IMmPERIAL COLLEGE LLONDON

DEPARTMENT OF COMPUTING

MENG InpIviDUAL PROJECT

Automated Creation of Infographic Event
Timelines from Text

Author: Supervisor:
Adam WILES Professor William KNOTTENBELT

June 17, 2017

Abstract

It is often said that a picture is worth a thousand words. This being a saying that takes on a far
more literal meaning in the context of an event timeline: “A graphical representation of a period of
time, on which important events are marked” [1]]. A timeline can be an incredibly insightful way
to visualise the sequence of events in a piece of text, appealing to our natural ability to recognise
patterns in an image to quickly reveal story sub-plots and significant character interactions. Yet the
benefits of such a representation are rarely observed; at present such timelines are often painstak-
ingly produced by hand, requiring us to first identify the events in our text, pick out any key details
we wish to reflect in the timeline, and finally deduce the best layout for the resulting timeline in

order to obtain the clearest insight.

However, significant progress has been made in the area of natural language processing in recent
years, enabling computers to better understand human language. These continued advancements
make the creation of timelines from text a potentially automatable process, and thus forms the over-
arching objective of this project. In the following report we describe and present a novel application
for the automated creation of event timelines for narrative texts, significantly reducing the amount

of effort required in order to observe the numerous benefits of such a representation.

Our contributions in the following work are three-fold. Firstly, we present a modified hierarchical
clustering method that proves effective at identifying the boundaries between distinct events within
narrative texts, shown in our evaluation to yield a set of natural events that align closely with those
users would expect; our approach additionally allowing the user to adjust the level of detail at which
events are identified. Secondly, we demonstrate the ability of force-directed graphs to create clear
and expressive event timelines that highlight the dynamic interactions between characters within a
text. Specifically, demonstrating the ability of force-directed graphs to balance an explicit underly-
ing structure with the emergent behaviour that makes them so appealing. Finally, we present a novel
end-to-end application for the semi-automated creation of infographic event timelines from text. As
a result, enabling users to easily and effectively generate their own infographic timelines for any
narrative, and providing the means to subsequently edit, explore, and understand the results through
an interactive timeline. We ultimately find the inaccuracies of existing NLP tools make it difficult to
achieve full automation of the process, however, with a little help from the user an accurate timeline

can be obtained with far less effort than at present.

In doing all of this, we also explore and experiment with a number of the current state-of-the-art NLP
tools, evaluate the current performance of these systems on narrative texts, and address some of their
limitations. In particular, highlighting the need to make these systems more adaptable to different
domains of language, with existing development material consisting predominantly of news articles

and conversational speech.

Acknowledgements

I must take this opportunity to thank my supervisor, Professor William Knottenbelt, for his endless
enthusiasm, valuable feedback, and ability to always keep the bigger picture in mind. It has been a
pleasure. Additionally, I must express my gratitude to Dr David Birch for inspiring what this project

has become, and sharing his wisdom from his past experience of being in my shoes.

To my family, thank you for your continuous support, love, and advice. And to my friends and
colleagues, I've learnt a great deal over the past four years that wouldn’t have been possible without

you.

Contents

[1.2 Project Overview| e e
[1.3 Objectives| o e e e e e

Background|

2.1 Natural Language Processing|

2.2 Clustering Techniques|
2.2.1 K-Means Clustering|
[2.2.2 Support Vector Clustering|
[2.2.3 Hierarchical Clustering|

2.3.1 Existing Tools|
[2.3.2 Force-Directed Graphs| L.
2.4 Choice of Text Corporal e

3.2 DefininganEvent|
[3.3 Expermmentation|.

[3.3.2 Named Entity Recognition|

3.33 EventExtraction| o
3.4 Selected tools and technologies| o 0oL

AN NN =

0. CONTENTS CONTENTS

[4 Adjustable Event Identification via Hierarchical Clustering| 60
4 MOON| o e e e e 60
4.2 Inmitial Investigation| 61
M3 Feature Selection] e 63
4.4 The Algorithm| 67

MAT OVverviewl o it e e 67
4.42 Parameters and Modifications| o000 67
4.5 System Design| 68
BS5T1 Architecture]l. 63
[4.5.2 Components| 70
4.6 Experimentation and Results| o oo 70
[4.6.1 Scoring Functions Considered] 70
4.6.2 Feature weights|. 72
4.6.3 Link Strategy| 73
4.64 Distance DiscountFactod 77
[4.6.5 Final Configuration|. 80
4.7 Automatic Cluster Selection| 80
4.8 Implementation Details| oL 82
4.8.1 Feature Filtering| 82
[4.8.2 Similarity Matrix Optimisationf. 82
|4.8.3 Clustering Acceleration| 83
|4.8.4 Event Cluster Representation|. 83

5__Timeline Visualisation| 84
BIAIMS . - - o o o e e e e 84
[5.2 Design Objectives|. e e e 84
5.3 Options Considered| 85
5.4 UsingtheForcel 85

5.4.1 Selected Softwaref. oo oo 85
5.4.2 Abusingtheforce|. 86
5.5 Resultand Features| 87
5.5.1 Node Properties|. 87
[5.5.2 EdgeProperties|. 88
5.5.3 Timele Features|. 0 0oL 88
5.6 Implementation Details| o 89
B.61 Overviewl o 89
[5.6.2 InputFormat| 90
[5.6.3 Basic Configuration| 91
5.64 ActorFocil 91
5.6.5 LeadingEdges| L 92
[5.6.6 CurvedEdges|. 92
[5.6.7 TooltipText|. 93

ii

0. CONTENTS CONTENTS

[6 The Application| 94
6.1 AImMS|. e 94
6.2 Chosen Approach| 94
6.3 Back-End e 95

[6.3.1 Responsibilities|. oL 95
16.3.2 Technology Stack|. 95
[6.3.3 Pipeline| 95
[6.3.4 System Architecture|o 97
16.3.5 Implementation Details|. 102
6.4 Front-Endl 107
[6.4.1 Responsibilities|. oL 107
[6.4.2 “lechnology Stack|. o o 107
[6.43 Resultsand Featuresl 109
[6.4.4 System Architecture| L 116
16.4.5 Implementation Details|. 0 L. 117
[6.5 Resource Requirements| Lo oo 119

[Z__Results and Evaluation| 121

[[1 CaseStudies|. 121
[Z1.1 Goldilocks and the Three Bears| 121
[7.1.2 Little Red RidingHood|. 126
[7.1.3 Harry Potter and the Philosopher’s Stone| 132

[72 Evaluation OVerviewl o i it it ittt e 137

(7.3 Event Clustering Evaluation| 137
D31 AIME - o oo ot 137
(732 Evaluation Metrics| Lo 137
(/33 ResultsandRemarks| L 0oL, 138

(/.4 Timeline Visualisation Evaluationl 140
AT AIMS - - oo oo 140
[7.42 TestSet-up| 140
(/43 ResultsandRemarks| L 0oL, 140

[7.5 Web Application Evaluation|, 144
TSI AIMS - - oo ot 144
[7.5.2 Efficiency| 144
[753 Easeof Usel. 144

(7.6 Evaluation Summary| 148
[7.6.1 Strengths| 148
[7.6.2 Weaknesses| 149

6 __Conclusions| 151
8.1 Tessonslearntl e 151
B2 Future Workl 152

iii

0. CONTENTS CONTENTS

(A Example Texts| 161
| Idilocks and the Three Bears|. 161
[A.2 Little Red RidingHood|, 161
|A.3 The Gingerbread Man|. oo o 161
|A.4 Harry Potter and the Philosopher’s Stone|. 161
B Additional Results 163
163

163

166

171

171

171

171

171

177

177

D Usage| e e 178
D.2.1 Enter input text and list any specific characters| 178
ID.2.2 Remove irrelevant mention annotations| L 178
|D.2.3 Identify a nice collectionofevents| 179
ID.2.4 Mergeany oddevents| L o 180
[D.2.5 Addmissingmentions| 180
ID.2.6 Update timeline|. 181
D27 Renameactors] 182
ID.2.8 Reorder characters in the timeline and zoom|. 183
[D.2.9 Highlightpaths| L 184
D.2.10 Hover-overtext 184

v

Chapter 1

Introduction

1.1 Motivation

A timeline can be an incredibly useful way to convey the sequence of events that occurred over a
period of time, providing insights that may not be so apparent from reading the equivalent informa-
tion in textual form. Consider the example in Figure [I.I] From this timeline we can immediately
see the paths of each actor through time, their interactions with other actors, and their involvement
in a number of events, but it would take us much longer to deduce this information if we had to read

the entire Lord of the Rings series for ourselves first.

Figure 1.1: Lord of the Rings timeline hand produced by XKCD [2]].

And the benefits of timelines extend far beyond this with useful applications in a number of different
contexts. Firstly, in the context of teaching a timeline can prove to be an extremely useful aid in
highlighting the causal relationships between events and the interactions between characters over
time. As a result, helping students to link historical events to one another and to identify common
themes that arise over the period of interest in a historical text [3]], or alternatively to see and un-
derstand how an author introduces characters into a story and interplays the multiple sub-plots that
may be described in a piece of English literature [4]]. Furthermore, in the context of film scripts,
novels and biographical texts, a timeline can help develop context around an event with a concise
infographic representation that is far less overwhelming than the equivalent text book alone. Spot-
ting relationships and themes from such a visual representation is far easier than making the logical

deductions in your head without the visual aid.

1. INTRODUCTION 1.2. PROJECT OVERVIEW

However, at present timelines of the form shown in Figure|l.1|are often painstakingly produced by
hand. The few tools that do exist for drawing timelines, discussed further in Section [2.3] currently
require that the user provide a precise definition of the events to plot and typically result in far more
mundane visualisations that lose the sense of dynamism that’s expressed in hand-drawn plots like

that of Figure As a result, the benefit of a timeline representation like this is rarely seen.

Over the past 10 to 20 years the field of natural language processing (NLP), a field of study situ-
ated at the overlap of Computer Science, Artificial Intelligence and Linguistics, has seen significant
advances in a number of areas. These dramatic advancements in NLP technologies in recent years
has lead to an explosion of applications that can now, relatively robustly, interact with the user at
the level of natural language, with prominent examples being Apple’s Siri, Google’s Assistant, and

Amazon’s Alexa.

Thus, with applications like these having demonstrated the potential of the current state-of-the-
art natural language processing tools and techniques, this project aims to explore the viability of
automatically constructing a timeline representation of any unstructured text using the current state-
of-the-art NLP tools. As a result, enabling anyone to quickly and easily generate timelines for any

piece of text, and benefit from the additional insights obtained from such a representation.

1.2 Project Overview

Naturally, the scope of such a project is incredibly wide, depending largely on the resulting visu-
alisation to be constructed. In this project we focus on the core issues central to bridging the gap
between receiving any unstructured text as input and producing the corresponding timeline as a

result. To this end, we focus on 3 fundamental tasks:

1. Identifying the events of interest in the text.
2. Extracting any supplementary information required for the resulting timeline.

3. Constructing a clear, easily understandable timeline visualisation.

We take the example of Figure [I.1] as our inspiration, aiming to automatically construct a timeline
that highlights the individual paths of all characters in the text through each of the events identified.
While many other visualisations are possible, we feel that this actor-centric layout applies to a broad

variety of input texts and has seen relatively little exploration in the past.

Event extraction, the challenge at the core of this project, is the area of NLP focussed on the iden-
tification and extraction of events from text, typically treated as a problem of information retrieval.
A lot of work has been done on the task of event extraction over the past 10 years, focussed around
the common definition of an event as something that happens or occurs, or a state or circumstance
in which something holds true [5]. However, as we explore later, such a definition is somewhat
too precise for our purposes. Humans have the natural ability to summarise information to varying

degrees of detail. For example, if we’re describing a movie we just saw to a friend, we’ll typically

1. INTRODUCTION 1.2. PROJECT OVERVIEW

pick out a few of the key events from the film, which may each summarise a whole series of less
significant events. If it turns out our friend has also seen the movie and loved the opening sequence,
we may then discuss all the events that occurred within that opening sequence at a much finer level
of detail. For this reason, in this project we treat the task of identifying an intuitive set of events
from a piece of text as a clustering problem: grouping a text into a series of distinct clusters, each

representing an event, and thus identifying the boundaries between the events described in the text.

There are many different methods of clustering data, which we discuss further in Section [2.2] how-
ever in this project we have chosen to employ a hierarchical clustering approach. This iterative
method gradually groups the initial set of items into distinct clusters, grouping the most “similar”
items first and continuing until all items are eventually contained within a single cluster. Unlike flat
clustering methods, hierarchical clustering provides us with far more structure. This unique prop-
erty being extremely useful in the context of clustering text into events, with the clusters formed at
different points in the hierarchy reflecting the different levels of detail at which a user may describe
the events in a piece of text. At its extremes we have the user reciting the text, sentence-by-sentence,

and at the other extreme we have the user summarising the entire text as a single event.

However, in order to facilitate the extraction of a good set of events and to construct the resulting
timeline, we must first retrieve all the information required from the input text. Natural language
processing is an incredibly diverse field focussed on enabling computers to understand natural lan-
guage; and while many significant developments have been made, it also remains in its infancy
with many sub-fields of NLP still spawning their own dedicated sub-topics as the subtleties and
difficulties of each area become apparent. For example, information extraction: the task of ex-
tracting information from text, has since been broken down into several distinct sub-tasks including
temporal-information extraction, event extraction, and named-entity recognition. This decomposi-
tion has enabled the development of far more accurate tools in each of these areas, although as we
shall come to see, some areas require further refinement than others. Thus, one of our first challenges
has been in navigating this vast expanse and finding the best tools for the task in order to provide us
with the information necessary to construct an event timeline for a piece of text. Table[I.1] provides
a brief overview of some of the key areas of interest that we explore further throughout Section [2.]
and the value that they may provide.

1. INTRODUCTION 1.2. PROJECT OVERVIEW

NLP tool Value
Part of Speech A task that’s fundamental to many higher-level analy-
Annotation ses. Provides the ability to identify nouns, verbs and

other grammatical arguments, which could be useful for

event extraction depending on how we define an event.

Coreference Resolution Identifies repeated mentions of an entity within a text
and has been previously used in similar work such as
in constructing actor-centric narrative event chains, as

discussed in the following chapter.

Temporal Information The task of identifying and normalising any dates and
Retrieval times within a text. This information could be vital in
both determining the ordering of extracted events and

extracting the dates of occurrence of key events.

Named Entity Recognises mentions of people, places, organisations,
Recognition and other entities of interest in text. This could pro-
vide useful information to reflect in the resulting info-

graphic.

Semantic Role Labelling | Identifies the semantic roles of words in text, providing

potentially useful information to reflect in the resulting

infographic.

Table 1.1: Some of the areas of NLP that may be of relevance to my application, along with the

potential value they offer.

With the relevant events identified and any additional information extracted, the visualisation of
the resulting timeline remains as the last part of the puzzle. While a number of tools exist for the
drawing of event timelines, a few of which we highlight in Section[2.3] there are currently no readily-
available tools for constructing timelines of the form shown in Figure Treating this as a more
general graph drawing problem we could look to incorporate or develop our own graph drawing soft-
ware with sophisticated heuristics to avoid line crossings and maximise clarity. However, such tools
often lack flexibility and the ability for user-interaction: two properties of particular value to our
application. Thus, in this project we explore the novel use of force-directed graphs in producing the
resulting timeline visualisation. Force-directed graphs employ the use of physical forces between
the nodes and edges in the graph to yield an emergent structure at the equilibrium of all forces. By
encoding the properties of the data being modelled as physical forces in the graph we get a natural,
emergent structure without the need for any complex layout heuristics. This provides us with a clear
and intuitive timeline, while also opening the door to a number of other novel visualisations that

could provide a new perspective on the text being visualised.

1. INTRODUCTION 1.3. OBJECTIVES

The task of automatically constructing event timelines from text has been cited as a potential appli-
cation of NLP technologies and the next step in a number of academic papers, such as [6], which
also acknowledges the challenges of such a task at this moment in time. Past attempts at creating an
application of this type, discussed further in Section[2.5] have seen limited success and have primar-
ily focussed on the extraction of only the most significant event details from historical Wikipedia
articles. As a result, we’re yet to see a publicly available system for the automated generation of
infographic event timelines from text. This project takes a different approach, instead focussing on
the domain of narrative texts and the visualisation of the dynamics of interactions between actors as

opposed to plotting the precise times of key events in factual text.

Finally, as mentioned above, for the purposes of this project we restrict ourselves to the domain
of narrative texts, such as fairy tales and short novels. Despite aiming to make the application as
domain-agnostic as possible, different textual domains exhibit different properties that then lead to
slightly different requirements. For example, news articles are not always written in a chronological
order potentially requiring a re-ordering of the identified events in order to obtain an accurate event
timeline. Narrative documents, on the other hand, typically exhibit the property that the text ordering
reflects the chronological ordering of the events described. This removes the need to additionally
consider temporal information, which as we see in Section[2.1.4]is one of the more challenging areas
of NLP. Additionally, the narrative style of text generalises to a wide variety of texts including fairy
tales, short novels, historical accounts and witness statements, allowing us to develop an application
that should provide value to a broad target audience. Section [2.4] discusses our consideration of a

number of other possible input domains in more detail.

1.3 Objectives

The objectives of this project are as follows:

Explore the potential of the current state-of-the-art natural language processing tools in facil-

itating the automated creation of infographic timelines from text.

e Develop a method to automatically generate a intuitive set of events from any narrative text at

an adjustable level detail.

e Develop a clear and insightful timeline visualisation of the events extracted, and explore the
potential for other novel infographic visualisations of these events to gain a new perspective
on the input text.

o Create a usable end-to-end application for the automated creation of infographic event time-

lines from text that is of practical value to to users.

1. INTRODUCTION 1.4. CONTRIBUTIONS

1.4 Contributions

As a result of our efforts in this project, we present four key contributions. Firstly, we provide an
exploration of the current state-of-the-art tools in a number of areas of NLP (Chapter[2|and[3), and a
thorough evaluation of the state-of-the-art coreference resolution tools when applied to the context
of narrative text, revealing the weaknesses of current tools and demonstrating the positive impact of
pre-processing narrative texts in order to maximise the performance of coreference resolution tools
(Chapter [3]and [6).

We develop an effective technique for the identification of distinct events within narrative texts at an
adjustable level of granularity, based upon agglomerative hierarchical clustering (Chapter f). Our
later evaluation (Chapter [/)) reveals our approach yields a relatively intuitive set of events, particu-

larly at coarser levels of detai]ﬂ

We demonstrate the potential of force-directed graphs in creating a clear yet aesthetically pleasing
event timeline, reflecting the paths of each character through a narrative (Chapter [5). In doing so,
we demonstrate the ability to impart structure on such graphs without losing the emergent behaviour

that makes them so appealing.

Finally, we present a novel application for the semi-automatic creation of infographic event timelines
from text (Chapter [6). We show that despite full automation of this process remaining a difficult
challenge due to the inaccuracies of the current state-of-the-art, through a combination of automated
natural language processing and an easy-to-use user interface, we can still help users realise the value
of timeline representations of text with a great deal less effort than would be required at present
(Chapter [7). The result is a potentially marketable web application that enables the interactive

exploration of the resulting timeline to further the insights obtained from a static image alone.

'In this context, we refer to events as being fine grained when we consider every single occurrence in the text as an

event, while coarse grained events begin to split a text into larger “chunks” surrounding more general topics or occurrences

Chapter 2

Background

2.1 Natural Language Processing

2.1.1 Overview

Natural language processing (NLP) is a field of study situated at the overlap of Computer Science
and Linguistics, concerned with giving computers the ability to analyse and understand human lan-
guage. Despite huge advancements in NLP over the past two decades, Sparck Jones makes the
observation in her 2001 paper, NLP - A historical review, that “the challenge of taking the necessary
step from a focused experiment” to*“a full-scale rounded-out system” had yet to be overcome [7].
However, NLP has continued to progress, and we are now seeing a number of useful systems emerg-
ing in areas such as speech recognition, in the form of virtual smartphone assistants, and also to
some extent in the area of Natural Language Understanding in search engines that are now often
able to answer our queries before we’ve even finished typing them. However, there are still a lot of
challenges that remain to be overcome before we start seeing more robust systems that are able to

interact with the user at the level of human language.

The broad area of NLP can be decomposed into a set of smaller, well-defined sub-tasks that each
tackle a distinct challenge, with a lot of higher-level tasks being an extension of the lower-level
tasks. Three tasks of particular importance, and often fundamental to a number of NLP tasks, are

those of tokenisation, sentence identification, and part-of-speech tagging.

Tokenisation is the task of chopping up text into smaller chunks or phrases, known as tokens. This
process can be thought of as breaking down a piece of text into its constituent words, however, in
addition to this there is typically a normalisation process that follows. This process aims to identify
entire phrases that may be of use to later stages of processing. That is, phrases such as "Los Angeles"
should typically be grouped into a single token [[8]]. As a result, tokenisation provides information at
a higher level for subsequent NLP processing tools to build upon, aiding further processing and un-
derstanding of the original input. [8] provides an interesting discussion as to the possible approaches
to tokenisation that can be taken, and their trade-offs; a particular example being the consideration

of the differing uses of punctuation in different languages.

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Sentence identification extends tokenisation by building upon these results to identify the complete
sentences in a given piece of text. These two processes are closely related, as sentence identification
requires the consideration of punctuation marks in text; a task that tokenisation must also consider to
determine whether, for example, a .’ character is included as part of a decimal number, or denotes

the end of a sentence [9]].

Lastly, Part of Speech (POS) annotation is the process of identifying and assigning a part-of-speech
tag to each word in a sentence. The most common parts-of-speech being: noun, adjective, verb,
adverb, adjective, conjunction, preposition, and interjection [10]. The Penn Treebank project
created a corpus of annotated material for POS annotation, containing "approximately 7 million
words of part-of-speech tagged text" [[L1] to help in the development of accurate POS systems, and
extends these 8 core annotations to include additional, more sophisticated tags such as the cardi-
nal number annotation. That is, the project provided a collection of sample texts that had been
manually annotated with the expected POS tags for each word. This material can then be used as
training data for attempts to apply machine learning techniques to the problem of POS annotation.
In fact, the manual development of a corpus of development material has become a significant part
of a number of NLP tasks, and is becoming a major contributor to the success of solutions. The in-
formation provided by part-of-speech tags can prove particularly useful in identifying the meaning
of a word. For example, whether "fall" is used as a noun or a verb may alter whether we treat the

word to mean the season of Autumn, or the action of falling, respectively.

To encourage and accelerate development in the area of NLP, a number of organisations and confer-
ences have emerged over the past 20 years, proposing shared tasks in the various areas of NLP. A
shared task is essentially a challenge proposed to the NLP community, defining a problem to over-
come and typically specifying the expected output format. To support the participants, a range of
development material is also often provided, such as an annotated text corpus. A number of these
conferences shall be referred to during the upcoming discussion into each of the areas of NLP of
relevance to this project, so we shall first briefly introduce some of the most prominent of these

conferences in the paragraphs to follow.

One of the earliest of these conferences was the Message Understanding Conference (MUC).
As [12] describes, the MUC conference was initially created “to foster research on the automated
analysis of military messages containing textual information. Although called conferences, the dis-
tinguishing characteristic of the MUCs are not the conferences themselves, but the evaluations to
which participants must submit in order to be permitted to attend the conference” [12]. The MUC
conferences, and others alike, certainly appear to have had a notable impact on the current state of
NLP research, especially as the challenges deviated away from the military-specific challenges of
MUC 1, to far broader challenges such as that of MUC 6, supported by DARPAE[, which aimed to

“promote and evaluate research in information extraction” [12].

'Defense Advanced Research Projects Agency

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The ACE conference was a successor to the MUC, which specified three challenges: “Entity De-
tection and Tracking (EDT), Relation Detection and Characterization (RDC) and Event Detection
and Characterization (EDC)” [13]], which drove advancements particularly in the area of event ex-
traction. While a more recent conference series is the CONL conferenc Similarly to the MUC,
each year CoNLL presents a different task, with the 2003 task being that of Language-Independent
Named Entity Recognition; this was a task of particular prominence in the area of Named Entity
Recognition (NER) that is still used as a benchmark for the evaluation of many of the state-of-
the-art NERE| tools of today. A listing of the other tasks proposed by the CoNLL can be found at

http://www.conll.org/previous-tasks.

Lastly, the OntoNotes project was not a conference, but rather a project to develop a large corpus
of annotated material to enable the application of machine learning techniques to the development
of solutions to these NLP tasks. This was in the hope that machine-learnt solutions, as has been
largely the case, may well be able to outperform those manually constructed by following a series of
pre-defined rules [14]. Again, supported by DARPA, this corpus of material has proven instrumental
to advances in many areas of NLP. The OntoNotes release paper from 2005 states the motivation for

the development of such a corpus very well, so I shall quote them here:

“Natural language applications like machine translation, question answering, and sum-
marisation currently are forced to depend on impoverished text models like bags of
words or n-grams, while the decisions that they are making ought to be based on the
meanings of those words in context. That lack of semantics causes problems throughout
the applications. Misinterpreting the meaning of an ambiguous word results in failing
to extract data, incorrect alignments for translation, and ambiguous language models.
Incorrect coreference resolution results in missed information (because a connection is
not made) or incorrectly conflated information (due to false connections). Some richer
semantic representation is badly needed.” [[14]

It is also worth noting at this point that the material is primarily composed of news, broadcast, talk
shows, weblogs, usenet newsgroups, and conversational telephone speech. Despite being a rela-
tively broad spectrum of material, this will affect the results produced by solutions trained on this
data. The language used in these contexts is often quite different to that used in fairy tales and other
contexts, so is something to bear in mind when choosing and evaluating tools that may have been

developed using this data.

Of course, there are many other organisations and conferences in addition to those noted above, and
it is also not to say that without these conferences the same advancements in NLP would not have
been achieved, but they have certainly helped accelerate and guide the development of the current
state of NLP technologies.

2Conference on Computational Natural Language Learning
3http://www.conll.org/
“Named Entity Recognition

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

To permit the consistent evaluation of NLP tools, MUC 2 defined a set of evaluation metrics that
have since become the de-facto measures of performance for an NLP tool [12]. These are recall and

precision, defined as follows:

N, correct . . N, correct
P precision =
expected N correct t N incorrect

recall =

where Ncorreer 18 the number of facts/items correctly identified by the system in question, Neypecred
is the number of facts/items that were expected to be identified from the text, and Nycorrecr 1S the

number of facts/items that were incorrectly picked out by the system.

Intuitively, these measures characterise how many of the expected facts/items the tool is able to
identify in the text in the form of recall, while the precision then gives an indication as to how well
the tool is able to discriminate between facts/items that should be extracted versus those that should
be ignored. Of course, the exact definitions vary slightly depending on the NLP task being evalu-

ated. These measures combined thus give a good idea as to the performance of a particular NLP tool.

In fact, a common approach to combining these values is to take the harmonic mean to obtain one
single value that summarises the performance of an NLP tool; this is known as the F-score, and is
defined as:

F 2 X precision X recall
1 =

precision + recall

These are important evaluative measures that shall be referred to throughout the rest of this chapter.

2.1.2 Named Entity Recognition

The CoNLL 2003 task defines named entities as “phrases that contain the names of persons, or-
ganizations, locations, times and quantities” [[15]], although this can be extended to include entities
of other types too. Thus, named entity recognition is the task of identifying such named entities
in plain text. The CoNLL 2003 task focused on the task of 4 label annotation: Person, Location,
Organisation, and Miscellaneous; the latter intended to encapsulate any other entities of particular
interest that fall outside the first 3 categories. As a result, the majority of existing NER tools focus
on this 4 category task, however, the OntoNotes corpus from 2012 also provides development mate-
rial that is labelled with 18 different entity tags, listed in Table 2.1} Thus, some available tools also

offer a full 18 tag annotation utility, providing additional useful information.

10

2. BACKGROUND

2.1. NATURAL LANGUAGE PROCESSING

PERSON People, including fictional
NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc.
ORGANIZATION Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOCATION Non-GPE locations, mountain ranges, bodies of water
PRODUCT Vehicles, weapons, foods, etc. (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage (including “%”)
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL “first”, “second”
CARDINAL Numerals that do not fall under another type

Table 2.1: The 18 types of entity annotated in the OntoNotes corpus [14].

11

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Figure 2.1: An example of the label consistency problem excerpted from a document in the CoNLL
2003 English dataset. Figure from [[16]].

Named Entity Recognition is an area of particular interest for my project as it provides the means to
extract useful information that may be of interest to the user. In particular, identification of people,
places, and organisations could prove very useful to help discover any actors and places of signif-
icance in a piece of text, and also to incorporate this information into the resulting visualisation of
the event timeline. In doing so, we may be able to enhance the insights gained from a visual repre-
sentation of the events in a piece of text, maximising the benefit of such an application. However,
as we will discuss shortly, despite the good performance of current NER tools, there are still many
shortcomings to these tools and challenges that remain to be overcome.

Two of the top performing, publicly available NER tools at the time of writing are the Stanford
Named Entity Recognizelﬂ and the Illinois Named Entity Taggelﬂ The Stanford NER tool is
available as part of the Stanford CoreNLP software] a suite of NLP tools that perform both the basic
syntactic analysis discussed earlier in addition to a variety of more sophisticated textual analyses.
The system available online behaves and performs similarly to the baseline local+viterbi system
discussed in the related paper, [16l], which achieved an F-score of 85.51% on the CoNLL 2003
task [16]. However, the system available improves on this by also incorporating distributional simi-
larity based features [16]. That is, by considering the additional context of the words surrounding a
word of interest, we may be better able to identify the meaning of the word. For example, whether

a "bar" is referring to a "chocolate bar" or a "wine bar'f{]

The paper also highlights a lot of the shortcomings of the current solution. Firstly, the discussion of
how the inclusion of non-local structure can benefit information extraction tasks, which they demon-
strate through the example in Figure 2.1} That is, the additional information from the first mention
of Tanjug makes it clear that it is an organisation, while the second reference alone is ambiguous as
to whether we should treat Tanjug as a person or an organisation. By using the earlier information
we should be able to correctly resolve this. Unfortunately, despite the incorporation of non-local
structure improving the results of NER annotation by a further 1.3% on the baseline, it also per-
formed over 30x slower than the baseline. Due to this unacceptable overhead, the technique is not

present in the currently available system.

3 Available from http://nlp.stanford.edu/software/CRF-NER .shtml

® Available from https://cogcomp.cs.illinois.edu/page/software_view/NETagger

7 Available from http://stanfordnlp.github.io/CoreNLP/

8 An interesting overview of this topic can be found at http://www.timvandecruys.be/media/presentations/pres_cental_051110.pdf

12

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

PER | LOC | ORG | MISC

PER | 1941 5 2 3

LOC 0 167 6 63

ORG 22 328 | 819 191

MISC | 14 224 7 365

Table 2.2: Counts of the number of times an entity sequence is labelled differently from an oc-
currence of a subsequence of it elsewhere in the document. Rows correspond to sequences, and
columns to subsequences. Thus, diagonal entries are correctly labelled subsequences. Taken from
the CoNLL training set. As reported by [16].

A second difficulty is the handling of mentions that are subsequences of earlier mentions. For ex-
ample, an article may mention the football club Sheffield Wednesday, which should be identified as
an organisation. However, later in the article we may see the club referred to more colloquially as
"Wednesday". In this context, Wednesday should be treated as referring to the same organisation
rather than the day of the week, but this is a subtle distinction to make [[17]. The confusion matrix
of Table [2.2] taken from the same paper quantifies just how often this sort of challenge arises, and

shows that there is still a significant margin of error in the current NER tools.

The Illinois Named Entity Tagger is another state-of-the-art NER tool, that in addition to the 4-tag
annotations provided by the Stanford NER, can also provide 18-tag annotations as defined by the
OntoNotes project. In fact, this tool currently achieves an F-score of 90.8% on the CoNLL 2003
corpus: one of the best reported results to date [17]].

A key piece of information to note here is that the Illinois tagger makes use of prior knowledge in the
form of Gazetteers. These are essentially look-up lists containing typical examples of a particular
entity. For example, the Annie Gazetteelﬂ maintains a collection of lists, each associated with a ma-
jor and minor type. For example, we may have two lists with major type: unit. However, one listing
possible units of money, and the other listing possible units of time. Hence, this distinction is made
by the two lists having the minor types money and time, respectively. This approach was inspired by
the fact that the baseline entry for the CoNLL 2003 task essentially performed a dictionary look-up
to determine what a word or phrase could be referring to, and immediately achieved a relatively high
F-score of 71.91% [[18]]. The Illinois tagger then builds upon this with a range of other techniques,
including the incorporation of non-local structure as we discussed above. The Illinois tagger has
been designed to be largely domain agnostic, as the group expect it to be “applied on a diverse set
of documents: historical texts, news articles, patent applications, webpages etc.” [17]], but by rely-
ing on the use of such world-knowledge, the system is unlikely to perform well on fictional texts,
referring to fictional character names and places as these re-introduce ambiguity to the problem: a

consideration we take into account when determining the corpus of text to use for development.

“https://gate.ac.uk/sale/tao/splitch13.html

13

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The paper concludes that “NER proves to be a knowledge-intensive task, and it was reassuring to
observe that knowledge-driven techniques adapt well across several domains” [[17]] . In a recent
short paper published by Illinois, they report that they have since further enhanced the application
by improving its reliability, memory footprint, wall-clock performance. In addition, some further
tweaks have increased the F-score of the Illinois tagger to 91.06% on the CoNLL 2003 task [19].
Thus, this appears to be the most promising tool in the area of NER at this moment in time.

2.1.3 Coreference Resolution

Coreference resolution is the task of identifying all expressions in a piece of text that refer to the
same entity, typically clustering the results to form a coreference chain: a collection of all the phrases
from the text that refer to a particular entity [20]. As a concrete example, consider the text below

where all the phrases coreferent to the entity named Jonathan are highlighted in bold:
Jonathan went over to his car. He reversed out of the driveway, and went to work.

This task plays a significant role in a number of higher-level NLP tasks, including text-summarisation,
question-answering, and information extraction [20]]. It is also of particular relevance to my task of
event extraction in order to identify the chain of events that involve a particular actor of interest, and
to then be able to use this information to construct a timeline of the form shown back in Figure|l.1
While at first glance this is perhaps a seemingly simple task, there are a great number of subtleties
to be considered, and as a result even the current state-of-the-art systems only achieve an accuracy

of around 60%, as we’ll see below.

Like a lot of NLP problems, before the advent of a large corpora of annotated material for devel-
opment was made available, it was extremely difficult to apply machine learning to these problems.
However, with the creation of the OntoNotes corpus, “a large-scale, accurate multilingual corpus
for general anaphoric coreference that covers entities and events not limited to noun phrases or a
limited set of entity types” [21]], the CoNLL 2011 and 2012 tasks challenged participants to model
“Unrestricted Coreference in OntoNotes” [21]]. As a result, we have seen the performance of the
state-of-the-art coreference resolution systems improve significantly over the past few years. It is
also worth noting that the CoNLL 2012 task focuses primarily on intra-document coreference reso-
lution: the resolution of co-references within a single document, while more recent efforts have gone
on to explore the task of inter-document co-reference resolution: identifying coreferent mentions of
a given entity across a collection of documents. It is intra-document coreference resolution systems

that are of greatest interest to us at present.

14

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Type of Mention Example

Named mentions “Adam”

Nominal mentions | “the dogs”, “the little old lady”

Pronominal mentions | “she”, “they”

Identical reference | “She had a good suggestion and it was unan-

imously accepted”, where the entities in bold

are co-referent [22]].

Table 2.3: Typical categorisation of mentions.

Table [2.3|shows the typical categorisation of mentions targeted by coreference resolution tools. For
my purposes, it is the former 3 categories that are of particular interest in order to identify exactly
which actors are involved in which events within a given text, and thus be able to reflect that in the
resulting timeline. However, the latter category may also be of use in determining whether or not

multiple sentences are coreferent, possibly linked by entities other than people.

Before evaluating some of the current state-of-the-art, it is worth pointing out that along with the
original MUC-defined metrics shown earlier, a number of refinements to these original definitions
have also since been proposed to address some of their shortcomings. In particular, the two most
commonly used metrics alongside the original MUC metric that is still used for comparative rea-
sons, are the B> metrics and the CEAF metrics. These are subtle variants of the original definitions
of recall and precision from the MUC. While the MUC metric only evaluates the accuracy of any
coreference chains containing more than 1 mention of an entity and treats all mistakes as equals,
the B3 metric is designed to also evaluate the correctness of any singleton mentions: mentions that
are not resolved to a chain of mentions, and also considers that some mistakes are more costly than
others when it comes to coreference resolution [23]]. For example, merging two long chains that
refer to different entities is potentially more costly than adding one additional incorrect mention to
a large chain.

The CEAF metric then proposes an altered method of aligning the mentions identified by the system
under evaluation with the true mentions expected, ensuring that at most one of the system-produced
mentions aligns to any one of the expected true mentions [23]]. As a result, many conferences now
employ all 3 of these metrics in evaluation to provide a more rounded result and for the purpose

comparison. For more information, I refer you to [23].

Many of the existing solutions to the coreference resolution task operate by learning a scoring func-
tion over individual mention pairs, considering only 2 phrases at any one time. This scoring func-
tion is then used to determine whether any two mentions should be treated as co-referential [24].

Some more recent approaches have then gone a step further by incorporating additional more global

15

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

information that can be extracted from the text to improve the analysis. Both Stanforcfj] and Illi-
noisE] universities have publicly available coreference resolution systems that attain a performance
to match and even surpass the current best in class, and so we explore these tools in particular in

greater detail.

The Illinois system incorporates “a novel and principled machine learning framework that pushes the
state-of-the-art while operating at a mention-pair granularity”, thus remaining at the level of com-
paring individual mentions [25]. They present a linguistically inspired Latent Left Linking model
(L*M), based largely upon the Best-Left-Link approach that has yielded competitive results in the
past [26L 27]. The model employs a latent structural SVM approach to learn to recognise the most
likely antecedent to the immediate left of a mention, mimicking the process a reader would typically
go through when determining who a mention may refer to, subsequently constructing the resulting
coreference chains through the transitive relationship between left co-references [25]. Furthermore,
with the incorporation of some additional knowledge-based constraints in order to inject some more
explicit world-knowledge into the system, the Illinois coreference tagger manages to achieve state-
of-the-art results on the OntoNotes-5.0 corpus; this extended model is referred to as the CL*M
model. These results are shown in Figure [2.2] These results show the Illinois system to outperform
the Stanford rule-based coreference system, and also highlights the additional performance gained
from incorporating some additional rule-based constraints. This leads to consider a perhaps obvious
but important point: while machine-learning methods can enhance the performance of coreference
resolvers, it also makes the resolvers highly dependent on the training data used. With insufficient,
inadequate, or over-specific training data the system may not learn the set of rules we expect it to,
and may lack the ability to generalise to other texts. This is a trait that rule-based methods do not

suffer from, and is something we must bear in mind when incorporating these tools into our solution.

Since this paper was published in 2013, Stanford have gone on to further improve their corefer-
ence systems and extend the performance of the current state-of-the-art. The Stanford co-reference
resolution system is capable of resolving all 3 of the aforementioned mention types, and offers 3
different approaches to the problem: a deterministic rule based system, a statistical system, and a
neural system [28]]. The performance of these systems over the CoNLL 2012 evaluation data are
summarised in Figure [2.3] where we are at present only interested in the performance on English
data. Note however, the figures quoted in this table are the performance of their models trained
for general purpose use rather than maximal performance on this data set. Again, highlighting the

significance of a good training set.

The deterministic rule-based system was submitted to the CoNLL 2011 shared task and attained the
top result of of 58.3% in the open-track challenge [29]. The open-track allowed the use of external
resources, such as Wikipedia and WordNet in order to enhance the performance of applications,
acknowledging the role of world knowledge in recognising entities within a text [29]]. The system
employs a multi-pass sieve system to identify and resolve coreferences in a two stage process. Each

sieve acts as a filter, searching for specific items in the text that satisfy its constraints.

10 Available from http://nlp.stanford.edu/projects/coref.shtml
1 Available from https://cogcomp.cs.illinois.edu/page/software_view/Coref

16

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

MUC BCUB CEAF. AVG

Dev Set
Stanford 64.30 7046 4635 60.37
(Chang etal.,2012a) | 65.75 7025 4530 6043
(Martschat et al., 2012) | 66.76 7191 4752 62.06
(Bjoickelund and Farkas,) 67.12 71.18 4684 61.71
(Chen and Ng, 2012) 664 718 488 623
(Fernandes et al.,2012)| 69.46 7193 4866 63.35

L*M 67.88 71.88 47.16 62.30
CL*M 69.20 72.89 4867 63.59
Test Set
Stanford 63.83 68.52 4536 59.23

(Chang et al., 20122) | 66.38 6934 4481 60.18
(Martschat et al., 2012) | 66.97 7036 46.60 61.31
(Bjockelund and Farkss,) 67.58 7026 4587 61.24
(Chen and Ng, 2012) 637 690 464 597
(Fernandes etal.,2012)| 70.51 7124 48.37 63.37
L*M 68.31 70.81 46.73 61.95
CL*M 69.64 71.93 4832 63.30

Figure 2.2: F-scores of various coreference resolution systems on the OntoNotes-5.0 corpus.
Showing all three of the MUC, BCUB, and CEAF scores. The [*M and CL*M are the Illinois

implementations [235].

SYSTEM LANGUAGE PREPROCESSING TIME COREF TIME TOTAL TIME F1 SCORE

Deterministic English 3.87s 0.11s 3.98s 49.5
Statistical English 0.48s 1.23s 1.71s 56.2
Neural English 3.22s 4.96s 8.18s 60.0
Deterministic Chinese 0.39s 0.16s 0.55s 47.5
Neural Chinese 0.42s 7.02s 7.44s 53.9

Figure 2.3: Performance of the Stanford Coreference Resolution system on the CoNLL 2012 evalua-
tion data. Figures are lower than in the related papers as the systems evaluated here have been trained

for general purpose use, rather than to necessarily achieve the maximum score on the OntoNotes

corpus [28]].

17

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The first stage, mention detection, aims to maximise recall, applying sieves in the order of high-
est recall to lowest recall in order to identify as many candidate mentions as possible for the second
stage [29]. Missing any candidates at this stage automatically rules them out for inclusion in the next
stage: coreference resolution. In contrast to the mention detection stage, this stage now priorities
precision, again applying a number of different sieves from highest precision to lowest precision,
ensuring that the easiest merges (i.e. an exact noun match) are made before the more challenging
ones [29].

Unlike many other existing systems, including the Illinois system, that restricts evaluation of coref-
erence to mention-pairs, the Stanford statistical co-reference resolution system goes a step further
by incorporating entity-level information into its analysis [24]. The system proceeds in 2 stages,
each presenting a novel contribution to the area of coreference resolution. Firstly, the authors make
use of model stacking, allowing them to apply 2 distinct coreference models to the problem. The
first considers the global context, identifying all possible antecedents of a mention in the text, while
the other focusses on the more immediate problem of identifying the most likely nearby antecedent,
similar to the Left Linking model of the Illinois system. Each model provides slightly different infor-
mation that when combined complement one another to produce a far more accurate outcome [24].
Having constructed an initial set of co-reference clusters, a post-processing stage performs the pair-
wise comparison of these clusters, potentially merging clusters using an “entity-centric model that
operates between pairs of clusters instead of pairs of mentions, guided by scores produced by the
pairwise models” [24]]. The result is a set of clusters that each represent the mentions of an individ-

ual and distinct entity.

The Stanford statistical system achieves an F| score of 60.3% on the CoNLL 2012 evaluation data.
A result to match, and even surpass, the current state-of-the-art on this data, and illustrating how tak-
ing an iterative approach, utilising the results of early coreference decisions to inform later ones, can
have a significant impact on the final results [24]. A useful example from the Stanford paper is that
of supposing we had a mention cluster, {“Clinton”, “She”}, that has been identified as co-referential.
It is thus more likely that these two mentions are also co-referential with a second cluster containing
“Hillary Clinton” than that containing “Bill Clinton”, also found in the same text. The entity-centric
model employed by the Stanford system would indeed merge the mention cluster of “Clinton” with
that of “Hilary Clinton”, as the additional constraint imposed by the “she” co-reference makes “Bill
Clinton” an unlikely co-referent [24]. In contrast, other systems that merge clusters based only on
mention pairs, may just as likely merge the cluster containing “Clinton” with the mention of “Bill
Clinton” despite the additional constraint imposed by “She”.

18

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Antecedent Anaphor

the country’s leftist rebels the guerrillas

the company the New York firm
the suicide bombing the attack

the gun the rifle

the U.S. carrier the ship

Figure 2.4: Example nominal coreferences that the Stanford neural coreference resolution system

resolves, but the statistical implementation misses. From [30].

Finally, the neural system builds upon the entity-centric approach of the statistical system above
introducing the use of neural-networks for encoding mention-pairs and cluster-pairs into “high-
dimensional vector representations” [30]], and then merging mention clusters using an easy-first
cluster-ranking procedure [30]. The increased complexity of this implementation is certainly appar-
ent in the increased time taken to perform coreference resolution in the example of Figure 2.3] In
this case, the authors train a deep neural network to rank possible cluster merges using a learning-to-
search algorithm [30]. The network then ranks possible cluster merges and proceeds in an easy-first
manner [30]. This refers to the approach of merging the most likely coreference clusters first, yield-
ing the benefit that earlier decisions can then be used to inform later, more difficult ones. This is
in contrast to the common approach to merging clusters using a left-to-right strategy, building up

clusters as we pass through the text.

As a result, the neural system significantly improves on the state-of-the-art with an overall F;-score
of 65.29%. A particularly useful area of improvement for our purposes in the resolution of nom-
inal mentions, which they credit to their incorporation of semantic information. In this particular
context, they see an improvement from 10.7% to 18.9% F; over the statistical implementation; still
extremely low but a significant improvement, and one that could prove particularly important in the
context of fairy tales and other narratives where we often have characters such as the wolf or the
little old man. Figure [2.4]from [30] highlights a number of nominal coreferences which the neural

system resolves correctly but the statistical system misses.

