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Figure 1: One-Shot Radiance (OSR) evaluates a low quality radiance map (one-shot),
distance and normals at the first intersection, and uses a neural network to obtain
a higher quality radiance map containing all indirect lighting. The Bathroom scene
from PBRTV3’s scenes [20] shows OSR compared to a same-time path traced image.
OSR produces a noise-free result with convincing global illumination after 30 sec-
onds, and progressively refines quality afterwards.

Abstract

Rendering realistic images with Global Illumination (GI) is a computationally demanding task.
A recent project used Generative Adversarial Networks (GAN) to predict indirect lighting on an
image level, but is limited to diffuse materials and requires training on each scene.

We present One-Shot Radiance (OSR), a novel machine learning technique for rendering Global
Ilumination using Convolutional Auto-encoders. We predict radiance maps at the first path
tracing intersection level using the Neural Network, which uses as inputs a One-shot radiance
map (1 sample/pixel intensity), distance and normal maps. Indirect illumination values are
interpolated to offer high performance GI rendering while supporting a wide range of material
types, without any offline precomputation on the scene. The independent direct lighting layer
preserves details and shadow correctness.

OSR has been evaluated on scenes of interiors, and is able to produce high-quality images within
180 seconds.
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1 Introduction

Figure 2: The Futuristic Tower scene took 50 CPU-days to render using the Metropo-
lis Light Transport Bi-directional Path Tracer implemented by LuxRender. A more
efficient rendering algorithm could allow a much faster workflow on this scene, or
be cheap enough to allow creating an animation.

Ray Tracing is capable of producing photorealistic images virtually indistinguishable from real
pictures. Progressive refinements on rendering algorithms, such as Bi-Directional Path Tracing
[45] and Metropolis Light Transport [67] have increased the efficiency of rendering engines in
scenarios in which light paths are difficult due to the high amount of indirect lighting and GI.
Complex lighting conditions are however still highly expensive to resolve, and most algorithms
require long rendering times to clear out the noise from Monte Carlo sampling.

Recent research has attempted to use machine learning techniques to accelerate rendering of GI
effects. The Deep Illumination [63] approach uses a GAN to translate diffuse albedos, normals and
depth maps to a global illumination component layer, and obtained good success at predicting
indirect illumination in real time for diffuse materials. The network requires specific training
for each scene to be rendered, but is able to extrapolate and adapt to dynamic objects and new
shapes introduced.

To overcome the limitations of diffuse-only materials, and to make the renderer easily usable
without the need of offline training, we attempt a more general approach to resolving GI based
on the estimation and caching of radiance maps for indirect illumination only. Indirect lighting
is the primary cause of strong noise in Monte Carlo rendering, and is much more difficult to clear
than first bounce lighting due to the high dimensionality of the paths. Rendering can therefore
be accelerated by predicting approximate but noise-free radiance maps that can be interpolated
and used to obtain the indirect illumination component of the final image. Thanks to the slowly
changing nature of indirect illumination, artifacts and bias are not very visible in the general
case, while the overall predicted GI looks convincing and noise-free. With OSR we propose to
work not on the final rendering image level, but to use Path tracing to find the first intersection in
the scene, where a Convolutional Autoencoder predicts a high quality radiance map from a path
traced map rendered at just 1 sample per pixel (one-shot map), a depth and a normals map. Using
the high quality radiance map we can compute all indirect illumination contributed from path
tracing bounces beyond the first one. We use a neural network to predict high quality radiance
maps to accelerate rendering of GI effects. Our approach works with a wide range of material
types, and does not require any offline pre-computation or per-scene training.
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2 Background

In the background section we present an overview of graphics and ray tracing in Section 2.1,
Machine Learning in Section 2.3, and some recent related work in Section 2.5.

2.1 Ray tracing

In computer graphics, there are two major techniques that can be used to generate high quality
images from a geometric model of the scene and of the lights: surface mesh rasterization
rendering pipelines and ray tracing.

The rasterization based rendering pipeline is commonly implemented in all modern graphics
cards and their APIs, and widely used by real-time 3D visualization systems to provide a low-
latency output to the user in the form of a constant stream of frames. Graphics pipelines such
as the one described by OpenGL transform a 3D scene into a perspective projection through
geometric manipulation of all the objects, and can be programmed by writing shaders to provide
illumination properties and other effects that help achieve visual correctness. The pipelines are
built and programmed with efficiency in mind: transformations expressed in matrix form can
be applied to arbitrary numbers of scene elements in parallel using hardware acceleration, and
processing time for many of the rendering stages scale linearly with the number of geometric
primitives present in the viewing frustum and with the target display resolution. The fixed layout
and structure of such rendering pipelines however limit the expressiveness and flexibility of the
graphical effects they can output. While shading languages offer full programmability to devel-
opers, the major benefits from hardware acceleration come from the fixed functionalities in the
pipeline, such as the rasterization stage which processes geometry triangles into screen-space
fragments.

