IMPERIAL COLLEGE LONDON
DEPARTMENT OF COMPUTING

INDIVIDUAL PROJECT REPORT

Blockchain-based Smart Tenancy
Agreements

Author: Supervisor:
Henry Cuttell Prof. William Knottenbelt

June 2017

Abstract

This project proposes a solution to reduce the bureaucracy involved when renting
a property, aiming to improve the speed and ease of completing actions throughout
the tenancy, from contract creation to deposit arbitration. Smart contracts and
the Ethereum blockchain are utilised, enabling the tenancy agreement terms to be
encoded and deployed to the blockchain, with signatures and payments sent and
processed securely over the Ethereum network. The blockchain provides an im-
mutable record of these interactions providing irrevocable proof of tenants signing a
contract, along with the terms that were agreed upon. I have developed a responsive
and easy-to-use web application to enable contract participants to seamlessly inter-
act with the smart contracts representing tenancy agreements. Tenants, landlords,
and arbitrators are able to perform a wide range of features via this application in-
cluding issue reporting, notice creation, and dispute resolution respectively. I have
presented the application described in this report to several leading companies in
the blockchain industry, a property letting consultant, as well as at the Imperial
College London Blockchain Forum, and have received very positive feedback. I have
also obtained valuable suggestions from a user study and am continuing to further

develop the application, whilst investigating the potential of taking it to market.

Acknowledgements

First of all, I would like to thank my supervisor, Professor William Knottenbelt,
for his enthusiasm and invaluable advice; I have thoroughly enjoyed our project

meetings.

I would also like to thank my second supervisor, Dr David Birch, who gave me

excellent guidance during this project.

I am grateful to Gary Feger, of Woodward Estate Agents, for taking the time to
meet and explain the technicalities of tenancy agreements at the start of this project,
as well as his feedback and suggestions upon later demonstrating my application to

him.

Finally I would like to thank my parents and sister, who have supported me not only

during this assignment, but throughout my studies at Imperial College London.

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3

Motivation e
Objectives

Contributions

2 Background Research

2.1

2.2

2.3

24

Cryptography
2.1.1 Hash Functions
2.1.2 Public Key Cryptography
Bitcoino
2.2.1 Transactions Lo
2.2.2 The Blockchain o000
223 Proofof Work
Smart Contracts
2.3.1 Ethereum L oo
2.3.2 Rootstock
2.3.3 Smart Contract Discussion
Related Work
2.4.1 Express Agreement oL
2.4.2 Midasium

2.4.3 Replacing Paper Contracts with Ethereum Smart Contracts -
Proof of Concept, .

iii

CONTENTS

vi
24.4 Proof of existence 20
2.5 Tenancy Agreements 21
3 System Design 25
3.1 Tenancy Agreements as Smart Contracts 25
3.1.1 Contract Creation and Signing 25
3.1.2 Deposit Payment and Arbitration 27
3.1.3 Rent Payments 0. 29
3.1.4 Issue Reporting and Resolution 31
3.1.5 Notices 32
3.1.6 Information Stored on the Blockchain 32
3.2 Tenancy Agreement Storage, 34
3.2.1 Centralised Server vs Decentralised Storage 35
3.3 Web Application User Interface 35
3.3.1 User Journey 36
3.32 Nameand Logo, 36
4 The Application: Acropolis 38
4.1 User Journeys 38
4.1.1 Landlord 40
4.1.2 Tenant 47
4.1.3 Arbitrator 54
4.2 Features Available to All Users. 56
5 Implementation 60
5.1 Architecture 60
5.2 Smart Tenancy Agreement 60
5.2.1 Development 62
5.2.2 Solidity Implementation 62
5.3 Client-side Application L. 68
5.3.1 Framework and Libraries 68
5.3.2 Ethereum Integration 69

5.3.3 Meteor Build Client and Decentralised Storage 72

DA Server
5.4.1 Deploymento
54.2 APL . . .o
5.4.3 MongoDBo

6 Evaluation
6.1 Industry Feedback
6.1.1 Blockchain
6.1.2 Aventus
6.1.3 Oraclize
6.1.4 Palantir Cryptocurrency Mini Hackathon
6.1.5 Woodward Estate Agents
6.1.6 Imperial College London Blockchain Forum
6.2 User Feedback and Survey
6.3 Strengths and Weaknesses
6.4 Project Challenges
6.4.1 Testing Transactions on the Ethereum Testnet

6.4.2 Breaching the Gas Limit for Contract Deployment

7 Conclusion
7.1 Lessons Learned

7.2 Future Work
Bibliography

Appendix A Web Application User Feedback Questionnaire

Vil

76
76
76
76
7
7
78
79
80
81
82
82
84

85
85
86

88

94

viil

Chapter 1

Introduction

1.1 Motivation

Renting a property often involves a great deal of bureaucracy and estate agent fees
for both the tenant and landlord. When a property is let, the agreed terms such
as rental duration and monthly payments due are laid out in tenancy agreements;
a predominantly paper-based and hand-signed form of contract. Problems with
the current system involve the excess of paper documents required, lengthy bank
transfer times, and high estate agent fees. According to Barclays it can take up to
a day when transferring funds between different banks or longer for larger amounts,
which can incur extra charges [3]. Foxtons Estate Agents also currently charges £96
to renew a tenancy [33], which involves re-signing the existing tenancy agreement
updated with any new terms. Furthermore, at the end of a tenancy, it can take up
to 10 days for a tenant to receive back their deposit, with the potential for disputes
to end up in court, taking even longer to resolve [83].

1.2 Objectives

The aim of this project is to create a system which tackles these issues, allowing
for easy creation, signing, and execution of contract terms of tenancy agreements.
This project will focus on the England and Wales assured shorthold tenancy (AST)
contract, but should be suitable, with minimal adaptation, for any type of ten-
ancy agreement. The goal is to implement this system using smart contract and
blockchain technology, providing access to the platform for landlords and tenants
through an online web application.

The key project objectives are as follows:

e Develop smart contracts to enable execution of tenancy agreement terms such
as rent payment and deposit handling over the blockchain.

e Create a transparent system that will enable verification of a contract being
signed and the terms that were agreed upon.

2 Chapter 1. Introduction

e Allow simple creation of tenancy agreements to be stored privately with the
ability to be enforced as legal documents.

e Enable swift resolution of issues between the landlord and tenant, such as the
boiler breaking down.

e Design and implement an easy-to-use and responsive user interface for both
landlord and tenant interaction with the system.

1.3 Contributions

The main project contributions are as follows:

e A novel smart contract representing a tenancy agreement supporting a range of
user interactions such as signing a contract, paying a deposit, and transferring
rent payments. The smart contract removes the need for a trusted third party
to store the deposit and securely holds the funds, allowing for end of tenancy
arbitration via a designated arbitrator where the funds are released.

e Utilisation of the Ethereum blockchain in order to provide irrevocable proof
of the contract clauses that were signed.

e Creation of a secure server to store confidential details about tenancy agree-
ments whose hash value is recorded on the blockchain.

e A system allowing tenants to report issues to the landlord, the information and
timestamp of which are logged on the blockchain as proof, with the ability for
the landlord to confirm and resolve these issues.

e A prototype application to allow tenants, landlords and arbitrators to interact
seamlessly with a smart tenancy agreement via a responsive and user-friendly
interface.

1.3. Contributions

! LET & MANAGED

Subject to Contract -
3728 2050 Foxtons couk

Colin Dean

www.colindean.com

david conway

020 8422 5222

Relocotion
@feeeish)

Figure 1.1: ‘To Let’ signage in Harrow.

Chapter 2

Background Research

This section will explore the technology behind Bitcoin and the blockchain, followed
by an in-depth look at smart contracts. I will also describe the background re-
search on tenancy agreements and how the system will aim to implement this core
functionality.

2.1 Cryptography

I will begin by giving a brief overview of hash functions and public key cryptography;,
and how they apply to cryptocurrencies such as Bitcoin and Ethereum.

2.1.1 Hash Functions

Hash functions are widely used in blockchain technology. They provide a way to
deterministically produce a fixed length random value from arbitrary length input
data. This process is computationally infeasible to reverse, so given a hash value
it is practically impossible to obtain the original data. Current widely used hash
functions such as SHA-2 and SHA-3 have extremely low probabilities of collisions
occurring (where two different pieces of data map to the same hash value). A
common use case of hash functions is for data integrity checks which identify whether
some data has been modified since its corresponding hash value was generated, as
slightly different input data will cause a completely different hash value to be output
by the function. Figure 2.1 shows how a user’s Bitcoin public key is hashed to obtain
a Bitcoin address (the hashing function on the diagram actually consists of 2 hash
functions: SHA-256 followed by the RIPEMD-160 hash function [88, Chapter 4]).

2.1.2 Public Key Cryptography

Public key cryptography is the technology that underpins the way currency is se-
cured and transactions executed in many cryptocurrencies, including Bitcoin and
Ethereum. The principle is that a user has a public key (available to anyone) and

4

2.2. Bitcoin Y

Kk K A

Private Key Public Key Bitcoin Address

Elliptic Curve Multiplication

Hashing Function
(One-Way)

(One-Way)

Figure 2.1: Generation of a Bitcoin address and public key from a private key [88,
Chapter 4].

'

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

‘b/en}j, ‘-‘Vsr,}j’n ‘

Owner O's Owner 1's Owner 2's
Signature v Signature v Signature
&8)

Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

Figure 2.2: Chain of digital signatures [96].

a private key (must be kept secret). The private key is used to ‘sign’ transactions
from accounts they own, with their public key being used to verify that they were
the true sender for these transactions (without the private key being needed for the
verification). Figure 2.2, from Satoshi Nakamoto’s Bitcoin white paper, illustrates
this concept showing a chain of transactions where each one can be verified to prove
the chain of ownership.

Bitcoin uses elliptic curve cryptography to generate a user’s public key from their
private key; details can be found in Mastering Bitcoin by Andreas M. Antonopoulos
|88, Chapter 4].

2.2 Bitcoin

Bitcoin was proposed in a white paper in 2008 by Satoshi Nakamoto and has been
gaining in popularity ever since, with a market cap of £28 Billion as of May 2017 (see

6 Chapter 2. Background Research

“# Name Market Cap Price Available Supply
1 Bitcoin £11,495,032,375 £712.89 16,124,612 BTC
2 4 Ethereum £737,359,645 £8.36 88,243,984 ETH
3 < Ripple £190,713,975 £0.005175 36,855,961,691 XRP *
4 Litecoin £146,682,718 £2.96 49,498,456 LTC
5 @ Monero £128,890,704 £9.33 13,820,466 XMR

Figure 2.3: Top 5 cryptocurrencies based on market capitalisations (as of January
2017) [10].

Figure 2.4). Many other cryptocurrencies, referred to as Altcoins have also recently
surged in popularity, with ether rising in unit price from £8 in January 2017 to £137
in May 2017 (the Ethereum platform is described in section 2.3.1). Refer to Figures
2.3 and 2.4 for a comparison in the prices and market capitalisations of the top 5
cryptocurrencies for January 2017 and May 2017.

Satoshi Nakamoto’s paper, titled “Bitcoin: A Peer-to-Peer Electronic Cash System”
[96], describes the fundamental concepts of Bitcoin including transactions, proof of
work, and the blockchain. In this section I will explain these in more detail as many
of the technologies utilised in Bitcoin are also used in other cryptocurrencies such
as Ethereum.

2.2.1 Transactions

Bitcoin transactions are flows of value, they have one or more inputs and one or more
outputs. The value in the system is comprised of many unspent transaction outputs
(UTXOs). The users that these UTXOs belong to are able to sign a transaction with
their private key in order to transfer funds. These transactions consume UTXOs
and output more UTXOs. Figure 2.5 provides an illustration of this.

A user’s balance in Bitcoin is the sum of all of their scattered UTXOs. A Bitcoin
wallet [5] handles all of the administration for these UTXOs and decides which ones
to use when a new transaction is created |88, Chapter 5.

2.2. Bitcoin 7

“# Name Market Cap Price Circulating Supply
1 Bitcoin £28,254,868,818 £1727.23 16,358,500 BTC
2 4 Ethereum £12,628,447,920 £137.23 92,025,834 ETH
3 «§ Ripple £6,873,408,010 £0.179700 38,249,335,400 XRP *
4 @ NEM £1,433,757,200 £0.159306 8,999,999,999 XEM *
5 & Ethereum Classic £1,157,212,124 £12.57 92,085,124 ETC

Figure 2.4: Top 5 cryptocurrencies based on market capitalisations (as of May 2017)
[10].

Transaction 0 TX1
100,000 (TX 0)
(100k) inputQ
. satoshis | b put0 & X3
output0 30k input0
output0 20k Unspent TX
TX 2 output0 |-p----- QWP UTXO) >
t1 || 50k
outpu ™ input0
TX 4
output0 20k » input0
TX 6
outputl output0 | 10k
20k T input0
\ TX 5
. inputl
input0
10k Ly
/ 10k
UTXO
output(outputd p=====> >

Figure 2.5: A group of transactions showing inputs, outputs, and UTXOs [4].

Chapter 2. Background Research

Block 1 Block 2 Block 3
Header Header Header
"--._._._.- _"--—._____.-
..... Hash Of Previous Hash Of Previous Hash Of Previous
Block Header Block Header Block Header
Merkle Root Merkle Root Merkle Root
i ry i
1 T 1
Block 1 Block 2 Block 3
Transactions Transactions Transactions

Figure 2.6: Simple visualisation of the Bitcoin blockchain [4].

2.2.2 The Blockchain

The blockchain is an immutable distributed ledger to which groups of valid Bitcoin
transactions are added in ‘blocks’. Each block header contains a hash of the previous
block’s header; this is the crucial part that means the blocks form a ‘chain’. This is
also what makes the blockchain immutable, because if any part of a block’s header
is changed, the value of its hash will change, thereby changing the value of its hash
referenced in the next block, as well as all blocks that follow (see Figure 2.6 for a
diagram of this). The way the protocol stops an attacker from re-writing chains
of blocks is the concept of proof of work which will be explained in the following
section.

Each block header also has a ‘Merkle Root’ field which provides an efficient way
of hashing all of the transactions included in the block. A Merkle tree works by
pairing the transactions and hashing them, followed by pairing these hash values and
performing another hash, and so on forming a tree-like structure. This continues
until there is a single hash, the Merkle root. The transactions therefore cannot be
modified as the alteration would change all of the hash values propagating up the
tree.

2.2.3 Proof of Work

The proof of work algorithm helps ensure that the blockchain cannot be rewritten,
by requiring that all blocks have undergone significant computation in order to find
a ‘nonce’ value for their block header. This nonce must have a value that causes
the hash of the block header to be below a certain threshold. Consequently it takes
many attempts of incrementing the nonce and using the SHA-256 hash function
to calculate the hash of the block header, followed by checking whether or not the
resulting value is below the threshold. The difficulty of this process correlates to how
low this threshold value is, being dynamically adjusted so that a successful nonce is
found approximately every 10 minutes (the frequency of a new block being added to
the blockchain). This computation is very time-consuming to calculate but trivial

2.3. Smart Contracts 9

to verify. The likelihood of blocks being overwritten by malicious actors decreases
as successive blocks are added to the blockchain. Satoshi Nakamoto calculated the
probabilities of this happening in the Bitcoin white paper and showed the probability
drop off is exponential, so long as the majority of the network’s computational power
is controlled by honest nodes [96].

The network can be attacked if more than 51% of the nodes are controlled by
colluding malicious actors. However, the potential attacker is incentivised to remain
truthful because compromising the integrity of the network would cause the price
of Bitcoin to fall, devaluing their own Bitcoin stake.

While Bitcoin features many desirable properties of an electronic currency, it would
not be suitable for use in this project because of the limitations of its scripting
language not being Turing complete. This will be required to encode the complex
conditions and state transitions necessary in tenancy agreements.

2.3 Smart Contracts
2.3.1 Ethereum

Ethereum is a decentralised platform that shares many of the same core concepts as
Bitcoin, such as digital transactions, the blockchain, and a proof of work consensus
algorithm. However, the key difference is that Ethereum allows smart contracts
to be executed on the nodes within the network. These smart contracts can be
written by anyone and allow logic to be coded into the blockchain which is executed
whenever the block containing the code is downloaded and validated by a node
[89]. This technology enables the creation of decentralised applications or DApps
whose contract code can be trusted to execute deterministically across all nodes in
the Ethereum network. Example applications include crowdfunding for a product
without a trusted third party, or a decentralised autonomous organisation (DAO)
which carries out proposals democratically voted for by its members [18]. This
section will explore more in-depth details about Ethereum.

Ether and Gas

The currency of the system is ether which is used to pay for the transaction fees
and the computation involved when the smart contracts are run [19]. The units of
ether are as follows:

e 1 - wel
e 102 - szabo
e 10'° - finney

e 10'8 - ether

10 Chapter 2. Background Research

Gas is the unit of computation with an associated price in ether, and so different
operations in smart contracts have different gas costs, with more expensive opera-
tions requiring more gas to complete. The individual costs for the all of the possible
operations can be seen in the Ethereum Yellow Paper by Dr Gavin Wood [99].

Account Types

There are two types of accounts that are available in the Ethereum network: exter-
nally owned accounts and contract accounts. Externally owned accounts are owned
by individuals and are controlled by their associated private key, whereas contract
accounts are controlled by their contract code. Both types of account are referred
to by their 20-byte address and have an ether balance associated with them [89].
The accounts also store a nonce, to prevent double spending, as well as a storage
field [14]. Externally owned accounts are able to send transactions whereas contract
accounts can only send messages. Only contract accounts can have corresponding
code which is executed upon receiving a transaction or message.

Transactions and Messages

Transactions sent by externally owned accounts must be signed with their corre-
sponding private key and can transfer ether or call code in contract accounts. In
addition they can also create new contracts on the blockchain. The transactions are
written to the blockchain and can trigger further message calls to occur in contract
code.

Messages are only sent by contract accounts and are not written to the blockchain;
they are internal to the Ethereum network [89]. In addition to ether, data can also
be sent with messages or transactions.

Ethereum smart contracts are Turing complete and so the code has the potential to
infinite loop. This would be a waste of network resources and so the way Ethereum
prevents this from occurring is by having a gas limit STARTGAS for every transaction
and message. This means gas will be used up during the computation and if it
runs out before completion, the state is rolled back to before the transaction or
message was sent (minus the fees which are paid to the miner) [89]. The sender
of a transaction can specify the fee paid with the GASPRICE field (a higher fee will
generally mean the transaction is executed by miners faster [92]).

State Transitions

The Ethereum state transition function, displayed in Figure 2.7, shows a transaction
applied to an initial state; it is executed by the network miners and is as follows:

1. The incoming transaction must be correctly formed. Checks are done to ensure
the field count, signature (checked against the sender’s public key), and nonce
(must match the value of the sender’s account nonce) are correct.

2.3. Smart Contracts 11

State State'
14c5f8ba: 14c5f8ba:
-1024 eth - - 1014 eth
Transaction
bb75a980: From: bb75a980:
- 5202 eth 14c5f88a -5212 eth
if rcontract starage|tx.data[D]): To: I lcontract storage|tx.data[0]):
contract.storageltx.data[0]] = tx.datall] bb752980 contract.storageltx.datal0]] = tx.data[1]
. 0, 235235, CHARLIE, ALICE ..
[0, 235235, 0, ALICE % Value: % L
892bfo2f: Data: 892bfo2f:
-0 eth 2, - 0 eth
senditx.value / 3, contract.storage[0]) CHARLIE ::::::: ::::: i ; E::::z:-:i:::g:{?};
Zimﬁ :i:::; g Eiﬂi:ﬁiiiiﬁfﬁgi{i}i Sig: senditx.value / 3, contract storagel2])
30452fdedb3d [ALICE, BOB, CHARLIE]
[ALICE, BOB, CHARLIE] 7959f2cabBal
4096ad65: 4096ad65:
- 77 eth - 77 eth

Figure 2.7: An example Ethereum state transition [89].

