvement of
photocurrent density difference from the dark and light
conditions. There was a clear enhancement in the
photocurrent density for CBT composites compared to
CBB.

Valence-band XPS measurement was taken to es-
timate the energy between the fermi level (Ef ) and
the valence band edge. The energy between the two
levels was attained at the x-value of the two tangents
intersection (Figure 8a). The work function describes
the minimum energy to remove an electron from the
material to vacuum level. This was used to locate the
Ef of the material. Coupling with the Eg value acquired
from the Tauc plot (Figure 5c), the conduction band
(Ec) and valence band (Ev) can be situated (Figure 8b).
As the work function (') of the CBB is deeper than
the Ti3C2TX, an accumulation layer of electrons in the
space charged region will be formed when the metal and
semiconductor are in contact. This contact is a metal-
semiconductor junction. In the space charged region, the
semiconductor energy band edges are shifted due to the
electric field formed by the charge transfer between the
Ti3C2TX and CBB. Consequently, CBB is subjected to a
downward band bending.[12] Since �m < �s and CBB is
n-type type semiconductor, the contact will be ohmic and
no Schottky barrier will be formed can also be concluded.
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Figure 6: (a) Photocatalytic CO2 reduction rate to CO of CBB and its composites and (b) Recyclability test of CBT-2.5
over 5 consecutive cycles.

Figure 7: (a) Photocurrent density-voltage curves of pure CBB and the composites obtained under chopped simulated-
sunlight illumination of 100mWcm�1 in a solution of 0.1 M TBAPF6 in anhydrous acetonitrile. (b) Measurements of
photocurrent density achieved at �0.2V.

Figure 8: (a) Valence band XPS measurement of CBB. (b) Energy band diagram of CBB and Ti3C2TX where �m is
obtained from SECO [11], �s is obtained from XPS [2], and (c) energy band diagram of CBB with contact with Ti3C2TX.

4 Conclusion

In conclusion, we have successfully constructed an
all-inorganic lead-free perovskite heterostructure with
multilayer Ti3C2TX. The results have demonstrated
that the heterostructure had a higher photocatalytic
performance than pure CBB. Out of all the composites,
CBT-2.5 has yielded the greatest performance in CO2

reduction with a CO production rate of (5.94 ±
0.18) µmol CO g�1h�1 and a selectivity of 97.44 % to
CO. Comprehensive characterisations and experiments
have highlighted that the optimal sample was CBT-2.5
and the photocatalytic performance was enhanced owing
to the morphologies and a better charge separation in the
composites of CBB and Ti3C2TX. The mechanism was
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established with multiple techniques. The energy band
diagram was partially constructed with the UV-Vis and
valence-band XPS and it was confirmed as downward
band bending. The following reduction reactions were
proposed to happened on the Ti3C2TX side during
photocatalytic CO2 reduction reactions:

CO2 + 2 e� + 2H+ ��! CO+H2O

CO2 + 8 e� + 8H+ ��! CH4 + 2H2O

These findings demonstrate the potential for heterojunc-
tion of CBB and Ti3C2TX and will open new avenues
to explore more efficient and stable lead-free halide
perovskite in CO2 conversion.

5 Outlook

To further improve this study, control tests can be
performed to evaluate the effects of experimental
conditions on CO production rate and selectivity, such
as using a different light and proton source such as
hydrogen gas. As highlighted in SEM, the synthesised
material morphologies are not homogeneous and the
filtered M-Ti3C2TX are not nanocrystals. Addition
of ligands can produce homogeneous CBB crystals
and dialysis can be used further for TNC solution
as it is a superior separation technique over syringe
filtration. Transmission electron microscopy (TEM) can
be utilised to gain a deeper understanding of the materials
morphology, especially with Ti3C2TX. Coupling with
energy dispersive x-ray (EDX) spectroscopy with TEM,
the distribution of elements can also be identified in
the material to further comprehend the dispersion of
Ti3C2TX in CBB. Further characterisations on surface
area can be conducted using the BET analysis to
determine the relationship between surface area and
photocatalytic performance. Simulation tools such as
density functional theory (DFT) and molecular theory
(MD) can be employed to optimise the performance
of photocatalysts by stimulating the electronic structure
of materials. With further characterisations, a more
comprehensive study can be achieved.
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Abstract 

Anthropogenic activity has been rapidly pressuring Earth systems beyond their safe operating space. The aviation sector 

has seen substantial growth in the past decades, with a projected CAGR of 3.3% for the next two decades. Despite merely 

contributing approximately 3% of global emissions, it has been classed as a difficult sector to decarbonise. Sustainable 

aviation fuel (SAF) poses itself as one of the most promising interim fixes for aviation. To assess the absolute 

environmental impacts of SAF, a methodology comprising of life cycle assessment (LCA) and planetary boundary 

framework (PBF) are used in conjunction to delineate its effect on Earth systems. Aspen HYSYS and OpenLCA were 

utilised to obtain the inventories of the system. Characterisation factors were used to translate LCA inventories to PBF in 

conjunction with a grandfathering allocation principle used for assigning the share of safe operating space (SOS) to the 

aviation sector to ultimately indicate the levels of transgression (LT). The resulting environmental impacts and LT were 

obtained for SAF, where five of the nine control variables assessed outperformed conventional aviation fuels. Despite the 

better performance, SAF still exceeds the SOS for two control variables, namely radiative forcing and biogeochemical 

flow of nitrogen, ultimately still threatening the Earth. The aviation sector sees SAF as an interim fix, and its future is to 

be met with greener propulsion systems based on hydrogen and batteries. 

Keywords: sustainable aviation fuel, life-cycle assessment, planetary boundaries framework, safe operating space 

 

1. Introduction 

Humans have been reshaping the Earth for at least 3,000 

years [1], but these alterations have snowballed into 

permanent pressures since 1970’s [2]. Humanity’s impact 

on the globe is often assessed through the narrow lens of 

climate change and many overlook the broader spectrum 

of environmental influences. Effects on the Earth system 

extend beyond climate change, encompassing aquatic, 

atmospheric and terrestrial systems, along with resource 

degradation and ecological crises. This calls for a 

standardised and accurate assessment of the impacts such 

that humanity can monitor and mitigate the deterioration 

of the environment. 

 The aviation sector poses an appreciable 

contribution to the world in all facets. Global air traffic has 

been growing, on average, at a rate of 5.0% annually since 

the mid-1990s; in that same period, the world economy has 

been growing at 2.8% [3]. Building upon the robust growth 

rate, the aviation sector is poised for continued expansion 

for the next two decades, with industry experts forecasting 

an average annual growth rate of 3.3% [4, p. 13]. The 

aviation sector contributed 3.6% to the world’s GDP in 

2018 [5, p. 4] and accounted for 2.0% of global energy-

related CO2 emissions in 2022 [5]. These figures seem 

rather trivial, but aviation has been identified as one of the 

most challenging sectors to decarbonise [5]. 

 To minimise the sector’s impact on the environment; 

green propulsion systems are contenders, but they are 

years away from commercial viability [6]; this is where 

sustainable aviation fuels (SAFs) take the spotlight for the 

best alternative. SAF is produced from a sustainable 

feedstock which includes waste oil and solid waste; it is 

also produced synthetically via direct air carbon capture 

(DAC) [7]. Current usage of SAF is estimated to be less 

than 1%; it is not surprising as the production costs of 

SAFs are threefold those of conventional aviation fuels 

(CAFs) [6]. In the context of environmental impact, how 

can one ensure the process of SAF outperforms CAF? 
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 A conventional method to monitor the impacts of a 

process (in this study, the production and combustion of 

SAF) is through a life-cycle assessment (LCA). LCA is a 

process of “evaluating the effects that a product has on the 

environment over the entire period of its life thereby 

increasing resource-use efficiency and decreasing 

liabilities” [8]; it is a powerful tool which supports 

engineering decisions due to its robustness. A major 

limitation of LCA is its sole assessment on a relative scale; 

the analysis of the processes does not provide insight into 

the impact on the Earth system in its entirety. 

 To assess the absolute impact of a process on the 

Earth system, Rockström et al. proposed a framework 

based on planetary boundaries which define the “safe 

operating space for humanity concerning the Earth system” 

[9, p. 1]. Many subsystems of Earth are sensitive around 

the safe operating threshold. Transgressing the threshold 

could cause important subsystems to shift into a new state 

which would cause, at best, deleterious consequences for 

humanity [9, p. 1]. The planetary boundaries framework 

(PBF) is the first framework proposed that assesses the 

absolute environmental impact of anthropogenic activities. 

 With the rudiments of the aviation sector laid out and 

its potential effect on Earth systems highlighted, this study 

aims to assess the absolute environmental performances of 

SAF production and combustion with planetary 

boundaries framework in conjunction with LCA 

methodology. 

 

2. Background 

This paper explores the absolute environmental 

performances of SAF by bridging the gap between LCA 

and PBF through the lens of this fuel. Previous studies 

have conducted life cycle, economic and environmental 

assessments on aviation fuels, and defined general 

methods of translating LCA to PBF. This study hopes to 

combine the attributes of different studies and classify a 

method of translating LCA to PBF for SAF. 

2.1. Quantifying environmental impacts of aviation fuel 

Previous life-cycle assessments on aviation fuels 

suggested SAF outperformed CAF in terms of resource 

and global warming impacts [10, p. 19] [11, p. 19]. These 

LCA investigations quantified resource depletion and 

emissions by considering different providers and sources. 

Despite the conclusions these assessments have provided, 

its shortcomings lie in its inability to gauge the absolute 

global impact of processes. 

 Research has significantly focused on the 

ramifications of global warming, often overlooking 

alternative environmental impacts [12, p. 2]. While 

evaluating the status of global warming is essential, it is 

imperative to recognise that this concern constitutes just 

one facet of the broader spectrum of environmental impact. 

2.2. Planetary boundaries framework 

Based on the shortcomings of LCA, the PBF is one of the 

first methods to quantify the absolute impact of processes 

on Earth systems. The framework was first proposed in 

2009 by Rockström et al. [13, p. 2] and has been revised 

continuously such that all planetary boundaries are 

mapped out [14, p. 4]. This framework paints an 

overarching picture of the conditions of Earth systems but 

does not delineate the specific contributions from specific 

sectors and processes. 

2.3. LCA to PBF: bridging the gap 

The optimal assessment of specific processes on Earth 

systems in a comprehensive and absolute manner can be 

achieved by leveraging the benefits of LCA and PBF. Thus 

far, no conventional standard has been established to link 

the two systems, but substantial work in this field has been 

published. The challenges lie in translating inventories of 

the LCA into absolute environmental impact and justifying 

the share of safe operating space (SOS) for anthropogenic 

activity relative to global SOS. 

 Numerous works on translating LCA inventories to 

absolute environmental impact predominantly explore the 

utilisation of characterisation factors (CFs). The use of CFs 

allows impacts of inventories of LCA to “be expressed in 

the same metric as the control variables of the Earth system 

processes” and reflects “the proportional change in 

environmental impact per change in quantity of 
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environmental interventions” [15, p. 4]. Ryberg et al. have 

developed CFs for LCA inventories to PBF translations 

[16, pp. 3,8-9]. This translation is not limited to the use of 

characterisation factors; an alternative investigation 

considered the “weighted average of substance-specific 

contributions” [17, p. 5]. It is crucial to highlight the 

application of this weighted average approach was 

restricted to greenhouse gas emissions and only explored 

“climate change” – one of the nine planetary boundaries. 

Justifying contributions of the aviation sector is 

based on the allocation principle. The allocation principle 

is a framework which assigns a fair share of the global SOS 

to an anthropogenic process [18, p. 4]. There is extensive 

study on different methods of allocation based upon 

distribution justice theory [19]; different theories have then 

spawned subsequent allocation principles. 

 

Table 1 - Previous relevant studies which have explored environmental impacts and at least one of the following topics: SAF, LCA, and PBF 

Study Year SAF focus Use of LCA Use of PBF Environmental impacts explored 

Rockström et al. [9] Sep-09 No No Yes Climate change and other indicators 

van der Giesen et al. [20] May-14 Yes Yes No Climate change only indicators 

Ryberg et al. [16] Dec-17 No Yes Yes Climate change and other indicators 

Magone et al. [10] Apr-20 Yes Yes No Climate change only indicators 

Bjørn et al. [18] Jul-20 No Yes Yes Climate change and other indicators 

Ryberg et al. [19] Jul-20 No Yes Yes Climate change and other indicators 

Sherwin et al. [21] May-21 Yes No No Climate change only indicators 

D'Angelo et al. [22] Jul-21 No Yes Yes Climate change and other indicators 

Ordóñez et al. [12] Aug-22 Yes Yes No Climate change and other indicators 

Petersen et al. [17] Aug-22 No Yes Yes Climate change only indicators 

Sacchi et al. [23] Jun-23 Yes Yes No Climate change only indicators 

Rojas-Michaga et al. [11] Jul-23 Yes Yes No Climate change only indicators 

Richardson et al. [14] Sep-23 No No Yes Climate change and other indicators 

2.4. Rationale for this study 

There is an opportunity within the research domain to 

focus on the evaluation of SAF using LCA methodology 

along with PBF. While existing studies have delved into 

the environmental impact of aviation fuels, there is a 

notable absence of insight into the absolute global impact. 

Other papers have explored translating LCA to PBF 

through CF and have extensively justified different 

allocation principles, but they did not address the SAF 

process. This presents an ideal prospect to bridge the gap 

between the SAF process and the translation from LCA to 

PBF, enabling a holistic examination of the environmental 

impacts associated with this anthropogenic process. None 

of the studies in Table 1 consider the absolute global 

environmental impacts of SAF production and combustion 

to Earth systems through LCA methodologies; this study 

aims to bridge the gap between SAF, LCA, and PBF.  

 

3. Methods 

The comprehensive assessment of the SAF process, from 

cradle to gate with combustion, in absolute terms involves 

a methodological unification of LCA inventories and 

planetary boundaries framework. The work presented here 

was repeated for CAFs, namely kerosene; this provides a 

basis to compare the performance of SAF. 

3.1. Defining the scope 

A novel process for SAF production was developed by 

OXCCU Tech Ltd. by utilising CO2 and renewable energy 

to produce aviation fuels with a lower environmental 

impact (EI). The process converts CO2 obtained via DAC 
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[24] and H2 from water electrolysis [25] into a blend of 

hydrocarbons to be used as aviation fuels.  

 A simulated plant using Aspen HYSYS was 

constructed to assess the hourly calorific production of 

SAF, established as the functional unit for this LCA, 

according to the ISO 14040 standards [26]. The model 

incorporates raw material inputs (CO2 and H2), yielding 

the corresponding output of SAF. The study adopted a 

cradle-to-gate scope employing an attributional approach. 

Given the significant influence of SAF combustion on the 

LCA, their impacts were incorporated into the analysis. 

This was estimated by performing a mass balance on the 

carbon in the fuel produced. 

 To produce results representative of a global scale, 

the SAF produced in the simulated plant was linearly 

scaled-up to meet the annual global demand for aviation 

fuels, which was estimated to be 300 million tonnes in 

2019 [27]. 

3.2. Quantifying the SAF process 

To quantify the process of SAF production and combustion, 

a life-cycle inventory (LCI) analysis was conducted. 

Foreground data (mass and energy flows of the process) 

and models were obtained from the simulated plant. 

Background data on the extraction of the raw materials 

were obtained from Ecoinvent (v3.6), a LCI database. 

OpenLCA (v1.1), a LCA software, was employed to 

integrate these models and datasets for the computation of 

the LCIs. 

3.3. Evaluating environmental impact 

The results generated from OpenLCA were analysed to 

assess the EIs of the SAF process. Characterisation factors 

(CFs), developed by Ryberg et al. [16, p. 3], were applied 

to quantify the environmental impacts on the control 

variables (CVs) of the planetary boundaries introduced by 

Rockström et al. [13, pp. 8-9]. In this study, two planetary 

boundaries, namely “biosphere integrity” and 

“introduction of novel entities” were excluded from 

consideration. Their boundaries were only defined in 2023 

[14, p. 4], and the characterisation methods are therefore 

deemed immature. 

 The following approach developed by Ryberg et al. 

[16, p. 5] was employed to quantify the environmental 

impacts of the SAF process; this is shown in Eq(1). 

EI௝ୗ୅୊ = ෍ LCI௜
ୗ୅୊ ∙ CF௝,௜ ∙ CPୗ୅୊

௜∈ூ

, ∀𝑗 ∈ CV (1) 

EI௝ୗ୅୊ refers to the environmental impact of SAF in each 

CV  𝑗 . LCI௜
ୗ୅୊  is the inventory 𝑖  associated with the 

functional unit of SAF; these are obtained from OpenLCA. 

CF௝,௜ is the characterisation factor corresponding to CV 𝑗 

for inventory 𝑖. CPୗ୅୊ is the annual calorific production 

of SAF by the process scaled-up to global production. 

3.4. Determining the level of transgression 

After the EIs have been evaluated, the subsequent step 

involves calculating the level of transgression (LT). This 

calculation considers the proportion of the Safe Operating 

Space (SOS) delimited by the PBF and is downscaled to 

SAF production. Allocating a segment of the SOS to SAF 

production was achieved through an allocation principle 

called grandfathering (GF), wherein the allocation is 

proportional to the environmental impact of the 

anthropogenic activity [18, p. 13]. This allocation is shown 

in Eq(2). 

SOS௝
ୗ୅୊ = SOS௝

ୋ୐୓ ∙
EM୅୚୍

EMୋ୐୓ , ∀ 𝑗 ∈ CV (2) 

SOS௝
ୗ୅୊ refers to the allocated SOS of the SAF process for 

each CV  in 𝑗 . SOS௝
ୋ୐୓  refers to the SOS delimited by 

the PBF for each CV  in 𝑗 . EM୅୚୍  refers to the annual 

emissions of the aviation sector, and EMୋ୐୓ refers to the 

annual global anthropogenic emissions. The ratio of the 

EMs is estimated to be 3.5% [28]. 

 LT is calculated with Eq(3) after the SOS for the 

aviation sector has been determined; it delineates the 

environmental impact of SAF production and combustion 

against its portion of the SOS. 

LT௝
ୗ୅୊ =

EI௝ୗ୅୊

SOS௝
ୗ୅୊ , ∀𝑗 ∈ 𝐶𝑉 (3) 

LT௝
ୗ୅୊ refers to the LT of SAF for each CV in 𝑗. 

 

4. Results 

This section highlights the processed data obtained from 
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Aspen and OpenLCA. Table 2 presents the findings of EI 

of SAF and CAF, along with the share of SOS allocated to 

the aviation sector. The units for each CV are presented, 

and the last two columns present the LT for each of the 

fuels; all LT greater than 100% are highlighted in red. 

Figure 1 is the planetary boundaries mapped out for each 

CV for SAF and CAF; the red dotted circle shows the 

allocated share of SOS for aviation. 

Table 2 – Summary of the EIs and LTs of SAF and CAF, and the corresponding share of SOS of the aviation sector 

CV EI of SAF EI of CAF Share of SOS Unit SAF LT (%) CAF LT (%) 

Climate change: radiative forcing 9.45×10-2 0.385 3.50×10-2 [W∙m-2] 270 1100 

Climate change: atmospheric CO2 conc. 7.26 29.5 12.3 [ppm] 59 240 

Stratospheric ozone depletion 3.76×10-4 1.88×10-7 9.63 [DU] 3.90×10-3 1.95×10-2 

Ocean acidification 2.21×10-2 8.97×10-2 0.10 [Ωarag] 23 93.1 

Biogeochemical flows: nitrogen cycle 2.32 0.315 2.17 [Tg∙N∙yr-1] 107 14.5 

Biogeochemical flows: phosphorus cycle 0.641 1.504 0.917 [Tg∙P∙yr-1] 69.9 164 

Land-system change 1.59×10-9 9.65×10-11 2.63 [%] 6.03×10-8 3.67×10-9 

Freshwater use 0.157 1.79×10-2 140 [km3∙yr-1] 0.11 1.28×10-2 

Atmospheric aerosol loading 2.44×10-7 1.04×10-7 8.75×10-3 [-] 2.79×10-3 1.19×10-3 

 

 
Figure 1 – Planetary boundaries mapped out for SAF and CAF 

5. Discussion 

5.1. Significance of results and implications 

5.1.1. Implications of environmental impact 

The EIs of each CV quantify the potential stress a 

particular activity exerts on Earth systems. Knowledge of 

EIs is fundamental for promoting sustainable practices by 

highlighting the hotspot inducing factors in current 

practices. Figure 1 suggests that the hotspots associated 

with SAFs are the CVs: radiative forcing, atmospheric CO2 

conc., ocean acidification, nitrogen and phosphorus cycle; 

what are the factors behind these large EIs? Figure 2 
reveals the contribution of each elementary flow on the CV. 

 
Figure 2 – Elementary flow contributions towards control variables 

Climate change and ocean acidification are dominated by 

the emissions of CO2, which is coherent with other studies 

conducted [29]. Considering this, and that radiative 

forcing of the aviation sector currently surpasses the 

ecological budget, it suggests the need to phase out the use 

of carbon-based aviation fuels. Ammonia is recognised as 

a viable alternative to carbon-based fuels [30]. However, 

the main culprit for biogeochemical flow of nitrogen is 
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NOx, which is a by-product of ammonia combustion. 

Caution is advised for the utilisation of ammonia-based 

aviation fuel as the established boundary for nitrogen 

flows in Table 2 has already been exceeded. 

 The transition from CAF to SAF process leads to the 

nitrogen cycle surpassing the share of SOS, which is 

extremely undesirable for a process. A hypothesis for this 

transgression is attributed to the complete combustion of 

the lights, a subprocess of the SAF production process. 

NOx is the main culprit for nitrogen cycle transgression, 

and its emission primarily stems from the combustion of 

atmospheric oxygen and nitrogen in flames [31]. The 

energy generated from the combustion process surpasses 

the requirements of the simulated plant. Opting to burn 

only the necessary mass of lights may result in reduced 

NOx emissions and consequently minimise the LT of 

nitrogen cycle.  

Aside from reducing the major contributors to EI, 

prudence is required when handling elementary flows 

characterised by large CF values as they possess a greater 

influence on the computation of EI. It is imperative to 

reduce the emissions of these compounds to minimise 

environmental impact. 

 EIs are helpful in evaluating the combined effects of 

individual elementary flows, however, its significance is 

contingent upon understanding the tolerance of Earth's 

environmental systems. Therefore, a comparison between 

EIs and the SOS is necessary to assess meaningful impact 

of human activities. While EIs identify contributing factors, 

discerning the specific LT of each boundary is crucial for 

effective change implementation. Without this element, 

the analysis remains a standard life cycle assessment. 

5.1.2. Implications of the level of transgression 

The LTs are rather sensitive to the allocation principle, and 

a contender for GF is economic value added (EVA); this 

allocation principle assigns a share proportional to 

economic value added [18, p. 13]. GF exclusively 

addresses environmental impact, whilst EVA exclusively 

focuses on economic value. In the current socioeconomic 

context, these concepts are engaged in a zero-sum game. 

 The focus of this study is environmental impact; 

therefore, the allocation of the share of SOS should be 

based upon the anthropogenic activity’s emissions. An 

allocation principle reasoned with economic value does 

not shed light on the activity’s environmental impact, thus 

GF aligns better with the research objectives than EVA. 

It is crucial to note the allocation principle of GF is 

based upon relative emissions not environmental impact; 

it is therefore most representative for the CVs of 

atmospheric CO2 conc. and radiative forcing, whereas 

other CVs, such as freshwater use, may not be represented 

accurately. This could detail why the LT for freshwater use 

is so low; freshwater use is not classed as a type of 

emission and with other sectors (e.g. agriculture) 

dominating its use, the EI of this CV is dwarfed. It could 

be reasoned that different allocation principles can be 

applied for each CV, but for the sake of uniformity and 

generality, GF is adopted for all boundaries. 
 With all the LTs mapped out, what are the 

implications on the environment within the aviation 

context? EIs improve when SAF is used; the LT for 

atmospheric CO2 conc. and the phosphorus cycle will stay 

within the assigned SOS, implying these CVs will see 

massive improvements. Despite improvements of SAF, the 

mass adoption of it will not save the earth. Whilst seven of 

the nine CVs are within the SOS, two of them, namely 

radiative forcing and the nitrogen cycle exceed the 

assigned SOS. The transgression of this space could cause 

detrimental effects to Earth systems. The reduction of the 

LT for radiative forcing from 1100% to 270% (Table 2) 

from the transition would still impose damage to the Earth, 

albeit representing a substantial improvement. 

5.1.3. Next steps 

Figure 1 clearly illustrates that Earth systems remain 

vulnerable even with the full adoption of SAF, but what 

implications does this hold for the aviation sector? 

Aviation has considerable impacts on our world, both 

environmentally and economically. The debate over 

whether policy initiatives should address the 

environmental impact of the aviation sector often hinges 
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on its economic contributions. With the aviation sector 

contributing 3.6% to the global GDP but accounting for 

only 3.5% of global emissions, policymakers might be 

hesitant to impose stringent restrictions, considering that 

aviation contributes to economic prosperity more rapidly 

than it poses environmental challenges. This leaves few 

solutions and may start from the individual; practising 

conscious consumerism could greatly reduce 

environmental impacts. 

 From the inventory analysis phase of the LCA, the 

total CO2 emissions to the air amount to 23,600 kg∙hr-1. 

Out of this, 13,900 kg∙hr-1 of CO2 is emitted during the 

SAF production process from burning the lights. This 

represents a maximum capture of CO2 if a carbon capture 

and storage (CCS) facility were to be implemented within 

the process. In order for the LT of radiative forcing to align 

with its allocated share of the SOS, it is necessary to reduce 

CO2 emissions to at least 2.88 times lower than the current 

level, which translates to a target of no more than 8,190 

kg∙hr-1 of CO2. With the implementation of a CCS process, 

the reduction in CO2 emissions would be (23,600 - 13,900) 

kg∙hr-1, resulting in a residual emission of 9,700 kg∙hr-1 in 

the best-case scenario, which unfortunately, still exceeds 

the target of 8,190 kg∙hr-1 required to prevent transgression 

of the radiative forcing limit. This analysis indicates that 

while CCS can substantially reduce emissions, its 

implementation in the SAF production process will at best 

contribute to Earth's degradation at a diminished rate. 

5.2. Limitations 

5.2.1. Uncertainties 

While LCA is a valuable tool, the results inherently 

involve uncertainties. These uncertainties mainly stem 

from background databases and the methodology 

employed to convert these data into the LTs. 

 The uncertainties for LTs stem from EI, and from 

Eq(1) , they can be traced back to LCIs and CFs. The 

background uncertainties linked to each of the LCIs were 

curated from the Ecoinvent database. However, the 

associated uncertainties of CFs are unknown. In [16], the 

the EIs calculated by Ryberg’s methodology and the ILCD 

2011 midpoint yielded an appreciable Spearman’s 

correlation coefficient of 0.85 for most CVs. Leveraging 

this, a rough estimate for the CF uncertainties is obtained. 

 
Figure 3 – Estimated uncertainties for each CV 

Following this, the combined uncertainty of the LCIs and 

CFs used in this study were enumerated by performing a 

Monte Carlo simulation on OpenLCA, with ILCD 2011 

method, yielding the uncertainties of the EIs, and 

consequently the LTs, depicted in Figure 3. Uncertainty 

analysis of the LTs provides crucial insights into the 

reliability of the calculated values. The error bars 

illustrated in Figure 3 span six standard deviations, 

indicating an almost 100% probability that the LTs fall 

within these bounds. 

A notable concern arises in the case of radiative 

forcing for the climate change boundary, where a 99% 

probability of transgression suggests an urgent need for 

corrective action. Atmospheric CO2 conc., which was 

initially perceived to be safely within the share of SOS, 

now has a 1% probability of transgressing. This presents a 

negative outlook on the climate change boundary. 

 The significant uncertainty associated with the 

biogeochemical flow of nitrogen is believed to be 

attributed towards the lack of a directly comparable impact 

category in the ILCD 2011 method. Hence the 

uncertainties of the nitrogen cycle are deemed unreliable 

as the method may account for irrelevant elementary flows. 
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On a positive note, there is still confidence that the 

remaining CVs will not violate their share of the SOS. 

5.2.2. Blackbox: OpenLCA and Aspen HYSYS 

Both Aspen HYSYS and OpenLCA were treated as black 

boxes in this study as the internal mechanisms of these 

applications were not directly accessible. This limitation 

introduced challenges in fully understanding the 

intricacies of the calculations produced and assumptions 

made by these tools, which emphasised the need for 

mindful interpretation of the outputs obtained. 

 The fundamental understanding of the LT of 

phosphorus cycle and freshwater use is currently not well 

understood; in-depth analysis into these black boxes could 

shed light on these values. OpenLCA states the main 

source of phosphorus stems from the treatment of sewage 

water, but the nature of the treatment is not well understood. 

On that note, source of water is primarily sewage water. 

5.2.3. Planetary boundaries framework 

The PBF plays an instrumental role in guiding the 

understanding of SAF’s position in the global 

environmental context. While this framework has been 

influential, one of its key shortcomings is the treatment of 

each boundary as an isolated system [32], failing to 

account for interactions between CVs. For example, the 

ocean acidification CV is heavily influenced by the 

atmospheric CO2 conc. CV. Changes in one boundary can 

also alter the limit of another; for example, increased 

climate change may increase the SOS of freshwater. 

 Furthermore, there are uncertainties associated with 

the SOS values defined by Rockström et al. [13], which 

has been attributed to the lack of scientific data and the 

intrinsic complexity of natural systems. The SOS values 

used in this study correspond to the lowest end of the 

uncertainty to ensure a risk-averse approach was adopted. 

5.3. Sensitivity analysis 

Sensitivity analysis is a key technique for evaluating the 

robustness of a process by examining the outcome when 

changes to different variables are made.  

 In the context of SAF, it is essential to understand 

how changes in the manufacturing process affect EIs, 

particularly in relation to the share of SOS. Can the 

production process be improved by making the process 

greener? By changing the inputs of the DAC process such 

that the electricity is sourced from renewable offshore 

wind and the natural gas furnace is replaced with an 

electric furnace, the observed impacts on the LTs are 

minimal, shown by the green dots of Figure 4, indicating 

that the EIs are desensitised to the DAC process. 

 

Figure 4 – LT of greenest and greyest power source for feedstock  

Another central aspect of the SAF process is the generation 

of green hydrogen, which is currently achieved through the 

electrolysis of water using renewable electricity powered 

by offshore wind. Changing this to electricity generated 

from fossil fuels significantly exacerbates the LTs for the 

climate change boundary, rendering them almost five 

times larger. This is observed in the red crosses in Figure 

4. This emphasises the dominance of green hydrogen 

generation on the LTs and the need for renewable 

electricity in this process. The energy-intensive nature of 

green hydrogen production [11, p. 14] is well known and 

is attributed to technology’s immaturity [25]. 

 Besides this, the LTs are heavily dependent on the 

demand for aviation fuel. Projections indicate a substantial 

increase in the global middle-class population, expected to 

reach 5.3 billion by 2030, showcasing a CAGR of 3.4% 

from 2018 [33]. Anticipating that over 60% of the 

population in 2030 will be part of the middle class, there is 

an expected surge in the demand for normal goods. The 

shift of aviation to a normal good, coupled with the growth 
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of the middle-class demographic, is poised to contribute to 

a rising demand for air travel. 

 

Figure 5 – Predicted LTs for SAF in 2030 based on the PBF 

The anticipated CAGR for flight-passenger demand from 

2019 to 2030 is projected at 3.3%, culminating in an 

estimated 5.64 billion passengers by 2030 [4, p. 13]. This 

increase in demand will lead to escalated production levels 

which could have a profound impact on the EIs associated 

with the production and use of SAF. The resulting LTs are 

illustrated in Figure 5, showing multiple limits 

transgressed, reinforcing the notion that SAFs are just an 

interim solution. Greener propulsion systems or changes in 

consumer behaviour are required to ensure aviation stays 

within its SOS in the future.  

 
6. Conclusion 

6.1. Key takeaways 

This study concludes SAF outperforms CAF, with five of 

the nine EIs for each CV lower than that of kerosene. Only 

two of nine CVs have their SOS transgressed for SAF, 

whilst three are transgressed for CAF. 

 Despite SAF presenting to be a better alternative to 

CAF, it is detrimental to Earth systems. As two CVs have 

transgressed the assigned SOS, it shows the transition to 

SAF is insufficient for the preservation of Earth systems. 

SAF is not the be the be all end all solution for aviation. 

 SAF only demonstrates itself as an interim fix. 

Alternatives such as hydrogen and battery-electric aircrafts 

have proven to be viable solutions for the future of aviation. 

ZeroAvia [34] and Eviation [35] are at the frontier of 

hydrogen and battery-electric development respectively. 

Green propulsion systems will only be poised for 

continued growth in the coming decades. 

6.2. Outlook and further research 

The study only explores the environmental impact of SAF 

on the aviation sector, but this assessment can extend 

beyond a unidimensional assessment. 

 As SAF has been identified as a temporary solution, 

an obvious next step is to perform the environmental 

assessment for more permanent solutions, namely 

hydrogen and batteries. An absolute environmental impact 

comparison of these solutions to SAF would provide a 

direction for aviation development. 

 Shifting away from theoretical models and 

assumptions, utilising real-life data from existing SAF 

production plants can provide more accurate insights and 

offer a more realistic and reliable view of the 

environmental performance of SAF. 

 Additionally, understanding and consequently 

reducing the uncertainty associated with the study is 

crucial to uphold the reliability of the results obtained. 

Further research could look to validate uncertainties of the 

CF’s used in this study [16] by directly quantifying them. 

 The attributional scope adopted in this LCA 

evaluates EIs at a particular point in time and allocates 

impacts based on pre-established parameters. As such, it 

fails to capture the interactions and changes of the dynamic 

system. Alternatively, the consequential LCA tracks the 

interplay across different supply chains and responds to 

system changes, which could provide a nuanced 

understanding of the SAF process. While the 

consequential approach offers a more accurate view, it is 

difficult to implement due to the added complexity of 

intertwined models and data scarcity. 

 Despite the stellar environmental performance of 

SAFs, a critical dimension absent from this analysis is the 
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economic feasibility of its implementation, which is 

greatly influenced by variables such as manufacturing 

costs and market dynamics. Disregarding economics 

constrains a comprehensive understanding of the overall 

sustainability of SAF, as it is essential to weigh both 

environmental benefits and economics for an informed 

decision-making process. Future research initiatives 

should include economic assessment into the study, 

ensuring a thorough evaluation of SAF's suitability. 
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Superhydrophobic Cotton: Fabrication and Application in Oil/Water Separation
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Abstract

In the context of ongoing rapid industrial evolution, the inevitability of oily wastewater production poses
challenges to conventional treatment methods due to their inefficiency and high costs. This study addresses this
issue by exploring the use of superhydrophobic cotton for efficient oil/water separation. The superhydrophobic
cotton, synthesised through co-hydrolysis and co-condensation of tetraethoxysilane (TEOS) and octadecylsilane
(ODTMS), exhibits a water contact angle (WCA) of 154.7°and minimal water sorption capacity (0.06g/g) that is
much lower than raw cotton (43.3g/g). With an oil/water separation efficiency exceeding 97.5% across various
conditions, the modified cotton demonstrates high durability, maintaining a WCA above 150°. Moreover, the
superhydrophobic cotton shows its reusability with a separation efficiency above 98.6% even after 20 separation
cycles, proving its potential as a sustainable solution for oily wastewater treatment. In summary, the prepared
superhydrophobic cotton presents a promising and eco-friendly alternative for the efficient separation of the
oil/water mixtures, offering excellent chemical durability, high-efficiency performance and recyclability.

Keywords: Superhydrophobic, Oil/water separation, Durability, Recyclability

1. Introduction and Background
According to United Nations Sustainable Develop-
ment Goal 6, access to clean water, sanitation and
hygiene stands as the fundamental human necessity
for health and well-being [1]. However, with the rapid
industrialisation especially in the oil and gas, petro-
chemical and food sectors nowadays, the generation of
oily wastewater is unavoidable, whether as a result of
accidents or operational processes [2]. For example,
the Deepwater Horizon oil spill as one of the largest
oil spills in history, was deemed to have significant
impacts on marine lives, human health and socioe-
conomic [3]. To address these challenges, numer-
ous methods for oil/water separation have been intro-
duced. Mechanical tools such as booms and skimmers
are used in the industry to clean up oil spills but energy
or high pressure is required to operate [4][5]. Besides,
traditional methods such as coagulation-flocculation,
skimming, centrifugation, flotation and sedimentation
although are conventionally used, they generally have
low separation efficiency, bulky equipment and high
cost [6]. In addition, in situ burning of oil can po-
tentially cause air pollution despite the fact that it can
remove up to 98% of an oil spill [5]. Given the in-
herent flaws in the mentioned methods, there is a pro-
claimed need for the development of highly efficient
and cost-effective materials for oil/water separation.

The idea of using superhydrophobic and super-
oleophilic (mesh-based) membranes for separating oil

and water was first proposed in 2004 drawing inspi-
ration from the characteristics of the lotus leaf [7].
Since then, many studies have been done on pro-
ducing novel superhydrophobic materials because of
their ability to showcase high oil/water separation ef-
ficiency by selectively only absorbing oil while re-
pelling water [8][9][10]. The superhydrophobicity
of a material is defined as the phenomenon with the
contact angle between water and the corresponding
material surface greater than 150°[11]. For instance,
Spathi et al. reported that superhydrophobic pow-
der with a WCA of ˜153°can be produced by dry
milling paper sludge ash (PSA) in the presence of
a fatty acid surface functionalising agent [12]. Shah
et al. looked into the modification of eggshells with
stearic acid to produce superhydrophobic powder with
WCA of 169°and Liu et al. fabricated a superhy-
drophobic polyurethane sponge that showed outstand-
ing oil/water separation efficiency (greater than 97%)
[13][14]. Other than that, it was proven by Xu et
al. that the fabrication of superhydrophobic stain-
less steel mesh resulted in a high oil/water efficiency
of 97% [15]. Cotton, which is an easily accessible
crop, is also undoubtedly suitable for the fabrication
of superhydrophobic surfaces for oil/water separation.
Superhydrophobic cotton fibres were deemed to be
ideal in absorbing oil due to their lightweight, and
loose internal structure with a large liquid adsorption
capacity [16]. However, current techniques for the
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fabrication of superhydrophobic cotton wool, which
includes the spraying method, layer-by-layer assem-
bly method, and ultrasound-assisted in situ growth
method are complex, involve multiple steps or are
time-consuming [17][18].

The main aim of this research was to synthesise
superhydrophobic cotton that is durable, cheap, and
environmentally friendly via simple chemical modifi-
cation for oil/water separation. The other objectives
of this research were: (1) to investigate the effects
of different pre-treatment methods on the superhy-
drophobicity of the cotton, (2) characterisation of the
superhydrophobic cotton surface, (3) to evaluate the
water sorption capacity of raw and modified cotton,
(4) to analyse the oil/water separation efficiency at dif-
ferent conditions (temperature and mixing speed) and
(5) to investigate the chemical and laundering dura-
bility of the superhydrophobic cotton as well as its
recyclability.

2. Materials and Methodology

2.1. Materials

Cotton wool, TEOS(� 99.0%), sodium chloride
(NaCl) (� 99.0%), oil red O, methylene blue solu-
tion, sodium dodecyl sulfate (SDS) surfactant, pyri-
dine (� 99.8%) ammonia solution (28%), anhy-
drous heptane (� 99.0%), paraffin oil and anhy-
drous hexane (� 99.0%) were sourced from Sigma
Aldrich (Gillingham, UK). Ethanol (� 99.8%), ace-
tone (� 99.8%), sodium hydroxide (NaOH) pellets,
cyclohexane (� 99.8%), acetonitrile (� 99.0%), hy-
drochloric acid (HCl)(� 37%), toluene (� 99.5%)
and ODTMS (C18) (90%) were purchased from VWR
(Lutterworth, UK). De-ionised (DI) water was pro-
vided by PURELAB Chorus 1 (ELGA LabWater) wa-
ter purification system. Cooking oils (rapeseed oil,
sunflower oil and olive oil) were sourced from a local
supermarket.

2.2. Pre-treatment and synthesis of superhy-
drophobic cotton

Three different methods for cotton pre-treatment were
used in this research, namely pre-treating with (a)
ethanol and acetone, (b) NaOH and (c) cyclohexane.
The purpose of pre-treatment was to remove surface
impurities and wax on the cotton.

(a) For cotton pre-treatment with ethanol and ace-
tone, cotton wool was washed twice in ethanol
followed by acetone once. The cotton was
squeezed to remove excess acetone before dry-
ing in a vacuum oven at 70°C and 500 mb for
1h.

(b) Cotton was washed with acetone once and dried
at 80°C and 200 mb. The dried cotton was then
mixed with 1M NaOH solution at 60°C for 10
min. The cotton was washed with DI water five
times before drying it in the oven overnight at
60°C and 300 mb.

(c) The same procedure as (b) was used except for
mixing the cotton with cyclohexane for 2h instead
of 10 min.

The method to synthesise superhydrophobic cotton
was the same for all three pre-treatment methods. A
mixture of DI water (0.6 mol), ethanol (1.7 mol),
TEOS (0.03 mol) and ODTMS (6 mmol) was pre-
pared and mixed with a magnetic stirrer for 5 min.
1000 mg of pre-treated cotton was added and soaked
in the solution for 5 min followed by adding 0.08 mol
of ammonia dropwise into it. The solution was left
to react overnight at room temperature with a stirring
speed of 500 rpm. Subsequently, the modified cot-
ton was recovered and washed with ethanol twice and
acetone once. The fabricated cotton was dried in the
oven at 80°C and 800 mb for 1h. Compressed air was
then used to blow the silica nanoparticles off the dried
and modified cotton.

2.3. Characterisation

WCA was measured to assess the cotton’s superhy-
drophobicity by using 590 goniometer/ tensiometer
(Ramé-hart Instrument Co., USA). This was done by
using the sessile drop method and by placing water
droplets (7 µL) on at least three different positions on
a pressed cotton surface to obtain average measure-
ments. The surface morphology was observed us-
ing Gemini 1525 scanning electron microscope (Carl
Zeiss AG, Germany) at 5kV with the cotton samples
coated with gold. The surface chemistry was anal-
ysed by X-ray photoelectron spectroscopy (XPS) (K-
Alpha+, Thermo-Fisher Scientific Inc., USA).

2.4. Oil/water separation experiments

For batch experiments with cooking oils, 2 ml of oil
was added to 20 ml of DI water and ˜200 mg of cotton
was placed into the mixture for 5 min. 5 ml of hex-
ane (solvent) was added to the mixture to extract the
remaining oil which was quantified using a UV-Vis
spectrometer (nanodrop 2000c, Thermo-Fisher Sci-
entific Inc., USA). The separation efficiency ([) was
calculated from:

[(%) = (+� �+')
+�

⇥ 100% (1)

2
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where +� is the initial oil volume (2 ml) and +' is the
residual oil volume. For batch experiments with UV
inactive oils, the initial mass of the glass vial with its
lid and around 20 ml of DI water was first measured
using a weighing balance. ˜2 ml of oil was added to
the glass vial and the mass of the glass vial containing
oil with its lid was then measured. The difference
between the two measurements is the initial mass of
oil, <� . ˜200 mg of cotton was left soaked in the
mixture for 5 min and the mass of the glass vial was
measured again. To find out the final mass of oil, the
final mass of the glass vial is subtracted from its initial
mass. To ensure minimal vapourisation of oil to the
surroundings, the lid must be closed tight immediately
all the time. The separation efficiency was quantified
using Equation 2:

[(%) = (<� � <')
<�

⇥ 100% (2)

where <� and <' represent the initial and final mass
of oil respectively.

For oil/water separation in a flow system, a
laboratory-scale filtration system was set up, com-
prising a 5 ml syringe packed with approximately 200
mg of modified cotton, connected to a reservoir con-
taining oil/water mixture. For this experiment, olive
oil was selected due to its distinctive colour compared
to other cooking oils. The reservoir and syringe were
linked through a pump, enabling control over the flow
rate of the mixture. A beaker was positioned under the
syringe to collect the effluent. The objective of this
setup is to examine the correlation between filtrate
volume and oil concentration.

2.5. Chemical and laundering durability

To assess the chemical durability of the cotton, the
WCA and water sorption capacity were measured at
different conditions: immersing ˜10 mg of cotton
in different solvents (toluene, acetonitrile, pyridine
and NaCl solution) and extreme pHs (HCl solution
(pH1.3) and ammonia solution (pH13.5)) for 24h. For
a laundry test, the cotton was mixed with 0.15 wt%
SDS surfactant at 200 rpm for 24h. The cotton sam-
ples were then dried and soaked in 10 ml of water.
The water sorption capacity was calculated from:

(F (6/6) =
<2 � <1
<1

(3)

where <1 and <2 are the initial and final mass of
cotton. The chemical and laundering durability was
also examined by measuring the WCA.

2.6. Recyclability

The modified cotton was placed in a mixture of 2 ml of
oil and 20 ml of water. After each separation cycle, the
modified cotton was washed with hexane to remove
the oil absorbed and was dried in preparation for an-
other separation cycle. A total of 20 cycles was carried
out in this research and measurement was taken for ev-
ery 5 cycles. Measurement was taken by quantifying
the amount of remaining oil using UV-Vis. The oil-
water separation efficiency was then calculated using
Equation 1.

3. Results and Discussion

3.1. Opting for NaOH as the pre-treatment mate-
rial

The necessity for pre-treatment arises from the imper-
ative to expose a greater number of hydroxyl groups
on the cotton surface, facilitating a more facile at-
tachment of silica nanoparticles [19]. As illustrated
in Figure 1, the WCAs resulting from three distinc-
tive pre-treatment methods exhibited a range from
155°to 148°. The WCAs were 154.7°, 147.0°and
133.8°for NaOH, ethanol with acetone and cyclohex-
ane pre-treated cotton respectively. This finding was
consistent with the research conducted by Nguyen-
Tri et al. in 2019, where employing a chemical
pre-treatment involving NaOH resulted in contact an-
gle values higher (147°– 173 °) than those obtained
through pre-treatment with water and ethanol alone
(91°) [20].

Further investigation into the effectiveness of pre-
treatment methods involved an analysis of their respec-
tive water sorption capacities. NaOH pre-treated cot-
ton demonstrated the lowest water sorption capacity at
0.06 g/g, followed by acetone, with ethanol (0.11g/g)
and cyclohexane (0.15g/g) pre-treatment method. Al-
though cotton pre-treated with cyclohexane exhibited
water sorption more than twice that of the NaOH-
treated cotton, it still performed better than the raw
cotton that had water sorption of 43.3±0.3g/g. Con-
sequently, NaOH as the pre-treatment material was
utilised for subsequent experiments in this research.

3.2. Surface Morphology of raw cotton and mod-
ified cotton

3.2.1. Cotton Modification

Pure cotton has hydrophilic and superoleophilic prop-
erties, consisting of 88%-97% cellulose, waxes, pro-
tein, and pectin [21]. The cotton fibre can undergo
chemical modification using TEOS and ODTMS. The
pre-treatment involved removing the plant wax to

3
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Figure 1: Water contact angle and water sorption (g/g) of cotton
pre-treated with different materials: NaOH, ethanol+acetone and
cyclohexane

facilitate easy attachment of silica nanoparticles as
shown in Figure 2. SEM was utilized to observe the
visual differences between raw cotton and modified
cotton. There was no significant distinction between
the two in their raw and pre-treated states. Initially,
the surface of the cotton was smooth; however, after
modification, a substantial amount of silica adhered
and covered the entire surface of the cotton. This
modification provided hydrophobic chains which con-
tributed to the water-repellent property to the cotton
fibre.

Figure 2: Schematic illustration of superhydrophobic cotton mod-
ification.

3.2.2. XPS Analysis

This section focused on analysing the cotton surface
chemical properties by utilising XPS and the result
was shown in Figure 3. The XPS data analysis for pure
cotton showed the presence of two distinct peaks with
binding energies of 533.6 eV and 287.1 eV, which were
attributed to O1s and C1s respectively. These peaks
proved the presence of oxygen and carbon molecules
in the raw cotton. Upon the modification of cotton
using ODTMS and TEOS, a shift in the peaks was
observed. Specifically, the oxygen peak was now po-

sitioned at 532.6 eV which could be due to contribu-
tions from the C-Si bond. The carbon peak underwent
a significant change, shifting to 384.6 eV, indicating
the presence of Si-O-Si bonds. Additionally, the in-
troduction of silicon (Si) was evident, presented by
two peaks at 103.1 eV and 154.1 eV. The XPS also
suggested that there was coverage of Si at 11.08%.
The shifting in peaks in the XPS spectra signified the
successful attachment of silica into the cotton struc-
ture which provided the hydrophobic property to the
cotton. The presence of coated silica nanoparticles on
the cotton fibre surfaces was also shown through the
observed mass gain of cotton, measuring 143 mg for
every 1027 mg of cotton, after removing the loosely
bound silica nanoparticles.

3.2.3. Wettability

Surface wettability is defined as the attraction of a
liquid phase to a solid phase and it is usually char-
acterised by the water contact angle (WCA)[22]. A
surface is considered hydrophilic when the WCA is
less than 90°and hydrophobic when the WCA is more
than 90°but less than 150°[22]. Regarding a super-
hydrophobic surface, it requires the WCA to surpass
150°[23]. The WCA for untreated cotton was zero
as it absorbed the water droplet upon contact. As
mentioned in Section 3.1, NaOH pre-treated cotton
that had a WCA of 154.7°equipped the requirement
as a superhydrophobic surface. However, both cotton
pre-treated with cyclohexane and ethanol with acetone
were deemed to be just hydrophobic as they had WCA
less than 150°. The differences in the cotton WCA
between three different pre-treatment methods were
visualised in Figure 1.

3.3. Oil/water separation in a batch system

In this section, the oil/water separation efficiency in
a batch system was investigated from several aspects.
The purpose of carrying out the experiment in a static
condition was to simulate an oil spill incident where
cotton could be used to absorb the oil. From Figure
4, the cotton showed an impressive capability in ab-
sorbing oil which was evident with the absorption of
red dyed oil and no visible residue was left. Addition-
ally, the modified cotton also had a high affinity to oil
since it did not absorb water during the process. Fol-
lowing this, an investigation was done to determine
the efficiency of fabricated superhydrophobic cotton
in absorbing various oil-based systems. Other than
that, further study was conducted which involved the
impact of different operational parameters, including
temperatures and mixing speeds, on the separation

4
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) SEM image of the surface of raw cotton fibre, (b) SEM image of the pre-treated cotton fibre surface, (c) SEM image of
the modified cotton fibre surface coated densely with silica nanoparticles, (d) XPS spectra of raw cotton fibre surface with only C1s
and O1s, (e) XPS spectra of modified cotton fibre surface with the presence of Si2s and Si2p at 103.1 and 154.1 eV and (f) the cotton
showed superhydrophobicity by repelling water dyed in blue (left) and the raw cotton absorbed water (right).

efficiency of the superhydrophobic cotton.

(a) (b)

(c) (d)

Figure 4: Photographs for oil/water separation by superhydropho-
bic cotton in a batch system. (a) clear water, (b) oil dyed in red
floating on the water surface, (c) cotton submerged in the mixture
and (d) oil was absorbed by the modified cotton.

3.3.1. Efficiency in oil/water separation for differ-
ent oil-based systems

Other than petroleum, it was observed that there was
a substantial volume of waste cooking oil that caused
water pollution and there was inefficient cooking oil
waste management taking place [24]. Therefore, in
this research, the efficiency of superhydrophobic cot-
ton in absorbing various oils – sunflower oil, rapeseed
oil, olive oil, toluene, heptane, and paraffin oil from

their respective oil/water mixtures was investigated.

For three cooking oils, the separation efficiency was
evaluated using Equation 1 whereas the separation ef-
ficiency for toluene, heptane, and paraffin oil involved
the use of Equation 2. The separation efficiencies
of superhydrophobic cotton for sunflower oil/water,
rapeseed oil/water, olive oil/water, toluene/water, hep-
tane/water and paraffin oil/water were 98.9%, 98.6%,
98.7%, 98.9%, 99.1% and 98.8% respectively. De-
spite two methods: gravimetry and UV-Vis were used
to quantify the oil absorbed by the modified cotton,
the results were deemed reliable as the error bars
were minimal with the largest value being ±0.32%.
In comparison to other reported materials such as
stainless-steel mesh coated with cellulose nanofiber
(CNF), although almost the same toluene/water sep-
aration efficiency (97.6%) was reported, the prepa-
ration process was more complicated than fabricat-
ing a superhydrophobic cotton [25]. Apart from that,
Pan et al. conducted a study indicating that the fab-
rication of cotton through an ultrasound-assisted in
situ growth method achieved a separation efficiency
of more than 96%, but this approach was complex and
time-consuming [18]. As the efficiencies of oil-water
separation were nearly identical, further experiments
utilised olive oil because of its darker colour, which
facilitated easier observation.

5
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Figure 5: Oil/water separation efficiency (%) of superhydrophobic
cotton in different oil-based systems.

3.3.2. Influence of temperature on the oil/water
separation efficiency

Temperature has always been one of the most funda-
mental aspects to investigate when it comes to sepa-
ration processes. In this research, it was essential to
investigate the impact of temperature on the efficiency
of oil/water separation, given the variations in tem-
perature across different countries. For instance, the
average water temperature of the North Sea is around
12°C over the year whereas the seawater temperature
can reach around 26.5°C in the South China Sea [26].
Furthermore, once the relationship between tempera-
ture and oil/water separation is understood, an optimal
operating temperature can be determined for effective
oily wastewater treatment.

Experiments were conducted by placing ˜200mg
cotton into 20 ml of water with 2 ml of olive oil
at 10°C, room temperature (23°C) and 60°C. As de-
picted in Figure 6, elevating the temperature of the oil
and water mixture had been observed to enhance sep-
aration efficiency. There was a slight increase in the
oil/water separation efficiency of around 0.7% when
transitioning from 10°C to 60°C. This finding could
be explained by the fact that an increase in temperature
caused a reduction in oil viscosity. As the mobility
ratio of oil to water rose, it led to an improved flow ca-
pability of the oil phase, thereby enhancing the mass
transfer rate of oil into the cotton [27]. The observed
outcome also could be ascribed to the expansion of
pores and the formation of new active sites on the ad-
sorbent’s surface, resulting from distortion due to the
temperature increment [28]. Based on these results,
the cotton was able to maintain approximately the
same separation efficiency in this temperature range
which indicates its capability to perform well in a sim-
ilar environment. While it was believed that raising

the temperature could improve separation efficiency,
the actual enhancement was marginal and there is a
potential for increased costs at higher temperatures.

3.3.3. Effect of mixing speed on the oil/water sep-
aration efficiency

To model the weather and wave movements in the
ocean, it was crucial to take into account the impact
of agitation speed on the oil/water separation. The
mixing rate was a key element that influenced both
the development of the outer boundary layer and the
dispersion of oil within the bulk solution. Therefore,
an experiment was done to explore the impact of mix-
ing speed on the separation efficiency.

The oil and water were mixed for 5 min before soak-
ing the cotton in. When the mixing speed increased
from 200 rpm to 400 rpm, the separation efficiency
decreased. A reduction in the separation efficiency
with the increase of mixing speed could be due to
the formation of oil-water emulsion which weakened
the attraction forces between the oil molecules and the
adsorption sites on the surface of the cotton. It was ob-
served that the oil-water emulsion was unstable when
the mixing rate was 400 rpm where macroemulsion
was formed. Since macroemulsion droplets will be
separated into two-phase mixtures again in minutes
after the oil extraction by modified cotton, the UV-Vis
picked up the residual oil, making the oil/water sepa-
ration efficiency lower [29]. However, an increase in
the mixing speed to 600 rpm resulted in a significant
efficiency improvement, possibly due to the formation
of a stable oil-water emulsion at this speed, leading to
a poor extraction of oil from the sample.

Figure 6: Oil/water separation efficiency (%) of modified cotton
in different RPMs and temperatures.
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3.4. Oil/water separation in flow system

Fixed bed columns are commonly employed for prac-
tical purposes because of their convenient and contin-
uous operational characteristics, for example in H2S
adsorption separations [30]. Hence, this section cen-
tred on the oil/water separation process in a continu-
ous flow system by using a syringe as a column packed
with the modified cotton.

3.4.1. Breakthrough curve

To simulate the implementation of the superhydropho-
bic cotton in an industrial condition, an oil concentra-
tion of 8000 ppm was used to construct a breakthrough
curve under a consistent flow rate of 0.62 ml/s at room
temperature. The t=0 point was marked at the mo-
ment when a droplet of the mixture emerged from
the syringe. Samples of 4 ml each were extracted at
60-second intervals to measure the oil volume left in
the filtrate. A plot of ⇠4/⇠0 against time was con-
structed where ⇠4 represents the outlet concentration
of oil, and ⇠0 denotes the initial oil concentration in
the reservoir. As depicted in Figure 7, the oil concen-
tration remained at 0 initially, gradually increasing
around 420 seconds. There was a distinct jump af-
ter 420 seconds, where the value of ⇠4/⇠0 almost
reached unity. Following this jump, the concentra-
tion remained constant. Analysis of the breakthrough
curve indicated that at an oil concentration of 8000
ppm and a steady flow rate of 0.62 ml/s, the cotton
became saturated with oil by 600 seconds.

The flow system exhibited non-homogeneity as it
evolved into a two-phase mixture along the pipeline.
During the experiment, it was observed that oil ad-
hered to both the inner pipe and syringe walls. This
led to the value of ⇠4/⇠0 not precisely equal to 1, in-
dicating that the outlet concentration differs from the
inlet concentration after reaching the breakthrough
point. The point where ⇠4/⇠0 reached its peak be-
fore decreasing to a constant could be attributed to the
non-uniform distribution of oil and water within the
system which led to variations in concentration along
the flow path.

3.4.2. Effect of oil concentration on the filtrate vol-
ume

Typically, the concentration of oil in industrial oily
wastewater systems ranges from 10 ppm to 200000
ppm [31]. Different regulatory thresholds for the
maximum oil concentration in the discharge of oily
wastewater were established by many countries and
the limits normally fell within the range of 5 to 100
ppm [2]. Therefore, it is important to treat the oily

Figure 7: Breakthrough curve for oil (8000ppm) sorption using
superhydrophobic cotton.

wastewater before discharging into the ocean. Since
it was reported by Rasouli that there will be no sig-
nificant impact on the oil/water separation efficiency
with the changes in oil concentrations, it was decided
to explore the relationship between oil concentration
and the filtrate volume in this research [32].

The same experimental setup for the breakthrough
curve was applied but with varying oil concentra-
tions – 4000 ppm, 8000 ppm, 12000 ppm, 16000 ppm
and 20000 ppm. As indicated in Figure 8, when the
oil concentration increased, less filtrate was collected
prior to the breakthrough of the filtration system. This
was due to the fact that at a consistent flow rate of 0.62
ml/s, increasing oil concentrations will cause more oil
particles to be absorbed into the cotton, resulting in
an increased oil absorption rate, thereby yielding a
smaller volume of filtrate. This aligned with the find-
ings of Huang and Lim, who clarified that the decrease
in filtrate volume with increasing oil concentration re-
sulted from a reduction in the hydraulic conductivity
of the filtration system [33]. It was also noticed that
the time taken for the column to be saturated became
shorter with the increase in oil concentration. From
a theoretical aspect, according to Darcy’s law, with a
reduction in both the hydraulic conductivity and time
taken and provided that all other parameters are kept
constant, the filtrate volume will decrease as well [34].

1
�

3+

3C
=
 (��%)

;
(4)

where � is the cross-sectional area of the bed,+ is the
filtrate volume,  is the hydraulic conductivity, �%
is the pressure drop across the bed and ; is the bed
thickness.7

422



Figure 8: The filtrate volume associated with different oil con-
centrations.

3.5. Chemical and laundering durability

The limited durability of superhydrophobic cotton
wool poses a challenge to their practical use. There-
fore, the chemical and laundering durability of su-
perhydrophobic cotton is an important aspect to en-
sure that the cotton will be long-lasting and can be
reused. The chemical durability of modified cotton
was determined by submerging it in six distinct so-
lutions including solvents such as acetonitrile, NaCl,
pyridine and toluene and solutions with extreme pH
values (pH 1.3 and pH 13.5). The laundering durabil-
ity of the modified cotton was examined by a laundry
test with the modified cotton being mixed in a 0.15
wt% SDS surfactant at 200 rpm for 24h. Post-testing,
it was observed that the modified cotton surfaces were
still under good condition with no noticeable differ-
ence in the WCAs of the cotton before and after the
exposure to these solutions; they consistently main-
tained an angle of around 150°. Compared to the
pristine modified cotton with a WCA of 154.7°, there
was only a slight decrease of around 5°in the cotton
WCA after experiencing the harsh conditions.

The chemical and physical stability can also be val-
idated by quantifying the water sorption of the modi-
fied cotton. As illustrated in Figure 9, the cotton water
sorption remained under 0.5 g/g after the durability
tests. The results for cotton immersing in acetonitrile
and pyridine were comparable to the water sorption
of the clean modified cotton wool (0.06 g/g). For the
laundry test (32 cycles with 1 laundry cycle = 45min-
utes), although the water sorption was around 8 times
higher than the clean modified cotton, it still exhibited
a lot less water sorption compared to the raw cotton
that had a water sorption capacity of 43.3 g/g. These
results demonstrated that the superhydrophobic cotton

had outstanding resistance towards rigorous chemical
environments which displayed its ability to be applied
in the oily wastewater treatment.

It was expected for the water sorption capacity to
have nearly identical values across all conditions as
the WCAs were almost the same. However, contrary
outcomes were observed and there were substantial
margins of uncertainty in the measurements, which
may result from the different degrees of shedding of
cotton fibres while submerged, causing the actual cot-
ton mass to be less than the initial cotton mass mea-
sured.

Figure 9: WCAs and water sorption capacities of the modified
cotton after being immersed in acetonitrile, NaCl solution, pyri-
dine, toluene, HCl (pH 1.3), ammonia solution (pH13.5) and SDS
surfactant for 24 hours.

3.6. Recyclability

The ability to recycle and reuse is a crucial factor
that determines the reusability and effectiveness of
the sorbent, in this case, the superhydrophobic cotton
[35]. Several studies have been done on investigat-
ing the recyclability of superhydrophobic cotton wool,
but they mainly focussed on the changes in the cot-
ton WCA [36]. As the main purpose of this research
was to fabricate durable superhydrophobic cotton for
oily wastewater treatment, the oil/water separation ef-
ficiency was the key measure in this section instead.

Figure 10 outlined the relationship between the
oil/water separation efficiency and the number of sep-
aration cycles. The cotton was washed with hexane
after each separation cycle to remove oil from the cot-
ton for sorbent regeneration so that it could be reused
for the next oil/water separation cycle. Following 20
times of sorption/desorption, the oil/water separation
efficiency of the superhydrophobic cotton showed an
approximate decrease of 1.4%. The decrease in the
oil sorption could be due to the destruction of the hy-
drophobic layer on the surface of cotton fibres owing
to repeated uses and multiple washes [37]. This can
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be validated by noting that the cotton absorbed more
water as the number of separation cycle increased.
Another factor of the reduction in oil/water separation
efficiency was the residual oil inside the cotton wool
[38]. The residual oil resulted in a reduction of active
sites on the cotton surfaces, leading to a decreased
capacity for oil sorption. Regardless, the separation
efficiencies remained above 98.6% for 20 separation
cycles, highlighting excellent recyclability for its ap-
plication in oil/water separation.

Figure 10: Oil/water separation efficiencies of modified cotton
after a different number of separation cycles.

4. Conclusion and Outlook

The pre-treatment process of cotton using NaOH,
followed by chemical modification using TEOS and
ODTMS had proven to be successful in introducing a
superhydrophobic property, as evidenced by a contact
angle of 154.7°. Upon the cotton modification, SEM
analysis revealed complete coverage of cotton fibres
by silica nanoparticles. The hydrophobic chains in
the silica contributed to the water-repellent property
of the cotton. This superhydrophobic cotton showed
significant applicability in oil/water separation sys-
tems, proven by a separation of nearly 99% when using
different oil-based systems. Durability and launder-
ing tests confirmed that the modified cotton exhibited
great durability when immersed in various solutions,
with only a decrease in WCA of around 5°. Addition-
ally, the water sorption capacity of the cotton main-
tained below 0.5 g/g, proving its endurance in harsh
environments. Furthermore, the modified cotton was
proved to be sustainable and environmentally friendly
by being reusable for up to 20 cycles. In a separate ex-
periment, it was observed that the superhydrophobic
cotton could treat less water when the oil/water mix-
ture had higher oil content. Improvements in oil/water
separation within a continuous system can be achieved
by increasing the temperature and maintaining a low

mixing speed. These collective findings have posi-
tioned the superhydrophobic cotton as a promising
solution with great potential in oil/water separation.

Looking ahead, the upcoming research will centre
on the synthesis of cotton, focusing on understand-
ing how TEOS and ODTMS concentrations influence
superhydrophobicity to ensure the optimal amount of
TEOS and ODTMS are used to minimise wastage.
The investigation will extend to various operational
parameters in the continuous flow system such as flow
rate. This also involves experimenting with param-
eters like void fraction, diameter, or thickness of the
packing. The research scope also involves testing
the modified cotton’s effectiveness in handling heavier
oils, particularly petroleum-based substances. More-
over, it is important to address the inaccuracies in
data resulting from the oil’s affinity to wall surfaces
to enhance the findings and ensure the reliability of
the results. By delving into these aspects, the aim
is to enhance the robustness and applicability of su-
perhydrophobic cotton in oil/water separation, hence
broadening its potential in diverse environments.
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Abstract 
Lithium-ion batteries (LIBs) have dominated the majority of battery applications for many years. However, they 
face a number of growing challenges, including a scarce abundance of chemical components for manufacturing 
LIBs, safety concerns and the high manufacturing cost. A way to combat and alleviate these challenges is to 
research and develop alternative battery chemistries such as aluminium dual-ion batteries (ADIBs) with graphitic 
based cathode materials. In this study, six different graphitic cathode materials were investigated with each 
material having three different quantities tested. These materials included graphene nano-platelets, pure graphite, 
pure soft carbon (SC), 75wt%:25wt% of graphite:SC, 25wt%:75wt% of graphite:SC and finally 50wt%:50wt% 
of graphite:SC. ADIB coin cells for each cathode material were constructed within an inert argon atmosphere 
using Aluminium as the anode and 1-ethyl-3-methylimidazolium chloride [EMIm]Cl as the electrolyte. The cells 
were tested which involved 200 galvanostatic cycles of charging/discharging under a constant current density of 
500 mA/g. Results revealed that the 75wt%:25wt% of graphite:SC and pure graphite were generally the best 
performing cathode materials while a greater presence of SC in the cathode was generally inversely proportional 
to the overall cell performance. Two trends regarding the impact of mass loading were also observed. Graphite 
revealed a larger initial coulombic efficiency, a better capacity retention with higher amount of active material, 
while 75wt% graphite and 25wt% soft carbon and pure soft carbon had the opposite trends. 
 
Key words: Aluminium Dual-Ion Batteries (ADIBs), tuneable composite cathode, active material loading, 
graphitic cathode, soft carbon, galvanostatic cycling. 

Ⅰ. Introduction 
Expanding the use of renewable energy resources 
(RESs) and low-carbon technology, as well as the 
utilization of microgrids and smart grids, has been 
considered as the path of decarbonizing the planet 
and combating climate change [1]. The European 
Union considers the advancement of battery 
technology as critical in developing the green 
economy because batteries can be used to maintain 
a balance between supply and demand within the 
electricity grid while mitigating the inherent 
intermittency of RESs thanks to their energy storage 
capacity and rechargeable characteristics [2]. 
Presently, lithium-ion batteries (LIBs) dominate the 
battery market because of their ability to have a high 
voltage and capacity per unit mass and volume. This 
is down to lithium’s small atomic weight and radius 
[3]. From a material perspective, however, 
manufacturing LIBs that can satisfy energy demands 
is a challenge. Concerns include the low relative 
abundance of the chemical elements necessary for 
electrodes, such as cobalt, and high energy cost 
associated with battery production, transportation 
and recycling (400kWh are needed to make 1kWh 
LIBs, releasing about 75kg CO2, according to the 
early integrated LCA estimate) [4]. Therefore, 
potential techniques for developing forefront 
sustainable storage technologies hinge on the 
investigation of batteries with alkali-metal-anodes, 
for example, Na, K, Mg, and Al. 
Rechargeable, high-valent aluminium-dual ion 
batteries (ADIBs) offer possibilities for safe, low 
cost and high energy density operation. Driven from 

its inertness and ease of handling under atmospheric 
conditions, aluminium has a superior safety 
characteristic. The high cost-effectiveness of 
aluminium is attributable to its abundance (it is the 
most abundant metal in the earth’s crust) and the 
existing established industrial and recycling 
infrastructure of aluminium. Compared to LIBs, the 
energy density of AIBs could be further enhanced on 
a per unit volume basis because the volumetric 
capacity of aluminium (8.056 Ah/cm3) is four times 
larger than that of lithium (2.042 Ah/cm3), while its 
gravimetric capacity (2.981 Ah/g) is also higher than 
the majority of alkali metals [5]. Additionally, Al 
provides a trivalent ion Al3+, which is comparable to 
three Li+ ions in conventional intercalation cathodes, 
allowing for more electrons and ions to be taken by 
the cathode with little pulverization [5]. For mobile 
devices, a high energy density is preferable. For 
instance, an electric vehicle could potentially have 
two to six times the capacity of LIBs with the same 
volume AIBs [6]. 
Based on available literature, the AIBs are 
categorised into both aqueous and non-aqueous 
operating schemes. It is known that aluminium 
batteries based on aqueous systems suffer from 
severe problems such as a passivating oxide layer 
formation, a hydrogen side reaction and material 
corrosion. Therefore, a non-aqueous system with a 
chloroaluminate-based ionic liquid electrolyte is 
usually implemented for the secondary aluminium 
battery instead [6]. As suggested by Muldoon et al. 
and Elia et al. in 2016 [2], a high-purity aluminium 
metal is typically used as the anode in novel 
aluminium dual-ion batteries (ADIBs) with its 
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ability to exchange three electrons per Al atom. The 
ionic liquid (IL) electrolyte was made of a mixture 
of 1-ethyl-3-methylimidazolium chloride 
([EMIm]Cl) and aluminium chloride (AlCl3) in a 
molar ratio of 1.5:1. Chloroaluminate (AlCl3) melts 
dissolved in 1-ethyl-3-methylimidazolium chloride 
([EMIm]Cl) ionic liquid as this molar ratio is 
considered as a promising electrolyte. Despite the 
fact that the chloroaluminate melts electrolyte has 
various practical challenges due to its high 
reactivity, corrosivity, and hygroscopic nature, its 
benefits become dominant when considering its 
ability to avoid the surface oxide film formation and 
its support for reversible Al deposition/stripping at 
this point. 
Finding a high-performance cathode of AIBs has 
been an unsolved difficulty because the high charge 
density of Al3+ ions cause a high intercalant 
concentration in the host materials [7]. This presents 
a challenge for the reversible electrochemical 
intercalation of Al3+ ions, which functioned via the 
cathode. Drawing from prior research, only a 
handful of the proposed cathode compounds - which 
are known from conventional lithium, sodium, or 
magnesium ion batteries research - appear to reveal 
an evident reversible intercalation of Al3+ ions. 
Layered TiS2, various manganese oxides, V2O5 and 
graphite warrant particular focus in recent years as 
they showed the strongest Al3+ intercalation [6]. 
Graphite materials prevail over alternative cathodes 
due to its capability to reversibly accommodate Al3+ 
ions between its planar graphene sheets, and its 
superior stability and low operational potential [23].  
The schematic configuration of ADIBs has been 
shown in Figure 1 below. 

 
Figure 1: Schematic configuration of aluminium-ion 
battery. [5] 
The electrolyte performs as the transmitter for ions. 
The redox active chloroaluminate anions AlCl4

− and 
Al2Cl7

− can both be provided only when the Lewis 
acid AlCl3 is excessive (>50 mol%), forming the 
acidic electrolyte [5]. These two anions are actively 
involved in redox reactions at both the anode and the 
cathode, causing the variation of electrolyte 
composition upon charging and discharging. Al2Cl7

− 
is the main responsible anion to facilitate Al 
deposition/stripping occurring at the anode and the 
electrochemical reaction occurs via  

4[𝐴𝑙ଶ𝐶𝑙଻]ି + 3𝑒ି ⇄ Al + 7[𝐴𝑙𝐶𝑙ସ]ି 

As three AlCl4
- anions insert into the graphite, an 

aluminium atom is deposited simultaneously. 
Charging halts when only AlCl4

- anions remain in 
the electrolyte, resulting in a neutral 
chloroaluminate melt with an AlCl3 to [EMIm]Cl 
ratio of 1 [2]. 
Owing to carbon-based material’s loosely bonded 
layered structure, AlCl4

−, the single-charged 
complex anion, is transmitted through the electrolyte 
and gets stored among the graphene stacked layers 
at the cathode during the charging process, which is 
known as intercalation. While discharging, the 
AlCl4

- anions de-intercalate from the graphitic 
cathode and return to the anode. The following half-
reaction presents the mechanism of anion 
intercalation/de-intercalation in the cathode: 

𝐶௡ + [𝐴𝑙𝐶𝑙ସ]ି ⇄  𝐶௡[𝐴𝑙𝐶𝑙ସ] + 𝑒ି 
Where C is the graphitic carbon, n denotes the molar 
ratio of carbon atoms to intercalated anions in the 
graphite. 
The structural and electrochemical characteristics of 
the pure graphene nanoplatelets (GNP) cathode and 
the pure graphite (G) cathode was investigated and 
assessed for the first time to study the typical trend 
and correlations in galvanostatic charge-discharge. 
Considering the disordered, semi-graphitic nature of 
mesoporous soft carbon (SC), the project delved into 
various ratios of G-SC composite cathodes, and the 
primary objective was to compare the 
electrochemical performance among these different 
graphitic carbon cathode types in non-aqueous 
aluminium dual-ion batteries. 

Ⅱ. Methodology 
The three fundamental components for ADIBs (the 
graphitic carbon cathode, the metallic aluminium 
anode and the ionic liquid electrolyte) must all be 
prepared before fabricating the aluminium coin cell. 

1. Preparation of Cathode 
The cathode slurry is conventionally prepared by 
mixing the cathode material, a conductive additive 
such as carbon black, a polymeric binder such as 
sodium alginate and a liquid solvent such as 
deionised water. In the first stage, the 
electrochemically active cathode material was GNP. 
In the experiment, a 1g solid mixture composed of 
75%wt of GNP powder, 15%wt of sodium alginate 
powder and 10wt% of carbon black powder was 
mixed with 15ml of deionised water to create a 
slurry. 15 identical-shaped molybdenum (Mo) disc 
samples with a thickness of 0.025mm and a diameter 
of 12mm were weighed, and the well-mixed 
homogenous slurry was applied to the molybdenum 
discs with varying quantities to compare the effect 
of cathode material mass loading on the 
electrochemical performance of ADIBs. Mo 
samples 1 to 5 were smeared with 15.8μl of slurry 
(with an average mass loading of 4.8 ×
10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄ ), samples 6 to 10 were smeared 
with 31.6μl of slurry (with an average mass loading 
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of 11.6 × 10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄ ) and 11 to 15 were 
smeared with 47.4μl of slurry (with an average mass 
loading of 18.9 × 10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄ ). These GNP 
cathode samples were dried overnight at 80 °C under 
vacuum and then re-weighed to calculate the mass 
loading of each individual sample using the 
following equation:  
𝑀𝑎𝑠𝑠 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 =  (𝑀𝑎𝑠𝑠஽௥௜௘ௗ ௖௔௧௛௢ௗ௘ ௦௔௠௣௟௘

− 𝑀𝑎𝑠𝑠௉௨௥௘ ெ௢ ௗ௜௦௖)
× 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑠𝑡𝑖𝑜𝑛஼௔௧௛௢ௗ௘ ௠௔௧௘௥௜௔௟  

All the detailed calculations can be found in the 
spreadsheet under Supplementary Information. 
Cathodes consisting of a blend of graphite and soft 
carbon (SC) in different compositions were also 
prepared to compare and assess the electrochemical 
behaviour of various graphitic carbon cathodes and 
to investigate which graphite material performed 
best as a cathode in ADIBs. To prepare graphite 
cathodes, graphite and mesoporous pitch were 
weighed in the fume cupboard with specific 
compositions, followed by grinding with an agate 
pestle and mortar for 30 minutes. Since the MSC is 
typically formed by heat treatment of mesoporous 
pitch, the grounded mixture was therefore heated in 
the furnace at 1100 °C for 2 hours. The post-heated 
mixture was then further ground into a 
homogeneous powder via an agate pestle and 
mortar. The rest of the steps to make graphite 
cathodes are the same as the steps to make GNP 
cathodes with all other quantities the same but 
substituting the GNP with graphite. 
This research investigated 6 various graphite 
materials for ADIB cathodes: pure GNP, pure 
graphite, pure soft carbon, a mixture of 75wt% 
graphite and 25%wt% soft carbon, a mixture of 50wt% 
graphite and 50wt% soft carbon, and a mixture of 
25wt% graphite and 75wt% soft carbon. Three 
different quantities of cathode material were tested 
for every type of cathode except for the 25wt% 
graphite and 75wt% soft carbon mixture. This was 
because of a shortage of Mo discs at the time of cell 
assembly for this mixture. 

2. Preparation of Aluminium Anode 
High-grade pure aluminium foil of 99.999% purity 
and 0.050mm thickness was cut into 16mm diameter 
discs. These aluminium discs were washed and dried 
in order to remove any contaminants on the surface. 
An ultrasonic cleaner was used to clean the surfaces 
of Al discs under ethanol first, which was followed 
by immersing the discs in a highly concentrated 
solution of nitric acid (3M concentration) for exactly 
five minutes to dissolve any chemical contaminants. 
To ensure that the leftover nitric acid was 
completely eliminated, the acid-washed aluminium 
was rinsed several times with deionised water and 
acetone before being dried at 80°C using a vacuum 
oven. 

3. Preparation of Ionic Liquid Electrolyte 
The preparation of ionic liquid electrolyte was 
carried out in an inert Argon environment with less 
than 0.5ppm concentration of oxygen and water at 
standard room temperature through the use of a 
glovebox. Before being mixed with anhydrous AlCl3 
inside the glovebox, [EMIm]Cl had been degassed 
under vacuum conditions and heated at 50°C for 10 
hours using a Smart VacPrep system. The AlCl3 to 
[EMIm]Cl mixing mole ratio of the commercial 
ionic liquid electrolyte of AIBs is approximately 
1:1.5 with over 98% purity [12], resulting a light-
yellow transparent liquid.  

4. Cells Fabrication  
The coin cells were assembled in a glovebox with 
the concentration of water and oxygen kept lower 
than 0.5 ppm. The initial stage of assembly involves 
placing the top cell cap onto the worksurface, then 
inserting a Molybdenum Spacer of 0.127mm 
thickness, followed by the Aluminium Anode and 
then a Whatman Glass Fibre separator into said 
bottom cap. This separator acts as an insulating layer 
between the anode and cathode, preventing any 
potential short circuits. The second stage of 
assembly involves placing the bottom cell cap onto 
the workstation, then inserting a spring, followed by 
a Molybdenum spacer of 0.5mm and the cathode 
into said top cap. 150μl electrolyte is pipetted onto 
the Whatman Glass Fibre Separator ensuring an 
even distribution and application when discharging 
the electrolyte from the pipette. Once this has been 
completed, the Cathode, 0.5mm Molybdenum 
Spacer, spring and cell top cap are inserted in that 
order. Finally, the cell was crimped in the crimping 
device with the top cap of facing upwards.  

5. Testing of Cells 
The fabricated coin cells were tested in a high-
precision battery testing system with LAND battery 
testing software. The testing protocol entails 
conducting 200 galvanostatic charging-to-
discharging cycles, applying a constant current-
constant voltage with current density of 500 mA/g 
(mass of active material) and voltage ranges from 
0.5V to 2.37V. The data processing program of the 
LAND battery test system displays different plots 
including voltage vs. specific capacity, voltage vs. 
cycle number, and voltage vs. efficiency, which are 
useful in evaluating individual cell performance. 

Ⅲ. Results and Discussion 
1. Material Characterization 

The morphologies of all six materials were shown in 
the SEM images (Figure 2). The SEM image of pure 
GNP (Figure 2a) revealed a fragmented and 
irregular structure, presented as thin platelets, while 
the graphite (Figure 2b) is thicker than GNP’s and 
displayed a layered structure with stacked sheets. As 
the graphite was mixed with SC in a mass ratio of 
3:1, the morphology of this mixture (Figure 2c) 
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became more cohesive with SC coated on the 
graphite particles. Increasing the proportion of SC in 
the graphite and soft carbon mixture led to increased 
particle size and a smoother surface. And for G25-
SC75 (Figure 2e), it appears that the SC coated over 
most of the graphite particles. The SEM images 
revealed that during the pyrolysis of mesoporous 
pitch with graphite, the molten mesoporous pitch 
coated the graphite particles, and leading to a larger 
particle. 
Referring to Xie et al. [29] investigating the hard-soft 
carbon composite anode in sodium-ion battery, 
N2 adsorption, small-angle X-ray scattering 
(SAXS), as well as BET method were employed to 
assess the microstructures and porosity of carbon 
materials. Their research revealed a decreased BET 
surface area, and a steady decline in a parameter 
linked to the large pores surface area ratio in the N2 
adsorption isotherm upon the addition of SC to the 
carbon material. These results indicated that the 
introduction of SC led to the closure of the open 
pores and a reduced surface area, and consequently 
restricted the access to the pore surface [29, 30]. As 
aforementioned, the SEM image of the G-SC 
mixture exhibited a more cohesive structure and 
smoother surface compared to that of pure graphite, 
visually indicating the pores blocking effect of SC.  
a)                                    b) 

 
c)                                        d) 

 
e)                                        f) 

 
Figure 2: SEM images of pure GNP (a), pure graphite (b), 
G75-SC25 (c) G50-SC50 (d), G25-SC75 (e) and pure SC 
(f) active materials used in the research. (Image provided 
by Anastasia Teck) 
SC was prepared through heat treatment of MP. It is 
noteworthy that varying carbonization temperatures 
led to different degree of graphitization, and thus, 
different SC morphologies. Changing the 
carbonization temperature would significantly affect 

capacity of the cathode [30][31][32], and it directly 
related to the BET surface area, as stated by Li et al. 
[32]. Magda’s research team [30] investigated the 
optimal carbonization temperature at 1100°C for 
mesoporous pitch to yield soft carbon as cathode 
material. Their findings, together with recent related 
studies, revealed a consistent trend: as the 
carbonization temperature rises, pore size reduces, 
which is advantageous in maintaining a high 
reversible capacity during cycling [31][32]. But 
excessively high temperatures lead to a huge decline 
in sloping capacity and the associated extra energy 
use and cost. Thus, the optimal temperature 1100°C, 
as proposed by Magda’s research group, was 
obtained from the balance between cost-
effectiveness and electrochemical performance. 

2. Galvanostatic Performance 
The comparison of electrochemical performance 
among cells with different cathode materials 
primarily focused on those featuring the average 
mass loading of 11.6 × 10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄  and 18.9 ×
10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄  of active material on cathodes 
because of the limited valuable experimental data of 
the cells featuring an average mass loading of 
4.8 × 10ିଷ  𝑚𝑔 𝑚𝑚ଶ⁄  on cathode. 
The galvanostatic charge-discharge (GCD) curves 
(Figure 3) showed steep slopes with a rapid rise of 
voltage from 0.6V to 1.8V, followed by a multi-
plateau pattern with the working voltage platform 
ranging from 1.8 V to 2.3 V. These two regions 
correspond to two different mechanisms where the 
sloping region refers to fast and reversible faradaic 
charge-transfer reactions [18][19] occurring on the 
surface of the cathode material, resulting 
pseudocapacitance. The plateaus signalling the 
formation of stage n (n is the stage index and 
represents the number of graphene layers separating 
two intercalant layers) ionic graphite intercalation 
compounds (GICs) [28] and intercalant in staging 
mechanisms [23], where has been investigated and 
proved by XRD and Raman spectroscopy analysis in 
numerous studies.  

 
Figure 3:  Plot of voltage-specific capacity for cycle1, 5, 
10 and 20 for SC-10. 
Figure 3 shows the GCD curves SC, while the GCD 
curve for GNP can be found in Figure 4a, and all 
GCD curves for cells tested in this research are 
available in the Supplementary Information section. 
In general, pure GNP, pure graphite, and the G75-
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SC25 composite cathode displayed a similar shape 
in GCD curve, with a flatter platform ranging from 
2V to 2.4V compare with G50-SC50, G25-SC75 and 
pure SC cathodes. While a steeper sloping region in 
a broader voltage range from 0.5V to 2.4V was 
observed for the composite cathode containing a 
higher ratio of SC (G50-SC50, G25-SC75 and SC), 
the slop was even steeper for pure SC cathode 
(Figure 3). This finding indicates that the 
pseudocapacitance significantly contributes to the 
capacity in SC, highlighting the dominance of 
surface reactions in its cycling process, while the 
capacity of graphite and GNP were mainly driven by 
ion diffusion. 
A notable difference between charge and discharge 
capacities was observed during the first cycle, 
leading to a high irreversibility of capacity and thus, 
low initial coulombic efficiency (ICE) in the cells 
tested. Figure 4a displays an example of voltage 
profiles relative to the first, fifth, tenth, and 
twentieth cycles of the GNP cathode (sample GNP-
10). The initial specific charge capacity of GNP was 
118mAh/g with a specific discharge capacity of 
80mAh/g and it led to a poor initial coulombic 
efficiency of 69% (can be seen directly from Figure 
4b). This observed phenomenon was caused by the 
formation of the solid-electrolyte interface (SEI) [33] 
in AIBs, occurring as the ionic species decompose 
between the electrolyte and the cathode. The 
irreversible formation of SEI leads to a permanent 
consumption of a specific amount of electrolyte and 
anions [14], resulting in a low ICE. In addition to this 
reason, Elia et al. [2] proposed two additional 
potential causes: one involving the side interactions 
between the functional group or defects in the 
graphite and the intercalated anions, and another 
linked to the irreversible insertion due to structural 
changes in the cathodes during cycling.  
Over the subsequent few cycles, the gap between 
charge and discharge capacities decreased, resulting 
in an improved efficiency. This is largely because, 
once formed, SEI could resist the interaction among 
the electrolyte, aluminium anions and cathode [17], 
thereby stopping further expansion of SEI and 
preventing further consumption of anions and 
electrolyte.  
    a) 

 
 

      b) 

 
Figure 4: a): Plot of voltage-specific capacity for cycle1, 
5, 10 and 20 for GNP10. 
b): Plot of efficiency-specific capacity over 200 cycles for 
GNP10. 
When comparing the initial charge capacity to 
subsequent cycles, it was noticed that cells always 
have a higher initial charge capacity and exhibit a 
slight capacity fading in the following cycles. For 
instance, in the GNP cathode, the charge capacity 
declined gradually from 118mAh/g in cycle 1 to 
about 90mAh/g by cycle 20 (≈ 98mAh/g at cycle 5 
and ≈ 92mAh/g at cycle 10) while still maintaining 
a 90% CE after cycle 20. There are several possible 
reasons for the capacity fade, including the volume 
expansion in both cathode and electrolyte caused by 
the AlCl4 anion intercalation, active material 
dissolution, formation of passivation film and 
electrolyte decomposition.  
To compare the capacity fade across different 
materials, the capacity retention over 20 cycles was 
calculated by: 
 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =  ஼௛௔௥௚௘ ஼௔௣௔௖௜௧௬ ௔௧ ௖௬௖௟௘ ହ଴

ூ௡௜௧௜௔௟ ஼௛௔௥௚௘ ஼௔௣௔௖௜௧௬
 

The SC cathode exhibited the lowest capacity 
retention, falling below 25% after 20 cycles, while 
the capacity retention data for graphite and G75-
SC25 showed inconsistence but could reach over 
90% and approximately 85% after 20 cycles, 
respectively. The data for the G50-SC50 and G25-
SC75 composite cathodes was insufficient to state a 
reliable result, however, the existing data showed 
that their capacity retention was better than soft 
carbon but worse than graphite and G75-SC25. This 
outcome implies that a higher proportion of SC 
contributes to increased capacity fading. Detailed 
data can be found in Supplementary Information. 
Both Wang et al. [27] and Elia et al. [2] highlighted the 
sensitivity of ADIBs' performance to volumetric 
expansion, due to the large atomic radius of AlCl4 
anions at approximately 6.09 Å (compared to the 
0.76 Å radius of Li ions) [27].  
Therefore, the possible reasons for this finding 
might stem predominantly from the disordered 
structure of SC and increased number of functional 
groups in SC, causing more irreversible 
intercalation and multiple side interactions, 
subsequently causing volume expansion. 
Experimental evidence can be obtained through 
diffraction techniques to validate this hypothesis. 
The irreversible insertion results in an increased 

430



 6 

interlayer spacing, consequently leading to a 
decrease in the cathode porosity and the formation 
of an inactive area within the electrode. This 
ultimately causes a decrease in the capacity and 
energy density [13]. 
   a) 

 
  b) 

 
Figure 5: a): Voltage profile for GNP, graphite, MSC, 
G75-SC25, G50-SC50, G25-SC75 cathodes during the 
first cycle.  
b): Voltage profile for GNP, graphite, MSC, G75-SC26, 
G50-SC50, G25-SC75 during twentieth cycle.  
The outcomes highlight that ADIBs utilising a 
graphite cathode and G75-SC25 composite cathode 
displayed the best comprehensive performance 
among the tested cells when considering the 
reversible capacities, the ICE, the cycling stability 
and the cells failure rate across 15 samples. The 
detailed data comparison across all types of cathode 
materials can be found in the Supplementary 
Information. Figure 5a) and 5b) illustrates the 
voltage plotted against specific capacities of six 
graphitic materials at cycle 1 and cycle 20, measured 
at a current density of 500 mA/g ranging from 0.5V 
to 2.37V. During the first cycle, the GNP cathode 
revealed a longer platform with high initial capacity 
(118mAh/g). Despite this, its ICE (65%) was always 
lower than that of G75-SC25 (72%) and graphite 
(81%). The initial cycle of the G75-SC25 composite 
cathode demonstrated a charge capacity of 83mAh/g 
and a discharge capacity of 60mAh/g, which 
resulted in a relatively high ICE of 72%. By the 
twentieth cycle, it achieved a higher CE of 91%, 
along with a charge capacity of 97mAh/g and a 
discharge capacity of 88mAh/g. Even after 20 
cycles, the charge capacity remained a high capacity 
of 88mAh/g. These results indicated the exceptional 
cycling stability of the G75-SC25 composite 

cathode, highlighting its stable structure and high 
electrical conductivity in the GICs.  
The relatively high ICE of G75-SC25 indicated less 
consumption of the electrolyte during cycling. The 
G75-SC25 characteristics of the blocked open pores 
and reduced surface area would explain this 
observation. As the molten mesoporous pitch fills 
the pore in graphite during pyrolysis, the access of 
electrolyte to the pore was obstructed, and 
subsequently preventing excessive electrolyte 
consumption, enhancing reversible capacity and 
ICE. In addition to the pore filling mechanism, 
Winter et al. [36] stated that composite carbon 
materials, consisting of graphite and disordered 
carbon (SC), capitalizes on the benefits of both 
materials to improve the overall performance and 
cycling stability. The graphite facilitates anion 
storage, while the disordered carbon (SC) improves 
long-term stability. 
A pattern has emerged where increasing dominance 
of SC in the cathode active material leads to a worse 
electrochemical performance. In the case of the pure 
SC cathode, while it suffered from capacity fading 
likely due to structural degradation as previously 
discussed, it also exhibited a much lower capacity 
and an extremely low ICE (below 10%) throughout 
the experiments when compared to the other five 
cathode materials. This observation agrees with 
what Xie et al. [29] documented: though the addition 
of a certain amount of SC could prevent further 
growth of SEI, a higher SC fraction may lead to a 
reduced reversible capacity due to limited 
effectiveness in blocking open pores. Instead, the 
nature of high reactivity and the tendency towards 
irreversible intercalation and structural degradation 
during SC charge-discharge cycling would 
contribute as more prominent factors negatively 
impacting the cathode's capacity [29].  Additionally, 
a higher rate of cell failure was noted in cells 
containing a greater SC content. Specifically, two 
G50-SC50 samples operated normally in 15 samples 
and only one G75-SC25 sample underwent 
successful cycling. The increased failure rate of 
cathode samples with higher SC proportions 
suggested a potential increase in unwanted side 
reactions within the cells. This includes electrode 
corrosion, while more material dissolution was also 
likely to have occurred during repeated charge-
discharge cycles due to larger particle sizes of SC. 

3. Impact of Active Material Mass Loading 
Only a limited number of cells completed charging 
and discharging cycles successfully using the 
smallest amount of active material mass loading. 
However, the data from these cells was not included 
in the comparison of electrochemical performance 
because insufficient data would not provide reliable 
conclusions. In addition, batteries with low active 
material loading might be more susceptible to other 
factors like human error, electrode detachment, and 
temperature fluctuations during operations. This can 
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significantly influence their performance and skew 
the results. Therefore, the comparison 
predominantly focused on the cells with 31.6μl and 
47.4μl active material slurries coated on cathodes. 
Table 1 shows the battery performance variations 
with distinct mass loadings of graphite, SC, and 
G75-SC25. However, due to fewer than 5 samples 
of GNP, G50-SC50 and G25-SC75 being 
operational, reliable results could not be obtained. 
Nonetheless, their data are included in the 
supplementary Excel spreadsheet which illustrates 
the comparative electrochemical performance of 
carbon-based cathodes using different qualities of 
active material slurries.  

Sample Mass 
Loading 

Initial 
SpeCap 
(mAh/g) 

ICE SpeCap-
20 
(mAh/g) 

CE-20 

G-6 2.55 mg 87 80 68 71 
G-8 2.34 mg 400 13 65 75 
G-11 3.99 mg 72 86 71 91 
G-13 4.31 mg 264 20 18 72 
G-15 3.11 mg 23 39 51 82 

Table 1: Graphite samples. (Note: SpeCap-20 and CE-20 
denotes the specific charge capacity and CE at cycle 20) 
 

Sample Mass 
Loading 

Initial 
SpeCap 
(mAh/g) 

ICE SpeCap-
20 
(mAh/g) 

CE-20 

G75-SC25-6 0.90 mg 5672 0.6 163 40 
G75-SC25-7 0.85 mg 86 65 73 78 
G75-SC25-8 0.71 mg 83 72 97.5 90 
G75-SC25-9 1.34 mg 106 26 49.5 53 
G75-SC25-11 1.73 mg 389 0.1 48.5 66 
G75-SC25-12 2.80 mg 93 40 45.5 73 
G75-SC25-13 1.95 mg 93.5 35 50 74 
G75-SC25-15 1.08 mg 104 72 122 87 

Table 2: G75-SC25 samples. 
 

Sample Mass 
Loading 

Initial 
SpeCap 
(mAh/g) 

ICE SpeCap-
20 
(mAh/g) 

CE-20 

SC-6 1.99 mg 26 11.5 6 50 
SC-10 1.63 mg 82.5 3.6 3 36.7 
SC-13 2.5 mg 336.5 0.9 14 28.6 

Table 3: SC samples 
The data for graphite cathodes showed that the 
higher quantity active material loading displayed an 
increased ICE and better capacity retention but 
started with lower initial capacities, while lower 
active material loading began with higher capacities 
but exhibited noticeable degradation of capacity 
upon charge-discharge cycling. In the comparison 
between graphite cathode samples 6 and 11, coated 
with 31.6μl and 47.4μl of graphite slurry 
respectively, sample 6 demonstrated higher initial 
reversible capacity (87mAh/g) compared to sample 
11 (72mAh/g). However, although sample 6 
demonstrated a higher initial capacity, it showed a 
lower ICE at 80% compared to sample 11 at 86%. 
Sample 6 also exhibited poorer cycling stability and 
capacity retention, indicated by a decline from 
87mAh/g in the first cycle to 68mAh/g after 20 
cycles, along with a CE of 71% in the twentieth 
cycle, while sample 11 maintained a capacity of 

71mAh/g with a CE of 91% during the twentieth 
cycle.  
This observation aligns with the findings proposed 
by Angelopoulou et al. [10], which investigated the 
impact of electrode loading on lithium-ion battery 
electrochemical performance. Currently, we are 
unable to further investigate and prove the cause 
behind this observed phenomenon in our research. 
However, based on the previous published literature, 
the reduced capacity in lower active material mass 
loading might be connected to the side reaction, 
especially corrosion, of the current collector. As 
mentioned previously, Molybdenum was used as 
current collector that the cathode active material 
slurry was coated on, and ideally it should maintain 
good chemical and electrochemical stability while 
performing strong adhesion to the active material 
slurry. As documented [16][ 15] [11], the current 
collector corrosion would lead to reduced contact 
and increased internal impedance, while the product 
from corrosion potentially reduces the ion electronic 
conductivity, and hence decreasing cell capacity. 
With a thinner layer of active materials slurry 
deposited on current collector, the passivation film, 
which acts as the barrier to prevent further reaction 
and corrosion of the current collector, would be 
thinner. Consequently, it might be easier for 
electrolyte ions to penetrate the passivating layer 
and react with the current collector. 
Interestingly, the G75-SC25 cathode demonstrated 
an opposite trend, where the larger quantity of active 
material negatively affected the cells' CE and 
capacity retention. For instance, in the case of G75-
SC25 cathode sample 8 (coated with 31.6μl slurry), 
an initial reversible capacity of 83mAh/g was 
achieved alongside an ICE of 72%. It then displayed 
a charge capacity of 97.5mAh/g and a CE of 90% by 
the twentieth cycle. Sample 13 (coated with 47.4μl 
slurry) showcased an initial charge capacity of 
93.5mAh/g but presented an ICE of 35% initially. 
By the twentieth cycle, it exhibited a charge capacity 
of 50mAh/g and a discharge capacity of 37mAh/g, 
resulting in a lower CE of 74%. This trend was 
similarly observed in the SC cathode. 
A study conducted operando 3D observations to 
investigate the evolution of electrochemical 
reactions during charge and discharge [21]. This 
research suggests that higher active material mass 
loading led to slower ion diffusion and more inactive 
area within aggregated active material areas. While 
lower mass loading reduces the number of high-
resistance interfaces for ions between active 
materials, and thus decreasing active material 
aggregation and benefiting ion diffusion [21]. 
Despite the lack of studies and a relevant literature 
explaining the opposite trend observed between 
G75-SC25, SC and the graphite, a possible reason 
would be related to the morphologies of these 
materials. Higher active material mass loading and 
thicker electrode leads to the reduction of ion 
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diffusion, where this reduction could affect the SC 
and SC composite cathode more significantly due to 
their smaller surface areas and less accessibility 
compared to graphite. Given their limited ion 
diffusion pathways, any further decrease might 
apply a greater impact on these materials compared 
to graphite, which naturally have more diffusion 
pathways. 

4. Discussion about Cell Failure 
The data obtained demonstrates the substantial 
impact of assembly parameters and reveals that 
active materials containing a higher fraction of SC 
exhibited a greater occurrence of cell failure when 
compared to those composed of GNP, graphite and 
G75-SC25 cathodes. Only one G25-SC75 cell was 
operational out of 15 prepared samples, while the 
failure rate of G75-SC25 samples were the lowest, 
with 8 successful cells out of 15 samples in total. 
Alongside factors such as the actual quantity of 
electrolyte and electrode positioning, precise cell 
stack height emerges as a critical variable in 
determining the cells’ behaviour. The outcomes 
might be biased if the cells failed to meet high 
quality and reproducibility criteria.  
Some coin cells investigated in this paper failed due 
to the accidental misaligning of components during 
cell assembly. It is therefore crucial to ensure that 
the placement of these components is central to 
prevent accidental short-circuiting. Additionally, 
improper crimping of cells causes both component 
misalignment and electrolyte leakage or exposure 
which not only compromises the cell’s performance, 
but it also raises safety concerns due to the highly 
corrosive nature of the electrolyte. Other cells failed 
due to the characteristics of the active materials at 
the time of assembly. For example, electrode 
contamination due to the accidental mishandling of 
components could significantly impact the overall 
efficiency and performance of the cells. 
Additionally, uneven electrolyte distribution on the 
separator or a slight local variation in electrolyte 
quantity from the pipette can disrupt the flow of ions 
which impacts the cell's capacity. Therefore, 
addressing and minimizing these potential human 
errors during cell fabrication is crucial to guarantee 
the reliability and the electrochemical performance 
of cells across various experiments. 
A likely cause of cell failure outside of human error 
could be due to the presence of side reactions. In a 
different study [8] which looked at various lithium, 
sodium, potassium and aluminium ion batteries, it is 
revealed that side reactions within graphitic 
electrodes result from surface groups and anion 
intercalation when at high voltage. These side 
reactions cause a reduction in the electrochemical 
performance of cells because of electrolyte 
decomposition within the carbon and a deterioration 
of the graphitic structure. Additionally, the side 
reaction might increase the contact resistance on the 
current collector, lead to adhesion loss of active 

materials, and potentially result in short circuit when 
the corrosion product penetrates through the 
separator [16]. This was frequently observed in the 
cells fabricated during our experiment. A study [8] 
also mentions the impact of viscosity on the 
performance of the electrolyte. Ionic liquid 
electrolytes are known to have a higher viscosity 
than other electrolytes which results in a lower ionic 
conductivity and a lower wettability of the separator, 
anode and cathode materials. 

IV. Conclusions and Outlooks 
1. Conclusions 

This research investigated six variations of graphitic 
materials employed in cathodes, aiming to compare 
their electrochemical performances and identify the 
most effective cathode material for ADIBs. Among 
the six tested cathode materials, the best-performing 
cathode material was determined to be the pure 
graphite and the mixture of 75%wt graphite with 
25%wt SC cathode. As the proportion of soft carbon 
increased to 50%wt, the ADIBs exhibited a reduced 
charge/discharge capacity and CE. Further 
decreases in both charge storage capacity and CE 
were observed as the soft carbon composition 
reached 75%wt, showing a similar electrochemical 
behaviour to pure soft carbon. There was also an 
impact of mass loading on cell performance. For 
example, with graphite and soft carbon they 
exhibited a larger initial coulombic efficiency, 
retained their capacity better and had a lower initial 
capacity while active material content increased. 
Conversely, 75wt% graphite with 25wt% soft 
carbon exhibited a worse initial coulombic capacity, 
a worse capacity retention and a higher initial 
capacity.  

