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Abstract

Hierarchical Reinforcement Learning algorithms have been successfully applied to large-scale
problems with sparse reward signals. By operating at multiple time scales, the Reinforce-
ment Learning agent is able to overcome difficulties in exploration and value information
propagation. However, all of these algorithms face one of three unsatisfying properties: They
either require manual specification of hierarchical structures, lack clear interpretability or can
hardly be justified in a comparative fashion.

This research project combats all of these shortcomings in a fully automated and end-to-end
fashion. By treating an on-policy trajectory as a sentence sampled from the policy-conditioned
language of the environment, we are able to apply powerful ideas from computational lin-
guistics to the substructure discovery problem. We identify hierarchical constituents with the
help of grammatical inference and the theory of language parsing. Afterwards, the agent is
endowed with this information in order to accelerate and structure her learning process.
Our contributions are the following: First, we develop an algorithmic framework which
constructs macro-actions and options from stochastic and deterministic context-free gram-
mars. Second, one can easily interpret the resulting parse trees as subgoal achievements
which convey semantic meaning. Thereby, we are able to partially answer questions of
interpretability in Reinforcement Learning. Finally, a generalization of syntactic surprisal,
replay surprisal, can be utilized to perform grammar comparison and to choose the grammar
that does not overfit noise in sampled sentences. Thereby, we allow for efficient exploration.
We demonstrate the efficiency and strong performance of our framework in the context of
multiple environments which suffer severe long-term credit assignment problems.

We call the resulting framework action grammars following Pastra and Aloimonos (2012).}

!This project builds on an independent study option (ISO, Lange (2018a,b)) conducted under the supervision
of Dr Faisal. During the ISO we discovered major shortcomings of the current state of Hierarchical Reinforcement
Learning. All theoretical contributions, replications and experiments displayed in this thesis were conducted
independently of the ISO. In order to maintain clarity and completeness there remains overlap in the background
provided in chapter 2 and 3 of this report. Still, these sections are tailored towards our application and stand
conditionally independent of the ISO. E.g. we have extended the literature review to include recent developments
from the 35th International Conference on Machine Learning 2018, added completely new sections on macro-
actions as well as syntactic surprisal and probabilistic context-free grammars. There exist clear differences and
substantial contributions which remain distinct to this project (for more details see Appendix B). We explicitly
state and cite when parallels remain.
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Chapter 1

Introduction

The Reinforcement Learning (RL, e.g. Bertsekas and Tsitsiklis (1995); Sutton and Barto
(1998)) agent faces a structural credit assignment problem in order to maximize her expected
cumulated and discounted reward. As the dimensionality of both the action and state
space grows linearly, the computational complexity of classical learning algorithms grows
at an exponential rate. This phenomenon is known as the curse of dimensionality in RL.
Furthermore, sparse rewards can hinder reward-based learning and exploration of the state
space. In order to overcome these challenges of complex real-world domains, it has been
proposed to make use of hierarchical substructures, intrinsic motivation as well as the
reusability of low-level skills. Classical Hierarchical Reinforcement Learning (HRL, see Barto
and Mahadevan (2003) and figure 1.1 for an overview) algorithms are based on learning
sequential solutions at different temporal levels of decision making. Instead of choosing a
strategy over primitive actions, the HRL agent optimizes a policy over high-level structures.
These structures in turn execute substructures lower in the hierarchy. Finally, this leads to
the execution of potentially multiple primitive actions at the bottom of the control hierarchy.
Learning a policy over temporally-extended actions thereby allows the agent to combat the
uncertainty induced by single time-step decision making. The agent overcomes exploration
problems, by restricting her decision process in a syntactically meaningful way. Hierarchies
can be defined over fixed sequences of primitive actions (macro-actions; see (McGovern
et al., 1997)), sub-policies (options; see (Sutton et al., 1999)), finite state machines (HAMs;
see (Parr and Russell, 1998)) or sub-tasks (MAXQ; see (Dietterich, 2000)). The biggest
challenge of HRL is the actual identification of a meaningful substructure specification. As
of yet, this challenge has not been successfully addressed. Graph theoretic, diverse density
and visitation-based approaches try to identify bottlenecks which represent meaningful goal
states (e.g. McGovern and Barto (2001); Hengst (2002); Menache et al. (2002)). Parametric
gradient theorems (Bacon et al., 2017) can help to construct meaningful sub-policies and
required termination conditions. Deep HRL lets the agent simultaneously generalize the state
space information using deep architectures to identify subgoals while planing the achievement
of such (e.g. Kulkarni et al. (2016a,b); Vezhnevets et al. (2016, 2017)).
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Figure 1.1: Overview of Classical HRL Algorithms. Altered from Lange (2018a).

Still, all of the above require the choice of many hyperparameters (e.g. the number of desired
options, network architecture) and make fairly strong assumptions regarding the initiation
set of the subtask (e.g. the complete state space). This easily leads to misspecification and
can result in a significant slow-down of learning and exploration. While providing a fully
end-to-end approach, "deep" attempts lack interpretability and often times require severe
amounts of pre-training.

Human infants, on the other hand, learn seemingly unstructured patterns in nature and from
observing role models. They are incredibly well equipped to infer hierarchical rule-based
structures from language, visual input as as well as auditory stimuli (Marcus et al., 1999;
Frank et al., 2009; Marcus et al., 2007). By observing an expert, they get a head-start in
their learning process and are able to learn over higher level sequences of low level control
elements. Furthermore, there is convincing evidence from several MEG and fMRI studies
that indicates a form of hierarchical language comprehension in the brain (Ding et al., 2017;
Frank and Christiansen, 2018; Brennan et al., 2016; Nelson et al., 2017) and a parallelism to
motor control (Pastra and Aloimonos, 2012; Stout et al., 2018). Inspired by such observations
this research project overcomes the identified weaknesses by merging HRL with the field of
computational linguistics. More specifically, we propose the usage of grammatical inference
algorithms to extract hierarchical structures from trajectory sentences with the ultimate aim
to deploy them in the Hierarchical Reinforcement Learning process. Thereby, the original RL
problem is split into two alternating stages:

1. Grammar Learning: Given some sequential experience (either state transitions or
action traces) we treat the time-series as a sentence sampled from the language of the
policy-conditioned environment. The language in turn was generated by the grammar
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induced by the current policy. Using grammar induction the agent extracts hierarchical
constituents of the current policy. Based on this estimate she constructs temporally-
extended actions which convey hierarchical syntactic meaning. Afterwards, we augment
the agent’s action space with such actions.

2. Action Learning: Using the grammar-augmented action space, the agent acquires new
value information from interacting with the environment and refines his action-value
estimates using Semi-Markov-Decision-Process-Q-Learning (Bradtke and Duff, 1995).
Afterwards, we sample simulated "sentences" from the improved policy by rolling out
observations in the environment and repeat step 1.

The overall learning procedure consists of alternating updates of the grammar estimate and
a refinement of the corresponding "action grammar"'-value estimates. We implement two
conceptual HRL pipelines (see figure 1.2):

1. Context-Free Action Grammar (CFAG): Given sequences of primitive action execution
we infer a context-free grammar (CFG) using classical algorithms (e.g. Sequitur (Nevill-
Manning and Witten, 1997), G-Lexis (Siyari et al., 2016) or IGGI (Schoenhense et al.,
2017)). The resulting production rules can then be flattened into sequences of primitive
actions. We use such to either construct deterministic macro-actions or options based
on state-specific termination. The resulting temporally-extended action have a fixed
termination determined either by a termination state or the length of the macro.

2. Probabilistic Action Grammar (PAG): Given sequences of state transitions we fit
probabilistic grammars using Hidden Markov Models (HMMs) and Recurrent Neural
Networks (RNNs). The action space of the agent is then augmented by a complex new
action, an action grammar option. The agent learns the value of choosing to follow
actions sampled from the PCFAG conditioned on the previous sequence of actions and
the current state. We stop the execution based on a syntactic information-theoretical
complexity measure (Hale, 2001; Levy, 2008). Thereby, our approach is deeply rooted
in the Bayesian doctrine of reasoning about uncertainty. As the option becomes more
uncertain about its state transition it returns control back to the agent.

Still, this leaves us with the task of choosing the best grammar. Similar to model comparison
problems in supervised learning, we solve this problem by estimating a generalization error.
We learn a grammar on the train set and compute the value of a loss function for both train
and test traces. This loss function is defined as the cumulative surprisal (Hale, 2001; Levy,
2008) or self-information from observing a particular action as the successor in a sequence.
While parsing through an expert trace we expect the next state based on our previously
extracted hierarchy. We seek to minimize surprising encounters and prefer grammars which
have identified the hierarchical nature of the policy. We call the cross-validated estimate of
this loss replay surprisal. Finally, we display powerful results on several environments with
hierarchical structure and severe long-term credit assignment problems (e.g. Towers of Hanoi,
the Four Room Problem, OpenAl environments). The main contributions of this project are
the following:

e We introduce a computational framework that synthesizes Computational Linguistics
and HRL (see section 4.1).

e We propose novel end-to-end macro-action and option discovery (see sections 4.2
and 4.3) algorithms for deterministic/stochastic environments which use grammar
induction.
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e We propose a surprisal-based metric to compare grammars in the context of HRL (see
section 4.4).

Furthermore, minor contributions include the following:

e We implement and formalize an eligibility trace (Watkins and Dayan, 1992) algorithm
for the SMDP-Q-Learning (Bradtke and Duff, 1995) framework (see section 2.3.1).

e The interpretability of the substructures is enhanced due to the properties of CFGs and
the resulting parse trees.

Action Grammars
End-to-End Discovery of Hierarchical Substructures for
Hierarchical Reinforcement Learning via Grammar Induction

/\

Macro-Actions Options
(McGovern et al., 1997) (Sutton et al., 1999)
Context-Free ‘)<‘ Probabilistic
Grammar Inference Grammar Inference
(CFAG) (PAG)
‘ Fixed Termination ‘ ‘ Surprisal-Based Termination

Flattened Frequency of Hidden Markov Recurrent Neural
Production Rule Termination Models Networks

Rules Based Options (HMMs) (RNNs)

Figure 1.2: Action Grammars: A Conceptual Overview

We proceed in the following way: Chapter 2 reviews the required Reinforcement Learning
background. We start by outlining the temporal generalization of Markov Decision Processes
(MDP), namely Semi-Markov Decision Processes (SMDP). Afterwards, we review two specific
approaches to hierarchical task solving: Macro-actions (McGovern et al., 1997; McGovern and
Sutton, 1998) and options (Sutton et al., 1999). Finally, we discuss current approaches from
the literature to infer meaningful substructures in hierarchically structured environments.
Chapter 3 introduces notation and intuition for grammatical inference of both CFGs and
PCFGs. Furthermore, we review the notion of syntactic surprisal. Chapter 4 provides
the key theoretic contributions of this project: We introduce an algorithmic framework
which automatically and fully end-to-end identifies hierarchical substructures using grammar
induction. Furthermore, we introduce the replay surprisal approach to solve the grammar
comparison problem. Chapter 5 implements and proves the effectiveness in multiple "hard"
RL environments. Chapter 6 summarizes our main results and discusses future endeavors.
Finally, the appendix provides experimental details, summarizes distinct contributions and
discusses legal and ethical considerations of this project.




Chapter 2

Time Uncertainty

The following chapter introduces the required background knowledge in Hierarchical Rein-
forcement Learning. Markov Decision Processes define a simple RL framework in which agents
execute actions which lead to a transition in the following period. In discrete-time MDPs
the time in which the agent waits for a transition is fixed to one time period. Semi-Markov
Decision Processes extend MDPs to actions with variable waiting times. Macro-actions and
options are both formalized within the SMDP framework and provide explicit descriptions
of the waiting time distributions between decisions. Thereby, they impose explicit temporal
hierarchies on the behavior of the agent. Identifying suitable hierarchical structures is not
easy. We review the current literature.

2.1 Markov Decision Processes

The classical Reinforcement Learning problem (see e.g. (Sutton and Barto, 1998)) is based
upon the iterative optimization of a behavioral sequential strategy in Markov Decision
Processes. MDPs provide an elegant account of a simple agent-environment closed loop (see
figure 2.1a). A discrete MDP is defined by the tuple (S, A;, P%,, R?,~v) where S denotes a
finite non-empty set of environment states, .A; denotes a finite non-empty set of actions which
are admissible given the agent’s state s € S. Let R? = E|[r;y1|s, a] denote the expected reward
of transitioning from state s in period ¢ to a new state in period ¢ + 1 given the execution of
action a. The probability of transitioning to a specific s’ is given by P%, = P(s41 = §'|s; =
s,a; = a) € [0,1] and models the uncertainty innate to the environment. It is assumed that
waiting times between transitions are constant at one period. When the agent decides to
execute a primitive action she is assured to experience some from of transition in the next
period - no matter what. Hence, there is no notion of temporal abstraction and the waiting
time distribution is a Delta-Dirac distribution with center of mass at 1. We know the frequency
of control with certainty. Given the model of the MDP described by P, and R? the problem
can easily be solved using the following Bellman Equation (see Barto and Mahadevan (2003,
p. 346) and Lange (2018b, p. 2f.)):

Q*(s,0) = maxQ7(s,a) = RS+ > P(s/|s,a) max Q*(s',a)
T a'€Ay
s'eS s
As the dimensionality of state and action space grows, full-width Bellman backups become
impractical. Instead the MDP is solved using either value-based or policy gradient learning
methods. In this project we focus on model-free value-based learning as compared to
model-based learning. A simple model-free and off-policy Q-learning RL agent updates his
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action value estimates according to the bootstrapped value estimate of the next action value
according to the behavioral policy (see Watkins and Dayan (1992, p. 281) and Lange (2018b,
p.- 3)):

Q(s,a)k+1 = (1 —a)Q(s,a); + o (Tt+1 + ’YglgﬁQ(S/,a/)k> :

The agent iteratively adapts her value estimate based on the temporal difference (TD) error.
The optimal policy, 7* : S x UsAs — [0, 1] of the agent is then obtained by maximizing the
value of the converged Q-function with respect to the action space: 7* = argmax, Q*(s,a’).

)
Agent | Agent > Agent
~———— T

i—1

.
i—1
st41 | | re1 ar  St4r ar Str || 22 T e | {wM s}
1=

Y

Env

(a) MDPs (b) SMDPs (c) Markov Options

Figure 2.1: Closed Loops: MDPs, SMDPs and Options. Altered from Lange (2018b, p. 8)

2.2 Semi-Markov Decision Processes

Semi-Markov Decision Processes (see figure 2.1b; Bradtke and Duff (1995)), on the other
hand, allow us to not only model epistemic uncertainty but also time uncertainty. They
are defined as the tuple (S, A, P%, ,R%,v). The time between actions is modeled as a
positive-valued discrete random variable, 7 € Z*.! The transition probability distribution
now accounts for the joint event of transitioning into the new state s’ after 7 time steps,
P, = P(s',7|s,a) (Sutton et al., 1999, p. 189). Marginalizing over the waiting time
yields the distribution which measures the collected and discounted likelihood of eventually
transitioning to state s, > 2, 7" P(s', 7|s, a). Let £(a, s, ) denote the event of taking action
a in state s and afterwards having to wait for 7 periods. R%(7) = E[>.7_, v 'rii|E(a, s, 7)]
then denotes the expected discounted accumulated reward sequence obtained from staying in
state s for 7 time points, having chosen action a. Only after the waiting period has finished,
the agent transitions into the next state s’. Compared to traditional MDPs this allows us to
model complex waiting time distributions. Again, the Bellman optimality equation is given by
(see Bradtke and Duff (1995, p. 395f.) and also see ISO report (Lange, 2018b, p. 4)):

* — ™ — Ra TP / *(J !
Q'(s,0) = mpx@(n.0) = B(r) + 3 37" PUorlova) s Q')
The standard model-free Q-learning algorithm easily translates to the SMDP setting. The
updating rule (see Bradtke and Duff (1995, p. 396) and also see ISO report (Lange, 2018Db, p.
5)) at iteration k + 1 is given by

Real-valued waiting time and real-valued action space SMDP theory exists. For simplicity and applicability to
HRL we focus on the discrete-time discrete-event SMDP. For more detail we refer to Bradtke and Duff (1995) and
the ISO report (Lange, 2018b).
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Qrt1(s,a) = (1 — k) Qr(s, a) + ak (Z Y 'ri 4+ 97 max Qk(S'ya')> :

i—1 a/EAS/

Since the agent has access to the unrestricted set of primitive actions in A, the SMDP Q-
learning algorithm converges to the flat optimal solution (for a proof see Parr (1998)). By
abstracting away the need for decision making at every time-step, SMDPs provide an entry
point for temporally-extended actions and decision making at different time scales.

2.3 Temporal Abstractions

As the sparsity of the reward signals provided by the environment increases, the agent receives
fewer information about which parts of the state space she should care about. Therefore, we
face both a credit assignment problem as well as an exploration problem. Temporal difference-
based learning algorithms which use one-step backups have a hard time propagating value
information back to critical decision points. Hierarchical Reinforcement Learning introduces
a hierarchy of time scales at which decisions are made. Thereby, one is able to propagate
learning signals further back in time and to regularize the learning problem into meaningful
sub-problems. In this section we review two algorithms which can both be embedded into the
SMDP framework: Macro-actions (McGovern et al., 1997; McGovern and Sutton, 1998) and
Options (Sutton et al., 1999).

2.3.1 Macro-Actions

Macro-actions (McGovern et al., 1997; McGovern and Sutton, 1998) were first introduced
in robotics and help to circumvent the curse of dimensionality in large state spaces. Instead
of only working with a restricted action space consisting of primitive actions, we allow for
the sequential execution of multiple primitive actions as one entity. The agent can now
operate at multiple time-scales. While a primitive action leads to a waiting time of one period,
macro-actions are executed over multiple time periods ("a;" vs. "asaja3"). Only after the
execution of the macro has finished (or the goal state has been reached), the agent obtains
back control and updates her value estimate. Metaphorically speaking, the agent puts herself
into handcuffs in order to avoid additional behavioral uncertainty. Macro-actions define a
Semi-Markov Decision Process for which convergence guarantees have been proven by Parr
(1998, p. 39). They introduce a deterministic waiting time distribution which is a Dirac-Delta
with center of mass at the length of the specific macro-action (e.g. "asaja3" almost surely
terminates after three time steps).

Given a macro-action, m € M, the agent updates the value of such according to the following
SMDP-Q-Learning rule (Bradtke and Duff, 1995, p. 396):

Q(s,m)pr1 = (1 —)Q(s,m)x + <Z Y e 4™ ar}gﬁQ(s’,a’)k>

=1

The intuition is straight forward: While simple Q-Learning propagates value information only
from one step at a time, SMDP-Q-Learning allows the agent to propagate information over
Tm time steps (McGovern et al., 1997, p. 2f.), where 7,, denotes the respective execution
time of macro m. This is one of the two properties which allows the agent to be more sample
efficient.
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There is a clear relationship to a concept that connects Monte Carlo Methods and TD learn-
ing, namely eligibility traces: Both, macros and eligibility traces provide a mechanism for
accelerating value propagation. The concept of eligibility provides a form of exponentially
decaying memory which attributes credit to actions which lie in the past. As long as the
agent stays on-policy, credit is assigned proportionately to the exponential of a A € [0, 1]
factor. Setting A\ = 0 recovers TD learning while A\ = 1 yields Monte Carlo updates (Sutton
et al., 1999). Macro-actions, on the other hand, group together pre-defined primitive actions.
While executing a macro, there is no possibility for exploration and thereby, they can be
interpreted as a form of hard eligibility. More specifically, McGovern and Sutton (1998, p. 10)
have shown that SMDP-Q-Learning with macros is more efficient at finding the right policy,
whereas () (Watkins and Dayan, 1992) cares more about absolute action values and not
only about the relative action values needed to obtain a good policy. Hence, macro-actions
are faster at finding the optimal policy.