2. The transaction fee maximum amount is calculated to be STARTGAS * GASPRICE,
the cost of unused gas will be refunded to the sender in a subsequent stage.
This fee is subtracted from the sender’s ether balance and their account nonce
is incremented.

3. The current gas amount is initialised to the value of STARTGAS and the gas cost
for the bytes representing the transaction is subtracted from the gas value.

4. Any ether sent with the transaction is subtracted from the sending account
balance and added to the the balance of the receiving account. The contract
code of the receiving account is also run if it is a contract account. The code
is executed, depleting the gas value per computation step, until completion
or once the gas supply has been exhausted. If the receiving account does not
exist, it is created in this step.

5. If the sender had an insufficient ether balance, or code execution did not
complete due to lack of gas, the transaction is rolled back. All changes to the
state are restored apart from the payment of fees, which are credited to the
miner of the transaction. Alternatively, on success the sender is refunded the
surplus fees for unused gas.

In addition, if any of the checks for a sufficient balance or valid signature fail at any
stage, an error is returned to the sender of the transaction.

Smart Contract Execution

Smart contracts are generally written in higher level languages such as Solidity or
Serpent which compile to low-level “Ethereum virtual machine code” (EVM code)

12 Chapter 2. Background Research

[89]. This is a bytecode language which is stack-based where each byte corresponds
to an operation that is executed by the Ethereum virtual machine (see [99] for more
details). EVM code has access to the following three storage locations:

e Stack: last-in-first-out data structure with a maximum depth of 1024.

e Memory: A byte array which can be infinitely expanded. It is cleared between
external function calls.

e Storage: Persistent key-value store. Data stored here remains in the Ethereum
state even after a contract finishes execution.

EVM code is executed in the Ethereum network whenever a transaction is received
causing a contract to execute. This execution is part of the state transition function
described in the previous section. The state transition function is part of the block
validation algorithm (described in the next section) and so the EVM code is executed
whenever blocks are validated by the miners. This is a point about Ethereum which
can be hard to grasp at first - the fact that specific contract code is executed on
every node in the network that downloads and validates the block containing the
transaction that calls the code [89].

Mining

The job of the miners is to secure the network and agree on a single history of
the blockchain. Their computational power is used to ensure nobody can ‘rewrite’
the blockchain history, by computing the proof of work for each new block that is
added. The miner that successfully computes the proof of work for a block at a
given difficulty is rewarded with 5 ether.

The latest version of the proof of work algorithm is Ethash which involves computing
a “directed acyclic graph” (DAG), requiring a large amount of memory [16]. This
aims to be ASIC resistant (application-specific integrated circuit) to help reduce cen-
tralisation of the network (when the majority of the mining is done by few entities).
This reduces the likelihood of a 51% attack, whereby the blockchain history could
be manipulated. Hence more users are able to run this algorithm on conventional
CPUs and GPUs, promoting decentralisation.

In the Ethereum network the miners produce blocks which are then verified by
others using the block validation algorithm (currently approximately every 14-18s
[17]). The algorithm summary is described as follows (the specification is defined
in the Ethereum Yellow Paper [99] and implementation details can be found in the
Ethereum wiki [21]):

1. Check the previous block is valid. This involves checking the current block’s
“previous block hash” field matches the hash of the previous block.

2. The following fields of the current block are then checked for validity:

2.3. Smart Contracts 13

Tx[0] Tx[1] Tx[n-1]

PAY
APPLY S[n] BLOCK S_FINAL
REWARD

~

5[0] | APPLY S[1] 7| ApeLY 21 S[2]

Figure 2.8: Validation of a block in the Ethereum blockchain [89].

e Timestamp - must be greater than the previous block timestamp and
less than 15 minutes ahead of the current time.

e Block number - must be one greater than the previous block number.

e Difficulty, Transaction Hash, Uncle Hash, and Gas limit - must
all satisfy validity checks (details can be found in the Ethereum Yellow
Paper [99]).

3. The block proof of work must be valid.

4. The transactions in the block’s transactions list are applied on top of the
previous block end state S[0] one at a time - see Figure 2.8. If any of the
state transitions return an error, or if at any point the cumulative gas consumed
exceeds the GASLIMIT, an error is returned.

5. In Figure 2.8 the state S_FINAL is the end state S[n] but with the miner’s
reward paid.

6. The block is only valid if the Merkle tree root of S_FINAL matches the final
state root in the block header.

To learn more about mining and to provide a source of ether funds for this project, I
started mining with my desktop computer consisting of an AMD 3GB GPU (useful
for the parallel and memory hard mining algorithm). I joined a mining pool (see
Figure 2.9) which removes the luck associated with being the winner to mine a block.
The pool combines all of the mining power and distributes the funds proportionally
according to the computational power each miner contributes, leading to a lower
but consistent income of ether. In the event of a pool’s mining power becoming 51%
of the network, miners should leave and join an alternative pool.

The Ethereum Blockchain

Ethereum uses specialised Merkle trees called Merkle Patricia trees to store the state
and transactions, allowing efficient insertion and deletion of items [89]. Figure 2.10
shows how the state is shared between adjacent blocks using pointers to data which
remained the same. This massively reduces the amount of state data which needs
to be stored. Full implementation details can be found on the Ethereum wiki [24].

14 Chapter 2. Background Research

9.0MH/s 11.0MH/s 7 (100%) /0 (0%) / 0 (0%)
0.45006

ETH
h W |

Hashrate, Shares & Workers

Current Effective Hashrate Average Effective Hashrate Reported Hashrate

Figure 2.9: ethermine.org dashboard [28§]

Block 175223 Block 175224

prevhash | | state root | | H(txlist) prevhash | | state root | | H(txlist)
1 A

i

Account 175

Account 175

Figure 2.10: Shared state between adjacent blocks in the Ethereum blockchain [91].

2.3. Smart Contracts 15

Development and Future Releases

The Ethereum Project has a four stage roadmap: Frontier, Homestead, Metropolis,
and Serenity [94]. Frontier was the initial beta release which introduced the core
Ethereum functionality such as the ability to deploy smart contracts and mine ether.
We are currently in the stable Homestead release which launched in March 2016 and
has included several big updates to the network, including security improvements.

The upcoming Metropolis release will be targeted towards non-technical users of
Ethereum and will see the production release of the Mist browser. This is how users
will interact with the DPApps which will be accessible via a DApp store [94].

The final release milestone will be Serenity which will come with several big changes
to Ethereum, including changing of the proof of work consensus algorithm to proof
of stake. This will reduce the electricity consumption of the network as it will no
longer require huge amounts of computational power. Users will instead have a
‘stake’ in the network proportional to the amount of ether they hold, and will be
selected to be the next block validator according to this value [25].

DPApps

Decentralised applications or PApps are the way the average user will interact with
the Ethereum network. There are already many DApps that are online (or still in
development) and can be viewed on the “State of the DApps” web page [82]. These
applications include marketplaces, DAOs, exchanges, and betting platforms - see
Figure 2.11.

In order access the intended features of these decentralised applications, the user
needs to be connected to an Ethereum node. There are a wide range of Ethereum
clients available which can be downloaded and run on the user’s computer. The
main implementation is the Go version (geth / go-ethereum) but there are versions
written in Rust (Parity), C++ (cpp-ethereum), and many others [15]. It is the job
of the client to download the blockchain and verify new blocks, as well as providing
a command-line interface for managing the user’s Ethereum accounts, sending ether,
or deploying smart contracts. The user also has the option of performing mining
with the client.

The browser interacts with the client through a JSON RPC API [23|, with most
DApps using the JavaScript wrapper API [27]. However, these clients are more

aimed at developers and end users will use the Mist Browser which has the Go
client bundled with it [36].

The Mist Browser

The Mist browser is currently available as a pre-release version, able to browse
DApps, sync to the Ethereum blockchain, and access the Ethereum Wallet. It

16

Chapter 2. Background Research

STATE OF THE BDAPPS

328 dopps listed
FirstBlood.io Flight Delay Insurance GroupGnosis Etherplay
Joe & Zack Christoph Mussenbrock (= Sys / in Koppelmann wighawag
A decentralized eSports reward Get indernnification if your plane is late & Stefan George Skill Games : Play games on Etheneum
plazform. Prediction market
Work In Progress 2017-01-21 Working Pratotype 2017-01-21 Live 2017-01-21 Live 2017-01403
EtherGit Verity SmartToken Chainy.Link
Miles Albert Matt Goldenberg Nikita Dubrovin Everex
Incenthized open source software Credible, Decentralized Reputation and NFC smart-token with SMS Secure Create Irreplaceable short URLS,
developmant Governance Messapes, Links to File
GPL O GPL Q @ Apache O @
Work In Progress 2016-12-01 Work In Progress 2016-11-26 Work In Progress 2016-11-24 Live 2018-11-24

Figure 2.11: DApps currently available or in development [82].

> BROWSE ~

. ETHEREUM WALLET 3
016 ETH

Wallets
Send
Main account (Ether... 0.15...
Account 2 0.00...

ETHEREUM PROJECT

. Ethereum Wallet

®

SEND

wallet.ethereum.org

D

CONTRACTS

Accounts Overview

| ACCOUNTS |

BALANCE

0.16 ETHER

Accounts are password protected keys that can hold ether, secure
ethereumn-based tokens or coins and control contracts. Accounts can't
display incoming transactions.

& ACCOUNT 2
OOl ether

& MAIN ACCOU...

9 0.15 ether

-+ ADD ACCOUNT

Figure 2.12: The Mist browser showing the Ethereum Wallet DApp [36].

2.3. Smart Contracts 17

You are sharing your identity with myDapp. This

allows the app to see any public information of your
accounts, including balances connected to it.

o Create new account
. Account 3
° Main account (Etherbase)

H Pinapp to the sidebar

CANCEL STAY ANONYMOUS

Figure 2.13: The ‘connect account’ dialogue box in the Mist browser [36].

provides a fluid user interface, similar to a regular browser with page navigation
and tabs, but enables users to interact directly with the Ethereum network. When
accessing a DApp, the user has the option of allowing it access to their account’s
public information (including balance) for a more tailored experience. The dialogue
box is displayed in Figure 2.13.

Mist can be run with the main Ethereum network or a test network which is used for
developers to test their applications without using real ether (ether on the testnet
has no monetary value).

The Ethereum Wallet

The Ethereum Wallet DApp comes bundled within the Mist browser and provides
a graphical user interface for users to manage their Ethereum accounts and ether
funds. It provides interfaces for users to create new accounts, send ether, and deploy
smart contracts. The main accounts overview screen can be seen in Figure 2.12.

Users can also download the Ethereum Wallet as a standalone application with-
out downloading the browser, although this is likely to change with the Ethereum
Metropolis milestone when Mist will see a production release [94].

Solidity

Solidity is the main high-level JavaScript-like programming language used to code
the smart contracts for decentralised applications [75]. Figure 2.14 shows an example
‘greeter’ contract which inherits from the ‘mortal’ contract (code from a tutorial on

18 Chapter 2. Background Research

1 pragma solidity 70.4.0;

2

3- contract mortal {

4- /* Define variable owner of the type address*/

5 address owner;

6

7~ /* this function is executed at initialization and sets the owner of the contract */
8 function mortal() { owner = msg.sender; }

9

10~ /* Function to recover the funds on the contract */
11 function kill() { if (msg.sender == owner) selfdestructCowner); }
12 }

13

14 - contract greeter is mortal {

15+~ /* define variable greeting of the type string */
16 string greeting;

17

18~ /* this runs when the contract is executed */

19~ function greeter(string _greeting) public {

20 greeting = _greeting;

21 }

22

23~ /* main function */

24 - function greet() constant returns (string) {

25 return greeting;

26 }

27 }

Figure 2.14: Example Solidity contract code in the browser compiler [20, 74].

the Ethereum Foundation website [20] compiled using the browser-based compiler
[74]). The greeter contract allows anyone to call greet () (line 24) which returns the
greeting that was set when the contract was created. In addition, the mortal contract
enables the creator to destroy to the contract using ki11() (line 11), removing the
contract from the blockchain and returning any held funds to the owner.

Solidity provides users with the means to create diverse and sophisticated smart
contracts which can be programmed to execute different logic upon receipt of dif-
ferent transactions from different senders. This deterministic execution can remove
the need for trusted third parties in various scenarios, which, combined with the fact
that all transactions are recorded in the immutable blockchain, can provide proof of
transactions being received and corresponding logic executed.

2.3.2 Rootstock

Rootstock [73] is a sidechain of the Bitcoin blockchain and, like Ethereum, allows
Turing complete smart contracts to be run on its network. It uses 2-way peg tech-
nology, whereby the value of one Rootstock coin is equivalent to one Bitcoin, being
created by effectively locking up Bitcoin, with the reverse also being true. The
Rootstock Virtual Machine (RVM) executes the smart contracts and is compatible
with the Ethereum Virtual Machine so Ethereum smart contracts are able to be run
[95]. The Rootstock network is secured by ‘merge-mining’ with the Bitcoin network,
where miners can simultaneously mine both chains and receive rewards for both.
Rootstock’s goal is also to support a high throughput of transactions and currently
supports 100 transactions per second [73].

2.4. Related Work 19

2.3.3 Smart Contract Discussion

There are also other smart contract platforms besides Rootstock and Ethereum, but
they are either immature in development progress, or do not possess substantial
advantages over Ethereum or Rootstock. Rootstock was not released in time to be
used with this project but I will continue to investigate using it in the future as it is
compatible with smart contracts written in Solidity for Ethereum. I have therefore
decided to use the Ethereum network and its smart contracts as the basis for this
project. Not only is it the most mature smart contract platform, but it has excellent
development frameworks, documentation, and a thriving user base. As this project
will involve users paying their rent and signing tenancy agreements, it is vital that
the underlying technology is widely adopted and trusted amongst the community.
Users will have the peace of mind that the project is being constantly developed
and improved [90], having already had numerous successful security audits [98].

2.4 Related Work

There are a few related projects that have been developed which share some common
features of this project. In this section I will discuss the similarities they have with
my project requirements and objectives.

2.4.1 Express Agreement

Express Agreement [100] was developed in 2015 by Tina Zhang, an Imperial College
London MSc student. The project uses the Bitcoin blockchain to record the signing
of non-disclosure agreements and to store the hash value of the NDA clauses. The
method uses a multi-signature Bitcoin address generated from the public keys of
the parties involved in the agreement. The proof that all parties have signed the
contract is represented by a transaction from this multi-signature address (which
must have been signed with the private keys of all parties). The transaction uses
a Bitcoin ‘OP _RETURN’ opcode which can be used to encode arbitrary data into
the blockchain, in this case the hash of the clauses in the contract. Therefore
this transaction can be looked up in the blockchain to verify the Bitcoin addresses
involved in signing the NDA, with the hash stored in the transaction proving that
a given set of clauses were agreed upon.

This project is similar in the fact that I will also be using the blockchain as a way of
proving that an agreement has been signed by multiple parties, but it will instead be
on the Ethereum blockchain using smart contracts to provide the means of signing
the agreement.

20 Chapter 2. Background Research

2.4.2 Midasium

Midasium: The Blockchain of Real Estate [52| offers a service which uses smart
contracts to represent real estate agreements (mortgage agreements, contracts of
sale, and tenancy agreements). These are stored and automatically executed on the
private Midasium Blockchain [53]. This enables tenancy agreements to be created
which automatically transfer fiat currency from the tenant’s account to the landlord’s
account.

The smart tenancy product offered by Midasium is similar to this project as it
uses smart contracts to encode tenancy agreements and the blockchain to provide
immutable proof of the contract agreed upon. However, one of the goals of this
project is to develop a system on a public blockchain, allowing anyone to check for
the existence and validity of a given contract. It is much harder to prove that a
private blockchain is operating in a trustworthy manner because you have to trust
the party operating it.

2.4.3 Replacing Paper Contracts with Ethereum Smart Con-
tracts - Proof of Concept

This paper [93] aimed to provide an answer as to whether paper contracts such as
tenancy agreements could be encoded on the Ethereum blockchain. The capabilities
of Ethereum were investigated and a proof of concept for a tenancy agreement smart
contract was created. The paper concluded that it is not advisable to place these
agreements on the blockchain citing the reason that all of the data is public, thereby
compromising the privacy of the contract.

This raises an important question about the privacy implications of storing contract
logic on the Ethereum blockchain. However, my project aims to encode the basic
conditions of the contract in the publicly visible smart contract, which should not
contain any information which enables the parties involved to be de-anonymised.
The available data will be rental payments to and from Ethereum addresses, which
does not easily enable users to be mapped to the account address used in the con-
tract. The sensitive contract information will be stored encrypted off the blockchain
with the hash of this contract stored in the smart contract (using the same method
as Express Agreement [100]).

2.4.4 Proof of existence

Proof of existence [70] allows users to store a hash of a document on the Bitcoin
blockchain via an ‘OP _RETURN’ transaction. The website allows users to select
a file, with its SHA-256 hash value being calculated client-side and subsequently
stored on the immutable blockchain. This proves that the document existed at
the time that its hash was recorded on the blockchain, due to the second preimage
resistance of the SHA-256 hash function. Second preimage resistance means that it is
computationally infeasible to find alternative data to the given original data, where

2.5. Tenancy Agreements 21

" OTDS

dEpOSitS Tenancy Deposit Scheme
SRR

Figure 2.15: Government-backed tenancy deposit scheme logos (left to right): the
Deposit Protection Service, MyDeposits, and the Tenancy Deposit Scheme [13, 54,
84].

the alternative data is different and has an identical hash value. I plan to utilise this
general concept of storing a hash value on the blockchain in this project, applied to
the case of recording the hash value of tenancy agreement contract clauses.

2.5 Tenancy Agreements

In order to learn more about tenancy agreements, and to gain an understanding
of the requirements that the project will need to fulfil, my project supervisor and I
met with Gary Feger, a Property Letting Consultant at Woodward Estate Agents in
Harrow (Figure 2.17) [1]. We had an in-depth discussion about many aspects of the
renting process, including discussing the most common types of tenancy agreements,
problems that can arise between the landlord and tenant, and the checks that need
to be done before a property can be let. I will outline the points that we discussed
in this section.

Gary told us that the most common type of tenancy agreement is the ‘assured
shorthold tenancy’ (AST). This agreement must be written in plain English and
be of mutual benefit to both the tenant and the landlord. He also explained the
differences between the different types of deposit schemes such as insurance backed
(landlord keeps the deposit and pays a premium) versus custodial schemes (deposit
is transferred to the trusted third party scheme). There are three government-
backed deposit schemes [83]: the Deposit Protection Service (DPS), MyDeposits,
and the Tenancy Deposit Scheme (TDS) [13, 54, 84|. The landlord must ensure
they comply with the law and put the deposit in one of the approved protection
schemes within 30 days of receiving it [83]. At the end of the tenancy, the deposit
(minus any agreed deductions) must be returned within 10 days to the tenant [83],
but can take longer in the case of disputes which can end up in court. Handling the
deposit is something I will be looking to integrate into the smart contracts, because
they provide a perfect method of holding funds without the need for a trusted third
party. The main tenancy agreement stages are illustrated in Figure 2.16.

Issues that can arise with tenancies often involve the tenant failing to pay the rent. If
the tenant cannot afford the rent, they can resolve the issue by giving the landlord
notice to end the tenancy agreement and leave the property (generally 2 months
notice). However, this is not always the case and tenants can stay in the property

22 Chapter 2. Background Research

Agree on tenancy
agreement terms (e.g. rent,
deposit amount, tenancy
duration)

-~ ™\
All tenants and landlord

must sign the tenancy
agreement

l

4 Tenants must make a)
bank transfer with the
deposit to the landlord’s
account

|

Tenants must make
monthly rent payments
to the landlord’s bank
account

|

[Complete Tenancy J

\

Dispute resolution
service or court
resolves deposit

Tenants receive back Ll

deposit (minus agreed /
deductions) via bank

transfer

-

Figure 2.16: Diagram to show the main stages involved in the standard tenancy
agreement process.