Ray tracing is a different approach to the task. Rendering is not performed by transforming
geometry from world space to screen space and applying lighting effects, but by simulating light
rays according to physical laws. For example, a lamp in a room shoots light rays that bounce on
walls until they reach the camera film’s individual pixels.

Ray tracing simulations perform numerical integration on the illumination contribution of
every object present in the scene. As long as the behaviour of light rays is simulated in an
accurate and correct way according to surface and volume properties, ray tracing promises to be
able to produce images that are scientifically realistic and virtually indistinguishable from real
photographs! .

While it is intuitive to think about simulating rays starting from the light sources, the most
common ray tracing algorithms simulate rays in the opposite direction, starting from the camera.
Helmholtz Reciprocity [8] states that incoming and outgoing light rays are perfect reversals of
each other, and it is perfectly valid to simulate light behaviour from the opposite direction.
Practical experiments such as Dual Photography [60] have shown that it is possible to exchange
positions of light source and camera, and to produce photographs from the viewpoint of the
projector as if it were the camera.

Many ray tracing algorithms exploit Helmholtz reciprocity by shooting light rays starting from
the camera instead of the light sources. The common pinpoint camera model employs a point

11n order to obtain a fully physically accurate render, a few more requirements need to be met. Most rendering engines
use the three standard RGB channels to create a colored picture. While RGB is usually sufficient to accurately model the
visible part of the light spectrum, it doesn’t fully simulate all light path properties that occur in nature. For this reason
some physically accurate ray tracers perform all simulations in the full spectrum of light frequencies. Such renderers are
called spectral renderers [21], and can for example create extremely realistic images of dispersive refraction. Additionally
to spectral rendering, light physics also include quantum effects such as light diffraction, phosphorescence and fluores-
cence, but they are typically disregarded as they would only increase the complexity of the simulations without improving
the quality of the output or offering effects that could be otherwise achieved in different ways.
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aperture that has no physical dimension. Using forward tracing of rays towards a camera sensor
would result in an infinitesimally small probability of hitting the pinpoint camera’s aperture,
while using reverse simulations it is possible to start rays from the camera and find light sources
that have a physical dimension.

Figure 3: A simple scene rendered with Path Tracing. The effects of global illumina-
tion are clearly visible on the walls and in the shadows.

eye ray

Figure 4: Visualization of the different elements of a 3D scene: camera, mesh, and
light source. A hypothetical eye ray has been traced through the environment.

We now present the basic components of a 3D scene.

10



Giulio Jiang One Shot Radiance 2 Background

2.1.1 Camera

The most common camera model used in computer graphics is the pinhole model. The aperture
the camera is a single point, and the camera film is placed in front of the focal point. This simple
model is easy to implement in software, and represents a perfect real world camera with infinitely
small aperture. In Figure 4 the camera is positioned in front of the scene, and the focal point is
the origin of all the eye rays that are shot into the scene. The pixel that will be updated is the
intersection point between the eye ray and the camera film plane.

The pinhole model can be extended to support more realistic camera features. Depth of Field
effects can be modelled by introducing a non-zero aperture: the origin point of the rays has some
surface area, and the film plane is positioned at the distance of the focal plane.

Other common kinds of cameras are the Orthogonal projection camera, and the Fish-eye camera.

The Environment camera can be used to obtain a 360 degree view of the scene. It is similar to the
pinpoint camera, with a single point focal point. The film, however, is not a plane, but a sphere
centered around the focal plane. Any object that is at the focal plane therefore is in focus, and
one that is behind or in front of it becomes blurrier the farther away it is.

2.1.2 Mesh

Often referred to as Objects or Geometry, the mesh of a scene is the visible and concrete part.
Mesh is composed of vertices, edges and surfaces, and it is the main source of interaction for
light paths.

The geometry of a scene can be defined and stored in different ways. The most common
representation is based on vertices, edges and triangles.

2.1.3 Lights

In order to have any visible element, a scene requires at least one light source. While light
sources are treated in a particular way, there isn’t necessary a clear distinction between light
objects and mesh objects, as mesh object materials can be also configured to emit light. With
Global Illumination effects, all surfaces can be treated as light sources.