Our brief exploration of the area of coreference above highlights just a few of the complexities of
coreference, and as a result the relatively poor performance of coreference resolution systems in con-
trast to other areas of NLP, with the current state-of-the-art achieving at best F'| scores of 65.29%,
leaving a lot to be desired. This inaccuracy will have to be accounted for in our resulting application,
both in ensuring that we use a number of different features beyond coreference resolution for event
clustering, and give the user the ability to correct any mistakes made by the application. In partic-
ular, we see an even lower accuracy in the case of resolving coreferent nominal mentions, not only
highlighting the difficulties this type of reference but also perhaps the reliance of machine-learnt
solutions on the training data used. According to [30], only about 1.2% of the positive links in the
CoNLL test set is of this form, suggesting little emphasis has been put on this class of coreference

as yet.

19

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Both the Illinois and Stanford systems have online demos available, so I have also performed some
of my own, less scientific, experimentation on the two systems in order to judge which solution may
be better suited to my problem. However, it is worth noting that I aim to construct the system in
such a way as to make it relatively easy to migrate between different systems at a later date should

improved systems become available.

Figure[2.5|shows the results of executing the Illinois co-reference resolution system over a provided
example, showing the system is quite capable of handling large texts containing multiple distinct
entities. The system initially appears to perform well on this task, with the mention graph showing
that it correctly resolves all mentions of the bombsniffing dogs. We also see an example identity
reference between “it” and “The Transportation Security Administration”.

However, the results on a far simpler, and better representative example of the sort of text I wish
to process reveals the limitations of the system. In Figure [2.6] we can see that the system fails to
recognise “John” and “a farmer” as coreferent entities. Thus resulting in a dis-join that makes it
difficult to relate all co-references to the farmer back to “John”, as desired. We also see that the
entities “Rusky” and “a pet dog Rusky” are not correctly resolved by the system either. Thus, to use
this system I would have to introduce an additional level of post-processing to attempt to correctly
merge these coreference clusters, perhaps using some additional information obtained from seman-

tic role labelling, a topic that will be discussed later, or other analyses.

The Stanford coreference system on the other hand, shown in Figure fares far better on this
simple example, correctly identifying all references to John, and all references to Rusky. Caroline
is also recognised as an entity, but is not included in the coreference clusters shown in the figure as
she is only a singleton mentior{E] in this text. Thus, there is no coreference chain for Caroline, but
she is certainly identified as an entity in the text. These results seem to illustrate the clear benefit of
the entity-centric model used to merge coreference clusters in the Stanford system.

Thus, these initial experiments appear to support the evidence that the Stanford system is at present
the superior tool. A deeper comparison between the alternative implementations of the Stanford
coreference resolver and the adjustable parameters is provided later in Section [3.3]

12A singleton mention is an entity that is only mentioned once in the text

20

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The coreference resolution system has identified the following coreferent mentions.

[patrol the temporary nofly zone around ['s MetLife Stadium Sunday]] , with [F16s based] in ready to be scrambled if [an
unauthorized aircraft | does enter | t trict . Down below , [bombsniffing dogs] will [the trains.] i t
[the 80,000plus spectators] [Seattie Seahawks]] .|[The Transportation Security Administration] said [it]] has
.added about two dozen dogs to monitor [passengers] coming in and out of . OnSaturday , [agents | demonstrated how [the dogs | -
can sniff out many different types of | explosives | . Once [they | do , [they] re trained to sit rather than attack , so as not to raise suspicion or create a panic .
said [the dogs] undergo 12 weeks of training , costs about 200,000 , factoring in food , and salaries for [trainers] . [Dogs |
have , but have just been [passenger] [airports]] . has one [dog] and
has a handful , said .
o o o
[patrol the temporary nofly zone around | 's MetLife Stadium Sunday]] [F16s based] [an
unauthorized aircraft | [bombshniffing dogs] [the trains]
[the 80,000plus spectators | [Seattle Seahawks]| [The Transportation Security Administration] [it]
[passengers] [agents] [the dogs]
[explosives] [they] [they]
[the dogs] [trainers] [Dogs]

[airports | [dog]

Chne restrcton 22 Mifoduced recontly in passenger areas at Newark and JFK airports
Atantic ity

Cm" used in cargo areas for some time

(Cine aimont around e Super Bowl
‘JFK airports

o
Crsa apoxeswgm\arr?‘ @possongers

{ ESA spokeswoman Lisa Farbstein ‘m 0, e e
@erposves (Cpatrol the trains and buses that are expected 10 take approximately 30,000 of the 80,000plus
New Jersey
Farbstel
C aak clew Jersey's MetLife Stadium Sunday
o The Transportation Security Administration
‘mn trains ransportation urity Adminis!

[

-
c"e o0 ebﬂlﬂv"m aog’s the Denver Broncos

prey &m based

Cyenicees

Othey @rares

JFK
.;n umumng;|W\
L JFK

‘Hei icopters pamlﬁe“lenmra:y rmryimm@fgumm WJersey's MetLife Stadium Sunday

Qwhich
(Newark
‘TSA agents

Crieicopters

Figure 2.5: The results of executing the Illinois Coreference Resolution Demo on a large input.

21

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The coreference resolution system has identified the following coreferent mentions.

[John] was , with , and : was plowing the fields when [Rusky] suddenly started barking

[John] [Rusky]

L2

C-
Cﬂ farmer

Qnhis
Cnls wife Caroline
OHe

@a pet dog Husky
Figure 2.6: The results of executing the Illinois Co-reference Resolution Demo over a shorter, more
representative sample of input text. The mention graph below illustrates the coreference clusters

identified, and shows that it fails to link “John” with references to the “farmer”, and fails to link the
two mentions of “Rusky” as a single entity.

22

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Named Entity Recognition:

[Pers) rson
1 John was a farmer, with a pet dog Rusky, and his wife Caroline.

Person
2 He was plowing the fields when Rusky suddenly started barking.

Coreference:

ety """ (Mentian” Mention) i

- = -Coref- .'{E '@
2 He was plowing the fields when Rusky suddenly started barking.

Sentence” Head || Text HContext|

1 |1 (gow)|jjohn |

1 |4 Iafarmer‘

1 13 |his |

2 IL He |

=

[Sentence| Head || Text |Context]
h [10 (gov)|[a pet dog Rusky|| |
R A R

Figure 2.7: The results of executing the Stanford Coreference Resolution System as part of the
Stanford CoreNLP demo over the same simple input text. We clearly see that the Stanford NER
system correctly identifies the three actors in this text, and that the co-reference resolution system

correctly identifies two coreference chains: one for “John”, and one for “Rusky”.

23

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

2.1.4 Temporal Information Retrieval

Temporal information retrieval is the non-trivial task of identifying temporal expressions and recog-
nising temporal relations between times and events in text. A perhaps obvious, but intriguing
nonetheless, thought by Derczynski in his book Automatically Ordering Events and Times in Text is
the fact “that we can identify the nature of temporal relations easily suggests that the information re-
quired for temporal relation extraction is contained either in discourse or in world knowledge” [31]].
Thus, making this a certainly achievable, if difficult, challenge. The task of temporal relation ex-

traction can be broken down into two parts:

1. Identifying temporal entities, such as times and events, in text

2. Determining how these entities relate to one another

However, it appears that thus far, work towards extracting events from text, and work towards ex-
tracting temporal expressions from text have been largely disjoint efforts [31]]. As a result, a rather
damning summary of progress in the temporal information retrieval area was given by Mirza in
2014, stating that “recalling the low performances of currently available systems on the temporal
relation extraction task, including the state-of-the-art systems according to TempEval-3, it is still in-
sufficient to use the existing temporal relation extraction systems to support real world applications,

such as creating event timelines and temporally-based question answering” [6].

Despite this, the increasing amount of annotated text corpora such as the TimeBank 1.2 corpuﬂ a
corpus consisting of 182 news articles with annotated temporal expressions, has enabled the appli-
cation of machine learning to the problem; a technique that has proven extremely successful in other
areas of NLP.

Temporal Information Extraction is of particular importance to my task, as identifying the time of
occurrence of events, and the temporal relations between them, forms a fundamental part of con-
structing an event timeline from text. Table [2.4] defines the 3 distinct types of temporal expression
that each present a unique challenge to T—IRFEL and are important to recognise so that we can prop-

erly test and evaluate both existing T-IR systems, as well as my application.

To reduce some degree of ambiguity, we reduce our focus to texts in the English language, better
enabling us to resolve phrases such as “New Year”. In addition, a further consideration to take into
account is the modality of temporal phrases. That is model expressions such as “might” or “could”
reduce the likelihood of an event actually happening. As such, this should perhaps be reflected in
the resulting visualisation, or such events could be discarded altogether. This is a consideration that

I will explore further throughout the project.

Bhttp://www.timeml.org/timebank/timebank.html
4Temporal Information Retrieval

24

2. BACKGROUND

2.1. NATURAL LANGUAGE PROCESSING

Type of Examples Notes

temporal

expression

Explicit "September 2017", | The easiest to recognise and resolve (despite

temporal "24/02/2017" some ambiguity in the ordering of month and

expressions date)

Implicit “The New Year” Difficult to resolve due to “lack of temporal

temporal target or an unambiguously associated time

expressions point” [32]. i.e. "New Year" has different
meanings in China and the USA.

Relative “on Thursday” This sort of expression may be difficult to

temporal resolve as to whether it refers to “last

expressions Thursday” or “next Thursday” relative to
some reference date. This may be an
inference that requires some additional
context to be able to make.

Table 2.4: A common breakdown of the 3 distinct types of temporal expression in text, each pre-

senting a different challenge to temporal information retrieval.

At the present moment, it appears that there are two superior tools for the task of temporal infor-
mation retrieval: Stanford’s SUTim and Heidelberg University’s HeidelTim Both of these

tools achieved competitive results on the TempEval-3 challenge, a “three-part task structure cover-

ing event, temporal expression and temporal relation extraction” [33]], with SUTime and HeidelTime

achieving F; scores of 93.2% and 93.0% respectively in the extraction task'’} and scores of 67.4%

and 77.6% for the normalisation proces@ [132]].

SUTime, available as part of Stanford’s CoreNLP package, is a “deterministic rule-based system

designed for extensibility” [33]]. In fact, both SUTime and HeidelTime are rule-based systems, with

[34] giving 4 key reasons for taking this approach:

“(1) the divergence of temporal expressions is very limited compared to other named

entity recognition and normalization tasks, e.g., the number of persons and organiza-

tions as well as the variety of names referring to these entities are probably infinite, (2)

the normalization is hardly solvable without using rules, (3) resources for additional

languages can be added without the need of an annotated corpus, and (4) the knowl-

edge base can be extended in a modular way, e.g., for adding events and their temporal

information such as "soccer world cup final 2010" that took place on July 11, 2010”

15 Available from http://nlp.stanford.edu/software/sutime.shtml

16 Available from https://github.com/Heidel Time/heideltime

7The task of identifying and extracting temporal expressions from text

8 Normalisation is the process of transforming an expression such as “1st March 2012” into a standard format such as

“2012-03-01”

25

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Expression Type Value

October of 1963 DATE 1963-10

October DATE 2011-10
last Friday DATE 2011-09-16
next weekend DATE | 2011-W39-WE

the day after tomorrow | DATE 2011-09-21

the nineties DATE 199X

winter of 2000 DATE 2000-WI

Table 2.5: Example expressions recognised by SUTime, their TIMEX3 type, and their correspond-
ing normalised value. Using a reference date of 2011-09-19. Taken from [35]].

The additional extensibility of SUTime could prove valuable in adapting the system to different
domains, such as fairy tales where temporal expressions such as “happily ever after” and “Once
upon a time” could also be identified. The Stanford system also attempts to resolve the ambiguities
of relative expressions such as “on Thursday” by examining the verb tense of surrounding context,
helping to determine whether the phrase refers to the past or the future [35]]. Table [2.5] shows
some example phrases the SUTime system can recognise, the TIMEX3 type, and the corresponding

normalised value.

As the final step in SUTime’s execution, it filters the potential temporal expressions found, removing
any unlikely candidates from the results. For example, by examining the whether the word “fall” is
used as a verb or a noun allows the system to determine whether it’s likely referring to the action of
falling, or the season of Autumn [35]]. However, despite SUTime’s good performance in general, it
is also important to maintain an awareness as to the current limitations of the system; in particular,
“support for temporal ranges is poor. For instance, the expression from 3 to 4 p.m. is incorrectly
identified as 15:57:00, while the expression 12-13 March 2011 is identified just as 2011-03” [35]].
In addition, “SUTIME cannot correctly interpret temporal expressions such as a year and a half

ago”’[35]], another current limitation of the system.

The HeidelTime system is a publicly available, open source project that appears to be continuously
improved. Due to the nature of the current corpora of available annotated material, the majority of
existing temporal taggers, such as SUTime, are tuned to analysing news articles. However, Hei-
delTime has the advantage of being “adapted not only to the news domain but also to narrative
documents” [32], a trait that could be of particular benefit to my application. In fact, HeidelTime
distinguishes between news-style documents and narrative-style documents (e.g., Wikipedia arti-
cles) in all languages, and supports both colloquial English and scientific language [36]]. Figure [2.§]

shows an example execution of the HeidelTime online demo on a simple example.

26

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

—Configuration

HeidelTime is a multilingual and cross-domain temporal

tagger.

Please click the question marks for additional instructions.
Document type: | Narratives i) -
Language: | English i) o
Document creation time: 2017-01-08

—Input

Choose between manually entering text and inserting a text
file (up to 2 MB, ensure it's encoded in UTF-8).

O Text ~ File

January 12th, 1887. Dylan headed off for his first day of school, unbeknownst of what was to
unfold 3 days later.

—Output

Extracted temporal expressions are marked in blue. To see
their normalization value, click them.

You may also receive a TimeML-annotated file (ensure your browser
isn't blocking popups).

7 | want to receive a TimeML-annotated file
Compute

Resulting document: Type: DATE
Value: 1887-01-15

January 1Zth, 1887. Dylan headed cff £:
achool, unbeknownst of what was to unfold 3 davs later.

Figure 2.8: Executing the Heidel Time online demo on a simple example. Here we can see the phrase
"3 days later" is correctly resolved to "1887-01-15", relative to the earlier date in the text.

27

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

The most recent extension to the HeidelTime tool is the 2016 addition of temponym tagging, where

temponyms are defined in [37] as:

"Free-text temporal expressions [that] refer to arbitrary kinds of named events or facts
with temporal scopes that are merely given by a text phrase but have unique interpreta-

tions given the context and background knowledge."

Thus, HeidelTime is now able to resolve expressions such as the “FIFA World Cup Final 1998~
to “1998-07-12”. In fact, the authors “added to HeidelTime’s English resources temponyms for
more than 40,000 events and for more than 900,000 facts with several paraphrases” [38]], currently
consisting of “facts about persons (birth, death, political position, marriage; 664,000) and culture
(releases, directions, authors; 253,000)” [38]], as well as the identification of sporting events and
historical battles [38]]. So, this is another feature that could prove particularly useful to the creation
of event timelines for historical texts, or other non-fictional narratives that refer to famous historical

events.

It is also worth noting the Illinois Shallow Temporal Reasoning System, an extension of the Hei-

delTime system from 2012 that extends the system in 3 ways:

1. The system extends the extraction task to “capture complex temporal expressions” [39]], a
novel feature that is able to identify phrases of the form “since it entered production in
February 1947, normalising the expression to the interval [1947-02-01 00:00:00, 1947-03-20
23:59:59] when given a reference timepi;] of March 20th 1947.

2. The system normalises temporal expressions to time intervals as opposed to the time points

3. The system is able to perform temporal comparison with respect to multiple relations such as

before, before-and-overlap, contains, equals, inside, after and after-and-overlap.

This is achieved by combining the results of HeidelTime’s annotations with the results of POﬂ
tagging. However, it is again worth noting some of the limitations of the system. Firstly, the current
set of complex temporal expressions that can be extracted are restricted to the temporal connectives:
since, between, from, before and after [39]. Secondly, it is likely that HeidelTime has been further
improved since the development of this software. As such, it may well be the case that HeidelTime
provides the better solution at this moment in time, however a deeper practical evaluation of all 3
tools shall be required prior to the incorporation of one of these into my application. Figure 2.9]
illustrates the results of the Illinois online demo over a short example complex temporal expression.
Figures [2.8] and [2.9] illustrate the clear difference between the single time point value provided by
HeidelTime system versus the time interval provided by the Illinois system, where a time interval

representation could offer a clear benefit to a timeline visualisation of events.

20Part-of-speech

28

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Extracted Expression Normalized Interval

Since June 2015 2015-06-01T00:00:00.000/+INF

Figure 2.9: Results of the Illinois Temporal Tagger demo correctly extracting the time interval

corresponding to the complex temporal expression: "Since June 2015".

2.1.5 Semantic Role Labelling

Semantic role labelling (SRL) is the task of identifying and assigning roles to the constituents of a
sentence, typically the arguments of a predicate in the text. As a result, aiming to extract the infor-
mation required to recognise “"Who did what to whom" (and perhaps also “when and where”)” [40].
These roles can be very specific, such as BUYER, or far more abstract, such as AGENT. For ex-
ample, in the sentence “XYZ corporation bought the stock™, we could extract the tuple bought(XYZ
corporation, the stock), where XYZ corporation is identified as the BUYER, and the stock as the
ITEM_BOUGHT [40]. The key power behind semantic role labelling is that we can extract the
same predicate-argument information regardless of how it is expressed. Some alternative expres-

sions of the previous example are given below:

o XYZ corporation bought the stock
o The stock was bought by XYZ corporation

e They sold the stock to XYZ corporation

Figure shows a concrete example of this using the Illinois Semantic Role Labelling Demﬂ

EISRL = [E SAL
L thing bought [A1] Bob buyer [AQ]
i bought V: buy.01
was the
bought V: buy.01 SN thing bought [A1]
by

buyer [AQ]

Bob

Figure 2.10: The results of the Illinois Semantic Role Labelling Demo on two different representa-

tions of the same information.

2! Available from http://cogcomp.cs.illinois.edu/page/demo_view/srl

29

2. BACKGROUND

2.1. NATURAL LANGUAGE PROCESSING

Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event
RESULT The end product of an event

CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event

BENEFICIARY The beneficiary of an event

SOURCE The origin of the object of a transfer event

GOAL The destination of an object of a transfer event

Figure 2.11: Some commonly used roles along with their definitions. Taken from [40]].

Thematic Role Example

AGENT The waiter spilled the soup.

EXPERIENCER John has a headache.

FORCE The wind blows debris from the mall into our yards.
THEME Only after Benjamin Franklin broke the ice...

RESULT The city built a regulation-size baseball diamond...
CONTENT Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking device...
BENEFICIARY Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE I flew in from Boston.

GOAL I drove to Portland.

Figure 2.12: Some commonly used roles with examples. Taken from [40].

Figure 2.11] defines some of the roles commonly assigned in a piece of text, while Figure [2.12]
provides some more concrete examples of such roles. Such additional semantic information could
prove useful in identifying further information of interest for display in the resulting timeline. For
example, highlighting any instruments or beneficiaries involved in an event could prove useful in

the context of witness accounts or historical texts, allowing us to draw attention to certain artefacts.

The Illinois Semantic Role Labeller appears to be among the current state-of-the-art, achieving the
highest F score of 77.92% on the CoNLL 2005 shared task@ [41]. Figure shows an example
annotation from the online demo of the system, where we can see that the system correctly identifies
“A squirrel” as the storer of “a lot of nuts” as it prepares for a “seasonal change”. However, my own
experiments with the system executing locally on my machine reveal the Illinois SRL tool to be an
extremely resource intensive and time consuming process, requiring 4GB of RAM for verb SRL and
a further 1GB of RAM for noun SRLZ|

2http://www.cs.upc.edu/~srlconll/st05/st05.html
23 All system requirements of the Illinois NLP Pipeline, which includes the semantic role labelling tool, can be found

athttps://github.com/CogComp/cogcomp-nlp/blob/master/pipeline/README .md

30

http://www.cs.upc.edu/~srlconll/st05/st05.html
https://github.com/CogComp/cogcomp-nlp/blob/master/pipeline/README.md

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

ElSAL E Nom [change [E] Preposition [5] Preposition [Preposition =]

ElsAL
A
squirrel

Is

storing \: store.01

a
parer
e i

lot
V: prepare.02
Beneficiary (for)
proper noun component [AM-PNC] manner [AM-MNR]
ready for [A2] I ERGER
Location (in)
thing changing [A1]

of
Figure 2.13: Demo of the Illinois Semantic Role Labelling Demo

nuts
to
prepare
for
a
seasonal
change
in
the
environment

Evaluating the results, I see little reason to incorporate this tool into my application at present,
as it provides little value to the application initially. We do not necessarily require natural lan-
guage understanding to construct a timeline, nor do we require information retrieval in the question-
answering sense. As a result, the semantics of the text we’re processing could be deemed largely
irrelevant to the construction of an event timeline. Our task is the identification of events that hap-
pen at different moments in time, who’s involved, when, and possibly where. All issues that can be
solved with NLP tools related to other NLP tasks. However, semantic role labelling does provide in-
teresting supplementary information that could be used to enhance the visualisation of the resulting
timeline, and provides the means to later incorporate semantic information into our event extraction

process; as such, I shall keep it in mind.

2.1.6 Event Extraction

Event extraction is another developing area of NLP that lies at the heart of this project. Current
solutions to this problem typically consist of a combination of all the NLP tools and techniques we
have already discussed in addition to machine learning techniques, using the information extracted
by previous techniques as features to inform further inference. The results of extraction also largely
depend upon how we define an event. Two common event models being the TimeML description [5]],
focussing on things that happen or occur or predicates describing states and circumstances that may
hold true at a given point in time, and the definitions of the ACE 2005 event extraction task, which
identifies the eight types of event shown in Table [2.6] [42].

The TempEval-2 task has proven to be one of the most significant tasks in semantic event extraction,
helping push the state-of-the-art by presenting three challenges “that are relevant to understanding
the temporal structure of a text: (i) identification of events, (ii) identification of time expressions and
(iii) identification of temporal relations™ [43]].

31

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

Event Type | Event Sub-types

Life Be-Born, Marry, Divorce, Injure, Die

Movement | Transport

Transaction | Transfer-Ownership, transfer-Money

Business Start-Org, Merge-Org, Declare-bankruptcy,
End-Org

Conflict Attack, Demonstrate

Contact Meet, Phone-Write

Personnel | Start-Position, End-Position, Nominate, Elect

Justice Arrest-Jail, Release-Parole, Trial-Hearing,

Charge-Indict, Sue, Convict, Sentence, Fine,

Execute, Extradite, Acquit, Appeal, Pardon

Table 2.6: The eight distinct types of event of interest as defined by the ACE 2005 task on event

extraction.

It goes without saying that a precursor to the visualisation of text as an event timeline is the effective
extraction of events from a given text. As such, this is an especially salient task in the development
of an application for the automatic creation of infographic event timelines from text. However, it
appears that at present there are very few publicly available event extraction tools. As such, this
forms a significant part of the project, requiring the development of a custom event extractor using
the current best performing techniques from previous works and perhaps some additional novel con-

tributions.

Stanford OpenI is a publicly available information extraction tool, designed to extract relation
tuples from plain text [44]]. It is certainly not designed for the specific task of event extraction, but
could provide a source of useful information. For example, from the sentence “Born in Honolulu,
Hawaii, Obama is a US Citizen.”, the system is able to extract the tuples (Obama; is; US Citizen)
and (Obama; born in; Honolulu, Hawaii). These are certainly useful facts, and explains how the sys-
tem “outperforms a state-of-the-art open IE system on the end-to-end TAC-KBP 2013 Slot Filling
task™ [45]], however this information definitely appears more relevant to the problem of question-
answering than that of event extraction; useful facts but not necessarily meeting the TimeML and
ACE definition of an event as “something that happens/occurs or a state that holds true, which can
be expressed by a verb, a noun, an adjective, as well as a nominalization either from verbs or adjec-
tives” [6]].

24 Available from http://nlp.stanford.edu/software/openie.html

32

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

EveSem, “an automated NLP pipeline for semantic event extraction and annotation” [46]], presented
in 2013, is an event extraction system, and provides a competitive solution to the problem. Using
the results of POS annotation and SRLE] information, the system manages to identify and order the
events in a given text. An evaluation of the performance of the system over a subset of the Time-
Bank corpus showed the system to achieve a recall of 89.13, and a precision of 85.42; comparable
to that of the previous state-of-the-art system, TIPSem [46]. Unfortunately however, EveSem does

not appear to be publicly available as yet.

TIPSerrFEL however, does appear to be available online. TIPSem is a semantic event extraction sys-
tem for both English and Spanish texts, achieving the highest F'| scores in tasks BE] (event extrac-
tion) and D (event - document creation time ordering) of the TempEval-2 challenge, and appearing
amongst the top scorers in the other sub-tasks [47]]. Again, by employing semantic information the
tool generally outperforms the equivalent TIPSem-B system that performs the same analysis based
solely on syntactic information. However, despite a good performance on the task of identifying and
classifying events in text, it does not perform so well on task (iii) of Temp-Eval-2: that of identifying
temporal relations between events and temporal expressions. In identifying the temporal relation-
ship between events (Task E), TIPSem achieved an F'j-score of 55%, and although this was not the
best score, it was only 1% behind it [47]]. Thus, it appears that one of the biggest challenges in this

area remains the temporal ordering of events extracted from text.

Despite this, an interesting paper on the unsupervised learning of narrative event chains from Stan-
ford presents a three stage process to extracting and ordering the series of eventsEg] contained within
a narrative, with the result achieving a 72.1% accuracy at the binary task of determining if one event
is before another on the Timebank corpus [48]]. The paper describes the construction of a narrative
event chain, defined as “a partially ordered set of events related by a common protagonist” [48]], in
effect yielding a timeline of events related to the protagonist of interest. As a result, this approach
is referred to as entity-centric, exploiting the idea that although a narrative typically has multiple
actors, there is typically one main protagonist that the narrative follows. Thus, the project uses this

protagonist as the sook to extract a narrative event chain from a given text.

To construct this narrative event chain, the authors make the assumption of narrative coherence:
“verbs sharing co-referring arguments are semantically connected by virtue of narrative discourse
structure” [48]]. An idea intuitively justified by the authors as “a series of argument-sharing verbs is

more likely to participate in a narrative chain than those not sharing” [48]].

Z3Semantic role labelling

26 Available from http://www.cognitionis.com/tipsem/

?’The recognition and classification of events as defined by the TimeML EVENT tag
28Defined simply as a verb and its participants

33

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

faces | arrested
subj | aobj
pleaded - charged | accused
subj obj 1 obj
L \\
indicted testified
obj subj
L Y
acquitted convicted
obj obj
sentenced

obj

Figure 2.14: An automatically learned prosecution chain [48]]

The two stages of particular importance to my project are those of identifying events to be included
in the narrative event chain, and subsequently identifying a partial ordering of the extracted events
subject to the before relation. In order to construct the initially unordered narrative event chain,
the authors first define a pairwise (event-event) comparison score using point-wise mutual informa-
tion over the number of grammatical arguments the two events share, following from the narrative
coherence assumption. With these pairwise scores defined, a narrative chain can be constructed
by first extracting all events directly related to the protagonist of interest, and then building up the
chain based upon the pairwise scores of candidate events against the events already included in the
chain [48]]. The second stage utilises the temporal attributes of the extracted events, such as tense,
grammatical aspect, and aspectual class, in addition to other linguistic features in order to classify
the temporal relationship between events, restricted solely to identifying the before relation for the
purpose of this project [48]].

As a result, the system achieved an 89% accuracy on identifying the partial ordering of event
chains containing 10 or more pairs of ordered events, i.e. chains that most progress through time.
Figure [2.14]shows the rather impressive results of combining the two stages above to yield a directed
graph reflecting the partial ordering of events discovered by the system. Again, despite the system’s
lack of availability, the paper describes an effective technique for the construction of narrative event

chains that could prove useful to the development of my application.

So, despite event extraction being one of the “most investigated tasks of information extraction” [6],
it appears that the prevalence and availability of solutions is still somewhat limited, and the problem
remains a challenge. However, recent studies have identified a range of effective strategies, all build-
ing upon the additional information that can be obtained using the state-of-the-art NLP solutions for
other syntactic and semantic NLP tasks, namely part-of-speech, co-reference resolution and seman-
tic role labelling, among others, and so provide the means to develop an effective solution to the

problem.

34

2. BACKGROUND 2.1. NATURAL LANGUAGE PROCESSING

2.1.7 Other Areas of Interest

Finally, in addition to these areas of NLP that are of immediate interest, it is worth mentioning that
there are a whole host of other tools and active areas of NLP research that could prove useful in
the development of an effective application. Three areas of particular relevance are those of text

summarisation, information extraction, and cross-document co-reference resolution.

Text summarisation aims to process and convert a large piece of text into a shortened summary
that maintains only the most important pieces of information. Again, how we define importance
makes a big difference to the output, with a typical approach being to keep information regarding
frequently mentioned entities in the text. Such a tool could prove useful in my application by
reducing the amount of information to process, potentially reducing the difficulty of event extraction
as the summarised information already clusters related information. Alternatively, it could be a
useful post-processing step to construct more concise event descriptions to display in the resulting
timeline. However, it is important that I am able to locate the original source of any summarised

information for two key reasons:

1. To be able to inform the reader exactly where in the original text they can find the details of

the summarised event

2. To be able to apply other NLP techniques to the original text to extract additional supplemen-

tary information related to an event that can be displayed in the resulting timeline

Google’s TensorFlow is one example of such an application, and has been trained to perform text

summarisation on news articles to a high standard, with some examples shown in Table [2.7]

Information extraction, the broad task of extracting useful information from text, could also prove
to be useful. Named entity recognition, temporal information extraction, and event extraction can
all be viewed as sub-tasks of information extraction, however, in the broadest sense, information
extraction is essentially a slot-filling task: the task of extracting factual information from a piece of
text, such as the extraction of the tuple (Obama, born in, Honolulu, Hawaii) by the Stanford OpenlE
system, an example seen in our discussion of event extraction tools. Facts like these could prove
to be useful supplementary information to display along with the associated events in the resulting

timeline, potentially allowing further insight to be drawn from the visualisation.

Finally, a relatively new area of research is that of cross-document coreference resolution. Ex-
tending the task of coreference resolution to deal with the identification of entity coreference across
a collection of documents, rather than just one. This could also prove to be an interesting extension

to the project, allowing us to construct timelines consisting of events from multiple texts.

35

2. BACKGROUND 2.2. CLUSTERING TECHNIQUES

Input: Article 1st sentence Model-written headline

metro-goldwyn-mayer reported a third- | mgm reports 16 million net loss
quarter net loss of dlrs 16 million due mainly | on higher revenue
to the effect of accounting rules adopted this

year

starting from july 1, the island province of | hainan to curb spread of diseases
hainan in southern china will implement strict
market access control on all incoming live-
stock and animal products to prevent the pos-

sible spread of epidemic diseases

australian wine exports hit a record 52.1 mil- | australian wine exports hit
lion liters worth 260 million dollars (143 mil- | record high in september

lion us) in september, the government statis-

tics office reported on monday

Table 2.7: Results of Google’s TensorFlow text summarisation tool [49].

2.2 Clustering Techniques

Clustering is the process of grouping a number of related items into a collection of disjoint sets. A
variety of techniques exist for such a task and have each been successfully applied in a number of
different contexts. We discuss a few of these techniques below, and evaluate their potential with

respect to our use case of text clustering.

2.2.1 K-Means Clustering

K-means clustering is a simple and extremely popular clustering method. This is an iterative method
for grouping items into K disjoint clusters, requiring the user to first specify the value of K they de-
sire. The method begins by randomly choosing K points distributed throughout the feature-space of
the items to be grouped, these points being referred to as the initial cluster centroids. Each item is
then moved into the cluster of its nearest centroid using some pre-defined distance metric, typically
Euclidean distance. Each of the K cluster centroids are then re-calculated as the average value of all
the items contained within the cluster, and the process repeats. This iterative cycle continues until

we reach a stopping condition, typically when the clusters no longer change between an iteration.

This is a relatively simple method, and while having a theoretically high upper bounding complexity,
in practice the process typically finishes quickly [50]. However, the major disadvantage of this
approach is the requirement to specify K in advance; how do we know how many events we expect
to extract from the text? It would also be a fairly expensive operation to repeat the process for various
values of K, requiring a complete re-computation for each value. Another significant drawback of

this approach is the fact that the choice of initial cluster centroids can also alter the resulting clusters

36

2. BACKGROUND 2.2. CLUSTERING TECHNIQUES

0.5 0.5

-1 -05 0 05 -1 -0.5 0 0.5
(a) (b)
1 1
& NN Syl
0.5 Fleeyo NG 05 =D
& PR) g. s T&Q
0 SO & 0 = @ o
o)
Sl Q;:t’ - 8
. 0 S
-05 e -05 ‘W
-1 -1
-1 05 0 05 -1 -05 0 0.5
(c) (d)

Figure 2.15: The cluster boundaries identified by Support Vector Clustering as the scale parameter,
g, of the Gaussian kernel is increased. (a): q =1 (b): q =20 (¢): q =24 (d): q =48. [51]

obtained; an issue typically overcome by developing a heuristic method for choosing a good set of
initial centroids. This non-determinism is something we certainly want to avoid in extracting a set
of events at a given level of detail.

2.2.2 Support Vector Clustering

Unlike K-means clustering, Support Vector Clustering (SVC) is a non-parametric model that makes
no assumptions as to the number of clusters in the underlying data. The technique is based upon the
use of Support Vector Machines, using a Gaussian kernel to map items in the input space into a high
dimensional feature space [51]]. The method then aims to find the minimal enclosing sphere of the
feature space, which when mapped back into the original input space defines a number of contours
around the input data. More intuitively, the method essentially aims to draw boundaries in the areas

of the input space where there is little data [51]]. As a result, the areas enclosed by each of these
boundaries become our clusters [S1]].

The results produced can be adjusted through the alteration of two parameters [S1]:

o The width of the Gaussian kernel determines the tightness of boundaries to the data points.

Decreasing this value will lead to an increasing number of clusters.

o A soft margin constraint allows for outliers, leading to smoother boundaries and reducing
over-fitting.

37

2. BACKGROUND 2.2. CLUSTERING TECHNIQUES

BFAECGD

Figure 2.16: Dendrogram illustrating the results of hierarchical clustering. In this example the y-axis
represents the “distance” (inverse of similarity) between items, thus items with a smaller distance

between them are linked before those with a greater distance [52].

Figure shows the effect of decreasing the width of the Gaussian kernel on the boundaries identi-
fied [51]]. These properties make SVC an extremely promising option for event clustering, providing
us with a means of adjusting cluster granularity without the need for specifying the number of clus-
ters expected. Additionally, the resulting quadratic problem can be solved with an off-the-shelf
solver relatively efficiently and yields a single global solution [S1]. Thus, addressing a number of

the issues identified with K-means.

2.2.3 Hierarchical Clustering

Hierarchical clustering is also a non-parametric model, similarly not requiring the user to specify
the number of clusters expected in advance. In this case, we have a recursive process that progres-
sively builds up a set of clusters. Beginning with an individual cluster for each item, at each step
we merge the two most similar clusters according to some pre-defined similarity metric, continuing
this process until our stopping criteria is met, typically because either there is no reason to cluster
any longer or all items are contained within a single cluster. More precisely, this describes the basic
process of agglomerative hierarchical clustering. Divisive hierarchical clustering, on the other hand,
works in the reverse manner to gradually break down a single large starting cluster into a set of

smaller clusters.

As a result we obtain a hierarchical structure (as the name suggests) that can be illustrated as a den-
drogram of the form shown in Figure [2.16] Such a dendrogram highlights the order in which the
clustering took place reflecting which items are most similar, and also shows the cluster sets we’d
obtain if we took a horizontal cut at any particular step. For example, taking a cut at a score of 0.5 in
the example of Figure[2.16|would yield 3 clusters: {B, F}, {A, E, C, G}, and {D} [52]. A structured
output like this has proven extremely useful in highlighting gene lineage in Bioinformatics, and this
technique has also been used in previous works on document clustering. In the case of [S3]], not only
does document clustering provide a means to efficiently search through a number of documents by
collecting only those of relevance to your search, but by employing hierarchical clustering the user
can also adjust the clusters of documents produced to allow them to “browse through the results at
their desired level of specificity” [53l].

38

2. BACKGROUND 2.2. CLUSTERING TECHNIQUES

L D

(a) single-link: maximum similarity (b) complete-link: minimum similarity

S0 D

(c) centroid: average inter-similarity {d) group-average: average of all similarities

Figure 2.17: Graphical representation of the different linking strategies between neighbouring clus-

ters in Hierarchical clustering [54].

While the fundamental approach to hierarchical clustering is relatively fixed, the results can be
changed significantly through the choice of linking strategy employed. Following the merge of two
clusters, the similarity score of the new cluster with its neighbouring clusters is updated, however
exactly how we do this depends on our choice of linking strategy. The three most common strategies
being: single-link, complete-linkF_gl, and average-link, illustrated nicely in Figure [54].

Single link clustering updates the scores between any two clusters with the scores of the most sim-
ilar items within each of the clusters [54]. Average link clustering updates the scores between any
two clusters with the average of the scores between the items contained in each cluster [54]. And fi-
nally, complete link clustering updates the scores between any two clusters with the scores between
the two most dissimilar items contained in the clusters [54]. Each of these yields different dynamics

that may be preferable under different circumstances.

Finally, while the two alternative methods described previously immediately result in a set of clus-
ters, hierarchical clustering leaves us with this hierarchical structure from which we need to extract
our clusters. Various cutting strategies exist to identify a good place to cut the hierarchy to obtain
a desirable set of clusters. One approach is to identify a good score threshold at which we take a
horizontal cut, as we did in the brief example of Figure[2.16] or alternatively cutting the tree at the
point where the gap between two successive merges is largest is credited with often yielding a nat-
ural cutting point [54]. Thus, hierarchical clustering presents a fairly simple yet effective technique
for clustering, which yields a structured hierarchy of clusters that naturally fits with my objective of

providing an adjustable level of detail of the resulting events extracted.

2 Also known as furthest-link.

39

2. BACKGROUND 2.3. TIMELINE VISUALISATION

B %:'g\'v"l‘

Figure 2.18: An example graph produced by GraphViz’s dot tool highlighting its ability to clearly

layout even complex relationships between elements in a graph [55]].

2.3 Timeline Visualisation

As important as the extraction of relevant events from a given piece of text is, an effective visu-
alisation of the results is also vital in providing valuable insights into the underlying text. Part of
the novelty of this project is the emphasis on the development of an infographic event timeline; i.e.
providing the user with a concise visualisation displaying a variety of useful information extracted

from the text, at a glance.

2.3.1 Existing Tools

Many tools already exist for the purpose of constructing a timeline given the structured data, with
varying levels of flexibility. One of the most flexible tools being GraphViﬂ a graph drawing tool
that employs various layout heuristics in order to construct a clear representation of the resulting
graph. The nature of this tool allows the resulting timeline to be drawn in any way we wish, en-
forcing very few constraints on the resulting visualisation and thus presenting an extremely versatile
option for the construction of an event timeline. An example graph produced by GraphViz is shown

in Figure 2.1§]

30 Available from http://www.graphviz.org/

40

2. BACKGROUND 2.3. TIMELINE VISUALISATION

Kennedy shat O White male seen running from TS8D O Office Tgpit calls HQ. @ Oswald seen at bus stop @ Polce says Tippit shot °
© JFKarrives at Parkland Hospital @ Homicide Chief calls @ JFK pronounced dead @ Tippits body discovered @ Rifte found on 6t floor o T8D. @ Police radio from Tippits murder scene.
Texas theatre st Parkland hospital

©Oswald leaves TsBD and boards bus @ Police

Tippits il
3 om Kooll

© Oswald gets off bus and boards taxi © Hulls found on éth floor of T5BD
hdearea © Washington D.C.'s phone system breakdown © Oswald seen entering Texas Theater

shot

shot

11:00 1200 13:00 1400 15:00 16:00 700 (1800 1900 (00 2100 200 2300

Figure 2.19: An example timeline produced by MIT’s SIMILE [56]].

US Leadership

Roosevelt

UK Leadership

) cromsen G - cnvnn

Attlee

World War Il

_ July 24,1945 - October 26, 1951 (6 years, 3 months and 3 days)

Milestones
« Japan Invades Manchuria * Japan Invades China * Japan Formally Surrenders

Germany Invades Poland % D-Day

1940 1942 1944

Figure 2.20: An example timeline produced by Preceden [57].

MIT’s SIMILEE is another option; this is a publicly available timeline visualisation tool for the
construction of interactive event timelines that can be embedded directly into a web page. SIMILE
allows the automatic construction of event timelines from XML formatted input data, but lacks the
flexibility of tools such as GraphViz in terms of the possible visualisations achievable. For example,
it would not be possible to represent the distinct paths of multiple actors on the same timeline with-
out embedding multiple SIMILE widgets into the webpage. Thus, the lack of flexibility here makes
SIMILE a less attractive option. An example timeline produced by SIMILE is shown in Figure[2.19]

A more modern alternative to SIMILE is Precederﬁ, which again constructs interactive event time-
lines that can be directly embedded into a website. In addition, this tool offers the ability to layer
the resulting timeline, providing the potential to have layers for distinct actors, topics, or places
mentioned in the text. The software appears to produce a clear, modern looking timeline that can
be constructed by supplying a CSV formatted file describing the data to display. Thus, this tool
presents a good compromise between the two previously mentioned alternatives. An example time-

line produced by Preceden is shown in Figure [2.20]

2.3.2 Force-Directed Graphs

However, fundamentally we have a data visualisation problem: our aim being to construct a clear
visualisation to faithfully reflect the information being displayed. Force-directed graphs enable this
by encoding the various properties of the data being displayed as physical forces that influence the
resulting layout of the graph induced.

3http://simile-widgets.org/timeline/
32 Available from https://www.preceden.com/

41

2. BACKGROUND 2.3. TIMELINE VISUALISATION

Figure 2.21: Force-directed visualisation of Bitcoin transactions revealing the occurrence of a trans-

action rate attack on the Bitcoin network [58]].

One recent example of the use of force-directed graphs is in the work carried out by researchers at
Imperial College London on visualising Bitcoin transaction patterns, which I was fortunate enough
to see for myself [58]]. One of the key properties of force-directed graphs that make them so appeal-
ing is the fact that they provide the means to produce natural, emergent structures without requiring
the user to manually specify the placement of nodes and edges [39]. As a result, we allow the data
itself to influence the resulting layout, which can result in incredibly interesting and unforeseen
insights being drawn from the resulting plot. In the case of the Bitcoin visualisation, the result-
ing plot enabled the authors to witness a developing transaction rate attack on the Bitcoin network

and recognise further unusual activity in unprecedented clarity [58]. This result is illustrated in

Figure [2.21] [58].

However, while force-directed graphs provide the means for some elegant visualisations, it is im-
portant to be aware of the limitations of scalability. Force-directed graphs only behave well for a
relatively small graphs consisting of at most hundreds of nodes [59]. Beyond this, the effect of many
local optima in the underlying physical simulations and unpredictability of the initial layout can lead
to fairly poor results [59]]. In our context, this should not be a constraint that affects us in practice as
it is unusual to have a story with over 100 events, or at least it would be extremely difficult for any

reader to comprehend such a timeline.

Thus, the use of force-directed graphs provide a novel opportunity to assess their ability in pro-
ducing a timeline of the form we saw in the introduction in Figure [I.T] reflecting the interactions
of characters in the text while maintaining a good level of clarity. They also present the means to

explore new ways of visualising the events within text, and the properties they can reflect.

42

2. BACKGROUND 2.4. CHOICE OF TEXT CORPORA

2.4 Choice of Text Corpora

The choice of text corpora for development is another important factor to consider. The aim of this
project is to produce an application that is able to construct general event timelines for texts over
a large selection of different domains, thus my aim is to keep the project as domain agnostic as
possible. Of course, in some cases domain-specific knowledge is required, for example I would not
expect my system to perform well in identifying the events of a biological phenomenon, such as the
transcription and expression of genes etc., but do hope it is able to recognise events we’d recognise
as general knowledge. As a result, the choice of text corpora for development and evaluation of the

system will prove vitally important to achieving good results.

Fairy tales are one possible corpus of material, and are used in the development of Cui’s automated
timeline generation software that we will discuss shortly in Section [2.5] [60]. Fairy tales are short,
simple narratives, usually with a clear sequence of events that one would like to extract. However,
the use of fictional character and place names typically does not interact well with current NER or
coreference tools that often rely on a world-knowledge that does not include fictional information.
As a result, names such as Goldilocks are unlikely to be recognised, and even less likely to be iden-
tified with the correct gender. This could be tackled though the creation of our own labelled training
data and retraining the tools to recognise such expressions, however this poses an additional work-
load in a context that does not appear to be the most impactful application of this software.

News articles are another option, which immediately overcome the issue of non-fictional names and
places. The short nature of news articles typically with explicit temporal expressions, make them
a good target for many existing NLP tools, which in a lot of cases have been specifically trained
on news articles from the TimeBank corpus of annotated material. Notable examples include text
summarisation, named entity recognition, and temporal information retrieval tools. So, news articles
remain a useful source of material for the purpose of judging the best results we could perhaps hope
to achieve. Additionally, news articles are not always written in chronological order, thus putting an
emphasis on the need to re-order the events described before constructing the resulting timeline: an

additional challenge that we may consider depending upon our time constraints.

Historical texts are another appealing domain, as the insights gained from a timeline visualisation
of a historical text can prove invaluable in a variety of different contexts, from education to current
historical research. Such texts typically span over a reasonably long period of time relative to other
texts, and again consist of non-fictional entities and events that can often be resolved by current so-
lutions to named entity recognition and temporal information retrieval. However, the challenge we
may face with historical texts is that of scalability. That is, history text books are typically hundreds
of pages long, which combined with the amount of processing time required by the different stages
in an NLP pipeline could present additional challenges that we’d rather postpone to a later stage.
Our focus is on incremental improvement, developing a strategy that proves effective on short, sim-

ple texts before tackling the challenges of scalability.

43

2. BACKGROUND 2.5. RELATED WORK

Thus, my initial focus shall be on short, simple English prose: texts consisting of non-fictional
character and place names, and a mix of relative, explicit and implicit temporal expressions. One
method of generating such texts could be to replace all fictional entities in fairy tales and short
novels with non-fictional equivalents. This corpora of text encapsulates the broadest domain of
possible input texts with the nice property that such texts are typically written in chronological order,
removing the need to introduce temporal information extraction for re-ordering the events identified.
The focus on non-fictional entities allows us to explore the maximum potential of existing NLP tools

by testing them under conditions most similar to their development conditions.