2.5. Tenancy Agreements 23

without paying rent, leading to them being served an eviction notice from the estate
agent. This notice must be hand delivered or sent by recorded delivery to obtain
a proof of sending the document (it cannot be sent by email for a number of legal
reasons).

There are also several checks that the estate agent must undertake to verify the
tenant is suitable for the tenancy and has a good record. They obtain an employer’s
reference, a bank status inquiry (to ensure they can afford the rent), and a previous
landlord reference. These help to ensure the tenant has a good record and will pay
the agreed rent on time. The tenant must also have a valid UK/EU passport, or
have a valid visa which guarantees their legal right to stay in the country for the
duration of the tenancy. I believe these checks would still need to be conducted by
the estate agent to work alongside my application, as they have years of experience
in this field and I would not likely be able to ensure as accurate of an assessment
(especially as a lot of the checks carried out are done with the knowledge of what
fraudulent documents look like).

Following this meeting I have obtained the following application requirements:

e The application must be very robust as it will be handling other people’s
money.

e Application must not show any users information that they are not authorised
to see, due to tenancies being private matters.

e The user interface must be simple to use for non-technical users.

24 Chapter 2. Background Research

Figure 2.17: Woodward Estate Agents in Harrow.

Chapter 3

System Design

This section will look at the requirements that the system aims to fulfil and will
discuss the different ways they can be implemented with smart contracts and ap-
plication logic. In addition, the other architectural aspects of the system such as
the contract storage medium and client user interface will be researched, and design
decisions justified.

3.1 Tenancy Agreements as Smart Contracts

Smart contracts are perfectly suited to being adapted to all kinds of contractual
agreements, particularly those which involve some kind of value transfer where there
are multiple, potentially distrusting, parties. As the smart contracts are independent
entities which live on the decentralised Ethereum blockchain, they can be publicly
inspected, verified, and providing their logic is sound, are completely tamper-proof.
Once created, the data they store is immutable, unless explicitly modified by valid
transactions sent by contract participants. In the case of tenancy agreements, these
transactions can map to operations such as signing the contract or transferring a
rental payment. The following subsections will look at these tenancy agreement
actions in more detail and will assess the possible design options.

This project will not deal with the phase during which the tenancy agreement terms
such as rental amount and tenancy duration are agreed upon, as these are generally
known in advance or negotiated in person prior to the contract being created. If it
was deemed necessary to add this functionality in the future, the interface would
likely resemble that of the Express Agreement project detailed in the background
research section [100]. Instead this project will handle the stages during which the
tenancy agreement is active, from contract creation until lease completion.

3.1.1 Contract Creation and Signing

The tenancy agreement data will be stored in a smart contract which is stored on
the blockchain in order to capitalise on the logic guarantees that smart contract
code provides. This means information such as the contract start time and duration

25

26 Chapter 3. System Design

need to be stored on-chain in order to, for example, disallow payments being made
before the tenancy has started.

The first question to consider is who deploys the smart contract representing the
tenancy agreement terms to the blockchain and should this occur before or after the
contract has been signed? There are three feasible ways the contract creation and
signing process could be handled and are as follows:

1. All parties sign the contract online and once all signatures have been received
the contract is deployed to the blockchain by an independent party (such as
the web application server).

2. All parties sign the contract online and the last person to sign also undertakes
the role of deploying the contract to the blockchain.

3. The landlord deploys the smart contract to the blockchain and all of the ten-
ants then sign the contract via Ethereum transactions digitally signed with
their respective private keys.

The first two methods are similar in the fact that the tenancy agreement is signed
online. The process would involve the users creating accounts, agreeing to the
terms and conditions, and clicking a sign button which would register to the server
that the contract has been signed. With the first option the server would have
an associated Ethereum account and would deploy the tenancy agreement to the
blockchain once the landlord and tenants have signed the contract. This is beneficial
because the deployment process is handled automatically so the users do not need
to interact with the blockchain. However, after deployment, subsequent actions
would either be carried out by the users directly interacting with the blockchain,
somewhat nullifying the benefit of not having to perform the initial deployment,
or they would also be carried out by the central server on behalf of the contract
participants. A major benefit of Ethereum is the decentralisation that it supports
when users interact with smart contracts and so having a central server perform
these actions is a step backwards when decentralisation is favoured. Furthermore,
as the contract participants are relying on the server to transfer all of the contract
terms correctly to the smart contract when it is deployed, if the server’s security was
compromised or there was a logic error, the smart contract terms would not match
the initial agreement terms. Therefore I have chosen to reject the first method.

The second option is similar to the first and is also advantageous because the smart
contract is not deployed until all parties have signed the agreement. However, by
making the person that signs it last have to deploy the contract, it could make the
application more confusing for users as their user journey changes depending on the
time they sign. Furthermore, if the last user deploys the contract locally from their
machine (as opposed to from the server) they would be able to edit the details after
it has been signed but before deploying it to the blockchain which is clearly not
ideal. This method, like the first, also requires the server to keep track of who has
signed the tenancy agreement in a centralised fashion, and so I have decided not to
proceed with this implementation either.

3.1. Tenancy Agreements as Smart Contracts 27

The third method eliminates the need for the server to keep track of who has signed
the tenancy agreement as the landlord creates and deploys the contract to the
Ethereum network immediately. This means the smart contract needs function-
ality to handle each tenant’s signature directly. These signatures translate nicely
to Ethereum transactions on the blockchain, as they must be signed with the pri-
vate key of the sending account. This means all of the users must create Ethereum
accounts to perform these contract interactions, which also provides a more secure
signing method because only the individual is in charge of storing their account
credentials (private key and password). They are never sent to the server but the
transactions representing their signatures can still be verified as authentic thanks
to public key cryptography (discussed in background research section 2.1.2). This
method is ideal because the tenants are signing the contract information stored on
the blockchain, which cannot later be altered due to the Ethereum blockchain’s
immutability.

In addition, the landlord does not need to sign the contract separately as they are in
charge of deploying it in the first place, so they should already agree with it and there
is no need to send a further signing transaction to reiterate this. A disadvantage with
this approach is that the contract is created before the tenants have signed, so if any
of them for any reason do not agree with the contract terms that the landlord has
laid out, the contract must be adjusted and redeployed. However I believe that this
is an acceptable trade-off in return for the guarantee that the contract information
agreed upon is immutable.

So to summarise, I will be using the process described in option three for the contract
creation and signing aspects of this project. Keeping all contract interactions within
the Ethereum network will not only improve security, but also transparency, enabling
anyone with a blockchain explorer (such as Etherscan [29]) and knowledge of the
contract’s location to view its entire transaction history. This would be particularly
useful if any legal disputes arise with the tenancy and proof is required in court, for
example the exact time an issue is reported (see system design section 3.1.4).

3.1.2 Deposit Payment and Arbitration

The payment of the deposit during a tenancy ensures that the landlord has some
funds to compensate them for any unpaid rent or if the property is damaged at the
end of the tenancy. As discussed in background research section 2.5, the two types
of deposit scheme are insurance backed and custodial. If the landlord holds the
deposit in the insurance backed scheme, they pay a fee to insure it, otherwise the
deposit is held free of charge by the custodial scheme. By utilising smart contracts,
I am looking to reduce the time it takes the tenant to receive back their deposit
and to reduce the amount of trust needing to be placed in the system. This section
will discuss the possible design decisions for integrating the deposit payment and
arbitration processes into smart contract form. FEach option below involves the
deposit being paid in ether (sent as a transaction over the Ethereum network) with
an arbitrator required to decide an appropriate deduction amount in the case of a
dispute.

28 Chapter 3. System Design

1. The tenant pays the deposit to a trusted arbitrator at the beginning of the
tenancy, who pays back the agreed deposit and deductions to the tenant and
landlord respectively at the end of the tenancy.

2. The tenant pays the deposit to the smart contract which is storing the logic for
the tenancy agreement. The funds are locked in until the end of the tenancy
when the landlord can decide the appropriate deduction amount. An arbitrator
makes the final decision for the withdrawal split in the case of a dispute.

Paying the deposit in ether, as is the case in both methods, ensures a fast payment
which is sent over the blockchain, and therefore not subject to long bank processing
times and high fees in the case of international payments. The disadvantage however
is due to the current volatility of the ether unit value in GBP, the ether deposit could
be worth a very different amount at the end of the tenancy. This doesn’t matter if
the value of ether goes up, because the landlord will simply have additional GBP
deposit funds, but if it goes down the landlord will have less GBP than the initial
amount which in extreme cases may not cover the necessary deductions. However,
I believe this is acceptable for the deposit as the landlord could charge a higher
initial amount to help compensate for this. Looking to the future, the problem
will probably be mitigated as crytocurrencies are likely to become more mainstream
and could stabilise in price. Furthermore if cryptocurrency exchanges introduce the
ability to place put options for ether in GBP (a put option gives the holder the
ability to sell an asset at a certain price within a given time frame), the landlord
could simply buy a put option to protect against the price of ether falling.

The arbitrator for both methods would be agreed upon at the beginning of the
tenancy by both the landlord and tenants, functioning similarly to the dispute res-
olution service offered by the three deposit protection schemes listed in section 2.5.
The contract participants would agree to go with the decision made by the indepen-
dent arbitrator so the dispute does not need to go to court.

The first method is similar to the custodial type of deposit scheme with the deposit
sent to a trusted arbitrator. The payment would be sent back to the parties at the
end of the tenancy, and would be arbitrated accordingly in the case of a dispute.
The benefit of this is that the arbitrator could immediately convert the received
ether to GBP so it is not subject to cryptocurrency volatility. However, it requires
trusting the arbitrator with the funds and requires action from them to transfer
the ether back to the tenant even if there are no deposit deductions made by the
landlord.

The second option stores the ether in the balance of the smart contract which can
be encoded to lock the funds until the end of the contract. This eliminates the need
for a trusted party to store the funds as they cannot be accessed or spent by anyone
until the contract duration is complete. A further advantage with this method is
that the arbitrator does not need to do anything if there is no dispute, as the tenant
can simply accept the landlord’s specified deductions and the funds will be unlocked
to be withdrawn immediately by the respective parties. However the arbitrator still
needs to resolve any disputes that arise and must specify the final amount to be
deducted from the deposit, but there is no way around this requirement.

3.1. Tenancy Agreements as Smart Contracts 29

Therefore I will proceed with the second option, as the fewer components that
depend on a trusted party, the more secure the application will be. It should also
speed up the time for the deposit to be returned and the fees involved will only be
the small transactions fees necessary to interact with the Ethereum network.

3.1.3 Rent Payments

In addition to the deposit being paid in ether, using smart contracts facilitates
the rent instalments to also be paid to the landlord in ether. The smart contract
can then enforce logic on these payments, such as preventing the rent from being
overpaid or transferred after the tenancy is complete.

Manual vs Automatic Payments

An important decision to make regarding these payments is whether the rent should
be paid manually or automatically before the due date.

e Manual payments require the tenant to manually enter their Ethereum account
password to approve and trigger each transaction.

e Automatic payments would involve the user granting a program access to their
account password in order to transfer rent on their behalf.

While it would be desirable for the tenant to have payments triggered automatically,
this is also less secure and the account password should ideally not be entrusted with
a third party. A program always has the potential to have subtle programming errors
or become compromised by a malicious actor or malware, risking the disclosure of
the user’s password. As the tenant’s Ethereum account is effectively their bank
account, I believe it is necessary to have more stringent security at the cost of
additional user interaction being required. Furthermore, if the user has to make
the payments themselves, the scenario of the account having insufficient funds prior
to making a payment is no longer an issue. The tenant can simply purchase more
ether instantly with GBP (possible on Coinbase [9]), something that would not be
possible with an automated service. Hence for these reasons I have opted for the
manual payments design.

Fixed Ether vs Fixed GBP Weekly Rent

My initial plan (and smart contract implementation) was for the landlord to specify
a fixed amount of rent in ether per week for the duration of a tenancy, for example
a contract specifying 10 ether due per week for a total of 52 weeks. This worked
well in January 2017 when the price of ether was stable at roughly £8, equating to
around £80 due each week to be paid in ether. However since then, the price of
ether has become extremely volatile and rose to £180 at the end of May 2017 (an

30 Chapter 3. System Design

increase of 2150%) [87]. This means a tenant paying 10 ether per week as described
above would have gone from paying the equivalent of £80 per week in January to
£1800 per week by the end of May. Clearly this is no longer an acceptable design
regardless of whether the tenant had purchased the total amount of ether up front
at the lower price, as this would never be expected to be the case. The reverse could
also occur where the price of ether plummets, and so with a fixed amount being
paid each week, the landlord would be very much worse off.

As the rent must be paid in ether to be transferred and recorded on the Ethereum
blockchain, there is one solution to this problem, and that is to use an oracle service
to access the current ether to GBP exchange rate (as access to the web is not possible
directly from a smart contract). This works by querying the oracle for the price of
ether in GBP on each rent payment and requiring the ether paid each week to be
equivalent to a fixed amount in GBP, such as £80 per week for 52 weeks. This
means the amount of ether paid would be variable depending on its current price,
therefore the tenant would pay exactly £80 per week, which would have equated to
approximately 10 ether in January and around 0.4 ether at the end of May 2017.
This is a much more robust solution due to the generally much lower volatility of
GBP. Tenants will also prefer the familiarity of paying an equivalent value in GBP
each month, with the goal being to make this project as simple to understand for
non-technical users as possible.

Oraclize

I have decided to use the oracle service offered by Oraclize [65] in this project as it is
the most mature oracle service around for Ethereum and features a range of security
measures to guarantee that the result delivered to the blockchain by the oracle has
not been tampered with (including a TLSNotary proof [67]). An alternative oracle
service I considered using is the Town Crier project [85], but it is much earlier on in
development and doesn’t offer any big advantages over Oraclize.

The tenancy agreement smart contract can obtain the ether to GBP exchange rate
from a price feed web API (such as the one provided by CryptoCompare [11]) by
querying the Oraclize smart contract deployed to the Ethereum network, with the
API results being returned via a callback function (see Figure 3.1 for a diagram
of the Oraclize architecture [66]). The implementation details of Oraclize in the
tenancy agreement smart contract code will be discussed in implementation section
5.2.2.

There are however some disadvantages with using an oracle service. It requires
trust in the centralised Oraclize service, so if the Oraclize infrastructure outside
of the Ethereum blockchain went offline, the price feed would become inaccessible.
In addition it also requires the price feed web API to remain accessible, in order
to obtain a value for the price of ether in GBP. This trust could be minimised by
querying a second oracle service in the tenancy agreement smart contract and using
a different price feed API to reduce the risk of not receiving a response. However,
this would also increase the transaction fee when a tenant pays rent due to the larger

3.1. Tenancy Agreements as Smart Contracts 31

N

SMART
CONTRACT

3 SMART CONTRACT
- RESOLUTION

ETHEREUM

ORACLIZE
e INTERNET N\
data-source

WOLFRAM

A

l ANSWER (+ TLSNotary proof)]

ALPHA

- /

Figure 3.1: Oraclize query flowchart from the Oraclize documentation [66].

amount of smart contract computation required. So for this project I will only be
using Oraclize but the above suggestion could be implemented in future work.

3.1.4 Issue Reporting and Resolution

The Ethereum blockchain doesn’t just support signed transactions and payments of
ether, but also allows for arbitrary data to be stored inside the smart contract. This
allows for issues with the tenancy to be recorded on the blockchain, together with the
account that reported the issue and corresponding timestamp. These issues can be
anything from the tenant reporting that the boiler has broken to alerting the landlord
of a mouse infestation. Recording these on the blockchain will enable seamless
integration with the front-end web application to alert the landlord of these issues, as
well as to provide irrevocable proof of the time that an issue was reported. Although
reporting these issues will incur transaction fees on the blockchain, I think it makes
sense to keep all of the pieces of information relating to the tenancy agreement in
one place and stored together. I will discuss the issues surrounding storing sensitive
data on the blockchain in section 3.1.6.

Once an issue has been reported, a mechanism for issue resolution is needed to
determine when the issue can be declared resolved. My first approach for this was
to just allow either the landlord or tenant to mark an issue as being resolved once the

32 Chapter 3. System Design

issue has been fixed. However, the problem with this is that the landlord could mark
the issue as resolved when it may not be completely resolved from the tenant’s point
of view. There is no way around this he-said-she-said scenario without an impartial
arbitrator, and so the arbitrator agreed upon at the beginning of the tenancy to
deal with deposit arbitration should also be able to rule in favour of the landlord
or tenant in the case of issue dispute. By allowing the arbitrator to settle these
conflicts, the aim is to reduce the need for cases like these needing to be settled
in court. In the case of court still being required, for example if the arbitrator is
unsure who to side with, the presence of all the tenancy issue interactions on the
blockchain would act as tamper-proof evidence which could be used in court.

3.1.5 Notices

The issue system mentioned in the previous section is important to enable tenants
to reports issues that need to be fixed by the landlord. However, they may also need
to bring information to the landlords attention that does not require any action
to be taken, for example they could be going on holiday for an extended period
and want to alert the landlord that the property will be empty during a given time
period. Moreover, the landlord may wish to send notices to the tenants alerting
them of upcoming maintenance, or if the tenancy is nearing completion, new tenant
viewings of the property may be scheduled.

These notices will have a similar design to issues, but instead of having to be resolved,
they need to be acknowledged by the recipient. The notices will also be stored on the
blockchain to provide an immutable record of information sent between the contract
participants.

3.1.6 Information Stored on the Blockchain

When designing the smart contract, careful thought must be given to the information
that is stored on the Ethereum blockchain as it is a public ledger which anyone can
inspect. As tenancy agreements are confidential documents, information such as
the names of the tenants, the address of the property, and the contract clauses are
not suitable to be stored as plaintext strings in the smart contract. Tenants would
not want their Ethereum accounts linked with their name because this is effectively
revealing to the world the size of their bank balance. This leaves two options:

1. Store the confidential information on the blockchain but encrypt it first.

2. Do not store any confidential information in the smart contract, instead store
it off-chain in another form of storage.

The first option solves the problem of preventing the confidential information from
being publicly viewable, however it creates another problem of preventing the rele-
vant parties (landlord, tenants, and arbitrator) from being able to view the contract

3.1. Tenancy Agreements as Smart Contracts 33

details without a decryption key. Key management would therefore be required
between these authorised parties which would need a central server. Furthermore,
storing these large encrypted strings inside the smart contract would incur a high
gas cost for their storage (operation gas costs are detailed in the Ethereum Yellow
Paper [99]). These values would also be of no use to the smart contract and are
simply there so the holders of the keys can verify who the contract participants are
and view the contract clauses agreed upon.

Therefore a better solution is the second option where this information is stored on
a server outside of the Ethereum network where the contract participants must first
authenticate to access (discussed further in section 3.2). Unfortunately this means
the contract clauses are stored on a centralised server and so there is potential they
could be tampered with. To avoid this, a solution is to calculate a hash of the
clauses using a hash function and instead store this value in the smart contract.
As discussed in background research section 2.1.1, hash functions provide a way to
generate a deterministic fixed length digest for a piece of data, which combined with
the original data, can act as an integrity check to detect if the data has been modified
since the hash value was generated. This technique is utilised by the website “Proof
of Existence” [70], discussed in background research section 2.4.4. The Express
Agreement project discussed in background research section 2.4.1 also uses this
mechanism of storing a hash value to prove a set of contract clauses were agreed
upon. Separate hashes are not required for the contract participant names and
the property address because this information can also be detailed in the contract
clauses, so just a single hash value of the contract clauses is necessary.