2. Outlooks 
It is worth mentioning that this work only assesses 
ADIB cells using the capabilities of Land testing 
system when charging and discharging them. A tried 
and tested way to further assess ADIB performance 
would be to utilise BET analysis.[22] This would 
allow for the generation of quantitative data on the 
surface area and porosity distribution of cathode 
materials. BET techniques have been previously 
utilised in the field of Aluminium Ion batteries such 
as in Lin et al. [25] and Huang et al. [26]. Such BET 
data would reveal the differences in surface area for 
each graphitic material and could help explain their 
differing levels of performance. 
The non-destructive and highly versatile technique 
of XRD was not used in this paper and has a strong 
potential for further exploration [35]. It has been used 
to study chloroaluminate anion-graphite 
intercalation in aluminium batteries just like the 
ADIBs studied here. For example, in Pan et al. [17] 
XRD revealed a surprisingly ordered anion 
intercalation staging behaviour in graphite despite 
the large anion size and stable graphite structure 
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during intercalation and deintercalation. While 
graphite was analysed in the work by Pan et. al. [17], 
the other five materials covered in this paper were 
not and so this opens the window for further 
analysis. 
Raman spectroscopy has been recently employed to 
assess the performance of ADIBs. Liu et al. [24] 

applied Raman spectroscopy to characterise graphite 
flakes (u-GF) on carbon fibre cloth (CFC) under 
different durations of ultrasonication before being 
used as a cathode material in ADIBs. This concluded 
that a graphite intercalation/de-intercalation 
behaviour of the chloroaluminate ions into the u-GF 
took place from the analysis of the Al/u-GF at CFC 
battery’s Raman spectra. Such characterisation and 
analysis using Raman spectroscopy could be applied 
to the graphitic materials investigated in this paper 
and potentially lead to further conclusions. 
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Abstract 
This study analysed complex dynamics on the process of plunging liquid jet through the computational fluid 
dynamics (CFD) modelling under the regime of viscous laminar fluid. Different scenario simulations with varying 
plunging speed and fluid viscosity were created. Numerical modelling was adopted in a hybrid pattern that 
combines interface-tracking and level-set method in a three-dimensional Cartesian domain. Results were primarily 
evaluated in aspects of jet evolution, incipient dynamics, and deformation scale, with prediction on further possible 
plunging behaviour. Jets tend to develop a bulge-like structure with different extent of development and high 
dependency on falling time. In the scenario of longer falling time, jet breaks up into droplets, indicating an 
inception mechanism through dripping rather than straight jetting. The initial cavity of the free surface deformation 
is the proximate cause of the initial bubble formation, whereas higher viscosity would lead to a flatter deformation 
thus flatter bubble geometry. A growth in deformation size was observed both in terms of width and depth, where 
the convergency in depth implying a steady plunging state through the impending process. In-depth computational 
research considering finer computational resolution and capacity, bubble dynamics control, turbulence and factors 
of disturbance are recommended for future applicable simulations. 

 
Keywords: Air entrainment; Plunging jet; Air bubble; Free surface deformation; CFD 

 

1 Introduction 
The phenomenon of air entrainment is well-
observed in various natural processes, as well as 
numerous manufacturing and industrial 
applications. Air entrainment is a mechanism of how 
insoluble gas is trapped and dispersed when a liquid 
stream injects to a pool with the same liquid at a 
certain velocity. This serves as a mean of pressure 
relief reservoirs in order to prevent ruptures in 
concrete structures (Panarese and William, 1963). 
Similar behaviour may be observed in daily and 
manufacturing operation of water filtrating and 
filling process, as well as medical blood transfusion 
process. The air entrainment also takes a crucial role 
in global climate evolution by facilitating the 
transportation of oxygen and carbon dioxide through 
bubbles at the free surface of oceans and rivers. 
Nevertheless, the understanding of the entrainment 
mechanism is not yet sufficiently developed for 
widespread commercial application in industry. 

An effective method for simulating the air 
entrainment mechanism involves utilizing the 
plunging jet scheme, in which a jet is introduced into 
the stationary liquid bath at a specific plunging 
velocity. Extensive research has been conducted on 
various detailed aspects on plunging jet either 
experimentally or computationally. Biń 1993, 
performed the initial comprehensive analysis of the 
mechanism of gas entrainment and bubble 
dispersion based on earlier investigations. This work 
established a robust groundwork for subsequent 
research. Vast majority of articles focused on 
studying the mechanisms experimentally, using a 
similar experimental setup but different jet or fluid 
parameters. These papers particularly capture the  

 

impinging and bubble dynamics occurring beyond 
the free surface, and discuss the underlying 
correlation between different parameters to the 
entrainment dynamics (Qu et al. 2013; Zhu et al. 
2000). Several research categorized the fluid regime 
of the gas entrainment based on the gas 
concentration (Biń, 1993; Chirichella, et al., 2002). 
They also examined the inception conditions under 
a range of Reynolds and Weber numbers. Various 
computational fluid dynamics simulations added the 
credit of aforementioned experimental study by 
verified results in simulation models. These lead to 
further development in the quantification on amount 
and size distribution of the bubbles and the influence 
of different physical parameters on the aeration 
behaviour (Salehi et al., 2022; Lopes, 2016; Kendil 
et al., 2012). 

While the present research have been relatively 
thorough, the majority of studies focused on 
turbulent fluid regime. There has been limited 
research conducted on laminar viscous fluid regime, 
despite the fact that many fluids in industries and 
nature are significantly more viscous than water. 
The fact that bubble related analysis is essential is 
recognized but requires a significant amount of time 
for simulation running and costly computational 
resources. Therefore, this project concentrates on 
the incipient dynamics of the plunging jet and the 
topology development of deformation with time. 
Simulations were conducted using different 
impinging velocities on two distinct viscosities, 
while keeping the jet configuration uniform.  
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2 Background 
2.1 Entrainment Inception Conditions 
Research findings indicate that air entrainment and 
subsequently bubble formation only occur when the 
liquid jet impacting the free surface exceeds a 
critical velocity (El Hammoumi, Achard, Davoust, 
2002). The critical entrainment conditions are 
normally discussed in terms of the dimensionless 
numbers of Reynolds and Froude number. Zhu et al., 
2000’s work emphasised the necessity of analysing 
whether the jet has been built to minimise 
turbulence, taking into account the consistency of 
threshold values across different experiments. For 
the studies that are unable to obtain entrainment 
results even when critical paraments have been 
exceeded, it has been recommended by Zhu et al., 
2000 to introduce manual disturbances to get further 
bubble related progress. 
 
2.2 Effect of Jet Configurations 
Extensive research has been conducted on the 
impact the jet configuration has on entrainment 
behaviour.  The studies demonstrate that the 
increase in jet’s diameter leads to an augmentation 
in the rate of oxygen transfer, the amount of air 
entrapped, and the depth of penetration (Kumar and 
Tiwari, 2021). In addition, the likelihood of air 
entrainment is greater when the jet has a larger 
diameter, as this increases the extent of contact 
between the jet and the ambient air (Deswal and 
Verma, 2007a)  

According to Ahmed’s study in 1974, enlarging 
the length of the jet will result in a greater amount of 
air being entrained. The study also determined that a 
critical length of 0.66m was identified, beyond 
which no additional air entrainment occurs for 
cylindrical jets (Biń, 1993). McKeogh and Ervine 
1981 validated this statement and further noted that 
when the values are higher, the jet undergoes 
disintegration and ceases to enhance the air 
entrainment. While the length of jet has less 
influence relative to its velocity and diameter, it has 
a greater impact on the mass transfer of smooth jets 
(Donk, 1981). 

The investigation of jet inclination angles was 
conducted by several researchers, they 
experimented with various angles while maintaining 
a constant length for the jet (Biń, 1993). Van de 
Donk 1981 and Ahmed 1974 discovered that 
inclination has a minimal impact on the pace at 
which oxygen is transferred (Biń, 1993). 
Nevertheless, as stated by Toko et al., 1982, the 
angle of the jet, ranging from 45 to 90 degrees, 
exerts a substantial impact on the oxygen transfer 
rate. 

The ratio of the nozzle’s length to diameter is 
another important factor in designing the jet 
configuration. A low ratio number around 6.23 is 
preferred according to the study of Ohkawa et al., 
1986. Moreover, a circular truncated nozzle is 

preferred in optimizing the air entrainment rate since 
it normally leads to higher bubble penetration depth 
(Bagatur, 2014) 

 
2.3 Falling jet evolution 
The study of Eggers and Villermaux 2008, gave 
detailed numerical analysis into the liquid jet, which 
discussed jet evolution into either dripping or jetting 
as a result of perturbation applied at the nozzle. This 
kind of perturbation impacts the jet in a directly 
proportional manner to the jet velocity, making the 
jet convectively unstable. They commented the 
dripping scenario as an absolute instability regime, 
whereas jetting scenario as velocity increases is 
described as a transit regime. The boundary between 
these transitable regimes can be characterised by the 
dimensionless critical Weber number as well as a 
corresponding criterion equation provided by the 
research from Clanet and Lasheras 1999. 
 
2.4 Initial Bubble Formation 
Investigating the formation of the initial bubble 
during the plunging process is crucial for 
comprehending the mechanism of air entrapment.  
In the early stages of research in this field, Erine et 
al., 1988 studied the entrained air bubble formation 
under the assumption of dependence on the 
enclosure between distorted free surface. Later 
analysis of Rein's 1998 work revealed that the 
process of air entrainment is not only determined by 
the impact of droplets (Han and Ease, 2018). In 
addition to that a recent study conducted by Wei et 
al. in 2016 examined the curvature radius of the 
deformation on the free surface. This study 
highlighted that the distortion of the free surface is a 
rapid phenomenon that can be defined by a critical 
state in shape. As a result, Wei et al. 2019 conducted 
a further investigation, where a high-speed camera 
was utilized to capture the quick changes that 
occurred. The study examined the deformation in 
the curvature radius with time, using a power-law 
scaling, and investigated the connection between 
bubble size and the width of the deformed surface. 
 
2.5 Fluid Regime 
The understanding of the air entrainment 
mechanism typically relied on the categorization of 
fluid regime. Initial classification, put forward by 
Laura 1979, suggested that vertical plunging jets can 
be categorized into two regions based on whether the 
jet splits into droplets or is being continuous. The 
boundary between these two regions is determined 
by jet length and velocity. The fluid regimes were 
specified as more studies were carried out, leading 
to an air concentration-based classification. The 
boundaries between these regimes are dependent on 
both dimensionless Froude number and the velocity 
ratio between jet impact and horizontal movement 
(Chirichella, et al., 2002). 
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2.6 Computational Fluid Dynamics 
Numerous computational fluid dynamics (CFD) 
simulations were investigated both to verify 
previous experimental studies and to understand the 
phenomenon from a computational point of view. 
Kendil et al., 2012 simulated the jet as a two-phase 
bubbly flow injecting into the pool, and indicated a 
limited influence of the lit force on the velocity field 
but the plume shape would be affected easily by 
bubble size and void fraction. Different 
mathematical models were adopted across studies, 
where the volume of fluid (VOF) method was 
applied the most due to its reliable accuracy and 
reasonable computational intensity (Lopes et al., 
2016). A hybrid numerical solver was developed 
and adopted by Xiang et al., 2014, the model takes 
the advantage of selective interface sharpening to 
predict the occurrence and spread of bubbles more 
accurately. A recent study of Salehi et al., 2022 
focused on a more applicational problem of how 
entrainment mechanism is involved in the 
overflowing problem in hydraulic break columns 
(HBC). They had the models developed and 
validated by comparing liquid jet penetration 
snapshots with experimental figures given in Qu et 
al., 2013. Results were discussed in a classification 
of flow patterns in terms of dispersed bubbles, 
medium air pockets and large air pockets. The 
bubble case was ideally operational for HBC, where 
bubbles were able to break into smaller sizes and led 
to a predictable linear rising pattern. The later two 
need to be prevented due to the high potential risk of 
overflow from larger size and amount of air pocket 
entrained. 
 
2.7 Reviews 
In addition to the previously discussed Bin 1993, 
there are a couple of more noteworthy reviews 
available from Kiger 2012, and Kumar 2021. Kiger, 
2012’s review discussed the mechanisms of air 
entrainment in the category of low and high fluid 
viscosity, as well as the complicated application of 
plunging breaking waves. In contrast, Kumar, 2021 
relied more on the oxygen mass transfer 
phenomenon associated with plunging jet. 
 

3 Methods 
3.1 Model formulation 
The numerical model was built based on the concept 
of solving Navier-Stokes equations for an 
incompressible two-phase system in Cartesian 
coordinates ! = (!, %, &) . The system can be 
expressed in a single field formulation with the 
governing equations of: 

∇ ∙ * = 0 (1) 

, -.*./ + * ∙ ∇*1 = −∇3 + ,4
+ ∇5(∇* + ∇*!) + 6 

(2) 

where 7  is the fluid velocity, /  the time, 3  the 
pressure, 4  the gravitational acceleration. The 
density and viscosity can be further expressed by the 
formulation of 

,(!, /) = ," + (,# − ,")ℋ(!, /) (3) 

5(!, /) = 5" + (5# − 5")ℋ(!, /) (4) 

where the subscript of 9 and : denotes the air and 
liquid phase respectively. ℋ(!, /)  is an indicator 
function in the characterization of numerical 
Heaviside function. It is a binary function showing 
the value of zero in the air phase and 1 in the liquid 
phase. The Heaviside function can be solved by the 
computed vector distance function from the tracked 
interface (Shin and Juric, 2008).  

6  is the interfacial local surface tension force 
which can be explained and interpreted in a hybrid 
formulation defined in Shin et al., 2005 as: 

6 = ;<$∇	ℋ (5) 

where ; is the surface tension coefficient, which is 
assumed to be constant.  

<$  is twice the mean interface curvature 
calculated on the Eulerian grid with the expression 
of: 

<$ =
6% ∙ >
;> ∙ > (6) 

where 

6% = ? ;<&@&A&(B − B&)
'())

CD (7) 

> = ? @&A&(B − B&)
'())

CD 
(8) 

B&  in equation 5 and 6 is a parameterization of 
interface, Γ(/)  and A&(B − B&)  is a Dirac 
distribution that is only accountable when B = B&. 
@& represents the unit normal vector to the interface 
with an interface elemental length CD . <& , again, 
corresponds to twice the mean interface curvature 
but calculated from the Lagrangian structure. These 
geometric information were computed and 
distributed from the Lagrangian interface grid onto 
a fixed Eulerian grid by applying Peskin and Charles’ 
1977 immersed boundary method of the surface 
integral. 

 The interface is advected in a Lagrangian 
fashion by integrating 
CB&
C/ = F (9) 
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where G is the interface velocity interpolated at B& 
from the Eulerian velocity. 

The simulations are dealing with system of high-
density ratio approximately up to 1000, the 
procedures of efficient detailed solution of how 
simulations handle large density discontinuities can 
be found in Shin et al. 2017. 
 
3.2 Numerical configuration and 
physical parameters 
The configuration of plunging jet consists of a 
nozzle and a stationary pool of receiving liquid as 
shown in Figure 1. The setup is similar to Narendra 
et al., 2022 with a nozzle diameter of 2.7mm and 
nozzle thickness of 0.5mm as shown in the 
magnified details in Figure 1. The receiving pool is 
in a cubic shape with length of 5cm. The height of 
nozzle above the liquid surface was set to a lower 
value of 3cm due to the computational intensity and 
time limitation under the project framework. The 
reduction in height enables the liquid jet to reach the 
pool in a smaller amount of time, resulting in a more 
efficient collection of data regarding the dynamics 
beneath the pool induced by the plunging jet. The 
liquid level in the bath is set to be unchanged and to 
neglect the influence of overflowing. 
 

 
Figure 1. Schematic illustration of computational domain: a cubic 
tank with a nozzle set at certain height above. 

 
The three-dimensional computational domains 

are set to be a rectangular box with volume of 
5×5×8	cm3 . A sub-domain represents a cubic of 
1×1×1	cm3 , with a mesh size of 64×64×64 for 
each sub-domain. The time interval between two 
consecutive snapshots was set to be 0.01 seconds. 
This number was chosen as a compromise between 
achieving high resolution and obtaining sufficient 
amount of data for postprocessing. The 
postprocessing was conducted by means of code 
transition and conversion, subsequently followed by 
integration and analysis using Paraview.   

Simulations were run with 6 set of setups with 
the same jet and bath parameters but different liquid 

properties, the parameters of simulations are 
summarized in Table 1. The viscosity of fluid was 
chosen to be ten and fifty times the viscosity of water 
with a constant density of 1000 kgm-3 to ensure a 
low Reynolds number that lies in the laminar flow 
regime.  
 

 Velocity [m/s]  
(inlet average) 

Liquid 
Viscosity 

[Pas] 

Re 
(at nozzle) 

Lower Viscosity 
PL05 0.50 

0.01 
135 

PL075 0.75 202.5 
PL1 1.00 270 

Higher Viscosity 
PL05 0.50 

0.05 
27 

PL075 0.75 40.5 
PL1 1.00 54 

Table 1. Parameters for different cases of simulations 

  
The jet velocity was set in a constant value of Uav 

on the average base of the parabolic fluid profile. 
The flow was assumed to be fully developed at the 
outlet of the nozzle. It was also assumed that the 
liquid jet has the same velocity value when leaving 
the nozzle and hitting the pool surface.  

The nondimensional control parameters of the 
governing phenomenon applied in the study are: 

QR = SR
T9 = ,#U".V

5#
 

(10) 

T9 = 5#U".
;  (11) 

SR = ,#U"./ V
;  (12) 

where 5#  is the viscosity of the liquid, ;  is the 
surface tension. 
 

4 Results and Discussion 
4.1 Process overview 
The entire plunging process involves a series of 
complex fluid dynamics in a chronological 
sequence. These include the evolution of the jet, 
incipient dynamics and the mechanisms of surface 
deformation. The simulations showed that specific 
performance is strongly influenced by the physical 
characteristics of fluids in terms of velocity and 
viscosity. It is frequently observed that jets tend to 
form a balloon-like structure at the leading edge as 
they fall due to the kinematics. Furthermore, the 
stationary interface surface of the receiving pool 
undergoes deformation from the close impact of the 
approaching jet, resulting in the formation of a 
conspicuous cavity at its centre, which subsequently 
evolves into the initial bubble. The initial formation 
of the bubble’s shape differs as a result of 
differences in viscosity. The bubble would 
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eventually coalescence during the plunging process, 
either because to interfaces coinciding or limitations 
in computing resolution. Quantitative analyses were 
carried to scale the free surface deformation in terms 
of width and depth. A prediction that a steady state 
could be reached in the near further process can be 
made based on the convergency trend of width 
within the first 0.20 second of deformation. While 
the simulations were computed in three dimensional 
coordinates for the purpose of computational 
accuracy and higher reliability, schematic figures in 
2D were presented in this section for easier 
geometric illustration and understanding. 
 
4.2 Plunging jet evolution 

 
 0.01 Pas 0.05 Pas 

PL 
05 

  
(a) (d) 

PL 
075 

  
(b) (e) 

PL
1 

  
(c) (f) 

Figure 2. Plunging jet evolution before reaching the receiving 
surface, time interval between two successive figure of 0.05sec (a) 
0 to 0.45sec (b) 0 to 0.35sec (c) 0 to 0.25sec (d) 0 to 0.43sec (e) 0 
to 0.35sec (f) 0 to 0.25sec 

 

This section focuses on the geometrical 
development of liquid jets before to impact with the 
receiving pool. Figure 2. presents a summary table 
for the jet under all running conditions in every 
0.05s. Simulations with higher plunging velocity 
reach the pool faster with less time taken. It took 
0.45sec for plunging jet with the velocity of 0.5m/s, 
0.35sec for 0.75m/s jet and 0.25sec for 1m/s jet to 
travel the same distance. The jets show a general 
trend of the formation of a balloon-like structure at 
the jet leading edge, which can also be referred as 
bulge (Zhu et al. 2000). By comparing Figures 2 (b), 
(e) and Figures 2 (c), (f), it can be noticed that 
changing fluid viscosity would not have significant 
variation on jet evolution. It is expected that jet with 
higher viscosity could have slower formation of the 
bulge due to higher fluid surface tension. This could 
be more apparent at higher nozzle and thus longer 
evolution time. Similar bulge phenomenon is not 
observed for turbulent jet according to the literatures. 

It is worth to notice that simulations conducted 
with a velocity of 0.5m/s and viscosity of 0.01Pas 
(Figure 2. (a)) demonstrates the phenomenon of the 
liquid jet breaking up into droplets and impacting the 
surface through dripping rather than jetting. This 
phenomenon could be explained by the Rayleigh 
instability, which states that a liquid jet tends to 
breakup into smaller droplets due to the surface 
tension acting upon it. The system is in excess of 
surface energy when there is a larger surface area 
than the minimum necessary to hold a specific 
volume. Consequently, the system reorganizes itself 
to prioritize the state with the minimum energy, 
resulting in the fragmentation of the continuing 
stream into smaller droplets. As the bulge has been 
fully developed through the falling process, the 
breakup occurs at the time of 0.38sec with length of 
18mm. A droplet with a radius of 4.7mm was 
formed simultaneously, which proceeds to fall into 
the receiving pool. In the case of the situation where 
the velocity is the same, but higher viscosity of  
0.05Pas (Figure 2. (b)), no breakage is observed. The 
observed distinction is inherent, as fluids with 
higher viscosity exhibit more internal frictional 
forces, resulting in a reduced rate of deformation. 

A vortex behavior can be observed when taking 
the closer examination of the velocity field in the Z-
direction. Figure 3 (below) illustrates a schematic 
representation of jetting snapshot, with velocity of 
0.75m/s and viscosity of 0.01Pas at the time of 
0.35sec as an example. The streamlines within the 
diameter of descended neck flow continuously 
downwards, while the peripheral streamlines were 
redirected into two distinct swirling area with 
relatively lower velocity. 

 
 

440



 6 

 
Figure 3. Z-direction velocity vector field for pl075, 0.01Pas at 
time of 0.35sec 

 
4.3 Inception dynamics 
This section primarily discusses the incipient 
dynamics on the free surface caused by the plunging 
activity. Specific analyses were carried to 
understand the mechanism of early bubble 
formation and curvature of deformation. Inception 
occurred via either dripping or jetting, resulting in 
an initial convexity which subsequently evolved into 
the bubble. Upon contact with the plunging liquid, 
the surface underwent a deformation characterized 
by a radial short crest and an air void cavity. The 
detail parameters were found to depend on the 
physical properties of the fluid, primarily the 
velocity and viscosity. 

 
4.3.1 Incept via dripping 

 

 
Figure 4. The inception process from 0.48sec to 0.62sec, for 
0.5m/s velocity and 0.01Pas viscosity 

 
As mentioned in the previous section of the jet 
evolution, the only scenario in which the jet 
developed and broke up into droplet was during the 
simulation with a velocity of 0.5m/s and a viscosity 
of 0.01Pas. The droplet initially made contact with 
the free surface at 0.48 seconds, as shown in Figure 
4, resulting in the formation of a little convex 
protrusion in the centre. The bubble diameter was 
estimated to be about 0.6mm due to the constraints 
of simulation resolution. The convex shape of the 
droplet is a result of the rapid flow of liquid 
surrounding it, which is discussed in detail in section 
4.3.2. This observation is similar as Hendrix. et al., 
2016 reported in their study. Air was dragged and 
entrapped at the convexity point from the radial 

closure of contact between the droplet and receiving 
liquid.  

Figure 5. shows the time dependent development 
in depth between the top of the bubble and the 
surface deformational interface. The initial decrease 
in depth of the surface represents the general rise in 
liquid level due to the addition of the droplet. The 
depth of surface deformation increases in a faster 
rate than the travel depth of bubble. 
 

 
Figure 5. Depth development comparison between the top of the 
bubble and the surface deformation 

      
Ultimately as time reaching the 0.62 second, the 

deformational interface coincided with the top of the 
bubble at a depth about 5.35mm. These overlapping 
interfaces lead to bubble coalescence, as shown as 
the modest increase in depth from the last two data 
point.  

The further evolution of the low velocity 
(0.5m/s) scenario will not be discussed since the 
primary focus of this study is the mechanism 
associated with plunging jet. Moreover, the jetting 
processes are more preferred in efficiency and more 
widely applied in industries for conveniency. 
 
4.3.2 Incept via jetting 
At higher velocities, the liquid surface interacted in 
the form of liquid jet rather than droplets. Figure 6. 
(a) depicts the schematic progression during the first 
0.10sec of the inception. It is easy to observe the 
formation of a similar little convexity right below 
the centre of the jet. This is due to the compact high 
air velocity as the bulge is approaching the surface. 
This is indicated by the red arrow pointing 
downwards from the interface in Figure 6. (b), 
representing an impact velocity magnitude of 1.5m/s 
and a corresponding Reynolds number about 700. 
The convexity was considered as the proximate 
reason for air entrainment, subsequently leading to 
the formation of the small bubble underneath fluid 
surface. Because there is a constant contact region 
between the liquid jet and bath, the bubble will not 
collapse as a result of the coincidence of interfaces. 
The deformation of the surface is comparable as the 
dripping case but owns a shallower and more 
trapezoidal shape.  
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(a) 

 
(b) 

Figure 6. (a) The inception process from 0.38sec to 0.49sec, 
for 0.75m/s velocity and 0.01Pas viscosity (b) Velocity vector 
field at time 0.38sec  

 
Although a convex deformation was also 

observed for higher viscosity scenario, the convexity 
is noticeably flatter. The flatter morphology is due 
to a more even velocity magnitude distribution as 
shown by the mint-blue colored arrow crossing the 
interface in Figure 7. (b) with the impacting velocity 
magnitude approximately 0.9m/s and a 
corresponding Reynolds number of about 87.   
 

 
(a) 

 
(b) 

Figure 7. (a) The inception process from 0.39sec to 0.50sec, for 
0.75m/s velocity and 0.05Pas viscosity (b) Velocity vector field at 
time 0.39sec 

 
This kind of air layer instead of air void cavity 

results in the formation of a flat bubble, which is 
gradually developed into a more ellipsoid shape 

through the continuous plunging progress. The 
skewness of the surface deformation is less steep 
compared to the lower viscosity, as higher viscosity 
means a higher coherence within molecules. 
 

 
Figure 8. The inception process from 0.26sec to 0.37sec for 1m/s 
velocity and 0.05Pas viscosity 

 
The primary distinction of a higher velocity 

acting on the jetting inception is that the liquid is 
plunged in a straighter pattern into the receiving 
liquid, as seen in Figure 8 above. This happens 
because when the falling distance is limited, rapid 
jetting experiences less time for deformation. 
Therefore, the shape of the jet remains mostly 
unaffected from its original configuration near the 
nozzle. 
 
4.3.3 Curvature Analysis  
 

  
(a) (b) 

Figure 9. Zoomed detailed Comparison of curvature for impacted 
surface and approaching jet in the plunging speed of 0.75m/s (a) 
viscosity of 0.01Pas at time 0.38sec (b) viscosity of 0.05Pas at 
time 0.39sec 

 
A further analysis of the curvature was conducted in 
this section for a closer look into the cavity formed 
when the jet approaches the receiving pool. The void 
is characterised by the curvature of an equivalent 
sphere with a specific radius. Figure 9 demonstrates 
the comparison of the impacted curvature for both 
jet and pool surface for the same plunging velocity 
at 0.75m/s at the viscosity of 0.01Pas (Figure 9. (a)) 
and 0.05Pas (Figure 9. (b)) respectively. The 
reduced viscosity results in a significant disparity in 
curvature up to 10 times difference, with a curvature 
similar to that of a jet with radius 2.33mm and an 
interface with radius 0.28mm. When the viscosity is 
increased, both the jet and interface show the same 
curvatures, which can be represented by an 
equivalent sphere with a radius of 4.48mm. This 
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phenomenon is intuitive since viscosity is a measure 
of fluid to resist deformation. The higher viscosity 
corresponds to higher inter-molecular frictional 
force and resistive to external force.   

The curvature deformation of the free surface in 
Figure 9. (a) with the viscosity of 0.01Pas shows a 
geometric similarity to Gaussian function. By 
plotting out the curvature in terms of width and 
depth, a comparison between simulation data and 
Gaussian distribution can be shown as in Figure 10. 
The high extent of overlap between the two curves 
verified the idea that the deformation of the free 
surface can be approximated as a Gaussian-type 
curve with a correlation coefficient Q/ value up to 
0.953. This finding is consistent with the discussion 
made in Wei et al., 2019, which stated the 
assumption of describing the deformation shape as a 
Gaussian-type curve as long as the correlation 
coefficient  Q/ > 0.95 for incipient period.  
 

 
Figure 10. Comparison of surface deformation simulation data 
(time at 0.38sec) with the Gaussian-type curve 

       
Nevertheless, the simulation result in this study 

could not make further clarification on the precise 
stage within the deformation process. The study 
conducted by Wei et al. in 2019 utilized a high-speed 
camera to capture images at a rate of one millisecond, 
resulting in a tenfold increase in precision for 
process analysis.  Having the same resolution would 
result in a data size that is 1000 times bigger, which 
is impractical given the limited time and computer 
resources available for this project. 
 
 
4.4 Deformation Scale 
 

 
Figure 11. Illustration of measurement in terms of width and depth 
for deformation. Example snapshot adopted from velocity 1m/s 
with viscosity 0.05Pas at 0.40sec. 

 

The deformation in the pool’s free surface gives 
direct topological results when the liquid jet is 
striking the free surface. This section quantifies the 
deformation by the measurements of width and 
depth, as illustrated in Figure 11. The trendline 
correlation figures were plotted for three example 
simulation results, with one fluid parameter same to 
the other. Due to the project's time constraints and 
rounds of simulations completed, the trendlines 
were only plotted and examined inside the initial 
0.20 second. 
 

 
(a) 

 
(b) 

Figure 12. Trendlines for the first 0.20sec of free surface 
deformation in terms of width and depth along time 

 
Both the width and depth exhibit a constant 

increasing trend over time, owing to the continuous 
transformation of the kinetic energy from the jetting 
liquid into the potential energy of the receiving pool, 
especially the pool's free surface. The difference in 
physical properties from fluid made no apparent 
difference in the rate of increasement in width, 
however, the cases with higher plunging velocities 
show a dominated effect with larger gradient for the 
depth. Figure 12 (a) demonstrates a convergence 
relationship in the width of deformation over time. 
The change in width steadily decreases within each 
cumulative time snapshot and stabilises at a 
consistent level of around 30mm across all scenarios. 
A dashed polynomial best-fitted line reinforces the 
idea of convergency. It can thus be concluded that 
the free surface deformation would reach a steady 
state in the width within the first 0.20 seconds of 
deformation, but more rounds of simulations with 
more results would be required to reach a steady 
plunging state with constant deformation topology. 
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Figure 13. The process from 0.58sec to 0.62sec for 0.75m/s 
velocity and 0.01Pas viscosity 

 
Figure 13 displays the farthest simulation results 

that this study was able to achieve. The cylindrical 
cavity gradually shrinks in the middle, forming a 
narrowing geometry. This narrowing pattern is 
described as neck according to Qu et al., 2013 and 
Salehi 2022. The further process of similar neck 
formation is discussed in their study, where the 
cylindrical cavity collapses at the neck rim because 
of the pressure equilibrium on the cavity wall. The 
lower part would undergo a transformation into 
toroidal bubbles, which then proceed to 
collapse even further into an air plume. It is expected 
that the simulation of this study would continue and 
give similar kind of process as discussed in Qu et al., 
2013 and Salehi 2022. It is worth to notice that this 
type of process is a rapid dynamic with enormous 
amount of interface singularity, which would 
require larger amount of time and computational 
resources. 

 

5 Conclusion 
The project investigated the incipient air 
entrainment mechanisms of plunging jet, by 
applying CFD modelling under the scenarios of 
same jet configuration but varying viscosities and 
velocities under laminar flow regime. Due to the 
properties of laminar viscous flow, the jet evolved 
into a geometry of a bulge at the leading falling 
edge. The study found that the detailed development 
of the bulge formation highly depends on the 
plunging velocity and thus travelling time. The 
simulations with low velocity and viscosity tend to 
breakup from jetting into dripping due the Rayleigh 
instability of fluid. The closer examination of the 
bulge structure shows a swirling behaviour of the 
velocity streamlines in the Z-direction. As generally 
observed through all simulations, a convexity is 
formed on the pool centre, which is the proximate 
factor of the initial bubble formation due to air 
entrainment. Detailed analysis into the convexity 
illustrated a relationship between cavity geometry 
and fluid viscosity. The higher viscosity leads to a 
formation of air layer instead of dragged air void. 
The air layer thus evolves into the flatter bubble, 
which gradually develops into a more ellipsoid 
shape as travelling deeper in the pool. A high 
correlation was found between the small convexity 

and Gaussian type curve for lower viscosity case. By 
characterising the deformation into parameters of 
width and depth development with time, a general 
increase trend was found for both with no significant 
difference from velocity and viscosity. The 
simulations are expected to demonstrate a similar 
progress of the jet to those seen in existing literature 
with extra computational time provided.    

The results of the analysis can be used as a 
reliable preliminary step for further research, 
especially in the area related to small scale with 
precise operation. However, further entrainment 
process from incipient period, for instance the 
bubble penetration depth, bubble size and amount 
distribution in the steady plunging state have not 
been determined due to time and computational 
resources constraints. Since plunging jet is 
recognized as an efficient role for mixing 
temperature-sensitive fluids, further research in 
quantifying and controlling the air entrainment 
process in terms of bubble dynamics are 
recommended. Industrial operation with air 
entrainment phenomenon normally have high 
plunging velocities, therefore simulations running 
under turbulent regime are suggested for more 
extensive research. Disturbance’s factor such as 
oscillating jet, jetting with angles and jetting in 
fluctuating velocities are also advised for future 
research for industrial flow assurance. Moreover, 
other jets related to fluid dynamics are 
recommended under the topics of bouncing jet, 
Kaye effect and coiling jet. 
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Abstract

Surface patterning through wrinkling has attracted a lot of attention with its applicability in many areas, including structural

colour, drag reduction, mitigating biofueling, and controlled wetting and spreading. A facile way to achieve surface wrinkling is

through the plasma oxidation of an elastomer substrate, such as polydimethylsiloxane (PDMS), to alter the surface chemistry

of the substrate, creating a thin sti� film as a result. This bilayer system, thin sti� film on soft substrate, when exposed

to external stress, gives rise to surface wrinkles due to the di�erence in their mechanical properties. However, one of the

challenges associated with surface wrinkling is the formation of cracks. This report investigates the e�ect of four variables

on crack formation, with the key variables found to be the thermal insulation of the material upon which the sample is placed,

and the pressure at which the plasma oxidation chamber is operated. It was concluded that, in order to achieve crack-free

wrinkling, materials with U-values, which is a measure of the thermal transmittance of a material, above 950W/(m2K) should

be used as the sample support during treatment in the oxidation chamber for elastomer thicknesses greater than 50 µm. In

addition, the plasma chamber should be run above 0.05 mbar to avoid cracking.

Key words: plasma oxidation, PDMS, wrinkling, cracking, AFM, SALS.

1 Introduction

The wrinkling of thin sti� films on soft substrates has a

myriad of applications. These include drag reduction [1],

antibacterial coatings [2], controlled wetting and spreading

[3], and biofueling mitigation [4]. In addition, the scale-

up potential of micro- and nano- scale wrinkling is huge.

For example, the inside surface of pipes could be covered

with nanoscale wrinkles, reducing drag and thus increas-

ing flow rate without increasing pump duty. However, the

use of surface patterning through wrinkling is limited due to

the emergence of cracks on the surface, which is very of-

ten neglected. It is important to understand and mitigate

the formation of cracks as they can render the wrinkled

surface useless. For example, although wrinkles inhibit

the growth of microbes in applications where wrinkles are

used as antimicrobial coatings, these microbes proliferate

on the cracks, thus making the wrinkled surface ine�ective

[5]. This report focuses on the e�ect of four di�erent vari-

ables on crack formation, resulting from the use of plasma

oxidation to alter the topography of a soft elastomer sub-

strate.

Surface wrinkles are driven by the mechanical instabil-

ity of the elastomer substrate brought about by an applied

stress. In this report, the temperature of the plasma cham-

ber caused the samples to heat up and expand. After the

treatment, the samples were removed from the chamber

and cooled to room temperature, contracting in the pro-

cess. This expansion and contraction of the samples acted

as the applied stress needed to drive the mechanical insta-

bility of the polymer network, bringing about surface wrin-
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kles.

Polydimethylsiloxane (PDMS) is an optically clear and

inert elastomer extensivey studied in surface patterning

and microfluidics. In addition, it is incompressibility, indi-

cated by a Poisson’s ratio, nPDMS, of 0.5 [6], makes it the

ideal soft substrate upon which to perform the experiments

outlined in this report. Moreover, PDMS readily undergoes

plasma oxidation, forming a thin, glassy film in the order of

10 nm as a result. The mechanical instability of the PDMS

gives rise to buckling and subsequent wrinkling of this thin

film, with the wavelength, l , and amplitude, A, of the wrin-

kles described by Equations 1 and 2 below:

l = 2ph f

✓
E f

3Es

◆1/3
(1)

A = h f

✓
e
ec

�1
◆1/2

(2)

where h f is the thickness of the glassy film, E f and Es are

the elastic moduli of the thin film and thick substrate respec-

tively, and ec is the critical strain that must be exceeded to

achieve buckling of the thin film. The elastic modulus of the

thin film, E f , was considered to be 30 GPa [6]. Given that a

typical value for the elastic modulus of PDMS, EPDMS, is 1.6

MPa [6], the elastic modulus of the thick substrate can be

calculated using Equation 3, resulting in a thick substrate

elastic modulus of Es ⇡ 2.1 MPa.

Es =
EPDMS

(1�n2
PDMS)

(3)

As aforementioned, since the temperature di�erence in-

side and outside the plasma chamber is being used as the

mechanism for applying strain to the sample, it is assumed

that each sample undergoes low deformation (strain e 

10%). This means that amplitude alone depends on strain,

allowing l and A to be decoupled [7].

2 Methods

2.1 Materials & Equipment

2.1.1 Plasma Oxidation Chamber

Samples underwent plasma oxidation in a Diener

Femto vacuum chamber to create a thin glassy film on

top of a soft elastomer substrate. Plasma is ionised gas

with equal amounts of positive and negative ions [8] that

alter the chemistry of the elastomer surface. This is cre-

ated by introducing a gas into the chamber which is then

ionised. The excited gas molecules emit UV light, causing

the plasma to glow.

2.1.2 Atomic Force Microscopy (AFM)

Bruker (Veeco) AFM in tapping mode was used to anal-

yse the topography of the samples discussed in this re-

port. This technology works by touching a nanoscale tip

repeatedly o� the samples surface to produce a 3D image

of the surface topography. The images produced were then

analysed to determine the wavelength and amplitude of the

wrinkles formed. Knowing l , Equation 1 was used to de-

termine the thickness of the glassy film, h f . These three

parameters, l , A, and h f , will define the wrinkling charac-

teristics of each sample.

2.1.3 Small-Angle Light Scattering (SALS)

The SALS set-up consisted of a green laser beam

(wavelength of 532 nm) being on shone on an X-Y scanning

mirror. This reflected the beam at 90° which then passed

perpendicularly through the sample. The resulting di�rac-

tion pattern was observed on a screen and recorded using

a Hamamatsu Orca camera mounted vertically above and

was controlled using Wasabi, an in-built software.

2.2 Sample Preparation

Dow SYLGARD 184 silicone elastomer base was mixed

with 184 silicone elastomer curing agent in a 10:1 ratio.

This was stirred vigorously with a spatula and placed in
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a vacuum to remove air bubbles. The resulting mixture

was polydimethylsiloxane (PDMS). Silicon wafers were cut

into 1cm x 1cm squares using a diamond tip pen. Us-

ing tweezers and without touching the surface, a square

wafer was placed on the spin coater and secured onto the

chuck through vacuum. The wafer was cleaned first with

a compressed air gun, sprayed with isopropanol, and then

dried with the compressed air gun. Using a pipette, 0.2 mL

of PDMS was deposited onto the surface of the cleaned

wafer. This was then spin coated at a certain speed, de-

pending on the experiment being carried out, for 1.5 min-

utes. Once coated with PDMS, the samples were cured in

a 75 °C oven for 1 hour. The thickness of the substrate on

the wafer was controlled through the spin coating speed.

A summary of the spin coating speed and resulting PDMS

substrate thickness is presented in Table 1. The substrate

thicknesses were determined using a calliper.

Table 1: Spin coating speed and resulting PDMS
substrate thickness.

Spin coating speed

[rpm]

PDMS substrate

thickness [µm]

200 330 ± 0.01
2000 50 ± 0.01
6000 10 ± 0.00

2.3 Plasma Oxidation

The samples coated with PDMS were placed on the

centre of a plate and placed in the plasma oxidation cham-

ber. Air was pumped out of the chamber until a pressure of

0.07 mbar was achieved. Gas was then pumped into the

chamber to reach a certain pressure. Depending on the

experiment being conducted, the gas type being pumped

into the chamber and the final operating pressure were var-

ied. Ensuring the power of the chamber was set to 99 W,

the generator was started, initiating the oxidation process.

This was allowed run for a certain amount of time before

the chamber was ventilated and returned to ambient con-

ditions. This process varied slightly depending on the ex-

periment being conducted but will be clearly stated.

2.4 Experimental Studies

2.4.1 Exposure Time

Following the findings in relation to the e�ect of plasma

dose and pressure on surface wrinkling and cracking [9], it

was decided to investigate the impact of plasma dose, via

exposure time, on the resulting surface topography. Three

samples were prepared according to Section 2.2, using a

spin coating speed of 6000 rpm. One sample was placed

on the middle of a metal plate and put in the plasma cham-

ber. The plasma oxidation treatment was carried out as

outlined in Section 2.3, using oxygen to fill the chamber to

a pressure of 0.2 mbar. The sample was then treated for

1 minute. This was repeated twice more for plasma expo-

sure times of 5 and 10 minutes. For a constant plasma

power of 99 W, the plasma exposure time and correspond-

ing plasma dose are summarised in Table 2. After each

plasma exposure, the treated sample was transferred to a

glass Petri dish and analysed using AFM. Results are out-

lined in Section 3.1.

Table 2: Calculated plasma dose for di�erent plasma exposure
time.

Plasma exposure time [mins] Plasma dose [kJ]

1 5.94
5 29.70
10 59.40

2.4.2 Gas Type & Pressure

Twelve samples were prepared according to Section

2.2 and spin coated using a speed of 6000 rpm. Six sam-

ples were used to investigate the use of oxygen to fill the

oxidation chamber, and six were used to investigate the use

of air. In every case, the plasma exposure time and power

were 1 minute and 99 W respectively, resulting in a plasma

dose of 5.94 kJ. After removal from the oxidation chamber,
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samples were left to cool at the ambient rate.

One sample was placed on the middle of the metal plate

and put into the oxidation chamber. The method outlined

in Section 2.3 was followed, using oxygen as the gas to fill

the chamber to reach the desired operating pressure. The

operating pressure was varied for the six di�erent samples

using the variable area flow meter on the plasma cham-

ber. The pressures investigated were the pressures corre-

sponding to a reading on the variable area flow meter of 0,

0.5, 1, 5, 10, and 15. The corresponding operating pres-

sures of the chamber are summarised in Table 3.

This was repeated using the remaining six samples, but

filling the chamber with air instead of oxygen. Again, the

operating pressures of the chamber and the corresponding

readings on the variable area flow meter are summarised

in Table 3.

Table 3: Gas studies operating pressures and corresponding
variable area flow meter settings.

Sample

number

Variable area

flow meter

setting

Pressure

Study 1

Oxygen

[mbar]

Pressure

Study 2

Air

[mbar]

1 0 0.017 0.017
2 0.5 0.053 0.037
3 1 0.093 0.050
4 5 0.200 0.120
5 10 0.350 0.240
6 15 0.540 0.310

2.4.3 Cooling Rate

Initially it was thought that the cooling rate of the sam-

ples after plasma exposure could cause the samples to

crack. The e�ect of three cooling rates on sample cracking

were investigated. These cooling rates were 0.1 °C/min,

ambient, and 50 °C/min cooling. In each experiment, the

plasma power was maintained at 99 W with an exposure

time of 5 minutes, resulting in a plasma dose of 29.7 kJ.

Three samples were prepared as outlined in Section

2.2 and were spin coated with PDMS at 6000 rpm for 1

minute. For each experiment, one sample was placed on

a metal plate and was pre-heated, using a hot plate, to 75

°C. This was then placed in the plasma oxidation chamber

and the method outlined in Section 2.3 was followed, filling

the chamber with oxygen to a pressure of 0.2 mbar.

Once the plasma treatment was completed, the sample

was quickly transferred to a Linkam temperature controller

where it was maintained at 75 °C. This was placed under

the SALS set-up, where a time-lapse of the sample was

recorded. On the Linkam controller, the cooling rate was

set to 0.1 °C/min. The sample was cooled at this rate until

it reached 25 °C at which it was held for 2 hours. This pro-

cess was repeated for the 50 °C/min cooling rate. In the

case of the ambient cooling rate, the Linkam temperature

controller was not switched on, allowing the sample to cool

according to Newton’s law of cooling. All samples were

analysed using AFM and results are presented in Section

3.3.

2.4.4 Thermal Insulation

The e�ect of placing materials with di�erent thermal in-

sulation properties between the sample and its support-

ing plate in the oxidation chamber was investigated. It was

thought that the amount of heat dissipated from the sam-

ple during the oxidation treatment would vary depending

on the conductivity of the material it was in contact with.

This in turn would have an impact on the amount of strain,

and hence potential cracking, of the sample. Since the

e�ect of substrate thickness on sample cracking was un-

known, three samples, one of each 10, 50, and 330 µm,

were prepared according to Section 2.2 for each study. The

study numbers and corresponding contacting materials are

summarised in Table 4, and schematics of each study are

shown in Figure 1.
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Figure 1: Thermal insulation studies set-up. Set-ups (1) to (5)
are in order of increasing thermal insulation. In (1), the sample is
placed directly on a metal plate. (2) and (3) involve placing 1 and
2 glass slides respectively between the sample and metal plate.
In (4), the sample is placed directly on a glass plate. In (5), 2 mm
of PDMS is placed between the sample and metal plate.

The glass slides used were soda-lime glass, the glass

plate was borosilicate glass, and the PDMS was made of

Dow SYLGARD 184 silicone elastomer base and 184 sili-

cone elastomer curing agent in a 10:1 ratio.

In order to quantify the thermal insulation performance,

the U-values of each set-up in Table 4 were calculated us-

ing Equation 4 [10]. The U-value is defined as the recipro-

cal of the total thermal resistance, RT , which is the sum of

the ratio of the material thickness, di, to its thermal conduc-

tivity, li, for every layer i [11], [12], [13], [14]. This U-value

is also known as the thermal transmittance which quan-

tifies the amount of heat that passes through a material.

Therefore, a lower U-value indicates a better insulator, as

the material resists the transfer of heat more e�ectively.

U-value =
1

RT
=

1

Ân
i=1

di
li

(4)

Table 4: Thermal insulation study number, corresponding contacting
material and U-value.

Study

number
Contacting material

U-value
[W/(m2K)]

1 aluminium plate 79,000
2 aluminium plate + 1 glass slide 952.024
3 aluminium plate + 2 glass slides 478.897
4 glass plate 240.000
5 aluminium plate + 2 mm PDMS 79.919

The U-values corresponding to each thermal insulation

study set-up are summarised in Table 4, and are shown

visually in Figure 2.

Figure 2: Thermal insulation performance (U-values) of each ther-
mal insulation study set-up.

For each study, the samples were placed on the middle

of their contacting materials and inserted into the plasma

chamber. The plasma chamber was run according to Sec-

tion 2.1.1, filling the plasma chamber with oxygen to 0.2

mbar and treating the samples for 5 minutes with plasma

power 99 W. This resulted in a plasma dose of 29.7 kJ. Us-

ing tweezers, the treated samples were removed from the

plasma chamber and transferred to a labelled glass Petri

dish. These samples were then analysed using the SALS

set-up, AFM, and optical microscope, and the results are

summarised in Section 3.4.

3 Results & Discussion

3.1 Exposure Time

Figure 3 shows the AFM images that were analysed

to determine the wrinkling characteristics for varying expo-

sure time, shown in Figure 4.
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Figure 3: AFM images of samples realised when exposed to
plasma for 1,5, and 10 minutes.

It can be seen that an increase in exposure time results

in an increase in both h f and l . This is unsurprising since

the longer the sample spends in the oxidation chamber,

the further into the substrate the plasma can penetrate, re-

sulting in the formation of a thicker glassy film. Since l is

proportional to h f , as shown by Equation 1, it follows that

the l also increases with exposure time.

Figure 4: Wrinkling characteristics for varying exposure time.

The amplitude of the wrinkles decreases with increas-

ing exposure time. This can be explained by Equation 2,

showing that A increases as a function of the square root

of the applied strain, along with the fact that longer expo-

sure times result in larger h f . For thinner films, observed

at shorter exposure times, the elastic modulus of the soft

substrate dominates, resulting in high strain and therefore

high amplitude. For thicker glassy films, there is less strain

on the thin film as the film and substrate contribute similar

amounts to the overall strain of the sample. No cracking

was observed in any samples.

To determine the wrinkling characteristics of the sam-

ples, three measurements were made on the AFM image in

di�erent locations for both l and A and the average taken.

From this, the standard deviation, and subsequent stan-

dard error, of the data was calculated, with the standard

error being used to form the error bars shown in Figure 4.

The standard error of l , sl , was propagated according to

Equation 5 [15], where k is a constant multiplier shown in

Equation 1, to calculate the standard error, and hence error

bars, of h f . This method was used throughout this report

to determine the error in each experiment.

sh f = k sl (5)

3.2 Gas Type & Pressure

Figure 5 shows the AFM images of the wrinkles formed

when operating the plasma chamber at 0.1 mbar, in the

presence of oxygen or air.

Figure 5: AFM images for 0.1 mbar chamber pressure, using oxy-
gen and air respectively.

From AFM analysis of all samples, it was possible to de-

termine the wrinkling characteristics with varying pressure
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for both oxygen and air. These are depicted in Figures 6(a)

and 6(b) respectively.

Figure 6: Wrinkling characteristics for (a) oxygen and (b) air with
varying pressure.

It can be seen that, for both gas types, l , A, and h f de-

crease with increasing chamber pressure above 0.05 mbar.

For both gas types, samples made using a chamber pres-

sure of less than 0.05 mbar during treatment cracked, and

samples made using pressures below 0.02 mbar did not

undergo any treatment as there was not enough plasma

present. As a result, it was possible to estimate a pressure

range in which samples would be expected to crack. This

is between 0.02 and 0.05 mbar.

The crack densities of the three cracked samples were

investigated using the same method outlined in Section

3.4. Similar crack densities were observed across the three

samples, meaning if the plasma chamber is operated within

the cracking pressure range, the crack density can be ac-

curately predicted to be about 1 % as shown in Table 5.

This confirms that the results are robust and non-specific

to the plasma chamber.

Table 5: Crack densities for di�erent conditions.

Gas type Pressure [mbar] Crack density [%]

Oxygen 0.053 0.92
Air 0.050 1.13
Air 0.037 1.37

3.3 Cooling Rate

The wrinkling characteristics and corresponding cool-

ing rates are plotted in Figure 7. No cracking was observed

in any of the samples. The ambient and 0.1 °C/min cooling

rates were very similar in terms of l and A.

Figure 7: Wrinkling characteristics for various cooling rates.

Figure 8 shows the change in sample temperature, T ,

and formation of the wrinkles, I(q⇤), with time for the dif-

ferent cooling rates. It can be seen that, for 0.1 °C/min

and ambient cooling rates, the wrinkles form once the sam-

ple temperature has dropped to about 30 °C. For a cooling

rate of 50 °C/min, since the temperature is reduced rapidly,

the wrinkle formation is instant. As 0.1 °C/min and ambi-

ent cooling rates result in similar wrinkle intensities, both of

which are higher than that produced from 50 °C/min cool-

ing, it was confirmed that ambient cooling could be used to

avoid the need for temperature control.
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Figure 8: Temperature and wrinkling intensity profiles for (a)
0.1°C/min, (b) ambient and (c) 50°C/min cooling rates.

3.4 Thermal Insulation

Figure 9 shows the SALS images for 50 µm substrate

thickness samples of thermal insulation studies 2 and 4

which formed wrinkles and cracks respectively. A summary

of set-ups 2 and 4 can be found in Figure 1 and Table 4.

Figure 9: SALS images of thermal insulation studies 2 and 4 for
50 µm PDMS substrate thickness (2000 rpm spin coating speed).

The analysis of these images, along with the use of

the optical microscope and AFM, led to the development

of the morphology map shown in Figure 10. This depicts

the regions of wrinkles, cracks, and wrinkles and cracks

that were observed for various substrate thicknesses and

U-values of the contacting materials on which the samples

were placed.

Figure 10: Morphology map depicting the zones of wrinkling,
wrinkling and cracking, and cracking for di�erent contacting ma-
terial U-values and substrate thicknesses.

Figure 2 shows the U-values for the various thermal

insulation studies that were carried out. As mentioned in

Section 2.4.4, schematics of each thermal insulation study

are shown in Figure 1. It was concluded that for contact-

ing materials with U-values greater than 950W/(m2K), the

sample would be expected to form wrinkles. This will be

defined as the wrinkling zone. For contacting materials

with U-values between 300 and 950W/(m2K), the sample

would be expected to form wrinkles and cracks. This will

be defined as the wrinkling and cracking zone. Finally, for

contacting materials with U-values less than 300W/(m2K),

the sample would be expected to crack.

Figure 11 shows the wrinkling characteristics in the

wrinkling, and wrinkling and cracking zones for two sub-
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strate thicknesses. It can be seen that, for a given sub-

strate thickness, h f , is larger in the wrinkling and cracking

zone than in the wrinkling zone. It follows that the wrinkle

wavelength, l , is also larger in the wrinkling and cracking

zone than in the wrinkling zone. The opposite is observed

when looking at A, which is smaller in the wrinkling and

cracking zone than in the wrinkling zone. It can also be de-

duced that thinner substrates result in higher h f , l , and A

than thicker substrates for a given morphology zone. Sam-

ples made using a spin coating speed of 200 rpm corre-

sponding to a substrate thickness of 330 µm are not shown

on Figure 11 as they all cracked without forming wrinkles.

Figure 11: Wrinkling characteristics vs substrate thickness for ma-
terials with U-values in the wrinkling and wrinkling and cracking
zones.

This understanding, coupled with the crack density re-

sults shown in Figure 14, resulted in the development of

Figure 12. Figure 12(a) depicts why, for contacting mate-

rials with high U-values (low thermal insulation), samples

do not crack since the heat, Q, dissipates from the sample

more easily. On the other hand, Figure 12(b) shows that for

contacting materials with low U-values (high thermal insu-

lation), samples will crack since the heat, Q, cannot easily

dissipate from the sample. Therefore, the build up of en-

ergy supplied by the plasma to the sample is released via

cracking.

Figure 12: Crack formation resulting from thermal insulation. The
yellow lightning bolt represents the energy supplied to the sample
from the plasma. In set-up (a), the sample is placed directly on a
supporting plate in the plasma oxidation chamber. In set-up (b),
insulating material is placed between the sample and supporting
plate. The presence of the insulating material means that the heat
energy, Q, supplied by the plasma cannot easily dissipate from the
sample, thus causing the sample to crack.

The crack density of each sample was calculated from

images taken using the optical microscope. These images

were processed using MATLAB, making the cracks appear

black on a white background. This made it possible to cal-

culate the crack density by calculating the area fraction of

the image that was black compared to white. Figure 13

shows an image taken from the optical microscope before

and after it was processed using MATLAB to determine the

crack density.

Figure 13: Crack density analysis using MATLAB for 10 µm sub-
strate thickness, thermal insulation study 5.

The results are depicted in Figure 14, showing the

crack density vs substrate thickness for the five thermal in-

sulation studies. It shows that, for a given thermal insula-
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tion, the crack density is lower for thicker substrates. This

can be explained by the fact that there is less substrate

present in thinner samples, so more energy is released in

the form of cracks rather than dissipating through the sam-

ple. It also shows that, for a given substrate thickness, the

crack density is higher for contacting materials with lower

U-values (better insulators).

Figure 14: Crack density vs substrate thickness for the di�erent
thermal insulation studies.

4 Conclusion & Outlook

The results presented in this report are an important

step to understanding the factors a�ecting crack formation

in thin sti� films on soft substrates. Two key variables were

identified in relation to unwanted crack formation during

wrinkling of a thin elastomeric substrate through plasma

oxidation. These were the thermal conductivity of the ma-

terial on which the sample is placed in the oxidation cham-

ber, and the gas pressure at which the plasma oxidation

chamber was operated.

It was concluded that, in order to achieve crack-

free wrinkling, contacting materials with U-values above

950W/(m2K) should be used as the support during treat-

ment in the oxidation chamber for samples with elastomer

thickness greater than 50 µm. In addition, the plasma

chamber should be run above 0.05 mbar to avoid crack-

ing. Adhering to these conditions facilitated the control and

achievement of crack-free wrinkling.

Further testing should be done to refine the range of

U-values of the contacting materials and substrate thick-

nesses that define the wrinkling, wrinkling and cracking,

and cracking zones. Moreover, the translation of these pa-

rameters into the use of atmospheric plasma for scale-up

should be investigated.
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1. Introduction 
Therapeutic drugs often comprise peptides with 
molecular weights between 500-5000 Da. Since the first 
therapeutic peptide, insulin was synthesised, there have 
been over 80 peptide drugs approved worldwide. 
Demand for therapeutic peptides is expected to increase 
at a CAGR of 10.8% from 2023 to 2033, potentially 
reaching US$ 106 billion in market size by 2033 [1]. The 
main techniques employed for peptide purification are 
chromatography methods such as RP-HPLC and ion-
exchange chromatography, but these methods often 
require large volumes of solvent which generate 
significant liquid waste [2]. Alternative purification 
techniques include ultrafiltration, fractional 
precipitation, centrifugation and crystallisation, where 
crystallisation is mainly utilised as the final purification 
step to achieve >99% purity [3]. Crystalline 
pharmaceutical peptides offer numerous advantages 
such as higher stability for longer shelf life, possibility 
for high dosage due to higher purity levels, and allows 
controlled drug release [4]. However, crystallisation 
processes occur very slowly and require precise 
optimisation of temperature, pH, impurity levels, etc. 
Thus, it is imperative to investigate factors that might 
hinder crystallisation and ensure crystallisation 
processes occur as quickly as possible while yielding 
high quality crystal products.  

Upstream peptide products often contain impurities 
such as solvents and unreacted reactants, thus it is 
crucial to understand the impact of impurities on key 
performance indicators of crystallisation such as 
crystallisation rate and crystal product quality. In order 
to reflect industrial conditions, this study investigates 

the crystallisation of diglycine with the presence of 
glycine impurities up to 2.5% w/w as diglycine is 
produced via the reflux reaction between glycine and 
glycerol. Although diglycine does not have specific 
therapeutic functions on its own, it can be used as a 
short-chain intermediate reactant to produce complex 
therapeutic peptides or proteins [5]. Additionally, 
heterogenous crystallisation of diglycine was also 
investigated by employing 1% w/w silica nanoparticles 
with 6 nm pore diameter as hard templates to identify 
any potential improvements to the crystallisation 
process.   
 
2. Background 
2.1. Crystallisation 
Crystals are solid materials comprising constituent 
atoms, ions or molecules that are orderly arranged in 
three dimensional arrays, exhibiting a repeating and 
symmetric pattern known as a crystal lattice. Angles 
between crystal faces of the same compound are 
identical and characteristic for that material. The 
driving force of crystallisation is supersaturation, which 
occurs when a solution contains a solute concentration 
that exceeds its equilibrium solubility for a specified 
temperature and pressure, thus surpassing its 
thermodynamically stability. A saturated solution can 
become supersaturated through two routes: the first is 
to increase the amount of solute dissolved in solution, 
and the second method is to induce a temperature 
change in solution through means of evaporation or 
cooling. 

According to Classical Nucleation Theory (CNT), 
crystallisation occurs in two stages. Nucleation is the 

Abstract  
Crystalline pharmaceutical peptides offer a plethora of advantages such as producing higher stability and purity 
products while allowing controlled drug release. However, the presence of impurities can hinder crystallisation 
processes, thus this study aimed to investigate the effect of glycine impurities on diglycine crystallisation. Although 
diglycine does not have specific therapeutic functions, it can be used as an intermediate reactant to generate complex 
peptides. In the first phase of this study, homogenous crystallisation experiments with various glycine impurity levels  
(0 to 2.5% w/w) were conducted at the constant initial supersaturation ratio of 1.35. Findings revealed that increasing 
glycine impurity level increased induction time and reduced crystal growth rate. In the second stage of the study, 1% 
w/w silica nanoparticles with 6nm pore size were employed to induce heterogenous nucleation. This led to a reduction 
in induction time for all glycine impurity levels, and by over 4-fold for the experimental run with 2.5% w/w glycine 
impurity. In addition, solid characterisation methods such as PXRD and microscopy were utilised to analyse the 
resulting solid products. It was found that homogenous crystallisation yielded a-diglycine, while the heterogenous 
case produced diglycine sesquihydrate. The solubility of the hydrate at 5℃ was found to be lower at 87 mg/mL, thus 
generating approximately two-fold higher crystal yield at 7.5g in comparison to 4.0g for homogenous crystallisation. 
In conclusion, it was found that certain impurities greatly hinder crystallisation processes, but the presence of 
heterosurfaces can mitigate the increase in induction times and should be employed in industrial processes for  
improved cost-competitiveness. 
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initial step in crystallisation process where genesis of 
crystal nuclei occurs and is the rate limiting step. It 
occurs a period of time after the solution is left in 
supersaturated state, otherwise known as induction 
time, #!"#. Nucleation rate $ is the inverse of induction 
time ($ = 1/#!"#), and can be determined as follows:  
 

$ = ( ∙ * ∙ +,- .− 0
ln$ *3 (1) 

where ( is the pre-exponential constant dependant on 
nucleation kinetics, * is supersaturation ratio and 0 is a 
thermodynamic parameter relating to the interfacial 
energy between solid crystal and the solution, 
quantifying the energy barrier to nucleation. [6] As 
proven in Equation 1, the driving force for 
crystallisation is indeed the supersaturation ratio.  

Crystal growth is the second step and occurs when 
solute particles adsorb onto kink sites of step lines on the 
crystal surface, the step lines then move across the 
crystal surface via step displacement. The types of 
growth regimes include continuous growth, spiral 
growth and surface nucleation. [7] 

There are two types of nucleation mechanisms: 
primary and secondary. Primary nucleation occurs when 
crystal formation is driven by solution properties in the 
absence of crystals of the same material and can be 
further classified into homogeneous and heterogeneous 
routes. Homogeneous nucleation is when crystal 
formation is driven solely by supersaturation and 
contains no foreign particles or crystals of its own type 
in solution. Heterogeneous nucleation results from the 
presence of foreign particles or growth of a pre-existing 
surface present in the system, inclusive of mixing 
equipment, vessel surfaces, gas-liquid interfaces or 
heterogeneous templates as seen later in this report. 
Secondary nucleation occurs if crystals of the same 
material are present in solution and involves attrition 
where the existing crystals are broken up into smaller 
crystal sizes through contact or shear forces, increasing 
the number of crystal fragments available to act as nuclei 
and thereby increasing crystal formation rate. 

Control of nucleation is critical in determining 
physical characteristics of solid products crystallised 
from solution, inclusive of crystal habit, morphology 
and particle size distribution. It is therefore paramount 
to understand existing nucleation mechanisms which are 
useful in predicting crystal properties: CNT and the 
recently adapted Two-Step Nucleation Model (2SN). 
The mechanism described by CNT attributes the genesis 
of nuclei to solute particles aggregating together, 
progressively forming clusters until a critical radius is 
reached, such that both free energy contributions for 
phase transformation and interfacial formation are in 
equilibrium. Upon reaching this equilibrium, the cluster 
is thermodynamically stable to act as a nucleus and 
enable subsequent crystal growth. CNT assumes 
spherical nuclei, and isotropic interfacial tension. In 
contrast, 2SN introduces an additional step in 
nucleation, described as follows: the first step is the 
formation of pre-nucleation nanodroplet clusters in the 
dense liquid phase which is rate-determining, and the 
second step involves the faster formation of crystal 

nuclei within the nanodroplet clusters. In the context of 
2SN, the mesoscopic liquid structures can also act as 
heterosurfaces, introducing template effects similar to 
heterogenous nucleation. 2SN has provided 
breakthroughs in crystallisation processes by resolving 
underlying complexities within nucleation mechanisms, 
most notably clarifying why experimental nucleation 
rates were several orders lower than the rates predicted 
with CNT. By considering the second step of 2SN on its 
own and omitting the rate-determining step, there is a 
close match between predicted and experimentally 
measured nucleation rates. This recent advancement 
accentuates the need for a more thorough 
comprehension of the mechanisms that strongly 
influence nucleation, namely the presence of impurities 
and surface chemistry of solute particles. [8] 

 
2.2. Effect of Impurities on Crystallisation 
The presence of impurities in solution can influence 
crystallisation rate either positively or negatively. 
Impurities that enhance crystallisation processes are also 
known as templates; where hard templates are rigid and 
insoluble while soft templates are soluble. Link and 
Heng have investigated employing various amino acids 
as soft templates to enhance insulin crystallisation, 
where L-arginine and L-leucine were found to improve 
nucleation rates due to favourable intermolecular 
interactions between insulin and the amino acids [9]. 
However, Keshavarz, L. et al. has found that certain 
impurities such as 4-nitrophenol and 4’-
chloroacetanilide acted as nucleation inhibitors, 
effectively slowing nucleation rate $ [10]. Therefore, 
this study aims to investigate the effect of glycine, the 
main impurity in diglycine production on its 
crystallisation process. Generally, the presence of hard 
templates will enhance nucleation via favourable 
intermolecular interactions between solutes and 
heterosurfaces as seen in the study by Verma, V. et al. 
[11],  leading to the second phase of this study which 
investigates the potential of silica nanoparticles on 
improving induction times of diglycine crystallisation.  
 
2.3. Surface Chemistry 
Verma, V. et al. has investigated the crystallisation of 
glycine and diglycine in the presence of glass beads as 
heterosurfaces and found that the pre-exponential 
constant of nucleation has increased significantly due to 
complimentary hydrogen bonds between solutes and the 
heterosurfaces, contrary to traditional CNT that 
heterosurfaces reduce the interfacial energy between 
solute molecules and the solution. Each diglycine 
molecule contains 2 hydrogen bond donor (HBD) and 3 
hydrogen bond acceptor (HBA) sites; where the lifetime 
of hydrogen bonds between solutes and heterosurfaces 
is around 30 ns, astronomically greater than the time 
required to attach a diglycine molecule to a growing 
crystal (2.01 ps). This allows the solute to adsorb to the 
heterosurface for sufficient time to allow subsequent 
solute molecules to attach and form stable nuclei. [12]  
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3. Materials & Methodology 
3.1. Materials 
Diglycine (Digly, ≥ 99% by titration) and glycine (≥ 
99% by HPLC) were both procured from Sigma-Aldrich 
Co. Ltd as the main peptides used in this investigation. 
The salts KH2PO4 (purity ≥ 99%, white crystals, 
anhydrous form) and C6H13O3SNa (purity ≥ 98%, white 
crystals, anhydrous form) were also supplied by Sigma-
Aldrich Co. Ltd. Porous silica-OH particles (particle 
diameter 507m, pore size 6nm) purchased from 
SiliCycle were used in the heterogeneous experiments. 
As for solvents, deionised water was attained from the 
analytical laboratory. 

 
3.2. Diglycine Solubility Test 
100 mg/mL diglycine solution was first prepared by 
weighing the required masses and dissolving in 
deionised water using a magnetic stirrer and water bath. 
0.5 mL samples of diglycine (10 mg/mL, 20 mg/mL, 30 
mg/mL, 40 mg/mL, 50 mg/mL) were then prepared via 
dilution. The samples were utilised to generate a 
calibration curve, depicted in Fig.1 below using the 
Shimadzu LC-2030C High-Performance Liquid 
Chromatography (HPLC) system, which uses UV-vis 
spectra for analysis. It made use of hydrophobicity 
differences to separate and identify various components 
in samples. 15mM C6H13O3SNa solution was used as the 
mobile phase with hydrophobic C18 silica packing as 
the stationary phase. 50mM KH2PO4 was used as the 
buffer solution to maintain acidic condition at pH of 2 
and ensure positive charge of amino groups on analytes. 
C6H13O3SNa forms ion-pairs with the analytes through 
interactions between negatively charged sulfonate 
groups and positively charged amino groups [13], 
leading to the formation of hydrophobic complexes 
which can interact with the C18 stationary phase. The 
additional amino acid in diglycine increases its 
hydrophobicity, thereby allowing diglycine to exhibit a 
longer retention time, separating glycine and diglycine 
into distinct peaks to be analysed. 

 
Figure 1. HPLC Calibration Curve to Determine 
Diglycine Concentrations from Characteristic Peak 
Areas 

 

For the solubility test, excess diglycine solids were 
dissolved in 1 mL of deionised water containing glycine 
impurities of 0 mg/mL, 1 mg/mL and 5 mg/mL. The 
samples were then placed in a shaker with temperatures 
equilibrated at 5℃, 15℃ and 25℃ for 48 hours and 
allowed to settle for 2 hours. The supernatant from the 
samples were pipetted into vials and diluted by the factor 
of 1/5 to be analysed by the HPLC system as the 
diglycine characteristic peak area curve plateaus at high 
concentrations. The generated calibration curve shown 
in Fig.1 was used to determine diglycine concentrations 
in the vials, which were multiplied by 5 to reflect true 
diglycine concentrations in the samples. Diglycine 
solubility curves between 5℃ and 25℃ with various 
glycine impurity levels could then be generated as 
shown in Fig.2 below, showing a linear relationship 
between solubility and temperature for all impurity 
levels. Note that repeats of diglycine solubility test at 
15℃ in the absence of glycine did not show consistent 
concentrations, thus it was elected to use the literature 
concentration of 173 mg/mL from the study by Guo, M. 
et al. instead [14]. As shown in Fig.2, diglycine 
solubilities between 5℃ and 25℃ are relatively constant 
with various glycine impurity levels, and the constant 
diglycine solubility at 5℃ (148 mg/mL) is the 
theoretical end-point concentration of experimental 
runs, allowing the determination of theoretical diglycine 
crystal yields.  

Figure 2. Diglycine Solubility Curves with Various 
Glycine Impurity Levels 

3.3. Set-up for Homogeneous Nucleation 
Experiments 
The experimental setup consisted of Mettler-Toledo 
EasyMax 102, which were able to fit two glass reactors 
of 50mL and 100mL. The EasyMax allowed for precise 
control over experimental variables inclusive of reactor 
temperature, stirring speed and heating/cooling rate. A 
HC-22 4-blade pitch-down impeller was fitted to an 
overhead stirrer and inserted into the vessel head, with 
the impeller immersed in solution. A temperature probe, 
as well as a Mettler-Toledo ReactIR15 (FTIR) probe 
were also inserted into the vessel head, taking care to 
place both probes well above the impeller to avoid any 
collision. Both probes allowed for automated in situ 
measurements of temperature and concentration; thus, 
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eliminating the need for extracting in-process samples 
for measurements. 

Prior to every experimental run, the IR probe was 
calibrated to obtain a spectrum for the background 
atmosphere; doing so ensured the probe head was clean, 
measuring only the sample and not any contaminants. 
Furthermore, the FTIR required liquid nitrogen refilling 
every 24 hours to cool the internal optical fibres to 
reduce thermal noise and improve apparatus sensitivity, 
while preventing potential malfunctions from 
overheating. 

For every experimental run, a saturated 80mL 
diglycine solution was prepared at 25℃ in a 100mL 
reagent bottle, with the concentration of 200 mg/mL as 
per previously determined solubility data. To negate 
solution volume increase upon solute dissolution, the 
solution was first prepared to 60mL with appropriate 
diglycine mass added, then transferred to a water bath at 
35℃ and mixed with a magnetic stirrer bar. Once most 
of the diglycine solids had dissolved, the solution was 
then topped up to 80mL with deionised water and further 
mixed until complete dissolution. Subsequently, the 
solution was transferred to a cleaned 100mL reactor 
vessel with a blunt needle syringe fitted with a 200nm 
Nylon membrane syringe to filter out particulate matters 
and contaminants as a preventive measure against 
undesired secondary nucleation. The 100mL reactor was 
then fitted with its vessel head, the overhead stirrer as 
well as both temperature and IR probes, clamped and 
placed into the EasyMax. 

In each run with glycine impurity presence, glycine 
mass was measured according to the concentration of 
interest and added to the saturated diglycine solution 
prior to placement into the EasyMax. 
 
3.4. Script for Crystallisation Control 
The use of iControl software allows for controlled 
crystallisation process, with a script outlining a 
sequence of steps to vary operating conditions of the 
EasyMax apparatus over time. Initially, the 80mL 
solution was stirred up to 300rpm over 10 seconds and 
heated up 40℃ over 10 minutes. The solution was 
maintained at 40℃ for 60 minutes to allow the system 
to equilibrate and ensure complete solute dissolution. 
The solution was then cooled to 5℃ over 5 minutes and 
maintained until experiment completion. With the 
solution supersaturated at 5℃, the induction time 
marking the onset of nucleation was obtained based on 
diglycine concentration readings obtained from the 
FTIR. The process would continue to run allowing for 
diglycine crystal growth until no further changes in 
diglycine concentration in solution were observed, upon 
which the solution would be reheated to 40℃ to ensure 
complete dissolution of solutions in preparation for 
repeats if necessitated. Once experiments were 
completed, the crystals formed would be extracted and 
filtered for analysis, and the solution sampled to validate 
theoretical endpoint concentration with HPLC analysis. 
 
 
 

3.5. Interpretation of the Infrared Spectrum  
for Transmittance 
The FTIR was calibrated using 5 mL of 200 mg/mL 
diglycine solution diluted successively to 50 mg/mL. 
The IR spectra intensity from FTIR was recorded for 
each concentration, and the assumption of linear 
relationship between IR spectra intensity and 
concentration was subsequently validated. As a result, 
linear interpolation could be used using initial and final 
diglycine concentrations obtained from solubility data in 
Section 3.2 to translate IR spectra intensity curves into 
diglycine concentration curves. 

 
3.6. Induction Time Determination for 
Homogeneous Nucleation Experiments 
Fig.3 below shows the determination of induction time 
#!"# for crystal nuclei formation from the concentration 
curve of diglycine with 0.5% w/w glycine impurity. The 
induction time is defined as the time period between the 
initiation of crystallisation and the formation of nuclei; 
thus the tangent method could be used to determine the 
induction time as it accurately determines the point 
where solution concentration falls. The gradient of the 
curve was first evaluated at 30 minutes intervals to find 
the steepest point, a tangent line was then plotted at the 
steepest point. The induction time was determined at the 
interception point between initial concentration and 
tangent line. 
 

 
Figure 3. Induction Time Determination Using the 
Tangent Method (Example Shown for 0.5% Glycine 
Impurity, !!"# = 10 hours) 
 
3.7. Set-up for Heterogeneous Nucleation 
Experiments 
80mL solutions were prepared with the same diglycine 
and glycine concentrations investigated in the 
homogeneous nucleation experiments (Section 3.3), and 
1% w/w silica nanoparticles with 6nm pore size were 
added to the solutions. Using the maximum mass of 
diglycine crystals obtained from solution (9%&'() 
determined from homogeneous nucleation experiments, 
initial diglycine concentration (:)) of 200 mg/mL and 
final concentration at 5℃ (:∗)	, as well as solution 
volume (=), the silica mass loading 9+ was determined 
through the following equations: 
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9%&'( = (:) − :∗	) ∙ = (2)
9%&'( = (200.00 − 148.00) ∙ 80 = 41609C

9+ = 0.01	 ×	9%&'( = 41.69C	 (4)
(3) 

 
Heterogenous nucleation experiments were initially 

planned to follow the same setup as the one used for 
homogenous nucleation; it was however modified due 
to the FTIR malfunctioning during this study. As such, 
a camera set-up was used to visually observe changes in 
solution appearance occurring in the reactor as shown in 
Fig. 4, capturing images at 5-minute intervals. Induction 
time in this case was evaluated by analysing reactor 
temperature profiles to obtain the relative start time of 
the experiment, and evaluating the time taken for the 
solution to go from clear to cloudy once the nucleation 
of diglycine solid composites had occurred. 

 

 
Figure 4. Camera Imaging of Vessel, with Solution 
Before and After the Occurrence of Nucleation 
 
3.8. Powder X-Ray Diffraction (PXRD) 
Powder X-ray diffractograms were recorded for 
diglycine composites formed in the absence and 
presence of silica, which were vacuum filtered and dried 
after each crystallisation experiment. A PANalytical 
Empyrean diffractometer with a copper radiation source 
(λ = 1.541 nm) at 40 mA and 30 kV was used in 
conjunction with XPRT-PRO diffractometer system. 
Scans were performed at a rate of 0.107815° 2θ min-1 
in the range from 9° up to 40°, generating patterns of 
intensity (a.u.) against 2θ (°) to identify the diglycine 
polymorphs formed by comparing them with existing 
polymorphic patterns sourced from literature. 
 
3.9. Microscopic Imaging 
Diglycine crystals obtained from crystallisation 
experiments were visually inspected with Olympus CX-
41 microscope under the magnifications of 5x and 10x. 
Images from the microscope were captured using GT 
Vision GXCAM HiChrome MET for crystal habit, size 
and morphology analysis, and compared against PXRD 
results to verify solid characteristics. 

 
4. Results and Discussion 
4.1. Diglycine De-supersaturation (S-Shaped) 
Curves 
Crystallisation experiments commenced with the 
identical initial diglycine concentration :) of 200 
mg/mL. Supersaturation ratio * could then be 
determined with Equation 5 using :) and saturated 
diglycine concentration at 5℃, :∗ obtained from the 
solubility curves Fig.2 in Section 3.2 above. 
 

* = :)
:∗ 	 (5) 

  
As diglycine solubility curves are identical with 

various glycine impurities, with the diglycine 
concentration of 148 mg/mL at 5℃, all experimental 
runs commenced with the same initial supersaturation 
ratio * of 1.35. In order to determine crystallisation 
rates, solution concentration : was measured 
continuously via the FTIR probe and used to calculate 
% de-supersaturation which is essentially the percentage 
of crystallisation completion.  

 
G+HI-+JHK#IJK#LMN	%	 = 	 (:) − :)/(:) − :∗)	(6) 

 
Fig.5 shows the de-supersaturation S-shaped curves 

of various glycine impurities starting from 0% where the 
solution is supersaturated at 5℃ and ending at 100% 
where the solution reaches saturation. As shown in 
Fig.5, crystallisation experiments take longer to 
complete with increasing glycine impurity levels. This 
is attributed to both the increase in induction times and 
the reduction in crystal growth rates, further 
comparisons and explanations can be found in Sections 
4.2 and 4.3.1 below. From these curves, it can be 
deduced that the presence of impurities such as glycine 
can hinder the crystallisation process significantly.  

 
Figure 5. Diglycine De-supersaturation (S-shaped) 
Curves with Various Glycine Impurities from 0% to 2.5% 
w/w 

 
4.2. Effect of Glycine Impurities on Crystal 
Growth Rate 
Fig.6 demonstrates the effect of glycine impurities on 
the crystal growth step of homogenous nucleation 
crystallisation. Growth rates were determined by 
normalising the linear regions’ gradients of the S-shaped 
curves with the gradient with 0% impurities (P/P)). 

The increase in glycine impurity level from 0% to 
2.5% w/w appears to cause over 80% reduction in 
growth rate, this can also be observed in Fig.5 where the 
gradients of the linear regions in S-shaped curves 
decrease with increasing glycine impurity levels. A 
possible explanation for the reduction in crystal growth 
rate is deduced in the study by Cabrera and Vermilyea, 
which proposed that impurity species present in the 
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solution would adsorb onto kink sites of step lines, 
pinning step displacement and forcing it to be curved, 
thereby reducing step advancement velocity and 
subsequently crystal growth rate [15].  

However, the evidence pointing towards the 
reduction in growth rate is not concrete; an alternative 
explanation for the reduction in gradients of S-shaped 
curves is that slower nuclei formation inadvertently led 
to less solutes exiting the liquid phase and contributing 
to crystal growth. Thus, the gradients of S-shaped curves 
may appear to decrease but the growth rate of each 
specific crystal might not be significantly different. 

 
Figure 6. Normalised Growth Rates with Varying Glycine 
Impurity Levels from 0% to 2.5% w/w 
 
4.3. Effect of Glycine Impurities on Induction 
Time 

 
Figure 7. Diglycine Crystallisation Induction Time with 
Varying Glycine Impurity from 0% to 2.5% w/w 
 
4.3.1. Homogeneous Case 
From Fig.7, it can be observed that pure diglycine with 
the initial concentration of 200 mg/mL had an induction 
time of 5 hours. By introducing 0.5% w/w glycine 
impurity, the induction time doubles to 10 hours and 
increasing to 2.5% w/w glycine impurity causes the 
induction time to again increase by around two-fold to 
19 hours. From this observation, it can be deduced that 
a miniscule amount of glycine impurity induces a 

significant impact on induction time of diglycine 
crystallisation, thus the presence of impurities can be 
incredibly detrimental to crystallisation processes. The 
effect of impurities on nucleation kinetics is very hard 
to be explained due to the lack of understanding on 
crystal nucleation. Keshavarz, L. et al. investigated the 
effect of impurities on paracetamol crystallisation and 
found that the presence of impurities exhibited 
negligible effect on the interfacial energy of the crystals, 
but instead significantly reduced the pre-exponential 
constant of nucleation rate $ in Equation 1. One 
possibility is that impurities might form interactions 
with nucleation interfaces, reducing the amount of 
nucleation sites for key solutes to bind to. Another 
possibility is the increase in activation energy barrier 
due to additional energy required to eliminate impurities 
from nuclei. [16] 

 
4.3.2. Heterogeneous Case 
6nm pore size silica nanoparticles at 1% w/w were 
introduced to identical solutions as the homogenous 
case in order to investigate the potential of hard 
templates in mitigating the increase in induction times 
caused by the presence of glycine impurities. Verma, V. 
et al. has investigated the effect of porous silica with 
various pore sizes on induction times of diglycine 
crystallisation and determined that 6 nm is the ideal pore 
size as it closely matches with diglycine cluster size 
[17]. Thus, it was elected to utilise 6 nm silica 
nanoparticles to ensure that a significant effect on 
induction times could be observed. Fig.7 shows the 
induction times of diglycine crystallisation with the 
presence of glycine impurities and silica nanoparticles. 
The general trend still remains consistent with the 
homogenous case, where the absence of glycine 
impurity saw the induction time of 1.5 hours and 
increasing glycine impurity to 2.5% w/w increased the 
induction time to 4.5 hours. However, the timescale was 
much smaller with the presence of silica nanoparticles; 
for the case of pure diglycine, there was a reduction of 
70% in induction time and for the case with the presence 
of 2.5% w/w glycine impurity, there was a reduction of 
76% in induction time. This result can be quantified 
using the improvement factor (L), where:  
 

L = QM9MC+NMIH	#!"#
Q+#+JMC+NMIH	#!"#

(7) 
  

Table 1. Improvement Factors of Various Glycine 
Impurity Levels with Heterogenous Crystallisation 
Glycine 
Impurity 

Level (w/w) 

Homo 
!!"#	[$%] 

Hetero 
!!"#	[$%] 

Improvement 
factor (') 

0% 5.0 1.5 3.33 
0.5% 10.0 3.0 3.33 
2.5% 19.0 4.5 4.22 

 
The improvement factors show that the effect of 

silica nanoparticles in reducing induction time is slightly 
more profound with higher glycine impurity 
concentration. It was also noted that in the case of 
heterogenous nucleation, the induction time curve 
plateaus earlier, suggesting that further increase in 
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impurity concentration will no longer cause an increase 
in induction time. Contrary to the CNT, Verma, V. et al. 
suggested that the presence of glass beads has 
insignificant influence on the interfacial energy of 
diglycine crystals, but instead increased the pre-
exponential constant of diglycine nucleation kinetics 
equation by two-fold, leading to increased nucleation 
rate. This is due to hydrogen bond donor (HBD) and 
acceptor (HBA) sites on diglycine molecules forming 
hydrogen bonds with heterosurfaces which possess 
astronomically longer lifetime than the time required to 
attach a single solute to a growing crystal, allowing the 
heterosurfaces to act as stable nucleating surfaces and 
induce a reduction in induction times. [18] 
 
4.4. Solid-State Characterisation 
Fig.8 presents a solid-state analysis pertaining to 

diglycine solid products formed from the crystallisation  
experiments performed in water with glycine impurities 
of 0% w/w and 2.5% w/w for both homogeneous and 
heterogenous crystallisation. Upon inspection of both 
PXRDs for the homogeneous experiments in Fig. 8(A), 
most peaks are present at similar 2S values and 
correspond to a-diglycine, confirmed after comparisons 
against a PXRD from a publication by Verma, V. et al. 
[17]. It can therefore be inferred that morphology of the 
diglycine crystals formed from homogeneous nucleation 
remains unaffected even in the presence of impurities 
such as glycine. Variance in relative peak intensities 
were also observed, attributed to the non-uniformity in 
the powder sample and could be mitigated in future 
work by further grinding the powder into fines. 
Nevertheless, small discrepancies in peak intensities do 
not have any effects on diglycine morphology.

                     
 

Figure 8. (A) Powder X-ray Diffraction Spectra of the Diglycine Solid Products Isolated from Experiments as Labelled (in 
blue and magenta), along with Patterns for a-diglycine and Diglycine Sesquihydrate from Literature (in red); (B) Microscopy 
images of Diglycine Procured from Sigma Aldrich, Porous Silica and Isolated Solids from Crystallisation Experiments. 
 

However, it was found that the diglycine solid 
formed in the presence of silica and 2.5% glycine 
impurity had significant peaks at 18° and 19.5° on its 
PXRD, which were not found on a-diglycine. Instead, 
the solids were identified to be diglycine sesquihydrate 
(1.5 H2O molecules per diglycine molecule) after 
comparisons with existing PXRDs obtained from a 
study by Drebushchak, T.N. et al., which investigated 
the effects of cooling on intermolecular hydrogen bonds 
and molecular confirmations within anhydrous  
a-diglycine crystals as well as the hydrated form [19].  

While diglycine crystals formed in the presence of 
silica and 0% w/w glycine impurity did not match the 
PXRD patterns of the sesquihydrate and resembled more 
of the anhydrous a-form, this was eventually confirmed 
to have originally been a sesquihydrate as well using the 

micrographs of isolated diglycine solids depicted in 
Fig.8 (B). The diglycine crystals from all homogeneous 
nucleation experiments appear to be more rhombical in 
shape, with sharp and well-defined edges and corners; 
whereas for diglycine crystallised through 
heterogeneous nucleation, the solids are more elongated 
and irregular in shape. As the sample crystallised in 
2.5% w/w glycine impurity is likely confirmed to be 
diglycine sesquihydrate through PXRD, it is thus likely 
that the remaining samples crystallised in the presence 
of silica are diglycine sesquihydrates as well based on 
the micrographs. Furthermore, for heterogeneous 
experiments, the solid samples crystallised in the 
presence of 0.5% w/w and 2.5% w/w glycine impurity 
levels are semi-transparent; this is however not the case 
for the crystals with 0% w/w glycine impurity as a 
significant number of crystals are opaque. A possible 
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cause for the appearance of the latter solid could be its 
inadequate storage (kept in a capped glass vessel and left 
in a fume hood), where water may have evaporated out 
of the solid over time due to the cap being loose, thus 
causing the crystals to lose their semi-transparent nature. 
This therefore reflects the results depicted in Fig.8 as the 
PXRD and microscopic imaging were only performed 
after all the crystallisation experiments were completed.  

Further evidence pointing towards diglycine 
sesquihydrate as the crystal formed during heterogenous 
nucleation is the spike in solution temperature around 
the time when nucleation occurs. It is postulated that the 
formation of hydrates in porous media is more 
exothermic than anhydrous crystals due to stronger 
bonds formed between solutes and water molecules 
releasing more energy, thus inducing a temperature 
increase in the solution. This phenomenon can be seen 
in Fig.9 where the temperature reading of 0.5% w/w 
glycine impurity experimental run experienced a spike 
at #!"# of 3 hours above 5°C in the presence of silica 
nanoparticles, but in the case of homogenous nucleation 
no temperature increase could be observed. This 
observation can also be seen in the study by Zhang, L. 
et al. where temperature increase could be observed 
during the formation of THF crystal hydrates, further 
highlighting the exothermic nature of hydrate formation. 
[20]  

 

 

 
Figure 9. Diglycine with 0.5% w/w Glycine Impurity 
Solution Temperature Profiles, with and without the 
Presence of Silica Nanoparticles 

4.5. Crystal Yield 
The theoretical crystal yields T of α-diglycine were 
evaluated using the total solution volume =, initial 
diglycine concentration :) of 200 mg/mL and final 
diglycine concentration :∗	corresponding to diglycine 
solubility at 5℃ using Equation 8 below.  
 

T = =(:) − :∗) (8) 
 

As shown in Fig.2 in Section 3.2, final diglycine 
concentrations of homogenous nucleation at 5℃ are 
identical at 148 mg/mL with various glycine impurity 
concentrations. The theoretical crystal yield of  
V-diglycine is therefore constant at approximately 4.0g.  

For experiments with the addition of silica 
nanoparticles, the supernatant was extracted at the end 
of each run and analysed with HPLC, yielding an 
identical concentration of around 87 mg/mL across all 
glycine impurity concentrations. As postulated in 
Section 4.4 above, heterogenous nucleation in the 
presence of silica nanoparticles produced diglycine 
sesquihydrate, thus the measured final concentration 
should correspond to the solubility of the hydrate at 5℃ 
as the experiments were left to run for sufficient time to 
achieve steady state final concentrations. The yields of 
diglycine sesquihydrate crystals were calculated using 
Equation 8 and they were found to be constant at 
approximately 9.0g, deviating by more than two-fold 
from the yield of V-diglycine. Upon discounting the 
water mass within the hydrate using Equation 9 below, 
diglycine crystal yield is determined to be 7.5g, which is 
still under two-fold higher than homogenous 
crystallisation forming α-diglycine. 

 
GLCWT:LN+	9KHH	XL#ℎMI#	Q$Z

= . ,-!"#$%
(,-!"#$%/0.2,-&'(

3 × T#!34'	6'#	 (9)
																																																				

  

 
Where \]! corresponds to the molecular mass of 

species L. 
 

 
Figure 10. Crystal Yields for Homogeneous and 
Heterogeneous Nucleation Experiments with Varying 
Glycine Impurity Levels from 0 to 2.5% w/w 
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4.6. Diglycine Sesquihydrate Solubility  
In order to validate the assumption that the measured 
final diglycine sesquihydrate concentration of 87 
mg/mL corresponds to its solubility at 5℃, a solubility 
test was performed at 25℃, 15℃ and 5℃ with  
0%, 0.5% and 2.5% w/w glycine impurity levels using 
the identical method as Section 3.2 above for  
a-diglycine. As shown in Fig.11 and Table.2 below, the 
solubilities of diglycine sesquihydrate are linear with 
temperature and possess negligible differences with 
various glycine impurity levels. Therefore, it can be 
concluded that glycine impurity level does not have an 
impact on the final diglycine sesquihydrate crystal yield 
obtained from heterogenous crystallisation. It can also 
be inferred that the solubilities of diglycine 
sesquihydrate are consistently lower than a-diglycine at 
all glycine impurity levels and temperatures between 
5℃ and 25℃. This lower solubility is due to higher 
thermodynamic stability of hydrates in comparison to 
their anhydrous forms [21]. 

 
Figure 11. Diglycine Sesquihydrate Solubility Curves 
with Various Glycine Impurity Levels 
 
Table 2. Measured Diglycine Sesquihydrate Solubilities 
with Varying Temperatures and Glycine Impurity Levels 

 Glycine Impurity Level (w/w) 
0% 0.5% 2.5% 

Temp. 
[°C] 

5 87.05 86.78 88.81 
15 134.97 134.81 136.13 
25 196.94 195.88 198.19 

 
5. Conclusion 
The main parameter explored in this study is the effect 
of various glycine impurity levels (0 to 2.5% w/w) on 
key performance indicators of diglycine crystallisation 
such as crystallisation rate and crystal product yield. It 
was found that increasing glycine impurity level induces 
significant increase in induction time and reduction in 
growth rate, thereby slowing the entire crystallisation 
process. Therefore, it is confirmed that the presence of 
certain impurities can greatly hinder crystallisation, and 
it is imperative to eliminate impurities as much as 
possible prior to the crystallisation step using methods 
such as distillation and chromatography. It was also 
noted that crystal yield remains consistent at around 4.0g 

with various impurity levels, owing to the constant 
diglycine solubility at 5℃. Potential benefits of 
employing 6nm pore diameter silica nanoparticles at 1% 
w/w loading as hard templates for diglycine 
crystallisation were also investigated; it was found that 
upon addition of silica nanoparticles, induction times of 
crystallisation experiments reduced significantly. This 
reduction was observed for all glycine impurity levels 
and by over four-fold in the case with 2.5% w/w glycine. 
However, the general trend of increasing induction time 
with the increase in impurity level still holds true. 

Additionally, solid crystal products from the study  
were characterised using powder X-ray diffraction 
(PXRD) and light microscopy. Interestingly, it was 
observed that crystallisation experiments with silica 
nanoparticles generated solid products corresponding to 
diglycine sesquihydrate for all glycine impurities, where 
the formation of hydrates led to under two-fold higher 
crystal yield of 7.5g due to the lower solubility of 
diglycine sesquihydrate (87 mg/mL). Thus, it can be 
concluded that the addition of silica nanoparticles as 
hard templates for diglycine crystallisation is incredibly 
beneficial, improving both crystallisation rate and final 
crystal product yield.  
 
6. Outlook 
Further work can be conducted to gain a more 
comprehensive understanding on peptide crystallisation 
processes in the presence of impurities. Firstly, the 
experiments with heterogeneous silica-OH 
nanoparticles should be reconducted with solution 
concentrations continuously measured using FTIR, 
which malfunctioned in the midst of the study 
preventing S-shaped curves to be generated for 
heterogenous crystallisation runs. This led to the use of 
camera imaging which caused possible discrepancies 
between the different methods of deducing induction 
times. Reconducting the experiments using FTIR will 
generate greater accuracies for induction time 
comparisons along with allowing growth rates to be 
determined for the heterogenous crystallisation case, 
subsequently allowing comparisons of growth rates to 
be made between the two nucleation methods. 
Furthermore, it was postulated in Section 4.3.2 that the 
induction time curve in the presence of silica 
nanoparticles plateaus above 2.5% w/w glycine 
impurity level, thus further work should be conducted 
with higher glycine impurity levels in order to verify this 
claim. 

The influence of impurities on other peptides can 
also be investigated; for instance, the impact of glycine 
impurities on engineering homopeptide crystals 
comprising longer glycine chains (e.g. triglycine, 
tetraglycine). Silica nanomaterials at different weight 
loadings or different functional groups can also be 
explored to determine their efficiencies in negating 
unfavourable effects from impurities in peptide 
crystallisation processes. 

A significant proportion of the crystallisation 
experimental runs were performed without repeats due 
to time constraints, consequently reducing their 
reliability. It would be ideal to conduct repeats for all 
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experimental runs in this study and perform appropriate 
statistical analysis to obtain statistical metrics such as 
standard deviation for verifying the accuracy of reported 
findings.  

Currently, there are little to no reported studies that 
highlight key factors leading to the formation of 
diglycine sesquihydrate through cooling crystallisation. 
Studies can be conducted to investigate possible 
conditions that lead to higher selectivity towards 
hydrated peptide formation; for instance, varying silica 
nanoparticle properties as aforementioned, or exploring 
other types of hard templates. Examining the recovery 
and recyclability of templates is also crucial in 
evaluating their applicability in scaled-up peptide 
crystallisation processes to maximise economic 
potential and minimise environmental implications. 
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Catalytic Performances of UiO-66(Hf) under Various Synthesis Conditions  
for the Methylation of DHA 
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Abstract UiO-66 is a metal-organic framework (MOF) with high stability and surface area that has been the focus of 
extensive research. This study focused on synthesising UiO-66(Hf) under various conditions—changing the ratios of 
metal ion, solvent and modulators (acetic acid, formic acid, and oxalic acid) added during synthesis, and changing the 
post-crystallisation treatment—to evaluate their effect on the structure of synthesised materials and thus their activity 
for catalysis on the methylation reaction of DHA to produce methyl lactate. Three characterisation techniques—TGA, 
XRD, and DRIFTS—were used to identify the structural features of synthesised UiO-66(Hf). The results demonstrated 
that when oxalic acid was added during synthesis, UiO-66(Hf) modified its bonding structure and had more defects. 
The catalytic performance of UiO-66(Hf) increased with the amount of modulator added during synthesis, especially 
oxalic acid, resulting in a dramatic boost in activity. Other synthesis conditions investigated had negligible effects on 
UiO-66 (Hf) catalytic activity. The best proposed catalyst structure was synthesised with a molar ratio of 
1:2:370:56:1.03 (Hf ion: linker: DMF: acetic acid: oxalic acid) and with ethanol wash treatment . 
 
Keywords: Metal-organic framework, UiO-66, Synthesis, Catalysis 
 
1. Introduction 

1.1 MOF 

Metal-organic frameworks (MOFs) are a growing topic 
of interest in both academic and industrial settings, and 
they have been the subject of extensive research in 
recent years.1 MOFs are porous coordination polymers 
(PCPs) synthesised from metal cation salts and organic 
ligands linked together by coordination-type bonds, 
resulting in two- or three-dimensional porous 
crystalline solids with infinite lattices.2 They have an 
extremely large surface area and a highly tuneable 
structure - post-synthesis modification (PSM) can be 
done to tune the structure by changing the nature of the 
metal cations and ligands. Because the atomic-level 
control of their pore structures, MOF structures are 
highly flexible and have been used in many different 
applications.3 For example, a highly porous structure 
has a high surface adsorption potential, which can be 
used for hydrogen storage, CO2 capture, and the 
removal of hazardous chemicals from the 
environment.4 More recently, MOF has been put on a 
larger scale of production and used industrially, with 
rising importance in the transportation, textile, and 
food packaging industries.4 MOF has also been shown 
in other studies to have functionality in drug transport 
and biomedicine,5 as well as the ability for 
heterogeneous catalysis.6 

More than 20,000 MOF structures have been stated 

in the literature to date.2 According to the Web of 
Science, the structures that are undergoing the most 
investigation are ZIF-8, MiL-101, UiO-66, MOF-5, 
and so forth. This report will focus on the UiO-66 
structure. UiO-66 was first synthesised in 2008 at the 
University of Oslo, which also gave it its name.7 The 
classic structure of UiO-66 is a crystal with zirconium 
oxide as the metal node and terephthalic acid as 
ligands, with the addition of solvents and modulators 
during the synthesis. The metal node (zirconium oxide) 
is referred to as the secondary building unit (SBU), and 
by developing novel SBUs, MOFs can attain greater 
stability.8 Apart from Zr, other metals like Hf are also 
possible to use as metal nodes. The UiO-66 SBU 
features 12 points of extension, allowing linkers to be 
bonded. Terephthalic acid, also known as 1,4-
benzenedicarboxylic acid (BDC), serves as the linker 
for UiO-66. The ideal composition of UiO-66 is 
Zr6O6(BDC)6, with each Zr6O6 cluster bonding to six 
BDC linkers.9 As BDC is a bidentate ligand, there will 
be 12 coordination bonds for the metal node. (Structure 
may be seen in Figure 1 middle part) 

UiO-66 possesses various remarkable properties, 
including great mechanical stability, excellent thermal 
stability due to the strong metal-oxygen bond, and 
excellent acidic, aqueous, and water vapour stability.10 
Furthermore, UiO-66 can be synthesised on a lab scale, 
has high catalytic properties, and has reproducible 
adsorption qualities.3 

Figure 1: The structure of UiO-66 with defect engineering 9  
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However, because of the high coordination number 
that leads to the high stability of UiO-66, it also has the 
disadvantage of inertness, which limits its 
functionality.3 Consequently, it is critical to present 
strategies for enhancing the functionality of UiO-66. 
One effective method is to perform defect engineering 
on the structure. The introduction of defects results in 
larger pores that modify mass-transport pathways, 
hence improving adsorption and catalytic properties.11 
Nevertheless, increasing the number of defects will 
lead to lowering stability and crystallinity and 
increasing the heat of adsorption.12 As a result, defect 
control must be done carefully. There are two types of 
defects for UiO-66: missing linkers and missing 
clusters (Figure 1). Missing linkers require the removal 
of multiple ligands while maintaining structural 
integrity,13 whereas missing clusters require the 
removal of an entire cluster.14 

Adjusting the synthesis conditions15 can be carried 
out as a means to control defects. Additionally, 
different synthesis conditions will result in diverse 
attributes in the crystallised product,16 such as different 
thermal stability, different weight loss during thermal 
decomposition, different catalytic performance, etc. 
Possible changes in the synthesis parameters include 
changing the component ratio. Modulators, which are 
among the parameters modified during synthesis, have 
a significant impact on defect control. Modulators are 
usually organic carboxylic acids that attach to the metal 
node and then influence crystal growth.17 There is 
competitive coordination between the ligand and the 
modulator, and adding more modulators with low pKa 
values introduces more defects.12 It is worthwhile to 
investigate the relationship between synthesis 
conditions and product structure, subsequently 
affecting its performance and properties. 

1.2 Catalysis 

One major research field for MOF is catalysis, as MOF 
offers excellent controllability, tunability, and catalytic 
activity as a catalyst. In general, approximately 85–
90% of the products produced in chemical industries 
are produced through catalytic processes, making 
catalysis an important topic. Catalysis is used 
extensively in the synthesis of bulk and fine chemicals, 
as well as in the prevention and abatement of 
pollution.18 The material is particularly appealing for a 
variety of catalytic applications because to its high 
specific surface areas.19 When MOF is compared to 
another well-known porous catalyst, zeolites, it has a 
higher surface area and porosity, a more predictable 
design, and a high metal site density. These advantages 
give MOFs considerable potential for further study,20 
even though it has lower chemical stability and vapour 
phase catalytic activity than zeolite. Possible MOF-
catalysed reactions include redox reactions,21 

methylation reactions,22 polymerisation reactions,23 etc. 

Previous research demonstrated that hafnium (IV) 
analogues of zirconium (IV)-containing MOFs are 
excellent heterogeneous catalysis catalysts due to their 
robust and highly tuneable character.24 Additionally, 

hafnium (Hf)-based MOFs have been shown to be 
highly promising for practical use due to their 
exceptional chemical, thermal, and mechanical 
stability, as well as their acidic nature.25 The catalytic 
characteristics of Hf-based MOFs can be examined by 
synthesising UiO-66 with Hf instead of Zr (UiO-
66(Hf)) and testing the catalyst with reactions. 

 
Figure 2: The reaction for the methylation of DHA 

Figure 2 shows one reaction that UiO-66(Hf) can 
catalyse. The methylation reaction with 
dihydroxyacetone (DHA) to form methyl lactate (ML). 
ML is a significant green solvent for dealing with 
chemical compounds that are harmful to humans and 
the environment, and hence for reducing pollution at its 
source whenever possible.26 Therefore, it is highly 
motivated to develop a better catalyst structure that 
leads to a higher production of methyl lactate. 

1.3 The aim of this research 

With all of the interesting facts about MOFs and the 
motives for producing methyl lactate, the goal of this 
study is to investigate the catalytic activity of various 
UiO-66(Hf) on the DHA methylation reaction. The 
variation in UiO-66(Hf) performance is raised by 
different ratios of Hf metal ion/BDC linker/DMF 
solvent/modulator during the synthesis process. Aside 
from adjusting the ratios, the effects of different post-
crystallisation treatments and several modulators—
acetic acid, formic acid, and oxalic acid—were also 
investigated. Characterisation techniques such as 
Thermogravimetric Analysis (TGA), X-ray Diffraction 
(XRD), and Diffuse Reflectance Infrared Fourier 
Transform Spectroscopy (DRIFTS) were used to gain 
information on crystal structure and to quantify the 
number of defects in the synthesised products. The 
catalytic performances of the different materials 
prepared in this study, were investigated by doing 
reactions at different lengths of time using synthesised 
UiO-66(Hf) catalysts, the ML yield time-on-line profile 
was obtained for each catalyst. The ultimate objective 
was to identify a synthesis condition that would 
provide a catalyst with the optimum catalytic 
performance during the reaction. 

2. Methodology 

2.1 Synthesis of UiO-66(Hf)  

The components for UiO-66(Hf) synthesis are shown 
in Equation 1. 
ℎ𝑎𝑓𝑛𝑖𝑢𝑚 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒 + 𝐻ଶ𝐵𝐷𝐶 + 𝐷𝑀𝐹 + 𝑎𝑐𝑒𝑡𝑖𝑐 𝑎𝑐𝑖𝑑

+ 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑜𝑟                          (𝐸𝑞. 1) 

In this project, 14 different UiO-66(Hf) samples were 
synthesised, each with different compositions of the 
synthesis mixtures or variations in post-crystallisation 
treatments. The compositions and post-crystallisation 
treatments of each generated UiO-66(Hf) are 
summarised in Table 1. 
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In a typical synthesis procedure, the synthesis 
mixtures were prepared in a Teflon liner followed the 
equivalent molar ratios with respect to moles of 
hafnium (shown in Table 1). Two different sizes of 
liner were used to account for different DMF ratios. 
The mixtures were stirred at 300 rpm for 30 minutes 
until the solid completely dissolved in DMF solvent. 
Once the solution was thoroughly mixed, placed the 
liner in a suitable-size stainless-steel autoclave (Figure 
3a) and transferred it into an oven which preheated to 
120°C for 48 hours.  