Algorithm 1 SMDP-Q()\)-Learning. Adapted from Sutton and Barto (1998)

Input: Initial (s, m), Learning rate «. Value propagation parameter \.
Output: Optimal state-macro value table.
1: repeat

2: Initialize e(s,m) =0Vs € S,m € M and s, m
3: for Each step of the episode do
4: Take macro-action m, observe > ™ +*~1r; and s’
5: m* < argmax, Q(s',b)
6: 5 Y A I 4y QS m)
7: e(s,m) + e(s,m)+1
8: for all s, m do
9: Q(s,m) < Q(s,m) + ade(s,m)
10: if m’ = m* (exploitation) then e(s,m) < y\e(s,m) else e(s,m) < 0
11: end for
12: end for
13: Set s + s and m =m/

14: until Convergence

Furthermore, the agent alters her exploration behavior when using macro-actions. It can
trivially be shown that she is biased towards towards spending more time in parts of the state
space where the macros lead her (McGovern et al., 1997, p. 2). The effect on learning of
macro-actions is only negative when the macro-actions alone cannot lead the agent to the
goal position (McGovern et al., 1997, p. 5). Following an initial idea dating back to McGovern
and Sutton (1998, p. 10), we propose a simple adaptation of the original eligibility trace
algorithm to temporally-extended actions. Algorithm 1 extends the classical () algorithm
by altering the equations of the temporal difference (TD) error to the temporally-extended
version. By treating a macro-action as a single entity, we are able to combine both the value
propagation properties of the eligibility traces as well as the changes in exploration induced
by macro-actions.

We note that this formalism might also provide an automated mechanism for extending
macro-actions. If an action is assigned with eligibility, irregardless of the state (e(., a) large)
and previous to executing a macro, this might indicate that the macro should be extended to
include the previous action, a||m.
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2.3.2 Options

Options (see figure 2.1c, Sutton et al. (1999)) are arguably the most intuitive HRL framework.
They capture the notion of locally-constrained sub-policies and allow the agent to learn a
policy over an option set instead of the primitive actions. This enhances the action set of the
agent while at the same time restricting the number of decisions, she has to make due to
the stochastic waiting time. The overall combinatorial complexity of decision points reduces
significantly. Ultimately, this leads to improvements in computation and faster learning. A
Markov option (Sutton et al., 1999, p. 186f.) is defined as the tuple w™ =< T, 7, B, >,
where 7, C S denotes the initiation set of states in which the option is allowed to start
execution, 7, : S X A — [0, 1] represents the intra-option policy defined over the Cartesian
product of the state-action space and 3,, : ST — [0, 1] is the termination condition which
stochastically terminates the execution of the option given the current state of the agent.
In practice, often times the termination condition is constructed in a deterministic fashion
such that it takes value 1 for a specific state and 0 otherwise. Hence, also an option
and its termination condition define a stochastic waiting time distribution within the SMDP
framework. It differs from classical macro-actions (Hauskrecht et al., 1998) since the sequence
of action executions within the option is not deterministic but state dependent. Thereby, the
option execution adapts to the environment. If an action execution fails, the agent is able
to adapt his sequential behavior according to the state dependent intra-option policy. For
a macro-action this is not the case. Instead, the agent has to follow the previously selected
sequence of actions.

The option is called Markov since the termination condition and intra-option policy solely de-
pends upon the current state of the agent. A semi-Markov option (Barto and Mahadevan, 2003,
p. 352), w3M | generalizes this by conditioning the intra-option policy termination on the com-
plete history of states, actions and rewards obtained since the beginning of option execution
(Barto and Mahadevan, 2003, p. 352). The history for an option which starts its execution
at time ¢ and finishes after 7 periods is denoted by hy4r = {S¢t, ¢, 4415 Stp1ys - -« Popry Stpr be
Furthermore, let Q2 denote the set of all possible histories. A semi-Markov option’s policy is
defined as m,, : 2 x A — [0, 1] and the condition for termination is j,, : 2 — [0, 1]. Sutton et al.
(1999, p. 186) state that semi-Markov options easily can result from defining options over
options, introducing an additional hierarchical layer. This is due to the observation that the
choice of an option is different before and after the previous one has been executed (Sutton
et al., 1999, p. 187). Hence, all convergence guarantees easily carry over. Let O = Uw denote
the option set. The top-level of the hierarchy is then given by the resulting policy over options,

mo(wls).
Bern(fu,) — 70 (w|52) buiorteoption pacd
Bern(l - fu) =, (als2)

Figure 2.2: Markov Options: Schema of an Execution

mo(w[s1) = w1 =y, (als1) = (a1, 72, 52)

Finally, we define the option-to-option policy (Smith et al., 2018, p. 3) function as:

ﬁo(wt‘wt—lv St) = (1 - 5Wt71(8t)) Owpwi—r + Buns (875)71'(9((,%’815)

-~

Continuation of option Switch to new option
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We highlight that the option set does not substitute but complement the set of primitive
actions. The original low-level actions can be viewed as one-step options with deterministic
termination and policy (Sutton et al., 1999, p. 187). Importantly, it can be easily shown
that a MDP whose action space consists of options is equivalent to an SMDP (Sutton et al.,
1999, p. 189). Again, we can apply SMDP Q-Learning and obtain the following updating rule
(Sutton et al. (1999, p. 195) and also see ISO report (Lange, 2018b, p. 9)):

Qrr1(s,w) = (1 — ag)Qr(s,w) + ay (Z Y +47 max Qk(s’,w’)> .
P w'eOy

Finally, we have to differentiate between different notions of optimality as introduced by
Dietterich (2000) (also see Lange (2018b, p. 5): Flat, hierarchical and recursive optimality.
Flat optimality is simply global optimality achieved for example policy by a converged Q-
learner. A policy is called hierarchically optimal if it is the best with respect to the prescribed
hierarchical structure Barto and Mahadevan (2003, p. 362). A recursively optimal policy, on
the other hand, is defined with respect to a set of pre-defined subtasks (Barto and Mahadevan,
2003, p. 362). Given the policies of the children subtasks, the policy is optimal for the current
subtask. Usually, hierarchical optimality is regarded as the stronger notion of optimality
(Barto and Mahadevan, 2003, p. 362). For options we have the special case that learning
converges to a policy that is hierarchically and recursively optimal at the same time. This
is due to the intra-option policies being fixed by the HRL algorithms designer. Hence, the
hierarchy consists of sub-child policies. Furthermore, if the set of options, O, includes all
primitive actions as one-step options, then SMDP-Q-Learning is guaranteed to converge to the
flat optimal policy (Sutton et al., 1999, p. 190).

Intra-option Learning and Interruption

One major concern of the options framework is that learning only happens after the option
has finished execution. This can take a while. Sutton et al. (1999, p. 203f.), therefore,
proposed intra-option learning. After every primitive action selection a; in s;, one determines
all options w that would choose the same action, 7, (s;) = a;. The agent can then generalize
her experience and update the value of all such options in the following way (Sutton et al.
(1999, p. 203ff.) and see ISO report (Lange, 2018b, p. 20)):

Q(st:w)kt1 = Q(st, W)k + v (reg1 + YU (8441, W) — Q(5¢,w))
U(s,w)r = (1= B(5)Q(s,w)i + B(s) I%J%XQ(SMI);@

where U(s,w) denotes the option value function upon arrival. Intuitively, it can be inter-
preted as a termination probability weighted average of continuing the execution of the old
option and starting a new one. This approach turns out to be more sample efficient since
one is able to use more of the information from the same amount of training observations
(Sutton et al., 1999, p. 204). Finally, it also helps to learn in cases where options are not
completely executed (e.g. when the goal state is reached before termination). Since the
primitive actions are trivially consistent with the option, the agent is still able to learn from
the reinforcement signal. Another useful trick that can speed up learning is the interruption
of an option execution (Sutton et al., 1999, p. 196f.). Similar to a policy improvement
argument, one might improve a policy over options, p, if the value of interruption is higher
than the value of continuation. More specifically, if option w is Markov in state s;, we compare
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Figure 2.3: Foor Room Problem (Sutton et al., 1999). Left. The Game Environment. Middle.
Q-Learning Solution after 10000 episodes. Right. State Values (indicated by circle size) after
10000 Q-Learning episodes.

the value of continuing its execution, Q*(s;,w), with starting a new option execution in
this state, V#(s) = >_, u(s,q)@" (s, q). If the option advantage function is negative, hence
A(s,w) = QH(st,w) — VH(s) < 0, we set 3'(s;) = 1 and define a new interrupted policy /'
Sutton et al. (1999, p. 197). Sutton et al. (1999, p. 197f.) prove that one can thereby
improve the policy of the agent.

As a running example throughout this report we will make use of the classic four room
problem outlined in Sutton et al. (1999, p. 192f.) (see figure 2.3). At the beginning of an
episode an agent is randomly placed within the environment and can move in all directions
(as long it does not violate the wall constraints). Upon reaching the goal position (indicated
in grey) the agent receives a reward of 1. For every other transition she yields a null reward.
The agent discounts her reward by ~. State transitions occur with 90 percent success rate. In
the remaining 10 percent the successor state is sampled from the neighborhood of the current
state.

At this point we can already glimpse at the hierarchical structure innate to this environment.
It goes as simple as this: If the state of the agent is not in the room with the goal, the agent
has to leave the room as fast as possible. Hence, an optimal policy lets the agent transition
through the hallways. A classical manual construction of an option set can be found in figure
2.4. Each individual option leads the agent to one of the four hallways. Instead of having to
learn the same overarching principle of "escaping” the room for every state, this option set
reduces the problem to determining which hallway to move to. Afterwards, the exact goal
location can be found using primitive actions.

Figure 2.5 shows learning results averaged across 5 agents and 10 on-policy rollouts in the
four room problem. The middle column implements macro-actions with eligibility traces.
We can observe that macros are not suited for noisy environments. Given an unsuccessful
transition the agent is locked into executing the remaining actions of the macro, even though
this might now be sub-optimal. Softmax (or Boltzmann) exploration and eligibility traces
(A = 0.1) perform best combined with the hand-crafted macros. Still, the variance in the
learning process averaged over 5 learning trials is significant. Learning with the hallway
options, on the other hand, is very fast and exhibits almost no variance. Furthermore, one
can observe that both intra-option learning as well as interruption both enhance learning
significantly.

The hallway options were constructed in a completely manual fashion and encode a significant

11
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Figure 2.4: Hallway Options (Sutton et al., 1999). The initiation set is indicated by the cells
which contain arrows. The intra-option policy is indicated by the direction of the arrows. The
termination set is given by the state colored in grey.

amount of domain knowledge. Being able to automatically identify subroutines which exploit
the hierarchical nature of the optimal policy allows the agent to learn faster and explore in a
more efficient manner. This form of end-to-end learning is the ultimate goal of the project at
hand. In the next section we review the current state of literature that deals with subgoal
discovery in HRL.

2.4 Discovering Hierarchical Structure

We are not the first to infer hierarchical structure in subgoal achievement problems. More
specifically, the option discovery problem deals with the question of how to construct an
option set that captures the hierarchical structure between sub-regions of the core MDP. Often
times this task is limited to defining the initiation set and the termination condition. The
intra-option policy can afterwards be easily learned (e.g. by introducing a pseudo-reward for
reaching the termination state).

Figure 2.6 provides an overview of the different approaches to subgoal discovery in HRL.
Roughly speaking the approaches can be categorized in three main pillars: First, graph
theoretic (Hengst, 2002; Menache et al., 2002; Mannor et al., 2004; Simsek et al., 2004) and
visitation-based (McGovern and Barto, 2001; Stolle and Precup, 2002; Simsek et al., 2004)
approaches aim to identify bottlenecks. Bottlenecks are regions in the state space which
characterize successful trajectories. Gradient-based approaches, on the other hand, discover
parametrized options by iteratively optimizing an objective function such as the estimated
expected value of the log likelihood with respect to the latent variables in a probabilistic
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Figure 2.5: Learning with Hallway Options. Left. Q()\)-Learning Agent with Eligibility Traces.
Middle. Macro-action SMDP-Q(\)-Learning Agent. The macros used are extracted using the
approach described in section 4.2 and are the following {ru, drr, rr, drrrr, dd, rrru, dddd, rrr}.
Right. Hallway Options SMDP-Q-Learning Agent. All results were implement by the author.
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setting (Daniel et al., 2016) or simply the expected cumulative reward in a policy gradient
context (Bacon et al., 2017; Smith et al., 2018). Finally, multi-layer (Bakker and Schmidhuber,
2004; Vezhnevets et al., 2017; Florensa et al., 2017) approaches attempt to split the goal
discovery and goal achievement across different stages and layers of the learning architecture.
Usually, the top level of the hierarchy specifies goals in the environment while the lower levels
have to achieve such.

The following subsections provide more details and highlight some short-comings.

2.4.1 Graph Theory and Visitation-based Approaches

Bottlenecks are defined as parts of the state space which are likely to occur in successful traces
and unlikely to be visited in unsuccessful ones (McGovern and Barto, 2001, p. 1). Hence, a
bottleneck state has to trade-off the frequency of a state occurrence with its participation in
successful experiences. Generally speaking, we are interested in identifying bottlenecks early
in the learning process which persist throughout learning (McGovern and Barto, 2001, p. 1).
Options provide a large amount of structural information about the learning environment.
Therefore, early discovery of significant regions and sub-policies improves the exploration
process the most (McGovern and Barto, 2001, p. 201). That being said, one first has to
accumulate a reasonable amount of information to actually identify such states. Therefore,
most methods have to balance the point in time where the agent is endowed with the option
set with time spent exploring the environment to construct a better set.

Graph theoretic approaches (Hengst, 2002; Menache et al., 2002; Mannor et al., 2004; Simsek
et al., 2004) do so by viewing the core MDP as a flow problem. States are represented by
nodes and transitions occur along the edges of the graph. A bottleneck can then be viewed
as a node which accumulates a lot of traffic by the paths of the agent. Hengst (2002, p. 1)
construct a set of nested sub-MDP regions from initially random runs and observe frequently
visited parts of the core MDP. Thereby the state space is divided it into strongly connected
components. Markov regions are then defined as union of strongly connected regions in
which any exit state can be reached from any entry (Hengst, 2002, p.2). Afterwards, policies
are learned over regions and one is able to obtain a recursively optimal policy. Menache et al.
(2002), on the other hand, specify subgoals with the help of MinCut or MaxFlow algorithms.
Again, bottlenecks represent loose connections between strongly connected components.
The option set is constructed in an online fashion based on cut conditions which ensure the
quality of the cut (Menache et al., 2002, p. 5). One is interested in a small number of edges
(corresponding to bottlenecks) which connect balanced sets of states. Finally, Mannor et al.
(2004) provide a more robust approach by the means of state clustering. Again, they balance
the quality of separation and clustering.

Visitation-based and graph theoretic approaches are equivalent, except for the fact that only
one of them explicitly constructs a graph. Diverse density, an approach due to McGovern and
Barto (2001), identify bottleneck regions by solving a multiple-instance problem in which
one tries to infer a target concept with the help of "bags" of instances (states sequences). Each
trace can be regarded as either a successful bag of instances or an unsuccessful one. A subgoal
necessarily appears in the successful bags while it does not in the unsuccessful (McGovern
and Barto, 2001, p. 4). Finally, Stolle and Precup (2002) explicitly construct a complete set
of options instead of greedy individual ones. No assumptions about the success of a trace
have to be made. Instead, the agent learns the importance of specific states while achieving
a set of different tasks. The terminal state is defined to be the most frequently visited one,
while the initiation set consists of the set of interpolated states which were experienced more
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than an average threshold.

All approaches suffer from severe thirst for observations. In order to differentiate between a
regular state and a bottleneck state a lot of experience is necessary. E.g. Stolle and Precup
(2002, p. 21) require a large set of experiences to infer accurate state frequencies. Having
to split the exploration process and the actual learning also seems very sample inefficient.
Furthermore, graph partitioning seems unlikely to be a neurologically plausible way of how
humans construct hierarchical sub-structures. Our proposed approach (see chapter 4) solves
this distinction by learning temporally-extended actions in an online and sample efficient
fashion.

2.4.2 Parametric Gradient Approaches

The approaches presented in the previous section first explore the MDP and afterwards con-
struct options suited for the inferred properties of the environment. This bears the limitation
that one has to infer an approximately accurate model of the dynamics before the actual
learning with the options can start. An approach to circumvent this is to parametrize the
options framework and to optimize such parameters in an iterative fashion.

Daniel et al. (2016) first introduced a probabilistic view to the options framework. The
authors view options as latent variables with activation, termination and intra-option policy
functions being defined by parametrized probability distributions. A graphical model over
the latent options can then describe the transition dynamics in the reinforcement learning
environment (Daniel et al., 2016, p. 340). Thereby one is able to formulate a lower bound to
the marginal log-likelihood of observed trajectories and to iteratively infer the parameters
describing the option distributions with the help of the Expectation-Maximization (EM)
algorithm (Baum et al., 1970). The authors derive updating equations and show how this can
be incorporated in both imitation as well as reinforcement learning (Daniel et al., 2016, p.
341f.).

The option-critic framework (Bacon et al., 2017), on the other hand, simultaneously solves the
option discovery problem and learns policies over such options. Unlike before, the objective
now is the expected discounted cumulative reward which can be rewritten in terms of the
option-to-option policy function. Afterwards, one is able to derive gradient expressions for
both parametric intra-option policies as well as termination condition function (Bacon et al.,
2017, p. 1728). This deletes the necessity to pre-specify subgoals and only leaves the designer
to choose the number of desired options (Bacon et al., 2017, p. 1726). Based on a termination
condition gradient expression that negatively depends on the advantage function the agent is
more likely choose a new option at an earlier point in time if the current choice is sub-optimal
(Bacon et al., 2017, p. 1728).

Finally, Smith et al. (2018) combine both points of view. Again, options are viewed as latent
variables but now in the policy gradient context of Bacon et al. (2017). Instead of optimizing
a lower bound with the help of the full EM algorithm, one can instead marginalize over the
hidden options (Smith et al., 2018, p. 2). The corresponding posterior for the expectation in
the policy gradient can be found via recursion and a simple forward pass in the expectation
step. The main advantage lies in being able to simultaneously learn all shared parameters
with the help of the inferred policy gradients. Furthermore, the authors are able to show that
the degree of option specialization increases which in turn helps to interpret them as distinct
functional behaviors (Smith et al., 2018, p. 6).

15



2.4. DISCOVERING HIERARCHICAL STRUCTURE Chapter 2. Time Uncertainty

All of the above approaches suffer from the following two limitations: The initiation set
is assumed to be the complete state space. Due to the observation that the efficiency of
an option depends on the position in the state space, this can significantly slow down the
learning process. The state-specialization of the option has to fully be learned by the policy
over options. Second, the number of desired options has to chosen as a hyper-parameter. An
interesting alternative to this would be a Bayesian non-parametric approach where the optimal
number of options could be obtained by maximizing the marginal likelihood. Interestingly,
Smith et al. (2018, p. 7) observe that the number of desired options might vary throughout
the learning process. In the beginning, more options might be useful to stabilize sub-optimal
behavior. Later on, as the behavior improves, the number of options can be reduced. Both
of these short-comings have to be addressed in future work. Our approach is not directly
comparable since we do not parametrize options. Instead, the option inference algorithm is
parametrized and its hyper-parameters can be optimized.

2.4.3 Multi-Layer Approaches

Most of recent research efforts intend to train a hierarchical architecture in an end-to-end
fashion. Combining temporal and spatial abstraction in Deep Reinforcement Learning (DRL,
e.g. Mnih et al. (2013, 2015, 2016)) yields impressive results in many complicated settings.
The field of Deep HRL is not directly related to the options framework. Instead, the agent
simultaneously generalizes the state space information using deep architectures while planing
the achievement of subgoals. The systems parameters are then learned in end-to-end fashion
using backpropagation (Rumelhart et al., 1986).