A range of additional, non-personally identifying information must also be stored
in the smart contract so it can enforce logic on the tenancy agreement. Below I
will list the main values and explain for each one why it is required. Note that the
smart contract language I will be using, Solidity, does not currently support storing
decimal numbers and so all fields that store ether record ‘wei’, and fields recording
GBP store values in pence.

e Current contract stage: Records the current state that the tenancy agree-
ment is in, such as unsigned, signed, active and completed. This ensures
certain actions can only be executed when the contract is in a given state, e.g.
a tenant can only sign the contract when it is in the ‘unsigned’ stage.

e Contract clauses hash: SHA-256 hash of the tenancy agreement contract
clauses (as described in the previous section).

e Landlord, tenant, and arbitrator Ethereum addresses: Store the ad-
dresses belonging to each contract participant so custom logic can be executed
depending on who sent a transaction to the smart contract.

e Tenants that have signed the contract: Records which tenants have
signed the contract so the contract moves to the ‘signed’ stage once all tenants
have signed.

34

Chapter 3. System Design

Start time: The timestamp that the tenancy period begins; rent cannot be
paid until the tenancy period has begun.

Contract duration: The tenancy duration in weeks so the contract knows
when the tenancy is complete (by adding the total number of seconds in the
contract to the start timestamp).

Deposit paid / total deposit: The amount of ether the tenants have paid
to the contract and the total deposit amount required respectively. Once the
total deposit amount has been paid, the smart contract will begin accepting
rent to be paid.

Deposit deductions: Set by the landlord at the end of the tenancy to specify
the amount of ether to be deducted (if any) to pay for any damage caused by
the tenants. This amount must be accepted by the tenant or arbitrator before
the deposit can be withdrawn, which the smart contract logic will enforce.

Rent paid in wei: The amount of rent paid by the tenant in wei (1 ether
equates to 10'® wei).

Rent per week in pence: Stores the amount of rent due to be paid by the
tenant each week in pence.

Rent paid / total rent amount due in pence: The amount of rent paid
by the tenant in pence and the total amount of rent due for the duration of
the tenancy in pence.

Issues reported: All issues reported to the smart contract need to be stored.
The fields recorded for each issue include sender, timestamp reported, issue
ID, hash value of issue text, issue severity, and the timestamp of resolution.

Notices sent: All details of notices sent to the smart contract must be stored,
including sender, recipient, timestamp sent, notice ID, hash value of notice
text, and the timestamp of acknowledgement.

Details of how this data is stored in the smart tenancy agreement and its Solidity
code will be covered in implementation section 5.2.2.

3.2 Tenancy Agreement Storage

As discussed in the previous section, the sensitive tenancy agreement information
such as the contract clauses must be kept private and so won’t be stored on the
public Ethereum blockchain. This means they must be stored on either centralised
or decentralised storage. This section will briefly discuss the relative merits and
disadvantages of each approach.

3.3. Web Application User Interface 35

3.2.1 Centralised Server vs Decentralised Storage

Centralised storage methods typically involve a server which manages access control
to the private data, only allowing access for authenticated parties (such as via a
session cookie). A centralised server could receive requests to upload new tenancy
agreements, or update user details. This provides a simple and fairly secure way to
store the confidential data, and is how the vast majority of websites today handle
private user data. However, a centralised service introduces the following problems:

1. The server must remain online 24/7 in order for users to have access to their
tenancy agreements.

2. A centralised server can potentially be compromised by a malicious actor, with
tenancy agreements being modified or erased.

3. It could be costly to host this program on multiple server instances, especially
if the number of users increases significantly.

However, as I will be storing the hash of the tenancy agreement clauses on the
blockchain, an alteration of the contract clauses stored on the server would be de-
tected as its hash value would not match. Therefore as long as the contract partic-
ipants save a copy of the clauses offline, the second issue is mitigated.

Decentralised storage on the other hand would mean storing the contract clauses
encrypted on many nodes being accessed in a peer-to-peer fashion (encryption is
needed because the data is publicly accessible). While this solves issues 1 and 3
above, it makes it much harder to handle the necessary key management required
to ensure all contract participants can access the encrypted data. A centralised key
management server would be required to access the decentralised storage thereby
offsetting the benefit of using it in the first place, because if the server in charge
of providing keys and the locations of the encrypted data went down, the tenancy
agreements would be rendered unreadable.

Therefore for these reasons I will stick with a centralised server to store the tenancy
agreement clauses, but will continue to investigate possible ways to move this to a
more decentralised approach in the future. I will still use decentralised storage to
host the client-only front-end of the web application, which will make requests to
the server to download the necessary contract clauses.

3.3 Web Application User Interface

During the entirety of the user interface development phase I will keep several key
requirements at the forefront of the decision process. I have discussed these with a
range of potential users and have summarised the most important points which are
as follows:

36 Chapter 3. System Design

e Ensure the user journey throughout the application is simple and that the
users can complete the task at hand with ease and minimal button clicks.

e Keep the instructions clear and minimise the amount of technical jargon pre-
sented to the user, as they may not be very familiar with cryptocurrency
terminology.

e The user should know the state of the application at all times, they should
never be left unsure whether their request has been successful or have to refresh
the page for updates.

To evaluate whether the application fulfils these front-end requirements, I will con-
duct a user survey at the end of the project to ascertain whether a sample of users
agree that the above points have been achieved (see section 6.2).

3.3.1 User Journey

The user interface of the web application should enable the user to seamlessly deploy
transactions into the Ethereum network, such as the signing of tenancy agreements
or payment of rent in ether (as described in section 3.1). The web interface should
make it simple for the user to perform these actions, with it being clear which task
they need to perform next. At times it may be necessary to display some technical
details to the user, such as their Ethereum account address and balance, but I am
assuming the user has a basic knowledge about Ethereum and knows how to create
an account and purchase ether. No actions on the application can be performed
without an Ethereum account funded with some ether anyway, so I am treating this
as a hard prerequisite.

A design that could work well to ensure the user always knows what task to perform
next is to have an overview screen for each tenancy agreement that shows any action
currently required. I have validated this with several potential users, who agreed
that using a traffic light system to show an at a glance summary of the current
tenancy agreement’s standing would work well.

The web application should also update without requiring any page refreshes, en-
suring the user always sees the most up to date information.

3.3.2 Name and Logo

To give the application an identity it requires a name and logo, so users can refer to
it succinctly and recognise it easily. It should be eye-catching and aim to integrate
a triangular aspect to echo its use of Ethereum.

I have chosen the name Acropolis which literally means ‘high city’. It was the place
where contracts were formed in ancient times, with the records of the contracts
inscribed on markers at the acropolis in Athens [97].

3.3. Web Application User Interface 37

The logo was created using Boxy SVG [8], with the ‘A’ designed manually and the
‘Abel” font used for the rest of the name. Figure 3.2 shows the main logo and Figure
3.3 pictures the favicon.

AAcropolis

Figure 3.2: Application main logo.

A

Figure 3.3: Application favicon.

Chapter 4

The Application: Acropolis

4.1 User Journeys

This section will explain the roles of the different users of Acropolis and will include
screenshots to illustrate the steps they can take through the application. The three
types of user are as follows:

e Landlord: The landlord is in charge of creating the tenancy agreements and
overseeing all stages of the contract. They can withdraw the rent paid to them,
confirm and resolve issues, as well as send notices to the tenants or arbitrator.
The landlord is also in charge of specifying the amount of the deposit to be
deducted at the end of the tenancy which must then be approved by the tenant.

e Tenant: The tenant is able to sign tenancy agreements, pay the deposit, and
transfer rent via the application. In addition they can report issues that need
attention to the landlord, as well as send notices to the landlord or arbitrator
for things that do not need resolving directly.

e Arbitrator: It is the role of the arbitrator to resolve any issues that arise
between the landlord and tenants. They are also in charge of resolving deposit
disputes and will make the final decision on the amount of the deposit to
be deducted at the end of the tenancy, should the tenant reject the landlord’s
suggested deductions. The arbitrator can also oversee all stages of the contract
so they are informed about the history of the tenancy if any disputes arise.

The homepage of the web application within the Mist browser is shown in Figure
4.1, which is the page first presented to the user where they can choose a role to
view contracts for. It gives them a brief description of the website and tells them
the roles of the three different types of users. Each user may have more than one
different role as it is possible for a landlord to be renting a property themself, or an
arbitrator to be the landlord of another property. Users can then sign up to create
an account shown in Figure 4.2, followed by using the log in modal as shown in
Figure 4.3 to log in.

38

4.1. User Journeys 39

The following subsections will explain in more detail the user journey for each role.

@ 2cropolis localhost:3000 o

Acropolis 1ETH=£201.70) | | Sanup |

Acropolis

The future of tenancy agreements

Landlord Tenant Arbitrator
Go to your tenancy Go to your tenancy Go to your tenancy
agreements where you are a agreements where you are a agreements where you are an
landlord tenant arbitrator
Create contracts (£ sign contracts & Arbitrate deposit
(8] Receive rent) Pay rent + Resolve issues
B Manage agreements A Report issues ® Qversee agreements

View Contracts

€ github

Acropg“s 1ETH = £290.38 e 353 es ‘ Log In ‘ | Sign Up |

Sign Up

First name Enter first name
Surname Enter surname
Address Enter address
Email address Enter email address
Username Enter usemame
Password Enter password
Confirm Confirm password
password

Figure 4.2: Sign up page

40 Chapter 4. The Application: Acropolis

LogIn

Please enter your username and password:

Username Enter username

Password Enter password

Figure 4.3: Log in modal

4.1.1 Landlord

One of the main goals for the application is to make it easy for landlords to see
overview statistics for their portfolio of properties. As shown in Figure 4.4, the
landlord can clearly see at the top of the page how many contracts they currently
have, and how much rent they have available to withdraw, which is displayed in
GBP but corresponds to ether paid by the tenant (the ether conversion is shown
in a tooltip if the user hovers over the GBP value shown in Figure 4.5). The
dashboard also shows the total number of unresolved issues aggregated over all of
their properties, as well as the total number of new notices sent to them.

Tenancy agreements are displayed on the page one below the other, with the default
tab for each being ‘action required’, which shows a traffic light indicator of the
contract’s current standing. The green badge means there is no action required,
whereas orange and red badges indicate that there are items requiring attention.
This is a key area of the user interface design and clearly gives the user an at a
glance way of checking the state of their contracts. The tab system for each tenancy
agreement ensures a minimal amount of information is presented to the user at any
one time, to try and make navigating the application as simple as possible, and
avoid overloading the landlord with too much information.

The landlord can also create new contracts from this page by clicking the large blue
button which reveals a dropdown input box where they can input details of a new
tenancy agreement (see Figure 4.6). This allows them to specify the tenants in
the agreement, with multiple input sections supported by clicking the green ‘plus’
button. The landlord can then enter the arbitrator details, as well as the weekly
rent to be paid in GBP, the total deposit amount, and finally the tenancy agree-

4.1. User Journeys 41

ment clauses which should include everything in the current paper-based tenancy
agreements. The agreement should also include the necessary clauses for using this
system and the legal specifics for transferring the rent in ether (such as payments
cannot be reversed once sent). When the landlord submits the contract, it will be
deployed to the blockchain and, upon successful deployment, added to the back-
end database storing the tenancy agreement contract clauses, as well as confidential
information such as the names of tenants and the property address.

As a tenancy agreement transitions through its various stages as actions are com-
pleted (for example from ‘unsigned’ to ‘signed’), the ‘action required’ tab the land-
lord will see for each contract will change. After contract deployment to the blockchain
there is no immediate action required by the landlord; they must wait for the tenant
to sign the contract (Figure 4.7), pay the deposit (Figure 4.8), and transfer rent
payments throughout the tenancy (Figure 4.9). However, the landlord must take
action if the tenant reports issues with the property, and as shown in Figures 4.10
and 4.11, the ‘action required’ tab is updated to alert them of this. A notification
showing the number of unresolved issues for a tenancy agreement is also displayed
next to the ‘issues’ tab and can be seen in Figure 4.4. The landlord can confirm the
issue within the ‘issues’ tab to let the tenant know they acknowledge the issue is a
problem (Figure 4.13). They can also resolve the issue once they have dealt with
it, though this doesn’t remove the issue until either the tenant or the arbitrator
also says the issue has been resolved, ensuring issues cannot be disregarded by the
landlord. A mechanism to ensure the landlord must resolve issues truthfully is the
fact that the deposit funds cannot be released at the end of the tenancy if there are
issues which remain unresolved.

Other actions the landlord can perform include withdrawing rent from the ‘rent’ tab
(Figure 4.12), and sending notices to the tenant or arbitrator via the ‘notices’ tab
(Figure 4.15). Figure 4.14 shows how a landlord can create a notice to send to the
tenants to inform them that there is maintenance scheduled for a given date.

At the end of the tenancy the landlord is able to specify the deposit deductions which
are to be deducted from the initial deposit paid by the tenant (see Figure 4.16).
This action transitions the tenancy agreement to the ‘completed’ stage and alerts
the tenant that they have deposit deductions to approve/reject. In the case when
the landlord does not deduct any funds from the deposit (specifying a deduction
value of zero), the tenant can immediately withdraw the entire deposit from the
smart contract.

42 Chapter 4. The Application: Acropolis

Acropolis Landiord o

Landlord Tenancy Agreements

CONTRACTS TO WITHDRAW ISSUES UNRESOLVED NEW NOTICES
Create new tenancy agreement B
12 Regent Street, London @ (" Active]
Action required Qverview Details Deposit Rent Issues € Notices Map @

VDO TEN Y > 2issues need to be resolved & | Go to issues |

50 Exhibition Road, London @ [Unsigned]

Action required Qverview Details Deposit Rent Issues Notices Map @

GO LT RS > Waiting for all tenants to sign (0 /1 signed)

Figure 4.4: Landlord home screen

Landlord Tenancy Agreements

Loe72eTH
3 £197.03 2 1

CONTRACTS TO WITHDRAW ISSUES UNRESOLVED NEW NOTICE

Figure 4.5: Landlord statistics panel - GBP to ether conversion tooltip

4.1. User Journeys 43

Create new tenancy agreement Bj

Property 50 Exhibition Road, London

Tenant names Mr Smith Oxeb3393c2fc27353768fa28a71e810a9793531c34
and ETH

addresses

Arbitrator Mr Jones 0Oxeb3393c2fc27353768fa28a71e810a9793531c34
name and ETH

address

Start date 24/07/2017

Duration 52

(weeks)

Weekly rent £ 120

Total deposit 1

(ETH)

Contract Example tenancy agreement clauses for 50 Exhibition Road...

clauses

Review

Figure 4.6: Create new tenancy agreement dropdown, with example contract details
filled in

12 Regent Street, London @

Action required Overview Details Deposit Rent Issues Notices Map @

(LT LTSV BV) Waiting for all tenants to sign (0 /1 signed)

Figure 4.7: Landlord action required tab - waiting for tenants to sign contract

44 Chapter 4. The Application: Acropolis

12 Regent Street, London @

Action required Overview Details Deposit Rent Issues Notices Map ¢

R TTELEY S > Waiting for tenants to pay the deposit (0 /1 ETH paid)

Figure 4.8: Landlord action required tab - waiting for tenants to pay deposit

12 Regent Street, London ©® aD

Action required Overview Details Deposit Rent Issues Notices Map @

(LT CLTTEL BV > Waiting for tenants to pay rent

Figure 4.9: Landlord action required tab - waiting for tenants to pay rent

12 Regent Street, London @ [Active]

Action required Qverview Details Deposit Rent Issues @ Notices Map @

? 1issue needs to be resolved » ‘ Go to issues ‘

Figure 4.10: Landlord action required tab - 1 issue needs resolving

12 Regent Street, London @ [Active]

Action required Overview Details Deposit Rent Issues € Notices Map @

PYC T TCL Y > 2issues need to be resolved > ‘ Go to issues ‘

Figure 4.11: Landlord action required tab - 2 issues need resolving

4.1. User Journeys 45
12 Regent Street, London @ [Active]
Action required Overview Details Deposit Rent Issues € Notices Map @
Rent Details
Use the button below to withdraw all rent currently held by the smart tenancy agreement totalling 0.172 ETH
(~£50.04).
Withdraw Rent (£50.04)
Figure 4.12: Landlord rent tab - rent needs withdrawing
12 Regent Street, London @ [Active]

Action required Overview Details Deposit Rent Issues €) Notices Map @

Tenancy Issues

Use the priority buttons to filter unresolved reported issues based on their

High
9 o severity. Alternatively view all unresolved issues or past issues that have been
. resolved with the buttons below.
Medium
View 2 unresolved issues i= There are no resolved issues
Low Q

ST ioh priority |

Details: The boiler has broken down!
Reporter: Oxeb3393c2fc27353768fa28a71e810a9793531¢c34

Reported Time: 17 Jun 2017 - 21:25:38

DY Low priorty

Details: There is a small crack in the living room window.
Reporter: Oxeb3393c2fc27353768fa28a71e810a9793531¢c34

Reported Time: 17 Jun 2017 - 21:32:23

Figure 4.13: Landlord issues tab

46

Chapter 4. The Application: Acropolis

1 London Wall ©® [Active]

Action required Overview Details Deposit Rent Issues Notices Map ¢

Tenancy Notices

Use the button below to create a notice to send to the tenants/arbitrator about the tenancy.
Create new notice &

Notice details Maintenance scheduled for 29/07/2017

Notice Tenants
recipient

ar

Figure 4.14: Landlord notices tab - create new notice dropdown

1 London Wall ©® [Active]

Action required Overview Details Deposit Rent Issues Notices) Map ¢

Tenancy Notices

Use the button below to create a notice to send to the tenants/arbitrator about the tenancy.

Create new notice @

Your acknowledged notices v All other notices ® l
Notice 2 Pending acknowledgement

For Attention Of: Landlord
Details: The property will be empty from 16/07/2017 - 15/08/2017 as we are going on holiday.
Sender: Oxeb3393c2fc27353768fa28a71e810a9793531c34

Sent Time: 17 Jun 2017 - 22:48:53

Acknowledge Notice v

Figure 4.15: Landlord notices tab - view new notices

4.1. User Journeys 47

12 Regent Street, London @ [Active]

Action required Overview Details Deposit Rent Issues € Notices Map ¢

Deposit Details

Once the tenancy agreement is over, you must specify the amount of the tenant's initial deposit to be
deducted.

If this amount is greater than zero and is rejected by the tenant, it must be approved by the arbitrator of this
tenancy agreement.

The total deposit paid is 1 ETH (~£290.27). Please specify an amount to be deducted in the input field below
(in ether).

Amount in ether

Figure 4.16: Landlord deposit deductions tab

4.1.2 Tenant

The tenant dashboard is similar to the landlord dashboard, except that it displays
the amount of rent the tenant must pay that week (in GBP) instead of the amount
of rent to withdraw (see Figure 4.17). The tenant screen also shows if they have
more than one tenancy agreement active, but this is likely to be less common for a
tenant than a landlord.

The contracts have similar features to those available to the landlord but they are
tailored towards the actions that need to be performed by tenants. Each contract
again shows the next step the tenant needs to perform on the ‘action required’ tab,
enabling tenants to easily see which action they must complete next.