Two types of post-crystallisation treatment were 
introduced in this project: ethanol washing or only 
centrifugation. For both treatments, the resulting 
microcrystalline powders were centrifuged for 15 
minutes at 4000 rpm as the first step to separate from 
the solvent. For the materials which underwent ethanol 
washing, samples were transferred into a round bottle 
flask and stirred with appropriate amount of ethanol 
(90 ml for the large liner and 45 ml for the small liner) 
at 60°C, 300 rpm for 16 hours. Subsequent to the 
ethanol wash, the samples were separated from the 
solvent through centrifugation with the same condition, 
and then left to dry in an oven at 90°C overnight. For 
materials without ethanol washing, the samples 
underwent an additional three rounds of centrifugation 
under identical conditions, with ethanol being added at 
the start of each cycle and followed by a consistent 
drying method as part of the treatment. 

The dried solids were transferred into a ceramic 
mortar and gently ground into fine powders. Powders 
were moved into a sealed vial for subsequent utilisation. 

2.2 Characterisation for synthesised materials 

2.2.1 Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis is used to convey 
information about the thermal and oxidative stability of 
materials, composition of multiple components, 
product longevity, kinetics of decomposition, as well as 
the content of moisture and volatiles.27 In this project, 
TGA was employed to analyse missing linker defects 
in the synthesised materials, considering the thermal 
instability of H2BDC at elevated temperatures. A 
critical assumption underpinning the use of TGA for 
quantitative analysis in this study was that the residue 
after each TGA experiment consists pure HfO2. Under 
standard TGA conditions, samples were initially loaded 
at 30°C and maintained at this temperature for 10 
minutes. Subsequently, they were heated to 800°C 
under an air flow of 40 ml/min with a gradual 
temperature increase of 10°C/min. The sample was 
then held at the peak temperature for an additional 10 
minutes to ensure complete combustion of all 
components other than HfO2. Thermograms were 
obtained which graphically illustrating the variation in 
mass of each material in response to changes in 
temperature. 

2.2.2 X-ray Diffraction (XRD)  

X-ray Diffraction (XRD) is widely used for both 
qualitative and quantitative analysis of solid samples, 
providing insights into their crystal structure, degree of 
crystallinity, crystallite size, atomic spacing, and other 
significant characteristics. Each crystalline substance 
possesses a distinct diffraction pattern, which functions 
as a fingerprint, uniquely identifying each material.28 In 
this project, XRD analysis was used to evaluate the 
degree of crystallinity in each of the UiO-66(Hf) 

Table 1: Summary of the synthesis results of synthesised UiO-66(Hf)  

Figure 3: Equipment used for experiments. a) Two sizes of 
autoclaves and linear for synthesis. b) Microwave reactor 
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samples, which reflects the missing cluster defect in the 
material structure.29 During an XRD analysis operation, 
Kα radiation was utilised, and the scanning range was 
set to cover 2θ angles from 5° to 60°. The scan step 
size was incrementally increased by 0.033° every 40 
seconds. The resulting spectra was plotted by intensity 
versus 2θ angles.  

2.2.3 Diffuse Reflectance Infrared Fourier Transform 
Spectroscopy (DRIFTS) 

DRIFTS is an infrared spectroscopy technique for 
sampling powders, employed to identify various 
characteristics of the sample, including the particle 
shape, density, refractive index, reflectivity, and 
absorption properties of the sample.30 This technique is 
widely used to analyse the properties of solid powders 
due to the advantage that no prior preparation of 
samples is required. Nevertheless, the results obtained 
from DRIFTS cannot be directly applied for 
quantitative analysis of sample properties, as some 
standards are necessary to interpret the data accurately. 
In this project, DRIFTS analysis was utilised to 
comprehend the differences in MOF structures from 
the molecular bonding point of view for various 
samples, achieved through comparing the spectra that 
were plotted by absorbance versus wavenumber. 

2.3 Kinetic investigation of UiO-66(Hf)  

UiO-66(Hf) can be used as a catalyst for the 
methylation reaction of DHA to form ML. In a 
standard reaction procedure, 4g of 1% weight DHA in 
methanol were added into a reaction vial as the reactant, 
accompanied by 10 mg of UiO-66(Hf) serving as the 
catalyst. Placed reaction vials in the microwave reactor 
(Figure 3.b). The reaction temperature was set at 160°C 
so that the reaction could be carried out in a reasonable 
amount of time while maintaining stable reaction 
performance. The reaction was conducted for intervals 
of 5, 15, and 30 minutes respectively, after a two-
minute ramping time to allow the reactor to achieve the 
setting temperature. Examine the yield of ML through 
the utilisation of Gas Chromatography (GC). 

GC is a technique to analyse mixtures by using a 
mobile gas phase and a stationary liquid phase to 
separate different components within the mixture.31 A 
GC calibration was established to ascertain the 
retention time for each target component. A calibration 
curve was constructed to assist in the quantification of 
the yield of methyl lactate produced from the reaction. 
The standard procedure for GC analysis involved 
transferring 1 mL of the reaction mixture into a 
centrifuge tube, followed by centrifugation for 1 
minute to separate the suspended catalyst. Transferred   
0.5 mL of the centrifuged solution and 0.5 mL of a 
0.1wt% biphenyl solution in methanol into a GC vial. 
Inserted the prepared vial into the GC and initiated the 
analysis. Using the GC calibration curve, the yield of 
methyl lactate was calculated by evaluating the peak 
areas for methyl lactate and biphenyl from the resulting 
chromatogram based on their retention times. 

3. Results and Discussions 

3.1 Characterisation 

In this study, the analysis of characterisation outcomes 
enhanced comprehension of the structural features of 
the samples. As a result, it is feasible to identify the 
specific structural characteristics that potentially 
enhance the UiO-66(Hf) catalytic performance. 

3.1.1 TGA Result 

TGA is a combustion process for the samples. The 
results of the TGA were represented graphically, 
depicting weight loss (normalised by mass at the end of 
TGA which was assumed as the weight of HfO2) in 
relation to the variation in temperature, shown as 
Figure 4.  Three distinct weight losses were noticed in 
this TGA plot. Based on prior research, these losses 
correspond to specific combustion processes: 1) The 
volatilisation of absorbates, in this study is ethanol, 
occurring from 30°C to 100°C. 2) The elimination of 
exceed monocarboxylate ligands and the 
dihydroxylation of Hf6 cornerstones, taking place from 
200°C to 390°C. 3) The decomposition of the 
framework, involving the completely combustion of 
the BDC linkers, from 410°C to 570°C.9 This study 
used TGA to examine the extent of missing linker 
defects across various materials, therefore leading to a 
concentrated analysis on the third weight loss step. 

The theoretical composition of a defect-free UiO-
66(Hf) is represented as Hf6O6(BDC)6. However, 
achieving a defect-free MOF structure is unattainable, 
and varying degrees of linker loss are observed in MOF 
structures, influenced by diverse synthetic conditions. 
In order to quantify the precise coordinating linker 
number in each synthesised material, the following 
calculation method was used to interpret the TGA plot. 
The combustion process for defect-free UiO-66(Hf) is 
shown as Equation 2. 

𝐻𝑓଺𝑂଺(𝐵𝐷𝐶)଺(𝑠) + 45 𝑂ଶ(𝑔) → 6𝐻𝑓𝑂ଶ(𝑠) +
                          48𝐶𝑂ଶ(𝑔) + 12𝐻ଶ𝑂(𝑔)                 (𝐸𝑞. 2)               
It was crucially assumed that HfO2 is the only 
remaining component at the end of the TGA. In the 
calculation, normalised percentage weight loss per 
BDC linker (Wt.PLTheo) was derived from the weight 

Figure 4: TGA graphical results for all 14 synthesised materials 
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percentage of a defect-free UiO-66(Hf) structure, 
shown in Equation 3. Then, the difference between the 
normalised weight percentage of the sample at the start 
of the third-stage of weight loss (at 410°C, Wexp.plat) 
and its weight percentage at the end of the process 
(WEnd) was calculated and divided by Wt.PLTheo to get 
the coordination number (Equation 4).  The 
coordinating linker number for all synthesised 
materials was quantified and summarised in Table 2. 

𝑊𝑡. 𝑃𝐿்௛௘௢ =
𝑊ூௗ௘௔௟.௣௟௔௧ − 𝑊ா௡ௗ

𝑁𝐿ூௗ௘௔௟
(𝐸𝑞. 3) 

𝑁𝐿ா௫௣ =
𝑊ா௫௣.௣௟௔௧ − 𝑊ா௡ௗ

𝑊𝑡. 𝑃𝐿்௛௘௢
(𝐸𝑞. 4) 

 
Table 2: Summary of coordinating linker number for all 14 
synthesised materials, and the molar ratio of additional modulators 

 
The analysis of the data revealed that sample H 

(prepared with only acetic acid as modulator in a ratio 
of 56) exhibited the most similar structure to the 
defect-free UiO-66(Hf), which is characterised by a 
coordination number of six. In contrast, Sample K 
(prepared with an additional modulator - oxalic acid in 
a ratio of 1.03) displayed the greatest extent of missing 
linker defects. This observation could be attributed to 
the synthetic conditions, particularly the use of 
different types of modulators. Materials synthesised 
with oxalic acid were more likely to process 
remarkable linker deficiencies, which could be linked 
to its lower pKa value (pKa1=1.25 and pKa2=3.81) 
compared to other modulators (pKa for acetic acid 
=4.76 and pKa for formic acid =3.77). The higher 
acidity of the modulator used in the synthesis process 
tended to result in more significant linker defects, 
which led to a reduced number of linkers attached to 
the Hf metal.9 In addition, a noticeable trend was 
observed in materials synthesised using the same 
modulators: an increased equivalent molar ratio of the 
modulator in the synthesis process generally 
encouraged the formation of missing linker defects. 
However, this trend did not apply to acetic acid.  

It is noteworthy to observe a general relationship 
between the extent of linker defects and the mass of 
dried samples obtained from one mole of Hf used in 
the synthesis (normalised yield). As indicated in Figure 
5, materials such as K and L with significant linker loss 
in their structure tended to have a lower normalised 
yield. This phenomenon could be explained by the 
reduced number of linkers attaching to the Hf centre, 
which resulted in a smaller unit mass for each single 
Hf-centred framework. 

3.1.2 XRD Result 

Based on the results obtained from TGA, it concluded 
that the use of oxalic acid as modulator resulted in the 
most significant missing linker defect among the 
synthesised materials. Therefore, further investigations 
were carried out for these materials utilising XRD to 
determine the presence of missing cluster defects, 
another type of potential structural defect in MOFs. 
XRD analysis was applied to two materials that 
possessed the highest degree of linker loss in their 
structure (samples K and L), along with sample H, 
which demonstrated the closest resemblance to a 
defect-free UiO-66(Hf) structure according to the TGA 
results. XRD results were plotted by intensity against 
2θ, shown as Figure 6a. The areas of an intensive peak 
(between 25° and 28°) were generated to analyse and 
compare the crystallinity of different samples (Table 3).   

Table 3: Generated peak area for an intensive peak from XRD result  

 

A significant difference in the peak areas was 
observed. It indicates changes in the long-range order 
within the structures of the analysed samples. The 
observed decrease in peak area showed that the crystal 
structures were more disordered, indicating the 
presence of missing cluster defects within these 
structures.11 By comparing the peak areas, it clearly 
showed that sample H possesses a well-ordered crystal 
structure, in contrast to samples K and L, which exhibit 
poor crystallinity. Therefore, it can be stated that the 
use of oxalic acid as a modulator in the synthesis 
process promotes the occurrence of missing cluster 
defects. 

 

Figure 5: Relationship between coordination number and the 
obtained mass of UiO-66(Hf) per mole of Hf 
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3.1.3 DRIFTS Results 

The previous two techniques analysed the 
macrostructure of the synthesised UiO-66(Hf), and 
hence DRIFTS was applied in this study to get a better 
understanding of the near-metal structure. 

DRIFTS was carried out for all the synthesised 
materials, and the results were plotted as absorbance 
versus wavenumber. Interestingly, most of the 
parameters varied during the synthesis process, such as 
the equivalent molar ratio of the solvent and post-
crystallisation treatments, generated similar patterns in 
the plot. This could be due to a couple of reasons: 
either these varying parameters did not significantly 
impact the microstructure of UiO-66(Hf), or it may be 
attributed to the insensitivity of DRIFTS to detect 
changes in the bonding structure among UiO-66(Hf) 
samples.  

However, the DRIFTS curves for samples 
synthesised using oxalic acid showed a notable 
difference compared to other materials. As Figure 6b 
shows, an additional peak (at wavenumber=1736.82 
cm-1) was distinctly observed in Sample K. To ensure 
this peak was not due to residual oxalic acid in the 
synthesised materials, DRIFTS was also applied to 
pure oxalic acid for comparison. The pattern for pure 
oxalic acid, shown in Figure 6c, gave a very different 
shape, with the closest peak to UiO-66(Hf) being at 
wavenumber=1780.97cm-1. This confirmed that no 
excess oxalic acid presented in the synthesised 
materials. Additionally, all three samples synthesised 
using oxalic acid as modulator possessed this 
additional peak at wavenumber=1736.82cm-1. 
Therefore, it could be concluded that the utilisation of 
oxalic acid in the synthesis altered the bonding 
structure between the Hf metal and the linkers. 

3.2 Kinetics 

3.2.1 Inaccuracies in kinetics 

Inaccuracies may arise in the kinetic results. Firstly, 
inaccuracy may be caused by reactions. To quantify 
this, reactions were repeated multiple times, the 

standard deviation was computed based on yield 
differences, and the errors were displayed as error bars 
on time-on-line plots. Occasionally, the error bars were 
narrow due to low standard deviation values, so the 
error bars may be too small to be seen. 

Secondly, the extent of reproducibility of the 
synthesised material had an influence on the accuracy 
of the result. The variation between the reproduced 
material may arise from inaccuracies in measurement, 
loss of material during transfer, etc. Sample G was 
synthesised under the identical conditions as Sample F, 
with the objective of testing the reproducibility of the 
materials. The variance between these two samples was 
evaluated by comparing their TGA results and their 
kinetic performance. TGA results showed the 
coordination number for the repeated sample was 

similar (Table 2). When 
comparing the kinetic 
performance between 
Sample G and F (Figure 
7), a deviation of 13% 
was observed in their k 
values. Consequently, in 
this study, a variation in k 
values up to 13% can be 
attributed to synthesis 
errors. 

The reaction rate constant – k value (unit: min-1) 
was determined for each sample and included in the 
plot legend by assuming the reaction is first-order 
irreversible. By plotting Ln (1-ML yield) against the 
reaction time, the k value was obtained from the 
gradient for this plot. This plot should have a linear 
shape. By conducting a linear fit for the experimental 
data, relatively high R2 values (>0.99 in most cases) 
were achieved, indicating that this was a reliable 
approach for determining the k values. However, at 
longer reaction times for the fast-reacted reaction 
conditions, the observed trend was non-linear, which 
invalidated the first-order reaction assumption due to 
the fact that the concentration of reactant decreased 
throughout the reaction. 

3.2.2 Effect of modulator ratio – oxalic acid (OA) 

Figure 6: a) XRD results for sample H, K  b) DRIFTS for sample C, I and K which respect to use acetic acid, formic acid and oxalic acid as 
modulator  c) DRIFTS for sample K, L, M and pure oxalic acid  

Figure 7: Variance between the 
reaction rates among the 
reproduced materials 
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Figure 8: Effect of the OA ratio on reaction rates 
Figure 8 illustrates the influence of OA on catalytic 
performance. Figure 8a and Figure 8b had varying 
amounts of solvent and acetic acid added during 
synthesis, however when focused on one time-on-line 
plot, the only variation during synthesis was the 
amount of OA added. Figure 8 shows that using more 
OA during synthesis resulted in a higher ML yield at 
each time step. The addition of modulators during 
synthesis had an effect on defects and thus changed the 
structure of MOF, giving it the opportunity to enhance 
its catalytic performance. 

Although DRIFTS results showed there was no 
excess OA in the structure, it is worthwhile to further 
confirm that the better performance is due to the better 
synthesised structure of MOF. So, it is crucial to 
investigate whether OA on its own has the ability to 
catalyse the methylation reaction that produces ML. A 
reaction was done using only OA as a catalyst; the GC 
chromatogram showed no ML was produced from the 
reaction, but other by-products were formed. The by-
products seen on the chromatogram were different 
from the by-products formed during the MOF-
catalysed methylation reaction. By-products in an OA-
catalysed reaction were possible to be OA degradation 
products at high temperatures, or OA could act as a 
Bronsted acid that catalysed another reaction pathway. 
Due to the time limitation, it is not possible to further 
analyse the by-products, but a conclusion could be 
drawn that OA does not have the ability to catalyse the 
production of ML. 

Another way to study 
the effect of OA is by 
doing the reaction with 
sample H and an 
additional amount of 
OA, and then comparing 
it to sample K. Sample 
H had the same 
synthesis conditions as 
sample K, with the 
exception that sample K 

contained OA during synthesis. In sample K, assuming 
that all of the OA added during the synthesis did not 
link into the structure, there should be 3.7mg of OA in 
the catalyst for each reaction.  For assurance, an excess 
of OA (4.4 mg) was added to sample H as a co-catalyst 
to perform a reaction for 15 minutes. A comparison of 
ML yields is shown in Figure 9. 

With sample H and the co-catalyst OA, the yield of 
ML increased compared to using only sample H as a 
catalyst. The reason for this could be explained by the 

reaction scheme. 
The conversion 
from DHA to ML 
involved two steps: 
(1) dehydration of 
DHA to 

pyruvaldehyde 
(PA), (2) alcohol 

addition of PA and isomerisation to ML (Figure 10). 
With OA providing more Lewis acid sites for catalysis, 
these two reaction steps may increase their rates.32 
Unlike utilising solely OA as a catalyst which may 
have changed the entire reaction mechanism, using 
MOF with OA followed the same reaction pathway as 
MOF-catalysed reactions that produced ML.  

The increase in yield by using OA as a co-catalyst 
was much lower compared to sample K (Figure 9). 
This proved that the high ML yield obtained with 
sample K was due to a new structure of MOF formed 
from synthesis with OA bonded to the structure, not 
because of free OA presented in the structure which 
promoted the reaction rate as a co-catalyst. 

3.2.3 Effect of modulator ratio – formic acid (FA) 

Figure 11 shows the 
yields of ML obtained 
using catalysts with 
different amounts of FA 
during synthesis. There 
was no FA during 
synthesis in sample C 
and a FA molar ratio of 
51 and 102 in samples J 
and I, respectively. 

More FA led to a higher reaction rate, but the extent of 
the increase was much smaller compared to OA. An 
increase in FA amount from ratio 51 to 102 had a larger 
promotion for the reaction rate than an increase in FA 
from none to ratio 51, indicating that with a higher 
amount of FA added, the effect started to become more 
obvious. 

3.2.4 Effect of modulator ratio – acetic acid (AA) 

 
Figure 12: Effect of the AA ratio on reaction rates 
Figure 12 shows the effect of changing the AA ratio on 
reaction kinetics. Red dots in the plots represent the 56 
AA ratio during synthesis, while black squares 
represent the 102 AA ratio. With doubling the amount 
of AA, there was no significant change in the reaction 
rate. Past research showed that the structure of the 
synthesised MOF (linker deficiencies) was constant 
unless a very large amount of AA (ratio much greater 
than 100) was added,9 which confirmed that the results 

Figure 9: Comparison of the effects 
of different forms of OA on the ML 
yields 

Figure 11: Effect of the FA ratio 
on reaction rates 

Figure 10: The reaction scheme for the 
methylation of DHA 32 
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obtained were reasonable. Overall, AA had the lowest 
acidity (highest pKa value) of the three distinct 
modulators and was shown to be the least effective. 

3.2.5 Effect of solvent ratio – DMF 

 
Figure 13: Effect of the DMF ratio on reaction rates 
Figure 13 shows the effect of changing the solvent ratio 
on reaction kinetics. The solvent used during synthesis 
is N,N-dimethylformamide (DMF). The red dots in the 
plots represent a lower DMF ratio during synthesis. No 
difference in catalytic performance with a changing 
DMF ratio could be concluded from Figure 13. 
Although the points in the time-on-line plots were not 
perfectly aligned within the error bars, the deviation 
was still within the error of synthesis. To account for 
the role of solvent during crystallisation, increasing the 
amount of solvent decreased the concentration of 
solute, thus affecting the nucleation rate. However, the 
amount of solvent did not have an impact on the 
structure of the MOF formed after crystallisation, so 
the catalytic performance was not changed. 
Furthermore, changing the types of solvent will have 
an effect on the MOF structure,33 but in this project, the 
type of solvent was kept consistent. 

3.2.6 Effect of the amount of Hf 

Figure 14 shows the 
effect of changing the 
amount of Hf on reaction 
kinetics. Sample A had a 
larger amount of Hf 
added during synthesis. 
In Table 1, all the ratios 
between samples A and C 

were different because 
the ratios were 

normalised to the Hf amount, which was different in 
this case. The Hf ion was one of the solutes for 
crystallisation, so changing the amount of Hf changed 
the solute concentration and hence the nucleation rate 
for crystallisation. Similar to changing the ratio for 
DMF, changing the Hf amount only influenced the 
crystallisation process but did not affect the synthesised 
MOF structure, so there was no impact on the catalytic 
performance. 

3.2.7 Effect of post-crystallisation treatment 

Figure 15 shows the effect of using different post-
crystallisation treatments on reaction kinetics. The red 
dots in the plots represent using the ethanol (EtOH) 
wash treatment, and the black squares represent using 
only centrifuges. The purpose of the post-
crystallisation treatment was to eliminate the hazardous 

and redundant chemicals from the crystallised MOF 
and produce a more purified MOF. DMF is the main 
chemical that the treatment was designed to remove. 
The EtOH wash treatment resulted in higher k values, 
indicating a faster reaction rate. One probable 
conclusion was that using EtOH wash gave rise to 
improved DMF removal and a purer catalyst, hence 
boosting catalytic activity. However, due to synthesis 
and reaction errors, this conclusion was not very 
reliable. 

3.2.8 Relationship between defects and catalytic 
performances 

To summarise the impact of synthesis changes on 
kinetics, a significant increase in catalytic performance 
was seen when the synthesised material had structural 
changes. The presence of defects in the structure was 
the major structural change. A scatter plot could be 
constructed using the TGA and kinetics results to 
demonstrate the relationship between the missing 
linker defect (linker loss) and catalytic performance (k 
value, unit: min-1) (Figure 16). 

 
Figure 16: Relationship between linker loss and the k value 

A clear trend could be seen from sample K to 
sample M (samples had decreasing amounts of OA in 
synthesis). With the most OA added (sample K), the 
greatest extent of defects was created, and the highest 
reaction rate was observed. More defects increased the 
porosity of MOF, resulting in a larger surface area and 
more adsorption sites for catalysis. The extent of 
defects and reaction rates both dropped as the amount 
of OA decreased from sample K to sample M. A similar 
trend was found in the decrease of FA amounts from 
samples I to J. 

Not all of the samples followed the trend of faster 
reactions as the extent of defects increased. Apart from 
the missing linker defect, there might be other reasons 

Figure 14: Effect of the amount of 
Hf on reaction rates 

Figure 15: Effect of the post-crystallisation treatment on reaction 
rates 
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that caused the differences in catalytic performance. 
For example, missing cluster defects, which had not 
been quantified but have great potential to impact 
sample catalytic activity, were likely to be present in 
the MOF structures. 

4. Conclusion 

In this work, 14 materials were investigated for their 
catalytic performances under various synthesis 
conditions. Three characterisation techniques were 
used to identify the structural features of the samples. 
TGA revealed there were more missing linker defects 
as the amount of OA and FA increased during 
synthesis. Sample K, which proved to be the most 
defective structure, had the lowest coordination number 
of 4.139. Other modifications to synthesis conditions 
did not result in a comparable number of missing linker 
defects as OA. XRD indicated that when the amount of 
OA added during synthesis increased, the structure 
became more disordered, implying more missing 
cluster defects. DRIFTS showed that the bonding 
structure of materials synthesised without OA followed 
a similar pattern, whereas with OA, an extra peak at 
wavenumber 1736.82 cm-1 was seen in the spectrum. 
This new peak has been demonstrated to be evidence of 
modifying the near-metal bonding structure due to OA 
introduced during synthesis, rather than excess OA in 
the structure. In summary, the largest structural change 
occurred during synthesis when an OA modulator was 
added, which affected both the macrostructure and 
microstructure of the synthesised material. 

From a kinetics perspective, alterations to the ratio 
of AA, DMF, and Hf and the post-crystallisation 
treatment had minor impacts on the catalytic activity of 
synthesised UiO-66(Hf). Because these changes in the 
synthesis conditions did not modify the structure of 
materials as shown by characterisation techniques. 
Changing the FA ratio during synthesis has only a 
small effect on catalytic activity, due to a slight 
increase in missing linker defects. The determining 
factor in catalytic activity was OA, which raised the 
reaction rate by the most as its ratio increased during 
synthesis. The best proposed catalyst was sample K, 
which was synthesised with a molar ratio of 
1:2:370:56:1.03 (Hf ion: linker: DMF: acetic acid: 
oxalic acid) and with ethanol wash treatment. Its k 
value was 0.428 min-1, which was 75.1% greater than 
the average k value of the other catalysts. 

Overall, adding OA during synthesis introduced 
defects into the structure, which promoted the catalytic 
performance of UiO-66(Hf). All other changes during 
synthesis have minor effects on catalytic performances 
when compared with OA. 

5. Outlook  

Although the good progress made in this project, 
several questions still remain, and future works should 
be performed. To achieve enhanced catalytic 
performance, it requires to gain deeper insights into the 
structural attributes of the synthesised materials and 

comprehend the reaction mechanisms involved in the 
DHA methylation process under the reaction conditions.  

In order to get a more comprehensive 
understanding of the macrostructure of the materials, 
XRD analysis can be conducted on all synthesised 
materials. This will help determine if the other varied 
parameters in the synthesis process also led to the 
occurrence of missing cluster defects and the extent of 
these defects. Additionally, techniques like Extended 
X-ray Absorption Fine Structure (EXAFS) can be 
utilised to gain a better understanding of the local 
environment around hafnium oxide in the synthesised 
samples.34  

On the other hand, from kinetic aspect, the analysis 
of all the obtained GC results revealed several peaks 
with noticeable areas (not ML), indicating the 
formation of potential by-products. To enhance the 
yield of the desired product, ML, it is vital to analyse 
the possible factors leading to the formation of these 
by-products, and also to identify them. Investigations 
can be conducted from various aspects, such as 
considering side reactions, especially since they might 
arise from the presence of excess acetic acid in the 
synthesised sample. The surplus acetic acid could 
potentially act as a co-catalyst, leading to the activation 
of alternative reaction pathways. Therefore, it is 
important to examine whether acetic acid behaves as a 
co-catalyst during the reactions that result in the 
production of by-products. In addition, to get a better 
understanding of the existing by-products, evaluate the 
degradation performance of the feedstock under the 
specified reaction conditions and employ GC to 
ascertain if intermediates of the DHA methylation 
process are contributing to the formation of these by-
products. 

To further improve the catalytic performance, 
several approaches can be implemented to try to 
optimise the synthesis process of UiO-66 (Hf). 
Building on insights from previous studies, it is 
beneficial to focus further analysis on OA, given it 
demonstrated the best catalytic performance. By 
adjusting the equivalent molar ratio of OA used in the 
synthesis process, it is possible to achieve an optimal 
synthesis composition for UiO-66(Hf) that results in 
optimised catalytic performance. Furthermore, since 
modulators typically have a significant impact on 
catalytic performance, it would be beneficial to explore 
different types of modulators, such as difluoroacetic 
acid, trifluoroacetic acid etc.9 Testing the performance 
of materials synthesised with these modulators could 
provide valuable insights into optimising the catalytic 
performance. 
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Abstract  
As machine learning becomes more interlinked with data-driven decision-making processes within critical industries like 
supply chain management, the transparency and explainability of such models will grow in importance. Decision making 
guided by black-box optimisation methods has proved to be powerful overall, but high risks are associated with such practices. 
If stakeholders in charge of decision making are not able to interpret complex machine learning model results, this can 
negatively impact the confidence that such stakeholders have in acting on the insights given by such models. Decision Trees 
(DTs) have been known to be highly interpretable in the field. Adding more complexity to DT models can result in boosts in 
performance, but with the downside of sacrificing interpretability. As a solution, this paper presents the use of Genetic 
Decision Trees (GDTs, DTs optimised with a genetic algorithm (GA)) as an interpretable machine learning method for solving 
the Inventory Management (IM) Problem. Different parameters of the GA were investigated, along with different population 
initialisation techniques and maximum tree depths. The approach was also benchmarked against the most popular IM 
heuristics. GDTs were shown to outperform all common heuristics whilst maintaining interpretability, and they were also able 
to pinpoint features of the problem with real-world relevance. Additional, use-case-specific insights were also uncovered, 
highlighting the promising nature of the proposed approach. 
 
 
1 Introduction 
A supply chain is a network of businesses which work 
together to procure, manufacture, store and distribute a 
product or service to fulfill a customer demand (Ganeshan 
& Harrison, 1995) (Garcia & You, 2015). It comes 
naturally then that cooperation and information sharing 
between businesses in the supply chain leads to 
significantly higher profits overall (Gavirneni, 2005). 
Over the past few decades, the information sharing 
revolution has produced exponential amounts of data 
(Tiwari, et al., 2018). This surge of data opened the door 
for computational methods such as machine learning (ML) 
to overtake traditional logistics used for supply chain 
optimisation, which suffered from their limited ability to 
forecast demand, and their inability to adapt to real-time 
data (Makkar, et al., 2020).  

Optimising supply chains is crucial for businesses 
who want to stay competitive. Minimising inefficiencies 
increases profits by increasing order fulfillment and 
customer satisfaction. To this end, neural networks (NNs) 
have been the predominantly used ML method 
(Toorajipour, et al., 2021). NNs can extract intricate 
patterns from large datasets due to their inherent 
complexity. However, this complexity represents a 
double-edged sword. Whilst NNs and other black-box 
optimisation methods have demonstrated tremendous 
success in achieving state-of-the-art performance across 
various fields and real-world applications, their 
complexity also limits their interpretability  (Zhang, et al., 
2021). This trade-off is illustrated in Figure 1 for different 
ML techniques. 

Interpretability of supply chain decisions is crucial for 
several reasons. Understanding the rationale behind the 
decisions made by optimisation models increases 
stakeholders’ trust and confidence to act upon the insights 
given by the model. If inefficiencies arise, interpretability 
can help with identifying the root causes for issues and 
hold appropriate parties accountable. Certain industries 
might also be subject to regulations, in which case 

interpretability of decisions is critical to avoid non-
compliance. Interpretable models have also been shown to 
be able to reveal important patterns that more complex 
techniques overlooked (Caruana, et al., 2015). 

 
Figure 1: Model performance vs. model interpretability for different 
machine learning techniques. We expect our GDTs to perform better than 
individual decision trees and heuristic methods. This study does not 
investigate how GDTs perform against other methods. This figure was 
partially adapted from (Yang, et al., 2021). 
 

Within the field of ML, there is a growing body of 
literature criticising the undervalued importance of 
interpretability over performance (Baryannis, et al., 2019). 
Governments across the globe are also developing new 
legislation around the need for increased transparency in 
the field of ML. The US with their “Blueprint for an AI 
bill of rights” (The White House, 2022), the EU’s “AI Act” 
(European Commission, 2021), and the UK’s “A pro 
innovation approach to AI regulation” (Secretary of State 
for Science, Innovation and Technology, 2023).  

The aim of our study is to contribute to this growing, 
but still underdeveloped body of literature around 
interpretable methods in machine learning by promoting 
the use of Decision Trees (DTs) optimised with a genetic 
algorithm as an interpretable method for supply chain 
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optimisation, specifically to tackle the Inventory 
Management Problem.  

To our knowledge, whilst genetic algorithms and DTs 
have been used separately to tackle supply chain 
optimisation in the past, we are the first to combine their 
use in this field. 
 
2 Background  
2.1 Defining interpretability 
Interpretability is widely recognised by the ML 
community as being one of the most important aspects for 
improvement in the future of AI, and this sentiment is 
shared by governments, companies, and the public alike 
(Carvalho, et al., 2019). Despite this, there is no set 
consensus for the definition of interpretability. In part 
because it is difficult to mathematically define 
interpretability. Different academics and groups will vary 
in how they characterise interpretable models. As Miller 
(2019) puts it: “ultimately, it is a human-agent interaction 
problem”. Therefore, in this paper we define 
interpretability as the ability for a model’s result to be 
predicted by a human; in other words, a human will be able 
to follow through the model’s decision-making process 
even if they do not understand the rationale behind it.  

Blockeel, et al. (2023) provides an extended list of 
different forms of interpretability which helps 
understanding how different methods can be interpretable 
in one or more ways as described below:  

 
(1) Understanding the full model  
(2) Understanding aspects of the full model (such as 

feature importance)  
(3) Understanding of a single prediction  
(4) Understanding the decision-making process behind a 

prediction  
 
Within the field of interpretability, the word 

explainability is sometimes used interchangeably. 
However, it is important to point out their distinction. 
Explainable models are interpretable by default, but the 
opposite is not necessarily true (Gilpin, et al., 2019). We 
make the argument that explainable models, such as 
individual decision trees, are those which are interpretable 
in all four of the above ways.   
 
2.2 Decision trees  
Decision trees are sequential models that break down 
complex decision-making processes into a series of simple 
tests. Drawing inspiration from nature, decision trees start 
from a root node where the tree branches out from each 
sequential test (decision nodes) progressively until 
reaching a conclusive leaf node. For a visual depiction, see 
Figure 4. 

Early research on decision trees for decision-making 
was focused on improving their performance, as it was 
widely acknowledged that individual trees were not able 
to compete with more complex models such as neural 
networks (Blockeel, et al., 2023). However, recent studies 

have shown that certain tree methods such as ensembles 
and differentiable trees are able to perform as well, if not 
better, than complex neural networks whilst also being 
more interpretable (Silva, et al., 2020) (Frosst & Hinton, 
2017) (Lundberg, et al., 2020). As a result, it is now widely 
accepted that such tree methods can compete with neural 
networks. Even so, these methods have shown that some 
level of interpretability is traded for their enhanced 
performance. For example, ensemble tree methods are 
inherently more complex than an individual decision tree. 
They lose interpretability when the decisions made by 
various trees are combined, adding a black-box nature to 
their decision-making process, and hindering 
understanding of how different variables contribute to the 
model’s predictions.  

It is important to appreciate the trade-off between 
interpretably and performance of different decision tree 
methods to understand how further research in the field 
can advance both aspects of the DT model. In the next 
section, we propose how genetic decision trees can solve 
the issue of advanced DT methods inherently losing 
interpretability, whilst still being able to achieve good 
predictive performance. 
 
2.3 Genetic decision trees (GDTs) 
Pioneered by Holland (1975), genetic algorithms mimic 
the evolution of living organisms via natural selection and 
sexual reproduction to solve complex ill-defined problems 
(Holland, 1992). Through an adaptive process, genetic 
algorithms take a population of possible solutions 
(chromosomes), select those which have the higher fitness 
(those which have proven more useful), and use the 
genetic operators of crossovers and mutations to evolve 
said population. This is done iteratively, with the best 
chromosomes preserved from one generation to the next 
(elitism).  

The combined use of genetic algorithms and decision 
trees has already been realised by various papers and 
found to produce robust and scalable predictions 
(Carvalho & Freitas, 2004) (Bala, et al., 1995) (Fu, et al., 
2003) (Vandewiele, et al., 2017). More relevantly, these 
studies have also found that such an approach can reduce 
the description complexity of the model, thus improving 
interpretability of the results.  

In this study, these properties of GDTs are leveraged 
to transform a sequential decision-making problem into a 
static, data-driven one. 
 
2.4 The Inventory Management Problem  
A critical aspect of supply chain optimisation is 
successfully managing inventory levels to meet uncertain 
customer demand. The Inventory Management Problem 
(IMP) describes the challenge of balancing the trade-off 
between meeting that demand (order fulfillment) and 
incurring holding costs for excess inventory. To do this, 
there are three main questions that modelling attempts 
should aim to answer. First, the frequency in which current 
inventory levels should be determined. Second, when 

477



 3 

should a replenishment order be placed, and lastly how 
large should this order be.   

In order to develop an optimal IM policy for each 
sequential stage of the supply chain, various constraints 
must be taken into account. These include supplier 
constraints (e.g. minimum order quantities, maximum 
production capacity) and internal constraints (e.g. storage 
capacity).  

The costs associated with the IMP involve 
replenishment, holding, and shortage costs. The last of 
which refers to the costs incurred when a short-term 
shortage of inventory leads to backlog or loss of orders 
which result in lost profit on sales (Silver, 1981).  

 
3 Methods  
A schematic overview of the optimisation approach is 
presented in Figure 2 as a helpful reference to the reader. 
The individual steps within the approach will be explained 
in more detail in the upcoming sections.  

 
Figure 2: Genetic Decision Tree algorithmic framework. 

3.1 Inventory Management environment 
configuration 

To optimise a multi-stage IMP, the inventory management 
environment provided by Hubbs et.al. (2020) in their 
Operations Research gym (OR gym) is employed. OR 
gym is a Python library that is used to develop, test, and 
compare reinforcement learning techniques.  

The IM environment’s supply chain structure is 
illustrated in Figure 3 with the customer at the bottom of 
the chain. A retailer at stage 0 fulfills customer demand, 
sourcing products from the supplier at the stage directly 
above, which may also have another supplier above them. 
This hierarchy continues until reaching the initial supplier 
that processes raw materials. 

Interacting with this environment involves providing 
an action (reorder quantity) as input. After that action is 
taken, the environment evaluates the supply chain and 
returns the resulting state and a reward. The state contains 
the resulting inventory levels and actions that were taken 
to get there, as far back as the value of the maximum lead 
time. For example, if the maximum lead time is 3 periods, 
the state will contain the current inventory levels, and 
actions from the past three time periods. The reward takes 

into account costs and revenues from all stages, and thus 
represents the overall profit achieved at a given state. This 
sequence of taking an action and then observing the results 
is repeated for the specified number of time periods (i.e., 
until the end of the episode). The aim of solving the IMP 
is to maximise the total reward at the end of the episode.  

 
Figure 3: Inventory management supply chain set-up in the OR-gym 
environment. Partially adapted from (Hubbs, et al., 2020). 

For the sake of simplicity, most environment 
parameters were left in their default state - however, in 
certain instances that was undesirable. The main reason for 
this is the tractability of the problem. Given the default 
parameters, the action space would be comprised of 
744,471 actions, which was deemed too computationally 
demanding a problem, as there’s scarce literature available 
to gauge how powerful the applied method would be a 
priori. Thus, the production capacities and initial 
inventories were sized down to reduce the size of the 
action space and state space. As a state is described by 
prior inventory levels and actions as far back as the biggest 
lead time, lead times were all deterministically set to 1 to 
further reduce the size of the state space (for a more 
detailed description of how a state is described, see 
(Hubbs, et al., 2020). The rest of the parameters were left 
in their default state: an episode consisted of 30 episodes, 
the fluctuating customer demand was drawn from a 
Poisson distribution, the supply chain under consideration 
had four stages, and backlogging was allowed. Lastly, 
replenishment, backlog and holding costs per unit 
increased from stage 3 to 0, as more refined products cost 
more to produce and store. For more details on 
environment parameters, see the Supplementary 
Information.  

 
3.2 Genetic Decision Tree Regressor (GDTR) class 
The most suitable model for this study is a decision tree 
regressor. We opted to write a custom genetic decision tree 
regressor (GDTR) class which allows for the use of 
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crossover and mutation operators. The various methods 
involved in the GDTR class are described below. 
 
3.2.1 Fit and predict methods 
Binary splits were used, that is, the data is partitioned into 
a left and right dataset based on how the value of the split 
feature compares to the split threshold. To decide on the 
best split feature and threshold value, the Sum of Squared 
Error (SSE) was calculated for each possible split, and the 
minimum was selected. The formulation for SSE is shown 
in Eq. 1, where ! denotes the part of the dataset going into 
the right partition, and " denotes that going into the left. 
Variables #!$$$$  and #"$$$  denote the means of the two 
partitions.  
 
								&&' = ∑ (## − #$$$$$)%&∈! +∑ (## − #($$$)%&∈"              (1) 

 
Once the data is split into two sets at a given node, those 
two parts are split further recursively using the same 
technique until one of the stopping conditions is met. Two 
stopping conditions were defined: either the maximum 
depth needs to be reached, or the dataset needs to be left 
with only one datapoint (as then there is no point in 
splitting further). It should be noted that the data was 
standardised before fitting. 

The ‘predict’ method is essentially a reverse of the 
‘fit’ method, recursively checking how the datapoint to be 
predicted compares to the threshold value until a leaf node 
is reached. Then, the value of that leaf node is returned. If 
at any point the method encounters a criterion which 
cannot be fulfilled (e.g., .[2] > 4 followed by  .[2] <
−3) because a criterion from a node higher up has been 
modified by a genetic operator, it will default to the right-
hand partition. 
 
3.2.2 Crossover creation 

 
Figure 4: Visual representation of a decision tree crossover operation. 

Crossovers are one of the two main genetic operators 
used to evolve a population. In the context of decision 
trees, this means exchanging subtrees of two parent trees. 
For the purposes of this study, the parent trees were 
selected randomly. Then, one internal node was selected 
from each parent tree randomly to act as the root node of 
the subtree to be exchanged. For a visual depiction of the 

process, see Figure 4. It is to be noted that this operation 
might lead offspring trees to have a different depth than 
that of the parent trees, which may be helpful in avoiding 
suboptimal tree structures due to lack of sufficient 
exploration. 
 
3.2.3 Mutation creation 
Mutations are also genetic operators and, when discussing 
decision trees, they most often mean modifying one single 
node’s splitting criterion. In this paper the splitting 
criterion is modified by randomly selecting the split 
feature, and then perturbing the original threshold by a 
random percentage between -50% and +50%. The node to 
be mutated is also selected randomly.  
 
3.3 Genetic algorithm framework 
3.3.1 Generating initial training data  
Decision trees (DTs) are classed as supervised learning 
algorithms, meaning that they require a training dataset to 
be trained on. Such a dataset was generated in three 
different ways within this study. 
 

(1) State-action pairs are generated randomly, leading 
to the initial tree population following purely 
random policies 

(2) Half of the state-action pairs are generated 
randomly, and the other half is generated using the 
base-stock policy heuristic (for more on this see 
Section 3.4) 

(3) State action pairs are generated fully using the base-
stock policy heuristic 

 
For the latter two approaches, each tree initialised 

using a heuristic was given 200 [state – base-stock action] 
data pairs to be trained on. It should be noted that 
stochasticity was also present in the latter two approaches, 
as the 200 states for which the heuristic was applied were 
selected randomly. 
 
3.3.2 Fitting the initial DT population 
To determine the number of trees in the population, the 
heuristic outlined in Eq. 2 was followed, where 6) is the 
number of variables describing a state (6 in this study) and 
6*  is the number of possible actions (60 in this study). 
Thus, the initial population was determined to consist of 
1320 trees. 
 

7&+&,&*-	,/00) = (6) + 6*) × 20 (2) 
  

Each of these trees were then fit to data generated as 
described in the previous section, resulting in 1320 
different policies. 
 
3.3.3 Genetic algorithm loop 
After the initial tree population has been created, a four-
step sequence is carried out for 10 generations, after which 
the final best performing trees are selected: 
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1. The fitness of each DT’s policy is evaluated by having 
it interact with the IM environment for 10 episodes, 
reviewing inventory levels at every time period. The 
end-of-episode rewards are averaged for the 10 
episodes, resulting in a final “total average reward” 
for each of the trees.  

2. The top performing DTs are selected to be kept, and 
the rest are discarded.   

3. Crossovers are generated between the trees that were 
deemed to be the top performers – it is to be noted 
here that only one of the potential crossovers was 
generated, and that both parent trees were retained in 
their original states as well. Next, mutations of the top 
performing trees were generated and, similarly to 
crossovers, the original tree was also retained. 

4. Newly generated crossovers and mutants were added 
to the list of top performing trees (so that there were 
1320 trees in the population again), and the fitness of 
each of those trees was evaluated.  

 
As part of the study, multiple setups of this GA were 

investigated by changing the percentage of trees being 
retained from the old generation and the percentage of 
trees which are results of crossovers and mutations. The 
effects of different maximum initial tree depths were also 
studied, for all GA strategies.  

For a comprehensive tabulated view of all considered 
setups in this study, see Table 1.  

 
Table 1: Experimental setup; all considered max depth and GA strategy 
combinations investigated in this study. 

Maximum 
initial 
depths 

Genetic strategy: percentage of trees from 
the previous generation which are: 

Retained Crossovers Mutations 

3, 5, 10, 13 50 30 20 
3, 5, 10, 13 40 40 20 
3, 5, 10, 13 30 40 30 
3, 5, 10, 13 20 50 30 
3, 5, 10, 13 10 50 40 

 
Finally, the features of the 5 best performing models 

were investigated for each initialisation type, max depth, 
and GA strategy which yields 300 models in total. The 
investigation included an examination of both the overall 
occurrences of individual features and the occurrences of 
each feature when utilised as the initial (root) splitting 
feature. 
 
3.4 Benchmarks 
Heuristic methods are widely used for benchmarking 
IMPs (Jackson, et al., 2020). In this study we use five of 
the most popular ones to benchmark our GDTR method. 
These heuristics are described below:   
 

• Base-stock policy: inventory levels are reviewed at 
each period, and the reorder quantity is placed to bring 
the inventory levels to a predefined base-stock level 

• (R, S) policy: same as the base-stock policy, except 
inventory levels are only reviewed every period R 
(and the base-stock level is denoted by S) 

• (R, s, S) policy: inventory levels are reviewed every 
period R, and if they are found to be below the 
minimum level s, a reorder is placed to bring the 
inventory levels to S 

• (r, Q) policy: inventory levels are continuously 
reviewed, and if they are found to be below the 
minimum level r, a reorder of size Q is placed 

• (s, S) policy: same as the (R, s, S) policy, except 
inventory levels are reviewed continuously. Also 
known as the ‘Min-max’ policy 
 
The heuristics were run in an environment whose 

configuration was identical to that used for evaluating the 
GDTR. SciPy’s minimise method (Pedregosa, et al., 2011) 
was used to find the optimal parameters for the heuristic 
policies, by reformulating them as black-box problems 
taking the policies’ parameters as inputs. Additionally, a 
random agent taking a random action at each step was also 
tested. 
 
4 Results 
4.1 Benchmarking 

 
Figure 5: Benchmark test results for 5 different heuristics and a random 
policy against the Genetic Decision Tree Regressor (GDTR). 
 
Benchmark tests reveal that the GDTR policy performs 
better than any of the other heuristic approaches outlined 
in Section 3.4. The highest achieved reward is shown for 
each policy in Figure 5. Even in the best-case scenario, the 
random, (R, S), and (R, s, S) policies were not able to 
break even in costs. In comparison, the (r, Q), min-max 
and base-stock policies performed much better, yet they 
were still outperformed by the GDTR. The best GDTR 
policy outperforms the worst-performing benchmark 
heuristic, (R, S), by 287%, and it performs better than the 
base-stock policy by 20%.  
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4.2 Investigating the optimal combination of 
initialisation and GA strategies 

Figures 6, 7 and 8 visualise how different combinations of 
genetic strategies, initial max depths of trees and 
initialisation methods yield different mean total rewards 
(solid lines) and standard deviations (shaded regions, +/- 
1	;) across generations. The ‘mean of total rewards’ refers 
here to the mean of the rewards achieved by the 
populations of trees at each generation – it will be referred 
to as the “reward” in this section for simplicity. 

Figure 6 displays how using a random initialisation 
method affects the performance of subsequent generations 
of trees for five different genetic strategies and four 
different max depth of trees. The initial rewards obtained 
for all strategies and depths were similar in value (-1.5), 
and notably this initial reward is negative. This is followed 
by a steep increase in reward from generation 0 and 2, after 
which most reward functions reach a positive value 

(breaking even). The steepness of initial gradients is 
observed to increase with increasing proportion of 
crossovers and mutations across strategies (a) to (e). 
Generally, all strategies from generation 8 onwards seem 
to converge to reward values between 0.0 and 0.5.   

For the vast majority of generations, the reward 
function for max depth 3 performs the best consistently for 
all strategies and improves at a faster rate than the rest of 
the depths. From strategy (a) to (e), the shaded regions 
representing the standard deviation of the rewards steadily 
increase. Note that no yellow regions are seen at the lower 
end of the figures, corresponding to trees with initial max 
depths of 3 performing better than other depths. On the 
other hand, it seems that for trees with initial max depths 
of 10, overall improvement is the slowest and with the 
highest standard deviation (as shown by the green shaded 
areas).    

Max depth Max depth 

Max depth Max depth Max depth 

Max depth Max depth Max depth 

Max depth Max depth 
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Figure 7 investigates the same parameters as Figure 6, 
but for a half-heuristic, half-random initialisation. The 
general upwards trend across generations is preserved, 
however, the initial starting point is generally higher 
(approx. -1, -0.5) than it is for fully random initialisation. 
Additionally, there is a steep initial gradient of 
improvement for all GA strategies, not just for the ones 
where less of the old population is retained. 

The trend of lower max depths performing better 
seems to start reversing, however, the reward functions for 
the different depths run too closely together to tell exactly. 
Further, the standard deviations for lower max depth trees 
(3, 5) have increased when compared to the random 
initialisation, especially for GA strategies where more of 
the older generation is retained (strategies (a)-(c)). This 
may be seen best by observing the increased presence of 
yellow and red regions in the bottom half of the figures. 

Figure 8 shows the results for a fully heuristic 
initialisation. The general upwards trend of mean rewards 
across generations for all GA strategies and max depths is 
preserved with this initialisation type as well. The steeper 
initial gradient of the reward function is also present, albeit 
the curve is less steep, as the starting reward is better than 
that of the previous two initialisation types (approx. -0.25, 
-0.9). With a fully heuristic initialisation, trees with lower 
max depths (3, 5) generally perform worse, with max 
depth 3 visibly performing the worst for strategies (a)-(d). 
This trend is particularly prominent in earlier generations. 
Moreover, the standard deviation in achieved rewards 
increases as max depth decreases, for all GA strategies–
the prominence of the yellow and red regions in the bottom 
regions of the figures is the most noticeable here amongst 
all initialisation types. 

Finally, the different GA strategies seem to be more 
similar to each other than they are at the previous 
initialisation types; employing a fully heuristic 
initialisation decreased the importance of the GA strategy 
but increased that of the max depth.  

4.3 Assessing interpretability of top performing trees 
Figure 9’s blue bars show the number of occurrences for 
each of the features used for splits in the top performing 
trees. The first three features (prior inventory levels) were 
used much more than the last three (prior actions). There 
is also a decrease in how much the features were used 
across the inventory levels, and across actions. 
 

 
Figure 9: Feature importance for features 0-5 (left to right). Blue: feature 
occurrence at all root and decision nodes of the top performing trees. 
Orange: feature occurrence at the root node of the top performing trees. 
Features represent the splitting criteria at each root or decision node in 
the decision tree. 
 

The split features at the root nodes were also 
examined, with the results presented in Figure 9’s orange 
bars. A trend like the one described above was found, that 
is, the features corresponding to the inventory levels were 
much more frequently used as a first split than those 
corresponding to prior actions. However, in this instance 
the usage of feature 0 was outstandingly high, 
approximately double the usage of the second most used 
first split feature (120 vs. 60 occurrences). This trend is 

Max depth Max depth 

Max depth Max depth 

Max depth 
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further illustrated in Figure 10, which depicts one of the 
best performing trees. 

 
Figure 10: Example output of the approach: an interpretable decision 
tree of max depth 3. x[i], where i is an integer between 0 and 5, refers to 
the splitting feature at a specific decision node. For example, x[0] is the 
standardised current inventory at stage 0 of the supply chain. The 
variable y refers to the action the tree has outputted at a leaf node, where 
the values inside the brackets denote the reorder quantity at [stage 2, 
stage 1, stage 0]. Note that, at stage 3 we have unlimited raw materials, 
so there is no need for reordering at that stage.  
 
5 Discussion 
5.1 Benchmarking 
Our genetic decision tree regressor performs better than 6 
different heuristics and sequentially improves the 
performance of an initial population of trees to achieve 
higher rewards generation after generation. This is in line 
with existing literature around the ability of genetic 
algorithms to improve the performance of decision tree 
models, and it also confirms our expectation that GDTs 
perform better than heuristic-based models and individual 
DTs as illustrated in Figure 1.  

As mentioned in Section 2.4, the frequency in which 
inventory levels should be reviewed is an important 
consideration. For the GDT, this was done at every time 
period. Regarding the benchmarks, neither of the two 
worst performing heuristic policies were allowed to do so, 
suggesting that having regular inventory reviews is 
advantageous in this setup. 

 
5.2 Investigating the optimal combination of 

initialisation and GA strategies 
Figures 6-8 show that there is a clear trend of improvement 
for all combinations of strategies as trees evolve from one 
generation to the next. From this, we can determine that 
our GDT method was able to improve the performance of 
an initial population of trees even when such trees were 
generated using a heuristic, which further supports the 
validity of our benchmarking results. 

The trends seen in Figures 6-8 seem to be of similar 
shape at a glance. Deeper analysis into the effects of the 
initialisation method, max depth of trees and GA strategy 
reveal that they affect the starting rewards, improvement 
rates, standard deviations, final rewards, and convergence 
behaviour.  
 
5.2.1 Effect of initialisation method and max depth of 

trees 
The initialisation strategy had a profound influence on the 
performance of the GDT regressor, and it likely affects 
how different depth trees will evolve from earlier to later 

generations. We see this in Figures 6-8, with the same GA 
strategies producing similar, but different trends for 
different initialisation methods.  

A fully heuristic approach gives reward functions 
which increase approximately parallel to each other and 
seem to strongly suggest that the best depth trees to use are 
of max depth 10 or 13. On the other hand, initialisation 
methods with a fully random or half random approach tend 
to show the reward functions intersecting liberally. 
Although there is still some consistency as to which 
functions perform better overall, for different strategies 
there is no clear “winner”.  

Certain depth trees might perform better than others 
as shorter trees might suffer from lacking the complexity 
to fit data accurately (low max-depth, heuristic 
initialisation), whilst higher depth trees are able to fit to 
more complex data but run the risk of overfitting and thus 
performing worse (high max-depth, random initialisation). 
The higher rates of intersection between different depths’ 
reward functions for the half-heuristic, half-random 
initialisation seem to illustrate this trade-off.  

Using a fully heuristic initialisation also gives higher 
initial rewards, as expected. However, the reward 
functions do converge towards mean rewards which are 
interestingly slightly lower than those achieved by the 
half-random and fully random approaches. This might 
suggest that the fully heuristic method is not encouraging 
enough exploration, leading most of the trees following 
the algorithm to converge to locally optimal solutions. 
This, however, does not mean that the fully heuristic 
initialisation method did not produce top performing 
individual trees. 

Further, the standard deviation of shallower trees 
increases and their performance decreases as more trees 
follow heuristically initialised policies. This is potentially 
due to deeper trees being able to capitalise better on the 
additional insights provided by the heuristics. This trend 
is especially prominent in earlier generations, as there was 
less opportunity to select fitter trees and close the gap 
between the performance of shallow and deep trees. 
 
5.2.2 Effect of GA strategy 
As the percentage of retained trees decreases from 
strategies (a) to (e), higher initial improvement rates are 
witnessed when there is randomness in the initialisation, 
yet the average rewards achieved across strategies at 
generation 10 are similar. This suggests that whilst 
increasing the rates of crossovers and mutations might not 
directly increase the rewards achieved at later generations, 
it does benefit the evolution of the initial population of 
trees by increasing the amount of initial exploration the 
algorithm is allowed. Thus, it can be said that under 
circumstances where there are limitations on budget, time 
or computing power, utilising higher rates of genetic 
operators can reduce the resources needed to reach a 
converging result. However, this also leads to an increase 
in the standard deviation of results, which might be 
undesirable. On the other hand, for the fully heuristic 
initialisation the effect of the GA strategy is less 
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pronounced as starting rewards are already higher, as 
discussed above. 

For GA strategies with lower retention percentages, 
shallower trees have a higher standard deviation when 
there is some heuristic element present in the initialisation. 
This points to shorter trees being potentially more 
sensitive to crossovers and mutations giving them a more 
profound change than deeper trees would experience. To 
visualise this, one can think of a tree of depth 3 and another 
of depth 13 both undergoing a mutation at one of the 
decision nodes adjacent to one of the leaf nodes. In the 
grand scheme of things, the tree with depth 3 would be 
affected more than the tree with depth 13.   
 
5.3 Assessing the interpretability of top performing 

trees 
Features corresponding to inventory levels were found to 
be better predictors for optimising reorder quantities than 
features corresponding to prior actions. This was true even 
with non-zero lead times. Given a specified (albeit 
stochastic) customer distribution, this would make 
intuitive sense, and shows the model’s ability to uncover 
real-world insights even when the environment setup 
presents a rather specific case-study. 

The decreasing importance of features as one moves 
further away from the stage closest to the customer may 
be explained by their influence on how much of the end 
customer’s order is getting fulfilled. The more an order is 
fulfilled, the less money is lost to backlogging. What 
makes this especially important at stage 0 is that 
replenishment, backlogging and holding costs are higher 
the closer one is to the end customer (more refined 
products cost more to store and produce), which means 
even smaller mismanagements lead to higher losses. 
Additionally, specifying suboptimal reorder quantities 
closest to the end customer could create a ripple effect, not 
only affecting that stage, but constraining the maximum 
achievable profit of all preceding stages. The 
exceptionally high occurrence of feature 0 (the inventory 
level at the stage closest to the customer) as the first, most 
influential split feature of trees further emphasises this 
point. 

By visualising our best performing trees (Figure 10), 
we can clearly follow through the decision-making 
process behind individual predictions. This being that 
whenever the inventory levels at stage 0 are above a 
certain threshold, the model predicts that there is no need 
to reorder at that stage. It does, however, predict the need 
for reordering at higher stages, probably in anticipation of 
future demand.  

Since the model’s decision-making process can be 
easily navigated by a human, the method was not only 
proven to yield good rewards but was also found to be 
highly interpretable. 

 
5.4 Limitations and further research  
One of the most relevant limitations of this work is the 
reliance on a theoretical framework (OR-gym) for 
inventory management. After all, for this method to be 

leveraged in real-world applications, additional research 
needs to be conducted to substantiate the practical utility 
of genetic decision trees. This is understandably a 
challenge as the real world also introduces much more 
uncertainty, but it is necessary to expand the confines of 
this study for the method to be more widely applicable to 
fields outside of supply chain optimisation.  

Time and computational constraints limited the 
number of generations, initialisation methods, GA 
strategies and max depth trees that were possible to 
investigate. As a proof-of-concept study, this work was 
able to show that genetic decision trees indeed show 
promise in optimising IMPs, but further studies should 
expand on the parameters investigated and look at 
exploring higher generations and tree depths, as well as 
more test cases for different GA strategies. This is 
important in order to gain higher levels of confidence that 
an optimum has been reached, because in our study we had 
reward functions which ran fairly close to each other. 
Consequently, it was difficult to guarantee that an 
optimum had been found given our limited parameter 
space. Thus, we further encourage the use of new 
parameter investigations, for example, introducing 
different genetic operators.   

A further study on benchmarking GDTs against more 
advanced methods would be crucial to gauge the gap 
between the proposed method and those at the forefront of 
the ML field. This includes benchmarking studies against 
black-box optimisation methods (namely deep neural 
networks), and other popular methods such as ensembles. 
This would aid stakeholders in making well-informed 
decisions when choosing the appropriate optimisation 
method for their specific application based on the trade-
off they’re willing to make between interpretability and 
performance. 

Open sourcing our GDTR class can also invite 
additional collaboration to increase the functionality of 
our approach. For example, through the creation of more 
sophisticated interpretation tools to gain further insights 
into features, splits and decision patterns.  
 
6 Conclusion 
This proof-of-concept study investigated a novel approach 
to optimising an Inventory Management Problem using 
genetic decision trees.  

Benchmark tests against the most relevant heuristics 
for an IMP revealed that there is promise in using genetic 
algorithms for improving the performance of tree models 
whilst maintaining interpretable results. 

Parameter tests varying genetic strategies, max depth 
of trees and initialisation methods were not able to produce 
clear answers as to which combination of strategies would 
produce the best performing trees. The stochasticity of the 
problem also contributes to this problem. So, we have 
outlined further investigations to be undertaken that could 
improve the knowledge around which parameters would 
produce the best predictions.  

Nevertheless, final analysis of the top performing 
trees at the end of the genetic algorithm loop shows that 
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this approach is indeed interpretable and has the potential 
to highlight features with real-world relevance. Referring 
to Section 2.1, the model is interpretable in all four ways 
described by Blockeel et al. (2023), so there is reasonable 
ground to claim that this novel approach is not only 
interpretable, but also inherently explainable. These 
results affirm the idea that a GDT approach is a promising 
candidate in the intersection of interpretable machine 
learning and inventory management optimisation. 
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1. Abstract 
Type III porous liquids, a combination of porous solids and ionic liquids, have the potential to be deployed as a 
carbon capture storage (CCS) technology. The aim of this paper is to systematically investigate the CO2 sorption 
process within type III porous liquids with a focus on swelling, CO2 sorption capacity and the nature of CO2-
porous liquid interactions. In addition, the influence of pressure and ionic solvents on the sorption process is 
elucidated in this paper. Three type III porous liquids namely, 12.5 % ZIF-8 [BMIM][NTf2], 12.5 % ZIF-8 
[P66614][NTf2] and 12.5 % ZIF-8 [BPy][NTf2] were examined. In-situ ATR-FTIR spectroscopy was employed to 
probe the CO2-porous liquid interactions, measure the swelling and CO2 sorption capacity under diverse 
conditions. Samples of porous liquids were exposed to varying CO2 pressures (5 − 40 bar) for 20 minutes, after 
which the cell was depressurized as CO2 was released. It was found that CO2 sorption and swelling increase as 
pressure increases and decrease as the steric hinderance of the porous liquid cations increases. Upon the release 
of CO2 pressure, analysis of the spectra produced indicates a residual absorbance at the spectral band 
corresponding with the anti-symmetric stretching mode (𝑣ଷ) of CO2. This observation is evidence that the CO2-
porous liquid interactions are not completely reversible. Irreversible interactions between CO2 and type III porous 
liquids may affect the ease of regenerating the porous liquid and adversely impact its deployment as a CCS 
technology. To engineer porous liquids that efficiently capture CO2, understanding the interactions that exist 
between CO2 and porous liquids is vital to lay a foundation for its implementation in industry. 
 

2. Introduction 
Carbon dioxide (CO2) has been identified as the 
greatest contributor to global warming (1). With 
CO2 emissions on the rise due to industrial processes 
and energy production, the Paris Agreement was 
pivotal in rallying global effort to combat climate 
change (2). Although the penetration of renewable 
and nuclear energy into the world’s energy mix has 
increased over the past few decades (3), 
conventional fossil fuels are still being used. While 
the world transitions to low-carbon energy, carbon 
capture storage (CCS) systems are needed to capture 
the CO2 being released from burning these carbon 
intensive fuels. Supercritical CO2 (scCO2) has the 
potential to be a green solvent with applications in 
extracting natural products, counter current 
separation of liquid natural products, impregnation 
with supercritical fluids and supercritical drying, 
cleaning and degreasing (4). To achieve the goal of 
limiting global temperature increase to 1.5 ℃ by 
2050 (5), the need to sequester CO2 cannot be 
overemphasized. The most common CCS 
technology is chemical absorption using amine-
based solvents. However, there is a high energy cost 
incurred in regenerating the solvent which 
negatively impacts the efficiency of the process (6). 
To improve the economic viability and 
environmental sustainability of the carbon 
sequestration process, novel CCS technologies need 
to be developed via adsorption using porous 
substances such as activated carbon, metal organic 
frameworks (MOFs), zeolites, porous liquids etc (7, 
8). 

Porous liquids (PLs) have shown potential to 
overcome the limitations currently facing other 
novel CCS technologies such as flowability. The 
main attraction of PLs is the possibility of process 
simplification due to their ability to be pumped into 
circulation and the potential for increased energy 
efficiency (9). PLs possess the mobility of liquids 
and the features of microporous solids. These PLs 
differ from conventional liquids in their permanent 
and accessible cavities (10). 

PLs can currently be classified into four types (types 
I, II, III and IV) according to the method of porosity 
generation (11, 12). Among these four types of PLs, 
Type III PLs (T3PLs) are more widely discussed and 
studied due to their ease of preparation and 
consequently used for the purpose of this research 
(13). T3PLs consist of sterically hindered solvents 
and pore generators and present efficient sorption 
capabilities due to its permanent cavities. T3PLs can 
be produced using either ionic or non-ionic liquids 
as the sterically hindered solvent and a wide variety 
of porous frameworks (known for strong adsorption 
capabilities) may be used as pore generators such as 
zeolites, MOFs, porous organic cages (POCs) etc. It 
is easier to prepare T3PLs via well-established 
methods of production including surface 
hydrophobization or size-excluded dispersions since 
T3PLs are a suspension and not a neat liquid (14).  

MOFs, one of the commonly utilised porous 
substances for CCS technologies, are a class of 
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crystalline material composed of a central metal ion 
surrounded by organic ligands (15). Their high 
porosity and large surface area make them a suitable 
porous framework for T3PL synthesis. The 
customizable nature of MOFs amongst other 
properties, captures the interest for a variety of 
applications such as catalysis, gas storage, drug 
delivery, gas vapor separation, water treatment, and 
CO2 capture (16). Zeolite imidazolate frameworks 
(ZIFs) are a type of MOFs which derive their 
structure from tetrahedral units where every metal 
ion (M) attaches to four organic imidazolate (Im) 
linkers [M--Im--M] (Figure 1). ZIFs have a topology 
similar to zeolites and are sought after for the 
combined advantages of MOFs and zeolites (17). 
ZIF-8 has proven to be effective in separating CO2 
from a mixture of gases via adsorption and was 
consequently selected for this study (17, 18). 

 

Figure 1:  Crystal structure of ZIF-8: Zn (polyhedral), N 
(sphere), and C (line) (15) 

T3PLs have been shown to present greater control 
and tunability over desired properties making T3PLs 
a good candidate for CO2 sorption (16). The solvent 
used in producing T3PLs is vital as it must be 
sufficiently bulky to prevent invasion of the porous 
structure, leaving it empty for CO2 sorption (19, 20). 
In selecting a porous framework and solvent 
combination, the characterisation of the porous 
framework was evaluated in order to ensure the size 
of the solvent molecules were suitable for the pore 
size of the porous framework to prevent high 
accessibility of the solvent molecules to the 
manufactured cavities (21). This allows for further 
tailoring of PLs in selective gas separation (22, 23). 

The interactions between CO2 and T3PLs are not 
limited to physical interactions. The possibility of 
chemical interactions between CO2 and the PLs may 
hinder the ease of regeneration and CO2 sorption 
capacity of PLs. Thus, further investigation into the 
CO2-PLs interactions is required. In this paper, the 
interactions between high-pressure CO2 and PLs 
were systematically studied and analysed using 
ATR-FTIR spectroscopy. Three ionic liquid 
solvents, [BMIM][NTf2], [BPy][NTf2] and 
[P66614][NTf2] (known for their impressive CO2 

absorption properties) and the porous framework, 
ZIF-8 (MOF) formed the basis of this study. 

FTIR spectroscopy, a vibrational spectroscopic 
technique, has broad applications in fields ranging 
from biopharmaceuticals (24), petrochemicals (25), 
material science (26) and forensics (27). The non-
destructive and rapid qualities of the FTIR 
spectroscopy led to its popularity. The Attenuated 
Total Reflectance (ATR) technique has lower 
penetration depth making it suitable to analyse high 
absorbing samples (28, 29). The changes in the 
modes of vibration of CO2 and PLs allows for the 
use of in-situ ATR-FTIR spectroscopy to gain 
insight into their behaviours (30).  

The objective of this paper is to deepen the 
understanding of the sorption of CO2 in PLs with the 
aid of in-situ ATR-FTIR spectroscopy. To achieve 
this, the impact of pressure and functional groups in 
PLs on the swelling of the PL sample, CO2 sorption 
capacity of the PL and nature of CO2-PL interactions 
will be investigated. 

3. Methodology 
3.1 Materials 
The T3PLs used in this study were synthesised from 
the following ionic liquids (ILs) as solvents. 
Ionic Liquids 

1. 1-Butyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide 
[BMIM][NTf2] 

2. N-Butylpyridinium 
bis(trifluoromethanesulfonyl)imide 
[BPy][NTf2]  

3. Trihexyltetradecylphosphonium 
bis(trifluoromethylsulfonyl)imide 
[P66614][NTf2]  

 
The addition of the ZIF-8 porous framework to the 
ILs above yielded the following T3PLs. 

1. 12.5 % ZIF-8 [BMIM][NTf2] 
2. 12.5 % ZIF-8 [P66614][NTf2] 
3. 12.5 % ZIF-8 [BPy][NTf2] 

 
3.2 ATR-FTIR Spectroscopy 
The ATR-FTIR spectrometer, BRUKER 
EQUINOX 55, was used in conjunction with the 
computer software 'OPUS' to obtain the absorbance 
and wavenumbers for the IR spectra. The ATR-
FTIR spectrometer utilizes an IR light source which 
was then passed through a golden gate ATR 
accessory located in the sample chamber of 
EQUINOX 55, a detector and a diamond placed on 
the ATR accessory. A Teflon O-ring was placed 
above the crystal and secured in place to seal the 
high-pressure cell and prevent leakage. CO2 pressure 
within the cell was monitored and controlled using a 
pressure gauge and six pressure valves. Specac 
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Heated Golden Gate Controller connected to the 
sample chamber allowed for temperature control. 
For all measurements of PLs in this investigation, 64 
co-addition scans and a spectral resolution of 
4 cmିଵ were used.  
 
3.3 Experimental Procedure 
The PL samples were pipetted onto the diamond 
crystal surface. At 20 ℃, the samples were subject 
to varying CO2 pressures for 20 minutes (at which 
point equilibrium was reached) after which the CO2 
pressure was released. Measurements were taken in 
5-minute intervals. CO2 pressure was varied with 5 
bar intervals, from 5 bar to 40 bar. Between runs, 
the crystal was cleaned with acetone to remove any 
remnants that may obscure readings. To achieve 
robust results, each experiment configuration for all 
PL samples was conducted three times. The repeats 
allowed for the precision and reliability of 
experimental results by determining the mean and 
standard deviation of the results.  The absence of a 
spectral band in the 2388 cmିଵ region in the 
spectrum confirms that gaseous CO2 does not 
interact with the IR radiation and obscure the results. 
  
3.4 Quantitative Analysis 
3.4.1 Swelling Phenomenon 
Swelling phenomenon is the increase in volume 
observed with the introduction of CO2 into the 
sample. The higher the amount of CO2 sorbed the 
greater the increase in volumetric and sorption-
induced strain. Swelling was calculated using the 
ratio of absorbance at a characteristic band of the 
sample before and after CO2 is sorbed into the high-
pressure cell. 

𝑆 = ஺బ
஺

− 1 (Equation 1) 

where 𝑆 is the swelling extent, 𝐴଴ and 𝐴 are the 
absorbance of a spectral band before and after CO2 
sorption into the sample (31).  
 
3.4.2 CO2 Sorption 
The concentration of CO2 sorbed into the sample can 
be calculated using the Beer-Lambert Law which 
states a linear relationship exists between the 
absorbance and the concentration, molar absorption 
coefficient and optical path length of a sample (32).    
   

𝐴 = 𝜀𝑐𝑙 (Equation 2) 

where 𝐴 is the absorbance, 𝜀 is the molar 
absorptivity, 𝑐 is the concentration, and 𝑙 is the 
pathlength (31). The concentration of CO2 in the 
sample was calculated using the absorbance at 
2339 cmିଵ which corresponds with the anti-
symmetric stretching mode (𝑣ଷ) of CO2. The 
pathlength, 𝑙, was based on the effective depth of IR 
penetration in the sample. Unlike the depth of 

penetration, it factors in IR absorption in 
transmission (31). The effective depth, 𝑑௘, was 
calculated using the p-polarized effective thickness, 
𝑑௘,/∕, and s-polarized effective thickness, 𝑑௘,ୄ (33).  

𝑑௘ = 𝑑௘,// + 𝑑௘,ୄ (Equation 3) 
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Where 𝜆 is the wavelength of the incident beam, 𝜃 
is the incident angle and 𝑛ଵ and 𝑛ଶ are the refractive 
index of the ATR-FTIR crystal (diamond, 𝑛ଵ =
2.419) (34)  and the PL sample (Section 4.1), 
respectively.   

Based on the assumption of one reflection within the 
crystal, the pathlength is equal to the effective depth, 
𝑑௘. The molar absorptivity of the 𝑣ଷ absorbance 
band for CO2 was estimated as 
1500 dmଷmolିଵcmିଵ at 20°C (35). 
 
3.5 Assumptions and origin of errors 
The refractive index of the porous liquid samples 
was assumed to be the same as the literature values 
of their corresponding ionic liquids. These 
assumptions could lead to errors and would require 
further verification. Additionally, the refractive 
index was assumed to remain constant even with 
CO2  uptake based on literature (36). Baseline 
correction was also performed, however as the 
baseline was corrected to Absorbance = 0 (±0.01), 
this error is considerably negligible. 
 
3.6 Reproducibility of results 
The reliability of data was ensured by repeating each 
experiment three times. The overall experimental 
error of all data was within 5% indicating reliable 
and reproducible results. 

4. Results And Discussion 
4.1 Angle of Incidence and Refractive Index 
Distilled water was selected as the sample used to 
calculate the angle of incidence for the diamond 
ATR-crystal. The absorbance of the spectral band 
(1643 cmିଵ) in the bending region (𝑣ଶ) of water 
was obtained from the resulting spectrum. The 
molar absorptivity of the O-H band (𝜀ଵ଺ସଷ =
21.8 dmଷmolିଵcmିଵ) and concentration of water 
(𝑐 = 55.34 moldmିଷ) alongside the absorbance of 
the band was used to calculate the effective depth 
using equation 2. The effective depth of water was 
found to be 1.32 μm. The refractive index of water 
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is 1.333 (34). The angle of incidence for the 
diamond crystal was found to be 46.85° after 
applying equations 3, 4 & 5. Variations in the 
refractive index of the PLs as it is subjected to 
pressures of CO2 is found to have a negligible 
impact on the effective depth of the sample (36) . As 
stated, the refractive indices of the PL samples were 
assumed to be the same as that of the corresponding 
ILs. The refractive indices of [BPy][NTf2], 
[P66614][NTf2] and [BMIM][NTf2] are 1.444 (37), 
1.45164 (38), 1.4282 (39), respectively. 

4.2 CO2 Sorption Capacity 
4.2.1. Dependence on Pressure 
Absorbance at the band corresponding to the anti-
symmetric stretching mode (𝑣ଷ) of CO2 at 
2339 cmିଵ increases with rising pressure (Figure 2) 
across all samples (Figure 3). These results indicate 
that CO2 sorption increases with intensifying CO2 
pressure. The resulting spectra (Figure 2) is 
expected as the concentration of CO2 sorbed is 
directly proportional to the absorbance measured 
𝐴=𝜀𝑐𝑙 (Equation 2). At increased pressures, there is 
an increased amount CO2 molecules the PL is 
exposed to which in turn increases their likelihood 
of being sorbed. Furthermore, CO2 molecules are 
able to gain entry to more pores as the pressure 
increases (40) yielding the results in Figure 2.  

 
Figure 2:  Increasing absorbance seen at the absorbance 
band 2339 cm−1 with increasing pressure observed in the 

spectra of 12.5% ZIF-8 [P66614][NTf2] 

 
Figure 3: CO2 sorption capacity [mmol ml−1]  for various 

Type III porous liquids across the pressure range 

4.2.2. Dependence on Functional Groups 
Present in PLs 
The PL samples have a common porous framework 
(ZIF-8) and anion ([NTf2]). Consequently, the 
variation in CO2 sorption capacity across the PL 
samples (Figure 3) is attributed to the difference in 
functional groups present in the ionic liquid i.e.i.e., 
the cation. In Figure 4 and Figure 5, the PLs with the 
cations [BMIM] and [BPy] show significantly larger 
absorbance i.e.i.e., CO2 sorption capacity in 
comparison to the [P66614] cation.  

 
Figure 4: Absorbance band at 2339 cm−1 for the Type III 

porous liquids samples at 15 bar 

 
Figure 5: Absorbance band at 2339 cm−1 for the Type III 

porous liquids samples at 40 bar 

Both [BPy] and [BMIM] are heterocyclic 
compounds with Nitrogen atom(s) present in the 
rings, as shown in Figure 6. These structural 
similarities of [BPy] and [BMIM] may suggest the 
similar and greater CO2 sorption (Figures 3-6) is due 
to the presence of an interaction that is promoted by 
the presence of certain functional groups within the 
cation e.g., the N present in the rings. As ILs are 
being investigated as a CO2 absorbent (31, 41), 
investigations into the absorption of CO2 in the ILs 
used in synthesizing the PLs can provide some 
further insight. 
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Figure 6: Structure of Neat Solvents [BPy][Ntf2](left) 

and [BMIM][Ntf2](right) (42, 43) 

In ILs, anions were found to have a much greater 
impact on CO2 absorption compared to cations (44). 
Similarly, in alkylimidazolium-based ILs, anions 
had a greater influence on CO2 absorption compared 
to cations (45). Blanchard et al found anions varied 
CO2 absorption by up to 25 % whilst the cation had 
a small effect of only up to 1.5 % at 40 𝑏𝑎𝑟𝑠 and 
40 ℃ (46). However, it is difficult to confirm this is 
consistent across all ionic liquids. In the pairing of 
[N-bupy][BF4] and [C8mim][BF4], cations had a 
much greater contribution (of up to 20 % at 40 bar 
and 40℃) compared to anions (46). From the results 
obtained in this study (Figure 3), cations are shown 
to alter CO2 sorption by up to 160% (at 40 bar) 
insinuating its contribution to CO2 sorption within 
PLs are far more prominent and cannot be 
overlooked.  
 
The potential formation of a C2-C bond between the 
cation and CO2 (carbamate) was investigated (41). 
Furthermore, the formation of N-CO2 complexes 
was investigated as both [BPy] and [BMIM] contain 
stacking binding sites for CO2 with basic and polar 
N atoms (47-49). The potential of Lewis acid-base 
interactions (50) occurring between CO2 and the 
electron-donating functional groups present in the 
PL’s cation were also investigated. The resulting 
spectra of the PLs under high-pressure CO2 were 
examined for the presence of characteristic spectral 
bands of carbamates such as 1568 cmିଵ (COO −)  
(51) and N-complexes. No characteristic spectral 
bands of carbamates and N-complexes are observed. 
Additionally, the release in degeneracy expected at 
the 𝑣ଶ mode (667 cmିଵ) characteristic of CO2 (this 
has been shown to be evidence of Lewis acid-base 
interactions (50)) was not as prominent as expected. 
These findings are reasonable because such 
interactions might be too weak to be detected using 
ATR-FTIR spectroscopy. It is therefore difficult to 
confirm interactions exist between the cation and 
CO2. However, the presence of such interactions 
would imply that absorption via cation interactions 
contribute significantly to the uptake of CO2 by 
T3PLs. As discussed earlier, the anion is the main 
determining factor for absorption capacity in ILs, so 
these cation-PL interactions are less prominent in 
ionic liquids.  It is possible that in PLs, these cation-
PL interactiointeractions are enhanced by the 
presence of a porous framework (ZIF-8).  

Another plausible consideration is that the 
difference in CO2 sorption capacity is due to the 
steric hinderance of the cations. As the [P66614] 
cation contains four lengthy alkyl chains (Figure 7), 
the steric hindrance of [P66614] reduces the 
interaction between CO2 and the PL sample, by 
hindering accessibility to the porous framework 
(ZIF-8), reducing the sample’s uptake of CO2. 
 It is likely that the reduced steric hinderance of the 
[BPy] and [BMIM] cations are responsible for the 
increased interaction between CO2 and ZIF-8 within 
PL sample resulting in an increased uptake of CO2. 
This consideration will imply that the primary 
method of CO2 uptake in T3PLs is via adsorption. 
 

 
Figure 7: Structure of Neat Solvent [P66614][NTf2] (52) 

As PLs show enhanced CO2 sorption capacity in 
comparison to their respective ILs, there is 
confirmation that adsorption plays a key role in CO2 
sorption in T3PLs. However, the question remains if 
absorption (via interactions with ionic liquid ions) 
plays an additional role, further enhancing the PL’s 
efficiency as a sorbent. 
 
4.3 Swelling of Porous Liquids 
4.3.1. Dependence on Pressure 
Swelling in porous materials has been attributed to 
the penetration of liquid or gas molecules into the 
pores of the material, resulting in volumetric strain 
(53). This is a well-known phenomenon in gas 
sorption. In polymers, swelling was observed using 
ATR-FTIR spectroscopy and the degree of swelling 
was found to increase with increasing pressure (54). 
The increased absorbance observed in the 𝑣ଷ mode 
of CO2 with elevated pressures occurred 
simultaneously with a decline in the absorbance of 
polymer bands. This correlation is due to the 
reduction in the number of polymeric molecules 
present per unit volume (55), due to the increase in 
volume caused by swelling. 
 
To compute swelling in PLs, the sulfonyl (S=O) 
stretching band at 1346 cmିଵ  present in [NTf2] was 
selected as a reference band. Figure 8 illustrates the 
decrease in absorbance of the reference band in 

490



12.5 % ZIF-8 [P66614][NTf2] with increasing 
pressure. 

 
Figure 8: Swelling observed at the S=O Spectral band 

1346 cm−1, characteristic of the porous liquid anion 
[NTf2] as observed in the spectra of 12.5% ZIF-8 

[P66614][NTf2] 

This result proves PLs exhibit swelling (56) and 
pressure has similar impact on the swelling of PLs 
and polymers. A clear linear trend of swelling 
increasing with increasing CO2 pressure is 
highlighted in Figure 9. 

 
Figure 9: Swelling across pressure range for Type III 

porous liquids 

4.3.2. Dependence on Functional Groups 
Present in PLs 
Similar to the observation made in comparing the 
CO2 sorption capacity of the PLs (Section 4.2.2), the 
variation in swelling across the samples under the 
same conditions are attributed to the functional 
groups present in the cation. 12.5 % ZIF-8 
[BPy][NTf2] and 12.5 % ZIF-8 [BMIM][NTf2] 
show a higher degree of swelling compared to 
12.5 % ZIF-8 [P66614][NTf2] (Figure 9). Table 1 
shows how swelling per mole sorbed compares for 
the PLs. The similar value of approximately 
between 5.0 − 7.0x suggest that [BMIM] and [BPy] 
behave rather similarly and exhibit similar swelling 
potential(%swelling per mol of COଶ sorbed ). 
Although 12.5 % ZIF-8 [P66614][NTf2] shows lower 

swelling for a given pressure, it is seen to exhibit 
greater swelling potential of about 12.0x.  

Table 1: %Swelling per mmol of CO2 sorbed across 
pressure range for Type III porous liquids 

Pressure / 
bar 

%Swelling per mole adsorbed 

12.5% ZIF-
8 [BMIM][Ntf2]  

12.5% ZIF-
8 [BPy][Ntf2] 

12.5% ZIF-
8 [P66614][Ntf2]  

5 4.8 4.6 11.2 
10 4.8 6.4 11.3 
15 5.4 7.1 11.0 
20 4.8 6.9 10.5 
25 4.8 7.0 9.7 
30 5.0 6.9 12.0 
35 6.0 7.8 12.7 
40 6.2 9.8 14.2 

Mean 5.2 7.0 11.6 

 
This is likely due to steric hinderance of the 
molecules. [P66614] is bulky and thus the [P66614] 
based PL is likely to have less efficient packing 
compared to the PLs containing [BPy] and [BMIM]. 
The sorption of the same amount of CO2 will cause 
the 12.5 % ZIF-8 [P66614][NTf2] to undergo a greater 
degree of swelling compared to PLs containing 
[BPy] and [BMIM] that have more efficient 
packing. The swelling potential 
(%swelling mole sorbedିଵ) is a more accurate way to 
compare swelling across PLs with varying sorption 
capacities. PLs with bulky cations have less efficient 
packing and the sorption of CO2 by the PL will cause 
it to swell more. 

4.4 Nature of interactions between CO2 and 
PLs 
4.4.1. Dependence on Pressure 
The potential of cation-PL interactions occurring 
between CO2 and the electron-donating functional 
groups present in PLs suggest that swelling and 
sorption processes may not be completely reversible 
(50, 57). The degree of swelling and CO2 sorption 
within the polymer before and after the CO2 pressure 
was released were analysed to gain insight into the 
nature of these CO2-PL interactions. Upon releasing 
the pressure within the cell and performing baseline 
correction on the resulting IR spectra, a band at 
2339 cmିଵ (𝑣ଷ mode of CO2) remained (Figure 10). 
The presence of this band validates the hypothesis 
that the PLs-CO2 interactions are not purely physical 
but rather a mix of reversible and irreversible 
interactions. The absence of a spectral band in the 
2388 cmିଵ region in the spectrum demonstrates 
that gaseous CO2 has not integrated with the IR 
radiation and the CO2 detected by the spectrometer 
is situated within the PL sample. It can be inferred 
that the CO2 remaining in the sample after releasing 
CO2 pressure from the cell is a measure of the CO2 
irreversibly sorbed by the PL.  
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Figure 10: The spectral band of 12.5% ZIF-8 

[BPy][NTf2] at 2339 cm−1 under 40 bar of CO2 pressure 
and after pressure was released 

Using the Beer-Lambert law, the concentration of 
CO2 sorbed before and after releasing the CO2 
pressure was computed. Interestingly, at low 
pressure of CO2, these irreversible contributions 
dominated the sorption of CO2 (57). As pressure 
increased, reversible sorption known as 
physisorption overtook these interactions as the 
dominant mechanism. We can see that the 
interactions are clearly a mix of irreversible 
(chemical) interactions and physisorption whereby 
the dominant interaction is dependent on the 
pressure of CO2. For each PL under probe, the 
amount of CO2 irreversibly sorbed by the sample 
remained constant across the pressure range 
indicating its pressure independence (Figure 10). 
This suggests that these irreversible interactions are 
independent of pressure. 

 
Figure 11: Variation of total CO2 sorption and 

Irreversible sorption of 12.5% ZIF-8 [BPy][NTf2] with 
pressure 

CO2 can be physically and chemically trapped by 
adsorbents (57, 58). As alluded to in section 4.4.2, 
the sorption process of CO2 in T3PLs is unclear. As 
these irreversible interactions are independent of 
pressure (Figure 10), further investigation is 
required in order to confirm this irreversible sorption 
is as a result of CO2 absorption via chemical 
interactions with IL ions or via chemical and 
irreversible adsorption (chemisorption).  

4.4.2. Dependence on Functional Groups 
Present in PLs 
Investigating the dependence of irreversible sorption 
on cation functional groups can provide insight on 
the nature of these interactions i.e., chemisorption or 
absorption.  
 
The [P66614] based cation shows a lower irreversible 
sorption contribution (Figure 11). As the porous 
liquids have the same anion of the same 
concentration, if the irreversible sorption was due to 
chemical reactions with [NTf2] we would expect 
similar levels of irreversible sorption across all PL 
samples similar to the behaviour of ionic liquids (as 
the difference in absorption capacity in ILs is 
primarily dependent on anions) (41, 44, 45). The 
difference in the amount of CO2 irreversibly sorbed 
can be narrowed further to the chemical interactions 
between CO2 and the functional group of the cation 
as discussed in section 4.2.2.  
 
The PL with the [P66614] cation exhibits the lowest 
level of irreversible sorption compared to the other 
samples (Figure 12). The carbon atom in CO2 is 
positively charged and strongly absorbed on basic 
and polar groups such as the N-atoms present in 
[BMIM] and [BPy](47, 48). Additionally, [BPy] and 
[BMIM] exhibit resonance and are more stable than 
[P66614]. Thus, the interactions between CO2 and the 
PLs containing [BMIM] and [BPy] are more stable, 
and a larger amount of CO2 has been irreversibly 
absorbed in the sample after CO2 pressure is released 
compared to [P66614] which does not have a resonant 
structure. The amount of CO2 irreversibly sorbed by 
[BMIM] and [BPy] are roughly the same. The 
binding energy between CO2 and [BMIM] is greater 
than that of [BPy]. [BPy] has 3 stacking binding 
sites for CO2 while [BMIM] has 2 (49). It is unclear 
if the binding energy between the cation and CO2 
dominates over the number of stacking binding sites. 
Similar to the results discussed in section 4.2.2, 
Although the IR spectra of the sample after the 
release of CO2 pressure shows no evidence of these 
interactions, the results shown in Figure 12 is further 
evidence of the possible presence of these 
interactions as absorption requires energy to be 
reverted. 
 
The steric hinderance of the cations could also 
potentially be the influencing factor for the 
difference in irreversible CO2 sorption as 
irreversible chemical induced adsorption also exists 
(chemisorption). The steric hinderance of the 
[P66614] cation hinders accessibility of CO2 
molecules to the porous framework, which in turn 
reduces the interaction between CO2 and the MOF 
(ZIF-8) within the PL sample reducing the uptake of 
CO2 via chemisorption (irreversible adsorption). 
Hence, it remains unclear if these irreversible 
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interactions are as a result of chemisorption or 
absorption or both. 

 
Figure 12: Irreversible sorption across pressure range 

for Type III porous liquids 

5. Conclusion 
The influence of pressure and functional groups on 
the interactions between PLs and CO2, swelling and 
CO2 sorption capacity has been probed using ATR-
FTIR spectroscopy. The spectroscopic data obtained 
from the experiments provided useful insights into 
the behaviour of this novel technology.  
 
CO2 sorption by PLs increases as pressure increases. 
PLs were found to behave differently to their 
corresponding IL as it is found that cations are 
consequential to the PL’s CO2 sorption capacity. 
This is seen as a change in cations altered the CO2 
sorption capacity significantly. 12.5% ZIF-
8 [BPy][Ntf2] is seen to possess the highest CO2 
sorption capacity 12.5%, then ZIF-8 [BMIM][Ntf2] 
with 12.5% ZIF-8 [P66614][Ntf2] having the lowest 
concentration of CO2 sorbed. 
 
The degree of swelling of PLs was found to increase 
with increasing pressure of CO2. PLs with bulky 
functional groups were found to undergo more 
swelling compared to PLs with less bulky functional 

groups. The T3PLs exhibited swelling in the 
following order 12.5% ZIF-8 [P66614][Ntf2]  > 12.5% 
ZIF-8 [BPy][Ntf2]  > 12.5% ZIF-8 [BMIM][Ntf2]. 
The process of CO2 sorption was found to not be 
completely reversible, proving the process of CO2 
sorption is a mix of physisorption and some 
irreversible sorption. The nature of these irreversible 
interactions is yet to be confirmed but is likely due 
to absorption, chemisorption, or both. Further 
investigation is required using other investigative 
equipment such as FTIR imaging, Scanning 
Electron Microscopy (SEM) etc. which can better 
reveal the location of the irreversibly sorbed CO2. 
 
The degree of irreversible sorption compared to the 
degree of reversible physisorption observed in 
T3PLs at high pressures, is evidence of their 
applicability to CCS processes. T3PL will not only 
demand much less energy for regeneration but also 
the pressure independence of the irreversible 
sorption experienced suggests that the energy 
required for regeneration will remain relatively 
constant regardless of its application.  
 
The findings of this report have laid the groundwork 
for further investigation in the field of PLs such as 
research into the amount of heat energy required to 
fully regenerate the PLs after CO2 sorption i.e 
reversing the effects of chemisorption and/or 
absorption. This will provide insight into the 
potential costs that may be incurred when deploying 
T3PLs as a CCS technology in industry. 
Furthermore, investigations into the swelling extent 
of  T3PLs provides   crucial information on the 
behaviour of the PLs under pressure, allowing for 
considerations into the design and implementation 
of PLs into operating CCS processes. Lastly,  
investigations into the influence of cations i.e 
functional groups, provides useful insight on the 
tunability  of  T3PLs, allowing for  bespoke and 
tailored applications where control of CO2 sorption 
capacity and swelling is required.
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Abstract Ethanol-water mixtures of azeotropic concentrations cannot be separated by conventional distillation. 
Pervaporation with graphene oxide (GO) membrane can selectively allow water molecules to permeate while 
rejecting ethanol. Pristine GO does not allow for high selectivity and high permeance simultaneously, 
consequently structural modifications to it are desired. GO was synthesised with a modified Hummers’ method, 
and mildly reduced graphene oxide (mrGO) was synthesised with an eco-friendly reduction procedure from GO. 
GO and mrGO were deposited onto alumina hollow fibre (HF) substrate via a pressure assisted filtration method. 
Membrane thickness is controlled by doubling coating times (10 s, 20 s, 40 s) at a constant 0.0125 mg/mL GO or 
mrGO concentration. The mildly reduced nature of mrGO in contrast with GO is confirmed via X-ray 
photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle analysis. Pervaporation tests were 
carried out at 75 ℃ and were fed a feed concentration of 95 wt.% ethanol. The mrGO membranes above the 20-
second coating time exhibited slightly reduced flux but disproportionately greater selectivity towards water 
permeation. mrGO outperforms GO in separation factor 11-fold (133 vs 11.5) in the 20-s samples and 15-fold 
(250 vs 16.1) in the 40-s samples. Long-term (8 hours) test with mrGO 20 s confirmed that near-absolute ethanol 
can be produced. 
 
 
1 Introduction 
 

Ethanol, organically, is made with yeast 
through fermentation. Ethanol is also manufactured 
from petrochemicals via the hydration of ethylene. 
Regardless of process, however, the end products 
are usually a diluted aqueous solution of ethanol. 
Purification of ethanol by distillation is the usual 
next step. However, distillation is limited as ethanol 
forms an azeotrope with water at 95.6% purity. To 
be used as a biofuel, a near-anhydrous level of purity 
may be desirable. Currently, industrial processes 
involve azeotropic distillation, extractive distillation, 
and solvent extraction as means to dry ethanol [13]. 
In the laboratory, drying with calcium oxide or with 
elemental magnesium are common practices. Water 
adsorption onto molecular sieves is a practice seen 
at scales both small in laboratories and large in 
industry. Membrane based technologies, and most 
notably pervaporation (PV), are attracting the 
attention of research. PV achieves separation by 
selectively allowing vapours of one molecule to 
permeate through a membrane over another. PV as a 
mean of separation is of great interest due to its 
capacity to operate in a continuous fashion and its 
ease to be scaled. Moreover, a well-tailored 
membrane excels in selectivity and in energy 
efficiency. Graphene oxide, among other materials, 
are one of such membranes capable of this feat. 
 
2 Background 
 
2.1 Advantages of Graphene Oxide 
 

In 2012, Nair et al. found that GO membranes 
are capable at rejecting the smallest of atoms in the 
gaseous phase (helium) but is permeable to water 

vapour [16]. This property had attracted many 
researchers to investigate into its probable 
application in pervaporation as a mean to dehydrate 
organic solvents [3][4][5][6][8][15][19]. Most 
attempts at pervaporation with unmodified GO 
membranes yielded rather low selectivity, or if 
higher selectivity is desired, the membranes would 
be too thick to allow for a swift permeation [5]. This 
is most often due to undesirable packing and surface 
functional groups [9]. A high-performance 
membrane for the dehydration of ethanol is expected 
to grant high permeance and high separation factor. 
A higher permeance in an industrial setting is a boost 
to the rate of production, while a high separation 
factor is desirable as less ethanol seeps into the 
permeate side of the membrane, requiring re-
distillation to re-acquire the dilute ethanol. 

 
2.2 GO Modification Methods 
 

Dan Hua et al. demonstrated the performance of 
GO frameworks (GOF) [5]. GOF are fabricated by 
inserting aldehyde functional group appendages in 
between two layers of GO as shown in Figure 2.2.1: 
 

 
 
Fig 2.2.1 (a) Graphene oxide framework structures as modified 
by a specialised aldehyde and (b) GLX, GTA, and GYA 
aldehydes used in the interlayer standoffs. Green: hydrogen; grey: 
carbon; red: oxygen. Figure by Dan Hua et al. [5]. 
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The resultant GOF membranes not only shows GO-
aldehyde covalent bonds, but it also displays 
adjustable microstructural properties. GLX, GTA, 
and GYA-modified GO all exhibited improved 
separation factor and long-term membrane stability 
at the cost of some flux. Fresh, unmodified GO 
membrane can a achieve a separation factor of 
around 28 (as calculated from a feed ethanol wt% of 
85% to a permeate concentration of 13% as per 
Equation 3). The separation factor decreases to 10.5 
(35 wt.% ethanol in the permeate) over a 170-h 
testing period. In comparison, the GO-GTA 
membranes showed a consistent <10 wt.% of 
ethanol in the permeate over the same 170-h testing 
period, indicative of a separation factor of over 50. 
 

Roberto et al. [3] demonstrated the performance 
of cross-linked poly(vinyl alcohol) and GO 
(PVA/GO) as a mixed-matrix membrane (MMM), 
where they showed the inclusion of GO in the matrix 
increases the water partial permeance (Equation 2 
demonstrates the formula for partial permeance) 
whilst the ethanol partial permeance stays consistent. 
These membranes, with 2% and 1% GO loading, 
showed a separation factor of 65.9 and 263 with a 
permeance of 0.185 and 0.137 kg m-2 h-1 
respectively. The membranes with some of the best 
separation factor in the MMM category are the 
cross-linked sodium alginate beta zeolites, 
demonstrating a separation factor of 1600 [1] and 
1334 [2]. The zeolite membranes, however, 
displayed relatively low permeance at 0.130 and 
0.138 kg m-2 h=1 respectively. 

 
2.3 Investigated Material and Chosen Conditions 

 
Mildly reduced graphene oxide (mrGO) is 

chosen as the main test subject for this work. mrGO 
had already seen study in many other water-based 
applications such as in desalination [21] and in water 
purification [12]. The synthesis of mrGO from GO 
requires no organic solvents, no high temperature, 
and no specialised additives, and thus can be deemed 
eco-friendly. Environmental friendliness in the 
synthesis adds on top the already efficient nature of 
pervaporation, which is what makes mrGO desirable 
to be researched. 

 
Alumina hollow fibre (HF) is chosen as the 

substrate for membrane settlement as it boasts a high 
specific surface area, possesses high stability over 
time, is heat resistant, and is compatible with many 
organic compounds. The porous granular geometry 
of alumina HF allows for an unimpeded permeation 
of vapours, which is desirable to maximise flux once 
the membranes are applied. 

 
Most previous experiments focused on feed 

concentrations of either 85 wt.% or 90 wt.% ethanol. 
This work, however, used 95% ethanol to best 

simulate scenarios of dehydrating ethanol from an 
azeotropic concentration (95.6%); this also serves to 
stress-test the system.  

 
This work also focused on fabricating and 

testing relatively thin membranes (~50 – 100 nm) as 
an attempt to better manifest the selectivity disparity 
between GO and mrGO. Thinner membranes should 
also allow for a higher permeance. In most 
membranes, a higher permeance is usually linked to 
a lower selectivity. It would be of the utmost interest 
in this work to see whether selectivity can be 
maintained at a respectable level by material 
selection despite the high permeance. 
 
3 Methods 
 
3.1 Chemicals 
 

Graphite powder (99% carbon basis), potassium 
permanganate, 1-methyl-2-pyrrolidionone (NMP, 
99%) as ceramic suspension carrier, azeotropic 
sulphuric acid (98%), hydrogen peroxide (30%), 
ammonia (~30%), hydrochloric acid (~37%), 
absolute ethanol, alumina powder (99.9% metal 
basis) obtained from Alpha Aesar, 
poly(methylmethacrylate) (PMMA) as the ceramic 
binder, dispersant Arlacel P135 supplied by Croda, 
dichloromethane (DCM, stabilised with 0.2% 
ethanol), Araldite Rapid epoxy, Araldite 2014-2 
epoxy. Chemicals were not further purified before 
use; chemicals may need to be diluted with 
deionised water before use. 
 
3.2 GO Synthesis and Purification 
 

GO was synthesised per a modified Hummers 
method [7]. Chiefly, sulphuric acid (450 mL) was 
added to graphite powder (10g) at a solution 
temperature below 10 ℃ and was stirred for 90 min. 
1.5 g of potassium permanganate (KMnO4) was then 
added to the solution and was stirred for a further 90 
min. Then, a larger amount (30g) of KMnO4 was 
added and was stirred again for 1 hour below 10 ℃. 
The expected colour change would be from a 
purplish black into a dark shade of green, indicating 
the reduction of manganese from a +7 oxidation 
state to +6, and thus a correspondent partial 
oxidation of carbon in the form of appended 
functional groups. The solution was then heated to 
40 ℃ to expedite the redox reaction and then was 
stirred for 1h to allow the reaction to finish. 
Deionised water (450 mL) was added to the solution 
dropwise at a temperature below 50 ℃. It is 
important to note that heat control is crucial for this 
step as to not allow for an explosive thermal 
runaway. The solution should then turn brown from 
particulates of manganese dioxide, which was 
indicative of a further reduction of manganese to a 
+4 oxidation state. The solution was heated to 95℃ 
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for 30 min, following with the slow addition of a 
hydrogen peroxide solution at 10 wt.% and volumed 
at 300 mL. The solution was then stirred for a further 
30 min. The expected colour change was to a light 
yellow. 

 
Following the synthesis of GO comes 

purification. The synthesised GO was filtered and 
washed with hydrochloric acid (10 wt.%; 5,000 mL) 
five times. Metal impurities were checked with 
inductive coupled plasma optical emission 
spectrometry; wash repeats should terminate only 
when GO samples show no metal impurities present. 
GO filtrate cake was dried over phosphorous 
pentoxide as a desiccant at 40 ℃ for 24 h under 
vacuum. The GO powder was resuspended in 
acetone (5,000 mL) to be filtered and washed for a 
further five times and was desiccated again at 40 ℃ 
for 24 h under vacuum. A standard solution of 
0.0125 mg/mL of GO in ultrapure water is prepared 
for experimentation. 
 
3.3 Synthesis of mrGO [11] 
 

The synthesis of mildly reduced graphene oxide 
(mrGO) follows the synthesis of GO. The 
synthesised pure GO is suspended homogeneously 
in water by sonication. The dispersed GO solution 
(0.1 wt.%) was loaded into a round-bottom (500 mL) 
flask, maintained at 100 ℃, and stirred overnight 
under a flowing nitrogen atmosphere. This is the 
stage where the GO is converted into mrGO, which 
is then rinsed on filter several times (exact number 
not mentioned in source, 5 if in doubt) with ultrapure 
water. A standard solution of 0.0125 mg/mL of 
mrGO in ultrapure water is prepared for 
experimentation. 
 
3.4 Preparation of Alumina Hollow Fibre (HF) 
 

150 g of alumina powder is suspended in 180g 
of NMP in a ceramic jar via 3 g of dispersant Arlacel 
P135. The ceramic jar is then loaded onto a planetary 
ball miller at 283 rpm for 48 hours. PMMA is then 
added to the mixture, which is then mixed again for 
48 hours. For the bubbles to be evacuated before 
spinning, the suspension was degassed under 
vacuum for a minimum of 4 h. Degassing shouldn’t 
terminate until bubbling comes to a near full stop, 
which can take as long as 8 h depending on 
environmental conditions and natural variations 
between samples. The degassed suspension was then 
transferred to a stainless-steel syringe. The Alumina 
HFs were prepared with a combined phase-
inversion/sintering process, where sintering was 
conducted at 1450 ℃ as to improve mechanical 
performance. 
 