2.5 Related Work

The topic of automated construction of event timelines from text has become a prominent area of
study in recent years, with multiple research groups and authors citing this as a potential application
of NLP technologies. Now, due to the advancement of the relevant NLP tools reaching a point of
such sophistication, the development of a solution to this problem is becoming an increasingly vi-

able prospect.

One project similar in nature to mine was that of Lu Cui, fellow Imperial College student, who
worked towards the development of a web application for the automatic extraction of actor-centric
event timelines from text [[60]. Cui’s work focused on combining machine learning techniques with
NLP tools to be able to train a model to recognise the actors of choice within a given text, regardless
of the name being fictional or non-fictional, using the Stanford CoreNLP toolkit to achieve this.
Experimentation with the use of regexes versus named entity recognition for this purpose revealed
named entity recognition to be the superior technique in this case for identifying the entities in text,
a technique that I intend to employ. For the purpose of the project, Cui defines an event as an “action
and [the] characters involved”, focusing primarily on the fairy tale of the three little pigs: a narrative
text that has the advantage that the order of events typically follow the order of occurrence in the
text [60]. Figure [2.22]shows the output of the resulting web application on three little pigs narrative.

Despite a good performance on this example, Cui also identifies some of the limitations of the sys-
tem, most notably the fact that the application does not account for any event re-ordering that may
be required when events are not expressed in chronological order. Secondly, Cui notes the issue of
resolving collective co-reference in text, such as the difficulty in identifying that “the three pigs”
refers to all three of the little pigs: one of the key challenges of coreference resolution [60]. Cui
also presents and evaluates a collection of potential timeline visualisations for the story of three little

pigs, but did not have the time to further explore the creation of such timelines.

44

2. BACKGROUND 2.5. RELATED WORK

Timeline Results

The big bad wolf The first litle pig The second little pig The third little pig
built a house with straw

blew the house down, and ate
the first little pig

built a house with furze

blew the house down and ate
the pig

built a house with brick

caught and ate the Wolf

Figure 2.22: Lu Cui’s event timeline for the three little pigs story [60].

Another, earlier project pursuing a similar goal describes a tool focused on extracting only the most
salient events from Wikipedia articles, in particular searching for events associated with an explicit
date that can then be displayed on the resulting timeline [61]. The authors split the task into 2

distinct subtasks:

o Identifying which events are the most important in the text

e Ordering and displaying these on a timeline using the MIT SIMILE software discussed in
Section 2.3

The importance of an event is evaluated using a classifier trained using event and sentence level
features, such as whether or not a sentence contains any numerical digits, or whether it contains any
named-entities and the frequency with which these entities are mentioned in the document [61]]. In
order to recognise temporal expressions in text, the authors choose to employ an extensive collec-
tion of regexes, seemingly outperforming GUTime, a predecessor to Stanford’s SUTime temporal

information retrieval tool that we discussed back in Section [2.1.4]

Evaluating their results against a selection of manually annotated Wikipedia articles, the system
achieves an F'{-score of 66.8%. Although, there are certainly some discrepancies as to what is con-
sidered an important event. A weakness of this system is its inability to effectively order events
which do not mention an explicit time, where in such cases the authors make the assumption that
historical texts are typically written in chronological order. An example of the resulting visualisa-
tion, a combination of MIT’s SIMILE timeline widget and Google Maps to display the location of

extracted events, is shown in Figure[2.23]

45

2. BACKGROUND 2.5. RELATED WORK

Chows Overtays | Show A% Overiays | | Desete Overiays
wrd Uipdate Localion

181

A & Ml o began i L g The Link
osnat

Conies on Cinke:

Figure 2.23: An example visualisation of a historical Wikipedia article [61].

Linea is another tool focused on the generation of event timelines from Wikipedia articles, using
a three stage process consisting of event extraction, event ranking, and event matrix construction
to automatically construct a timeline of the 10 most important events in the article [62]. The event
matrix is a visual tool used to present a collection of histograms showing the number of sentences
that refer to each period in time, as a result allowing the user to quickly see important periods of
time in the text. Each histogram can focus on a different period of time, using a user-specified scale
to provide insights that may not be visible initially. Through this the user is able to explore and cus-
tomise the resulting timeline [62]. Figure [2.24]shows an example of such a histogram. This appears
to be a useful visualisation that certainly provides additional insight that would not be immediately
gathered from the text alone, or perhaps even from a timeline alone, so is certainly an additional

visualisation that I may consider including in my infographic event timeline.

The display of only the most important events appears to be a common aspect to these applications,
but is not a restriction I wish to impose. Indeed, the restriction of the visualisation to solely seem-
ingly important events could be particularly dangerous in the context of witness statements; it is the
job of the lawyer and the courts to decipher what is important information in a witness account, and
what could prove useful in determining the outcome of a case. In many cases it is a small, seemingly
insignificant, piece of information that provides the most useful insight. My aim is to construct an
accurate timeline displaying all the events identified in a given text, while the idea of allowing the

user to customise the resulting timeline is certainly a useful feature.

46

2. BACKGROUND 2.5. RELATED WORK

3«"

of events

N7\

1500 1628 1756 1884 2014

Figure 2.24: Example histogram produced by Linea over a historical Wikipedia article [62].

A severe limitation of the Linea system is that it uses dates as a proxy for important events with
the reasoning that if the writer decided that it was worth being specific about exactly when some-
thing happened, it is probably important [62]. Despite being an effective strategy in the context of

Wikipedia articles, in the broader context of narrative text this is certainly not the case.

Another project following a similar initiative to mine was that of [48]], constructing narrative event
chains, as discussed in Section [2.1.6| on event extraction. The project by Stanford appears to have
achieved extremely accurate results, producing an effective timeline from text without the restric-
tion to solely explicit temporal information. Utilising grammatical aspect, verb tense, and aspectual
class, in addition to other linguistic features, the system achieves a good accuracy on identifying the
before relationship between the events extracted. As a result, the system produces a narrative event

chain that could quite easily be displayed in the form of an event timeline with some additional effort.

Lastly, the recent work of [[63]] pursued the idea of automatically visualising the contents of a chil-
dren’s story in a virtual world. This work focusses primarily on the context of children’s stories,
and highlights the difficulties of current NLP tools to adapt to other domains. In response, the au-
thors manage to achieve an improvement of between 8 and 20% F; across 4 different semantic roles
identified by their SRL tool by developing a set of training material reflecting their target input do-
main [63]. Further to this, they also observe the ignorance of existing coreference resolution tools
to the typical constraints of storytelling: failing to correctly resolve nominal coreferences such as “a
woman” with “the woman” [63]]. As a result, they develop their own tailor-made system yielding an
improvement of 4.46% F| over their example texts [63]]. This again highlights the impact of training
data on the performance of the current state-of-the-art NLP tools, and is thus why I shall initially
tailor my input slightly in attempt to observe what is maximally achievable from current tools at

present, without moving these tools too far from their development domain.

47

2. BACKGROUND 2.5. RELATED WORK

This study highlights some valuable points to consider, and while closely related to my project tar-
gets a very different outcome. [63] treats each sentence as a possible event to visualise, with the
goal of then identifying the key action described in that sentence and its corresponding arguments,
such as the actor, location, and any tools being used. The probabilistic graphical model approach
used works well in this context, mapping the input features extracted from each sentence to one of
a finite number of possible actions that can be displayed by their graphical engine [63]. My project
on the other hand focusses on displaying a visual summary of the information extracted, identifying

events at a higher level, and thus not necessarily requiring the understanding of the events described.

48

Chapter 3

Laying the Foundations

3.1 Aims

In this chapter we outline exactly we consider to be an event, discuss our experimentation with the
most promising tools we found during our initial investigation discussed in the previous chapter, and
finally present our selected technologies for use in building the underlying event extraction system
discussed later in Chapter [6| This experimentation proved vital in deciding which tools provided
annotations of most value to both the resulting visualisation and as possible features to inform the

event clustering process, and consequently guided our approach throughout the rest of the project.

3.2 Defining an Event

Of central importance to the project is exactly what we define to be an event. As we saw in
Section [2.1.6] the majority of existing event extraction tools focus on recognising key phrases that
act as event triggers in a piece of text and then extracting their surrounding arguments. While such
an approach is useful in the context of information retrieval, it is not as relevant in the case of event
timeline construction. As mentioned earlier, it is a human’s innate ability to generalise information
to varying degrees of detail that we wish to emulate. Thus, we define an event as any distinct occur-
rence or set of related actions that take place within a piece of text, allowing this to be generalised

to a varying level of detail.

At the finest level of detail, we restrict ourselves to the granularity of treating any individual sen-
tence as an event, while at the coarsest level of detail we may encapsulate the entire story as a single
event. The reasoning for this is two-fold: in the context of a narrative text, any single sentence will
typically only describe a single event, and secondly this limits the maximum number of events to be
displayed in the resulting timeline with a potentially overwhelming result if we were to additionally

decompose sentences into their constituent events.

49

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

3.3 Experimentation

3.3.1 Coreference Resolution

Coreference resolution lies at the heart of this project. Being able to recognise which actors are
involved in each of the events is paramount to being able to construct a resulting timeline of the
form shown previously in Figure [I.1] As noted in Section [2.1.3] while both Illinois and Stanford
universities offer readily available coreference resolution systems, it is Stanford that appears to pro-
vide the superior performance at present, with three alternative implementations to choose from: a
rule-based implementation, a statistical implementation, and a neural implementation. While a naive
approach would suggest we simply use the neural implementation, having achieved the top score on
the CoNLL 2012 dataset, we’re now using these tools under a completely different context, and as
such the results on the CoNLL 2012 corpus is unlikely to accurately reflect the results in the do-
main of narrative text. Additionally, we explore the effect of adjusting the parameters of these tools
on the results produced; the statistical implementation provides a pairwise score threshold that can
be reduced to increase the likelihood of merging two clusters into a single coreference chain [28]].
Similarly, the neural system defines a greediness parameter that can be increased to increase the
chance of merging two coreference clusters [28]]. For this comparison we take the two example texts

of Little Red Riding Hood and Goldilocks and the Three Bears; our exact versions are included in
Appendix [Al

We begin with the text of Little Red Riding Hood, setting the score threshold parameter of the sta-
tistical system to the recommended default of 0.35, and the neural with a greediness parameter of
0.45, slightly below the suggested default. In the majority of cases all three of the tools perform
similarly, however Table [3.3] highlights some of the key differences between the tools on this first
text. It is clear that each of the tools have strengths and weaknesses, yet the overall result here is
fairy inconclusive. One facet that is clear: all of the systems struggle with nominal mentions. Partic-
ularly in the case of sentence 6 where all 3 of the tools fail to recognise the mention of the wolf. This
was an issue highlighted by our background research, and it is clear that this may be a significant
problem here: particularly in the context of fairy tales where characters often lack names. Table [3.1]
summarises the overall performance of each of these implementations on this example, and reveals
the statistical implementation to yield the marginally superior results. These metrics were calculated
only considering the ability of the implementations to correctly recognise coreferent actor mentions.
For this purpose, we ignore the performance on identifying coreference mentions of other entities,
such as the woods for example, that is also repeatedly mentioned but not directly relevant to our

investigation here.

Increasing the greediness of the neural implementation had no effect until we reached a value of 0.55,
leading to a slight improvement on this example. In this case correctly recognising the mention of
the wolf in sentence 6, as discussed previously. These additional results are shown in Appendix[B.1]
However, while an increased greediness yielded mildly better results in the Little Red Riding Hood
example, in the case of Goldilocks this resulted in all 4 of Goldilocks, the Papa bear, the Mama
bear, and the Baby bear being resolved into the same chain, i.e. being treated as a single entity. This

highlights the negative impact of being overly greedy in constructing coreference chains.

50

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

Rule-based Statistical Neural

Recall 77.2% 83.1% 75.6%
Precision 93.8% 95.5% 95.2%
F1-Score 84.7% 88.9% 84.3%

Table 3.1: Performance summary of each of the Stanford Coreference Resolution implementations
over the example of Little Red Riding Hood. These scores only consider the matches of characters
in the text, ignoring any other entities that are mentioned multiple times in the text that may or may
not also be identified by the systems. Links to the raw annotation data can be found in Appendix@

Incorrectly merging two large chains can lead to a severe degradation in the quality of results: in-
correctly tagging effectively every event with all 4 characters would require the user to correct the
mentions in every event, yielding no real benefit to the user. For our purposes, we’d rather have a
greater number of distinct chains, such as the distinct chains for Little Red Riding Hood and a little
girl who lived in a village near the forest, than incorrectly merging two coreference chains that are
actually distinct entities. i.e. Favouring precision over recall. In the former case the user need only
correct the system to consider two characters as the same, while the latter may require the user to

manually update the character tags for every single event.

Another factor to consider is the effect of the text consisting of predominantly nominal mentions
as opposed to named mentions, bearing in mind that the majority of existing training data for this
task consists primarily of news articles and other non-fictional texts. The use of unfamiliar language
may be part of the reason for all 4 of the characters in the Goldilocks text were merged into a single
cluster. To explore this, we additionally repeat the same analysis as above with an adapted version
of the Little Red Riding Hood text with the following changes:

o Little Red Riding Hood is now referred to as Sophie.
e Her mommy is instead referred to as Caroline.

Her Grandma is now referred to as Alice.

The wolf is instead named Alan.

The woodsman is instead named Andrew.

51

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

Rule-based Statistical Neural

Recall 90.7% 78.4% 88%
Precision 97.1% 86.6% 97.1%
F1-Score 93.8% 82.3% 92.3%

Table 3.2: Performance summary of each of the Stanford Coreference Resolution implementations
over the example of Little Red Riding Hood with characters mentions replaced by named mentions.
These scores only consider the matches of characters in the text, ignoring any other entities that are
mentioned multiple times in the text that may or may not also be identified by the systems. Links to
the raw annotation data can be found in Appendix

Thus, we replace the large set of nominal mentions we had previously with named mentions that are
more typical of the training data used by these systems. The results validate this hypothesis, with
the statistical and neural systems showing the most significant improvement, particularly during
the dialogue between Little Red Riding Hood and her Grandmother, where the rule-based system
struggles. Table [3.4] again highlights some of the key differences between the systems, where the
sentence numbers included are for ease of reference in order to compare these results to those of
Table[3.3] In this case, the neural system seems to outperform both of the other implementations,
with the rule-based system struggling particularly during the dialogue between Little Red Riding
Hood and her Grandmother, and the statistical system incorrectly resolving Alice (the grandmother)
as the same entity as the little girl: we first see this in sentence 1 of Table[3.4] and unfortunately this
error subsequently propagates throughout the rest of the text.

Table[3.2]summarises the overall performance of these implementations over the altered text, quanti-
fying the performance improvement of both the rule-based and neural implementations. We also see
the reduced overall performance of the statistical implementation on this example due to the early
error. These results clearly reveal the impact of named mentions on the performance of coreference
resolution systems, and thus the potential benefit to be gained from preprocessing an input text to
ensure the characters mentioned are predominantly named. Additionally, Table [3.2] also appears
to reveal the impact of using these tools perhaps out of their intended domain. The nature of the
training material used for the neural implementation means that when tested under the domain of
narrative texts it performs no better than the rule-based implementation, despite being far superior
in the context of the CoNLL 2012 data set.

As a result, we choose initially to employ the Stanford neural coreference implementation with a
greediness of 0.45. This yields a fairly consistent set of results whether we have named mentions or
nominal mentions, and avoids incorrectly merging clusters that should remain distinct. Increasing
the pairwise score threshold of the statistical implementation improved its performance in the pre-

processed example, but not sufficiently to outperform the neural implementation.

52

No.

Sentence

Mentions (Rule-based)

Mentions (Statistical) -
0.35

Mentions (Neural) - 0.45

Comments

1 Remember, go straight to Grandma’s her mommy, Grandma her mommy, not her her mommy, her Statistical best as
house, her mommy cautioned. Grandma, a little girl who | Grandma identifies all 3 characters
lived in a village near the
forest
3 I’'m on my way to see my Grandma Little Red Riding Hood, Little Red Riding Hood, The wolf, Little Red Rule-based and statistical
who lives through the forest, near the the way, the poor Wolf, not her Grandma, Riding Hood as she, the best.
brook, Little Red Riding Hood replied. | Grandma, the forest the forest forest
4 Poor Grandma did not have time to say | a time, the poor Wolf, not her Grandma, a | The wolf, Poor Grandma | Neural and rule-based
another word, before the wolf gobbled | Grandma, The wolf little girl who lived in a best; Statistical
her up! village near the forest incorrectly includes little
girl
5 It’s me, Little Red Riding Hood. a cackly voice, The wolf | Little Red Riding Hood, The wolf, Little Red Statistical best, then
me, it Riding Hood as she neural
6 Oh, I just have touch of a cold, Your she All miss the wolf
squeaked the wolf adding a cough at
the end to prove the point.
7 But Grandma! What big eyes you Little Red Riding Hood, Little Red Riding Hood, Little Red Riding Hood Statistical best
have, said Little Red Riding Hood. you But Grandma, you as she
8 She ran across the room and through the door, Wolf, the poor her, the door, Wolf the door, a little girl who Statistical and neural best

the door, shouting, "Help! Wolf!" as
loudly as she could.

Grandma

lived in a village near the

forest

Table 3.3: Comparison of Stanford coreference resolution implementations on the Little Red Riding Hood text.

Sentence

Mentions (Rule-based)

Mentions (Statistical) -
0.35

Mentions (Neural) - 0.45

Comments

forest.

Once upon a time, there was a little

girl who lived in a village near the

a time, a village near the
forest, the forest, a little
girl who lived in a village

near the forest

a village near the forest,

the poor Alice the forest

a village near the forest,
the forest, a little girl who
lived in a village near the

forest

The statistical system
incorrectly resolves Alice
to be the little girl

3 I’m on my way to see Alice who lives | Sophie, the way, the poor | Sophie, the poor Alice, Sophie, Alan, the forest Rule-based and statistical
through the forest, near the brook, Alice, the forest the forest best
Sophie replied.

5 It’s me, Sophie. a cackly voice, Sophie, Sophie, me, it Sophie Neural system certainly

Alan more confident here, no
longer incorrectly
including the wolf.

6 Oh, I just have touch of a cold, Your Sophie, a hungry Alan The statistical system
squeaked Alan adding a cough at the now recognises Alan.
end to prove the point.

7 But Alice! What big eyes you have, big ears you have, Sophie, the poor Alice, Sophie, Poor Alice All systems now
said Sophie. Sophie, the poor Alice you correctly recognise both

Sophie and Alice.
8 She ran across the room and through Sophie, the door, Alan Sophie, the door, a Sophie, the door, Alan The neural system now

loudly as she could.

the door, shouting, "Help! Alan!" as

hungry Alan

correctly recognises both
Sophie and Alan (the
wolf).

Table 3.4: Comparison of Stanford coreference resolution implementations on the Little Red Riding Hood text with character names replaced with real names.
We display each sentence along with the mentions identified within that sentence by each of the systems. Each mention presented in the table is the representative
mention identified by the system as the most representative of the entities mentioned in the current sentence and the sentence numbers correspond to those of
Table @for comparison.

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

NLP Task Execution Time (Seconds)
POS, Lemma, Shallow Parse 10

NER 112

Stanford Parse 4

SRL 33

Table 3.5: Profiling results of each NLP task in the Illinois NLP pipeline when executed over a short

example news article consisting of just 6 sentences.

3.3.2 Named Entity Recognition

Named entity recognition was another area of potential value: providing information that could be
useful in identifying the set of actors to include in the resulting visualisation, as well as a range of
other information that could prove useful in enhancing the resulting infographic produced. However,
our initial experimentation with the Stanford NER online demo[] suggests less promising results in
our domain of text. As we can see in Figure [3.1] the system does not handle fictional names very
well, failing to recognise Goldilocks as a person, and also missing the forest as a location we’d po-
tentially like to pick out. As suspected, the fictional nature of our chosen domain does not lend itself

well to largely fact-based tasks.

Named Entity Recognition:

Date

Once upon a time, there was a little girl named Goldilocks.
She went for a walk in the forest.

Pretty soon, she came upon a house.

[N

She knocked and, when no one answered, she walked right in.

Figure 3.1: Named entities recognised by the Stanford CoreNLP NER tool.

In addition, our basic profiling results of the performance of each component of the Illinois NLP
pipeline shown in Table [3.5] revealed NER to be the most time-intensive process of the pipeline.
Thus, this seemingly resource-hungry process does not yield sufficient value to warrant inclusion in
our resulting pipeline at present. A simpler method to begin with is to simply require the user to
specify any actor names in the text on input, with the automation of this process left as a later task.

! Available at nlp.stanford.edu:8080/ner/

55

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

< >

John was a farmer, with a pet dog Rusky, and his wife Caroline. He was < class="0CCURRENCE" eid="el">plowing</ =
the fields when Rusky suddenly < class=' CTUAL" eid="e2">started</ > < class="0CCURRENC i 3"=barking<
/ >. "Quick! < class="0CCURRENCE" e > over here!" < class="0CCURRENCE" eid ied</

= Caroline. John < class="0CCURRENCE" e > pver to the barn to < class="0CCURRENCE" eid="e7">find<

/ > Rusky had had 8 newborn pups. George, the rival farmer, < class="0CCURRENCE" eid="e8">waved</ > at John.

"Why don't you < class="0CCURRENCE" eid="e9">come</ > over here?" < class="I_ACTION" eid="el@"=suggested</
> George.

</ >

Figure 3.2: The resulting event annotations produced by TIPSem on a short example narrative.

3.3.3 Event Extraction

We finally explored the potential of TIPSem: the winning entry of the Temp-Eval-2 shared task on
event extraction and temporal relation recognition. As discussed before, this tool does not really
follow our definition of an event but instead focusses on the task of information retrieval, identi-
fying event triggers in the text based upon the TimeML definition of an event as “something that
happensjoccurs or a state that holds true, which can be expressed by a verb, a noun, an adjective, as
well as a nominalization either from verbs or adjectives” [6]. The system additionally categorises

the event triggers identified into one of 7 classes listed in [[6].

Our brief experimentation showed the tool to perform well, with Figure [3.2] highlighting the results
of event extraction on a simple narrative example. This example shows how closely the TimeML
definition of an event sits to matching the definition of a verb, however the additional classification
performed by TIPSem provides information at a higher level that can then be used to further distin-

guish between different types of occurrence.

Interestingly, TIPSem also performs relatively well at the task of identifying the temporal relation-
ship between events. Figure [3.3a] shows the temporal relationships identified between the events
found in the example text of Figure [3.2] Figure [3.3b] illustrates these relationships graphically,
showing the system to have actually performed fairly well. For example, we see the system cor-
rectly identifies that John was plowing the field when at the same time Rusky started barking. We
then see the majority of the remaining ordering is correct, essentially following the written order of
events. Again, in our domain of narrative texts we can largely assume that events follow their written
order, however these results highlight the potential of this tool in later extending our application to

other domains where this assumption may not be so true.

Thus, TIPSem shows clear promise in the task of identifying key occurrences within the text, poten-
tially allowing us to link sentences that refer to the same or a similar event, and additionally enabling
us to discriminate between the different classes of event. As we’ll see later, repeated mentions of
an occurrence event, such as a character “running”, is likely a more significant piece of information
than two sentences both including a reporting event such as, “said”. Our initial experimentation
also suggests the potential use of the tool in identifying the temporal relationship between the events

extracted.

56

3. LAYING THE FOUNDATIONS 3.3. EXPERIMENTATION

11d—"11" relType="BEFORE" eventInstanceID="eil" relatedToTime="t8" />
INCLUDES" eventlInstancelD="ei2" relatedToEventInstance="eil" />
AFTER" eventInstancelD="ei3d" relatedToEventInstance="eil" />
BEFORE" eventInstancelD="eid" relatedToTime="t@" />
SIMULTANEOUS" eventInstancelD="eil" relatedToEventInstance="eid4" />
ventInstanceID="ei5" relatedToTime="t@0" /3|
rentInstancelD="eid" relatedToEventInstance="ei5" />
rentInstancelD="eif" relatedToTime="t0" />
rentInstancelD="ei5%" relatedToEventInstance="eif" />
eventInstanceID="ei7" relatedToEventInstance="eif" />
) eventInstancelD="ei8" relatedToTime="t@" />
="112" r 1 e="BEFORE" eventInstanceID="ei6" relatedToEventInstance="ei8" />
113" E S_INCLUDED" eventInstanceID="ei9" relatedToTime="t@" />
="114" relType="BEFORE" eventInstanceID="ei8" relatedToEventInstance="ei9" />
11d-"115" rel e="BEFORE" eventInstancelD="eil®" relatedToTime="18" />
lid="116" rP1Tva—"BEFDRE" eventInstancelD="ei%9" relatedToEventInstance="eil®" />

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

(a) The temporal relationships identified by TIPSem between the events identified in Figure
T=1
|

Plowing barking

Quick! Cried Waved ’ Come...
) John ran suggested
Caroline George George

(b) Graphical illustration of the temporal relationships identified by TIPSem in (a).

Figure 3.3

57

3. LAYING THE FOUNDATIONS 3.4. SELECTED TOOLS AND TECHNOLOGIES

3.4 Selected tools and technologies

The primary development language for this project is Java. The reason for this is two-fold: firstly,
Java is an object-oriented language that provides nice automatic memory management and static
typing properties, helping to ensure correctness of the implementation. In addition, a large number
of Java libraries exist for the basic utilities to aid development, and both the Stanford CoreNLP
and Illinois NLP pipeline tools that I have chosen for the core of this application both provide Java
APT’s, making this the natural fit for the application.

We make use of Apache’s MaverE] as the build system and dependency manager of the project,
choosing this tool for a number of reasons. Firstly, the large majority of popular Java libraries are
available as Maven dependencies via the Maven repository, including both the Stanford CoreNLP
library and the Illinois NLP pipeline. This greatly simplifies our dependency management, making
it much easier to install and pick up development of the application on any machine with the Java
JDK installed: all we need is our source code which includes the Maven pom.xml configuration file,
and this defines all the system dependencies and where to get them. Additionally, when complete
the entire application can be automatically packaged into a single JAR, where we also employ the
use of the Maven Shade plugirﬂ to ensure that all additional Maven dependencies are bundled into
a single resulting JAR when packaging the final application. This maximises portability by simply
requiring the movement of only a single JAR file to any Java 8§ capable machine in order to execute
the application on that machine. Of course, any of the remaining few external dependencies outside

of Maven must also be installed separately; these are listed in Table [3.6]

For the fundamental text annotations, such as part-of-speech and initial sentence extraction, we
chose to employ the Illinois NLP Pipeline. While both the Stanford CoreNLP and Illinois NLP
Pipeline provide these basic annotations and perform similarly, we opted for the latter due to its
incorporation of the Illinois Semantic Role Labeller should we later wish to introduce this to the
application. However, we do also incorporate the Stanford CoreNLP library for the use of the coref-
erence annotators discussed previously. Additionally, we incorporate the TIPSem tool for event

extraction: a dependency that is not available via Maven.

Table [3.6) below summarises all our system dependencies, including the additional general purpose
libraries for tasks such as testing and logging. Throughout the project we have maintained a test-
suite to validate the basic operation of the various components of the system and provide a safety
net as we introduced various changes to the system over time. All unit tests are stored in the tests
directory of our source code, in a package hierarchy that mirrors the s rc itself. However, while unit
tests prove useful in verifying the core system behaviour expected, logging during real-world usage
has proven invaluable in enabling the quick diagnosis of unexpected problems in practice that were

missed under the more controlled testing environment.

2 Available at https://maven.apache.org/
3More information at https://maven.apache.org/plugins/maven-shade-plugin/

58

3. LAYING THE FOUNDATIONS 3.4. SELECTED TOOLS AND TECHNOLOGIES

Dependency Use Available through Maven

Illinois NLP Pipeline Basic text annotation such as Yes

POS and sentence identification.

Stanford CoreNLP Coreference annotation. Yes
Log4J2 Logging library. Yes
JUnit Unit testing. Yes
Mockito Mocking object components Yes

during testing with JUnit.

System Rules JUnit library for defining Yes
expected system behaviour.
Available from
http://stefanbirkner.
github.io/system—

rules/|

TIPSem Event trigger recognition and No
classification. Set-up
instructions available from
https://github.com/
hllorens/otipl

GraphViz (Dot) Drawing the basic timeline No
(Later dropped in favour of a

web-based front-end).

Table 3.6: Project dependencies, a brief description of their use, and whether or not they’re available

via Maven.

59

http://stefanbirkner.github.io/system-rules/
http://stefanbirkner.github.io/system-rules/
http://stefanbirkner.github.io/system-rules/
https://github.com/hllorens/otip
https://github.com/hllorens/otip

Chapter 4

Adjustable Event Identification via
Hierarchical Clustering

4.1 Intuition

In this chapter we present the development of a modified hierarchical clustering method for the
identification of distinct events within narrative text, discussing our investigation and results over
a number of example narrative texts. The objective being to develop a method to automatically
identify an intuitive set of events from a narrative text at an adjustable level of detail, following our

definition of an event outlined in Chapter 3]

Intuitively, we wish to to group the given input text into a set of disjoint collections of related sen-
tences that each discuss a particular topic, involve a particular item, or concern the same subset of
actors. As opposed to taking a bag-of-words approach to relating sentences, our concern lies some-
what more in the semantics of what is being discussed. Thus, we instead select a set of features
to extract from the text that are subsequently used to evaluate the relationship between any two
sentences. The use of specific features allows us to tune a weighting scheme that reflects the sig-
nificance of each feature in determining the relationship between two sentences, and hence whether

they both refer to the same event.

In contrast to typical clustering problems, we also respect the constraint of maintaining the tex-
tual order of the sentences clustered. That is, we wish to group sentences that are contiguous in
the text in order to maintain the temporal nature of the events extracted. For example, in the text
of Goldilocks (provided in Appendix we do not wish to simply combine all the sentences in
the text that concern the porridge, as we’d sacrifice the temporal relationship between Goldilocks
initially trying each bowl of porridge, and the three bears later finding their porridge has been eaten.

Our initial analysis, experimentation and method development follows with the final configuration
listed in Section

60

4. EVENT CLUSTERING 4.2. INITIAL INVESTIGATION

4.2 Initial Investigation

We initially focus on the example of Goldilocks. The short nature and repetitive use of language in
this text make it quite apparent to see how we’d like such a text to be partitioned into a sequence of
events. Figure 41| shows our initial analysis of this text, highlighting the potential feature matches
between the sentences in this text, and where we’d naturally draw boundaries between the distinct

events described.

Once upon a time, there was a little . named Goldilocks.

She went for a - in the -

Pretty soon, she came upon a -

She - and, when no one - she - rightin.
At the - in the - there were - bowls of porridge.
Goldilocks was -

She - the porridge from the - bowl.

"This porridge is too .!" she -

So, she -the porridge from the - bowl.

"This porridge is too .“ she said.

So, she -the - bowl of porridge.

"Ahhh, this porridge is just right," she said happily and she ate it all up.

After she had eaten the - bears' breakfasts she -she was feeling a little -

So, she into the where she chairs.

Goldilocks sat in the - chair to - her feet.

"This chair is too big!" she -
So she satin the - chair.

"This chair is too big, too!" she -
So she tried the - and smallest chair.
"Ahhh, this chair is just right," she -

But just as she -down into the chair to rest, it - into pieces!
E—— —

Figure 4.1: Initial analysis of the Goldilocks story. Yellow highlighting reflects common features
between nearby sentences, green highlighting reflects other features that could potentially be used as
features, and blue highlighting reflects another possible overlap between sentences. The horizontal
lines are the suggested event boundaries based upon this manual analysis.

61

4. EVENT CLUSTERING 4.2. INITIAL INVESTIGATION

Sentence/Feature Goldilocks ran eat sat chair porridge bowl tired

1 X X X

2 X X

3 X X X

4 X X

5 X X X

6 X X
7 X X X

8 X X

9 X X X

Table 4.1: Feature vectors from the Goldilocks text analysis in Figure highlighting the clear
boundaries between distinct events in the text.

It is quite apparent from this example that there are a number of features that could be used to
relate the sentences in this text, revealing a fairly distinct set of events. In particular, the features
highlighted in yellow provide literal matches in the text, either linking the sentences based upon the
actor mention (in this case being Goldilocks) or a particular object recurring throughout a sequence
of sentences. In this case, we see the strong relationship around Goldilocks’ interaction with the
porridge before then moving on to try each of the chairs. Additionally, the features highlighted in
green reflect other more abstract means of relating each of these sentences to one another. For exam-
ple, the fact that Goldilocks was hungry relates closely to her subsequently tasting the first bowl of
porridge. This semantic relationship is certainly something to be explored further. We also see other
relationships such as the use of antonyms, describing an the porridge as hot before subsequently
finding another bowl too cold. This may or may not be a feature of relating text that generalises to
other contexts, and requires further exploration. Lastly, the features highlighted blue represent addi-
tional features that could perhaps link two sentences, in this example using the relationship between
eaten and ate which are clearly the same action despite not being syntactically expressed in the same
manner. This text continues similarly, proving to be a good example with quite obvious boundaries

between distinct occurrences. The remainder of this annotated text is included in Appendix [B.1]

Table | 1] further clarifies how we could employ these features to divide the text into a set of events,
obviating the boundaries between the events identified above. While the example of Goldilocks may
seem trivial, further investigation revealed the repetitive use of language as a common trait of a lot of
narrative texts; even in the case of our short extract from Harry Potter and the Philosopher’s Stone,
shown in Appendix [A] we see that objects such as the map are repeatedly mentioned during what

we’d consider to be a particular event surrounding Mr. Dursley’s altercation with a cat reading a map.

62

4. EVENT CLUSTERING 4.3. FEATURE SELECTION

An initial Python implementation of hierarchical clustering using the key words we manually iden-
tified from the Goldilocks text as input confirmed the potential of such an approach, yielding the
results shown in Figure #.2] This test implementation employed single-link clustering and assigns
each word match between sentences an equal weighting of 1. In this case, the sentence features were
manually provided with any in insignificant phrases from each of the sentences, such as the and of,

removed. Thus, we continued to explore this promising approach.

At the table in the kitchen, there were three bowls of porridge.
Goldilocks was hungry.

She tasted the porridge from the first bowl.

"This porridge is too hot!" she exclaimed.

S0, she tasted the porridge from the second bowl.

"This porridge is too cold," she said.

So, she tasted the last bowl of porridge.

"Ahhh, this porridge is just right," she said happily and she ate it all up.

After she had eaten the three bears' breakfasts she decided she was feeling a little tired.
So, she walked into the living room where she saw three chairs.

Goldilocks sat in the first chair to rest her feet.
"This chair is too big!" she exclaimed.

So she satin the second chair.

"This chair is too big, too!" she whined.

So she tried the lastand smallest chair.

"Ahhh, this chair is just right," she sighed.

But just as she settled down into the chair to rest, it broke into pieces!

Figure 4.2: The resulting clusters produced using single-link agglomerative hierarchical clustering
on the example of Goldilocks, where the horizontal lines highlight the boundaries between distinct
clusters. This cluster set was taken at the time step in the clustering process that yielded results most

similar to those identified previously in Figure E

4.3 Feature Selection

As a result of this analysis, we chose to employ the features listed in Table #.2]in order to determine

the strength of relationship between any two sentences, and discuss our motivation for each below.

Coreference resolution can be used to find all coreferent mentions of any entities within a text,
be it people or objects that are repeatedly referred to. By nature of the analysis, coreference men-
tions are phrases that are mentioned more than once, so will certainly contribute to relating two
or more sentences together and thus provide a useful feature to include. We distinguish between
actor-specific mentions and other mentions to allow for the assignment of different weights for each
feature. For example, while actor coreference is important, it is perhaps more significant to group
the text based on the topic of discussion; in the particular case of Goldilocks and the three bears,
we see that Goldilocks is mentioned in almost every sentence however we’d really like to group

sentences based upon the repeated mention of common topics such as the porridge or the chairs.

63

4. EVENT CLUSTERING 4.3. FEATURE SELECTION

Feature Method of extraction

Coreference mentions Using the Stanford CoreNLP coreference res-

olution tool.

Actor mentions Using the Stanford CoreNLP coreference res-
olution tool along with the user-provided

character list.

Nouns Using the Illinois NLP pipeline POS tagger to

extract all noun phrases.

Adjectives Using the Illinois NLP pipeline POS tagger to

extract all adjectives.

Cardinal numbers Using the Illinois NLP pipeline POS tagger to

extract all cardinal numbers.

Speech Simple syntax analysis.

TimeML EVENTSs Using the TIPSem event extractor.

Table 4.2: Selected sentence features and method of obtaining this information.

Nouns were employed as a feature to recognise any repeated references to objects that are not
captured by the coreference tool. The aim being to pick out particular ifems that may be repeatedly
referred to in the text. For example, in the case of our example Harry Potter text we have repeated
mentions of the drills, the street, and even in the initial description of both Mr. and Mrs. Dursley who
both have quite distinctive necks. While coreference resolution performs well on recognising named
mentions, and in a large number of cases, nominal mentions, it is not designed to extract repeated
mentions of other objects in text. An alternative considered was the use of dependency parsing to
identify the objects and subjects of interaction, providing an additional level of information above
that of simply identifying nouns. However, the inaccuracy of dependency parsers makes them not
entirely reliable, and even if they were it is common for an item to be mentioned as both the subject
and the object across different sentences. For example, in the sentence below we see the ball used
as both the object and the subject in the two sentences. All we wish to capture is the fact that the
ball is the item of interest in both sentences: a result that can be achieved through the identification

of nouns.

The boy picked up the ball and threw it as hard as he could. The ball whizzed through

the air until it came to a halt.

64

4. EVENT CLUSTERING 4.3. FEATURE SELECTION

Adjectives were selected based upon the typical role they play in fairy tales; we often see repetitive
language in fair tales, with short sequences such as Goldilocks’ interactions with the porridge where
a similar description is employed for her experience with each of the three bowls of porridge: the
first, second, and last bow] of porridge. Thus, this feature provides the means to distinguish between
each of the individual objects being referred to. Of course, there is also the risk that similar adjec-
tives may well be used to describe quite different objects, so this is a feature of far less significance
than those previously discussed.

Similarly to the above, in the case of fairy tales there is often a significance in the number of items
described. For example, in the case of Goldilocks there is a reason there are three bowls of porridge,
three chairs in the living room, and three beds upstairs. Matches on these phrases may not be so
significant initially, but as we reach a far coarser level of detail in the story we may wish to group
events that are related by this attribute, potentially resulting in an event consisting of Goldilocks’
interactions with each of the porridge, chairs and bed that would otherwise be linked by nothing
but Goldilocks herself. If this were the case, it would be no more likely for Goldilocks interactions
with the porridge to be clustered with her initially walking in the forest, however I’d argue her in-
teractions with each of the three items (porridge, chairs, and bed) should be clustered into a single
event, before that is merged with her initial walk in the forest. Of course, what we treat as an event
is a largely subjective matter, and so this can be argued each way. Ultimately however, our goal is
to produce a natural set of events where the user can understand why they have events grouped in
such a way. As such, the use of cardinal number phrases is a feature that is shared by each of the

events in Goldilocks, and thus strengthens the relationship between these three key events discussed.

Speech refers to whether or not a sentence contains speech. This again being a particularly narrative-
specific feature. When reading a story, we typically see a mix of description followed by sequences
of dialogue between characters. As we increase the coarseness of our summary of the events in
the story, we’d typically summarise the dialogue into a single interaction between the characters in-
volved. Thus, to encourage the collection of dialogue into a single event we introduce this as a fea-
ture. Two sentences that both include speech are more likely to be involved in a single dialogue than

those where only one of them contains speech, in which case other features become more prominent.

Finally, we employ the use of TIPSem to obtain TimeML EVENT tags, as we saw in Section[3.3.3]
These tags are particularly useful in identifying common actions that are repeated throughout a
number of sentences. For example, in Goldilocks we see that she repeatedly tastes the bowls of
porridge, before then sitting in the chairs, and finally laying in each of the three beds. An alternative,
and perhaps less computationally expensive, approach to extracting this information could have been
to extract the verb POS tags, as we do to extract nouns. However, while this succeeds in extracting
the desired actions from the text, it also extracts a large number of less significant phrases that do
not contribute any significant value. For example, the sentence below highlights in bold all the verbs

that would be extracted by POS tagging:

After she had eaten the three bears’ breakfasts she decided she was feeling a little tired.

65

4. EVENT CLUSTERING 4.3. FEATURE SELECTION

Verbs such as was or had provide little value in relating two sentences around a particular occurrence
or item. As a result, we’d need to filter the large number of possible verbs like this that add little
value to relating multiple sentences before using these results. What we’re really interested in are
the actions and occurrences that take place according to the 7 classes of EVENT identified by the
TimeML specification. That is, using the results of TIPSem, we identify the following EVENTS in

the same example sentence as above:
After she had eaten the three bears’ breakfasts she decided she was feeling a little tired.

Thus, we immediately obtain the information we desire and that is of greater significance in relating
multiple sentences to one another. Additionally, the TIPSem EVENT tags provide us with some ad-
ditional semantic information regarding the class of EVENT identified. In the example above, all of
the identified phrases are categorised as occurrences, however phrases such as said are instead cate-
gorised as reporting phrases. This information provides an additional means to distinguish between
the different types of action identified in the text, and adjust the significance of their contribution to
the clustering process appropriately. Table 4.3| highlights how we rank the 7 classes of EVENT tag

based upon their significance in relating multiple sentences.

Rank Event Class Examples

1 Occurrence die, crash, build, merge, sell
1 State on board, kidnapped, love, ..
2 Perception See, hear, watch, feel.

2 Reporting Say, report, announce

2 Aspectual begin, finish, stop, continue

2 I_State Believe, intend, want

2 I_Action Attempt, try, promise, offer

Table 4.3: Ranking of the significance of each of the 7 TimeML EVENT tag classes in terms of
their contribution to relating two sentences with rank 1 being most important. Examples provided

as from [5]].

This initial feature set is what we take into our hierarchical clustering algorithm to follow, providing

a nice mix of both syntactic and semantic information to relate sentences to one another.

66

4. EVENT CLUSTERING 4.4. THE ALGORITHM

4.4 The Algorithm

4.4.1 Overview

Figure[d.3]illustrates the high level flow of the hierarchical clustering algorithm, which shall provide
a useful reference during the following discussion of the various parameters of the algorithm that

can be adjusted and the additional parameters introduced in our modified approach.

Initial clusters
constructed from
individual sentences

Construct
Similarity Matrix

MNo more
merges possible

Any merges
possible?

Update scores
betweean new
clusters and

neighbours.

]—N aw Cluster f::nrn'n}:}J

Figure 4.3: Flowchart showing the high level structure of the hierarchical clustering process.

Find most similar
clusters and
merge.

The similarity matrix referred to in the figure is an efficient means of storing the similarity score
between any 2 clusters, yielding a symmetric matrix where the value stored at index [i, j] represents
the similarity score between the i’ and j” clusters, and scores along the diagonal are set to 0. Our
initial cluster set consists of an individual cluster for each sentence initially extracted, before we
then employ agglomerative hierarchical clustering to recursively build up larger clusters.

4.4.2 Parameters and Modifications

Before presenting our modified clustering design and experimentation, we first provide a high-level
description of the role that each parameter plays in the hierarchical clustering process. At the core

of the algorithm sit the following 3 parameters:

o Feature Weights: a weighting associated with each of the features previously discussed to

adjust their contribution to the resulting score.

e Scoring Function: the function used to judge the similarity of sentences.

67

4. EVENT CLUSTERING 4.5. SYSTEM DESIGN

o Link Strategy: the method used to update the scores between clusters following a merge, as
discussed in Section[2.2.3

Our first modification to the standard hierarchical clustering algorithm is the constraint that we only
consider immediate neighbours within a small radius for clustering at each step. As discussed earlier,
we wish to maintain the temporal nature of the input text when clustering by ensuring that we only
merge contiguous sentences, enabling the resulting events to be plotted sequentially in the timeline.

To accompany this modification, we introduce 2 new parameters:

o Lookahead Distance: an integer specifying the maximum distance that a neighbouring clus-

ter can be from the current cluster to be considered for clustering.

¢ Distance Discount Factor: a multiplicative ratio used to penalize the score between sen-

tences as the distance between them increases.

The lookahead distance defines an upper limit on the distance between neighbouring clusters that
are allowed to be considered for a merge. For example, a value of 2 would mean cluster 3 can only
be merged with one of clusters /, 2, 4, or 5, assuming clusters are ordered with respect to their
textual ordering. Initially, when each cluster represents only a single sentence, this translates to a
limit on the the number of sentences that can be merged into an event in any single step. Naturally,
as the clustering process continues, this radius effectively expands. This parameter ensures that we
obtain a gradual increase in the size of clusters as the process continues. For example, setting this to
a value of 1 ensures that at any particular step we may only merge at most two contiguous clusters.
Additionally, to preserve the temporal ordering of our event clusters, should clusters / and 3 merge

into one, cluster 2 would also be consumed as part of this new cluster.

The distance discount factor was later introduced to encode our locality preference: the idea be-
ing to encourage perhaps less similar but nearby sentences to merge before more distant sentences
merge. This avoids the effect of obtaining unbalanced events, where some highly related yet large
clusters form while other lesser related but nearby sentences are left isolated, creating an unnatu-
ral imbalance between the generality of the events obtained. This is a multiplicative factor used to
reduce the similarity score between neighbouring sentences as the textual distance[] between them

increases, resulting in a far more gradual and balanced progression, shown later in Section 4.6.4]

4.5 System Design

4.5.1 Architecture

Figure [4.4] shows the class structure of the clustering package created to encapsulate all the
objects responsible for performing the hierarchical clustering of the events initially extracted. The
system has been designed with flexibility in mind in order to allow any of the components of the
clustering process to be swapped out for an alternative should a new potential approach come to

light, or we decide that one approach is preferable to another.

'The number of sentences between the first sentence in each cluster.