The main ‘action required’ tab will change much like the landlord’s equivalent, and
will transition through the following phases as actions are completed. The tenant
will first be prompted to sign a new tenancy agreement which has been deployed
with their account address listed as a tenant (see Figure 4.18). This will take them
to the details tab where they can review the contract clauses and general details
about the contract (see Figure 4.19). They must agree on the arbitrator chosen at
this stage, as this is the party that will resolve disputes should they arise during
the tenancy. Once the contract has been signed, the tenant must pay the deposit in
ether (see Figure 4.20). This can be paid in a single instalment or multiple tenants
can pay smaller amounts each adding up to the total (see Figure 4.21). After the
deposit has been paid, the ‘action required’ tab displays to the tenant how much
rent needs to be transferred by a given date (see Figure 4.22); the button shown
directs them to the ‘rent’ tab where they can specify an amount in GBP to pay (see
Figure 4.23). This input is converted in real time to a corresponding value in ether
displayed next to it so the tenant knows how much ether they will be paying. A
warning will also be displayed if tenant tries to enter more ether than is available in

48 Chapter 4. The Application: Acropolis

their Ethereum account’s balance (see Figure 4.24).

At the end of the tenancy, once the landlord has specified any deposit deductions,
the tenant has the opportunity to accept or reject these deductions (see Figure
4.26). If they accept them, the deposit and the deductions will be available to be
immediately withdrawn by the tenant and landlord respectively. However, if they
reject them, the arbitrator for the contract will be notified of a deposit dispute
and must perform their arbitration duties before the deposit can be withdrawn
(explained in section 4.1.3). Once the deductions have been approved, the tenant
can withdraw the remaining deposit (see Figure 4.28).

As was mentioned in section 4.1.1, the tenant can report issues with the property to
the landlord, as illustrated in Figure 4.30. The creation box allows details about the
issue to be described and the issue severity to be selected from a dropdown list (high,
medium, or low) (see Figure 4.29). By clicking ‘submit issue’, the tenant deploys
the issue submission transaction to the blockchain, logging it as evidence that the
issue was reported at that timestamp in the case of a future dispute. All users are
able to use the filtering buttons to only display certain issues in the case where a
lot have been reported. The ‘High’, ‘Medium’, and ‘Low’ buttons when clicked filter
unresolved issues by their severity, and the other two buttons filter issues based on
whether they are resolved or unresolved. Each issue displays details such as when it
was created and who reported it, as well as details of the issue and its current state:
‘awaiting confirmation’, ‘confirmed’, or ‘resolved’. A tenant is also able to mark an
issue as resolved which immediately changes its state to ‘resolved’, unlike with the
arbitrator or landlord, who require both parties to mark it as ‘resolved’ before it is
considered resolved.

Tenants can also create and sent notices to either the landlord or arbitrator via the
‘notices’ tab, in exactly the same way as the landlord can.

4.1. User Journeys 49

Acropolis 1ETH = £200.94 ©) | ogin | | signup |

Tenant Contracts

2 £169.97 2 0

CONTRACTS TO PAY THIS WEEK ISSUES UNRESOLVED NEW NOTICES

12 Regent Street, London @ aan

Action required Overview Details Deposit Rent Issues € Notices Map @

> £49.97 rentduein 4 days, 13 hours time

50 Exhibition Road, London @

Action required Overview Details Deposit Rent Issues Notices Map ¢

> Contract signature required »

Figure 4.17: Tenant home screen

50 Exhibition Road, London @

Action required Overview Details Deposit Rent Issues Notices Map @

> Contract signature required >

Figure 4.18: Tenant action required tab - sign contract

50 Chapter 4. The Application: Acropolis

12 Regent Street, London @

Action required Overview Details Deposit Rent Issues Notices Map @

Tenancy Agreement Details

Rent per week: £100.00

Tenancy duration: 26 Weeks

Landlord: Mr Jones

Landlord Account: Oxeb3393c2fc27353768fa28a71e810a9793531c34
Tenants: Mr Smith

Tenant accounts: Oxeb3393c2fc27353768fa28a71e810a9793531¢34
Arbitrator: Mrs Bloggs

Arbitrator account: Oxeb3393c2fc27353768fa28a71e810a9793531c34

Contract clauses: Example tenancy agreement clauses for 12 Regent Street...

Sign contract &’

Figure 4.19: Tenant details tab - sign contract

12 Regent Street, London @

Action required Overview Details Deposit Rent Issues Notices Map @

2 Deposit payment due (0 /1ETH paid) > ‘ Go to deposit ‘

Figure 4.20: Tenant action required tab - pay deposit

12 Regent Street, London @

Action required Overview Details Deposit Rent Issues Notices Map ¢

Deposit Details

Use the button and deposit amount input box below to pay some or all of the deposit (0 / 1 ETH paid).

Amount in ether

Figure 4.21: Tenant deposit tab - pay deposit

4.1. User Journeys 51

12 Regent Street, London @ [Active]

Action required Overview Details Deposit Rent Issues Notices Map ¢

2 £100.00 rent due in 4 days, 14 hours time) Go to rent ‘

Figure 4.22: Tenant action required tab - rent due

12 Regent Street, London @ [Active]
Action required Overview Details Deposit Rent Issues @ Notices Map @
Rent Details

Use the button below to pay rent to the smart tenancy agreement. You may only pay rent once the contract
has been signed and the deposit paid in full.

Next rent payment: £100.00 rent due in 4 days, 14 hours time

£ 50 0.1715 ETH R0

Figure 4.23: Tenant pay rent tab

£ | 50000 171.6326 ETH

You do not have enough ether to make this payment!

Figure 4.24: Tenant pay rent tab - insufficient ether funds warning

50 Exhibition Road, London ©
Action required Overview Details Deposit Rent Issues @) Notices Map @

oLl s) Deposit deductions need approval) | Goto deposit ‘

Figure 4.25: Tenant action required tab - deductions decision

52 Chapter 4. The Application: Acropolis
50 Exhibition Road, London @
Action required Qverview Details Deposit Rent Issues @ Notices Map @

Deposit Details
Use the buttons below to accept or reject the landlord's deposit deductions of 0.2 ETH (~£58.24).

Upon accepting the deductions, you will be able to immediately withdraw your portion of the deposit minus
the deductions.

Rejecting the deductions will pass the decision of the deduction amount to the arbitrator who can approve
the deductions or specify a lower value to be deducted.

e

Figure 4.26: Tenant deposit tab - deposit deductions need approving or rejecting

50 Exhibition Road, London ©

Action required Overview Details Deposit Rent Issues Notices Map @

2 Deposit ready for withdrawal » ‘ Go to deposit ‘

Figure 4.27: Tenant action required tab - withdraw deposit

50 Exhibition Road, London @

Action required Overview Details Deposit Rent Issues Notices Map @

Deposit Details

Use the button below to withdraw the deposit of 0.50 ETH (includes deductions the landlord has made that
you have accepted or have been approved by the arbitrator).

Figure 4.28: Tenant deposit tab - withdraw deposit

4.1. User Journeys

12 Regent Street, London @

Action required Qverview Details Deposit Rent Issues Notices Map @

Tenancy Issues

Use the button below to create an issue to send to the landlord about the tenancy.

Issue details The boiler has broken down!

Issue severity High

Submit issue X

Figure 4.29: Tenant issues tab - create new issue dropdown

ar

54 Chapter 4. The Application: Acropolis

12 Regent Street, London @ aD

Action required Overview Details Deposit Rent Issues € Notices Map @

Tenancy Issues

Use the button below to create an issue to send to the landlord about the tenancy.

Use the priority buttons to filter unresolved reported issues based on their

High
9 o severity. Alternatively view all unresolved issues or past issues that have been
. resolved with the buttons below.
Medium
View 2 unresolved issues i= There are no resolved issues
Low 1

Issue 2 Awaiting confirmation

Details: There is a small crack in the living room window.
Reporter: Oxeb3393c2fc27353768fa28a71e810a9793531¢c34

Reported Time: 17 Jun 2017 - 21:32:23

Figure 4.30: Tenant issues tab with a low priority filter applied

4.1.3 Arbitrator

The arbitrator has a similar dashboard to both the landlord and tenant, as shown in
Figure 4.31, but there are fewer methods of interaction with the tenancy agreement
available. Their purpose is to oversee the contract and resolve issues if the landlord
has resolved them but the tenant has not (an issue dispute). However, the most
important part of the arbitrator’s job is to arbitrate the deposit deductions if the
tenant rejects those specified by the landlord. Again, the simple ‘action required’
tab alerts the arbitrator if they need to perform arbitration (Figure 4.32), otherwise
it tells them that no action is required (Figure 4.33).

If the tenant rejects the landlord’s deposit deductions, the arbitrator must navigate
to the ‘deposit’ tab, as displayed in Figure 4.34. They must then either accept
the deductions the landlord originally specified, overruling the tenant, or they can
specify a new amount to be deducted which must be less than the original amount.
They cannot set a higher deduction amount than the landlord originally specified
however, to ensure the tenant does not become worse off by requiring their services.

4.1. User Journeys

55

Acropolis Arbitrator (8)

Arbitrator Tenancy Agreements

CONTRACTS DEPOSITS TO ARBITRATE ISSUES UNRESOLVED NEW NOTICES
12 Regent Street, London @ (" Active]

Action required Overview Details Deposit Issues € Notices Map @ Settings

LG GO TGS TELVEES > There are currently no items that require your attention.

50 Exhibition Road, London @ [Unsigned]

Action required Overview Details Deposit Issues Notices Map 9 Settings

LG GO TCL TELEES) There are currently no items that require your attention.

Figure 4.31: Arbitrator home screen

50 Exhibition Road, London @ Completed
Action required Overview Details Deposit Issues Notices Map @ Settings

> Deposit deductions arbitration required! » ‘ Go to deposit ‘

Figure 4.32: Arbitrator action required tab - deposit needs arbitration

50 Exhibition Road, London @
Action required Overview Details Deposit Issues Notices Map @ Settings

LGNNI YA > There are currently no items that require your attention.

Figure 4.33: Arbitrator no action required tab

56 Chapter 4. The Application: Acropolis

50 Exhibition Road, London & Completed
Action required Overview Details Deposit Issues Notices Map @ Settings

Deposit Details

The tenant has rejected the deposit deductions of 0.5 ETH (~£145.71) out of a total deposit of 1 ETH (~
£291.41).

Use the button below to approve the deposit deductions specified by the landlord, or specify a lower amount
to be deducted using the input field.

Figure 4.34: Arbitrator deposit tab - arbitration

4.2 Features Available to All Users

There is a lot of common functionality between all types of users of Acropolis. All
users participating in a tenancy agreement can view details of it on the ‘details’ tab
(see Figure 4.35), this includes the contract clauses which are retrieved from the
back-end database. The green tick symbol next to the property’s address (shown
in Figure 4.36) indicates that the hash of the contract clauses retrieved from the
database matches the contract clause hash on the blockchain. Hovering over this
symbol with the cursor displays a tooltip explaining to the user that the contract
has been deployed successfully (i.e. the database record agrees with the blockchain).
A red cross is shown to the user otherwise to alert them of this mismatch (which
should never occur if the system is functioning correctly).

The user can view the ether balance of their active address by hovering over it
in the navbar as shown in Figure 4.37. This address also acts as a hyperlink to
Etherscan [29] where they can use the blockchain explorer to view all transactions
to and from their Ethereum account. The navbar also displays the current exchange
rate from ether to GBP from the CryptoCompare APT [11]; this is also a hyperlink
to the CryptoCompare ether to GBP overview page where the user can view market
information and historical price charts [12].

All users for a given contract can view all of the notices for that tenancy agreement,
regardless of who they were sent to, thus improving the transparency of the system.
For a given user, notices can be filtered by buttons which show new or acknowledged
notices, or all notices not sent directly to that user (see Figure 4.38).

Finally, there is also a ‘map’ tab which displays an embedded Google map showing
the property’s geographical location, useful for landlords or property managers that
deal with large property portfolios (see Figure 4.39).

4.2. Features Available to All Users 57

12 Regent Street, London @ aD

Action required Overview Details Deposit Rent Issues € Notices Map @

Tenancy Agreement Details

Rent per week: £100.00

Tenancy duration: 26 Weeks

Landlord: Mr Jones

Landlord Account: Oxeb3393c2fc27353768fa28a71e81029793531c34
Tenants: Mr Smith

Tenant accounts: Oxeb3393c2fc27353768fa28a71e810a9793531c34
Arbitrator: Mrs Bloggs

Arbitrator account: Oxeb3393c2fc27353768fa28a71e810a9793531¢34

Contract clauses: Example tenancy agreement clauses for 12 Regent Street...

Figure 4.35: Contract details tab

Contract deployed
successfully
12 Regent Street, London @ [Active |

Action required Overview Details Deposit Rent Issues @ Notices Map @

Figure 4.36: Contract clauses hash verified symbol tooltip

Acropolis 1ETH=£201.14 ©)

67.415340205292271371

Ether

Figure 4.37: Ether balance navbar tooltip

Chapter 4. The Application: Acropolis

1 London Wall ©® [Active]

Action required Overview Details Deposit Issues Notices Map @ Settings

Tenancy Notices

Use the button below to create a notice to send to the landlord/tenants about the tenancy.

Create new notice €

‘ New notices for you @ Your acknowledged notices v All other notices @
Notice 1 Pending acknowledgement

For Attention Of: Tenants
Details: Maintenance scheduled for 29/07/2017
Sender: Oxeb3393c2fc27353768fa28a71e810a9793531¢c34

Sent Time: 17 Jun 2017 - 22:37:53

Notice 2

For Attention Of: Landlord
Details: The property will be empty from 16/07/2017 - 15/08/2017 as we are going on holiday.
Sender: Oxeb3393¢c2fc27353768fa28a71e810a9793531¢c34

Sent Time: 17 Jun 2017 - 22:48:53

Figure 4.38: Notices tab - all notices sent from the view of the arbitrator

4.2. Features Available to All Users

50 Exhibition Road, London @

Action required

Unsigned
Overview Details Deposit Rent Issues Notices Map ¢
1 —— Princes L ::’,
; = Sign i
50 Exhibition Rd 7 * @ z
i = o (=
50 Exhibition Rd, London, UK Directions Save = a 4]
g Prince's 2
View larger map - Gate Garden %
(=9
= v @ &
o @ &
z =] rd princes Gardens ES
mn
prince Consort Ennismore g
i Prince's Gardens ®
Royal College of Music Q) , Garden
' WS b
queen's Gate M€ : 50 Exhibition Road éﬁ?\
q 2
Terrace 2 pyrten B9 imperial College London &
\een's Gate 8 2 = &<
=2 [
S 5 %O g 3
LT @ = : imperial College Rd g’ ”}Og 7 ‘?L?}
= = = — \ e’
\ Science Museum@ 3 Holy Trinity Brompton @ % 5
aston P =] o ¢
D PR TN
. Frankland Rd =8 ?D = &Q
Science Museum IMAX @ ® %\0)&0 +
- Museum L2 2 % -
Natural History Museum & Googlefictoria and g London Oratory @
Nriaan's Cata

& ”
T ! 0,
Albert Mu 2017 Google - Map data ©2017 Google Terms of Use Report a map error

Figure 4.39: Property map tab

59

Chapter 5

Implementation

This chapter will describe the implementation details of the application and will
discuss why certain technologies and techniques were used.

5.1 Architecture

Figure 5.1 shows a high-level architecture diagram of the implementation of the sys-
tem. The user accesses the client-side Meteor application via the InterPlanetary File
System (IPFS) (either locally if they are running the IPFS daemon, or via a public
gateway) [43]. The application communicates with the smart contracts deployed
to the Ethereum network via an Ethereum node running locally (included with the
Mist browser). The smart tenancy agreements also interact with the Oraclize sys-
tem as shown on the diagram, however this occurs indirectly via the Oraclize smart
contract interfaces. Sensitive contract data is obtained from a Node.js API service
running on the Microsoft Azure cloud which is connected to a MongoDB instance.
This JSON data is queried via an HT'TPS AJAX request to the API endpoint.

The following sections will discuss each of these components in more detail.

5.2 Smart Tenancy Agreement

This section will go through the main features of the tenancy agreement smart
contract. I have coded the logic in Solidity |75], the flagship smart contract language
for Ethereum which is constantly in development with new features regularly being
added. There are several other languages available to code smart contracts:

e Serpent: Python-like language and was previously the main language used
to code smart contracts on Ethereum before Solidity. [26]

e LLL: Low-level Lisp-like language.

60

5.2. Smart Tenancy Agreement

61

- qatewdy]
Client-side provie ¥ IPFS gateway

Meteor App

(HTML, CSS &
JavaScript)

JSON RPC

Microsoft Azure

Ethereum
Network

MongoDB

Oraclize

Figure 5.1: Architecture diagram for application

62 Chapter 5. Implementation

e Viper: Experimental Python-like decidable language being developed with
features such as strong typing, fixed point number support, and the ability to
compute the maximum amount of gas a function call can consume. [34]

However, these are either rarely used any more for new smart contract development
or are experimental in the case of Viper, so Solidity was a straightforward choice.

5.2.1 Development

I developed the Solidity code using Remix, the Ethereum Solidity browser compiler
and IDE (see Figure 5.2) [74]. This automatically recompiles the code every time a
change is made and alerts the user of any syntax errors. It also allows the user to
deploy the contract to a JavaScript VM for debugging without deploying it to the
Ethereum testnet.

The compiler generates the contract bytecode and interface, which are needed to
be able to deploy the contract using the JavaScript Web3 library. This code is
also automatically generated by the compiler, and is pictured in Figure 5.2. The
screenshot does not include the contract code which is located immediately to the
left of the contract details panel. Using this tool greatly speeds up the contract
development, debugging, and deployment process.

5.2.2 Solidity Implementation

State Transitions

In the smart contract an ‘enum’ is used to represent the current stage of the agree-
ment which has possible values Unsigned, SignedDepositRequired, Active and
Completed. When actions are completed, a variable storing the current stage enum
is updated with the new stage. Function ‘modifiers’ are used in function calls which
make them only executable when the contract is in a certain stage, calling throw
otherwise, reverting any changes the function made. These state transitions make
it easier to reason about the smart contract, enforcing an ordering to the functions
being called, therefore helping to reduce the likelihood of subtle bugs existing in the
code. The Solidity documentation describes this state machine design pattern in
further detail [80]. Figure 5.3 illustrates the possible stages that the smart contract
transitions through; the Solidity code has multiple checks before a transition can
occur, ensuring all of the correct conditions are met beforehand.

5.2. Smart Tenancy Agreement 63

Contract Files Debugger Docs 9
Transaction origin Oxcal...a733¢ (8901850771803170616147943.424458808273940529 ether) 5
Transaction gas limit 3000000
Value 0

Publish Attach Transact Transact{Payable) Call

- ballot.sol:Ballot 2139 bytes

Publish At Address Create uint8 _numProposals

© Contract details (bytecode, interface etc.)

B o

ytecode 6@060604052341561000c57fe5b60405160208061085b8339810160405280205190602001¢

Interface - - . Dotied = o e o e
[{"constant":false, "inputs":[{"name”:"to", "type": "address"}], "nome": "dele

Web3 deploy

var _numProposals = /* var of type uint8 here */ ;
var ballot_sol_ballotContract = web3.eth.contract([{"constant":false,"ing
var ballot_sol_ballot = ballet_sol_ballotContract.new(

_numProposals,

from: web3.eth.accounts[@],
data: 'Ox6060604052341561000c57 fe5b60405160208061085b83308101604052¢
gas: '4700000'
}, function (e, contract){
console.log(e, contract);
if (typeof contract.oddress !== 'undefined') {
console.log('Contract mined! address: ' + contract.address + ' t

b

Figure 5.2: Screenshot of the Solidity browser compiler and IDE displaying the
contract details panel [74]

64 Chapter 5. Implementation

Tenant signs

Landlord
creates

smart —-—-[Unsigned J

contract

Last tenant signs

L

N
[Deposit required Pay partial

deposit amount

Pay full deposit

-

{ Active Tenant pays rent portion

i

Landlord makes deposit deductions

Tenancy
complete

Tenant rejects deductions
OR | then arbitrator approves or
sets lower amount

Tenant accepts
deposit deductions

1 L

Deductions
approved
Tenant Landlord
withdraws withdraws any
deposit approved

deductions

Figure 5.3: Diagram of the smart contract state transitions

Withdraw vs Send Payment Pattern

An important design consideration during development of the contract is the trade-
off between sending ether directly to the landlord when making a rent payment,
or transferring the rent to the contract and allowing the landlord to withdraw the
rent themselves. There are fewer contract interactions required if the payment is

5.2. Smart Tenancy Agreement 65

sent directly to the landlord, however, the Solidity documentation warns of security
risks associated with transferring rent directly because the transaction can always
potentially fail (run out of gas) [79]. It advises to use the ‘withdrawal’ pattern
[81] which is much safer; therefore I will be using this method as I believe it is of
paramount importance to maximise security in these tenancy agreement contracts.