3.5 Forming Membranes on HF substrate 
 

HF strands of 4 cm length were fastened onto a 
vacuum adapter with Araldite Rapid epoxy for 
fixing and PTFE tape for sealing. Araldite Rapid 
was advertised to cure in 5 min on packaging. It is 
found imperially that it would be best to allow 
around 30 min for curing for the best results. Curing 
can be expedited to 5-10 min in an oven. Araldite 
Rapid was also found to have excellent 
compatibility with GO and mrGO suspensions. For 
a good seal, it was ensured that all PTFE sealings 
were fully covered with epoxy resin. The other 
opening end of the HF strand not connected in the 
direction of the vacuum adapter was blocked off 
with a droplet of epoxy. It would be advisable to 
wait around 2-3 minutes for the epoxy to partially 
cure and gain some viscosity before applying the 
droplet, as uncured epoxy may seep inside the fibre, 
thus losing testable length. Practically, this meant 
sealing the vacuum adapter end first before sealing 
the exposed end. Membranes were loaded onto the 
substrate through a process akin to vacuum filtration. 
The thicknesses of membranes were controlled by 
filtration times and suspension concentration. GO 
and mrGO suspensions were prepared at a 0.0125 
mg/mL concentration, and loading was done over 10 
s, 20 s, and 40 s of vacuum filtration. After loading, 
the HFs were pulled out of their suspensions and 
were left to dry in air for a further 60 s with the 
vacuum pump running. HF fibres should now be 
covered in a brown-grey sediment of various shades, 
with the longer deposition exhibiting a darker shade. 
It is of paramount importance to not tamper with the 
membranes or to subject them to dusty air before 
curing them in a vacuum oven at 40 ℃ for at least 3 
hours. Uncured GO and mrGO are prone do 
dislodging from the substrate with the smallest of 
perturbations on the surface. 
 
3.6 Ethanol-Water PV Testing 
 

Araldite Rapid is incompatible with the ethanol-
rich test environment, thus the epoxy needed 
swapping. This was done by first plucking off the 
HF from the original vacuum connector to remove 
epoxy from both ends. New epoxy Araldite 2014-2 
hardener was applied in a similar fashion, though it 
would take around 12-18 hours for Araldite 2014-2 
to cure. It would be useful to use keep an epoxy 
sample on the side as to ease checking the state of 
curing.  It needs to be noted that Araldite 2014-2 
cannot be used directly during the step of forming 
membranes in section 3.5, where Araldite 2014-2 
would cause the fine GO and mrGO particulates to 
clump and settle out of suspension. Once the epoxy 
cures, the vacuum connector was connected to a 
liquid nitrogen cold trap and then to a vacuum pump. 
The outside of the membrane was submerged in a 
warm (75 ℃) bath of ethanol feed (250 mL, 95 
wt.%). Once the vacuuming commences, ice  (of 
water or ethanol) crystals were expected to deposit 
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in the cold trap and were to be collected. 
Experiments can be terminated as soon as at least 0.5 
g of deposit is collected. 

 
Tests usually go on for 30 min to 2 h, depending 

on the visible amount of permeate in the cold trap, 
which was monitored continuously for the first 10 
minutes and checked regularly every 30 minutes for 
any anomalies. Collected permeate samples are 
weighed and membrane rods have their length and 
thickness measured with a digital calliper. 

 
 The total permeate flux (J) is calculated as 

follows: 
 

𝐽 = ொ
஺௧

   (1) 
 
Where Q is the mass of the permeate in kg, A is the 
membrane area in m2, and t is the operating time in 
hours. Partial flux Ji was defined as the flux of 
component i. It was calculated by multiplying the 
weight fraction yi in the permeate by the total 
permeate flux J. 
 

𝐽௜ = 𝑦௜𝐽    (2) 
 

Ethanol concentration was determined by two 
means: gas chromatography (GC, Shimadzu SH-
Rxi-5ms) and density tests. 

 
In gas chromatography, 0.300 mL of permeate 

was added with 0.500 mL of DCM in a 1.5 mL 
centrifuge tube. The tubes were then shaken to 
expedite extraction. For phases to separate, the 
centrifuge tubes were spun in a centrifuge at 8.5k 
rpm for 5 min, and the denser DCM phase was 
collected for GC analysis against a calibration line 
of 2%, 5%, 10%, 15%, 20%, 30%, and 40% ethanol 
in water (wt.%). 
 

For concentrations high enough that doesn’t 
allow for phase separation when attempting 
extraction with DCM, density tests would be opted 
instead. The density values are converted to ethanol 
concentration with a reference table [20]. A 
generous error of ± 5 wt.% was given. While density 
testing is less precise, blindly using GC on high-
ethanol-concentration samples carried the risk of 
excessive water content, which may damage the 
Shimadzu SH-Rxi-5ms column used in the GC 
instrument. It should also be noted that for those 
concentrations that uses the density method would 
usually imply a low-selectivity (and often leaking) 
membrane, thus having the exact measurement 
wouldn’t be significant in the first place. In practice, 
density testing mainly applies to the thin GO 10 s 
samples and mrGO 10 s samples. 

 
With the permeate ethanol concentration, the 

separation factor 𝛼 is calculated according to (3): 

 
𝛼 = ௬ೢೌ೟೐ೝ/௬೐೟೓ೌ೙೚೗

௫ೢೌ೟೐ೝ/௫೐೟೓ೌ೙೚೗
   (3) 

 
Where y and x are the mass fractions of the 
components in the permeate and feed, respectively. 
 

All conditions for each membrane thickness 
were tested at least twice with their results averaged 
as evidence of repeatability and for accuracy. The 
mrGO membrane with 20-s coating time was further 
tested for 8 hours to ensure stability and to examine 
separation performance as the ethanol in the feed 
bottle approaches complete dryness. While longer 
stability tests could be desirable, the materials used 
in the current method seems limited. Notably, the 
Araldite 2014-2 epoxy, when subject to a warm 
ethanol environment for prolonged periods of time 
(>12 h), can soften, which may compromise seals. 
 
3.7 Membrane Material Characterisation 
 

The settlement geometry of GO and mrGO 
particles were determined with a high-resolution 
field emission gun scanning electron microscope 
(FEG-SEM, LEO Gemini 1525). Membrane 
thickness can be directly measured on a close-up 
zoom setting. 

 
X-ray photoelectron spectroscopy (XPS) was 

used to determine the elemental proportion of 
carbon and oxygen in GO and mrGO membranes, 
with mrGO a lager peak representing carbon and a 
smaller peak representing oxygen can be expected. 

 
Contact angles (CA) of ultrapure water on GO 

and mrGO membrane samples were measured with 
three repeats on the Ramé-hart Model 590 Advanced 
Automated Goniometer. The average and standard 
deviation of the values were determined. CA aim at 
characterising membrane surface hydrophilicity. A 
more obtuse (higher) contact angle would indicate a 
more hydrophobic surface, and vice versa. 

 
Raman spectroscopy was used to detect 

membrane defects and bonding nature in GO and 
mrGO samples. For this test, instrument 
SENTERRA II is operated with 2.5 mW and 532 nm 
laser and 10 s integration time. It also provided 
further observations on the degree-of-oxidation 
differences between GO and mrGO (mildly reduced 
GO). This was done by measuring the intensity ratio 
of the D peak to the G peak (ID/IG). The G peak 
represents a sp2 hybridised carbon atom in a single 
sheet of graphene (2 dimensional). Meanwhile, the 
D peak indicates chemical functionalisation 
(oxidation in GO) of the carbon atoms. 
 
4 Results and Discussion 

.
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Fig 4.1.1 XPS analysis of GO (left) and mrGO (right). 
 
4.1 XPS Analysis on Elemental Composition 
 

The XPS is a suitable analysis tool in that it is 
the most useful for analysing the superficial surfaces. 
By the photo electric effect, it identifies the 
elemental makeup on the membrane surface with 
little interference from the aluminium in the 
substrate that the membrane settles on 

 
Figure 4.1.1 shows oxygen peaks at ~540 eV 

and carbon peaks at ~280 eV. The area under each 
peak post integration shows that GO composes of 
74.12% carbon and 25.55% oxygen. Meanwhile, 
mrGO composes of 75.54% oxygen and 23.84% 
carbon. The slightly higher carbon content and the 
slightly lower oxygen content in mrGO (mildly 
reduced GO) than GO is indicative of a mild 
reduction. 

 
4.2 Raman Spectroscopy 
 

Raman spectroscopy is a fitting analysis tool to 
monitor oxidation levels in the mrGO in contrast 
with unmodified GO as the spectroscope is sensitive 
to discern geometric structure and bonding within 
the 2D lattice. 

 
 

Fig 4.2.1 Raman spectroscopy of GO (bottom) and mrGO (top). 

Raman spectra in Figure 4.2.1 shows that both 
the both the G peak and D peak are higher in mrGO 
than GO. The higher G peak indicates a heightened 
graphitic (sp2 – hybridised) domain. Meanwhile, the 
higher D peak can possibly be attributed to defects 
in the form of misplaced carbon atoms. It is also 
worth noting that the ID/IG ratio shows values of 
1.649 and 1.535 in GO and mrGO respectively. The 
lower ID/IG value of mrGO can be the evidence for 
net chemical reduction in mrGO coming from GO.  
 
4.3 SEM Imagery and Membrane Morphologies 
 

Figure 4.3.1 demonstrates the surface and cross-
sectional profiles of GO and mrGO coated HF 
membranes. In the cross-sectional images, the 
granular portions below represent the fine deposits 
of alumina that constitute the fibre substrate, while 
the tightly packed layers on top would be the formed 
membranes. The thickness of 10-s, 20-s, and 40-s 
coatings times of GO membranes are 45.27 nm, 
67.39 nm, and 68.02 nm respectively. The thickness 
of 10-s, 20-s, and 40-s coating times of mrGO 
membranes are 57.63 nm, 75.63 nm, and 102.0 nm 
respectively. 

 
It is noteworthy that the membranes on the 10-s 

GO and mrGO samples developed wrinkles that 
chiefly follows the granular substrate structures 
underneath. On the SEM images, the wrinkles are 
seen as light-coloured streaks. These wrinkles get 
milder as membrane thickness increases. Wrinkles, 
especially in the 10-s samples, can be the main 
contributing factor to their low selectivity. The 
wrinkles, when under vacuum pressure, can become 
pinch points against the granular alumina substrate 
and tear voids in the membrane, thus allowing much 
of the permeates through without it going through 
any membrane material at all. This effect is the most 
evident in the pervaporation results in section 4.5. 
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Fig 4.3.1 SEM images of GO and mrGO. Cross-sectional views: (a) GO 10 s; (b) GO 20 s; (c) GO 40 s; (j) mrGO 10 s; (k) mrGO 20 s; (l) 
mrGO 40s. Surface views: (d) GO 10 s; (e) GO 20 s; (f) GO 40 s; (g) mrGO 10 s; (h) mrGO 20 s; (i) mrGO 30 s. 
 
4.4 Contact Angle 
 

Contact angle examines the hydrophobicity of a 
material’s surface. Functionalisation is the factor 
that influences the hydrophobicity on modified GO 
membrane surfaces to the greatest extent. Some 
functional groups in GO, notably hydroxyl, carboxyl, 
carboxylic acid, and epoxide rings can form 
hydrogen bonds with water molecules. Hydrogen 
bonds attaches the water droplet strongly to a 
membrane surface, and such downward pulling 
force decreases the contact angle. The contact angle 
measurements of GO surface with ultrapure water 
were measured to be 67.91°, 64.8°, and 64.89°, with 
an average angle of 65.87° and a standard deviation 
σ = 1.45°. On the surface of mrGO, the 
measurements are 72.66°, 73.93°, and 73.93°, with 

an average of 73.25° and a standard deviation σ = 
1.77°. The larger contact angles in mrGO indicates 
an enhanced hydrophobicity, which signifies the 
removal of some hydrogen-bonding functional 
groups in the mild-reduction process. 

 
 

(a)

 

(b)

 
 
Fig. 4.4.1 Contact angle of (a) GO and (b) mrGO. 
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Fig. 4.5.1 (a), (b): GO & mrGO permeance; (c), (d): GO and mrGO purity. Error for (b), (d) mrGO40s are too small to be shown properly. 
 
4.5 PV testing 
 

Generally, thicker membranes exhibited lower 
flux as seen in Figure 4.5.1 (a) and (b), but higher 
selectivity towards water in (c) and (d). As the 
membrane gets thicker, there was more distance any 
permeate would need to push through, hence the 
lower flux. Thicker membranes, on the other hand, 
allowed more 2-D layers for the selective nature of 
the membrane to take effect, which leads to the 
higher selectivity. 

 
Membranes with 10-s coating times all showed 

next to negligible separation (see section 4.3 and 
Figure 4.3.1). Between the 20-s samples, the mrGO 
sample showed a lower overall permeance of 28.9 
kg m-2 h-1 compared to GO’s 66.7 kg m-2 h-1. The 
partial permeance of water, as calculated in Equation 
2, are similar at 25.3 kg m-2

 h-1 for mrGO and 25.2 
kg m-2 h-1 for GO. This shows that mrGO has greater 
rejection towards ethanol, where it can be theorised 
that the removal of some functional groups in mrGO 
reduced the size of defects, making it harder for the 
larger ethanol molecules to fit through. The 
permeate ethanol percentage in the 20-s samples 
read 12.5% for mrGO against 62.2% for GO, a five-
fold reduction. 

 
Among the 40-s samples, the mrGO membrane 

showed both a lower total permeance (14.9 vs 51.0 
kg m-2 h-1 in GO) and a lower partial water 
permeance (13.9 vs 23.4 kg m-2 h-1 in GO). It can be 

theorised that the intricacies in the mrGO membrane 
that arises from the functional group removal is now 
affecting the water molecule to some extent. While 
it should still be of a similar difficulty for the water 
molecules to pass through any single void section in 
between layers, there was more entwinement as 
produced by this thicker membrane, which leads to 
the lower partial water permeance. On the flip side, 
the 40-s mrGO sample demonstrates much 
improved selectivity towards water (7.06% vs 54.1% 
in GO) attributable to the same entwinements that 
makes the larger ethanol molecules 
disproportionately harder to navigate through. 

 
Overall, the mrGO 20 s and 40 s membranes 

both demonstrated fluxes that can be compared 
favourably to some other membranes as seen in 
Figure 4.5.2. In the meantime, a respectable 
selectivity is maintained. 

 
Another notable fact about the purity 

measurements of the 20-s samples is that their 
measurements have a wide error range (standard 
deviation). This means that in experiments their 
results are quite varied. It can be hypothesised that 
there might be thickness variations on the membrane. 
It is improbable that the HF substrate is perfectly 
homogeneous such that an equal vacuum is applied 
to the entire substrate surface in the coating step. 
Variations at the scale of the 20-s membrane can 
happen from any natural, random, and 
uncontrollable perturbations in the system. These 
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effects are the most pronounced when the membrane 
is thin and when the coating time is short, as much 
of the purity inconsistencies disappear in the thicker 
40-s membranes. In the 40-s membranes, more time 
allows the thickness of the membrane to equilibrise: 
the areas that are initially more thickly coated 
attracts material with a weaker vacuum, during 
which the thinner parts can catch up in thickness. 

 
The 8-h long term stability test on mrGO 20 s 

returned a permeance of 25.8 kg m-2 h-1 and an 

ethanol concentration of 58.0% in the permeate. 
Additionally, the ending ethanol density was 
measured to be 779 kg m-3 (nearly 100%) in 
comparison with 797 kg m-3 at the start of the 
experiment (95% ethanol). This provides evidence 
that the mrGO membrane is operable at a near-
anhydrous concentration, i.e. dehydrating ethanol 
approaching an anhydrous state. However, the high 
ethanol concentration in the filtrate can serve as 
preliminary evidence to a weak longevity in the 
mrGO membranes.

 

 
Fig. 4.5.2 Permeance and separation factor scatter graph of various membranes. 
 

 
5 Conclusions 
 

In conclusion, it is confirmed that the mrGO 
membranes are successfully fabricated. The reduced 
nature of mrGO in contrast with unmodified GO was 
confirmed with XPS, where the results showed an 
increase in carbon ratio from 74.12% to 75.54%. 
Raman spectroscopy showed a decrease in ID/IG 
from 1.649 to 1.535, which is also symbolic of a 
successful reduction procedure. The contact angle 
test, where the mrGO showed an increasing contact 
angle from 65.87° to 73.25°, which indicates an 
enhanced hydrophobicity leading from the removal 
of oxygen-related functional groups in the reduction 
procedure. In pervaporation tests, the mrGO 20 s and 
mrGO 40 s had both outperformed their GO 
counterparts in a heightened separation factor. 
Additionally, the mrGO 40 s membrane exhibited 
permeance that is two orders of magnitude higher 
than conventional GO membranes whilst still 
displaying a respectable separation factor of 250, 
this can be an improvement from current membranes 
as most high-selectivity membranes suffer from 
poor permeance and vice versa. The long-term test 
confirms that dehydration of ethanol until absolute 
(100%) is feasible. 

Moving forward, it would be interesting to see 
how if the mrGO membranes can sustain the high 
selectivity and permeance over the very long term 
(>100 h). For example, a feed of a much larger 
volume could be used as to intentionally not allow 
the water content to dry out. The Araldite 2014-2 
isn’t suitable for this experiment, however. Another 
more ethanol-resistant epoxy resin or means of 
membrane installation to the apparatus would need 
to be found. 
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Abstract 

As the world becomes increasingly electrified, methane pyrolysis emerges as a promising avenue for the production of 
turquoise hydrogen, offering a viable resource to power the transition toward a net-zero future. This study investigates the 
suitability of the pyrolytic carbon (PyC) coproduct of this process as a lithium-ion battery anode. Three samples - low, medium 
and high PyC – each corresponding to different durations of the methane pyrolysis reaction – were used. Several performance 
analysis parameters were deployed to assess the anode performance of each PyC sample: namely specific discharge capacity, 
Coulombic Efficiency (CE), Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Modelling (ECM). This 
revealed the high PyC sample exhibited the most promising results with the highest CE (98.4%) and lowest overall impedance 
(most notably RSEI = 1.608 Ω; CPED = 0.293 Ω). When comparing these parameters with corresponding values for graphite in 
literature, it was determined that the high PyC presented as a competitive alternative to conventional graphite anodes. The 
results were attributed to the unique crystalline nature of the high PyC structure through its high graphitisation with the presence 
of few amorphous structures. Thus, as each sample was increasingly pyrolysed, they displayed increasing graphitisation, which 
led to superior electrochemical and ionic properties. 

 

1.  Introduction 

The global energy market is moving toward a zero-
emission system whilst simultaneously meeting increasing 
energy demands. The Hydrogen Council labelling 
hydrogen as “the missing piece of the clean energy 
puzzle”[1], has intensified the search for sustainable energy 
solutions. From this, the production of hydrogen from 
methane pyrolysis (MP), a product colloquially known as 
'Turquoise Hydrogen'[2], has emerged as a promising 
solution for completing this intricate puzzle.  
1.1 Comparison of Different Approaches to Hydrogen 
Synthesis and Cost Analysis 

The World Energy Council reports that 96% of hydrogen 
produced is derived from fossil fuels[3]. This predominantly 
involves the traditional processes of Steam-Methane 
Reforming and Coal Gasification, designated as grey and 
brown, respectively, contributing to 797 million tons of 
CO2 per year[3]. Operating these processes with integrated 
Carbon Capture and Storage apparatuses gives blue 
hydrogen. The utilisation of electrolysis for hydrogen 
synthesis, has a palette of colours assigned to its 
production, with green being the preeminent hue, occurring 
when the electricity in this process is sourced from 
renewable means.  

While green and blue hydrogen appear as viable 
emission cutting alternatives, both harbour intrinsic 
challenges. Green hydrogen’s notable elevated cost 
diminishes its practicality. Similarly, blue hydrogen “is not 
clean, not a low-carbon source of energy and not a solution 
to the global climate crisis” as criticised by the Institute for 
Energy Economics and Financial Analysis[4] since it fails to 

eliminate greenhouse gas emissions and only captures 90% 
of CO2 emitted without incurring additional costs. 

Turquoise hydrogen holds promise as a compelling 
alternative and potentially transformative replacement to 
conventional methods. Forbes anticipates significant 
market growth, predicting an expansion from the current 
$15 million USD to $144 million by 2030[5]. Diab et al.’s 
study emphasises turquoise hydrogen is a “game changer”, 
demonstrating through a LCA that MP offers a clear and 
sustainable path forward, removing up to 5.22 kgCO2eq/kg 
for each kilogram produced[6]. 

Figure 1. Comparing hydrogen types, turquoise hydrogen excels in 
removing CO2 when powered by the same source as green hydrogen [6]. 

1.3 Fundamentals of Methane Pyrolysis 
Pyrolysis denotes molecular decomposition in the 

presence of heat. In MP, natural gas serves as a favourable 
feedstock owing to its abundance, high energy density, 
availability, cost-effectiveness and notably its high 
methane content of over 85%[7].  

This methane undergoes pyrolysis to yield ‘turquoise’ 
hydrogen and a pyrolytic carbon (PyC) by-product. The 
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endothermic nature of this reaction adheres to the following 
chemical equation[8]. 

CH4 → C + 2H2,   ΔΗR =  37 kJ mol-1 H2 (1) 
Considering this, the produced carbon emerges as a 

keystone of interest, showing promise as an anode material 
in lithium-ion batteries (LIBs), potentially mirroring 
characteristics of graphite. 

The primary endeavour of this paper is to assess the 
performance of samples of varying pyrolytic extents as 
potential replacements and compare these samples to graphite 
through literature. In simulating carbonaceous anodes, three 
distinct samples of PyC were produced, each indicative of an 
increasing MP reaction duration. Subsequently these were 
labelled low PyC, medium (med) PyC and high PyC denoting 
the shortest to longest reaction times. 

2.  Background 

2.1 Rechargeable Batteries 
The rechargeable battery market is currently valued at 

$90bn USD in 2020 and is poised to almost double by 2030, 
reaching $150bn[9]. This growth is fuelled by demand from 
sectors like portable electronic devices, electric vehicles 
and renewable energy storage. While early developments 
included Nickel-Cadmium (NiCd) and Nickel-Metal 
(NiMH) batteries, LIBs have replaced these models due to 
their higher energy densities, low self-discharge rates (0.5-
3% vs 10-20% per month[10, 11]), enhanced storage 
potential, lightweight properties, and environmental 
benefits. Higher energy densities and low self-discharge 
rates contribute to increased battery performance by 
enabling the storage of more energy per unit of mass and 
maintaining stored energy for longer periods, respectively. 
Figure 2. A 2009 study by Landi et al. compared the energy densities of 
rechargeable batteries[12]. 

2.2 Lithium-Ion Batteries 
Global demand for LIBs is set to grow markedly to 4.7 

TWh in 2030 from 700GWh in 2022[13]. 
Over decades of research on LIBs, the structural 

development has favoured layered oxides LixMO2 
predominantly lithium cobalt oxide (LiCoO2) and lithium 
manganese cobalt oxide. Of particular significance to this 

study is the anode material with early LIBs employing Li-
metals and Li-alloys. However, safety concerns prompted 
their discontinuation as such materials led to dendrite 
formation - metallic growth networks developing at the 
anode-electrode interface during charging - posing risks of 
short circuits and overheating[14, 15]. 

In 1985, research by Akira Yoshino with Asahi Kasei 
led to the development of a LIB fitted with LiCoO2 and a 
carbonaceous material. Today, graphite is the anode of 
choice in LIBs due to its optimal structure and low 
chemical potential of 0.1 eV, boosting energy output and 
efficiency[16]. 

During discharge, lithium is oxidised from a 0 to +1 
oxidation state in the anode[17].  

LiC6 → 6C (graphite) + Li+ + e-  (2) 
These Li+ ions migrate through the electrolyte medium 

until they reach the cathode where they intercalate into the 
layered crystal structure of lithium cobalt oxide, reducing 
cobalt from a +4 to +3 oxidation state. This is depicted by 
reaction (3)[17]. 

Li1-xCoO2 + xLi+ + xe-→ LiCoO2  (3) 
When reactions (2) and (3) are run in reverse, the charging 
cycle is initiated where Li+ ions deintercalate the cobalt 
oxide structure and are incorporated into the graphite 
network of the anode. 
2.3 Graphitic Anode 

LIBs require up to 30 times more carbon to lithium 
during synthesis. Anodes tend to age quicker, reported by 
Sarkar et al. The increased electrolyte in reactions lead to 
the formation and growth of a Solid Electrolyte Interphase 
(SEI) layer, which is a primary ageing mechanism[18]. As 
the world shifts from traditional energy sources, the 
escalating demand for lithium-ion batteries (LIBs) is set to 
cause graphite demand to concurrently soar. A surge in MP 
would add another dimension. In this scenario, 
incorporating PyCs into LIBs appears to be a compelling 
path forward. Graphite in anodes is characterised by 
graphene sheets intercalated with lithium. This gives a high 
theoretical capacity of 372 mAh/g. The high crystalline 
structure is key in influencing battery performance and is 
advantageous in anodes with Igarashi et al. reporting robust 
cycle stability and a capacity retention potentially 
exceeding 200 cycles in such systems[19]. 
2.4 Sources of Resistance in LIBs 

Coulombic efficiency (CE) refers to the ratio of the 
discharge capacity (following a full charge) to the charging 
capacity, as represented by Equation 1. As such, the 
measure is correlated with battery life, and is utilised in the 
calculation of capacity retention[20]. In Li-ion batteries, the 
most significant contributors to a diminished coulombic 
efficiency relate to the development of either the SEI or the 
cathode electrolyte interphase, in addition to shuttle 
reactions in polysulfide batteries[21, 22].  
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CE = ௖௛௔௥௚௘ ௥௘௟௘௔௦௘ௗ ௗ௨௥௜௡௚ ௗ௜௦௖௛௔௥௚௘
௖௛௔௥௚௘ ௣௥௘௩௜௢௨௦௟௬ ௦௧௢௥௘ௗ

 Equation 1 

The internal resistance activity of focus for this paper is 
the growth of the SEI, the limitation of which has been a 
topic of focus in recent literature[23, 24]. As An et al. posits, 
the “entirety of the anode surface” should have coverage 
provided by SEI growth, to minimise Li-ion depletion 
within the electrolyte medium[25, p.54]. The first charge-
discharge cycle of an Li-ion battery is generally associated 
with a 10% lithium loss in the process of synthesising this 
SEI[26]. Nonetheless, further thickening of the SEI over the 
battery life results in a gradual loss of Li-ions and solvent, 
further increasing the internal resistance. Thus, its 
management and optimisation continues to be an area of 
focus in the field of electrochemistry[21, 27]. Zhang et al. 
highlight the rate of SEI formation following this initial 
charge-discharge cycle is related to several properties, 
notably: particle size, basal/edge ratio, pore size, degree of 
crystallinity and surface chemical composition[28, p. 35139].  
2.5 Crystallinity and Anode Performance 

In the context of pyrolytic carbon, the degree of 
crystallinity of the active anode material of a Li-ion battery 
is of particular interest. Where high PyC is produced at high 
pyrolysis temperatures, an increasingly ordered, graphitic-
like structure with high crystallinity is developed. 
Conversely, low PyC is related to a lower degree of 
crystallinity, and thus a lesser extent of graphitisation[29]. In 
the context of factors affecting SEI formation, the 
likelihood of solid lithium metal dendritic formation is 
highly related to the crystallinity of the anode material. 
Crystalline anode materials such as graphite readily 
provide nucleation sites for dendrites to form due to their 
propensity for non-uniform lithium deposition at the anode-
electrolyte interface[30]. As such, Guo et al. posit PyC 
anodes are related to higher coulombic efficiencies, higher 
discharge capacities and thus improved cycling stability 
when compared to graphite-based anodes[31]. The increase 
in electrolyte retention and lithium-ion diffusivity invoked 
by the less ordered structure and reduced SEI development 
of PyC (when compared to graphite), render this alternative 
potentially competitive where cycling stability is critical[32]. 

2.6 Electrical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) is a 
commonly used technique which involves the application 
of an AC signal across a minute amplitude to an 
electrochemical system and observing its current response 
over a large frequency range[33]. In turn, this provides 
insight into the nature of resistance, capacitance, and 
inductance within the system. Data acquired from EIS 
regimes may be fitted to an Equivalent Circuit Model 
(ECM) using computational software over a wide range of 
simulated frequencies. In this way, individual contributors 
to resistance within the battery assembly (e.g. electrodes, 
electrolyte etc.) may be described by circuit elements (i.e. 
resistors, capacitors, Constant Phase Elements {CPE} 

etc.)[34]. The quality of fit may be assessed through scrutiny 
of the error pertaining to each model parameter, in addition 
to the chi-squared value of the model.  

The most common ECM employed for LIBs is displayed 
in Figure 3[35]. One contributor to impedance, the bulk 
resistance (Rb), refers to the sum of the  resistance derived 
from the electrodes (Rcurrent collector), separator (Rseparator), and 
electrolyte (Relectrolyte). As the bulk materials do not 
significantly affect measured capacitance or inductance, a 
resistor is sufficient in modelling their effect on 
impedance[35]. The electrolyte-electrode interface where 
the SEI is formed is related to a more complex impedance 
effect, where the reversibility of SEI formation can 
influence the nature of both the system’s resistance and 
capacitance, in addition to imparting a phase shift on the 
response[36]. Thus, both the real (RSEI) and complex 
(CPESEI) influences on impedance about the interfacial 
layer are included in the model. The resistance associated 
with charge transfer interactions (Rct) relates to electron 
migration between phases, whilst the diffusion CPE 
(CPED) accounts for the real and complex resistance 
imparted from the mass transport of Li-ions by diffusion, 
which is most strongly associated with the chemical 
characteristics of the electrode-electrolyte interface[37]. The 
resistance and capacitance of the double layer is related to 
the ECM by the model parameter CPEdl. Figure 4 illustrates 
how these individual contributors to impedance can be 
attributed to different frequency ranges in a Nyquist plot, 
one of the products of EIS. 

Figure 3. Typical ECM representing a Li-ion battery assembly[35]. 

Figure 4. Example of a Nyquist plot produced in EIS analysis, with 
annotations illustrating the contribution of each element/process to 
impedance across the frequency range[33]. 
 

3.  Methodology 

3.1 Anode Synthesis and Casting 

Samples of high, med and low PyC co-product 
synthesised in the thermal decomposition of methane were 
received from ExxonMobil. These samples were ground 
using a planetary ball mill, reducing the median particle 
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sizes to 11.3, 10.4, and 13.0 microns for low, med, and high 
PyC samples, respectively (see Supplementary Materials 
Figure S1 for particle size distribution analysis plot). Three 
anode material formulations were prepared using a 9:1 
weight ratio of each carbon sample received to 
polyvinylidene fluoride (PVDF). PVDF is the main binding 
agent of the synthesised anode, which was selected due to 
its preference as an industry standard and high thermal and 
electrochemical stability[38].  

N-methyl pyrrolidone (NMP) was introduced dropwise 
to each dry mixture over a magnetic stirrer hotplate until a 
viscous slurry-like consistency was achieved. Stirring was 
continued for a period of two hours until the PVDF binder 
was thoroughly dispersed. This slurry was then applied and 
evenly distributed across a copper foil-covered mounting 
slide using a coverslip to ensure even anode coating 
thickness (~0.1 mm thick) (see Figure 5 for details of slide 
preparation).  

Figure 5. Schematic of slide preparation prior to punching. 
Carbon/PVDF/NMP slurry is applied to copper foil to the thickness of a 
single layer of tape, then dried. 
 

The addition of sufficient NMP solvent to produce a 
slurry with viscosity conducive to application is critical. 
However, as highlighted by Li et al., the minimisation of 
trace solvent present in the final anode product has a 
favourable effect on the coloumbic efficiency of the final 
LIB[39]. Thus, the prepared slide was dried at room 
temperature within a fumehood overnight prior to punching 
of the coated foil into 19 mm discs. These discs were 
further dried in a vacuum oven prior to coin cell battery 
assembly to minimise the presence of trace NMP.  

As a result of issues with achieving sufficient wettability 
in the slurry produced from the low PyC sample, a smaller 
electrode disc size was selected (11 mm). As such, the 
specific charge/discharge capacity will be a more robust 
comparative tool to assess anode performance relative to 
the charge/discharge capacity, to account for the variation 
in active anode mass.  

3.2 Coin Cell Battery Assembly 

The assembly of the coin cell battery involved a series 
of materials in addition to the anode synthesised above. The 
scope and aims of these research activities exclusively 

involves the synthesis of the anode electrode, whilst the 
lithium cobalt oxide (LiCoO2) cathode and the separator 
(polypropylene) were commercially sourced from MTI 
Corporation. 

The coin cell battery was assembled by positioning the 
prepared anode disc, a 19 mm polypropylene (PP) 
separator, and a 15 mm cathode disc (comprised of 
LiCoO2) within a coin cell casing. A spacer was positioned 
over the assembled anode/separator/cathode apparatus and 
tightened using a spring and peg. A 1.0 M lithium 
hexafluorophosphate (LiPF6) in a 50/50 (v/v) ethylene 
carbonate-diethyl carbonate (EC/DEC) solution was 
selected as the most suitable electrolyte based on existing 
literature, and was applied prior to, and following, the 
positioning of each electrode disc and the PP separator at a 
quantity of five drops, as illustrated in Figure 6[40]. This 
process was repeated for all three carbon samples being 
investigated.  

Figure 6. Visual representation of coin battery assembly, with five drops 
of electrolyte being introduced between each electrode and separator. 
 

The cathode material was selectively chosen over 
alternatives to prevent the introduction of further internal 
resistance within the battery through external means, such 
as shuttle reactions (e.g. in LFP/graphite and 
NMC811/graphite assemblies)[22, 41, 42]. 

3.3 Charge and Discharge Cycling 

Electrochemical testing of the four produced coin cell 
batteries was undertaken by charge cycling using a 
Keithley 2461 Source Measure Unit (SMU). For 
graphite/LiCoO2 assemblies, literature suggests a nominal 
voltage of 3.7 V and a standard operating range of 2.75 – 
4.2 V is standard[43]. This informed the selected charge and 
discharge cycle regimes for all three assembled batteries, as 
presented in Table A. The charging cycle was conducted in 
a two-stage process, with the first a constant current phase, 
where an estimated 20% of the batteries’ capacity rating 
(0.2 C) was used. The second phase of charging involved 
10% of this current being applied (this occurred once the 
battery reached the maximum operating voltage). The 
discharging regime followed a similar pattern with a 
current equivalent to 20% of the battery capacity being 
applied, and a target voltage equivalent to the minimum of 
its operating range. 

The Keithley 2461 SMU produced charge/discharge 
profiles for each charge/discharge cycle. These were 
utilised to synthesise corresponding voltage/capacity 
profiles and calculate the coloumbic efficiency and final 
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specific capacities of each battery tested, as presented in the 
Results section of this report.  

Table A. Input specifications for Keithley 2461 SMU for 
charge/discharge cycling of assembled batteries. 

3.4 Electrical Impedance Spectroscopy (EIS) 

A Solartron Instruments 1280B Electrochemical 
Measurement Unit (EMU) was utilised to undertake 
impedance spectroscopy for each coin cell battery tested.  
Electrochemical Impedance Spectroscopy (EIS) was 
undertaken with an AC amplitude of 10 mV across a 
frequency range of 0.1 Hz to 20 000 Hz, or 20 kHz.  

Figure 7. Schematic of equivalent electrical circuit model employed; 
adapted from Choi et al.[44]. 

An ECM which reflected the features of the battery 
assembly presented in this paper was developed to fit the 
EIS results produced. Figure 7 presents the model, which 
includes three resistors and three common phase elements 
(CPEs), as adapted from Choi et al.[44]. Although some 
literature suggest the use of a Warburg parameter in place 
of CPED, the non-ideal surface of the anode synthesised in 
this paper calls for a CPE, which produces a more robust 
model at low frequencies[45]. 

4.  Results 

4.1 Capacity and Coulombic Efficiency 

The resulting galvanostatic charge/discharge profiles 
(presented in Figures S2 to S11 in Supplementary 
Materials) were then utilised to produce several metrics. 
Initially, the theoretical capacity profile correpsonding to 
each galvanostatic charge/discharge profile was 
synthesised. As illustrated in Equation 2, the sum of the 
capacity at each time interval over the length of the profile 
(from time 0 to time n) is equal to the theoretical 
charge/discharge capacity (𝑄௖௛௔௥௚௘/ௗ௜௦௖௛௔௥௚௘) of the 
battery.  

𝑄௖௛௔௥௚௘/ௗ௜௦௖௛௔௥௚௘ [𝑚𝐴ℎ] =  ∑ 𝐼 × ∆𝑡௜
௡
௜ୀ଴  Equation 2 

From the calculated theoretical capacity profile for each 
charge/discharge cycle, an equivalent specific capacity 
profile could then be synthesised which accounted for the 
different quantities of active material present within the 
anodes utilised. Firstly, six discs of copper foil of 
equivalent sizing to those utilised in anode casting (i.e. 19 
mm for high and med PyC and 11 mm for low PyC) were 

prepared and weighed. The average mass of these discs, in 
addition to the masses of each casted anode following 
drying procedures are presented in Table S1 in 
Supplementary Materials. Equation 3 presents the 
conversion of theoretical charge capacity (𝑄௖௛௔௥௚௘) to 
specific theoretical charge capacity (𝑄̇௖௛௔௥௚௘) using the 
active mass of the casted anode, calculated by subtracting 
the mean mass of punched copper discs (𝑚ഥ஼௨ ௗ௜௦௖) from the 
dried anode mass (𝑚௔௡௢ௗ௘). Determination of the specific 
theoretical discharge capacity (𝑄̇ௗ௜௦௖௛௔௥௚௘) also follows 
Equation 3 where 𝑄̇௖௛௔௥௚௘  is substituted by 𝑄̇ௗ௜௦௖௛௔௥௚௘. 

𝑄̇௖௛௔௥௚௘  ቂ௠஺௛
௚

ቃ =  
ொ೎೓ೌೝ೒೐

௠ೌ೙೚೏೐ି௠ഥ ಴ೠ ೏೔ೞ೎
 Equation 3 

Calculating the coloumbic efficiency (𝐶𝐸) from the 
specific theoretical charge (𝑄̇௖௛௔௥௚௘) and discharge 
(𝑄̇ௗ௜௦௖௛௔௥௚௘) capacities then follows Equation 4. 

𝐶𝐸 (%) =  
ொ̇೏೔ೞ೎೓ೌೝ೒೐

ொ̇೎೓ೌೝ೒೐
× 100%         Equation 4 

 

The charge/discharge capacities are presented in 
Supplementary Material Figure S12. Figure 8 presents the 
specific theoretical charge/discharge capacities calculated 
from low, med and high PyC respectively. Note that the 
med PyC anode possessed both the highest charge and 
discharge capacities, in addition to the highest specific 
charge and discharge capacities (247 mAh/g and 232 
mAh/g, respectively). Moreover, the low PyC battery 
assembly exhibited the lowest specific discharge capacity, 
despite possessing a specific charge capacity (242 mAh/g) 
similar to that of the med PyC sample. This greatly 
exceeded the specific charge capacity of the high PyC 
sample (195 mAh/g). 

Figure 8. Comparison of specific theoretical charge and discharge 
capacity (mAh/g) of low, med and high PyC anodes. 
 

The coloumbic efficiencies from the first and second full 
charge cycle were calculated for each of the low, med and 
high PyC anode batteries, as presented in Figure 9. Note the 
first cycle coulombic efficiency for low PyC could not be 
calculated due to data loss from an equipment operational 
error. Nonetheless, it can be observed the highest 
coloumbic efficiency in the second charge-discharge cycle 
was produced from the high PyC anode (98.4%). 
Conversely, the low PyC anode was associated with the 
lowest coulombic efficiency at the second charge-discharge 
cycle (74.5%). 

dl 
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Figure 9. Comparison of coloumbic efficiency (%) of low, med and high 
PyC anodes. 

 

Discharge curves were then produced for each of the 
anode types, by plotting voltage against the specific 
discharge capacity of each anode. Figure 10 illustrates the 
discharge curves for the batteries produced from low, med 
and high PyC anodes. The discharge curves of all three 
batteries using different types of carbon anode exhibit fairly 
linear reductions in potential (voltage) over time. This is 
reflective of the second-cycle discharging regime profiles 
presented in Supplementary Materials (Figures S9 to S11), 
which all produced similar patterns of discharge.  

4.2 Electrochemical Impedance Spectroscopy (EIS) 

Presented in Figure 11, the Nyquist plot output from EIS 
conducted illustrates the extent of variation in the nature of 
measured impedance between each PyC sample. Where the 
x-axis describes the real contribution to impedance (Z’), the 
y-axis is associated with its imaginary component[46]. 
Moreover, another feature of note is the frequency 
distribution of the curve. The right-most section of each 
curve refers to the impedance measurements observed in 
the low frequency region, providing insight into the factors 
affecting mass transfer or diffusion rates within the 
system[33]. Conversely, bulk and SEI resistance affect the 
nature of the curve in the high frequency region, illustrated 
in the left-most section and the curve’s proximity to the 
origin. Individual Nyquist plots which illustrate the ECM 
fitting of each EIS data set are provided in the 
Supplementary Materials (Figures S13-S15).  

 

Figure 11. Nyquist plots of the negative imaginary impedance (Z”; y axis) 
against the real impedance (Z’; x axis) at each excitation frequency from 
1- 20 000 Hz for low, med, and high PyC anodes.  

Figure 12. Bode plots for low, med, and high PyC anodes; illustrating the 
logarithm of the impedance (upper plot) and the phase shift (𝜃) (lower 
plot) against the logarithm of the frequency applied to the system. 

Figure 12 illustrates the Bode plot outputs of the EIS 
conducted, with the upper plot presenting the logarithm of 
the measured impedance |Z|, and the lower plot the phase 

Figure 10. Voltage (V) plotted against specific discharge capacity (mAh/g) for high (dotted line), medium (dashed 
line) and low (solid line) PyC. The highest specific discharge capacity is observed in medium PyC. 
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shift (𝜃) against the logarithm of frequencies at which 
measurements took place. The variation in impedance 
across frequencies is visualised with ease through the upper 
plot, which illustrates the low relative impedance of the 
battery developed from the high PyC sample, compared to 
both the med and low PyC samples. 

From the Bode plot in Figure 12, it can also be noted that 
at high frequencies, the phase shift of both low and med 
PyC batteries was elevated compared to the high PyC 
battery. The curvature of each of the phase shift plots is 
highly varied between samples across the frequency range. 
Similarly, in Figure 11, the curvature of each Nyquist plot 
is varied quite significantly, potentially suggesting the 
model parameters resulting from fitting to the ECM may 
vary between pyrolytic sample. 

Table B presents the output values for the resistor 
elements of the ECM each EIS output was fitted to. 
Considering the chi-squared values of fit were all below the 
significance level (p = 0.05) (presented alongside error 
values in the Supplementary Materials – Tables S3 and S4), 
it may be validified that the tabulated ECM elements vary 
significantly between the different PyC samples used in 
anode synthesis.  

The highest Rb (resistance associated with the bulk 
assembly – electrodes, electrolyte and separator) was 
observed in the med PyC (3.418 Ω), with the lowest 
resistance observed in the low PyC battery (2.365 Ω). 
Nonetheless, the RSEI was significantly elevated for the low 
PyC sample (16.43 Ω) compared to the high PyC sample, 
which exhibited the lowest resistance for this parameter 
(1.612 Ω). The Rct of high and med PyC were very similar, 
at 7.255 Ω and 8.84 Ω, respectively. Moreover, the CPED 
was also similar between the med and high PyC, at 0.342 
Ω and 0.293 Ω, respectively. This is reflected in the 
similarities in the curvature of the med and high Nyquist 
plots at low frequencies (observed in the right-most parts of 
their curves in Figure 12). Note that due to the failure of the 
low PyC battery during the low frequency regime in EIS 
testing, the Rct CPED could not be obtained. Nonetheless, 
the general scale and trajectory of the low PyC Nyquist plot 
suggests a high Rct and CPED relative to low and med PyC 
samples could be expected. During data cleaning, any 
abnormal data points associated with battery failure were 
removed from the EIS data produced. 
Table B. Output values for model resistance parameters following fitting 
of EIS results to ECM. *Note a result for Rct and CPED could not be 
obtained for low PyC due to battery failure. 
 

 

 

 

5.  Discussion 
5.1 Charge and Discharge Capacities 

The specific charge/discharge capacities provided 
essential insights into the battery storage capabilities and 
operational time, representing the amount of electric charge 
stored per unit mass. As per Figure 8, med PyC displayed 
the highest specific discharge capacity of 247 mAh/g, 
closely followed by the low PyC and subsequently the high 
PyC. These trends were incongruent with what was 
expected and that of literature. The high PyC experienced 
higher crystallisation and graphitisation and is structured as 
captured by Honorato et al. in Figure 13[47]. 

Figure 13. Three samples of PyC made from varying reaction 
temperatures producing a similar low, med and high PyC, displaying 
greater crystallisation for High samples. 

In light of the superior structural order of high PyC, the 
capacity in this sample was expected to be the greatest. 
Higher crystallinity facilitates efficient electron and ion 
movement giving enhanced conductivity, stability 
producing higher anode capacities. Hence, the discrepancy 
in capacity can be attributed to the greatest particle size of 
high PyC of 13.0 microns which is seen in Supplementary 
Materials Figure S1. Analysing this graph shows an outlier 
in the high PyC sample compared to the low and med 
samples being 11.3 and 10.4 microns, respectively. The 
milling process was conducted for 10 minutes. For future 
experiments, prioritising uniform particle size over 
consistent milling duration would be prudent to mitigate 
potential discrepancies. However, it is important to note 
that the graphitisation of med and high PyC experience 
similar degrees of graphitisation. Comparing the charging 
capacity of the med PyC to that of graphite indicates a 
competitive sample. Studies conducted by Laziz et al. 
provided charging capacities of a raw and concentrated 
graphite of 145 mAh/g and 291 mAh/g, respectively[48]. 
Comparing the med PyC sample of 247 mAh/g to the 
experimental value of 291 mAh/g (considering that high 
PyC should experience higher charging capacities), 
demonstrates the competitiveness of Med and potentially 
high PyC samples to that of graphite. 
5.2 Coulombic Efficiencies 

From this, the CE was computed as represented in Figure 
10. As expected, the high PyC displayed the highest CE of 
98.4%, closely followed by 94.1% of med PyC and low 
PyC having a 74.5% CE. This outcome aligns with 
expectations and is attributable to the enhanced 
graphitization of high and med PyC, fostering improved 
pathways and channels for the improved mobility and 
de/intercalation of Li+ ions to efficiently move between 
electrodes during charging. 
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Comparing the CE of the PyC samples to that of graphite 
found in literature sheds a positive light on the performance 
of high PyC. Laziz et al. calculated CE values of 98.3% and 
99.7%, values that are similar to that of med and high PyC, 
demonstrating the potentially competitive nature of the 
high and med PyC samples[48]. 

In analysing the CE, only second cycle values were 
considered. This is due to the formation of the SEI on the 
anode during the first cycle. This passivating layer protects 
the anode from the electrolyte. This SEI layer prevents 
unwanted reactions, selectively allowing the passage of Li+ 
ions. As such, this regulates ion transport during charge and 
discharge cycles, contributing to a greater CE. Conversely, 
it is important to note that this is only beneficial to an 
extent. Due to excessive cycling, the accumulation of solid 
products may occur which in turn can hinder Li+ transport.  
5.3 Charge and Discharge Profiles 

Figure 15. The charge/discharge profiles computed by Han et al. on 
varying PyC temperatures (GT-700 = low PyC)[49]. 
 

Figure 15 illustrates the charge/discharge profiles of low, 
med and high PyC samples (distinguished by varying 
reaction temperatures). A typical representation of such 
plots entail a steep initial drop in voltage, followed by a 
stable plateau and a sustained decrease in voltage. The 
plateau in the graph represents the nominal voltage, which 
is the average or standard voltage in the anode. In contrast, 
the discharge profiles for all three PyC samples from this 
study in Figure 10 deviated from this trend, displaying a 
linear-line slope, devoid of a plateau. The observed 
variation is likely due to the C-rate, representing the current 
as a fraction to the battery capacity. The quoted discharge 
profile operated at 0.1C, whereas this experiment was 
executed at a discharge of 0.2C, a much more moderate 
rate. For subsequent experiments, slowing discharge to 
0.1C might be preferred, allowing for more data points over 
time and potentially revealing a nominal voltage, given the 
discharge at 10% capacity per hour. 
5.4 Trends in Electrochemical Impedance Spectroscopy 

The trends observed in the combined Nyquist plot 
(Figure 11) appear to indicate the most significant overall 
impedance was observed in the anode developed from low 
PyC. This is supported by the ECM model parameters 
obtained when the EIS data was fitted to the ECM 
employed in this paper. As noted in Table B, the RSEI was 
heightened for low PyC, and although the Rct and CPED 
could not be obtained due to battery failure, the general 

trajectory of the low PyC plot in Figure 11 indicates these 
values would likely signficantly exceed that of the med or 
high PyC. This trend was further supported in the upper 
Bode plot presented in Figure 12, which indicated the 
highest impedance at all frequencies below ~5 kilohertz 
was associated with the low PyC sample. Furthermore, the 
lower Bode plot in Figure 13 illustrated the high phase shift 
observed in the low PyC sample. This suggests issues 
pertaining to the adaptability of the battery and its response 
rate to phenomena (e.g. changes in load) could be expected. 
Table C. Output values for graphite anode model resistance parameters 
following fitting of EIS results to ECM, adapted from Paul [50]. 

In an analogous study using an equivalent ECM model, 
Paul identified the resistances and common phase element 
statistics for a graphite anode, as presented in Table C[50]. 
Of note is the significantly reduced RSEI achieved in the 
high PyC sample compared to the graphite anode, at 1.608 
Ω and 12.7 Ω, respectively. The CPED was also reduced 
significantly in the high PyC sample, suggesting an 
increasingly ideal and uniform charge distribution, whilst 
the Rb and Rct remain slightly elevated in the high PyC 
assembly compared to that of graphite.  

In a 2020 study, Rezaei et al. identified similar trends in 
EIS results as were observed in this study, where low 
pyrolysis temperature was associated with higher overall 
impedance than higher pyrolysis temperatures[51]. As 
elucidated in Figure 16, the magnitude of the semi-circular 
behaviour of the 900 ℃ impedance spectrum is indicative 
of an elevated charge transfer resistance (Rct), compared to 
the 1000 ℃ and 1100 ℃ pyrolysed carbon assemblies[52]. It 
is worth noting that the highest pyrolysis temperature 
employed in this paper remains relatively low (1100 ℃), 
thus further investigation into the effect of varying 
pyrolysis regimes by also measuring the impedance of 
higher pyrolytic temperatures samples could be beneficial 
to further deciphering trends in impedance.  

 

Figure 16. Nyquist plots of Li-ion batteries assembled with anodes of 
carbon produced at varying pyrolytic temperatures[51]. 
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5.5 Crystallinity and SEI Formation 
Mao et al. identified anode material crystallinity as a 

significant factor in SEI formation and resistance. FTIR 
spectra was employed to characterise the chemical 
composition of anode SEI formed following battery 
cycling[53]. The thinnest SEI layers and lowest active 
lithium loss were observed in the two anodes formed from 
disordered carbon powders presenting with a greater degree 
of amorphous structures (as measured by Raman spectra). 
A trend can be discerned where SEI thickness is partially 
modulated by crystallinity, where high crystallinity anodes 
possess generally thicker SEI layers. It should be noted that 
SEI formation is also modulated by several other anode 
material characteristics, such as porosity and particle 
surface area[54]. However, due to the milling procedure 
undertaken in the methodology, these factors have been 
significantly mitigated by reducing the particle size to 
equivalent normal distributions between samples and 
through pore collapse, respectively[55]. 

In the context of the ECM results of this study, the 
increased presence of amorphous structures in the low PyC 
sample were a contributing factor to its elevated RSEI (17.09 
Ω). Conversely, the optimised presence of amorphous 
structures occurred in the relatively ordered and graphitised 
high PyC sample, as demonstrated by its minimised RSEI 
(1.608 Ω). Although the development of a thin SEI layer 
can be beneficial to the reduction of active lithium 
depletion in the elctrolyte, if sufficient SEI coverage is not 
achieved, a capacity reduction effect is observed, in turn 
reducing anode performance[56]. Furthermore, the literature 
value of RSEI for the graphite anode assmebly (12.70 Ω) 
indicates the complete absence of amorphous structures 
may also have a negative effect on SEI resistance[50]. Where 
an entirely graphitised anode structure encourages SEI 
formation, a thick SEI layer may form which can contribute 
to this observed increase in RSEI. Thus, high PyC anodes 
present as an optimised alternative for ensuring adequate 
SEI formation occurs without unnecessarily contributing to 
the total system resistance and reducing battery capacity.  

6.  Conclusion 
From our testing regimes, it can be concluded that the 

high PyC outperformed low and med PyC anodes based on 
its superior coulombic efficiency (98.4%) and competitive 
specific discharge capacity. When this specific discharge 
capacity was compared to equivalent literature values for 
graphite, the potential efficacy of high PyC as an anode 
material was further reinforced. Furthermore, EIS testing 
indicated that compared to low and med samples, high PyC 
presents itself with a minimised impedance spectrum, 
which was further supported when viewing its parameters 
for the ECM employed compared to literature reference 
values of graphite. In particular, the significantly reduced 
RSEI (1.608 Ω) and CPED (0.293 Ω) relative to the low (RSEI 
of 17.09 Ω) and med (RSEI of 8.687 Ω, CPED of 0.342 Ω) 
PyC samples highlighted the efficacy of high PyC as an 
anode material. The higher degree of crystallinity in the 
high PyC sample may have a positive effect on reducing 

some resistances such as that of SEI, where the formation 
of a thinner, more stable SEI than that of graphite also has 
a positive effect on reducing impedance. Nonetheless, 
further testing would be required for a holistic assessment 
of the performance of PyC as an anode material. For 
example, the implementation of a lower current (i.e. 0.1 C 
instead of 0.2 C rate) in the charge-discharge cycling could 
provide further insights into the trends observed, by 
providing a more comprehensive data inventory and higher 
resolution discharge curves. 
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Using Agent-Based Modelling to Investigate Effects of the Socioeconomic 
Climate on the UK Power Sector  

Le Boutillier, Noah and Berry, Joseph 

Abstract 
The global commitment to combat climate change has been fortified by individual nations’ pledges to reduce 
carbon emissions. The UK's ambitious target to achieve carbon neutrality by 2050 stands as a testament to 
this endeavour. Integral to this vision is the success of renewable energy sources, among which wind power 
has been identified as a key player in the UK's energy matrix. However, the intricacies of establishing a robust 
wind energy infrastructure are vast, encompassing not just technological challenges, but also economic, 
social, and political dimensions. This project used an agent-based model to investigate how varying certain 
prices associated with different technologies would affect the future landscape of the UK power section. 
Techno-economic data was sourced to accurately model an array of technology options, with an LCOE 
(levelized cost of energy) agent in place to make investment decisions to fulfil demand. The findings of this 
project indicated an expected dependence on wind, both onshore and offshore, and solar generation to shift 
to a carbon-neutral power sector. Capital costs of wind were found to be very influential, with small 
increases in cost resulting in a significant drop in wind investment. This provided a useful insight into the 
future of wind power.      

1. Introduction  
The energy landscape of the United Kingdom is 
currently undergoing an unprecedented change, 
propelled by the ever-changing socio-economic 
climate of the world. This is greatly affecting the 
development of the nation alongside technological 
advancements shown by the share of renewable 
energy increasing from 2% to 43% over the last 30 
years (National Grid, 2023). Currently, the UK aims 
to reach a net-zero carbon footprint by 2050 in its 
aim to reach a sustainable and resilient future. This 
means that it is critical to understand the 
relationships between stakeholders and their 
objectives within the power industry. This study 
explores this complexity by using an integrated 
agent-based model, ModUlar energy system 
Simulation Environment (MUSE), to reveal the 
intricate connection between the socio-economic 
environment and the UK power industry. 

The socio-economic climate, defined by societal 
behaviour, economic trends and governmental 
policies, greatly affects the path of the power 
sector. Agent-based modelling (ABM) provides 

more detailed insight into this by using agents to 
replicate the behaviour of individual investors in a 
dynamic environment where standard models can 
often oversimplify these influences. In their 
interactions with one another; agents, representing 
various stakeholders, ranging from governing 
bodies to individual producers, respond to 
simulated objectives. This gives ABMs the ability to 
depict the power industry’s non-linear, adaptive 
reaction to outside stimuli more precisely.  

Pledging to reach net-zero carbon emissions by 
2050 (Gov.uk, 2019) and a net-zero power industry 
by 2035 (Gov.uk, 2021) has dramatically 
accelerated the energy transition in the UK. As of 
2022, the carbon dioxide emissions from the power 
sector were 85 million tonnes, a decrease of more 
than 50% since 2000 (Tiseo, 2023). This means that 
in the next 13 years, a similar number of emissions 
need to be reduced as the previous 22. Considering 
that the emissions have decreased by less than 2% 
over the last 2 years (Tiseo, 2023), the enormity of 
this task cannot be overlooked. As shown in Figure 
1, approximately 43GW of the UK capacity is 
generated by fossil fuels. By 2035 this all must be 
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phased out or counterbalanced with carbon-
negative fuel sources such as sustainable biomass 

combustion fitted with carbon capture. 

This project aims to investigate the effects different 
socio-economic circumstances, such as supply chain 
problems, could have on the stability, resilience and 
sustainability of the UK power sector. Through the 
integration of agent behaviours and real-world 
data, the model aims to reproduce the investment 
decisions within the sector. This entails how energy 
providers diversify their portfolios of energy 
generation and how governmental interventions 
and reforms affect the distribution of resulting 
capacity. 

2. Background 
The modelling of UK energy sectors is by no means 
a new way to forecast the feasibility of government 
targets with optimisation programmes such as the 
UK TIMES model (UKTM) (Broad  2017) being used 
by the government to aid in the clean growth 
strategy of 2017. The UKTM itself was a successor to 
UK MARKAL (Dodds et al., 2003)  which was 
developed to give insights for the Energy White 
Paper 2003 and continued to be developed and 
used until 2012.  
ModUlar energy system SimulaƟon Environment 
(MUSE)is an agent-based simulaƟon model which is 
a more novel approach to this field. This model has 
been used in looking at energy investments in the 

residenƟal sector of the UK (Sachs, et al., 2019) as 
well as across the board in other countries. MUSE is 
unique in the way that has an agent-based 
approach, represenƟng possible decisions made by 
real investors with the ability to be adjusted 
depending on each investor type. These small 
moƟvaƟons by individuals could have large effects 
on the overall system and by using them. The 
objecƟve of MUSE is to reach an economic 
equilibrium by finding a price-quanƟty tension 
between supply and demand. This leads to unique 
soluƟons to otherwise near-impossible tasks 
counterbalancing different individuals' aims as well 
as cost reducƟon. The ability to individually 
characterise each technology aids in this approach 
as all technologies have unique challenges and 
restricƟons.  

3. Methods 
Utilising a market-clearing algorithm, MUSE 
depends on multiple technical and economic 
parameters. The majority of this data was obtained 
from either the UK TIMES model or government 
reports. Different scenarios were investigated using 
MUSE setting various objectives as well as 
introducing carbon budgets, all with the 
overarching aim of being used for investment 
decisions by energy companies. A few parameters, 
therefore, were set with the aim to be non-
restrictive on the rest of the model. This was done 
mainly because, as previously mentioned, this paper 
aimed to show an insight to investors in the industry 
so restrictive scenarios would not be as useful.  
3.1 Technology Selection 
A technology is defined as a technology that services 
a service demand. The selection of technologies was 
divided into two distinct categories: existing and 
future. The existing technologies were simple to 
obtain as they were all power-producing 
technologies that are used to provide electricity in 
the UK. Future technologies were taken from the UK 
TIMES model. 

Figure 1: Pie Chart representing 2022 capacity share per fuel. 
(Department for Energy Security and Net Zero, 2023) 
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3.2 Techno-economic parameters: 
As mentioned, MUSE uses individual data for each 
technology to determine the uptake of each 
according to their capacity throughout time. A 
selection of these parameters is provided here with 
an explanation as to what data was used where 
necessary.  
3.2.1 Technical Parameters 
Existing Capacity 
The existing capacity for each technology was taken 
from Plant capacity: United Kingdom (DUKES 5.7) 
(Department for Energy Security and Net Zero, 
2023). This provides a base on which for MUSE to 
build future decisions. 
 
Decommissioning profile 
The decommissioning profile of existing 
technologies was carried out linearly through the 
existing capacity input file. This decommissioning 
profile was based on the technical life of the 
technologies, as taken from the UK TIMES model. 
 
Utilisation factor 
The Utilisation factor is the achievable output from 
the installed capacity of each technology. This is 
used as most technologies have downtime for 
maintenance and repairs as well as certain 
renewable power sources only running given 
certain conditions. For most technologies, this was 
taken to be 0.9. For technologies affected by 
environmental factors i.e. solar and wind, utilisation 
factors were calculated through an average of 
availability factors sourced from the UK TIMES 
model.  
 
Carbon Emissions Factor 
The Emission factor was used based on the mass of 
carbon dioxide released per petajoule of electricity 
produced. For each technology this was found using 
data taken from Greenhouse gas reporting: 
conversion factors 2023 (Department for Energy 

Security and Net Zero, 2023). For combustion 
technologies fitted with carbon capture and 
storage, this number was reduced by 90%. Biomass 
combustion has a net zero lifetime emissions factor 
as in the UK it is produced sustainably and 
therefore, when fitted with CCS, it has a negative 
emission factor. 
 
Electricity Demand projection 
The demand for UK electricity was found by using 
data taken from the UK TIMES model. This data was 
required in ten-year intervals from the base year of 
2020 up to 2050 for MUSE to accurately project the 
necessary total capacity. 
 
Growth constraints 
Total Capacity, Max capacity growth and addition. 
Growth constraints were tailored to simulate 
realistic growth without restricting capacity 
addition such that demand could not be filled. 
However, some technologies with specific policy 
and/or physical restrictions in growth available in 
literature were constrained to preserve realism. 
 
Efficiency 
The efficiency of each technology was defined as the 
percentage of usable output electricity of the total 
energy in the fuel. For renewables, this was taken to 
be one as there is no fuel associated with each 
process.  
 
3.2.2 Economic parameters 
Capital and Operational Expenditures 
The Capital Expenditure (CapEx) for new 
technologies were taken from the UK TIMES model. 
For existing technologies, this was decided to be 
slightly higher than their respective new 
technologies to prevent investment in existing, 
implemented technologies. Fixed and variable 
parameters for Operational Expenditure (OpEx) 
were similarly taken from the UK TIMES model.  
 
Fuel Price 
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Fuel prices were taken from government 
documentation (DESNZ, 2023). Projections were 
carried out through moving averages where 
necessary and specific prices were altered to 
explore scenarios such as the price of gas. 
 
Carbon Price 
Carbon price was controlled through the projections 
input file, pricing the CO2f commodity accordingly. 
The UK government currently sets carbon price at 
£40/kWh thus the initial run was carried out on this 
basis.  
 
3.3 Agent Characterisation 
The population does not have a huge say on what 
occurs in the power industry, only slightly governing 
through the ability to advocate for policy reforms 
and introduction. Therefore, it was decided that for 
the power sector, Agents would have to be 
representative of government and energy 
providers. Stakeholders in the industry itself 
generally have the same goal of minimising the 
costs associated with electricity production, thus a 
levelized cost agent was introduced to represent 
the industry. The government’s only ability to 
interact with the industry is through mandated 
policies surrounding decreasing emissions. 
However, decision making on investment is carried 
out principally on cost, therefore the Agent 
objective was defined by LCOE (Levelised Cost Of 
Energy). The equation to calculate LCOE is: 

𝐿𝐶𝑂𝐸 =
∑ 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐶𝑜𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 

Where: 

    ෍ 𝐶𝑜𝑠𝑡𝑠 𝑜𝑣𝑒𝑟 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒

= 𝐶𝑎𝑝𝐸𝑥 + 𝐹𝑖𝑥𝑒𝑑 𝑂𝑝𝐸𝑥
+ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝𝐸𝑥 + 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡
+ 𝐶𝑎𝑟𝑏𝑜𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡  

 
 
 
And: 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
= 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐿𝑖𝑓𝑒 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
∗ 𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 

 
3.4 Scenario Development 
Three scenarios were developed based on economic 
incentives alongside UK policy. These scenarios 
decided which agents would be prioritised which 
was further described in the agent characterisation 
section. 
3.4.1 Scenario 1: Varying Carbon pricing 
Purpose of this scenario was to explore the effects 
of changing carbon pricing on the decision-making 
within investments into future power-generation 
technologies.  
3.4.2 Scenario 2: Return of gas prices to pre-2022 
levels 
This scenario investigates the possible return of gas 
pricing to pre-2022 rates and the subsequent 
changes in investment with regards to renewable 
technologies over non-renewable gas-based power 
generation. 
3.4.3 Scenario 3: Effect of wind implementation 
price  
Scenario 3 was divided into two stages, the first 
being investigating how increasing the CapEx of 
offshore wind affects its feasibility. The second 
stage studied the capacity distribution of the sector 
if wind was no longer feasible until certain points in 
time. 
3.4.3.1 Stage 1 
MUSE uses an input parameter named cap_par to 
determine the CapEx of a technology with the 
relationship: CapEx = cap_par * Capacity. Adjusting 
cap_par would have the same proportional effect 
on CapEx meaning that it would be possible to 
determine a percentage increase in CapEx that 
would make it infeasible. 
3.4.3.2 Stage 2  
At this point, it was necessary to investigate the 
effects of no new. This was accomplished by 
establishing the price of wind as a commodity at 
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£1,000,000M /PJ until the year in which new wind 
would be commissioned again. The pricing then 
reverted to zero five years later. This approach 
aligns with MUSE's assumption of an instantaneous 
building process, despite the actual transition from 
commissioning to operational status taking 
approximately five years. Importantly, this strategy 
to curtail wind growth did not impact already 
operational wind capacities, as their capacity 
profiles were updated every 5 years, incorporating 
considerations for decommissioning. 

4. Results & Discussion 
4.1 Scenario 1 
4.1.1 Business-as-usual 

For scenario 1, Carbon pricing was initially set to the 
current rate of £40 /kWh, resulting in the following 
capacity distribution. Investment into both onshore 
and offshore wind is evident from 2025 onwards 
resulting in a capacity share dominated by both 
wind technologies and a combination of solar and 

tidal power. This is a positive result in line with 
Government policy and suggests that current 
Carbon pricing provides a sufficient incentive to 
invest towards greener and thus more sustainable 
alternatives to traditional carbon-based generation. 
This also doubles as a base case for this project as it 
implies a business-as-usual approach, wherein 
current policy and constraints are in place. 
 
4.1.2 Increasing carbon price 
Following this, the effects of increasing carbon price 
were investigated by raising projections linearly 
from current rates (£40 /kWh) in 2020, to  

£180 /kWh by 2050. The results of this demonstrate 
an almost identical trend, with investment into wind 
and solar at the same rates. This suggests that 
current carbon prices are sufficient in achieving net-
zero and raising the prices would be negligible. 
However, further investigation into the time frame 
in which prices are altered could yield different 
results. For example, introducing the higher rate by 

Figure 5: Capacity distribution in 2050 with a carbon price 
increasing linearly to £180 /kt  

Figure 2: Capacity distribution in PJ over time with a carbon price 
of £40 /kt 

Figure 3: Capacity distribution in PJ over time with a carbon 
price of £40 /kt 

Figure 4: Capacity distribution in PJ over time with a carbon 
price increasing linearly to £180 /kt 
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2035 may influence the rate of uptake of clean 
energy. 

 
 
4.1.3 Zero carbon price 
 

Figure 3: Capacity distribution in PJ over time with a carbon 
price of £0 /kt 

Finally, the effect of carbon price was investigated 
through setting to £0 /kWh. This results in a capacity 
distribution in 2050 made up of around 19% 
combustion based. This presents an infeasible 
scenario as policy dictates a decrease in emissions 
and this would not align with aforementioned 
carbon targets. The unsurprising conclusion 
presents the importance of a carbon price when 
approaching policy and investment decisions.   

4.2 Scenario 2 
4.2.1 Gas price 

 
Figure 4: Capacity distribution in PJ over time with a gas price 
remaining at £13.3M /PJ 

 
Figure 5: Capacity distribution in PJ over time with gas prices 
reverting back to pre-2022 rates  

To investigate the effects of gas prices, two 
potential routes were explored. Due to the ‘Russian 
War’ gas prices have shot up to levels as high as 
£13.3M /PJ, due to current reliance on natural gas 
generation this greatly affected the UK household 
gas prices. Initially the effect of rates remaining at 
this high level was explored and then compared to 
the possible outcome of rates returning to pre-2022 
levels. As evident in Figures 8 and 9, the outcome is 
identical. This suggests that existing cost 
implications of natural gas generation are sufficient 
in limiting investment and encouraging clean 
energy. Another contextual implication of this is 
that ‘energy security’ can be increased and prices 
can be insulated from future socio-political factors.  

 
 
 

Figure 2: Capacity distribution in 2050 with a carbon price of £0 
/kt 
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4.3 Scenario 3 
4.3.1 Stage 1: 

In this stage, offshore wind projects' capital cost 
parameter (cap_par) was continuously adjusted 
until it ceased to appear in the capacity distribution. 
According to Figures 10 and 11, this critical point 
was found to be £31.16 million per petajoule 
(£31.16M /PJ). It is evident that offshore wind 
projects are observable at £31.155M /PJ but absent 
at £31.16M /PJ. Interestingly, this was just a 3.1% 
increase from the initial cap_par value of £30.23M 
/PJ, highlighting the fact that offshore wind projects 
are quickly getting closer to becoming economically 
infeasible.  
4.3.2 Stage 2: 
Five Situations were developed at this point: 
Business as usual, no new wind to be commissioned 
until 2025 and 2035, no new wind and no new wind 
or solar being commissioned for the foreseeable 
future. 
 

 
4.3.2.1 Business as usual: 

Figure 12 depicts wind energy's crucial significance 
in the context of sustainable energy, with a 
contribution of approximately 50% of total capacity 
forecasted by 2045. Notably, offshore wind is 
expected to account for around two-thirds of this 
significant share, highlighting its importance in the 
expanding landscape of renewable energy sources. 
 

4.3.2.2 No new wind commissioned until 2025: 
As seen in Figure 13, hydro dams will make up for 
the capacity shortfall caused by wind in 2025 and 
2030. However, starting from 2030, wind emerges 
as the most advantageous option, exhibiting the 
largest year-on-year growth in each incremental 
step up to 2050. Nuclear sources and the burning of 
MSW can meet additional capacity requirements in 
2025, albeit in small amounts. Though technically 
possible, this scenario highlights systemic flaws, 
especially as there is less chance that the 

Figure 7: Capacity distribution over time with no new wind 
commissioned until 2025 

Figure 6: Capacity distribution in 2050 with offshore wind 
cap_par at £31.16M /PJ 

Figure 11: Capacity distribution in 2050 with offshore wind 
cap_par at £31.155M /PJ 

Figure 12: Capacity distribution in PJ over time 
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government will commission several hydro dams 
due to popular opposition stemming from land 
inundation concerns. 
 
4.3.2.3 No Wind commissioned until 2035: 

 
Figure 8: Capacity distribution in PJ over time with no new 
wind commissioned until 2035 

In the absence of new wind operations until 2040, 
the ensuing portfolio shown in Figure 14 remarkably 
mirrors that of 2030. This similarity results from a 
relatively little rise in energy consumption between 
2030 and 2040, or slightly more than one-third of 
the growth that was noted between 2020 and 2030. 
As such, alternative technologies are not overly 
burdened by the increased capacity gap arising from 
the lack of wind. Nevertheless, solar energy poses a 
potential obstacle because it will account for 45% of 
energy production by 2050 and is not feasible 
without improvements in energy storage 
technologies due to its dependence on daylight to 
function. 

4.3.2.4 No new wind commissioned:   
This capacity portfolio's feasibility is further called 
into question as demonstrated by the continued use 
of combustion technologies shown in Figure 15, 
which will account for about 25% of capacity by 
2035 and 8% by 2050. Notably, tidal electricity 
generation assumes a substantial role in mitigating 
the wind deficit, underscoring its potential as a 
significant contributor in the extended course of 
energy generation. 
 
 4.3.2.5 No wind or solar: 

 
Figure 10: Capacity distribution in PJ over time with no new 
wind or solar commissioned 

This hypothetical situation was purposefully created 
with the knowledge that it is not feasible, yet it can 
be used as a learning tool to determine which 
electricity sources are worth investing in to save 
costs. Because alternative renewables are 
continuously operational regardless of weather, 
they have the potential to outperform wind and 
solar in terms of economic feasibility, provided they 
receive sufficient financing and development. As 
anticipated from previous results, tidal power 
exhibits the highest capacity, closely followed by 
nuclear generation, with geothermal energy playing 
a notably substantive role in this prospective energy 
landscape. 

5. Conclusion 
Significant ideas can be drawn from the results of 
this project. Looking at the variation of carbon 
pricing, having a price for carbon emissions is a 
necessity, however increasing it further may not be 

Figure 9: Capacity Distribution in PJ over time with no new 
wind commissioned 
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needed to incentivise energy producers any further 
to focus more heavily on renewable sources. 
Increasing it may have an adverse effect on the 
economy due to the ’tax’ effectively being paid by 
the population’s energy bills and since all businesses 
use electricity, this could have a much larger effect 
on the cost of living.  
Reverting gas prices to what they were before 2022 
somewhat surprisingly did not influence the future 
power landscape. This is a welcoming sign that 
renewable sources can provide the UK with energy 
security if there is another unforeseeable 
occurrence that increases fuel prices. This in turn 
will give the possibility to have set electricity costs 
with no major fluctuations. 
Scenario three displayed that the future power 
landscape relies heavily on offshore wind. 
Unfortunately, the CapEx of offshore wind cannot 
grow by more than 3% compared to other 
technologies before it becomes unfeasible.  
In addition to these findings, it is critical to recognize 
that the current supply chain concerns (Hodgson, 
2023) may increase this thin margin of infeasibility. 
Furthermore, the recent COP28 resolution to triple 
the proportion of renewable energy by 2030 
(Mcfarlane & Twidale, 2023) adds another layer of 
complexity, potentially putting further strain on the 
global wind energy supply chain. As a result, the 
increased demand for renewable energy sources 
may contribute to an increase in CapEx in the 
offshore wind sector. 

6. Outlook 
This project is part of a growing body of work that 
uses ABM to evaluate complicated systems, thus it 
doesn't work on its own. It adds to the larger 
conversation on the role of ABM in realizing and 
reducing difficulties related to large-scale socio-
technical systems by applying this methodology to 
the UK power industry. The hope is that in 
conducting this project, the results will act as a 
model for similar studies in other areas struggling 

with the difficult path to a sustainable energy 
transition. 
Looking into the future of this model, integrating it 
into an entire UK energy sector model with the 
already produced residential sector as well as new 
transportation and industrial sectors could give a 
holistic view of how the whole system reacts to 
various changes in the socioeconomic climate. This 
in turn could provide valuable insight into the 
intricacies and possible flaws in the sector.  
The addition of other agents into this model to 
represent different stakeholders and their 
objectives could give further sensitivity analysis of 
the power sector. For example, even though the 
general population doesn’t control the sector, 
people do prefer certain technologies over others 
and companies do want to have a positive 
perception by the public leading them to possibly 
listen.  
Finally, using this model with different output 
parameters such as price or carbon dioxide 
emissions to show feasibility rather than just 
capacity could give a better understanding and 
detail into which scenarios are more favourable 
than others. This was an aim of this project but 
unfortunately, due to time constraints, it was not a 
possibility. 
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Abstract – Hypothesis: Crude oil trapped in porous rocks can be emulsified and extracted via surfactant flooding based 
enhanced oil recovery (EOR). In-situ emulsification is reported to increase the efficacy of the EOR process, but the 
mechanism behind this phenomenon is not yet fully understood.  This study aimed to provide a better comprehension of 
these mechanisms and their effect on oil recovery through the use of glass microfluidic models (transparent pore networks 
which allow the direct visualization of fluid flow) and microscopy imaging, a capability beyond the reach of conventional 
imaging techniques like rock core-flood visualisation using CT scans. 
Experiments: This research work employed both homogeneous and heterogeneous microfluidic models to simulate 
different types of underground oil reservoir pore networks. Two surfactants, ALFOTERRA L-145-10s 90 (Surfactant 1) 
and Sodium dodecyl-benzenesulfonate (Surfactant 2), were used in optimally formulated brine solutions to flood oil-
saturated micromodels. Throughout the experiments, pore-scale snapshots were captured to visually document and 
analyse how these surfactants facilitated oil emulsification and oil recovery. 
Findings: The study confirmed that both surfactants, through different mechanisms (W/O emulsions for ALFOTERRA 
L-145-10s 90 and O/W emulsions for Sodium dodecyl-benzenesulfonate), contributed significantly to oil recovery. It was 
also observed that micromodel geometry influenced emulsion size in the case of Sodium dodecyl-benzenesulfonate. 
Additionally, both surfactants demonstrated enhanced oil recovery effectiveness across both geometrical setups. These 
findings underscore the importance of surfactant selection and micromodel geometry in optimizing oil recovery processes. 
The direct visualization offered by micromodels provides a unique insight into the interaction between surfactants and 
trapped oil, thereby informing more efficient and economically viable recovery strategies. 
 
Keywords – Enhanced oil recovery, surfactant flooding, microfluidics, interfacial tension, emulsions, pore-scale 
visualization, microscopy 
 

1. Introduction and Background 

The global demand for energy and fuels relies 
significantly on crude oil, constituting 34.21% 
of the total primary energy supply in 2017 [1]. 
Crude oil is extracted from geological oil 
reservoirs located across the globe and is 
industrially performed through recovery 
methods of increasing complexity; 
denominated as primary, secondary and 
tertiary methods.  

Primary recovery methods utilize natural 
drives such as reservoir pressure and gravity, 
complemented by artificial lift from pumps, to 
extract oil to the surface at production wells. 
Secondary recovery involves fluid injection, 

such as waterfloods, to raise and maintain 
reservoir pressure and also displace oil towards 
production wells. Tertiary recovery methods 
are used after secondary recoveries and include 
Enhanced Oil Recovery (EOR). 

Despite these considerable extraction 
efforts, primary and secondary recovery 
methods applied in sequence only achieve oil 
recoveries of around 35% [2]. With two-thirds 
of the original reservoir oil still unobtained, the 
primary challenge of extraction owes to strong 
capillary forces which trap oil in the porous 
reservoir sediment. These pore-scale capillary 
effects can be described by the capillary 
number: 
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𝐶𝑎 = ఔఓ
ఊ

                            (1) 

This is the ratio of viscous forces to capillary 
forces during an immiscible displacement, 
where ν is the interstitial velocity of the 
injected fluid, μ is the injected fluid viscosity 
and γ is the interfacial tension (IFT) between 
the two immiscible fluids. Higher viscous 
forces relative to capillary forces lead to 
greater deformation and displacement of the 
trapped oleic phase within the pores, 
increasing capillary number and thus oil 
recovery. 

While it's theoretically feasible to increase 
the interstitial velocity of the injected fluid to 
achieve this, practically, such an increase is 
limited, especially after secondary recoveries. 
From an engineering and economic standpoint, 
it's often not viable to increase the viscous 
forces by multiple orders of magnitude. 
Conversely, a more feasible and impactful 
approach involves reducing the IFT between 
the immiscible phases. By decreasing the IFT, 
usually by 2-3 orders of magnitude, a 
significant change in the capillary number can 
be achieved, thereby enhancing oil recovery 
more efficiently and economically. [3].  

Tertiary oil recovery methods, specifically 
chemically enhanced oil recovery (cEOR) by 
the utilisation of surfactants, have emerged as 
a key solution to recovering the immobilised 
oil following initial extraction methods. 
Utilising the interfacial tension (IFT) altering 
properties of the surfactant molecules, the IFT 
between the oil and the injected fluid can be 
considerably decreased during surfactant flood 
injection. Consequently, capillary forces are 
reduced, increasing the systems capillary 
number. Correspondingly trapped oil ganglia 
within the pores are more easily liberated by 
the viscous forces of the flood injection, 
increasing oil recovery. As such, surfactant-
based flooding is recognized for its cost-
effectiveness in achieving substantially high 
ultimate oil recoveries of 50%-70% [3]. 

Additionally, reservoir rock wettability 
alteration is recognized as another crucial 
mechanism to liberating oil as modifying oil-

wet reservoirs into water-wet conditions 
during a surfactant flood drastically reduces 
resistance to flow of the wetted oil thus 
increasing recovery [4].  

However, despite these advantages, 
surfactant flooding faces significant 
drawbacks in the industry. Primarily, 
surfactants are expensive, which introduces a 
higher financial risk when implementing these 
methods. This cost factor necessitates a deeper 
understanding of the process to ensure efficient 
application and optimization of resources. To 
address this, direct visualization becomes 
imperative. Other imaging techniques such as 
X-ray, can't directly observe the phases, and 
their properties are often inferred from other 
parameters like the CT number. In contrast, 
micromodels offer unique insights by allowing 
direct observation of these intricate processes. 

Aside from the widely recognised oil 
recovery mechanisms mentioned already, 
existing surfactant flood studies have reported 
the presence of a macroemulsion in the 
extracted oil product with droplets as small as 
10 μm in diameter [3]. Micromodel flooding 
experiments have demonstrated that these O/W 
and W/O emulsions occur in-situ of the porous 
structure and demonstrate how they increase 
sweep efficiency and local oil recoveries 
within the micromodel by 14-30% compared 
to waterflooding [4]. 

Even more intriguing is the possibility of 
microemulsions forming in-situ of porous 
media [5] - emulsions which are 
thermodynamically stable in comparison to 
macroemulsions, and do not coalesce after 
long periods of time. Micromodels enable the 
direct visualisation of the mechanisms which 
facilitate the formation of these 
microemulsions. This provides valuable 
insights into the behaviour of surfactants 
within the reservoir and bridges the gap in 
understanding the complex dynamics at play. 

This project, recognizing the great 
economic interest in surfactant flooding, aimed 
to directly observe, document, and quantify 
these processes' contribution to enhanced oil 
recovery. By utilizing microfluidic 
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approaches, the study provided direct 
visualization of pore-scale behaviours and 
displacement processes. 

Central to this research was the construction 
of a viable lab-scale experimental system, 
designed to observe and confirm whether 
macro-emulsions and micro-emulsions form 
in-situ or arise through alternative 
mechanisms.  

The project also aimed to explore the impact 
of micromodel geometry on oil recovery. 
Homogeneous micromodels (uniform pore 
structures) and heterogeneous micromodels 
(mimicking complex, non-uniform rock 
structures) were employed to understand how 
different pore structures influence the 
formation and behaviour of emulsions, and 
other mechanisms of oil recovery. 

Additionally, the study evaluated the effects 
of two different surfactants on oil liberation 
mechanisms and overall oil recovery. Key 
aspects of this investigation included the 
emulsion size and types formed, and how these 
properties varied with different micromodel 
geometries.  

By comparing and contrasting these 
outcomes across the range of micromodel 
geometries and surfactant types, the research 
aimed to provide deeper insights into the 
nuanced interplay of surfactant properties, 
micromodel geometries, and their collective 
impact on enhancing oil recovery. 
 
2. Methodology 

2.1. Experimental Methods 

2.1.1. Materials 

Carbon dioxide (housed in an Industrial-grade 
compressed gas cylinder, ≥ 99%) was 
purchased from BOC Ltd., Woking, United 
Kingdom. 

Mineral Oil (‘light’) and Decane (≥ 95%) 
were purchased from Sigma Aldrich, United 
Kingdom and used without further treatment. 

ALFOTERRA L-145-10s 90 (Surfactant 1) 
(90% active) was provided by Sasol Ltd., 
United Kingdom. 

Sodium chloride (NaCl, ≥ 99.5%), Sodium 
dodecyl-benzenesulfonate (Surfactant 2) 
(SDBS, Technical-grade) with co-solvent 
Isobutanol (≥ 99.5%), Lissamine Green B 
powder dye (60%) and Sudan II powder dye 
(90%) were purchased from Sigma Aldrich, 
United Kingdom.  

2.1.2. Sample Preparation 

Two brine solutions were prepared by the 
addition of designated amounts of NaCl and 
Lissamine Green B dye to deionised water to 
make two dark-blue solutions at optimal 
salinities for their respective surfactant 
(3.7wt% NaCl and 3.5wt% NaCl for SDBS and 
L-145-10s 90 respectively). 

SDBS solution was prepared by adding 
specific amounts of SDBS powder, isobutanol 
and Lissamine Green B dye to deionised water 
to make a dark-blue 3wt% SDBS, 5wt% 
isobutanol solution. 

L-145-10s 90 powder and Lissamine Green 
B dye were added to deionised water to make 
a dark-blue 1wt% L-145-10s 90 solution. 
Sudan II dye was added to decane (used as 
purchased, without further treatment) to make 
a dark-orange decane sample. 

All samples and solutions were mildly 
agitated upon preparation. The blue and orange 
dyes enabled easy differentiation between 
oleic and aqueous phases in images. 
 
2.1.3. Experimental Setup 

The experimental set-up consisted of two 
pumps (Teledyne ISCO 100D and Teledyne 
ISCO 260D, ISCO In., Nebraska, United 
States) containing mineral oil and decane 
respectively.  

A micromodel/microfluidic chip (NJ1 
(homogeneous) or EOR PR 20 2 
(heterogeneous)) was housed in a chip holder 
(Fluidic Connect 4515) (all from Microunit 
BV, Enschede, Netherlands) and placed on the 
motorised stage (MAC 600, Ludl Electronic 
Products, Ltd., New York, United States) of an 
inverted light optical telescope (Axio Observer 
A.1m, Carl Zeiss AG, Oberkochen, Germany).  
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Connected to the microscope was a high-
speed colour CCD camera (AxioCam HSc 
CCD, Carl Zeiss AG, Oberkochen, Germany) 
with which digital images and video 
recordings were taken for visual data 
collection. A stage micrometres glass slide 
(R1L3S1P, Thorlabs, New Jersey, United 
States) was used for image resolution 
calculations. 

Figure 1: Schematic of microfluidic experimental set-
up. 

2.1.4. Experimental Procedure 

Two surfactants and two micromodel 
geometries (homogeneous and heterogeneous) 
were investigated which gave rise to four 
experimental combinations. For each 
surfactant/micromodel combination, two 
styles of observation were conducted; a fixed 
camera set-up and a ‘free-roam’ camera set-up. 
The former enabled a quantitative analysis 
while the latter enabled a more qualitative, 
observational analysis. 

A video recording was started, Pump 100D 
was filled with 20ml of mineral oil, Pump 
260D was filled with 15ml of decane and the 
brine and surfactant coils were loaded. The 
pressurised CO2 cylinder was opened, set to 4 
bar and CO2 was injected for 5 minutes to 
saturate the micromodel. 

Brine solution was then injected at 
0.05ml/min for 10 minutes after entry to 
dissolve CO2 into aqueous phase. This was 
followed by decane injection at 0.01ml/min for 
10 minutes after entry to fill the micromodel 
with an ample amount of oleic phase. 

For the fixed camera experiments, an 
elementary area of the micromodel is selected 
(based on an RVEA analysis – Section 2.2) and 
an initial image of this area is taken. 

Brine solution was injected into the 
micromodel for a second time. For the fixed-
camera experiments, this injection rate was 
0.005ml/min for 15 minutes after entry and a 
second image was taken after this time had 
elapsed. For the ‘free-roam’ experiments, 
injection rate was 0.001ml/min for 15 minutes. 
Surfactant solution was then injected into the 
micromodel at the same respective flowrate, 
also for 15 minutes. 

For the fixed-camera experiments, images 
were taken in 30 second intervals until 15 
minutes had elapsed. For the free-roam 
experiments, all zones of the micromodel were 
explored thoroughly during the surfactant 
flood to enable qualitative observations e.g. 
surfactant clearance mechanisms. The video 
recording was then stopped. 

2.2. Analytical Methods 

Ilastik, a machine-learning based image 
analysis tool, was used for image segmentation 
to convert raw microscope snapshots into two-
colour segmented images. 

MATLAB was utilised for porosity 
analysis, representative volume element 
analysis (RVEA), microscope image 
sharpening, oil recovery analysis and 
emulsion/droplet size distribution analysis. 
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3. Results and Discussion 

3.1. Micromodel Characterisation  

3.1.1. Normalised Representative 
Elementary Volume (REV) Analysis 

 

Figure 2: Representative Area Element Analysis for 
porosity of micromodel. Mean solid grain size for each 
respective geometry: Heterogeneous = 0.07757mm² and 
Homogeneous = 0.0499 mm² 

The REV analysis was normalised across 
micromodel geometry to account for 
differences in solid grain size distribution in 
the heterogeneous micromodel compared to 
the homogeneous micromodel. In Figure 2, it 
is clear that the homogeneous plots equilibrate 
faster than the heterogeneous plots. This is 
because all homogeneous grains were identical 
in size whereas the heterogeneous grains were 
more randomly distributed. 

These minimum equilibrated area values for 
each geometry were then multiplied by the 
respective average grain sizes to obtain the 
minimum elementary micromodel area which 
was sufficiently representative in porosity of 
the whole micromodel. This minimum 
representative micromodel area was 
determined to be approximately 11.6mm2 and 
7.5mm2 for the heterogeneous and 
homogeneous micromodels respectively. As 
such, an area of 11.6mm2 was employed to 
satisfy both geometries. 
 

Figure 3: Photos taken during micromodel surfactant 
floods. Depicts emulsion types and sizes formed by 
surfactants 1 and 2 in different micromodel geometries:  
(A) is surfactant 2 in the heterogeneous micromodel, 
(B) is surfactant 2 in the homogeneous micromodel,  
(C) is surfactant 1 in the heterogeneous micromodel, 
(D) is surfactant 1 in the homogeneous micromodel. 
The scale bar is 100μm. 

 

Figure 4: Photos taken during Surfactant 1 flood of 
heterogenous micromodel. Depicts the splitting of 
droplet (a) into smaller blobs (b) and (c). Also depicts 
the displacement of bulk oil phase from pore. The scale 
bar is 100μm. 
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Figure 5: Timed snapshots depicting detachment of oil 
ganglion (a) from main oil ganglion body and further 
separation into smaller O/W emulsions (d) and (e) in the 
presence of Surfactant 2. The scale bar is 100μm. 

Figure 6: Timed snapshots depicting oil phase liberation 
via filament stretching, in the presence of Surfactant 1. 
The scale bar is 100μm. 

3.2. Qualitative Analyses 

3.2.1. Oil Recovery Mechanisms 

As displayed in Figure 3, L-145-10s 90 
(Surfactant 1) and SDBS (Surfactant 2) utilised 
different oil liberation mechanisms. 
Experiments involving Surfactant 1 were 
characterised mainly by two mechanisms. The 
first was the formation of water-in-oil (W/O) 
emulsions (Figure 3 – C, D) which displaced 
oil-occupied spaces, propagating oleic phase 

along the main flow path. A magnified image 
of this mechanism is displayed in Figure 4. 
The second was the ‘stretching’ of oil ganglia 
into thin streaks which were pulled along pore 
throats in the micromodel Figure 6. In the 
homogeneous geometry, these observed 
streaks rarely broke into smaller droplets or 
segments; they are simply ‘snaked’ through the 
entire length of the micromodel. This 
phenomenon can be attributed in part to the 
‘wetting’ effect of the surfactant which caused 
the micromodel inner wall surface to transition 
from ‘oil-wet’ to ‘water-wet’. This low-friction 
environment yielded an increased mobility of 
the oil streaks thus enabling easier flow. 

This effect was also due to the lowering of 
interfacial tension (IFT) by the surfactant 
molecules resulting in a more 
thermodynamically stable system with a more 
fluid and flexible oil-water interface. The 
‘stretching’ of these oil filaments generated 
new interfacial area which typically requires a 
large input of work energy; 

 
                    𝑊 =  𝛿௜ × ∆𝐴                      (2) 

 
Where W is work energy, δ୧ is the work per 
unit area required to form an interface and ∆A 
is the change in interface area. However, since 
this stretching of the oil ganglia was 
accompanied by adsorption of surfactant at the 
oil/water interface, the resulting interfacial 
tension was much lower therefore the required 
work energy per unit area was also lower. This 
yields a process more thermodynamically 
feasible than if it were to proceed in the 
absence of surfactant. 

Surfactant 2 also initially conveyed oil in 
observed streaks as displayed in Figure 5, but 
these were quickly segmented into smaller oil 
ganglia or ‘snapped off’ at pore throats into oil-
in-water (O/W) emulsion droplets (Figure 3 – 
A, B). In the heterogeneous micromodel, larger 
oil droplets often blocked pore throats in 
frequented paths thus forcing flow in a new 
unswept path, increasing sweep efficiency. 
These droplets and segments rarely coalesced 
as they flowed downstream implying they 
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were stabilised by SDBS surfactant. This is in 
agreement with observations made by Zhao et 
al. [4] who also employed SDBS surfactant in 
an EOR microfluidic set-up and reported 
similar results. 

3.2.2. Emulsion Types 

As stated in Section 3.2.1., Surfactant 1 
exhibited W/O emulsions while Surfactant 2 
was characterised by O/W emulsions. The 
complex nature of surfactant, oil and water 
systems raises difficulties in predicting 
emulsion properties and behaviours. However, 
there exists some general principles to help 
predict/explain the occurrence of emulsion 
types in particular surfactant systems. 

Bancroft [7] and Clowes [8] first recognised 
that for two-phase emulsion systems, the 
interface would curve to maximise the tension 
of the inner surface relative to the outer 
surface. Bancroft’s Rule states - “The external 
phase of an emulsion system will be the phase 
in which the surfactant is the most stable.”[9] 

Winsor divided emulsion types into 
different classes; O/W emulsions being Type I 
forming at higher salinities whilst W/O 
emulsions were classed as Type II, forming at 
lower salinities [9]. 

Based on these principles and given that 
Surfactant 1 - being a sulfate-based surfactant 
- is less water-soluble than Surfactant 2 
(sulfonate-based) [10][11], it can be reasoned 
as to why Surfactant 1 exhibited W/O 
emulsions while Surfactant 2 exhibited O/W 
emulsions. 

Uncertainty exists, however, due to the fact 
that there are many more variables which 
govern emulsion system properties and 
behaviour such as temperature and oleic phase 
properties, but the principles introduced by 
Bancroft, Clowes and Winsor provide an 
excellent starting point to understanding and 
predicting emulsion formation. 

3.2.3. Emulsion Size 

From visual inspection of Figure 3, it is 
apparent that the generated emulsions not only 
differed in type but in size also.  

Figure 7: Emulsion droplet diameter distributions. 
Mean diameter values marked by black dotted line. 

As depicted by the left two graphs in Figure 
7, Surfactant 2 typically exhibited a normal 
emulsion size distribution in both micromodel 
geometries. However this distribution was 
significantly shifted to the left when employed 
in the heterogeneous micromodel along with a 
32% decrease in average emulsion droplet size. 

The majority of Surfactant 2 O/W 
emulsions were observed to form in-situ of the 
micromodel via ‘snapping action’ largely 
mediated by pore throat diameters. And given 
the heterogeneous micromodel possessed 
larger solid grains and smaller pore throats, 
smaller emulsion droplets were expected to 
form thus explaining the left-shifted 
distribution and decreased average emulsion 
droplet diameter. 

Contrarily, as shown in the right two graphs 
in Figure 7, Surfactant 1 exhibited a more 
erratic emulsion size distribution seemingly 
independent of micromodel geometry. 
Heterogeneous and homogeneous distributions 
were almost identical, with similar average 
emulsion diameters also (4% difference 
compared to 32% difference for Surfactant 2). 

This apparent independence of emulsion 
size on micromodel geometry was because a 
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smaller percentage of Surfactant 1 (W/O) 
emulsions were formed in-situ of the 
micromodel compared to Surfactant 2 (O/W) 
emulsions. The majority of these W/O 
emulsions were observed to form upstream 
prior to micromodel entry (unmediated by pore 
throat sizes) explaining why the emulsion size 
distributions for Surfactant 1 were less 
dependent on micromodel geometry.  

3.2.4. In-situ micro-emulsification 

Microemulsions are typically categorised as a 
special sub-class of emulsions. They are 
classed as ranging from 5-200nm in size, only 
forming in specific system compositions and 
most importantly, are thermodynamically 
stable [9]. 

In relation to enhanced oil recovery (EOR), 
due to the technical inability thus far to 
monitor flow in porous media, the nature of the 
emulsification process and its importance to 
EOR is largely unknown. However, the advent 
of microfluidics has enabled a means of direct 
visualisation of flow systems in porous media. 

Tiny green emulsion droplets were 
observed in the micromodel during 
experiments where Surfactant 2 was 
employed. These were observed to form within 
the micromodel and did not coalesce over the 
course of the surfactant flooding period 
implying that an in-situ microemulsification of 
surfactant, oil and water phases had occurred. 

These microemulsions were only observed 
with Surfactant 2 which may owe to the 
ultralow interfacial tension (IFT) conditions 
required for microemulsification. IFT relates 
to surfactant bulk and surface amounts of 
surfactant species ‘i’ through the following 
equation; 

 
𝑑𝛿 = −Γ௜𝑅𝑇 × 𝑑(𝑙𝑛𝐶௜)              (3) 

 
Where 𝛿 is interfacial tension, Γ௜ is surface 
excess of surfactant ‘i’ and 𝐶௜ is the 
concentration of surfactant ‘i’ in the bulk 
solution [9]. It is worth noting that the 
maximum value of Γ௜ is also proportional to 
solubility. 

As such, it can be said that generally, the 
more soluble a surfactant, the higher its 𝐶௜ and 
Γ௜ which constitutes a lower 𝛿 (IFT), therefore 
the more likely the system is to undergo 
spontaneous microemulsification. 

Since Surfactant 2 has been established to 
be more water-soluble than Surfactant 1 
(Section 3.2.2.), it resolves at a lower IFT 
therefore its system is more likely to initiate 
microemulsification, explaining the 
occurrence of green microemulsions in 
Surfactant 2 systems and the absence in 
Surfactant 1 emulsion systems. 

3.3. Quantitative Analyses 

3.3.1 Oil Recovery Analysis 

Figure 8: Oil saturations following initial oil injection, 
water flood and surfactant flood for experiments A, B, 
C and D.  
(A) is surfactant 2 in the heterogeneous micromodel, 
(B) is surfactant 2 in the homogeneous micromodel, 
(C) is surfactant 1 in the heterogeneous micromodel, 
(D) is surfactant 1 in the homogeneous micromodel. 

Analysing the bar chart presented in Figure 
8; If surfactant type is fixed (Chart A is 
compared with B and Chart C is compared 
with D), it can be said that on average, the 
homogeneous micromodel achieved about 5% 
more oil recovery over the brine and surfactant 
flooding sequence than the heterogeneous 
micromodel. This is because, as discussed in 
Section 3.2.3., the homogeneous micromodel 
had a larger average pore throat diameter than 
the heterogeneous micromodel. Therefore, 
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there existed a greater total area for O/W and 
W/O emulsions to propagate oil flow through 
the micromodel, thus yielding an increased 
overall oil recovery. 

If micromodel geometry is fixed (Chart A is 
compared with C and Chart B is compared 
with D), one can note that, on average, 
Surfactant 1 achieved around 4.5% more oil 
recovery than Surfactant 2. This owed to 
Surfactant 1’s oil recovery mechanisms (W/O 
emulsions and oil streaks) being more effective 
at mobilising and conveying the oil through the 
micromodel than Surfactant 2 (O/W 
emulsions). As such, this increased oil 
liberation led to an increased oil recovery. 

4. Conclusions and Recommendations 

In this research work, a novel, functional 
microfluidic set-up was successfully 
developed to investigate effects of surfactant 
types and micromodel geometry on oil 
recovery. This microfluidic approach also 
enabled the direct visualisation of flow 
phenomena and emulsification processes as a 
result of surfactant flooding. 

Surfactant 1 was characterised by long oil 
streaks and W/O emulsions whilst Surfactant 2 
utilised O/W emulsions to mobilise and 
liberate the oleic phase. Both surfactants 
facilitated these mechanisms by reducing IFT 
and shifting micromodel wettability. 

Emulsion size was found to be micromodel 
geometry dependent for Surfactant 2 only; 
with the average W/O emulsion diameter being 
32% smaller in the heterogeneous model 
compared to the homogeneous. Surfactant 1 
O/W emulsion size was independent of 
micromodel geometry; exhibiting only a 4% 
difference in diameter across micromodel 
geometries. This invariance in geometry may 
prove advantageous on at the industrial scale 
as Surfactant 1 can be employed in a wider 
range of reservoir types. 

Both surfactants improved overall oil 
recovery, but Surfactant 1 proved more 
effective than Surfactant 2; achieving 4.5% 
greater oil recovery. However, regarding 
industrial scale application, with Surfactant 1 

being less commercially available than 
Surfactant 2, further economic considerations 
are required to determine whether the 
additional cost of employing Surfactant 1 
instead of Surfactant 2 is justified by the 
marginal improvement in oil recovery. 

Additional reservoir-scale research is also 
required to assess the validity of the results for 
full-scale field applications. This is to account 
for potential differences in experimental 
conditions, increased complexity of 3-
dimensional porous rock media as opposed to 
glass micromodels alongside other general 
difficulties in scale-up. 

Considering the limitations of this work, the 
accuracy and reliability of quantitative oil 
recovery analysis could be improved by 
implementing automation of the image 
segmentation workflow and ensuring complete 
separation of oleic and aqueous phases prior to 
micromodel entry by implementing a dual 
micromodel inlet. These improvements would 
enable a more reliable investigation into in-situ 
microemulsions and provide more rigorous 
evidence of their existence and importance to 
enhanced oil recovery as a whole. 

The microfluidic set-up developed in this 
research work can also be adapted for a 
plethora of other disciplines and applications 
e.g. catalytic bed reactors [12], water-fuel 
separations and wastewater treatment [13] 
where visualisation of multi-phase flow 
behaviour would prove useful. 

This research work could also be extended, 
using the current microfluidic set-up to engage 
in sensitivity studies e.g. investigating the 
effect of varying flowrates, brine salinities or 
surfactant concentrations. 
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Ultrathin Graphene Oxide Based Membranes with Tailored Graphitic Domain for 
Organic Solvent Nanofiltration 
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Abstract The reduced graphene oxide (mrGO) membranes attracted intense interests in the field of organic 
solvent nanofiltration (OSN) as a reliable alternative to graphene oxide (GO) membranes suffering from instability 
and swelling issue. The separation capability of graphene oxide-based membranes can be evaluated by permeance 
and size exclusion ability. The permeance is controlled by the thickness of layer-stacked GO, pore density, the 
chemistry of GO, and the physical properties of the solvent; and the selectivity largely relies on the interlayer d-
spacing of membranes. Four GO-based membranes were discussed in this research: graphene oxide (GO), mildly 
reduced graphene oxide (mrGO), porous graphene oxide (PGO) and mildly reduced porous graphene oxide 
(mrPGO). The mild reduction approach proposed in this study allows for preferential control of the graphitic 
domain in mrGO membranes and fabricating ultrathin membranes with the thickness of 18-50 nm. The 
mrGO_9h_10s exhibited the most significant and feasible selectivity of 93.6% with a methanol permeance rate 
of 3.98 LMHbar-1. Although the GO membrane showed higher permeance compared with mrGO, it was not 
structurally stable in the solvent. Both PGO and mrPGO membranes were not taken to further research since the 
oversized pores lost the selectivity even though a feasible permeance rate was presented. 
 