Originally, Bakker and Schmidhuber (2004) introduced the HASSL (Hierarchical Assign-
ment of Subgoals to Subpolicies Learning) algorithm. A high-level policy is tasked with the
identification of meaningful intermediate achievements that predate top-level goals (Bakker
and Schmidhuber, 2004, p.1). Low-level policies at the same time master subgoals which
were set by the next higher level. High level goal states are concatenated with the lower
level states in order to create specialized behavior which generalizes within a certain part
of the state space (Bakker and Schmidhuber, 2004, p.2). Other two-layer architectures
allow learning at different time-scales (Kulkarni et al., 2016a; Vezhnevets et al., 2017).
A meta-controller/manager module learns subgoal signals from the external environment
while the low level controller/worker module learns how to achieve those using primitive
actions. Furthermore, there are multiple attempts to combine recurrent structures (Vezhn-
evets et al., 2016), the notion of successor representations (Kulkarni et al., 2016b), meta
learning (Frans et al., 2017) as well as intrinsic motivation (Florensa et al., 2017) and soft
proxy rewards. Lately, Co-Reyes et al. (2018) introduced a novel architecture which learns a
latent space of behaviors. Thereby one leverages a continuous and infinite set of temporally-
extended actions. A behavior parametrizes a policy and a decoder predicts a trajectory of
state visitations (Co-Reyes et al., 2018, p. 2). Together with Model-Predictive Control one
performs planning at a coarser timescale. Independent of this a Proximal Policy Optimization
(Schulman et al., 2017) is trained to explore trajectories by maximizing the generated entropy.

While providing a fully algorithmic approach, such attempts lack interpretability and often
times need severe amounts of pre-training. They loose the functional interpretability of
options as sub-policies and are able to overfit abstract behaviors. Our approach, on the other
hand, directly leverages the hierarchical structure captured by sequences of behavior or state
transitions. Thereby, we obtain an encoding which decomposes different levels of abstraction.
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Furthermore, in chapter 4 we introduce an information-theoretic mechanism which prevents
overfitting of noisy sequences. Hence, we maintain the important property of interpretability
and reduce the computational load.

This chapter has introduced the formal HRL framework in which we develop our grammar-
based approach for automating the discovery of temporally-extended actions. We covered the
general MDP setup and its temporal generalization in SMDPs. Furthermore, we discussed
how macro-actions as well as options constitute SMDPs when defined over the core MDP.
Eligibility traces provide another form of extended value information propagation and we
outlined an algorithm that combines macro-actions with eligibility traces. Finally, we argued
that the current state of HRL research lacks a sufficient answer to the hierarchical substructure
discovery problem.

Language, on the other hand, is hierarchically structured and its constituents can be inferred
using computational tools based on formal grammars. In the following section we now turn
to the foundations of grammatical inference and numerical measures which quantify the
information-theoretical complexity of parsing a sequence of symbols.
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Chapter 3

Language and Behavior

The previous section has introduced several different approaches to subgoal discovery. We
have seen that many of them require a large amount of pre-training and cannot be integrated
in to the learning process itself. Thereby, computational inefficiencies were introduced. Our
approach, on the other hand, leverages the hierarchical structure innate to human language
and its comprehension. The following chapter introduces key concepts from grammatical
inference and formal grammars. We first motivate a strong parallelism between language
comprehension and motor control. Afterwards, we introduce notation and compare context-
free and probabilistic context-free grammars. Such hierarchical structures can be discovered
using tools from grammatical inference. Finally, we review syntactic surprisal which is going
to have a key role in discovering temporally-extended actions.

3.1 Motor Control and Language

Lashley (1951) was first to hypothesize that grammatical structure applies to both language
and goal-driven behavior. Since then multiple studies have provided clear evidence that
Broca’s area is not only concerned with language-specific hierarchical computations (Brennan
et al., 2016; Ding et al., 2017; Nelson et al., 2017) but also with action-to-goal related pro-
cesses (Fazio et al., 2009; Fadiga et al., 2009). Despite this and to the best of our knowledge,
only a few studies have made the effort to intelligently link computational models of behavior
with the structural paradigm of language (e.g Aloimonos (2008); Aloimonos et al. (2010);
Pastra and Aloimonos (2012); Stout et al. (2018)). Furthermore, most of these have been
centered around the usage of tools as extensions to specific body parts (Pastra and Aloimonos,
2012, p. 106). In the following we intend to give a simple example of how a grammatical
structure might help a RL agent to solve problems efficiently.

Pastra and Aloimonos (2012, p. 104) formulate a minimalist programme (Chomsky, 1995)
conceptual class whose general principles apply to both language as well as other biological
systems. Syntax provides a parsimonious modeling framework which allows for efficient com-
putation for both generation and parsing of time-dependent sequences. In their specification
they disregard the notion of sub-goals (Pastra and Aloimonos, 2012, p. 107f.). By citing
neuroscientific evidence, they argue that the final and global goal influences all actions and
that the first action already expresses clear signs of intention. Instead, minimalist programme
augment a CFG with the following transformations: recursion, merge and move (Pastra and
Aloimonos, 2012, p. 105f.). The action grammar then consists of primitive actions, action
strings or phrases and action features such as tool/affected-object complement and goal
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(Pastra and Aloimonos, 2012, p. 106.). Figure 3.1 describes one such action grammar and
the corresponding parse tree for a specific goal-driven sequential behavior, namely inserting a
key in order to open a door. We follow Pastra and Aloimonos (2012, p. 108) and differentiate
between primitive actions (a), entities (e), non-terminals (A) and the maximal projection
(also known as goal) of the action structure (A4,,;). In this specific case all sub-actions are
related by sequential temporal conjunctions. Entity references (F), on the other hand, are
related by either action-object or action-tool complements.

Agoal

Put key with hand in lock to turn

N

0 Az
Goal: turn Put key with hand in lock
A6 Temporal conjunction A
Grasp key with hand (sequential) Insert key into lock
Alb Temporal conjunction Azb A3b Temporal conjunction A4b
Extend hand to (sequential) Enclose with hand Extend hand to (sequential) Insert key
1 . = action- A i 't ;
A action- Eh E A action- E action- E
and .
1 object A2 object key 3 object hand A4 object lock
Npleme"t | Nment | /Nwlement | Nement |
(@ action-tool [ Q  action-tool (& Reference: (1, action-tool € @ (  action-tool é w
Extend complement Hand Reference: poooc.  complement Key " Extend complement Hand Referencer .. complement Lock Reference:

To key To hand To lock To hand

Figure 3.1: Action Grammars Parse Tree. Extended from Pastra and Aloimonos (2012, p. 108)

Now imagine a RL agent trying to solve the task of Montezuma’s Revenge. In order to
sufficiently solve the task, the agent has to first safely pickup a key and afterwards deliver it to
a goal location. This goal achievement procedure can be seamlessly retrieved and executed by
simply parsing/sequentially executing actions provided by the grammar encoded in the parse
tree above. Hence, the parse tree acts as a form of fast thinking system which automatically
solves a sub-task of the overall task. This reformulation of sub-goal achievement as following
a grammar-prescribed sequence of terminal vocabulary (primitive actions) motivates the
action grammar framework outlined in chapter 4. Ultimately, we are interested in extending
this school of thought to the Reinforcement Learning world in which an agent episodically
interacts with a stimulus and reward providing environment. By doing so, we will be able to
both better understand what makes hierarchical decomposition so efficient and to improve
the performance of HRL agents.

Now that we have seen how action grammars are useful to solve hierarchically structured
tasks, the next sections introduce the required background and notation in formal grammars
and how to obtain estimates of such grammars.
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3.2. FORMAL GRAMMARS Chapter 3. Language and Behavior

3.2 Formal Grammars

Formal grammars and the theory of computational linguistics study both generating and
accepting systems that underlie a language. Given a start symbol S a formal grammar
(3,N, S, P) produces an output which is a string of words. They are made up of multiple
components (see e.g. Levelt (2008)):

e Y A terminal vocabulary which is a set of terminal elements used to construct the
sentences of a language. For convenience we stick with the convention that individual
elements are denoted by lower case latin letters.

e N: A non-terminal vocabulary (or variables denoted by upper case latin letters), on
the other hand, is a set of elements which are only used in the process of deriving a
sentence.

e V*: The set of all possible strings of possible elements in the vocabulary.

e /T: The set of all possible strings of possible elements except for the null-string in the
vocabulary.

e P: Production rules are then defined as ordered pairs of strings such that « — 3, « €
vVt Be v~

3.2.1 Context-Free Grammars

Following Chomsky’s hierarchy of grammars (see figure 3.2; Chomsky (1959a,b)) a type-2
grammar, also known as context-free grammar is such that the production rules have the
following form (Levelt, 2008, p. 11):

A — B ,where 8 # Xor |3] #0

Since production rules either map from one-to-one, one-to-none or one-to-many they are
called context-free. The context of a non-terminal symbol does not influence the production
rule (Pastra and Aloimonos, 2012, p. 105). A context-free grammar that is non-branching and
loop-free is called a straight-line grammar (Siyari and Gallé, 2016, p. 81). Such grammars
are very restrictive since they are only able to generate a single sentence.

3.2.2 Probabilistic Context-Free Grammars

A probabilistic CFG (X, N, S, P, p) generalizes the notion of a CFG by adding a probability
vector p : P — [0, 1] (Levelt, 2008, p. 33f.). The vector is a proper probability distribution,
hence for all A € N we have

> plA—B)=1,where P(A)={A—a:A—acPh
A—BeP(A)

Intuitively, p specifies the likelihood of rewriting a non-terminal string. The probability of
a specific derivation is simply the product of its productions. Hence, PCFGs capture the
frequency with which certain types of sentences occur in a language.
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Figure 3.2: The Chomsky Hierarchy. Altered from Levelt (2008, p. 12)

3.3 Grammatical Inference

The process of inferring a grammar for a language that is consistent with a given sample of
sentences is called grammatical inference or grammar induction (Levelt, 2008, p. 109f.).

3.3.1 Grammar Induction for Context-Free Grammars

The smallest grammar problem (Charikar et al., 2005; Siyari and Gallé, 2016) formalizes
the problem of finding the smallest CFG which compresses a string generated by a straight-
line grammar. The size of a grammar is defined by the length of concatenated symbols
needed to decode the encoded string. It is well known that this problem is NP-hard (Charikar
et al., 2005, p. 2). Two algorithms that greedily approximate the smallest CFG are Sequitur
(Nevill-Manning and Witten, 1997) and Lexis (Siyari et al., 2016).

The Sequitur algorithm infers a CFG in a greedy fashion. Given a single sentence of the
language, Sequitur sequentially reads in all symbols and collects repeating subsequences
of symbols into a production rule. The construction imposes two constraints at all times.
First, the final encoded string is only allowed to have unique bigrams (Digram Uniqueness,
Nevill-Manning and Witten (1997, p. 69)). If this was not the case, the algorithm could
replace the bigram by a non-terminal symbol and add a corresponding production rule.
Second, production rules have to be used more than once in the derivation of the string (Rule
Uniqueness, Nevill-Manning and Witten (1997, p. 70)). Otherwise, we could simply replace
it by the corresponding terminal vocabulary and thereby reduce the size of the grammar. A
simple example with ¥ = {a, b, ¢, d} can be found below:
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Decoded
Sequence

a b d c a a b a d c

(/b\/f\/\/\/\\/
Sl

|
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|
a a C

\ \l/
a A

}
B
\_/ \
B

Encoded
A

Sequence

Table 3.1: A 2-Sequitur Encoding Example

It is well known that Sequitur tends to overfit noise in observed sentences. As the length
of the sequence increases, Sequitur greedily encodes the sequence by adding non-terminal
symbols as soon as a sub-sequence is scanned twice. Similar to classical supervised learning,
one might thereby not be able to accurately capture the true underlying data generating
process. Multiple alternatives have been proposed to combat this problem.

k-Sequitur (Stout et al., 2018, p. 5) for example generalizes this approach by replacing a
bigram with a rule only if the bigram occurs at least k times. As k increases the discovered
CFG grammar becomes less and less sensitive to overfitting noise and the resulting grammar
is more parsimonious in terms of productions.

Lexis (Siyari et al., 2016), on the other hand, provides an optimization-based alternative
which iteratively constructs a directed acyclic graph (DAG), the so-called Lexis-DAG. The
graph consists of alphabet, intermediate and target nodes and has to satisfy three properties
(Siyari et al., 2016, p. 2): First, every node in the DAG represents a string. Second, every
intermediate or target node represents string which is generated by the concatenation of
substrings and represent hierarchical substring concatenations. Finally, intermediate nodes
have at least two outgoing edges. Hence, the substrings which they constitute are used in
at least two following concatenations which is reminiscent of the rule utility principle of the
Sequitur algorithm. Starting from a trivial graph which connects a set of target sentences with
the set of elements in the terminal vocabulary, we seek to construct the Lexis-DAG by adding
intermediate nodes (Siyari et al., 2016, p. 2). The indirect objective thereby is to minimize a
cost function (e.g. number of concatenations or DAG edges - equivalent algorithms) while
imposing that the constructed graph satisfies all three Lexis-DAG properties (Siyari et al.,
2016, p. 2f.). Again, this problem by itself is NP-hard. G-Lexis, the greedy algorithmic
implementation, searches for substrings that will lead to a maximal reduction in the cost,
when added as new intermediate node (Siyari et al., 2016, p. 3f.). It does not account for
longer dependencies.

IGGI (Information Greedy Grammar Inference, Schoenhense et al. (2017)) sits conceptually
on top of G-Lexis and combats the phenomenon of "overfitting" by introducing a decision
rule based on the decrease in Shannon entropy gained from introducing the production.
IGGI thereby provides a mechanism to regularize the DAG constructed by G-Lexis and one
can avoid fitting noise in non-hierarchical string sequences (Schoenhense et al., 2017, p.
7). Furthermore, IGGI captures the Bayesian notion of Occam’s Razor and performs very
data-efficient.
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3.3.2 Grammar Induction for Probabilistic Context-Free Grammars

PCFGs, on the other hand, can be inferred from visible data by the means of the inside-
outside algorithm (Lari and Young, 1990). The inside-outside algorithm is an Expectation-
Maximization type algorithm which makes use of dynamic programming and iteratively
computes expected frequencies of production rules. Afterwards, it constructs their probabili-
ties. It thereby provides a point estimate of the probabilities associated with a specific parse
tree. As always, Bayesian approaches can provide a sophisticated notion of uncertainty. For
example, Hidden Markov Models naturally lead themselves to filtering distributions which we
will later see to relevant for our notion of replay surprisal. Furthermore, we can also employ
a Bayesian Multinomial-Dirichlet model (see for example (Stolcke, 1994)).

Hidden Markov Models are generative probabilistic models. Given a hidden variable z
with # hidden states, a HMM consists of a Markov Chain described by the transition matrix
p(zt|ze-1) € R?%?, an emission distribution p(w|z) € R*!*? and an initial distribution for
the first hidden state p(z1) € RY.

p(22]z1) € RI*0

| \
ey 21 Z9 23 ------ 2t meee--
o w1 Wa w3 Wi

.
(]
.

p(wr|z1) € RIZI%6

Figure 3.3: Hidden Markov Model

They are trained by repeating alternating expectation and maximization steps until con-
vergence. In practice this is achieved by the Baum-Welch algorithm which consists of a
backward pass which computes the joint distribution p(w,...,w;, 2;) and a forward pass
which computes p(w¢y1, ..., wr|z). These two distributions together together allow us to
compute posteriors and to perform the expectation step. Afterwards, one easily updates the
parametrized transition, emission and initial distributions by maximizing the expected data
log-likelihood.

3.4 Information-Theoretical Complexity

Language comprehension is an active field of computational linguistics which intends to
study the sequential parsing of strings while inferring global meaning of the sentence. It
combines the static and generative notion of formal grammars with the dynamic and accepting
elements of automata (Hale, 2014). Probabilistic grammars formalize prior beliefs about
the distribution of sub-structures in human language (Hale, 2014, p. 84). They associate
probabilities with specific derivations and thereby formalize a notion of anticipation. Given
a pre-string how likely is it to observe a specific one at the next time step? Both, syntactic
surprisal (Hale, 2001; Levy, 2008) and entropy reduction (Hale, 2003, 2006) transform this
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conditional distribution in order to quantify the amount of information-processing required to
process the successor. A strongly unexpected string leads to a large amount of necessary belief
updating. Intuitively, syntactic surprisal (Hale, 2001; Levy, 2008) measures the difficulty
generated by replacing a previous conditional distribution with the revelation of a new
element in the sequence. Equivalently it measures the amount of self-information provided
by revealing the next element in the sequence of strings of a sentence. Mathematically, it
is the logarithm with base 2 of the reciprocal of the conditional distribution. Hence, it is
measured in bits and can be regarded as the amount of information revealed due to observing
this particular element instead of any other. Given a grammar G and sentence ¢ let w; denote
the word at position j. Syntactic surprisal (Levy, 2008, p. 1130f.) is then defined as

Surprisali’G ox —logy pG(w§+1|w§’.._7t) = —log, pf(W§+1) >0

It can be easily constructed for any form of PCFG that provides some a filtering distribution.
E.g. a Hidden Markov Model with k hidden states lets us compute the conditional in the
following way:

k
p(wir|wi, ... wy) = Z p(wit1|ze41) p(2eta|ze) plzels, .. se)

zt41=1

Emissions Transitions Filtering

Surprisal is able to capture many phenomena in human language comprehension such as
Garden Path Sentences and object relative clauses (Hale, 2014, p. 35).

Entropy reduction, on the other hand, quantifies changes in the structure associated with the
conditional distribution (Hale, 2014, p. 88). The entropy is simply the expectation of the
surprisal:

H(i; G) _E[logQPG(wg—i-l‘wi,...,t)] = - Z pG(w§+1’wli,...,t> log2pG(wi+1‘wi,...,t)

W41

If the entropy is reduced after a new word has been processed (At,tHE[Surprisali’G} < 0)
the conditional distribution becomes more peaked around specific values. This represents
certainty in what the parser expects next. The conditional distribution has become more
structured. Following Hale (2003, p. 105), the entropy reduction hypothesis states that a
strong reduction reflects large processing efforts. Similarly to syntactic surprisal, a strong
reduction in entropy is associated with "mental work".

Compared with syntactic surprisal, entropy reduction captures the notion of relative frequency
of the derivations. Hale (2014, p. 89) states that this leads to better empirical performance
when profiling human language comprehension.

In later sections we will make use of the surprisal measure to stop an option execution or
the generative process of macro-actions if a certain threshold is exceeded. Intuitively, a HRL
agent which has learned some structural aspects of the environment will want to circumvent
surprising transitions in state space. Surprisal thereby measures a form of uncertainty within
the executed sub-policy. Instead of continuing the execution of the current grammar-based
option, control will be returned to the next higher level.

This chapter has introduced the required formal knowledge necessary to merge grammat-
ical inference with Hierarchical Reinforcement Learning. First, we motivated a parallel
point-of-view between hierarchically structured behavior execution and language comprehen-
sion. Afterwards, we defined the technical terms and conventions required to reason about
grammatical structures. The process of discovering such structures was reviewed and we
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highlighted several difficulties that are associated with capturing the true underlying generat-
ing process. Finally, we discussed information-theoretic measures of effort in sentence parsing.

In the next chapter we will now combine both fields and derive algorithms which are able
to leverage innate advantages: Efficient learning with hierarchical substructures within HRL
and efficient discovery of such substructures with the help of computational linguistics.
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Chapter 4

Action Grammars

The following section introduces the core contributions of this project. Section 2.4 concluded
that current Hierarchical Reinforcement Learning approaches are in need for a sample efficient
and interpretable end-to-end algorithm that extracts hierarchical constituents. Furthermore,
we saw that grammar induction provides such a sample efficient mechanism in the context of
language. Such algorithms infer the generating process conditioned by the formal grammar.
It comes only natural to combine both.

We will now make a crucial assumption that connects linguistics with eager behavior:

Assumption 1. Observed episodic behavior (with trajectory ¥ = {¥1,...,97} where ¥, =
{s¢, a}) can be equivalently viewed as sentences sampled from the language, L(G) with G ~ = |E.