Figure 5.4 shows the function in the smart contract used for paying the deposit to
the balance of the contract. This is the same principle as used for the rent payments
to the contract, but these are more complicated as they involve querying the oracle
service and so will be discussed in section 5.2.2. The main features of this function
are as follows:

The payable keyword on line 3 allows the function to receive ether.
e Line 4 is a function modifier that ensures only a tenant can pay the deposit.

e Line 5 ensures the contract is in the correct transition stage and is currently
accepting deposit payments.

e Line 11 is when the depositPaid variable is incremented with the amount of
the deposit sent with the function call.

e Line 12 creates a DepositPayment event that is listened for on the application
front-end to update the UI accordingly.

e Line 14 advances the contract stage to Active once the deposit has been paid
in full.

1 /// Pay deposit to the contract
2 function payDeposit()

3 payable
4 onlyTenant()
5 atStage(ContractStage.SignedDepositRequired)
6- {
7 // Check the deposit is not being overpaid
8- if (depositPaid + msg.value > totalDeposit) {
9 throw;
10 }
11 depositPaid += msg.value;
12 DepositPayment(msg.sender, msg.value);
13- if (depositPaid == totalDeposit) {
14 currentStage = ContractStage.Active;
15 }
16 }

Figure 5.4: Solidity function used by the tenant to pay the tenancy agreement
deposit.

66 Chapter 5. Implementation

Figure 5.5 shows the function used to withdraw the rent stored in the smart contract.
This function heeds the security advice in the Solidity documentation to avoid re-
entrancy bugs [78] and uses the “Checks-Effects-Interactions” pattern [76]. T will
briefly go through the lines in this function that are of note.

e Line 3 ensures that only the landlord can withdraw the rent.

e Line 7 is the check from the “Checks-Effects-Interactions” pattern, ensuring
that there is a positive and non-zero amount of rent to withdraw.

e Line 8 is the effect from the “Checks-Effects-Interactions” pattern, and sets the
amount of rent to withdraw to zero. This is what prevents re-entrancy bugs
where the other contract could call back into the contract before the interaction
is complete, potentially enabling the contract to be drained of ether by the
malicious actor. By setting this value to zero, calling back into the function
would not get past the initial check on line 7.

e Line 9 is the interaction from the “Checks-Effects-Interactions” pattern and
sends the ether back to the account that called the function.

e Lines 11 and 14 are RentWithdrawal events which are listened for on the

client-side code and trigger the application Ul to update accordingly.

1 /// Withdraw rent paid to the landlord
2 function withdrawRent()

3 onlyLandlord()

4 returns (bool)

5-{

6 var amount = landlordRentToWithdraw;

7- if Camount > @) {

8 landlordRentToWithdraw = @;

9- if (!msg.sender.sendCamount)) {

1@ landlordRentToWithdraw = amount;

11 RentWithdrawal(msg.sender, amount, false);
12 return false;

13 }

14 RentWithdrawal(msg.sender, amount, true);
15 return true;

16- } else {

17 throw;

18 }

19 }

Figure 5.5: Solidity function used by the landlord to withdraw the rent currently
paid to the contract.

Oraclize Ether to GBP Price Lookup

Rent payments are a little more complicated than the deposit payments explained
in the previous section. As discussed in section 3.1.3, each rent payment transaction

5.2. Smart Tenancy Agreement 67

uses the Oraclize oracle service [66] to obtain the current ether to GBP exchange
rate in order to determine the equivalent amount of GBP paid when transferring
the ether. The smart contract uses the Oraclize API and inherits from the contract
‘usingOraclize’ which provides functions that interact with the Oraclize interface
contracts [37].

Figure 5.6 shows the function payRent which tenants use to transfer rent to the
contract. The key parts of this function are as follows:

e In line 2 the parameter clientETHGBPinPence is passed to the function and
represents the exchange rate in pence recorded on the client-side application.
This of course can be manipulated by the user, and so the Oraclize value is
used for the actual rent calculation. This parameter is simply used as a sanity
check to ensure the value received from Oraclize is sensible in the callback
function. If there is a difference greater than a certain threshold, the payment
is invalidated.

e Line 10 gets the fee that Oraclize charge for a URL query, which is currently
$0.01 plus $0.04 for a TLSNotary Proof to be included to prove the result has
not been tampered with [68].

e Line 17 performs the Oraclize query requesting the current ether to GBP
exchange rate from CryptoCompare [11]. The result is returned via a callback
to the function __callback, which calculates the GBP amount paid towards
the rent and updates the contract variables accordingly.

e Line 19 adds a new RentPaymentInfo struct to the tenantPayments mapping
so that the callback function has access to data relating to the Oraclize function
call. It is indexed with the query ID obtained on line 17.

There are many other functions in the tenancy agreement smart contract that have
not been described in this section, such as for signing the contract, reporting issues,
and submitting notices, but have been left out for brevity.

68 Chapter 5. Implementation

1 /// Pay rent to the contract

2 function payRent(uint clientETHGEPinPence)

3 payable

4 onlyTenant()

5 atStage(ContractStage.Active)

6-{

7~ if (rentPaidInPence >= totalRentAmountInPence) {
8 throw;

9 1
10 var oraclizeQueryPrice = oraclize.getPrice("URL");
11 var rentSentInWei = msg.value - oraclizeQueryPrice;
12
13- if (oraclizeQueryPrice >= msg.value) {
14 // not enough ETH to cover the query fee
15 throw;
16- } else {
17 bytes32 gqueryID = oraclize_guery("URL",
18 "jsonChttps://min-api.cryptocompare.com/data/price?fsym=ETH&tsyms=GBP).GBP");
19- tenantPayments[queryID] = RentPaymentInfo({
20 processed: false,
21 sender: msg.sender,
22 timestamp: now,
23 clientETHGBPinPence: clientETHGBPinPence,
24 oracleETHGBPinPence: @,
25 rentPaidInWei: rentSentInWei
26 iH
27 }
28
29 }

Figure 5.6: Solidity function used by the tenant to pay rent.

5.3 Client-side Application

5.3.1 Framework and Libraries

As one of the user interface requirements discussed in section 3.3 was to ensure that
the user never has to refresh the page for new updates to be reflected, a good choice
for the front-end was the Meteor framework [51|. Meteor supports reactive program-
ming featuring a dependency tracking system, therefore when certain data that is
displayed on the UI changes, the relevant front-end templates are automatically
re-rendered to reflect the change. For example, in the context of this application,
when an event is received signifying that a rent payment has been made, the rent
data on the client-side is updated, thus triggering the dependent UI templates to
be re-rendered with the new rent amount. This ensures the user interface always
displays the latest information.

Furthermore, Meteor is the recommended framework to use when building DApps
[22], for a number of reasons including the ability to bundle all front-end code into
single HTML and JavaScript files so that it can be hosted statically and uploaded
to decentralised storage such as IPFS [43]. There is also an abundance of Meteor
developer resources and frameworks specifically targeted at Ethereum, making de-
velopment easier.

The Meteor packages used in the application are as follows:

5.3. Client-side Application 69

e ethereum:web3 [45]: Enables communication with the local Ethereum node
via JSON remote procedure calls (RPC). The web3. eth object provides access
to the Ethereum blockchain allowing information to be accessed such as the
addresses of the user’s active accounts, as well as transactions to be sent such
as transferring ether or deploying new contracts to the blockchain.

e iron:router [47]: Provides client-side routing functionality to manage routes
for the landlord, tenant, and arbitrator pages.

e session [49]: Used for storing variables that reactively update the Ul when
their value is changed. For example, the current ether to GBP exchange rate
is stored in a session variable.

e tracker [50|: Provides functionality to manually set up reactive data sources.

e http [46]: Provides functionality for making HTTP requests on the application
front-end. Used for making GET and POST requests to the contract server.

e jquery [48]: Used for many of the front-end animations, such as fading sections
in and out to create a fluid user interface.

In addition, the following npm packages were used:

e bootstrap (v4 alpha 6) [58]: Provides the front-end styling for many com-
ponents including forms, buttons and the navbar, as well as responsive flexbox
features for grid alignment.

e sha.js [63]: Used to calculate SHA-256 hash values on the front-end including
generating the hash of the contract clauses.

e tether [64]: The tether package is used alongside bootstrap to provide the
animated tooltip functionality for showing the user more information when
they hover over certain elements. One example of this is when the user hovers
over their active account address, their balance in ether is displayed in a tooltip.

Finally, the fontawesome [32| JavaScript source code is linked in the HTML head
section to provide the icons used on many buttons and components within the user
interface.

5.3.2 Ethereum Integration

The JavaScript Web3 API enables the blockchain to be interacted with directly on
the client-side of the application provided that there is an Ethereum node running
locally. If the user is using the Mist browser, a local Ethereum node comes bundled
with it, allowing them to send transactions to the network which will be picked up
by the miners and added to the blockchain. The user is presented with a pop-up
window before a transaction is sent, where they are able to enter their Ethereum

70 Chapter 5. Implementation

account password to sign the transaction with their private key and deploy it to the
network (see Figure 5.7). Sending transactions also requires some ‘gas’ to be sent
as well to provide a fee for the miners to execute the transaction, which also means
there is a delay before the block including the transaction is added to the chain
(typically around 15 seconds for the Ethereum main network).

Execute contract

6.29w ETHER
—»
0XD9E8843F
Oxeb33..1c34 Oxccfd...6c27

You are about to execute a function on a contract. This might
involve transfer of value.

Estimated fee consumption 0.0032204 ether (161,020 gas)
Provide maximum fee 0.0052204 ether (261,020 gas)
Gas price 0.02 ether per million gas
RAW DATA TRY TO DECODE DATA
0xd9e8843£000000000000000000000000000000060000000000000000000
7530
CANCEL SEND TRANSACTION

Figure 5.7: Mist browser pop-up for transaction deployment confirmation.

Figure 5.8 shows a snippet of JavaScript code used to call the signContract method
which will alter the state of the smart contract, hence requiring the user to enter their
password in a pop-up similar to that shown in Figure 5.7. The variable contractABI
is the contract’s Application Binary Interface, which defines the low level specifica-
tion for the contract. The variable contractAddress is the address of the contract
stored on the blockchain.

5.3. Client-side Application 71

1 web3.eth.contract(contractABI).at(contractAddress).signContract(
2 {from: web3.eth.accounts[@]},

3 function(error, result) {

4 if (lerror) {

5 console.log("Contract signed 0K");

6 } else {

7 console.warn("Error signing contract");

8 S

9 S

0

10);

Figure 5.8: JavaScript Web3 code - signContract transaction deployment.

Figure 5.9 shows the code required to send a ‘call’ to the network which does not
mutate the contract’s state. Hence this does not require gas to be sent and the
method returns immediately with the value read from the blockchain.

The contract data displayed on the Ul is retrieved via ‘calls’ to ensure that the user
is seeing the true data stored on the blockchain, as opposed to displaying values
stored in the database.

1 wvar contractInstance = web3.eth.contract(contractABI).at(contractAddress);
2 wvar numlIssues = contractInstance.getIssueCount();

Figure 5.9: JavaScript Web3 code - getlssuesCount call.

To guarantee that the Ul is updated whenever the data on the blockchain changes,
events from the smart contract are fired whenever a user performs a transaction
that mutates the contract state. Figure 5.10 shows the front-end JavaScript code
that listens for DepositPayment events, with depositPaidDep.changed () (from the
‘Tracker’ package) being called on line 3 to signify that the dependency is stale (as
some of the deposit has just been paid). Everywhere in the code that retrieves and
displays data from the blockchain which depends on the amount of deposit paid calls
depositPaidDep.depend(), setting up the reactive data dependency. Therefore
whenever an event is received, all user interface templates that depend on this data
will be automatically re-rendered.

1 var depositPaymentEvent = contractInstance.DepositPayment(function(error, result) {
2 if (lerror) {

3 depositPaidDep.changed();

4 console.log("Deposit Payment Event Received: "

5 + web3.fromWei(result.args.amount, "ether") + " Ether");

6 }

7

1

Figure 5.10: JavaScript Web3 code - listening for a DepositPayment event.

72 Chapter 5. Implementation

5.3.3 Meteor Build Client and Decentralised Storage

The Meteor Build Client [35] developed by Fabian Vogelsteller, enables the client
side of a Meteor project to be bundled into single HT'ML, CSS, and JavaScript files,
along with any standalone public files such as images. This means the website is not
required to be run from a Meteor server and can be served statically. Therefore these
files can be uploaded to decentralised storage so they are not served from a single
server which could go offline, improving the decentralisation of the application.

Acropolis has been uploaded to the InterPlanetary File System (IPFS) [43] so it can
be accessed at https://ipfs.io/ipfs/$SITE_HASH due to the content-addressable
nature of IPFS, where $SITE_HASH is the IPFS hash of the website directory. How-
ever, if the site content changes so will this hash value, and so the InterPlanetary
Naming System (IPNS) is used to access the latest website hash via a peer ID which
remains constant, such as https://ipfs.io/ipns/$PEER_ID [42]. A domain name
can also be pointed at this peer ID to make all of the IPFS address resolution happen
without users knowing IPFS is being used under the hood.

5.4 Server

As was discussed in design section 3.2.1, I have decided to utilise a server to store
the tenancy agreement clauses containing sensitive data, as they cannot be stored
on the blockchain in plaintext. This section will discuss the implementation details
of the cloud deployment, API, and the database used.

5.4.1 Deployment

The API server and database are deployed to a Microsoft Azure virtual machine
running CentOS. The Azure subscription was provided free to use with this indi-
vidual project and so it was the most cost-effective cloud solution. Azure provides
many tools to make cloud deployment easier, and includes a GUI to easily edit
options such as the inbound security rules and DNS name label for the VM. An
overview of the deployment can also be observed on the Azure dashboard, which
provides monitoring tools and historical metrics for virtual machine CPU usage and
disk read/write operations per second. Figure 5.11 shows the items in the cloud
deployment for this project.

5.4.2 API

The API server is built with Node.js [55] and Express [30] as these make it straight-
forward to get a simple server up and running, requiring relatively few lines of
JavaScript code. I have also had experience from previous projects working with
Node.js and so decided to use it again, having enjoyed using it in the past. An
alternative would have been the Flask framework [31] which uses Python, however

5.4. Server 73

NAME -~ TYPE
& acropolis APl Management service
" csb6e8c99d3eTdcxd95fxb0c Storage account
28 mongoVM Virtual machine
U mongoVMNSG MNetwork security group
mongoVMPubliclP Public IP address
LT mongoVMVYMNic Metwork interface
¢+ mongoVMVNET Virtual network
= osdisk_Zrr)9064Hv Disk

Figure 5.11: Microsoft Azure VM deployment items, where ‘mongoVM’ is the name
of the virtual machine where the MongoDB database is running.

I decided it was simpler to stick with JavaScript for both the client-side application
and the server, enabling faster context switching between the two during develop-
ment.

The following API GET and POST endpoints are active on the server (note the
use of ‘v1’ in the path, enabling the API to be upgraded in the future and remain
backwards compatible as new routes can simply be added with an incremented API
version as necessary):

e POST - /api/vl/users
To add a new user to the database via the sign up form. The user details are
contained in the body of the POST request.

e POST - /api/vl/login
Used to send the username and password to the server in the body of the
POST request (via HTTPS) to log in to the application. The response sets a
cookie in the user’s browser.

e GET - /api/vl/contracts/:type/:user
To retrieve the contracts relevant to the user of the application. Authentication
occurs via a cookie sent with the request. ‘type’ is the role of the user (landlord,
tenant, or arbitrator), and ‘user’ is the user’s username.

e POST - /api/v1l/contracts/:type/:user
To add a new contract to the database containing the details which are not
stored on the blockchain such as the contract clauses and the names of the
contract participants. ‘type’ is the role of the user (landlord, tenant, or arbi-
trator), and ‘user’ is the user’s username.

74 Chapter 5. Implementation

e POST - /api/vl/issues/:contractAddr
To add a new issue for a given contract to the database. ‘contractAddr’ is the
Ethereum address of the contract.

e POST - /api/vl/notices/:contractAddr
To add a new notice for a given contract to the database. ‘contractAddr’ is
the Ethereum address of the contract.

The following npm libraries are used with the server:

e beryptjs [56]: Used to generate the combined hash and salt stored in the
database from the user passwords. BCrypt is a computationally intensive
hashing function which aims to slow down brute-force search attacks.

e express [60]: High performance web framework for Node.js.

e body-parser [57|: Body parsing middleware for parsing JSON bodies of re-
ceived POST requests.

e cookie-session [59]: Used for setting cookies in response bodies with the
‘Set-Cookie” header.

e mongodb [62]: MongoDB driver for Node.js to interact with the database.

e https [61]: Used to set up the HTTPS server.

5.4.3 MongoDB

I chose to use MongoDB [86] as the database for this application because of its
flexible document-based storage model. It streamlines the development process with
its lack of restrictions on the format of the documents inserted, as the data to be
stored in the database is not confirmed at the start of development and is constantly
evolving. However, this does mean there is more manual validation that needs to be
performed on both document insertion and retrieval, as both data type and existence
for a field are not enforced.

MongoDB also has several frameworks which make it very simple to integrate with a
Node.js server. Potentially in the future, the MongoDB database could be switched
out for a relational database such as PostgreSQL [69] which enforces a more rigid
schema. However, at this stage in prototyping the application, MongoDB is perfectly
suited when the application is frequently evolving.

Figure 5.12 shows an example contract document stored in MongoDB, being viewed
with the Robo 3T tool [72]. In addition, an example user document is shown in
Figure 5.13.

5.4. Server

75

v 3 (4) Objectld("59425e003f151e681b5ded2d")
_id
" contract_address
" landlord_account
" landlord_name
L1 tenant_accounts
" [0]
LI tenant_names
" [0]
" arbitrator_account
" arbitrator_name
" contract_clauses
" house_address
rent_per_week
duration
3 issues
v 3 [0]

#

#

issuelD
" details
severity
L1 notices
¥ &3 [0]

*

noticelD
" details
recipient

{14 fields }
Objectld("59425e003f151e681b5ded2d")
OxeeBad9bddd778b1ebd5e70202a850016c52ed30a
Oxeb3393c2fc273537681a28a71e810a9793531c34
Mr Smith

[1element]
0Oxeb3393c2fc27353768fa28a71e810a9793531c34
[1element]

Mr Jones
Oxeb3393c2fc27353768fa28a71e810a9793531c34
Mrs Bloggs

Example tenancy agreement clauses...

50 Exhibition Road, London

15000

52

[1element]

{ 3 fields }

1

Boiler has broken.

2

[1element]

{ 3 fields }

1

Maintenance scheduled for 10am on 12/07/17

1

Figure 5.12: Screenshot of an example contract document stored in MongoDB being

viewed through the Robo 3T tool [72].

v £3 (1) Objectld("5926ee15b0b8et46a811edde")
_id
" username
*| firstname
" surname
| address
*| email
| beryptHash

{7 fields }

Objectid("5926ee15b0b8e646a811ed4e")

henryc

Henry

Cuttell

Gabaor Hall, Londan

henry@imperial.ac.uk
$2a$10%$0msBbhréjU1FtAcGpEhJiugvniS1akFDZG1eBHMGMSZ...