68

4. EVENT CLUSTERING 4.5. SYSTEM DESIGN

EventClusterer
— - similarityJudge: SimilarityJudge

[- scoringUpdateStrategy: ScoringUpdateStrategy
- lookahead: int

+ EventClusterer(judge: SimilarityJudge, scoringUpdateStrategy: ScoringUpdateStrategy, lookahead: int): EventClusterer

+ clusterEvents(events: List<Event=): ClusterHierarchy

- getNonOverlappingScorePairs(similarityMatrix: double[][], currentClusterindices: int[]): List<ScorePair=

v v
<<Interfaces= <<lnterfaces=
SimilarityJudge ScoringUpdateStrategy
+ initialiseSimilarityMatrix(events; List<Event=); double[][] + updateSimilarityMatrix(

doublefl[] similarityMatrix,
int minindex, int maxindex,
int[] previousClusterindices);

A A

returns
ContentSimilarityJudge

- NEIGHBOUR_DISTANCE_DISCOUNT: double relums
- coreferenceFilterSet: Set<String>

SingleLinkUpdateStrategy AverageLinkUpdateStrateqy FurthestLinkUpdateStrategy
¥ L]
ClusterHierarchy ScorePair
- clusterHierarchy: List=int[][l= + score; double
- mergeScores: List<Double> + row: int

+col: int
+ ClusterHierarchy(numberOfClusters: int): ClusterHierarchy
+ getCurrentClusterindices(): int[]
+ mergeClustersBetween(lowerindex: int, upperindex: int, similarityScore: double): boolean
+ getTotaNumberOfTimesteps(): int
+ getClustersAtTime(limestep: int): List<Set<Integer>>
+ getMergeScores(): List<Double>
Figure 4.4: UML class diagram of the clustering package of our application, encapsulating all

the classes involved in the hierarchical clustering process.

To achieve this, we have decomposed the algorithm into a number of distinct components, detailed
shortly, making use of object composition to build the resulting system. This system has been
designed largely to follow the open-closed design principle to improve maintainability and future

extensibility.

Furthermore, the decomposition of each part of the algorithm into subcomponents greatly simplifies
testing. We can first unit test each component in isolation before performing larger scale inte-
gration testing of all the components working together. Our fest source directory reflects our src
directory using the recommended Maven project structure. Thus, all clustering unit tests are also
contained within the clustering package in the fest source directory. This is where we employ
JUnit for unit testing, and the Mockito library to allow us to construct mock objects for testing.
For example, we make use of this tool in order to inject a mock SimilarityJudge into the

EventClusterer during testing.

69

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

4.5.2 Components

EventClusterer This is the top-level object responsible for coordinating the hierarchical
clustering process outlined in Figure 4.3] Once configured with a SimilarityJudge,
ScoringUpdateStrategy, and lookahead, the system iteratively constructs the resulting

ClusterHierarchy until there are no more non-zero scores in the similarity matrix.

SimilarityJudge This class defines the interface of the scoring function, used by the
EventClusterer to construct the similarity matrix at the start of execution. In this case,
we have only implemented one SimilarityJudge which employs the features discussed
previously, and it is this object that considers the distance discount factor described earlier.

ScoringUpdateStrategy This class defines the interface of the link strategy to be employed by the
EventClusterer. This abstraction allows us to easily introduce alternative strategies that, as
we’ll explore shortly, greatly adjust the dynamics of the resulting hierarchy.

ClusterHierarchy This is a high-level representation of the resulting cluster hierarchy produced by
the EventClusterer. This component plays a hugely important role in maintaining a clear and
efficient representation of the resulting hierarchy, with some of the finer implementation details dis-
cussed in Section 4.8§] The ClusterHierarchy holds information regarding the cluster sets at
each iteration of the process, the scores leading to each merge, and the indices of the current clusters

in the similarity matrix.

ScorePair This is a simple abstraction to represent the position of a single similarity score within
the similarity matrix. This is returned to the EventClusterer from the private inner method
used to search for the next highest similarity score in the matrix, and thus the clusters that should be

merged next.

4.6 Experimentation and Results

4.6.1 Scoring Functions Considered

One of the most important components of the algorithm is the scoring function used to calculate
the similarity, or more accurately the strength of relationship, between all the sentences initially

extracted from the text. In our investigation we consider the following 3 potential scoring functions:

1. An absolute scoring scheme
2. Relative option 1 - an additive combination of the relative feature scores

3. Relative option 2 - calculate the absolute score and divide by the maximum number of possible

feature matches.

70

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

Our initial approach was to employ the absolute scoring scheme, calculating the number of match-
ing features between any two sentences and taking this as our result. However, a major drawback
of this approach immediately became apparent: larger sentences become more likely to be clustered
due to the increased number of features contained within the sentence. This unfairly penalises short

sentence and fails to reflect the natural approach taken by readers when summarising a piece of text.

We thus consider methods that incorporate a notion of relative similarity. Option 1 proposes the

following definition:

weight[i] * numMatches(featuresli])

Score = Zicfeatures :
iefeatures(Total possible features[i] matches

where features[i] represents the i feature type from those identified previously, weight[i] represents
the corresponding feature weight, and numMatches() computes the number of feature matches be-
tween the two sentences under consideration. Thus, this scheme now considers how many feature
matches there are relative to the maximum possible feature overlap, defined as the maximum number
of distinct instances of features|[i] in either of the two sentences. For example, if between 2 sentences
they mention 3 different actors, then the maximum possible overlap would be 3. While this certainly
yields an improvement over the absolute method, this scheme still has a problem. As we shall see
shortly, the scoring function and the set of feature weights applied are closely related. Features of a
higher score should impart a greater influence on the resulting score, however, the examples below
illustrate how this function undermines the effect of feature weighting. In this example we assign

nouns a weight of 1.9, and adjectives a weight of 1.

Feature overlap = 1 noun match
Maximum possible overlap: 2 nouns
Result =1.9/2 =0.95

Feature overlap = 1 adjective match
Maximum possible overlap: 2 nouns, 1 adjective
Result=1/1+0/2 =1

As a result, we see that while the first example has the more significant match, the result favours
the second pairing. While this scheme considers the relative overlap between features, it fails to
penalise missed feature matches. Thus, the final proposition fixes this by constructing a fraction
with a single denominator, defined similarly as:

Yictearuresweight[i] * numMatches(features|i])

Score = :
Total possible feature matches

As a result, we now obtain the behaviour we desire with higher weighted features having a greater

influence on the clustering results.

71

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

[] [] Clustering Visualiser

prrrnpreen e e e Clustering Visualisation
0 5 10 15 20 25

Event 1: Once upon a time, there was a little girl named Coldilocks.

Event 2: She went for a walk in the forest.

Event 3: Pretty soon, she came upon a house.

Event 4: She knocked and, when no one answered, she walked right in.

Event 5: At the table in the kitchen, there were three bowls of porridge.

Event 6: Goldilocks was hungry.

Event 7: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. 5o, she tasted the porridge from the second bowl. "This porridge is too
cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up.

Event 8: After she had eaten the three bears' breakfasts she decided she was feeling a little tired.

Event 9: So, she walked into the living room where she saw three chairs.

Event 10: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined
. So she tried the last and smallest chair. "Ahhh, this chair is just right," she sighed.

Event 11: But just as she settled down into the chair to rest, it broke into pieces!

Event 12: Goldilocks was very tired by this time, so she went upstairs to the bedroom.

Event 13: She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just rig

ht.

Event 14: Goldilocks fell asleep.

Event 15: As she was sleeping, the three bears came home.

Event 16: "Someone's been eating my porridge,” growled the Papa bear. "Someone's been eating my porridge,” said the Mama bear. "Someone's been eating my porridg
e and they ate it all up!” cried Baby bear. "Someone's been sitting in my chair,” growled the Papa bear. "Someone's been sitting in my chair,” said the Mama bear. "Som
eone's been sitting in my chair and they've broken it all to pieces," cried Baby bear. They decided to look around some more and when they got upstairs to the bedroo
m, Papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, too" said the Mama bear. "Someone's been sleeping in my bed and

she's still there!" exclaimed Baby bear.

Event 17: Just then, Goldilocks woke up and saw the three bears.

Event 18: She screamed, "Help!", and she jumped up and ran out of the room.

Event 19: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

Figure 4.5: The results of hierarchical clustering with feature weights of 1 using the single-link

clustering strategy.

4.6.2 Feature weights

The feature weights sit closely to the scoring function employed and serve to influence the ordering
of the clustering that takes place. In this case, we wish to identify a set of weights that reflect the
precedence of each feature when we naturally think about summarising text. In this case, our highest
precedence goes to nouns and coreference mentions in order to group sentences based primarily on
the topic of discussion, be it porridge, chairs, or beds. We then reflect on the actors involved and the
narrative-specific consideration of dialogue, where we wish to keep a dialogue within a single event.
Lastly, we consider any actions being carried out in the text according to our ranking of TimeML
EVENT tags defined earlier.

Leaving all features with the equal weight of 1 using a single-link clustering strategy lead to a set
of reasonable results, however failed to recognise the significance of the fopic of discussion within
each event. In the example of Goldilocks, this leads to the latter series of events involving each of
the three bears merging into a single large cluster before we complete the merging of events sur-
rounding the porridge and chairs. As a result, losing the balanced progression of event granularity
we desire as we start to see what we’d deem to be more general events (i.e. event 16) emerge while
we still have rough boundaries around smaller, more detailed events (i.e. event 10 and event 11).

These results are shown in Figure 4.3]

Experimentation with various feature weightings revealed their limited impact on the results in com-
parison to the choice of link strategy, however they do make subtle differences on the resulting event
boundaries identified. We additionally constrain our resulting parameter values to the range [1.0, 2),
encoding the idea that two of any feature should always outweigh one of another. This ensures that
while certain features may have more impact than others, ultimately the number of feature matches
should be the most significant factor in determining the relationship between sentences. Table [.4]

lists the the feature weights assigned in the order of significance.

72

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

Feature Weight
Coreference mentions 1.9
Nouns 1.9
Actor mentions 1.7
Speech 1.6

TimeML EVENTSs (Occurrence and State) 1.3

Adjectives 1
Cardinal numbers 1
TimeML EVENTSs (Other classes) 1

Table 4.4: Assigned feature weights.

4.6.3 Link Strategy

The link strategy plays a major part in determining the dynamics of the resulting hierarchy produced,
and is one place where there is perhaps no obvious choice as to which approach will yield the most
natural results. We thus present the results of our experimentation with each of the three common
link strategies in the following paragraphs, using the example of Goldilocks and the Three Bears to
demonstrate our results. Note that for this analysis we have replaced mentions of the mama bear
and the baby bear in the text with the names Caroline and Mary, respectively. This is to aid the
coreference system in distinguishing between each of the three bears and thus allow us to obtain

more accurate results. This issue is later addressed more formally in Section[6.3.3]

Figure [.6] shows the results of the single-link clustering strategy. This approach yields a nice set
of initial clusters with a clear distinction between each of the events, although event 14 forms fairly
early, losing the distinction between the bears reactions to each of the the porridge, the chairs, and
the beds. The clusters then begin to deteriorate as we approach the latter stages of the process with
a black-hole effect starting to emerge. The strong relationship between the events that take place
throughout the middle of this story lead to a single large event cluster forming here (event 8 in
Figure .6b)), while the peripheral event clusters remain as singletons. Unfortunately, resulting in an

unbalanced and fairly unnatural set of events.

Average-link clustering overcomes this problem by instead updating similarity scores with the av-
erage similarity between the sentences in each of the clusters, avoiding the issue of only considering
the strongest matches. As a result, we see a far more gradual increase in the size of clusters and a
far more balanced set of results throughout the process. However, we still see that the event bound-
aries identified are not quite as we’d like. Figure [4.7a shows that while we start to see a nice set of

73

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

clusters emerge in general, event 18 forms relatively early placing Mary’s reaction to both the por-
ridge and the chairs in the same cluster. We can see the strong similarity between these reactions,
explaining why this happens, however our desire is to cluster each of the sentences based on the
porridge, before then later merging all of the bears reactions into a single event as the coarseness of
clusters increases. Thus, average link clustering certainly provides an improvement over single-link
clustering in terms of the balance of clusters identified but would require some further refinement in
order to achieve the results desired.

Finally, we consider furthest-link clustering. This approach starts similarly to average-link clus-
tering, developing a fairly balanced set of distinct clusters. Unfortunately, we again see Mary’s
reactions to both the porridge and the chairs cluster into event 10 in Figure so require some fur-
ther adjustment to refine this boundary. However, the nice facet of furthest-link clustering is that we
see smaller clusters emerge before larger ones, maintaining both a balance and distinction between
events. We avoid any black-hole effects by always considering the weakest relationship between
neighbouring clusters, only merging them when they are the next most similar events. We also see
that despite Mary’s reactions being grouped relatively early in the process, we maintain a distinction

between the other bears reactions to each of the topics even into the late stages of the process.

These results make it apparent that the average-link and furthest-link strategies provide the most
promising results, with the balanced and progressive dynamics we desire. While both strategies yield
somewhat similar results, the furthest-link approach appears to encourage more distinct boundaries
between events, effectively avoiding any bloating of events as time progresses, and hence is our
chosen strategy at present.

74

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

0@ Clustering Visualiser

P oo e Clustering Visualisation
o 5 10 15 20

Event 1: Once upon a time, there was a little girl named Coldilocks.

Event 2: She went for a walk in the forest.

Event 3: Pretty soon, she came upon a house.

Event 4: She knocked and, when no one answered, she walked right in.

Event 5: At the table in the kitchen, there were three bowls of porridge.

Event 6: Goldilocks was hungry.

Event 7: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge
is too cold," she said. So, she tasted the last bowl| of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up.

Event 8: After she had eaten the three bears' breakfasts she decided she was feeling a little tired.

Event 9: So, she walked into the living room where she saw three chairs.

Event 10: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she
whined. So she tried the last and smallest chair. "Ahhh, this chair is just right," she sighed. But just as she settled down into the chair to rest, it broke into piec
es!

Event 11: Goldilocks was very tired by this time, so she went upstairs to the bedroom.

Event 12: She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was ju
st right.

Event 13: Coldilocks fell asleep.

Event 14: As she was sleeping, the three bears came home. "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,”
said Caroline. "Someone's been eating my porridge and they ate it all up!" cried Mary. "Someone's been sitting in my chair," growled the papa bear. "Someone's
been sitting in my chair," said Caroline. "Someone's been sitting in my chair and they've broken it all to pieces," cried Mary. They decided to look around some
more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, too" said Car
oline. "Someone's been sleeping in my bed and she's still there!" exclaimed Mary. Just then, Goldilocks woke up and saw the three bears.

Event 15: She screamed, "Help!", and she jumped up and ran out of the room.

Event 16: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

(a)

0@ Clustering Visualiser

P e et o Clustering Visualisation
0 5 10 15 20 k

Event 1: Once upon a time, there was a little girl named Goldilocks.
Event 2: She went for a walk in the forest.

Event 3: Pretty soon, she came upon a house. [
Event 4: She knocked and, when no one answered, she walked right in.
Event 5: At the table in the kitchen, there were three bowls of porridge.]
Event 6: Goldilocks was hungry.]
Event 7: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge &
is too cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up.]
Event 8: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chair ¥
s. Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. ¥
So she tried the last and smallest chair. "Ahhh, this chair is just right." she sighed. But just as she settled down into the chair to rest, it broke into pieces! Goldi }
locks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it
was too soft. Then she lay down in the third bed and it was just right. Goldilocks fell asleep. As she was sleeping, the three bears came home. "Someone's been
eating my porridge," growled the papa bear. "Someone's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!" cri
ed Mary. "Semeone's been sitting in my chair,” growled the papa bear. "Someone's been sitting in my chair," said Caroline. "Someone's been sitting in my chair a
nd they've broken it all to pieces," cried Mary. They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someo
ne's been sleeping in my bed". "Someone's been sleeping in my bed, too" said Caroline. "Someone's been sleeping in my bed and she's still there!" exclaimed M]
ary. Just then, Goldilocks woke up and saw the three bears.

Event 9: She screamed, "Help!", and she jumped up and ran out of the room.

Event 10: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

(d)

Figure 4.6: (a) The event clusters formed initially using the single-link clustering strategy. (b)
The event clusters formed towards the final stages of the clustering process under the single-link

clustering.

75

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

eo0e® Clustering Visualiser

1o e e Clustering Visualisation
0 5 10 15 20 25

Event 1: Once upon a time, there was a little girl named Goldilecks.

Event 2: She went for a walk in the forest.

Event 3: Pretty soon, she came upon a house.

Event 4: She knocked and, when no one answered, she walked right in.

Event 5: At the table in the kitchen, there were three bowls of porridge.

Event 6: Goldilocks was hungry.

Event 7: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold,"” she said. So, she tasted the last bow! of|
porridge.

Event 8: "Ahhh, this porridge is just right," she said happily and she ate it all up.

Event 9: After she had eaten the three bears' breakfasts she decided she was feeling a little tired.

Event 10: So, she walked into the living room where she saw three chairs.

Event 11: Goldilocks sat in the first chair to rest her feet.

Event 12: "This ch: imed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and smallest chair. "Ahhh, this chair is just right," she sighed. But just a
s she settled down into the chair to rest,
Event 13: Goldilocks was very tired by th e, so she went upstairs to the bedroom.

Event 14: She lay down in the first bed, but it was toe hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just right.

Event 15: Goldilocks fell asleep.

Event 16: As she was sleeping, the three bears came home.

Event 17: "Someone's been eating my porridge,” growled the papa bear. "Someane's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!” cried Mary. "Someone's been
sitting in my chair,” growled the papa bear. "Someone's been sitting in my chair," said Caroline. "Someone's been sitting in my chair and they've broken it all to pieces,” cried Mary.

Event 18: They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". *Someone's been sleeping in my bed, too" said Caroline. 'S
omeone's been sleeping in my bed and she's still there!" exclaimed Mary.

Event 19: Just then, Goldilocks woke up and saw the three bears.

Event 20: She screamed, "Help!", and she jumped up and ran out of the room.

Event 21: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

(a)

ece Clustering Visualiser

oo et Clustering Visualisation
0 5 10 15 20 25 E\

Event 1: Once upon a time, there was a little girl named Goldilocks.

Event 2: She went for a walk in the forest. Pretty soon, she came upon a house.

Event 3: She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

Event 4: She tasted the porridge from the first bowl. "This perridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is toe cold,” she said. So, she tasted the last bowl of
porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up.

Event 5: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the g room where she saw three chairs.
Event 6: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and smallest chair. "Ahhh
, this chair is just right," she sighed. But just as she settled down inta the chair to rest, it broke into pieces!

Event 7: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the
third bed and it was just right. Goldilocks fell asleep.

Event 8: As she was sleeping, the three bears came home. "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline. "Someone's been eating my porridge an
d they ate it all up!” cried Mary. "Someone's been sitting in my chair," growled the papa bear. "Someone's been sitting in my chair," said Caroline. "Someone's been sitting in my chair and they've broken it all to pie
ces,” cried Mary. They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, too" said Caro
line. "Someane's been sleeping in my bed and she’s still there!" exclaimed Mary. Just then, Goldilacks woke up and saw the three bears.

Event 9: She screamed, "Help!", and she jumped up and ran out of the roem.

Event 10: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

2

(b)

Figure 4.7: (a) The event clusters formed initially using the average-link clustering strategy. (b)
The event clusters formed towards the final stages of the clustering process under the average-link

clustering.

76

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

[] [] Clustering Visualiser

prevepeenpeenn Moy oo Clustering Visualisation
o 5 10 15 20 25 F

Event 1: Once upon a time, there was a little girl named Goldilocks.

Event 2: She went for a walk in the forest. Pretty soon, she came upon a house.

Event 3: She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

Event 4: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold," she said. So, she ta
sted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up. E
Event 5: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.

Event 6: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and 5
mallest chair. "Ahhh, this chair is just right,” she sighed. But just as she settled down into the chair to rest, it broke into pieces! i
Event 7: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. The |
n she lay down in the third bed and it was just right. Goldilocks fell asleep.

Event 8: As she was sleeping, the three bears came home. |
Event omeone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline. |
Event 10: "Someone's been eating my porridge and they ate it all up!" cried Mary. "Someone's been sitting in my chair," growled the papa bear. "Someone's been sitting in my chair," said Carolin
e. "Someone's been sitting in my chair and they've broken it all to pieces,” cried Mary.

Event 11: They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, t
oo" said Caroline. "Someone's been sleeping in my bed and she's still there!" exclaimed Mary.

Event 12: Just then, Goldilocks woke up and saw the three bears.

Event 13: She screamed, "Help!", and she jumped up and ran out of the room.

Event 14: Goldilocks ran down the stairs, opened the door, and ran away into the forest.

(a)

e0e Clustering Visualiser

P e oo Clustering Visualisation
0 5 10 15 20 25

Event 1: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came upon a house.

Event 2: She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

Event 3: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold,"” she said. So, she ta
sted the last bowl of porridge. "Ahhh, this porridge is just right,” she said happily and she ate it all up.

Event 4: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.
Event 5: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and s
mallest chair. "Ahhh, this chair is just right," she sighed. But just as she settled down into the chair to rest, it broke into pieces!

Event 6: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. The |
n she lay down in the third bed and it was just right. Goldilocks fell asleep. |
Event 7: As she was sleeping, the three bears came home.

Event 8: "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline.

Event 9: "Someone's been eating my porridge and they ate it all up!" cried Mary. "Someone's been sitting in my chair," growled the papa bear. "Someone's been sitting in my chair." said Caroline
. "Someone's been sitting in my chair and they've broken it all to pieces,” cried Mary.

Event 10: They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, t
oo" said Caroline. "Someone's been sleeping in my bed and she's still there!" exclaimed Mary.

Event 11: Just then, Goldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, and ran a
way into the forest.

(b)

Figure 4.8: (a) The event clusters formed initially using the furthest-link clustering strategy. (b)
The event clusters formed towards the final stages of the clustering process under the furthest-link

clustering.

4.6.4 Distance Discount Factor

To improve the boundaries identified by the furthest-link clustering approach we introduce a dis-
tance discount factor into our scoring scheme as defined earlier, with the resulting definition being:

Zic featuresweight[i] * numMatches(features|i])

Score = d'} X
4y Total possible feature matches

where d; is the discount factor, and 7 is the number of sentences between the first sentence in each

cluster.

The aim of this parameter is to promote the value of locality: sentences that appear nearer to one
another are more likely to be related than those further apart. Additionally, the incorporation of this
parameter further encourages a gradual progression of event clusters regardless of our lookahead

parameter defined as a hard limit to the number of clusters that can be merged in any single step.

77

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

An initial value of % revealed the promise of the new scoring scheme, with Figure showing
each of the three bears reactions now being grouped into distinct events based upon the topic of
discussion. However, as the procedure progresses we see that such a large discount has too much
influence over the resulting merges, with events 2 and 3 in Figure [4.9b] both regarding Goldilocks’

tasting of the porridge, failing to merge until the final stages of the process.

A far shallower discount of % yields the final results we desire, shown in Figure We see a nice
set of early clusters form with clear and natural event boundaries, while the properties of furthest-
link clustering maintain this distinction between clusters even into the later stages of the clustering
process, the results shown in Figure @.9d] This configuration performs similarly well on our other
example texts, with further results under this final configuration shown in our later case studies in
Chapter([7]

78

4. EVENT CLUSTERING 4.6. EXPERIMENTATION AND RESULTS

[XoX] Clustering Visualiser

[i Clystering Visualis
o 5 10 15 20 25 30
Event 1: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came upon a house. She knocked and, when no one answered, she walked right
in.
Event 2: At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry. She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed.
Event 3: So, she tasted the porridge from the second bowl. "This porridge is too cold,” she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she a
teitall up.
Event 4: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.
Event 5: Goldilocks sat in the first chair to rest her feet. "This chair is too bi she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and smalle
"Ahhh, this chair is just right," she sighed. But just as she settled down into the chair to rest, it broke into pieces!
: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she |
ay down in the third bed and it was just right.
Event 7: Goldilocks fell asleep. As she was sleeping, the three bears came home.
Event 8: "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!” cried Mary.
Event 9: "Someone's been sitting in my chair,” growled the papa bear. "Semeone's been sitting in my chair,” said Caroline. "Somecne's been sitting in my chair and they've broken it all to pieces," crie
d Mary.
Event 10: They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in my bed, too" s
aid Caroline. "Someone's been sleeping in my bed and she's still there!” exclaimed Mary.
Event 11: Just then, Goldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, and ran away i
nto the forest.

(a)

00 Clustering Visualiser

[e Clustering Visualisation

0 5 1o 5 20 25 30 [
Event 1: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came upon a house. She knocked and, when no one answered, she walked right
in.
Event 2: At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry. She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed.

Event 3: So, she tasted the porridge from the second bowl. "This porridge is too cold,” she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she a
te it all up. After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.

Event 4: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. "This chair is too big, too!" she whined. So she tried the last and smalle
st chair. "Ahhh, this chair is just right," she sighed. But just as she settled down into the chair to rest, it broke into pieces!

Event 5: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she |
ay down in the third bed and it was just right. Goldilocks fell asleep. As she was sleeping, the three bears came home.

Event &: "Someone's been eating my porridge,” growled the papa bear. "Somecne's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!" cried Mary. "So
meone's been sitting in my chair,” growled the papa bear. "Someone's been sitting in my chair," said Caroline. "Someone's been sitting in my chair and they've broken it all to pieces," cried Mary. The
y decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Somecne's been sleeping in my bed". "Someone's been sleeping in my bed, too" said Caroline. "
Someone's been sleeping in my bed and she's still there!" exclaimed Mary.

Event 7: Just then, Goldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the rcom. Goldilocks ran down the stairs, opened the door, and ran away int
o the forest.

(b)

[NoN] Clustering Visualiser ¢

T Clustering Visualis
0 5 10 15 20 25 30
Event 1: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came upon a house.
Event 2: She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.
Event 3: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold,” she said. §
o0, she tasted the last bowl of porridge. "Ahhh, this porridge is just right,” she said happily and she ate it all up.
Event 4: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.
Event 5: Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in the second ch. ‘This chair is too big, too!" she whined. So she tried the la
st and smallest chair. "Ahhh, this chair is just right,” she sighed. But just as she settled down into the chair to rest, it broke into pieces!
Event 6: Coldilocks was very tired by this time, so she went upstairs to the bedroom.
Event 7: She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just right.
Event &: Goldilocks fell asleep. As she was sleeping, the three bears came home.
Event 9: "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!" c
ried Mary.
Event 10: "Someone's been sitting in my chair,” growled the papa bear. "Someone's been si
to pieces," cried Mary.
Event 11: They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's been sleeping in
my bed, too" said Caroline. "Someone's been sleeping in my bed and she's still there!" exclaimed Mary.
Event 12: Just then, Goldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, a
nd ran away into the forest.

in my chair,” said Caroline. "Someone's been sitting in my chair and they've broken it all

(©)

[JoN] Clustering Visualiser

0 5 1015 20 25

Event 1: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came upon a house.

Event 2: She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

Event 3: She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold,"” she said. §
o0, she tasted the last bow! of porridge. "Ahhh, this porridge is just right,” she said happily and she ate it all up.

Event 4: After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.

Event 5: Coldilocks sat in the first chair to rest her feet. "This chair is too bi "This chair is too big, too!" she whined. So she tried the la/
st and smallest chair. "Ahhh, this chair is just right," she sighed. But just as she settled down inte the chair to rest, it broke into pieces!

Event 6: Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too s
oft. Then she lay down in the third bed and it was just right. Goldilocks fell asleep. As she was sleeping, the three bears came home.

Event 7: "Someone's been eating my porridge,” growled the papa bear. "Someone's been eating my porridge,” said Caroline. "Someone's been eating my porridge and they ate it all up!" c
ried Mary. "Someone's been sitting in my chair," growled the papa bear. "Someone's been sitting in my chair," said Caroline. "Someone's been sitting in my chair and they've broken it al
| to pieces," cried Mary. They decided to look around some more and when they got upstairs to the bedroom, papa bear growled, "Someone's been sleeping in my bed". "Someone's bee
n sleeping in my bed, too" said Caroline. "Someone's been sleeping in my bed and she's still there!" exclaimed Mary.

Event 8: Just then, Coldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, an
d ran away into the forest.

111t Clustering Visualisation
Jo k

(d)

Figure 4.9: The results of furthest-link clustering with the incorporation of a distance discount
factor. (a) and (b) present the results with a discount factor of % at two points in the resulting cluster
hierarchy. (c) and (d) present the results with a discount factor of ‘51 at two points in the resulting

cluster hierarchy.

79

4. EVENT CLUSTERING 4.7. AUTOMATIC CLUSTER SELECTION

4.6.5 Final Configuration

As a result of this experimentation, our final clustering configuration is listed in Table[d.5] Two key
values of this table to clarify are the lookahead and the chosen link strategy. We did not discuss the
effect of varying the lookahead, which in practice made little difference beyond a value of 3 due to
the locality preference encoded in the distance discount factor. We thus maintained a value of 3 to
again ensure a gradual progression of the size of event clusters and to avoid any large increases in
cluster size within any single step. Secondly, Table [4.5] states that we employ a modified furthest-
link clustering strategy. This reflects the small modification we have introduced when updating the
scores between neighbouring clusters to ensure that we select the smallest non-zero score between
neighbours as the new score. This avoids us prematurely ending the process with a distinct set of
clusters when there is indeed still some relationship between the resulting clusters. Thus, this modi-
fication ensures that we will always continue merging clusters until there is absolutely no remaining

feature overlap between neighbouring clusters.

Parameter Value

ic feauresweightli]XnumMatches(featuresli])
Total possible feature matches

. . b
Scoring function ~ Score = df" x

Discount factor

(1EN

Feature weights As defined in Table 4.4

Link strategy Modified furthest-link

Lookahead 3

Table 4.5: The final parameter configuration for our modified hierarchical clustering process.

4.7 Automatic Cluster Selection

As a result of the clustering process we obtain a hierarchical structure that allows the user to pan
through each step in the hierarchy in order to find an event set at the level of detail to suit them.
But as nice as this is, from a usability perspective having 30 or more options can be a little over-
whelming. Thus, the challenge remains to develop a method to automatically identify a number of
milestones in the cluster hierarchy where we have a good set of event clusters, each presenting a
set of events at a different level of detail. The user need then only search within a radius of this
benchmark to identify a clustering they’re happy with. This process is more commonly known as
cutting the hierarchy.

To identify such a method, we looked at a number of features of the clusters at each step in the
process to see whether any distinctive pattern emerged that could be used to automatically determine
when a good cluster set has been found, regardless of the input text. These features included the
similarity score leading to the merge at the next time step, which clustering features contributed to

each merge, and the distance between the sentences in the clusters that lead to the merge.

80

4. EVENT CLUSTERING 4.7. AUTOMATIC CLUSTER SELECTION

We repeated this manual analysis over the examples of Goldilocks, Little Red Riding Hood, The
Gingerbread Man, and the first chapter of Harry Potter and the Philosopher’s Stone, with the full
results of this investigation provided in Appendix [B.3]

While no pattern was immediately obvious, the results do highlight the two possible methods of

identifying a good clustering, aligning with the two most commonly used cutting strategies:

1. Taking the point where we see a large change in the score leading to a merge.

2. Identifying a score threshold at which we make our cut.

Time step Score % of initial score Distance between
merged clusters

T=0 0.48 100

T=11 0.138971429 28.95238095 3
T=12 0.121904762 25.3968254 1
T=13 0.118857143 24.76190476 2
T=14 0.108571429 22.61904762 1
T = 15 (optimal 0.076 15.83333333 2

fine-grained clustering)

T=16 0.0608 12.66666667 2
T=17 0.052869565 11.01449275 2
T=18 0.035576686 7.411809524 6
T =19 (optimal 0.027670756 5.764740741 6

coarse-grained clustering)

T=20 0.02125114 4.427320889 8

T=21 0.005627888 1.172476704 11

Table 4.6: Table of scores contributing to the merging of clusters at each time step, and their magni-
tude relative to the initial maximum similarity score. This also highlights how the scope of sentences

considered for merging increases as the process progresses.

81

4. EVENT CLUSTERING 4.8. IMPLEMENTATION DETAILS

Table [4.6| shows our results for the example of The Gingerbread Man, highlighting that both these
approaches could yield similar results. For example, while we identify t = 19 as our desired optimal
cluster set, we see that the sharp drop in score at t = 21 could also be used to identify a cluster set
that is not far off this either. This is an artefact that is also evident in the other examples analysed.
However, at present we have opted to take the latter approach. It is clear from the results of analysis
that there are fairly similar score thresholds at which we identify our optimal cluster sets. These be-
ing at 20%, 10%, 5%, and 2.5% of the initial maximum similarity score between any two sentences,
where we take the first cluster set with a merge score below this threshold as our cluster set. We thus
treat these as our 4 default cluster sets, ranging from a set of highly-detailed, small events to a set
of far larger, more coarsely defined events, respectively. Our investigation into the longer example
of Harry Potter also revealed these thresholds to remain fairly stable regardless of the length of the

input text.

4.8 Implementation Details

Throughout the development of this method, we have also introduced a number of optimisations,

both for correctness and performance. We briefly discuss a number of these below.

4.8.1 Feature Filtering

In some cases we see feature duplication resulting in bloated similarity scores. For example, in
sentences with the papa bear, we see him included as both a coreference tag and as the 2 nouns:
papa and bear. As aresult, contributing to the score of matches with other sentences involving papa
bear 3 times. To overcome this problem, we prioritise coreferential mentions of actors over any
potential noun form, removing any of the constituent words of the character name from the noun

phrases of the sentence.

4.8.2 Similarity Matrix Optimisation

The similarity matrix is the data structure at the core of the algorithm. This is an 7 X n matrix holding
the scores between all pairs of clusters, where n is the initial number of sentences. Of course, as
the clustering process progresses the number of clusters for comparison reduces. However, rather
than reconstructing a smaller similarity matrix at each step, we instead re-use the same n X n ma-
trix throughout. This removes the need for garbage collection of these structures, reducing memory
consumption and improving the potential time performance if we can reduce amount of interruption

from garbage collection.

When clusters are merged, we consider the new index of the cluster to be the index of the earliest
sentence in the cluster. By maintaining an array of these active indices, we allow a far more efficient
search of a clusters neighbours when considering the next merge as we need only check the scores

of any active indices, mimicking the effect of having a much smaller matrix.

82

4. EVENT CLUSTERING 4.8. IMPLEMENTATION DETAILS

4.8.3 Clustering Acceleration

Another small performance optimisation takes place in our implementation of the
getNonOverlappingScorePairs method of the EventClusterer. This method is
responsible for identifying the next highest scoring pair of clusters that should be merged during
the current iteration. However, rather than simply returning the indices of a single pair of event
clusters to merge in the current iteration, this method instead returns the indices of all the pairs of
clusters that are eligible for merging according to our current lookahead distance parameter in the
current iteration. For example, if we find that clusters / and 2, and clusters 3 and 4 both obtain the
same maximal similarity scores, then both of these pairs of merges shall be take place in the current
iteration, potentially reducing the overall number of iterations in the process.

Additionally, to ensure correctness of the algorithm we are also careful to check that, for example, if
clusters / and 2, and clusters 2 and 3 are both to be merged in the current iteration, we perform the
necessary reduction to a single transformation merging clusters / and 3, automatically absorbing
cluster 2 into the new cluster. This is necessary as we always merge clusters into the lower index.
As such, if we were to merge cluster 2 into cluster /, the subsequent merge of cluster 3 into cluster
2 would fail since cluster 2 is no longer present. This issue could have been similarly overcome
by imposing an ordering constraint on the resulting merges, however our alternative optimisation
further reduces the number of operations that need take place. Finally, another consideration is to
ensure that if we have the case where clusters 2 and 5, and clusters 3 and 4 both obtain the same
highest current similarity score, we make sure to perform the single merge of all clusters between 2

and 5 for similar reasons to the above.

To achieve this, the getNonOverlappingScorePairs function takes as input the current sim-
ilarity matrix, along with the currentIndices array specifying the indices in the similarity

matrix of the active clusters at the current iteration.

4.8.4 Event Cluster Representation

The ClusterHierarchy is the abstract representation of the resulting structure created by the
clustering process. Internally, each cluster is stored as an array of integers, each representing the
index of the event in the initial list of events provided to the EventClusterer. This reduces the
memory overhead imposed, as there is no need to duplicate the Event pointers themselves during
this process. This instead provides sufficient information to later construct the resulting events when

necessary.

83

Chapter 5

Timeline Visualisation

5.1 Aims

With a good set of events now extracted from the input text, we shift our focus to constructing a
clear infographic timeline representation of these events. In particular, we focus on highlighting two
key properties of the text: the temporal ordering of the events identified in the text, and the dynam-
ics of interactions between the characters involved in the text. Additionally, we aim to enhance the

investigative capability of the resulting timeline by incorporating a degree of user interaction.

As a result, we hope to enable the user to see at a high level the interactions between characters in
the text, identify the distinct storylines in the text, and to highlight the role of characters in the text:
whether they make a relatively short-lived appearance, or can be identified as the main protagonist
within the text. The incorporation of user interaction is to aid user exploration into the underlying
text, as the typical drawback of static timeline visualisations is the inability to delve deeper into the

timeline to better understand what is actually happening at any particular moment.

5.2 Design Objectives

To formalise our target result, we list below our key design objectives for the resulting timeline,

inspired largely by the original example of Figure(l.1

o The timeline should clearly reflect the sequential ordering of the events displayed.

Event nodes should be positioned relative to the actors that are involved in that event.

There should be a distinct path through the event nodes for each actor involved in the text.

Paths should avoid overlapping where possible.

The timeline should enable the discovery of potentially significant events.

84

5. TIMELINE VISUALISATION 5.3. OPTIONS CONSIDERED

5.3 Options Considered

As we discussed in Section[2.3] there are a number of different tools and approaches to timeline con-
struction. Our early prototypes (shown in Appendix|C.3)) built using the GraphViz tool expressed the
information desired, but lacked the clarity and expression of timelines like our original inspiration
from the Lord of the Rings back in Figure

While tools such as GraphViz offer a great deal of flexibility, they also present a number of difficult
challenges that need to be overcome in order to provide the formal specification required to construct
the desired layout. These include positioning nodes effectively such that we can avoid crossing arcs
as much as possible, something that quickly degrades the clarity of the result, as well as spacing
the arcs and nodes to avoid overlap and maximise clarity when tracing the paths of distinct actors
through time. In addition to these requirements, we then have the need to maximise the smoothness

of the resulting arcs to improve the aesthetics of the result and make it easier to follow.

Force-directed graphs, on the other hand, introduce an entirely different approach to graph draw-
ing by employing the use of physical simulation to create emergent structures, and are increasingly
being used for a number of data visualisation tasks. Using this approach, we instead encode our
constraints as physical forces and then allow the physical simulation to find an optimal solution.
This vastly simplifies the level of detail required in specifying the desired layout, moving us to a

higher level of specification and providing surprisingly predictable and intuitive results.

Thus, the use of this technology provided the exciting opportunity to explore the potential of this
approach in the novel context of timeline drawing. The following sections explore our use of this

technique and the resulting timeline produced.

5.4 Using the Force

5.4.1 Selected Software

A number of existing applications and libraries exist for force-directed graph drawing. Gephﬂ isa
data visualisation and exploration application that provides a number of tools to create graph repre-
sentations of data and to also obtain a large number of graph metrics from the resulting graph, which
may highlight particular properties of the underlying data. These metrics could prove extremely in-
teresting in the context of alternative infographic visualisations of the underlying text, however are
of limited applicability in the context of a timeline. In addition, Gephi provides relatively little op-

portunity to enforce custom constraints on the resulting graph.

We thus looked towards more flexible offerings that provide the opportunity to modify the resulting
force-directed graph to a greater extent in order to achieve the end result we desire. For this, we
considered two JavaScript libraries: SigmaJS?] and D3.jﬂ The use of JavaScript enables us to

! Available from https://gephi.org/
2 Available from http://sigmajs.org/
3 Available from https://d3js.org/

85

5. TIMELINE VISUALISATION 5.4. USING THE FORCE

integrate the resulting visualisation directly into a web application, and provides the means to later
incorporate additional user-interaction with the resulting timeline. SigmalS is a library dedicated to
force-directed graph drawing and as such is tuned for this purpose. However, D3.js also performs
similarly well, offers a great deal of flexibility, and has significantly more resources and examples
available, making it far easier to pick up the intuitive API for this library. For this reason, we employ

D3.js to construct our timeline.

5.4.2 Abusing the force

One of the key challenges of taking a force-directed approach is in balancing the emergent structure
provided by this method with an underlying basic structure that we wish to impose on the result.
We achieve this by taking advantage of the full control of the force-based simulation provided by
D3, imposing a fairly rigid structure on the resulting timeline while allowing the simulation to then

determine the few remaining details.

Force Description

Link Distance The target distance between nodes that are
connected by an edge. This adjusts the properties of

edges to try and match this value.

Link Strength How "stiff" the edges in the graph are, making them
more or less able to achieve the link distance
specified and adjusting their influence on node

positioning.

Node Charge A force between nodes in the graph. Negative

charges repel; positive charges attract.

Friction A force acting against the movement of nodes.

Gravity A force pulling nodes towards the centre of the
canvas. (This is a global value)

Table 5.1: Description of each of the forces employed in the D3 Force Layout [[64].

Table [5.1] provides a brief description of the forces at our disposal in the D3 library [64]. All of the
forces listed here apply on a node-by-node or edge-by-edge basis as appropriate, with the exception
of gravity. As aresult, each node can have its own charge or friction based, for example, upon some
property of the input data. Gravity on the other hand is a global force with the same influence over
all nodes, designed to draw all nodes towards the centre of the canvas.

86

5. TIMELINE VISUALISATION 5.5. RESULT AND FEATURES

alittle old man

a little gingerbread man
acow
a horse
a big red fox

No Actors

Figure 5.1: Our resulting timeline for the events identified in The Gingerbread Man story.

One of the most useful properties of force-directed graphs is that forces are additive. This means,
for example, that if we had one node equally attracted to each of two surrounding nodes, it will end
up sitting in equilibrium between these two nodes. This is an incredibly useful property that we take

advantage of in laying out our resulting timeline.

5.5 Result and Features

Figure [5.1] shows the resulting timeline produced for The Gingerbread Man story, using a set of
fine-grained events identified by our event clustering process. The exact set of events being dis-
played here are shown in Appendix From this timeline it is quite easy to see the interactions
of the gingerbread man with each of the other prominent characters in the story, and how much of
a role they play in the story. For example, it is clear that there is a short interaction between the
gingerbread man and the cow and the horse, while the fox clearly plays a far more significant role

in the sub-plot that unfolds towards the end of the story.

We can also see a nice separation between the paths of each character between events, avoiding any
overlap while also producing fairly smooth paths through the timeline. The various properties of the
plot are described below along with some of the key features of the plot, while the following section
describes some of the implementation details as to how this result is achieved. Further examples are
explored in our evaluation case studies in Chapter [7]

5.5.1 Node Properties

Each node in the graph represents a distinct event identified in the text according to our event clus-
tering process; varying the point at which we take a cut of clusters from the cluster hierarchy will
alter the resulting timeline, providing insights at a different level of detail. Figure[5.1]is regarded as

a relatively fine-grained cluster set. The key properties of the nodes are:

87

5. TIMELINE VISUALISATION 5.5. RESULT AND FEATURES

e Node Size reflects the number of characters involved in the event.

o Node Number represents the event number to aid visual clarity and make it easier to follow

the events sequentially.

o Node X-Position reflects the temporal ordering of the event, with events evenly spaced along

the x-axis in text order.

e Node Y-Position reflects the actors involved the event, sitting between the labels of the actors

involved.

5.5.2 Edge Properties

Edges represent the paths of each character through the story, with an edge present between any two
consecutive events that involve the same character. The edge colour reflects the character whose
path is being represented and corresponds to the colour of the character label on the left-hand side
of the timeline.

5.5.3 Timeline Features

In addition to the basic plot, we have also incorporated a number of other features to aid exploration

and understanding of the timeline.

Background Bars The horizontal orange bars in the plot background were introduced as a visual
aid to improve the user’s ability to recognise which actors are involved in each event based upon
its y-position. As mentioned above, a node’s y-position reflects the characters involved, and in the
particular case that only one actor is involved in an event, the event node will sit along the y-axis
of that actor. The orange bar is designed to help the user quickly trace back from an event to the

actor(s) involved.

Node Hover Text The first element of user interaction is the ability to hover over an event to read
the text and who’s involved in that particular event. This aids user investigation and understanding
to be able to delve deeper into the underlying text, and understand the details behind particular parts

of the story highlighted by the plot. Figure[5.2]shows an example of this.

Path Highlighting The second element of user interaction is the ability to click on character labels
to highlight only the paths of characters of interest in the timeline. This again is a feature to enhance
the investigative capability of the timeline, making it far clearer how and where particular characters
come into contact. Figure[5.2shows an example of this, with the paths of the gingerbread man and
the fox highlighted. This is a feature that becomes increasingly useful as the number of events and

characters involved increases.

88

5. TIMELINE VISUALISATION 5.6. IMPLEMENTATION DETAILS

a little old man

a little gingerbread m

C 0 Event 13
Mentions:a big red fox, alittle gingerbread
man

acow

As soon as the gingerbread man did so, the
8 fox tossed him into the air. The little man fell
right into the fox's open mouth.

a horse
a big red fox

No Actors

Figure 5.2: Demonstration of the ability to find out exactly what is happening in an event, and to

highlight the paths of characters of interest, using the same example as Figure @

5.6 Implementation Details

5.6.1 Overview

Figure [5.3] illustrates the high level flow of the script that creates the timelines of the form shown

above. The resulting timeline is built up on an SVG Canvas in the browser in two major stages.

Firstly, we construct and populate an SVG canvas with the nodes and edges to be displayed. In
doing so we use D3’s data binding mechanism to bind each SVG node and edge to its underlying
JavaScript object that it represents. That is, nodes are bound to their associated event object, and
edges are bound to their corresponding edge representation. The exact interface of these objects is
defined shortly.

The second step is to then begin the D3 force simulation, passing the underlying event and edge data
we previously bound to the elements of the SVG canvas as arguments. Having performed this set-up,
D3 issues a callback to a tick event handler that we register after each step of the force-simulation,
giving us the opportunity to update the position of nodes and edges on the canvas in response to
changes in position of the underlying data in the simulation. As a result, the simulation eventually

settles at equilibrium giving us our final timeline.