Action sequences as well as communication by the means of words both convey meaning and
are goal-directed. Furthermore, both consist of hierarchical structures and are conditioned by
the environment in which they are uttered in. By treating sequential behavior as sentences, we
are able to extract temporally-extended actions by applying grammatical inference techniques
(see section 3.3). In general, the language of actions depends on two factors. First, trajectories
of a RL agent are generated by a policy 7 resulting from the current value estimates. Second,
the environment F (i.e. the start and goal location as well as the transition success rate)
dictates the length of the sentences as well as the allowed sub-sequences. Hence, the
sampled sentences or trajectories encode valuable information. Not only do they convey
self-information but they also encode structures within the environment.

Therefore, we propose to apply grammar induction to an observed history of state-action tran-
sitions of an agent that interacts in a goal-directed fashion within a structured environment.
The overall learning process can thereby be split into two alternating steps: Action learning
and grammar learning. Grammar Learning describes the process by which the agent extracts
information from her observations. Given sampled state-action sentences from previous
agent-environment interactions the agent extracts hierarchical constituents of his current
policy. These constituents can then be transformed to alter the action space of the agent. We
interpret the augmented action space as an estimate of the production rules underlying the
true action grammar. During action learning, on the other hand, the agent refines his "action
grammar'-value estimates using SMDP-Q-Learning. The overall learning procedure then con-
sists of alternating updates of the grammar estimate and a refinement of the corresponding
value estimates based on reinforcement signals. Hence, the agent switches between refining
his structural assumptions of the environment and updating her value estimates of inferred
temporally-extended actions.

This bilateral paradigm introduces another exploration-exploitation trade-off within the
overall learning problem. Not only does the agent have to balance the expected value and
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uncertainty associated with state-action pairs. She also has to choose whether to exploit the
hierarchical sub-structures previously discovered or to update her action space and further
explore and extend her experience buffer. A graphical illustration can be seen in figure 4.1:

Sampling of Sampling of Noisy-Rational
Reinforcement Environment Sentences from Language
Signals Generating Process
Action Learning Grammar Learning

Exploration-Exploitation

~_

Action-Grammar Agent

(Hierarchical RL) (Grammar Induction)

Learning of Learning of Action

Grammar to Alter

Value Estimates Action Space

Figure 4.1: A New Exploration-Exploitation Trade-Off: Grammar and Action Learning

Instead of handcrafting sub-policies or learning sub-structures in a non-interpretable way, we
derive an approach which extracts temporally-extended actions with the help of grammatical
inference. By separating structure discovery in grammar learning from policy optimization in
action learning, the agent is able to leverage powerful ideas from both worlds of computational
linguistics as well as Hierarchical Reinforcement Learning.

In the following, we outline different frameworks which incorporate the bilateral relationship
between structure discovery and structure application. We explore different grammar defini-
tions in the context of HRL and compare results in several learning environments. While doing
so, we will distinguish between an imitation learning task and a online reinforcement learning
task. During the imitation learning task the agent is going to observe an expert. She will infer
latent structures from the expert behavior and adapt her action space accordingly. Afterwards,
the action learning process starts. We will show how action grammars provide an automatic
way of discovering optimal sub-policies. The online reinforcement learning agent, on the
other hand, will learn a grammar of his own behavior. Here grammar induction provides
a form of reflection process. The agent reviews his previous actions and extracts patterns
which generalize throughout the state space. This approach has clear parallels to the classical
basal ganglia-inspired Actor-Critic (AC; e.g. Takahashi et al. (2008)) paradigm in which
a critic is concerned with learning a state-value function while the actor learns to execute
actions. Here, similarly a grammar critic module learns to structure the temporally-extended
action space. This chapter proceeds as follows. First, we formally state the problem and the
general approach. Afterwards, we show how one can incorporate this general line of thought
into the automatic discovery of both macro-actions and options. Finally, we will discuss an
efficient syntactic surprisal-based metrics to compare different grammatical substructures in
the context of HRL.
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4.1 Problem Formulation

Let us assume that the optimal policy of a Reinforcement Learning agent is hierarchically
structured for a specific environment E. The optimal policy 7* then consists of a hierarchy of
subgoal achievements which increase in sequential difficulty when moving up the hierarchy.
We define the terminal vocabulary ¥ to consist of the primitive action space A, hence
Y, = A. A trajectory obtained from traversing the current policy = is viewed as a sample
from the language generated by the grammar L(r|E). We write ¥ ~ L(x|E) fori =1,... N,
trajectories. Since we assume an episodic reinforcement learning task in which an episode
ends with the achievement of the goal, each trajectory has an individual length denoted by T;.
Given a set of trajectories, 9!, ... 9", we construct a grammar training set from which we
infer a (probabilisitic) context-free grammar using one of the algorithms outlined in section
3.3. Thereby we obtain a grammar estimate G. Afterwards, we transform this grammar
into temporally-extended actions such as macros (M%) or options (O%). We augment the
action space of the HRL agent, e.g. A = AU MC. The HRL agent can then use this new
action space in his further learning. A graphical illustration of the grammar learning phase
is shown in figure 4.2:

Sample :{1917 L) 19T1} Estimate
Policy 2 (q2 2 Hierarchical
Rollouts 7‘9 _{1917 Tt 19T2} Sub-structures
Tk | — . — |G~ A°
N, _1.9Ng Ny

Figure 4.2: Exploring Past Experiences: Grammar Learning

Grammar learning thereby introduces a reflective period in which the agent takes a bird’s
eye-view on the observed behavior. The grammar inference process identifies repeating
patterns that led to successful goal achieving experiences. By extracting these patterns and
redefining them as temporally-extended actions, we additionally save the progress made
not only in the value estimate but also in the augmented action space. During the action
learning phase, on the other hand, the agent interacts with the environment and receives
reinforcement signals from the environment. She updates her value estimates and refines her
behavior. More specifically, the temporal difference error for episode i at time j with waiting
time 7 is denoted by

3],(1] Z’yk 1rt1+k+’yT alfréixé Q(s',d)—Q(sj,a;) Yi=1,...,N,and j=1,...,7,...T;.

Together they shape the action-grammar value estimate Q(s, a ) and during an action training
phase of N, episodes we are able to update the estimate to Q'(s, a ).1 Depending on whether

'In the next sections we will outline different ways of transferring learned value estimates between action
grammar updates such that we do not loose any progress between different phases.
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we model the agent under the AC umbrella we separately update the policy or can extract it
using the max, operator on (., a). Action learning is illustrated in figure 4.3:

Update
Value Fct.
Estimate .
Experience 51 :{5%7 et 5%11} Ql(s’ aG)
Reinforcement 2 2 2
R Signals 07 ={0%, .., 0, } - (Critic
Q(s,a%) —— , Update . Only)
. Policy Fct. M
N N, N, Estimate .
one ={07, ... 0pe H . 7¢|E
(AC Methods)

Figure 4.3: Exploiting New Experiences: Action Learning

Ultimately, we are interested in learning 7*. By alternating between grammar updates and
value updates the agent is able to iteratively update his action space and to learn how to put
those actions to use. Since temporally-extended actions are especially powerful in the first
stages of learning, the frequency of grammar estimate updates can be decreasing. During
the beginning of the overall learning process we update often. As learning becomes more
stable, the need to refine the underlying grammar decreases as well. Furthermore, as the
agent learns, the length of the sampled sentences decreases. Since the agent reaches the goal
earlier and since the grammar inference algorithms are usually not robust to the length of the
input sequence, the hyperparameters of the grammar induction algorithm also have to be
adjusted. The complete learning process can be viewed below.

Grammar Learning

/19Ng —_——

n|E | —— | 9.,

o

2

™
()

* )

GE | —— | 8. 6N | —— |Q(s,a%)

Action Learning

Figure 4.4: Closed Loop: Grammar Learning and Action Learning

Now that we have established the general paradigm, we are ready to introduce different
algorithmic procedures to define semantically meaningful temporally-extended actions using
context-free as well as probabilistic context-free grammars. Furthermore, we explore the
importance of grammar and learning hyperparameters and their relationship. We start
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with macro-actions for deterministic environments and continue with option discovery for
stochastic environments.

4.2 Macro-Action Discovery

As introduced in section 2.3.1 macro-actions provide a powerful solution to long-term credit
assignment problems and exploration in such. Since they prescribe the deterministic execution
of fixed sequences of actions, they are not well suited for stochastic environments (see figure
2.5). In this subsection we will introduce two procedures which allow us to identify macro-
actions suitable for efficient HRL:

1. CFG Macro-Actions: Following the context-free action grammar approach we define
macro-actions by flattening productions rules extracted by any CFG inferring algorithm.
The grammar regularization parameter (e.g. k in the k-Sequitur algorithm) is treated as
a learning parameter which can be adapted during learning (e.g. similar to temperature
annealing or exponential decay).

2. Hidden Markov Model Macro-Actions: The probabilistic action grammar framework,
on the other hand, allows us to sample macro-actions from a generative model. The
length of the action sequence is determined by a surprisal threshold which again will be
treated as an adaptive learning parameter.

The following sub-sections give details. Empirical test for the macro-action discovery problem
can be found in section 5.1.

4.2.1 CFAG: CFG Macro-Actions

Let us start with an thought experiment. Assume that the space of primitive action and
therefore the terminal vocabulary is given by

A=Y ={a,b,c,d,e, f}

where each a € ¥ corresponds to some control command in the deterministic environment a
reinforcement learning agent lives in. Furthermore, let us assume that the current greedy
and deterministic policy of the agent (¢}) is given by the 63 letters in the first row of table
4.1. As motivated in the previous section we treat this sequence as a sentence generated by a
straight-line grammar. We are then able to encode this string using any context-free grammar
induction approach. Table 4.1 displays three possible CFG extractions, their corresponding
production rules (PR) and a few compression statistics.

We denote the encoded sequence by ¥¢"¢, the compression ratio by % and the ratio of
empirical entropies by H;(fg)c) 2-Sequitur, 3-Sequitur and G-Lexis derive very different
grammatical structures. 2-Sequitur and G-Lexis compress v} very strongly, while 3-Sequitur
provides a more conservative encoding which increases the entropy. The symbols used in the
encoding are more uniformly distributed than in the decoded policy sequence. Applying the
entropy reduction intuition from section 3.4, we can conclude that the syntactic workload
has decreased. Furthermore, strong compression is associated with a deeper grammatical
hierarchy (only in the 2-Sequitur case) and longer recursively flattened production rules.
During the grammar learning phase the agent defines a set of macro-actions based on the
recursively flattened production rules, where |N| = | M|. More specifically for the 3-Sequitur
case, we define the new action space of an agent as
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Policy ()): abdaefabdcedabdaefaedcefabdaefabdcedabdcefaedcedabdaefabdcedabd

Algorithm 2-Sequitur 3-Sequitur G-Lexis
gene BCDfBEfDdBF BCDBEAFfGdaefCDabdcefEdDBCEC BaCfBcCdB
Chnlas 0.1746 0.4603 0.1429
e 1.0702 1.3613 0.9721
N PR Flat (M?>=°¢?) [ PR Flat (M>—°9) PR Flat (M=)
B CEd abdaefabdced | CEf abdaef DaefDcedD abdaefabdcedabd
C FGf abdaef Gd abd - efaedce
D GdH aedce Fd ced - abd
E FH abdce - ae
F - abd - ce
G - ae - ab
H - ce

Table 4.1: Macro-Action Construction with CFG Encoding of a Deterministic Policy.

AC = AU MB—sed ={a,b,c,d,e, f} U{abdaef,abd, ced, ae, ce,ab}

Afterwards in the action learning phase, she utilizes the inferred action grammar and learns
with the help of SMDP-Q-Learning. An overall algorithmic approach would be as follows:
We start by initializing the agent as a Q-learner and learn a set of action values from N;;,;;
episodes. Afterwards, we obtain a set of rollouts and their corresponding action sequences.
We choose the best ¥ (minimal number of steps to goal, N, = 1), extract flattened production
rules and run a CFG inference algorithm with 6 hyperparameters. Afterwards, we alter
the macro-action space and run Macro-Q-learning for a set N, episodes. We update the
hyperparameter k and repeat the updating of the action space by estimating a new set of
macros.

[ Initial Q-Learning: N,,;+ Episodes l

l

( Obtain Sentences from Policy: J

L T = arg max Q(s,a) =9
acAG

[ Call (P)CFG Inference Algorithm: G(4; 9)]

Update Hyperparameters 8 of
(P)CFG Inference Algorithm

[Con struct Macros: Mé(ﬂ;‘))]

l

EMacro—Q-Learning: N, Episodes J

Figure 4.5: Action Grammars for Online Macro-Action Discovery
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The chosen hyperparameter updating-schedule has to sensibly balance the trade-off between
a parsimonious amount of productions and not being to strict in the regularization. In the
beginning of the learning process the agent will need many steps to reach the final goal
state. Therefore, the trace on which we run the first Sequitur encoding will generate many
productions (and therefore macros) if we do not regularize accordingly. On the other hand,
as learning progresses the amount of steps needed decreases. Hence, we have to reduce the
regularization parameter at a speed that is proportional to the overall learning progress of
the agent. Decreasing or increasing the amount of regularization too fast might even slow
down the learning process and introduce additional instability.

As a first rule of thumb it is plausible to treat the regularization parameter # similar to a
learning rule or an on-policy exploration parameter. E.g. for k-Sequitur we might start with a
large k;,;; and decrease it over the course of the learning. Intuitively, the amount of noise in
the sentence or policy reduces with more experience. Hence, overfitting becomes less of a
problem. The overall online algorithm is described below:

Algorithm 2 Macro-Q-Learning with Online Updated CFG Production Rules

Input: Initial Q-Learning episodes, N;,;;. Number of episodes until update of the macro-
action set, N,. Initial CFG hyperparameters 6;,;;. Updating schedule for 6.
Output: Optimal value function and the corresponding policy

1: for 1:N;,;; Episodes do
2: Q-Learning Updating with A as the action space
3: end for
4: Generate a few traces from the Q-Learning policy. Denote the best trace by 9;,;.
5: Call a CFG inference algorithm for Vinit and 0;,; as inputs. Obtain the grammar
G (init, Oinit). Extract production rules ME WinitOinit)
6: Construct the Macro-action space AS(%f) = A4 U MC@init-dinit)
7: repeat
8: for 1: N, Episodes do )
9: Macro-Q-Learning Updating with A% action space
10: end for
11: Update 6 according to the schedule.
12: Generate a new traces from current Macro-Q-Learning policy, ¥.
13: Call a CFG inference algorithm for ¢ and 6 as inputs. Obtain the grammar G(9, 6).
14:  Extract production rules M&(@:0),

15: until Convergence
16: return Q*(s,a) and 7*(s) = arg max, Q*(s,a).

The algorithm above describes the online version in which the agent refines his grammar
estimate on the go. In the imitation learning scenario the agent observes an expert and
obtains trajectories ¥¢*?¢"t, In this case she does not have to update the grammar estimate
since the sentences are already sampled from L(7*|E). Therefore, she does not need to switch
back and forth but can simply use the originally extracted flat production rules throughout
the entire learning process.

4.2.2 PAG: HMM Macro-Actions

Instead of treating subsequences extracted from a straight-line grammar as macro-actions, we
can also sample them from a probabilistic model trained on the sequences .
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During the grammar learning phase we train a Hidden Markov Model on the trajectories
91, ..., 9Ns. The number of hidden states are treated as the hyperparameter §. The HMM
then specifies three discrete probability distributions: p(z1) € R?, p(z]z_1) € R?*?, and
p(ag|z) € RIZIX,

In order to obtain a macro-action we first sample a hidden state z; according to p(z;) and
a first action from a; ~ p(a|z1). Afterwards, we transition in the latent space from hidden
state to the next according to a sample from p(z2|z1). The next visible action can then again
be sampled from p(az|z2) and so on. But how can we come up with an effective way to stop
sampling additional actions? In the end we are interested in extracting useful macros which
are not too long or too short. One way of defining an adaptive measure that interrupts the
sampling process is surprisal. After the first action has been sampled we are easily able to
obtain p(asz|a;) by matrix multiplication and marginalization (see section 3.4). We can then
compute the surprisal measure — log p(a2|a;) whether or not the next sample was unexpected.
If the surprisal exceeds a threshold ¢ (that may adapt with the length of the sampled action
sequence and the number of grammar updates) we stop the sampling. If it does not we
append as to a; to form the first two-step macro ai, as and continue the sampling process.
But now this leaves open the question of how to define the threshold £. One possible approach
is to define ¢ as a fraction € € (0, 1) of the maximal entropy distribution. The intuition is that
if the posterior is close to simply randomly selecting an action as the successor, we should stop
the sampling. Furthermore, we can have a decreasing e-schedule throughout learning. Similar
to the k-updating schedule for Sequituy, this can be thought of as the grammar learning rate.
The overall procedure is pictorially illustrated in figure 4.6

21 —— (29 ------ 23 -e----
<{ <
ai a2 as
— log p(aza1) —logp(as|az,a1)
>¢| > ¢|
Stop sampling Stop sampling

Figure 4.6: PAG: Macro-Action Sampling from a HMM

This framework is not just limited to HMMs but can be generalized to any probabilistic model
which allows us to compute a posterior distribution of the form p(a;|a;—1, ..., a1). The specific
steps for sampling individual actions might change but the overall procedure remains in tact.

4.2.3 Transferring Value Estimates between Grammar Updates

As we update the action space of the agent, the Q-table changes its shape. By introducing
new temporally-extended actions, we extend and reduce the number of columns. So how
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can we maintain the knowledge that we have assembled between the updates. Our solution
revolves around transferring the value estimates for the actions which persist and keeping a
constant rate of exploration so that new macros are incorporated into the learning process.

Qo(s,a) ERISIKIAI @y (s,m) € RISKMUMBCDL (5, m) € RISIXIAUMTC2]

N?l'n,it Na

- 5 Grammar-Augmented _

Updated Grammar-
Action Space Action Space Augmented Action Space

Initial Primitive
Figure 4.7: Transferring Value Estimates between Grammar Updates

In figure 4.7 we show a simple example. The blue dots represent the primitive actions. As we
infer the first grammar G (¢, §), we obtain three new macros which are represented by the
red columns. In our formulation we keep all value estimates for the primitive actions and
initialize all new estimates to be zero. Hence, we have

Qo(s,a) Vs € Sandm € A
0 otherwise.

Q1(s,m) = {
Afterwards, we simply continue with the action learning phase and update our value estimates
for N, episodes until we infer a new grammar Go(,6). If both grammars, G1(¥,6) and
ég(@?, 0) share a flattened production m, then again we are going to keep the value estimates
and only initialize the macro-action column for the newly discovered macros (green column).
Thereby, we have that

Q1(s,m) Vs € Sandm € A
Qa(s,m) = { Q1(s,m) Vs € S and m € M1 (00) 4 pG2(9.9)
0 otherwise.

Since all new macro-action values are initialized to zero, the agent is likely to only use the
macros in an exploration step. This can be a problem since the agent does not fully exploit the
inferred grammar-based action space. Therefore, it is very important to either use a constant
exploration rate or a decaying rate which is reset after a grammar update. In sections 5.1 and
5.3 we show results for the transfer and are able to show that this significantly reduces the
learning variance.

Finally, we want to note that completely reinitializing the value estimates can also prove to
be advantageous. If the agent is stuck in a local optimum, restarting the learning process
with an altered action space can help to escape this local optimum due to the increased initial
exploration.
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4.3 Option Discovery

We hypothesize that a HRL agent is able to improve his learning performance by previously
structuring sequences of actions similar to how humans comprehend language. In the previous
sub-section we have seen how to do so in one specific HRL context, macro-actions. In this
section we extend the Action Grammars framework to options in a similar vein.