Keywords Graphene oxide, Mildly reduced graphene oxide, Mildly reduced porous graphene oxide, Hollow fibre 
membranes, Organic Solvent Nanofiltration 
 
 

1. Introduction 
 

Two-dimensional (2D) materials are rapidly 
being investigated as a promising platform for the 
development of gas and liquid separation 
technologies because of their unique atomic 
thickness, micrometre lateral dimensions and 
physicochemical features [1].  Graphene is a single-
atom-thick flat 2D carbon material consisting of a 
monolayer of carbon atoms in a honeycomb array 
that exhibits electrical and thermal conductivities. 
As the earliest practical discovered and common 2D 
material, graphene-based materials tailored with 
different structural and physiochemical structures 
have been explored extensively and show the 
potential for assembling high-performance 
membranes [2].  

Organic solvents were widely used in the 
chemical and pharmaceutical industries. Separation 
between products and residual reactants, as well as 
catalysts, is widespread and of great importance. As 
a result, membrane separation technology that can 
work in various organic solvent environments was 
expected and more research into multipurpose 
membranes that act stable in various organic solvent 
nanofiltration (OSN) is necessary [3]. 

The membrane technology is widely used for 
industrial separation and purification processes 
because it is energy-saving, cost-saving and 
environmentally friendly [2]. Nanofiltration (NF) 
membrane has various industrial applications such 
as, desalination and wastewater pre-treatment 
because it is mesoporous (pore size in a range of 1-
10 nm) with higher performance, selectivity and 

lower pressure requirement compared to Reverse 
Osmosis (RO) [4]. 

Graphene Oxide (GO), the oxidative form of 
graphene, is highly rated due to its unique 
permeation pattern, large surface area, and high 
chemical tolerance [5]. GO is expected to be a 
feasible choice and has great potential in separation 
since GO could be easily and rapidly mass-produced 
from affordable raw materials graphene by chemical 
oxidation and ultrasonic exfoliation [6]. The 
nanochannels formed between GO nanosheet layers 
allow molecule separation, which confirms the 
extensive application of GO in nanofiltration.  

The ceramic hollow fibre (HF) supports are 
widely used in the industrial separation process 
because of their advantages of high-packing density, 
chemical, thermal and structural stability, and strong 
and rigid properties [7,8]. The ultrathin GO 
membranes were coated on the HF support by 
vacuum filtration method. The hydrogen bonding 
formed by oxygen functional groups on GO 
nanosheets and hydroxyl groups on the surface of 
HF stabilised the GO/alumina HF membranes. 
Because of this strong interfacial interactions, 
GO/alumina HF membrane could withstand harsh 
conditions so that could be applied in multipurpose 
of the chemical and pharmaceutical industries [6, 8]. 

GO is a single layer of carbon monoatomic on 
the basal planes and sides, formed in a honeycomb 
with oxide groups (carbonyl, epoxy, and carboxyl). 
Its single-atom thickness property means it can be 
stacked easily. The presence of these oxygen 
functional groups in the GO makes GO nanosheets 
very hydrophilic and becomes the reason for 
membrane swelling in wet conditions. The swelling 
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effect of GO could be reflected by the interlayer d-
spacing. That is, the dry GO has around 0.8 nm 
interlayer d-spacing while after hydration the d-
spacing has enlarged to around 6 nm [9]. The 
interlayer d-spacing could be efficiently controlled 
by crosslinking GO nanosheets with multivalent 
ions or organic crosslinkers so that their stability 
could be improved [2]. 

To further improve the stability of GO, reduced 
GO (rGO) that removes the in-plane oxygen 
functional groups of GO can be prepared. However, 
the fully reduced GO membranes are not stable since 
only a few oxide groups are mainly responsible for 
GO flakes stacking and show low permeance [3]. 
Hence, the performance of GO-based membranes 
could be optimised by investigating the mildly 
reduced graphene oxide mrGO membranes.  

The feasibility and performance of mrGO 
membranes for OSN were studied and explored in 
this research. With the comparison of other GO-
based membranes (GO, PGO and mrPGO), four 
characterisation techniques are introduced to 
evaluate the effect of mild thermal reduction degree 
on membranes nanostructures and interlayer d-
spacing for OSN. 

To further analyse the sieving properties of 
ultrathin graphene oxide-based HF membranes with 
tailored graphitic domain for OSN, the dye 
Erythrosin B (EB) was used for the rejection test. 
 

2. Methods 
 
2.1 Materials  
 
The chemical materials used for this experiment 
were referenced to Wu, Moghadam and Li (2022) 
[10]. The graphite powder (99% carbon basis, 325 
mesh), potassium permanganate (KMnO4, ≥
99.3%), and 1-Methyl-2-pyrrolidinone (NMP, 
99.5%, anhydrous) were obtained from Sigma 
Aldrich. VWR supplied hydrogen peroxide (H2O2, 
30%), hydrochloric acid (HCl, 37%), and ethanol 
(absolute, VLSI). Sulfuric acid (H2SO4, 98%) and 
ammonia solution (NH4OH, 28–30%) were supplied 
by Supelco. The alumina hollow fibre was prepared 
by alumina oxide powder (alpha-phase, 99.9% 
metals basis) which was supplied by Alpha Aesar. 
Glass fibre filters were obtained from Whatman (US 
reference). 
 
2.2 GO synthesis  
 
According to the previously reported method 
[10,11], GO was synthesised by the well-known 
modified Hummer’s method and then dispersed in 
water by sonication, which ultimately resulted in 
stable GO dispersions with 2 mg/ml concentrations.  

Sulphuric acid (390 mL) was added to graphite 
powder (10 g) in a two-wall glass reactor, and the 
solution was agitated for 10 minutes while the 
temperature was kept at 5 oC. Then, 50g of 
potassium permanganate (KMnO4) was added to the 
mixture and stirred for 12 h at 35 oC. The 500 mL of 
deionised water (DI water) was added to the solution 
dropwise, and the temperature was kept below 5 oC 
and stirred for an hour. A 10% hydrogen peroxide 
(H2O2) solution was slowly added to the solution 
until the colour turned into golden yellow followed 
by stirring for an hour. Hydrochloric acid (HCl) 
aqueous solution (10 wt%) was used to purify the 
synthesised GO. The obtained GO cake was dried 
under a vacuum at room temperature for more than 
3 days. The GO powder was redispersed in acetone 
and washed in bath sonication for 10 minutes 
followed by vacuum filtration pass through. To 
obtain GO powder, the cake layer was dried at room 
temperature for 3 days. The GO_xs referred to the 
coating time x seconds of GO dispersions. 

 
2.3. Porous Graphene Oxide (PGO) synthesis  
 
The mild chemical etching method of PGO 
nanosheet synthesis was conducted as previously 
reported[10, 11]. Before synthesis, a 400 ml GO 
(2mg/ml) dispersion was prepared by using bath 
sonication for 30 minutes. NH4OH and H2O2 were 
added into GO dispersion in the volume ratio of 
NH4OH: H2O2: GO = 20:1:1 and the dispersion was 
stirred in a double-walled glass reactor at 50 ℃ for 
5h. Depending on the etching time, the pore size and 
porosity of PGO nanosheets could be tailored. The 
PGO dispersion was cooled in an ice bath and 
centrifuged at 12000 rpm for 1 h. In order to remove 
the residual chemical agents NH4OH and H2O2 and 
purify the PGO dispersion, a dialysis tubing 
membrane was used to dialyse redispersed PGO 
flakes against deionised water (DI water) for several 
days. PGO_xh referred to the GO nanosheets etched 
by x hours. 
 
2.4 mrGO and mrPGO synthesis 
 
According to Kim et al. (2018) [12], the synthesized 
and purified GO was dispersed homogeneously in 
water using a sonication bath filled with oil to 
maintain a uniform temperature. The dispersed GO 
solution was added to a round-bottom flask and 
stirred under flowing nitrogen that can sweep off the 
vapour and avoid the rebonding of functional groups 
and GO nanosheets. The prepared solution was 
maintained at 100 oC and stirred for 3h, 5h, 7h and 
9h to reduce the GO dispersions. The mrGO_xh_ys 
referred to as the GO nanosheets were mildly 
reduced by x hours and coated by y seconds. By 
increasing the thermal reduction time, the interlayer 
d-spacing was decreased. Analogously, mrPGO was 
synthesised from the PGO dispersions. And 
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mrPGO_xh_ys referred to PGO nanosheets were 
mildly reduced by x hours and coated by y seconds.  
 
2.5 Membrane fabrication and preparation 
 
The preparation of alumina hollow fibres was 
referred to Tan, Liu and Li (2001) [8, 13]. Before, 
performance tests, alumina hollow fibres were 
assembled on the stainless-steel holder by using 
epoxy resin to seal.  

The preparation of GO/alumina HF membrane 
used the vacuum filtration method. In order to get a 
uniform coating and ultrathin membranes, the GO-
based dispersions were diluted to low concentrations 
of 0.1 mg/ml and 0.025 mg/ml before vacuum 
filtering. The aqueous GO-based dispersions were 
filtered through hollow fibre, and then the 
synthesized GO/mrGO/mrPGO membranes were 
deposited on hollow fibres. After filtration, the 
membranes were dried under a vacuum condition at 
40 ℃  for 2 to 3 hours before conducting the 
permeation testing of OSN.   

The GO-based membranes are formed by 
stacking the flakes layer by layer, with the aid of 
vacuum filtration. The thickness of membranes 
could be controlled by adjusting the concentrations 
of dispersions and the coating time. 
 
2.6 Membranes Performance Test 
 
2.6.1. Solvent Permeance Test 
 
The permeance for pure solvents Methanol, Hexane 
and water of membranes were evaluated using a 
dead-end filtration cell. The schematic diagram of 
the permeance test could be demonstrated in Figure 
1. The nitrogen gas was injected into the cells that 
were partially filled with pure organic solvents or 
dye solution to adjust the pressure applied in the 
cells by a pressure regulator. In this experiment, the 
pressure applied from 6 to 10 bar depended on the 
permeance behaviour. The permeate through the 
membranes was collected by a container and sealed 
with a parafilm in order to avoid the evaporation of 
solvents during nanofiltration. The programmed 
balances were used to record the weight changes of 
permeate in a time interval of every minute until the 
permeance reached a steady state for a certain time. 
The permeance J of each membrane was calculated 
with Equation 1. 
 

𝐽 = ∆ெ
ఘ×஺×∆௧×௉

      (1) 
 
Where 𝐽 is the permeance in LMHBar-1, ∆𝑀 is the 
changed mass of permeate in g, 𝐴 is the effective 
surface area in m2, 𝑡 is the testing time in h, 𝜌 is the 
density of each pure solvent in g/L, and 𝑃 pressure 
in bar. 

2.6.2. Rejection Test 
 
The EB dye with a concentration of 20 mg/L was 
dissolved in methanol. The rejection test was carried 
out in dead-end cells with a similar setup as shown 
in Figure 1.  

Took around 1-2 ml of permeate from the collector 
and feed solutions (EB dye), and stored them in 
separate tubes for detecting the rejection. The 
concentration of feed and permeate was measured 
by optical absorption spectroscopy UV-vis 
absorption. Then the rejections R of each membrane 
for EB dye solution could be calculated from the 
equation X. 
 

𝑅 = ൬1 − ஼೛
஼೑

൰ × 100%      (2) 

 
Where 𝑅  is the rejection rate, 𝐶௣  is the permeate 
concentration and 𝐶௙  is the feed solution 
concentration in mg/L.  
 
2.7 Membrane Characterisation Techniques 
 
The morphology of the GO-based membranes and 
dimensions of flakes were observed by the Scanning 
Electronic Microscope (SEM). X-ray Diffraction 
(XRD) was applied to detect interlayer d-spacing of 
membranes by adjusting the 2𝜃 contact angle in a 
range from 5-20 °. The interlayer d-spacing of each 
membrane was calculated by Bragg’s equation [14] 
as shown in Equation 3. 
 

         𝜆 = 2𝑑 ∙ 𝑠𝑖𝑛(𝜃)        (3) 
 
Where 𝜆 is the X-ray wavelength, d is the distance 
between adjacent nanosheets and layers,  𝜃  is the 
diffraction angle. 

Dynamic Light Scattering (DLS) measured the 
particle size distribution and gave the average 

Figure 1. The scheme of permeance test set up for organic 
solvent nanofiltration and dye rejection test [8]. 
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particle size. The changes in membranes’ particle 
compositions and functional groups were detected 
by X-ray Photoelectron Spectroscopy (XPS). 

3. Results and discussions 
 
3.1 Morphology features and microstructures of 
GO-based hollow fibre membranes 
 
3.1.1 Scanning Electron Microscopy (SEM) 
 
Four types of modified-GO membranes were chosen 
for further analysis in this research, including 

primitive graphene oxide (GO), porous graphene 
(PGO), mildly reduced graphene oxide (mrGO) and 
mildly reduced porous graphene oxide (mrPGO). 
Figure 2 showed the outer surface and cross-
sectional images of (a,b) GO, (c,d) mrPGO_7h, and 
(e,f) mrGO_9h nanosheets coated upon the alumina 
hollow fibre substrates using scanning electron 
microscopy (SEM) method under the same coating 
time and concentrations. With the same 
magnification (10,000x), the morphology of GO-
based membranes were observed. The porosity 
behaviour of PGO could be visualised from Figure 
2(c) since this more mottled display exhibited an 
increased pore density compared with primitive GO 

18.46 nm 

(a) (b) (c) 

(d) (e) (f) 

Figure 3. Outer surface and cross-sectional images of mrGO hollow fibre membranes fabricated by (a-c) 5s and (d-f) 10s coating time in 
concentration of 0.025mg/ml. 

~ 18.46 nm 

~ 47.96 nm 

(a) 

(b) (d) 

(e) 

(f) 

(c) 

Figure 2. Outer surface and cross-sectional images of (a,b) GO, (c,d) mrPGO_7h and (e,f) mrGO_9h under same coating time and 
concentrations of 15s and 0.1mg/ml respectively. 

~170 nm ~ 95.21 nm ~ 133.3 nm 
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in Figure 2(a). Likewise, the same comparison result 
could be obtained from Figure 2 (c) and (e). In terms 
of the cross-sectional surface of GO, mrPGO and 
mrGO layers in Figure 2 (b), (d) and (f) respectively, 
the laminar structure of coating layers was observed, 
and the thicknesses were detected: an average 
thickness value of approximately 170 nm in base GO 
nanosheets, followed by 133.3 nm of thickness of 
mrGO nanosheets and the thinnest was mrPGO 
nanosheets with about 95.2 nm. 

The morphology of mrGO hollow fibre 
membranes with varying coating time of 5s and 10s 
and 0.025 mg/ml concentration was observed, as 
shown in Figure 3. The effectiveness of coating was 
represented by the different colour gradations in 
Figure 3 (a) and (d), where the darker the surface 
image, the more stacking of mrGO layers. 
Moreover, Figure 3 (c) exhibited a thickness of 
18.46 nm with 5s coating and as expected, thicker 
layers of mrGO were observed in Figure 3 (f) with a 
thickness of 47.96nm.  

Thickness measurements of GO modifications in 
this research were set for two initiatives: Firstly, 
thickness acted as the key factor in deciding the 
permeation performance and the scientific detection 
provided strong evidence to explain the behind 
story; besides, the conditions which influenced the 
thickness of coating layers were also taking into 
consideration. Therefore, we can conclude that the 
mildly reduced GO and PGO would have smaller 
thickness since the oxygen functional groups on the 
basal plane were removed and reducing the coating 
time would also help with thinner the coating layers. 

 
3.1.2 X-Ray Diffraction Spectra Analysis (XRD) 

Selectivity of membranes largely relied on the 
interlayer d-spacing which varied for different 

based-GO nanosheets compositions and functional 
groups. The laminar structure of GO membranes 
prepared by the vacuum-filtration method could be 
confirmed by using XRD. From XRD spectra 
analysis in Figure 4(a), the peak of the GO 
membrane was found at 2θ = 9.56 degrees. By 
applying Bragg’s equation [14], with the known 
wavelength of x-ray beam of 0.154 nm, the d-
spacing value was calculatable and analogously, the 
d-spacing values of mrPGO, mrGO_3h, mrGO_7h 
and mrGO_9h with the peak at 2θ = 11.53, 11.58, 
12.12, 12.40 degrees were determined in Figure 4(b). 
From the results calculated, GO had the largest 
interlayer spacing followed by mrPGO and mrGO 
alternatives. Furthermore, it is noticeable that with 
longer thermal reduction time, the 2θ values 
corresponding to the peaks shifted to the right under 
the same coating concentration and time condition, 
which contributed to smaller values of interlayer 
distance. The explanation would be with a higher 
percentage of reduction reaction, more oxygen 
functional groups between GO layers were removed, 
therefore, confirming the inverse proportion 
between reduction and interlayer d-spacing, and 
explaining the rationality for the application of 
mildly reduced GO. 

3.1.3 Dynamic Light Scattering Analysis (DLS)  
 
Dynamic Light Scattering analysis [15] was 
prepared for studying the diffusion behaviour of 
molecules in solution whilst a summarized particle 
size distribution of all four types of modified-GO 
membranes could be observed from Figure 5. Three 
measurements were taken for each membrane 
detection, and the average distribution shape was 
compared in terms of the particle size. Figure 5 

Figure 4. X-ray diffraction spectra of (a) GO and (b) mrPGO and mrGO reduced for 3h, 7h and 9h respectively. 

(a) (b) 
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illustrated that the size distribution of all nanosheets 
used for the membranes preparation were nearly 
uniform and within an acceptable deviation range. It 
then could be assumed that the effect of particle size 
on the permeation performance could be neglected. 

3.1.4 X-ray Photoelectron Spectroscopy (XPS)  

The reduction process of the GO membrane 
involved chemical reaction which removed oxygen 
functional groups, and X-ray Photoelectron 
Spectroscopy was applied to identify the elemental 
composition and the surface chemistry. From Figure 
6(a) of the GO membrane, two significant peaks of 
C-O which is dominant and C-C bonds were 
observed with the highest centred at Ebinding ≈ 287 
eV and followed by 285 eV. The abundance of C-O 
bonds specified that the dominant bonds were 
related to oxygen functional groups. Looking into 
mrPGO_7h in Figure 6(b), the binding energy 
corresponding to the highest peak was Ebinding ≈ 
284.5 eV followed by the second high peak at Ebinding 
≈ 287 eV. However, compared with Figure 6(a) of 
GO, the dominant C-O bonds were replaced by C-C 
bonds in mrPGO_7h, indicating the changing of 
compositions and the internal structures. Likewise, 
Figure 6(c) and (d) showed identical behaviour with 
mrPGO_7h since the mild reduction reaction was 
implemented. Similar binding energy data of the 

Figure 6. XPS spectra of (a) GO, (b) mrPGO_7h, (c) mrGO_7h and (d) mrGO_9h 

(a) (b) 

(c) (d) 

Figure 5. Particle size distributions of GO, mrGO, PGO and 
mrPGO in concentration of 20 ppm using detecting equipment  
Litesizer DLS. 
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peaks were observed as Ebinding ≈ 284 eV and 286.5 
eV for the highest peak and second peak 
respectively. Another finding from the graphs was 
the increased C-C peak intensity with the longer 
thermal reduction time, and oxygen-related 
functional groups including O-C=O, C-O, C-OH 
and C=O showed a decreasing trend. A larger degree 
of reduction proved the enhanced predominance of 
C-O bonds. 

Further analysis of the carbon-to-oxygen (C/O) 
ratio with respect to various material conditions was 
presented in Figure 7. With the higher percentage of 
reduction, the carbon-to-oxygen ratio data increased. 
mrGO groups exhibited the highest value which 
proved the stability nature because reduction 
lessened the undesirable interactions between 
membrane and solvent. Besides, although 
mrPGO_7h had a higher carbon-to-oxygen ratio 
than that of GO which indicated the partial reduction 
happened, it is still around 1.44 times lower than the 
value of mrGO. Porosity characterization of mrPGO 
made it still maintain some functional groups on the 
pore edges that maintained the stability of the 
mrPGO dispersions and its processibility into 
membranes. Lastly, the effect of reduction time on 
the C/O ratio could be neglected as no obvious 
differences could be found. 

3.2 Solvent permeance and dye rejection test 
 
3.2.1 Solvent permeance test 
 
Based on the understanding of the membrane 
structures using characterisation techniques, the 
pure solvent permeance test was carried out with 
GO-based membranes in 0.1 mg/ml dispersion 
concentrations and 15 s coating time. Pure solvents 
were categorised into two types: organic solvents 
including methanol and hexane, as well as inorganic 
water solvents for comparison. The permeance 
testing results were summarized in Figure 8, the pure 

solvent permeance rates of each membrane were 
measured and averaged after 4-5 tests. In general, 
four membranes all witnessed the fastest permeance 
in the hexane environment followed by methanol 
and water. The mrPGO_7h_15s HF membrane had 
the highest permeance of organic solvents among 
four membranes with 8.72 LMHBar-1 in hexane, 
4.76 LMHBar-1 in methanol and 4.20 LMHBar-1 in 
water. In terms of water permeance, it was enhanced 
by porosity as the pores created more shortcuts for 
molecules to pass through and shorten the required 
permeance length. Besides, mrPGO_7h_15s HF 
membrane had around two-fold faster than 
PGO_5h_15s because the mild reduction removed 
the oxygen functional groups in PGO nanosheets 
and the interlayer d-spacing decreased so that 
shorter distance for molecules to travel and showed 
higher permeance. Additionally, no data was 
recorded for water permeance by using GO_15s and 
mrGO_9h_15s membrane, therefore, the concept of 
making ultrathin membranes has arisen, which was 
achieved by lower dispersion concentrations and 
less coating time, and used to further analyse the 
solvents permeation performance. 

As aforementioned, GO and mrGO HF 
membranes with 0.025 mg/ml dispersion 
concentrations and 5s, and 10s coating time were 
glued and tested. From Figure 9 and 10, it can be 
observed that with lower dispersion concentrations 
and less coating time, the permeability of organic 
solvent nanofiltration was enhanced. Although GO 
membranes showed more than a five-fold faster 
permeance rate than mrGO membranes, they were 
not considered for further research because they 
exhibited unstable and irreproducible behaviour 
during the experiment. The abundance existence of 
oxygen functional groups generated undesirable 

Figure 8. Organic solvent nanofiltration test results in GO-
based (GO, mrGO_9h, PGO_5h and mrPGO_7h) 
membranes with 0.1 mg/ml concentrations of dispersions and 
15s coating time. 

Figure 7. Calculated carbon-to-oxygen ratio of membranes 
(GO, mrPGO_7h, mrGO_7h and mrGO_9h) from XPS 
analysis. 
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interactions with surrounding solvent molecules and 
turned the GO membrane into unstable properties if 
it was used in the long term. 

From Figure 10, it can be illustrated that the 
permeance rate in OSN showed an increased trend 
with a higher reduction degree of GO nanosheets. 
This trend could be explained by the decreasing 
percentage of oxygen functional groups that 
contained in mrGO membranes with higher 
reduction degree. The water permeance rate of 
mrGO_9h membranes increased to 2.00 LMHBar-1 
and 2.75 LMHBar-1 for 5s and 10s coating time 
respectively. The presence of water permeates 
confirmed that the shorter permeation length was 
experienced with reduced coating time. This 
coincided with the cross-sectional of membranes 
visualised by the SEM measurements. 

Furthermore, to investigate the fluid mechanisms 
that happened during the permeance test, several 
solvent parameters were correlated such as 
viscosity, polarity [18,19], and surface tension. 
Among these three solvents, hexane had the smallest 
viscosity and relative polarity leading to less 
bonding formation and interactions between 
membranes and solvents. Thus, membranes would 
be more stable in hexane solvent so that higher 
permeation. The values of solvent surface tension 
could also explain the higher permeance rate in 
hexane. The lowest surface tension of hexane 
solvent at 20 ℃ was 17.9 mN ·m-1[20], compared 
with 22.5 mN·m-1 of methanol [21] and 72.9 mN·m-

1 of water [22]. The liquid surface tension was also 
an important factor for predicting the membrane-
solvent interactions. Lower surface tension leads to 
hydrophilicity in water solvent (similar behaviour 
could be predicted in other solvents) and wetting 
conditions could be easily achieved in hexane 
solvent.  

Figure 11 was an example of plotting permeance 
as a function of the reciprocal of viscosity, whereas 

the viscosity of hexane, methanol and water were 0.3 
mPa s, 0.544 mPa s and 0.89 mPa s respectively 
[16,17]. The linear best-fit line indicated that lower-
viscosity solvent would have a better permeability 
with 5.01 LMHbar-1 of hexane, 4.03 LMHbar-1 of 
methanol and 2.75 LMHbar-1 of water in 
mrGO_9h_5s membrane. Thus, permeance was 
determined to be inversely proportional to the 
solvent viscosity, which indicated the viscous nature 
of the flowing solvent in the membrane. 

 
3.2.2 Dye rejection test 

 
The rejection of EB dye was tested for all developed 
membranes. From Figure 12, the GO_5s membrane 
gave the maximum methanol permeance of 27.6 
LMHBar-1 with dye rejection of 81.1%. Although 
the GO membrane showed high permeability and 
dye selectivity, its performance was unstable and not 
reproducible. The existence of oxygen functional 
groups on GO nanosheets made the GO very 
hydrophilic and the interlayer d-spacing was 

Figure 9.  Permeance tests in OSN for GO membranes - 0.1mg/ml 
GO dispersion with 15s coating time; 0.025mg/ml GO dispersion 
with 10s and 5s coating time respectively. 

Figure 10.  Permeance tests in OSN for mrGO_9h membranes - 
0.1mg/ml GO dispersion with 15s coating time; 0.025mg/ml GO 
dispersion with 10s and 5s coating time respectively. 

Figure 11. Permeance rate of mrGO_9h_5s HF membranes in 
OSN as a function of the inverse viscosity [16, 17]. 
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enlarged under wet conditions compared to dry GO. 
The swelling effect exerted irreversibly on 
compressible membranes and resulted in an unstable 
state in OSN. Therefore, GO_5s membrane data was 
not discussed in this experiment.  
 

Compared to GO_5s HF membrane, 
mrGO_9h_10s improved the dye selectivity to 
93.6% because mrGO contained less oxygen 
functional groups and smaller interlayer d-spacing. 
Under the same mrGO_9h dispersion concentration, 
mrGO_9h_5s gave only 0.05 LMHBar-1 higher 
permeance rate than that of mrGO_9h_10s whereas 
the latter showed a much higher dye rejection. 
Although mrPGO_7h_10s membrane permeated 
methanol slighter faster than mrGO, its porosity 
allowed EB dye molecules to pass through the pores 
and lost its selectivity which reduced to only 7.76%. 
This could be explained that mrPGO nanosheets 
were synthesized from PGO nanosheets, and the 
presence of large pores in the nanosheets benefited 
the flowing but greatly weakened the rejection 
capability. Especially in ultrathin PGO/mrPGO 
membrane, the large pores became dominant and 
poor dye rejection result was foreseeable. Therefore, 
the ultrathin membrane mrPGO_7h with lower 
dispersion concentration (0.025 mg/ml) and less 
coating time (5s) was not considered to develop for 
further study in this research. 
 
4. Conclusions 
 
In conclusion, mrGO membranes were developed to 
conduct the relevant organic solvent permeation and 
solute rejection performances. The nanofiltration 
permeation was decided by several parameters such 
as interlayer spacing, coating thickness, pore 
density, the chemistry of GO, and the physical 
properties of the solvent.  

Besides, when designing the membrane 
thickness to provide diverse permeation 

performances, it could be tailored by adjusting the 
dispersion concentration and coating time. 

XRD, DLS and XPS analysis results 
demonstrated the relationship between interlayer d-
spacing and the amount of oxygen functional 
groups. Selectivity was subject to the interlayer 
spacing, where the highest rejection percentage was 
achieved by mrGO which has the narrowest 
interlayer spacing. The trade-off between selectivity 
and permeability was applied in the optimization of 
GO-based membranes. 

Such stable and high selectivity performance of 
mrGO hollow fibre membranes indicated that it 
would have the potential to contribute more to the 
field of organic solvent nanofiltration. 
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Abstract 
Green hydrogen is proposed as a potential solution to the climate change crisis by acting as a clean store of energy. 
Photoelectrochemical (PEC) water splitting is one of the most promising technologies for green hydrogen production. PEC 
reactors utilise sunlight to drive a hydrogen evolution reaction. The aim of this report is to optimise the flow rate, concentration 
and temperature of the borate buffer electrolyte in the reactor to reach the best performance in terms of maximising 
photocurrent density whilst not compromising long term stability. The photoanodes used are made from bismuth vanadate 
(BiVO4). BiVO4 is widely named by many sources as the leading material for photoanode use. The optimal conditions are 
found to be a flowrate of 2.38 ml s-1 with a 1 M borate buffer electrolyte at 50 oC. However, these conditions only apply to 
short term use to the mechanical degradation effects of flow on the electrode enhanced by the higher temperature. For long 
term use, no flow or an extremely low flow rate would have to be used in order to reduce the effects of mechanical degradation 
as much as possible whilst still removing bubbles forming on the electrode surface which decrease performance. A lower 
concentration of electrolyte would have to be used as well such as 0.5 M in order to prevent precipitation onto the electrode. 
During this project it has become apparent that the main issue holding back the development of PEC water splitting reactors 
is the poor stability of the BiVO4 electrode. There is an excess of literature solely focussing on using BiVO4 whilst avoiding 
these issues and not considering expanding to investigate other materials. 
 

Introduction 
Climate change is a generational challenge which has 
become increasingly serious due to significant growth of 
extreme climate scenarios and consequences. The still 
growing consumption of fossil fuels to generate energy 
causes a significant proportion of greenhouse gas 
emissions. The worldwide target is to realise a renewable 
energy transition. Most members of the United Nations 
signed the Paris Agreement to keep the global temperature 
rise “well below two degrees Celsius”. This ambition is 
targeted in national actions to reach a net zero emission in 
Europe, Japan, and the UK. 

However, a successful transition is also 
threatened by increasing energy demand caused by 
growing world population and living standards. According 
to IEA research, by 2050, the demand for energy will 
double (1) (2). Green hydrogen as a renewable energy 
carrier presents a potential solution (3). It is the most 
abundant element in the universe and boasts a high energy 
density per kilogram (4). Note that hydrogen provides 
only a high density when stored under high pressure or in 
a cryogenic atmosphere. Both conditions are costly and 
limit the efficient application of hydrogen. Moreover, 
existing internal combustion technologies can be adapted 
to use hydrogen as a fuel. The transport industry already 
uses hydrogen fuel cells for special means of 
transportation due to their short charging/refilling time in 
combination with emission-free operation, as for instance 
in warehouses (e.g. forklifts from Still or excavators from 
JCB and Liebherr) (3). Standard automotives are still far 

away from incorporating hydrogen fuel cells due to an 
extraordinary expensive refilling infrastructure. 

Furthermore, internal combustion and fuel cells 
processes produce very limited greenhouse gas emissions. 
Note that lifecycle assessments show that isolated, the 
reactions produce no pollutants, but the production and 
transportation of hydrogen produces greenhouse gases (5). 
The growing hydrogen market is predicted to achieve 
10 GW of low-carbon hydrogen production in the United 
Kingdom by 2030. This goal will be reached by making 
available up to £11 billion in private capital (6). Despite 
the enormous potential of hydrogen, there are still short-
term barriers to overcome. Grey hydrogen (hydrogen 
produced by natural gas or coal) dominates the market due 
to its significantly lower cost than green hydrogen 
(hydrogen produced by renewable energy) (2) (7). 
Notably, hydrogen storage and transfer are indicated as a 
barrier due to its highly flammable nature and expensive 
storage conditions (high pressures need expensive tanks 
and cryogenic storage is realised with energy consuming 
cooling devices) (8). 

Photoelectrochemical (PEC) water splitting is an 
exceptionally promising technology for Solar-to-
Hydrogen (STH) conversion. The notion is to use sunlight 
to produce green hydrogen (4). 

The focus of this project is to optimise the flow 
rate, temperature, and concentration of electrolyte 
regarding the best performance of a PEC reactor. Firstly, 
bubbles on the surface are a thread for efficient PEC 
devices (9) (10). In theory, a flowing electrolyte pushes 
the bubbles away. Secondly, sunlight heats the electrolyte 
up, and therefore the temperature effect on the reactor 
performance needs further investigation. Thirdly, the 
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concentration optimisation takes place because literature 
presents the beneficial effect of adding ionic activators to 
the electrolyte (9) (11). In this project, the key 
performance indicators (KPIs) for optimal reactor 
performance are photocurrent density (KPI1) and long-
term stability (KPI2). In detail, the highest photocurrent 
density is normally the optimal reactor performance. 
Additionally, the goal is constant reactor performance 
over a long period of time. 

Background 
PEC Water Splitting 
There are multiple approaches to perform a Solar-to-
Hydrogen (STH) conversion (12). The solar energy is 
stored in energy-rich chemical bonds (13). Among all 
these technologies, the photoelectrochemical water 
splitting is the most promising (12). PEC combines all 
steps (energy capture, conversion, and storage) into a 
stand-alone reactor. The integration into a single device is 
the major advantage (7). Additionally, this approach 
provides simple product separation, high efficiency, and 
good durability (14). The simple design enables flexibility 
to adapt the device for each specific application (15). 
Monolithic PEC cells only have a single multi-layered 
material which oversees the oxidation and reduction 
reactions. The more common approach is to work with 
multiple electrodes and separate the cathode and the 
anode. The direct solution consists of a photoactive 
working electrode whilst the counter electrode only has 
catalytic function. The separation allows individual 
material development. The most effective research 
approach is to use two photoactive electrodes. In this way, 
one can optimise the easier half-reactions independently 
because of the spatial separation (16). 

The first report about PEC is published in 1972. 
Honda and Fujishima tested PEC water splitting with a 
TiO2 photoanode and a Pt counter electrode. This is the 
starting point for a growing research area. The PEC device 
consists of three essential parts, electrodes, electrolyte and 
membrane. At least one of the electrodes must be a light 
absorbing photoelectrode. The electrodes are immersed in 
an aqueous electrolyte (13). The preferred electrolyte 
solution is either acidic or alkaline cause of better ionic 
conductivity than pure water (17). PEC devices use 
semiconductor materials as photoelectrodes. In detail, one 
differentiates between negative (n-type) and positive (p-
type) semiconductors. The n-type semiconductor works as 
a photoanode because of its excess of electrons. 
Conversely, the p-type semiconductors function as a 
photocathode by creating electron holes (18). In addition, 
the PEC water splitting process is divided into four 
fundamental steps: charge carrier generation, charge 
transfer, electrochemical reaction, and mass transport and 
storage (17). 

In the charge carrier generation step, sunlight 
shines on the photoactive electrode and provides 
photoenergy to excite an electron. The reaction is 

thermodynamically endothermic with a Gibb’s free energy 
of ∆G = 272.15 kJ mol-1 (18). Consequently, the provided 
energy must be higher than the band gap energy of 1.23 V. 
The electron jumps from the valance band to the 
conduction band. This way, electron – hole pairs are 
created. The necessary energy is in reality higher due to 
carrier separation, transport and catalysis losses (16). 
Equation 1 and 2 display the explained process. 
  

 𝐸௚,௠௜௡ = 1.23𝑉 + 𝜂௦௘௣ + 𝜂௧௥௔௡௦ + 𝜂௖௔௧  (1) 

 ℎ𝑣 → 𝑒ି + ℎା (2) 

Several reports show that semiconductor material 
undergo a subtle shift in thermodynamic potential under 
the influence of illumination (16) (19). The reason is the 
formation of quasi-fermi levels. In detail, when the 
semiconductor absorbs photons with more energy than the 
band gap, it produces photoexcited pairs of electrons in the 
conduction band and holes in the valence band. 
Additionally, it creates an equilibrium between photons 
and electrons in the conduction band, as well as between 
photons and holes in the valence band. This thermal 
equilibrium only occurs under stable conditions and leads 
to the quasi-fermi level of electrons and the quasi-fermi 
level of holes (20). The quasi-fermi level of electrons is 
higher than the level of the semiconductor, and the quasi-
fermi level of electrons is lower than the level of the 
semiconductor during photoexcitation. When light shines, 
the water oxides when the quasi-fermi level of holes is 
greater than the redox potential of the oxygen electrode 
reaction (19). Conversely, in the dark the quasi-fermi 
levels are the level of the semiconductor cause an 
equilibrium between the electrons in the conduction band 
and the holes in the valence band exists (21). The charged 
carriers travel subsequently to their reaction site 
immediately to avoid recombination.  

During the electrochemical reaction, the overall 
redox reaction assembles out of the hydrogen evolution 
reaction (HER) and the oxygen evolution reaction (OER) 
are established. The HER takes place at the photocathode 
and the OER at the photoanode (14). The reactions are 
illustrated by the equations 3 to 5. 

  
 Overall: 𝐻ଶ𝑂 + 2ℎ𝑣 → ½𝑂ଶ + 𝐻ଶ  (3) 

 𝐻𝐸𝑅: 2𝐻ଶ𝑂 + 2𝑒ି → 𝐻ଶ + 2𝑂𝐻ି (4) 

 𝑂𝐸𝑅: 2𝑂𝐻ି + 2ℎା → 𝐻ଶ𝑂 + ½𝑂ଶ (5) 

These are the half reactions only for alkaline electrolyte. 
The half reactions for acidic electrolytes slightly change. 

During the mass transport and storage step, the 
reaction products are removed from the reaction chamber 
and accumulated in storage tanks. 

An impactful tool to review the PEC water 
splitting is the External Quantum Efficiency (EQE) shown 
in equation 6 (12). 
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 EQE(𝜆) =  𝛷୥ୣ୬ ∙ 𝛷ୱୣ୮ ∙ 𝛷୲୰ୟ୬ୱ ∙ 𝛷ୡୟ୲ (6) 

The indicator is the product of the light harvesting 
efficiency, the charge separation efficiency, the charge 
transport efficiency and the quantum efficiency. Every 
factor represents a single part of the fundamental steps. 

Despite the promising future, the PEC water 
splitting technology has challenges to overcome (22). The 
major problems are related to efficiency or durability 
issues. Firstly, 10 % efficiency for a PEC device is 
required to commercialise the system (23). Secondly, the 
target is to reach lifetime of 10 years. Moreover, a material 
has not been found which enables to run the reactor for a 
longer period (24). Additionally, the technology is based 
on solar irradiation and therefore is only useable during 
the day. The sunlight dependency also leads to 
unpredictable performance. 
 
Electrode Material 
The electrodes used in the reactor testing are made from a 
piece of fluorine doped tin oxide (FTO) glass coated on 
one side with a flat layer of Tungsten trioxide (WO3), then 
WO3 nanoneedles on top and finally the nanoneedles are 
coated in a layer of bismuth vanadate (BiVO4). The 
nanoneedle structure improves the rate of reaction by 
increasing the electrode surface area but decreases the 
mechanical stability when subject to flow. BiVO4 is 
named by many papers as one of the most effective 
materials for photoanodes. The bandgap of BiVO4 is 
roughly 2.4 eV which gives it a maximum theoretical 
current density of about 7.4 mA cm-2 (10). WO3 is a good 
photo absorber and its bandgap lines up well with BiVO4 
as BiVO4 absorbs well in the visible spectrum of light and 
WO3 absorbs well in the UV spectrum of light. This allows 
for more efficient absorption of light.  

Despite literature supporting BiVO4 being one of 
the most effective materials for use in the photoanode, 
there is also literature showing that the bismuth easily 
dissolves into the electrolyte, particularly borate buffer, 
making it unstable for long term use (25). This can be seen 
in Appendix 11 with images of the electrodes after being 
used in a stability test. This is also an important issue as 
bismuth is listed as a scarce material. 

One of the possible degradation reactions of the 
electrode is from BiVO4 to V2O5 and Bi(III~IV)aq. Then 
there are the possible dissolution reactions of V2O5 to 
V(V)aq and Bi(III~IV)aq to Biaq and the possible 
precipitation reaction of Bi(III~IV)aq to Bi2O3~5 (26). 

When it comes to development of larger scale 
PEC devices, the existing literature is mixed in opinions 
on the viability of use of BiVO4 electrodes for larger 
reactors. The current materials in use are too expensive 
and unscalable to hit the required targets. The poor 
stability of BiVO4 is also one of the major factors holding 
back scale up. Much more research is required into larger 
reactor sizes as almost all research done into PEC water 
splitting uses only one photo active electrode instead of 
both and electrodes of a very small size (10). 

Methods 
Experiments 
Linear sweep voltammetry tests (LSVs) are performed by 
increasing the potential across the cell step wise 0.005 V 
every 0.10071 seconds from 0 to 0.8 VREF over a period of 
21.038 seconds and recording the output current. Each 
experiment setup has three tests with no incident light, 
three with light and one ‘chopped’ test with the shutter on 
the solar simulator periodically opening and closing every 
2 seconds. 

A reference test is used to compare the 
performance of each electrode, being a chopped LSV with 
a 2.38 ml s-1 flow rate and a 0.1 M borate buffer at room 
temperature.  

Flow rate is varied by adjusting the power level 
on the pumps. Temperature is modified by placing the 
electrolyte reservoir on a hotplate and placing a 
temperature probe into the solution. Temperature tests are 
performed with flow to allow for continuous heating of the 
electrolyte to maintain the desired temperature. 
Concentration is altered by replacing the electrolyte in the 
reactor with electrolytes of different concentrations. 
Concentration tests are performed without flow to 
conserve boric acid supplies as large amounts of 
electrolyte would have had to been produced to use flow.  

Chronoamperometry tests are carried out by 
having the reactor run with 0.5 VREF potential and the solar 
simulator illuminating the anode and recording the output 
current. The system is given 20 minutes to stabilise at 
room temperature and the lowest flow rate.  

For the flowrate test, pump speed is increased by 
one pump power level every ten minutes following the 
initial stabilisation period. The settings are not increased 
above power level seven as at this speed the tubing started 
to shake vigorously and large bubbles started to be 
created.  

For the temperature test, the beaker containing 
the electrolyte is placed on a hot plate which is turned on 
at the end of the stabilisation period to heat the electrolyte. 
The temperature of the electrolyte is measured at the start 
and end of the stabilisation period with a temperature 
probe then every five minutes after the hot plate is turned 
on. The experiment is stopped when the electrolyte 
reaches around 62 oC as it begins to produce a lot of 
vapour and the current readings starts to decrease.  

For testing the effects of concentration, it is not 
possible to carry out a chronoamperometry test as 
concentration could not be precisely varied during 
operation.  

Stability tests are performed by setting the 
desired test variable (flow speed, temperature or 
concentration) then applying a potential of 0.5 VREF across 
the illuminated cell and allowing the reaction to proceed 
for at least 8 hours whilst the computer records the current 
output every 5 minutes. 0.5 VREF reference is chosen as 
this gives a voltage of 1.23V against the right-hand 
electrode which is the potential required to split water.  
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For all types of tests, if new electrodes are used 
during the testing of a single parameter, results plotted as 
a ratio against the maximum current given in that 
electrodes reference test to normalise the results and 
remove the influence of electrode performance on our 
results. 

Four dissolution experiments are performed to 
determine how the varied parameters affect degradation of 
the BiVO4 electrode. Two tests are performed in the small 
reactor without flow and the other two are performed in 
the small reactor with flow. For the reactor without flow, 
one chamber is filled with 15 ml of electrolyte whereas for 
the reactor with flow, two chambers are supplied with 
electrolyte by a pump from two separate reservoirs 
containing 40 ml of electrolyte each. 

Before the start of each test, a 1 ml sample of the 
electrolyte stock is taken with a syringe and placed into a 
container before adding the electrolyte to the reactor. A 
potential of 0.5 VREF is applied across the illuminated 
reactor, and it is allowed to run for three hours. At the end 
of every hour, a 1 ml sample is taken from the electrolyte 
using a syringe and placed into a container for analysis. 
For the flow reactor, samples are taken from both 
reservoirs. At the end of the test, after the 1 ml sample is 
taken, the remaining electrolyte is collected and placed 
into a container. 

The samples are analysed using an inductively 
coupled plasma (ICP) mass spectrometer to determine the 
concentration of bismuth. The charge required to produce 
the determined amount of bismuth can be calculated using 
equation 7, assuming that the oxidation state of bismuth 
changes from III+ to V+. 

  
 𝑄 = 2 ∙ 𝐹 ∙ 𝑚 (7) 

 
Q is the charge, F is Faraday’s constant and m is the 
amount of bismuth in moles. The total charge produces by 
the reactor during the test equals the area under the graph 
of current density against time multiplied by the electrode 
area. These values determine how much of the charge 
produced during the tests are involved in hydrogen 
production and in electrode degradation. 

 

Reactor Setup 
Three distinct reactors are used to produce the results. The 
main difference is reactor size which varies photoactive 
areas and reaction chamber volumes. According to the 
PEC water splitting fundamentals, a reactor consists of 
electrodes, an electrolyte, and a membrane (13). BiVO4 is 
the material used for the photoactive electrode (Figure 1: 
Photoanode FTO glass). It is a n-type semiconductor. The 
reference electrode is made of silver/silver chloride. 
Additionally, borate buffer is the used electrolyte at pH 9. 
These set-up parameters are constant regardless of the 
reactor. A few minor adjustments are made to the different 
reactors.  

The large reactor, developed through the Hankin 
and Kafizas lab, is used to produce the majority of results. 

The reactor consists of three compartment systems. The 
individual photoanode active area is 36 cm2, and the total 
photoactive area is 108 cm2. Only one compartment is 
used for each experiment. The single compartment is 
separated through a Nafion 115 membrane into an anode 
and a cathode reaction chamber. The maximum volume of 
each chamber is 85 ml. Furthermore, the non-photoactive 
nickel mesh serves as the counter electrode. The reactor 
composition is displayed in Figure 1. The rainbow-
coloured arrow represents the simulated sunlight. 
  

 
Figure 1: Composition of large reactor 
  

In this project, smaller reactors are used to 
perform investigations addressing the dissolution of the 
BiVO4 electrode. The small flow reactor is utilised to 
optimise the flow rate and temperature of the electrolyte 
and measure the dissolution. A perfluorosulfonic acid 
(PFSA) ionomer membrane divides the cell. Each of the 
two parts has a capacity of 1.5 ml. In addition, the cathode 
is made mainly out of platinum (99.9%), and the 
photoactive area comprises 1 cm2. 

The flow cycle system is not needed to optimise 
the electrolyte’s concentration. Therefore, the results for 
this parameter are created with another reactor. 
Exceptionally, the two experiments run with this reactor 
have a slightly changed set-up. It only includes one 
reaction chamber without a membrane. The maximum 
electrolyte volume is 15 ml and the photoactive area is 
1 cm2. Moreover, the counter electrode is primarily 
composed of platinum. 

The Sun2000 Solar Simulator replicates the 
sunlight for the experiments. Abet Technologies' sun 
simulator generates a cumulative light intensity of 
2.5 suns using an XE lamp with an AM 1.5 G filter 
(Figure 2). Furthermore, it is possible to switch the shutter 
between open, close, and timed. This function enables to 
perform experiments with light changes. The lamp current 
must be 25 A to maintain the (nearly) identical spectrum 
during all the operations. Additionally, it’s essential that 
the distance between the PEC reactor and the simulator 
always be 125 cm. A calibrated portable UV-Vis 
spectrometer (Stellarnet Black Comet Concave Grating) 
measures the spectrometer weekly to make sure 
everything is currently set up. Figure 2 shows the AM 1.5 
and the solar simulator spectrum. The measured and 
illustrated spectral irradiance is from 271 nm to 900 nm.  
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Figure 2: AM 1.5 G and solar simulator spectrum. 
  
The aim of the project is to optimise the flow rate, the 
temperature, and the concentration of an electrolyte for a 
maximum PEC reactor performance. The reactor set-up is 
modified for testing each parameter. Only for the 
concentration observations is the set-up stationary. The 
electrolyte is manually filled into the reactor, which is then 
ready for experiments. For the flow rate and temperature 
measurements, the reactor is connected to the flow system. 
The electrolyte flows from a reservoir through the pump 
into the reactor. The outlet stream starts at the reactor and 
ends in the reservoir. This way, the fluid cycle is set up. 
This cycle exists for each of the two reaction chambers. 
The performance-addressing tests only include one 
reservoir for both cycles, so the solution is mixed. 
Especially for dissolution tests, another electrolyte 
reservoir is added to entirely separate the cycles. It is 
important that each reactor chamber is at least filled with 
its minimum electrolyte volume value. In this specific 
case, it’s ensured because the inlet stream is at the bottom 
of the reactor chamber and the outlet is at the top. The flow 
direction is displayed in Figure 1. This way, the electrolyte 
only leaves the reactor chamber when it is completely 
filled up. This set-up is only partially changed for the 
experiments regarding the heated electrolyte. The 
reservoir (reservoirs) is (are) placed on a heat plate, which 
heats up the flowing electrolyte. Additionally, a 
thermometer inside the reservoir enables one to measure 
the current temperature and control the system for a 
specific temperature. By reason of the large discrepancy 
in the reaction chambers’ volumes, the fluid cycle is 
slightly different for the reactors. The small reactor 
requires smaller tubes and a lower flow rate. 

It’s necessary to maintain all reactor and light set-
up set points to perform the best possible optimisation. 
Only sensible results are appropriate for the assessment. 

  
Electrolyte Preparation 
Electrolyte is prepared by first measuring out the desired 
weights of boric acid and sodium hydroxide in weighing 
boats on a mass scale. These are then added slowly to a 
beaker of distilled water on a low heat with a magnetic 
stirrer. When the chemicals are dissolved, the stirrer is 

removed, and the solution is added to a volumetric flask 
of the desired volume and topped up with more distilled 
water up to the level mark on the flask. The stirrer is then 
added back into the solution and a pH probe is used to test 
the pH of the solution. Sodium hydroxide is then slowly 
added to the solution to bring the pH up to 9. 

To make 1 liter of a 1 M borate buffer solution, 
61.83 g of boric acid and 10 g of sodium hydroxide are 
required . Necessary masses for the preparation of other 
concentrations and volumes are calculated from these 
values. 

Results 
Flowrate 
Flowrates are tested from 2.38 to 17.24 ml s-1. Each flow 
rate represents a pump power level. Beyond the 
17.24 ml s-1, the flowrate became too high which created 
a lot of vibration in the tubing and risked mechanical 
degradation. Tests are also performed with no flowrate 
(0 ml s-1) to test the impact of having flow at all. Figure 3 
shows that there is no clear correlation between the 
flowrate and current output. All flowrates have a similar 
ratio to the reference test. At a potential 1.23 VRHE there is 
a point at which all the curves converge. Also, at this point, 
the test with no flowrate crosses the other speeds to 
become the highest performing speed. 
  

 
Figure 3: Graph of average light LSVs for varying flowrates with the 
ratio of current to the maximum reference test current plotted against 
potential. 
  

The chronoamperometry test starts at 2.38 ml s-1 
and speed is increased every 10 minutes after the 20-
minute stabilisation period up to the highest flow rate. 
During the stabilisation period, the current density 
decreases exponentially from about 0.4 to 0.16 mA cm-2. 
The current then stays constant at around 0.14 mA cm-2 
from 1800 seconds onward. The peaks at around 1450 and 
1800 seconds are most likely caused by disturbances in the 
system. The current density stays the same regardless of 
the flow rate. Figure 4 supports the findings of the LSV 
tests that there is no change in current with varying 
flowrate.  

  

0
100
200
300
400
500
600
700
800
900
1,000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

270 360 450 540 630 720 810 900wavelength (nm)

cu
m

ul
at

iv
e 

po
w

er
 (W

.m
-2

)

po
w

er
 (W

.m
-2

nm
-1

)

AM1.5 power

Solar simulator power

AM1.5 cumulative power

550



 
Figure 4: Graph of the flowrate chronoamperometry test with increasing 
flowrate at times denoted by the dotted lines with current density 
plotted against time. 
  

Stability tests are performed with no flowrate and 
with the flowrate 2.38 ml s-1. The 0 ml s-1 curve decreases 
rapidly to a minimum ratio of about 0.15 after about 
15000 seconds. Afterwards, the ratio stays constant at this 
level. The 2.38 ml s-1 curve is still decreasing at the end of 
the test at 60000 seconds but reached a final value of about 
0.06. Due to the slower rate of ratio decrease for the flow 
rate test, the period from about 8000 to 33000 seconds 
where flow has a higher ratio value than no flow. 
However, before and after this period, 0 ml s-1has a higher 
ratio value. 

  

 
Figure 5: Graph of the stability tests for speeds 0 and 1 with the ratio of 
current to reference test maximum current plotted against time. 
  
Temperature 
The performance of the reactor is tested at a variety of 
temperatures. First, LSVs are performed for temperatures 
from room temperature (17 oC) to 70 oC. The results in 
Figure 6 show an increase in current density with 
increasing temperature up to 65 oC where performance 
decreases at 70 oC. Closer to 0.73 VRHE, values of current 
density for all temperatures are closer together, but as the 
voltage increases towards 1.53 VRHE, the current density 
values become further apart. The lowest performing 
temperature, 17 oC, starts at a current density of about 
0.03 mA cm-2 and ends at a value of about 0.23 mA cm-2 
whereas the best performing temperature, 65 oC starts at 
about 0.125 mA cm-2 and ends at about 0.48 mA cm-2. 
Also, for the lower temperatures, the current density 
increases more linearly with potential but for higher 
temperatures, the rate of current density increase starts 
high and decreases with increasing potential. 

  

 
Figure 6: Graph of average light LSVs for varying temperatures with the 
ratio of current to the maximum reference test current plotted against 
potential. 
  

The chronoamperometry test starts at room 
temperature then, after 20 minutes, the hot plate is turned 
on and the sample heats up. Figure 7 shows that current 
density increases with temperature from about 
0.19 mA cm-2 at the end of the stabilisation period up to a 
maximum of about 0.28 mA cm-2 at about 55 oC then 
begins to decrease. This supports the findings of the LSV 
tests. 

  

 
Figure 7: Graph of the temperature chronoamperometry test with 
temperature of the electrolyte and current density plotted against time. 
  

Stability tests are performed at 50 oC and at room 
temperature. 50 oC is chosen as the high temperature to 
reduce evaporation of the electrolyte during a long 
experiment. Figure 8 shows that both tests decrease at a 
similar rate but the 50 oC test decreases to a lower value 
which contradicts the findings of the LSV and 
chronoamperometry tests. The initial decrease is 
exponential up to about 5000 seconds but then the decline 
becomes more linear. The room temperature test starts at 
a ratio of 0.7 and decreases to a ratio of about 0.18. The 
50 oC test starts at a ratio of about 0.53 and decreases to a 
ratio of about 0.09. 
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Figure 8: Graph of the stability tests for 50oC and 17oC with the ratio of 
current to reference test maximum current plotted against time. 
  
Concentration 
The concentrations of borate buffer are tested with 0.1, 
0.5, and 1 M. Figure 9 shows a trend of increasing current 
output with increasing concentration. For all 
concentrations, the rate of ratio increase starts high and 
decreases with increasing potential. The 0.1 M test starts 
at a ratio of 0.4 and finishes at 0.9. The 1 M test starts at a 
ratio of 0.7 and finishes at 1.2. The difference in 
performance stays almost constant across all potentials. 
  

 
Figure 9: Graph of the light LSVs for ratio of current to the reference test 
maximum current against potential for varying concentration. 
 

Concentration stability tests are performed with 
0.1 and 1 M solutions. Results are normalised against their 
electrode’s reference test and are plotted as shown in 
Figure 10. The 1 M test has a much higher ratio and takes 
much longer to decrease to the minimum current output. 
The 0.1 M curve decreases rapidly to a minimum ratio of 
about 0.15 after about 15000 seconds. At the end of the 
test, the 1 M curve is still decreasing but reaches a final 
value of about 0.32 at 70000 seconds. 
  

 
Figure 10: Graph of stability tests for 0.1M and 1M showing ratio of 
current output to maximum reference current against time. 

Dissolution 
The ICP machine was broken during the project timeline. 
Therefore, results are not analysed. The project explains 
how the results would have been used in the 
methodology and discussion. 

Discussion 
Flowrate 
Bubbles are a positive sign of high a gaseous product 
generation rate. However, the introduced bubbles lead to a 
decrease in PEC reactor performance due several effects. 
The effective electrocatalytic area is smaller, for example 
(10). The introduction of flow rate solves the problem of 
bubbles on the photoelectrode’s surface. This is visible 
regardless the speed level. Nevertheless, the results shown 
in Figure 3 show all flowrates having similar performance 
at specified voltages. With error bars add to the LSV data 
as shown in Appendix 13, one can see that they overlap 
which suggests that flowrate has no significant effect on 
reactor performance. There is no difference between no 
flow and flowing electrolyte at all (KPI1). 

The results from the chronoamperometry show 
no change in the current output with increasing flowrate. 
This provides further evidence that flowrate has no effect 
on performance (KPI1). During a stabilisation phase the 
stationery test’s performance drops significantly. After an 
initial minimum value, the system stabilises at a specific 
level. The constant ratio indicates little degradation of the 
photoelectrode. Figure 11 shows the surface of the 
photoelectrode after the run and validates the low 
degradation. The surface is very uniform. Only in one area 
does the surface looks thinner. The stationary test does not 
include any electrolyte motion therefore, it is solely 
photoelectrochemical degradation. For the stability test 
with speed one flowrate, the curve is more exponential and 
does not stabilise during the experiment. The instability 
indicates a high degradation of the photoelectrode. 
Furthermore, the degradation is visualised on the surface 
of the sample in Figure 11. Also, the degradation pattern 
is different after the flow rate experiment. The sample 
surface is not uniform. As well as photoelectrochemical 
degradation, there is evidence for mechanical degradation. 
The shear stress on the surface is the reason for the 
complete dissolution of BiVO4 on the top part of the 
surface. 

 
Figure 11: Photoelectrodes’ surface after stability test for speed 0 and 1. 
left: sample GC64, speed 0; right: sample GC59, speed 1 
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In general, literature regarding the impacts of 
electrolyte flowrate is limited. The flowing electrolyte 
fulfils his task and pushes the bubbles from the 
photoelectrode’s surface away. In addition, the flow 
enables to heat the electrolyte in a separated reservoir and 
to replenish the electrolyte during long term use. 
Nevertheless, all the advantages are neglectable next to 
immense degradation due to the additional mechanical 
stresses (KPI2). Consequently, the optimal flow rate is no 
flow rate at all to protect the photoelectrode’s surface. 

 

Temperature 
The results of the temperature LSV and 
chronoamperometry tests shown in Figure 6 and Figure 7 
show similar trends of reactor performance improving 
with increasing temperature up to a maximum between 50 
and 60oC then decreasing at higher temperatures (KPI1). 
This drop off in performance at elevated temperatures is 
most likely due to increased degradation of the electrode. 
This would also explain the results of the stability tests in 
Figure 8 with the lower minimum value of the high 
temperature test caused by the electrode being degraded at 
higher rate than the room temperature test. Therefore, the 
results of the stability test at varying temperatures feature 
the same problem as the stability tests at varying flow 
rates. The current of these tests is never constant which 
indicate that the system never stabilises (KPI2). The 
reason for the instability is the degradation of the electrode 
additional intensified to the flow cycle system. 

 Nevertheless, at short-term experiments the 
increasing temperature has a beneficial effect on the 
performance of the reactor (KPI1). The improved 
performance with increasing temperature is most likely 
due to increased electrocatalytic activity which increases 
the rate of the reaction at the photoanode and reduces the 
overpotential of the cell. The fundamentals for this 
relation present the Arrhenius equations. The equation 8 
shows the reaction rate regarding the factors: pre-
exponential factor A, gas constant R activation energy E 
and temperature T. Higher temperatures also increase the 
conductivity of the membrane in the cell. 

 
 𝑘 = 𝐴 ∙ 𝑒

ିா
ோ்  (8) 

 
Despite all the improving temperature effects the long-
term runs present oppositional results. The degradation 
effect outweighs the improving effects and leads to 
unsatisfying stability results (KPI2). The tremendous 
mechanical degradation is set-up related and can be solved 
through different heating approaches. However, the 
Arrhenius equation is also the base for raised photo-
corrosion reactions due to higher temperatures. The 
photoelectrochemical degradation is not set-up related. In 
a reactor set-up without mechanical degradation the 
optimal temperature can be found. The efficiency due to 
increased target reactions and stability loss due to photo-
corrosion reactions need to be balanced. These analyses 

illustrate that a temperature colder than a normal 
temperature, as tested in this project, does not improve the 
performance of the PEC reactor. Instead, colder 
temperature reduces the reaction rate and yield a lower 
performance. 

In this project, the use of a hotplate in the 
temperature experiment hinders a constant temperature so 
the use of a water bath would improve the accuracy of our 
results. In addition, the heating process leads to loss of 
electrolyte due to vaporisation. The maximum used 
temperature is 70 oC. 

According to Lamers, Marlene et. al., even 
temperature treatment up to 500 oC are a positive factor 
for the performance of PEC devices. Until this 
temperature the increase of the grain size leads to a better 
carrier mobility and diffusion length. Above 500 oC the 
dissolution of the vanadium dominates and dismisses the 
beneficial temperature effects. Lamers, Marlene et. al., 
present the solution to anneal the photoelectrodes in a 
vanadium-rich atmosphere. This approach limits the 
vanadium losses and prevents the decrease in current. 

To sum it up, heated electrolyte increases the 
photocurrent density for short-term PEC reactor runs 
significantly (KPI1). The optimal temperature is in the 
range 50°oC of the given device. On the basis of the 
immense degradation of the photoelectrode, the influence 
of temperature cannot be fairly evaluated for long-term 
runs (KPI2). The ICP results would have given a better 
understanding on the temperature impact on the 
dissolution. The degradation for heated runs adds the 
mechanical degradation and the boosted 
photoelectrochemical degradation together. By comparing 
these results to the flow rate dissolution results the exact 
effect of temperature related degradation is identifiable. 

 
Concentration 
It is predicted that higher concentrations of electrolyte 
improve the performance of the reactor due to the 
additional ionic activators to transfer charge for hydrogen 
evolution (9) (11). The results of the concentration LSV 
and stability tests shown in Figure 9 and Figure 10 show 
an increase in performance with increasing concentration 
as expected (KPI1). This is most likely due to the 
increased rate of the reaction at the photoanode at a higher 
concentration. Also, more concentrated solutions will 
have more ions in the electrolyte to carry charge, 
increasing conductivity and therefore the reactor 
performance . 

The much longer time taken for the 1 M stability 
test to decrease in current output compared to the 0.1 M 
test may be due to the maintained higher concentration of 
ions at the electrode surface even after the formation of 
bubbles which causes the current output to decrease 
(KPI2). The effect of bubbles would be much greater on 
the 0.1 M solution with there only being a tenth of the 
number of ions. 

The results obtained from the minimum effective 
concentration test presented in Appendix 14 show that 
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below 0.01 M electrolyte concentration, the current 
density drops to an insignificant value and the reactor 
effectively stops functioning properly (KPI1). The sudden 
drop in current density may be due to a change in the 
reaction mechanism caused by the very low number of 
ions in the electrolyte . 

Unfortunately, samples of electrolyte at 1 M 
begin to crystallise when not in use which may cause 
issues in the system so use of a lower concentration like 
0.1 M may be advisable for long term use (KPI2). Boric 
acid is moderately soluble in water, being able to form a 
0.9 M solution at 25 oC and 3 M at 80 oC . These are 
subject to solution pH. This means that the 1 M optimal 
solution can be used if the electrolyte is heated to the 
optimal 50 oC temperature but not if room temperature is 
used to reduce degradation of the electrode. Management 
of a 1 M solution for commercial use would require the 
reactor to be stocked with fresh electrolyte before every 
use or for the electrolyte to be continuously heated 
overnight when the reactor is not in use to prevent 
crystallisation which would be a waste of energy. 

The use of a saturated solution of electrolyte with 
a concentration higher than 1 M would cause precipitation 
onto the electrode’s surface which evolved hydrogen 
bubbles can stick to and cause over saturation of hydrogen 
at the electrode surface, reducing the reaction rate and 
therefore reactor performance . 
 
Dissolution 
Current literature underlines BiVO4 as one of the most 
promising materials as photoanode. Research highlights 
the bismuth vanadate’s high theoretical conversion 
efficiency of 9.1 % and its small bad gap. While 
challenges related to long-term stability are 
acknowledged, they are often downplayed. Nevertheless, 
it appears that BiVO4 retain his superior position in the 
literature. 

This project presents the high degradation of 
BiVO4. Regardless the optimised parameter the long-term 
stability issues are clearly noticeable. Firstly, the key 
performance indicator: photocurrent density decreases 
over time. Secondly, the photoelectrode’s surface is 
visible thinner after each experiment. The ICP results 
would probably confirm the visible instability due to a 
high concentration of dissolved bismuth and vanadate. 
Intriguingly, the dissolution is already identifiable closely 
after the experiment’s start even with a new produced 
photoelectrode. The target for PEC devices is a lifetime of 
ten years; however, the material is damaged after a couple 
of hours (KPI2). Accordingly, the selection of robust 
material for photoanode with a high reactivity is one of the 
key demands for PEC devices. 

Furthermore, studies show that illumination has a 
promoting effect on the dissolution of BiVO4. The 
dissolved material is significantly higher under the 
influence of illumination than in dark conditions. In a 
nutshell, a process-material that needs sunlight, is partly 
destroyed under illumination. 

In conclusion, BiVO4 has garnered acclaim for its 
theoretical efficiency. However, the observed challenges 
in long-term stability necessitate a revaluation of the 
material's suitability for sustained and reliable use in PEC 
devices. 

Conclusion 
The project examined the influence of flow rate, 
temperature, and concentration of borate buffer electrolyte 
on the PEC reactor performance. The short-term 
performance is optimal at a temperature of 50 oC and a 
concentration of 1 M with a flow rate of 2.38 ml s-1. 
Tremendous mechanical degradation caused by the flow 
cycle prevents in-depth statements on long-term 
performance regarding these parameters. Flow rate solves 
the bubble challenge but introduces new mechanical 
stresses. The negative impact of mechanical stresses 
negates the bubble solution completely. For further 
research, the ultimate temperature effect on long-term runs 
is still vague. It would also be interesting to investigate 
how the optimised parameters affect other commonly used 
electrolytes, such as citrate and phosphate buffers. 

In addition, the project highlights the stability 
issues of BiVO4 as a photoelectrode. Despite the improved 
performance due to the optimised parameters, the 
degraded photoelectrode remains a limiting factor. The 
results underline critical long-term stability concerns. The 
observed challenges highlight the necessity of revaluating 
BiVO4's suitability to reach the efficiency and durability 
goals for PEC devices. Current research is perhaps 
misguided in its focus on strategies to extend 
BiVO4's lifetime. 
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Abstract   
The growing popularity of recombinant protein therapeutics to treat clinical illnesses has led to the need to scale-
up cell-free protein synthesis (CFPS) for Pichia pastoris (syn. Komagataella phaffii) which can produce 
glycoproteins. The scale-up of the P. pastoris lysate is limited by the centrifugation step that separates cell debris 
from its protein synthesis machinery. This paper intends to address this challenge through the identification and 
development of an alternative scalable method: Filtration, in particular depth filtration. The experimentation 
undertaken using syringe filters demonstrated filtration as a viable and scalable method for the primary 
clarification of the P. pastoris lysate. Depth filtration was found to produce lysates of high clarification but lower 
activity than centrifugation. The activity and protein concentration of filtered lysates may be influenced by several 
factors such as the filter properties, filter operation, and filter cake resistances. The depth filter method for this 
process is not as heavily developed and optimised as centrifugation. Depth filters were found to have low solid 
blocking hence good scalability. Therefore, depth filters demonstrate great potential in the primary clarification 
of the P. pastoris lysate with the correct choice of filter properties and mode of operation. Further improvements 
in the activities of clarified lysates could be achieved with further investigation and optimisation into the depth 
filtration method and the overall CFPS process. 

1. Introduction 

Through the years, recombinant protein therapeutics 
have grown in popularity to treat a variety of clinical 
illnesses. Proteins have a high molecular weight, as 
well as a complex composition and structure. Due to 
these features, proteins have limited thermal and 
proteolytic stability, as well as low solubility, which 
causes reduced efficacy and greater immunogenetic 
side effects[1]. To ensure therapeutic efficacy, the 
majority of recombinant protein therapeutics are 
glycosylated[2]. Glycosylation is the post-
translational modification of amino acid to 
oligosaccharides. N- or O-linked glycosylated 
proteins are known to improve therapeutically 
relevant protein properties, such as 
pharmacokinetics, immunogenicity, and biological 
activity [3]. Therefore, the ability to efficiently mass 
produce glycosylated proteins is a gap in 
biopharmaceutical processing.  

The mass-production of glycosylated proteins in 
vivo poses multiple challenges, which can be 
addressed with the development of Cell-Free Protein 
Synthesis (CFPS). CFPS systems contain cell 
extracts with active translational and transcriptional 
machineries to produce proteins without intact cells, 
providing an opportunity for on-demand production. 
This shortens CFPS procedures compared to in vivo, 
as it alleviates lengthy cell handling protocols such 
as cloning and transformation. Due to its open 
nature, CFPS also provides the ability to control the 
compositions and conditions of the reaction directly 
and precisely [4]. Developments have been made in 
CFPS to produce proteins that would otherwise 
exceed cellular toxicity tolerance[5]. Furthermore, 

CFPS facilitates the integration of high-throughput 
screening tools[6], real-time monitoring, and 
automation[7]. Collectively, these features make 
CFPS an attractive platform for the mass 
manufacturing of glycosylated proteins.  

Recent developments have widened the library 
of CFPS systems to include prokaryotes and 
eukaryotes[8]. However, prokaryotes lack the 
endogenous machinery to perform post-translational 
modifications. Meanwhile, mammalian cell lines, 
such as Chinese Hamster Ovary cells, also have 
several drawbacks: high cost, potential for 
propagating infectious agents, and long 
development time[8]. Meanwhile, yeast-based 
expression systems present multiple benefits, such 
as robust expression, scalable fermentation, and the 
ability to perform post-translational modifications[8]. 
The yeast Pichia pastoris has been reported to 
produce proteins in cell-free systems with the 
highest yield due to its ability to grow to high-cell 
densities [9].  

Active Endoplasmic Reticulum microsomes 
have protein synthesis machinery attached and 
contain components to perform glycosylation. 
Centrifugation enriches the microsomal content in 
the lysate. Centrifugation clarified lysate has been 
found to have improved glycosylation efficiency as 
compared to crude lysate[10]. Despite the 
establishment of CFPS as a promising platform, the 
scale-up of the primary clarification of crude lysate 
presents a challenge. The aim of this study is to 
identify alternative scalable methods of separation 
and further develop a method at lab-scale.  

556



 2 

2. Background 

Although CFPS lysate production has been scaled 
up using various downstream techniques, there is 
very little literature available with respect to the 
scale-up of CFPS lysate using P. pastoris.    
Currently, centrifugation is the primary technique 
used at the lab scale to separate cell debris post-lysis. 
The centrifugation process is currently able to 
separate microsomes from the rest of the cell debris 
[10, 11]. Centrifugation due to its many challenges 
during limits the overall scale-up of CFPS using P. 
pastoris.  Not only is centrifugation expensive but 
also difficult to scale-up, due to a lack of reliable 
scale down models [11]. Disc-stack centrifuges have 
been used in the pharmaceutical industry for the 
primary recovery of proteins at a pilot and industrial 
scale[12].  Disc-stack centrifuges have recently been 
implemented in a process which has linear 
scalability, for the cell free production of cytokine 
using Escherichia coli[13]. However, the scale-up of 
centrifugation from  lab/pilot scale to industrial scale 
requires rigorous testing and modifications before 
the industrial scale operation can be finalised. The 
P. pastoris crude lysate contains several components 
of the sub-micron size. Disc-stack centrifuges 
cannot efficiently remove  particles of submicron 
size, thus increasing the burden on secondary 
clarification operations and being unsuitable for this 
particular application[12].  Figure 1 shows a typical 
CFPS production process with alternatives to 
centrifugation for the primary clarification of the 
lysate. 

Other secondary clarification methods such as 
chromatography are deemed unsuitable for the 
primary separation of the P. pastoris crude lysate. 
Chromatography requires the presence of different 
interactions between different components of the 
lysate for the separation to be feasible[12]. However, 
no differences in chemical interactions, protein 
affinities or hydrophobicity have been identified 
between the microsomes and the cell debris. The 
same applies to the use of flocculants to separate the 
crude lysate.  

It has been identified with Dynamic Light 
Scattering and Nano Flow Cytometry that the P. 
pastoris cell size in the crude lysate is 2-3 𝜇𝑚 
whereas the typical microsome size is less than 0.4 
𝜇𝑚[14]. This size difference is indicative that 
filtration or the use of size exclusion membranes 
might be possible. However, this has not yet been 
investigated for clarification of P. pastoris. 

Depth filters have been commonly used within 
the pharmaceutical industry for the clarification of 
cell broths. They consist of multiple layers of media 
and filter-aids with different pore sizes within. It is 
to be noted that these pore size ratings are usually 
nominal and can vary in practice[12]. Depth filters are 
able to overcome the key problem of filter blocking 

in the separation of biological components due to the 
multiple layers forming a pore gradient[12, 15]. This is 
advantageous compared to other filtration methods 
such as tangential flow filtration where submicron 
debris often causes high filter blockage and low 
filtration efficiencies[16]. Depth filters work by size 
exclusion and the adsorption of harder to remove 
fine colloidal particles[12]. Depth filters are easy to 
scale-up, inexpensive and can handle high 
capacities. However, they also have issues with the 
adsorption of some feed components, as well as 
leaching of impurities from the filter media[11]. 
Depth filtration followed by ultrafiltration has been 
successfully used in the post-lysis clarification of 
rotavirus like particles. This method was shown to 
have a 37% higher yield than the widely used CsCl 
density gradient ultracentrifugation method[17]. 
Depth filters have been used for recombinant adeno-
associated virus (AAV) production[18]. It was found 
that the primary clarification of AAV lysate using 
Millistak® depth filters with diatomaceous earth 
(DE) have high virus recoveries of 84-97% despite 
being prone to adsorption[11, 19]. Recently, another 
study has demonstrated that depth filtration with DE 
as a filter aid is efficient for the primary clarification 
of the AAV lysate. It has been found that depth 
filtration with DE can have AAV loss limited to 
<2%, have higher turbidity removal and faster 
processing time than centrifugation followed by 
filtration[20]. Therefore, depth filtration may have re-
applicability for the clarification of P. pastoris lysate 
to recover active microsomes, which leads to the 
need for a preliminary assessment of depth filters 
shown in this study.  

3. Methods 

3.1 Preparation and Collection of Samples  

3.1.1 Cell Culture Preparation and Lysis  

An agar plate containing FHL1 P. pastoris culture 
which is a modified ribosome-overexpressing 
strain[21] , was provided by the Polizzi group. The 
cell cultures used for the following experiments 
were prepared based on the optimised protocol for 
the preparation of P. pastoris lysate[9]. However, the 
cells were lysed via sonication instead of the high-
pressure homogenisation described in the protocol. 
Sonication was performed with Fisherbrand 

Figure 1: CFPS production process with primary clarification alternatives 
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Model 120 Sonic Dismembrator. The sonication 
probe was initially cleaned with 70% ethanol to 
remove any contaminants. To lyse the cells, the 
sonicator was utilised at a 50% amplitude setting 
followed by a 59-second interval, repeated 5 times.  

3.1.2 Separation Methods and Operation 

Lysate prepared as mentioned in Section 3.1.1, was 
then separately clarified with the use of a centrifuge, 
syringe filters and depth filters. The clarified lysates 
from these methods were then collected for further 
testing. 

Lysate clarification was conducted via 
centrifugation with the Eppendorf Centrifuge 
5810R. The centrifugation procedure followed the 
described  protocol for the preparation of P. pastoris 
cell lysate[9]. However, the sample obtained did not 
undergo further dialysis as described in the protocol.  

Sartorius Minisart® 0.8 𝜇𝑚 and 0.2 𝜇𝑚 Syringe 
Filters (SF) were used to conduct a preliminary 
analysis of filtration.  2 ml of lysate was passed 
through the syringe filter by applying pressure by 
hand for 1 minute.  

The depth filters used were Millistak+® HC Pro 
C0SP, Millistak+® HC Pro D0SP, and Clarisolve® 
20MS. Note that depth filters with diatomaceous 
earth as filter aid were not chosen due to high 
operating fluxes which would not have been met due 
to the limitations of the project. Figure 2 shows the 
experimental set-up to collect samples. To operate 
the depth filters, a peristaltic pump was used to 
pump Lysis Buffer A and lysate through the filter. 
Details regarding Lysis Buffer A can be found in the 
described protocol for the preparation of P. pastoris 
cell lysate[9]. Initially, the filters were flushed with 
200 ml of Lysis Buffer A to wet the filter surface and 
prevent excess lysate adsorption. Afterwards, 80 ml 
of lysate was passed through at a pressure difference 
of 1 bar, in accordance with the recommended 
procedure in the user guide[22]. The filtrate was 
collected in two fractions, one produced in the first 
5 minutes to recover held-up buffer. The second 
fraction was collected after 10 minutes of blowdown 
to obtain the desired sample. The blowdown 
procedure can be found in the Millipore Sigma Pod 
Depth Filters User Guide[22]. 

The samples produced by all clarification 
methods were immediately collected in 1.5 ml 
microcentrifuge tubes to be flash frozen in liquid 
nitrogen and stored in -80℃ to maintain the activity 
of cell extracts. 

Table 1: Syringe and Depth Filters Properties[22,23] 

3.2 Analytical Methods  
3.2.1 Clarification Measurement 
To determine the clarification of cell lysates for each 
separation method, optical density measurements at 
600 nm (OD600) were taken using the Eppendorf 
BioPhotometer. The OD600 of lysates was 
measured prior to clarification and post-
clarification. The lysates were serially diluted by a 
factor of 100X with Lysis Buffer A to obtain an 
accurate measurement. Lysis Buffer A was used as 
a blank. The clarification percentage was calculated 
with the following formula: 

𝐶𝑙𝑎𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%)

=  
𝑂𝐷600௣௥௘ି௖௟௔௥௜௙௜௖௔௧௜௢௡ − 𝑂𝐷600௣௢௦௧ି௖௟௔௥௜௙௖௔௧௜௢௡

𝑂𝐷600௣௥௘ି௖௟௔௥௜௙௜௖௔௧௜௢௡
 × 100%  

3.2.2 Protein Concentration 

Bicinchoninic Acid (BCA) assay was conducted to 
obtain the concentration of proteins in the clarified 
lysate. The BCA assay works on the principle of the 
reduction of the Cu2+  ion to Cu+ ions by peptide 
bonds. The Cu+ ion formed reacts with bicinchoninic 
acid to form a purple-coloured complex which 
strongly absorbs light at a wavelength of 562 nm. 
The extent of colour change is proportional to the 
amount of protein in the sample, which can be 
measured using colorimetric methods. The Pierce 
BCA Protein Assay kit was used, the diluted 
albumin (BSA) standards prepared, and the BCA 
reaction procedure followed the protocol described 
for the microplate method[24]. The CLARIOstar 
Plus Microplate Reader (BMG Labtech) was used to 
measure the intensity of purple-coloured complex 
exhibited by each sample. The absorbance values 

Filter Name Filter 
Medium 

Pore Size 

Millistak+®  
HC Pro C0SP 

Polyacrylic fibre 
pulp, Silica filter 
aid 

0.2 – 1.2 𝜇𝑚 

Millistak+®  

HC Pro D0SP 
Nonwoven, 
Silica filter aid, 
Polyacrylic fibre 
pulp 

0.5 – 8 𝜇𝑚 
 

Clarisolve® 20MS Polypropylene 
and cellulose 
fibres, inorganic 
filter aid 

0.5 - 20 𝜇𝑚   
 

Ministart® 0.8 𝜇𝑚   Cellulose 
acetate  

0.8 𝜇𝑚   

Ministart® 0.2 𝜇𝑚   Cellulose 
acetate 

0.2 𝜇𝑚   

Figure 2: Schematic of the depth filter experimental 
set up  

558



 4 

collected were subtracted by the blank absorbance 
value to eliminate any background absorbance. Two 
repeats of each sample were tested to calculate the 
average absorbance value. The BSA standards 
protein concentration were plotted against 
absorbance, which was linearly correlated using 
Microsoft Excel. By determining the equation of the 
linear correlation, the protein concentrations of the 
samples were calculated.  

3.2.3 Coupled in vitro translation and 
transcription 

To test the biological activity of the samples, a cell-
free reaction was performed to synthesise 
Luciferase, an enzyme that produces 
bioluminescence when reacted with the reporter 
protein D-luciferin. An agar plate with E. coli 
culture containing recombinant Luciferase plasmid 
was provided by the Polizzi group. To grow the E. 
coli primary culture, a single colony was added to 5 
ml Lysogeny Broth (LB) miller media and 500 𝜇𝑙 
kanamycin. The primary culture was incubated for 8 
hours at 37℃, shaking at 270 rpm. Afterwards, 500 
𝜇𝑙 of primary culture was inoculated into a 2L 
baffled flask containing 500 ml LB miller media and 
5 ml kanamycin. The bulk culture was incubated for 
12-16 hours at the same operating conditions as 
previously described for the primary culture. The 
bacterial cells were harvested by centrifugation at 
4℃ and 6000𝑔 for 15 minutes and collected as 250 
ml pellets. Vectors were then extracted from the E. 
coli using the HiSpeed® Plasmid Maxi Kit according 
to the procedure described for low-copy 
plasmids[25].  

To conduct the coupled in vitro transcription and 
translation protein synthesis, the reaction mix 
followed the optimised compositions and conditions 
developed for P. pastoris[9]. 24.5 𝜇𝑙 of clarified 
lysate was added to an equal volume of reaction mix. 
To determine luciferase production, the procedure 
followed was in accordance with the optimised 
protocol developed for P. pastoris[9]. Afterwards, 
the microplate was incubated at 21℃ and the 
luminescence produced from the reaction was read 
with CLARIOstar Plus Microplate Reader (BMG 
Labtech), in 1 hour 30 minutes intervals for 5 hours. 
A negative control of each sample was also prepared 
and simultaneously run with the same conditions to 
eliminate background luminescence.  

4. Results  
4.1 Pore Size Validation  

Higher emission of luminescence indicates that 
more luciferin was produced, which correlates to 
higher amounts of active protein synthesis 
machinery present in the clarified lysate. Figure 3 
shows the luminescence produced by the reaction 
over time, as mentioned in Section 3.2.3. “Activity” 

discussed in the following sections pertains to the 
capacity of each clarified lysate to perform protein 
synthesis. The samples clarified using the 0.8 
𝜇𝑚 and 0.2 𝜇𝑚 syringe filters were observed to have 
comparable activity to that clarified by 
centrifugation. This is apparent after 3 hours of 
reaction, in which the activity of the cell-free 
reaction reached peak values for all three samples. 
As the samples obtained from syringe filtration 
shows activity, this is an indication that filtration is 
a viable option for the primary clarification of P. 
pastoris lysate. 

In Figure 3, it is observed that the activity of 0.8 
𝜇𝑚 and 0.2 𝜇𝑚 syringe filter samples are 
comparable at the peak. However, 0.8 𝜇𝑚 syringe 
filter samples showed a slower rise in activity than 
0.2 𝜇𝑚 syringe filter samples.  

 
4.2 Depth Filter and Syringe Filter Performance  

 

Figure 4: Percentage extent of lysate clarification for 
samples obtained by centrifugation, Minisart® 0.2 𝜇𝑚 
and 0.8 𝜇𝑚, Millistak+® HC Pro C0SP, Millistak+® HC 
Pro D0SP, Clarisolve® 20MS 
 

Figure 3: Luminescence produced by cell-free reaction 
over time for samples obtained from centrifugation and 
syringe filters 
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Figure 4 shows the clarification percentage of each 
separation method tested. The lysate obtained from 
depth filters showed high clarification comparable 
to that of centrifugation. However, the samples 
obtained from syringe filters showed lower 
clarification in comparison. 

The protein concentration of the clarified lysate 
obtained from each separation method is shown in 
Figure 5. The protein concentration in the 0.8 𝜇𝑚 
syringe filter sample was found to be 34.7% lower 
than the protein concentration in the 0.2 𝜇𝑚 syringe 
filter sample. As observed, clarified lysates obtained 
from depth filters showed lower protein 
concentrations compared to those obtained by 
centrifugation and syringe filters. Furthermore, the 
20MS clarified lysate showed 56.9% higher protein 
concentration compared to the D0SP clarified lysate. 
This may be indicative of the absorption action of 
the filters and other effects discussed in Section 5. 
Based on the figures mentioned, it is apparent that 
no concrete conclusions can be made regarding the 
filter performance.  

It is vital to note that the turbidity measurement 
was obtained through optical density, therefore, the 
percentage difference between the methods may not 
appear to be significant. However, a clear difference 
in colour and turbidity was observed in person. 
Clarified lysate obtained by centrifugation and 
syringe filters were slightly yellow coloured, 
whereas depth filters produced clear clarified 
lysates.  

4.3 Protein Synthesis Activity Comparison  

The lysate activity for each method determined 
through the luciferase assay is shown in Figure 6. As 
observed, depth filters produce clarified lysates of 
lower activity than centrifugation. 20MS produced 
clarified lysates of 57.2% higher activity at the peak 
as compared to D0SP. This is interesting to observe 
as both filters have the same lower nominal pore size 
of 0.5 𝜇𝑚 but 20MS has layers with larger pore 

sizes. Meanwhile, clarified lysates produced by 
C0SP displayed no activity, which is interesting to 
observe as C0SP is constructed from the same media 
as D0SP but has lower nominal pore sizes. These 
variations in activity may be attributed to the 
differences in pore sizes, filter media and filter aids 
across all the filters, which is further discussed in 
Section 5.   

5.  Discussion 

The lower activities of the depth filter clarified 
lysates as compared to the centrifugation lysate may 
at first indicate that the depth filters are not the right 
choice for the separation. However, it has to be 
noted that the protocol for the separation by 
centrifugation has been extensively developed and 
optimised for the P. pastoris lysate [9]. On the other 
hand, this study was the first time that depth filters 
were used in this process. The discussion section of 
this paper highlights potential reasons for lower 
activities and protein concentrations in depth filter 
clarified lysates and other general nuances.  

5.1. Filter Properties  
5.1.1 Pore Size 
The differences in the protein concentrations of the 
syringe filter samples as mentioned in Section 4.2. 
may be explained by the different pore sizes of the 
two filters. The different pore sizes may also explain 
the 0.8 𝜇𝑚 syringe filter samples exhibiting a slower 
rise in activity than 0.2 𝜇𝑚 syringe filter samples as 
mentioned in Section 4.1. It is postulated that the 0.8 
𝜇𝑚 syringe filter may allow more cell debris to pass 
through than the 0.2 𝜇𝑚 syringe filter due to its 
higher pore size. The higher amount of cell debris 
present in the 0.8 𝜇𝑚 syringe filter sample would 
therefore ‘dilute out’ the proteins. Additionally, the 
higher amount of cell debris present in 0.8 𝜇𝑚 
syringe filter sample may interfere with the cell-free 
reaction due to steric hindrance or other contributing 
interactions, which may lead to a slower rise in 

Figure 5: Protein concentration of the clarified lysate 
obtained from each separation method 

Figure 6: Luminescence produced over time by cell-free 
reaction for samples obtained by centrifugation and 
depth filtration 
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activity. Notably, it appears in Figure 3 that the 0.8 
𝜇𝑚 syringe filter sample has a higher activity than 
0.2 𝜇𝑚 syringe filter sample. However, no solid 
conclusions can be made as the error bars overlap. 
This hypothesis should be further confirmed by 
testing the samples using dynamic light scattering.  

It can also be observed in Figures 5 and 6 that the 
depth filters with layers of higher pore sizes (such as 
D0SP and 20MS) produce clarified lysates of higher 
activities and protein concentrations than those with 
layers of lower pore sizes (such as C0SP). This trend 
may appear to completely contradict the syringe 
filter hypothesis, however, other factors listed in 
Sections 5.1 and 5.2 should be considered. In 
addition, it is important to note that the C0SP filter 
was observed to have a much higher solid blockage 
than D0SP and 20MS during experimentation. The 
high solid blockage on the filter media may be 
attributed to the absence of layers with a pore size 
>1.2 𝜇𝑚 which was present in the D0SP and 20MS 
depth filters[22]. Therefore, the high blockage levels 
are consistent with the lack of activity and low 
protein concentrations in the C0SP clarified lysate.  

5.1.2 Filter Media 

In Sections 4.2 and 4.3, depth filter lysates were 
found to be lower in activity and protein 
concentration than syringe filter lysates. A potential 
reason for these differences may attributed to the 
material of the filter media. The syringe filters 
consist of cellulose acetate which has been found to 
have low protein binding properties as compared to 
other media. Cellulose acetate is also widely used 
for protein recovery applications[23]. On the other 
hand, the 20MS filter is composed of polypropylene, 
while C0SP and D0SP filters were constructed with 
polyacrylic[22]. The three filter materials have 
differing physico-chemical properties, for example, 
cellulose acetate is more polar than 
polypropylene[26]. The variations in physico-
chemical properties lead to materials having 
different component retention properties[26, 27]. The 
different retention properties may explain the 
differences between protein concentrations in the 
samples. 

It is postulated that the same principle may also 
apply for the microsomes present in the lysate, 
which may explain the differences in activities of the 
samples. However, there were no available literature 
for the retention of microsomes across different 
filter media, which should be further investigated.  

5.1.3 Filter Aids 

Filter aids are added to filter media to prevent pore 
blockage by solids and increase the porosity of the 
filter cake, thus improving filtration efficiency. 
Filter aids were present in the depth filters but not in 
the syringe filters. The presence of silica filter aids 

in the C0SP and D0SP filters may explain the lower 
protein concentration in the clarified lysate 
described in Sections 4.2 and 4.3. Silica filter aids 
were found to possess high binding capacities to 
positively charged proteins[28]. Therefore, it may be 
likely that proteins are being sorbed to the silica 
filter aids, which causes D0SP and C0SP samples to 
exhibit lower protein concentrations. Furthermore, 
silica filter aids may potentially retain microsomes. 
However, there is no literature available regarding 
this and should be further investigated.  

5.2 Depth Filter Operation 
5.2.1 Dilution  

As described in Section 4.1 and 4.2, clarified lysates 
obtained from depth filters showed lower activity 
and protein concentrations as compared to those 
produced by centrifugation and syringe filters. This 
could be attributed to the operation of the depth 
filters at blowdown as mentioned in Section 3.1.2, 
which may retain the initially added Lysate Buffer 
A. It is known through literature that an increase in 
lysate dilution with buffer lowers lysate activity[29]. 
During operation, it was observed that 50 ml of 
Lysis Buffer A was still retained despite attempts to 
recover it with blowdown. The lysate may have been 
diluted by the retained Lysis Buffer A thus lowering 
the concentration of active transcriptional and 
translational machineries present in the sample. 
Meanwhile, the centrifuge and syringe filters were 
not operated in the same manner, hence, the samples 
obtained with these methods were not further 
diluted.  

5.2.2. Environment 

As mentioned in Section 3.1.2, the lysate was 
obtained 10 minutes after operation. The 
temperature of the depth filters was not maintained 
cold, as recommended for the enrichment of 
microsomes to prevent protein denaturation[9]. Thus, 
the lower protein concentrations and activities found 
in the depth filter samples in Sections 4.2. and 4.3. 
may be explained by protein denaturation. 
Meanwhile, clarified lysate from the syringe filters 
was obtained after applying pressure for 1 minute, 
which is not sufficient time to cause a large increase 
in the lysate temperature to cause inactivation due to 
thermal protein denaturation.  

5.2.3 Operation Mode  

As mentioned in the user guide, the depth filters are 
recommended to be operated continuously[22]. 
However, due to limitations presented in the 
preparation of cell lysates, the filters were operated 
at blowdown. Operating the depth filters 
continuously may potentially improve the activity 
and protein concentration of the depth filter lysates. 
The operation of the depth filters at a pressure higher 
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than 1 bar may also lead to improvements in the 
protein concentration and activity of the depth filter 
samples. 

5.3 Filter Cake Resistance  

As the syringe filters and depth filters used for 
experimentation have different dimensions and 
configurations, it is vital to note that results obtained 
from both methods cannot be directly compared. 
During experimentation, a high flow resistance due 
to filter cake formation was developed in the syringe 
filters after 2 ml of lysate was passed through. 
However, this was not observed for the D0SP and 
20MS filters after 80 ml of lysate was filtrated 
through. The ability of the two depth filters to 
prevent complete pore blockage may be attributed to 
the presence of filter aids, a pore size gradient 
throughout the multiple filtration layers, and a lower 
lysate throughput to filtration area ratio.  

Although the high activity of the syringe filter 
samples may seem attractive, the ability of the depth 
filters to prevent blockage must also be considered 
when scaling-up. This is because the filter cake 
resistance not only determines the viability of filter 
scale-up but also affects the filtrate compositions 
and concentrations. From this, it can be determined 
that the configuration of the filter is a vital aspect 
which can affect the properties of the filter cake, 
which affects the efficiency of filtration 
performance for scale-up. 

5.4 Loss of Activity   

In this study, P. pastoris was prepared at a larger 
scale, 140g of cells were prepared as opposed to 2-
5g prepared for biological experiments. The scaling-
up of the CFPS process from cell preparation to 
primary clarification may have an effect on lysate 
properties. Therefore, it is postulated that the large-
scale handling of cells could have led to a loss of 
activity of the sample. 

6. Conclusion and Outlook 

This study intended to develop filtration as a 
scalable method for the primary clarification of P. 
pastoris lysate. Experimentation undertaken with 
syringe filters demonstrated filtration as a feasible 
method to produce clarified lysates of comparable 
protein synthesis capabilities as those obtained via 
centrifugation. Depth filters produced clarified 
lysates with high clarifications but exhibited low 
activities and protein concentrations. Despite this, 
depth filters demonstrated the potential for scale-up 
with further optimisation due to low filter blockage. 

In order to gain a deeper understanding into the 
clarification process, the clarified lysates must be 
tested for the presence of microsomes and their 
ability to undergo glycosylation. 

To implement depth filters in a large-scale CFPS 
process, the continuous operation of the depth filters 
has to further developed and optimised. The depth 
filter operation must be conducted to reduce dilution 
and filtration time, which might improve clarified 
lysate activity. Further studies must also be 
conducted to explore the interactions between lysate 
and filter components, in order to minimise the 
retentions of proteins and microsomes.  

Furthermore, filter blockage and flow resistance 
due to filter cake developed is a challenge in the use 
of filters in the pharmaceutical industry[15]. 
Although this paper was able to qualitatively note 
the reduced blockage in depth filters, the filter cake 
properties must be determined through Vmax or Pmax 
testing [20].  

The Vmax and Pmax testing will give insight into 
changes in filtrate properties with time and will  
allow for further clarity on the scale-up of the depth 
filters to pilot/manufacturing scales. This testing 
would require 6 times more lysate than the amount 
of lysate prepared in this study.  

The optimisation of the production stages prior 
to primary clarification of lysate is vital to producing 
clarified lysates of high glycosylation activities. P. 
pastoris has been used in the biopharmaceutical 
industry to produce therapeutics, hence, the 
conditions for its growth in a bioreactor have been 
optimised and shows potential re-applicability[30]. 
The cell lysis method affects the effectiveness of cell 
membrane breakage, as well as the concentration of 
microsomes. Therefore, the procedure has to be 
optimised to improve the activity of lysate to 
produce glycoproteins. It has been shown that the 
use of glass beads instead of sonication for cell lysis 
has improved clarified lysate activity[30]. Hence, the 
optimisation of P. pastoris lysate production process 
may alleviate the burden posed on depth filters. 
Overall, the optimisation of the entire process must 
be carried out to allow for further scale-up. 
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A Comparative Study of the Pure Gas Permeability of PIM-1 Membranes and Other 
Polymers for CO2 Separation 
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Abstract  
Membrane-based separation technologies provide a less energy-intensive alternative to amine scrubbing for carbon 
capture applications. Polymers of Intrinsic Microporosity (PIMs), PIM-1 in particular, are a promising class of glassy 
polymeric membrane material due to its thermal stability and high intrinsic free volume, redefining the Robeson upper 
bound in 2008. However, PIM-1 membranes suffer from physical aging, and exhibit high permeabilities but moderate 
selectivities. The separation performance of PIM-1 membranes can be enhanced through alcohol soaking treatment and 
the functionalisation of the nitrile group into amidoxime. Here we show that methanol-soaked PIM-1 membranes exhibit 
higher permeabilities as compared to as-cast PIM-1 membranes. AO-PIM-1 membranes display improved CO2/N2 and 
CO2/CH4 selectivities but at the expense of lower permeabilities. A comparison between the rubbery PolyActive™ 
membrane and the glassy PIM-1 membrane confirms that PIM-1 membranes typically show higher permeabilities than 
their rubbery counterparts due to higher solubility coefficients arising from the non-equilibrium excess free volume as 
reported in literature. Methanol soaking increases the permeability of PIM-1 membranes due to higher free volume caused 
by the swelling of polymer chains and the removal of trapped residual solvents. Amidoxime-functionalisation increases 
the selectivity but decreases the permeability of PIM-1 membranes due to tightening of the microstructure. Our results 
demonstrate that PIM-1 membranes are well-suited for carbon capture applications. However, several challenges, such as 
physical aging and the lack of reproducibility and processability in scale-up, have yet to be addressed for the 
commercialisation of PIM-1 membranes. 

Keywords: polymer membranes, CO2 separation, PIM-1, PolyActive™, methanol soaking, amidoxime-functionalisation 

Introduction 
To meet the 1.5°C threshold for global warming set out 
by the Intergovernmental Panel for Climate Change, 
increasing emphasis is placed on the development of 
post-combustion carbon capture technologies. Amine 
scrubbing is currently the most robust technology for 
carbon capture from flue gas, though it is quite energy 
intensive. Membrane-based separation poses a 
promising alternative to chemical absorption for CO2 
sequestration and can reduce heating requirements by 
operating at ambient temperatures [1]. 

This paper focuses on the fabrication of dense 
film polymer membranes and compares the separation 
performances of rubbery and glassy polymer 
membranes, as represented by PolyActive™ and PIM-1 
membranes respectively. Optimisation of the 
performance of PIM-1 membranes was further explored 
by investigating the effect of methanol soaking on the 
pre-aging separation performance of PIM-1 membranes, 
and the effect of the functionalisation of PIMs through a 
comparison between PIM-1 and AO-PIM-1 membranes. 

Background 

Upper Bound Relationship 
The key mass transport parameters of gas separation 
membranes include diffusivity, solubility, permeability, 
and permselectivity. The relationship between 
diffusivity and solubility can be expressed by 

 𝑃௜ = 𝐷௜ ∗ 𝑆௜ E.1 
Where Pi, Di and Si are the permeability, diffusion 
coefficient, and solubility coefficient of diffusing 
species i respectively [2]. 

 
 

The permselectivity of a membrane is defined 
as the ratio of the permeabilities of two diffusing 
species.  

 𝛼௜/௝ =
𝑃௜
𝑃௝
=
𝐷௜

𝐷௝
∗
𝑆௜
𝑆௝

 E.2 

Where αi/j is the permselectivity of the membrane, Px, Dx 
and Sx are the respective permeability, diffusion 
coefficient and solubility coefficient of diffusing species 
x = {i, j}, with species i being the more permeable 
component out of the gas pair i and j [2]. Using equation 
1, permselectivity can be split into contributions from 
diffusion selectivity (Di/Dj) and solubility selectivity 
(Si/Sj).  

There exists a trade-off between the 
permeability and permselectivity of a membrane. The 
limit to the highest combinations of permeability and 
permselectivity of known polymers is referred to as the 
“upper bound” and is shown by a linear log-log plot of 
pure gas permselectivity (αi/j) versus permeability (Pi) in 
figure 1. The upper bound relationship is primarily 
determined by the diffusion selectivity, with a modest 
contribution from solubility selectivity. As permeability 
increases, free volume increases, hence decreasing the 
diffusion selectivity. At the same time, when the 
diameter of gas j is larger than that of i, more sorption 
sites become available for the larger gas as free volume 
increases, hence decreasing the solubility selectivity  
[3]. The contributions of diffusion selectivity and 
solubility selectivity to the permselectivity-permeability 
trade-off are shown in figure 1. 
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Fig. 1: Graph showing the solubility selectivity, S(O2)/S(N2), and 
diffusion selectivity, D(O2)/D(N2), contributions to the upper bound 
permselectivity trade-off, P(O2)/P(N2). The trend of permselectivity is 
shown in black, diffusion selectivity is shown in red and solubility 
selectivity is shown in blue. 
 
Rubbery and Glassy Polymers 
Polymer membranes can be classified into two main 
categories, rubbery polymers and glassy polymers. 
Rubbery polymers are amorphous polymeric materials 
that are above the glass transition temperature (Tg). They 
are characterised by weaker intermolecular forces and 
more flexible molecular chains, and generally exhibit 
higher fluxes but lower permselectivities. The mass 
transport mechanism in rubbery polymers can be 
described by the solution-diffusion model and modelled 
using Fick’s law of diffusion. The concentration of 
soluble gases in the rubbery polymer membrane follows 
Henry’s law, exhibiting a linear dependence on 
penetrant pressure. 

 𝐶 = 𝑆 ∗ 𝑝 E.3 
Where C is the concentration, S is the solubility and p is 
the pressure [4].  

An example of a rubbery polymeric membrane 
material is the commercialised PolyActive™, which is a 
polyether oxide (PEO) based copolymer with a chemical 
structure as shown in figure 2 [1]. 

 
Fig. 2: Schematic showing the molecular structure of PolyActive™. 

On the other hand, glassy polymers are 
amorphous polymeric materials that are below the glass 
transition temperature (Tg). Due to the non-equilibrium 
nature of glassy polymers, they are characterised by 
rigid structures with restricted molecular chain motion 
and excess free volume, hence typically exhibit lower 
fluxes but higher permselectivites. The difference in 
specific volume between rubbery and glassy polymers 
as a function of temperature is summarised in figure 3.  

The mass transport mechanism in glassy 
polymers can be described by the nonlinear dual-
sorption model [2]. 

 
𝐶 = 𝐶ு + 𝐶஽ =

𝐶ுᇱ 𝑏𝑝
1 + 𝑏𝑝

+ 𝑘஽𝑝 
E.4 

Where C is the concentration, CH and CD are the 
contributions from Langmuir sorption and Henry’s law 
sorption respectively, CH’ is the Langmuir saturation  

 
Fig. 3: Schematic of specific volume of rubbery and glassy polymers 
as a function of temperature. The shaded region shows the non-
equilibrium excess free volume in glassy polymers. Taken from [5]. 
 
constant, b is the Langmuir affinity constant, kD is the 
Henry’s law solubility constant, and p is the pressure. 

The Henry’s law sorption contribution is 
identical to that of rubbery polymers, whereas the 
Langmuir sorption contribution can be described as a 
“hole-filling” process due to the excess free volume in 
glassy polymers. It is assumed that the gas adsorbed on 
the Langmuir sorption sites is immobilized, with gas 
diffusing through the Henry’s sorption sites only. 
Hence, the Langmuir sorption mode dominates at low 
pressure and the Henry’s law sorption mode dominates 
at higher pressures as the Langmuir sorption sites 
become occupied as shown in figure 4. 

  
Fig. 4: Graph showing the Langmuir and Henry’s Law (dashed lines) 
contributions to total gas sorption (solid line) representing the dual 
sorption model. Taken from [5]. 
 

The upper bound is dominated by glassy 
polymers primarily due to higher solubility coefficients 
than their rubbery counterparts, with a modest 
contribution from diffusion selectivity [6]. The excess 
free volume in glassy polymers leads to higher solubility 
coefficients, shifting the upper bound curve to the right 
for glassy polymers. It is also observed that at equal 
permeability, glassy polymers possess higher solubility 
coefficients and lower diffusion coefficients than 
rubbery polymers. 