In the following sections we discuss some of the details of various aspects of this flow and the re-

sulting timeline.

89

5. TIMELINE VISUALISATION

5.6. IMPLEMENTATION DETAILS

Parse and process
Input

—

Initialise actor foci

R

y
e A e

Create SVG canvas

Start force simulation

. S—

Add nodes 10 canvas
and bind 1o node

data

]

T I
Add edges to canvas
and bind 10 edge
data

Add actor labels 10
canvas

Figure 5.3: High level overview of the flow of the timeline drawing process.

5.6.2 Input Format

The underlying data consists of three components: actor labels, event nodes, and edges. This data

provides sufficient information to construct the resulting timeline. Table[5.2]lists the expected object

representation of each of these elements.

Component Object Representation Description

Actor Label { title: String, type: The title defines the actor the label rep-
"label" } resents.

Event Node { eventNum: Number, The eventNum defines the sequential
text: String, actors: number of the event in text order, text
[String] } is the event text, and actors is the list

of actors mentioned in the event.
Edge { source: Number, target: The source and target define the in-

Number, actor: String }

dexes of the source and target event
node in the event node list, respec-
tively. The actor is the actor whose

path this edge represents.

Table 5.2: Object representations of the underlying data modelled by the timeline, and passed as

input to the D3 Force Layout.

90

5. TIMELINE VISUALISATION 5.6. IMPLEMENTATION DETAILS

With the actor labels, event nodes, and edges defined as separate lists of objects, we then initialise
the D3 Force Layout object with our list of event nodes and our list of edges. At this point, D3 then
extends our object representations with some additional properties. Each node is given an x and y
property defining its current position, while each edge representation has its source and target
properties replaced with the actual event node objects referenced. These properties can then be used

in our tick handler to update node and edge positions accordingly.

5.6.3 Basic Configuration

For our purposes, we define the following fundamental forces:

Force Value

Link Distance 1

Link Strength 0

Node Charge 1

Friction 1

Gravity 0

By default, all values are set to 1. We first disable gravity as we do not wish to obtain a circular plot,
which is the effect that gravity encourages. Also, as we impose a fairly rigid underlying structure
on the timeline plot we do not have the concern of nodes going astray. Our only other initial change
is to also reduce the link strength to 0; this is to ensure that we maintain our x-spacing regardless
of the effect of links connecting neighbouring nodes. Thus a value of 0 means that links assert no
influence over node positioning. By default, we impose a 100 pixel x-spacing between sequential

events and a 100 pixel y-spacing between actor labels.

5.6.4 Actor Foci

One of the key challenges of constructing the timeline is in identifying a natural, aesthetically pleas-
ing layout and is one of the key motivations for our use of force-directed graphs. In using this
approach, we take advantage of the fact that forces are additive to position nodes vertically based
upon the characters involved in the event. For example, we see event 1 in Figure [5.1]is positioned
between the two labels for the little man and the little woman. As aresult, we get a relatively smooth
path between a series of events that involve largely the same set of characters, while getting a nice

distinction between events involving disjoint sets of characters.

To achieve this we define a distinct y-axis focus for each character, stored in a map from character
name to y-axis focus. During each tick update of the simulation, we then influence the y-position of
each event based upon the actors involved. The exact update sequence for each node during a tick
event is as follows in Algorithm|[I] where & is a smoothing parameter:

91

5. TIMELINE VISUALISATION 5.6. IMPLEMENTATION DETAILS

Algorithm 1 Updating the y-position of an event based upon actors mentioned

1: for actor € event actors do
2: node.y « node.y + (foci[actor] - node.y) * k;
3: end for

Thus, we essentially update the y-position based upon its current distance from the desired y-
positions of each mentioned character’s y-axis focus. The smoothing parameter, k, ensures that
we blend the influence of all characters on the resulting y coordinate, and is defined as 0.1 times the
alpha parameter used by D3.js to similarly blend the various forces acting in the simulation, grad-
ually decaying over time until the simulation stops at equilibrium. This approach was inspired by the

similar example use of categorical foci athttp://bl.ocks.org/syntagmatic/3991039,

5.6.5 Leading Edges

As we can see in the example of Figure[5.1] we have a leading edge from each character label to the
first event in which the character is mentioned. This makes it far easier to identify the first mention
of an actor in the text, and is even more important for characters that appear in a single event.
Without this edge, there would be no edges for these particular characters. This is a result achieved
by augmenting our initial node set with a set of additional nodes for each actor with eventNum =
0. This is then used as flag to inform the drawing process to hide these nodes in the canvas, yielding

the effect shown.

5.6.6 Curved Edges

Another challenge was in ensuring that multiple edges between any two nodes did not overlap
while maintaining a good level of smoothness in the resulting timeline in order to maximise clar-
ity. To achieve this we take an approach inspired by the example at https://bl.ocks.org/
mbostock/4600693. In this case, we now pre-process our original edge data of the form de-
scribed in Table[5.2]into a list of bi1links describing a path through three nodes: the source, target,
and a new intermediate node. Each bi-link is then bound to an SVG path element in the canvas,

which provides us with the flexibility to model a curve that passes through three defined coordinates.

The resulting effect is largely down to the influence of the newly introduced intermediate node that
sits in the middle of the curve. While all event nodes are subject to the forces defined previously,
intermediate nodes are subject to a different set of forces, defined in table[5.3] The link distance is
increased to allow for the additional distance travelled by the curved edge, while the link strength is
slightly increased to enable the intermediate nodes to ensure that intermediate node is anchored by
the influence of the two nodes it’s connected to, stopping it from wondering too far astray. Lastly, the
most significant change is the increased magnitude of charge. This is responsible for ensuring that
intermediate nodes repel one another, encouraging edges to curve away from one another and avoid
overlap. From our experimentation, this configuration appears to yield a good balance between

clarity and smoothness.

92

http://bl.ocks.org/syntagmatic/3991039
https://bl.ocks.org/mbostock/4600693
https://bl.ocks.org/mbostock/4600693

5. TIMELINE VISUALISATION 5.6. IMPLEMENTATION DETAILS

Force Value

Link Distance 10

Link Strength 0.05

Node Charge -80

Friction 1

Gravity 0

Table 5.3: The altered forces acting on the intermediate nodes along each edge.

5.6.7 Tooltip Text

To create the hover-over event text, we employed the simple yet effective Tipsy jQuery plugilﬂ In
doing so, we slightly modified the library to work with the newer jQuery version 3.2.1 that we use
instead of a slightly older dependency used originally. This simple library allows us to associate

each node in the timeline with a tooltip that is displayed as soon as the user hovers over it.

* Available from https://github.com/jaz303/tipsy

93

Chapter 6

The Application

6.1 Aims

Our final aim surrounds the incorporation of the two components we’ve discussed in Chapter ff] and
[into a fully functional and potentially marketable application. The ultimate aim being to construct
an application that can provide practical value to its users despite current NLP tools not being 100%
accurate at present. Thus, to achieve this it will be paramount to ensure the user has the ability to
make the final corrections required to obtain the resulting timeline they desire, and that can then be

used in the contexts of education and investigation we identified earlier.

Thus, in creating the final application we target the following objectives:
e Provide the means to obtain the most accurate initial timeline possible.
e Provide the means to edit and correct the resulting timeline.
e Maximise the ease-of-use of the application.

e Enable investigation and exploration of the results.

6.2 Chosen Approach

Having considered a number of different approaches to building the final application, we opted to
take a web-based approach. While similar results could be achieved both through a desktop appli-
cation or a web-based application, the latter enables us to reach the widest possible audience: we

reduce the user requirements to simply requiring that they have a compatible browser.

Hosting the application as a web service also shifts the resource needs from the client to the server,
which are particularly significant in this case as the NLP tools we use require a large amount of
memory to perform efﬁcientlyﬂ Requiring the user to provide these resources would significantly

reduce our market size, with the application becoming inaccessible to a large proportion of users.

!Specifically, we require 6GB of RAM or more to execute the clustering process.

94

6. THE APPLICATION 6.3. BACK-END

Take user Process Explore and
input and cluster edit timeling
Front-end Back-end Front-end

Figure 6.1: High level overview of the application pipeline.

Additionally, a large number of frameworks and libraries exist for simplifying web development,
ensuring the typical design paradigms are followed and also helping to provide an idiomatic and
familiar user-interface for users. A nice property that directly targets our objective of maximising

the ease-of-use of the application.

As a result, we split our application in two: the back-end and the front-end, and consider each
component separately in the following sections. Figure [6.1] illustrates the high level application

flow.

6.3 Back-End

6.3.1 Responsibilities

The back-end is responsible for the bulk of the NLP processing to produce an annotated set of events
via the clustering process described in Chapter [} as a result providing the data for the front-end to

then visualise as a timeline.

6.3.2 Technology Stack

The back-end is implemented in Java 8, using the tools and technologies outlined earlier in Section|3.4]

following our initial experimentation.

6.3.3 Pipeline

Figure [6.2] shows the high level processing pipeline that takes place in the back-end, employing a
number of the technologies we initially discussed in chapter 2 during our experimentation. A brief
description as to the purpose of each part of this pipeline is provided below, numbered to reflect the

sequential order of the pipeline shown:

1. Input text and optional actor list The initial input consists of the text to process, along with an
optional list of actors to explicitly look out for in the text. This argument is provided to enhance the
results produced by the system in two ways: it allows us to explicitly pick out any named mentions
of these actors that may be missed by the coreference resolution system, and secondly it informs the

following pre-processing stage in order to make some small modifications discussed next.

95

6. THE APPLICATION

6.3. BACK-END

__

NLP Processing

1 1
1]
i i
| |
]
- i Y () !
Input text + ! P !
optional actor list /—= Pre-process : = Ex;:‘?jcghnr;ga;laﬁ::;ns = Attach mentions i
provided i |
1]
-~ ™, i i i i
i i
n i Attach TimehiL |
Write output - Post-process i Cluster events EVENT tags !
L S T , i
1 1
1]
i i
1

Figure 6.2: The high-level processing pipeline implemented in the back-end.

2. Pre-processing As we saw during our experimentation with coreference resolution tools, one
of the major difficulties of the tool was in handling nominal mentions (e.g. the wolf) and fictional
names (e.g. Goldilocks). Thus, to overcome this we have introduced a pre-processing phase to re-
place any explicit mentions of the actors listed in the provided actor list with a more common name
of the same gender, improving the performance of the coreference resolution system without the
need for us to develop our own training data to improve the coreference resolution system’s perfor-

mance on these types of mention.

3. Initial event extraction Here we identify our initial set of events, treating each sentence as an
event. In addition, we also tag each event with the part-of-speech annotations used for the clustering
process to follow. A subtlety here is our treatment of speech that occurs within the text. In some
cases, we may have multiple sentences contained within a set of quote marks, which our initial
sentence extractor splits into multiple distinct sentences. However, we do not wish to split a single
speech across multiple events, so we instead piece back together any sentences that are contained

within a single quote. To clarify, consider this simple example from Little Red Riding Hood:

"Don’t dawdle along the way and please don’t talk to strangers! The woods are dan-

gerous.”

In such a case, we regard this as a single sentence itself, despite most parsing tools breaking this

into two.

4. Attach mentions In this step we perform coreference resolution and tag each of the initial events

identified previously with the characters they mention.
5. Attach TimeML EVENT tags We now identify any TimeML EVENT tags identified in each of
the initial events and annotate accordingly. Thus, both stage 4 and 5 provide vital information to

inform the clustering process to follow.

6. Clustering In this step, we execute our hierarchical clustering process as described in Chapter @]

96

6. THE APPLICATION 6.3. BACK-END

7. Post-processing We undo any of the changes made during the pre-processing stage, replacing
any changed names with their original names in the input text.

8. Write output We finally output the results in the format expected by the front-end. As part of
this process, we identify the optimal cluster sets at each of the thresholds identified in Section
The exact output format is described in Section[6.3.5]

Further details of each part of this pipeline are discussed in Section [6.3.5]to follow.

6.3.4 System Architecture

The back-end system consists of a large number of components and has been designed with flexi-
bility in mind, employing object composition and inheritance to decouple the various components
from one another and make it easy for us to switch between different implementations of particular
components during the development process. To control access and develop some structure in the

back-end, we define a number of distinct packages to encapsulate each component:

o default Contains the top-level classes responsible for coordinating each of the components

involved in the pipeline.
o clustering Contains the clustering class structure illustrated earlier in Section
e coreference Contains all the components relevant to performing coreference resolution.

o eventTagging Contains the objects related to tagging the events with any TimeML EVENT

tags present within each event.
o models Contains our abstract “event” data model and any related classes.

o utils Contains any shared utility classes providing useful functions that are used in multiple

places.

We thus illustrate the various parts of the system architecture individually for clarity.

Figure [6.3] shows the top-level system architecture. The App class is the application entry point,
which initiates the application pipeline shown earlier. The InputProcessor is responsible for
pre- and post-processing the input text, and the JSONFormatter is responsible for writing the
final output to file, the exact format of which we discuss shortly. The App also coordinates the
two most significant stages of the process: extracting the initial set of sentences from the text
along with their associated feature annotations for the clustering process, and then executing the
clustering process by passing the annotated Events returned from the EventExtractor to the
EventClusterer. We also see that each class maintains its own 1ogger; this is the log4j log-
ger that we use for logging any potentially useful debug information. All loggers write to the same
output file, specified by a log4j configuration file, and prepend each line of output with the name of
the class responsible for the output.

97

6. THE APPLICATION 6.3. BACK-END

Figure [6.4] shows the event extraction class architecture in more detail. Here,
we see the EventExtractor now becomes the coordinator, interacting with the
CoreferenceResolver to perform coreference resolution over the initial input text, and
the EventTagger to obtain the TimeML EVENT tags present in the input text. We have made
use of both object composition and inheritance here in implementing the coreference resolution
systems again to maximise flexibility. While experimentation revealed the Stanford neural
coreference resolution system to outperform the alternatives, we have implemented all three of the
Stanford approaches behind a common interface to make it easy to switch between any of these
implementations. Both the neural and statistical implementations are part of the same Stanford
CoreNLP package, with the desired approach to use being specified by a simple configuration prop-
erty during initialisation of the Stanford Coreference Resolution tool. As such, these classes have
been implemented via composition to simply initialise a StanfordConfigurableResolver
with the appropriate properties. The rule-based implementation is instead part of a slightly different
Stanford CoreNLP library, and thus requires a somewhat different initialisation process. The
EventClass enumeration represents the 7 possible TimeML EVENT classes discussed earlier,

and is used by the clustering process to assign a weighting to each of the possible EVENT classes.

Finally, Figure [6.5] shows the structure of the remaining packages defining the our abstract repre-
sentation of each event as an Event object, and the utils package which currently contains only
one utility class: StringUtils, which is used both during the initial event extraction and during

mention annotatiorEl The details are discussed in Section @] to follow.

We refer the reader back to Section {4.5]for the clustering package architecture.

2Tagging the actors mentioned in each event.

98

6.3. BACK-END

6. THE APPLICATION

urod Anus uoneordde oy st ddy a1oym ‘9In)d9IIyoIe walsAs [2A9[-doy oy, :¢'9 23

uBs|00q:
(Ayoseseiieisni) :AyotelsiHleisnio
‘<JUBAT>ISIT :SjuUaAJeseq

)aliqoLINdINQBIIM +

(eianoq
‘Bumesiaisnin>de|y :sdaysawi]nejep -

<o|gnoq ‘bumesialsnio>dep
:spjoysaiy buusisnio -

186607 118660 -

JsnewloiNOSH

(<quan3>1sI7 :SjUBAL)1IXa] SSB201disod +

<bus>1es :()sio1oyieb +

Buis :(Buns :a|1Jisiioi0e
‘Burng :9)14indul)ixa] sseooida.d +

<uaAg>isIT :(<buuis>1es
:soweNJoloe ‘Bulls :aweNa|i4indul ‘bulg
p1Ixa) ‘BullS :plIUBWNOOP)SIUSATIORIIXS +

()Joroenx3luang +

1ab607 :u8bb0 -

10ss92%04dinduj

AyoseisiHiaisn|D
(<IUBAT>]SI :SIUSAS)SIUBATIBISND -

<uang>isi
(<Buuis>1es :saweNJoloe
‘BuLg :eweus|i4indul
‘bulis :p1Ixsl ‘Bulig :ppuswnoop
)SluangorIIX® -

pIOA :(Jurew +

Jai3isn|DIudAg 66 66
18bbo 1u1ebboj -

J0JOBJIXJIUSAT
Bunalsn|d

1ab60 18660 -
ddy

99

6.3. BACK-END

6. THE APPLICATION

"I01BUIPIO0D [9AS]-d0) o) St S108 MOU IO DRI FXHIUSAF) 9IUM ‘9IMOAIYdIE JuauoduIod uonoenXa JUAS 9], "9 9InSL]

JOA|0S9HBUSI8)810)) 11OA|0S8HaUSIS)8I00 -
196607 18660] -

Ianj0say|eanseISpIOIUR]S

Jaajosay
90U8I8)2102

T
'
1
'
1
'
'
'
1
1
1
1
1
1
1
1
'
'
'
'
'
1
'
1
1
1
1
1
1
'
'
'
'
'
'
\

(seiadoud :semadoideousliaeiod
YlaAj0saHa|qeINBlUODpIoJUBIS +

196607 18660] -

JanjosayajqeinByuoopiojuels

T
'

'

1 0
! '
! '
! '
! '
! '
' '
' '
' '
' '
! '
! '
! '
'

[l

JOA|0S9H80US19}9100) 119A|0S8HS0USI8)8I00 -
196607 ueb60) -

IanjosaY|einaNpIOsURS
Jonjosey

9Jual9}a100

186607 18660 -
Janj0saypasega|nyplojuels
YV Vv Vv

<<buug>1eg ‘Jebajui>depy

:(<Buuis>1es :seweNJoloe ‘Bulls :1xalindul)deyuonusinieb +

19A|0S9HO2UBIB}310D) <]
<<@oBLBU>>

Ul :Xapujlels +
BuLlg :1xal udns +
Buls :sse|Dluane +
Bus :p1e +
SSB|DIUdAT]
<<uojjelownug>>

Bejjuang <-’

L <Be|uang>)si
:(Bug :sweNa|i4indul)sbe] Juangieb +

ulejed :ulepediuaws|3ixe} -
uisjed :uienedbeljuane -
186607 18660 -

Bus NISdIL OL HLivd -

19b6b6e]juang <

Buibbe] Juana

2Judaliajalod

<uang>si :(<Bulis>1es
:soweNJoloe ‘Buuls :aweNa|i4indul ‘bulg
:pIxal ‘BullS :plIUBWINOOP)SIUBATIORIIXS +

{(Buns :8)1461u09)I010BXTIUBAT +
()io10eNIXTIUBAT +

JOA|0SOHOoUSIB810)) (IOA|0SOHOUSIS}0I00 -
186607 18660 -

Buis 137147 9IANOD ™ ANINAdId LINY43a -

J10])oBIIXTIUSAT

100

6.3. BACK-END

6. THE APPLICATION

‘uoneordde o) Inoy3noay) pasn syjuauodwod [BUOHIPPE Y, :G'9 NI

ue9a|00q :(BullS :20UsUSS)PBIRUILLID] S|9JUBIUSS +
ues|00q :(Buuig :1xa] JUsAs)yo9adSSUIBJUODIUBAS +

s|unbuns

(<BuLng>}as :siojoe)siojoybe; +

(<bulng>isi] ‘AeyAuadoidiuany :Aex)Auadoidies +
(Bulyg :eweNmau ‘BuLlS :BWEBNP|O)I0}0yBWRUS) +
uea|00q :(bul)s :10}0B)I0J0YSSA|OAUI +

i :()xepujeisieb +

<Buuis>isi :(AeyAuadoidiuang :Aey)Auadoidieb +
<be|juang>isi :()sbeluanTieb +

<bus>1eS :()suonus|vieb +

<bus>10S :()si010v|vieb +

(<bus>1eS :suonusaw)sbe] sousalajaionyoeye +
(1uaA3 :Jusne)uaagpuadde +

(be11uanz :6ejluans)be] juangppe +

<<Bung>1si ‘AeyAuedoidiueng>depy :seiuadoidiuane -

SHIAWNNN TVYNIAHVO <beljuang>isi :sbejuane -
‘SaAILOArav <Bulg>}es :suonusw -
‘SNNON <BulIS>19S :PBUOIIUBINSIOOE -
‘sgyanav Ul :X8PUJLIBISIUBAS -
‘sgdan BULIS 1X1 JUBAS -
Jabbo :1ebbo| -
Koy Auadoudiuang
<<uojelawnuz>> JUaAg

s|n

sjapow

101

6. THE APPLICATION 6.3. BACK-END

6.3.5 Implementation Details
Input Format

The application expects up to 2 input files: the input text to construct the timeline for, and an optional
file listing any specific characters the user wants to ensure are recognised in the text. The story text
is simply an unstructured .txt file, while the actor list file (if provided) is expected to be a JSON

formatted file following the schema illustrated by the example below:

[

{ "name": "Goldilocks", "gender": "Female"},
{ "name": "Papa bear", "gender": "Male"},

{ "name": "Mama bear", "gender": "Female"},
{ "name": "Baby bear", "gender": "Female"}

]

Figure 6.6: The expected input format for the optional actor list. This is an example for the
Goldilocks text.

i.e. each line specifies the name and gender of an actor expected to appear in the text, which is then

used to inform our pre-processing stage to follow.

Pre-processing

To accommodate the pre-processing performed by the InputProcessor, we have de-
fined two lists of common male and female names, stored in separate files of in the
resources/preprocessing directory of our source. These lists are then used to provide
replacement names for each of the actors specified in the user-provided actor list. This process

proceeds in three steps:

1. We populate two lists with the replacement names defined in our two replacement name files.
In doing this, we also make sure to remove from the list of candidate replacements any names

that may already appear in the input text in order to avoid introducing any name clashes.

2. We then construct a mapping from each actor name in the user-specified actor list to its new
replacement name, ignoring any names that have an unexpected or unspecified gender as well

as any names that are considered to be “good’ﬂ already.

3. We finally output a new file with each of the actor names replaced with a more common name
of the equivalent gender, and return this new file name to the caller. At this point, we are also
careful to avoid swapping any phrases that should not be replaced. For example, phrases like
“Mr. and Mrs. Dursley” should not be replaced with “Mr. and Alice” if the user specified Mrs.
Dursley as an actor. To avoid this, we first process the text to replace any such mentions with
a temporary placeholder, before replacing any names in the text. Once complete, we re-insert

any of these temporarily removed phrases.

3They already agree with our idea of a common name.

102

6. THE APPLICATION 6.3. BACK-END

Extracting the initial event set

The first three stages of our NLP Processing pipeline shown in Figure [6.2] are executed by the
extractEvents method of the EventExtractor. The first step being the extraction of our
initial event set: the set of sentences extracted from the text, initialising each as an Event object.
At this point, we also annotate each Event with its associated part-of-speech tags. For both these
tasks we employ the Illinois NLP pipeline, which we chose because of the potential to employ the
Semantic Role Labelling capability of the pipeline should we choose to later introduce semantic

roles as an additional clustering feature or for our visualisation.

The subtlety in this process is the difference in how we define a sentence in comparison to that used
by the Illinois NLP pipeline. As we mentioned previously, we wish to ensure that any sentences that
appear within a single quote stay together; this is perhaps a narrative-specific requirement, but we
do not want speech in a narrative to be split across multiple events. We thus perform some sentence
repair following the initial sentences extracted by the Illinois NLP pipeline, which ignores whether
sentences occur within speech or not. When stitching these sentences back together, we must take

care to treat the two possible scenarios differently:

1. If we’ve seen the opening speech mark, but have not yet seen the closing speech mark, we

must continue to re-group each sentence we see until we find the last sentence in the speech.

2. On the other hand, if we have found the closing speech mark in a speech but the speech is
not terminated, we must continue to re-group the subsequent sentences with this one until we

reach a sentence that is terminated.

Let us illustrate the two cases above by example. In the first case, we may have the following two

sentences identified by the Illinois NLP pipeline:

1. “Don’t dawdle along the way and please don’t talk to strangers!

2. The woods are dangerous.”

In this case, we wish to group both of these sentences and treat them as one. The second case applies

when we have sentences of the form:

1. “Someone’s been sleeping in my bed and she’s still there!”

2. exclaimed Baby bear.

Following this repair, we annotate each of these Events with the nouns, adjectives, and cardinal

number phrases identified by the Illinois NLP pipeline’s part-of-speech tagger.

103

6. THE APPLICATION 6.3. BACK-END

Attaching mentions

Coreference annotation is achieved using the Stanford Coreference Resolution system discussed
earlier. During this stage of the pipeline, executed by the CoreferenceResolver we build up
a mapping from each sentence number (having completed any necessary sentence stitching) to the
entities mentioned in that sentence. To achieve this, the coreference resolution system first executes
over the entire original input text and returns a set of coreference chains, where each chain contains

all the mentions of a particular entity identified in the text.

Each mention annotation holds the sentence number of that mention in the original text, however
similarly to the Illinois NLP pipeline we encounter the same sentence identification problem, so we
must first convert the sentence numbers of the mentions identified into those according to our defini-
tion of a sentence using a similar process to the above. Additionally, when populating the resulting
map from sentence number to actor mentioned, we make sure to add the most representative mention
of the entity represented by the coreference chain. In the case that one of the mentions in the chain
matches the name of one of the actors the user has explicitly identified in the actor list input file then
we add this exact name to the map, while if this is not the case, we take what Stanford’s Coreference
Resolution system itself identifies as the representative mention of the coreference chain: typically
the longest mention in the chain.

Having constructed this mapping, we then tag each of the initially extracted Event objects from
the previous stage with the entities mentioned in that event. During this tagging phase, we tag
any actors that were explicitly identified by the user separately to any other mentions to allow for
different weightings to each of these features during the clustering process, however we do not make
a big distinction between these two types of coreference (whether it is an actor or another type of
coreference) yet as we can only tell the difference when the user informs us who to regard as an
actor as part of the application input: we do not yet have any automated identification as to whether

a mention is a person or another object.

Attaching TimeML EVENT tags

The EventTagger is responsible for the last phase of feature extraction: executing TIPSem to
identify all the events that take place in the text according to the TimeML EVENT tag definition.
This process requires first executing TIPSem over the original input file to obtain an annotated .tml
file (as we saw in Section [3.3.3)), before parsing this file to extract any events identified in the text.

Event tags in the resulting output file are identified by employing the following regular expression:

"=EVENT class=\"(?<class=\\w+)\" eid=\"'(?<eid=e\\d+)\"=(?<eventText="‘\w+)</EVENT="

Figure 6.7: The regular expression used to extract each of the event triggers recognised by TIPSem.

104

6. THE APPLICATION 6.3. BACK-END

This expression makes use of named groups to allow us to easily extract the three key details cap-
tured in each of the TIPSem EVENT annotations: the event class, the event id, and the actual
event trigger itself. As a result of executing the get Event Tags method of the EventTagger,
the EventExtractor is then able to annotate each of our Event objects from earlier with the

TimeML events they contain.

Each Event Tag returned by the Event Tagger contains the three key details highlighted above
as well as the index of the event trigger in the original text. This allows us to then identify the
Event object whose text contains the current EventTag, as each Event also holds the index of

the first character in its text.

An alternative approach here could have been to re-execute TIPSem over each Event object sep-
arately, and to immediately tag each event with the TimeML EVENT tags identified in that event.
However, such an approach would have required repeated executions of the TIPSem process, and
the creation of multiple short input files. We instead adopted this approach due to the improved time

efficiency despite requiring slightly more complex tagging logic.

Post-processing

At this point, all analysis has been complete and thus we reset any changed names back to their
original form. This replacement is performed by the Event object’s renameActor method,

which updates the events event Text, actorsMentioned, and other ment ions properties.

Output

The final stage of the back-end pipeline is to output the results that feed the front-end, for which
the JSONFormatter is responsible. The JSONFormatter takes the list of the initial events ex-
tractecﬂ and the final ClusterHierarchy produced by the clustering process as input and uses

this to construct the resulting out . json file of the form shown in Figure[6.8]

This output consists of four components: the baseEvents, the clusters, the labels, and the default-
Clusters. This representation was chosen as it maximises readability while minimising the amount
of data transmitted to the user when they receive their results as the event data is only represented
once. The baseEvents specify each of the sentence-level events initially extracted. The clusters
section lists the cluster sets at each time step of the hierarchical clustering process. i.e. in the ex-
ample of Figure[6.8] we see that the first cluster set consists of each event being contained within its
own distinct cluster. By the final time step, we see all three events have been merged into a single

cluster.

“Each initial event is essentially a sentence according to what we define to be a sentence, shown earlier.

105

6. THE APPLICATION 6.3. BACK-END

{
"baseEvents": [
{"text": "Once upon a time, there was a little girl named Goldilocks.", "actors": ["Goldilocks"]},
{"text": "She went for a walk in the forest.", "actors": ["Goldilocks"1},
{"text": "Pretty soon, she came upon a house.", "actors": ["Goldilocks"]}

]J’
"clusters”: [
[[el, [1I, [211,
[le, 11, 1211,
[le, 1, 211
]l’
"labels™: [
{"type": "label", "title": "Goldilocks"},
{"type": "label", "title": "Papa bear"}],
"defaultClusters”: {
"extra-fine": @,
“fine": @,
"coarse": 1,
"extra-coarse": 2}

Figure 6.8: Example output file from the JSONFormatter according to the expected schema.

The labels list the names of the actors we wish to show in the resulting timeline, and while they
allow for the separation of the definition of these actor labels from the actors actually tagged in each
of the events, in practice we actually initially have a label for each entity mentioned in any event
in the text. Finally, the defaultClusters section lists the indexes in the clusters property of the event
clusters at each of our automatically identified “optimal” cluster sets at the 4 levels of granularity
identified previously in Section 4.7}

1. Extra-fine 20% max score threshold
2. Fine 10% max score threshold
3. Coarse 5% max score threshold

4. Extra-coarse 2.5% max score threshold

These time steps are identified and populated by the JSONFormatter using the information pro-
vided by the ClusterHierarchy parameter. In the case that a particular score threshold iden-
tified previously is never reached, we instead employ a set of default indices based upon the total
number of steps in the hierarchical cluster. At present, we split the hierarchy into 6 equally spaced

segments, with our default time steps defined as follows:

1. Extra-fine /7% through total number of steps
2. Fine 34% through total number of steps
3. Coarse 68% through total number of steps

4. Extra-coarse 85% through total number of steps

106

6. THE APPLICATION 6.4. FRONT-END

6.4 Front-End

6.4.1 Responsibilities

The front-end aims to provide a clear and intuitive user interface to allow the user to understand,
edit and interact with the results produced by the back-end application. The front-end should make
it as easy as possible to tweak the resulting output to obtain a final timeline of real value to the user.

In particular, at present we have no means to distinguish between coreferences of characters within
the text and repeated mentions of other types of entity. As a result, we currently tag events with
both these types of mention, which should not necessarily appear in the resulting timeline. To
combat this, we must provide the means to easily remove any irrelevant coreference annotations.
Additionally, in some cases we see that character mentions are missed entirely by the automated
coreference resolution system. As such, we must also provide the means to easily add these missing

tags to then update the resulting timeline appropriately.

6.4.2 Technology Stack

The front-end is built using the typical trio of web technologies: HTML, CSS, and JavaScript. The
exact frameworks and libraries we employ are listed in Table along with a brief description of

their use.

In the following you’ll find our extensive use of open-source libraries, which has allowed us to
rapidly accelerate the development process and benefit from the large amount of development that
has already gone into each of these libraries and frameworks. For example, the use of the QUnit
gives us far more power in our unit testing, and greatly simplifies the number of concerns we must
handle ourselves when unit testing. As an example, QUnit resets the DOM of the test page between
every unit test to ensure that each test starts from a clean slate and is thus not affected by the be-

haviour of our other tests.

107

6. THE APPLICATION

6.4. FRONT-END

Dependency

Purpose

Node.js

A server-side JavaScript runtime to allow us to program our server
using JavaScript. Using this also provides access to the Node Package
Manager (npm) containing “the largest ecosystem of open source
libraries in the world” [[65]]. This speeds up the development process
and allows us to focus on the application development rather than the

additional concerns of running a web server.

express

Web framework for Node.js, used to serve the site content.

ejs

Node.js library that allows us to inject JavaScript into our HTML
templates. This makes the construction of dynamic web pages far

easier.

body-parser

Node.js library used to parse the body of POST requests to the server,

and provide direct access to an JavaScript object representation of the

body instead.

spinkit Node.js library used to display a loading animation while the user is
waiting for the back-end process to complete.

sortablejs Node.js library used to create interactive re-orderable lists. We use this
to create our sortable list of character labels in the timeline settings
window shown in Figurem

jQuery JavaScript library used to simplify interaction with the HTML
Document Object Model (DOM).

Bootstrap CSS library used to provide a familiar user-interface and to speed up
the development process.

D3.s The library used to draw the previously described force-directed graph.

Tipsy The library used to display tooltips over timeline events.

Font Awesome

Used to obtain idiomatic icons that reflect the purpose of various
components of the UL

Google Fonts

Used for the very popular and clear Roboto font.

QUnit

JavaScript unit testing framework, chosen for its graphical test result
interface, and structured output on test failure including the potential to
produce a native JavaScript stack trace.

Table 6.1: Table of dependencies for the front-end and a brief description of how each is used.

108

6. THE APPLICATION 6.4. FRONT-END

Between The Lines

What's your story?

INPUT TEXT

It was on the corner of the street that he noticed the first sign of something peculiar - a cat reading a map.

ACTORS 2]

Tag actor...

Dudley Male
Mrs. Potter Female

There was a tabby cat standing on the corner of Privet Drive, but there wasn't a map in sight.

What could he have been thinking of? It must have been a trick of the light.

Mr. Dursley blinked and stared at the cat.

It stared back.

As Mr. Dursley drove around the corner and up the road, he watched the cat in his mirror.

It was now reading the sign that said Privet Drive — no, looking at the sign; cats couldn't read maps or signs.
Mr. Dursley gave himself a little shake and put the cat out of his mind.

As he drove toward town he thought of nothing except a large order of drills he was hoping to get that day.

i

Characters found

Figure 6.9: The input page of the application, showing both the actor list containing two actors, and

the additional characters automatically recognised in the input text.

6.4.3 Results and Features

The ultimate idea has been to create an idiomatic and familiar interface to minimise the learning
curve with the application. In doing so, we hope to present all the necessary information and pro-
vide all the functionality required to construct the final result, without cluttering the interface.

The resulting application consists of two pages: the input page and the insights page.

The Input Page

Figure [6.9] shows the input page: a relatively minimalistic page where the user provides their initial

input text. In addition, this page contains the following two key features:

1) Actor List Alongside the input text box, we also provide the means for the user to explicitly
name any actors they would like to ensure are identified by the system and are plotted in the result-
ing timeline. The elements of this list are then passed as input to the back-end and used to inform
the pre-processing phase described earlier. Using this proves particularly useful when the characters
mentioned are of the form Mr. Dursley, the wolf, or are particularly unusual names, as explicitly
specifying these enable us to rename such characters during the pre-processing phase to improve
the results of coreference resolution and thus improve the accuracy of the initial timeline produced.
Once a gender for an actor has been selected, we colour the item appropriately to aid visual clarity
when scanning a long list of actors.

109

6. THE APPLICATION 6.4. FRONT-END

2) Automatic Identification of Characters In addition, the Characters Found area beneath the
input text automatically displays any potential character names that should be added to the actor list
described above. Clicking on any of these automatically identified actors adds them to the actor list.
The idea of this feature is to reduce the need for the user to explicitly search their text for all the
characters mentioned, and to particularly pick out any potentially troublesome mentions that we’re

able to easily spot, such as “Mr. x”.

The Insights Page

The insights page is responsible for displaying the resulting timeline and enabling the user to make
any edits and corrections to the result. This page exhibits a number of key features designed to

maximise user insight and usability, which we describe and highlight in the following.

1) Actor Side Panel This refers to the panel on the right-hand side of Figure displaying the
names of all the entities mentioned in the text. As we can see, this panel currently consists of more
than just the characters mentioned in the text, but also any other entities that are mentioned multiple
times. This is due to our current inability to distinguish between the two at present. To overcome
this, we have added the quick delete button on the far right of each mention when hovered over,

allowing the user to quickly remove any mentions that are deemed irrelevant.

Additionally, this panel is currently sorted in descending order of mention frequency to highlight
any significant characters, with the value in brackets representing the number of events that mention
this actor. We also position any “similar’” mentions next to one another in this list, a factor more evi-
dent in our later example of the gingerbread man, when the coreference resolution system identifies
two disjoint coreference chains for a single entity. This makes it easier for the user to then recognise

that an actor is referred to by two different names and subsequently amend this.

2) Actor Modal Clicking on any of these actors in the side panel brings up the Edit Actor screen
shown in Figure [6.12} a modal screen that displays all the sentences that are currently tagged as
having mentioned this actor. At this point, the user can make any changes to any of these individual
sentences, or they can rename the actor in the input box at the top to perform a bulk renaming of this
actor. Additionally, the user can also split an actor into multiple mentions. For example, in the case
of the three bears, we may wish to instead replace any mentions of this entity with each of Papa

bear, Mama bear, and Baby bear.

3) Adjustable Event Granularity Scrolling down the page, we find the current set of events illus-
trated in the timeline at the top of the page, and the Event Detail panel, as shown in Figure [6.10]
This panel consists of buttons to jump to the automatically identified event sets that should present
a relatively good set of events at the granularities discussed before, and we additionally provide a
detail slider to allow the user to find the exact set of events that suit them if the automatic milestones

aren’t quite right.

110

6. THE APPLICATION 6.4. FRONT-END

4) Event Modal Clicking on any event in the event table displays the Edit Event screen, enabling
the user to make any manual changes to the event text, or to add, edit, or remove any of the actors
tagged in a particular sentence within the event. This is illustrated in Figure[6.13]

5) Manually Merge Events If the automatic event clustering algorithm fails to produce a satisfac-
tory set of events, the user can manually create their own events starting from the base set of events at
any time step. Entering Merge Mode using the button above the event table allows the user to select
any contiguous events in the event table that they wish to merge. Subsequently clicking the Merge
Events button shall then commit any selected event merges. The example of Figure shows an
example where we’ve entered Merge Mode and selected the top two events. Having completed a
merge, the undo button is enabled for the current event set, allowing the user to revert any mistaken

merges.

6) Re-order Plot Labels In many cases, the exact ordering of the actor labels on the left-hand side
of the plot will greatly affect the clarity of the timeline obtained. As a result, clicking on the Settings
button above the timeline shown in Figure [6.10| opens the Timeline Settings window, allowing the
user to specify the desired label ordering and subsequently click the Update Timeline button beneath
the timeline to realise this change, visible in Figure[6.14]

7) Automatically Ordering Labels Despite it not always being immediately obvious how to order
the actor labels in the resulting timeline for the best layout, we currently employ the relatively effec-
tive heuristic of initially ordering actor labels based upon first-appearance text order. This typically
tends to group characters that interact with one another well by positioning actors with any other

actors mentioned nearby, however the performance of this approach does degrade with larger texts.

8) Plot Re-scaling We additionally provide the means to zoom in and out of the timeline indepen-
dently of the rest of the UI, using the two zoom buttons positioned above the timeline plot.

111

6. THE APPLICATION 6.4. FRONT-END

Between The Lines ACTORS MENTIONED

Goldilooks (3)
- Baby bear (2)
The Insight Lab s
my (2)
Explore, edit, and understand your story. Papa bear (2)
the bedroom (2)
§ the first chair (2)

the forest (2)

Timeline i)

the three bears (2)

three bowls of porridge (2)
my porridge (1)

they (1)

Q | @ | @Settings

Event Detail
varne [e conne -

Curvent level: 21

Event Text
[# [pontion | Acoremenioad |

1 | Once upon a time, there was a little girl named Goldilocks Goldilocks
2 Shewent for awalk in the forest. Preny soon, she came upon a house. She knocked and, when no one answered, she walked right in. At the table in the kitchen, there Goldilocks; the forest: three
were three bowls of porridge. Goldilocks was hungry. bowls of porridge

2 Shetasted the porridge from the first bowl. “This porridge is too hot!” she exclaimed. So, she tasted the porridge from the second bowl. “This parridge istoo cold"she three bowls of porridge:
said. So, she tasted the last bow| of parridge. *Ahhh, this porridge is just right,” she said happily and she ate it all up. Goldilocks

4 | After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs. Goldilocks

5 | Goldilocks satin the first chair to rest her feet. “This chair is too big!” she exclaimed. So she sat in the second chair. “This chairis too big, tool” she whined. So shetried | Goldilocks: the first chair
the last and smallest chair. ‘Ahhh, this chair is just right. she sighed. But just as she settled down into the chair to rest, it broke into pieces!

6 Goldilocks was very tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was the bedroom; Goidilocks;
100 soft. Then she lay down in the third bed and it was just right. the third bed

7 Goidilocks fell asleep. As she was sleeping, the three bears came home. Goldilocks; the three bears

B "Someones been eating my porridge. growied the Papa bear, “Someone’s been eating my porridge.” said the Mama bear. “Someone’s been eating my porridge and they my parmidge: Papa bear: my:

ate it all up!” cried Baby bear. Mama bear; Baby bear
9 “Someone’s been sitting in my chair” growled the Papa bear. ‘Someone’s been sitting in my chair’ said the Mama bear. “Someone's been sitting in my chair and they've Papa bear: the first chair;
broken it all to pieces;” cried Baby bear. They decided to look around some more and when they got upstairs to the bedroom, Papa bear growled, “Someone's been my: Mama bear: Baby bear;
sleeping in my bed". "Someone’s been sleeping in my bed, too® said the Mama bear. *Someone's been sleeping in my bed and she's still there!” exclaimed Baby bear. they, the bedroom; the third
bed

Just then, Goldilocks woke up and saw the three bears. She screamed, "Help!", and she jumped up and ran out of the room. Geldilocks ran down the stairs, opened the Goldilocks; the three bears;
‘door, and ran away into the forest. the forest

Figure 6.10: Full page overview showing the timeline view, event detail selection panel which hosts
short-cut buttons to our four default levels of event granularity along with a manual slider to more
precise granularity control, the event text table, and the actor side panel on the right-hand side of
the screen displaying all the actors mentioned.

112

"apout 23421 JULIAUD 19} W) uo Juryoro Ardwrs
£Q 9310w 0] UASOYD SBY Jasn Yy} Jey) SIUAAL oY) aJe pal doap & ul paIy3IYSIY SIUAAd Snon3nuod om) 9y, "UaaIds snotaaid ayy 01 uostredwod ur SJUIAH 9SIIA,
:1%9) 9y} SUIUIRIUOD MOU ‘U0IINg 9FIdW Y} JO 18IS Pagueyd Y} SIYIIYSIY MOLIe U], "dpout 23421 PAIAUR SulAry 2849ul 0} SJUAAQ U3 Jurkjroadg :11°9 a3y

6.4. FRONT-END

THE APPLICATION

6.

158104 343
's183q 33y} 34} 'S%00]1p|0D

Paq pay1 3y} ‘wooipag

ayy hau Lieyd 1siy

auy) Leaq Ageg leaq ewepy
‘Aw leaq eded ‘abpusod Aw

sieaq
39141 34} ‘paq pa 3y
'$420]1p|0g ‘Wooipaq By}

1140 151y 34} S%00(1p|0D
S¥00[IpI0D

S}20IP09
‘abppuod jo symoq sauyy

abpuuod jo symoq
23143 183104 3y} '20[IP|0D

PBUORUBLW SI0}OY

(1) fo

(1) 1eaq edeg

(1) @bpuiod Aw

(1) Aw

(1) reaq ewep

(1) seaq Aqeg

(2) @Bpjuiod o sjmoq aaiy
(2) s1eaq saug oy

"15310) 31 Ol ABME UBJ PUE JOOP 3y} pauado 'SJIEIS 3Y) UMOP LB S¥00[IP|09 W00 ay) Jo 1N uel pue dn padwnl ays pue ‘ jdjaH, ‘Paweaids ays 's1eaq 3a.y) 34} MeS pue dn a%Oom SHO0|Ip|o9 ‘Ualyl 1SNy

eaq Aqeg pawie|oxa jaiayl ||ns 5,24s pue paq Aw ul Buidaals

U3aq §3U0aLWIOS, 'Jeaq BWEl 3y} pies 001 'paq Aw u) Buidas|s uasqg saucawos, *,paq Aw u Buidas|s usaq s aucawog, ‘pamoll Jeaq eded ‘Wooipaq ayl 0} sJeisdn 106 A3yl UsUM puB 310W 3WOS PUNCIE ¥O0|
01 papioap Ay Jeaq Aqeg pauo /saoaid o] [|e 1 usyoiq aakauyy pue Jieyo Aw u) Bunys uaaq s,aucsWos, Jeaq eLuepy Byl pies Jieyo Aw ul Bunus uaaq s;sucawos, Jeaq eded ayl pajmolb Jieyo Aw ul Bunus usaq
53ucawWos, Jeaq Ageg pauo idn ||e 1 81e Lay) pue abpuiod Aw Bunes usaq sguoBWOS, UBaqg BWE 3y pies ‘sBpuucd Aw Bunes usaq sauocawos, Jeaq eded ay) pajmolb ‘aBpuiod Aw Bunea usaq saucawos,

"8WOY awes sieaq aaiyl ayy ‘buidaals sem ays sy "des|se |3} $300]1p|09 Wbl 1sn] sem 1| pue paq
PAIY1BY3 Ul umop Ae| BYS UBY] JJOS 0O) SBM)1 INQ ‘PAY PUCDBS AL Ul AB| BYS UBY | "pJeY 00) SeM 11 INq ‘paq 1SJ1 3y} ul umop Ke| ays "Wooipag ay) o} sieisdn Juam ays os ‘awn s1yl Aq paul K1aa sem $300]1p|o9

isa091d OJUI 801q 11 1531 01 JIBYD AU} CLUI UMOP Pa[IIas ays se Isnl Ing "paybis ays WBL 1snl st ey
SI4'Yyyy, JIBy IS3||BwWS pue 1Se| 3y} palil ays 0S "PauIym ays ,joo) ‘i 00} SI YD SIY], JIBYO PUODAS 3Y) UL IES AYS OS "PaLlIe|oxa ays i 00} S1UIBY SIY |, "132) 134 1531 01JIBYD 1S.1J BU] U1 1BS S3O0|Ip|oD

"SIIBUYD 3341 MES BUS 2IaUm Woo BUIAI| 341 01Ul PaX[EM 34S ‘05 "Palll (| & Bull3a) SeM aYS PapIoap S SISepBa/q 51834 2a1Y) Byl US1Ba PeY JYs JayY

“dn |fe 3 31e ays pue Ajiddey pies ays JyBy 1enf s abpyiod &iu ‘yyyy, abpiuod
10 |MOq 18] BY) PeIse} SUS 'OF "PIEs ysS /pjod 0o} s 8Bpiiod sjyL, “moq pucdss ay) woy sBpiiod sys Peise) ays ‘oS "PaLIE[aXs ByS ,jjoy 00} 51 aBpiod s1yL, “Moq 181) woy sBpuod sy} peise) sus

“AiBuny sem sxoo|ipjog ebpluocd Jo spmoq aaiy) slem a1By ‘Usyouy

3 uy 2jqe) 3yl 3y Ul WG padj[Em 3YS ‘PAISMSUE SUO OU USYM 'PUE P3O0LD| 3YS "asnoy & uodn SLIes ays ‘uoos Aljald "1Sai0) 3y} U j[eM B 10} JUaM ayS "S300JIp|o9 patueu b a[y| e sem aiay} ‘awn e uodn asug

_,
1X3| 1USAJ

101d MajAIRAQ S3epdn

¥Z J[2A3] juaLny

(2) poq pa 8y
(2) 152103 8
(2) 41eyo 351y 21
(z) wooupaq sy
(9) sx00iIpI0D

G3INOILNIN SHOLOV

3s/e0 [enuepy aul4

[EIETRUEYE

auld enx3

N\

afniund Lm

113

6. THE APPLICATION

6.4. FRONT-END

© What do | do here?

involved in, or delete the actor altogether.