Figure 5.13: Screenshot of an example user document stored in MongoDB being

viewed through the Robo 3T tool [72].

Chapter 6

Evaluation

6.1 Industry Feedback

In order to receive feedback for the project and evaluate its technical achievement,
I demonstrated my application to several CEOs/co-founders of companies in the
blockchain space including Blockchain, Aventus, and Oraclize. I also presented the
application at the Imperial College London Blockchain Forum June event to re-
ceive some wider feedback, and demonstrated it to a property lettings consultant at
Woodward Estate Agents.

6.1.1 Blockchain

Midway through the development process I presented the project to the co-founders
and team at Blockchain, a leading provider of online Bitcoin wallets and blockchain
explorer software [7|. Their feedback was very positive overall and they said the
project provided a good solution to the issues associated with current paper-based
tenancy agreements. One concern was raised with the rental payments being made
in ether with a fixed amount of the currency due for the entirety of the contract.
Tenants would end up having to pay vastly different equivalent amounts in GBP
each month due to the extremely volatile nature of the cryptocurrency market. This
issue is discussed in more detail in section 3.1.3 and the solution of using an oracle
service to retrieve the current ether to GBP exchange rate for each payment was
implemented.

6.1.2 Aventus

Upon application development completion I spoke to Alan Vey, Co-Founder and
Director of Aventus, a blockchain-based event ticketing startup aiming to eliminate
unregulated touting [2]. T demonstrated my project to him and he gave me some
feedback and invaluable advice from his experience developing Ethereum applica-
tions. He suggested some ways to fine-tune my smart contract implementation,
which I have taken on board, as well as some ideas for potential future monetisation

76

6.1. Industry Feedback 7

of the project. He really liked the project concept and said the application has a
solid user interface which is clear and easy to navigate. Alan also said the project
“has real potential to reduce the extortionate administration fees which are the norm
when renting a property”.

6.1.3 Oraclize

As T am using the blockchain oracle service provided by Oraclize [65] in this project
to obtain the current price of ether in GBP, I decided it would be beneficial to receive
feedback from the company for my web application and in particular its integration
with Oraclize. Therefore I visited the Oraclize London office to demonstrate the
project to Thomas Bertani, the CEO and Founder, as well as the Oraclize team.
They were impressed with the project and agreed with the importance of the pay-
ments being paid in ether corresponding to a fixed GBP amount for the tenancy.
I also gave them a technical explanation of how the smart contract code is imple-
mented and they advised me on some ways to improve the structure of the code
in order to reduce the amount of ether required for the initial contract deployment
to the blockchain. We also evaluated the overall application design and discussed
a theoretical way to enable the confidential tenancy agreement information to be
encrypted and stored on decentralised storage in the future, as the technique is not
currently possible to implement due to Ethereum node API restrictions.

6.1.4 Palantir Cryptocurrency Mini Hackathon

I was invited by a small group of Software Engineers from Palantir Technologies to
give a talk about my project at a mini hackathon they organised to build some novel
blockchain-based applications. I demonstrated the functionality of the application
and discussed how it utilises the Ethereum network, which was followed by an in-
depth discussion about the cryptocurrency ecosystem. They were very positive of
the application and praised its level of completeness, in particular the user interface.
One piece of advice they gave was about my presentation, which they said needed a
brief background introduction of Ethereum and outline the benefits it brings to the
application over just using a regular server as a back-end. This is something I had
not realised was necessary up until now, as all of the companies I had previously
presented to specialise in blockchain technology.

To make the application appeal to a wider audience they also suggested I display
every price in ether with an associated value converted to GBP (I had done this
for the rental payments but not for the deposit amounts at this stage). They also
said in future development work it would be beneficial to completely abstract the
use of ether from the application and implement GBP bank payments straight into
the website with automatic ether conversion taking place. This is certainly the next
big step to take during development in the future and by abstracting the Ethereum
accounts, the option for automatic GBP payments could be achieved, though great
care would need to be taken to maintain high security.

78 Chapter 6. Evaluation

6.1.5 Woodward Estate Agents

At the end of the project I believed it was important to go back and visit Gary Feger,
the Property Letting Consultant who gave me the initial project requirements and
advice (detailed in section 2.5) [1]. I gave him a demonstration of the application
and explained the various technicalities of using the Ethereum network for smart
tenancy agreements, in particular for rent payments and holding the deposit. Gary
was really impressed with the project outcome and agreed that this is the way
contracts will be interacted with and signed in the future. He praised the simplicity
of the user interface and stressed how important it is for the system to be easy to
use for users of all technical abilities.

Gary did have some concerns regarding the legality of storing the deposit on the
blockchain, as currently it is required to be held by one of the approved schemes
by UK law, as discussed in section 2.5. The aim of this project is to provide a
prototype of a system which could have the legal restrictions lifted as blockchain
becomes more mainstream and UK law catches up with the technology. In Arizona
State, USA, a bill was passed in March 2017 making blockchain-based signatures
valid electronic signatures, and declared that a “contract relating to a transaction
may not be denied legal effect, validity or enforceability solely because that contract
contains a smart contract term” [44]. This shows that laws are already changing to
adopt this technology and so the legal framework required for a blockchain-based
tenancy agreement may be on the horizon.

In addition, Gary suggested some very good ideas to further improve the application
which I will detail as follows:

e Ability for the user to input their meter readings when they move in, to be
stored on the blockchain as proof. It would also be useful if the tenant could
upload a photo as proof, with the hash of the photo stored on the blockchain
as irrevocable evidence.

e Text alerts to the landlord when the tenants transfer rent to the smart contract,
alerting them that it can be withdrawn. There could also be text alerts to tell
the tenant when rent is due.

e The arbitrator tab should be split into two sections: one for the arbitrator
and one for the property manager. This makes the separation of roles clearer,
with the property manager in charge of resolving issue disputes between the
landlord and tenant, and the arbitrator in charge of the final deposit resolution
if a dispute arises.

e There should also be an option to upload an image along with the issue de-
scription as evidence, as well as to give the landlord an idea of the scale of the
problem (something which can often be exaggerated by tenants).

As I have reached the end of application development, I will continue to develop the
application and incorporate these ideas in the future.

6.1. Industry Feedback 79

6.1.6 Imperial College London Blockchain Forum

On the 15th June 2017, I presented my project at the Imperial College London
Blockchain Forum to a lecture theatre filled with attendees from a wide range of
backgrounds including computer science, mathematics, engineering, and law. I fol-
lowed a presentation by lain Stewart which gave an overview of the different types
of cryptocurrencies, discussing how blockchains can interact with the real world and
introduced the concept of smart contracts. I subsequently discussed the problem my
project is trying to solve, explained the smart contract state transitions, and gave a
demonstration of the application, showing a rent payment being made and an issue
reported.

After the event, I spoke with several attendees to hear their thoughts on the concept
and application. The feedback was very positive and people could see the value of
the application and the benefits that blockchain technology brings. I spoke with
Gabrielle Patrick, a Cryptocurrency lawyer, who also spoke at the Blockchain Forum,
and she agreed that in order for laws to evolve to accept blockchain technology, there
must first be products built to drive this change. Having discussed the legal issues
with storing a deposit on the blockchain with Gary Feger (see section 6.1.5), it is
re-assuring to know that developing the application first to show there is a need for
the law to change is a good approach. I have also received several emails following
the talk to arrange meetings to discuss the possibility of turning the project into a
business.

Blockcham—based S

Smart Tenancy 2

Figure 6.1: Photo from my talk at the Imperial College London Blockchain Forum
on the 15th June 2017.

80 Chapter 6. Evaluation

6.2 User Feedback and Survey

In order to gain an idea of how users get on with using the application themselves,
I went to an Imperial College London Department of Computing lab demonstration
session to let fellow students try out the application. I devised a Google form [41]
with questions for them to answer after they had used the application to complete
tasks such as signing a tenancy agreement and making a rent payment. I let them
navigate the application on their own and provided minimal instructions after telling
them an action they needed to complete, so I could see how easy to use it is for
someone who has never seen the website before. I asked every user that tried out
the application whether they knew much about Ethereum, and they generally had
heard of it but didn’t know much about the technology. This is useful because I
wanted to find out which aspects of the application are confusing for people without
much knowledge of Ethereum, as it is likely that the majority of future users will
fall into this category.

The questionnaire included the following questions or statements (numbers 1 - 4).
In the case of a statement, the possible answers range from ‘strongly agree’ to
‘strongly disagree’. I also added an explanation question for each question where
the user could disagree in order for them to provide some feedback as to what
could be improved. The full results are displayed in Appendix A including response
proportion pie charts generated automatically by Google forms.

0. Have you ever rented a property before and signed a tenancy agreement?
1. The home page of the website makes the purpose of the application clear.
2. The application is easy to navigate.

3. It is easy to see the stage that the tenancy agreement is in and it is obvious
which action needs completing next.

4. The benefits of using the Ethereum network are clear.
5. Would you be interested in using the application to sign tenancy agreements?
6. Would you be interested in using the application to pay your rent in ether?

7. Do you have any general feedback to give about the application? Such as
things you liked or didn’t like?

Nine out of ten of the users had signed a tenancy agreement before, and so were
able to compare the application to their experiences with the current paper-based
system. There was a fairly mixed response to question 1, with one user suggesting
that a more in depth explanation of the application’s purpose would be beneficial.
I will address this during the next development iteration and will add an ‘about’
section to the website to give a thorough explanation of the site’s function, which
would help potential users gain a better understanding of the application before
committing to using it.

6.3. Strengths and Weaknesses 81

Questions 2 and 3 were answered very favourably with all users strongly agreeing
or agreeing with the statements. I believe the application has succeeded in meeting
the goal of being easy to navigate and clearly directs the user to the next action
they must complete.

Question 4 highlighted to me that perhaps the application does not explain clearly
enough the benefits that using Ethereum brings to users. This question was perhaps
slightly misworded, as the benefits of using the application are effectively side-effects
of utilising the Ethereum blockchain, such as the swift signing of contracts with
irrevocable proof of the signature. As it should not be required for users to know
a great deal about Ethereum, apart from being about to purchase ether and have
a rough idea of how it is used in the application, the decision statement could be
changed to ‘the benefits of using the application are clear’ in future user surveys.

Question 5 was answered very favourably with 80% of users surveyed being interested
in using the application to sign tenancy agreements.

Question 6 had a very mixed response, with 4 in 10 users interested in paying their
rent in ether, with 3 responding that they might be interested and the remaining 3
saying that they would not be interested. In the feedback section for question 6, they
cited reasons why they did not want to use ether as down to currency instability and
their lack of knowledge about ether. Hopefully this will become less of an issue as
time goes on, when Ethereum will become more widely known about by the general
public, as well as ideally the currency would become less volatile. A way to combat
this would be to build a layer on top of the Ethereum account system, by managing
users’ private keys, abstracting the use of ether away and presenting them directly
with GBP payment options. This is of course less secure and more centralised than
the current system, but could lead to increased adoption.

For the final question users responded favourably about the application’s user inter-
face, as well as giving some further suggestions of features that would improve the
front-end design and functionality. For example, the ability to change the displayed
currency from GBP to USD would be crucial if the application is launched outside
of England and Wales. Another suggestion was for the user to be able to pay bills
such as water and electricity through the application. Further feedback comments
can be seen on the questionnaire results in Appendix A. In future, I would like to
widen the user test base and get feedback from a larger variety of demographics.

6.3 Strengths and Weaknesses

Overall, this project has aimed to provide a glimpse into the future where it is rou-
tine for tenants and landlords to transact over the blockchain; it is not to produce
a solution that is totally compliant with the laws of today. The project has demon-
strated that it is possible to create an application that streamlines interactions with
a legal contract, and is secure and simple to use for participants using Ethereum
accounts. Feedback has shown that people can see the benefit of encoding these
contracts on the blockchain and would be willing to use the application for signing

82 Chapter 6. Evaluation

their contracts and interacting with the agreement. This has the potential to reduce
our reliance on paper-based contracts, speeding up multiple aspects of the overall
process.

The strength of the Acropolis application, as stressed in the industry presentations
and user feedback, lies with its responsive and clear user interface. I believe it has
succeeded in simplifying the user journey and making it as easy-to-use as possible
for non-technical users. The smart contract code has proven to be robust, but I
would like to have a formal security audit completed in future with the source code
published, allowing anyone using the application to be able inspect the code themself
if they wish.

I have not had time to ensure that the front-end and API server are as thoroughly
tested as I would have liked, but this is something that I will focus on in the future.
It would be beneficial to have the server undergo penetration testing before being
released in a production environment. Furthermore, while I have tried to keep the
code as modular in design as possible, there are a few sections which would benefit
from some refactoring.

The system has been designed to maximise security and decentralisation, but this
means usability has suffered in some places such as the requirement for manual rent
payments (discussed in section 3.1.3). The possibility for payments to be made in
GBP is discussed in the future work section 7.2 and could also be combined with
automatic payments, reducing the decentralisation but improving the usability of
the application. This trade-off will be re-evaluated in the future, but I am confident
a good middle ground can be found.

Lastly, as users will hold ether before they pay rent or before the landlord cashes
out the ether for GBP, it is subject to currency volatility. As was seen from the
user survey, this is a barrier to entry for users unwilling to purchase ether for this
reason, therefore the automatic GBP conversions mentioned above should resolve
this weakness.

6.4 Project Challenges

Development of this project has led to certain challenges that I have had to overcome.
I will describe these in the following subsections and detail the steps I took to
overcome them.

6.4.1 Testing Transactions on the Ethereum Testnet

I found testing transactions on various forms of Ethereum test networks to be prob-
lematic when using the Mist browser, which is one of the main ways I am intending
for users to interact with the Acropolis application. I began by trying to get TestRPC
working with Mist, but found an open issue on GitHub to be the cause of it not
working [38].

6.4. Project Challenges 83

ROPSTEN ROPSTEN (Revival) TESTNET | Search by Address / Txhash / BlockNo

m Etherscan

J e) HOME BLOCKGHAIN ~ ACCOUNT ~ TOKEN ¥ CHART MISC
Transactions Home / Transactions
A total of 3398039 transactions found (showing the last 500k records only) l:“:' Page 1 0f 20000 | Next || Last
TxHash Block Age From To Value |

© 0x20cdi4f8647498e... 913388 6 hrs ago Ox4ceBed3b2cf925a... [3) 0x72e7c02699479(3... 0 Ether 0

© Oxe3aef17133f3a931... 913388 6 hrs ago 0x957b33a4b92dd2... [3) 0x72e7c02699479(3... 0 Ether 0

© 0x0cbeBa0fb952be8... 913388 6 hrs ago 0x3858bb71b21cf82... [3) 0x72e7c02699479(3... 0 Ether 0

© 0x3db08{35fce183ff... 913388 6 hrs ago Ox3acelbad2b3eaet.. [0x72e7c0269947913... 0 Ether 0

© 0xb3b20f02897537c... 913388 6 hrs ago 0x8e79caB1737dae.. [3) 0x72e7c02699479(3... 0 Ether 0

© 0x09863374ea7e049.. 913388 6 hrs ago 0x52ecd0ff736e7e48.. [3) 0x72e7c02699479(3... 0 Ether 0

O 0xbabed895d74ed2a.. 913388 6 hrs ago 0x8137567db1d958... [3) 0x72e7c02699479(3... 0 Ether]

© 0x7b0e922976%9a1d.. 913388 6 hrs ago 0x681779d4b66348... [3) 0x72e7c02699479(3... 0 Ether 0

@ 0x831af7b05b22e64... 913388 6 hrs ago 0x246797574bEBaea.. [0x72e7c0269947913... 0 Ether 0

@ 0x4818c4461b58f1e... 913388 6 hrs ago 0x9b1ebf1e947e769... [3) 0x72e7c02699479(3... 0 Ether 0

© 0x8819412af3d3caf8... 913388 6 hrs ago 0x161bfadelccBf821.. [3) 0x72e7c02699479(3... 0 Ether 0

0O 0xbf3eebdaf79f02be... 913388 6 hrs ago 0x9dc42da383bais... [0x72e7c0269947913... 0 Ether 0

© Oxd9e710e622e74ad.. 913388 6 hrs ago Ox1bede2eeddd7933.. [2) 0x72e7c0269947913... 0 Ether 0

© 0x9cb70777ea8a030.. 913388 6 hrs ago 0x2550b7fel1dd2fd1... B 0x72e7c0269947913... 0 Ether o

© 0x6e10a082906880a. . 913388 6 hrs ago 0x6bb52bc230192e8... [2) 0x72e7c0269947913... 0 Ether 0

© 0x617e9cce59b5289.. 913388 6 hrs ago 0xc99c14febalbicd... [2) 0x72e7c0269947913... 0 Ether 0

© 0x0f82c01cede1915... 913388 6 hrs ago 0xb83843d2f13b02a... [2) 0x72e7c0269947913... 0 Ether 0

Figure 6.2: Screenshot of the latest transactions on the Ropsten test network fol-
lowing a spam attack on the 12th May 2017 from Etherscan [29].

I then decided to use the Ropsten testnet, a network practically identical to the
Ethereum main network using the proof-of-work system, but the ether tokens trans-
acted on it have no monetary value. This was advantageous because 1 could be
sure my application would also work when switched to using the main network.
However, in late February, the Ropsten network suffered a denial-of-service attack,
where spam blocks were inserted into the blockchain which were computationally
expensive for nodes to process. This made testing at this time impossible, but was
later fixed by a donation of GPU power to mine a new heaviest chain which had
a higher difficulty than the spammed chain, so nodes switched to this branch, thus
resolving the issue [40].

Unfortunately this happened again on the 12th May 2017, where the Ropsten testnet
suffered another spam attack (see Figure 6.2). The red warning symbol next to each
transaction hash represents an ‘out of gas’ error, with the most recent transaction
occurring 6 hours before the time of this screenshot. Hence this, combined with
the fact that blocks were generally taking a proportionally long time to be mined
(often over a minute) during regular use on Ropsten, led me to look for other testing
solutions.

I subsequently switched to the Rinkeby ‘proof-of-authority’ test network [39]. This
testnet restricts distribution of ether funds via a faucet [71], where it is possible to

84 Chapter 6. Evaluation

request a certain amount of ether per day, and prevents the attacks that plagued
Ropsten due to its clique proof-of-authority consensus protocol. So far this has
proven to be an effective way of testing transactions with a reliable 15 second block
time interval.

6.4.2 Breaching the Gas Limit for Contract Deployment

After adding the Oraclize service code to the smart contract, the gas deployment
cost raised considerably and became greater than the 4.7 million gas limit in place
on the testnet. A quick fix for this was to temporarily remove some of the contract
functions which were infrequently used, so I was still able to continue deploying new
contracts, however this was not a permanent fix for the problem. I made several
optimisations but the gas cost was still too high despite this, as all of the logic is
contained within the single monolithic smart contract.

The current solution I have gone with is by editing the inherited code from the
‘usingOraclize’ contract and removing functions that the smart tenancy agreement
does not currently use. This has successfully reduced the gas deployment cost to
below the gas limit, but it still remains high. It also raises the problem of main-
tainability of the code, as if the Oraclize team change the code of ‘usingOraclize’
on their GitHub, my smart contract will not automatically inherit this new code
on new deployments without manually editing the cut-down version of their con-
tract. However, when I demonstrated my project to the Oraclize team, they told me
that they were looking into transitioning their code to a Solidity library [77]|, which
would solve this issue in future as library code is pre-deployed to the blockchain,
therefore saving deployment gas. In future work, I will also investigate the viability
of splitting up the core smart tenancy agreement code with sections being delegated
to library code.