The overall paradigm can be graphically expressed in the closed loop below (figure 4.8).

e (e
e : Validation

o - () [ Grammatical 5
=Ly, WSt fi_ j (b) :
i @;17 Tt @H}’_O Inference

Environment [+ (a) Expert/Onlinei‘

Figure 4.8: PCFAG: Action Grammars Closed-Loop. (a) Observation of expert/agent - {19}?2’1.
(b) Fit grmmar G(4,6), via the grammatical inference algorithms of our choice. Choose best
grammar structure by minimizing the cumulated syntactic surprisal value. (c¢) Construct option

set, O¢ and learn action grammar values via SMDP-Q-Learning.

The agent first obtains state and action traces of an agent who follows a policy «. This agent
can either be obtained in an on-policy fashion or is given by an expert. The traces can easily
be simulated by following a the current or converged Q-Learning policy in a greedy fashion.
We then have access to N, sentences v, ...,Jy,. Afterwards, the traces may be split in a set
of trajectories used to fit the grammars of our choice and another set on which we compute a
validation metric (see 4.4). We choose the "best" performing grammar and construct options
in one of three ways:

1. CFAG Options: This option construction is based on concatenating trajectories into a
single long string and encoding the action sequence using Lexis or k-Sequitur. After-
wards, one matches the termination of the flattened production rules with the state
sequence. Thereby, one is able to construct an option set which reflects the frequency of
state termination.

2. Hidden Markov Model Options: Based on observed trajectories we train a HVMM. This
HMM samples next actions based on previous transitions and thereby provides action
recommendations. The option execution is stopped based on surprisal.

3. Recurrent Neural Network Options: Similar to a HMM option one is able to sample
actions from the final Softmax layer of a RNN. This architecture is able to capture
long-term dependencies whereas HMM rely on the Markov assumption.

The following sub-sections give details. Empirical test for the macro-action discovery problem
can be found in section 5.2.
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4.3.1 CFAG: Lexis and k-Sequitur Options

The first option construction that we present matches a CFG-encoded action sequence with
the corresponding state sequence. Afterwards, one obtains a set of options based on the
histogram of state-production rule terminations (for an overview see figure 4.9).

More specifically, we concatenate the actions in the trajectories {9}, ...,9"s} into one long
sequence denoted by a\ng (step 1). Afterwards, we call a CFG inference algorithm with a\f[g
as the input sequence and 6 as the hyperparameters. We infer a grammar G(aHVg ,0) which
consists of the encoded sequence d|iv9, the non-flattened production rules P as well as the
recursively flattened production rules M (step 2).

1. Concatenate all

N N N
aly” = alll...llab, la?l] ... llad|l ... llafle

G(aly?,0) = {a|,, P, M}

l

N
aly? = ma|lmall..|lmsl[ma||m4

Action Sequences

2. Encode Sequence

using CFG Inference

3. Match PR Termination / \
with State Sequence (e.g.)
St sk 21 s e
1 “ s . Tl 1 LY 1 “ s TNg
4. Rank States based on
Frequency of Production Sterm—ranked — {Sra.'n,kl, S'rcm,k:Z7 L ,S'rank|5|}
Rule Termination l
5. Construct Set of Mo f(sTankLY o(sTank2) L (sTankM))

Options to Top M States Gal, *)

Figure 4.9: CFAG: Context-Free Grammar Option Construction

We can then obtain the states in which each m € M starts and terminates by matching the
encoded action sequence C~L‘§Vg with the state sequence s|]1Vg (step 3). A production rules will
terminate in a set of specific states, while another production rule will terminate in another
set. Hence, we can inspect the distribution of how frequently production rules terminate in
specific states given the encoding (step 4).2 Similarly to baseline approaches such as the
option-critic framework (Bacon et al., 2017), the number of desired options M has to be
chosen as a hyperparameter. We then obtain intra-option policies by simply backtracking
macro executions which terminated in one of the states above. Thereby, we obtain an option
set (’)g (step 5).

(al?)

ZWhile doing so, we have to account for the initial concatenation and disregard all productions which are used
at the crossing of two trajectories. These productions do not entail any semantic meaning.
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A simplified and illustrative example of a CFG option construction based on the sequence
" drruurrvuuy” is given in figure 4.10:

(1.2 @,1) 2,1) (31 (32 [(83) (43 |53 5,4) (5,5) (5,6) [(5,7)

N N AN N AN N N NG A AN A

>

B C B C C
N4 N |
d A A C

Figure 4.10: CFAG: Matching Context-Free Encoded Action Sequence and Concatenated State
Sequence

The first row depicts an example of state transitions of an episode, the second row depicts
the corresponding actions encoded as strings. Rows three and four display the production
rules which are used to encode the original sequence into d]f[g ="dAAC”. The table below
illustrates the production rules and collects the states in which such start and terminate.

’ N \ P \ M \ Starting States \ Termination States \ Termination Rank ‘
S | dAAc | drruurruuuu {(1,2)} {(5,7)} 1. (3,3),(5,5),(5,7)
A | BC TTUY {(1,1),(3,3)} {(3,3),(5,5)} 2. (3,1),(5,3)

B rr T {(1,1),(3,3)} {(3,1),(5,3)}
C| wuu uy {(3,1),(5,3),(5,5)} | {(3,3),(5,5),(5,7)}

Table 4.2: CFAG Option Construction Example.

The ranked ordering of the states is therefore given by:

Stermfr(mked _ {(3’ 3)7 (5’ 5)’ (57 7), (3, 1), (5, 3)}

An option which terminates in state (3, 3) is then constructed in the following way:

w((3,3)) =< Lu((3,3)) Tw((33)) Pu((3.3)) >
L3y = 1(1,1),(2,1),(3,1),(3,3)}
Tw((3,3) (T1(1, 1)) = 1, my(3,8) (7](2,1)) = 1
Tu((3,3)) (U] (3, 1)) = 1, 73,3y (u[(3,2)) = 1
Bu(3:3)((3,3)) =1

Similarly, we are able to construct a set of options for the top M most frequently terminated
in states. For example for M = 3 we denote the set by:

0% o, = 11((3,3)),2((5,5)),wn((5. 7))
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As the to be encoded sequence a\ivg increases in length, the policies constructed by back-
tracking the production rules become richer and richer. Furthermore, the states in which
the productions terminate can be interpreted as subgoals and their frequency reflects a
spatial-sequential importance. Algorithm 3 cleanly summarizes our procedure.

Algorithm 3 Option Construction with Context-Free Grammatical Inference

Input: Trajectories ¥',...9¥"s, a grammar induction algorithm with hyperparameter 6, the
desired number of options M.
Output: A set of M CFG-inferred options.
1: Concatenate all action sequences a|iv" =alll... Ha%ﬁ

2: Call grammar induction algorithm with inputs a|iv9 and 6. Obtain production rules P,

flattened macros M and the encoded sequence ZL\JlV".
for each m € M do N
Look up the positions in which m was produced in a|; .

Look up corresponding start and termination states in s\f[g .
Keep track of which production rules ended in which states.
end for
forj=1,...,M do
Select the j-th most terminated in state 5(j) € Sterm—ranked,
10: Construct an option f3,,,(s(;))(5(j)) = 1 and for all other states to 0.
11: Rewind production rules from 5(;) that have led to it, add all states visited to Z,, 3(;))-
12: Add the rewinded production rule to 7, (z(;))-
13: Add the option w;(3(5)) =< Zy,;(3())s Tw,(5())+ B, (5(j)) > to the option set.
14: end for

15: return Oéﬂf(alfg) = {w;i (3L,

W XN T bW

Algorithm 4 Option Action Grammars and SMDP Q-Learning

Input: Initial Q-Learning episodes, N;,;;. Number of episodes until update of the macro-
action set, N,. Initial CFG hyperparameters 6;,;;. Updating schedule for 6.

Output: Optimal state-option value function and a corresponding policy

: for 1:N;,;; Episodes do
Q-Learning Updating with A as the action space

end for

Generate a few traces from the Q-Learning policy: 9!, 92, ..., 9.

Call Algorithm 3 and obtain OCA]‘;[( Ny = {w;i(3(7)) 3L,
repeat '

for 1: N, Episodes do
SMDP Q-learning Update with (’)]\g( ~ as the action space

aly ?)

Y N 9h b

end for
Update 6 according to the schedule.
Generate new traces from current option-to-option policy, 9!, 92, ..., 9Vs.

Call Algorithm 3 and obtain a new option set Og/[( Noy = {w;i(3() L.
aly

[ S —
N = O

—
w

: until Convergence
. *
: return QOG“9 6)(3 w) and 7y,

—_
N

(s,w) =argmax,y Q. (s,w').

G(9,0) G(9,0)
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Again, we are able to construct and exploit such options for two learning cases: the imitation
learning and the online reinforcement learning case. Algorithm 4 provides the procedure
for the online case in which the agent updates his set of options after a specific number of
iterations.

Finally, we need to make sure that the union of all initiation sets actually captures the whole
state space (A; C Uy,c0Z,). Otherwise the agent will not be able learn in states which are not
captured by the option set. By adding a one-step primitive action option this can be easily
achieved.

The approach described above provides only one possible way of constructing options with
the help of context-free grammar inference. In practice we will see (see section 5.2) that it
requires a lot of successful trajectories in order to infer meaningful options. Furthermore, it
performs a lot better in the imitation learning setup than in the online learning case.
Therefore, we will now turn to alternative option construction mechanisms based on proba-
bilistic grammars.

4.3.2 PAG: HMM and RNN Options

Similarly to the way how we sampled macro-actions in section 4.2 we are also able to
construct options from stochastic grammars. In this section we derive two ways to construct
semi-Markov options. Both rely on surprisal-based option termination and the intra-option
policy execution is history dependent.

Compared to the previous section in which we learned a grammar on the action sequence,
we now learn a grammar on the state sequences. Furthermore, since we no longer infer a
straight-line grammar, we do not need to concatenate the sequences.

Given that we have learned a probabilistic grammar on the state sequences s!,...sVs, a PAG
option execution works as follows: Given state s; the agent makes a decision between a
primitive action (one-step option) and a PAG option based on the value estimates Q(s,w). If
he chooses to execute the option, an action is sampled from the inferred transition distribution
p(s'|s1).2 Afterwards, the agent executes this action and transitions to the next state ss.

We note that the actual state transition not necessarily has to be the planned one. This is due
to potential stochasticity in the environment. After the actual transition has occurred, we
evaluate the surprisal based on the history of the option execution, — log p(s2|s1). Again, if the
surprisal measure exceeds a threshold £ we stop the option execution and return control to the
agent who then has to make a decision about his next action execution. Otherwise, we extend
the option-execution-specific history 4 and continue to follow the state transitions sampled
or recommended by the PAG option. After the next transition we repeat the surprisal-based
termination check. Next we derive a formal definition of the semi-Markov option construction
and give to examples.

Hidden Markov Model Option

The general idea of our PAG approach to option discovery is to endow the HRL agent with the
option to follow "action recommendations" of a pre-trained PAG. More specifically, we train
the HMM with hidden states z on state transition traces. At time step ¢ in one episode of the
RL learning the agent has then access to the history-dependent state transition distribution of
the HMM. It can easily be computed by marginalizing over the latent variable at time ¢ + 1:

®*Notice that one is also able to take the arg max,s p(s’|s1). This can be interpreted as an analog to greedy or
Softmax on-policy execution. Furthermore, sampling incentivizes additional exploration.
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S1
Y\
1. Choose bet imitive
a1 € A ar~ p(82 |Sl) action andest:lgjznpfé}m;plzon
< N\
ED) 82
7\ ~
as € A as ~ p(s3|s2) —log p(sz|s1) | 2 Compute PAG Surprisal
e N\
trt 3a. I above thresh: >¢ <¢ 3b. If below thresh:
Stop PAG Option Continue PAG Option
s\ '

as € A as ~ p(sz|sa) a2 ~ p(s3|s2, s1)

Figure 4.11: PAG: Probabilistic Grammar Option Execution

plseralst, - s0) = > p(seralzern) plaesalz) plailst, . 1)

Zt+1

Emissions Transitions Filtering

The action and state transition which the agent tries to achieve is then given by one of two
operations:

St41 = argmax p(s|ss, ..., si—r) (Greedy)
S
St41 ~ p(s|st, ..., s1—r) (Sampling)

The agent can either choose to maximize the posterior probability in a greedy fashion or he
can sample the next state. The executed primitive action is then given by the one that would
achieve this transition. More specifically, we define a PAG-based option as follows:

e 7, =38, Yw e O: We assume that we are able to initiate the PCFAG option in every
state of the state space. This is a common assumption in the option discovery literature.
We note that this is a pragmatic assumption that simplifies the option construction but
limits the degree of specialization and interpretability.

o m,(aiht) < p(si+1|he) where hy = {sq,...,s.—-}: The intra-option policy is given by
the action selection which is consistent with the state transition distribution inferred by
the HMM.

® B(st41lht+1) = 1{_1ogp(sis1|hers)>¢}: The option termination is based on the surprisal
induced by the state transition. If — log p(s;+1|hi+1) exceeds the threshold ¢ the option
execution stops. Otherwise, it continues.

In practice (see section 5.2), we usually set £ to be the 90th percentile of an empirical surprisal
distribution computed on a hold-out set of trajectories. Furthermore, we also found it to
be useful to set a maximal number of state transitions within an option execution (e.g. a
maximum of 10 primitive action executions).
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Recurrent Neural Network Option

Recurrent Neural Networks have successfully been applied to natural language processing
problems for a long time. A RNN compared to a simple Multilayer Perceptron (MLP) has
recurrent connections which allow it to capture long-term dependencies. We experiment with
such an alternative construction since HMMs are limited by the Markov assumption. The
hidden state transition at time ¢ only depends on the hidden state at time ¢ — 1. RNNs, on
the other hand, allow for variable time dependencies which are learned in an end-to-end
fashion via backpropagation through time. Hence, HMMs have the advantage of being more
parsimonious while only being able to capture a limited amount of dependency.

So what does this mean in the context of Hierarchical Reinforcement Learning? An agent
who either observes an expert or has already developed substantial skills herself will have
meaningful trajectories at his disposal. These trajectories exhibit long-term dependencies so
that RNNs are well suited to model the observed dynamics and to generate action proposals
in an option setting. An agent, on the other hand, who is in the early stages of the learning
process has probably only mastered small sub-skills. In this case it is more effective to use
a more parsimonious model such as a HMM. This is related to the observation by Smith
et al. (2018) that number of necessary options might vary throughout the learning process.
Similarly, the degree of grammatical complexity is sensitive to the learning stage.

Similar to the previous HMM option we can have a RNN option which recommends state
transitions given the intra-option history h;. E.g. given that a RNN option execution started
in t — 7, the history consists of the state sequence h; = {s;_r,...,s;—1, S¢}. At time ¢ we are
then able to encode these states and to feed them into a RNN which was previously trained
on state sequences given from 9!, ..., 9Vs. For example we might encode the states using
one-hot encoding or by simply giving them a symbolic representation. The final layer of
the RNN then consists of a Softmax layer which returns a vector y € RISl. We treat this
vector as the posterior p(s;y1|st, ..., St—r), hence y; characterizes the posterior probability of
transitioning to the first state (in terms of our encoding) after having traversed through the
state history h;_,. As before, we can again either take a greedy argmax operation or sample
from this distribution to obtain the next state.* Furthermore, we can easily compute the
syntactic surprisal metric as — log p(s¢+1|st, - - -, St—r) and terminate the RNN option execution
accordingly.

/

hy *>*> RNN RNN Softmax Sta1 — ar

Cell 1 Celln Layer

Sample

Figure 4.12: PAG: Recurrent Neural Network Architecture

“In practice not every state transition is possible due to the primitive actions. Therefore, we drop all entries of
the vector which would lead to an invalid transition and choose the state according to this smaller normalized
vector.

41



4.4. THE GRAMMAR COMPARISON PROBLEM Chapter 4. Action Grammars

In section 5.2 we will experiment with different neural network architectures: Long Short-
Term Memory networks (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit
networks (Chung et al., 2015). They are characterized by specific cells.

LSTM cells consist of parametrized gates which allow information to smoothly be "forgotten"
and "remembered". During learning the parameters of such are optimized using mini-batch
gradient descent to optimize some performance metric (e.g. accuracy/cross-entropy). Gated
Recurrent Units (GRUs), on the other hand, are well known to be better suited for cases
where data is scarce. This is mainly due to the fact that they do not have an output gate
and therefore less parameters need to be trained. GRUs therefore might provide a good
intermediate architecture between the complex LSTM and the parsimonious HMM.

Notes on Surprisal-Based Option Termination

Our approach terminates an option given that the syntactic surprisal exceeds a threshold &.
But what does this mean in the context of an agent who moves through an environment. We
distinguish between two types of surprisal. First, an agent can be surprised by an unsuccessful
state transition. We refer to this surprisal as being qualitatively "negative". The option does
not execute actions as planned. It seems natural to return to the agent so that she can make
the next decision. Hence, negative surprisal signals that the agent needs to contemplate about
the current situation. In some cases an unsuccessful state transition can actually lead to an
improvement. This is especially the case for parts of the state space which have not been part
of the trajectories used to train the PAG. Unexpected transitions can therefore also lead to
"positive" surprisal which is related to exploration. Empirically, interruption in such situation
does not pose a problem (especially in sparse environments). In both cases returning control
to the agent can be interpreted as a form of conservative safety insurance. Instead of blindly
following the actions recommended by the option, the agent has to make a "conscious" (slow)
decision.

We are going to use the notion of surprisal not only in the context of option termination but
also to compare different grammatical structures and to choose the grammar that is actually
used within the action learning phase.

4.4 The Grammar Comparison Problem

Ultimately, we are interested in inferring the grammar that consists of the best hierarchical
structures which can afterwards be used to construct a set of options. So how can we make
use of a clever parallelism to supervised learning? The answer is simple: An agent who has
learned a good grammatical structure of the hierarchical behavior of an agent will not be sur-
prised by parsing further action traces of this expert. Hence, we propose to treat the grammar
selection problem as a special version of the model comparison problem in supervised learning.

We are able to compare different grammars by splitting the the overall set of trajectories into
a training set and a test set:
1 N, 1 N, es 1 N, rain
{19 . g} = Vtest U Virain = {ﬂtesb s 7191&8;15 t} U {ﬂtrm’n’ ce ﬂtriu’n }
Afterwards, we learn a grammar using ¥;,4;, and evaluate the goodness-of-fit measure of

our choice on the test set. For example, we can optimize the accumulated surprisal on the
hold-out set of trajectories. We call this measure replay surprisal:
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While parsing through each sequence in the test set, we accumulate surprisal according to
how well the inferred grammar captures the underlying hierarchical structure.

2x[Ng/k Ny A1, [Ng/k
ﬂrf\(fgr/mﬁ Tt B iywn, | > RSE (1Y)

N, G2 (2% [N /K]

ﬁ[Ng/H Foe-1yx g k41| RS (ﬂ[Ng/i:'|+1)
Ny/k 2x[Ng/k] k

9o/ i, k-1 : > RS% (9 (1% [N, k] +1)

Figure 4.13: PAG: Cross-Validation Replay Surprisal

Similar to supervised learning, the notion of overfitting also applies to the domain of learning
hierarchies of sequential actions. By overfitting the noise observed in the training trajectories,
we might be unable to capture the true hierarchical process generating the transitions at hand.
We face a similar bias-variance trade-off and have to find the fine balance between fitting the
data-generating process (the underlying hierarchical structure) and not overfitting noise in
form of non-hierarchical structure and possibly unsuccessful transitions.

We can further improve our estimate of the generalization error by generalizing the train-test
split with k-fold cross validation (see e.g. Friedman et al. (2001, p. 241f.)). Therefore, we
split the traces into k folds, fit a grammar on k& — 1 blocks and compute the replay surprisal
for the k-th block. We do so for every split and finally average the computed metrics.

k
—G 1 G] x[Ng/k]
%Z RS (002 iy, ) = E:RS (DG-1)xTNy 115 Vi /i)

The ’best’ grammar is then obtained by minimizing this estimate of the grammar generalization
error. Algorithm 5 summarizes the cross-validation estimate of the surprisal generalization
error.
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Algorithm 5 Grammar Comparison via Replay Surprisal

Input: An action sentence .4, a set of grammar induction algorithms G, and a set of K trace
splits.
Output: Hierarchical grammar structure minimizing the cross-validation error.