6 "Someone's been sitting in my chair,” growled the Papa bear.

growled, "Someone's been sleeping in my bed".

This is where you can rename the current actor, split the actor into multiple names, view all the events that the current actor is

NOTE: If renaming the actor o consist of multiple names, please ensure names are separated by a' ;' ([+ [TEa)-
Edit name:
Papa bear
Mentions:
Event
Sentence Mentions
6 "Someone's been eating my porridge,” growled the Papa bear. my porridge; Papa

6 They decided to lock around some more and when they got upstairs to the bedroom, Papa bear

bear; my

Papa bear; the first
chair; my

the bedroom; Papa
bear; my; they

Figure 6.12: The Edit Actor modal. The “edit name” input at the top allows the user to rename

an actor to one or multiple new names. Beneath this, we see all the sentences that this character is

currently mentioned in, along with the event number of these sentences. Additionally, at the top of

the panel we see the current character’s name and, in brackets, the number of events that mention

the current actor at the current level of granularity.

© What do | do here?

NOTE: Actor tags must be separated by a' ; ' () + TEEY)-

Finally, click 'Save changes® when you're done.

Event Overview

Event Text

she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily
and she ate it all up.

Sentences View @

She tasted the porridge from the first bowl.

"This porridge is too hot!" she exclaimed.

So, she tasted the porridge from the second bowl,
"This porridge is too cold," she said.

So, she tasted the last bowl of porridge.

"Ahhh, this porridge is just right,' she said happily and she ate it all up.

She tasted the porridge from the first bowl. "This porridge is too hot!" she exclaimed. So,
she tasted the porridge from the second bowl. "This porridge is too cold,’ she said. So,

Event Text

See the text and actors tagged in the current event, and the sentence-by-sentence breakdown of this event.
Click in the Sentences View table to edit any event text, and to add or remove tagged actors from a sentence.

Actors Mentioned

three bowls of porridge; Goldilocks

Actors Mentioned

three bowls of porridge; Goldilocks
three bowls of porridge; Goldilocks
three bowls of porridge; Goldilocks

three bowls of porridge; Goldilocks

Goldilocks

three bowls of porridge; Goldilocks

Figure 6.13: The Edit Event modal, allowing the edit of an event’s details. In this window we see

each of the individual sentences that comprise the current event, where the user can then edit any of

the text or mentions of each of these individual sentences.

114

6. THE APPLICATION 6.4. FRONT-END

Timeline Settings

© What do | do here?

Drag and drop the names below to re-order how they'll be displayed when you
next update the timeline, and click 'Save changes' when you're done.

Actor labels
Goldilocks

the three bears

Papa bear
Mama bear
Baby bear
L § d|

Figure 6.14: The Timeline Settings modal. This panel allows the user to drag and drop character
names to re-order them. The ordering expressed here is that reflected by the resulting timeline.

115

6. THE APPLICATION 6.4. FRONT-END

Input Page

(!)

home.js loading.js preprocessing.js

Insights Page

W

insightsControllerjs dataManagerjs

M
> .

¥ W ¥

ovenviewPlotController.js tableController.js sidePanelControllerjs

Figure 6.15: High level script architecture of each page of the front-end application.

6.4.4 System Architecture

The front-end has been designed largely following the Model-View-Controller paradigm, yielding a
nice separation of concerns between the different components in the system. Figure [6.15]illustrates
the high level script structure of the two pages, with arrows reflecting the communication channels
between components. Once the insights page is displayed, all further interaction and processing is
performed on the client-side, possible due to the relatively simple nature of the computation that
takes place in the front-end following the processing done by the back-end. This means that the
application actually requires relatively little bandwidth, as once the JSON data has been retrieved
from the back-end no further server requests are required to perform any of the actions possible on

the insights page.

The Input Page

The input page is a relatively simple page responsible for taking the user input and directing that to
the back-end for processing. As a result, we have a fairly simple architecture for this page consisting
of three scripts:

e home.js Script responsible for coordinating all the actions on the input page, such as recog-
nising user clicks, adding items to the actor list, and sending the data to the server for pro-

cessing.

e loading.js Script defining the loadingPanelController responsible for displaying a loading
window while the server processes the input data to ensure the user is aware that the system
is still processing, as this can take a while on larger texts. This is triggered by the homeCon-

troller in home.js.

e preprocessing.js This script registers a listener to the input text area, triggering the automatic

character recognition process whenever the user input changes.

116

6. THE APPLICATION 6.4. FRONT-END

The Insights Page

The Insights Page is somewhat more complex, providing a far greater amount of functionality.
Figure [6.15] reflects the hierarchical architecture adopted for this page. Each script encompasses
an object of the same name, exposing only the public methods we wish to expose to the outer en-
vironment. The insightsController acts as a top-level coordination object, and has been
enforced as the only route of communication between the three other controllers, each responsible
for their own particular portion of the page. The dataManager encapsulates our data model, pro-
viding access to the event data. This design was developed to nicely encapsulate the behaviour of
each component of the page within its own object boundaries, avoiding direct interaction between
the different components on the page. This makes it relatively easy to introduce additional compo-
nents to the page, or replace existing ones so long as the new objects adhere to the same API that is

currently exposed.

Under this architecture, it is predominantly the insightsController that interacts with the
dataManager. This ensures that only the insightsController need know about all the
other components on the page, and can keep them in sync with one another whenever there is a
change. An alternative considered was to allow direct communication between each of the con-
trollers and the dataManager itself, and adopt the observer pattern to allow each controller to
register themselves as an observer on the dataManager. As a result, whenever an update was
made to any underlying data, the dat aManager could notify any observers of this change. How-
ever, the downside of such an approach would be that whenever a change is made, all observers
would be immediately notified unless we adopted a more sophisticated approach. For example, re-
naming an actor to one or more new names may lead to a large number of notifications triggering
each component to repeatedly re-draw itself. Under our current approach we can instead first per-
form all data updates, and finally inform the top-level insightsController that a change has
been made that may require the other views to update. The insightsController then triggers

the redrawing process.

6.4.5 Implementation Details

In this section we highlight a few of the key implementation details of the features outlined above.

Automatic Character Recognition

At present, we search for characters of the following form:
e Titled names e.g. Mrs. Dursley, Dr. No
e Animals

e Common names e.g. James, Nicole

Pre-processing names like these typically makes a fairly significant impact on the performance of
the application by improving the results of coreference resolution. This process is triggered by the

oninput HTML event whenever the user changes their current input. This was chosen over listening

117

6. THE APPLICATION 6.4. FRONT-END

for the onchange HTML event as the latter requires the user to take the input text area out of focus
(i.e. by clicking somewhere else) before the processing would be triggered. However, in practice it
is quite common for the user to input their text and hit the start button before allowing the onchange

handler to fire. The oninput event instead fires as soon as there is a change of input.

Searching for animals and common names is performed using a dictionary approach, simply check-
ing for any matches of our expected phrases. Searching for titled names, on the other hand, is

performed through the use of the following regular expression:
/\b(M(r|rsl|s)|Dr)\. (\w|-)+/gi

This searches for all matches of this pattern, ignoring case. We subsequently filter the results to
remove any phrases of the form: Mr. and Mrs. x, to ensure that such characters are not pre-
processed. Joint entities such as this are not gendered, typically co-referred to as they, so we at

present do not perform any replacement of such entities.

Side Panel Ordering

The actor ordering in the side panel is achieved by a three stage process:

1. Score and order mention pairs based upon word similarity.
2. Cluster mentions that are deemed to be similar enough to perhaps be the same entity.

3. Sort the mention clusters both internally and externally in descending order of mention fre-

quency.

Stage 1 calculates a similarity score between every pair of mentionﬂ For our measure of similarity
we take the simple measure of word overlap. That is, we split the first mention into its constituent
words and search for any case-insensitive matches in the second mention. Additionally, at this point
we also ignore any pluralisation or possessives. We then take as the resulting score the number of
word matches relative to the number of words in the shortest mention. Thus, considering the two

example mentions below:

a little gingerbread man

the gingerbread man called over his shoulder, "Run, run, as fast as you can

In this example, we see that there is an overlap of 2 out of the 4 words in the first mention yielding
a score of 0.5. Additionally, we ignore any common phrases that provide little value in determining

mention similarity such as a, the, etc.

The second stage then clusters the mentions based upon similarity, moving two phrases into the
same cluster if they have a similarity score above 0.25, an empirically found threshold that appears

to perform well in practice.

>Note, we're careful to only score every pair once as the order of the pair does not matter in this case.

118

6. THE APPLICATION 6.5. RESOURCE REQUIREMENTS

Subsequently, we then order each cluster based upon the frequency of the mentions within the clus-
ter, and lastly order clusters relative to one another based upon the maximum mention frequency of

any mention within that cluster, yielding our resulting order for the side panel.

This strategy is a relatively quick and simple technique that yields effective results. Other methods
such as employing word vectors and using cosine similarity were also considered, yet yielded similar
or worse results, especially if the consideration of plurals and possessives are not encoded into the

word vector features.

Manual Event Merging and Undo

The dat aManager is responsible for providing access to the underlying event data and performing
any data manipulation, having parsed the initial JSON output produced by the back-end system. As

a result, the dat aManager maintains three pieces of state:

1. baseEvents The list of basic events at the granularity of individual sentences.

2. clusters The list of event clusters at each time step in the hierarchical clustering process, as

shown in the example back-end output file.

3. labels The current actor labels to display in the resulting timeline.

Merging any two events at a particular time step is achieved by merging the two sets of cluster
indices in the clusters list of the dataManager. For example, if event I consists of the cluster
indices [1, 2, 3] and event 2 is represented separately as [4, 5], then following a merge these two
separate lists will instead by represented as the single list: [1, 2, 3, 4, 5], representing the indices of
the baseEvents that are clustered into this single event.

To allow the reverting of any merges, we maintain an undo stack. Thus, before performing a merge
we first push a copy of the current cluster indices to the undo stack. Following this, any subsequent
undo operation on the events at the current time step will replace the current cluster indices with
those that are next popped from the stack. The current implementation may be slightly inefficient
in terms of memory utilisation as we store the entire set of cluster indices following every merge,
however we opted for this simple approach to ensure correctness of the implementation before we

may then look to optimise the application.

6.5 Resource Requirements

Overall, the back-end processing imposes the most significant demand on resources, requiring ap-
proximately 6GB of RAM to execute efficiently. This is split as follows:

e 2GB - Part-of-speech annotation and sentence extraction as part of the Illinois NLP pipeline [[66]].

e 4GB - Stanford coreference resolution [67]].

119

6. THE APPLICATION 6.5. RESOURCE REQUIREMENTS

However, increases in the size of input text can result in increases in coreference memory consump-
tion of up to SGB or 6GB. This is a result of the number of annotations required by the coreference
resolution system prior to execution, first performing POS tagging, dependency parsing and named-
entity recognition. Thus, there is certainly some potential for optimisation here by replacing the
Illinois NLP Pipeline with the Stanford system for our initial POS tagging, if we’re sure we’re not
going to introduce the Illinois SRL analysis. Alternatively, we could also explore translating the
annotations produced by the Illinois system into those utilised by the Stanford system to avoid this

duplication.

Allowing the Java runtime heap to cater to this demand requires the user to explicitly increase the
maximum heap space allocated to the JVM. Thus, for safety we execute the application with a
slightly generous 8GB of possible heap space to allow for even relatively large texts to be processed
in one go. This is specified by passing the runtime option, —~Xmx8g, to the JVM. Scaling the system
to handle full length novels would certainly require some additional tailoring to process the text in

smaller segments.

Thus, we see the rather extensive resource requirements of this application would make this rela-
tively inaccessible to a large number of users, although the number of modern day computers with
8GB or more of RAM is growing. By taking a web-based approach, separating the client from these
high resource requirements, we can reach a wider audience, although server hosting is likely to be

far more expensive so further optimisation would need to be explored.

120

Chapter 7

Results and Evaluation

7.1 Case Studies

In the following sections we present the end-to-end usage of our application over three example
texts to highlight the quality of the initial events produced, the ease-of-use of the application, and
the potential insights to be drawn from the resulting timeline.

7.1.1 Goldilocks and the Three Bears

We begin in Figure [7.1a] by entering our story into the text box and listing the four characters of
interest to us here. This makes a particular difference in this example as Goldilocks is not a typical
female name and without pre-processing each of the three bears, the coreference resolution system
fails to make the distinction between the three of them.

After approximately 1 minute we obtain our results, hence we also incorporated an animated loading
screen to ensure the user is aware that the application is actually processing and isn’t just hanging.
As we can see from Figure the timeline is initially a little messy, containing paths for items
such as the porridge in addition to our characters of interest. The actor side panel highlights the en-
tities identified, revealing Goldilocks to quite clearly make the most frequent appearance throughout
the text. Figure shows the resulting events produced by the application at three distinct levels of
detail. We can see clear distinctions between the events identified in all three cases, yielding what

appear to be a fairly natural set of events.

We take the example events of Figure [7.2c| as our event set to construct our final timeline. By
quickly removing any irrelevant mentions using the quick-delete button next to each mention in the
side panel, we quickly obtain the timeline shown in Figure [7.3a] From this we can immediately see
the interactions between Goldilocks and the three bears, however, with a little intuition and reading
the text it is clear that the three bears is actually a collective reference to each of the three bears in
the text. Making this quick renaming change, we obtain the final result of Figure[7.3b] Additionally,

note that in this example no re-ordering of the actor labels has been necessary to obtain this result.

121

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

This was an extremely quick process on this short example. From the resulting timeline we can
clearly see the paths of each of the characters in the story and where they interact, and I could easily
see such a visualisation as being an extremely useful revision tool, quickly jogging our memory as
to the high-level flow of the story. Perhaps one thing that is missing is some additional semantic in-
formation to succinctly reflect exactly what each event represents to further aid a quick recollection

of the events in the underlying text.

122

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Between The Lines

What's your story?

INPUT TEXT

Tag actor...
Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came
upon a house. She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were Goldilocks Female
three bowls of porridge. Goldilocks was hungry. She tasted the porridge from the first bowl. "This porridge is too hot!"
she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold,’ she said. So, she tasted Papa bear Male
the last bowl of porridge. "Ahhh, this porridge is just right,” she said happily and she ate it all up. After she had eaten
the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she Mama bear Female
saw three chairs. Goldilocks sat in the first chair to rest her feet. "This chair is too big!" she exclaimed. So she sat in

the second chair. "This chair is too big, too!” she whined. So she tried the last and smallest chair. "Ahhh, this chair is Baby bear Female
justright,’ she sighed. But just as she settled down into the chair to rest, it broke into pieces! Goldilocks was very

tired by this time, so she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she

lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just right. Goldilocks fell
asleen_As she was sleeninn the thres hears came home #

Characters found

(a) Our initial input for the Goldilocks case study, manually specifying the expected characters.

Between The Lines ACTORS
MENTIONED

Goldilocks (8)

The Insight Lab g

my(2)
Papa bear (2)
§ the bedroom (2)
. . the first chair (2)
Timeline tonas
thethird bed (2)
Q | @ || fsetings the three bears (2)

Explore, edit, and understand your story.

three bowis of porridge (2)
my porridge (1)
they (1)

(b) The initial results on the insights page for the Goldilocks fairy tale.

Figure 7.1

123

7.

RESULTS AND EVALUATION

7.1. CASE STUDIES

T [R

,

2

Once upon & time, there was a little girl named Goldilocks.
She went for a walk in the forest.

Pretty saon, she came upon a house.

She knocked and, when no one answered, she walked right in
At the table in the kitchen, there were three bowls of porridge.
Goldilocks was hungry.

She tasted the porridge from the first bowl.
tasted the last bowl of porridge

is porridge is too hot!" she exclaimed. S, she tasted the porridge from the second bowl. “This porridge is too cold” she said. So, she

*ARhh, this porridge is just right she said happily and she ate it all up

After she had eaten the three bears’ breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.
Goldilocks sat in the first chair to rest her feet. “This chair is too big!” she exclaimed. So she sat in the second chair. “This chair is too big, too!” she whined
So she tried the last and smallest chair. *Ahhh, this chair is just right;” she sighed. But just as she settled down into the chair to rest, it broke into pieces!
Goldilocks was very tired by this time, so she went upstairs to the bedroom.

She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just right.
Geldilocks fell asleep. As she was sleeping, the three bears came home

“Someone's been eating my porridge; growled the Papa bear. *Someone's been eating my perridge; said the Mama bear. *Someane's been eating my porridge and they ate it all up!® cried
Baby bear.

“Someone's been sitting in my chair” growled the Papa bear. "Someone’s been sitting in my chair,” said the Mama bear. “Someone’s been sitting in my chair and they've broken it all to
pieces, cried Baby bear.

They decided to look around some more and when they got upstairs to the bedroom, Papa bear growled, *Someone's been sleeping in my bed". *Someone’s been sleeping in my bed, too"
said the Mama bear, *Someone's been sleeping in my bed and she's still there!” exclaimed Baby bear.

Just then, Goldilocks woke up and saw the three bears.

She screamed, "Helj

»and she jumped up and ran out of the roem. Goldilocks ran down the stairs, opened the door, and ran away into the forest

()

Geldilocks

Goldilocks; the forest
Goldilocks

Goldilocks

three bowls of parridge
Goldilocks

three bowls of perridge; Goldilocks

three bowls of parridge; Goldilocks
Goldilocks

Goldilocks; the first chair
Goldilocks; the first chair

the bedroom; Goldilocks
Geldilocks; the third bed
Geldilocks; the three bears

my porridge; Papa bear; my; Mama bear;
Baby bear

Papa bear; the first chair; my; Mama bear:
Baby bear, they

the bedroom; Papa bear; my; they; Mama
bear; the third bed; Baby bear

Goldilocks; the three bears

Goldilocks; the forest

L

1

Once upon ati

Goldilocks sat in the first chai
this chairis just right.’ she sighed. But just as she settled down into the chair to rest, it broke into pieces!

Goldilacks was very tired by thi

She tasted the porridge fram the first bowl. “This porridge is too hot!” she exclaimed. So, she tasted the porridge from the second bowil. “This porridge is too cold she said. So, she tasted the last bowl of
porridge. “Ahhh, this porridge is just right. she said happily and she ate it all up

After she had eaten the three bears' breakfasts she decided she was feeling a little tired. So, she walked into the living room where she saw three chairs.

o rest her feet. “This chair is too big!” she exclaimed. So she sat in the second chair.

*Someones been eating my parridge;” growled the Papa bear. “Someone's been eating my porridge, said the Mama bear. "Someone’s been eating my porridge and they ate it all up!” cried Baby bear.
*Someone’s been sitting in my chair” growled the Papa bear. “Someone's been sitting in my chair. said the Mama bear. *Someone's been sitting in my chair and they've broken it all to pieces. cried Baby
bear. They decided to look around some mare and when they got upstairs to the bedroom, Papa bear growled, "Someane's been sleeping in my bed". "Someane's been sleeping in my bed, too said the
Mama bear. “Someone's been sleeping in my bed and she's still there!” exclaimed Baby bear.

Just then, Goldilacks woke up and saw the three bears. She screamed, “Help!", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, and ran away into the forest.

(b)

e, there was a little girl named Goldilacks. She went for @ walk in the forest. Pretty soon, she came upan a house. She knocked and, when no one answered, she walked right in. At the table
in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

is chair is too big, too!” she whined. So she tried the |ast and smallest chair

e, 50 she went upstairs to the bedroom. She lay down in the first bed, but it was too hard. Then she |ay in the second bed, but it was too soft. Then she lay down in the
third bed and it was just right. Goldilocks fell asleep. As she was sleeping, the three bears came home.

Geldilocks; the forest; three
bowls of porridge

three bowls of porridge;
Goldilocks

Goldilocks

“Ahhh,

Goldilocks; the first chair

the bedroom; Goldilocks;
the third bed; the three
bears

my porridge; Papa bear;
my; Mama bear; Baby bear;
the first chair, they: the
bedroom; the third bed

Goldilocks; the three bears;
the forest

I " N

1 Once upon a time, there was a lttle girl named Goldilocks.

2 Shewent for a walk in the forest. Pretty soon, she came upon a house. She knocked and, when no one answered, she walked rightin. At the table in the kitchen, there were three bowis of porridge. Goldilocks was hungry.

‘She tasted the porridge from the first bowl. “This porridge is too hot!* she exclaimed. So, she tasted the porridge from the second bowi. “This porridge is too cold: she said. So, she tasted the last bowl of porridge. ‘Ahbh, this porridge is just right she said happily and she ate
itall up.

4| After she had eaten the three bears' breakfasts she decided she was feeling a lttle tired. So, she walke into the living room where she saw three chairs.

Goldilocks sat in the first chair to rest her feet. “This chair is too big!" she exclaimed. So she sat in the second chair. “This chair is 100 big, too!” she whined. So she tried the last and smallest chai

chair to rest, it broke inta pieces!

Goldilocks was very tired by this time, 5o she went upstairs to tne bedroom.

7 Shelay down in the first bed, but it was too hard. Then she lay in the second bed, but it was too soft. Then she lay down in the third bed and it was just right

Goldilocks fell asleep. As she was sleeping, the three bears came home.

9 "Someone’s been eating my porridge, growled the Papa bear. "Someone's been eating my porridge;” said the Mama bear. “Someone's been eating my porridge and they ate it all up!” cried Baby bear.

“Someone's been sitting in my chair” growled the Papa bear. “Sameone's been sitting in my chair” said the Mama bear. “Someane's been sitting in my chair and theyve broken it all 1o pieces; cried Baby bear

‘They decided to look around some more and when they got upstairs to the bedroom, Papa bear growled, “Someone's been sleeping in my bed". ‘Someone's been sleeping in my bed, too said the Mama bear. “Scmeone’s been sleeping in my bed and she's still therel”

exclaimed Baby bear.

Justthen, Goldilocks woke up and saw the three bears. She screamed, "Help!”, and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, and ran away into the forest

©)

“Ahhh, tnis chair is just right” she sighed. But just as she settled down into the

Goldilacks
Goldilacks

Goldilacks

Goldilacks

Goldilacks

Goldilacks
Goldilacks
Goldilacks; the three bears

Papa bear, Mama bear, Baby
ear

Papa bear, Mama bear, Baby
bear
Papa bear; Mama bear, Baby
bear

Goldilacks; the three bears

Figure 7.2: The events identified at three levels of granularity in the Goldilocks fairy tale. (a) The

event set at the extra-fine level of detail. (b) The event set at the Coarse level of granularity. (c) The

event set we take to create our resulting timeline, found slightly before the automatically identified

fine-grained event set, and yielding a nice balance between the two other event sets.

124

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Goldilocks

the three bears 7__7_7__7__7__7__7_7__;_,_/ — —
Papa bear
Mama bear
Baby bear
No Actors
(@)
Goldilocks

Papa bear

Mama bear

No Actors

(b)

Figure 7.3: The resulting timelines produced after a couple of manual edits. (a) is produced by
simply deleting any irrelevant mentions. (b) is produced by additionally renaming the three bears
appropriately.

125

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

7.1.2 Little Red Riding Hood

For this example we omit the specification of the actors expected in the text to demonstrate the
results without any pre-processing taking place. Additionally, in texts like this where we see charac-
ters referred to by multiple different names, for example in this text we see Little Red Riding Hood
also referred to as the little girl, renaming these characters can adversely affect the ability of the
coreference resolution system to recognise these entities as the same. Thus, Figure shows our

initial input.

We again end up with a rather messy initial timeline, shown in Figure where the actor side
panel reveals that we indeed see multiple distinct mentions that actually refer to the same entity.
This occurs in the case of Little Red Riding Hood and a little girl who lived in a village near the
forest, and also in the case of her Grandma and Poor Grandma. Additionally, we again see a
number of other mentions included in the initial timeline that can be immediately removed by the
user. Despite this, Figure shows that we obtain a relatively nice set of events at both the fine
and coarse levels of granularity, with a clear distinction between disjoint events. The coarse grained

events can be summarised quite nicely as follows:

1. Little Red Riding Hood suggests to her mother that she goes visit her Grandma.
2. Her mum helped her pack-up and sent her off to Grandma’s with a warning.
3. Little Red Riding Hood soon forgets her promise to her mother.

4. The wolf finds out Little Red Riding Hood is on her way to her Grandma’s and rushes to get
there first.

5. Poor Grandma is eaten by the wolf.
6. Little Red Riding Hood arrives at her Grandma’s house.
7. Little Red Riding Hood begins to notice something odd about her Grandma.

8. Little Red Riding Hood realises that she’s actually talking to the wolf, and runs out of the

cottage.

9. The woodsman saves Little Red Riding Hood and her Grandma from the wolf.

This example presents a real test to the underlying coreference resolution system with no named
characters and instead a large number of nominal mentions. As a result, we see the results of clus-
tering are affected slightly, drawing event boundaries perhaps in slightly different places to a reader
naturally would, as we explore in more detail shortly in our evaluation of the clustering performance.
However, a natural artefact of increasing the coarseness of the events used is that it reduces the effect
of any missed coreferences; despite some sentences missing some mention annotations, the events
as a whole tend to include all the correct mentions. As a result, relatively little manual adjustment
of the mention annotations of each event is required in order to construct an accurate timeline from

a set of coarse-grained events. We thus take the coarse-grained event set to produce our timeline.

126

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Renaming the distinct mentions of Little Red Riding Hood as a single entity and doing the same for
the two distinct mentions of her Grandma, we immediately get the timeline of Figure How-
ever, this example also shows the significance of label ordering in the resulting timeline, where by
moving the label of the woodsman to the bottom of the timeline we obtain a far clearer result, shown
in Figure This timeline again quite clearly shows the role played by each of the characters
in the text, and serves as a quick reminder of the overall plot. For example, we see the mum’s
relatively insignificant role at the beginning of the story where she sends Red Riding Hood off to
her Grandma’s, and we can additionally see that the woodsman plays a short role at the end of the
story in two events that clearly involve all four of Red Riding Hood, Grandma, the Wolf, and the

woodsman.

Additionally, in this slightly more complex example we can also see the investigative capabilities
of our interactive timeline. By highlighting the path of Little Red Riding Hood only, as we do in
Figure our attention is immediately drawn to the one event she is not involved in. Looking into
this event in more detail we find that this is exactly the point at which the wolf eats her Grandma.
Thus, not only does this serve as a particularly useful revision tool for recollecting the series of
events in the text at a particular level of detail, but we can also see the potential that interactive ex-
ploration of such a representation may have in the context of witness statements or other analytical

contexts.

127

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Between The Lines

What's your story?

INPUT TEXT ACTORS e

Tag actor...
Once upon a time, there was a little girl who lived in a village near the forest.
‘Whenever she went out, the little girl wore a red riding cloak, so everyone in the village called her Little Red Riding
Hood.
One morning, Little Red Riding Hood asked her mommy if she could go to visit her Grandma as it had been a while
since they'd seen each other.
"That's a good idea,” her mommy said. So they packed a nice basket for Little Red Riding Hood to take to her
Grandma.
When the basket was ready, the little girl put on her red cloak and kissed her mommy goodbye.
"Remember, go straight to Grandma's house," her mommy cautioned.
"Don't dawdle along the way and please den't talk to strangers! The woods are dangerous.”

Characters found

(a) Our initial input for the Little Red Riding Hood case study.

Between The Lines ACTORS
MENTIONED

Little Red Riding Hood

The Insight Lab R—

breath from running, (9)

Explore, edit, and understand your story. her Grandma (7)

§ a little girl who lived ina
village near the forest
@

Ti m e I i n e ?I\;illagenearthefurest

her mommy (3)
the door (3)

the forest (3)

a nice basket (2)

Q @ #Settings

a village near the forest the bed (2)
The woods (2)

this kind woodsman (2)

my (1)

Poor Grandma (1)
they (1)

you (1)

You (1)

a little girl who lived in a village near the forest

(b) The initial results on the insights page for the Little Red Riding Hood fairy tale.

Figure 7.4

128

7. RESULTS AND EVALUATION

7.1. CASE STUDIES

o N

1

=

Once upon a time, there was a little girl who lived in a village near the forest. Whenever she went out, the little girl wore a red riding cloak, so everyone in the village
called her Little Red Riding Hood. One morning, Little Red Riding Hood asked her mammy if she could go to visit her Grandma as it had been a while since they'd seen
each other. “That's a good idea," her mommy said. So they packed a nice basket for Little Red Riding Hood ta take to her Grandma.

When the basket was ready, the little girl put on her red cloak and kissed her mommy goodbye. “Remember, go straight to Grandma's house,” her mommy cautioned.
‘Don't dawdle along the way and please don't talk to strangers! The woods are dangerous.

‘Dont worry, mommy, said Little Red Riding Hood, “I'll be careful * But when Little Red

ng Hood noticed some lovely flawers in the woods, she forgot her promise to

her mommy. She picked a few, watched the butterflies flit about for a while, listened to the frogs croaking and then picked a few more.

Little Red Riding Hood was enjoying the warm summer day so much, that she didn't natice 2 dark shadow approaching out of the forest behind her. Suddenly, the wolf
appeared beside her. "What are you doing out here, little girl?” the wolf asked in a voice as friendly as he could muster.

“I'm on my way to see my Grandma who lives through the forest, near the brook,’ Little Red Riding Hood replied. Then she realized how |ate she was and quickly
excused herself, rushing down the path to her Grandma's house.

The wolf, in the meantime, took a shortcut. The wolf, a little out of breath from running, arrived at Grandma's and knocked lightly at the door. *Oh thank goodness dear!
Come in, come in! | was worried sick that something had happened to you in the forest,” said Grandma thinking that the knock was her granddaughter. The wolf let

himself in.

Poor Grandma did not have time to say another word, befare the wolf gobbled her up! The wolf let out a satisfied burp, and then poked through Grandma's wardrobe to
find a nightgown that he liked. He added a frilly sleeping cap, and for good measure, dabbed some of Grandma's perfume behind his pointy ears.

A few minutes later, Red Riding Hood knocked on the door.

The wolf jumped into bed and pulled the covers over his nose. "Who is it?” he called in a cackly voice. “It's me, Little Red Riding Hood.” "Oh how lovely! Do come in, my

dear,’ croaked the wolf.

‘When Little Red Riding Hood entered the little cottage, she could scarcely recognize her Grandma. “Grandma! Your voice sounds so odd. Is something the matter?” she

asked. "Oh, | just have touch of a cold,” squeaked the wolf adding a cough at the end to prove the peint. “But Grandma! What big ears you have,’ said Little Red Riding

Hood as she edged closer to the bed.

“The better to hear you with, my dear,” replied the wolf. “But Grandma! What big eyes you have,” said Little Red Riding Hood. “The better to see you with, my dear,” replied

the wolf.

“But Grandma! What big teeth you have," said Little Red Riding Hood her vaice quivering slightly. “The better to eat you with, my dear,’ roared the wolf and he leapt out
of the bed and began to chase the little girl. Almost too late, Little Red Riding Hood realized that the person in the bed was not her Grandma, but a hungry wolf. She ran
across the room and through the door, shouting, “Help! Wolft® as loudly as she could. A woodsman who was chopping legs nearby heard her cry and ran towards the

cottage as fast as he could.

He grabbed the wolf and made him spit out the peor Grandma wha was a bit frazzled by the whole experience, but still in one piece,

‘Ch Grandma, | was so scared!” sobbed Little Red

g Hood, "Il never speak to strangers or dawdle in the forest again “There, there, child. You've learned an

important lesson. Thank goodness you shouted loud encugh for this kind woodsman to hear you!” The weodsman knocked out the wolf and carried him deep into the
forest where he wouldn't bother people any longer. Little Red Riding Hood and her Grandma had a nice lunch and a long chat.

a village near the forest; a little girl who lived in a
village near the forest; her mommy; Little Red
Riding Hood as she; her Grandma; they; a nice
basket

a nice basket; a little girl who lived in a village near
the forest; her mommy; her Grandma; The woods

Little Red Riding Hood as she; her mommy; The
woods

Little Red Riding Hood as she; the forest; The wolf
, a little out of breath from running ,

The wolf , a little out of breath from running ,; Little
Red Riding Hood as she; the forest; her Grandma

The wolf , a little out of breath from running ,; the
door; her Grandma; Little Red Riding Hood as she;
the forest

The wolf , a little out of breath from running ,; Paor
Grandma; her Grandma

the door; Little Red Riding Hood as she

The wolf , a little out of breath from running ; Little
Red Riding Hood as she

Little Red Riding Hood as she; her Grandma; the
bed

The wolf , a little out of breath from running ,; my;
you; Little Red Riding Hood as she

Little Red Riding Hood as she; The wolf , a little
out of breath from running ,; the bed; a little girl
who lived in a village near the forest; the door; this
kind woodsman

The wolf , a little out of breath from running ,
Little Red Riding Hood as she; this kind

woadsman; The wolf , @ little aut of breath from
running ; You; her Grandma

(a) The automatically identified set of fine-grained events for Little Red Riding Hood.

Event text

Once upon a time, there was a little girl who lived in a village near the forest. Whenever she went out, the little girl wore a red riding cloak, so everyone in the village called her Little Red Riding Hood. One
morning, Little Red Riding Hood asked her mommy if she could go to visit her Grandma as it had been a while since they'd seen each other. “That's a good idea,’ her mommy said. So they packed a nice

basket for Little Red Riding Hood to take to her Grandma.

When the basket was ready, the little girl put on her red cloak and kissed her mommy goodbye. “Remember, go straight to Grandma's house,’ her mommy cautioned. *Don't dawdle along the way and please

don't talk to strangers! The woods are dangerous.”

Donit werry, mommy,” said Little Red Riding Hood, Il be careful But when Little Red Riding Hood noticed some lovely flowers in the woods, she forgot her promise ta her mommy. She picked a few,

watched the butterflies flit about for a while, listened to the frogs croaking and then picked a few more.

Little Red Riding Hoed was enjoying the warm summer day so much, that she didn't notice a dark shadow approaching out of the forest behind her. Suddenly, the wolf appeared beside her. "What are you
doing out here, little girl?" the wolf asked in @ voice as friendly as he could muster. “I'm on my way to see my Grandma who lives through the forest, near the brook,’ Little Red Riding Hood replied. Then she
realized how late she was and quickly excused herself, rushing down the path to her Grandma's house. The waolf, in the meantime, took a shortcut. The wolf, a little out of breath from running, arrived at
Grandma's and knacked lightly at the door. “Oh thank goodness dear! Come in, come inl | was warried sick that something had happened to you in the forest” said Grandma thinking that the knock was her

granddaughter. The wolf let himself in.

Poor Grandma did not have time to say another word, before the wolf gobbled her up! The wolf let out a satisfied burp, and then poked through Grandma's wardrobe to find a nightgown that he li

added a frilly sleeping cap, and for good measure, dabbed some of Grandma's perfume behind his pointy ears.

A few minutes later, Red Riding Hood knocked on the door. The wolf jumped into bed and pulled the covers over his nose. "Whao is it?” he called in a cackly voice. “It's me, Little Red Riding Hood." “Oh how

lovely! Do come in, my dear,” croaked the wolf.

When Little Red Riding Hood entered the little cottage, she could scarcely recognize her Grandma. ‘Grandmal Your voice sounds so odd. |s something the matter?” she asked. "Oh, | just have touch of a
cold squeaked the wolf adding a cough at the end to prove the point. “But Grandmal What big ears you have. said Little Red Riding Hood as she edged closer o the bed. “The better to hear you with, my

dear; replied the wolf. *But Grandma! What big eyes you have, said Little Red Riding Hood. “The better to see you with, my dear replied the wolf

*But Grandma! What big teeth you have! said Little Red Riding Hood her voice quivering slightly. “The better to eat you with, my dear; roared the wolf and he leapt out of the bed and began to chase the little
girl. Almost too late, Little Red Riding Hood realized that the person in the bed was not her Grandma, but a hungry walf. She ran across the room and thraugh the door, shouting, “Help! Wolft* as loudly as

she could. A woedsman who was chopping logs nearby heard her cry and ran towards the cottage as fast as he could.

He grabbed the wolf and made him spit out the poor Grandma who was a bit frazzled by the whole experience, but still in one piece. “Oh Grandma, | was so scared!” sobbed Little Red Riding Hood, Il never
speak to strangers or dawdle in the forest again.” “There, there, child. You've learned an important lesson. Thank goodness you shouted loud enough for this kind woodsman to hear you!” The woodsman
knocked out the walf and carried him deep into the forest where he wouldn't bother people any longer. Little Red Riding Hood and her Grandma had a nice lunch and a long chat.

Actors
mentioned

Little Red
Riding Hood;
her mommy;
Grandma

Little Red
Riding Hood;
her mommy;
Grandma

Little Red
Riding Hood;
her mommy

Little Red
Riding Hood;
The wolf;
Grandma

Grandma;
The wolf

Little Red
Riding Hood;
The wolf

Grandma;
Little Red
Riding Hood;
The wolf

Little Red
Riding Hood;
The wolf; this
kind
woodsman

The wolf;
Little Red
Riding Hood;
this kind
woodsman;
Grandma

(b) The automatically identified set of coarse-grained events for Little Red Riding Hood.

Figure 7.5

129

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

her mommy

this kind woogdsman

No Actors

(a) The initial timeline produced having removed any irrelevant mentions from the actor side panel and having
renamed the duplicate mentions of Little Red Riding Hood and Grandma.

her mommy

Little Red Riding Mp
Grandma
The wolf
this kind woodsman

Mo Actors

(b) The timeline produced after re-ordering the actor labels in (a).

Figure 7.6

130

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

her mommy

Little Red Riding Hood

Grandma
The wolf
this kind woodsman

No Actors

Figure 7.7: The resulting timeline having chosen to see only the path of Little Red Riding Hood

through the story, highlighting the investigative capabilities of the interactive timeline. Event 5 in
this case being the point where the wolf eats Grandma.

131

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

7.1.3 Harry Potter and the Philosopher’s Stone

Finally, we take a short extract from the first chapter of Harry Potter and the Philosopher’s Stone [68]].
This is used to explore how well our approach generalises to other narratives beyond fairy tales. Pre-
processing is particularly important in this case to help with recognising coreferences to characters
of the form Mr. x and Mrs. x. Our automatic character recognition stage also proves helpful in this

example, immediately recognising a number of characters from the text on our behalf, as shown in

Figure

Having selected all of these characters to tag explicitly, we obtain the initial results shown in
Figure This again shows a number of non-actor mentions present in the actor side panel

that can quickly be removed. We also see there are a number of related mentions listed:

o Mr. and Mrs. Dursley
e The Dursleys

e Mr. Dursley

o Mrs. Dursley

e Dudley

It is understandable that the coreference resolution system has left these as distinct entities, however
for our timeline we’d like these mentions to reflect the individual actors they encompass rather than
leaving them as distinct entities. A quick edit via the edit-actor panel allows us to quickly rename
“Mr. and Mrs. Dursley” to its constituent entities: “Mr. Dursley” and “Mrs. Dursley” in 2 clicks:
selecting the mention to rename in the side-panel, typing the new names, and clicking Save. Thus,

we can soon update these mentions to reflect only the actors of interest to us.

Figures [7.9 and [7.10] show the resulting event sets at the extra-fine and coarse levels of detail. We
see that both of these event sets are nicely grouped based upon the topic of discussion in each event.
This result highlights the use of repetitive language even in more sophisticated novels, allowing our
clustering algorithm to identify natural boundaries between distinct events. However, it does appear
that the coarse set of events are perhaps a little bloated, and we may have perhaps liked all the sen-
tences regarding the cat to have been grouped, yet despite this we still obtain a fairly good set of
events. Event 5’s lack of relationship to its surrounding sentences causes it to act as a barrier here,
and leaves this event distinct. A facet of our clustering approach that could perhaps be improved.

Finally, generating the timeline for the extra-fine grained set of events identified yields the result
shown in Figure While this may appear a little tangled due to the effect of having more
characters involved during a short period of time, we can still quite clearly see at which points each
character is introduced to the story. Additionally, it is quite clear that the text concludes with a
number of events focussing on Mr. Dursley, and his interaction with a cat. Highlighting the main
characters here, as shown in Figure again helps us to focus on the main protagonists of the
plot and perhaps identify further points of interest.

132

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Between The Lines

What's your story?

ACTORS o

Tag actor...

It was on the corner of the street that he noticed the first sign of something peculiar - a cat reading a map.
There was a tabby cat standing on the cerner of Privet Drive, but there wasn't a map in sight.

What could he have been thinking of? It must have been a trick of the light.

Mr. Dursley blinked and stared at the cat.

It stared back.

It was now reading the sign that said Privet Drive — no, looking at the sign; cats couldn't read maps or signs.
Mr. Dursley gave himself a little shake and put the cat out of his mind.

As he drove toward town he thought of nothing except a large order of drills he was hoping to get that day|)

Characters found

(a) Our initial input and the automatically identified characters in our brief extract from
Harry Potter and the Philosopher’s Stone.

Between The Lines ACTORS
MENTIONED

Mr. Dursley (4)

T h I H ht L b Mrs. Dursley (3)
e n S I g a Mr. and Mrs. Dursley, of
number four , Privet
Explore, edit, and understand your story. Drive, (1)
§ Mrs. Potter (1)
cat (2)
Dudiey (2)

Timeline enegol)

asmall son (1)

& @ | #settings

it(1)

owl (1)

The Dursleys (1)
Mr. m , of number four , Privet Drive , the Potters (1)

their (1)

Mr. Dursley
the nei
Mrs. Dul

Dudley

(b) The initial results on the insights page for the Harry Potter text.

Figure 7.8

133

7. RESULTS AND EVALUATION

7.1. CASE STUDIES

Actors

mentioned

Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank you very much. They
were the last people you'd expect to be involved in anything strange or mysterious, because they just didn't hold with such
nonsense.

Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy man with hardly any neck,
although he did have a very large mustache.

Mrs. Dursley was thin and blonde and had nearly twice the usual amount of neck, which came in very useful as she spent so
much of her time craning over garden fences, spying on the neighbors.

The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere. The Dursleys had everything
they wanted, but they also had a secret, and their greatest fear was that somebody would discover it. They didn't think they
could bear it if anyone found out about the Potters.

Mrs. Potter was Mrs. Dursley's sister, but they hadn't met for several years; in fact, Mrs. Dursley pretended she didn't have a
sister, because her sister and her good-for-nothing husband were as unDursleyish as it was possible to be.

The Dursleys shuddered to think what the neighbors would say if the Potters arrived in the street. The Dursleys knew that the
Potters had a small son, too, but they had never even seen him. This boy was another good reason for keeping the Potters
away; they didn't want Dudley mixing with a child like that.

When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday our story starts, there was nothing about the cloudy sky outside
to suggest that strange and mysterious things would soon be happening all over the country.

Mr. Dursley hummed as he picked out his most boring tie for work, and Mrs. Dursley gossiped away happily as she wrestled a
screaming Dudley into his high chair. None of them noticed a large, tawny owl flutter past the window. At half past eight, Mr.
Dursley picked up his briefcase, pecked Mrs. Dursley on the cheek, and tried to kiss Dudley good-bye but missed, because
Dudley was now having a tantrum and throwing his cereal at the walls.

"Little tyke," chortled Mr. Dursley as he left the house. He got into his car and backed out of number four's drive. It was on the
corner of the street that he noticed the first sign of something peculiar — a cat reading a map. For a second, Mr. Dursley didn't
realize what he had seen - then he jerked his head around to look again. There was a tabby cat standing on the corner of Privet
Drive, but there wasn't a map in sight. What could he have been thinking of?

It must have been a trick of the light.

Mr. Dursley blinked and stared at the cat. It stared back. As Mr. Dursley drove around the corner and up the road, he watched
the cat in his mirror. It was now reading the sign that said Privet Drive — no, looking at the sign; cats couldn't read maps or
signs. Mr. Dursley gave himself a little shake and put the cat out of his mind.

As he drove toward town he thought of nothing except a large order of drills he was hoping to get that day.

Mr. and Mrs.
Dursley , of
number four,
Privet Drive ,

Mr. Dursley

the neighbors;
Mrs. Dursley

Dudley; The
Dursleys; their;
it; the Potters

Mrs. Potter;
their; Mrs.
Dursley

The Dursleys;
the neighbors;
the Potters; a
small son;
Dudley

Dudley; Mr.
Dursley; Mrs.
Dursley; owl

Mr. Dursley;
cat

cat; Mr.
Dursley

Mr. Dursley

Figure 7.9: The set of automatically identified events at the extra-fine level of detail on the Harry

Potter text.