Out of all glassy polymers, Polymers of 
Intrinsic Microporosity (PIMs) are regarded as a 
promising class of polymeric material for high-
performance gas separation membranes, owing to its 
higher intrinsic free volume as compared to other glassy 
polymers [7]. 
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Polymers of Intrinsic Microporosity (PIMs) 
Polymers of Intrinsic Microporosity (PIMs) were first 
discovered in 2003 as an attempt to design organic 
materials with an activated carbon-like structure but 
with higher surface. The microporosity is due to the 
rigid and contorted structure of the polymer, which 
prevents an efficient packing structure upon solidifying 
and creates free volume. Hence, the microporosity is due 
to the intrinsic molecular structure rather than the 
processing technique [8].   

Generally, the macromolecular structure of 
PIMs consists of a structural unit which is responsible 
for the contorted shape of the polymer chain, and a 
linking group which joins together structural units and 
prevents their rotation about each other [9]. The 
structural unit of PIM-1 is spirobisindane (SBI). This 
first group of SBI-based PIMs showed high gas 
permeability and moderate permselectivity to CO2 and 
in 2008 redefined the upper bound [10]. Other structural 
units such as triptycene (Trip), benzotriptycene (BTrip) 
and Tröger's base (TB) have also been used and have 
demonstrated improved permeabilities and selectivities, 
further establishing new upper bounds in 2015 [11] and 
2019 [12] shown in figure 5. 

  
Fig. 5 Robeson graphs showing gas permeability and selectivity data 
of various membranes which established the 2019 upper bounds (red 
line) taken from [12]. 
 
  PIM-1 is the most common PIM used as the 
selective layer in Thin Film Composite membranes [1]. 
Despite the moderate selectivity of PIM-1, it remains of 
high industrial interest for CO2 separation due to its high 
gas permeability, thermal stability, and solubility in 
common solvents [9].  

Research and development to improve the 
selectivity of PIM-1 membranes focuses on the 
modification of the intrinsic structure, for example, by 
incorporating porous nanofillers into the PIM-1 matrix 
[13], functionalisation of nitrile (-CN) groups in the 
polymer backbone [14], self-crosslinking [15], or UV 
treatment [16].  
 Functionalisation of PIM-1, often via the 
conversion of the nitrile (-CN) group, generally 
improves selectivity but decreases permeability. 

Carboxylate-functionalised PIMs have shown 
significant improvements in CO2/N2 and CO2/CH4 
selectivities by 267% and 129% respectively [17]. The 
enhanced selectivity may be attributed to both the CO2-
phillic nature of the polar functional groups and their 
increased intermolecular attraction which tightens the 
microporous structure. However, the increased 
attraction between neighbouring chains has shown to 
decrease total surface area and permeability [14]. 
 AO-PIM-1 is an amidoxime-functionalised 
PIM-1 with a chemical structure as shown in figure 6. 
Pure gas testing of AO-PIM-1 has shown an increase in 
CO2/N2 selectivity by 45% and in CO2/CH4 selectivity 
by 113%, but a decrease in CO2 permeability to 1153 
Barrer [18]. Both Langmuir and BET models show a 
lower apparent surface area for AO-PIM-1 in 
comparison to PIM-1 but a higher micropore surface 
area, which may be credited to the conversion of 
mesopores to micropores due intermolecular hydrogen 
bonding [19]. 

 
Fig. 6: Schematic showing the molecular structures of PIM-1 (left) 
and AO-PIM-1 (right). 

Challenges 
Several challenges hinder the wide commercialisation of 
PIM membranes for post-combustion carbon capture, 
including the lack of reproducibility and processability 
in scale-up, membrane plasticization and physical aging. 

PIM-1 is insoluble in various polar solvents 
including Dimethylacetamide (DMAc), making it more 
challenging to process into hollow fiber membranes, 
which is the industrially preferred module configuration 
due to the higher packing density and surface-to-volume 
ratio [20]. Efforts have been made to increase the 
solubility of PIM-1 in polar solvents through the 
functionalisation of PIMs, but have resulted in a loss in 
permeability. Many novel membrane materials lack 
reproducibility due to the presence of unavoidable 
defects, the irregular packing of polymer chains, and the 
processing history dependence of glassy polymers [1]. 
Techniques used for casting membranes at lab or pilot 
scale may also not be viable at industrial scale. 
Moreover, limited studies have been done to assess the 
performance of membrane materials at flue gas 
compositions instead of single gas or simple mixed gas 
conditions, resulting in uncertainties in the 
commercialisation of such membrane materials. 

Plasticisation refers to the irreversible swelling 
of polymer membranes due to the presence of highly-
sorbing penetrants (e.g. CO2), leading to a loss in 
selectivity, and poses an issue in post-combustion 
carbon capture applications and high-pressure operating 
conditions [20]. Common approaches used to minimise 
the effects of plasticisation include chemical cross-
linking and sub-Tg annealing [21]. 
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Physical aging is defined as the loss in non-
equilibrium free volume in glassy polymers over time, 
resulting in a decrease in permeability. PIM-1 
membranes exhibit a dual-aging mechanism, with the 
effects of lattice contraction dominating over the 
diffusion of pores to the surface of the membrane [22]. 
The rate of physical aging is both thickness and time 
dependent. Aging rates are higher in thinner films, and 
the rate of physical aging declines with time as the 
driving force of physical aging (i.e., the difference 
between the actual and equilibrium free volume) 
decreases [2] [23]. Physical aging can be mitigated 
through methanol soaking, thermal cross-linking, 
ultraviolet treatment, or the addition of fillers to 
construct mixed-matrix membranes [23]. 

Alcohol Soaking Treatment 
Immersing PIM-1 membranes in alcohols, such as 
methanol, can increase the permeability of the 
membrane pre-aging, as well as reverse the effects of 
physical aging, as shown in figure 7. This can be 
attributed to the swelling of polymer chains via 
plasticisation leading to an increase in free volume [22], 
and the removal of past processing history and trapped 
residual solvents which may obstruct gas transport 
through the membrane. However, such alcohol-soaking 
method requires the dismantling of gas separation 
membrane modules and is not practical at an industrial 
scale. Almansour et al [23] have developed an 
alternative rejuvenation approach that involves 
exposing aged PIM-1 films to alcohol vapor, hence 
eliminating the need for membrane dismantling. Traces 
of alcohol could also be easily removed by passing inert 
gas or air through the membrane module following the 
vapor treatment, minimizing the downtime of the 
equipment. 

 
Fig. 7: Graph of CO2 permeability as a function of aging time in 
methanol-soaked and unsoaked PIM-1 membranes taken from [23]. 
The black square represents the as-cast PIM-1 membrane, and the red 
circles represent the methanol-soaked PIM-1 membrane. The green 
triangles and the blue inverted triangles represent PIM-1 membranes 
that were soaked in methanol post-casting, then treated with methanol 
vapor post-aging. The numbers in the brackets following “L” and “V” 
denote the day of liquid alcohol soaking and the day of vapor alcohol 
treatment respectively, with the day following the collection of the cast 
membrane from the petri dish as day 1.  
 
Thin Film Composite Membranes 
Thin film composite (TFC) membranes are composed of 
four layers: a support layer, a gutter layer to smoothen 
the surface of the support layer and prevent the selective 

layer from penetrating into the support layer, a thin 
selective layer to separate feed components, and a 
protective layer. TFC membranes are more suited for 
industrial applications, as the material used in each layer 
can be different and optimised independently to provide 
the desired functionality, driving the performance of 
TFC membranes towards the upper bound [1]. State-of-
the-art TFC membranes made up of PIM-1 show a CO2 
permeance of 3200 GPU, with CO2/N2 and CO2/CH4 
selectivities of 64 and 45 respectively [24]. However, 
for ease of comparison of the separation performances 
of various selective membrane materials, dense film 
membranes were used in this study. 

Methods 
Membrane Fabrication 
To prepare PIM-1 and PolyActive™ membranes, 2 wt% 
solutions were prepared by dissolving the polymer in 
Chloroform. The composition of the PolyActive™ 
pellets used was 1500PEOT77PBT23 (1500 g/mol, 77 
wt% PEO, 23 wt% PBT). Solutions were mixed 
overnight using a magnetic stirrer and centrifuged at 
14000 rpm for 10 minutes to remove remaining 
impurities. Solution was then cast onto a levelled 7 cm 
glass petri dish and left overnight for the solvent to 
evaporate in a chloroform atmosphere at room 
temperature. A dense membrane was then obtained. 

To prepare the AO-PIM-1 membrane, 3 wt% 
AO-PIM-1 in N,N-dimethylformamide (DMF) solution 
was filtered through a 0.45 μm PTFE filter, to remove 
possible dust or polymer gel particles, onto a levelled 
glass petri dish. After slow evaporation of the solvent at 
60 °C, a dense membrane was formed. 

The thicknesses of the dense films were 
measured using an electric micrometre. 

Methanol Soaking 
Post-casting treatment of PIM-1 and AO-PIM-1 
membranes were carried out by soaking the dry 
membranes in methanol for 24h at ambient conditions, 
then leaving to air dry for 3 days before masking.  

Membrane Masking 
The membranes were cut using the MTI Precision Disc 
Cutter and masked using aluminium tape and epoxy 
glue. The active surface area of the membrane was 
measured using ImageJ software. 

Membrane Testing 
The membranes were tested using a single-gas constant-
volume variable-pressure method as shown in figure 8. 
Tests were performed at 35°C, and the feed pressure for 
testing PolyActive™, PIM-1, and AO-PIM-1 
membranes were 1.5 bar, 2 bar and 2.3 bar respectively. 
Masked membranes were vacuumed in the testing cell 
for 1h, or longer if necessary, before each run. The gases 
were tested in the following order: H2, O2, CO2, N2, CH4. 

The rate of increase in pressure on the permeate 
side was analysed based on the time-lag method to 
assess the membrane performance for each gas using the 
following equations: 
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𝑃 =
𝑉 ∗ 𝑙
𝐴

𝑇଴
𝑝௙𝑝଴𝑇

൬
𝑑𝑝
𝑑𝑡
൰ 𝐄. 𝟓 

Where P is the permeability of the testing gas in Barrer 
(1 Barrer = 10-10 cm3(STP) cm cm-2 s-1 cmHg-1), V is the 
volume of the permeate in cm3, l is the thickness of the 
membrane in cm, A is the effective area of the membrane 
in cm2, pf is the feed pressure in cmHg, p0 is the pressure 
at standard state in cmHg, T is the operating temperature 
in K, T0 is the temperature at standard state in K, dp/dt 
is the slope of the increase in pressure on the permeate 
side at pseudo-steady state in cmHg s-1, as calculated by 
computational linear fitting of the results. The standard 
state pressure and temperature were taken to be 76 
cmHg and 273.15K respectively. 

𝐷 =
𝑙ଶ

6𝜃
𝐄. 𝟔 

Where D is the diffusion coefficient of the testing gas in 
cm2 s-1, l is the thickness of the membrane in cm,  is the 
time lag in s. The time lag  can be determined from the 
intercept of the steady-state linear region of the 
pressure-time plot with the time axis. 

Using the relationship between solubility and 
diffusivity in equation 1, solubility (in cm3 cm-3 cmHg) 
can be back-calculated from the experimentally 
determined values of permeability and diffusivity. The 
selectivity of the membrane towards different gas pairs 
can also be found using equation 2. 

 
Fig. 8: Schematic of the testing rig for constant-volume variable-
pressure method. 

Results and Discussion 
Gas Flux Measurements 
Figure 11 shows the permeability of pure gases through 
the respective membranes as the rate of pressure 
change (dp/dt) is proportional to the permeability. The 
order of permeability of the gases for all the 
membranes is CO2>H2>O2>CH4>N2. 

Solubility Analysis 
Solubility coefficient is a thermodynamic parameter that 
is dependent on the free volume distribution and 
interactive forces between the penetrant and polymer, 
which leads to the sorption of penetrants onto the 

membrane [22]. From figure 9, the solubility of a 
penetrant generally shows a positive correlation with its 
critical temperature. The higher the critical temperature, 
the more condensable the gas is, and hence the higher 
the solubility. 

 
Fig. 9: Graph showing the solubility of gases (left to right) H2, N2, O2, 
CH4, CO2 against critical temperature. Unsoaked PIM-1 membrane is 
represented by black squares, methanol-soaked PIM-1 membrane is 
represented by red circles, PolyActive™ membrane is represented by 
blue triangles and AO-PIM-1 membrane is represented by inverted 
green triangles. 
 
Diffusivity Analysis 
Diffusion coefficient is a kinetic parameter that reflects 
the restrictions of the surrounding medium on the 
diffusing species [5]. It is related to the size of the 
penetrant, chain mobility, packing density and fractional 
free volume of the polymer [22]. From figure 10, the 
diffusivity of a penetrant generally shows a negative 
correlation with its effective diameter. The higher the 
effective diameter, the lower the diffusivity, indicating 
a size sieving effect of the pores in the polymer. This is 
because larger gases with higher effective diameters 
exhibit more interactions with the polymer chains than 
smaller gases, leading to lower mobility [25]. The same 
trend is observed for all polymer membranes tested. 

 
Fig. 10: Graph showing the diffusivity of gases (left to right) H2, O2, 
CO2, N2, CH4 against effective diameter. Unsoaked PIM-1 membrane 
is represented by black squares, methanol-soaked PIM-1 membrane is 
represented by red circles, PolyActive™ membrane is represented by 
blue triangles and AO-PIM-1 membrane is represented by inverted 
green triangles. 
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Permeability Analysis 
According to the solution-diffusion model, permeability 
is a function of the solubility coefficient and the 
diffusion coefficient. The contributions of solubility and 
diffusivity to permeability are shown in figure 12 
respectively. Kinetic diameters are related to the mean 
free paths of molecules, taking into account both 
molecular size and structure [25]. It can be observed that 
the relatively high permeability for H2 is not because of 
solubility, but is instead attributed to a higher diffusion 
coefficient due to H2 having the smallest kinetic 
diameter out of all the gases tested.  

Permeability generally decreases with the 
kinetic diameter of the penetrant gas due to decreasing 
diffusivities, since molecular sieving effects are greater 
for larger penetrants. On the contrary, solubility 
increases with kinetic diameter except for the case of 
CO2 which is highly condensable. This matches the 
positive correlation observed between the critical 
temperature of the gases and the solubility in figure 9, 
as molecules with higher kinetic diameters are typically 
more condensable [25]. The opposing effects of kinetic 
diameter on diffusivity and solubility suggest that 
diffusion is the dominating mechanism in gas 
permeability through polymer membranes, with CO2 
being the exception where solubility effect dominates. 

The permeability of CO2 is the highest among 
all gases for all membranes tested, though the distinction 
is less pronounced for PolyActive™ membranes. The 
selectivity for CO2 is dominated by solubility selectivity 
and less so by diffusion selectivity, as various functional 
groups in the polymeric materials display an affinity to 
CO2, resulting in higher solubilites. The polyethylene 
oxide group in PolyActive™ and the aryl ether linkage 
in PIM-1 exhibit favourable interactions and a strong 
affinity to CO2 as compared to other gases [1] [10]. In 
AO-PIM-1, the nitrile group in PIM-1 is converted to a 
highly basic and polar amidoxime (AO) group, 
introducing CO2-philic characteristics to the 
functionalised polymer [18]. 

Comparison of PolyActive™ and Unsoaked PIM-1 
Membranes 
From figure 12, PolyActive™ membranes show a lower 
permeability than PIM-1 membranes due to both lower 
solubility coefficients and lower diffusion coefficients. 
PIM-1 is a type of glassy polymer with intrinsic 
microporosities and a rigid, contorted structure due to 
restricted rotational motion along the polymer backbone 
and inefficient packing of aromatic rings in the polymer 
chain. This leads to high porosity and fractional free 
volume in PIM-1 molecules, contributing to high 
solubilities [20]. 

PolyActive™ is a rubbery polyether oxide 
(PEO) based block copolymer. The amorphous phase is 
made up of PEO blocks, whereas the crystalline phase is 
made up of poly(butylene terephthalate) (PBT) blocks 
[26]. Gas is transported through the amorphous phase, 
whereas the crystalline phase provides mechanical 
stability and structural rigidity but does not contribute to 
permeability [27]. The semi-crystalline structure of 
PolyActive™, combined with the strong crystallisation 
tendency and inherently low CO2 permeability of PEO 
itself [1], results in a lower overall permeability of 
PolyActive™ as compared to the highly porous PIM-1, 
and is particularly evident for CO2.  

It can be concluded that glassy PIM-1 
membranes typically show higher permeabilities than 
rubbery polymer membranes due to higher solubility 
coefficients arising from the non-equilibrium excess 
free volume. 

Effects of Methanol Soaking on PIM-1 Membranes 
As-cast PIM-1 membranes were soaked in methanol and 
the effects of the alcohol treatment on the separation 
performance of PIM-1 membranes were evaluated. 
From figure 12, soaking the membrane in methanol has 
shown to increase solubility and hence permeability, but 
has no effect on diffusivity. 
 Such phenomenon could be explained by two 
possible hypotheses: Methanol swells up the rigid 
polymer chains in PIM-1, resulting in an increase in free 
 

a)

 

b)

 

c)

 

d)

 
Fig. 11: Graphs showing the permeate-side pressure against time for the different feed gases H2 (black), O2 (red), CO2 (blue), N2 (green), CH4 (purple) for 
membranes made from a) AO-PIM-1, b) methanol-soaked PIM-1, c) PolyActive™ and d) unsoaked PIM-1. 
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volume and solubility coefficients [23]; Past processing 
history and traces of trapped residual casting solvents, 
which may hinder gas transport in as-cast PIM-1 
membranes, are also removed through the methanol-
soaking treatment [22]. 

Thus, due to the high intrinsic free volume of 
PIM-1 and the positive effects of methanol soaking, the 
soaked PIM-1 membrane exhibited the best overall 
performance in terms of permeability among all 
membranes tested. 

Evaluation of Amidoxime-Functionalised PIM-1 
AO-PIM-1 is an amidoxime-functionalised 

PIM-1 synthesized through the post-polymerisation 
modification of the nitrile group in PIM-1 [18]. 
Comparing the separation performance of AO-PIM-1 
membrane against the methanol-soaked PIM-1 
membrane in figure 12, AO-PIM-1 displayed a lower 
permeability than PIM-1 due to both lower solubility 
coefficients and lower diffusion coefficients. 

By converting the nitrile group in PIM-1 into a 
polar and highly basic amidoxime functional group, the 
microstructure of the polymer is tightened due to the 
extensive intermolecular hydrogen bonding between 
amidoxime moieties [18]. This decreases the surface 

area of the polymer, leading to a lower sorption capacity 
and hence lower solubility of AO-PIM-1. At the same 
time, the reduced free volume within the polymer leads 
to higher tortuosity and diffusional restrictions, thus 
lowering the diffusivity of AO-PIM-1. 

Selectivity Analysis and Upper Bound Plot 
PIMs tested in this work generally have a high CO2 
permeability which are above current industrially used 
rubbery polymers like Pebax [28], PolyActive™ and 
polyvinyl acetate (PVAc) [29] as shown in figure 13. 
This is due to glassy polymers like PIMs having higher 
excess free volume than rubbery polymers, which 
increases their solubility coefficient and therefore their 
permeability [2]. 

However, the unsoaked PIM-1 displays a 
moderate selectivity which is very similar to 
PolyActive™ for CO2/CH4 and much lower than 
PolyActive™ for CO2/N2 selectivity. This suggests that 
PolyActive™ is more size selective than PIM-1, which 
may be explained by the molecular sieving effect of the 
pores. 

Methanol soaking of PIM-1 membranes 
increases CO2 permeability, as well as the CO2/N2 and 
CO2/CH4 selectivities. 

 

 
a)  

 

 
b) 

 

 
c)  

 
Fig. 12: Graphs showing the a) permeability, b) solubility, c) diffusivity of gases (left to right) H2, CO2, O2, N2, CH4 against kinetic diameter. Unsoaked 
PIM-1 membrane is represented by black squares, methanol-soaked PIM-1 membrane is represented by red circles, PolyActive™ membrane is 
represented by blue triangles, and AO-PIM-1 membrane is represented by inverted green triangles. 

a) 

 

b) 

 
Fig. 13: Upper bound plots of CO2 selectivity with a) nitrogen and b) methane against CO2 permeability for tested membranes of unsoaked PIM-1 
(black square), methanol soaked PIM-1 (red circle), PolyActive™ (blue triangle) and AO-PIM-1 (inverted green triangle) compared to literature values 
(equivalent half-filled symbols), high performance BTrip PIMs (red, green and blue squares), and commercial rubbery polymers PVAc (red diamond) 
and Pebax (black diamond). 
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A comparison of PIM-1 and AO-PIM-1 shows 

the expected permeability/selectivity trade-off as AO-
PIM-1 displays a much higher selectivity but lower 
permeability. AO-PIM-1 is more size selective, which 
may be due to AO-PIM-1 having more micropores 
compared to PIM-1. However, this also decreases the 
overall surface area and free volume of the polymer, 
which decreases the permeability. The increased 
presence of micropores is due to intermolecular 
hydrogen bonding which tightens the microstructure, 
hindering the transport of larger molecules, CH4 and N2, 
hence increasing selectivity [18]. 

From figure 13, while PIM-1 and AO-PIM-1 
are closer to the 2019 upper bound than commercially 
used membranes like PVAc and PolyActive™, they are 
farther away than the BTrip based PIMs which 
established the 2019 upper bound itself [12]. The upper 
bound is dominated by high free volume glassy 
polymers due to their high solubility coefficients and 
permeability. Among all the polymers presented, it is 
observed that the range of permeabilities is much greater 
than the range of selectivities. This is because the 
permeability of a material can be changed by altering its 
chemical structure; however, changes in chemical 
structure which change the transport properties of one 
gas will also typically change the transport properties of 
other gases in the same way [5], resulting in lesser 
changes in selectivity. 

Conclusions 
The separation performance of PIM-1 membranes for 
carbon capture applications have been evaluated and 
compared against commercialised rubbery polymers 
(PolyActive™). The effects of methanol-soaking and 
amidoxime-functionalisation of PIM-1 membranes have 
also been assessed. 

PolyActive™ membranes exhibited a much 
lower permeability of over 15 times as compared to 
unsoaked PIM-1 membranes. Permeability, solubility, 
and diffusion data obtained for PolyActive™ 
membranes demonstrated that lower solubility 
coefficients of rubbery polymer membranes contribute 
to their lower permeabilities. Methanol-soaking of  
PIM-1 membranes has been shown to increase CO2 

permeabilities by almost two-fold. AO-PIM-1 
membranes have also shown improvements in CO2/N2 
and CO2/CH4 selectivities by over 100% but with 
decreased permeabilities due to tightening of the 
microstructure.  

Despite the potential of PIM-1 as a high-
performance gas separation polymeric material, issues 
such as physical aging and the lack of reproducibility 
and processability in scale-up present challenges for the 
commercialisation of PIM-1 membranes. Future 
research could be done on the rejuvenation of free 
volume in PIM-1 membranes post-aging through 
methanol soaking treatment. Tests could also be 
conducted at simple mixed gas conditions and with gas 
mixtures of compositions comparable to that in flue 
gases, in order to assess the separation performance of 
PIM-1 membranes more accurately for industrial post-
combustion carbon capture applications. Thin Film 
Composite (TFC) membranes present a viable solution 
to enhance permeability without compromising 
selectivity. Gas separation tests of TFC membranes with 
PIM-1 as the selective layer could be conducted and 
their performance assessed. 
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Abstract  
Carbon capture via pressure-vacuum swing adsorption (PVSA) shows great promise for industrialisation due to 
the low energy required for solvent regeneration compared to absorption. Zeolite 13X, UTSA-16 and CALF-20 
are all adsorbents that show promise for the PVSA process. These three adsorbents are screened based on capture 
cost, energy usage and productivity, and importantly their process flexibility, using a model-based framework. 
Process flexibility is a key and novel metric to consider for industrialising this process and is defined as the amount 
of deviation from the nominal operating point that is allowed such that the purity and recovery constraints are 
met. A relaxation of the recovery constraint was also analysed to investigate how this affects process flexibility 
and the other performance indicators. UTSA-16 outperformed the other adsorbents with respect to its energy 
usage, productivity and most importantly, its process flexibility owing to its high CO2 selectivity and linear CO2 
adsorption isotherm. Regarding Zeolite 13X and CALF-20, it is desirable to decrease the recovery constraint to 
increase flexibility and productivity while there were only marginal improvements for UTSA-16. The results from 
this study further emphasise the importance of selecting an adsorbent material based on process flexibility to 
commercialise the PVSA process.  

Keywords: Pressure- vacuum swing adsorption, process flexibility, Zeolite 13X, UTSA-16, CALF-20
  

1 Introduction 
The drive to decarbonise the energy sector and 
manufacturing industries have led to increasing research 
interest in post-combustion carbon capture technologies 
with an aim to bring into action over the coming decades 
(IEA, 2020). As renewable energy sources cannot match 
the electricity demand due to their intermittent nature 
and lack of installations, electricity production will need 
to rely on fossil fuel-powered plants for the foreseeable 
future. Post-combustion carbon capture allows for these 
plants to continue operating with a significant reduction 
in carbon emissions.  

Whilst the traditional carbon capture process via 
amine absorption works effectively, pressure-vacuum 
swing adsorption (PVSA) shows great promise within 
the industry as compared to absorption, it requires less 
energy to regenerate the solvent (Lin, et al., 2021).  In 
the process, flue gas is exposed to a fixed bed of solid 
adsorbent that has a higher adsorption affinity to CO2 
than N2, allowing for CO2 separation from the flue gas. 
Carbon sequestration can thus be carried out to store the 
captured CO2. 

This report investigates the process flexibility and 
operability of different adsorbent materials within the 
PVSA process by assessing key performance indicators 
(KPI)s (as seen in Table 1) based on different parameters 
specified within the adsorption column. Process 
flexibility is defined as the amount of deviation allowed 
from the nominal point such that process constraints are 
still met. For the PVSA process, these constraints are 
CO2 purity and recovery since they determine if the CO2 
stream is suitable for geological storage. Process 
flexibility, which has largely been absent from 
adsorption and PVSA literature, is a key factor to 
consider within post-combustion carbon capture 
systems as potential upstream disturbances could result 
in the CO2 purity or recovery violating environmental 
regulations. Once the PVSA process is deployed 
industrially, it will need to operate with a large 

flexibility. It is hence important to consider this metric 
from the conceptual design stage, since varying input 
factors (such as operating pressures, column 
specifications, adsorbent material and cycle times) can 
affect flexibility (Ward & Pini, 2022).  

 
2 Background 
2.1 Project Background  
The main model used within this project is derived from 
Ward and Pini’s study on PVSA optimisation (Ward & 
Pini, 2022). The study develops a dynamic detailed 
model for a 1D adsorption column that identifies the 
operating point with the lowest capture cost and 
calculates other KPIs, as shown in Table 1 for a 
specified PVSA process.  

 
Energy usage can be seen as the total energy (𝐸்) used 
to capture one tonne of CO2. It is important to keep this 
low as this energy would be taken from the power plant 
that the carbon capture process is attached to and would 
result in decreased efficiency and profitability of the 
electricity generated. Productivity is the amount of CO2 

captured per unit bed volume (𝑉௕௘ௗ) and per total cycle 
time (𝑡௖௬௖௟௘). Maximising productivity increases CO2 

Key Performance Indicator Equation 

Capture cost [$/tonne]     
୘୭୲ୟ୪ ୟ୬୬୳ୟ୪ ୡ୭ୱ୲

஼ைమೝ೐೎೚ೡ೐ೝ೤×௠̇಴ೀమ
  

Energy usage [kWh/tonne]  
ா೅

௠಴ೀమ,೚ೠ೟
೐ೡೌ೎   

COଶ productivity [mol/mଷ𝑠]  
௡಴ೀమ,೚ೠ೟

೐ೡೌ೎

௏್೐೏௧೎೤೎೗೐
  

COଶ purity [%]  
௡಴ೀమ,೚ೠ೟

೐ೡೌ೎

௡಴ೀమ,೚ೠ೟
೐ೡೌ೎ ା௡ಿమ,೚ೠ೟

೐ೡೌ೎   

COଶ recovery [%]   
௡಴ೀమ,೚ೠ೟

೐ೡೌ೎

௡಴ೀమ,೔೙
ುೝ೐ೞ ା௡ಿమ,೔೙

ೌ೏ೞ   

Table 1: KPI Equations where 𝑛௜
௝ is the moles and 𝑚௜

௝ is the 
mass of species i in step j (ads, evac, pres). 𝑚̇஼ைଶ is the mass 

flowrate of CO2 captured [tonne/year] 
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captured whilst also minimising the required volume of 
adsorbent and cycle time. A desirable PVSA process 
thus would have a high productivity, low capture cost 
and low energy usage. 

Following their work, Sachio et. al developed a 
design space framework that quantifies the PVSA’s 
process flexibility whilst achieving the process 
constraints. The operating point with the largest 
flexibility can therefore be identified and the trade-off 
between the KPIs and process flexibility can be explored 
(Sachio, et al., 2023a).  

 Utilising both the mathematical model as well as 
the design space framework, Purwanto’s thesis 
investigated the separation performance and process 
flexibility of the adsorbents, Zeolite 13X and ZIF-36-
FRL (Purwanto, 2023). Through his global sensitivity 
analysis on input parameters, it was concluded that the 
adsorbent material has a much more significant 
contribution to the adsorption’s performance than other 
operational process parameters. Based on these results, 
this report will incorporate a process flexibility metric to 
explore two adsorbent materials that have not been 
previously studied within this workflow.  

Within this workflow, CO2 purity must exceed 
95%, to meet environmental regulations set by the US 
Department of Energy (Alhajaj & Vega, 2021) and its 
recovery target is set at 89%, to ensure this process is 
economically worthwhile. It should be noted that the 
classical recovery constraint is 90% however in this 
report, the maximum constraint studied is 89% to 
validate the results with Purwanto’s thesis (Purwanto, 
2023). 

To this end, this report provided design spaces for a 
range of adsorbents and compared their suitability for 
upscaling in industry based on their process flexibility 
and KPIs. The KPI values and flexibility of the cost 
optimal point and the most flexible point was also 
quantified to better understand how these two points 
differ. Secondly, a KPI analysis was performed for each 
adsorbent comparing across the design space and then 
for all adsorbents to explore the trade-offs between 
capture cost, productivity and energy usage. Lastly, 
analysis on the design space based on the recovery 
constraint was performed to evaluate its effect on the 
material performance and flexibility. This was 
conducted because recovery is a target value that is not 
rigorously set based on environmental regulations like 
the purity constraint. It is rather to ensure sufficient CO2 
is being captured from the flue gas and therefore will be 
varied from 89% to 85% to explore how it affects the 
adsorbent’s process flexibility and KPIs. 

2.2 PVSA Cycle  
The PVSA process can be described in four steps.  

1. Adsorption (ads) – The feed gas flows at a 
steady velocity vF over the adsorbent bed at a 
high-pressure PH.  The adsorbent material 
adsorbs CO2 on the surface and expels the N2 
rich product to the product end. 

1.  Forward Blowdown (bd) – The feed end of 
the column is closed, and the pressure is 
reduced to an intermediate pressure PI. The N2 
rich effluent is then collected from the product 

end of the column. 
2. Reverse Evacuation (evac) – The product end 

is closed, and pressure is further reduced to a 
low pressure  PL via a vacuum pump. The CO2 
rich stream is then collected at the feed end. 

3. Feed pressurization (pres) – Pressure is 
raised again to PH by adding flue gas to the 
column from the feed end. 

Figure 1: PVSA Schematic adapted from (Ward & Pini, 2022). 
The figure describes the 4 PVSA process steps – 1. adsorption, 2. 
forward blowdown, 3. reverse evacuation, 4. feed pressurization 
 

Figure 1 shows the four steps as well as the pressure 
differences across the different stages of the process. 
These four steps are repeated until cyclic steady state 
(CSS) is achieved to obtain results. CSS is achieved 
when all key performance indicators have a relative 
error of less than 0.5% for 10 sequential adsorption 
cycle simulations.  

 

3 Methodology 
3.1 Proposed Workflow 
Figure 2 summarises the workflow defined within the 
study to explore different adsorbent material choices 
from a feasibility perspective. Each step in the workflow 
is explained in this section.  

3.2 Choice of Adsorbents 
As discussed previously, adsorbents have a great impact 
on carbon capture performance. High porosity, large 
surface area to weight and sorption selectivity are a few 
key properties that affect their adsorption capacity. The 
most researched adsorbent materials within the carbon 
capture process include zeolites, activated carbon and 
metal-organic frameworks (MOFs) (Ma, et al., 2023).  
Zeolite 13X was chosen as a standard to compare other 
adsorbents against as it is widely used and an 
extensively researched adsorbent within the PVSA 
process.  Additionally, it will be used as validation with 
Purwanto’s thesis (Purwanto, 2023). The two remaining 
adsorbents this study investigated were both MOFs; 
CALF-20 and UTSA-16. Despite having a higher 
adsorbent cost, MOFs’ unique properties of uniform 
pore distribution and high specific surface area results in 
a high CO2 selectivity (Gaikwad, et al., 2020). 
Furthermore, MOFs are highly tailorable which enables 
physicochemical properties such as porosity and 
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Table 3: DSL isotherm parameters for all studied adsorbents. 
These parameters are used in the dynamical PVSA model. 

 

crystallinity to be finely tuned for different adsorption 
parameters. (Ma, et al., 2023). In a previous study 
comparing UTSA-16’s techno-economic performance 
to Zeolite 13X and other MOFs within the PVSA 
process, it was shown that UTSA-16 achieved 
exceptional KPI values and hence was chosen to be 
studied in this report (Alhajaj & Vega, 2021). It should 
be noted that Alhajaj & Vega’s report did not analyse 
the metric of process flexibility between these 
adsorbents which was carried out in this paper. The main 
drawback for using UTSA-16 is that as it is specifically 
tuned, the adsorbent cost is expensive and cannot easily 
be upscaled for industrial purposes. Therefore, CALF-
20 was also investigated as it is currently the most 
commercially viable MOF and has been used in 
Svante’s industrial pilot plant since 2021 (Ozin, 2022). 
It is a zinc-based MOF that not only has a higher 
selectivity towards CO2 than N2, but also than water, 
making it applicable to processes where water is present 
within the flue gas stream. The synthesis of CALF-20 is 
a single-step process using commercially available 
components and therefore, shows the most promise for 
industry use (Lin, et al., 2021).   

 Table 2 shows the adsorbent’s approximate 
cost and density. From this, the column’s bed density  
(𝜌௕) can be calculated (Equation (1)) and computed 
within the mathematical model. It should be noted that 
the cost of MOFs are an estimate based on their 
synthesis process.  

𝜌௕ = 𝜌௔௕௦(1 − 𝜖)  (1) 
  

 

3.3 Adsorption Equilibrium 
The dual-site Langmuir (DSL) model was used to model 
the CO2 and N2 adsorption equilibrium of the selected 
adsorbents to match previous studies following the same 
workflow. Equations (2) to (5) show how to calculate 
𝑞௜

∗, the moles of species 𝑖 captured per kg of adsorbent 
at equilibrium, based on 𝑞௜, the characteristic amount 
adsorbed on site b and d, and 𝑐௜, the molar concentration 
of the gas phase fraction (𝑦௜). 𝑏௜,଴ and 𝑑௜,଴,  the reference 

adsorption equilibrium constant for each site, are used 
alongside Δ𝑈௜, the change of internal energy, R, the gas 
constant, and the temperature to calculate 𝑏௜ and 𝑑௜, the 
adsorption equilibrium constant of species i for each site 
(Ward & Pini, 2022). The parameters for the different 
adsorbents’ DSL model can be found in Table 3 
(Khurana & Farooq, 2016). 

𝑞௜
∗ =

𝑞௕,௜𝑏௜𝑐௜

1 + ∑ 𝑏௝𝑐௝
௡೎
௝ୀଵ

+
𝑞ௗ,௜𝑑௜𝑐௜

1 + ∑ 𝑑௝𝑐௝
௡೎
௝ୀଵ

 
(2) 

𝑏௜ = 𝑏௜,଴ exp ൬
−𝛥𝑈௕,௜

𝑅𝑇
൰ (3) 

𝑑௜ = 𝑑௜,଴ exp ൬
−𝛥𝑈ௗ,௜

𝑅𝑇
൰ (4) 

𝑐௜ =
𝑦௜𝑃
𝑅𝑇

 (5) 

From Equations (2) to (5), the adsorbents’ isotherms for 
pure components of CO2 and N2 can be modelled, as 
shown in Figure 3a and b. With these two isotherms, a 
selectivity graph as shown in Figure 3c can be computed 
using Equation (6) for selectivity, 𝑆஼ைమ , and flue gas 
compositions of 85% N2 and 15% CO2. 

 

 𝐶𝑂ଶ  𝑁ଶ  Units  
Zeolite 13X 
𝑞௕,௜  3.09 5.84 mol/kg 
𝑞ௗ,௜  2.54 0.00 mol/kg 
𝑏௜,଴  8.65×10-7 2.50×10-6 m3/mol 
𝑑௜,଴  2.63×10-8 0.00 m3/mol 
Δ𝑈௕,௜  -36.64 -15.80 kJ/mol 
Δ𝑈ௗ,௜  -35.69 0.00 kJ/mol 
UTSA-16 
𝑞௕,௜  4.40 9.32 mol/kg 
𝑞ௗ,௜  7.34 9.32 mol/kg 
𝑏௜,଴  4.11×10-12 2.87×10-6 m3/mol 
𝑑௜,଴  6.33×10-7 2.87×10-6 m3/mol 
Δ𝑈௕,௜  -45.54 -9.84 kJ/mol 
Δ𝑈ௗ,௜  -30.54 -9.84 kJ/mol 
CALF-20    
𝑞௕,௜  2.39 5.66 mol/kg 
𝑞ௗ,௜  3.27 0.00 mol/kg 
𝑏௜,଴  5.52×10-7 8.14×10-7 m3/mol 
𝑑௜,଴  5.19×10-8 0.00 m3/mol 
Δ𝑈௕,௜  -35.10 -18.00 kJ/mol 
Δ𝑈ௗ,௜  -29.00 0.00 kJ/mol 

Adsorbent 𝜌௔௕௦ 
[kg/m3] 

Cost 
[$/tonne] 

Cost 
Reference  

Zeolite 13X 1180 1,500 (Ward & Pini, 
2022) 

CALF-20 570 25,000 (Siegelman, 
et al., 2021) 

UTSA-16 1180 10,000 (Peng, et al., 
2022) 

Table 2: Absolute density [kg/m3] and cost [$/tonne] for all 
studied adsorbents: Zeolite 13X, CALF-20 and UTSA-16 

 

Figure 2: Methodology workflow defined along with the outputs at each stage in this study 
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𝑆஼ைమ =
𝑞஼ைమ

∗

𝑞ேమ
∗  (6) 

It is clear to see from Figure 3c, that UTSA-16 has the 
highest CO2 selectivity followed by Zeolite 13X and 
then CALF-20.  

3.4 Cost Optimisation Model  
A cost optimisation algorithm as developed by Ward 
and Pini (Ward & Pini, 2022) was applied in this paper 
to obtain the optimal parameters for cycle times, 
pressures, flowrate and length of column (L) as seen in 
Table 4. The pressures involved in the cyclic PVSA 
cycle, PH, PI and PL, were varied as inputs to the 
mathematical model as after the adsorbent material, 
these operational parameters, were found to have the 
largest effect on performance in Purwanto’s global 
sensitivity analysis (Purwanto, 2023). The pressure 
ranges were calculated to be ± 40% of the cost optimal 
point to stay consistent with Purwanto’s work. A L/𝑟௜௡ 
aspect ratio of 6 was maintained along with a difference 
of 0.0175m between 𝑟௜௡ and 𝑟௢௨௧ which represent the 
column inner radius and outer radius, respectively.   

It is worth noting that running the mathematical 
model for different adsorbents using Zeolite 13X’s 
parameters listed in Table 4 would result in no feasible 
points being found. Results to this can be found in Table 
S1 in Supporting Information (SI). This highlights the 
importance of obtaining operational parameters for each 
adsorbent individually due to the highly synergistic 
nature between the operational parameters and material 
choice.  

 
 

3.5 Dynamic Model  
 The mathematical model used to simulate the 
adsorption column consists of a coupled system of 
partial differential and algebraic equations (PDAEs) that  
characterise the governing material, momentum and 
energy balances in an 1D adsorption column, as shown 
in Table 5. This adsorption model, as denoted by 
Haghpanah et al., formulates the process performance 
using extensive simulations varying in space and time 
and solved using odes15s on MATLAB (Haghpanah, et 
al., 2013). A techno-economic assessment is also 
utilised to calculate the cost per tonne of CO2 captured. 

Name: Partial differential equation: 
Overall mass balance: డ௉ത

డఛ
− ௉ത

ത்
డ ത்
డఛ

= −𝑇ത డ
డ௓

ቀ௉തఔഥ
ത் ቁ − ψ𝑇ത ∑ డ୶౟

డఛ
௡೎
௜ୀଵ    

Component material balance: డ௬೔
డఛ

+ ௬೔
௣̅

డ௉ത
డఛ

− ௬೔
ത்

డ ത்
డఛ

= ଵ
௉௘

ത்
௉ത

డ
డ௓

ቀ௉ത
ത்

డ௬೔
డ௓

ቁ −
ത்
௉ത

డ
డ௓

ቀ௉തఔഥ௬೔
ത் ቁ −

ത்
௉ത

𝜓 డ௫೔
డఛ

  
Solid-phase material balance: డ୶౟

డఛ
= 𝛼௜(𝑥௜

∗ − 𝑥௜)  
Pressure drop: − డ௉ത

డ௓
= ଵହ଴

ସ୰౦
మ ቀଵିఢ

ఢ
ቁ

ଶ
ቀ௩బ௅

௉బ
ቁ 𝜇𝜈̅  

Column energy balance: డ ത்
డఛ

+ Ωଶ
డ௉ത
డఛ

= Ωଵ
డమ ത்
డ௓మ − Ωଶ

డ
డ௓

(𝑃ത𝜈̅) + ∑ ቂ(𝜎௜ − Ωଷ𝑇ത) డ୶౟
డఛ

ቃ௡೎
௜ୀଵ   

Wall energy balance: డ்ೢതതതത
డఛ

= ∏ డమ்ೢതതതത
డ௓మଵ + ∏ (ଶ 𝑇ത − 𝑇ത௪) − ∏ (ଶ 𝑇௪തതതത − 𝑇ത௔)  

 Zeolite 
13X 

UTSA-
16 

CALF-
20 

𝐿 [𝑚]  3.56 1.42 1.72 
𝑡௣௥௘௦ [𝑠]  20.00 20.00 20.00 
𝑡௔ௗ௦ [s]  67.50 64.00 21.30 
𝑡௕ௗ [𝑠]  40.50 30.00 63.30 
𝑡௘௩௔௖ [𝑠]  174.00 58.50 70.00 
𝐯𝐅 [𝑚/𝑠]  1.70 0.80 1.48 
𝑃ு,௠௜௡ [𝑏𝑎𝑟]  2.83 2.65 2.77 
𝑃ு,௠௔௫ [𝑏𝑎𝑟]  6.61 6.17 6.47 
𝑃ூ,௠௜௡ [𝑏𝑎𝑟]  0.47 0.27 0.46 
𝑃ூ.௠௔௫ [𝑏𝑎𝑟]  1.09 0.64 1.08 
𝑃௅,௠௜௡[𝑏𝑎𝑟]  0.02 0.03 0.01 
𝑃௅,௠௔௫ [𝑏𝑎𝑟]  0.04 0.07 0.03 

Table 4: Column and operational parameters obtained for all 
studied adsorbents from the cost optimisation model. 

Figure 3: CO2 adsorption isotherm (panel a), N2 adsorption 
isotherm (panel b) and selectivity graph of CO2 over N2 (panel 

c) for all studied adsorbents 
 
 

Figure 3: DSL isotherms for a) CO2 adsorption b) N2 adsorption. c) Selectivity graph of CO2 over N2 for all studied adsorbents 
 

a) CO2 DSL isotherm b) N2 DSL isotherm c) Selectivity of CO2 over N2 graph 

Table 5: Partial differential and algebraic equations that represent material and energy balances where 𝑃ത , 𝑇ത, 𝑇௔തതത, 𝑇௪തതത, 𝑣,ഥ  𝜏, 𝑍 represent 
the non-dimensional pressure, temperature, ambient temperature, wall temperature, velocity, time and longitudinal coordinate. 𝛼௜, 𝛱௜, 
𝜎௜, 𝛺௜, 𝜓 represent dimensional groups. xi, xi* signifies the nondimensional adsorbed amount of species i and the equilibrium adsorbed 
amount of species i, respectively. 𝑃଴ and 𝑣଴ represent the characteristic pressure and velocity respectively. 
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To stay consistent with Purwanto’s thesis, the PVSA 
system is designed to capture CO2 from a 1000MW coal 
power plant, assuming a molar feed gas mixture of 85% 
N2 and 15% CO2 (Purwanto, 2023). The gas mixture is 
also assumed to be available at a temperature of 
298.15K and a pressure of 1 bar. Other parameters 
utilised within the mathematical model can be seen in 
Table 6. These parameters include column 
specifications and assumptions made for the techno- 
economic assessment of the carbon capture plant. The 
constants highlighted here have been taken from 
previous papers on this study and remain consistent 
within this analysis. Further parameters, including the 
adsorbent’s DSL values and operating conditions 
highlighted in Section 3.3 and Section 3.4 are also 
specified within the model. For this investigation, 4096 
Sobol sample points were simulated on MATLAB 
within the PH, PI and PL ranges obtained from the cost 
optimisation model. After running the solver, the model 
calculates the different KPIs for the 4096 sample points. 
 
 

 
3.6 Design Space Identification (DSI) 
Framework 
A DSI framework is used to assess the design and 
flexibility of the carbon capture PVSA process 
simultaneously. The 4096 Sobol sampling points run 
through the rigorous process model and establish the 
knowledge space in this framework. This is the whole 
region of considered parameters.  

From this knowledge space, a design space 
boundary can then be developed using the direct 
sampling method whereby linear polyhedral 
approximations are constructed to encompass all 
feasible points. This determines an alpha shape which 
represents the piece-wise geometric edges. From this, a 
design space can be identified and is defined as the 
operational parameter space where all points satisfy the 
process constraints, namely CO2 purity and recovery. 
Within the formulation of the design space, a variable 
known as ‘maxvp’ is specified. This is the maximum 
percentage of violated points allowed within the design 
space. After analysing maxvp’s effect on the different 
KPIs, a maxvp value of 0.01 was chosen across all 
adsorbents (Table S2 in SI). 

Within the design space, a nominal operating point 
(NOP) is then chosen. The choice of NOP is critical 
when considering the range of flexibility. A cost optimal 
NOP will always lie on the boundary of feasible points 
and therefore provides only a limited flexibility range. 
However, choosing the NOP with the largest range of 
flexibility can prove to be more costly. Therefore, both 
will be investigated and the cost difference between 
these two NOPs will be compared across the variety of 
adsorbent materials.  

The process flexibility is determined by the size of 
a point’s acceptable operating range (AOR). Its 
calculation can be conceptualised as a cuboid that 
expands around the NOP at its centre until one of the 
vertices intersect with the boundary of the design space. 
The AOR thus provides the operating range of a 
parameter such that it remains within the feasible region.  
 
3.7 Recovery Relaxation Methodology 
As mentioned above, the cost optimal NOP shows very 
little flexibility because it lies on an active constraint. 
Analysis of recovery constraint relaxation should thus 
be conducted to see how the KPIs are affected as the 
flexibility increases. The recovery constraint was 
chosen as it can be easily controlled by the process 
operators whereas the purity constraint cannot be 
relaxed due to strict environmental regulations. Two 
methods of recovery relaxation were explored within the 
study: 

1. Obtain and compare the largest AOR NOP’s 
KPIs and flexibility after each relaxation.  

2. Obtain the cost optimal NOP from 89% and 
compare results from that fixed NOP to see 
how its flexibility and KPI changes (Sachio, et 
al., 2023b). 

As a result, the effect of decreasing the recovery 
constraint on the flexibility metric and other KPIs could 
be studied. 85% was the lowest recovery value 
examined within this study as it is the lowest a process 
could operate at meeting government regulations 
(Department of Business, Energy and Industrial 
Strategy, 2021). 
 

Parameter Value  Units  
Bed voidage (𝝐) 0.37 - 
Particle voidage (𝝐𝒑) 0.35 - 
Particle radius (𝒓𝒑) 0.001 m 
Particle tortuosity (𝝉𝒑) 3 - 
Molecular diffusivity (𝑫𝒎) 1.5 10-5 m2/s 
Thermal conductivity of gas (𝑲𝒛) 0.09 J/m/K/s 
Thermal conductivity of wall (𝑲𝒘) 16 J/m/K/s 
Heat capacity of gas phase (𝑪𝒑,𝒈) 30.7 J/mol/K 
Heat capacity of adsorbed phase 
(𝑪𝒑,𝒂) 

30.7 J/mol/K 

Heat capacity of adsorbent (𝑪𝒑,𝒔) 1070 J/mol/K 
Heat capacity of column wall (𝑪𝒑,𝒘) 502 J/mol/K 
Density of wall (𝝆𝒘) 7800 kg/m3 
Dynamic viscosity of gas (𝝁) 1.72 10-5 

kg/m/s 
Overall inside heat transfer 
coefficient (𝒉𝒊𝒏) 

8.6 J/m2/K/s 

Overall outside heat transfer 
coefficient (𝒉𝒐𝒖𝒕) 

2.5 J/m2/K/s 

Ratio of ideal gas heat capacities (𝜸) 1.4 - 
Adiabatic efficiency (𝜼) 0.72 - 
Pressure profile time constant (𝝀) 0.5 s-1 

Coal power plant capacity 1000 MW 
Thermal efficiency 0.4 - 
Lower heating value (LHV) of coal 28000 103 J/kg 
Carbon content of coal, DAF basis 0.7 - 
Thermal power 2500 MW 
Rate of coal consumption 89.3 kg/s 
Molar flow of carbon in flue gas 5208 mol/s 
Discount rate 0.08 - 
Economic lifetime 25 Year 
Electricity cost 0.06 $/kWh 

Table 6: Column specifications and techno-economic parameters 
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4 Results 
4.1 Adsorbent Design Space 
Following the methodology outlined in Section 3.5, 
design space analysis was conducted for Zeolite 13X, 
CALF-20 and UTSA-16, with the Zeolite 13X design 
space and NOPs being validated against Purwanto’s 
work. Figures 4a,b and c show the design space along 
with the largest AOR and cost optimal NOP. Upon 
visually examining these figures, it is clear to see that 
UTSA-16’s design space is more densely populated than 
Zeolite 13X and CALF-20 (also seen in Table S3). The 
cost optimal NOPs of all three materials is shown to be 
on the boundary of the design space, and do not show an 
AOR space. This is concurrent with the findings of 
Sachio et al. that show that the cost optimal NOP shows 
little to no flexibility (Sachio, et al., 2023b). Lastly, the 
heat maps on the graphs show how capture cost varies 
across the design space, whereby CALF-20’s capture 
cost is significantly higher due to the higher estimated 
adsorbent cost (see Table 2).  

Figure 4d shows all three adsorbent design 
spaces and largest AOR point plotted on the same graph. 
It is evident that UTSA-16 has the largest design space 
and AOR point amongst the studied materials. 
Additionally, it operates at a higher PL range and lower 
PI. The CALF-20 and Zeolite 13X operating pressures 
are similar with design spaces that overlap slightly 
however, the UTSA-16 design space does not overlap at 
all with the other two materials. 

Table 7 shows the percentage difference in 
capture cost between the cost optimal point and the 
largest AOR point. This difference gives some 
indication of how flexibility and capture cost vary across 
the design space. A lower percentage difference is 
desirable since it indicates that a good balance can be 
struck between flexibility and capture cost. It is evident 
to see that UTSA-16 has the lowest change in cost from 
the two NOPs whereas CALF-20 has the largest. This  
can be seen visually on the graph where CALF-20’s 
NOPs are further away from each other based on the 
capture cost heat map. 
 

4.1.1 Adsorbent Flexibility Range 
Adsorbent flexibility range refers to the percent 
deviation allowed from the NOP that still satisfies the 
process constraints. This is found by looking at the 
minimum and maximum values of the projected AOR of 
an operating point. These values are pictured in Figure 
5 for all three adsorbents.  

As can be seen from the figure, UTSA-16 
presents the largest allowed deviations in PH, PI and PL, 
demonstrating that it allows for the greatest process 
flexibility. UTSA-16 is then followed by CALF-20 in 
terms of flexibility, with Zeolite 13X presenting the 
lowest allowed flexibility.   

 

4.2 KPI Analysis 
KPI analysis was conducted to analyse trends within 
each adsorbent as well as to conduct comparisons across 
the studied materials. Table 8 shows the operational 
parameters and range within the AOR space as well as 
the KPI values at the cost optimal NOP. These values 
within the AOR, are provided to indicate both the best- 
and worst-case scenarios with regards to KPI values and 
can also be visually seen in Figures 6a,b and c. From 
Figure 6a, it can be seen that CALF-20 has the highest 
cost whereas UTSA-16 has comparable capture cost to 
Zeolite 13X. From Figure 6b, UTSA-16 was shown to 
have almost double the productivity of Zeolite 13X and 
CALF-20. This is highly desirable as it shows that 
UTSA-16’s bed volume and duration of cycle can be 
halved to achieve the same productivity as the other 
adsorbents. Additionally, it was found that the cost 
optimal point for each adsorbent had a lower 
productivity than the largest AOR NOP. In Figure 6c, 
CALF-20 has the highest energy consumption whereas 

Adsorbent % difference in capture cost from 
the largest AOR and cost optimal 
NOP 

Zeolite 13X 17% 
CALF-20 20% 
UTSA-16 9% 

Table 7: Percentage difference in capture cost  

Figure 5: Pressure Flexibility Range across the AOR  

0% 10% 20% 30%

PH
PI

PL

PH
PI

PL

PH
PI

PL

Flexibility  Range [%]

Minimum
MaximumZ13X 

CALF-20 

UTSA-16 

Figure 4: Design space graphs showing the largest AOR and cost optimal NOP for a) Zeolite 13X b) UTSA-16 c) CALF-20.  d) Design 
space graphs showing the largest AOR NOP for all adsorbents  

a) Zeolite 13X  b) UTSA-16  c) CALF-20  d) All Adsorbents 
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UTSA-16 has the lowest. Overall, the cost optimal 
points provide a lower energy usage. 

Figures 7 a, b and c below show the KPI heat 
maps presented for UTSA-16. The heat maps show how 
capture cost, productivity and energy usage vary across 
the design space as PH, PI and PL change for UTSA-16 
however, these trends were observed to be the same 
throughout all adsorbents that were studied aside from 
Zeolite 13X’s capture cost. This could be attributed to 
its low adsorbent material cost. Heat maps for the other 
materials can be found in Figure S1 and S2. 

From Figure 7a, the cost increases as PL 
decreases. This is expected as the process operates 
closer to vacuum, the operating cost of the column 
increases. Additionally, the capture cost increases as PH 
increases, which is due to the higher energy required to 
compress the flue gas to higher pressures. Both Figures 
7b and 7c, show the same trends, indicating that an  

 
increase in productivity results in an increase in the 
energy usage. This reveals a trade-off between the two 
KPIs as a high productivity and low energy usage is 
preferred.  

Based on the DSI and KPI analysis, UTSA-16 
appears to be a very promising adsorbent for the PVSA 
process, with a high allowed process flexibility along 
with low energy usage, moderate capture cost and high 
productivity.  

4.3 Recovery Relaxation 
From the two recovery relaxation methods, it 

was found that the first method, whereby the results 
from the largest AOR NOP from each relaxation is 
compared, achieved different KPIs and AOR sizes upon 
relaxation. Results from this method are presented 
below. The second method where the cost optimal NOP 
is fixed upon relaxation showed no change to its 
flexibility. Results from this can be seen in Table S4.  

 Zeolite 13X CALF-20 UTSA-16 
 Largest AOR NOP 
 min max min max min max 
PH [bar] 4.67 5.21 4.31 4.79 4.96 5.83 
PI [bar] 0.731 0.819 0.493 0.575 0.495 0.585 
PL [bar] 0.026 0.029 0.013 0.016 0.033 0.042 
Capture cost [$/tonne] 42.2 44.9 75.8 79.7 44.5 47.6 
Productivity [mol/m3s] 1.12 1.23 1.10 1.17 2.54 2.94 
Energy Usage [kWh/tonne] 613 660 881 947 501 573 
 Cost Optimal NOP 
(PH, PI, PL) [bar] (4.19, 0.700, 0.039) (4.74, 0.750, 0.028) (4.59, 0.567, 0.057) 
Capture cost [$/tonne] 37.0 64.6 42.1 
Productivity [mol/m3s] 1.00 1.16 2.28 
Energy Usage [kWh/tonne] 516 708 444 

Table 8: Operational parameters range within the AOR and operational parameters point for the cost optimal NOP for all adsorbents (to 
3 significant figures) 
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Figure 6: Bar charts showing the average KPI from the largest AOR NOP and cost optimal NOP for a) Capture cost b) Productivity     
c) Energy Usage. The error bars indicate the minimum and maximum KPI value found within the AOR. 

a) Capture cost c) Energy b) Productivity 

Figure 7: UTSA 16’s design space graphs highlighting the heat map for a) Capture cost b) Productivity c) Energy Usage 
a) Capture cost b) Productivity c) Energy 

581



 

 8 

The following violin plots pictured in Figure 8 were 
produced to visually depict the effect of relaxing the 
recovery constraint on the productivity. The shaded area 
indicates all the points within the AOR, and the line 
indicates the mean of the capture cost found within the 
AOR.  

Further violin plots for the other KPIs can be 
seen in Figure S3. The shape of the violin indicates the 
distribution of points within the largest AOR. The 
shorter, more squat, violin indicates a smaller 
distribution within that AOR’s productivity. 

As seen from Figure 8. relaxing the recovery 
constraint has limited effect on UTSA-16’s productivity 
as the overall shape and mean value does not 
significantly change. However, for both CALF-20 and 
Zeolite 13X, relaxing the recovery constraint improves 
the material’s productivity range as the violin’s shape 
has been lengthened. This trend was seen for all the KPI 
violin plots whereby UTSA-16 showed little difference 
in KPI range and Zeolite 13X and CALF-20 showed an 
increase. This indicates that it is favourable to lower the 
recovery constraint for these two materials. It is also 
important to note that the distribution and size of the 
violin plots do not change to a significant degree when 
lowering the recovery constraint to 85% from 87%.  

Flexibility range graphs were also produced to 
better understand how the recovery relaxation would 

affect pressure flexibility. Figure 9 pictures the range for 
Zeolite 13X. Graphs for the other materials can be found 
in Figure S4. It appears across all adsorbents that 
decreasing the recovery constraint is beneficial from 
89% to 87% however there are no significant benefits to 
reducing the recovery to 85%. It is therefore beneficial 
for both Zeolite 13X and CALF-20 to relax their 
recovery constraint to 87% to increase process 
flexibility as well as productivity. Since there is minimal 
change observed for UTSA-16, it is advised to keep the 
constraint at 89% to keep the process as economically 
and environmentally worthwhile as possible. 

 
5  Discussion 
5.1 Adsorbent Comparison 
To evaluate the results from the DSI and KPI analysis, 
the CO2 DSL isotherm and selectivity graph presented 
earlier, Figures 3a and c, was consulted to better 
understand how the material parameters affect the 
results obtained. 

Zeolite 13X and CALF-20 show a similar steep 
gradient in their CO2 isotherm whereas UTSA-16 shows 
a more linear decline (seen in Figure 3a). This indicates 
that even with slight pressure changes, the CO2 
selectivity for both Zeolite 13X and CALF-20 would 
change significantly at lower pressures. As UTSA-16 
has a more linear trend, there are more variations of 
operating pressures that can perform well within the 
constraints of the system, leading to a higher flexibility.  

From the KPI analysis, we found that UTSA-
16 showed the highest productivity and lowest energy 
usage. The material’s high productivity could be 
attributed to the fact that UTSA-16 has the highest CO2 
selectivity (as seen in Figure 3c) compared to the other 
adsorbents. Its low energy usage could be explained via 
its linear selectivity, meaning the adsorbent does not 
require as low of a vacuum pressure to achieve sufficient 
working capacity and meet the CO2 recovery target. This 
would also explain why UTSA-16’s PL is not as low as 
the other adsorbents. Due to this, UTSA-16’s capture 
cost is similar to Zeolite 13X despite having an 
adsorbent cost of 10,000 $/tonne, as less energy is 
required to lower the pressure. 

Overall, UTSA-16 was found to be the best 
adsorbent due to its high CO2 selectivity and more linear 
isotherm. Xiang et al., obtained similar adsorption 
properties comparing UTSA-16 to other MOFs and 
proposed that UTSA-16’s abnormally high selectively 
towards CO2 could be explained by its optimal 
diamondoid pore cages and its overall structure (Xiang, 
et al., 2012). In their paper, neutron diffraction revealed 
that the terminal water molecules in UTSA-16’s 
structure strongly interact and bind with the CO2 
molecules, enabling for high selectivity and hence 
explaining UTSA-16’s excellent performance.  Another 
paper that compares the key performance parameters of 
Zeolite 13X and UTSA-16 within the PVSA process, 
found that Zeolite 13X had the lowest capture cost and 
UTSA-16 had the lowest energy requirement (Alhajaj & 
Vega, 2021). Although their values differ greatly as 
different input parameters were used, this trend is 
concurrent with results obtained with this study.  
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Figure 9: Zeolite 13X pressure flexibility range for 
recovery constraints from 89% to 85% 

Figure 8: Violin plots highlighting the productivity range and 
average productivity within the AOR upon recovery relaxation 

for all adsorbents 
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A factor to note regarding this analysis is that a 
surrogate model such as a Gaussian Process (GP) (such 
as in (Purwanto, 2023)) or Artificial Neural Network 
(ANN) was not employed to interpolate between the 
generated sobol points. This would generate artificial 
points that would improve the resolution of the design 
space. This was not implemented, however, its use could 
provide a more consistent comparison between 
adsorbent materials by evening out the number of points 
found in the design space and AOR, allowing for “better 
predictions” based on KPI. These predictions however 
would be based on artificial points and introduce an 
uncertainty into the analysis conducted on the DSI 
methodology. 

5.2 Adsorbent Feasibility  
From the KPI and DSI results, it is evident that UTSA-
16 is the best adsorbent within this model workflow. 
However other factors such as its synthesis and stability, 
should be considered before industrialising UTSA-16. 
Moreover, as CALF-20 is the first MOF to be used in 
industry, it is important to compare its properties with 
UTSA-16. 

CALF-20’s raw materials are available 
commercially at a large scale. Its synthesis does not 
require extreme conditions and is therefore favourable 
from a safety and environmental perspective (Lin, et al., 
2021). UTSA-16 exhibits comparable characteristics as 
its raw materials are low cost and common. (Xiang, et 
al., 2012). Both adsorbents exhibit remarkable stability 
and through experimentation, maintain adsorption 
capacity over time after continuous cycling.   

One of the main reasons why CALF-20 is the 
only MOF to be industrialised is because of its high CO2 
selectivity over water. Zeolite 13X and most MOFs have 
a significantly reduced adsorption performance with 
even just 1% relative humidity (Nguyen , et al., 2023). 
This could be a reason why CALF-20 does not perform 
well based on its poor KPI values and flexibility, as the 
flue gas composition studied here consists solely of CO2 
and N2. A study that synthesised 3D printed UTSA-16 
monoliths, investigated the performance of UTSA-16 
with water (Grande, et al., 2020). They concluded that 
UTSA-16 showed a higher water adsorption capacity 
than it does for CO2, meaning water can easily displace 
CO2 on the adsorbent. This shows that in the presence of 
water, UTSA-16 is unable to adsorb CO2. This is a key 
factor and should be addressed before industrialising 
UTSA-16. The presence of moisture in flue gas is 
common and to requires drying to remove which is an 
additional cost to consider. As this study’s techno-
economic assessment does not include drying costs, 
UTSA-16’s and Zeolite 13X’s capture cost could be 
significantly higher than what is estimated here.  

The last property to consider for a feasible 
adsorbent concerns its economics. As highlighted in 
Table 2, the cost of MOFs are significantly greater than 
zeolites. However, as UTSA-16’s material costs is only 
an estimate, it is therefore recommended to conduct a 
sensitivity analysis based on adsorbent material cost to 
better understand its effect on the capital costs of the 
PVSA process.  

5.3 Recovery Relaxation 
The trend observed with both the KPI violin plots, and 
the flexibility range graphs indicate a shift in active 
constraints from 87% to 85% whereby there is no 
significant change in KPIs or flexibility range upon 
relaxing the recovery constraint further. This indicates 
that upon lowering the recovery constraint to 85%, the 
AOR cannot expand to a significant degree without 
violating the purity constraint i.e., there is a change in 
active constraint to the purity constraint. A similar trend 
was found in (Sachio, et al., 2023b)  where they 
observed the change in AOR for the cost optimal point 
at 89% with relaxing recovery for Zeolite 13X. In this 
paper they found an increase in flexibility as the 
recovery constraint was relaxed.  

Upon conducting a similar analysis for the 
method where the cost optimal points were fixed, an 
increase in flexibility was not observed (more details 
can be found in Table S4). This discrepancy could be 
accounted for by the difference in input parameters 
being used, with the paper using (PH, PI, vF) This 
indicates that the boundary of the design space is bound 
by the recovery constraint with the input parameters (PH, 
PI, vF) but not so for (PH, PI, PL).  

It should however be noted that lowering the 
recovery constraint to increase flexibility can cause a 
decrease in the amount of CO2 captured from the inlet 
flue gas (as recovery targets are lowered). This could be 
unfavourable from an environmental perspective, and 
this trade-off should be considered while optimising for 
flexibility and environmental considerations.  

5.4 Key Findings 
To summarise the results and discussion section, UTSA-
16 showed great promise as a potential adsorbent as it 
exhibits good process flexibility and KPI values. This 
could be explained directly from the adsorbent’s CO2 
selectivity graph from Figure 3c. Therefore, it was 
concluded that adsorbents presenting a high CO2 
selectivity with a linear isotherm trend perform well in 
the PVSA process. This means that just from obtaining 
the CO2 selectivity graph, an adsorbent’s performance 
within this PVSA system can be estimated without the 
mathematical model and design space framework.  

To quantify the difference between the cost 
optimal and most flexible point, the percentage 
difference in cost was worked out. It was found that 
UTSA-16 has the least difference in cost. Additionally, 
it was found that the cost optimal point overall had a 
lower productivity and lower energy usage to the largest 
AOR NOP for all the adsorbents. 

From our analysis of KPI trends, similar trends 
were found across all adsorbents with variation in our 
input parameters (PH, PI, PL). For energy usage and 
productivity, a trade-off between the two KPIs has been 
highlighted, indicating the complexity of the 
optimisation problem.  

It was found from the recovery relaxation 
analysis, that it would be beneficial for CALF-20 and 
Zeolite 13X to reduce the constraint to 87% in order to 
improve their process flexibility and KPI range. 
However, it is important to note that reducing recovery 
would result in less CO2 being captured and from an 
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environmental perspective, would not be favourable. As 
UTSA-16’s performance and flexibility were largely 
unaffected by the relaxation, it would be better to keep 
the recovery constraint at 89%.  

Additionally, despite UTSA-16’s performance and 
process flexibility shown within the workflow, the 
adsorbent performs very poorly when moisture is 
present in the inlet flue gas. Therefore, to obtain an 
adsorbent that is suitable for industry, other key factors 
such as its stability, synthesis and performance in water 
should be considered. 
 
6 Conclusion 
To conclude, adsorbent material choices were 
successfully screened based on process flexibility, a 
metric that had not been previously explored for the 
PVSA process. From this, UTSA-16 was found to have 
the best process flexibility, lowest energy usage and 
highest productivity. 

Through our research, several potential 
avenues have been identified that could be investigated 
to build on the conclusions found here. There is potential 
to explore the inlet flue gas compositions. Rather than 
using the constant 15%/85% CO2/N2 composition used 
within this methodology, water and methane could be 
considered in the flue gas inlet to see how this would 
affect the adsorbents’ performance.  
 Another factor to consider is the use of a 
surrogate model such as a Gaussian Process or Artificial 
Neural Network to increase the resolution of our design 
space. Use of such a method could improve the DSI 
analysis by increasing the design space resolution.  

Lastly, since UTSA-16’s cost was just an 
estimate, conducting a cost-based sensitivity analysis 
might allow better understanding of the extent that the 
MOF’s adsorbent cost impacts the process’ capture cost.   

Process flexibility is an important factor to consider 
when industrialising the PVSA process to achieve a 
suitably operable and controllable process. The findings 
and outlook from this research present a new perspective 
on screening adsorbents for the PVSA process based on 
techno-economic factors and process flexibility and 
bring us one step closer to realising an industrial scale 
PVSA carbon capture process. 
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Support Vector Machines Practice on Design Space Identification 
Brooklyn Robinson and Defne Demirdesen 

Department of Chemical Engineering, Imperial College London, U.K. 
Abstract 

Design space characterisation has been developed to understand the feasible region of operation and product quality 
attributes. This paper introduces support vector machines as an approach for classifying the design space for an industrial 
case study on Protein A chromatography. The presented approach is investigated through four different types of kernels: 
(a) linear kernel, (b) polynomial kernel, (c) Gaussian kernel, and (d) Sigmoid kernel. The two main model metrics, 
Matthew Correlation Coefficient and accuracy are used to evaluate imbalanced and balanced datasets. The Gaussian 
kernel produces the highest performance with these model evaluation metrics. It is demonstrated how much tuning 
hyperparameters can optimise the support vector machines model within the dataset with the Grid Search approach. The 
correlation between dataset size and the performance of the model is successfully explored through data reduction. While 
analysing the model performance, fairness, computational time, and accuracy become the fundamental categories.  

Keywords: design space, support vector machines (SVM), kernel, chromatography 

1. Introduction 

1.1 Biopharmaceutical Industry and Challenges 

The rising demand in the biopharmaceutical industry 
necessitates the requirement for leaner manufacturing 
with lower costs (Gerogiorgis, et al., 2020). The present 
challenges within the biopharmaceutical industry are 
high experimentation costs and waiting times. In 
addition, biopharmaceutical processes are highly 
complex and infeasible for disturbances, creating 
significant difficulties (Hong, et al., 2017). 

New approaches for enhancing manufacturing processes 
have been investigated to overcome these challenges. 
Specifically, computational modelling applications have 
been carried out to provide a better understanding of the 
process and predict outputs in the whole domain 
(Manzon, et al., 2020). 

1.2 Design Space Development 

Design space investigation was the approach of 
determining a design solution or solutions that best 
match the given design requirements from a space of 
unsettled points. These solutions were made up of 
unique combinations of independent input variables 
(Yamada, et al., 2022). This approach was practical for 
explaining the critical process parameters and 
understanding the feasible region of product quality 
attributes and techno-economic performances 
(Gerogiorgis, et al., 2020).  

The classical approach to characterise design space 
consisted of four steps: (a) Perform a comprehensive 
experimental analysis of the correlation between process 
parameters and critical quality attributes (CQAs). CQAs 
are classified as the physical and/or chemical properties 
that should be within suitable limits for achieving 
desired product quality. (b) Conduct sensitivity analysis 
on process parameters that affect CQAs and select the 
parameters that indicate the highest sensitivity.               

(c) Create a graphical or mathematical representation of 
the design space using computational modelling. (d) 
Evaluate the final design space by operating additional 
validation experiments (Kusumo, et al., 2020). 
Characterising design space with this approach gave a 
functioning outcome. However, the obstacles within 
high experimentation costs and long waiting times made 
this approach undesirable.  

The Bayesian approach was “an adaptation of nested 
sampling for the characterisation of a probabilistic 
[design space]. (Kusumo, et al., 2020)” This method 
tended to create greater flexibility in detecting the 
probability threshold. It offered a higher availability of 
effective strategies for producing replacement plans. 
The major impediments of this method were that it was 
expensive and mainly tractable with low-dimensional 
design space (Kusumo, et al., 2020). This prevented the 
further analysis of the process operations.  

The surrogate model approach mainly focused on the 
presence of disjoint feasible regions. These were 
categorised as nonconvex problems with high 
computational expenses. This methodology showed 
effective identification of complex feasible regions. It 
was primarily based on constructing a surrogate to 
describe the feasibility function, called “surrogate-based 
feasibility analysis (Geremia, et al., 2023).” The main 
restriction of this approach was that it required a large 
number of sampling points and a high computational 
burden.  

The alpha-radius approach defined an alpha shape that 
outlined the largest geometrical shape where the points 
inside of it meet all the product specifications. It was an 
approach to tackle nonlinear problems. Three different 
methodologies, tolerance-based, resolution support, and 
combinatorial, were used to identify a design space with 
an alpha-shape representation. The combinatorial 
method gave the best outcome out of the three. 
However, the alpha-radius method still required a large 
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amount of data points and high computational time. As 
a methodology to describe the design space, it presented 
significant challenges (Sachio, et al., 2023). 

1.3 Support Vector Machines 

Support Vector Machines (SVM) is a 
supervised machine learning model that 
uses classification algorithms for two-group 
classification problems (Stecanella, 2017). It performs 
exceptionally well with a limited number of data points. 
This makes SVM suitable to resolve the challenges in 
previous design space investigation approaches. The 
supervised learning model uses labelled datasets to train 
algorithms that accurately classify data or predict 
outcomes (IBM, n.d.).  

SVM is particularly applicable to the case study due to 
its effectiveness in classifying the dataset into two 
groups and outlier detection. SVM has the capability to 
transfer the dataset to higher dimensions, which 
improves accuracy in the classification (IBM, n.d.). 
Moreover, as SVM applies to limited data, it can apply 
data reductions.  

1.4 Objectives 

This study aimed to create an SVM model for data 
classification from the case study. Improved upon the 
selected model by tuning the hyperparameters. Tested 
the model performance at varying dataset sizes to 
evaluate and compare their impacts.  

2. Methodology 

2.1 Dataset Formulation 

The case study introduced the design decisions and KPI 
of interest to select a feasible bound for the design 
problem. Equation 2.1 to 2.3 describes the mathematical 
formulation of the design parameters. 

𝐲 = f(θ) (2.1) 

𝜃௅ ≤ 𝜃 ≤ 𝜃௎ (2.2) 

𝐠(𝐲) ≤ 0 (2.3) 

where θ is the vector of design decisions with the lower 
and upper bounds shown as θL and θU, respectively, y 
illustrates the vector of monitored KPIs, f is the process 
model, and g is the vector of performance constraints 
concerning the selected KPIs (Sachio, et al., 2023).  

Determined design decisions would be used to create the 
dataset by the Sobol sequence, a low discrepancy quasi-
random sequence (Academy, 2020). This meant that the 
data was evenly distributed within the input bound 
constraints, reducing the risk of overfitting (Rusch & 
TK., 2020). Sobol sequence thoroughly explores the 
input design space, which makes it more suited to real-
world data. Thus, it could handle variations better. 
Equation 2.4 formulated the generation of this dataset 

within the stated lower and upper bounds of the design 
decisions.  

𝜃௜௡ = Sobol(dim, 𝜃௅, 𝜃௎, sp) (2.4) 

Based on the desired process specifications, the 
constraints on the desired product outputs were 
specified. As SVM solved binary classification 
problems, the output data needed to be classified into 
two groups. Data points satisfying all desired product 
constraints would be classified as 1, while data points 
failing one or more would be classified as 0. 

2.2 Normalisation 

Normalising the input data transformed them onto the 
same scale between zero and one. This improved the 
performance and training stability of the model. The 
linear scaling normalisation technique was used because 
the inputs were uniformly distributed across a fixed 
range (Anon., n.d.). 

𝑋௡௢௥௠௔௟௜௦௘ௗ =  
(𝑋 −  𝑋௠௜௡)

(𝑋௠௔௫ − 𝑋௠௜௡) (2.5) 

Equation 2.5 took the maximum and minimum of a 
chosen input. Then, it substituted that input data into X 
to normalise each point of that set.  

2.3 Split, Test and Train 

The split, test, and train technique was implemented in 
the model to estimate the performance of the machine 
learning algorithm that was used to make predictions 
(Online, 2023). This technique involved dividing the 
data into two parts: training and testing sets. The training 
set was employed to train the model, while the testing 
set was utilized to evaluate the model's performance 
(Online, 2023). This approach enabled training the 
models on one set and assessing their accuracy on an 
independent, unseen testing set. Following best practice, 
80% of the data was used to train the model, while 20% 
was used to test the model (Gholamy, et al., 2018). It 
was observed that the data generated from the Sobol 
sequence was ordered, which would cause a biased split. 
Therefore, the data was shuffled before it was split for 
fairness.  

SVM with the specified kernel was trained on the 
training dataset to produce a model. Subsequently, the 
test dataset features were fed into this trained model, 
predicting outputs as 1 or 0. These predicted outputs 
were then compared to the actual target values from the 
test dataset. 

If the model predicted 1 and its actual target value was 
1, this was a true positive (TP). On the other hand, if the 
model predicted a 0 and its real target value was 0, then 
this was a true negative (TN). When the prediction and 
the target value did not match up, this was a false 
positive (FP) or a false negative (FN). This prediction 
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summary was presented in a confusion matrix form, as 
seen in Figure 2.1 (Kulkarni, et al., 2020). It helped to 
identify the classes that were confused by the produced 
model. 

 

Figure 1.1 Confusion Matrix Diagram (adapted by 
[Mohajon, 2020]) 

Two core model evaluation metrics were calculated 
from the confusion matrix to analyse the results. The 
first metric was accuracy, as formulated in Equation 2.6. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) (2.6) 

Accuracy gauged the frequency of correct predictions 
from the classifier model (Agrawal, 2023).  It divided 
the number of correct predictions by the total test 
dataset. This metric was suitable for analysing models 
trained off balanced datasets (Olugbenga, 2023). 

The second metric was the Matthew Correlation 
Coefficient (MCC), formulated in Equation 2.7.  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (2.7) 

MCC measured the difference between the actual and 
predicted values. It ranged between -1 to 1, where 1 
represents the best agreement (Voxco, 2021). It 
considered all values of the confusion matrix. This 
metric was suitable for analysing models trained in 
imbalanced datasets (Encyclopedia & Community, 
2022).  

2.4 Support Vector Machines Kernels 

The kernel function in SVM was a similarity function 
that operated on input vectors on the original feature 
space and computed a modified inner product in a 
higher-dimensional space employing the kernel trick 
allowed for a non-linear SVM without explicitly 
mapping data into higher dimensions. The kernel trick 
became crucial, especially when linear regression was 
not feasible in the given input space. The kernel trick 
enabled linear separation by transforming the data into a 
higher-dimensional space. This constructed a linear 
model in the transformed space, corresponding to a 

nonlinear model, by elevating the scalar product into 
higher-dimensional space without explicitly computing 
the mapping. The scalar product was substituted by 
various kernel functions in Table 2.1 with their 
mathematical formulation. In this study, the provided 
kernel function was used and compared to detect the 
most appropriate one (Bajorath, et al., 2022).  

Table 2.1 Mathematical Representation of Different 
SVM Kernels (Matsuzaki, 2020) 

Type Mathematical Representation 
Linear 𝐾(𝐱, 𝐱ᇱ) = 𝐱𝐓 ∙ 𝐱 

2nd Degree 
Polynomial 

𝐾(𝐱, 𝐱ᇱ) = (𝐱𝐓 ∙ 𝐱ᇱ + 𝑐)ଶ 

3rd Degree 
Polynomial 

𝐾(𝐱, 𝐱ᇱ) = (𝐱𝐓 ∙ 𝐱ᇱ + 𝑐)ଷ 

4th Degree 
Polynomial 

𝐾(𝐱, 𝐱ᇱ) = (𝐱𝐓 ∙ 𝐱ᇱ + 𝑐)ସ 

Gaussian (RBF) 
𝐾(𝐱, 𝐱ᇱ) = 𝑒

൭ି
ฮ𝐱ି𝐱ᇲฮ

మ

ଶఙమ ൱
 

Sigmoid 𝐾(𝐱, 𝐱ᇱ) = 𝑡𝑎𝑛ℎ(𝛼𝐱𝐓 ∙ 𝐱ᇱ + 𝑐) 
 
2.5 Optimisation of SVM Kernel 

After selecting the most suitable kernel, the SVM model 
accuracy could be optimised with the hyperparameters. 
Two main hyperparameters were regularisation (C) and 
gamma (γ). The penalty parameter (C) was used to 
describe the misclassification. This showed the SVM 
optimisation about the bearable limit of the error. It 
provided a monitoring of the trade-off between the 
decision boundary and the misclassification term. 
Gamma explained the influence of individual training 
samples on the decision boundary. In other words, the 
high gamma value illustrated a more localised influence, 
while low gamma implied a broader influence (Liu, 
2020).   

Tuning the hyperparameters provided the finding of the 
values of C and gamma that resulted in the best model 
performance. Grid search was a common approach for 
hyperparameter tuning. It methodically generated and 
evaluated a model for each combination of parameters 
mentioned in a grid (Learn, n.d.). During the tuning 
procedure, it was essential to address overfitting. Overly 
tuning hyperparameters on the training data had the 
potential to make a poor generalisation to new, unseen 
data. In order to minimise this, cross-validation (cv) was 
used to assess the performance of different 
hyperparameter combinations (Tour, 2017).  
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2.6 Reducing Data 

The SVM model worked better with a balanced dataset 
(Palade, et al., 2012). The dataset generated via the 
Sobol sequence can be imbalanced. If the dataset was 
imbalanced, the first data reduction step should only 
reduce the classification that is dominating the dataset. 
Once balanced, the number of data points classified as 
0s was equal to the amount classified as 1s. This 
prevented misguided performance evaluation and 
created fairness within the dataset. The balanced dataset 
was subsequently reduced in size to analyse its effect on 
the model accuracy. 

3. Application of Protein A Chromatography 

3.1 Protein A Chromatography 

Protein A chromatography was the initial stage in 
monoclonal antibodies (mAbs) downstream 
purification. This procedure aimed to capture the 
product, eliminate impurities, and reduce sample 
volume. The resulting process yield showed the 
performance of this procedure. However, variability in 
input mixture composition from cell-based upstream 
production systems posed a challenge. Therefore, the 
design space identification should provide for the 
manipulation of feed variability (Sachio, et al., 2023).  

A process by Steinebach et al., seen in Figure 3.1, was 
used to understand the case study.  It was a cyclic 
multicolumn approach that was employed in three steps 
(A, B, C) to process the feed continuously. Initially 
(Step A), column 1 received fresh feed while column 2 
got the output from column 1. In step B, column 1 was 
washed while column 2 received the output of column 1 
and fresh feed. Finally, column 1 was regenerated in 
Step C, while column 2 received fresh feed (Steinebach, 
et al., 2016).  

 

Figure 3.1 Multicolumn Protein A Chromatography 
Diagram (adapted by [Steinebach, et al., 2016]) 

The flexibility and performance of the process were 
investigated under three different variables: (i) mAb 
concentration in the feed stream (c feed), (ii) feed 
volumetric flow rate (Q feed), and (iii) the column 

switching time (T switch). The corresponding key 
performance indicators (KPIs) were yield and 
productivity (Steinebach, et al., 2016).  

3.2 Data Classification 

In total, 4096 data were generated by the Sobol 
sequence. Each data point had three inputs and two 
outputs. The inputs and their respective bounds were in 
Table 3.1 below. 

Table 3.1 Lower and Upper Bounds of Design Decisions 
(Inputs) 

Inputs Lower 
Bound 

Upper 
Bound 

Feed concentration  
(c feed) [mg ml-1] 

0.21 0.63 

Feed volumetric 
flowrate (Q feed)  

[mg min-1] 

0.5 1.5 

Switch time (T switch) 
[min] 

40 120 

The resulting outputs from these inputs were yield and 
productivity. The product specification constraints were 
that the yield and productivity must be greater than or 
equal to 99% and 4 𝑚𝑔 𝑚𝑙ିଵℎିଵ, respectively. As SVM 
solved binary classification problems, the current data 
needed to be classified into two groups. Data points 
satisfying both desired product constraints would be 
labelled 1, while data points failing one or both would 
be marked as 0 via sorting code.  

The 4096 dataset was imbalanced, consisting of 1269 
data points classified as 1 while 2827 as 0. The MCC 
score was used to compare the performance of training 
the model with different kernels.  

4. Results and Discussion 

4.1 Comparison of Different SVM Kernels 

Table 4.1 The MCC Results with Their Corresponding 
SVM Kernels 

Type MCC (%) 
Linear 40.43 

2nd Degree Polynomial 62.05 
3rd Degree Polynomial 69.25 
4th Degree Polynomial 70.22 

Gaussian (RBF) 94.12 
Sigmoid -41.01 

 
The linear kernel did not perform very well, having an 
MCC score of 40.43%. Changing to a 2nd order 
polynomial, the MCC score increased by 21.62% to 
62.05%. Increasing the order of the polynomial to 3rd 
degree increased the MCC score by 7.2% to 69.25. 
Increasing the order polynomial further showed a slight 
improvement of 0.97%. 
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The optimum kernel was Gaussian, with an MCC score 
of 94.12%. This outperformed the 4th degree polynomial 
by 23.9%, making it a suitable kernel to tune.  

The sigmoid kernel performed poorly as it failed to 
classify any true values correctly. The mathematical 
representation of the sigmoid function shown in Table 
2.1 was thus unsuitable for the dataset. 

4.2 Comparison of Tuned and Untuned Kernel 

Table 4.2 Optimum Hyperparameter Values at 
Different Dataset Sizes 

Dataset Size C Gamma 
4096 100000 1.25 
2538 100000 1 
1500 100000 0.5 
1000 10000 0.5 
200 1000 1 

 
The investigated C parameters were 1, 10, 100, 1000, 
10000, and 100,000. Optimum C for datasets 4096, 
2548, and 1500 was the max value from the Grid Search 
approach at 100,000. It was found that for the larger 
dataset sizes, the Grid Search approach always favoured 
a higher C value. A repetition was done with the Grid 
search, including C equalled to 1,000,000. The larger 
datasets found this parameter to be the best value; 
however, the runtime of the model doubled as it was 
much more computationally expensive. Despite the 
doubled computational cost, the accuracy showed a 
negligible change. Thus, the Grid Search max C value 
was designed to be 100,000. The lowest optimum C 
chosen was 1000 for the size 200 dataset. This meant 
that a sufficient range of C was provided to find the 
optimum parameter. 

The investigated gammas in the Grid Search were 0.25, 
0.5, 1, 1.25, 1.5 and 2. The optimum gamma value for 
varying datasets was found to vary between 0.5 and 
1.25. None of the optimum gamma values were at the 
minimum or maximum gamma provided. This meant a 
sufficient range of gamma values was provided to 
explore.  

As dataset size decreased, optimum hyperparameter C 
decreased. This was because a lower C results in a 
smoother decision boundary, thus reducing overfitting. 
In smaller datasets, overfitting was a greater risk. 

The gamma hyperparameter decreases as the dataset 
size decreases. Then, at the low dataset size of 200, it 
increased. The gamma might have increased because, at 
dataset size 200, the C hyperparameter was two orders 
of magnitude smaller than the 1500, 2538, and 4096 
datasets. The higher gamma value increased the 
complexity, picking up on non-linearity that may have 
been lost with both a low C and low gamma value. 

4.3 Mean Accuracy Improvement with the Tuned 
Gaussian Kernel 

Figure 4.1 Mean Accuracy at Varying Dataset Sizes for 
the Tuned and Untuned Gaussian Kernel 

In Figure 4.1, the tuned Gaussian kernel outperformed 
the untuned Gaussian kernel on every dataset. The tuned 
mean Gaussian accuracy followed a logarithmic profile 
in relation to the dataset size. The untuned Gaussian 
mean accuracy decreased as the dataset size decreased. 
Interestingly, there was a spike in performance at dataset 
1000 for the untuned Gaussian kernel. This could be 
because the default untuned hyperparameter C equalled 
to 1, which was slightly suited to this dataset size. As 
previously discussed, C decreased as the dataset size 
decreased.  

Table 4.3 Accuracy Results Across Five Repetitions for 
Varying Dataset Sizes 

 

Across five repetitions, the dataset of 4096 data points 
produced a mean accuracy of 99.24% with a variance of 
0.068. The dataset size was then reduced by 38% to 
2538 data points. The size 2538 dataset was balanced, 
with an equal amount of data classified as 1 and 0. 
Despite the 38% reduction in data points, the mean 
accuracy only decreased by 0.11%. This minimum 
reduction was because SVM performs optimally with 
balanced datasets. 

The 4096 dataset was reduced in size by 75.6% to the 
1000 dataset. This resulted in the mean accuracy 
decreasing by 1.74% to 97.5%.   

The 4096 dataset was reduced in size by 95.1% to the 
size 200 dataset. The resultant mean accuracy was 
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93.5%, which was 5.74% lower than the mean accuracy 
for the dataset size of 4096.  

As shown in Figure 4.1, the accuracy declined faster at 
lower dataset sizes. Going from dataset size  4096 to 200 
was an extra reduction of 19.5% than going from 4096 
to 1000. However, the mean accuracy drop increased 
from 1.74% to 5.74%, which was 3.3 times as large.  

4.4 Variance of Accuracy Across Repetitions for 
Different Dataset Sizes 

Figure 4.2 Accuracy against Repetition for Varying 
Dataset Sizes  

Reducing the dataset size caused the variance of 
accuracy for that dataset to increase. As shown in Figure 
4.2, the size 200 dataset varied across a larger range than 
all the other datasets. Figure 4.2 also indicated the 
independence of results between repetitions having no 
trend. 

Figure 4.3 showed the exponential decay of the variance 
of the accuracy as the dataset size increases. In dataset 
1500, the variance was 1.85, and then at 2500, it was 
0.11, suggesting swift decay. The variance quickly 
increased below the size 1000 dataset, meaning the 
model was unreliable and contained more randomness.  

4.5 Removing Bias from Accuracy Metric 

There was unfairness present in the 80/20 split accuracy 
score when varying dataset sizes. Splitting different size 
datasets 80/20 naturally resulted in them being tested 
against different amounts of data points. This means the 
tests performed across different dataset sizes were not 
consistent between them. The resulting accuracy score 
from these tests was not suitable to compare the 
performance between different dataset sizes. Due to the 
smaller test size for the smaller datasets, the randomness 
in the outputted accuracy was higher between 
repetitions. This resulted in a higher variance.  

To account for this, an overall accuracy score metric was 
calculated. This was achieved by using all 4096 data 
points as test data. It was tested against the same models 
produced at varying dataset sizes that the original 
accuracy score was tested against. It was calculated 
using Equation 2.6, which was used to get the original 
accuracy score. The difference was that the test dataset 
consisted of the whole 4096 dataset. Thus, each model 
built from varying dataset sizes, was tested against all 
4096 data points. The resulting accuracy score was 
called the overall accuracy metric. Using the same test 
dataset to evaluate each model improved the consistency 
of the outputted overall accuracy metric. This allowed 
better comparisons of performance between models. 
However, by reducing the unfairness in the calculation 
of accuracy from the test data dataset, a new unfairness 
was introduced in how the model was trained. 

Testing the model against the whole dataset meant the 
model had been trained on some of this data. The model 
had a high probability of correctly predicting data it had 
been trained on, making it unfair. This unfairness was 
increased for the larger dataset size as they trained on a 
larger portion of the dataset than the smaller datasets. 
For example, the size 4096 dataset was trained on 3277 
data points, while the size 200 dataset was trained on 
160 data points.  

To resolve this issue, the test accuracy score metric was 
calculated. A new test dataset consisting of 3927 data 
points was generated via the Sobol sequence. This test 
dataset was within the same bounds as the original 4096 
dataset. Similar to the overall accuracy metric, it was 
tested against the same models produced at varying 
dataset sizes and used Equation 2.6 to get its accuracy 
score. The test accuracy metric was fairer across datasets 
as each model was tested against the same amount of 
data and had not been trained on it. This minimised 
variance of the test accuracy metric between repetitions 
and removed bias. 

 

 

 

Figure 4.3 Variance of Accuracy against Dataset Sizes 
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4.6 Overall Accuracy Metric 

Table 4.4 Overall Accuracy Results Across Five 
Repetitions for Varying Dataset Sizes 

 

The natural profile without taking a mean across 
repetitions was logarithmic as opposed to the more 
sporadic accuracy outputs shown in Figure 4.2.  

The overall accuracy outputs from 3 repetitions for the 
size 4096 dataset were very close together, illustrating 
slight variance between repetitions. By contrast, the 
overall accuracy outputs for the size 200 dataset were 
more spread apart, evidencing a higher variance 
between repetitions. For the overall accuracy, as the 
dataset size increased, the variance decreased. This 
trend was also present for the accuracy. However, the 
variance in each dataset was smaller for the overall 
accuracy metric than for the accuracy metric. At dataset 
200, the overall accuracy and its variance were 1.268 
and 46.992, respectively. At a higher dataset of 1000, 
the overall accuracy and its variance were 0.165 and 
5.641, respectively. For both datasets, the variance in 
accuracy has been reduced by over 30 times. This 
evidences that the overall accuracy metric has improved 
the consistency between repetitions by decreasing the 
variance at all dataset sizes. 

 

 

4.7 Test Accuracy Metric 

Table 4.5 Test Accuracy Results Across Five Repetitions 
for Varying Dataset Sizes 

 

Figure 4.5 Test Accuracy against Dataset Size for Three 
Repetitions 

The results in Figure 4.5 of the test accuracy were fair. 
This was because the test accuracy dataset was unique. 
Despite this, the test accuracy exhibited similar trends to 
the overall accuracy. It showed logarithmic behaviour 
with the dataset size, and the variance decreased as the 
dataset size increased. 

Figure 4.6 Comparison of Variance Between Overall 
Accuracy and Test Accuracy 

Figure 4.4 Overall Accuracy Against Dataset Size for Three 
Repetitions 

591



8 
 

Interestingly, the test accuracy, when compared to 
overall accuracy had a smaller variance at the higher 
dataset sizes but a larger variance at the smaller dataset 
sizes. As shown in Figure 4.6, this switch occurred at the 
size 1500 dataset. The overall accuracy below that point 
had lower variance due to its inherent bias in how it was 
trained. Above this point, the variance was essential the 
same since the higher datasets produced more consistent 
results. 

4.8 Accuracy Metrics Discussion 

Figure 4.7 Different Mean Accuracy Metrics against 
Dataset Size 

In Figure 4.7, the mean overall accuracy was 
consistently larger than the mean test accuracy except at 
dataset size 1500. This trend evidenced the predicted 
training bias in the overall accuracy score. From Table 
4.4 and Table 4.5, the largest increase in mean accuracy 
from the test accuracy to the overall accuracy was 
0.164% at dataset 200. The subsequent largest increase 
was 0.104% for dataset 4096. Thus, the found bias was 
minimal. This was shown in Figure 4.7 by the overall 
accuracy values only being slightly above the test 
accuracy values. 

In Figure 4.7, the test accuracy and overall accuracy 
were consistently higher than the mean accuracy score. 
This was because the variance was higher for the 
original accuracy outputs, causing the resultant mean to 
be lower. This variance was a result of being tested on 
less data. The maximum test data for the original 
accuracy calculation used 820 data points from the size 
4096 dataset. This test data set size then decreased as the 
actual dataset the split was performed on decreased. In 
contrast, the test data set size for the overall and test 
accuracy metrics was consistently 4096 and 3927, 
respectively. 

The mean test accuracy was 99.598% at dataset 4096. 
Reducing the dataset by 75.6% to a dataset of 1000 
caused the mean test accuracy to reduce by 1.452% to 
98.146%. Reducing the size 4096 dataset by 95.1% to a 

dataset of 200 data points caused the mean test accuracy 
to reduce by 5.592%. In Section 3.3, this same reduction 
in dataset size from a 4096 dataset to a size 200 dataset 
resulted in the mean accuracy reducing by 5.74%. For 
the same decrease in dataset size, the mean test accuracy 
declined by 0.148% less than the mean accuracy. 

5. Conclusion 

This study focused on the primary challenges of the 
design space approach for the biopharmaceutical 
industry. It successfully implemented a support vector 
machines approach for characterising the design space. 
This approach was demonstrated through an industrial 
case study of Protein A chromatography used in 
biopharmaceutical manufacturing. The design decisions 
– feed composition, flow rate, and switching time – were 
considered simultaneously with their impact on product 
quality. The design space was generated by the inputs 
that follow the constraints on productivity and yield.  

As limited data availability was a primary setback 
within the industry, a data reduction analysis was 
conducted. The Gaussian kernel was found to perform 
the best with the design space dataset, producing a high 
Matthew Correlation Coefficient. A suitable exploratory 
range for the hyperparameters C and gamma was 
provided, allowing the optimum hyperparameters to be 
found specific to each dataset size. The tuned Gaussian 
kernel significantly improved the model’s performance, 
producing high accuracy values for the varying dataset 
sizes.  

However, for the accuracy metric, as the dataset size 
decreased, the variance increased, making the model 
less reliable at lower dataset sizes. To account for this 
the performance of the model was later assessed by 
feeding in the overall dataset and a new dataset created 
from a Sobol sequence. The variance in the accuracy 
was minimised by using the test accuracy metric. This 
metric also allowed for a fair performance comparison 
between the models trained at their respective dataset 
sizes. The overall accuracy delivered a similar high 
accuracy and low variance but was slightly bias as it was 
tested with data it had trained on.  

From the mean test accuracy, it can be established that 
support vector machines is a good model approach for 
design space characterisation in the biopharmaceutical 
industry. With minimal randomness, its high accuracy 
results, suitability with smaller datasets, and short 
computational time make it a great technique. This high 
performance, however, quickly begins to decrease at the 
much lower dataset sizes.  
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6. Outlook 

Expanding this study further, one could investigate to 
eliminate randomness within the model entirely. 
Additional analysis on the optimisation 
hyperparameters could be done to minimise its 
randomness. During this study, the data was reduced to 
200 points. This could be decreased further while 
keeping the accuracy within the desired range. 
Therefore, an advanced model could be developed to 
make more robust predictions, resulting in high 
accuracy with smaller datasets. Furthermore, the support 
vector machines model approach could be assessed to 
understand its contribution to risk analysis.  
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Abstract  
This study explores the impact of incorporating predicted data into the training sets of Machine Learning-based 
Quantitative Structure-Property Relationships (ML-QSPR) models, focusing on the prediction of Lower Flammability 
Limits (LFLs) in pure compounds which is crucial for safety in the oil, gas, and petrochemical industries. Utilizing data 
from the DIPPR 801 Project database, two distinct subsets were created: a mixed subset containing both experimental 
and predicted LFL values, encompassing 1,506 compounds, and an experimental subset comprising exclusively 
experimental data, with 299 compounds. Various regression models, including Ridge Regression, Lasso, Partial Least 
Squares (PLS), Support Vector Machines (SVM), and Kernel-based Partial Least Squares (KPLS), were employed. The 
robustness, internal predictivity, and stability of these models were rigorously assessed through 𝑄௅ெை

ଶ  validation and 
statistical tests such as y-scrambling and pseudo-descriptor tests. External predictivity was evaluated using distinct test 
sets and quantified via the 𝑄ா௫௧

ଶ  metric. The performance of the developed models was further analyzed using a range of 
metrics including R², RMSE, MAE, and MAPE. Additionally, the applicability domain for the LASSO and PLS models 
was explored, providing insights into the models' reliability within their respective chemical space. Findings indicate that 
whilst the inclusion of predicted data in training sets improved feature selection and robustness against overfitting, it 
reduces predictivity on unseen data. This research provides insights into the benefits and trade-offs of using predicted 
data in ML-QSPR models, suggesting its potential utility in preliminary screening processes where maximum predictivity 
is not paramount. 
 
1. Introduction 
The lower flammability limit (LFL), usually expressed 
in percentage volume (vol%), is defined as the minimum 
concentration of fuel in air required to sustain flame 
propagation [1]. It is an important physicochemical 
property that characterises the flammability and 
combustibility of substances, knowledge of which is 
crucial to maintaining process safety within the oil, gas, 
and petrochemical industry [2].  Common uses of LFL 
values include input parameters for risk assessments or 
informing the start-up of a reactor outside of flammable 
ranges [1]. As such, reliable and accurate LFL values are 
required to maximize the process safety in design and 
operational procedures.  
 
  Traditionally, LFLs are determined experimentally 
through various standard testing methods such as: (i) US 
Bureau of Mines Tube Method, (ii) ASTM E-681/E-
918, (iii) DIN 51648/EN 1839, amongst many others 
[1]. However, experimental determination of LFLs can 
be expensive, time consuming and pose safety risks for 
especially reactive substances. Additionally, the 
experimental LFL is not absolute, but depend on several 
factors, such as the geometry of the apparatus, the type 
and strength of the ignition source, the test pressure and 
temperature and the degree of mixing [3]. Coupled with 
the rapid introduction of new chemicals in the process 
industry, the development of alternative methods to 
predict LFLs with reasonable accuracy is required.  
 
  In response to these challenges, Machine learning 
based quantitative structure property relationships (ML-
QSPR) have emerged as a popular alternative for 
predicting LFLs. This approach leverages ML 
algorithms to establish a mathematical relationship 
between molecular descriptors and the physicochemical 
properties of a molecule where molecular descriptors are 
used to numerically encode various structural aspects of 

a molecule. This method, when compared to approaches 
such as calculated adiabatic flame temperature (CAFT) 
estimation of LFLs, demonstrates a distinct advantage: 
a reliable QSPR model only requires the molecular 
structure of a chemical to predict LFLs, which enables 
evaluation of even unprepared chemicals. 
 
  To highlight studies in this field, in a seminal study 
presented in 2008, Gharagheizi [4] utilized data from the 
DIPPR 801 database to develop a predictive model for 
LFLs of organic compounds. Employing a dataset 
comprising 1056 LFL data points, he crafted a multiple 
linear regression (MLR) model consisting of four 
descriptors. The dataset was partitioned into a training 
set, consisting of 845 compounds (80%), and a test set 
with 211 compounds (20%). The model demonstrated 
robust predictive power, evidenced by a high goodness-
of-fit (R2) of 0.9698, a mean absolute percentage error 
(MAPE) of 7.68% and a root mean square error (RMSE) 
of 0.1561 across the entire set of compounds.  
 
  Following this, Pan et al. [5] in their 2009 study 
developed a MLR model with four descriptors to predict 
the LFL of pure hydrocarbons. This model was based on 
a dataset of 354 pure hydrocarbons sourced from the 
DIPPR 801 project, with an 80/20 split into 284 
compounds for training and 70 for testing. The model’s 
performance was quantified using several metrics: it 
achieved a R2 of 0.9967, RMSE of 0.07, MAPE of 6.07 
%, and a mean absolute error (MAE) of 0.043 across the 
entire dataset. 
 
  It is important to note that all the studies above 
developed QSPR models using LFL data sourced from 
the DIPPR 801 Project database. However, due to the 
lack of reliable and consistent experimental values [1], a 
large majority of LFLs reported are predicted values 
rather than being experimentally derived. This goes 
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against the common notion that prediction methods 
should be exclusively built off experimental data [6].  
 
  In a paper authored by Chen et.al [7], a MLR model of 
four descriptors was built on the same DIPPR 801 
database. However, only experimental data was used, 
where an 80/20 train/test split was used leading to 366 
molecules in the training set and 92 molecules in the test 
set. This model achieved an R2 of 0.9302 and a MAE of 
0.3036 on the test set. 
 
  The current lack of research into the effects of 
incorporating predicted data in the training set for 
QSAR model development necessitates a thorough 
investigation. This gap is significant, considering the 
potential benefits of using predicted data, such as 
enlarging the dataset to combat issues such as 
imbalanced data and model overfitting [8]. Overfitting 
is particularly problematic given the vast array of 
molecular descriptors available for calculation, which 
can number in the hundreds or thousands [9]. Moreover, 
the prevalence of predicted data in many esteemed "gold 
standard" databases underscores the need to explore this 
approach. Accordingly, this study aims to determine the 
impact of using a mixed dataset, comprising of both 
experimental and predicted data within the training set, 
on the reliability and predictive accuracy of a QSPR 
model, specifically in relation to its ability to predict 
Lower Flammability Limits (LFL). 
 