1: for each grammatical inference algorithm do
2 forj=1,...,kdo
3 Use training set of split j to construct the grammar G{'
4 Calculate RS (Vtest) = S Neest 7 it —log PtG(ﬁ"“i”’g)(sﬁeft)
5: end for )
—c 25 g X [Ny /k
6 Average the replay surprisal: RS~ = ; Z§:1 RSY (ﬁ(J.le)gX/ [ Jl,g JE141)
7: end for .
8: Obtain the best grammar as G% = argmin RS .

Geg
9: return G* the best grammar after relearning on all N expert traces.

Note that any other model comparison/hyperparameter optimization algorithm which uses
replay surprisal as the loss metric can be used to compare grammars.

This chapter has introduced a first formal framework which connects Hierarchical Reinforce-
ment Learning with Computational Linguistics. First, we have shown how one is able to
efficiently obtain semantically meaningful macro-actions by either making use of CFG or
PCFG inference. On the one hand, we showed how to use a CFG encoding such as Sequitur
and the inferred production rules to construct macros both online and in an imitation learning
setting. On the other hand, we derived a procedure which samples macro-actions based on a
trajectory-trained HMM.

Second, we illustrated two algorithms which construct options based on hierarchical structures
inferred by grammatical inference. By matching production rules obtained from concatenated
action sequences with the corresponding state sequence, one can obtain options which are
based on the frequency of rule termination. Furthermore, we showed how to construct
options which sample action recommendations based on state transitions in an online fashion.

The next chapter will illustrate how such approaches can be used to solve HRL problems
in environments with severe sparse rewards and long-term credit assignment difficulties.
We will show that grammatical inferred macro-actions as well as options capture valuable
information to solve such difficult problems at an efficient pace.

44



Chapter 5

Experiments and Results

After having introduced the action grammars framework which attempts to solve the problem
of hierarchical sub-structure discovery in the context of HRL, we are now ready to display
empirical results of our approaches on several environments. We distinguish between two
different tasks:

1. Imitation Action Grammar Learning Task: Before the learning starts an agent ob-
serves a set of expert traces and has to discover temporally-extended actions. These
actions are then used to learn and generalize to new trajectories.

2. Online Action Grammar Learning Task: The agent is not endowed with any prior
knowledge but alternates between grammar learning on his own traces and action
learning. Solving this task is the ultimate aim of our endeavors.

Thereby, we discover the following dynamics:

e Towers of Hanoi (deterministic): Macro-actions extracted with k-Sequitur or Lexis
(see section 4.2) are able to effectively solve the curse of dimensionality. Furthermore,
grammar macros allow us to propagate value information efficiently and to thereby
solve the long-term credit assignment problem. As learning progresses the extracted
macros converge to the macros extracted from the optimal policy. In special situations
one has to deal with local optima which can only be escaped with additional exploration
incentives. The updating schedule of the grammar inference hyperparameter ¢ plays an
important role in stabilizing learning. The described approaches provide strong learning
results in both imitation learning and online reinforcement learning setups.

e Four Room Problem (stochastic): As state transitions become stochastic, macro-actions
become inefficient. We saw that the hallway options provide the agent with strong struc-
tural information but have to be manually supplied. Automatically inferred grammar-
based options provide an alternative (see section 4.3). We show that both CFG-based as
well as PCFG-based options are able to automatically construct options which perform
as well as the hallway options. Furthermore, we show that they are also useful in
the online learning case. While improving the learning speed of the HRL agent, they
introduce additional unwanted variance. GRU options seem to perform best in small
sample size domains.

e OpenAl Environments: We test grammar induction-based macro-action and option
discovery in several OpenAl gym (Brockman et al., 2016) environments. We find
that the success of our approach heavily depends on the hierarchical nature of the
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environment. If the solution requires the hierarchical achievement of subgoals and is
deterministic, grammar-based macro-actions can improve learning. If the environment
is not hierarchically structured our approach fails.

5.1 Towers of Hanoi

Towers of Hanoi is a very simple game (see figure 5.1 for an example of the optimal three-disk
policy). The general game setting for N disks is as follows: In every episode of the game
the agent is initialized in the tuple (1)}¥,. The elements of the tuple represent the individual
disks. The position of the smallest disk corresponds to the leftmost entry of the tuple while
the largest disk is given by the rightmost. Hence, from left to right (in the tuple) the size of
the disks increases. This is important since the environment does not allow a bigger disk to
be placed on a smaller one. Knowing this, the N-dimensional tuple uniquely identifies the
state of the environment. A few examples for N = 3 to make this clear:

e (1,1,1): Initial state where all 3 three disks are stacked on pole 1
e (3,3, 3): Final state where all 3 three disks are stacked on pole 3

e (1,2,3): Smallest disk on pole 1 middle disk on pole 2, largest on pole 3

At each point in (discrete) time the agent transitions between states with the help of the
following moves:

e (1,2): Move top disk of pole 1 to top of pole 2 abbreviated by string "a"
e (1,3): Move top disk of pole 1 to top of pole 3 abbreviated by string "b"
e (2,1): Move top disk of pole 2 to top of pole 1 abbreviated by string "¢"

e (2,3): Move top disk of pole 2 to top of pole 3 abbreviated by string "d"

(3,1): Move top disk of pole 3 to top of pole 1 abbreviated by string "e"

(3,2): Move top disk of pole 3 to top of pole 2 abbreviated by string " f"

The three disk environment and the corresponding optimal policy is given in figure 5.1.1 The
agent maximizes his expected cumulative discounted reward by reaching the final state (3)¥,
as quickly as possible. For every transition that does not lead to the goal state, the agent
receives O reward. If he reaches the final state he obtains a reward of 100. He discounts his
reward by v € (0, 1]. Hence, we are dealing with an environment with a severe long-term
credit assignment problematic. The size of the action is independent of the number of disks,
|A| = [{a,b,c,d, e, f}| = 6. Furthermore, the action space conditioned on the state s has size
three, |[As| = 3, Vs € S\ (1)Y,. Disregarding the reverse move of the previously executed
one, the effective action space in every state has size 2. The size of the state space, on the
other hand, grows exponentially, |S| = 3V (all possible allowed orderings), and the optimal
number of moves to solve this game is given by 2V — 1.

'Accessed and altered on 20-08-2018 from https://www.includehelp.com/data-structure-tutorial/
tower-of-hanoi-using-recursion.aspx.
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Figure 5.1: Towers of Hanoi: Three Disk Optimal Policy
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A simple recursive procedure to solve the problem for all states in which the top N — n disks
are already correctly ordered on the third pole is given by (see e.g. Petkovi (2009):

e Move n — 1 disks from source pole to auxiliary pole
e Move the n-th disk from source pole to target pole

e Move the n — 1 disks that we left on auxiliary pole onto target pole

Furthermore, it is well known that this problem can be represented as a undirected graph
which constitutes a Sierpinski triangle. A Sierpinski triangle is a fractal figure which can
be constructed by drawing a triangle and the connecting all mid-points of the edges with
each other. The number of triangles K stands in the following relation to the number of
iterations/disks: K = 3V ~!. The optimal policy of the RL agent is then given by a traversal
along an outer edge of overall the triangle.

As the number of disks grows, the problem quickly becomes a sparse long-term credit
assignment problem which is hard to solve with vanilla-Q-learning updates of the action
values. For N = 6 the state space has a size of 729 and the optimal deterministic policy has
63 moves. Due to the fact that the agent only observes a non-zero reward once he reaches
the final state, learning is almost impossible. She essentially gets lost in the search tree and
desperately searches for some form of reward signal that would structure her understanding
of the environment. Instead of having to make a decision over single action steps, the agent
wants to combat the initial sequential decision making uncertainty by only retaining control
at key points in time. We will now see how such points can be obtained using grammatical
inference as described in section 4.2.

In all experiments outlined below and if not otherwise stated, we choose the following
hyperparameters:
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Towers of Hanoi Hyperparameters.

1.

WHRNOAR W

Exploration parameter: ¢ = 0.1

Discount factor: v = 0.8

Learning rate: o = 1

Eligibility parameter: A € {0,0.1}

Number of PCFAG Macros used in learning: M € 5,10
Number of traces on which we infer a HMM-based grammar: N, € {100,500}
Number of initial Q-Learning iterations: N;,;; = 200

Number of episodes between grammar updates: N, = 312
Number of grammar updates: 9

(at episodes {200, 624, 936, 1248, 1560, 1872, 2184, 2496, 2808})
k-Sequitur hyperparameter: 6 = k;,;; € {4,6,8}

. HMM hyperparameter: § = 4 (Hidden States)
. Updating schedule for k-Sequitur hyperparameter: kpcrt = Kprev — 1 if kprey > 2
. Maximal surprisal (macro-sampling termination criterion): £ = 0.9 x —Ellog, p(a)]

where p(a) = Tiu =1

5.1.1 Macro-Action Discovery with (Probabilistic) Context-Free Action Gram-

mars

Besides the vanilla-Q-learning agent, we provide 2 different approaches which differ signifi-
cantly in terms of the amount of prior knowledge with which we endow the HRL agent:

1.

Imitation Learning with Macros extracted from optimal N or (N — 1)-disk policy:
We extract production rules from the string which represents the optimal policy. After-
wards, the action space of the agent is augmented with macros that correspond to the
flattened production rules. The agent then learns to compose these temporally-extended
actions.

. Online Reinforcement Learning with iteratively updated (P)CFAG Macros: We up-

date the set of macro-actions iteratively and in an online fashion. First, the agent runs
simple Q-learning updates for a warm-up period. Afterwards, we rollout a few game
play traces and construct a first set of macro-actions. Then we start Macro-Q-learning
with this fixed set of macro-actions. After a certain number of updates, we again run a
few rollouts and update the set of macro-actions.

The optimal deterministic policies for all three considered environments (4, 5, 6 and 7
disks) are shown in the first row of figure 5.1. Furthermore, rows two and three show the
macro-actions or flattened productions that one can derive by obtaining a 2-Sequitur or
Lexis encoding of the optimal policy. Ultimately, we are not only interested in obtaining the
optimal policy but also in inferring the optimal set of productions which constitute the action
space of the HRL agent. Hence, another form of intelligence is captured by reflecting on
which sub-sequences of actions lead to successful experiences. Exactly this form of syntactic
intelligence is identified by grammar learning.
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5.1. TOWERS OF HANOI

Disks 4 5 6 7
m* abdae f abdcedabd ba focdbafecfbafb | abdaefabdcedabda | bafbedbafecfbafbed
cdbe fecdba fbedb efaedcefabdaefab | befecdbafbedbafecf
dcedabdce f aedc ba fecdbcfecfbafbc
edabdae fabdcedabd | dbafecfbafbcdbefe
cdba fbedbefecfbafec
dbc fecdba fbedba fecf
ba fbedbe fecdba fbedb
2-Seq. {abd} {bafbed,baf,ec,bc} | {abdaefabdced} {bafbedbafecfb
{abdaef,aedce} afbedbefecd}
{abdce, abd, ae,ce} | {bafbcdbafecf}
{bafecdbcfec}
{bafbcdbcfec}
{bafbed,bafec}
{bcfec,baf,be, ec}
G-Lexis | {abd} {ba fbcdb} {abd, efaedce} {bafbedbafecfbaf
{abdae fabdcedabd} | bedbe fecdba fbedb}
{fec,bafbedb}
{fecfbafecdbecfec}

Table 5.1: Towers of Hanoi: Optimal Policies and Extracted Macro-Actions

Figure 5.2 shows how different CFG inference algorithms encode the optimal policies for
four to eight disks. We can observe that the compression rate of the 4-Sequitur encoding
remains constant, while Lexis and 2-Sequitur infer more and more productions as the disk
number and optimal policy length increases. This observation is very alarming since the
data-generating process (e.g. the recursive solution reviewed above) remains exactly the same
for all N disk environments. Hence, only 4-Sequitur seems to be robust to the length of the
policy. Consequently, 4-Sequitur also does the worst job in structuring the original sequence.
Comparing both the entropy of the unencoded optimal policy and post-CFG inference encoded
string, 4-Sequitur only induces more structure (less post-compression entropy/point below
the diagonal line) for the 4 and 5 disk environment. 2-Sequitur and Lexis on the other hand,
seem to overfit noise and thereby do a better job at compression as well as decreasing entropy.
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Figure 5.2: Towers of Hanoi: Compression Statistics of CFG Encoding
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Figure 5.3, on the other hand, shows how severe the long-term credit assignment problem is.
The simple Q-learner with either e-greedy or Softmax exploration learns very slowly. For 4, 5,
6 and 7 disks convergence occurs after around 3000, 20000, 125000 and 8000000 episodes,
respectively.

Towers of Hanoi: Q-Learning
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Figure 5.3: Towers of Hanoi: Q-Learning Performance

Imitation Action Grammar Learning Task

To solve the curse of dimensionality during imitation learning the designer endows the agent
with the macro-actions listed in table 5.1. Afterwards, algorithm 6 is run. Figures 5.4 and 5.5
let us observe that our approach greatly outperforms the simple Q-learning baseline.?

The Macro-Q-learner endowed with the optimal N-disk policy grammar (see figure 5.4)
converges to the optimal policy after very few experiences. For the 4, 5 and 6 disk environ-
ments the agent has identified the optimal policy consisting of the sequential selection of
macros and primitives after around 25 episodes. Increasing A from 0 to 0.1 does not seem to

2Note that we only show results for the first 100 episodes of learning. This is due to the fact that we are
mainly interested in speeding up the early phases of learning. A possible future extension might allow the agent
to automatically stop the grammar learning phase and to switch back to his primitive action space in order to
refine her policy on a finer timescale.
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provide a significant effect across both Sequitur or Lexis-based macro-actions and different
environments. We also notice that learning in the 7 disk environment appears unstable for
Lexis-based macro-actions and that in this case eligibility traces happen to act stabilizing.

Algorithm 6 Imitation Learning with CFAG Macro-Actions Extracted from Optimal Policy
Input: Trace from optimal policy, 9%, = 7* (or ¥} _,) for the N (or N — 1) disk problem.
Output: Optimal state-option value function and the corresponding policy for the N-disk
problem
1: Call a CFG inference algorithm with %, as an input. Obtain grammar G (v}, 6) and
extract flat production rules M&(x-0),
Construct the Macro-action space AG(x:0) = 4 U MEVN0),
repeat
Macro-Q-learning Update with A%(“%-?) as the augmented action space.
until Convergence
return Q;G(%ﬂ) (s,m) and 7*(s) = arg max,, Q;Gw;\,?e) (s,m).

AU

Towers of Hanoi: Imitation-SMDP-Q-Learning without Lag
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Figure 5.4: Towers of Hanoi: Imitation Learning Macro-Q-Learning Performance

In the case where the Macro-Q-learner has to generalize from an N — 1 optimal grammar to
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the N-disk environment we can observe that she can overcome initial exploration difficulties
and then converges to a local optimum. After around 100 episodes the 5 disk agent has
converged to a policy of length 46, while the optimal policy has length 31. For the 6 disk agent
the same occurs after around 200 episodes with a policy of length 105, while 63 is optimal.
Furthermore, eligibility traces enhance learning both with Lexis and 2-Sequitur-based macros
(see e.g. 7 disk environment).

A potential reason for the sub-optimality of the solution is that the macro-actions influence
the exploration behavior of the agent (see section 2.3.1) in a substantial way. Macro-actions
lead the agent into specific parts of the sub-space and can thereby "abstract away" substantial
amounts of experiences. Hence, we conclude that exploration becomes even more important
when using statically inferred sub-optimal macros. A possible way how this might be overcome,
is to have an increasing exploration schedule. Furthermore, similar to inter-option learning it
might be helpful to use inter-macro learning to also update the value of the primitive actions.
As soon as the agent is stuck in a local optimum, one might then turn of the macro-actions
and continue using only primitive actions. Thereby, more exploration is induced since the
agent has to make decisions at every time step.

Towers of Hanoi: Imitation-SMDP-Q-Learning with Lag
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Figure 5.5: Towers of Hanoi: Imitation Learning Macro-Q-Learning Performance with Lag

In conclusion, we found that in the N-disk environment with N-disk macros the fast con-
vergence is due to the fact that the augmented action space is obtained by decomposing the
optimal deterministic policy into a straight-line grammar. The agent simply has to order the
temporally-extended actions which drastically reduces the complexity of the reinforcement
learning problem. The agent in the N-disk environment with N — 1-disk macros, on the other
hand, has to perform a more difficult task. Given the decomposition of the easier environment,
the agent is required to learn how to generalize to the more complicated setting. In order to
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do so, she has to essentially identify the recursive algorithm that solves the Towers of Hanoi
problem for all N disk settings. While doing so she converges to a local optimum. We now
turn to the hard case of online learning of both actions and grammatical structures.

Online Action Grammar Learning Task

In the online experiments we chose the following hyperparameters: N;,;; = 200, N, = 312,
kinit = {4,6,8} for N = {4,5,6} respectively. Furthermore, our updating schedule for k-
Sequitur decreases k by 1 after each grammar update (see table 5.2). The agent starts off
by running 200 Q-Learning iterations. Afterwards, we rollout 10 trajectories and encode the
best performing one using either Sequitur or Lexis. We extract macro-actions from the flat
production rules and the agent then continues learning using the augmented action space.
After 312 SMDP-Q-Learning iterations, we again obtain 10 trajectories and extract a new set of
macros. This way the agent alternates between action learning during the SMDP-Q-Learning
phase and grammar learning. Figure 5.6 plots the learning performance of the online Action
Grammar agent. The first row depicts an agent whose action value table is reset after each
grammar update. In the second row, on the other hand, the agent carries over the values
(as described in section 4.2) which were previously learned for actions that remain in the
macro-action space after the update.
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k-Sequitur Schedule for Different Disk Environments
Disks (V) Initial After 200 Eps | After 624 Eps | ... | After 2808 Eps
4 4 3 2 e 2
5 6 5 4 o2
6 8 7 6 a2

Table 5.2: Towers of Hanoi: k-Updating schedule for Online CFG-Macro-Q-Learning

One can observe that the grammar updates effect the agent differently across the learning
process. The first updates greatly help the agent in structuring his exploration process. The
later updates essentially "shock" the agent and reset his learning progress. Still, this shocking
effect tends to decrease which indicates a convergence in the refinement of the grammar.
Allowing for value transfer between grammar updates reveals the strength of the grammar in
capturing the hierarchical structure underlying the environment. The variance induced by the
grammar update can be circumvented. This is due to the CFG algorithm inferring the same
macros and therefore all values can be transferred between updates. Hence, a convergence in
the grammar space allows for robust learning. For all three environments the action grammar
agent is able to extract the simple recursive structure after two grammar updates and 625
Macro-Q-Learning episodes.

Towers of Hanoi: Online Hierarchical Reinforcement Learning
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Figure 5.7: Towers of Hanoi: Online PAG Macro-Q-Learning Performance

Figure 5.7, on the other hand, shows learning with macro-actions being sampled from a 4
hidden state HMM that is trained based on 100 rollout trajectories. We can directly observe
that the value transfer does not decrease the variance induced by the grammar updates. This
is due to the fact that the sampling variance induced by the HMM leads to a set of macros that
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Sequitur Lexis HMM
Update 1 5 8 1 5 9 1 5 8
t 200 1761 2697 200 1761 2697 200 1761 2697
|IM]| 3.4 1.8 14 02 04 08 3.8 48 38
Std 206 1.17 0.8 04 049 04 098 04 1.17
|m| 151.2 18.2 17 104.8 17.6 19.2 42.6 186 194
Std 74.7 354 228 56.55 1.74 3.12 13.31 4.22 445

Table 5.3: Towers of Hanoi: Grammar Learning Performance for the 4 Disk Environment

changes at every single grammar update. Hence, less values can be transferred and learning
remains instable.