134

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Actors
mentioned
1 Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank you very much. They Mr. and Mrs.
were the last people you'd expect to be involved in anything strange or mysterious, because they just didn't hold with such Dursley , of
nonsense. number four
, Privet Drive

2 Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy man with hardly any neck, although Mr. Dursley;
he did have a very large mustache. Mrs. Dursley was thin and blonde and had nearly twice the usual amount of neck, which came the
in very useful as she spent so much of her time craning over garden fences, spying on the neighbors. neighbars;
Mrs. Dursley

3 The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere. The Dursleys had everything they Dudley; The
wanted, but they also had a secret, and their greatest fear was that somebody would discover it. They didn't think they could bear it Dursleys;

if anyone found out about the Potters. Mrs. Potter was Mrs. Dursley's sister, but they hadn't met for several years; in fact, Mrs. their; it; the
Dursley pretended she didn't have a sister, because her sister and her good-for-nothing husband were as unDursleyish as it was Potters; Mrs.
possible to be. The Dursleys shuddered to think what the neighbors would say if the Potters arrived in the street. The Dursleys Potter; Mrs.
knew that the Potters had a small son, too, but they had never even seen him. This boy was another good reason for keeping the Dursley; the
Potters away; they didn't want Dudley mixing with a child like that. When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday neighbors; a
our story starts, there was nothing about the cloudy sky outside to suggest that strange and mysterious things would soon be small son

happening all over the country.

4 Mr. Dursley hummed as he picked out his most boring tie for work, and Mrs. Dursley gossiped away happily as she wrestled a Dudley; Mr.
screaming Dudley into his high chair. None of them noticed a large, tawny ow! flutter past the window. At half past eight, Mr. Dursley;
Dursley picked up his briefcase, pecked Mrs. Dursley on the cheek, and tried to kiss Dudley good-bye but missed, because Dudley Mrs.
was now having a tantrum and throwing his cereal at the walls. "Little tyke" chortled Mr. Dursley as he left the house. He got into Dursley; owl;
his car and backed out of number four’s drive. It was on the corner of the street that he noticed the first sign of something peculiar ~ cat
— a cat reading a map. For a second, Mr. Dursley didn't realize what he had seen — then he jerked his head around to look again.

There was a tabby cat standing on the corner of Privet Drive, but there wasn't a map in sight. What could he have been thinking of?

5 It must have been a trick of the light.
6 Mr. Dursley blinked and stared at the cat. It stared back. As Mr. Dursley drove around the corner and up the road, he watched the cat; Mr.
cat in his mirror. It was now reading the sign that said Privet Drive — no, looking at the sign; cats couldn't read maps or signs. Mr. Dursley

Dursley gave himself a little shake and put the cat out of his mind. As he drove toward town he thought of nothing except a large
order of drills he was hoping to get that day.

Figure 7.10: The set of automatically identified events at the coarse level of detail on the Harry

Potter text.

135

7. RESULTS AND EVALUATION 7.1. CASE STUDIES

Mr. Duriley

the neighbars

Mrs. Duysley

Dudley

the Potters

= ~
y -
Mrs. Potter /
—~
-
-
—~ -
~ -

a small wﬂ/

owl 7__/'//

cat

No Actors

(7) 10]

(a) The timeline produced for the Harry Potter text having removed any non-actor mentions and renamed Mr.
and Mrs. Dursely and The Dursleys to their constituent entities.

Mr. Durey

the neighbors

Mrs. Dufsley

Dudley

the Potters

Mrs. Potter

a small son

No Actors

[0}

(b) Highlighting the paths of Mr. Dursley, Mrs. Dursley, and Dudley through the text.

Figdd%.11

7. RESULTS AND EVALUATION 7.2. EVALUATION OVERVIEW

7.2 Evaluation Overview

While the case studies above provide a useful overview of the application as a whole and demonstrate
the potential of our resulting application, they fail to comprehensively evaluate the performance of
our application. Thus, in the following sections we evaluate each component of our application in-

dividually, and attempt to quantify the performance of the system.

We finally reflect on some the overall strengths and weakness of our application in Section

7.3 Event Clustering Evaluation

7.3.1 Aims

The aim here is to judge the intuitiveness of the events produced using our modified hierarchical
clustering method by comparing our automated results with the events identified by real people.
To perform this evaluation we enlisted the help of a number of volunteers, giving each participant
2 fairy tales and our Harry Potter extract from earlier and asked them to draw a line between the
sentences where they’d identify a change of event. i.e. Breaking down the text into a series of
events, similarly to our event clustering algorithm. Each participant was asked to repeat the process
considering events at a fine level of detail, and then at a more general level of detail if they were
to think about events at a higher level. However, we did not enforce a specific definition of a fine-
grained or coarse-grained event. This is to allow us to judge how well our algorithm could adapt to
different users’ opinions as to what they consider to be the events in a narrative at different levels of
detail.

7.3.2 Evaluation Metrics

To quantify the intuitiveness of the events extracted by our application, we employ the following

metrics, treating the event set identified by the test subjects as our reference set:

e Recall Proportion of sentences grouped in the reference set that are also contained within the

same event in our system-produced results.

e Precision Of the events identified by the system, what proportion of the sentences are correctly

grouped within the same event.

e Rand Index A measure of the similarity between two cluster sets, from 0 (complete dissimi-

larity) to 1 (complete similarity) [69]].

All of these metrics can be computed using the same basic 4 values: true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN), which we summarise in Table [7.1]

below.

137

7. RESULTS AND EVALUATION 7.3. EVENT CLUSTERING EVALUATION

Same system event | Different system event

Same user event TP FN

Different user event FP TN

Table 7.1: Classification of a pair of sentences into one of the four possible categories.

That is, this evaluation is performed at the level of sentence pairs. For example, calculating the
number of true positives is simply a matter of calculating the number of pairs of sentences that are
contained within a single event in our system-produced results and are also present within a single
event in our reference set. The number of false positives is, in contrast, the number of sentence pairs
that appear within a single event in our result set, yet have a boundary between them in the reference
set of events. The other classifications follow similarly.

Having calculated these 4 fundamental values, we can then compute our three metrics as follows:

TP
Recall = ——
TP + FN
.. TP
Precision = ———
TP + FP
TP + T
RandIndex = IV

TP+ FP+ TN + FN
7.3.3 Results and Remarks

Our results are presented in Table where we list the resulting metrics for each sample text indi-
vidually at each level of granularity and additionally average the entire results to get an overall view
of the efficacy of our clustering method. Each value presented is the average result from the refer-
ence events produced by all test participants. Additionally, before calculating the metrics identified
above, we first found the most similar cluster set to the reference set in the cluster hierarchy. Thus,
these results reflect the intuitiveness of the closest possible event set to the user’s set; if the cluster
set produced by our application at some point were to match exactly the set of events identified by

the user, then all scores should reflect a 100% accuracy.

138

7. RESULTS AND EVALUATION 7.3. EVENT CLUSTERING EVALUATION

Recall Precision Rand Index

Goldilocks (fine) 0.45 0.39 0.98
Goldilocks (coarse) 0.75 0.75 0.91
The Gingerbread Man (fine) 0.6 0.47 0.97
The Gingerbread Man (coarse) 0.6 0.56 0.92
Harry Potter (fine) 0.36 0.6 0.85
Harry Potter (coarse) 0.58 0.2 0.919
Average 0.56 0.49 0.92

Table 7.2: Hierarchical Clustering performance results over three example texts.

From the table above we can immediately see the general difference in performance between the
fine-grained events and the coarse-grained events. Our particular examples were all relatively short
texts, and as a result the majority of participants identified fine-grained events at almost the level
of individual sentences, only ever grouping at most two or three sentences into a single event. This
makes the resulting figures very sensitive to the event boundaries as there is little margin for error.
However, the majority of sentences are indeed correctly separated at this level of granularity, which
is what contributes to such high rand index scores at the fine-level of granularity. This is a natural
artefact of our constraint to only consider merges within a pre-defined lookahead radius of each
sentence, significantly reducing the number of possible merges and slightly skewing this metric as
we largely avoid catastrophically different results. Thus, recall and precision better reflect the mis-
matched event boundaries at this level of detail.

At a coarser level of detail we see far better results, largely down to the increased margin of error:
the results are not affected as much if we draw our event boundaries a sentence earlier or later than
the reference set if the majority of sentences are still clustered in the same way as the reference
set. Additionally, unlike at the fine-level of granularity where every single boundary matters, as we
reach a coarser level of granularity our results rely less upon the accuracy of our underlying data
extraction tools. Consequently, the results are not impacted as greatly by the inaccuracies of coref-
erence resolution. Additionally, as the texts increase in size we again see that participants start to
group the text into larger events, revealing that our current implementation obtains a fairly similar

set of events to those expected on the whole.

Again, the subjective nature of this topic must be taken into account as everyone has there own
opinion as to what they’d identify as the events in a text. In our experimentation we obtained peak
values of 0.905 and 0.711 for recall and precision, respectively. Overall, our modified clustering
algorithm appears to yield a fairly natural set of events, achieving a relatively good balance between
recall and precision in the majority of cases and closely emulating the set of events identified by test

subjects.

139

7. RESULTS AND EVALUATION 7.4. TIMELINE VISUALISATION EVALUATION

7.4 Timeline Visualisation Evaluation

74.1 Aims

The idea of this evaluation is to judge the clarity and expressiveness of the resulting timelines them-
selves when the user does not have the corresponding text in front of them. Are the timelines
expressive enough to highlight specific events and jog a user’s memory just from the plot of charac-

ter interactions alone?

This essentially evaluates the potential of these timelines as tools for revision, effectively refreshing
the users’ mind as to the plot of the story illustrated, and as an aid in understanding: seeing from the

timeline alone who’s interacting with who and at what points significant events may have occurred.

7.4.2 Test Set-up

Again, this is a rather subjective matter and as such we make use of a user survey to gather some
qualitative feedback. In the survey we asked users to view the timelines of three texts: Goldilocks

and the Three Bears, Little Red Riding Hood, and our extract from Harry Potter.

In each case, we asked participants to respond to three questions:
o Is the timeline clear? (Asking for a rating from I to 5, 5 being clear.)
e Can you recognise any significant moments from this timeline?

e Does highlighting the paths of particular actors help you recognise any key moments you
didn’t before?

The exact timelines used in the survey are shown in Appendix [C.4}

7.4.3 Results and Remarks
Goldilocks and the Three Bears

The timeline clarity was initially rated poorly, with confusion surrounding:

e What the numbers in each event mean (where at this point the numbers reflected the number

of characters involved in the event rather than the event number)

e What actually happens in each event (Participants understood the purpose of the survey, but

would like a short summary or some other indicator of what happens in each of the events.)

¢ In some cases, the somewhat “unpredictable” results of using a force-directed layout leads
to slightly unnatural results (i.e. The vertical ordering of the edges between events doesn’t

always remain the same, making it a little harder to follow.)

140

7. RESULTS AND EVALUATION 7.4. TIMELINE VISUALISATION EVALUATION

However, having provided a brief explanation of the various aspects of the resulting visualisation
the responses improved significantly, with users now able to more readily make insights from this
timeline representation of the story. Figure[7.12] shows the results of these responses.

Is this timeline clear?

B responses

4 (50%)

2 (25%) 2 (25%)

0 (0%) 0(0%)

1 2 3 4

Figure 7.12: Responses to the clarity of the Goldilocks timeline. Participants rated the clarity from

1 (unclear) to 5 (clear).

In this example, the majority of respondents were indeed able to recognise a number of key events
from this timeline, remembering Goldilocks’ interactions with the porridge, chairs, and beds, and
clearly recognising the ending when the three bears return. However, one particular response sum-

marised the general consensus well:

"Difficult to count exactly what the characters are going through. As I remember there
are three tests of each the porridge, the chairs, the beds, but I can’t count that many
number of events from Goldilocks. I don’t understand what the grouping is based on,
why are the three bears always together if they each realise individually that someone
has touched their stuff? But you CAN see story progression, where Goldilocks discov-
ers the home on her own, the moment the Bears come back and discover things by

themselves, and finally, Goldilocks running away, which involves everyone."

This is a particularly insightful response. Again, it is clear that the respondent can recognise roughly
what is happening in the plot, but the plot fails to highlight:

e What’s happening at each event (Highlight whether the event involves the porridge, chair, or
beds), which would further aid memory recall.

e They perhaps would not have chosen this level of detail initially, instead preferring a finer

level of detail with the reaction of each of the bears maintained as distinct events.

However, the respondent can clearly see the story progression and get a general insight into the story

flow, which is our overall aim here.

141

7. RESULTS AND EVALUATION 7.4. TIMELINE VISUALISATION EVALUATION

Little Red Riding Hood

Figure [7.13] shows the clarity ratings for the timeline of this example. We again see a similar re-
sponse with respect to plot clarity; marks are lost by the lack of any contextual information other
than who’s involved. The introduction of a short text summary over each event or some other mean-
ingful annotation to each event would clearly greatly aid the users "at-a-glance" understanding of
the text.

Is this timeline clear?

8 responses

4 (50%)

2 (25%)

2 (25%)

0 (0%) 0(0%)

1

Figure 7.13: Responses to the clarity of the Little Red Riding Hood timeline. Participants rated the
clarity from 1 (unclear) to 5 (clear).

Despite this, the majority of participants could quite clearly make out the distinct events in this fairy
tale from the character interactions alone. Thus, the visualisation certainly appears to be achieving
this aim. In this example, we also asked respondents whether they felt highlighting the paths of par-
ticular individuals in the timeline benefited the insight obtained. This received a mixed response, but
did reinforce the purpose of this feature. Some subjects felt that highlighting only particular paths
loses some context, however, others could also more clearly see the interactions between the charac-
ters highlighted, spotting divergences and convergences of the paths of these characters through the
story. Thus, providing both the original timeline in addition to the ability to then highlight particular
paths and interact with the plot certainly achieves both of these benefits.

Harry Potter

Lastly, we see a more mixed response to this example, although this was to some extent expected
with the increase in the number of characters in the text making the resulting timeline somewhat
more complex and sacrificing some clarity. The responses here shown in Figure[7.14]

Additionally, our results showed that gaining any real insight from this timeline alone relies upon
some prior knowledge of the Harry Potter story, with most participants failing to recognise any
particular occurrences. Despite this, one participant was able to recall a number of events from this

text from the plot alone, and cited the following benefit of a timeline representation of this text:

“It’s interesting to see how JKR introduces the components progressively and how they

relate.”

142

7. RESULTS AND EVALUATION 7.4. TIMELINE VISUALISATION EVALUATION

Are these timelines clear?

7/ responses

3 (42.9%)

2 (2B.6%) 2 (2B.6%)

Figure 7.14: Responses to the clarity of the Harry Potter timeline. Participants rated the clarity from
1 (unclear) to 5 (clear).

It is thus clear, and perhaps expected under these test conditions, that this timeline representation
is particularly valuable as a revision aid, more so than in obtaining an initial understanding of the

story.

General Feedback

All respondents recognised the potential of such a visualisation in education, both in English Lit-
erature classes and in History classes, particularly if labels were empires or countries rather than
people. In particular, test participants also cited the potential of such a visualisation as a revision aid
and for potentially remembering what happens throughout the course of an entire series of books, in

this case perhaps summarising each chapter as an event to provide a high-level overview of the text.

Scaling to such large texts is something that we are yet to explore, and would likely require op-
timisations of both the text annotation and clustering procedure as well as adapting the resulting

visualisation to better handle a large number of actors.

Thus, it appears that our current timeline representation certainly shows potential, and meets the
objective of clearly highlighting the interactions between characters within a text and providing a
high level view of the overall plot of a narrative text. However, at present the current visualisation
approach is certainly more effective at visualising the series of events in stories with a relatively
small number of characters. Additionally, while a general overview of the story can be obtained, it
is clear that the lack of any specific event information makes it difficult to pinpoint exact occurrences

from the timeline alone.

143

7. RESULTS AND EVALUATION 7.5. WEB APPLICATION EVALUATION

7.5 Web Application Evaluation

7.5.1 Aims

We lastly focus on the usability of our overall application, taking the definition of usability specified
by ISO 9241-11 as the [[70]:

"Extent to which a product can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context of use."

While the results of the clustering process and the final timeline that can be produced themselves
are vitally important to our application, it is also paramount that our target user can actually achieve
these results themselves in order to provide any real value. We thus focus on two aspects that
summarise the definition of usability listed above: the efficiency with which a user can complete the
typical actions required to obtain a final timeline, and the ease-of-use of the application, reflecting

the ease with which the user can obtain these results.

7.5.2 Efficiency

To evaluate the efficiency with which each typical action can be completed, we list in Table[7.3] the

number of clicks required to achieve each action.

In general, the number of clicks required to complete any function is kept minimal, with the last
operation perhaps requiring a slightly excessive number of clicks: a potential opportunity for op-
timisation here by performing the re-drawing operation automatically immediately after updating
the ordering, removing an additional click. We have also already optimised part of the initial actor
tagging process when creating a new timeline by automatically selecting the gender of the actor if it

is of the form: “Mr. x” or “Mrs. x”.

Beyond these improvements, there is little room for further reduction in a large number of cases,
however we shall see in the following evaluation of the ease-of-use whether we have managed to

achieve our goal of providing efficient access to these functions without obscuring the user interface.

7.5.3 Ease of Use

To evaluate the ease-of-use of the application, we employ the System Usability Scale (SUS). This
is a Likert scale that provides a general view of a system’s usability, and has been shown to be
relatively effective at distinguishing between systems that are usable and those that are deemed less-
so [[71].

144

7. RESULTS AND EVALUATION

7.5. WEB APPLICATION EVALUATION

Task Minimum Comments
Clicks
Required
Create an initial timeline 2 At a minimum the user must input their text and
click the “Let’s Go” button. Additionally, the
user may wish to tag any automatically
identified characters which typically requires 3
clicks per actor, or manually enter any names
which again requires 3 clicks per actor. 1 click
to add the new actor, and 2 clicks to select the
gender.
Rename a character 3 Select the actor in the side-panel, change the
name in the input box, and click save.
Tag a missing character in an 3 Select the event to open the “edit-event” panel,
event select the mentions column of the sentence to
update and type the new mention, and click save.
Change the selection of events 1 Simply drag the slider or select one of the event
to a level of detail of your liking presets (extra-fine, fine, coarse, extra-coarse).
Manually group two or more 2 + number Click “Enter merge mode”, select the events to

of events to

group

events

group, and then click on the same button now
labelled “Merge”.

Undo a grouping of events you 1

performed

Once a merge has been complete, the undo

button becomes active next to it.

Delete a character/mention from 1

the timeline

We can simply use the “x” next to the mention in

the side panel to remove a mention completely.

Delete a character mention from 3

a specific event.

This is much the same as adding an actor to a
specific event, but we instead remove this
character mention from the sentences it is

mentioned in within the selected event.

Adjust the label ordering of 4

characters in the timeline

Click the “Settings” button above the timeline,
drag the actors in the ordering desired, and click
“Save”. We must then click the “Update
Timeline” button to re-draw the timeline with

the new changes.

Table 7.3: The number of clicks required to perform the typical actions necessary when constructing

an accurate timeline using the application, with additional comments highlighting the steps involved.

145

7. RESULTS AND EVALUATION 7.5. WEB APPLICATION EVALUATION

For this evaluation we asked a small group of participants to complete the following 7 tasks after an

initial introduction to the application, providing as little guidance as possible.

1.

2.

Create a timeline from a selected text.

Rename a character.

. Tag “Bob” in one of the events.
. Change the current set of events to those at a level of detail of your liking.

. Merge two events into one in the current event set.

Update the timeline to reflect your changes.

Remove a character from the timeline.

Following this, each participant was then asked to respond to the following 10 statements defined

by the SUS, rating each from 1 to 5 (Completely disagree to entirely agree).

1.

2.

9.

10.

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

. I thought the system was easy to use.
. I think that I would need the support of a technical person to be able to use this system.

. I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

. I would imagine that most people would learn to use this system very quickly.

. I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

The scores to each of these statements are then converted and combined to yield an overall ease-of-

use score out of 100. More on the scoring process can be found in [72].

Table[7.4]shows our raw results yielded an average SUS score of 70.5, with individual scores ranging

from 65 to 75. These scores put us slightly “above average”, which is considered as any score above

68, but falling short of the score of 80.3 recognised as exceptional [[72]. One particular aspect

highlighted by the responses received is that there is certainly some degree of learning curve with

the application, which could be reduced either by some re-organisation of the user interface, or the

incorporation of a user-guide to give a more insightful tutorial as to how to use the application to

best achieve the desired results before the user first tries the system themselves. However, with a

little guidance, users were soon able to complete the tasks requested and certainly saw some value

in the application, particularly in the educational context.

146

Lyl

Question Response (1 disagree - 5 agree)
1. I think that I would like to use this system frequently. 4 5 5 3 2
2. I found the system unnecessarily complex. 2 2 2 2 2
3. I thought the system was easy to use. 35 3 4 4 5
4. I think that I would need the support of a technical person to be able to use this system. 1 1 1 2 2
5. I found the various functions in this system were well integrated. 35 4 4 4 5
6. I thought there was too much inconsistency in this system. 2 3 2 1 2
7. I would imagine that most people would learn to use this system very quickly. 4 4 4 3 5
8. I found the system very cumbersome to use. 2 2 2 2 3
9. I felt very confident using the system. 3 3 3 3 3
10. I needed to learn a lot of things before I could get going with this system. 1 5 3 3 3
SUS Score 75 65 75 67.5 70

Table 7.4: Table of SUS responses. The values highlighted reflect the general need for some instruction before being able to fluently use the system, however all

participants suggest that the learning process was relatively straight forward.

NOILVOTVAH ANV SLI'INSHd "L

NOILVOTVAH NOILLVOI'lddV d9M 'S'L

7. RESULTS AND EVALUATION 7.6. EVALUATION SUMMARY

7.6 Evaluation Summary

Overall, the final application received a positive response from potential users and performed well
when compared to the results expected by test participants. The novelty of this application makes
it very difficult to compare with any existing tools, in particular our event identification approach
which treats events in a far more general manner to existing event extraction tools, focussed more
towards the task of information retrieval. In the following sections we highlight the key strengths
and weaknesses of our final application.

7.6.1 Strengths
Obtaining a natural set of events

Our results show that our modified clustering method achieves the aim of identifying a natural set
of events within a narrative text, consistently identifying the boundaries between distinct events to
closely match those identified by test participants. This is particularly the case as we begin to group

the text into increasingly large events, taking a higher-level view of overall story flow.

A clear and insightful timeline for short texts

The potential of this tool as a revision aid is clear. For short texts such as fairy tales, our force-
directed timeline yields a clear and natural result, highlighting the interactions between characters
in the story and also immediately revealing distinct sub-plots in the story. The result enables us to
see how and where characters are involved in the story, and provides a higher-level view of a story
than the corresponding text does alone. As a result, we see the particular potential of this tool in the
primary school setting where teachers can use such a timeline as a teaching aid, helping students
to understand the bigger picture in an easily digestible format and making it easy for the teacher to

produce these timelines themselves.

Interaction to enable exploration

One of the novelties of our timeline is that it is also inferactive. This enables further exploration
of the events contained in the timeline and to guide investigation and insight into the underlying
story. For example, as we saw in the example of Little Red Riding Hood, highlighting just the path
of Little Red Riding Hood immediately revealed the one distinct event that did not involve her: this
was in fact where her Grandma was eaten. Not only does this example illustrate the potential of this
visual representation as an investigative tool, but also its ability to highlight the placement of such
key events within a story and how the storyteller has intertwined sub-plots around these key events,

again making this an extremely useful educational tool.

148

7. RESULTS AND EVALUATION 7.6. EVALUATION SUMMARY

Consistent results regardless of the type of narrative text

Current training data for machine-learnt NLP tools consists largely of news and conversational
speech data: not the typical type of input expected here. Our addition of a pre-processing stage
to process any names that are unlikely to be recognised by these systems has lead to a more con-
sistent experience regardless of whether the text contains characters named Andrew, Goldilocks, or
Mrs. Smith. As a result, maximising the applicability of the application to the broadest range of

narrative texts.

The application is quick to learn and easy to use

The resulting application is relatively intuitive, making it easy for anyone to use the tool and create
a timeline for any piece of narrative text themselves. This unlocks the value of an underused and
under-appreciated representation of information, significantly reducing the effort required to con-
struct a timeline for a given text. While natural language processing tools may not be sufficiently
accurate to allow the automation of the entire process of creating a timeline from text, the ease-of-
use of our application makes it easy for the user to provide the extra 20% of work needed to obtain

an accurate timeline for any narrative text.

Customisability

Finally, one of the key strengths of the application is that of customisability. While our ultimate
objective was the automated creation of event timelines from text, we recognise the limitations
of current tools and as such provide the means to fully customise the results produced if they’re
unsatisfactory. This ranges from relatively small tweaks such as renaming characters, to manually
defining the entire set of events to visualise yourself by manually merging sentences into the event
set desired. Thus, even if the automated results aren’t what the user would hope for, they can still
create the final timeline they want.

7.6.2 Weaknesses
Inaccuracies of coreference resolution

The nature of this application makes us heavily reliant on coreference resolution, which while im-
proving are still at best achieving F scores of 60% to 70%, and tend to perform worse than this
under the context of narrative texts due to the different use of language to that used in the typical
training data for such systems. Despite our attempts to improve this through pre-processing, there
is still plenty of room for improvement here. As a result, the initial timeline may fail to correctly
reflect the actual story flow at first, requiring the user to read the text themselves and make any

necessary amendments.

149

7. RESULTS AND EVALUATION 7.6. EVALUATION SUMMARY

Identifying event boundaries at the lowest level of detail

As we saw in Section[7.3] the intuitiveness of the events identified by our clustering method improves
as we consider events at a coarser level of detail. Our current feature set does not appear to be
elaborate enough to identify the far more subtle distinctions between events expressed at the lowest
level of detail. For example, we currently fail to distinguish between Goldilocks’ interactions with
each of the first bowl of porridge, the second bowl of porridge, and the last bowl of porridge. Again,
this is a distinction that could either be made through an improved coreference resolution system
treating each of these as separate entities, or through the incorporation of additional features into the

clustering process.

Handling a large number of characters

The results from our case studies show how the clarity of our current timeline visualisation degrades
as the number of characters involved in a text increases beyond 6 or more, making it more difficult
to recognise and follow the paths of particular characters through the text. As a result, the benefit
of such a visualisation begins to diminish beyond this point. The incorporation of the ability to
highlight only particular paths does help to combat this to some extent, but as acknowledged by
test subjects, doing this sacrifices some of the contextual information to be gained from the time-
line. However, this may be something that can be overcome through the use of an alternative node

positioning strategy or illustration.

Lack of event semantics in the timeline

One of the most common responses to the timeline visualisation was “What do the events actually
mean?”. While users can quite clearly see the high-level dynamics of interaction between characters
in the plot, and if they know the text then they may well be able to identify certain specific events,
in the majority of cases users then wanted to know exactly what was happening in each event. This
is a piece of information the timeline currently fails to reflect. Our original inspiration of Figure[I.I|
showing the Lord of the Rings story additionally highlighted some of the key details in the timeline,
such as the location of a set of events or what happens at a particular point, such as the ring being
destroyed. This is something that could certainly enhance the visualisation.

Semi-automatic creation of event timelines from text

As we mention above, while we have shown our event extraction process to produce a relatively
natural set of events, and our timeline visualisation to provide useful insights into the underlying
text, the process of getting from text to timeline still requires some additional input from the user. As
such, we have not entirely reached our goal of completely automated construction of event timelines
from text, but we have made it substantially easier for a user to generate a timeline from any input
text. Our fundamental reliance on coreference resolution is unavoidable in this context, and the
current inability to distinguish character coreferences from other objects mentioned means that we

still require the user to provide the final 20% of effort to complete the timeline.

150

Chapter 8

Conclusions

8.1 Lessons Learnt

The broad scope of this project and sheer volume of information on natural language processing
made this seem a rather ambitious project to begin with, and a great deal of time was spent ex-
perimenting with state-of-the-art tools and investigating related work in order to first identify our
approach to this challenge. However, the potential value of this project made it worth while and I
believe our results show that we’re not far off delivering this value to real users. Along the way,

we’ve learnt a great deal and wish to highlight some of these key lessons below.

It is clear that hierarchical clustering provides a good fit for event boundary detection under this
context. The subjective nature of determining what we consider to be the events within a piece of
text is evident, with boundaries changing based upon the level of detail the reader is considering or
simply between different people that may use different criteria to collect and summarise a number
of sentences into a single event. As a result, there is no single right answer, and instead hierarchical
clustering provides the means to satisfy the majority of users. Additionally, different insights can
be sought by considering events at different levels of granularity. A coarsely grained set of events,
each summarising a large number of sentences may well give a good overview of the overall plot of
a narrative, yet considering the series of far smaller events that take place may reveal more intricate

sub-plots that are also present.

Our exploration of natural language processing and the current state-of-the-art has also shown the
rapid progress that has been made in this field. However, it has also revealed the degree to which
current tools are becoming tailored towards specific domains of language. This is something that
needs to be addressed, by either developing tools based more generally on the fundamental rules of
language to make them applicable to widest possible domain, or instead making such tools far easier
to train over different datasets in order to adapt them to new domains. This would aid development
in a far broader selection of domains. Of course, one of the major difficulties in this area is the devel-
opment of sufficient training material to obtain accurate results using machine learning techniques.
At present a large number of tools are tailored towards the domains of news and conversational
speech due to the nature of existing development data sets. As a result, we have demonstrated the

improvement obtained by pre-processing our narrative-domain input text to align more closely with

151

8. CONCLUSIONS 8.2. FUTURE WORK

the typical language used in this training data. However, being able to instead train these tools to

handle new domains of text may well have yielded further improvements.

Force-directed graphs also present real potential for creating predictable, emergent results. Rather
than explicitly specifying the coordinate geometry of the resulting plot, we instead employ our more
intuitive understanding of forces to encode the properties we’d like the result to exhibit and allow
the laws of physics to translate this into our final layout. This is perhaps nothing new, however we
do believe we’ve demonstrated how an explicit structure can be imparted on such graphs to obtain
a balance between an explicit foundation with emergent properties. Resulting in natural and easily

interpretable results that are not entirely stochastic, as is the typical nature of force-directed graphs.

Finally, while a number of challenges in natural language processing still remain to be overcome, the
potential of current tools is quite clear. Despite it perhaps not being quite possible to fully automate
tasks dominated by an understanding of natural language, we have certainly demonstrated that with
a good enough platform around this technology we can still start to realise a great deal of value from
these tools. In our case, users are quite happy to provide the finishing touches to create something
that would have previously required a great deal more effort, particularly knowing that the system
can only improve in future. The key is making it easy for the user to provide the final changes
required to move from 80% accuracy to 100%.

8.2 Future Work

The wide scope of this project means that our work could be extended in a multitude of ways, and
indeed one of our greatest challenges was in first identifying exactly what we wanted to achieve in
this first iteration. We list below a number of extensions that we believe pose exciting opportunities

for further development of this application:

e Extending the feature set for hierarchical clustering It is clear that hierarchical clustering
is an appropriate method for event extraction, however our feature set could certainly be ex-
tended with a number of additional simple and complex features to improve the performance
at the finer levels of granularity (in the early stages of clustering). These include the incorpo-
ration of recognising synonyms, tense, frame semantics, or other techniques such as semantic

role labelling.

e Enhance the timeline visualisation User feedback clearly suggests that the incorporation
of other information into the resulting infographic timeline could significantly improve user
understanding. Thus, the incorporation of named entity recognition, semantic role labelling,
or other techniques could provide the means to extract key pieces of information that could
be reflected in the resulting timeline. For example, displaying key places, organisations, or
items that are mentioned could help in understanding exactly what is happening in each of the

events displayed.

152

8. CONCLUSIONS 8.2. FUTURE WORK

o Exploring other force-directed infographics A lot of the real potential of force-directed
graphs lies in data visualisation, where we impose no structure on the results and instead
allow the force simulation itself show us the inherent structure of the data having encoded
the various properties of interest to us as forces. The development of additional infograph-
ics using the information automatically extracted during our text processing pipeline could
provide complementary insights to the more traditional timeline view, further guiding user

investigation and exploration of a text.

e Machine Learning to optimise feature weights While our intuition and manual analysis may
be able to guide us towards an approximate set of feature weights in order to yield the resulting
event clusters we desire, this task will become more difficult as the feature set increases in size.
Thus, the incorporation of machine learning could prove extremely valuable in optimising
our feature weights to obtain the best results possible; training the system to produce results
that most closely match the event sets expected by test participants at various points in the

hierarchy.

e Expanding the input domain We could further expand our accepted domain of input text
to additionally open up a number of new challenges, such as that of re-ordering the events
within a text that does not exhibit the property of chronological text ordering that is so typical

of narrative texts.

153

Bibliography

[1]

Oxford Dictionary. Oxford Dictionary Definition of a Timeline.;. [Accessed 22nd May
2017]. Available from: https://en.oxforddictionaries.com/definition/

timeline.

xked. Lord of the Rings - Movie Narrative Chart;. [Accessed Sth June 2017]. Available from:
https://xkcd.com/657/1large/.

Fillpot E. Teaching with Timelines;. [Accessed 6th January 2017]. Available from: http:
//teachinghistory.org/teaching-materials/teaching—qguides/24347.

Moline S. I see what you mean: children at work with visual information.
Stenhouse Publishers; 1995. Cited in Hines, A. (2006) Using Timelines to En-
hance Comprehension. http://www.colorincolorado.org/article/using-
timelines—-enhance-comprehension. Available from: https://books.
google.co.uk/books?id=hQ5KAAAAYAAJ.

Pustejovsky J, Castano JM, Ingria R, Sauri R, Gaizauskas RJ, Setzer A, et al. TimeML: Robust
specification of event and temporal expressions in text. New directions in question answering.
2003;3:28-34.

Mirza P. Extracting Temporal and Causal Relations between Events. ACL 2014. 2014;p. 10.
Available from: http://www.aclweb.org/anthology/P14-3002.

Jones KS. In: Zampolli A, Calzolari N, Palmer M, editors. Natural Language Processing: A
Historical Review. Current Issues in Computational Linguistics: In Honour of Don Walker.
Dordrecht: Springer Netherlands; 1994. p. 3-16. Available from: http://dx.doi.org/
10.1007/978-0-585-35958-8_1.|

Manning CD, Raghavan P, Schiitze H. 2.2.1. In: Introduction to Information Retrieval. 1st ed.
Cambridge University Press; 2008. p. 22-26. Available from: http://amazon.com/o/
ASIN/0521865719/;http://www—nlp.stanford.edu/IR-book/;!

Palmer DD. 2. In: Tokenisation and sentence segmentation. Marcel Dekker, Inc., New
York, USA; 2000. p. 11-17. Available from: https://books.google.co.uk/
books?hl=en&lr=§1d=VoOLvxyX0BUC&oi=fnd&pg=PAll&dg=Chapter+2:
+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1lé&
sig=1952VLDfCKsbycogfADmsCvaxlk#v=onepage&g=Chapter%202%3A%

20Tokenisation%$20and%20Sentence%20Segmentation&f=falsel

154

https://en.oxforddictionaries.com/definition/timeline
https://en.oxforddictionaries.com/definition/timeline
https://xkcd.com/657/large/
http://teachinghistory.org/teaching-materials/teaching-guides/24347
http://teachinghistory.org/teaching-materials/teaching-guides/24347
http://www.colorincolorado.org/article/using-timelines-enhance-comprehension
http://www.colorincolorado.org/article/using-timelines-enhance-comprehension
https://books.google.co.uk/books?id=hQ5KAAAAYAAJ
https://books.google.co.uk/books?id=hQ5KAAAAYAAJ
http://www.aclweb.org/anthology/P14-3002
http://dx.doi.org/10.1007/978-0-585-35958-8_1
http://dx.doi.org/10.1007/978-0-585-35958-8_1
http://amazon.com/o/ASIN/0521865719/;http://www-nlp.stanford.edu/IR-book/;
http://amazon.com/o/ASIN/0521865719/;http://www-nlp.stanford.edu/IR-book/;
https://books.google.co.uk/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&dq=Chapter+2:+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1&sig=l95ZVLDfCKsbyc6qfADmsCvax1k#v=onepage&q=Chapter%202%3A%20Tokenisation%20and%20Sentence%20Segmentation&f=false
https://books.google.co.uk/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&dq=Chapter+2:+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1&sig=l95ZVLDfCKsbyc6qfADmsCvax1k#v=onepage&q=Chapter%202%3A%20Tokenisation%20and%20Sentence%20Segmentation&f=false
https://books.google.co.uk/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&dq=Chapter+2:+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1&sig=l95ZVLDfCKsbyc6qfADmsCvax1k#v=onepage&q=Chapter%202%3A%20Tokenisation%20and%20Sentence%20Segmentation&f=false
https://books.google.co.uk/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&dq=Chapter+2:+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1&sig=l95ZVLDfCKsbyc6qfADmsCvax1k#v=onepage&q=Chapter%202%3A%20Tokenisation%20and%20Sentence%20Segmentation&f=false
https://books.google.co.uk/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&dq=Chapter+2:+Tokenisation+and+Sentence+Segmentation&ots=wugYLE2Ts1&sig=l95ZVLDfCKsbyc6qfADmsCvax1k#v=onepage&q=Chapter%202%3A%20Tokenisation%20and%20Sentence%20Segmentation&f=false

8. BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

partofspeech org. Part of Speech Overview;. [Accessed 1st January 2017]. Available from:
http://partofspeech.org/l

Taylor A, Marcus M, Santorini B. In: The Penn Treebank: An Overview. Treebanks. Springer;
2003. p. 5-7.

Grishman R, Sundheim B. Message Understanding Conference-6: A Brief History. In: COL-
ING. vol. 96; 1996. p. 466-471. Available from: http://www.alta.asn.au/events/
altss_w2003_proc/altss/courses/molla/C96-1079.pdfl

Linguistic Data Consortium. LDC Past Projects: ACE;. [Accessed 4th January 2017]. Avail-
able from: https://www.ldc.upenn.edu/collaborations/past—projects/

ace.

Weischedel R, Palmer M, Marcus M, Hovy E, Pradhan S, Ramshaw L, et al.
Ontonotes release 5.0 LDC2013T19. Linguistic Data Consortium, Philadelphia, PA.
2013;Available from: |https://catalog.ldc.upenn.edu/docs/LDC2013T19/
OntoNotes—Release-5.0.pdf.

CoNLL. Language-Independent Named Entity Recognition (II); 2005. [Accessed 5th January
2017]. Available from: http://www.cnts.ua.ac.be/conl12003/ner/.

Finkel JR, Grenager T, Manning C. Incorporating non-local information into information ex-
traction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. Association for Computational Linguistics; 2005. p.
363-370.

Ratinov L, Roth D. Design challenges and misconceptions in named entity recognition. In:
Proceedings of the Thirteenth Conference on Computational Natural Language Learning. As-

sociation for Computational Linguistics; 2009. p. 147-155.

Tjong Kim Sang EF, Meulder FD. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In: Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4. Association for Computational Linguistics;
2003. p. 142-147.

Redman T, Sammons M, Roth D. Illinois Named Entity Recognizer: Addendum to Ratinov
and Roth 09 reporting improved results. 2016;Available from: http://cogcomp.cs.
illinois.edu/papers/ner—-addendum-2016.pdf, |

The Stanford Natural Language Processing Group. Coreference Resolution;. [Accessed 6th
January 2017]. Available from: http://nlp.stanford.edu/projects/coref.
shtml.

Pradhan S, Moschitti A, Xue N. CoNLL 2012 Task: Modelling Multilingual Unrestricted
Coreference in OntoNotes;. Available from: http://conll.cemantix.org/2012/

introduction.html.

155

http://partofspeech.org/
http://www.alta.asn.au/events/altss_w2003_proc/altss/courses/molla/C96-1079.pdf
http://www.alta.asn.au/events/altss_w2003_proc/altss/courses/molla/C96-1079.pdf
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
http://www.cnts.ua.ac.be/conll2003/ner/
http://cogcomp.cs.illinois.edu/papers/ner-addendum-2016.pdf,
http://cogcomp.cs.illinois.edu/papers/ner-addendum-2016.pdf,
http://nlp.stanford.edu/projects/coref.shtml
http://nlp.stanford.edu/projects/coref.shtml
http://conll.cemantix.org/2012/introduction.html
http://conll.cemantix.org/2012/introduction.html

8. BIBLIOGRAPHY BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Pradhan S, Moschitti A, Xue N. CoNLL 2012 Task: Modelling Multilingual Unre-
stricted Coreference in OntoNotes - Task Description;. Available from: http://conll.

cemantix.orqg/2012/task—-description.html,

Zitouni I. Natural Language Processing of Semitic Languages. Springer Berlin Hei-
delberg; 2014. Available from: |https://books.google.co.uk/books?id=
5ZS4BAAAQBAJ.

Clark K, Manning CD. Entity-Centric Coreference Resolution with Model Stacking. In: As-
sociation of Computational Linguistics (ACL); 2015. .

Chang KW, Samdani R, Roth D. A constrained latent variable model for coreference resolu-
tion. 2013;.

Ng V, Cardie C. Improving Machine Learning Approaches to Coreference Resolution. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. ACL
’02. Stroudsburg, PA, USA: Association for Computational Linguistics; 2002. p. 104-111.
Cited in Kai-Wei Chang and Rajhans Samdani and Dan Roth. A Constrained Latent Variable
Model for Coreference Resolution; 2013. Available from: http://dx.doi.org/10.
3115/1073083.1073102!

Bengtson E, Roth D. Understanding the Value of Features for Coreference Resolution. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing. EMNLP
’08. Stroudsburg, PA, USA: Association for Computational Linguistics; 2008. p. 294-303.
Cited in Kai-Wei Chang and Rajhans Samdani and Dan Roth. A constrained latent vari-
able model for coreference resolution; 2013. Available from: http://dl.acm.org/
citation.cfm?id=1613715.1613756.

Stanford NLP Group. Stanford Core NLP: CorefAnnotator;. [Accessed 18th January 2017].
Available from: http://stanfordnlp.github.io/CoreNLP/coref.htmll

Lee H, Peirsman Y, Chang A, Chambers N, Surdeanu M, Jurafsky D. Stanford’s Multi-pass
Sieve Coreference Resolution System at the CoNLL-2011 Shared Task. In: Proceedings of the
Fifteenth Conference on Computational Natural Language Learning: Shared Task. CONLL
Shared Task ’11. Stroudsburg, PA, USA: Association for Computational Linguistics; 2011.
p. 28-34. Available from: http://dl.acm.org/citation.cfm?1d=2132936.
2132938l

Clark K, Manning CD. Improving Coreference Resolution by Learning Entity-Level Dis-
tributed Representations. CoRR. 2016;abs/1606.01323. Available from: http://arxiv.
org/abs/1606.01323.

Derczynski L. Automatically Ordering Events and Times in Text. Studies in Computational

IntelligenceSpringer. 2015;.

Campos R, Dias G, Jorge AM, Jatowt A. Survey of temporal information retrieval
and related applications. ACM Computing Surveys (CSUR). 2015;47(2):15. Available

156

http://conll.cemantix.org/2012/task-description.html
http://conll.cemantix.org/2012/task-description.html
https://books.google.co.uk/books?id=5ZS4BAAAQBAJ
https://books.google.co.uk/books?id=5ZS4BAAAQBAJ
http://dx.doi.org/10.3115/1073083.1073102
http://dx.doi.org/10.3115/1073083.1073102
http://dl.acm.org/citation.cfm?id=1613715.1613756
http://dl.acm.org/citation.cfm?id=1613715.1613756
http://stanfordnlp.github.io/CoreNLP/coref.html
http://dl.acm.org/citation.cfm?id=2132936.2132938
http://dl.acm.org/citation.cfm?id=2132936.2132938
http://arxiv.org/abs/1606.01323
http://arxiv.org/abs/1606.01323

8. BIBLIOGRAPHY BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

from: http://dl.acm.org.iclibezpl.cc.ic.ac.uk/citation.cfm?doid=
2658850.2619088;.

Allen J, Derczynski L, Llorens H, Pustejovsky J, UzZaman N, Verhagen M. TempEval-3 Tem-
poral Annotation - Task Description;. Available from: https://www.cs.york.ac.uk/
semeval-2013/taskl/l

Strotgen J, Gertz M. Multilingual and cross-domain temporal tagging. Language Resources
and Evaluation. 2013;47(2):269-298.

Chang AX, Manning CD. SUTime: A library for recognizing and normalizing time expres-
sions. In: LREC; 2012. p. 3735-3740. Available from: http://www—nlp.stanford.
edu/pubs/lrec2012-sutime.pdfl

Stroetgen J. HeidelTime GitHub page;. Available from: |https://github.com/
HeidelTime/heideltime.

Kuzey E, Setty V, Strotgen J, Weikum G. As Time Goes By: comprehensive tagging of textual
phrases with temporal scopes. In: Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee; 2016. p. 915—
925.

Kuzey E, Strotgen J, Setty V, Weikum G. Temponym Tagging: Temporal Scopes for Textual
Phrases. In: Proceedings of the 25th International Conference Companion on World Wide
Web. International World Wide Web Conferences Steering Committee; 2016. p. 841-842.

Zhao R, Do QX, Roth D. A robust shallow temporal reasoning system. In: Proceedings of
the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies: Demonstration Session. Association for Compu-
tational Linguistics; 2012. p. 29-32.

Jurafsky D, Martin JH. In: Semantic Role Labeling. vol. 3 of Speech and Language Processing
(3rd ed. draft). 3rd ed.;. Available from: https://web.stanford.edu/~jurafsky/
slp3/.

Punyakanok V, Roth D, Yih W. The Importance of Syntactic Parsing and Infer-
ence in Semantic Role Labeling. Computational Linguistics. 2008;34(2). Avail-
able from: http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi0Q7.
pdf; https://cogcomp.cs.illinois.edu/page/publication_view/183;.

Sangeetha S, Thakur R, Arock M. Domain Independent Event Extraction System Using Text
Meaning Representation Adopted for Semantic Web. International Journal of Computer In-
formation Systems and Industrial Management Applications (IJCISIM) ISSN. 2010;p. 2150-
7988.

TempEval-2 Task;. [Accessed 18th January 2017]. Available from: http://www.timeml.
org/tempeval2/.