2. Materials and Methodology 
The following section describes the methodology used 
for model development and validation in this paper, 
which has been summarized in Figure 1.  
 

 
Figure 1: QSPR modelling workflow for comparison of models 
developed on a mixed versus experimental dataset. 
 
2.1. Dataset Curation 
The dataset used in this study was retrieved from the 
2021 edition DIPPR 801 Project database which is 
referred to as the “Gold Standard” for pure component 
property values. DIPPR 801 is the largest collection of 
critically evaluated, pure component thermophysical 
properties and is maintained by the Design Institute for 
Physical Properties (DIPPR), which was established by 
the American Institute of Chemical Engineers (AlChE) 
in 1980. To ensure the “completeness” of recorded pure 
component properties, prediction methods have been 
used to obtain recommended values where no reliable 
experimental data is available. Additionally, the 
“accuracy” or quality of the values are dependent on a 

well-developed and stringent evaluation process, which 
aims to publish results that are complete, consistent with 
literature, as well as self-consistent [6]. This ensures that 
predicted values still achieve the same standards of 
consistency and reliability as experimental values, 
which is vital when utilizing predicted data for model 
development.   
 
  The DIPPR 801 database, which contains Hazard and 
Safety Properties for 1,965 compounds, has reported 
LFLs for 1,896 of these compounds. Among these, only 
474 are based on experimental measurements, 
accounting for just 25% of the LFL data in 2021 Edition 
DIPPR 801. The remaining 1,422 compounds were 
classified under predicted, smoothed, not specified or 
unknown. For this study, only predicted and 
experimental LFL values were considered, resulting in a 
total of 1,831 compounds. To ensure data integrity, 
duplicated molecules were identified and discarded 
based on their canonical SMILES generated using the 
RDKit software.  
 
  Additionally, it's essential to address experimental 
errors when working with data, as they can negatively 
impact the quality of QSAR models and subsequently 
affect the prediction of new compounds [10]. The 
DIPPR 801 database categorizes its property values with 
specific levels of quantized uncertainty. A study done by 
Wenlock and Carlsson [11] found that QSPR models 
built on data with low experimental uncertainties gave 
rise to prediction improvements ranging from 3.3% to 
27.5%. As such, this concept was applied to 
experimental and predicted values by including 
compounds from the first 6 quantized uncertainty levels, 
which are <0.2%, <1%, <3%, <5%, <10% and <25%. 
This led to a total of 1,764 compounds in the dataset. 
 
2.2. Generation and Pre-processing of Descriptors 
Molecular descriptors were computed using Mordred, 
an open-source descriptor calculation software. 
Mordred can generate up to 1,825 descriptors, a figure 
comparable to that of the PaDEL-Descriptor software, 
which calculates up to 1875 descriptors and fingerprints 
[12].  The choice of Mordred was influenced by its 
ability to calculate descriptors twice as fast, handle 
descriptor generation for large molecules, and its 
compatibility with both Python 2 and 3 [12].  
 
  Calculations of descriptors were based on the 
minimum energy molecular geometries of the 
compounds as optimized by DataWarrior based on the 
MMFF94 force field. Resulting structures were used as 
inputs to Mordred for computation of 2D and 3D 
descriptors.  
 
  Descriptors that failed to generate for more than 95% 
of compounds were removed from our dataset. 
Furthermore, to enhance data quality, compounds with 
over 200 missing descriptors were also excluded. 
Following these exclusions, any remaining descriptors 
that failed to generate were removed. This was done to 
retain the maximum the number of compounds and 
calculated descriptors available for model development. 
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  Two distinct subsets were then created with one 
comprising a mix of both experimental and predicted 
LFL values in the training set while the other solely 
contains experimental LFL values in the training set. 
Both test sets for each subset consists of only 
experimental values of different sizes. For both subsets, 
a 90/10 train/test split was used while ensuring the 
distribution of LFLs between the training and testing set 
are similar. 
 
  Finally, the training set was balanced according to the 
following best practices [13]: 

i) The uncertainty of LFLs should be five times 
smaller than the total range of LFLs in the dataset. 

ii) No large gaps that exceed 15% of the entire range 
of LFLs are allowed between two consecutive 
LFLs ordered by magnitude.    

 
  Figure 2 and 3 presents the histograms for LFLs 
categorized by use in model training or testing for the 
final mixed and experimental subset. From the figures, 
it can be observed that the distributions of the train and 
test sets are similar, hence the test set is suitable for 
validation of models developed using the training set. 
 

 
Figure 2: Histogram of LFLs for the mixed subset categorized as the 
train set (1354 observations) and test set (152 observations). 
 

 
Figure 3: Histogram of LFLs for the experimental subset categorized 
as the train set (266 observations) and the test set (33 observations). 
 
Table 1: Range of LFLs in the train and test set for the mixed and 
experimental subset. 

Subset Training Set Range 
(vol%) 

Testing Set Range 
(vol%) 

Mixed 0.00001 – 4 0.26 – 4 
Experimental 0.26 – 3.13 0.5 – 3.1 

 
  Table 1 presents the LFL ranges for both train and test 
sets of each subset. As the range of LFL values in the 
test set for both the mixed and experimental subset fall 
within their respective training set ranges, provided the 

correct descriptors and model parameters were selected, 
no significant extrapolation for test set 
predictions should occur.  
 
2.3. Feature Selection 
Feature selection is also critical for developing 
interpretable and accurate predictive models as it can 
reduce the risk of overfitting and identify important 
features with meaningful property relationships in the 
data. For this study, feature selection was carried out via 
the filter method using Pearson’s correlation 
coefficients due to it being commonly used and ease of 
adaptability [14]. Descriptor reduction for this study 
followed a three-step process:  

i) Removal of descriptors that were constant across 
all compounds, as the descriptors did not encode 
the structural differences between compounds that 
contributed to their differing LFLs. 
 

ii) Elimination of descriptors with low correlation to 
the target variable (defined as having an absolute 
correlation coefficient less than 0.1). These 
features are unlikely to be significant predictors 
for the target variable.  

 
iii) Removal of one descriptor from each pair of 

highly correlated descriptors (defined as absolute 
pairwise correlation above 0.9). This step was to 
minimize multicollinearity, a condition where two 
or more descriptors are highly correlated, leading 
to redundancy in information and potential 
instability in model predictions.  

 
2.4. Machine Learning Algorithms Used 
Regression methods are essential in QSAR 
(Quantitative Structure-Activity Relationship) models. 
At the heart of these regression techniques is the least 
squares criterion, which aims to minimize the sum of the 
squared differences between the observed LFL values 
and those predicted by the model. This can be 
mathematically represented as seen in Equation 1. 
 

min
ఉ

෍ ቌ𝑦௜ − ෍ 𝛽௝𝑥௜௝

௣

௝ୀଵ

ቍ

ଶ௡

௜ୀଵ

 (1) 

 
In this equation, 𝑛 represents the number of samples, 𝑝 
is the number of molecular descriptors, y represents the 
response vector (LFL values in this context), β are the 
regression coefficients, and x denotes the molecular 
descriptors.  
 
  In this study, three linear regression methods, 
consisting of Ridge, LASSO and PLS, alongside two 
non-linear regression methods, KPLS and SVR, were 
investigated. 
 
  Ridge: Ridge regression reduces the coefficients of 
regression by applying a penalty on their squared sum 
(L2 norm). The formula combines the standard least 
squares criterion with an additional term where λ acts as 
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a shrinkage factor on the squared regression coefficients 
as seen in Equation 2. 
 

min
ఉ

෍ ቌ𝑦௜ − ෍ 𝛽௝𝑥௜௝

௣

௝ୀଵ

ቍ

ଶ௡

௜ୀଵ

+ λ ෍ 𝛽௝
ଶ

௣

௝ୀଵ

 (2) 

 
The value of λ determines the severity of the penalty: 
higher values result in greater shrinkage of the 
coefficients towards zero. Unlike some other methods, 
ridge regression retains all predictor variables in the 
model because it does not reduce the coefficients to 
exactly zero, meaning no variables are excluded from 
the regression model.  
 
  LASSO: LASSO (Least Absolute Shrinkage and 
Selection Operator) is a regularization technique that 
applies a penalty to the sum of the absolute values of the 
regression coefficients (L1 norm). 
 

min
ఉ

෍ ቌ𝑦௜ − ෍ 𝛽௝𝑥௜௝

௣

௝ୀଵ

ቍ

ଶ௡

௜ୀଵ

+ λ ෍ห𝛽௝ห
௣

௝ୀଵ

 (3) 

 
Mathematically, this involves adding a term penalizing 
the absolute values of the coefficients to the usual least 
squares criterion as seen in Equation 3. The shrinkage 
parameter (λ) influences the degree of penalty. A key 
feature of LASSO is that it can force some of the 
regression coefficients to become exactly zero, 
effectively excluding those variables from the model 
(feature selection). The maximum number of variables 
selected is limited by the number of compounds (n). In 
cases of highly correlated variables, LASSO tends to 
select one variable from the group and ignores the 
others. 
 
  PLS: Partial Least Squares (PLS) is utilized as an 
effective method for predicting the LFL of compounds 
using molecular descriptors. Unlike Principal 
Component Analysis (PCA), PLS is not just a dimension 
reduction technique; it specifically aims to maximize the 
covariance between latent variables and the LFL 
response variable. This makes PLS particularly suitable 
for our purpose, as it often requires fewer components 
for accurate prediction compared to methods like 
Principal Component Regression (PCR), which we did 
not examine in this context for this reason. Like PCR, 
PLS ensures that the latent variables are uncorrelated, 
which is crucial for the reliable prediction of LFL using 
molecular descriptors. 
 
  RBF-KPLS: Radial Basis Function – Kernel-based 
Partial Least Squares method combines the concepts of 
Kernel methods and PLS regression. It employs the 
Radial Basis Function (RBF) kernel to map input data 
into a high-dimensional feature space. Similar to 
traditional PLS, RBF-KPLS seeks to find the 
multidimensional direction in the feature space that 
explains the maximum multidimensional variance of the 
input data while also having the highest covariance with 
the target variable. The use of RBF kernel allows the 

capture of complex, non-linear relationships between 
the predictors and the response variable. 
 
  RBF-SVR: Like RBF-KPLS, RBF-SVR is also adept 
at managing non-linear data relationships. Central to 
RBF-SVR are support vectors, the critical data points 
that define the hyperplane boundaries in the model. 
RBF-SVR’s optimization objective balances margin 
maximization and error penalty. This balance is 
governed by three key parameters: the regularization 
parameter, 𝐶, which dictates the margin-error trade-off; 
the kernel coefficient, 𝛾, controlling the influence of 
individual training examples; and the epsilon parameter, 
𝜖, which sets the width of the epsilon insensitive tube, 
thus determining the model’s tolerance to prediction 
errors. 
 
2.5. Model Development 
As part of model development, model hyperparameters 
were determined using a 9-fold cross validation. The 
training set was randomly divided into 9 approximately 
equal folds, 8 of which were used to train the model 
(training set) and the remaining fold used to validate the 
trained model (validation set). This process was 
repeated 9 times until each fold was used as a validation 
set exactly once. A grid search method was used to 
identify the optimal hyperparameter(s) that yielded the 
lowest root mean squared error (RMSE) averaged across 
9 folds.  
 
  Descriptors were also standardized and mean-centered 
prior to model training to ensure each descriptor had a 
mean of 0 and standard deviation of 1 within the training 
set. This is to ensure that all features contribute equally 
to the model, preventing descriptors with larger scales 
from dominating the model's behaviour. 
 
2.6. Performance Metrics of ML Algorithms 
For a QSPR model to be accepted for use in regulatory 
purposes (such as risk assessments), it must be validated 
to ensure it produces accurate and reliable estimates 
[15]. Following model development, the performance of 
the QSPR models were evaluated using the following 
metrics: the coefficient of determination (R2), root mean 
squared error (RMSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE), which are 
calculated using Equation 4-7: 
 

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦ො௜)ଶே

௜ୀଵ

∑ (𝑦௜ − 𝑦ത௜)ଶே
௜ୀଵ

  (4) 

RMSE =  ඩ
1
𝑁

෍(𝑦௜ − 𝑦ො௜)ଶ

ே

௜ୀଵ

 (5) 

MAE =  
1
𝑁

෍|𝑦௜ − 𝑦ො௜|
ே

௜ୀଵ

 (6) 

MAPE =
1
𝑁

෍ ฬ
𝑦௜ − 𝑦ො௜

𝑦௜
ฬ

ே

௜ୀଵ

 (7) 

Where 𝑦௜ ,  𝑦ො௜, 𝑦ത௜ represents the observed, predicted and 
mean observed LFLs respectively, whilst 𝑁 represents 
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the number of compounds in the train, validation, or test 
set.  
2.7. Internal Validation 
  The internal performance of the model can be 
characterized by its ability to accurately reproduce data 
in the training set, a factor often referred to as 
“goodness-of-fit”.  This is quantitatively represented by 
the coefficient of determination on the training set 
(henceforth referred to as 𝑟ଶ). However, 𝑟ଶ alone is not 
a sufficient measure of robustness nor predictivity, as it 
tends to increase as the number of descriptors increase. 
Hence, it’s leave-many-out cross-validated counterpart 
(𝑄௅ெை

ଶ ) was also calculated using Equation 8 [16]: 
 

𝑄௅ெை
ଶ = 1 −

∑ ∑ ൫𝑦௜ − 𝑦ො௜/௝൯ଶே
௜ୀଵ

ெ
௝ୀଵ

∑ (𝑦௜ − 𝑦ത௜)ଶே
௜ୀଵ

 (8) 

 
Where 𝑦ො௜/௝ is the predicted value when 𝑗௧௛ part of the 
dataset is left out with the training set split into 𝑀 folds. 
In contrast to 𝑟ଶ, 𝑄௅ெை

ଶ  improves only when useful 
descriptors are added to predict compounds that are left 
out. Thus, a high 𝑄௅ெை

ଶ  is required for a robust model. 
For this study, a 9-fold cross validation procedure was 
used to determine 𝑄௅ெை

ଶ .  
 
  Additionally, the model’s stability (statistical 
significance) was tested using a y-scrambling and 
pseudo-descriptor test [9]. This involves comparing the 
performances of developed models against those 
generated by random chance correlations. In conducting 
these tests, the original feature selection and model 
building processes were strictly adhered to, thus 
preventing selection bias. Further details regarding these 
tests are available in [9]. Both the internal performance 
and stability of the model were considered in parallel to 
ensure that developed models had sufficient internal 
predictivity (defined as having 𝑄௅ெை

ଶ > 0.7) and were 
statistically significant [16]. 
 
2.8. External Validation 
The external predictivity and generalizability of 
developed QSPR models were estimated by evaluating 
their performance on the test set, which contained 
compounds not involved in model development. For this 
study, external predictivity (𝑄ா௫௧

ଶ ) is calculated using 
Equation 9 [17]: 
 

𝑄ா௫௧
ଶ = 1 −

ൣ∑ (𝑦ො௜ − 𝑦௜)ଶே೟೐ೞ೟
௜ୀଵ ൧ 𝑁௧௘௦௧ൗ

ൣ∑ (𝑦௜ − 𝑦ത௧௥௔௜௡)ଶே೟ೝೌ೔೙
௜ୀଵ ൧ 𝑁௧௥௔௜௡ൗ

 (9) 

 
𝑄ா௫௧

ଶ  was derived as a better alternative for determining 
external predictivity as compared to 𝑅ଶ and 𝑄ଶ as it is 
evaluated independently of test set composition, hence 
reducing the effect of a different test set size [17] 
Additional performance metrics introduced in Section 
2.6 were also evaluated on the test set, which were 
denoted as 𝑅ଶ, RMSE୲ୣୱ୲, MAE୲ୣୱ୲, and MAPE୲ୣୱ୲ 
respectively.  
 

2.9. Applicability Domain  
Defining the Applicability Domain (AD) of a QSPR 
model is essential, as it delineates the chemical structure 
and response space where reliable predictions can be 
made. The AD is intrinsically connected to the 
composition of the model's training set, necessitating 
that a new chemical be structurally similar to those in 
the training set for its prediction to be considered as an 
interpolated value with reduced uncertainty [18]. 
 
  A practical method to visualize the AD is through a 
Williams Plot [15], which maps standardized residuals 
(y-axis) against leverage values (x-axis) of the dataset's 
chemicals. This plot helps to identify chemicals that are 
significantly different from those in the training set, 
indicating potential extrapolation in predictions. 
 
  In this study, the model space is represented by the 
descriptor matrix (𝐗), compromising of 𝑁 samples and 
𝑘 variables (descriptor values). Leverage values (ℎ) 
were calculated for each compound within the dataset 
using the following equation: 
 

ℎ௜ = 𝒙௜
்(𝐗𝐓𝐗)ିଵ𝒙௜  (10) 

 
Where ℎ௜ is the leverage value of chemical 𝑖 within the 
descriptor space and 𝒙𝒊 is the descriptor row-vector of 
the chemical. Leverage value gauge the extent to which 
a compound’s descriptor values deviate from the other 
compounds within the dataset. 
 
  A key parameter in assessing leverage is the warning 
leverage (ℎ∗), which is typically defined as: 
 

ℎ∗ =
3𝑝
𝑛

 (11) 
 
Where 𝑝 is the number of model variables plus one and 
𝑛 is the number of training chemicals. A chemical’s 
leverage exceeding ℎ∗ suggests that its prediction stems 
from significant extrapolation, potentially leading to 
less reliable results. Therefore, the Williams Plot and 
leverage calculations provide a framework to evaluate 
the AD, ensuring that predictions made are within a 
reliable and relevant chemical space. 
 
3. Results & Discussion 
3.1. Results of Feature Selection 
Table 2 summarizes the results of feature selection on 
the mixed and experimental subsets. 
 
Table 2: Summary of number of training point (Ntrain), testing points 
(Ntest), and retained molecular descriptors after feature selection for 
mixed and experimental subsets. 

Subset Ntrain Ntest No. of Molecular Descriptors 
Mixed  1354 152 153 

Experimental  266 33 178 
 
  Notably, within the mixed subset, only 152 out of the 
1,354 samples in the train set are experimental values. 
Furthermore, despite undergoing the same feature 
selection procedure, more features were retained for the 
experimental subset when compared to the mixed 
subset. The discrepancy could be attributed to the 
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experimental training set being smaller than the mixed 
training set, resulting in less information available per 
descriptor. Thus, the feature selection method used was 
unable to fully capture patterns within the subset.   
 
3.2. Results of Internal Validation of Models 
The internal validation of the developed models was 
meticulously conducted using their respective training 
sets, either from the mixed or experimental subset. The 
comparative results of 𝑟ଶ and 𝑄௅ெை

ଶ  for these models are 
illustrated in Figure 4 and detailed in Table S1.  
 
  Evaluation of the internal validation results of the 
model performances revealed that all models were 
deemed to be internally predictive (𝑄௅ெை

ଶ ≥ 0.7), 
regardless of the subset used to train them.  
 
  An important observation from this validation process 
was that higher 𝑄௅ெை

ଶ  values alongside smaller gaps 
between 𝑟ଶ and 𝑄௅ெை

ଶ  were observed for models trained 
on the mixed subset. These results suggests that models 
developed using the mixed subset were more robust than 
their counterparts trained on the experimental subset as 
variations in the train set did not significantly impact 
goodness of fit. 
 
  A notable exception to this trend was the PLS 
algorithm, for which the model developed on the 
experimental subset exhibited a higher 𝑄௅ெை

ଶ  compared 
to its mixed subset counterpart (0.9220 vs 0.8950). 
Furthermore, it also had the smallest gaps between 𝑟ଶ 
and 𝑄௅ெை

ଶ  across both subsets. These results suggest that 
the PLS algorithm produced more robust models 
compared to other algorithms.  
 
  To evaluate the statistical significance of developed 
models, the 𝑟ଶ was compared against the average 

𝑟௥௔௡ௗ௢௠
ଶ  derived by models developed from 50 iterations 

of y-scrambling and pseudo-descriptors tests. The 
results are tabulated in Table 3. 
 
  Results of y-scrambling suggest that all models, 
regardless of the subset used to train them, performed 
significantly better than chance, having 𝑟ଶ values that 
exceeded 𝑟௥௔௡ௗ௢௠

ଶ  by more than 2.3 standard deviations 
(SD), a threshold indicative of 1% level significance.  
Application of the pseudo-descriptor tests, which tend to 
yield higher 𝑟௥௔௡ௗ௢௠

ଶ  values due to intercorrelation 
among real descriptors, still showed most models 
remained significant [9]. However, Table 3 shows that 
models trained on the mixed subset achieved 𝑟ଶ values 
significantly higher than 𝑟௥௔௡ௗ௢௠

ଶ ±  2.3SD when 
compared to their counterparts trained on the 
experimental subset.  
 
  An exception was observed in the RBF-SVR trained on 
the experimental subset. The developed model 
presented an 𝑟ଶ ≤ 𝑟௥௔௡ௗ௢௠

ଶ ± 2.3𝑆𝐷 for the more 
demanding pseudo-descriptor test, suggesting that the 
significance of the model was not beyond doubt, as pure 
chance alone created equivalent or better models to 
describe the given data despite being based on a new set 
of random number pseudo-descriptors. This could be 
due to the inherent flexibility of SVR, which forms a 
regression model defined by several support vectors. As 
the number of support vectors approaches the number of 
samples, this method can replicate the training set 
almost perfectly despite randomized data being used.  
 
  Overall, the internal validation results indicate an 
enhanced resilience against random chance correlations 
when models were trained using the mixed subset, as 
demonstrated by the comparatively lower 𝑟௥௔௡ௗ௢௠

ଶ  
values across y-scrambling and pseudo-descriptor test. 

 

 
Figure 4: Bar chart of 𝑟ଶ and 𝑄௅ெை

ଶ  results across different machine learning algorithms for the mixed and experimental subset. 
 

Table 3: Results of y-scrambling and pseudo-descriptors tests across different machine learning algorithms for the mixed and experimental subset. 
 Mixed Subset Experimental Subset 

Model It. Test r2
random +2.3 SD r2 r2

random + 2.3 SD r2 

LASSO 50 Pseudo-descriptors 0.004 ± 0.006 0.0181 0.904 0.832 ± 0.024 0.8871 0.926 Y-Scrambling 0.001 ± 0.002 0.0048 0.007 ± 0.024 0.0616 

RIDGE 50 Pseudo-descriptors 0.006 ± 0.009 0.0268 0.9060 0.775 ± 0.029 0.8423 0.919 Y-Scrambling 0.0005 ± 0.001 0.0028 0.006 ± 0.018 0.0469 

PLS 50 Pseudo-descriptors 0.003 ± 0.005 0.0144 0.906 0.729 ± 0.027 0.7910 0.932 Y-Scrambling 0.001 ± 0.001 0.0027 0.004 ± 0.009 0.0232 

RBF-SVR 50 Pseudo-descriptors -0.001 ± 0.004 0.0075 0.9282 0.935 ± 0.086 1.1336 0.948 Y-Scrambling -0.004 ± 0.001 -0.0009 0.005 ± 0.023 0.0584 

RBF-KPLS 50 Pseudo-descriptors 0.006 ± 0.008 0.0230 0.896 0.697 ± 0.058 0.8315 0.917 Y-Scrambling 0.002 ± 0.004 0.0109 0.011 ± 0.02 0.0573 
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3.3. Results from External Validation 
External validation of the developed models was carried 
out on their respective test sets (mixed or experimental 
subset). Figure 5 presents the performance metrics 
described in Section 2.6 for each model, and the results 
are also tabulated in Table S2. 
 
  From Figure 5, models trained on the experimental 
subset generally exhibited higher 𝑄ா௫௧

ଶ  values than those 
trained on the mixed subset, implying superior external 
predictivity which resulted in lower prediction error 
metrics (RMSE, MAE, and MAPE). In contrast, models 
trained on the mixed subset, displayed a reduction in 
𝑄ா௫௧

ଶ  values, which ranges from 0.4 – 4.3% decrease 
when compared to their counterparts trained on the 
experimental subset. These findings suggest that the 
inclusion of predicted data adversely affected the 
external predictivity of the model.  
 
  A notable exception to this trend was the PLS 
algorithm, which demonstrated a lower 𝑄ா௫௧

ଶ  when the 
model was trained on an experimental subset as 
compared to its counterpart trained on the mixed subset. 
Additionally, models trained on the experimental subset 
exhibited more variation in 𝑄ா௫௧

ଶ  across different ML 
algorithms, unlike models trained on the mixed subset 
which exhibited relatively stable 𝑄ா௫௧

ଶ .  
 
  Figure 6 presents the 𝑟ଶ and 𝑅ଶ values obtained for the 
developed models, which represent the goodness-of-fit 
metric for the train and test set respectively, with results 
tabulated in Table S3. When 𝑟ଶ is significantly higher 
than 𝑅ଶ, there is good evidence to suggest that the model 
is overfitted. Overfitted models tend to capture the noise 

within the dataset rather than learning the underlying 
patterns of the dataset, leading to worse predictivity on 
unseen data. 
 
  It can be observed that models trained on a mixed 
subset exhibited more consistent gaps between 𝑟ଶ and 
𝑅ଶ, which were smaller in comparison to models trained 
on the experimental subset. This suggest that models 
trained on the experimental subset experienced a higher 
degree of overfitting, which is unsurprising considering 
the smaller training sample size combined with the high 
number of features present in the experimental subset. 
Unexpectedly, despite experiencing higher degrees of 
overfitting, models trained on the experimental subset 
still exhibited higher external predictivity (higher 𝑄ா௫௧

ଶ ).  
 
  A plausible explanation could be that predicted values 
introduced noise into the mixed subset, despite the same 
upper limit of threshold uncertainty (<25%) being used 
to filter out errors in LFL values. This led to lower 𝑄ா௫௧

ଶ  
values being obtained for models trained on a mixed 
subset. Additionally, the consistent yet lower 𝑄ா௫௧

ଶ  
values across mixed subset models could imply that the 
QSPR model is unable to produce predictions of higher 
quality than their training set. 
 
  Additionally, an important observation is that the PLS 
model trained on the experimental subset exhibited the 
largest gap between the two values, thus exhibiting 
significant overfitting. This likely accounts for the steep 
decrease in 𝑄ா௫௧

ଶ  observed.  This implies that despite the 
apparent quality of the experimental subset (less noise), 
it was outweighed by the effect of overfitting.

 

 
Figure 5: Bar chart of performance metrics across different machine learning algorithms for the mixed and experimental subset. 
 

 
Figure 6: Bar chart of 𝑟ଶ and 𝑅ଶ results across different machine learning algorithms for the mixed and experimental subset.
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3.4. Williams Plot for Applicable Models 
Lastly, the applicability domain (AD) of the developed 
models is defined as according to the methodology 
outlined in Section 2.9. As the LASSO algorithm can 
perform its own feature selection, the number of model 
variables, 𝑝, was taken to be equal to the number of non-
zero coefficients in the resulting regression equation. 
Conversely, PLS models utilize latent variables for 
regression, hence 𝑝 was defined to be equal to the 
number of latent variables and the descriptor matrix was 
similarly transformed prior to calculation of leverages 
using the hat matrix. Due to the differing number of 
samples within the mixed and experimental subsets, 
analysis of the Williams Plot was done by expressing the 
number of points as a percentage of the total respective 
subset. These findings are detailed in Table 4. 
Additionally, Figure 7 showcases the Williams Plots for 
LASSO and PLS models using both experimental and 
mixed subsets respectively. 
 
  Table 4 indicates that models trained on the 
experimental subset consistently showed higher 
percentages of training points that were predicted 
correctly (standardized residual < 3SD) but lower 
percentages of testing points that were predicted 
correctly, regardless of which ML algorithm was used.  
This suggests a more pronounced overfitting in models 
trained on the experimental subset, which corroborates 
with our previous findings from Section 3.3. 
 
  Further analysis also reveals that models trained on the 
experimental subset exhibited higher percentages of 
influential training points (ℎ ≥ ℎ∗) within the dataset 
(73.68% for LASSO, 5.26% for PLS) as compared to 
models trained on the mixed subset (22.67% for 
LASSO, 4.36% for PLS). These results suggest that the 
experimental subset was impacted by a higher degree of 
influential points as compared to the mixed subset. A 
possible explanation could be due to smaller training 
sample sizes, influential points were more prominent in 
the experimental subset as compared to the mixed 

subset, where the effect of individual influential points 
were averaged out by the remaining samples.  
 
  Similarly, a higher percentage of high leverage training 
points predicted correctly was observed for the models 
trained on the experimental subset. This could suggest 
that these models were prone to overfitting to influential 
data points which compromised their robustness. This is 
supported by our previous findings in Section 3.2, where 
models trained using the experimental subset 
demonstrated lower 𝑄௅ெை

ଶ  overall. 
 
  Interestingly, the LASSO model trained on an 
experimental subset resulted in a higher percentage of 
high leverage test points predicted correctly, likely 
contributing to the higher 𝑄ா௫௧ observed in Section 3.3, 
despite having lower percentages of testing points that 
were predicted correctly (which are inclusive of high 
leverage test points). A possible explanation could be 
due to the model overfitting to influential training 
points, consequently improving it’s predictivity for 
testing points far from the structural domain of the 
training set used. This finding cannot be extrapolated to 
the PLS models, as no compounds within the test set 
were identified as high leverage points for the model 
trained on the experimental subset.    
 
  Due to limitations of the methodology used to define 
the AD, ADs for kernel-based ML algorithms (RBF-
SVR and KPLS) were unable to be defined [19]. 
Additionally, the methodology applied resulted in a 
warning leverage greater than 1 (ℎ∗ of 2.01) for the 
Ridge model trained on an experimental subset. As 
leverage values are bounded by an upper limit of 1, this 
would suggest that the model be applicable to all known 
and unknown compounds, which is in direct conflict for 
the purposes of identifying an AD to begin with. Hence, 
it is recommended that future studies implement an 
alternative method to define their ADs to gain better 
understanding of the impact of predicted data on a 
model’s applicability. 

 
Table 4: Analysis of Williams Plots for LASSO and PLS models trained on a mixed and experimental subset. 

Model LASSO PLS 
Dataset Mixed Experimental Mixed Experimental 

Correctly Predicted Train Points (%) 98.01 98.87 98.23 99.25 
Correctly Predicted Test Points (%) 96.71 93.94 96.05 90.91 

High Leverage Train Points (%) 22.67 73.68 4.36 5.26 
High Leverage Test Points (%) 11.18 69.70 1.32 0.00 

High Leverage Train Predicted Correctly (%) 19.32 64.55 3.85 4.68 
High Leverage Test Predicted Correctly (%) 0.93 7.02 0.13 0.00 

Incorrectly Predicted Train Points (%) 0.81 0.00 1.70 0.75 
Incorrectly Predicted Test Points (%) 1.32 0.00 3.95 9.09 

 

 
Figure 7: Williams Plots for: (a) LASSO trained on mixed subset, (b) LASSO trained on experimental subset, (c) PLS trained on mixed subset and (d) 
PLS trained on experimental subset. 
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4. Conclusion 
This study investigated the impact of incorporating 
predicted values in the training set for developing ML-
QSPR models, specifically for predicting LFLs of pure 
compounds. Two LFL subsets were curated from the 
DIPPR 801 Project: one consisting of both predicted and 
experimental values (mixed subset) and the other 
consisting of only experimental values (experimental 
subset). An external test set was split off for each subset, 
which comprised off experimental values that did not 
participate in model development. This was done to 
assess whether models trained on the mixed subset went 
beyond replicating the effectiveness of past prediction 
methods used to obtain the predicted values to begin 
with. 
 
4.1. Summary of findings 
Our findings suggest that the inclusion of predicted data 
within the training set demonstrated several advantages, 
including improved feature selection performance, 
enhanced robustness, better protection against chance 
correlation and increased robustness against overfitting. 
However, these benefits were accompanied by a 
noticeable trade-off in the form of reduced predictivity 
on unseen data. 
 
  In light of these observations, the implications of this 
study could be significant for the field. Despite a large 
majority (88.77%) of the training set being composed of 
predicted values, the impact on the predictivity of the 
models was relatively modest, showing a decrease of 
only 0.4 to 4.3%. This suggest that the inclusion of a 
well-curated predicted data, which is critically evaluated 
at the source to ensure consistency and reliability, can 
be beneficial for models by expanding the training set 
size, albeit at the cost of slightly lower predictivity. 
While this approach may not be advisable for models 
intended for regulatory or safety purposes, where high 
predictivity is essential, it could prove useful in 
applications such as preliminary screening process 
where maximum predictivity is not the primary 
objective. 
 
4.2. Limitations 
The main weakness of our study was due to the feature 
selection procedure proposed. Our study's feature 
selection procedure, while comprehensive, was not 
entirely effective in identifying the optimal set of 
features for building the most efficient models. This 
limitation led to a degree of overfitting in all developed 
models. Overfitting is a critical concern as it can 
severely impact the model's predictivity, potentially 
being a major contributor to the observed decrease in 
predictivity when predicted values were included in the 
training set. The influence of overfitting, therefore, 
cannot be overlooked as it likely played a significant 
role in shaping the study's findings, particularly in terms 
of the modest reduction in predictivity. 
 
  Furthermore, the proposed methodology exhibited a 
notable over-reliance on the published uncertainty levels 
for predicted Lower Flammability Limits (LFLs) in the 

DIPPR database. This over-reliance stems from the fact 
that uncertainty levels are assigned based on the data 
informing the regression models rather than on the 
inherent uncertainties associated with the regression 
methods themselves. This distinction is crucial as it 
directly impacts the reliability of the predicted data.  
 
  Additionally, the prediction methods employed to 
obtain these LFL values vary significantly, ranging from 
group/atomic contribution models to empirical 
correlations. A major limitation arises from the lack of 
clarity regarding the proportion of predicted data 
derived from each of these methods, introducing a 
potential bias in the training set composition and, by 
extension, the model's performance. 
 
  Overall, this study sheds light on the nuanced role of 
predicted data in the development of ML-QSPR models, 
especially in sectors like the petrochemical industry 
where obtaining experimental data can be challenging. 
The findings advocate for a balanced approach in 
training set composition, emphasizing the need for 
future research to refine methods for quantifying and 
accommodating the uncertainties inherent in predicted 
data. Such advancements could lead to more effective 
and efficient predictive models across various chemical 
and process engineering applications. 
 
4.3. Future work 
In light of the findings and limitations of this study, a 
key area for future research would be the exploration of 
using identical test sets or introducing an additional 
validation set consisting of identical components. This 
approach would provide a more rigorous assessment of 
the model's performance and its generalizability. By 
employing identical test sets across different training 
subsets, the direct comparability of model performances 
can be enhanced, allowing for a clearer understanding of 
the impact of training set composition on model 
predictivity. This method would serve as a robust check 
against overfitting, ensuring that the model's predictive 
capabilities are not solely tailored to the specific 
characteristics of the training set. Such a strategy would 
not only bolster the reliability of ML-QSPR models but 
also provide a more comprehensive framework for 
evaluating the effectiveness of including predicted data 
in training sets. The outcomes of this future work could 
significantly contribute to the optimization of predictive 
modelling in fields where data availability and quality 
are critical considerations.  
 
 
  

603



10 
 

References 
[1] R. Rowley J, E. Bruce-Black J. PROPER 
APPLICATION OF FLAMMABILITY LIMIT DATA 
IN CONSEQUENCE STUDIES. SYMPOSIUM 
SERIES. 2012; (NO. 158): 
https://www.icheme.org/media/9189/paper58-hazards-
23.pdf.  

[2] R. Rowley J. Flammability Limits, Flash Points, 
and Their Consanguinity: Critical Analysis, 
Experimental Exploration, and Prediction . Doctor of 
Philosophy. Brigham Young University; 2010. 

[3] Vidal M, Rogers WJ, Holste JC, Mannan MS. A 
review of estimation methods for flash points and 
flammability limits. Process safety progress. 2004; 23 
(1): 47-55. 10.1002/prs.10004.  

[4] Gharagheizi F. Quantitative Structure−Property 
Relationship for Prediction of the Lower Flammability 
Limit of Pure Compounds. Energy & fuels. 2008; 22 
(5): 3037-3039. 10.1021/ef800375b.  

[5] Pan Y, Jiang J, Ding X, Wang R, Jiang J. Prediction 
of flammability characteristics of pure hydrocarbons 
from molecular structures. AIChE journal. 2010; 56 
(3): 690-701. 10.1002/aic.12007.  

[6] Bloxham JC, Redd ME, Giles NF, Knotts TA, 
Wilding WV. Proper Use of the DIPPR 801 Database 
for Creation of Models, Methods, and Processes. 
Journal of chemical and engineering data. 2021; 66 
(1): 3-10. 10.1021/acs.jced.0c00641.  

[7] Chen C, Lai C, Guo Y. A novel model for 
predicting lower flammability limits using Quantitative 
Structure Activity Relationship approach. Journal of 
loss prevention in the process industries. 2017; 49 240-
247. 10.1016/j.jlp.2017.07.007.  

[8] Xu P, Ji X, Li M, Lu W. Small data machine 
learning in materials science. npj computational 
materials. 2023; 9 (1): 42-15. 10.1038/s41524-023-
01000-z.  

[9] Rücker C, Rücker G, Meringer M. y-
Randomization and Its Variants in QSPR/QSAR. 
Journal of chemical information and modeling. 2007; 
47 (6): 2345-2357. 10.1021/ci700157b.  

[10] Zhao L, Wang W, Sedykh A, Zhu H. 
Experimental Errors in QSAR Modeling Sets: What 
We Can Do and What We Cannot Do. ACS Omega. 
2017; 2 (6): 2805-2812. 10.1021/acsomega.7b00274.  

[11] Wenlock MC, Carlsson LA, Ognichenko L, 
Hromov A, Kosinskaya A, Stelmakh S, et al. How 
Experimental Errors Influence Drug Metabolism and 
Pharmacokinetic QSAR/QSPR Models. Journal of 

chemical information and modeling. 2021; 55 (1): 125-
134. 10.1021/ci500535s.  

[12] Moriwaki H, Tian Y, Kawashita N, Takagi T. 
Mordred: a molecular descriptor calculator. Journal of 
Cheminformatics. 2018; 10 (1): 4. 10.1186/s13321-
018-0258-y.  

[13] Tropsha A. Best Practices for QSAR Model 
Development, Validation, and Exploitation. Molecular 
informatics. 2010; 29 (6-7): 476-488. 
10.1002/minf.201000061.  

[14] Roubehie Fissa M, Lahiouel Y, Khaouane L, 
Hanini S. QSPR estimation models of normal boiling 
point and relative liquid density of pure hydrocarbons 
using MLR and MLP-ANN methods. Journal of 
molecular graphics & modelling. 2019; 87 109-120. 
10.1016/j.jmgm.2018.11.013.  

[15] OECD. GUIDANCE DOCUMENT ON THE 
VALIDATION OF (QUANTITATIVE)STRUCTURE-
ACTIVITY 
RELATIONSHIPS [(Q)SAR] MODELS. Series on 
Testing and Assessment Organisation for Economic 
Co-operation and Development; 2007.  

[16] Gramatica P. Principles of QSAR models 
validation: internal and external. QSAR & 
combinatorial science. 2007; 26 (5): 694-701. 
10.1002/qsar.200610151.  

[17] Consonni V, Ballabio D, Todeschini R. Comments 
on the Definition of the Q 2 Parameter for QSAR 
Validation. Journal of Chemical Information and 
Modeling. 2009; 49 (7): 1669-1678. 
10.1021/ci900115y.  

[18] NETZEVA TI, WORTH AP, MYATT G, 
NIKOLOVA-JELIAZKOVA N, PATLEWICZ GY, 
PERKINS R, et al. Current status of methods for 
defining the applicability domain of (Quantitative) 
structure-activity relationships : The report and 
recommendations of ECVAM workshop 52. 
Alternatives to laboratory animals. 2005; 33 (2): 155-
173. 10.1177/026119290503300209.  

[19] Fechner N, Jahn A, Hinselmann G, Zell A. 
Estimation of the applicability domain of kernel-based 
machine learning models for virtual screening. Journal 
of Cheminformatics. 2010; 2 (1): 2. 10.1186/1758-
2946-2-2.  

604



Techno-economic Assessment of a Novel Hybrid PV-T and Heat Pump System for Household Heating 
 

Adnan Hakim and Kabishan Sivarasan 
Department of Chemical Engineering, Imperial College London, U.K. 

 
Abstract  
A techno-economic analysis is undertaken to assess a novel hybrid system that integrates photovoltaic-thermal (PV-T) 
collectors and a vapour compression heat pump for household heating applications. The proposed system uses a 
configuration such that the outlet PV-T water is the heat sink of an air source heat pump. This aims to replace the use of 
natural gas boilers for residential heating, which is a significant contributor to global greenhouse gas emissions. The paper 
investigates the payback time of this system across four locations: London (UK), Rome (Italy), Tokyo (Japan), and Los 
Angeles (USA). An in-house MATLAB code was used to conduct simulation studies, incorporating hourly wind speed, 
irradiance and ambient temperature profiles of each location, whilst varying the number and arrangement of collectors. 
Results indicate a payback time of 8.6 years in London, 3.4  years in Italy, 6.4 years in Tokyo and 7 years in Los Angeles, 
which is achieved through the annual cost savings of using this system as opposed to a gas boiler to fulfil the heating 
demands of an average household. Shorter payback times compared to existing literature is attributed to lower capital 
costs of the proposed system as well as higher annual cost savings as result of the recent rise in natural gas prices. 

 
 

Introduction 
The current global energy supply is marked by an 
increasing demand for power, dwindling fossil fuel 
resources, and increasing environmental issues 
associated with its use. Reliance on fossil fuels, which 
accounted for 82% of the global primary energy use in 
2022 [1], poses a threat to long-term energy security and 
contributed to 75% of total greenhouse gas emissions in 
the same year [2].  

Projections show that failure to curb greenhouse gas 
emissions will result in a global temperature increase of 
4.3°C by 2100 [3]. Disruption to ecosystems, increased 
frequency and intensity of extreme weather events, and 
food shortages are a few of the numerous consequences 
as a result of this increase. Growing concerns regarding 
the impact of fossil fuels has prompted an international 
imperative to transition towards renewable energy 
technologies, which offer a sustainable means to meet 
energy requirements. 

In this context, solar energy is inherently the most 
abundant and inexhaustible source of renewable energy 
to date. The Earth intercepts 1.8 × 10ଵଵ𝑀𝑊 from the 
sun, which is many orders of magnitude larger than the 
present rate of global energy consumption [4]. 
Historically, the primary obstacle to widespread 
adoption of solar power has been the large initial capital 
cost. However, the rise of gas prices accelerated by 
recent crises, such as the pandemic and Ukraine war, has 
provided developed nations with incentives to adopt 
alternatives [5]. 

Photovoltaic-Thermal (PV-T) collectors present a 
promising avenue for solar energy utilisation, by 
integrating solar Photovoltaic (PV) technology for 
electricity production with solar thermal technology for 
heat production. This can be combined with a vapour 
compression heat pump to fulfil household heating 
demand, whilst offsetting the required electricity 
consumption. 

This report aims to provide a holistic techno-
economic assessment of the proposed system across four 
locations: London (UK), Rome (Italy), Tokyo (Japan), 
and Los Angeles (USA). An in-house MATLAB code 
will be used to model its operation, using relevant 

weather data from each location. A payback time (PBT) 
analysis will be conducted based on the annual cost 
savings of using this system, as opposed to a natural gas 
boiler, to fulfil the heating demand of an average 
household.  

 
Background 
In recent years, PV collectors have emerged as a 
sustainable and promising technology for harnessing 
solar energy. It has witnessed widespread adoption in 
various sectors, including building integrated systems, 
desalination plants and solar home systems [6]. The 
global cumulative installed capacity of PV systems has 
increased from 100.9 GW at the end of 2012 to 400 GW 
by the end of 2017 [7]. This figure has since increased 
to over 1000 GW [8], indicating rapid growth in the use 
of PV systems. This growth can be attributed to the 
increasing efficiency of solar cells as a result of 
extensive research, government support in the form of 
financial incentives, and the increasing greenhouse gas 
emissions associated with the use of fossil fuels [9]. 
Literature suggest that this growth is greater in more 
economically developed countries, with the rationale 
that these governments are able to invest in more 
financial incentives. A study published in 2022 supports 
this, concluding that there is a statistically significant 
correlation between the production of PV energy per 
person in EU countries and the GDP per capita [10].  

Furthermore, developments in Spain’s regulatory 
framework have been analysed to result in PV facilities 
becoming a profitable investment for domestic 
consumers, even without the use of any government 
subsidies [11]. This is largely the result of consumers 
being given incentives to sell their excess produced 
electricity back to the electrical grid. This income stream 
allows for a greatly reduced payback time for the PV 
panels, making the investment much more attractive to 
private households. 

Although PV collectors have been widely used for 
solar energy utilisation, there are some challenges that 
limit its potential. Under higher ambient temperatures 
and  stronger solar radiation intensity, PV collectors 
experience a loss in electrical efficiency due to a rise in 
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temperature of the PV module, causing a high electrical 
resistance [12]. PV-T collectors aim to address some of 
these issues by removing heat from the PV module, 
which can subsequently be utilised, depending on the 
type of system it is coupled up with [13].  

PV modules and PV-T collectors have been 
compared in various locations, some even outside of the 
developed world. A study in Ghana conducted a 
comparative performance valuation of water-based PV-
T against conventional PV modules, both of which were 
made up of mono-crystalline Silicon PV technology 
[14]. The annual combined electrical and thermal energy 
output of the PV-T system was 1237.71 kWh/m2 , which 
was over 6 times that of the PV system at 194.79 
kWh/m2. However, when considering the electrical 
output alone, the PV system had an electrical energy 
yield which was 30% higher than the PV-T. 
Furthermore, the monthly average electrical efficiency 
values were 1.2-1.6% higher for the PV system. This is 
a result of Ghana’s wet season between April and 
October, characterised by lower solar irradiance levels 
and lower ambient temperatures, which both favour PV 
electrical performance. The study, however, did not 
carry out an economic analysis and emphasised the 
importance of investigation under different climatic 
conditions.  

According to the European Environment Agency, 
35% of energy-related EU emissions in 2021 was from 
the buildings sector [15]. Residential buildings make up 
a large percentage of the buildings sector, with UK 
households accounting for 26% of total building 
emissions in 2020 [16]. As global efforts intensify to 
combat increasing greenhouse gas emissions, the 
exploration of sustainable alternatives to the traditional 
natural gas boiler system for space heating is imperative.  

The use of PV panels in combination with an electric 
heating system has been explored as an alternative to 
traditional space and water heating. This hybrid system 
reduces the heat pump’s reliance on grid supplied 
power, subsequently lowering the carbon footprint. A 
study investigated the cost-effectiveness of four 
different low carbon technologies: air source heat 
pumps, ground source heat pumps, PV panels combined 
with an electric heating system and biomass boilers. It 
found that whilst a gas-based heating system remained 
cost-effective in all scenarios, the most viable mitigation 
technology was PV – resulting in a reduction of 0.015 
Mt CO2 at a cost of abatement of £160/tonne CO2 [17]. 
The success of combining PV panels with the heating 
system is what set the general direction for this paper, 
albeit using PV-T collectors instead. 

The distinguishing characteristic of PV-T collectors 
compared to PV, is their ability to extract thermal energy 
generated on the panel, as well as electrical energy. In 
water-type PV-T systems, this is done using water to 
flow over the PV module, extracting heat from it. It is 
reported that PV-T systems also have consistently 
higher electrical efficiency compared to PV systems in 
equivalent weather conditions. [18]. The thermal energy 
extracted is of particular interest, as systems have been 
designed to utilise this energy for domestic heating. 
Using the case study of a university building, Herrando 
et al found that using a cooling system combined with 

PV-T collectors would was able to cover 16.3% more of 
the electricity demand than when using conventional PV 
panels [19]. The system used an AbCH unit to provide 
heating and cooling from the thermal energy, which 
brought with it a considerably high capital cost. 

An alternative to this system would be to couple the 
PV-T collectors with a heat pump. These solar assisted 
heat pumps (SAHPs) have been found to offer higher 
performance values for heat and power provision 
compared to stand-alone heat pump systems [20], with 
a coefficient of performance (COP) of up to 5.5 for 
heating. Such systems have had techno-economic 
analyses conducted on them before. Obalanlege et al. 
found that, for a household in Belfast, the most 
economically viable system configuration was 12 PV-T 
modules with a total area of 16.3 m2 . The system was 
calculated to produce 2.4 MWh of electricity and 2.0 
MWh of hot water per year. It was found to be able to 
cover half of the electrical demand of the household and 
a third of the heating demand, at a cost of £11,550 with 
a payback time of 14 years [21]. A similar SAHP was 
installed in a test facility for a different study and field-
tested for a period of eight months [22]. This seven-
panel system was found to have an average coefficient 
of performance close to 4, depending on the mode the 
system was running in. The methodology involved the 
installation of a test facility consisted of a solar-assisted 
heat pump system, which was monitored using a 
dedicated data acquisition and control system.  

The significance of this paper lies within its 
objective to fill a gap that is present within the existing 
literature surrounding solar assisted heat pumps. 
Typically ,the outlet of a PV-T collector is connected to 
the evaporator of the heat pump system as a cold source 
[22]; it has almost exclusively been researched in 
European locations, as shown through this literature 
review. A novel system is proposed in which the outlet 
PV-T water is used as a heat sink at the condenser, 
absorbing the heat rejected by the working fluid. This 
paper aims to conduct a payback time analysis of this 
novel configuration, opening the door to further research 
in this area if proven viable. Locations outside of Europe 
in the developed world will also be explored,  
particularly in nations where natural gas is the main 
source of residential heating. 
 
Methods 
A hybrid system was proposed, with the aim of 
replacing the conventional natural gas boiler system 
used by the majority of households for space and water 
heating [23]. The proposed model connects a given 
number of PV-T collectors with an air source heat pump 
in one continuous system, as shown in Figure 1. The 
outlet water from the PV-T collectors, is fed directly into 
the condenser, to be heated further to a desired 
temperature (𝑇 ୣୱ୧୰ୣୢ) of 55°𝐶 [24] using a vapour 
compression cycle. 
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The mass flowrate and outlet temperature of the PV-

T collectors is taken as the heat sink (water) inlet 
conditions at the condenser. The components in the 
cycle include a single-stage rotary type compressor, 
condenser, expansion valve and an evaporator. The 
working fluid is R32, and the cold source is air at 7°C. 

The overall size of the heating system,𝑄ୱ୷ୱ, was 
selected to be 10𝑘𝑊, based on the recommended heat 
pump size for a three-bedroom household [25]. Based 
on this, the mass flowrate of the water entering the 
system, 𝑚̇୤୪,ୱ୷ୱ, is calculated: 

 

𝑚̇୤୪,ୱ୷ୱ =
𝑄ୱ୷ୱ

൫𝑇 ୣୱ୧୰ୣୢ − 𝑇୲ୟ୮൯
(1) 

 
where 𝑇୲ୟ୮ is the tap water temperature, set at 7°𝐶 [26]. 
This flowrate would be used to calculate the flowrate of 
water entering a singular PV-T collector, 𝑚̇୤୪,୧୬, based 
on the configuration of collectors used: 
 

𝑚୤୪,୧୬ =
𝑚̇୤୪,ୱ୷ୱ

𝑁୰୭୵ୱ
(2) 

 
where 𝑁୰୭୵ୱ is the number of rows in the collector 
configuration. Parallel configurations would have a 
value of 𝑁୰୭୵ୱ equal to the number of collectors, 𝑁ୡ.   
 
Verification 
An in-house MATLAB code was utilised to model the 
operation of PV-T collectors. The code was verified 
against the work of Han et al. [27], which studied the 
effect of 13 different spectral splitting fluids on the 
electrical efficiency of a collector. Figure 2 shows a 
close match between the electrical efficiencies 
determined experimentally and the those obtained via 
simulation of the present model, demonstrated by a root 
mean squared deviation of 0.79%. 
 

 
In order to verify that the developed code accurately 

predicts performance, it was used to make a comparison 
to the performance of a PV-T collector proposed by 
Herrando et al. [28], for which results are available in 
the literature. This was done by modifying the code to 
use the same geometric configuration as the collector in 
literature. A characteristic thermal efficiency curve was 
plotted using the present model and compared to 
literature as presented by Figure 3. A root man squared 
error value of 0.52% indicated minimal deviation, thus 
verifying the present model for use.  
 
PV-T Collectors 
The structure of the PV-T collector used, and the 
dimensions are shown in Figure 4 and Table 1 
respectively.  
 

 
Figure 4. Schematic of PV-T collector; a cover glass above the 

filter is not used. The filter selective liquid is water. The top glass of 
the filter is anti-reflective thin glass, and bottom glass of the filter is 
short glass. 
 
 

Figure 2. Electrical efficiency of the PV-T collector using 13 
different spectral splitting fluids, determined experimentally by 
Han et al. plotted against the values obtained using the present 
model.  

Figure 1. Schematic of the system combining the PV-T collectors 
with a vapour compression heat pump.  
 

Figure 3. Comparison between the characteristic thermal efficiency 
curve of a conventional PV-T collector with a box-type heat 
exchanger, as proposed by Herrando et al., and the curve predicted by 
the present model.  
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Table 1. Dimensions of the PV-T collector used.   

Property Value 
Aperture Length (𝑚) 1.2 

Aperture Width (𝑚) 0.6 

Filter channel size (𝑚) 0.01 

Thickness of air gap between filter and PV-T (𝑚) 0.01 

Thickness of glass on PV-T (𝑚) 0.004 

PV Absorptivity 0.93 
𝑐୮,୤୪ of fluid in filter (𝐽/𝑘𝑔/𝐾) 4180 

 
The energy balance of each layer was coded into the 

MATLAB script, such that they could be simultaneously 
solved to display each intermediary temperature. The 
balance for the top glass of the filter is given by: 

 
 𝐴ୡ ⋅ ℎୡ,୤୧୪୲ୣ୰ ⋅ ൫0.5 ⋅ 𝑇୤୪,୧୬ + 0.5 ⋅ 𝑇୤୪,୭୳୲ − 𝑇୤୪୥ଵ ൯ +  𝐴ୡ ⋅
𝐺ଶ,ୟୠୱ + 𝐴ୡ ⋅ ℎ୵୧୬ୢ ⋅ ൫𝑇୤୪୥ଵ − 𝑇ୟ൯ + 𝐴ୡ ⋅  ℎ୰,୤୪୥,ଶୱ୩୷ ⋅
൫𝑇ୱ୩୷ − 𝑇୤୪୥ଵ൯ = 0                                                      (3)              
 
where  𝑇୤୪,୧୬ and 𝑇୤୪,୭୳୲  are the filter coolant inlet outlet 
temperature respectively; ℎୡ,୤୧୪୲ୣ୰ and ℎ୵୧୬ୢ are the 
convective heat transfer coefficient in the filter channel 
and between the cover glass and ambient air 
respectively; 𝑇୤୪୥ଵ corresponds to the temperature of the 
top glass of the filter. 𝐺ଶ,ୟୠୱ is the solar radiation 
absorbed by the top glass of the filter, ℎ୰,୤୪୥ଵଶୱ୩୷  is 
radiation from filter top glass to sky, and 𝐴ୡ is the total 
area covered by the collector. 

The sky temperature is given as: 
 

𝑇ୱ୩୷ = 0.0552 ∗ 𝑇ୟ
ଵ.ହ (4) 

 
where 𝑇ୱ୩୷ is the sky temperature and 𝑇ୟ is the ambient 
temperature [27]. 

The energy balance for the selective liquid layer is 
given as: 

 
 𝐴ୡ ⋅ ℎୡ,୤୧୪୲ୣ୰ ⋅ ൫𝑇୤୪୥ଵ − 0.5 ∙ 𝑇୤୪,୧୬ − 0.5 ⋅ 𝑇୤୪,୭୳୲൯ + 𝐴ୡ ⋅
ℎୡ,୤୧୪୲ୣ୰ ⋅ ൫𝑇୤୪୥ଶ − 0.5 ⋅ 𝑇୤୪,୧୬ − 0.5 ⋅ 𝑇୤୪,୭୳୲൯ +  𝐴ୡ ⋅
𝐺ଷ,ୟୠୱ − 𝑚̇୤୪ ⋅ 𝑐୮,୤୪ ⋅ ൫𝑇୤୪,୭୳୲ − 𝑇୤୪,୧୬൯ = 0                    (5) 
 
where 𝑚̇୤୪ is the mass flowrate of the  selective liquid 
and 𝑐୮,୤୪ is the specific heat capacity of it; 𝐺ଷ,ୟୠୱ is the 
solar radiation absorbed by the liquid. 

Extending to the bottom glass of the filter, the energy 
balance introduces convective and radiative heat 
transfer coefficients, ℎୡ,୤୪ଶ୮୴ and  ℎ୰,୤୪ଶ୮୴,  between the 
filter and the PV glass: 
 
 𝐴ୡ ⋅ ℎୡ,୤୧୪୲ୣ୰ ⋅ (0.5 ⋅ 𝑇୤୪,୧୬ + 0.5 ⋅ 𝑇୤୪,୭୳୲ − 𝑇୤୪୥ଶ) + 𝐴ୡ ⋅
(ℎ୰,୤୪ଶ୮୴ + ℎୡ,୤୪ଶ୮୴) ⋅ (𝑇୥୮୴ − 𝑇୤୪୥ଶ) + 𝐴ୡ ⋅ 𝐺ସୟୠୱ = 0 (6)                                                                            
 
where 𝑇୤୪୥ଶis the filter bottom glass temperature, 𝑇୥୮୴ is 
PV glass temperature, 𝐺ସୟୠୱ is the solar radiation 
absorbed by the filter bottom glass. 

The energy balance for the PV glass cover is given 
by: 
 

 𝐴ୡ ⋅ (ℎ୰,୤୪ଶ୮୴ + ℎୡ,୤୪ଶ୮୴) ⋅ (𝑇୤୪୥ଶ − 𝑇୥୮୴) + 𝐴ୡ ⋅
ℎୡ,୮୴୥ଶ୮୴ ⋅ (𝑇୮୴ − 𝑇୥୮୴) + 𝐴ୡ ⋅ 𝐺ହୟୠୱ = 0                  (7) 
 
where 𝑇୮୴ is the PV temperature, 𝐺ହୟୠୱ is the solar 
radiation absorbed by the PV glass, and ℎୡ,୮୴୥ଶ୮୴ is the 
radiation from the PV glass to PV. Radiation from the 
PV glass to the sky is considered negligible due to the 
filter being closely covered on the PV.  

The energy balance of the PV layer introduces 
convective heat transfer coefficients between the PV 
glass and PV layer (ℎୡ,୮୴୥ଶ୮୴) and between the PV layer 
and ambient air (ℎୡ,୮୴ଶୟ୫ୠ), as well as the solar 
radiation absorbed by the PV layer, 𝐺୮୴ୟୠୱ: 
 
𝐴ୡ ⋅ ℎୡ,୮୴୥ଶ୮୴ ⋅ ൫𝑇୥୮୴ − 𝑇୮୴൯ + 𝐴ୡ ⋅ ℎୡ,୮୴ଶୟ୫ୠ ⋅
൫𝑇ୟ − 𝑇୮୴൯ + 𝐴ୡ ⋅ 𝐺୮୴ୟୠୱ = 0                                    (8) 
 
The electrical efficiency of the PV-T collector, ηୣ,୮୴୲, is 
dependent on cell temperature, 𝑇୮୴, and is given by: 
 
         ηୣ,୮୴୲ = 𝜂ୣ,ଶହ ∙ ൣ1 − 𝑇ୡ୭ୣ୤୤ ∙ (𝑇୮୴ − 298൯]         (9) 

 
where  𝜂ୣ,ଶହ is the module efficiency at 298𝐾 and 𝑇ୡ୭ୣ୤୤ 
is the temperature coefficient, both of which can be 
found in the manufacturer specification of the PV-T 
collector. 

In order to generate values of ηୣ,୮୴୲ and 𝑇୤୪,୭୳୲, which 
could then be used to calculate energy output of the 
collectors, three parameters dependent on location were 
required: solar irradiance (𝐺), wind speed (𝑉௪) and 𝑇ୟ. 
For each location, these values were sourced from the  
European Commission’s Photovoltaic Geographical 
Information System (PVGIS) [29], which contained the 
hourly logged data for these variables, extracted over the 
entire year of 2020. 2020 was chosen as it was the most 
recent year that complete data was accessible. Despite 
the end goal being a single value for annual energy 
output of the array of collectors, the variation of sunlight 
throughout the day meant that the code would initially 
have to be run at each hour to calculate the different 
thermal and electrical efficiencies through the day. 
Thus, an hourly profile of an average day’s conditions 
would be necessary. 

The profile consisted of the 12 hours where the sun 
is out, disregarding night hours. The conditions for each 
hour was calculated by averaging the value of every 
required variable at that given hour, in the year 2020. 
Due to variations in weather conditions between 
months, it was considered that carrying out this 
averaging calculation at the scale of each month at first 
would be more accurate, such that a final average could 
be obtained for the year by averaging the monthly 
profiles. 

To determine to what extent these two approaches of 
averaging would yield different values, they were both 
carried out for the location of London. In order to ensure 
accuracy and efficiency, both methods of data handling 
was done using a Python script that was developed over 
the course of the project. The script was fed with large 
dataset from PVGIS and calculated average ambient 
conditions either on a monthly basis, which were then 
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combined to get an annual profile, or directly over the 
entire year, as shown in Table 2.  
 
Table 2. Comparison between two methods of calculating daily 
irradiance profile in London 

Hour 
Direct Yearly 

Average G (W/m2) 
Monthly Annual 

Average G (W/m2) 
6 66.3 66.1 
7 134.8 134.4 
8 219.6 219.2 
9 302.2 301.8 

10 354.8 354.7 
11 392.3 392.1 
12 385.6 385.4 
13 370.6 370.3 
14 321.2 320.9 
15 257.6 257.4 
16 178.4 178.0 
17 107.3 107.0 

 
The root mean square deviation (RMSD) value 

calculated for solar irradiance, ambient temperature and 
wind speed were 0.19%, 0.08% and 0.18% 
respectively. Due to insignificant difference between the 
two methods, it was concluded that a direct yearly 
average profile is an accurate representation of the 
variations in weather conditions across the year.  
 
Simulations 
The average hourly irradiance, wind speed, and ambient 
temperature profiles were fed as input into the code and 
ran to obtain a PV-T outlet water temperature profile and 
an electrical efficiency profile across the day. This was 
repeated for the same conditions at different number of 
collectors based on a roof area of 75 𝑚ଶ [30]. Parallel 
and series combinations were also investigated for each 
number of collectors. This simulation was carried out for 
each location, with the respective daily profiles. 

 The electrical power output of the PV-T collectors 
at each hour, 𝑊̇୮୴୲,୦୰ , is calculated using:  

 
𝑊̇୮୴୲,୦୰ = ηୣ,୮୴୲ ∙ 𝐺 ∙ 𝐴ୡ (10) 

 
The hourly thermal power output of the PV-T collectors, 
𝑄̇୮୴୲,୦୰, is calculated using:  
 

𝑄̇୮୴୲,୦୰ = 𝑚̇୤୪ ∙ 𝑐୮,୤୪ ∙ ൫𝑇୤୪,୭୳୲ − 𝑇୤୪,୧୬൯ (11) 
 
Heat Pump 
The model assumes no heat losses in the condenser, thus 
a perfect temperature exchange between the working 
fluid and PV-T water. In addition, steady state operation 
of the heat pump components and isenthalpic expansion 
through the valve is assumed. Figure 4 shows a 
temperature-specific entropy obtained from running the 
code. 

The condenser is comprised of the desuperheating 
zone (Process 2-2a), condensing zone (Process 2a-2b), 
and subcooling zone (Process 2b-3). The evaporator is 
comprised of the evaporating zone (Process 4-4a) and 
superheating zone (Process 4a-1). Splitting the heat 
exchangers into these zones was necessary because the 

heat transfer coefficient are significantly affected by the 
type of flow.   

 

 
The working fluid enters the compressor at 

temperature, 𝑇ଵ , and specific enthalpy, ℎଵ. It then 
undergoes compression, represented by Process 1-2, 
resulting in a temperature increase to 𝑇ଶ and a 
compressor outlet specific enthalpy of ℎଶ, which is 
given by equation 9:  

 

ℎଶ =
ℎଶ,୧ୢୣୟ୪ − ℎଵ

𝜂௜ୱ,ୣ୤୤
(12) 

 
where ℎଶ,୧ୢୣୟ୪ is the specific enthalpy at the outlet for a 
perfectly isentropic compression and 𝜂୧ୱ,ୣ୤୤ is the 
isentropic efficiency. 

After undergoing compression, the working fluid 
enters the condenser as a vapour at a higher temperature 
than the heat sink. As a result of the temperature 
difference between the working fluid and heat sink in 
the condenser, heat is transferred to the heat sink, via a 
heat exchanger in the condenser (process 2-3). The 
working fluid is condensed and subcooled (process 2b-
3) to temperature , 𝑇ଷ, by a degree of subcooling, 𝑇ୱୡ:  

 
𝑇ୱୡ = 𝑇ଶୠ − 𝑇ଷ (13) 

 
Subcooling is necessary to ensure only a single-

phase liquid enters the expansion valve. This prevents 
the unwanted  phenomena, such as flash gas, in the valve 
due to the presence of vapour [31]. 

The heat transfer rate to the heat sink, 𝑄୭୳୲̇  , is given 
by:   
 

𝑄̇୭୳୲ =  𝑚̇୦ୱ ∙ 𝑐୮,୦ୱ ∙ ൫𝑇୦ୱ,୭୳୲ − 𝑇୦ୱ,୧୬൯ (14) 
 

where 𝑚̇୦ୱ is the mass flowrate of the heat sink, 𝑐୮,୦ୱ is 
the specific heat capacity of the heat sink at the outlet 
conditions and 𝑇୦ୱ,୭୳୲ − 𝑇୦ୱ,୧୬ is the temperature 
increase of the heat sink. This is equal to the enthalpy 
reduction of the working fluid, thus the mass flowrate of 
the working fluid, 𝑚̇୵୤, can be calculated using: 
 

𝑚̇୵୤ =
𝑄̇୭୳୲

ℎଶ − ℎଷ
(15) 

Figure 4. Temperature-specific entropy diagram for the heat pump 
cycle.  
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where ℎଶ − ℎଷ is the enthalpy reduction as a result of the 
process 2-3.  

The condensed working fluid is subsequently passed 
through an expansion valve, which is assumed to be 
isenthalpic (process 3-4):  

 
ℎଷ = ℎସ (16) 

 
As a result of the expansion, the temperature of working 
fluid entering the evaporator reduces to 𝑇ସ.  𝑇ସ is lower 
than the temperature of the cold source, hence the 
working fluid absorbs heat from the cold source (process 
4-1). Consequently, the working fluid evaporates and is 
superheated (process 4a-1) by a degree of superheating, 
𝑇ୱ୦:  
 

𝑇ୱ୦ = 𝑇ଵ − 𝑇ସ (17) 
 

The working fluid is superheated to ensure it is a single-
phase vapour when it enters the compressor, which 
would be subject to mechanical damage if liquid were to 
enter it [32].   

The rate at which heat is added to the working 
fluid, 𝑄௔ௗௗ  , can be calculated using: 

 
𝑄̇ୟୢୢ =  𝑚̇୵୤ ∙ (ℎଵ − ℎସ) (18) 

 
where ℎଵ − ℎସ is the enthalpy increase of the working 
fluid. This is equivalent to the rate at which heat is 
rejected from the cold source, given by: 
 

𝑄̇ୟୢୢ = 𝑚̇ୡୱ ∙ 𝑐୮,ୡୱ ∙ ൫𝑇ୡୱ,୧୬ − 𝑇ୡୱ,୭୳୲൯ (19) 
 

where 𝑚̇ୡୱ is the mass flowrate of the cold source, 𝑐୮,ୡୱ 
is the specific heat capacity at the cold source outlet 
conditions and 𝑇ୡୱ,୧୬ − 𝑇ୡୱ,୭୳୲ is the temperature 
decrease of the cold source stream.  

For the purposes of this investigation, there were 
three main parameters that were calculated and collected 
using the code. The first variable is the required 
electricity input for the compressor, 𝑊ୡ̇ , which given by: 

 
Ẇୡ = 𝑚̇୵୤ ∙ (ℎଶ − ℎଵ) (20) 

 
The second variable was 𝑄̇୭୳୲, which satisfied the 
following energy balance: 
 

𝑄̇୭୳୲ = 𝑄̇ୟୢୢ + 𝑊̇ୡ (21) 
 

Using the first two variables, the coefficient of 
performance of the heat pump, 𝐶𝑂𝑃, was able to be 
calculated. This is a ratio of the heat output at the 
condenser to the required electricity input in order to run 
the compressor, given by:  
 

𝐶𝑂𝑃 =  
Q̇୭୳୲

𝑊̇ୡ
(22) 

 
 
 

Payback Time Analysis 
The proposed system is based on the operation of PV-T 
collectors for 12 hours per day, from 6: 00 𝑎. 𝑚 to 
6: 00 𝑝. 𝑚 in the local time zone of a given location. 
This duration was selected since solar irradiance levels 
and ambient temperatures were found to be the greatest 
in this period. The annual electricity generated by the 
PV-T system, on this basis, is given by: 
 

𝑊୮୴୲,୷୰ = 365 ෍ 𝑊̇୮୴୲,୦୰

଺௣௠

଺௔௠

(23) 

 
The annual thermal energy generated by the PV-T 
collectors can be calculated using: 
 

𝑄୮୴୲,୷୰ = 365 ෍ 𝑄̇୮୴୲,୦୰

଺௣௠

଺௔௠

(24) 

 
The PV-T collectors partially cover the total annual 
household heating demand (𝑄ୡ୭୴). The difference 
between these two values is the annual heating required 
by the pump, 𝑄୮୳୫୮,୷୰ : 
 

𝑄୮୳୫୮,୷୰ = 𝑄ୡ୭୴ − 𝑄୮୴୲,୷୰ (25) 
 
The average number of hours the heat pump must run 
per day to fulfil the heating required, 𝑁୦୰ , is given by:  
 

𝑁୦୰ =
𝑄୮୳୫୮,୷୰

𝑄̇୭୳୲,ୟ୴୥
∙ 365 (26) 

 
where 𝑄̇୭୳୲,ୟ୴୥ is the heat transfer rate to the heat sink, 
averaged across the day. Therefore, the annual heat 
pump electricity requirement, 𝑊ୡ,୷୰, can be calculated:  
 

𝑊ୡ,୷୰, = 𝑊̇ୡ ∙ 𝑁୦୰ ∙ 365 (27) 
 

Depending on the number and configuration of PV-T 
collectors in the system, the heat pump electricity 
requirement is either partially or totally accounted for by 
the electricity generated by the collectors. If it is 
partially covered, the remaining electricity is bought 
from the grid at a price (𝑐ୣ); if it is totally covered, the 
extra electricity, 𝑊୥୰୧ୢ, is sold back to the grid at a feed-
in tariff (𝐹𝐼𝑇) price. 

The total capital cost of the system, 𝐶୭, sums the cost 
of PV-T collectors and the heat pump: 
 

𝐶଴ = 𝑐୮୴୲ ∙ 𝑁ୡ + 𝑐୮୳୫୮,ୟ୴୥ (28) 
 
where 𝑐୮୴୲ is the cost per PV-T collector, valued at 
£330 [33] and 𝑁ୡ is the number of collectors. The heat 
pump model is used to calculate the cost of the heat 
pump based on hourly conditions and averaged across 
the day to get  𝑐୮୳୫୮,ୟ୴୥.  

The annual cost savings, 𝐶ୱ, is calculated by 
considering the natural gas and electricity savings as a 
result of using this system as opposed to a natural gas 
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boiler to cover the average annual heating demand, 
running costs and any electricity sold back to the grid: 
 
𝐶ୱ = 𝑊ୡ୭୴ ∙ 𝑐ୣ +

𝑄ୡ୭୴

𝜂ୠ୭୧୪
𝑐୬୥ + 𝐸୥୰୧ୢ ∙ 𝐹𝐼𝑇 + 𝑊ୡ,୷୰ ∙ 𝑐ୣ      (29) 

 
where 𝑊ୡ୭୴ is the annual electricity covered by the PV--
T collectors capped at the annual heat pump electricity 
requirement, 𝑊ୡ,୷୰. The cost of natural gas  corresponds 
to 𝑐୬୥ and 𝜂ୠ୭୧୪ is the boiler efficiency set at 0.9 [16]. 
Table 3 shows the relevant cost of fuels and heating 
demand at each location investigated: 

 
Table 3. Average annual household heating demand, cost of natural gas, 
cost of electricity, feed-in tariff price, fuel inflation rate and discount rates 
across London, Rome, Tokyo and Los Angeles. [34 - 48] 

Location Qcov 
(kWh/yr) 

Cng 
(£/kWh) 

Ce 
(£/kWh) 

FIT 
(£/kWh) 

IF 
(%) 

d 
(%) 

London 11,500 0.0742 0.2862 0.064 6.9 3.5 
Rome 16,000 0.18 0.33 0.087 15.5 4.9 
Tokyo 10,800 0.1 0.16 0.043 3.21 0.9 
LA 20,000 0.048 0.228 0.15 3.2 5.5 

 
The payback time (𝑃𝐵𝑇) of the whole system is 

defined as the period of time required to recover the total 
capital cost of the system. It is calculated using [15]: 

 

𝑃𝐵𝑇 =  
ln ൤𝐶଴ ∙ (𝑖୊ − 𝑑)

𝐶ୗ
+ 1൨

𝑙𝑛 ቂ1 + 𝑖୊
1 + 𝑑 ቃ

(30) 

 
where 𝑖୊ is the fuel inflation rate and 𝑑 is the discount 
rate; both values are shown in Table 3  at each location. 
 
Results and Discussion 
Simulations were run with configurations of PV-T 
collectors in series arrangements, and in parallel. Figure 
5 shows that a parallel arrangement of 10 collectors 
yields an electrical efficiency of approximately 0.173 
during midday. 10 collectors compounded into two rows 
of five collectors in series each is in the realm of being 
5% more efficient. Plots at different locations exhibited 
the same pattern, thus rows of collectors connected in 
series was the configuration selected at all locations. 

This is the consequence of the flowrate of water 
going through the collector in a parallel arrangement 
being significantly lower since the overall mass flowrate 
is split between each parallel collector. When arranged 
in series, the PV-T collectors share the same flow of 
water within that row, resulting in  a larger flowrate 
cooling each collector. Electrical efficiency increases 

with a larger cooling effect and therefore a series 
arrangement is selected. 

 
Figure 5. Electrical efficiency plot of different configurations of PV-
T collectors across the day in Rome. Configurations are given in the 
form: number of rows x number of collectors in series per row. 

Figure 5 also shows a dip in electrical efficiency 
during the midday. Higher levels of solar irradiance 
during the day increases the temperature of the PV cell, 
consequently decreasing its electrical efficiency. 
However, a drop a significant drop in efficiency is 
experienced towards the beginning and end of this 12-
hour period. This can be attributed to the optical losses 
during these times being proportionately higher than 
during the middle of the day.  

To generate results, the code was run many times for 
each location, with multiple arrangements of PV-T 
collectors connected to the heat pump. For each 
configuration, the key performance indicators were 
noted to be the 𝑃𝐵𝑇 and 𝐶ୱ. Table 4 shows the results of 
the 𝑃𝐵𝑇 analysis for two arrangements of PV-T 
collectors connected to the heat pump.  
 

 
Figure 6. Average daily irradiance profile across all four locations. 
 

 
 
Table 4. Comparison of two different arrangements of PV-T collectors connected to heat pump for each location. 

Location Collector Configuration (number of rows x number of collectors in series 
per row) 

𝑪𝒐𝑷 𝑪𝒐 (£) 𝑪𝒔  (£) 𝑷𝑩𝑻 (𝒚𝒆𝒂𝒓𝒔) 

London 3 × 4 3.9 8,500 890 8.6 
2 × 40 3.8 31,000 1,700 15 

Rome 3 × 10 3.6 14,000 3,900 3.4 
2 × 5 3.8 7,700 3,200 2.3 

Tokyo 3 × 4 3.8 8,400 1,300 6.4 
2 × 10 3.8 11,000 1,400 7.6 

Los Angeles 2 × 10 3.7 11,000 1,800 7.0 
2 × 3 3.8 6,400 640 12 
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In London, the number of collectors tested in the 
model ranged from 6 to 80. Relative to their initial 
investment, every arrangement brings relatively small 
annual cost savings, hence resulting in payback times of 
up to 15 years. The arrangement of 3 rows of 4 collectors 
has the lowest payback time of 8.6 years, being the most 
viable option, but still not preferable when compared to 
the results from other locations. This can be attributed 
to the relatively lower solar irradiance levels compared 
to other locations, as shown in Figure 6, as well as lower 
ambient temperatures.  

In Rome, the number of collectors ranged from 6 to 
30. Every arrangement had a shorter 𝑃𝐵𝑇 and better 
returns than their equivalents in other locations, with 
considerably higher annual cost savings. The 
arrangement of 3 rows of 10 has the highest returns over 
their lifetime, with a short payback time of only 3.4 
years. The reason all options seem viable in Rome is not 
solely because of the hotter weather conditions in this 
Mediterranean city. Italy also has much higher natural 
gas prices [23] than similar western nations, which 
makes the running costs of gas boilers uniquely high. 
Thus, the PV-T and heat pump system that substitutes 
the gas boiler becomes considerably more economically 
viable, as running costs are much reduced. 

In Tokyo, a smaller number of collectors were 
tested, from 6 to 20 collectors. Each arrangement had a 
relatively short payback time, ranging from 5.6 to 7.6 
years. The arrangements of 3 rows of 4 and 2 rows of 10 
panels had almost an equal annual cost savings, despite 
the latter having a longer payback time. 

Similar to Tokyo, the number of collectors were 
varied between 6 and 20 for Los Angeles. However, in 
contrast, increasing the number of collectors yielded a 
lower payback time, despite higher capital costs. In 
contrast, Tokyo had lower payback times for smaller 
number of collectors. This can be attributed to the fact 
that the cost of electricity is 30% higher in LA than 
Tokyo.  Therefore, arrangements whereby the electricity 
requirement of the heat pump was covered in full by the 
collectors was more favourable in LA.  

However, the payback times of the system in LA was 
generally higher than that of Rome and Tokyo, despite 
having the most favourable weather conditions, as 
shown in Figure 6. This can be attributed to the fact that 
the natural gas prices in the USA are significantly lower 
than those in Europe or Japan. As such, any system 
aiming to replace gas boilers would be less 
economically viable, since the annual cost savings are 
not as large. It is possible that future government 
incentives may be put in place to induce a societal shift 
away from natural gas, such as placing a tax on its use 
or increasing subsidies on heat pump and solar 
technology, but at present no policies were found to 
have been enacted that would have a significant effect. 

The novel hybrid system investigated has 
demonstrated potential for further research, with 
payback times broadly shorter than those found in 
existing literature. A paper reported a payback time of a 
PV-T/ground dual source heat pump as low as 5 years 
in Northern Italy [49], which agrees with the payback 
time calculated in Rome. Literature of similar systems 

in the UK suggest a significantly higher payback times 
of up to 14 years [21].  

The reason behind a lower payback time in this paper 
is twofold. Firstly, the capital costs used by existing 
literature is significantly higher. Lazzarin et al. used an 
investment cost of £11,550 for a 12-panel system in the 
UK [49], which is 35% higher than a similar size system 
in London proposed by this paper. This difference is 
mainly due to installation costs that weren’t included 
during payback time analysis as well as a lower cost per 
PV-T collector used by this system. Secondly, due to the 
recent rise in natural gas prices, the annual cost savings 
calculated were higher than that in literature, further 
reducing 𝑃𝐵𝑇. Retrospective calculations using the 
same capital cost and natural gas price increased the 
payback time of the 12-collector system in London from 
8.6 years to 12 years. Despite a 40% increase in 𝑃𝐵𝑇, 
the proposed system still outperforms similar systems in 
literature.  
 
Conclusion 

This paper has delivered on the aims of this project 
to carry out a techno-economic analysis on various 
proposed configurations on a PV-T and heat pump 
system, a sustainable alternative to gas boilers. For each 
chosen location, data on ambient conditions were 
extracted to create average daily profiles, which were 
fed into MATLAB models that were validated against 
existing models in literature. The outcome of this 
process are promising results for the system in Rome 
and Tokyo, delivering low payback times and high 
yearly benefits across their lifetime. In Rome, the 
system installed with 3 rows of 10 was calculated to only 
have a 3.4-year PBT, with the system in Tokyo (3 rows 
of 4) giving a PBT of 6.4 years. 

In the other locations evaluated, the results were less 
promising. Payback times for Los Angeles and London, 
were longer, mainly due to lower natural gas prices in 
the United States and poor solar irradiance in London. 
Other locations may be considered in their stead, for 
further research. 
 
Outlook 

As part of continued investigation in future, the 
viable configurations should be further tested in two 
different models: one with the PV-T collectors 
connected to the evaporator and one with them 
connected to the condenser. This will allow for a 
comparison of the promising results of payback time 
found here, connected to the condenser, with the results 
of the more common variation, to observe which system 
would perform better when all else is held equal. 

The heating system could also be reconfigured, with 
the heat pump cycle reversed, for cooling applications. 
This would allow for a use case in hotter locations with 
stronger sunlight, such as in the Middle East. 
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Abstract: In the evolving field of genetic engineering, plasmid DNA (pDNA) has emerged as a frontier of innovation and 
therapeutic potential. The surge in demand for pDNA was catalysed by the development of DNA vaccines against SARS-
CoV-2 and has since exacerbated a need to design a robust supply chain network to offer pharmaceutical-grade pDNA 
accessibility globally. This paper first reviews the overarching challenges hindering the performance of the current supply 
chain. Then, it proposes a feasible solution to address the disparity between the pDNA supply and demand by modelling 
the supply chain using actual industry data. Two Mixed-Integer Linear Programming (MILP) optimisation models were 
developed on Python and deployed using Pyomo to minimise total costs and total time in the supply chain. Results from 
candidate supply chains propose that establishing a medium-scale manufacturing site offers the optimal supply chain 
network to cater for different demand scales. Moreover, demand scales ranging from 1,500 doses to 750,000 doses of 
pDNA were evaluated to assess the model's resilience. Finally, suggestions on future areas were proposed to relieve the 
supply chain bottleneck and promote the global applications of advanced therapy medicinal products (ATMPs).  
Keywords: plasmid DNA, cost-benefit analysis, supply chain, MILP, optimization 

1. Introduction: 
Plasmid DNA (pDNA) is a small, circular, double-
stranded DNA molecule. It naturally exists as an 
extrachromosomal DNA capable of autonomous 
replication of the host’s chromosome via a segment of 
the plasmid called the replicon [1].  

pDNA is an essential instrument for genetic 
manipulation and therapies due to its distinctive feature 
of acting as a vector in molecular cloning. It is a 
fundamental starting material in developing DNA 
vaccines, recombinant antibody therapies and cell 
therapies. [2]. Nevertheless, the success of developing 
the DNA vaccines against SARS-CoV-2 [3] has 
accelerated the ATMPs industry.  

The increase in usage in novel ATMPs 
represents a paradigm shift in treating diseases and 
offering personalised and highly effective solutions to 
patients in modern days. Thus, it underpins the 
significance of biotechnological innovation and 
therapeutic potential in our current landscape. The 
increased usage of novel ATMPs represents a paradigm 
shift in treating diseases and offering personalised and 
highly effective solutions to patients in modern days. 
Thus, it underpins the significance of biotechnological 
innovation and therapeutic potential in our current 
landscape.  

Our study focuses on a keystone development 
in the field of ATMPs – pDNA, the molecule that has 
emerged to be at the frontier of genetic engineering. 
Hence, the need for large-scale production of Good 
Manufacturing Practice (GMP) grade materials for 
pDNA has never been greater. Marked by significant 
advancements and expanding applications in 
biotechnology and medicine, the growth trajectory of 
pDNA is expected to increase exponentially as it 
continues to shape the future of genetic research and 
therapeutic development. Such growth can be further 
demonstrated by the pDNA manufacturing market size 
being valued at USD 540 billion in 2023 [4]. This 
reflects pDNA’s pivotal position in the field of genetic 
engineering as research continues to unravel new 
applications and to improve existing methodologies 
with an overall industry CAGR of 21.7% from 2022 - 
2030. [4] 

 

 
Despite pDNA’s promising growth prospects, 

the current supply chain is constantly battling through 
backlogs and bottlenecks. The pDNA supply chain is 
very intricate and complex, both intrinsically and 
extrinsically. This is where our study comes in place: to 
delve into the substantial challenges by analysing the 
supply chain structure, as well as to fill in the gap in the 
research landscape by developing a MILP model to 
assess the robustness of the pDNA supply chain.  

This was done by further dissecting node by 
node to ensure that any of our candidate supply chains 
is comprise of one manufacturing site, one airport, one 
storage unit, and one demand zone coupled with two 
modes of transportation - air and truck.  

Firstly, we begin by synthesising key insights 
from literature reviews. Secondly, two MILP 
formulations were developed to enable comparisons to 
be made between candidate pDNA supply chains. 
Finally, a cost-benefit analysis on the average costs per 
dose of pDNA and facility utilisation rates was 
conducted. Findings were evaluated and compared 
across candidate supply chains.  

Our study focuses on developing an 
optimisation-based mathematical model to address the 
prevailing challenges in the pDNA industry. As such, 
mathematical formulations and constraints are 
employed by optimisation algorithms to identify the best 
candidate supply chain. It also aids the decision-making 
process to design an optimal supply chain network to 
minimise costs and maximise capacity to meet global 
demand.  

2. Background: 
2.1 Overview  

The growing prospects of the applications of ATMPs in 
the field of genetic engineering has generated a surge in 
demand for genetic therapies. This calls for a need to 
develop a robust supply chain framework. Previous 
works by D Ibrahim on the supply chain optimization 
for viral vectors and RNA vaccines [5] proposes that the 
configuration of any given ATMPs supply chain should 
include manufacturing plants, fill and finish plants, 
quality control sites, storage warehouses and a selection 
of routes and transportation regimes.  
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Furthermore, literature suggests that supply 
chain designs, capacity and investment optimisation 
models should focus on the long-term decision by 
selecting strategic locations of the plants to offer global 
reach [6]. Given the size and intricacies of the 
optimisation problems, the adoption of computational 
tools and modelling framework have been highly 
effective in the supply chain optimisation field. 
Combining a MILP optimisation model with 
computational tools in the pharmaceutical supply chain 
optimisation space yields multiple advantages [7]. 
Firstly, feasible candidate supply chain structures can be 
offered [8]. Such structures are proposed after 
investigating the desired direction (either minimising or 
maximising) of the Key Performance Indicators (KPIs). 
Secondly, it allows for better maintenance across 
therapy quality and reduces inherent human errors.  

 
2.2 Challenges in pDNA supply chain 

The post COVID-19 landscape is currently battling 
through a pDNA supply chain bottleneck as the industry 
calls for more and more pharmaceutical-grade pDNA. 
Challenges remain unsolved and are derived from I. 
scaling-up pDNA manufacturing capacity and the 
pDNA supply chain to meet the global demand [9] II. 
developing robust supply chains that are capable of 
handling pDNA products under cold chain logistics [10] 
III. Producing clinical grade pDNA that adheres to 
Current Good Manufacturing Practices (cGMP) [11] 
and other regulatory protocols such as the U.S. Food and 
Drug during fermentation Administration (FDA), which 
can be stringent and vary across regions. IV. High costs 
associated with expanding and operating facilities for 
manufacturing and storage, which limits the overall 
capacity of pDNA being produced.  All of these present 
a challenging landscape that may hinder progress in the 
rapidly advancing field of cell and gene therapy. 
 

A major challenge in pDNA industry revolves 
around an unprecedented surge in demand, largely 
attributable to the significant and consistent growth 
experienced by the cell and gene therapy sector[9]. This 
upswing is intricately linked to the critical role of 
plasmids in viral vector production. The industry 
currently grapples with bottlenecks, as the substantial 
growth in the gene therapy field was not entirely 
foreseeable, resulting in a backlog in plasmid production 
and prolonged waiting lists. The unforeseen urgency for 
plasmids to be readily available on demand has led to 
challenges such as production backlogs and extended 
waiting times. The foremost concern is the potential 
inability to meet industry demands promptly, potentially 
impeding research and development pipelines globally. 
This delay could adversely impact market expectations 
and, more critically, disappoint patients awaiting 
solutions tailored to their specific needs. Despite recent 
investments in new facilities and capacity by some 
players, the gap between the escalating need for high-
quality plasmids and the current supply capacity remains 
pronounced. [9] Reports of delays from suppliers 
underscore the severity of the issue, emphasising the 
urgent need for an alignment between the demand for 
commercial-quality plasmids and the industry's 

production capabilities. This discrepancy presents a 
critical challenge that may hinder progress in the rapidly 
advancing field of cell and gene therapy.  

 
2.3 In-vivo and ex-vivo  

Applications of pDNA could be categorised by in-vivo 
or ex-vivo therapies. In-vivo is a non-patient specific 
mechanism which refers to the direct introduction of 
pDNA into the body. pDNA will enter cells and exert its 
effects, commonly found in DNA vaccines. [12] 

Ex-vivo is a patient specific mechanism which 
removes cells from the body. Cells are then treated with 
pDNA in a laboratory setting, and then reintroduced into 
the body. This method is often used in gene therapies 
where specific cells (like T-cells) are modified outside 
the body before being returned to the patient. [13] 

 
2.4 pDNA manufacturing  

pDNA manufacturing is the most time-consuming and 
expensive step in the pDNA supply chain.  Besides that, 
it also involves several sophisticated biotechnological 
processes, which includes fermentation, cell harvesting, 
and purification. Each aforementioned step requires 
meticulous quality control and adherence to cleanroom 
standards. [14].  

The primary upstream manufacturing starts 
with an E. coli culture medium. It first undergoes a 
single batch fermentation in a large stainless-steel 
bioreactor or single-use fermenters to scale-up [15]Next, 
the primary downstream purification begins with 
harvesting of the cells, lysis, and clarification. 
Purification can be very challenging as most of the 
critical impurities (RNA, genomic DNA, endotoxins) 
are negatively charged and are also similar in size as 
circular pDNA, making it difficult to separate [16].   

Bulk production of pDNA is challenging, as 
this requires continuous monitoring of the important 
production parameters including agitation, pH, 
temperature, dissolved carbon dioxide, pressure, and 
foam formulation. A study by O. Ruiz, Miladys, Jorge, 
M. Pupo, and Eduardo, shows that, the average amount 
of pDNA recovered from 1 kilogram of wet biomass 
ranges from 0.5 to 1.0 grams final product [17]. 
Therefore, there is a substantial manufacturing 
challenge that causes production backlogs and 
prolonged waitlists for pDNA in the market.  

 
2.5 Quality control (QC)  

Ensuring the quality control of pDNA is essential to 
guarantee the identity, purity, and efficacy of the product. 
This necessitates rigorous compliance with cGMP 
regulations [18].  

The quantification of yield serves as a 
foundational step in assessing the efficiency of the 
pDNA extraction and purification process. The 
concentration of DNA is typically determined using 
agarose gel electrophoresis, which detects the presence 
of other substances in the DNA. The process utilises a 
spectrophotometer, which measures absorbance at 
where DNA absorbs, 260 nm [19].  Primarily in labs, the 
A260/A280 ratio is used to assess the purity of the 
molecule. A ratio nearing 1.8 signifies purity; however, 
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a ratio of 1.6 or lower suggests the presence of protein, 
phenol, or other contaminants, which exhibit an 
absorbance at 280 nm [19].  

Endotoxin detection is another crucial part of 
pDNA quality control. It can significantly reduce 
transfection efficiencies, influencing the uptake of 
pDNA during in-vivo therapies; but when in 
bloodstream, lead to hypotension and respiratory failure 
[20]. However, it is also non-detectable on agarose gels 
and by optical density [21] An extra test of using LAL 
(Limulus amebocyte lysate) is done to detect the 
presence of endotoxin. If present, LAL will coagulate 
[22]. 

As it is an important aspect of manufacturing, 
it is therefore necessary to address the supply chain 
problem to relief the sector from the upsurge of the 
pDNA demand in the post COVID-19 horizon, to 
increase pDNA production capacity without 
compromising on quality and costs.  

 
2.6 Storage  

Two types of storage units are widely used in the genetic 
therapy industry. This includes small scale regional 
stores and large-scale warehouses. Small-scale regional 
stores are typically compact facilities strategically 
located in proximity to research institutions, clinics, and 
biotechnology companies. These storage units are 
characterised by their limited size, making them suitable 
for short-term storage and rapid access to genetic 
materials. Large-scale warehouses are extensive storage 
facilities designed to accommodate vast quantities of 
genetic materials for long-term preservation. These 
facilities are essential for biobanks, gene therapy 
manufacturers, and institutions with extensive genetic 
material collections. 

Short-term storage usually refers to a 
maximum period of 18 days at room temperature. [23] 
This time frame is strategically designated to 
accommodate flexibility in the transportation process, 
providing a buffer period during which logistical 
adjustments and organisational considerations can be 
addressed.  

Long-term storage of pDNA is done in TE 
(10mM Tris-HCl, 1mM EDTA, pH 8.0) buffer at a 
controlled temperature of -20°C [24].  The utilisation of 
this specific buffer composition serves as a protective 
feature to ensure the enduring stability of the genetic 
material over an extended period. The pH of the TE 
buffer is maintained at 8.0, a critical factor in 
safeguarding the integrity of DNA. This is particularly 
significant due to the sensitivity of DNA molecules to 
changes in pH. The stabilising role of Tris-HCl as a 
buffering agent ensures that the pH remains within the 
optimal range, preventing any deviations that might 
compromise the chemical structure and functionality of 
the stored genetic material [25]. It can be stored for a 
maximum of 270 days under -20°C conditions. [23] 

 
2.7 Fill and finish  

Fill and finish stage stands as the final step in the 
complex manufacturing process of pDNA. Under GMP 
guidelines, an electroporation buffer is prepared, mixed 
and dispensed into individual, single-use aliquots [26].  

Such meticulous procedures are instrumental in 
maintaining the integrity of the pDNA, ensuring the safe 
and effective application across therapeutic uses. 
 

2.8 Cold chain logistics  
Cold chain temperature-controlled logistics ensures that 
pDNA remains at the required temperature throughout 
the distribution process. Utilising specialised packaging 
with ice packs or dry ice for shipments that need to be 
kept at -20°C or -80°C [27]. Monitoring temperature 
during transit using temperature loggers is essential.  

3. Methods: 
3.1 Data Collection  
3.1.1 Demand Scale 

In order to mimic global demand scales, three key 
demand scales as follows were investigated and chosen 
for our studies: Phase I/II clinical trials – 200; Phase III 
clinical trials – 1000 patients and 2000 patients and 
commercial scale – 32,000 patients. The corresponding 
number of doses pDNA required globally for each scale 
is denoted in table 1. Such demand scales were modelled 
after VGXI’s paper [28].  
Table 1- the demand scales of focus of our studies and its corresponding data 

Demand scale Number of patients 
in each region  

Number of doses 
required globally  

Phase 1/II clinical 
trials 

200 3,000 

Phase III clinical 
trials  

1000 15,000 

Phase III clinical 
trials 

2000 30,000 

Commercial  32,000 475,000 
 

3.1.2 Manufacturing Sites  
A total of six manufacturing sites locations across the 
US and Europe were selected, of which includes three 
types of manufacturing sites with varying production 
capacities.  

Data shown in the Supplementary Information 
section outlines the parameters related to the types of 
manufacturing sites being investigated. [7] [29]. It 
showcases the production capacities and all relevant cost 
parameters required for our model’s inputs.   

 
Table 2- Node notations and locations of all selected facilities to be 
investigated upon 

Manufacturing 
sites (j) 

Location Airport 
(ak) 

Location 

𝒋𝟏 USA 
Madison 

𝑎𝑘1 USA/Dane County 
Regional Airport 

𝒋𝟐 USA 
San Diego 

𝑎𝑘2 USA/San Diego 
International Airport 

𝒋𝟑 USA 
Texas 

𝑎𝑘3 USA/George Bush 
Intercontinental Airport 

𝒋𝟒 EU-ESP 
San Sebastian 

𝑎𝑘4 EU/Bilbao Airport 

𝒋𝟓 EU-SWE 
Sundsvall 

𝑎𝑘5 EU/Sundsvall-Timrå 
Airport 

𝒋𝟔 EU-DEU 
Marburg 

𝑎𝑘6 EU/Frankfurt Airport 

Storage sites (k) Location Demand 
points (l) 

Location 

𝒌𝟏 USA/Cleveland 𝑙1 UK 
𝒌𝟐 UK/Glasgow 𝑙2 USA 

To ensure that our model can provide a 
comprehensive representation of the real-world 
scenarios, all 6 of our candidate manufacturing sites 
displayed in table 2 were selected across 2 regions: the 
US and Europe. Three distinct production scales of 
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manufacturing sites were investigated with their 
corresponding data shown in the supplementary 
information section that are required for our model’s 
inputs. Each region contains one of each production size 
as the foundational design.  

All candidate manufacturing sites are assumed 
to be a black box; meaning operations listed as follows 
were grouped together to be evaluated as one: primary 
manufacturing; secondary manufacturing; fill and finish; 
quality control. Quality control (QC) and raw material 
costs were assumed to be 1,242 $/dose and 1,397 $/dose 
according to literature values [7].  

Other assumptions are outlined as follows:  
 Single production line at any manufacturing sites  
 Single product- non-viral pDNA being produced 

throughout 
 Batch process  
 Continuous year-round operation without interruption at 

100% efficiency  
 

3.1.3 Airport 
The logistical framework of the model is designed for 
full geographical reach across both the US and West 
Europe. Eight identified airports shown in table 2, 
distributed across the cardinal directions, North, South, 
East, and West of each region serve as nodes for the 
transportation network. Figure 12 shows a clear 
representation of our proposed flight path distribution 
from the selection of airports across the USA and 
Europe. 

 
 
 

3.1.4 Storage 
Both storage locations shown in table 2 were selected 
based on existing industry storage sites. Both were 
assumed to be warehouses which offers a total storage 
space of 150𝑚ଷ. 

The economic considerations associated with 
pDNA storage involve capital and operational costs. The 
capital cost component encompasses the installation of 
the storage infrastructure, with a charge of $28,700 per 
facility per week [29]. The operational cost component 
comprises ongoing expenses related to utilities, labour 
and maintenance. Operational costs were quantified at 
$0.0098 per dose [29], accounting for day-to-day 
activities necessary for the efficient functioning of the 
storage facilities. 

 
3.1.5 Transport 

Plasmid DNA is transported through two distinct 
channels: 1) airlifted and 2) refrigerated truck. The 

airfreight rate is approximately $9 per kg [30], with a 
maximum weight per trip fixed at 64,480 kg 
[31].Transportation by refrigerated truck incurs a cost of 
$0.26 per kilometer, at a maximum weight per trip of 
1,500 kg per trip, equivalent to 1.75 million doses per 
trip. Travel distances between entities were estimated 
taking the shortest driving distance available on Google 
Maps. travel speeds for airfreight and roads are 926 

km/h [32] and 95 km/h respectively. [33]Travel times 
were hence calculated by dividing the travel distance by 
its respective travel speeds.  
  

3.2 Mathematical Formulations  
3.2.1 Problem Statement  

The overarching aim of the supply chain optimisation 
problem is to ensure pDNA products are adequately 
distributed to the demand zones to meet global demands 
in a timely manner. It is hence necessary to design a 
viable and cost-effective supply chain to address the 
current challenges within the pDNA industry. A full 
representation of our proposed pDNA supply chain can 
be seen in Figure 1, where all possible nodes to be 
established could be visualised.  

 
It is therefore vital to address the KPIs in the 

pDNA supply chain to make informed decisions to 
better optimise the existing supply chain frameworks. 
The underlying models were therefore formulated as 
MILP optimisation problems and further constructed on 
Python 3.12.0 and PYOMO 6.7 to be solved using the 
IBM ILOG CPLEX solver. These were chosen as 
because of its efficiency in handling supply chain 
optimisation-based MILP problems and are widely 
utilised in industry [34].  

This problem encompasses identifying existing 
good network structures while accounting for 
constraints and parameters. 
 

3.2.2 Objective Function  
Two models in aims to minimise the KPIs: 1) total costs 
and 2) total time of the pDNA supply chain were 
developed.  
 

3.2.2.1 Minimising Costs  
The overarching problem was further broken down into 
two independent models. Our first model addresses the 
KPI on total costs. One core facet of the problem stems 

Figure １- Full representation of the proposed pDNA supply chain 

Figure 12: Flight path distribution of the selected airports across the USA 
and Europe 
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from the need to optimise capacity planning to meet 
global demands. It was necessary to then implement a 
robust product flow allocation system. In principle, 
minimising the total costs associated with the production 
of pDNA to maximise its returns from sales is a crucial 
element to be considered when evaluating the efficacy 
of a supply chain.  

Another core facet of the problem addresses the 
need to identify effective network structures to be 
established within each candidate supply chain. 
Minimising costs associated with pDNA manufacturing 
sites and storage sites; which includes capital costs 
(initial installment, equipment), operational costs 
(labour and raw material) and transportation rates is 
central to solving the formulated objective as seen in 
equation 45. Trade-offs were also considered within the 
optimisation model whereby it is necessary to determine 
the lowest total cost of operations to ensure the best 
return on investments. Equations 1-35 were utilised in 
this model. 

 

 
3.2.2.2 Minimising Time  

The model addresses the second KPI - total time of the 
supply chain. Time is thereby the main variable to be 
considered in this formulation. Equation 46 aims to 
minimise time associated with the whole supply chain 
network.  

The model’s parameters and constraints were 
based off the initial cost model, whereby equations 1-35 
were also utilised in this model. Equations 36-44 were 
also formulated and adopted in this model. Cost 
variables were no longer included in the objective 
function shown in equation 46 to be evaluated. 

 

 
3.2.3 Decision variables  

Decision variables are values to be decided by the MILP 
optimisation problem. All decision variables encompass 

an equal importance to obtain the optimal solution for 
the supply chain optimisation network problem. 
Decisions made determine I. which of the facilities 𝑗 ∈
𝑗, 𝑘 ∈ 𝑘 were selected to be commissioned within the 
time horizon II. which of the transport nodes between 
facilities were to be established to complete the supply 
chain. III. The total costs associated with the supply 
chain which is further broken down into capital costs 
which includes a. rent b. initial capital costs for building 
the facility; operational costs which outlines the 
operational costs which includes a. electricity, water and 
bills b. raw material; transportation costs, which 
includes a. air transport ($/kg) b. truck transport ($/km).  
 