We can explore the behavior of the extracted grammars throughout the learning process.
Table 5.3 depicts statistics which capture the grammar convergence behavior.

The number of extracted macros changes throughout the updates. Sequitur in the beginning
extracts several macros while only one is optimal for the 4 disk environment ("abd”). After a
few updates this number is correctly reduced. The agent converges to both the optimal policy
as well as the optimal set of macros. For G-Lexis, on the other hand, the same holds. Here
though, the number of macros increases throughout learning. For the HMM-based macros our
intuition is confirmed. It constantly extracts too many macro-actions and does not converge
in the grammar space. Hence, also transferring values between updates does not help. All
learning results are summarized and compared in figure 5.8.

In conclusion, we have shown that macro-actions extracted with k-Sequitur and Lexis provide
an efficient solution to the curse of dimensionality in the Towers of Hanoi problem. More
specifically, we have shown that both imitation learning as well as online learning perfor-
mance can be improved sample efficiently. Therefore, our CFAG approach was validated.
Macro-actions based on HMM samples, on the other hand, did not perform well. The addi-
tional sampling variance was larger then the gain in action learning. The next section now
implements the option discovery approaches introduced in chapter 4.3.
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Figure 5.8: Towers of Hanoi: Learning Comparison. Not shown Q-Learning (e-greedy/Softmax)
baselines for 4, 5, 6, 7 disk environments with goal achievement after 2240,/2960, 18599,/16000,
110000/11000, 648000/652000 episodes, respectively.
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5.2 The Four Room Problem

The four room problem as introduced by Sutton et al. (1999) (see figure 2.3) provides a
baseline environment to test our option discovery approach outlined in section 4.3. The agent
is randomly placed within the environment at the beginning of each episode. She can move
in all directions as long as she does not walk into a wall. If she reaches the goal position
(indicated in grey) the agent receives a reward of 1 and the episode terminates. For every
other transition she yields a null reward. Hence, we are again dealing with sparse rewards
which complicate the reward-based learning. She discounts her rewards with a factor of 0.9.
State transitions are successful in 90 percent of the cases. The possible moves are denoted
by d ("down"), u ("up"), I ("left"), r ("right"). Hence, the terminal vocabulary is defined as
Y = A={d,u,l,r}. In all experiments outlined below and if not otherwise stated, we choose
the following hyperparameters:

Four Room Hyperparameters:
1. Goal state: (7,10)
2. Exploration parameter: ¢ = (.1
3. Discount factor: v = 0.9
4. Learning rate: o = 0.05
5. Number of CFAG options used in learning: M = 4
6. Number of traces on which we infer a grammar: N, = 104
7. Number of initial Q-Learning iterations: N;,; = 20
8. Number of episodes between grammar updates: N, = 36
9. Number of grammar updates: 5 (at episodes {20, 56,92, 128, 164})
10. k-Sequitur hyperparameter: 0 = k € {5,4, 3,2}
11. Updating schedule for k-Sequitur hyperparameter: kpert = Kprev — 1 if kpreo > 2
12. Maximal surprisal (option termination criterion): £ = 7.5
13. Maximum steps of PCFAG option execution: 10

5.2.1 Option Discovery with Context-Free Action Grammars
Imitation Action Grammar Learning Task

During the imitation learning task we only learn a grammar once before the start of the action
learning phase. More specifically, we infer production rules using CFG grammar induction
algorithms on 100 expert traces from a converged Q-learning policy after 10,000 training
episodes. Following our CFG-based option construction approach (see section 4.3), figure
5.9a depicts how often the individual production rules inferred by 2-Sequitur occur in the
encoded concatenated action sequence. Unsurprisingly, most of them seem to be directly
driven by the goal location and the bottleneck of the hallway passages. Since the goal location
is located on the right of the environment most production rules incorporate some number of
right moves. The middle part of the figure shows the environment in which we have colored
the states by how often a production rule terminates in it. A corresponding bar chart can be
found in the right part of the figure. We can identify that most extracted production rules
directly lead the agent to goal state. Furthermore, since the goal is allocated in the right half
of the environment, also most termination states are located in the right half.
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(a) 2-Sequitur Imitation Learning: Left. Relative occurrance of the extracted production rules in the
encoded concatenated action sequence. Middle. Four room environment with cells colored according
to how often production rules terminate in specific state. Right. The corresponding bar chart.
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(b) 2-Sequitur Imitation Learning: Option Set Discovered using 100 traces of expert behavior.

Figure 5.9: Four Rooms: Imitation Learning - 2-Sequitur Option Construction.
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(a) Lexis Imitation Learning: Left. Relative occurrance of the extracted production rules in the encoded
concatenated action sequence. Middle. Four room environment with cells colored according to how
often production rules terminate in specific state. Right. The corresponding bar chart.
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(b) Lexis Imitation Learning: Option Set Discovered using 100 traces of expert behavior.

Figure 5.10: Four Rooms: Imitation Learning - Lexis Option Construction.
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We construct the option set for the top 4 most terminated in states (for M = 4:

{(7,10), (4,10), (4,7), (4,6)}). Figure 5.9b displays the set of automatically inferred options
using 2-Sequitur as the CFG induction algorithm. The options lead through the hallways and
therefore also capture the notion encoded in the manual specification of the hallway options
(see figure 2.4). Furthermore, the inferred intra-option policies become sparser as the number
of options increases. This is only natural since the termination states are chosen, so that the
number of productions that terminate in them decreases.

Figure 5.10a displays the corresponding encoding statistics for the inferred G-Lexis grammar.
Compared to the 2-Sequitur context-free grammar, Lexis clearly estimates fewer production
rules (part a). The frequently used flattened production rules are also on average longer than
for the corresponding Sequitur encoding. This verifies the weakness of G-Lexis to overfit
noise and to estimate unreasonably long productions. Again, most of the states in which the
productions terminate in are located in the right half of the environment which resembles
the proximity to the goal state (state (7,10)). Furthermore, the distribution of termination
states has a higher entropy and is less structured. This is a first signal that G-Lexis might not
be well suited for the grammar learning part of the Action Grammar loop since it is unable
to differentiate between important states in the state space. Again, figure 5.10b shows the
corresponding top four option set.

But how does the HRL agent perform when being endowed with this set of options? We now
display results for the action learning part of the imitation learning problem. Here the agent
chooses the first four options (M = 4, either Lexis or Sequitur-based) to augment his action
space before starting to learn for 200 episodes (N, = 200). The performance of the HRL
agents is averaged across 5 learning runs and 100 on-policy rollouts. Figure 5.11 shows the
learning results for three different CFG inference algorithms.

e The first row depicts the learning results using the top four options inferred using
2-Sequitur on 100 expert traces and depicted in figure 5.9b.

e The second row depicts the learning results using the top four options inferred using
4-Sequitur on 100 expert traces.

e The third row depicts the learning results using the top four options inferred using
G-Lexis on 100 expert traces and depicted in figure 5.10b.

Both Sequitur-based options are able to capture the hierarchical structure of the environment
needed to solve the reinforcement learning problem at an efficient pace. After approximately
25 episodes the problem can be regarded as solved. Furthermore, options extracted using
2-Sequitur as the CFG inference algorithm perform the best. This might be due to the fact
that the average length of the 100 expert trajectories is approximately 10. Hence, k = 2
sensibly balances the need to infer enough production rules while not overfitting sub-optimal
noise. Increasing k only increases the variance of the learning process while not increasing
the rate of convergence. G-Lexis performs the worst. When inspecting the options in figure
5.10b we observe that the production rules tend to be longer in terms of actions than for
Sequitur. Furthermore, we only infer "sparse" options which can only be initiated in a few
states. Furthermore, G-Lexis option-based learning does not efficiently propagate value
information compared to Sequitur. After 20 iterations both Sequitur-based agents have
learned a substantial amount about the proximity to the goal state. The G-Lexis-based agent,
on the other hand, did not estimate the values of the neighboring states well.
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Imitation Learning: CFAG Option Construction
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Figure 5.11: Four Rooms: Imitation Learning - CFAG Options Learning Performance

Hence, we conclude that only Sequitur-based option constructions are suitable to infer the
hierarchical structure innate to the four rooms problem. They reliably produce learning
results comparable to the manually constructed set of hallway options. G-Lexis, on the other
hand, does not achieve competitive results. In the following we focus on the online version
and show results for the fully-automated approach.

Online Action Grammar Learning

Next, we display results for the online RL framework (see section 4.3). Before the agent starts
to alternate between grammar and action learning, she first runs a few simple Q-learning
episodes (N;n;; = 20). Experiments have shown the necessity for a minimal hierarchical
signal encoded in the sequences on which we run the first grammar induction.
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After this initial set of Q-Learning iterations we rollout a set of 104 traces and infer the first
grammar. We then construct the first set of corresponding options and run SMDP-Q-Learning
with the inferred options. After every 36 episodes the option set is updated. We can visualize
the development of the different options throughout the alternating grammar and action
learning phases. Figures 5.12, 5.13 and 5.14 show how the set of inferred options (only top
three shown) changes throughout the updating (updates 1, 3 and 5).

We can observe that unsuccessful transitions induce noise into the intra-option policies.
Still most of the options capture the hierarchical nature of the environment and lead the
agent through the hallways. As learning progresses the option set becomes more and more
sophisticated and the amount of noise in the intra-option policies appears to decrease.
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Figure 5.12: Four Rooms: CFAG Options Development for 2-Sequitur
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Figure 5.13: Four Rooms: CFAG Options Development for 4-Sequitur

When comparing 2-Sequitur options with 4-Sequitur and adapting k-schedule options, we
do not observe drastic differences. In terms of functionality there appears to be an option
which leads from the lower left into the right room, another option leads to the top part of
the lower right room and the final (and most dense) option directly leads to the goal state.
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Figure 5.14: Four Rooms: CFAG Options Development for an Adaptive Sequitur Schedule

Online learning results can be found in figure 5.15:

1. Row one depicts the learning results using the top four options inferred using 2-Sequitur.
2. Row two depicts the learning results using the top four options inferred using 4-Sequitur.

3. Row three depicts the learning results using the top four options inferred using G-Lexis.
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The online algorithm with CFG-inferred options converges slower than the manual hallway op-
tions. Still, all HRL agents achieve convergence after 100 episodes, while Q()\) converges after
around 150 episodes. Furthermore, 4-Sequitur options with interruption (best performance)
achieve convergence after 50 episodes.

Learning with Online Context-Free Action Grammar Options
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Figure 5.15: Four Rooms: Online Reinforcement Learning with CFAG Options

In conclusion, we have shown that our approach helps in the early stages of learning and
reduces the variance of the learning results (compare with figure 2.5). Furthermore, we want
to emphasize the effect of the first grammar update in helping the agent to structure his
exploration process in the four rooms environment.

5.2.2 Option Discovery with Probabilistic Context-Free Action Grammars

In this section we implement the framework introduced in section 4.3 using stochastic
grammar inference to construct an option. As previously discussed we obtain such a semi-
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Markov option by training a sequence model such as a HMM or RNN. If the agent chooses to
execute the option, actions are sampled based on a history dependent posterior distribution.
The option terminates either if the surprisal of a specific transition surpasses a threshold or if
a maximum number of steps is reached.

Imitation Action Grammar Learning Task

In order to select a first set of possible architectures in the imitation learning case, we train
HMMs with different numbers of hidden states and compute both the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). The left part of figure 5.16
shows the results of this exercise. In the following we will use the best three performing
models (12, 16 and 21 hidden states). For the RNN model selection, on the other hand, we
compute accuracies (see right part of figure 5.16). We observe that using more RNN cells
does not significantly improve the predictive accuracy.
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Figure 5.16: Four Rooms: Information Criteria for Different HMMs and RNN Test Accuracies

Based on these observations we choose and train the following architectures (either online at
grammar update time or once in the imitation learning setting):

| Type | HMM Architecture | LSTM Architectures | GRU Architectures |

1 13 Hiddens 5 LSTM Cells 5 GRU Cells
2 26 Hiddens 10 LSTM Cells 10 GRU Cells
3 29 Hiddens 15 LSTM Cells 15 GRU Cells

Table 5.4: Four Rooms: Recurrent Neural Network Architectures.

All RNN architectures start with an embedding layer which transforms the state of the agent
into a one-hot encoded vector. Following the RNN cells there is a dense layer which feeds an
output Softmax layer which we treat as a posterior distribution.

Following our replay surprisal approach outlined in section 4.4 we compute the 10-fold
cross-validated replay surprisal on 10000 expert traces for all of the above models and across
different action sequence/history lengths (see figure 5.17). This yields a very interesting and
intuitive revelation: HMMs are well equipped to make prognosis for short-term behavior.
For longer action sequences they become less suited. This is most likely due to the Markov
assumption. LSTMs, on the other hand, are badly suited for sequences with short lengths
but develop their potential as the sequence length increases. At a sequence length of around
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12 they start to outperform the HMM in terms of replay surprisal. GRU-based RNNs, on the
other hand, achieve this comparable performance already after a sequence length of 6.
Hence, we can conclude the following: HMMs are adequate for modeling short dependen-
cies, GRUs are suited for modeling intermediate dependencies and LSTMs for long-term
dependencies.

Replay Surprisal - Model Comparison
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Figure 5.17: Four Rooms: 10-fold Cross-Validated Replay Surprisal

Again, we perform imitation learning by training the option on 10,000 expert episodes. The
RNNs are trained using mini-batch gradient descent (Adam optimizer) with batch size of 64
for 5 epochs. Afterwards, the agent starts learning from environment interactions and with
the help of the stochastic option. Figure 5.18 shows that we are again able to learn at an
extremely efficient pace. Learning performance is comparable to the manually constructed
hallway options. Still, we have to note that the amount of required training episodes is quite
high and this approach might not be regarded as sample efficient. Further investigation is
needed. Finally, we note that the HMM and GRU constructions perform the best and with the
least variance.

Online Action Grammar Learning Task

As for the Towers of Hanoi environment we also perform online Reinforcement Learning.
We first run 20 episodes of Q-Learning before obtaining a set of 104 rollouts. These are
then used to train a first PAG option as described above. Afterwards, we run 36 episodes of
SMDP-Q-Learning with the augmented action space before we update the option estimate
again. We repeat the two alternating steps. Figure 5.19 shows the learning results (averaged
over 5 agents and 10 rollouts every 2 episodes) for this experiment. The 4 hidden state HMM
option achieves convergence after 25 episodes, 5 LSTM cells RNN option after 35 and the
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Imitation Learning: PAG Option Construction
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Figure 5.18: Four Rooms: Imitation Learning with PAG Options

15 GRU cells RNN option after 35 as well. Furthermore, the learning variance is reduced
compared to baseline results (see figure 2.5). Successive grammar updates do not strongly
improve learning and again we highlight the importance of the first inferred grammar. We
highlight that the best performing HMM option has as many hidden states as the number of
rooms or hallway options. Again, all learning results are summarized in the bar charts in
figure 5.20.

In summary we have shown that PAG options provide a good way to improve learning in the
imitation and online Reinforcement Learning task. They were able to decrease variance and
improve learning speed. CFAG options provide an alternative that is more sample efficient.
We hypothesize that this is due to the fact that there are less parameters to be inferred.
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Figure 5.19: Four Rooms: Online Reinforcement Learning with PAG Options
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Figure 5.20: Four Rooms: Learning Comparison
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5.3 OpenAl Environments

As of now we have concentrated on two environments with distinct hierarchical nature. The
Towers of Hanoi problem could be solved by a recursive algorithm. The Four Rooms problem,
on the other hand, had a clear subgoal structure which imposed to leave a specific room if the
goal location was not in it. In order to further validate and generalize our proposed action
grammar framework, we have provided two tests in OpenAl’s gym environment (Brockman
et al., 2016). The considered environments are the Taxi problem (Dietterich, 2000, p. 236)
and the "large" (64 state) Frozen Lake environment.

The Taxi problem is an episodic RL problem placed within a 5 times 5 grid state space. At
the beginning of an episode the state of the agent is randomly initiated. A target object
(passenger) is randomly placed in one of four landmark positions. The agent then has to
pick up the target and deliver it to a randomly sampled goal location. There are six primitive
actions: Movement in all four directions and a "pickup" and "putdown" action. A successful
completion of the episode is rewarded with 20 units while each other transition is negatively
conditioned with a reward of -1. Finally, an illegal pickup or putdown attempt is punished by
a -10 reward. Dietterich (2000, p. 243) did provide a manual hierarchical solution to this
problem with the help of the MAXQ task graph. In the following we will investigate how our
approach is able to solve this problem.

The Frozen Lake environment, on the other hand, does not have such a clear hierarchical
structure. Instead, there are four different types of states: Start, frozen, hole and a goal state.
The agent is initiated in a deterministic start state and has to reach the goal state to end the
episode. He maneuvers in a 8 by 8 grid and if he reaches a hole state his state is reset to the
starting state. A frozen state, on the other hand, leads to a completely random transition
irregardless of the selected action. Again, he aims to reach the goal as fast as possible.

In all experiments outlined below and if not otherwise stated, we choose the following
hyperparameters:

OpenAl Hyperparameters:
1. Exploration parameter: ¢ = 0.1
Discount factor: v = 0.95
Learning rate: o = 0.8
Number of traces on which we infer a CFG grammar: N, = 10
Number of traces on which we infer a PAG grammar: N, = 1000 (imitation) and
N4 =100 (online)
Number of initial Q-Learning iterations: N;,;; = 50
7. Number of episodes between grammar updates: N, = 195
8. Number of grammar updates: 10 (at episodes
{50,245, 440, 635, 830, 1025, 1220, 1415, 1610, 1805})
9. k-Sequitur hyperparameter: § = k = 2
10. Maximal surprisal (option termination criterion): £ = 2 (after distribution has been
properly normalized)
11. Maximum steps of PAG option execution: 10

L CORLS

o

For both environments we provide learning results for imitation and online learning. Figures
5.21 and 5.22 display the learning results for the Taxi environment while figure 5.23 and
5.24 does the same for the Frozen Lake environment. The plots are structured as follows:
The upper row shows the average amount of steps taken until the goal state is reached (lower
is better) over the course of the learning episodes. The second row displays the average
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reward accumulated (higher is better). The first column, on the other hand, shows learning
performance for online inferred macros. After an initial set of 50 traces we rollout 10 traces
and infer a macro set. After 195 episodes we do the same again. The overlapping bar charts
in the top row show how many macros were on average identified. We implement both
SMDP-Q(\)-Learning as well as value transfer (see section 4.2). The bar charts in the bottom
row, on the other hand, display the mean length of such extracted macros.
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Figure 5.21: OpenAl Taxi Environment: Online Reinforcement Learning with CFAG Macros

For the Taxi environment, we observe that online inferred macros perform even better than
macros obtained from 10 traces of expert behavior. This is astonishing and might be related
to the fact that the agent might first have to obtain a rough value estimate of the primitive
actions before he is able to leverage the macro-actions. Furthermore, we observe that during
the course of learning the amount of macros that are inferred increases while the length of
the macros decreases. This implies a form of low-level specialization and generalization.
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Taxi Environment
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Figure 5.22: OpenAl Taxi Environment: Online Reinforcement Learning with PAG Options

The PAG options (figure 5.22) do not work well in either the imitation learning (trained on
1000 expert traces) or the online reinforcement learning (trained on 100 on-policy rollouts).
We are not sure why this is the case and can only assume that it is due to the surprisal-based
termination constraint. Another possible explanation might be that the grammatical structure
provided by the HMMs or RNNss is just not suited for environments in which goal, starting
and subgoal positions are randomly initiated. Macro-actions, on the other hand, might be
superior due to their state invariance.
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Again, in the Frozen Lake environment macro-actions clearly outperform simple Q-Learning
baselines in both online and imitation learning (see figure 5.23). We want to highlight the
observation that the first grammar update leads to solving the problem. We still extract
many macros due to the fact that we concatenate 10 traces and run CFG inference on
the concatenated traces (discarding semantically meaningless productions). The length of
the macros and the number of extracted macros stays constant throughout learning which
indicates an early 'grammar convergence’.
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Figure 5.23: OpenAl FrozenLake 8x8 Environment: Online Reinforcement Learning with CFAG
Macros

74



Chapter 5. Experiments and Results 5.3. OPENAI ENVIRONMENTS

Online reinforcement learning with options only seems to improve learning for the 2 hidden
state HMM as well as the 5 and 10 CRU cells-based option. Again, learning a stochastic
grammar on top of expert traces does not provide better results than directly learning a
grammar from on-policy rollouts.
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Figure 5.24: OpenAl FrozenLake 8x8 Environment: Online Reinforcement Learning with PAG
Options

In conclusion, we find that macro-action discovery based on Sequitur CFG inference provides
a powerful solution that is robust to the choice of environment. Furthermore, the online
approach and the corresponding grammar development can yield interesting insights into the
degree of required skill specialization. The performance of PAG options, on the other hand,
seem to be very dependent on the chosen environment. We remain skeptical of this approach.
One further has to analyze the role of the learning parameter &.
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Conclusion and Future Work

Motivated by a parallelism between the hierarchical generating processes of language and
motion, we have derived multiple algorithmic approaches which exploit powerful grammatical
inference frameworks to identify temporally-extended actions.