157

http://dl.acm.org.iclibezp1.cc.ic.ac.uk/citation.cfm?doid=2658850.2619088;
http://dl.acm.org.iclibezp1.cc.ic.ac.uk/citation.cfm?doid=2658850.2619088;
https://www.cs.york.ac.uk/semeval-2013/task1/
https://www.cs.york.ac.uk/semeval-2013/task1/
http://www-nlp.stanford.edu/pubs/lrec2012-sutime.pdf
http://www-nlp.stanford.edu/pubs/lrec2012-sutime.pdf
https://github.com/HeidelTime/heideltime
https://github.com/HeidelTime/heideltime
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf;https://cogcomp.cs.illinois.edu/page/publication_view/183;
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf;https://cogcomp.cs.illinois.edu/page/publication_view/183;
http://www.timeml.org/tempeval2/
http://www.timeml.org/tempeval2/

8. BIBLIOGRAPHY BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

The Stanford Natural Language Processing Group. Stanford OpenlE;. [Accessed 18th January
2017]. Available from: http://nlp.stanford.edu/software/openie.html.

Angeli G, Premkumar MJ, Manning CD. Leveraging linguistic structure for open domain in-
formation extraction. In: Proceedings of the Association of Computational Linguistics (ACL),
2015.. vol. 1. Department of Computer Science, Stanford University, United States. Associa-
tion for Computational Linguistics (ACL); 2015. p. 344-354.

Hiong SN, Kulathuramaiyer N, Labadin J. NATURAL LANGUAGE SEMANTIC
EVENT EXTRACTION PIPELINE;Available from: http://www.icoci.cms.net.
my/proceedings/2013/PDF/PID63.pdf.

Llorens H, Saquete E, Navarro B. TIPSem (English and Spanish): Evaluating CRFs and
Semantic Roles in TempEval-2. In: Proceedings of the 5th International Workshop on Seman-
tic Evaluation. SemEval ’10. Stroudsburg, PA, USA: Association for Computational Linguis-
tics; 2010. p. 284-291. Available from: http://dl.acm.org/citation.cfm?id=
1859664.1859727.

Chambers N, Jurafsky D. Unsupervised Learning of Narrative Event Chains. In: ACL.
vol. 94305. Citeseer; 2008. p. 789—797. Available from: http://nlp.stanford.edu/

pubs/narrative-schema09.pdfl

Liu P, Pan X. Text summarization with TensorFlow, Google Research Blog;. Available from:
https://research.googleblog.com/2016/08/text—summarization-—
with-tensorflow.htmll

Vassilvitskii S, Arthur D. On the Worst-Case Complexity of the k-Means Method;. Available
from: http://theory.stanford.edu/~sergei/slides/kMeans—hour.pdf.

Ben-Hur A, Horn D, Siegelmann HT, Vapnik V. Support vector clustering. Journal of machine
learning research. 2001;2(Dec):125-137.

Greenacre M. 7. In: Hierarchical Cluster Analysis;. Available from: http://84.89.132.
1/~michael/stanford/maeb7.pdf.

Sahoo N, Callan J, Krishnan R, Duncan G, Padman R. Incremental Hierarchical Clustering of
Text Documents. In: Proceedings of the 15th ACM International Conference on Information
and Knowledge Management. CIKM ’06. New York, NY, USA: ACM; 2006. p. 357-366.
Available from: http://doi.acm.org/10.1145/1183614.1183667.

Manning CD, Raghavan P, Schiitze H, et al. 7. In: Hierarchical Clustering. vol. 1 of Introduc-
tion to information retrieval. Cambridge university press Cambridge; 2008. p. 377. Available
from: https://nlp.stanford.edu/IR-book/pdf/17hier.pdfl

Gansner E, Koutsofios E, North S. Drawing graphs with dot; 2006. [Accessed December 20th
2016]. Available from: http://www.graphviz.org/Documentation/dotguide.
pdf.

158

http://nlp.stanford.edu/software/openie.html
http://www.icoci.cms.net.my/proceedings/2013/PDF/PID63.pdf
http://www.icoci.cms.net.my/proceedings/2013/PDF/PID63.pdf
http://dl.acm.org/citation.cfm?id=1859664.1859727
http://dl.acm.org/citation.cfm?id=1859664.1859727
http://nlp.stanford.edu/pubs/narrative-schema09.pdf
http://nlp.stanford.edu/pubs/narrative-schema09.pdf
https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html
https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html
http://theory.stanford.edu/~sergei/slides/kMeans-hour.pdf
http://84.89.132.1/~michael/stanford/maeb7.pdf
http://84.89.132.1/~michael/stanford/maeb7.pdf
http://doi.acm.org/10.1145/1183614.1183667
https://nlp.stanford.edu/IR-book/pdf/17hier.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf

8. BIBLIOGRAPHY BIBLIOGRAPHY

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Massachusetts Institute of Technology and Contributors 2006-2009. MIT SIMILE, Web Wid-
get for Visualizing Temporal Data;. Available from: http://simile-widgets.org/

timeline/.
Preceden;. [Accessed 4th January 2017]. Available from: https://www.preceden.com.

McGinn D, Birch D, Akroyd D, Molina-Solana M, Guo Y, Knottenbelt WJ. Visualizing Dy-
namic Bitcoin Transaction Patterns. Big Data. 2016;4(2):109-119.

Kobourov SG. Force-directed drawing algorithms. Handbook of Graph Drawing and Visual-
ization. 2013;p. 383—408.

Cui L. Extracting and Visualising Event Timelines from Text; 2016. Imperial College London
- Computing MSc Thesis.

Chasin R. Event and Temporal Information Extraction Towards Timelines of Wikipedia Arti-
cles. Simile. 2010;p. 1-9. Available from: http://cs.uccs.edu/~jkalita/work/
reu/REUFinalPapers2010/Chasin.pdfl

Etiene T, Pagliosa P, Nonato LG. Linea: Tailoring timelines by visual exploration of temporal
text. In: Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on. IEEE;
2014. p. 247-248. Available from: http://ieeexplore.ieee.org/stamp/stamp.
Jjsp?arnumber=7042513.

Do QNT, Bethard S, Moens MF. Visualizing the Content of a Children’s Story in a
Virtual World: Lessons Learned; 2016. Available from: http://www.aclweb.org/
anthology/W16-6009.

Bostock M. D3 3.x API Reference - Force Layout;. Available from: https://github.

com/d3/d3-3.x—-api-reference/blob/master/Force-Layout .md.

Node js Foundation. Node.js Home Page;. [Accessed 3rd June 2017]. Available from: https:
//nodejs.org/en/.

University of Illinois Cognitive Computation Group. CogComp NLP Pipeline;. [Accessed
6th June 2017]. Available from: https://github.com/CogComp/cogcomp—nlp/

tree/master/pipelinel

Stanford University. Stanford CoreNLP Github Page;. [Accessed 6th June 2017]. Avail-
able from: https://stanfordnlp.github.io/CoreNLP/memory—-time.html#

depparse.

Rowling JK. In: Chapter One. 1st ed. Harry Potter and the Philosopher’s Stone. Bloomsbury
Publishing PLC (26 Jun. 1997); 1997. p. 1-3.

Manning CD, Raghavan P, Schiitze H, et al.. Stanford IR-Book: Evaluation of Clustering;.
[Accessed 4th June 2017]. Available from: https://nlp.stanford.edu/IR-book/
html/htmledition/evaluation—-of-clustering-1.html.

159

http://simile-widgets.org/timeline/
http://simile-widgets.org/timeline/
https://www.preceden.com
http://cs.uccs.edu/~jkalita/work/reu/REUFinalPapers2010/Chasin.pdf
http://cs.uccs.edu/~jkalita/work/reu/REUFinalPapers2010/Chasin.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7042513
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7042513
http://www.aclweb.org/anthology/W16-6009
http://www.aclweb.org/anthology/W16-6009
https://github.com/d3/d3-3.x-api-reference/blob/master/Force-Layout.md
https://github.com/d3/d3-3.x-api-reference/blob/master/Force-Layout.md
https://nodejs.org/en/
https://nodejs.org/en/
https://github.com/CogComp/cogcomp-nlp/tree/master/pipeline
https://github.com/CogComp/cogcomp-nlp/tree/master/pipeline
https://stanfordnlp.github.io/CoreNLP/memory-time.html#depparse
https://stanfordnlp.github.io/CoreNLP/memory-time.html#depparse
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

. BIBLIOGRAPHY BIBLIOGRAPHY

[70]

[71]

[72]

[73]

International Standards Organisation. Guidance on usability - ISO 9241-11;. [Accessed
5th June 2017]. Available from: https://www.iso.org/obp/ui/#iso:std:iso:
9241:-11:ed-1:vl:en.

System Usability Scale (SUS);. [Accessed 5th June 2017]. Available from:
https://www.usability.gov/how—-to—and-tools/methods/system—
usability—-scale.htmll

How To Use The System Usability Scale (SUS) To Evaluate The Usability Of Your Website;.
[Accessed 5th June 2017]. Available from: http://usabilitygeek.com/how—to-—
use—-the-system-usability-scale-sus-to-evaluate—-the-usability-

of-your—-website/.

Baxter N. In: The Gingerbread Man. My Little Treasury of Stories & Rhymes. Bookmark
Limited; 1997. p. 102. Available from: https://www.amazon.co.uk/My-Little—
Treasury—Stories—Rhymes/dp/1843229048.

160

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
http://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
http://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://www.amazon.co.uk/My-Little-Treasury-Stories-Rhymes/dp/1843229048
https://www.amazon.co.uk/My-Little-Treasury-Stories-Rhymes/dp/1843229048

Appendix A

Example Texts

Below we list the exact texts we used for our development and testing that we refer to repeatedly

throughout the report.

A.1 Goldilocks and the Three Bears

To adhere to the copyright notice of the source, we refer the reader to http://www.dltk-
teach.com/rhymes/goldilocks_story. htrrﬂto find the Goldilocks text we used for de-

velopment.

A.2 Little Red Riding Hood

Similarly, to the above, we refer the reader to http://www.dltk—-teach.com/rhymes/
littlered/story. htnﬂ to find the Little Red Riding Hood text we used for development. Ad-
ditionally, we adapted this text by replacing all synonyms of mother with mommy and all synonyms

of Grandmother with Grandma.

A.3 The Gingerbread Man

For the exact text we use, I refer the reader to [[73].

A.4 Harry Potter and the Philosopher’s Stone

The following text is the short extract taken from the beginning of [68]] to evaluate the performance

of our application over a more sophisticated text.

Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were
perfectly normal, thank you very much. They were the last people you’d expect to
be involved in anything strange or mysterious, because they just didn’t hold with such

nonsense. Mr. Dursley was the director of a firm called Grunnings, which made drills.

I Accessed 8th June 2017.
2 Accessed 8th June 2017.

161

http://www.dltk-teach.com/rhymes/goldilocks_story.htm
http://www.dltk-teach.com/rhymes/goldilocks_story.htm
http://www.dltk-teach.com/rhymes/littlered/story.htm
http://www.dltk-teach.com/rhymes/littlered/story.htm

A. EXAMPLE TEXTS A.4. HARRY POTTER AND THE PHILOSOPHER’S STONE

He was a big, beefy man with hardly any neck, although he did have a very large
mustache. Mrs. Dursley was thin and blonde and had nearly twice the usual amount of
neck, which came in very useful as she spent so much of her time craning over garden
fences, spying on the neighbors. The Dursleys had a small son called Dudley and
in their opinion there was no finer boy anywhere. The Dursleys had everything they
wanted, but they also had a secret, and their greatest fear was that somebody would
discover it. They didn’t think they could bear it if anyone found out about the Potters.
Mrs. Potter was Mrs. Dursley’s sister, but they hadn’t met for several years; in fact,
Mrs. Dursley pretended she didn’t have a sister, because her sister and her good-for-
nothing husband were as unDursleyish as it was possible to be. The Dursleys shuddered
to think what the neighbors would say if the Potters arrived in the street. The Dursleys
knew that the Potters had a small son, too, but they had never even seen him. This boy
was another good reason for keeping the Potters away; they didn’t want Dudley mixing
with a child like that. When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday
our story starts, there was nothing about the cloudy sky outside to suggest that strange
and mysterious things would soon be happening all over the country. Mr. Dursley
hummed as he picked out his most boring tie for work, and Mrs. Dursley gossiped away
happily as she wrestled a screaming Dudley into his high chair. None of them noticed
a large, tawny owl flutter past the window. At half past eight, Mr. Dursley picked up
his briefcase, pecked Mrs. Dursley on the cheek, and tried to kiss Dudley good-bye but
missed, because Dudley was now having a tantrum and throwing his cereal at the walls.
"Little tyke," chortled Mr. Dursley as he left the house. He got into his car and backed
out of number four’s drive. It was on the corner of the street that he noticed the first sign
of something peculiar — a cat reading a map. For a second, Mr. Dursley didn’t realize
what he had seen — then he jerked his head around to look again. There was a tabby cat
standing on the corner of Privet Drive, but there wasn’t a map in sight. What could he
have been thinking of? It must have been a trick of the light. Mr. Dursley blinked and
stared at the cat. It stared back. As Mr. Dursley drove around the corner and up the
road, he watched the cat in his mirror. It was now reading the sign that said Privet Drive
— no, looking at the sign; cats couldn’t read maps or signs. Mr. Dursley gave himself
a little shake and put the cat out of his mind. As he drove toward town he thought of
nothing except a large order of drills he was hoping to get that day.

162

Appendix B

Additional Results

B.1 Additional Coreference Resolution Experimentation Results

Table[B.I|shows a comparison of results between the neural coreference resolution system using two
different levels of greediness. The table shows the most significant differences, with the highlighted
cells revealing the most significant differences between the two configurations. In particular in
event 6, where the wolf was never correctly identified by any of the alternative Stanford coreference

implementations.

B.2 Manually annotated Goldilocks event clusters

Figure shows the remaining manually annotated text for the Goldilocks example where we
highlighted the features we intended to extract and our desired event boundaries. The first half is
shown in Figure .1]

163

No. Sentence Mentions (Neural) - 0.45 | Mentions (Neural) - 0.55 Comments
1 Remember, go straight to Grandma’s house, | her mommy, her Grandma | her mommy, the poor Grandma
her mommy cautioned.
2 But when Little Red Riding Hood noticed her mommy, Little Red | her mommy, Little Red Riding Hood as
some lovely flowers in the woods, she forgot | Riding Hood as she, The | she, The woods
her promise to her mommy. woods
3 I’m on my way to see my Grandma who lives | The wolf, Little Red Rid- | Little Red Riding Hood as she, a dark | Both appear to incorrectly detect a
through the forest, near the brook, Little Red | ing Hood as she, the forest | shadow approaching out of the forest | mention of the wolf.
Riding Hood replied. behind her, the forest
4 Poor Grandma did not have time to say The wolf, Poor Grandma | a dark shadow approaching out of the
another word, before the wolf gobbled her forest behind her, the poor Grandma
up!
5 It’s me, Little Red Riding Hood. The wolf, Little Red Rid- | Little Red Riding Hood as she, a dark | Both incorrectly include the wolf.
ing Hood as she shadow approaching out of the forest
behind her
6 Oh, I just have touch of a cold, squeaked the a dark shadow approaching out of the | The neural (0.55) finally recognises the
wolf adding a cough at the end to prove the forest behind her mention of the wolf here, which no
point. other implementation recognised.
7 But Grandma! What big eyes you have, said | Little Red Riding Hood as | Little Red Riding Hood as she, a dark | Neural (0.55) incorrectly includes the
Little Red Riding Hood. she shadow approaching out of the forest | wolf.
behind her
8 She ran across the room and through the the door, a little girl who | the door, Wolf, a little girl who lived in | The neural (0.55) correctly recognises
door, shouting, "Help! Wolf!" as loudly as lived in a village near the | a village near the forest the mention of the wolf here.
she could. forest
9 Little Red Riding Hood and her Grandma Little Red Riding Hood as | Little Red Riding Hood as she, the poor

had a nice lunch and a long chat.

she, her Grandma

Grandma

Table B.1: Comparison of coreference annotations between the Stanford neural system with greediness values of 0.45 and 0.55.

B. ADDITIONAL RESULTS B.2. GOLDILOCKS MANUAL ANNOTATIONS

Goldilocks was very - by this time, so she went - to the bedroom.
She lay down in the first bed, but it was too hard.
Then she lay in the second bed, but it was too soft.

Then she lay down in the third bed and it was just right.

Goldilocks fell asleep.

As she was sleeping, the three bears came home.

"Someone's been eating my porridge," -the papa bear.
"Someone's been eating my porridge," said Caroline.

"Someone's been eating my porridge and they . itall up!" - Mary.

"Someone's been sitting in my chair," -the papa bear.
"Someone's been sitting in my chair," - Caroline.

"Someone's been sitting in my chair and they've - it all to pieces," - Mary.

They decided to - around some more and when they got upstairs to the - papa
bear - "Someone's been sleeping in my bed".

"Someone's been sleeping in my bed, too" - Caroline.

"Someone's been sleeping in my bed and she's still there!" - Mary.
—

Just then, Goldilocks - up and -the - bears.
She- "Help!", and she-up and ran out of the room.

Goldilocks ran down the stairs, -the door, and ran away into the -|

Figure B.1: Initial analysis of the Goldilocks story, showing the second half of the story. Yellow
highlighting reflects common features between nearby sentences, green highlighting reflects other
features that could potentially be used as features, and blue highlighting reflects another possible
overlap between sentences. The horizontal lines are the suggested event boundaries based upon this

manual analysis.

165

B. ADDITIONAL RESULTS

B.3. CLUSTER SELECTION ANALYSIS

B.3 Automatic Event Cluster Selection Analysis

The tables below show the raw data we analysed in order to identify whether there is a distinct

pattern in the cluster hierarchies produced that can be used to automatically recognise good cluster

sets at different levels of granularity.

Time step Score % of max score Distance between
merged clusters

T=0 0.632 100

T = 13 (3 merges with same 0.133333333 21.09704641 1

score)

T=16 0.08912896 14.10268354 6

T = 17 (optimal fine-grained 0.079579429 12.59168174 5

clustering)

T=18 0.0768 12.15189873 3

T=19 0.074285714 11.75406872 1

T=21 0.064 10.12658228 2

T=22 0.063715556 10.08157525 5

T = 23 (optimal coarse-grained 0.06144 9.721518987 5

clustering)

T=24 0.035108571 5.555153707 5

T=25 0.032622364 5.161766526 8

Table B.2: Analysis of the scores contributing to event merges in the Goldilocks text at each step

of the hierarchical clustering process. The score column represents the similarity score between the

sentences in the text that cause the merge at that time step. We highlight the rows that we regard as

optimal event sets at two levels of granularity.

166

B. ADDITIONAL RESULTS B.3. CLUSTER SELECTION ANALYSIS

Time step Score % of initial Distance between
score merged clusters

T=0 0.768 100

T=13 0.0903529 11.76 3

T=14 0.076 9.89 1

T=17 0.064 8.33 3

T=18 0.0608 7.92 3

T =19 (2 merges with same 0.06 7.8125 2

score)

T =21 (optimal fine grained 0.049152 6.4 5

clustering)

T=22 0.038912 5.066666667 5

T=23 0.032622364 4.247703704 8

T=24 0.029257143 3.80952381 4

T=25 0.021370435 2.782608696 5

T = 26 (optimal coarse-grained 0.017096348 2.226086957 6

clustering)

T =27 0.012201612 1.588751515 8

T =28 0.003979185 0.518123039 14

Table B.3: Analysis of the scores contributing to event merges in the Little Red Riding Hood text
at each step of the hierarchical clustering process. The score column represents the similarity score
between the sentences in the text that cause the merge at that time step. We highlight the rows that

we regard as optimal event sets at two levels of granularity.

167

B. ADDITIONAL RESULTS

B.3. CLUSTER SELECTION ANALYSIS

Time step Score % of initial Distance between
score merged clusters

T=0 0.48 100

T=11 0.138971429 28.95238095 3

T=12 0.121904762 25.3968254 1

T=13 0.118857143 24.76190476 2

T=14 0.108571429 22.61904762 1

T = 15 (optimal fine-grained 0.076 15.83333333 2

clustering)

T=16 0.0608 12.66666667 2

T=17 0.052869565 11.01449275 2

T=18 0.035576686 7411809524 6

T = 19 (optimal coarse-grained 0.027670756 5.764740741 6

clustering)

T=20 0.02125114 4.427320889 8

T=21 0.005627888 1.172476704 11

Table B.4: Analysis of the scores contributing to event merges in the Gingerbread Man text at each

step of the hierarchical clustering process. The score column represents the similarity score between

the sentences in the text that cause the merge at that time step. We highlight the rows that we regard

as optimal event sets at two levels of granularity.

168

B. ADDITIONAL RESULTS

B.3. CLUSTER SELECTION ANALYSIS

Time step Score % of initial Distance between
score merged clusters

T=0 0.2432 100

T = 8 (2 merges) 0.116923077 48.07692308 1

T=10 0.077824 32 5

T=11 0.071529412 29.41176471 2

T = 12 (optimal fine-grained 0.058461538 24.03846154 1

clustering)

T=13 0.046769231 19.23076923 2

T=14 0.036623059 15.05882353 5

T=15 0.028299636 11.63636364 5

T = 16 (optimal coarse-grained ~ 0.021033514 8.648648649 4

clustering)

T=17 0.019922944 8.192 8

T=18 0.012170971 5.004511278 6

Table B.5: Analysis of the scores contributing to event merges in the Harry Potter text at each step
of the hierarchical clustering process. The score column represents the similarity score between the
sentences in the text that cause the merge at that time step. We highlight the rows that we regard as

optimal event sets at two levels of granularity.

169

B. ADDITIONAL RESULTS

B.3. CLUSTER SELECTION ANALYSIS

Time step Score

% of initial score

T=0 0.509090909 100

T=34 0.066086957 12.98136646
T =35 0.064 12.57142857
T =36 0.063333333 12.44047619
T =37 0.058461538 11.48351648
T =38 0.0512 10.05714286
T =39 0.045279418 8.894171429
T =40 0.044218182 8.685714286
T =41 0.043428571 8.530612245
T=42 0.038313354 7.525837363
T=43 0.032768 6.436571429
T=44 0.031380645 6.1640553
T=45 0.027733333 5.447619048
T =46 0.023058963 4.529439153
T =47 0.022769079 4.472497633

Table B.6: Analysis of the scores contributing to event merges in a longer snippet from the Harry
Potter text at each step of the hierarchical clustering process. The score column represents the
similarity score between the sentences in the text that cause the merge at that time step. We highlight
the rows that we regard as optimal event sets at different levels of granularity. In this case, we see
that even in large texts we see good cluster sets emerge at similar score thresholds.

170

Appendix C

Additional Material

C.1 Raw Results of Coreference Resolution Experimentation

The raw results of coreference annotation for the example of Little Red Riding Hood
can be found online at https://docs.google.com/spreadsheets/d/1I1ZLB-
hlc_a_mxZEbBOmhB_2fHExe5u7otwrt8x6midbk/edit?usp=sharing. Addition-
ally, the raw results for the processed Little Red Riding Hood text featuring name replace-
ments can be found at https://docs.google.com/spreadsheets/d/1AIIczkS—
JhM3ZSmKf1XN_BJTwRH1GK2Tc0ZsDsYmeU8/edit?usp=sharing.

In these tables, TP, FP, and FN represent the number of true positives, false positives, and false

positives, respectively.

C.2 Gingerbread Man Events

In Figure [C.1|we provide the accompanying text for the Gingerbread Man example timeline shown

in Figure[5.1]

C.3 Early Timeline Visualisations

Figures [C.2] and [C.3] below show our early example timelines produced using the GraphViz tool.
However, the lack of dynamism and clarity expressed in these plots lead us to explore alternative

approaches.

C.4 Timelines used in Evaluation

Figures [C.4] to [C.9] below show the timelines presented to test participants in evaluating the clarity
and expressiveness of our resulting timelines. Note, when these plots were created the numbers
within each event reflected the number of characters involved in that event. However, we have since

redefined this to instead reflect the particular event number.

171

https://docs.google.com/spreadsheets/d/1IZLB-h1c_a_mxZEbBOmhB_2fHExe5u7otwrt8x6m4bk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1IZLB-h1c_a_mxZEbBOmhB_2fHExe5u7otwrt8x6m4bk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AIIczkS-JhM3ZSmKf1XN_BJTwRHlGK2Tc0ZsDsYmeU8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AIIczkS-JhM3ZSmKf1XN_BJTwRHlGK2Tc0ZsDsYmeU8/edit?usp=sharing

C. ADDITIONAL MATERIAL

C.4. TIMELINES USED IN EVALUATION

e Y S

1

10

1

12

13

14

Once upon a time a little old man and little old woman lived in the country. One day, the little old woman made some
ginger cookies.

She had some dough left over, so she made a little gingerbread man, with three buttons and twe eyes made of raisins
and a smiley mouth made out of a cherry.

But when the little old woman went to take him out of the oven, the gingerbread man jumped from the tray and ran right
out of the door! "Come back!" shouted the little old weman, running after him. "Come back!" shouted the little old man,
who was working in the garden.

But the gingerbread man called over his shoulder, "Run, run, as fast as you can! You won't catch me, I'm the gingerbread

man!".

He ran down the garden path and out onto the road. As he ran, he passed a cow in a field. "Stop!" Mooed the cow. "You
look good to eat!". And she ran after him.
But the gingerbread man didn't stop for a single second.

"A little old woman and a little old man couldn't catch me and neither will you! Run, run, as fast as you can! You won't
catch me, I'm the gingerbread man!".

In the next field he passed a horse. "Stop!” neighed the horse. “You look good to eat!”.

But the gingerbread man kept running. It was the same when he passed a rooster on a gate and a pig in a yard.

The gingerbread man did not stop for anything...until he came to a fast-flowing river.

"l can't swim,' cried the gingerbread man. "What can | do?". "Can | help you?" asked a quiet voice. It was a big red fox.
"Jump en my back and | will carry you acress”. The gingerbread man did as the fox said, and the fox swam inte the river.

But soon the fox spoke again.

"The water is deeper here. Climb onto my head and you will stay dry." The little man did so. "The water is even deeper
deeper now," said the fox soon. "Climb onto my nose and you'll stay dry."

As soon as the gingerbread man did so, the fox tossed him inte the air. The little man fell right into the fox's open mouth.

When the little old man and woman and came puffing along, only a few crumbs were floating in the water.

the little old woman

the little old weman; a little gingerbread
man

the little old woman; him; a little gingerbread

man

the gingerbread man called over his
shoulder, ™ Run , run, as fast as you can; a
little gingerbread man

the gingerbread man called over his
shoulder, ™ Run, run, as fast as you can; a
cow

a little gingerbread man

me; a little gingerbread man

a horse; a little gingerbread man

a little gingerbread man

a fast-flowing river; a little gingerbread man
a little gingerbread man; a big red fox; a
fast-flowing river

The water; a little gingerbread man; a big red
fox

a big red fox; a little gingerbread man

The water

Figure C.1: The set of events produced by our application for the timeline shown in Figure

John Caroline Rusky General

/,
e

¥

John was a farmer, with a pet dog Rusky, and his wife Caroline.

.

John was plowing the fields when Rusky suddenly started barking.

"Quick! Come over here!" cried Caroline

Figure C.2: One of our early timelines created with the GraphViz tool.

172

C.4. TIMELINES USED IN EVALUATION

C. ADDITIONAL MATERIAL

*10)s QY UT paUOT)UAW JOJORILYD YO IO Syoen 9jeredas yirm aurjown) pappaiy) [eniul g ¢ 213y

“sdnd wiogmau g pey pey AYSm Py 0) UIRq A 0} 12A0 eI UGO[

“aUT[OIEY) PAUD , A3 JIA0 WOY) PIMY),

*Furireq paprels Auappns A4sny usym spRy au Furmord sea wop

*auljore]) afim ST pue *Axsny Jop 1ad e [Iim “IaULIE] B SeM UYOL

[eI9U2D)

*auT[oIXY) PAND I3 JDA0 AUWOD) PN,

*AUIOFED) 3fIM STY puE *Axsmy Fop 12d B [Iim “IalUIE) B Sem UYO[

autore)

“sdnd wiogmau g pey pey AYsny puy O} UIeq A} 0] JAAO U UYo[

*Bunjreq pawels Auappns Asny uaya spray i Furmord ses ugop

*AUI[OFE]) 3fTm STY pue *Axsmy Jop 19d B i “JaluIe] B Sem UYo[

wop

“sdnd wiogmau g pey pey AYsmy puy 0} UIEq A} 0} J2A0 UL UGOL

*Burireq pawels AJuappns AXsny usym spRy 2 Fursord sea wyor

*auIjore]) 3fim ST pue *Axsmy Jop 1ad B [“IaluIe] B Sem UYo[

Axsmy

173

C. ADDITIONAL MATERIAL C.4. TIMELINES USED IN EVALUATION

Goldiloc]

Papa bear

Mama bear

Baby bear

Figure C.4: Goldilocks timeline.

Mommy

Grandma

The wolf

Woodsman

No Actors

Figure C.5: Little Red Riding Hood timeline.

Mommy

Little Red Riding Hood

Grandma

The wolf

Woodsman

Figure C.6: Little Red Riding Hood timeline with Little Red Riding Hood and The wolf specifically
highlighted.

174

C. ADDITIONAL MATERIAL C.4. TIMELINES USED IN EVALUATION

Mr. Dursley

Dudley

the neighbors

the Potters

Mrs. Potter

Figure C.7: Harry Potter timeline.

the cat

Mr. Dursley

Dudley

the neighbors

the Potters:

Mrs. Potter

a small son

Figure C.8: Harry Potter timeline with the main characters highlighted.

175

C. ADDITIONAL MATERIAL C.4. TIMELINES USED IN EVALUATION

Mr. Dursley (0}

Mrs. Dursley O
Dudley

the neighbors

the Potters

Mrs. Potter

a small sgj

Figure C.9: Harry Potter timeline with the “niche” characters highlighted.

176

Appendix D

User Guide

D.1 Installation

Executing the application first requires the user to have Java 8 and Node.js installed. Then, please
ensure you have the timeline—generator—-clustering-1.0-SNAPSHOT. jar installed
in the betweenTheLines/application directory. This is the back-end application that con-

tains all the required dependencies.

Note, initially the application will run without using the TIPSem features. To incorporate
TIPSem features, please install TIPSem separately and update the PATH_TO_TIPSEM variable
in the EventTagger object appropriately. Having done this, then execute mvn package
-Dmaven.test.skip=true to package the application into a JAR without executing the unit
testd!] This will take a short while as all the dependencies are stored within the resulting JAR.
Finally, move this new JAR to the betweenTheLines/application directory.

Executing node app. js from within the betweenTheLines directory will run the application
athttp://localhost:3000/. Additionally, the back-end can be run itself by executing java
-Xmx8g —-cp timeline-generator-clustering-1.0-SNAPSHOT. jar App <input
text .txt> <optional actor list .txt>, assuming you're in the same directory as
the jar file itself.

"Executing the EventTagger unit tests should confirm whether TIPSem has been successfully installed at this point.
Additionally, please ensure that unit tests are invoked with the additional argument —Xmx 69 to allow sufficient heap

space.

177

http://localhost:3000/

D. USER GUIDE D.2. USAGE

D.2 Usage

D.2.1 Enter input text and list any specific characters

We begin by entering our story into the input box, and additionally adding any characters that we
wish to ensure are included in the resulting timeline to the actor list on the right of the input box.
Explicitly listing actor names is particularly effective when you have actors with fictional names,
such as Goldilocks, nominal names, such as the Papa bear, or titled names, such as Mr. Jones. Addi-
tionally, for optimal results please also select the gender of each character if appropriate. However,
please be aware that selecting the wrong gender is more detrimental than selecting no gender. This
is illustrated in Figure [D.T]

Clicking “Let’s Go!” will process the input and redirect you to the insights page after approximately

1 minute; this does take a little while so enjoy the loading screen.

Between The Lines

What's your story?

INPUT TEXT Sl

Tag actor...
Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she came
upon a house. She knocked and, when no one answered, she walked right in. Goldilocks Female

I

At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry. She tasted the porridge from papg bear Male
the first bowl.

Mama bear Female

“This porridge is too hot!" she exclaimed.
x Baby bear ¥ -- Gender --

So, she tasted the porridge from the second bowl.
Female
Let's Go!

Characters found

N

Figure D.1: Entering input to site, and tagging any actors. Adding an actor to the list is done by
simply clicking in the input box labelled “Tag actor...” and typing the name.

D.2.2 Remove irrelevant mention annotations

We next remove any redundant actors from the plot using the quick-delete buttons in the actor side
panel to the right. The application cannot currently distinguish between what is a character and what
is some other entity, while we as a user can quickly distinguish between which mention annotations
are relevant to our timeline and those that are not. Figure [D.2]highlights the quick-delete button that
enables us to quickly filter this list.

178

D. USER GUIDE

D.2. USAGE

ght Lab

arstand your story.

line

a @ &Settings

\

ACTORS MENTIONED
Goldilocks (8)
Baby bear (2)
Mama bear (2)
my (2)

Papa bear (2)

the bedroom (2)
the first chair (2)
the forest (2)

the third bed (2)
the three bears (2)

three bowls of porridge (2)
my porridge (1)
they (1)

ACTORS MENTIONED

Goldilocks (8)
Baby bear (2)
Mama bear (2)

Papa bear (2)
the three bears (2)

Figure D.2: Removing any irrelevant actors from the actor side panel to leave us with just those

characters we’re interested in.

D.2.3 Identify a nice collection of events

Next, either use the buttons to see the automatically selected event sets at the fine or coarse levels of

detail, or drag the slider to browse through the events obtained at each level of detail.

Event Detail

Coarse Extra Coarse

=

Event Text
¢ [Bontton |Adosmeowd |

Once upon a time, there was a little girl named Goldilocks.

30

Goldilocks

2 shewent for a walk in the forest. Pretty soon, she came upon a house. She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Galdilocks was hungry. Goldilocks

3 Shetasted the porridge from the frst bowl, “This porridge is too hotl® she exclaimed. So, she tasted the porridge from the second bowl, “This porridge is 100 cold she said. So, she tasted the last bowl of porridge. "Ahbh, this porridge s just Goldilocks

tight; she said happily and she ate it all up.

4 After she had eaten the three bears’ breakfasts she decided she was feeling a Iittle tired. So, she walked into the living room where she saw three chairs.

Goldilocks

5 Goldilocks sat in the first chair 1o rest her feet. "This chair is too big!" she exclaimed. So she sat in the second chair. “This chalr is too big, tool” she whined. So she tried the last and smallest chair, "Ahhh, this chair is just right; she sighed. Bt Goldilocks

Just as she settied down nto the chair to rest, it broke into pleces!

6 Goldilocks was very tired by this time, so she went upstairs 1o the bedroom. Goldilocks

7 Shelay down in the first bed, but it was too hard. Then she iay in was 100 soft. y in the third bed and it was Just right. Goldilocks

8 Goldilocks fell asleep. jing, the thr Goldilocks; the three
bears

9 "Someone's been eating my porridge. growled the Papa bear. ‘Someone's been eating my porridge.” said the Mama bear. eating my it all up!” cried Baby bear. Papa bear; Mama bear;
Baby bear

10 "Someone's been sitting in my chalr; growled the Papa bear. “Someane's been sitting in my chair; said the Mama bear. *Someane's been sitting in my chair and they've broken it all to pieces cried Baby bear. Papa bear; Mama bear,
Baby bear

11 They decided to look o Papa bear growed, " ing in my bed". inmy bed, toc” said the Mama bear. *Someone's been sleeping in my Papa bear; Mama bear,

bed and she's still there” exclaimed Baby bear. Baby bear

12 Just then, Goldilocks woke up and saw the three bears. She screamed, Help!", and she jumped up and ran out of the roam. and ran away into the forest. Goldilocks; the three

bears

Figure D.3: Drag the slider or use the button pre-sets to find an event set of your liking.

179

D. USER GUIDE D.2. USAGE

D.2.4 Merge any odd events

If there are any events that you feel should have been merged into one in your chosen event set, click
the “Enter Merge Mode” button above the event table and then select the set of contiguous events
you’d like to merge. Finally, click the “Merge Events” button to make the change. Following this,
you can also undo the change by clicking the “undo” button.

Event Text

n Event text

- Once upon a time, there was lttie girl named Goldilocks.

n She went for a walk in the forest. Pretty soon, she came upon a house. She knocked and, when no one answered, she walked right in. At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

1Al
|
i

3 She 1asted the porridge from the first bowl. “This porridge is 100 hot!” she exclaimed. So, she tasted the porridge from the second bowl. “This porridge is too cold” she said. So, she tasted the last bowl of porridge. “Ahhh, this porridge is just Goldilocks
right; she said happily and she ate it all up.

4 After she had eaten the three bears’ breakfasts she decided she was feeling a Ittle tired. So, she walked into the living room where she saw three chairs, Goldilocks

§ Goldilocks sat in the first chair to rest her feet. “This chair is too big!" she exclaimed. So she sat in the second chair, “This chair is too big, too!" she whined. So she tried the last and smallest chair, "Ahhh, this chair is just right;" she sighed. But Goldilocks
just as she settied down into the chair fo rest, it broke into pieces!

-

Galdilocks was very tired by this time, so she went upstairs o the bedroom. Goldilocks

<

She lay down in the first bed, but it was too hard. Then she lay in the second bed, but it was 100 soft. Then she lay down in the third bed and it was just right. Goldilocks

Goldilocks fell asleep. As she was sleeping, the three bears came home. Goldilocks; the three
bears

9 'Someane's been eating my porridge; growled the Papa bear. “Someane's been eating my porridge” said the Mama bear, *Someone's been eating my porridge and they ate it all up!” cried Baby bear. Papa bear; Mama bear,
Baby bear

10 "Someane's been sitting in my chait” growled the Papa bear. ‘Someenes been sitting in my chair” said the Mama bear. "Someone's been sitting in my chair and they've broken it all to pieces; cried Baby bear. Papa bear; Mama bear;
Baby bear

11 They decided to look around some more and when they got upstairs to the bedroom, Papa bear growled, "Someone's been sleeping in my bed". “Someone's been sleeping in my bed, too” said the Mama bear. “Someone's been sleeping inmy Papa bear; Mama bear;
bed and she's still there!" exclaimed Baby bear. Baby bear

12 Just then, Goldilocks jp and saw the three bears. , "Helpt", and she jumped up and ran out of the room. Goldilocks ran down the stairs, opened the door, and ran away into the forest. Goldilocks; the three

Figure D.4: We’ve entered merge mode here and selected the top two events to merge as one.
Clicking the “Merge Events” button will merge these events into one.

D.2.5 Add missing mentions

We can now read through our set of events to check if there are any mentions the application has
missed. If so, clicking anywhere on that event will open the “Edit Event” panel, where we can
add these additional mentions ourselves. If the missing mention should match one of the characters
already tagged elsewhere, we must be careful to spell the mention in exactly the same way so that
the application correctly treats these as the same character. This is shown in Figure[D.5]

© What do | do here?

Event Overview

Event Text Actors Mentioned

After she had eaten the three bears' breakfasts she decided she was feeling a little tired. Goldilocks
So, she walked into the living room where she saw three chairs.

Sentences View @
Event Text Actors Mentioned - Actors Mentioned
After she had eaten the three bears' breakfasts she decided she was feeling a little tired. Goldilocks "
? Goldilocks; the three bears|
So, she walked into the living room where she saw three chairs. Goldilocks

k Goldilocks
ges

Close Save chan;

Figure D.5: The “Edit Event” panel, where we see a missed mention of the three bears. We subse-
quently tag this additional character by typing the name after a semi-colon and space character to

separate the distinct characters mentioned in this sentence.

180

D. USER GUIDE D.2. USAGE

D.2.6 Update timeline

Following our minor tweaks, we can now update the timeline to see how it’s looking and perhaps
gain further insight as to any final refinements required. The timeline is not actively updated follow-
ing every change we make, so we must click the “Update Timeline” button shown in Figure [D.6]to

refresh the timeline.

Q a @ Settings.
Goldilocks
three bears

Papa bear

- MU

Baby mr’__—/_______’—"—’

No Actors

0 30

Current level: 19
[T —

Figure D.6: Our resulting timeline reflecting all our changes having clicked the “Update Timeline”

button.

181

D. USER GUIDE D.2. USAGE

D.2.7 Rename actors

In this example it is clear that “the three bears™ is actually a collective reference to all three of
the individual bears in the story. We’d thus rather rename this mention appropriately to make our
timeline reflect this, rather than leaving these as distinct paths in our timeline. To rename an actor,
we click on the actor’s name in the actor side panel to the right of the screen, which opens the Edit
Actor panel. Here, we can then rename “the three bears” to instead constitute each of the three
bears, separating each name with a semi-colon and space. This process is illustrated by Figure[D.7]

Note, to see this change take effect in the timeline we must again click “Update Timeline”.

ACTORS MENTIONED the three bears (3)

So ® © What do | do here?
eby bear 69 Edit name:
Mama bear (3) Edit name: :
the three bears [Mama bear; Papa bear; Baby bear|
Papa bear (3) A

the three bears (3)

Mentions:

Event
Sentence Mentions

\

3 After she had eaten the three bears’ breakfasts she Goldilocks; the
decided she was feeling a little tired. three bears

7 As she was sleeping, the three bears came home. Goldilocks; the
three bears

1 Just then, Goldilocks woke up and saw the three bears. Goldilocks; the
three bears

Close Save changes

Figure D.7: Renaming “the three bears” to each of the three bears, separating names with a semi-

colon and space.

182

D. USER GUIDE D.2. USAGE

D.2.8 Reorder characters in the timeline and zoom

In our case we have quite a clear timeline already by this point, but in some cases some reordering
of the character labels on the left hand side of the timeline can help significantly. To do this, we
click on the “Settings” button above the timeline. This opens the Timeline Settings panel where we
can drag-and-drop actor names to reorder them in the timeline. This is shown in figures [D.8a] and
[D.8b] Additionally, the timeline zoom buttons are located to the left of the “Settings” button.

aQ @ ©Senings

Goldilocks

Baby bear

No Actors

Timeline Settings

© What do | do here?

Actor labels
Goldilocks
Papa bear
Mama bear

Baby bear

(b)

Figure D.8: (a) Opening the Timeline Settings panel, which is subsequently shown in (b).

183

D. USER GUIDE D.2. USAGE

D.2.9 Highlight paths

With our final timeline drawn, we can finally begin to explore and interact with the result. Hovering

over any character name in the timeline will highlight the path of just that character through the

timeline. Clicking on a character name will permanently keep that characters path highlighted, and

subsequently hovering over any other character names will also highlight their paths through the

timeline. This is shown in Figure [D.9] Clicking anywhere else on the timeline canvas will reset the

highlighting.

Goldilocks

Baby bear

Figure D.9: Highlighting the paths of Goldilocks and the Mama bear in the timeline.

D.2.10 Hover-over text

Hovering over any of the event nodes in the timeline will display the text of that event to quickly

allow you to see what’s happening at various points in the timeline. Similarly, the event numbers in

the timeline also correspond to the event numbers in the “Event Table” at the bottom of the page.

Goldilocks

Mentions: Goldilocks, Mama besr, Papa bear,
bear

Goldilocks fell asieep. As she was sleeping,
the three bears came home.

Baby bear

No Actors

Figure D.10: Hovering over the nodes in the timeline to read what is expressed by that event.

184

	Introduction
	Motivation
	Project Overview
	Objectives
	Contributions

	Background
	Natural Language Processing
	Overview
	Named Entity Recognition
	Coreference Resolution
	Temporal Information Retrieval
	Semantic Role Labelling
	Event Extraction
	Other Areas of Interest

	Clustering Techniques
	K-Means Clustering
	Support Vector Clustering
	Hierarchical Clustering

	Timeline Visualisation
	Existing Tools
	Force-Directed Graphs

	Choice of Text Corpora
	Related Work

	Laying the Foundations
	Aims
	Defining an Event
	Experimentation
	Coreference Resolution
	Named Entity Recognition
	Event Extraction

	Selected tools and technologies

	Adjustable Event Identification via Hierarchical Clustering
	Intuition
	Initial Investigation
	Feature Selection
	The Algorithm
	Overview
	Parameters and Modifications

	System Design
	Architecture
	Components

	Experimentation and Results
	Scoring Functions Considered
	Feature weights
	Link Strategy
	Distance Discount Factor
	Final Configuration

	Automatic Cluster Selection
	Implementation Details
	Feature Filtering
	Similarity Matrix Optimisation
	Clustering Acceleration
	Event Cluster Representation

	Timeline Visualisation
	Aims
	Design Objectives
	Options Considered
	Using the Force
	Selected Software
	Abusing the force

	Result and Features
	Node Properties
	Edge Properties
	Timeline Features

	Implementation Details
	Overview
	Input Format
	Basic Configuration
	Actor Foci
	Leading Edges
	Curved Edges
	Tooltip Text

	The Application
	Aims
	Chosen Approach
	Back-End
	Responsibilities
	Technology Stack
	Pipeline
	System Architecture
	Implementation Details

	Front-End
	Responsibilities
	Technology Stack
	Results and Features
	System Architecture
	Implementation Details

	Resource Requirements

	Results and Evaluation
	Case Studies
	Goldilocks and the Three Bears
	Little Red Riding Hood
	Harry Potter and the Philosopher's Stone

	Evaluation Overview
	Event Clustering Evaluation
	Aims
	Evaluation Metrics
	Results and Remarks

	Timeline Visualisation Evaluation
	Aims
	Test Set-up
	Results and Remarks

	Web Application Evaluation
	Aims
	Efficiency
	Ease of Use

	Evaluation Summary
	Strengths
	Weaknesses

	Conclusions
	Lessons Learnt
	Future Work

	Example Texts
	Goldilocks and the Three Bears
	Little Red Riding Hood
	The Gingerbread Man
	Harry Potter and the Philosopher's Stone

	Additional Results
	Coreference Experimentation Results
	Goldilocks Manual Annotations
	Cluster Selection Analysis

	Additional Material
	Raw Results of Coreference Resolution Experimentation
	Gingerbread Man Events
	Early Timeline Visualisations
	Timelines used in Evaluation

	User Guide
	Installation
	Usage
	Enter input text and list any specific characters
	Remove irrelevant mention annotations
	Identify a nice collection of events
	Merge any odd events
	Add missing mentions
	Update timeline
	Rename actors
	Reorder characters in the timeline and zoom
	Highlight paths
	Hover-over text