3.2.4 Constraints  
Constraints formulated could be categorised as follows 
I. Material balances, II. Logic constraints outlining the 
existence of a facility or node, III. Transport and storage 
capacity constraints, IV. Global demand of the demand 
zones for pDNA, V. Time constraints VI. Cost 
constraints 
 

Description Material Balances 
Total amount of 
products of pDNA 
produced  

𝑃௝ = ෍ 𝑄௝,௔௞
௔௞

, ∀𝑗 ∈ 𝐽 1 

 
Sample mass balance 
of the flow of products  

෍ 𝑄௝,௔௞
௝

= ෍ 𝑄௔௞,௞
௞

, ∀𝑎𝑘 ∈ 𝐴𝐾2 

 
Sample mass balance 
of the flow of products 

෍ 𝑄௔௞,௞
௔௞

= ෍ 𝑄௞,௟
௟

, ∀𝑘 ∈ 𝐾 3 

 
Sample mass balance 
of the flow of products 

෍ 𝑄௞,௟ 
௞

≥ 𝐷௟, ∀𝑙 ∈ 𝐿 4 

 
Number of products 
produced at 
manufacturing site 𝑗 is 
equal to the multiple of 
the number of batches 
utilised and batch size 
at the corresponding 
site  

𝑃௝ = 𝐵௝
௦௜௭௘𝐵௝

௡௨௠௕௘௥ ௢௙, ∀𝑗 ∈ 𝐽 5 
 

 
Description Logic Constraints 

Ensures transportation 
links can only exists 
with existing facilities 

𝑋௝,௔௞ ≤ 𝑌௝ , ∀𝑗 ∈ 𝐽, 𝑎𝑘 ∈ 𝐴𝐾 6 
 

 
𝑋௔௞,௞ ≤ 𝑌௔௞ , ∀𝑎𝑘 ∈ 𝐴𝐾, 𝑘 ∈ 𝐾7 

 
𝑋௞,௟ ≤ 𝑌௞ , ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 8 

Ensures transportation 
links arriving at the 
(cont.) facilities must 
exist for the existing 
facilities 

෍ 𝑋௝,௔௞ ≥ 
௝

𝑌௔௞, ∀𝑎𝑘 ∈ 𝐴𝐾 9 

෍ 𝑋௔௞,௞ ≥ 
௔௞

𝑌௞, ∀𝑘 ∈ 𝐾 10 

෍ 𝑋௞,௟ ≥ 
௞

1, ∀𝑙 11 

Ensures that Europe 
facilities goes to Europe 
only and US facilities 
goes to US only  

෍ ෍ 𝑋௞,௟ = 2 
௟௞

12 

 𝑋௝భ,௔௞ర + 𝑋௝భ,௔௞ఱ + 𝑋௝భ,௔௞ల = 0 13 
𝑋௝మ,௔௞ర + 𝑋௝మ,௔௞ఱ + 𝑋௝మ,௔௞ల = 0 14 

 
𝑋௝య,௔௞ర + 𝑋௝య,௔௞ఱ + 𝑋௝య,௔௞ల = 0 15 
𝑋௝ర,௔௞భ + 𝑋௝ర,௔௞మ + 𝑋௝ర,௔௞య = 0 16 

 
𝑋௝ఱ,௔௞భ + 𝑋௝ఱ,௔௞మ + 𝑋௝ఱ,௔௞య = 0 17 
𝑋௝ల,௔௞భ + 𝑋௝ల,௔௞మ + 𝑋௝ల,௔௞య = 0 18 

Objective Function for Minimising Costs 
Minimising 
costs 
associated 
with the 
manufacturin
g of pDNA. 
This includes 
manufacturin
g sites, 
storage units 
and 
transportation 
between 
nodes.  

min 𝑓(𝑥) =

෍ 𝑌௝൫𝐶𝐼௝ + 𝑂𝐼௝൯ + (𝑄𝐶 + 𝑟𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)𝑃௝
௝

+

෍ 𝑌௞(𝐶𝐼௞ + 𝑂𝐼௞)
௞

+

෍ ෍ 𝐶௝,௔௞
௧௥௔௡௦௣௢௥௧𝑋௝,௔௞

௔௞௝

+

෍ ෍ 𝐶௔௞,௞
௧௥௔௡௦௣௢௥௧𝑋௔௞,௞

௞௔௞

+ ෍ ෍ 𝐶௞,௟
௧௥௔௡௦௣௢௥௧𝑋௞,௟

௟௞

 45

 

Objective Function for Minimising Time 
Minimising time 
associated with 
total 
manufacturing 
time - which 
includes batch 
time; 
transportation 
time- which 
includes time for 
transportation 
between nodes 

min 𝑓(𝑥) =

෍ 𝑇௝𝑌௝
௝

+

෍ ෍ 𝑇௝,௔௞𝑋௝,௔௞
௝௔௞

+

෍ ෍ 𝑇௔௞,௞𝑋௔௞,௞
௔௞௞

+

෍ ෍ 𝑇௞,௟𝑋௞,௟
௞௟

46
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𝑋௔௞భ,௞మ + 𝑋௔௞మ,௞మ + 𝑋௔௞య,௞మ

+𝑋௔௞ర,௞భ + 𝑋௔௞ఱ,௞భ + 𝑋௔௞ల,௞భ = 0 19 

 
 

Description Capacity Constraints 
Ensures the flow 
of products 
between each 
transportation 
link is within the 
minimum and 
maximum flow 
of products 
capacity for 
refrigerated 
trucks 

𝑄௝,௔௞ ≥ 𝑄ெூே𝑋௝,௔௞, ∀𝑗 ∈ 𝐽, 𝑎𝑘 ∈ 𝐴𝐾 20 
 
𝑄௝,௔௞ ≤ 𝑄ெ஺௑𝑋௝,௔௞, ∀𝑗 ∈ 𝐽, 𝑎𝑘 ∈ 𝐴𝐾 21 

𝑄௔௞,௞ ≥ 𝑄ெூே𝑋௔௞,௞, ∀𝑎𝑘 ∈ 𝐴𝐾, 𝑘 ∈ 𝐾22 
𝑄௔௞,௞ ≤ 𝑄ெ஺௑𝑋௔௞,௞, ∀𝑎𝑘 ∈ 𝐴𝐾, 𝑘 ∈ 𝐾23 

𝑄௞,௟ ≥ 𝑄ெூே𝑋௞,௟, ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 24 
𝑄௞,௟ ≤ 𝑄ெ஺௑𝑋௞,௟, ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 25 

Ensures the total 
flow of products 
arriving at each 
storage site is 
below the 
maximum 
storage capacity 

෍ 𝑄௔௞,௞
௔௞

≤ 𝐾ெ஺௑𝑌௞, ∀𝑘 ∈ 𝐾 26 

 

 

Description Cost Equations 
Transport costs from 
manufacturing site 𝑗 
to airport location 𝑎𝑘 
for transportation 
link between 𝑗,𝑎𝑘, 
where both 
refrigerated truck 
and air freight costs 
are taken into 
account 

𝐶௝,௔௞
௧௥௔௡௦௣௢௥௧ = 𝑄௝,௔௞𝐷𝐼𝑆௝,௔௞𝑈𝑇

+𝑄௝,௔௞𝑤𝑒𝑖𝑔ℎ𝑡𝐴𝑈𝑇,
∀𝑗 ∈ 𝐽, 𝑎𝑘 ∈ 𝐴𝐾 27

 

 

Transportation costs 
to deliver products 
between nodes for 
each refrigerated 
truck as the only 
mode of transport 

𝐶௔௞,௞
௧௥௔௡௦௣௢௥௧ = 𝑄௔௞,௞𝐷𝐼𝑆௔௞,௞𝑈𝑇,

∀𝑎𝑘 ∈ 𝐴𝐾, 𝑘 ∈ 𝐾 28
 

 
 

𝐶௞,௟
௧௥௔௡௦௣௢௥௧ = 𝑄௞,௟𝐷𝐼𝑆௞,௟𝑈𝑇,

∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 29
 

 

Cost equations for 
manufacturing sites 

𝐶௝
஼஺௉ா௑ = ൫𝐶𝐼௃𝐵௝

௡௨௠௕௘௥ ௢௙ + 𝑅௝൯ × 𝑌௝,
∀𝑗 ∈ 𝐽 30

 

𝐶௝
ை௉ா௑ = 𝑂𝐼௃𝐵௝

௡௨௠௕௘௥ ௢௙,
∀𝑗 ∈ 𝐽 31

 

Cost equations for 
storage units 

𝐶௞
஼஺௉ா௑ = 𝑅௞,

∀𝑘 ∈ 𝐾 32
 

𝐶௞
ை௉ா௑ = 𝑂𝐼௞ ෍ 𝑄௔௞,௞

௔௞

,

∀𝑘 ∈ 𝐾 33
 

 
 
 

Description Time equations 
Time equations 
for 
manufacturing 
sites 

𝑇௝ = 𝐵௝
௡௨௠௕௘௥ ௢௙𝐵௝

௧௜௠௘, ∀𝑗 ∈ 𝐽 34 
 

𝑇௝ ≤ 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒, ∀𝑗 ∈ 𝐽 35 
 

Time equation 
for 
transportation 
time between 
nodes 

𝑇் = ෍ ෍ 𝑇௝,௔௞𝑋௝,௔௞
௝௔௞

+ ෍ ෍ 𝑇௔௞,௞𝑋௔௞,௞
௔௞௞

+ ෍ ෍ 𝑇௞,௟𝑋௞,௟
௞௟

36
 

 

 

 

 

 

 

 

Description
  

Cost equations 

Returns the 
total costs 
for 1) 
transport 
2) facilities  

𝐶௧௢௧௔௟ ௧௥௔௡௦௣௢௥௧ = ෍ 𝐶௝,௔௞
௧௥௔௡௦௣௢௥௧

௝,௔௞

+ ෍ 𝐶௔௞,௞
௧௥௔௡௦௣௢௥௧

௔௞,௞

+ ෍ 𝐶௞,௟
௧௥௔௡௦௣௢௥௧

௞,௟
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෍ ቆ
𝐶௝

஼௔௣ா௫ + 𝐶௝
ை௣ா௫
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ቇ

௝

+

෍൫𝐶௞
஼௔௣ா௫ + 𝐶௞

ை௣ா௫൯
௞
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Big M and 
small 𝜀 cost 
constraints: 
de/activatio
n of 
constraints 
when 
needed 

෍ ෍ 𝐶௝,௔௞
௧௥௔௡௦௣௢௥௧

௔௞௝

≥ 𝜀𝑋௝,௔௞ 39 

 

 ෍ ෍ 𝐶௝,௔௞
௧௥௔௡௦௣௢௥௧

௔௞௝

≤ 𝑀𝑋௝,௔௞ 40 

 
෍ ෍ 𝐶௔௞,௞

௧௥௔௡௦௣௢௥௧

௞௔௞

≥ 𝜀𝑋௔௞,௞ 41 

 
෍ ෍ 𝐶௔௞,௞

௧௥௔௡௦௣௢௥௧

௞௔௞

≤ 𝑀𝑋௔௞,௞ 42 

 
 

෍ ෍ 𝐶௞,௟
௧௥௔௡௦௣௢௥௧

௟௞

≥ 𝜀𝑋௞,௟ 43 

 
෍ ෍ 𝐶௞,௟

௧௥௔௡௦௣௢௥௧

௟௞

≥ 𝑀𝑋௞,௟ 44 
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4. Results:  
4.1 Average cost per dose against global 

demand  
Fiure 3 illustrates the results of the change in average 
cost per dose over a range of demand with the objective 
of minimising cost. The graph shows a decreasing trend 
with a large drop at 7000 doses, from $10,797 to, and at 
17,000 doses, from $7,754 to $6,272. Between 1500 
doses to 7,000 doses and 7500 doses to 17,000 doses, a 
flat trend can be observed. Beyond 17,000 doses it 
continues to decrease till it reaches $5082 per dose at the 
greatest demand scale.  

Figure 2 illustrates the average cost per dose 
over the objective of minimising time. Similar to figure 
2, a decreasing trend is noticed throughout with severe 
drops at 1,500 doses, reaching roughly $9,206 per dose 
and 17,000 doses, reaching around $6,946 per dose.  

 
4.2 Wait time and facility utilisation rate 

Amongst all the scalar parameters in our models, wait 
time was the most sensitive variable. For such, an 
analysis on varying wait times in increments of 5 days:  
7, 12,17 and 22 days were conducted.  
 

4.2.1 3,000 doses  
Figure 4 shows the sensitivity analysis for minimising 
cost and minimising time against wait time.  Minimising 

cost graphs show a constant trend throughout all wait 
times, with a constant average cost per dose of $7,387. 
For minimising time, the average cost per dose is $9,206 
for all wait times except at 408 hours, plunging to $7,500. 
Figure 8 also depicts that the utilisation rate is 
symmetrical across both USA and EU regions, both 
utilising small-scale manufacturers for 33% and 
medium-scale manufacturers for 17% and none in large-
scale manufacturing. 
 

4.2.2 15,000 doses  
Figure 5 shows that for the cost minimisation model, the 
average cost per dose plateaus at around $7,387 for all 
wait times except for 720 hr, peaking at $9,838 per dose. 
On the other hand, the time minimisation maintains a 
constant at $7,387 throughout all wait times. Figure 9 
also displays that the utilisation rate is symmetrical in 
both the USA and EU regions, with both regions 
employing small-scale manufacturers for 30% and 
medium-scale manufacturers for 20%, and no utilisation 
in large-scale manufacturing was concluded.  
 

4.2.3 30,000 doses  
Figure 6 shows that the costs per dose whilst minimising 
time remains constant throughout at $5,943. Figure 10 
shows an equal split of the utilitisation rate of 
manufacturing sites in the USA and Europe. Both 
regions utilizes all three types of manufacturing sites, 

Figure 4- Wait time against cost per dose (3000 doses)  Figure 5- Wait time against cost per dose (15,000 doses)  Figure 6- Wait time against cost per dose (30,000 doses)  Figure 7- Wait time against cost per dose (475,000 doses)  

Figure 8- Facility utilisation rate (3000 doses)  Figure 9- Facility utilitsation rate (15,000 doses) 
Figure9- Facility utilisation rate (15,000 doses)  

Figure 10- Facility utilitsation rate (30,000 doses)  
10- Facility utilisation rate (30,000 doses)  

Figure 11- Facility utilitsation rate (475,000 doses)  

Figure 3- Results from the minimising time model on the 
average cost per dose of pDNA by total global demand  

Figure 2-Results from the minimising costs model on the 
average cost per dose of pDNA by total global demand 
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with small scale manufacturing sites contributing the 
greatest proportion of utilitisation rate.  
 

4.2.4 475,000 doses  
Figure 7 illustrates that both charts display a value of 
$5,943 per dose throughout all wait times for both 
objectives. Hence no variations in costs were observed. 
100% of the facilities utilised were large-scale 
manufacturing sites as seen in figure 11. 

5. Discussion:  
5.1 Model validation  

The aim of our study was to investigate three key 
demand scales denoted by table 1. Taking one step 
further, we access the validity of our model by 
simulating scenarios covering a range of demands from 
smaller to small scale to larger than commercial scale. 
Results displayed in figure 2 and figure 3 provide a clear 
representation that both models could be used to model 
different demand scales; while yielding promising 
results that follow the descending average cost per dose 
trend as demand increases. This suggests that the models 
are able to account for demand discrepancies within the 
ranges of 1,500-750,000 if necessary. This directly 
acknowledges and offers solutions to the challenge on 
demand uncertainties and production backlogs.  

5.2 Average costs per dose of pDNA  
Further to that, the observed descending trend in figure 
2 and figure 3 tallies up with the concept of the 
economies of scales [35], which from microeconomic 
perspective it means it benefits from the cost advantage 
when it increases its level of output.  The jumps 
observed at 1500 against 3000 doses and 17,000 against 
375,000 doses are interestingly incoherent with the rest 
of the demand scales. Such discrepancies could be 
explained by our input parameter on batch sizes 
whereby. The sudden decrease in average cost per dose 
again benefited from the economics of scale as the total 
cost of production was then shared out to more doses 
being produced. Furthermore, although it is intuitive to 
assume the results for the minimising cost objective 
would produce pDNA at a lower cost per dose, it was 
proven wrong in figure 2 for the demands ranging from 
3,000-7,000. This suggests that the minimising time 
model is better suited when evaluating in this given 
range as it minimises time while returning a better cost. 

5.3 Sensitivity analysis  
Amongst all the scalar parameters in our models, wait 
time was the most sensitive variable. For such, an 
analysis on varying wait times in increments of 5 days:  
7, 12,17 and 22 days were conducted. 

From figures 5,6,7, it could be deduced that 
varying wait time has no effects on the average cost per 
dose for each given demand scale under the minimising 
time model. This is because, time, as the KPI of this 
model has already been minimised under the model’s 
evaluation on the objective function equation 46. Hence, 
a sensitivity analysis on increasing wait time is rather 
redundant, but necessary to validate the model in the 
case of minimising time. In general, results for both 

models did not display a lot of differences under the 
sensitivity analysis. This further signifies that our model 
could be thought to be too constrained hence the 
investigation to establish findings on average cost per 
dose against varying wait times were deemed rather 
unsuccessful. 

However, the sudden spike in average cost per 
dose in figure 6 for the wait times of >7 days could be 
explained. It was observed that the total transportation 
time required was two-times greater than the other 
demand scales. To explain this, it is important to infer 
findings from the established manufacturing sites. It is 
indicated that the model is constrained by the production 
capacity and batch times at a small wait time of 168hrs. 
This is because yielding 30,000 doses could either be 
done by going through 11 batches in each small scale, 2 
batches in each medium scale and 1 batch in each large 
scale. Under the circumstances of a maximum wait time 
of 168hs, the first two scenarios were instantly deemed 
impossible by the model. Furthermore, the distances 
between the large-scale manufacturing sites to the 
airports were greater than that of the small and medium 
scale to the airports. For such, the model has 
compromised on benefiting from the economy of scale 
by overproducing pDNA to keep the costs low while 
having to take up greater costs on transportation. This is 
a prime example of a trade-off between time and costs.  

5.4 Facility utilitisation rates  
Figures 8,9,10,11 highlighted a significant difference in 
utilisation rate from facilities to facilities. Small and 
medium scale facilities were most widely installed, 
especially for 200-2000 patients. Looking into the 
absolute utilisation percentages infers that it is the most 
cost and time efficient for medium scale manufacturing 
sites to be commissioned, as this would be able to cater 
for the pre-clinical/phase I/II clinical trial scales without 
overproducing too much and could undergo multiple 
batches to provide for the commercial scale if wait time 
is not a topic of interests for the given candidate supply 
chain. Interestingly, this investigation also illustrates 
that the Phase III clinical trial scale is the only demand 
scale that utilises a combination of manufacturing sites.  

Results showcased that under either of the two 
scenarios 1) by increasing wait times >528 hr or 2) 
evaluating using the minimising time model would 
suggest that it is better to install multiple manufacturing 
sites as opposed to having multiple batches at one site. 
This grants the supply chain a greater flexibility on 
switching facilities and can produce a better reflection 
of the real-life supply chains whereby multiple 
manufacturing sites are established simultaneously at a 
given time. However, one should note that the 
aforementioned suggestions do not apply to the large 
demand scale. Multiple simulations were conducted on 
the large demand scale whilst varying its corresponding 
wait time. Yet it is indicative to claim that the only type 
of manufacturing sites to be commissioned ought to be 
the commercial scale ones. This finding is backed up by 
figure 11 whereby commercial scale manufacturing sites 
took up 100% of the facility utilisation rate. One should 
note that both models generated the same output for all 
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ranges of wait time, this strongly validates the 
reliability of the results. 

5.5 Limitations  
While the developed model exhibits considerable 
resilience, its effectiveness is constrained by certain 
limitations. 

One limitation in the model is the 
implementation of a single manufacturing line, a 
simplification that deviates from the complexity 
inherent in real-life scenarios. In practice, 
manufacturing processes often entail the operation of 
multiple parallel lines, each catering to differences in 
demand scales. [36]. The model's oversimplification 
may compromise its ability to capture the complex 
dynamics of diverse manufacturing lines and the 
simultaneous production of different products. 

Furthermore, the need for a feedback 
mechanism is a significant limitation in the current 
model. In the dynamic landscape of supply chains, 
unforeseen events are inevitable, ranging from 
production delays and transportation disruptions to 
sudden shifts in demand [37]. The absence of a feedback 
loop hinders the model's capacity to respond effectively 
to these unpredictable factors. 

6. Conclusion: 
To summarise, two models aim to minimise the KPIs – 
total costs and total time deployed and developed. These 
KPIs were selected based on the level of importance 
between variables on a relative basis. The models 
developed have incorporated the complexities in real-
life supply chains while being evaluated under 
assumptions to simplify the structure. 

Manufacturing pDNA at a larger demand scale 
is generally cheaper, with a lower average cost per dose, 
as it benefits from economy of scale. However, demand 
scales that coincide with the batch sizes at any 
manufacturing site could also benefit from a lower 
average manufacturing cost per dose. With the 
assumptions in our model and the facilities in the supply 
chain, our models can accurately depict the supply chain 
landscape for demand scales that are greater or smaller 
than what we intended to focus on. Both could account 
for demand discrepancies within the demand scales of 
1,500 doses to 750,000 doses if necessary. 

A sensitivity conducted on varying wait times 
has generated results that displayed few differences. It 
could then be inferred that our models might be too 
constrained; hence, the investigation to establish 
findings on average cost per dose against varying wait 
times could have been more successful. 

Finally, our analysis of the utilisation rates of 
the manufacturing sites showed that the best-optimised 
supply chain would consider commissioning the 
medium-scale facility as it generates the lowest costs 
whilst minimising time. The batch size of this facility 
can cater to the pre-clinical/phase I/II clinical trial scales 
without overproduction. It could undergo multiple 
batches to provide for the commercial scale if wait time 
is not a topic of interest for the given candidate supply 
chain. Furthermore, multiple simulations were 
conducted on the commercial demand scale. Results 

claimed that the only type of manufacturing sites to be 
commissioned ought to be the commercial scale ones in 
Texas, USA and Marburg, Germany.  

Although our models were able to reflect on the 
supply chains out of the demand scales of interest in this 
study, it is also important to note that the assumptions 
and constraints have brought some overarching 
limitations that should be addressed in the future. 
Resolving such limitations is as urgent as it is vital 
within ATMPs supply chain optimisation. Solutions to 
the limitations will effectively be able to model the 
pDNA supply chain while accounting for uncertainties, 
which could then be deployed in the industry to tackle 
real-life challenges to reshape the pDNA supply chain 
landscape. 

7. Outlook: 
This study focuses on minimising the total costs and 
time associated with pDNA production as the primary 
objective function. However, it is imperative to 
acknowledge that other facets of the supply chain are 
needed for a comprehensive analysis.  

By exploring the utilisation of parallel 
production lines in further studies, efficiency and 
flexibility issues can be tackled. Parallel production 
lines allow for simultaneous manufacturing of batches, 
increasing overall production capacity and meeting 
higher demand levels [38]. Furthermore, parallel 
production offers enhanced flexibility in responding to 
fluctuations in demand or product variations [38]. This 
could reduce costs while serving as a strategic tool for 
managing uncertainties. 

The increased number of nodes within the 
regions offers several strategic advantages. Expanded 
geographical coverage enhances flexibility in 
addressing diverse demands across different regions, 
heightening the adaptability and responsiveness of the 
overall system. Moreover, it contributes to a reduction 
in long-distance transportation as the distribution 
network becomes more localised. This reduction 
mitigates logistical challenges and enhances operational 
efficiency by minimising time and resource wastage 
[39]. The incorporation of more nodes also allows for 
the development of models that better simulate real-life 
scenarios. This provides a more accurate representation 
of the practical supply chain operations, enhancing the 
robustness and accuracy of the model. Potential 
challenges include increased computational 
complexities and heightened demands on data 
management systems.  

In future work, redefining the objective 
function into a multi-objective function is necessary. 
This involves concurrently minimising both time and 
cost, enabling more comprehensive optimisation. MOO 
allows for the simultaneous consideration of conflicting 
objectives within the optimisation framework. Adopting 
the Multi-Objective Optimisation (MOO) algorithm 
becomes pivotal in determining the shortest path and 
time between two nodes while using the least cost. 
Trade-off analysis is an essential aspect within the MOO; 
this could be evaluated by plotting a Pareto front to 
visualise the impacts on different desired outcomes. 
This enables decision-makers to assess the compromises 
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and synergies between conflicting objectives. By 
explicitly recognising trade-offs, the multi-objective 
function provides a structured framework for decision-
making, offering insights into the complex 
interdependencies between time, cost, and distance.  

Future work utilising a mixed-integer non-
programming model is a strategic choice to model and 
optimise for unpredictable events such as a pandemic. 
Striking a balance between lean and agile supply chain 
models becomes vital. While lean models emphasise 
efficiency and cost reduction, agile models focus on 
flexibility and responsiveness to dynamic changes. An 
equilibrium between these models is crucial in 
navigating uncertainties, ensuring efficiency and 
adaptability during unpredictable disruptions. 
Leveraging predictive analytics and machine learning 
algorithms enhances the capacity to anticipate future 
demand patterns. This aids in devising resilient supply 
chain strategies that can dynamically respond to 
fluctuations in demand, contributing to a more adaptive 
supply chain. 
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Sodium-ion Batteries and Sodium Storage Mechanism 
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Abstract 
Sodium-ion batteries (NIBs) showed its capability as a cheaper substitution of Lithium-ion batteries 
(LIBs), as NIBs were material wise cheaper and could reach acceptable capacities. In this research, 
carbon materials derived from lignin and phloroglucinol polymer carbonized at different temperatures 
were templated using various concentrations of Pluronics F127 as soft template. Two different pore sizes 
of 1.68 and 3.30 nm were successfully templated. X-ray diffraction, Raman spectroscopy, nitrogen 
physisorption, transmission electron microscopy were used to characterize the material from 
microstructure to pores. The battery performances were tested for the carbon materials, and sodium 
cation capacity of large micropores and small mesopores within material of controlled microstructure 
were qualitatively studied.  
 
Keyword: Sodium-ion Battery, Sodium-ion Pore-filling, Soft Templating, Lignin Derived Carbon 
Material 
 
1. Introduction    

Achieving carbon neutrality requires the development of storage technologies. Lithium-ion  
batteries (LIBs) are known as the most commercially successful battery. Considering the limited resource, 
uneven global distribution, and the energy density had not been promoted by 3% in the last 25 years[8], 
sodium-ion batteries (NIBs) with very similar physicochemical properties to lithium had shown a 
potential alternative because of sustainability and low cost. Instead of copper being used as a current 
collector for LIBs, aluminum as the current collector in the NIBs offered an advantage in cost and weight 
for large-scale applications. Whilst lithium battery anode graphite material was not applicable for NIBs. 
Turbostratic carbon material (soft carbon and hard carbon) has been studied as NIB anode materials. The 
current shortcoming of the NIBs anode carbon materials are concentrated to: 1) lower specific capacity 
2) lower cycling performance 3) lower charge and discharge rate. Thus, understanding the sodium ion 
storage behavior plays a significant role in optimizing the storage performance.  

In this work, Galvanostatic performance of carbon anodes made of a series of lignin-derived closed 
porous carbon materials were studied. TEM, nitrogen physisorption and SAXS were conducted to check 
porosities and pore sizes, while the microstructure was characterized by XRD and Raman spectroscopy. 
Qualitative relation between pore sizes and sodium ion capacity were studied at the transition from 
micropore to mesopore, giving the idea that the small mesopores could store more sodium ions than big 
micropores. 
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2. Experimental Method 
2.1 Preparation of hard carbon materials 

The Pluronics F127 (Sigma Life Science) 
templated hard carbon samples were carbonized 
from precursors with different template 
concentrations (baseline, 50% baseline, 35% 
baseline, 25% baseline, and 12.5% baseline). 
These template concentrations within the 
precursor were obtained by varying the amount of 
lignin (Fraunhofer MODUL II, KO92) and 
phloroglucinol (Sigma Aldrich Phloroglucinol > 
99.0%)  added to the solution which had 
constant template concentration. For the 
Pluronics F127 templated baseline precursor, first, 
1.125 g of Pluronics F127 was dispersed into 32.5 
ml of acetone (VWR Chemicals) by overnight 
stirring with the beaker carefully sealed. Then, a 
total weight of 1.3 g of 1:1 ratioed organosolv 
lignin and phloroglucinol were added to the 
solution, one after another had been fully 
dissolved. The solution was then stirred overnight 
again before the addition of 1.25 ml glyoxal 
(Sigma Aldrich 40 et% in H2O)  as a cross-linker. 
After the addition of the cross-linker, the solution 
was stirred for another 5 minutes, then the 
solution was placed into a fume hood to have 
most of the solvent evaporated, the evaporation 
process took 2-4 days. After evaporation induced 
self-assembly was done, the precursor was placed 
overnight into an oven set to 85 ℃ for cross-
linking. The carbonization of the resulting 
polymer precursor took place in a furnace 
(Carbolite STF 16/450 220-240V 1PH) under 
nitrogen atmosphere, with the nitrogen flowrate 
of 500 ml/min. The furnace heated up to the 
template removal temperature of 350 ℃ at 
1 ℃/min heating rate, and dwelled for 1 hour for 
template removal, followed by the furnace heated 
up to carbonization temperature (1000 - 1300 ℃) 
at 5 ℃/min, and dwelled for 2 hours for 
carbonization. Finally, after natural cooling down, 
the hard carbon material was yielded. 

 
2.2 Preparation of carbon anode 

The carbon samples were ground with 
isopropanol by a mortar and a pestle for 30 min to 
reduce the particle size. The resulting powder 
suspension in isopropanol was collected and dried 
overnight in an oven set to 85 ℃ until isopropanol 
was fully evaporated. The dried carbon powder 
was weighed and then mixed with a binder of 5 
wt.% carboxymethyl cellulose in a mass ratio of 
1:2.22 to prepare a slurry in which the active 
material took 90% of carbon and CMC in total. 
The slurry was further ground using the mortar 
and pestle for 30 min. The slurry was coated onto 
an aluminum foil with a total thickness of 200 
micrometers. The coated foil was dried and cut 
into 1 x 1 cm2 square anode pieces, finally, the 
anodes were dried overnight in a vacuum oven 
before assembly into semi-coin cells. 
 
2.3 Electrochemical measurements. 

Semi-coin cells were assembled in an argon-
filled glove box, with oxygen and moisture level 
< 0.5 ppm. Glass fiber separator between the 
anode and sodium metal was in 16 mm diameter, 
grade A. 100 microliter of 1 M NaPF6 in EC: 
DMC = 1:1 electrolyte was used (KLD-NF04) per 
battery assembled. The battery cup, bottom, 
spring, and spacer were dried in an 85 ℃ 
vacuum oven overnight after ultrasonication in 
isopropanol for 30 min. Galvanostatic 
discharge/charge profile was measured on a 
NEWARE battery cycler tested at a constant 
temperature with a potential window from 0.005 
- 2.5 V for all semi-coin cells. The first two cycles 
were run at 0.033 C, followed by 0.1 C, 0.2 C, 0.5 
C, 1 C, 5 C, and finally, 0.1 C again, running five 
cycles for each C-rate. 
 
2.4 Characterization of Carbon Material 

Nitrogen physisorption was done on 
Micromeritics Tristar II Plus, with the sample ex-
situ degassed at 250 ℃ , 16 hours, on a 
Micromeritics Smart VacPrep. Raman 
spectroscopy was carried out on a Bruker Senterra 
II, 20x zoom was used, with 50 x 1000 
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micrometer aperture and 1.5 cm-1 resolution. The 
power, scanning time, and coaddition were varied 
accordingly to produce an acceptable signal-to-
noise ratio. X-ray diffraction was done on a 
PANalytical Aeris, the scanning axis was set to 2
θ, the scanning angle was from 4.999 to 114.9674 

degrees, step angle was 0.086932 degrees with a 
time per step of 103.53. Cu K alpha-1 and Cu K 
alpha-2 radiation mixed in 1:1, 40 V generator 
and 15A tube current were used. Electrodes 
weight was measured on an AND BM-20 balance.

 
3. Result and Discussion 

3.1 Pore Size and Specific Surface Area 
It was experimented by Flatthaar et al. that 
PEO428-b-PHA265 block co-polymer under 
1.731:1 weight ratio with carbon precursor 
templated closed mesopores (37±6 nm) in lignin 
phloroglucinol derived carbon material, however 
Pluronics F127 in replacement of PEO428-b-
PHA265 templated open mesopore channels (5±
1nm) in the same material[3]. Because of identical 
amount of block co-polymer was used, template 
removal theoretically both resulted in open 
channels, but in the case of PEO428-b-PHA265, the 
channels from template removal were closed 
during carbonization, indicating that template 
removal and closed pore formation were 
decoupled. To examine the performance of 
carbon anode with small closed mesopores, 
Pluronics F127 was used in decreased 
concentrations from the 1.731:1 ratioed baseline 

set. 50%, 35%, 25%, and 12.5% of the baseline 
corresponded to block co-polymer to carbon 
precursor weight ratios of 1.731:1, 1.731:2, 
1.731:2.86, and 1.731:4 respectively. TEM was 
used to identify the existence and sizes of pores, 
while BET analysis from nitrogen physisorption 
was used to identify accessibility of pores. 

The samples for nitrogen physisorption 
were grinded, making more mesopores exposed 
for adsorption and desorption, thus generating 
hysteresis isotherms (figure 1d, e). By applying 
NLDFT analysis to the sample data which had 
hysteresis behavior, more pore size data could be 
obtained for cross-checking with the TEM images. 
SAXS was carried out on some samples for 
qualitative pore size estimation applying Bragg’s 
law, which also gave ideas on pore size 
distribution.  

Figure 1. TEM images display Pluronics F127 templated carbon with a) 50%; b) 35%; c) 25%; nitrogen 

physisorption of 35% and 100% Pluronics F127 templated carbon d) and e); NLDFT analysis of Pluronics 

F127 templated carbon 50% - 1200 oC f) and 35% - 1200oC g); h) SAXS of 25% Pluronics F127 templated 

and BrijO20 double at 1300℃  
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   35% and 50% Pluronics templated carbon had 
showed ordered pores from their respective TEM 
images [figure 1a, b], while 25% Pluronics F127 
templated carbon existed non-templated pieces 
under TEM [figure 1c], indicating the soft 
templating might have failed to reach pore 
saturation in a low concentration 25% Pluronics 
F127 templates carbon.  

Pore diameters were measured from the TEM 
images in Origin Lab, with the diameter averaged 
between 30 pores. It was measured that the 50% 
Pluronics F127 templated carbon had 3.3±0.181 
nm pores and 35% Pluronics F127 templated 
carbon had 1.68 ± 0.0.067 nm pores, in this 
research, the pore sizes were taken as measured. , 
though the pore size variation with template to 
precursor ratio would better be more carefully 
examined. In previous research from Libbrecht et 
al., the pore sizes as well as symmetry were found 
to varied with template to precursor ratios at low 
template concentrations and high amount of 
furfural to resorcinol ratio. 

As the pores on a TEM image were organized 
and aligned in a row, the number of pores per nm 
row were estimated. There were 0.15 pore/nm 
row for 3.3 nm pore and 0.28 pore/ nm row for 
1.68 nm pore. Considering the 3D geometry of 
the pores, these numbers were not representative 
on pore density in a unit volume of carbon 
material, but it could indicate that the number of 
1.68 nm pores were at least not less than the 
number of 3.30 nm pores in the carbon material. 
   Following the pore sizes, closed porosity was 
examined with nitrogen physisorption by 
comparing the nitrogen volume adsorbed of one 
of the low concentrations (35%, 1200 oC) 
Pluronics F127 templated carbons with the 
baseline Pluronics F127 templated carbon 
carbonized at 1000 oC with known open porosity 

[figure 1d], and comparison between 35% and 50% 
Pluronics F127 templated carbons at 1100 and 
1200 oC in parallel [figure 1e]. The low nitrogen 
volume adsorbed by the low concentration 
Pluronics F127 templated carbons could indicate 
closed porosity, as the pores were visualized 
under TEM but did not result in the same nitrogen 
adsorption volume as the open porous baseline 
Pluronics F127 templated carbon.  
   Then, nitrogen physisorption surface areas of 
the low concentration Pluronics F127 templated 
carbons were given from BET analysis [table 1]. 
Generally, the surface area decreased with higher 
carbonization temperature, however, the 35% 
Pluronics F127 templated carbon carbonized at 
1200 oC had less surface area compared to both 
neighboring carbonization temperatures. The 
measurements on 35% Pluronics F127 templated 
carbon were done twice, outputting precise 
results. It was noticed that hysteresis adsorption 
desorption curve could be seen from 35% and 
50%Pluronics F127 templated carbons at 1200 oC, 
indicating that nitrogen probed the mesopores 
exposed at the surface. Hence, non-local density 
distribution functional theory was applied to the 
two samples for pore size distributions from 
nitrogen physisorption (figure 1f, 1g). The 50% 
Pluronics F127 templated carbon had a 
distribution around 3.5 nm, agreeing with the pore 
size averaged from the TEM image. For the 35% 
Pluronics F127 carbon, it was not expected to 
have micropores of 1.68 nm probed by nitrogen, 
as nitrogen was not capable accessing pores under 
1.9 nm. The mesopores detected was from a 
distribution at 6.5 nm, which was also detected in 
the 50% Pluronics F127 sample, the adsorbed 
volume dropped from approximately 0.2 to 0.1 
from 35% to 50% Pluronics F127 templated 
carbon at 1200 oC, indicating less mesopore of 6.5 

Table 1 Comparison of characterized data of different carbon samples  

 35% 

1000℃ 

35% 

1100℃ 

35% 

1200℃ 

35% 

1300℃ 

50% 

1100℃ 

50% 

1200℃ 

Pore Size (nm) 1.68 1.68 1.68 1.68 3.30 3.30 

BET Surface Area (mଶ/g) 499.5 159.3 35.9 106.5 26.7 14.1 

Interlayer Spacing (Å) 3.8 3.7 3.6 3.4 3.7 3.7 

R ratio 1.98 2.02 2.13 5.37 2.10 2.14 

C-axis Crystallite Length (Å) 9.86 9.84 9.96 58.50 10.23 10.49 

A-axis Crystallite Length (Å) 14.10 15.45 15.76 >20 15.60 15.86 
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nm was detected from the surface. The non-
monolithic distribution on the pore size from the 
NLDFT indicated SAXS or WANS would be 
necessary for detecting all the pores at the interior 
of the carbon materials. 
   Unfortunately, small-angle X-ray diffraction 
was only available at the early stage of the 
research, only the 25% Pluronics F127 templated 
carbon with unevenly distributed porosity was 
measured, bringing more uncertainty to the pore 
size distribution [figure 1h]. The peak position 
from SAXS of 25% Pluronics F127 templated 
carbon was at scattering vector of 0.08 to 0.09, by 
applying Bragg’s law, a pore size of 6.98 to 7.85 
nm could be calculated, agreeing with the  
NLDFT result regarding the bigger mesopore size. 

In this stage, TEM image was used as a 
standard for pore sizes though the pore 
distribution was not monolithic, the number of 
bigger mesopores of approximately 0.65 nm 
decreased with increasing template 
concentrations could be observed from NLDFT. 
The uncertainty brought by the non-monolithic 
pore distribution needed to be minded in further 
analysis. 

 
3.2 Carbon Microstructure 
   Performance of NIB carbon anodes is known 
to be sensitive to carbon microstructures[2,7]. 
Hence, the sodium ion pore filling mechanism 
needs to be studied from comparison between 
carbon materials which are structurally similar. 
For characterizations of carbon material 
microstructure, XRD analysis applying Bragg’s 
law (a3), Scherrer equation (Lc), and R ratio[5] 
defined by Ni et al. was carried out. Flatthaar 
mentioned that Bragg’s law could not calculate 
data in good accuracy, it was still applied in this 
research as a scale for comparisons because 
WANS or XRD based geometry prediction 
algorism was not available[3,6]. Following the 
XRD, Raman spectroscopy was performed for 
graphene layer extent (a-axis crystallite length) 
calculation[1,7] and cross checking with XRD data 

for data validity.  
   Introduction of copolymer template into 
carbon precursor brought disorder to the 
microstructure, impacting the degree of 
graphitization[3]. Flatthaar et al. experimented that 
only 1300 oC carbonized non-templated lignin 
phloroglucinol precursor showed a high degree of 
graphitization in the XRD data. The data showed 
more graphitized features such as clear separation 
of the (004) peak from (10) peak and narrowed 
and sharpened (002) peak[3]. Similar XRD line 
shape could be observed in the 1300 oC 
carbonized 35% Pluronics F127 templated 
sample (Figure 2a), indicating it was easier for 
precursor with less template addition to reach 
higher structural order, thus the microstructure 
needed to be carefully studied by multiple 
characterizations methods for parameter 
estimations. 
   For XRD, the (002) peaks participated in 
multiple calculations (figure 2a, b). The 
background of the (002) peak was identified 
applying the method used for R ratio[5] calculation 
[table 1]. The same background was subtracted in 
full-width half-peak maxima calculations and 
peak positioning[7], which were further applied in 
Scherrer’s equation for crystallite c-axis length 
calculations [table 1]. Within the XRD data of the 
35% Pluronics F127 set, a red shift of (002) peak 
position could be identified from 1000 oC to 1300 
oC carbonization temperature(figure 2a), 
indicating decreasing interlayer spacing a3, which 
was a sign of increasing degree of structural order. 
Then, R ratio was calculated for understanding 
the single layer fractions. The R ratio is defined 
as (002) peak height compared to background 
level, and higher R ratio was a sign of increasing 
structural order[5], thus the less the R ratio, the 
more the single layer fraction. Within the samples, 
the 1300 oC carbonized 35% Pluronics F127 
sample had the highest R ratio, which was more 
than doubled the rest, indicating a transition 
toward more graphitic features occurred between 
1200 oC and 1300 oC for 35% Pluronics F127 
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samples. This transition was not favorable for 
NIBs anode material as it meant the interlayer 
spacing would likely be too small and the 
pathways were fewer for sodium ion diffusion[2]. 
The R ratios of 1000 and 1100 oC carbonized 35% 
Pluronics F127 sample had slightly more single 
layer fraction highlighting the more disordered 
structure of the two samples. The 1100 oC 
samples of different template concentrations were 
having similar interlayer spacings [table 1]. 

 
Figure 2. XRD data of 35% (a) and 50% (b) Pluronics F127 

templated carbon. 

Following the R ratio, c-axis crystallite length 
was calculated from (002) peak parameters[7] 
[table 1]. Lc was used for qualitatively 
understanding[3] the vertical stacking order of the 
graphene layers due to only (002) peak alone had 
participated in the calculation, and the effect of 
other reflections were not eliminated by band 
separation, but it could still show a bigger picture 
of the Lc. 35% Pluronics F127 sample carbonized 
at 1300 oC had Lc more than 5 times of the rest of 
the samples, highlighting its much stronger 
graphitic feature. As the variation of the Lc was 
small for the rest of the samples [table 1], the 1100 
oC and 1200 oC carbonized 35% and 50% 
Pluronics F127 samples and the 1000 oC 
carbonized 35% Pluronics F127 samples could be 
considered qualitatively similar. 

Unlike the Lc, the a-axis crystallite length La
[7] 

could be approximated in a much higher accuracy 
from Raman spectroscopy spectral bands fitting. 
In Raman spectroscopy of the samples, the first 

order band occurred within 1000-1750 cm-1 
(figure 3 a b) and the second order band occurred 
within 2000-3500 cm-1 (figure 3 c d), the samples 
were analyzed with an excitation wavelength of 
532 nm. The measured first order band was 
broken down into the well-known D1, D2, D3, D4, 
and G bands to carbonaceous material[7], which 
were located at 1350, 1620, 1500, 1200, and 1580 
cm-1 respectively using Lorentzian line shape 
fitting (figure 3 a b). The major peaks in the 
spectral breaking down was D1 and G band, 
correlating to A1g and E2g vibration modes 
respectively[1]. According to Sadezky et. al[1], the 
D1 band was assigned to defection from edges of 
graphene layers, and G band was assigned to 
graphitic lattice vibrations[1]. It was also 
mentioned that the D2 band appeared at the 
shoulder of G band could be caused by graphene 
layer intercalations, D3 band was caused by 
amorphous carbon, and D4 band could arise from 
sp2-sp3 bond stretching vibration. 
   35% Pluronics F127 templated carbon 
showed increasing trend in ID/IG from 1000 oC to 
1200 oC which was the feature of turbostratic 
carbon material[3]. However, there was a rapid 
drop in ID/IG from 1200 oC to 1300 oC that the 
height of the two peaks lied evenly [figure3 a], 
this transition aligned well with the suddenly 
increased Lc and R ratio from XRD analysis [table 
1]. Besides, correspondence between La and R 
ratio was reasonable because with increasing a-
axis crystallite lengths, the graphene layers were 
more ordered causing lower intercalation 
occurrences[5]. The estimated parameters were 
then confirmed from Raman second order band 
shape.  
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Figure 3. Raman spectra of 50% Pluronics F127 templated 

carbon a) first-order band; b) second-order band; 35% 

Pluronics F127 templated carbon c) first-order band; d) 

second-order band. 

The second order band from 2000 to 3500 
cm-1 had its significance in highlighting structural 
order of the carbon materials[3]. The major 
information from second order D1 band (2*D1) 
was extracted from observing the 2700 cm-1 peak 
height in comparison to the 2900 cm-1 peak. The 
higher the 2700 cm-1 compared the 2900 cm-1 
peak, the higher the 2*D1 band, indicating higher 
structural order. Among the second order bands of 
the samples [figure 3 c d], structural order 
increased with increasing carbonization 
temperature. By comparing the two general peaks 
in the second order bands, the La calculated from 
the first order bands and R ratio calculated from 
XRD analysis were matched with the trend. The 
1200 o C carbonized Pluronics F127 samples had 
similar parameters [Table 1] and second order 
band shapes, while the 1100 oC showed 
differences in both Raman second order bands 
and some of the parameters. 

   In conclusion of the microstructure analysis, 
for the microstructure to be controlled, it would 
be the best to compare in between 35% and 50% 
Pluronics F127 templated carbons at 1200 oC.  
 
3.3 Galvanostatic Performance  
     The battery cycling tests started from a low 
C-rate of 0.033, because increasing capacities by 
cycles were observed in earlier 0.1 C discharge 
and charge cycles. Chantal et. al also had a similar 
issue of slight increment in capacities by cycles in 
the voltage vs. specific capacity plots[3]. To tackle 
this problem, 0.033 C was used for the first two 
cycles (figure 4a). Although there were still 
increasement in capacities, the performance was 
much better than the 0.1 C cycle.  

In half cells assembled from the anode 
coated with 35% Pluronics F127 templated 
carbon at 1000 to 1300 ℃, and 50% Pluronic 
F127 templated carbon at 1100 and 1200 ℃. The 
reversible capacity of 70-293 mAh/g was 
achieved from 9.9 mA Galvanostatic cycles 
(figure 4a). 50% Pluronics F127 templated 
carbon at 1200 oC had top performance of 293 
mAh/g, and 35% Pluronics F127 templated 
carbon at 1100 oC had second best performance 
of 250 mAh/g (figure 4b). 35% Pluronics F127 
templated carbon at 1000 oC only had 25 mAh/g 
plateau capacity. Initial coulombic efficiencies 
were the highest for 50% Pluronics F127 
carbonized at 1200 oC, and then the 35% F127 
carbonized at 1100 oC, specific values were 
recorded in table [2]. 

 
3.4 Sodium Storage Mechanism 
   Pore filling of sodium ion into pores was 
previously studied by Heather et. al[2], claiming 
that pore filling occurred at low voltage region (< 
0.1 V). Sodium storage in hydrothermal carbon 
derived from various carbonization temperatures 
were carefully studied, major finding was that 
bigger pores might result in better sodium ion 
capacity but optimizing the microstructure for 
sodium ion diffusion needed to be done 

631



simultaneously for improving performance. Pore 
sizes from 1-5 nm were achieved from increasing 
the carbonization temperatures, however, because 
of increasing temperature, fewer diffusion 
pathways and interlayer spacing were resulted 
together with larger pore diameter[2]. In this 
research, different pore sizes were achieved with 
similar microstructures, which was discussed in 
the microstructure section. Specific capacity and 
plateau capacity vs. slope capacity was concluded 
from the second 0.033 C cycle for all 
samples[Table 2], with plateau region taken from 
below 0.1 V.  

Sodiation capacity would be compared 

between pore diameters of 1.68±0.067 nm and 
3.30±0.181 nm, from 1200 oC carbonized 35% 
and 50% Pluronics F127 samples. The 
microstructure analysis from available 
characterizations indicated the two carbon 
materials were structurally similar. In the pore 
morphology section, it was known that the 
number of 1.68 nm pores would not be less than 
3.3 nm pores, and the number of 6.5 nm pores was 

less 50% Pluronics F127 templated carbon with 
3.30 nm pores. The plateau region capacity of 50% 
Pluronics F127 templated carbon was 1.4 times 
that of 35% Pluronics F127 templated carbon, 
indicating the 3.3 nm pores had better capacity 
than 1.68 nm pores, taking into consideration the 
higher number of 6.5 nm pores within the 35% 
Pluronics F127 templated carbon could 
overestimate the capacity for 1.68 nm pores. This 
comparison might indicate that in similar 
microstructure, 3.3 nm mesopores stored greater 
amount of sodium ions than 1.68 nm micropores, 
with the influence of extra 6.5 nm pores, the 
finding needed to be further examined. 

The 1100 oC 35% Pluronics F127 templated 
carbon showed promising capacity of 250 mAh/g, 
but it could not be compared with Pluronics F127 
templated carbon carbonized at the same 
temperature because they were not structurally 
similar. To utilize this data, more 
characterizations would be needed. 

 
 

 35% 

1000℃ 

35% 

1100℃ 

35% 

1200℃ 

35% 

1300℃ 

50% 

1100℃ 

50% 

1200℃ 

Specific Capacity (mAh/g) 67.6 248.6 222.7 N/A 232.6 293.1 

Plateau Capacity / Sloping 

Capacity 

N/A 3.52 3.16 N/A 2.77 3.95 

Table 2. Specific Capacity of different carbon samples  

Figure 4. a) Specific Capacity of the carbon anode at different current density; b) Galvanostatic discharge/charge profile of samples from 1000 

to 1200 ℃ in the second cycle; c) Galvanostatic discharge/charge profile of the 1st cycle to 5th cycle from 1000 to 1200 ℃ 
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Conclusion and Outlook 
   Carbon materials templated with Pluronics 
F127 generated different templated pore sizes. 
Different carbonization temperatures were used 
to carbonize the precursors. Carbon materials of 
similar microstructures were compared by 
galvanostatic cycling performance. Although 
there was the existence of an extra pore size, it 
could still give an idea of sodium ion pore filling 
preferred mesopores. More characterizations on 
the materials were suggested to provide better 
pore morphology information because the 
characterizations were lack of consistency in that 
section. 
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of N-Glycan Biomarkers for the Diagnosis of Colorectal Cancer  
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Abstract: Colorectal cancer (CRC) is the third most common cancer worldwide. However, current screening 
techniques often employ invasive methods. The existing literature supports the use of glycomic biomarker analysis 
as a minimally invasive alternative to these methods. As alterations in the glycosylation patterns of N-glycans in 
immunoglobulin G (IgG) have been associated with CRC progression, they have been proposed as the biomarkers 
to serve this purpose. This study aims to introduce the novel methodology of employing a Graph Neural Network 
(GNN) model to glycomic data for binary classification to aid in CRC diagnosis, overcoming a limitation of prior 
studies whereby the biochemical relationships between glycans, in the form of the glycosylation reaction network, 
were not captured in the model. This proposed model yielded an ROC-AUC (Receiver Operating Characteristic - 
Area Under the Curve) of 0.604, slightly outperforming the scores of benchmark comparison algorithms: Random 
Forest (0.583) and Linear Regression (0.593). However, the resulting AUC is still lower than those obtained in 
previous studies. Overall, this study establishes a promising foundation for the integration of GNNs into glycomic 
analysis, although further improvement is required to solidify GNNs as the primary algorithm of choice. 
 

Keywords: Colorectal Cancer, Biomarker, IgG N-Glycan, N-Linked Glycosylation,  
Machine Learning, Graph Neural Network, Graph Convolutional Network 

 
Introduction
Colorectal Cancer and its Detection 

In 2020, an estimated 1.9 million cases of CRC 
and over 930,000 deaths caused by CRC, occurred 
worldwide. This places CRC 2nd to lung cancer as 
the leading cause of cancer-related deaths. CRC also 
accounts for 10% of all cancer cases, placing it as 
the 3rd most common type of cancer. In comparison 
to these figures, by 2024, the number of annual new 
CRC cases is projected to increase 63%, up to 3.2 
million, along with a 73% increase in the number of 
deaths caused by CRC, up to 1.6 million.[1] Since 
visible symptoms may not be apparent in the early 
stages of CRC, it is often diagnosed at progressed 
stages when treatment options become limited and 
survival rates become diminished. Thus, it is crucial 
for the screening of CRC to be carried out in a timely 
manner, particularly if CRC exists in the 
individual’s family medical history. [2] The main 
drawback of currently employed screening 
techniques is their invasive nature, ranging from a 
digital rectal exam where a physical examination is 
carried out by a doctor to detect any abnormal 
rectum mass, to a biopsy where a small tissue sample 
is removed during a colonoscopy and studied in a 
lab. It is therefore of interest to investigate 
techniques which are less invasive and of lower 
costs through the utilisation of biomarker analysis, 
such as those obtained from blood samples. [3] 
Glycobiology, a subset of molecular biology 
focusing on the study of glycans, has shown promise 
in serving this purpose in the field of diagnostic 
medicine. [4] 

 
IgG N-Glycans 

Glycans are molecules composed of complex 
carbohydrate structures that play crucial roles in 

diverse biological processes and serve as integral 
components of numerous biomolecules. [5] N-
glycans are a particular type of glycan which are 
covalently attached to specific asparagine (Asn) 
amino acid residues in a protein's polypeptide chain. 
In the last decade, with the development of high-
throughput glycan analysis techniques, N-glycans 
have been extensively studied in IgG, a class of 
antibodies that aid in the immune system's response 
to infections and other foreign substances. This is 
due to IgG’s status as one of the most promising 
potential novel biomarkers for a person’s health 
status. IgG’s higher concentration, homeostatic 
stability, and half-life relative to other types of 
immunoglobulins in the bloodstream also make it a 
suitable choice of protein to perform glycomic 
biomarker analysis on. [6] The structure of N-glycans 
on IgG displays high responsiveness to 
environmental changes, and can provide not only 
insights into an individual’s lifestyle, but also the 
progression of various health conditions. [7] 

Glycosylation reaction networks include a series 
of enzymatic reactions, [8] Deviations in 
glycosylation patterns have significant effects on the 
structure and function of IgG, and consequently, on 
its cancer immunosurveillance capabilities. 
Although the exact relationship between IgG N-
glycans and CRC is not yet fully understood, 
specific abnormalities have been linked to CRC. [6] 

[7]   

By pairing this glycomic biomarker analysis 
with a novel implementation of a GNN model for 
binary classification of CRC, and analysing the 
model’s performance, this study aims to explore its 
potential to aid in the diagnosis of CRC. 
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Background 
Machine Learning and CRC Identification  

The recent emergence of artificial intelligence 
(AI) has brought about an interest in the potentiality 
of machine learning (ML) being used in the field of 
healthcare, addressing the complexity of various 
disease mechanisms that have previously posed 
challenges in the development of diagnostic tools 
which are cost-effective and time-efficient. [9] 
Neural networks, a class of models used in the field 
of ML, excel at recognising complex and non-linear 
patterns in data. Notable examples where neural 
networks have been employed include using 
Convolutional Neural Networks (CNN) to detect 
abnormal cardiac sounds that would have otherwise 
gone unnoticed by physicians, and using 
Feedforward Neural Networks (FNN) to diagnose 
chronic kidney disease (CKD) with near-perfect 
performance metrics. [10] [11]  
 
The Existing Literature 

Supervised ML models learn from training data 
comprising of features (inputs) and their 
corresponding labels (outputs); this enables them to 
learn to make label predictions on unseen data. [12] 
In the field of CRC, there have been many prior 
implementations of supervised ML models: 
investigating the use of different features such as 
colonoscopy images, genome sequences, and blood 
protein concentrations. However, these approaches 
to CRC diagnosis have drawbacks, namely: high 
invasiveness, significant costs, and low specificities 
to CRC, respectively. [13][14][15]. These challenges can 
potentially be addressed by using data obtained from 
glycomic analysis as the features of the model 
instead. 

While glycobiology is an emerging field of 
research, studies employing ML models to predict 
the link between glycosylation patterns and the 
incidence of CRC remain limited. Vučković et al [16] 
employed a regularised Logistic Regression model 
to discern between CRC patients and healthy 
controls using glycomic data from a subset of 760 
individuals from the Study of Colorectal Cancer in 
Scotland (SOCCS). Davies and Nakai [17] built upon 
this by proposing an alternative approach, 
considering multiple ML algorithms including a 
Soft-Voting Ensemble binary classifier, an 
XGBoost (eXtreme Gradient Boosting) model, and 
a Random Forest multiclass model. Data 
augmentation was also explored, utilising data 
scaling algorithms such as MinMaxScaler, 
StandardScaler, and RobustScaler. 
 
Embedding Biological Knowledge 

A limitation of the aforementioned studies of 
coupling ML models with glycobiology is the nature 
of the independent tabulated data the models were 
trained with. This tabulated data used for the 
models’ inputs contained only the abundances of 

each glycan: failing to encapsulate the biochemical 
relationships within the biological systems that gave 
rise to that data in the first place. [18] The utilisation 
of GNNs can address this limitation by representing 
these relationships in a graph structure: each edge is 
mapped to an enzymatic reaction pathway within the 
glycosylation reaction network [19], and each node 
feature represents the relative abundance of one of 
the unique IgG N-glycans. These graphs are then 
passed into the supervised ML model as the input 
instead. This methodology embeds an implicit 
biological understanding of the glycosylation 
reaction network into the model, which was 
previously absent. 
 
Dataset Overview 
Data Source 

The data used in this study is a subset of the 
SOCCS dataset that was used in the previously 
mentioned studies by Vučković et al. [16] and Davies 
and Nakai [17]. This contained the glycomic data of 
1413 CRC patients and 538 matching controls of age 
(± 1 year), gender, and region of residence. During 
population sampling, the study aimed to 
prospectively recruit incident cases of CRC in 
patients ranging from the ages of 16 to 79 who 
presented to surgical units of Scottish hospitals. To 
limit survival bias, this recruitment occurred within 
90 days of diagnosis. Meanwhile, controls were 
randomly drawn and invited from the Community 
Health Index, a register of all patients in the Scotland 
NHS (National Health Service), to participate in the 
study. [20] 

Blood samples were then collected and 
dispatched to the research centre within a 72-hour 
window from the time of collection. Centrifugation 
was employed to separate plasma from whole blood, 
and the isolation of IgG was carried out using 
monolithic plates featuring immobilised G Protein, 
a bacterial cell wall protein with a selective affinity 
for IgG. The remaining unbound proteins were then 
washed away from the plates with phosphate-
buffered saline (PBS). An intricate series of drying 
and incubation steps followed, releasing N-glycans 
from the surface of the IgG samples. These N-
glycans were then fluorescently labelled with 2-
aminobenzamide (2AB). Finally, using HILIC-
UPLC (Hydrophilic Interaction Ultra Performance 
Liquid Chromatography), in conjunction with a 
conventional integration algorithm, the abundances 
of 24 distinctive glycans were determined. [16] 

However, to prevent bias and improve 
generalisation to unseen data, not all of this data was 
used in this current study. [21] This is due to a 
significant data imbalance for individuals over the 
age of 60 (719 CRC patients and 4 matching 
controls). Hence, these samples were discarded, 
leaving a remainder of 1228 samples (694 CRC 
patients and 534 matching controls). Data regarding 
BMI (body mass index) was also unavailable for 238 
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individuals, and therefore was not used as a part of 
this study. 
 
Graphical Construction 

GlyCompare is a glycomic data analysis package 
which allows data independence in the data source 
to be corrected by producing intermediate glycan 
structures that may have been missed during the data 
collection phase, generating a fully-connected 
glycosylation reaction network. [22] Glycowork, a 
multipurpose package for glycan data science, was 
then utilised to visualise the resulting glycosylation 
reaction network. [23] These packages were used to 
transform the tabulated data subset from the SOCCS 
into a graph-structured dataset for use in this study. 
PyTorch Geometric, a library built upon PyTorch 
then provides the necessary tools to work with 
GNNs in Python, the programming language of 
choice. 
 
Methodology 
Data Splitting 

The pre-processed data was divided into 
training, evaluation, and testing datasets, as shown 
in Figure 1. It is imperative to split the data used to 
build any supervised ML model so that it can be later 
tested with the unseen portion of the data, providing 
a realistic assessment of how well the model is likely 
perform in practice. An 80-20 split was used to 
produce the training and testing datasets, a 
commonly adopted ratio in ML. [24]   This facilitates 
the model's access to a substantial dataset for 
learning, which increases its performance, without 
sacrificing the availability of data for testing. [25] A 
further 80-20 split was performed on the full training 
dataset to produce a smaller training dataset and the 
validation dataset to be used in hyperparameter 
optimisation. The validation dataset serves as an 
independent dataset to assess the model's 
performance with different hyperparameter 
configurations. [22] This split was also stratified, 
where the class proportion is preserved in each split. 
This ensures exposure to a representative sample of 
each class during both training and testing. [26]  

 
Figure 1. Overview of the proportions used during stratified 
dataset splitting into training, validation, and testing subsets, 
including the number of CRC patients and matching controls. 

 
Model Building 

To handle graph-structured data, a GNN model 
was a prerequisite. Various GNN models are 
available, including GATs (graph attention 

networks) and GRNs (graph recurrent networks), 
among others. The GNN model of choice, however, 
was a GCN. Convolutional operations, a defining 
feature of GCNs, allows local and global 
relationships between the glycans of each graph 
structure to be captured, as information is 
aggregated and propagated through each region of 
the graph. In addition, GCNs are conceptually 
simpler and computationally efficient in comparison 
to other GNNs, making them a logical choice to base 
a novel exploration into leveraging graphs for CRC 
diagnosis on. [27] 

A GCN contains 4 main distinct types of layers: 
input layers, graph convolutional layers, fully 
connected layers, and output layers, where 
everything in between the input and output layers are 
referred to as hidden layers. The input layer captures 
the features of individual nodes within the provided 
graph and organises this information into feature 
vectors. Graph convolutional layers then perform 
the aforementioned convolutional operations on this 
data, capturing information from a node’s 
neighbours and updating that node’s feature 
representation within the model. The fully 
connected layer serves as a global information 
integrator, connecting every node's updated feature 
vector to all others. [28] The output layer then 
transforms this high-dimensional representation into 
the desired output format, in this case, using a 
SoftMax function for soft binary classification 
 
Hyperparameter Optimisation 

To find the best model configuration, 
hyperparameter optimisation was performed using 
Optuna [30] with the objective function to be 
maximised being the AUC and the decision 
variables to be tuned being the hyperparameters 
listed in Table 1. Categorical suggestions were 
employed for all hyperparameters, except for the 
dropout rate, for which a float suggestion was 
utilised due to its continuous search space. 

25 trials were performed, each with 100 epochs, 
to find the determine the optimal hyperparameters. 
These numbers were selected to serve as a middle 
ground between allowing sufficient iterations and 
limiting computational demand. A learning curve 
was also later plotted, by confirming that the chosen 
epoch number sits on the plateau of the curve, the 
choice of 100 epochs was confirmed to be suitable 
with no overfitting or underfitting. [31]  

This entire process of 25 trials was repeated with 
3 different samplers, each with their own algorithm 
for locating the optima. This included the 
TPESampler: a sampler well-regarded for its 
consistently reliable performance [32], 
RandomSampler: a sampler based on independent 
random number generation to serve as a baseline, 
and NSGA-II: an attempt to investigate the use of an 
evolutionary genetic algorithm. [33]  
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Furthermore, 3 different variants of NSGA-II 
were evaluated, with a population size of 50, 100, 
and 500, respectively. Population size in genetic 
algorithms refers to the number of candidate 
solutions present in each generation; these solutions 
evolve over each iteration of the optimisation 

process. [33] Upon determining the optimal 
hyperparameters for each sampler, the resulting 
AUCs are compared. Subsequently, the 
hyperparameters associated with the overall best 
AUC are implemented into the model.

 
Table 1. Overview of the hyperparameters optimised, the suggested values provided to Optuna, and a description of each of their functions. 

Hyperparameter Suggestions Function 

Learning rate 10ିସ, 10ିଷ, 10ିଶ Controls step size optimisation step size 

No. of graph convolutional layers 2, 3, 4 Balances learning potential and feature 
capacity with overfitting No. of neurons in hidden layers 64, 128, 256 

Batch size 32, 64, 128 Number of graphs used in each training 
iteration 

Activation function ReLU, Leaky ReLU Introduces non-linearity to capture complex 
relationships 

Dropout rate 0 − 0.5 Proportion of neurons to drop during training to 
prevent overfitting 

Aggregation method Mean, Add, Max How information is aggregated during 
convolutional operations 

 
 
Model Training 

For the training of the model, Adaptive Moment 
Estimation (Adam) was chosen as the optimiser. 
Adam brings together ideas from two popular 
optimisation methods: Momentum and RMSprop 
(Root Mean Squared Propagation). It uses a moving 
average of past gradients from Momentum, helping 
the optimiser move consistently and navigate 
through flat or noisy search spaces. [34] Additionally, 
it adopts the concept of RMSprop by tracking the 
average of squared gradients. This adaptive feature 
adjusts learning rates for individual parameters 
based on their historical gradients, making Adam 
effective in handling varying gradients. [35] By 
combining these approaches, Adam became the 
versatile and robust optimiser of choice for this 
study.  
 
Evaluation Method 

To quantify the model's performance during both 
hyperparameter optimisation and model evaluation, 
a performance metric must chosen. AUC, a 
commonly used metric for binary classification of 
balanced datasets, was selected as the performance 
metric for this study. [36] 

The AUC is calculated from the metrics 𝑇𝑃 (true 
positive), 𝑇𝑁 (true negative), 𝐹𝑃 (false positive), 
and 𝐹𝑁 (false negative). 𝑇𝑃 and 𝑇𝑁 represent the 
number of correct predictions generated by the 
model, while 𝐹𝑃 and 𝐹𝑁 represent the incorrect 
positive and negative predictions, respectively. 
These 4 metrics can be visualised using the 
confusion matrix shown in Figure 2. 

 
To calculate AUC, Equations 1, 2, and 3 are used. 
 

Sensitivity = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Eq. 1) 

 

Specificity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Eq. 2) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
= 1 − Specificity (Eq. 3) 

 

 
 

Figure 2. A confusion matrix illustrating the classification 
outcomes (𝑇𝑃, 𝑇𝑁, 𝐹𝑃, or 𝐹𝑁) based on actual and predicted 

positive or negative values. [37] 

 
Sensitivity gives the proportion of positive cases 

that were detected, and specificity indicates the 
proportion of correctly identified negative samples. 
Thus, a high 𝑇𝑃𝑅 (true positive rate) and a low 𝐹𝑃𝑅 
(false positive rate) are desired. However, at 
different thresholds, the model yields varying values 
𝑇𝑃𝑅 and 𝐹𝑃𝑅. A threshold is a value which an ML 
model uses to determine the confidence level at 
which a prediction is assigned as positive. The 
choice of thresholds can be arbitrary and depends on 
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the level of strictness the model builder wants to 
impose on the model. For this study, a stricter 
threshold may lead to some CRC cases going 
undetected, while a more relaxed threshold will lead 
to a greater number of incorrect positive diagnoses. 
Thus, due to the intricate nature of the threshold, 
especially in the medial field, AUC was chosen. 

The final step in calculating the AUC involves 
taking the area under the ROC curve obtained by 
plotting the 𝑇𝑃𝑅 against the 𝐹𝑃𝑅 values at different 
thresholds. Thus, negating the need for a specified 
threshold. Combined with the popular usage of 
AUC, this approach also facilitates more accurate 
comparisons with other pre-existing studies.  

AUC has a value ranging from 0 to 1: where 0 
indicates the worst performance, 1 signifies that all 
label predictions are correct, and 0.5 is equivalent to 
random classification. This is shown in Figure 3. 
Although there are no fixed criteria for AUC, 
generally, an AUC of 0.7 - 0.8 is generally deemed 
acceptable, a value of 0.8 - 0.9 is good, and a value 
over 0.9 suggests an outstanding model that can 
reliably perform binary classification. [38] 

 

 
Figure 3. ROC curves corresponding to binary classifies of 

varying performances. The position of the star corresponds to a 
classifier with perfect predictive performance. [39] 

 
Model Assessment 

With the GCN model configured with the tuned 
hyperparameters, the model was trained on a 
combined dataset comprising both training and 
validation data. The model was then tested on the 
unseen test dataset, evaluating its performance using 
the AUC.  

Training ML models is an inherently stochastic 
process. Depending on the way the dataset is split 
into training and testing subsets, processes such as 
weight initialisation and data shuffling can differ. 
Thus, the same model with the same dataset could 
yield different results each time it is run. [40] While 
this stochasticity can enhance the model's ability to 
generalise its performance [41], it prevents the 
conditions in which the model was trained and tested 
from being recreated, which is important for 
research purposes.  

To mitigate this and ensure the obtained AUCs 
are reliable and reproducible, seeding was 
introduced, fixing the initial conditions for the 

random processes present in the model, including 
data splitting and weight initialisation. [40] 

Nevertheless, even with seeding, there can still 
be some variations in performance from run to run. 
To obtain a representative AUC, for each seed, the 
configured model was run 5 times and the median 
AUC across these runs was taken as the AUC for 
that particular seed. 

The choice of using the median as the measure 
of central tendency was because, unlike the mean, 
the median is less sensitive to outliers and extreme 
values. Thus, making the median the more robust 
measure when dealing with a limited number of runs 
that may not fully characterise a normal distribution. 
[42] 

To account for the reproducibility of the results 
and the variability in the model’s performance, the 
model was also run separately across 8 different 
seeds, creating distinct training and testing datasets 
for each seed. The median of the AUCs calculated 
for each of the 8 different seeds is then reported as 
the final AUC for the model. 
 
Results & Discussion 
Obtained AUC of the proposed GCN model 

By running the model 5 times for each seed, and 
reporting the AUC of each run, the median AUC of 
each seed and their interquartile ranges (IQR) were 
calculated. These values are detailed in Table 2.  
 
Table 2. Overview of the median AUC and IQR obtained from 

the GCN model for 8 different seeds. 
Seed Median AUC IQR 

A 0.631 0.0047 
B 0.572 0.1461 
C 0.606 0.0001 
D 0.604 0.0011 
E 0.588 0.1876 
F 0.648 0.0005 
G 0.581 0.1658 

 
The final representative AUC for the model is 

taken as the median of these AUCs: a value of 0.604, 
obtained from seed D. The interquartile range (IQR) 
of the median AUCs across the 8 seeds was also 
calculated to be 0.0404. 

With the final AUC of 0.604, the model has some 
predictive power (AUC > 0.5), but still warrants 
further improvement in order to be considered as a 
reliable model (AUC > 0.7). The large IQR of 0.404 
between the seeds also implies high sensitivity to 
changes in the dataset used and poor generalisation 
(ability to perform well on different datasets). 

It can also be noted that seeds with higher AUCs 
have lower IQRs, and vice-versa. This signifies a 
high sensitivity to the stochasticity of the learning 
process and poor robustness, being unaffected by 
outliers and unexpected conditions, when 
encountering specific data splits and model 
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configurations. [43] Thus, methods to improve the 
model’s stability may need further exploration.  
 
Comparative Analysis with Benchmark Algorithms 

To gain a better understanding of the 
performance of the GCN model and compare its 
performance with models using tabulated data, 2 
other ML algorithms, Logistic Regression (LR) and 
Random Forest (RF), were trained using the same 
dataset and seeding. Both of these algorithms are 
commonly used in ML and are simpler in their 
structure, providing good benchmarks for the GCN 
model. [44] RF has also been recognised for its 
effectiveness in disease identification.[45][46] The 
results are summarised in Table 3. 
 

Table 3. Comparison of the AUC and IQR obtained from the 
GCN model to the benchmark algorithms (LR and RF). 

Algorithm Final AUC IQR 
GCN 0.604 0.0408 
LR  0.593 0.0573 
RF  0.582 0.0808 

 
Comparable performance was observed between 

all 3 algorithms, with the GCN model marginally 
outperforming the others. The performance 
improvement attained by the GCN model, even if 
slight, shows the potential leverage of incorporating 
biological knowledge into ML models. A more 
sophisticated model would be assumed to further 
take advantage of the graphical nature of the dataset. 

Nevertheless, it is important to acknowledge the 
large IQRs in all 3 algorithms. LR and RF are not 
trained stochastically, unlike GNNs. Therefore, this 
may hint at the fact that the poor generalisability 
originated from the dataset used in training and 
testing, and not the models themselves. [47][48] 
Inadequacy of the training dataset in representing 
the testing dataset’s characteristics results in poor 
performance in supervised ML; a larger dataset with 
sufficient diversity can mitigate this. [49] 

It is also crucial to note that both LR and RF 
are expected to outperform GNNs when handling 
smaller datasets such as this. [44] Had the dataset 
been larger, the GCN model would be expected to 
outperform LR and RF by a greater margin. In 
addition, a defining characteristic of LR is the 
underlying assumption of feature independence 
associated with LR [45]; an assumption that does not 
hold with glycomic data, which is multicollinear and 
interdependent. The fact that LR still performed as 
well as others further solidified the fact that the 
dataset itself had a large influence on the result. 
 
Comparative Analysis with Previous Studies 

To compare the performance of the proposed 
GCN model with other models in the existing 
literature, a comparison was conducted with the 
models from the studies by Vučković et al [16] and 
Davies and Nakai [17], as shown in Table 4. 

The results indicate that the proposed GCN 
model exhibits lower performance in comparison to 
those in these previous studies. Since the difference 
was unlikely to have been caused by the algorithm 
choice, as established in the previous section, the 
difference in methodologies between the studies was 
explored. 

 
Table 4. Comparison of the AUC and IQR obtained from the 
proposed GCN model to other algorithms utilising the same 

glycomic dataset from the SOCCS. 
Algorithms  Final AUC 

LR [16] 0.755 
LR [17] 0.696 

SVE (Soft-Voting 
Ensemble) [17] 0.727 

XGB (XGBoost) [17] 0.723 
RF [17] 0.722 

SVM (Support 
Vector Machines) [17] 0.702 

GCN 0.604 
 

A difference in performance can be attributed to 
the differences in the features used: age, sex, and 
BMI were included by Davies and Nakai. [17] While 
investigating a model based on age and sex alone did 
not show significant discriminative power, BMI is 
known to be correlated with CRC risk [51]. Another 
consideration is the use of data imputation to 
compensate for missing BMI values in some 
samples, a potential source of classification bias. [52]  

Instead of the 694 CRC patients and 534 
matching controls used in this study, a larger and 
different subset of the SOCCS dataset was used by 
Vučković et al. [16] 760 patients and 538 matching 
controls were used, which included the samples 
neglected in this study due to an imbalance in labels 
for individuals over 60 years of age. The inclusion 
and exclusion criteria were not mentioned in the 
study, and therefore, the specifics of any possible 
class imbalances, another source of classification 
bias, are unknown. [21]  A validation technique 
known as non-nested folding was also used which 
may introduce an optimistic bias in the final AUC 
calculation. [53] 
 
Comparative Analysis with Models of Other 
Features 

Table 5 compares the performance of the 
proposed glycomics-based model with alternative 
biomarkers for CRC identification. These 
alternatives include more established methods such 
as Zhou et al.’s [13] utilisation of CNNs in large-scale 
colonoscopic screening, and cutting-edge 
biomarkers such as multi-platform transcriptomics 
and whole-genome sequencing used in Long et al.’s. 
[54] and Wan et al.’s studies.14] Other emerging CRC 
biomarkers have also been studied. The use of blood 
count and urinary polyamines by Hornbrook [55] and 
Nakajima [56] explored the use of these features in 
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identifying high-risk patients for early CRC 
detection, although only 59 samples were used by 
Nakajima for result validation. Li et al.’s [15] and 
Zhao et al.‘s [57] studies of blood protein and gut 
bacteria have also shown promising results. 

Despite the current substantial performance gap 
observed between the glycomics-based model and 
its alternatives as shown in Table 5, there are unique 

advantages inherent to glycomics that place it above 
the others in one way or another, from its non-
invasiveness compared to colonoscopy images, 
simplicity compared to multi-platform 
transcriptomics, to higher specificity to CRC 
compared to blood count - making glycomics a 
valuable area of research in the field of CRC. [7]

Table 5. Comparison of the AUC obtained from the proposed GCN model to other CRC classification 
models with non-glycomic biomarkers, adapted with modifications from Li et al.[ 15]

Conclusions 
Key Takeaways 

This study is a first attempt at incorporating 
biological knowledge into a glycomics-based ML 
model, improving upon prior models by considering 
the enzymatic relationships between the glycans, 
and thus, sets a foundation for this novel method of 
CRC identification. The final obtained AUC of the 
GCN model was 0.604 with an IQR of 0.0404, 
between 8 different seeds. This AUC implies a 
degree of predictive power for CRC identification, 
although, an AUC of 0.70 would be needed to be 
achieved for the model to be considered somewhat 
reliable and its lack of robustness and 
generalisability still need to be addressed. 

Upon comparison with the benchmark 
algorithms, the GCN model slightly outperforming 
RF and LR, despite the small dataset, showcases the 
potential of incorporating biological knowledge into 
ML models. However, in comparison to models 
utilising non-glycomic data, it is evident that the 
AUC of this GCN model falls short, signifying a 
need for substantial improvements in its predictive 
power if glycomics were to become the predominant 
biomarker of choice to diagnose CRC.  

Overall, this study supports the continued 
research of using GNNs, with larger datasets and 
more rigorous methods, to fully explore the 
capabilities of this novel methodology as well as to 
address its limitations. The utilisation of GNNs with 
glycomics for CRC diagnosis is still in its early 
stages, and there is still ample room for exploration 
and refinement. The results and different 
comparisons outlined in this study show promising 
potential for further advancements in the future. 
 
 
 
 

Future Considerations 
Several limitations and potential improvements 

in the dataset have been identified in this study. An 
increase in dataset size and data diversity is linked  
to better GNN performance and generalisability.[58] 
[59] [60]. Comparisons with the model of other studies 
also suggested that usage of other features in 
conjunction with glycomic data may help improve 
the predicting power of the model as well. 

The model can also be further refined. Cross-
validation allows for better generalisability and soft-
voting can give a more accurate measure of the 
model’s performance. [61] [62] Further exploring other 
optimisers, different GNN models and 
hyperparameters for tuning can also be done.  
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Abstract

Reliable equations of state (EoS) for complex fluids are necessary for fields ranging from chemical-
process simulation to computer-aided molecular design, but the need for extensive experimental
data limits the applicability of EoS, particularly the Statistical Associating Fluid Theory (SAFT). We
aim to address the challenges of obtaining accurate SAFT EoS parameters, employing the Julia
SciML ecosystem to create a machine-learning (ML) model using a di�erentiable SAFT EoS. Trained
on saturation pressure and saturated liquid density data, this model uses a molecular fingerprint to
output SAFT-VR Mie parameters, incorporating a physical foundation into its learning process. We
validate the performance of our model using 80 unseen alkanes and demonstrate that the parameters
generated align with expected physical trends. We also assess the predictive performance of our
model for unseen properties such as isobaric heat capacity, highlighting the value of embedding
physical laws in ML thermodynamics. In this work, we present the first physics-informed neural
network to use SAFT-VR Mie and provide the first open-source ML model incorporating a SAFT-type
EoS.

1. Introduction

Accurate thermodynamic models are a funda-
mental component of molecular design [1] and
chemical-process simulation [2]. Obtaining reli-
able parameters for an Equation of State (EoS)
requires a large quantity of experimental data,
which may be challenging to gather. Predictive
methods where thermodynamic properties are
obtained from molecular structures have seen
much interest over the last few decades [3–6].
In group-contribution approaches, molecules

are “coarse-grained” into groups (Figure 1),
where each group contributes a pre-determined
amount to the overall EoS parameters [5].
Coarse-graining methods present challenges,
however, notably the di�culties of subdividing
a species into components. Accurately account-
ing for intramolecular e�ects such as steric hin-
drance requires the definition of larger second-
order groups, the contribution of which must

be separately quantified.

CH

CH

CH2

3

Figure 1: 2,3-Dimethylheptane, coarse-grained
for a group-contribution approach.

The adaptability of machine-learning (ML)
models may help overcome some of the limi-
tations of group-contribution methods; entire
molecular structures may be inputted into an
ML model, eliminating the need for coarse-
graining. There has been a significant rise in
the popularity of ML over the last decade, but

Approach Type Training data Description
Cubic EoS [7] Experimental Critical properties and acentric factor
Helmholtz free energy [8] Molecular dynamics Learning A for a Mie fluid
PCP-SAFT [9] Experimental Parameter regression
PCP-SAFT [10] Pseudo-experimental Physics-informed (surrogate)
PCP-SAFT [11] Experimental Physics-informed (direct)

Table 1: Summary of recent approaches to machine-learning thermodynamics.

1

644



reliably extrapolating beyond the data range on
which a model is trained is challenging. If used
for predictive thermodynamics, the model accu-
racy may be enhanced if a physical basis is in-
corporated into the training. “Physics-informed”
MLmay output more-accurate estimates of ther-
modynamic properties.
Incorporating the Statistical Associating

Fluid Theory (SAFT) into the ML model would
introduce physical constraints into the training.
SAFT is a powerful class of EoS in which fluids
are modelled as chains of segments with associ-
ating sites in a specified potential, and thermo-
dynamic properties may be estimated given the
parameters of this representation of a species.
As such, an ML model trained to output SAFT
parameters corresponding to high-accuracy es-
timates of properties would benefit from the
physical basis of a SAFT-type EoS.
In Table 1, we summarise recent work in

which ML is applied to predictive thermody-
namics. Biswas et al. [7] presents a graph
neural network that outputs the critical point
and the acentric factor, which may be used to
parameterise many types of cubic EoS. Cha-
parro and Müller [8] have taken a di�erent ap-
proach, developing an ML EoS by training a
neural network on molecular-dynamics simula-
tion data. Regarding SAFT, three recent works
investigate the use of Perturbed-Chain-Polar
SAFT (PCP-SAFT) with ML. Felton et al. [9]
train on a database of PCP-SAFT parameters,
while Habicht, Sadowski, and Brandenbusch
[10] used an ML-model substitute for PCP-SAFT
trained to accept parameters and output ther-
modynamic properties. Winter et al. [11] incor-
porated PCP-SAFT into their training, encoding

a strong physical basis into their ML model.
We elaborate on these works by integrating

SAFT with a variable-rangeMie potential (SAFT-
VR Mie) into an ML workflow, using a molecular
fingerprint as our model input.
The remainder of this study consists of a meth-

ods section, in which we present the compo-
nents of our workflow. We then analyse the
performance of our model, discussing the im-
plications of our results.

2. Methods

2.1. Overview
Our workflow, illustrated in Figure 2, consists
of two main components: a pre-training step
involving PCP-SAFT parameters, and a main
loop considering pseudo-experimental data. We
detail the parts of our workflow in this section.
The relative mean-square deviation (RMSD) is
defined by Equation 1, where yi,reference is the
training data and yi,predicted is the output from
SAFT-VR Mie.

RMSD =
1

N

NX

i=1

✓
yi,predicted � yi,reference

yi,reference

◆2

(1)

2.2. Molecular Fingerprints
Molecules are inputted into our model as finger-
prints, vectors of ones and zeros encoding their
structure. We use an atom-pair algorithm to
generate these vectors [12], which enumerates
the number of atoms of a given type along the
shortest path between all pairs of atoms in a
molecule. We remove any elements common

Molecular  
Fingerprint

Machine-
Learning Model

Relative Mean-
Square Deviation

Molecular  
Fingerprint

Relative Mean-
Square DeviationSAFT-VR MieMachine-

Learning Model
Pseudo-

Experimental 
Data

PCP-SAFT 
Parameters

The PCP-SAFT-trained ML model is the starting ML 
model for training on pseudo-experimental data.

1B. Unique vector of 
ones and zeros

2B. SAFT-VR Mie 
parameters

5B. ML-model update

4B. Pseudo-experimental 
saturation data3B. Saturation data

1A. Unique vector of 
ones and zeros

4A. ML-model update

2A. PCP-SAFT 
parameters

3A. Known PCP-SAFT 
parameters

Figure 2: Workflow overview. The ML model is first pre-trained on PCP-SAFT parameters (blue),
before being trained on pseudo-experimental data (green).
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to all fingerprints at each position, as these do
not contribute any meaningful information for
distinguishing between molecules.

2.3. Neural Networks

Hidden Output
(𝑚, 𝜎, 𝜀, 𝜆 , 𝜆 )

⋮⋮
Input

(Fingerprint) r a

Figure 3: Illustration of a multilayer perception,
where the green dots and lines represent neu-
ron and connections, respectively.

We input our molecular fingerprints into a
multilayer perceptron, a neural network char-
acterized by its layered, fully connected archi-
tecture (Figure 3). Each layer consists of a set
of neurons, where each neuron in a layer is
connected to every neuron in the next layer.
These connections are weighted, where train-
ing a model involves adjusting these weights.
Within each neuron, a non-linear function is
applied to the sum of the inputs, generating
the output. We use the scaled exponential lin-
ear unit as our nonlinear “activation function”,
which increases learning robustness and avoids
vanishing gradients [13].
The ML architecture we use has a decreas-

ing number of nodes per hidden layer (Table
2). Reducing model complexity mitigates the
possibility of overfitting the network to data.
Additionally, the 32-neuron layer outputs an
information-rich vector that encodes the most
important properties of the training molecules,
increasing the likelihood that the model outputs
accurate predictions of molecular properties.
We use a learning rate of 5e-6 and train the

neural network using adaptive moment esti-
mation (ADAM), an extension of gradient de-
scent that incorporates momentum and per-
parameter scaling [14]. By adjusting the ef-

fective learning rate based on the gradient his-
tory, ADAM enables faster convergence and
increased stability.

Hyperparameter Value
hidden layers 4
hidden size 1 1024
hidden size 2 512
hidden size 3 128
hidden size 4 32
activation function SELU
optimizer Adam
learning rate 5⇥10�6

Table 2: Structure of the neural networks
trained in this work.

2.4. SAFT-VR Mie
The neural network outputs are the parameters
for SAFT-VR Mie, a flavour of SAFT developed
by Lafitte et al. [15]. Its parameters include m
and �, representing the number of segments per
chain and segment size respectively. SAFT-VR
Mie also uses the variable-range Mie potential
(Equation 3),

C =
�r

�r � �a

✓
�r

�a

◆ �a
�r��a

, (2)

uMie(r) = C✏

✓⇣�
r

⌘�r
�
⇣�
r

⌘�a
◆

, (3)

where ✏, �r, and �a, correspond to the potential
depth, and the repulsive and attractive expo-
nents respectively. The Helmholtz-explicit form
of SAFT-VR Mie is given by,

A

NkBT
=

Aideal
NkBT

+
Amono.
NkBT

+
Achain
NkBT

+
Aassoc.
NkBT

, (4)

where A is the Helmholtz free energy, N is the
number of particles, T is temperature, and kB is
the Boltzmann constant. “mono.” refers to the
contribution from monomers interacting via a
Mie forcefield, “chain” the contribution from
the formation of chains of lengthm, and “assoc.”
the interactions between molecules with asso-
ciation sites. As we only consider alkanes, we
do not consider the association term and fix �a

to 6. We use the BasicIdeal model provided by
Clapeyron.jl for the ideal contribution, which
only considers translational modes.

2.5. Physics-Informed Loss Function
The optimisation objective, or “loss function”,
maps from the output of the ML model to a

3
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scalar error metric to be minimised. Typically,
automatic di�erentiation (AD) is used to eval-
uate the gradient of the error metric with re-
spect to the ML model parameters, informing a
gradient-step, or model update.

2.5.1 Property Solvers

Molecular  
Fingerprint

Machine-Learning 
Model

Relative Mean-
Square Deviation

Pseudo-
Experimental Data

SAFT-VR Mie

Critical 
Solver

Temperature 
Mapping

Saturation Solver

Output predicted 
critical temp.

Output valid 
temp. range

Figure 4: Internal structure of the SAFT-VR Mie
block.

Much of the challenge of our approach is ro-
bustly and quickly solving for the saturation
envelope in an AD-compatible manner, given an
arbitrary set of SAFT-VR Mie parameters. Each
epoch in our workflow involves 80 critical-point
solves and 4000 saturation calculations. Should
these begin to fail, the model training may be-
come unstable, increasing the epoch times and
slowing the convergence.
To solve for the critical and saturation prop-

erties, we use the functions provided by Clapey-
ron.jl [16], crit pure and saturation pressure.
The critical point is defined using Equations 5
and 6, and the saturation envelope using Equa-
tions 7 and 8. µ is the chemical potential, V is
the volume, VL is the liquid volume, and VV is
the vapour volume.

✓
@2A

@V 2

◆

T

= 0 (5)
✓
@3A

@V 3

◆

T

= 0 (6)

p(Vl, T ) = p(Vv, T ) (7)

µ(Vl, T ) = µ(Vv, T ) (8)
To enhance the convergence characteristics of
the property solvers, we implement a cache of
the critical point and the lowest temperature on
the saturation envelope. The data obtained for
each temperature are then used as the initial
guess for the next saturation-property calcula-
tion (Algorithm 1).

Algorithm 1 Calculate saturation envelope
Require: ‘mol cache’ dictionary, molecule

name, SAFT parameters
1: ⇧ SAFT parameters
2: x0  mol cache[mol name]
3: v []
4: for T = Tmin to Tmax do
5: result  saturation pressure(⇧, T, x0)
6: x0  result
7: push back(v, result)
8: end for
9: return v

To obtain the derivatives of the saturation
pressure and liquid density, we follow the
method described by Winter et al. [11] where a
final iteration of a property solver is defined as
a ”perfect Newton step” (Equation 9 and 10).
Using the optimality conditions defined above,
we extend this approach to the critical-property
solver (Equation 11), enabling us to include the
critical temperature in the loss function. V is
the specific volume, sat denotes the property is
evaluated at saturated conditions, p is pressure,
crit. denotes the property is evaluated at the
critical point and ⇤ denotes a converged value.

Vsat,L = V ⇤
sat,L �

p(V ⇤
sat,L, T )� p⇤sat
@p(V ⇤

sat,L,T )

@V

(9)

psat =
A(V ⇤

sat,L, T )�A(V ⇤
sat,V, T )

V ⇤
sat,V � V ⇤

sat,L
(10)

Tcrit. = T ⇤
crit. �

@2A(V ⇤
crit., T

⇤
crit.)

@V 2
/
@3A(V ⇤

crit., T
⇤
crit.)

@2V @T
(11)

Equations 9, 10, and 11 enable us to solve for all
required thermodynamic properties outside of
the loss function, where writing AD-compatible
code is not necessary. A vector of converged
solutions is then passed into the loss function.
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2.5.2 Temperature Mapping

A common hurdle encountered when fitting
EoS parameters to saturation data is inconsis-
tency between the experimental and predicted-
property temperature ranges. If experimental
saturation data exists above the critical tem-
perature of the predicted phase envelope, it is
necessary to introduce amapping if the data are
to be compared. We explored three approaches
to this mapping.

Figure 5: Illustration of temperature mapping
applied during training (Equation 13)

In the first approach, all experimental data
points above the critical point of the current pre-
dicted phase envelope are ignored (Equation
12). Per Equation 13, we also map all tempera-
tures greater than 0.95T c,iter to 0.95T c,iter (Figure
5). Finally, we compare saturation pressures
and saturated liquid densities at the same re-
duced temperature (Equation 14). As the map-
ping between real and reduced temperature is
non-unique, we also include the critical point
of each compound in the error calculation.

Tignore =

(
T exp if T exp < T c,iter
nothing otherwise

(12)

Tredirect =

(
T exp if T exp < T c,iter
T c,iter otherwise

(13)

Treduced compare = T r,exp · T c,iter (14)

Here, T exp is the temperature at which the ex-
perimental data is sampled, T c,iter is the critical
temperature calculated from the parameters
predicted by the current iteration of the model,
and T r,exp is the reduced temperature at which
the experimental data is sampled, defined with
the experimental critical point.

2.6. Pseudo-Experimental Data
Given the predicted phase envelope from the
SAFT-VR Mie block, the RMSD is computed rel-
ative to a reference. As we aim to demonstrate
the utility of our workflow, we train our model
on pseudo-experimental data generated from
PCP-SAFT parameters [17]. We consider the
saturation pressures and saturated liquid den-
sities [18] of 80 alkanes.

mε/kB
mε/kB
mσ
mσ

3

3

Figure 6: SAFT-VR Mie parameter trends for
linear alkanes [15, 19].

We train our model on alkanes as we are in-
terested in obtaining physically significant pa-
rameters. The SAFT parameters for alkanes
form linear trends in molecular weight, so com-
parison with these reference curves presents a
means of validating the parameters output by
our ML model. Two of these trends are illus-
trated in Figure 6, and Equations 15, 16, and 17
are the fitted lines for each parameter combina-
tion, where M is the molecular weight. ↵Mie is a
modified van der Waals-like attractive constant
[15] defined by Equation 18.

m�3 = 1.898M + 18.28 (15)

m
✏

kB
= 8.203M + 36.25 (16)
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m
↵Mie

kB
= 3601M � 25020 (17)

↵Mie = �2⇡C✏�3

✓
1

�r � 3
� 1

�a � 3

◆
(18)

2.7. Pre-Training on PCP-SAFT Param-
eters

As each iteration of the training algorithm may
be quite slow, we accelerate convergence by
“pre-training” our ML model on PCP-SAFT pa-
rameters presented by Esper et al. [17]. This
significantly improved the initial guess of the
neural network state and is a form of transfer
learning [20]. �r is not a parameter of PCP-
SAFT, so we set its value to be normally dis-
tributed about 25 during pre-training, with a
standard deviation of 5.

2.8. Model Validation
Interested in the predictive capabilities of
our ML model, we conduct a five-fold cross-
validation to evaluate its performance. This
means that we divided the 80 alkanes into five
groups (folds), four of which are used to train
the model. The fifth fold is reserved for model
testing. In repeating this process five times, a
“validation set” of the 80 alkanes is obtained,
where all data are extrapolated from a set of
four training folds.
We distribute alkanes among the five folds

using three methods. Ordering by molecular
weight, we select the groups randomly, choose
each group of sixteen adjacent species (“strati-
fied”) or choose species at regular intervals in
this list (“interlaced”). The species at positions
one, six, eleven, etc. formed a group, for exam-
ple.
Unless otherwise indicated, we present re-

sults from the validation set. Additionally, we
omit methane from our analysis as it does not

contain any CH3 or CH2 groups, predicting
methane’s properties from the other alkanes is
consequently very di�cult. We find that the val-
idation data for methane is always an extreme
outlier.
The accuracy of the properties outputted by

the model was assessed using the Average Per-
centage Deviation (APD) and Average Absolute
Deviation (AAD), as defined by Equation 19 and
20, respectively. Explain variables.

APD =
100

N

NX

i=1

����
xi,pred. � xi,ref.

xi,ref.

���� (19)

AAD =
1

N

NX

i=1

��xi,pred. � xi,ref.
�� (20)

3. Results and Discussion

We present the validation and batch losses for
the three temperature mappings in Table 3. The
losses for the reduced approach were low, but
the APDs for three of the four computed prop-
erties are the highest of the three methods.
The ignore-points and redirect-points methods
were very similar in their performance, possi-
bly because we tended to overshoot the pseudo-
experimental critical point throughout training.
When this happens, there is no need to intro-
duce a temperature mapping, so the progres-
sion of the two models is near-identical. Redi-
recting the points produced a slightly better
validation batch loss. As such, all future results
use this mapping.
The evolution of the model parameters as

training progresses is shown in Figure 7. As
shown, the parameters converge to the refer-
ence lines determined in section 2.6, highlight-
ing their consistency with known parameters by
the end of training. This suggests our MLmodel
successfully “learnt” the mapping between a
molecular fingerprint and the SAFT-VR Mie pa-
rameters.

Metric Ignore Points Reduced Temperature Redirect Points
Training Batch Loss 0.0319 0.0108 0.0319
Validation Batch Loss 0.726 0.0507 0.721
Sat. Pressure APD / % 69.7 134 69.7
Sat. Liq. Density APD / % 8.82 8.21 8.82
Sat. Vap. Density APD / % 72.5 138 72.5
Isobaric Heat Capacity APD / % 9.93 10.3 9.93

Table 3: Comparison of the temperature-mapping approaches after 500 training epochs. Methane
was omitted from this analysis, the data are averages across all folds, and the interlaced cross-
validation was used.
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Sat. Pressure Sat. Liq. Density Sat. Vap. Density Isobaric Heat Capacity
Metric / bar / (mol l�1) / (mol m�3) / ( J mol�1 K�1)
Mean AAD 0.758 0.428 42.5 12.0
Median AAD 0.0675 0.253 2.76 9.19
Mean APD / % 58.7 6.80 62.2 14.0
Median APD / % 40.4 5.23 45.4 12.1

Table 4: AADs and APDs for properties obtained from the model SAFT-VR Mie parameters. These
data are averages over the five validation folds, excluding methane. The isobaric heat capacity was
computed at 1 bar.

m
σ

3
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ε/
k 

)
B
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)
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α/
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) B
3

Figure 7: Linear-alkane parameter evolution
during training compared with known trends.
The R2 values of the final predicted parame-
ters relative to the reference lines were 0.943,
0.974, and 0.866 for m✏, m�3, and m↵, respec-
tively.

Given the validity of the predicted parame-
ters, we present Clausius-Clapeyron plots for
a selection of alkanes in Figure 8. The pre-
dicted curves generally align with the pseudo-
experimental data, substantiating the success

of our workflow from the perspective of the
thermodynamic properties.

n-Pentane n-Pentane PE

n-Nonane n-Nonane PE
3-Ethylhexane 3-Ethylhexane PE

2,3-Dimethylnonane 2,3-Dimethylnonane PE
n-Hexadecane PEn-Hexadecane

2,2,4,4,6,8,8-Heptamethylnonane
2,2,4,4,6,8,8-Heptamethylnonane PE

Figure 8: Clausius-Clapeyron plots for a selec-
tion of species in the validation set (PE: Pseudo-
Experimental Data).

The AADs and APDs for saturation pressures,
saturated vapour and liquid densities, and iso-
baric heat capacities are presented in Figure
9 as box plots. The mean APDs of the satu-
rated liquid density and saturation pressure
are 6.90% and 58.7%, respectively. The satu-
ration pressure APD is high. However, looking
at its AAD in Table 4, the median is just 0.0675
bar. This suggests that the APD was distorted
by outliers in the low-pressure range, which is
seen in Figure 9. The saturation pressure mean
AAD is also about an order of magnitude larger
than the median, similarly indicating distortion
due to outliers.
The accuracy of the predicted saturated liq-
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Figure 9: AADs and APDs of some thermody-
namic properties using our model. The isobaric
heat capacity is computed at 1 bar.

uid density and saturation pressure data again
suggests that the model succeeds in predict-
ing the training properties from a molecular
fingerprint. However, the benefits of a physics-
informed ML model are most apparent in the
results for isobaric heat capacity. The model
was not trained on any isobaric heat capacity
data, but the mean APD is just 14%. Integrat-
ing SAFT-VR Mie within the machine learning
model increases the flexibility of the model; this
suggests that any type of thermodynamic data
could be used in training our model, irrespec-
tive of the amount of data of that type available.
Should real experimental data be used with our
workflow, this flexibility would likely be very
practical, given that experimental data ranges,
amounts, and types are often highly varied.
The results above were obtained using a 512-

bit atom-pair fingerprint, though we also con-
sidered other lengths (Table 5). We see that
the validation batch loss generally decreases

as fingerprint length increases, suggesting that
inputting a more detailed representation of a
molecule may improve the model performance.

Figure 10: Fingerprint performance for 1808
of the compounds considered by Esper et al.
[17], having removed stereoisomers. Red cells
indicate combinations where at least one du-
plicate occurred in the fingerprints generated.
The fingerprints were initially 16384 bits long,
and a radius of 6 was used, where applica-
ble. r, m, ap, p, and tt refer to rdkit, Mor-
gan, atom-pair, pattern, and topological torsion
fingerprint-generation algorithms, respectively.

We also explored other fingerprint-generation
methods, including a Morgan algorithm, which
enumerates the type of atom within a certain
number of bonds (”radius”) of every atom in a
species. We found this approach generated the

Number Bits Training Validation Average Jaccard
Number Bits (Initial) (Reduced) Batch Loss Batch Loss Coe�cient
512 259 0.0287 0.0622 0.7241
1024 327 0.0268 0.0610 0.7486
2048 363 0.0156 0.0433 0.7648
4096 369 0.0126 0.0390 0.7679
8192 370 0.0102 0.0393 0.7684
16384 370 0.0118 0.0414 0.7684

Table 5: ML model performance for di�erent atom-pair molecular fingerprint lengths, indicating that
a more-detailed representation of the input molecules increases the accuracy of thermodynamic-
property estimates.
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same binary vector for multiple alkanes in our
training set unless a very large radius was speci-
fied encompassing the entirety of eachmolecule
we consider. Specifying ever-larger fingerprint
radii is impractical, but the ML model cannot
di�erentiate between species if the fingerprints
are identical.
The Morgan algorithm was unsuited to our

system of alkanes, but it may be appropriate for
other families of compounds. In Figure 10, the
red squares indicate where a fingerprint pro-
duces any duplicate vectors for di�erent fami-
lies of compounds. To generate Figure 10 we
consider five fingerprint-generation algorithms
as well as the twenty-six combinations that are
possible from this set of five. We concatenate
the bit vector outputted by each algorithm to
combine the fingerprints.
Where a fingerprint generates a set of unique

bit-vectors for a family of compounds, we illus-
trate the average Jaccard Coe�cient in Figure
10. The Jaccard Coe�cient (Equation 21) mea-
sures the similarity between two sets, where
values of 1 and 0 indicate that the lists are iden-
tical or completely di�erent, respectively. The
Jaccard Coe�cient for each cell in Figure 10 is
the average value over all pairs of vectors for
each list of fingerprints generated for a chemi-
cal family.

J(A,B) =
|A \B|
|A [B| (21)

The similarity betweenmolecular fingerprints
has implications for the success of our workflow.
It would be more di�cult to di�erentiate be-
tween species with near-identical fingerprints,
for example. Equally, it is possible that the pre-
dictive power of a model would be hampered
if the fingerprints in the training set were very
di�erent; inaccuracy may arise in interpolating
between highly dissimilar bit vectors. The av-
erage Jaccard Coe�cient for our system of 80
alkanes only varies from 0.72 to 0.77 (Table 5),
so it is di�cult to assess the e�ect of changing
fingerprint similarity on our model’s predictive
capabilities. The e�ect of fingerprint similarity
may be more prevalent if simultaneously train-
ing on multiple families of compounds.

4. Conclusion

In this study, we developed a novel methodology
for training ML models to predict EoS parame-
ters. A physics-informed loss function was cen-
tral to our approach; we incorporated SAFT-VR
Mie into our workflow and directly trained on

pseudo-experimental data for 80 alkanes. The
SAFT-VR Mie parameters outputted by our ML
model are consistent with known linear trends
in molecular weight. We also performed a five-
fold cross-validation with our model, verifying
the accuracy of the output saturation pressures
and saturated liquid densities. The benefit of a
physics-informed loss function was particularly
apparent in our results for isobaric heat capac-
ity. The mean APD between our model outputs
and the pseudo-experimental data was just 14%,
even though our model was not trained on heat
capacity data.
We also explored the characteristics of di�er-

ent fingerprint-generation algorithms, ensuring
a unique representation of each molecule in our
training set was inputted into the ML model.
We extended this analysis to other fingerprint
algorithms and chemical families, providing a
reference for future work.
This work provides the first physics-informed

neural network to use SAFT-VR Mie and is the
first open-source ML model to incorporate a
SAFT-type EoS.

5. Future Work

Having demonstrated the functionality of anML
model incorporating SAFT-VRMie using pseudo-
experimental data, future work could involve
using experimental data with our workflow.
Following that, there are many opportunities

for improvement in the ML-model architecture.
This could take the form of modifying the num-
ber of layers and nodes within the MLP, explor-
ing di�erent molecular representations such as
those used in graph neural networks, or adding
in more-complex layers like multi-head atten-
tion, allowing for a more-expressive model.
Finally, modifications could be made to the

physics within the loss function. Primarily, the
addition of the association contribution would
open up the addition of many new compounds
to the training set, and the introduction of a
SAFT-� Mie parameterisation could present an
interesting avenue of exploration, enforcing a
group-contribution-like approach, while allow-
ing for whole-molecule e�ects.
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