Chapter 7

Conclusion

7.1 Lessons Learned

This project has been an exciting opportunity to dive into the cryptocurrency ecosys-
tem and in particular explore the applications of smart contracts. Blockchain tech-
nology is a rapidly evolving field, with huge investments currently being made by
companies of all sizes, who see the applications to be particularly disruptive in their
respective industries. This project has demonstrated the possibility of applying the
power of smart contracts to a predominantly paper-based form of contract, with
many of the tenancy agreement interactions being possible to transact in a swift
and secure fashion over the blockchain.

Smart contracts not only provide a way to sign the contracts, but they enable a
vast array of conditions to be encoded to deal with many eventualities that would
otherwise require the use of a trusted third party. A good example of this is storing
the tenancy deposit in the smart contract to ensure it cannot be spent by anyone
until the tenancy is over and the release conditions satisfied. As this technology sim-
ply did not exist a few years ago, it is natural that the current legislation does not
allow tenancy deposits to be stored on the blockchain. However, as these smart con-
tract applications become more widespread, laws will recognise this and be updated
accordingly, provided that the technology continues to be universally trusted.

As cryptocurrencies become more mainstream, it is likely that users will be more
willing to transact in ether in the future, but at present it is an obstacle likely to
prevent mass adoption. Applications built on Ethereum will need to have better
support for GBP interaction and have seamless currency conversion mechanisms to
speed up user adoption.

Smart contracts are here to stay and I believe innovative use cases for transferring
paper-based contracts to the blockchain will continue to be realised in the coming
years.

85

86 Chapter 7. Conclusion

7.2 Future Work
Payments and Withdrawals in GBP

Integrating payments in GBP is definitely the next step in developing this applica-
tion and is one of the main areas that was identified in the application user feedback
questionnaire. Developing a front end which accepts GBP payments, perhaps with
a similar interface to BitPay [6], but with payments in GBP instead of Bitcoin and
sending equivalent funds to a specified Ethereum address. This would of course re-
duce the decentralisation of the application however, and so careful thought would
need to be given to maximise the security of this approach, as well as ways to
maintain a high level of trust with the end users.

The same applies to the landlord receiving the rent payments, where an Ethereum
account management system could be developed which would automatically with-
draw the ether paid to the smart contract if it is given access to their account
private key. This ether could then be automatically transferred to their bank ac-
count, again using a third party ether to GBP conversion service, or by developing
one from scratch to be used specifically with this application.

Further Smart Contract Functionality

Future work could also integrate additional smart contract functionality. This will
be easier when sections of the smart contract are abstracted into libraries to reduce
the initial contract deployment cost, and will mean more complex features will be
able to be added whilst staying within the gas limit.

Some possible additions are as follows:

e Penalties for late rent payment: There could be contract terms which
automatically deduct funds from the initial deposit paid if a rent payment is
made late. It would have to be investigated how much ether is appropriate to
deduct from the deposit, with either a single amount deducted if rent is paid
late, or an incremental system could be used where ether is deducted for every
subsequent day when overdue rent is not paid.

e Tenant payment split ratio: A feature which would benefit tenants using
the system would be to encode the rent split ratio between the tenants in the
smart contract (if there is more than one) where the application would show
them the exact split they need to pay individually. This is useful if they are
each paying unequal shares, for example if some tenants have larger bedrooms
and have agreed to pay a higher share of the rent.

e Integrate property inventory functionality: This would allow the ten-
ants to input the inventory when they move in, with it being stored on the
blockchain as proof. It could also include logging defects with the property at
the start of the tenancy.

7.2. Future Work 87

Support for Paying Bills

As was mentioned in the user questionnaire feedback, a future addition could be
to integrate bill payments into a tab on the application dashboard. This is more
complex to achieve as it would mean either the utility companies would need to
accept ether payments, or further infrastructure would be required to make pay-
ments in GBP when ether is paid to a certain address owned by the application. We
are likely some time away from utility companies accepting ether for bill payments
so this option is unlikely to be feasible in the foreseeable future. Creating infras-
tructure to handle ether to GBP payments to the utility companies would require
some substantial engineering to ensure the system is robust and delivers the correct
amounts in GBP to the correct company accounts. I will continue to investigate the
feasibility of this feature in the future.

Bibliography

1]

2|
13l

(6]
17l

8]

191
[10]

[11]

[12]

[13]

[14]

[15]

About Woodward Estate Agents. http://www.woodward.co.uk/about/. Ac-
cessed: 11th June 2017.

Aventus. https://aventus.io/. Accessed: 31st May 2017.

Barclays: How long do payments from my account take to clear? https:
//www.help.barclays.co.uk/faqg/payments/payment-information/
clear-from-account.html. Accessed: 24th Jan. 2017.

Bitcoin developer guide. https://bitcoin.org/en/developer-guide. Ac-
cessed: 25th Jan. 2017.

Bitcoin.org - choosing your bitcoin wallet. https://bitcoin.org/en/
choose-your-wallet. Accessed: 25th Jan. 2017.

BitPay. https://bitpay.com/. Accessed: 17th June 2017.
Blockchain.com. https://www.blockchain.com/. Accessed: 27th May 2017.

Boxy svg - scalable vector graphics editor. https://boxy-svg.com/main.
html#about. Accessed: 4th June 2017.

Coinbase.com. https://www.coinbase.com/. Accessed: 31st May 2017.

Crypto-currency market capitalizations. https://coinmarketcap.com/. Ac-
cessed: 25th Jan. 2017 and 29th May 2017.

Cryptocompare API documentation. https://www.cryptocompare.com/
api/. Accessed: 2nd June 2017.

Cryptocompare ether to gbp overview. https://www.cryptocompare.com/
coins/eth/overview/GBP. Accessed: 3rd June 2017.

Deposit Protection Service (DPS). https://www.depositprotection.com/.
Accessed: 31st May 2017.

Ethereum documentation - account types, gas, and transactions.
http://ethdocs.org/en/latest/contracts-and-transactions/
account-types-gas-and-transactions.html. Accessed: 17th Jan.
2017.

Ethereum documentation - clients. http://www.ethdocs.org/en/latest/
ethereum-clients/choosing-a-client.html. Accessed: 22nd Jan. 2017.

88

BIBLIOGRAPHY 89

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

27]

28]
29]

[30]
[31]
32|

33]

[34]

Ethereum documentation - mining. http://www.ethdocs.org/en/latest/
mining.html. Accessed: 22nd Jan. 2017.

Ethereum network statistics. https://ethstats.net/. Accessed: 21st Jan.
2017.

Ethereum official website. https://www.ethereum.org/. Accessed: 17th Jan.
2017.

Ethereum official website - ether. https://www.ethereum.org/ether. Ac-
cessed: 17th Jan. 2017.

Ethereum official website - smart contract tutorial. https://www.ethereum.
org/greeter. Accessed: 23rd Jan. 2017.

Ethereum wiki - block protocol 2.0. https://github.com/ethereum/wiki/
wiki/Block-Protocol-2.0. Accessed: 21st Jan. 2017.

Ethereum wiki - Dapp using Meteor. https://github.com/ethereum/wiki/
wiki/Dapp-using-Meteor. Accessed: 12th June 2017.

Ethereum wiki - JSON RPC API. https://github.com/ethereum/wiki/
wiki/JSON-RPC. Accessed: 22nd Jan. 2017.

Ethereum wiki - merkle patricia tree specification. https://github.com/
ethereum/wiki/wiki/Patricia-Tree. Accessed: 22nd Jan. 2017,

Ethereum wiki - proof of stake FAQ. https://github.com/ethereum/wiki/
wiki/Proof-of-Stake-FAQ. Accessed: 22nd Jan. 2017.

Ethereum wiki - serpent. https://github.com/ethereum/wiki/wiki/
Serpent. Accessed: 9th June 2017.

Ethereum wiki - web3 javascript DApp API. https://github.com/
ethereum/wiki/wiki/JavaScript-API. Accessed: 22nd Jan. 2017.

Ethermine mining pool. https://ethermine.org/. Accessed: 21st Jan. 2017.

Etherscan: The ethereum block explorer. https://etherscan.io/. Accessed:
30th May 2017.

Express framework. https://expressjs.com/. Accessed: 14th June 2017.
Flask framework. http://flask.pocoo.org/. Accessed: 14th June 2017.

fontawesome icon toolkit. http://fontawesome.io/. Accessed: 12th June
2017.

Foxtons fees. https://www.foxtons.co.uk/help/fees/. Accessed: 24th Jan.
2017.

GitHub - ethereum viper language. https://github.com/ethereum/viper.
Accessed: 9th June 2017.

90

BIBLIOGRAPHY

[35]

[36]

37]

38]

[39]

[40]

[41]

[42]

[43]

|44]

[45]

|46]

147]

48]

[49]

[50]

[51]

GitHub - Meteor Build Client. Accessed: 13th June 2017.

Github - mist browser. https://github.com/ethereum/mist. Accessed:
22nd Jan. 2017.

GitHub - oraclize API. https://github.com/oraclize/ethereum-api. Ac-
cessed: 11th June 2017.

GitHub - testrpc issue. https://github.com/ethereumjs/testrpc/issues/
236. Accessed: 15th June 2017.

GitHub ethereum - rinkeby poa testnet. https://github.com/ethereum/
EIPs/issues/225. Accessed: 15th June 2017.

GitHub Ethereum - ropsten revival. https://github.com/ethereum/
ropsten/blob/master/revival .md. Accessed: 15th June 2017.

Google forms - about. https://www.google.co.uk/forms/about/. Accessed:
15th June 2017.

ipfs for websites. https://ipfs.io/ipfs/
QmNZiPk974vDsPmQii3YbrMKfi12KTSNM7XMiYyieadVYZ/example#/ipfs/
QmP8WUPQq2braGQ8iZjJ6w9dibmzgoTWyRLayrMRjjDoyGr/websites/READVME.
md. Accessed: 13th June 2017.

Ipfs is the distributed web. https://ipfs.io/. Accessed: 12th June 2017.

Legiscan: Bill text: Az hb2417 | 2017 | fifty-third legislature 1st regular |
chaptered. https://legiscan.com/AZ/text/HB2417/1d/15688180. Accessed:
11th June 2017.

Meteor atmosphere - ethereum:web3. https://atmospherejs.com/
ethereum/web3. Accessed: 12th June 2017.

Meteor atmosphere - http. https://atmospherejs.com/meteor/http. Ac-
cessed: 12th June 2017.

Meteor atmosphere - iron:router. https://atmospherejs.com/iron/router.
Accessed: 12th June 2017.

Meteor atmosphere - jquery. https://atmospherejs.com/meteor/jquery.
Accessed: 12th June 2017.

Meteor atmosphere - session. https://atmospherejs.com/meteor/session.
Accessed: 12th June 2017.

Meteor atmosphere - tracker. https://atmospherejs.com/meteor/tracker.
Accessed: 12th June 2017.

Meteor documentation. http://docs.meteor.com/#/full/. Accessed: 12th
June 2017.

BIBLIOGRAPHY 91

52|

[53]

[54]
[55]
[56]

[57]

[58]

[59]

[60]

61]

[62]

63]

|64]

[65]
[66]

167]

68]

69]

[70]

Midasium: The blockchain of real estate. http://midasium.com/. Accessed:
23rd Jan. 2017.

Midasium: The blockchain of real estate - smart contracts. http://midasium.
com/smart-contracts. Accessed: 23rd Jan. 2017.

MyDeposits. https://www.mydeposits.co.uk/. Accessed: 31st May 2017.
Node.js - about. https://nodejs.org/en/about/. Accessed: 14th June 2017.

npm - beryptjs. https://www.npmjs.com/package/bcryptjs. Accessed:
14th June 2017.

npm - bodyparser. https://www.npmjs.com/package/body-parser. Ac-
cessed: 14th June 2017.

npm - bootstrap. https://www.npmjs.com/package/bootstrap. Accessed:
12th June 2017.

npm - cookiesession. https://www.npmjs.com/package/cookie-session.
Accessed: 14th June 2017.

npm - express. https://www.npmjs.com/package/express. Accessed: 14th
June 2017.

npm - https. https://www.npmjs.com/package/https. Accessed: 14th June
2017.

npm - mongodb. https://www.npmjs.com/package/mongodb. Accessed: 14th
June 2017.

npm - sha.js. https://www.npmjs.com/package/sha.js. Accessed: 12th
June 2017.

npm - tether. https://www.npmjs.com/package/tether. Accessed: 12th
June 2017.

Oraclize. http://www.oraclize.it/. Accessed: 2nd June 2017.

Oraclize documentation. https://docs.oraclize.it/. Accessed: 2nd June
2017.

Oraclize documentation: security deep dive. https://docs.oraclize.it/
#security-deep-dive. Accessed: 3rd June 2017.

Oraclize documentation: TLSNotary Proof. https://docs.oraclize.

it/#security-deep-dive-authenticity-proofs-tlsnotary-proof. Ac-
cessed: 11th June 2017.

Postgresql - about. https://www.postgresql.org/about/. Accessed: 15th
June 2017.

Proof of existence: what is proof of existence? https://proofofexistence.
com/about. Accessed: 3rd June 2017.

92 BIBLIOGRAPHY

[71] Rinkeby.io. https://www.rinkeby.io/. Accessed: 15th June 2017.

[72] Robo 3t: Native and cross-platform mongodb manager (formerly robomongo).
https://robomongo.org/. Accessed: 15th June 2017.

[73] Rootstock. http://www.rsk.co/. Accessed: 10th June 2017.

[74] Solidity =~ browser compiler. https://ethereum.github.io/
browser-solidity/. Accessed: 23rd Jan. 2017.

[75] Solidity documentation. http://solidity.readthedocs.io/en/develop/
index.html. Accessed: 9th June 2017.

[76] Solidity documentation: checks-effects-interactions pat-
tern recommendation. https://solidity.readthedocs.
io/en/develop/security-considerations.html#
use-the-checks-effects-interactions-pattern. Accessed: 11th June
2017.

[77] Solidity documentation: libraries. http://solidity.readthedocs.io/en/
develop/contracts.html#libraries. Accessed: 15th June 2017.

[78] Solidity documentation: re-entrancy pitfalls. https://solidity.
readthedocs.io/en/develop/security-considerations.html#
re-entrancy. Accessed: 11th June 2017.

[79] Solidity documentation: security considerations. http://solidity.
readthedocs.io/en/develop/security-considerations.html#
security-considerations. Accessed: 31st May 2017.

[80] Solidity documentation: state machine pattern. http://solidity.
readthedocs.io/en/develop/common-patterns.html#state-machine. Ac-
cessed: 9th June 2017.

[81] Solidity =~ documentation: withdrawal — pattern. http://
solidity.readthedocs.io/en/develop/common-patterns.html#
withdrawal-pattern. Accessed: 9th June 2017.

[82] State of the DApps. http://dapps.ethercasts.com/. Accessed: 22nd Jan.
2017.

[83] Tenancy deposit protection. https://www.gov.uk/
tenancy-deposit-protection/overview. Accessed: 31st May 2017.

[84] Tenancy Deposit Scheme (TDS). https://www.tenancydepositscheme.
com/. Accessed: 31st May 2017.

[85] Town crier: An authenticated data feed for smart contracts. http://www.
town-crier.org/. Accessed: 3rd June 2017.

[86] What is MongoDB? https://www.mongodb.com/what-is-mongodb. Ac-

cessed: 15th June 2017.

BIBLIOGRAPHY 93

[87]

38
[89]

[90]

[91]

92]

93]

[94]

[95]
196]
97]

98]

[99]

[100]

World coin index - Ethereum charts. https://www.worldcoinindex.com/
coin/ethereum. Accessed: 2nd June 2017.

Andreas M. Antonopoulos. Mastering Bitcoin. 2014.

Vitalik Buterin. Ethereum white paper. https://github.com/ethereum/
wiki/wiki/White-Paper. Accessed: 17th Jan. 2017.

Vitalik Buterin. Roundup round IIT - 24th May 2017. https://blog.
ethereum.org/2017/05/24/roundup-round-iii/. Accessed: 29th May
2017.

Vitalik Buterin. State tree pruning. https://blog.ethereum.org/2015/06/
26/state-tree-pruning/. Accessed: 21st Jan. 2017.

Joseph Chow. Ethereum, gas, fuel & fees. https://media.consensys.net/
ethereum-gas-fuel-and-fees-3333el17feldc. Accessed: 19th Jan. 2017.

Wesley Egbertsen, Gerdinand Hardeman, Maarten van den Hoven, Gert
van der Kolk, and Arthur van Rijsewijk. Replacing paper contracts with
ethereum smart contracts, 2016.

Vinay Gupta. The ethereum launch process. https://blog.ethereum.org/
2015/03/03/ethereum-launch-process/. Accessed: 22nd Jan. 2017.

Sergio Demian Lerner. Rootstock white paper. 2015.
Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

M. Sage. Warfare in Ancient Greece: A Sourcebook. Routledge Sourcebooks
for the Ancient World. Taylor & Francis, 2002.

Jutta Steiner. How do you know ethereum is secure? https://blog.
ethereum.org/2015/07/07/know-ethereum-secure/. Accessed: 29th May
2017.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
2014.

Tina Zhang. Express agreement: A framework for efficient contract negotiation
and blockchain-based agreement verification, 2015.

Appendix A

Web Application User Feedback
(Questionnaire

0. Have you ever rented a property before and signed a tenancy agreement?

10 responses

® Yes
@ No

Figure A.1: User survey results: question 0

94

95

1. The home page of the website makes the purpose of the application clear.

10 responses

@ Strongly agree

® Agree

@ Neither agree nor disagree
@ Disagree

@ Strongly disagree

1. If you disagree, how could it be improved?

2 responses

More in depth explanation of the applications purpose. Description of each parties role in the tenancy agreement.

A picture.

Figure A.2: User survey results: question 1

96 Appendix A. Web Application User Feedback Questionnaire

2. The application is easy to navigate.

10 responses

@ Strongly agree

® Agree

@ Neither agree nor disagree
@ Disagree

@ Strongly disagree

2. If you disagree, how could it be improved?

0 responses

No responses yet for this question.

Figure A.3: User survey results: question 2

97

3. It is easy to see the stage that the tenancy agreement is in and it is obvious
which action needs completing next.

10 responses

@ Strongly agree

@ Agree

) Meither agree nor disagree
@ Disagres

@ Strongly disagree

3. If you disagree, how could it be improved?

0 responses

No responses yet for this question.

Figure A.4: User survey results: question 3

98 Appendix A. Web Application User Feedback Questionnaire

4. The benefits of using the Ethereum network are clear.

10 responses

@ Strongly agree

® Agree

@ Neither agree nor disagree
@ Disagree

@ Strongly disagree

4. If you disagree, how could it be improved?

2 responses

This is not explained anywhere in the application.

Some ethereum background.

Figure A.5: User survey results: question 4

99

5. Would you be interested in using the application to sign tenancy
agreements?

10 responses

® Yes
® No
@ Maybe

5. If not, what would make you more likely to consider using it?

0 responses

No responses yet for this question.

Figure A.6: User survey results: question 5

100 Appendix A. Web Application User Feedback Questionnaire

6. Would you be interested in using the application to pay your rent in ether?

10 responses

® Yes
® No
Maybe

6. If not, what would make you more likely to consider using it?

3 responses

Knowing more about ether.

Use of ether being more widespread

It's little troublesome to setup an etheream account and convert currency.
If the currency was more stable.

Ether price too volatile

Figure A.7: User survey results: question 6

7. Do you have any general feedback to give about the application? Such as
things you liked or didn't like?

4 respanses

Slick design. Little explanation given for the application and its features. The ether account numbers are lengthy
and unnatural to read. It would be helpful to filter out past agreements as well as having a profile page seeing all
past agreements. Additions such as subletting and paying bills would be beneficial.

very clear buttons for navigation around the website. Mot having the long ids in the website.

very polished ui.

Allow all input in pounds or other currency

Figure A.8: User survey results: question 7