At the center of this analysis was the formal notion of Semi-Markov Decision Processes and
their capability to model stochastic waiting times between decisions. Macro-actions and
the options framework induced probability distributions over such transition periods. By
sensibly defining temporally-extended actions and abstracting away unnecessary decision
points, one is able to overcome the curse of dimensionality. Learning volatility is decreased by
efficient exploration that incorporates domain knowledge. In order to overcome the necessity
to manually articulate this knowledge, we proposed to turn to grammatical inference. By
inferring the hierarchical structure of agent-environment interactions, we were able to fully
automate the Hierarchical Reinforcement Learning pipeline.

Under the assumption that language and motor control can be formalized in one overarching
computational setup, we outlined two specific approaches to action grammars: Context-free
action grammars and probabilistic action grammars. Macro-actions as well as options were
shown to be derivable from context-free grammars and their production rules. By training a
grammar on sequences of experiences, the Hierarchical Reinforcement Learning agent was
able to extract hierarchical information from state-action transitions. The grammar naturally
defined a temporal hierarchy over actions which can be transformed into macro-actions by
flattening the production rules. A CFG-based option set, on the other hand, was constructed
by matching encoded action sequences with the state sequence. Furthermore, we also
demonstrated how one is able to sample macro-actions from PCFGs and define options based
on recurrent models of language parsing. Both the sampling process and option termination
where driven by a syntactic surprisal measure. In the options framework we argued that
surprisal expresses the need for control. The agent chooses to follow an intra-option policy
until a surprising state transition occurs. At that point control is given back to the agent, so
that she can deliberately take the next action. Sampling macro-actions, on the other hand,
proved difficult due to the additional sampling variance. We remain skeptical of this approach.
In order to validate our proposed framework, we tested both approaches for an imitation
learning as well as an online RL task in multiple environments. Our observations can be
summarized as follows:

e The CFAG approach to macro-actions extraction from flat production rules performs

very well in both imitation and online learning. The agent can easily generalize from
the inferred hierarchical structure and is able to increase the action learning speed
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drastically. Especially, the first grammars updates prove to be powerful in reducing the
dimensionality of the problem.

e Alternating between grammar updates and learning action values is an effective way
of both online learning of an optimal grammar as well as an optimal policy. The first
grammar extraction and action space augmentation has the largest significant effect in
the further learning procedure of the agent.

e PAG options when trained on expert traces are able to capture recurrent behavioral
strategies which are comparable with manually crafted options. We found evidence
for a connection between the complexity hyperparameter of the grammar and the
hierarchical structure of the environment.

In summary and chronological order our contributions are the following:

1. We formalized an eligibility traces extension to SMDP-Q-Learning.

2. We propose a production rule-based construction of macro-actions which performs well
in online and imitation learning tasks.

3. We outline a CFG-based construction of options as well as HMM and RNN-based versions
which are able to automatically infer options given expert traces.

4. We show how syntactic surprisal is useful in both comparing different PAG grammars
for HRL and in providing an automated termination condition for options.

In future work we are interested in testing and extending our approach to both visual (pixel-
based state representations, e.g. ATARI games) and physical (joint and velocity-bases state
representations, e.g. MoJuCo) domains. Formal grammars are especially useful for languages
with large terminal vocabulary. So far we have only experimented with small action spaces
and single agents. Pastra and Aloimonos (2012, p. 113) note that social interactions of
more than one agent can also be formulated within the notion of tool use. Hence, we are
interested in possible applications to multi-agent RL and testing the scalability of our approach
to real-life domains.

Another important question that we have not been able to fully address, is how to learn
initiation sets for options. Most common approaches allow options to be executed starting
from every state in the state space. Since not all sub-routines can be efficiently executed from
every state, such a crude assumption can slow down learning. In section 4.3 we saw that
learning a grammar on sequences of state transitions might provide a good first step. More
experiments are needed.

Furthermore, our approach has only attempted to merge grammatical inference with two
HRL algorithms. There remain many other promising frameworks such as the Hierarchies of
Abstract Machines (HAMs, Parr (1998); Parr and Russell (1998)). HAMs define a hierarchy
over finite state machines. This could naturally lead itself to automated identification via
Hierarchical Hidden Markov Models (Fine et al., 1998).

Future work also has to further analyze the development of the inferred grammar throughout
the learning process. Edit distances such as the Levenshtein and Jaro-Winkler distance provide
two measures of string similarity which might be used to efficiently monitor the development
of the inferred flat productions compared with the optimal grammar.

Ultimately, we envision a form of dictionary of action which provides an expandable library
of skills for Hierarchical Reinforcement Learning agents which act in diverse naturalistic
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environments. This could provide a mayor contribution to a key endeavor in general artificial
intelligence: life-long learning.
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Appendix A

Experimental Details and User Guide

We provide 3 directories which contain the code used to derive the results of chapter 5 in the
report. Each one of them is self-contained and has to be run independently:

1. hrl_hanoi: Reproduces results of chapter 5.1 and macro-action discovery for the Towers
of Hanoi environment.

2. hrl_rooms: Reproduces results of chapter 5.2 and option discovery for the Four Rooms
environment.

3. hrl_openai: Reproduces results of chapter 5.3 and macro-action/option discovery for
several OpenAl environments.

In general we average the results over 5 agents and obtain performance statistics by rolling
out a set of on-policy trajectories after a set of learning episodes. We parallelize the agents
(not in the rooms environment) so that learning speed can be increased when having access
to multiple CPUs.

In order to get started we recommend to review our OpenAl implementation since it is the
easiest to generalize from. As of now the framework is implemented using model-free and
tabular reinforcement learning approaches. A few general comments:

e Everything is implemented in Python 2.7 and on UNIX-based operating systems.
e Required packages are listed in requirements.txt files of specific repositories.

e Grammar induction algorithms (Sequitur/Lexis) need to be compiled (make) before
you can run them within the learning environments. I do not take any credit for such
implementations and you can find the original repositories here:

— Sequitur:https://github.com/craignm/sequitur
— Lexis: https://github.com/payamsiyari/Lexis
e The PAG options are implemented using RNNs which we train in Keras with Tensorflow

backend. In order to efficiently train them, please activate GPU support (if you have
access):

export LD LIBRARY PATH=LD LIBRARY PATH:/vol/cuda/9.0.176/1ib64
export CUDA_VISIBLE DEVICES=0
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For all three directories please follow the general steps below (* € {hanoi, rooms, openai}):
1. Change directory to specific repository

cd hrl =«
2. Create a virtualenv (optional but recommended) and activate it

sudo apt—get install python—virtualenv
virtualenv —p python AG
source AG/bin/activate && pip install —upgrade pip

3. Run make to get Lexis running:
cd ~/hrl x/utils/Lexis/repeatsl && make
4. Run make to get Sequitur running:
cd ~/hrl x/utils/sequitur && make
5. Go back to main folder and install all dependencies:
cd ~/hrl x && pip install —r requirements. txt

6. Afterwards, you can now run the following commands to start simulating the different
agents.

Towers of Hanoi (Chapter 5.1)

The main environment setup for Q-Learning is partially taken from https://github.com/
khpeek/Q-learning-Hanoi. We provide results for the following (H)RL agents:

1. Q-Learning
2. Imitation Learning with Lag O or 1 for Sequitur and Lexis
3. Online HRL for Sequitur/Lexis/HMM with and without value transfer

To reproduce the agents please run the following commands from the command line:

python run_in parallel —q

python run_in_ parallel —imitation_seq

python run_in parallel —imitation lexis
python run_in_ parallel —imitation_seq_lag
python run_in parallel —imitation lexis lag
python run_in parallel —online seq

python run_in parallel —online seq_transfer
python run_in parallel —online lexis

python run_in parallel —online lexis transfer
python run_in parallel —online hmm

python run_in parallel —online_hmm _transfer
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Four Rooms Problem (Chapter 5.2)

The main environment setup for Q-Learning is partially taken from https://github.com/
tmomose/sutton_rooms. We provide results for the following (H)RL agents:

1. Converged Q-Learner (to get expert traces - run first!)

2. Simple Learning Baselines: Q-(\)-Learning, Macro-Q(\)-Learning, Hallway Options

3. Imitation Learning Results: CFAG, PCFAG Macros/Options

4. Online Hierarchical Reinforcement Learning Results: CFAG, PCFAG Options

To reproduce the agents please run the following commands from the command line:

python

python
python
python

python
python

python
python
python

python
python
python

python
python
python

run_learning

run_learning
run_learning
run_learning

run_learning
run_learning

run_learning
run_learning
run_learning

—expert

—q
——macro
—hallway

——sequitur
—lexis

—hmm
—1stm
—gru

cfg online learning —seq2
cfg online learning —seq4
cfg online learning —seq_schedule

scfg online learning —hmm
scfg online learning —Istm
scfg online learning —gru

OpenAl Environments (Chapter 5.3)

We provide results for the following (H)RL agents:

1. Q-Learning, Q()\)-Learning

2. Imitation Learning Results: CFAG Macros

3. Online Hierarchical Reinforcement Learning Results: PCFAG Options

To reproduce the agents for the specific environments, please run the following commands
from the command line:
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python main.py —env Taxi—v2 —1 type q_learning
python main.py —env Taxi—v2 —1 type macro_q_imitation
python main.py —env Taxi—v2 —1 type macro_q_online

python main.py —env Taxi—v2 —1 type options imitation hmm
python main.py —env Taxi—v2 —1 type options_imitation lstm
python main.py —env Taxi—v2 —1 type options imitation gru

python main.py —env Taxi—v2 —1 type options online hmm
python main.py —env Taxi—v2 —1 type options_online Istm
python main.py —env Taxi—v2 —1 type options online gru

python main.py —env FrozenLake8x8—-v0 —1 type q learning
python main.py —env FrozenLake8x8—-v0 —1 type macro_q imitation
python main.py —env FrozenLake8x8-v0 —1 type macro_q_online

python main.py —env FrozenLake8x8—-v0 —1 type options imitation hmm
python main.py —env FrozenLake8x8-v0 —1 type options imitation lstm
python main.py —env FrozenLake8x8-v0 —1 type options imitation_ gru

python main.py —env FrozenLake8x8-v0 —1 type options online hmm
python main.py —env FrozenLake8x8—-v0 —1 type options online lstm
python main.py —env FrozenLake8x8-v0 —1 type options _online gru

python plotting.py —env Taxi—v2 —sm 2 —s
python plotting.py —env FrozenLake8x8 —sm 2 —s

The results of the learning procedures will be saved in the corresponding /results directory.
In order to visualize the results please refer to the run_plotting.py file.

88



Appendix B

Summary of ISO Report and
Relationship to this Project

This project was inspired by an Independent Study Option (Lange, 2018a,b) conducted
under the supervision of Professor Aldo Faisal. The ISO was motivated by a desire to find
a connection between Hierarchical Reinforcement Learning and the field of computational
linguistics. The main result of the ISO report was the revelation that HRL, while being a very
powerful framework to learn sequential task achievements, is lacking a satisfying solution to
the automatic discovery of temporally-extended actions. We reviewed the history and current
state of Hierarchical Reinforcement Learning which included classical approaches such as the
MAXQ value function decomposition (Dietterich, 2000) and HAMs (Parr and Russell, 1998) as
well as more recent developments in Deep HRL. We refer to figure 1.1 for a concise summary
of our results. Finally, we motivated the idea of applying Formal Grammars to Hierarchical
Reinforcement Learning.

This project report continues where the ISO ended. We develop a solution to the sub-structure
discovery problem by the means of grammatical inference. When appropriate we have quoted
the previous work. At multiple points in time we have cited the original ISO report and its
presentation throughout this report. Additionally, in this appendix as prescribed, we give a
short summary of the ISO and its relationship to this project.

More specifically, the table below shows the individual sections of the ISO and indicates
whether or not they inspired concepts that were further pursued in this project.

Independent Study Option Sections - Parallels Yes No

Section 1: Introduction

Section 2: Markov Decision Processes and Semi-Markov Decision Processes

Subsection 1: Markov Decision Processes X (ch: 2.1)

Subsection 2: Semi-Markov Decision Processes X (ch: 2.2)

Section 3: Hierarchical Reinforcement Learning

Subsection 1: Early Approaches to the High Resolution X
Problem
Subsection 2: Options X (ch: 2.3.2)
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Subsection 3: Hierarchies of Abstract Machines X
Subsection 4: MAXQ Value Function Decomposition X
Subsection 5: Recent Approaches X (ch: 2.4)

Section 4: Language Comprehension, Formal Grammars and Subroutine Extraction
Subsection 1: The Cognitive Processes of Language Pro- X (ch: 3.1)

cessing

Subsection 2: Formal Grammars and Grammatical Infer- X (ch: 3.2 and
ence 3.3)

Subsection 3: Action Grammars: Learning Options via | X (first idea for
Formal Grammars ch: 4.3)

Section 5: Conclusion

Section 2 of the ISO report was reviewed and extended in chapter 2.1 and 2.2 of this report.
They provide the necessary formal foundations for temporally-extended actions and cannot be
excluded. Additionally, we added more intuition about stochastic waiting time distributions
and the relationship to MDPs.

From section 3 of the ISO report we stuck with the options framework (Sutton et al., 1999).
Options provide a strong HRL algorithm which we used to develop our Action Grammars
framework in. In chapter 2.3.2 of this report we review the formalism. We provide a different
point of view, implemented the Four Rooms environment and programmed learning with the
Hallway options (see figure 2.3 and 2.5). Furthermore, a few papers (most notably Hengst
(2002) and (Bacon et al., 2017)) which were reviewed in chapter 2.4 were also reviewed in
section 3.5.1 of the ISO report.

In section 4.1 of the ISO we discussed recent neuroscientific findings that inspired our ap-
proach to identify hierarchical behavior with the help of formal grammars. Some of these
motivating findings have been quoted throughout this text in order to make the content more
vivid. Furthermore, section 3.1 is partially inspired by such results. Section 4.2 of the ISO,
on the other hand reviewed context-free grammars and the Sequitur algorithms which are
both addressed in chapter 3.2 and 3.3 of this report. Still, here we provide rigorous details
and further extend the content to new domains. E.g. we cover probabilistic CFGs, inference
algorithms such as G-Lexis and Hidden Markov Models and papers such as the ones by Stout
et al. (2018) and Pastra and Aloimonos (2012). Finally, in section 4.3 of the ISO report we
outlined a first idea of how to craft options from production rules. This approach is different
and inferior to the one discussed in this project report (see section 4.3) and can be viewed as
a starting point.

The contributions, implementations and reviews conducted in this project are substantial.
First, we enriched our analysis of HRL algorithms by reviewing macro-actions. We discovered
an algorithm that combines both macro-actions with eligibility traces and implemented it.
Second, we implemented SMDP-Q(\)-Learning and options with interruption or inter-option
learning. We further reviewed the literature which is focussed on learning options and
temporal abstractions. Chapters 4 and 5 (the main conceptual contributions) of this report
remain completely independent of the previous ISO. All of our macro-action and option
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discovery algorithms are novel and their implementation was done during the time of the
project.
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Appendix C

Ethical and Legal Considerations

The continuing automation of processes which were originally executed by human workers is
becoming more and more prevalent. This will have severe consequences on the way how we
deal with our daily lives. In the short term unemployment might increase and will require
significant rethinking of deep structures in society. Education for example will have to adapt
to the needs of the 21st century. Many citizens who become unemployment have to be able
to quickly obtain new skills. We are already starting to see a revolution in digital education
and Massive Open Online Courses (MOOCs). In the long run many questions regarding
electricity demand, sustainable computing and privacy preservation have to be answered.
Machine Learning (ML) is the key to both developments. First, it provides the technical
requirements to automated large scale processes in the industry. Second, it also changes the
way how content will be taught. Automatic grading and adaption of curricula are only two
examples. Developments in privacy preserving machine learning such as the OpenMined
project piloted by Andrew Trask are important steps in the right direction. Algorithmic efforts
such as homeomorphic encryption and federated learning provide the necessary tools to
ensure that everyone is able to share his or her data without damaging themselves. Except
for these general considerations regarding Machine Learning and automation we do not see
any particular danger regarding our project.

This project has introduced a novel view to constructing sub-routines from expert demon-
stration or in a feedback/reinforcement signal modulated way. By leveraging computational
linguistics, one is able to extracts hierarchical structures from observed behavior. We have
shown that these structures contain significant meaning as subgoal achievements and help
the agent to learn faster in the early stages. They are easy to interpret and contain semantic
meaning. Furthermore, they are specialized to the situation the agent finds herself in. We
conclude that Hierarchical Reinforcement Learning provides a valuable contribution to the
long-term credit assignment problem as well as the question of interpretability. Furthermore,
we highlight the necessity for discussion among all groups of society. At the moment a small
subgroup of highly educated people are involved in the discussion. But these people are
likely to be the last ones to be affected by the upcoming revolution in artificial intelligence.
People who are less educated have to go through the most transformation and have to adapt
to the fast changing needs of society. Hence, we must all come together and think about
fundamental changes and how to shape our future.
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Ethics Checklist

Yes | No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Section 2: HUMANS
Does your project involve human participants? X
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human X
Embryos/Foetuses” i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? X
Does it involve the collection and/or processing of sensitive personal data X
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philo-
sophical conviction)?
Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? It should be noted X
that this issue is not limited to surveillance or localization data. It also
applies to Wan data such as IP address, MACs, cookies etc.
Does your project involve further processing of previously collected personal X
data (secondary use)? For example Does your project involve merging
existing data sets?
Section 5: ANIMALS
Does your project involve animals? X
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? X
If your project involves low and/or lower-middle income countries, are any X

benefit-sharing actions planned?
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Could the situation in the country put the individuals taking part in the X
project at risk?

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to the X
environment, animals or plants?

Does your project deal with endangered fauna and/or flora /protected areas? X

Does your project involve the use of elements that may cause harm to X
humans, including project staff?

Does your project involve other harmful materials or equipment, e.g. high- X
powered laser systems?

Section 8: DUAL USE

Does your project have the potential for military applications? X
Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require export X
licenses in accordance with legislation on dual use items?

Does your project affect current standards in military ethics — e.g., global X
ban on weapons of mass destruction, issues of proportionality, discrimina-

tion of combatants and accountability in drone and autonomous robotics
developments, incendiary or laser weapons?

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist abuse? X
Does your project involve information on/or the use of biological-, chemical-, X
nuclear/radiological-security sensitive materials and explosives, and means

of their delivery?

Does your project involve the development of technologies or the creation X
of information that could have severe negative impacts on human rights

standards (e.g. privacy, stigmatization, discrimination), if misapplied?

Does your project have the potential for terrorist or criminal abuse e.g. X

infrastructural vulnerability studies, cybersecurity related project?

Section 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright X
licensing implications?

Will your project use or produce goods or information for which there are X
data protection, or other legal implications?

Section 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration? X
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