The lights of a scene generate all the light rays, and are the endpoints where camera-to-light ray
tracing simulations terminate if they are not terminated early for efficiency reasons.

Several different kinds of lights exist:

» Point light - asource that has no physical dimension. While point lights are easy to model
in a rasterization pipeline, they are not realistic in unbiased ray tracing as there is zero
probability of finding a point light with rays starting from a camera. Point lights are however
useful in modeling simplified illumination configurations, such as in the Instant Radiosity
method [39].

» Spot light - similar to the Point light, a Spot light has no physical dimension but only
emits light in a cone towards a specific direction.

» Area light - a source that emits light from a 2D surface. Area lights can be used to gen-
eralize other types of lights, and provide uniform emission across the surface. Area lights
are capable of generating realistic illumination by casting soft shadows and smooth transi-
tions between the illuminated parts of the scene. An emitting object can be modeled in a
raytracing software as a collection of area lights corresponding to the faces of the object.

11
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e Environment light - a source that has no precise position coordinate in the 3D environ-
ment, mapped at infinity distance in the world. Environment lights are used for sun and sky
lighting, and for Image Based Lighting [31] with HDRI and Environment maps. Sampling of
environment lights has been subject of several research efforts, and is highly optimized in
modern rendering engines.

2.1.4 The visibility problem

One of the primary goals of any rendering technique is to obtain an appropriate 2D projection of
a 3D scene or model. This is the visibility problem.

In order to project a scene as an image, a rendering system is required to obtain a viewpoint of
the objects depending on the relative position of the camera, and to calculate which objects are
visible and which are occluded.

The visibility problem has several different solutions:

* Rasterization and Z buffering are implemented in many rendering pipelines. Each tri-
angle in the scene is rasterized by calculating the pixels needed to draw it, generating frag-
ments. Fragments contain a Z value representing a distance from the viewing point that can
be used to determine which fragments are visible and how to blend them.

* Ray tracing is not only a rendering technique but also a solution to the visibility problem
itself. The visibility problem is solved by computing the intersection between an eye ray and
every surface in the scene, and taking the closest intersection, for each pixel.

2.1.5 Local, Direct and Global illumination

Local illumination models are the simplest ones because they work on each object or primitive
independently, and only consider the relationship between surfaces and light sources. Local
illumination models, such as the Phong Model [54], can compute view-dependant highlights
and illumination. A very simple illumination solution for computer graphics can be based on
three distinct components: Diffuse, Specular and Ambient. The Diffuse term contains the primary
color of the surface material, and does not depend on the viewing direction. The Specular
contains view-dependant highlights produced by glossy materials. The Ambient component
is a rough approximation of the total amount of indirect light received by all other surfaces.
Local illumination models are easy to implement in shader languages and can be computed at
interactive rates, although they offer a limited amount of realism.

Direct illumination models will also consider all the other objects in the scene, and can generate
shadows and some ambient occlusion. Shadows are computed by tracing additional rays, called
shadow rays, between surface points and light sources to determine whether an object is
illuminated or not. Direct illumination is a considerable step forward as it can produce accurate
shadowing, including self-shadowing, while still being reasonably cheap to compute.

Global Illumination (GI) computes the lighting of each object considering not only the contri-
bution of light sources, but also the indirect lighting of all other non-emitting surfaces in the
scene. No object in reality is able to absorb all the light it receives, and it will therefore produce
some reflected illumination. While this statement is obviously true for glossy materials, even
matte materials reflect a significant amount of light. The effect is visible in figure 3, where there
are some red and green halos on the walls closer to the objects, caused by indirect lighting.

In the absence of Global Illumination, shadowed locations are completely black. This is unreal-
istic, and Local illumination models often use an Ambient light component to approximate the
overall contribution of all indirect lighting, and Ambient Occlusion to approximate the darkness
that is typical when objects are very close to each other, such as in corners.

12
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Global Illumination is expensive to compute as it requires to integrate over all the visible surfaces,
with an arbitrary number of light ray bounces. Brute force computation of Global Illumination
is impossible due to the infinite integration domain in both the spatial and ray depth domains.
Monte Carlo integration rendering methods are commonly used to obtain physically correct
rendering of Global Illumination.

2.1.6 Photometric Quantities and Light Transport Equation

Photometric quantities provide measures of brightness and power that are weighted with respect
to how humans perceive light. Symbols referring to photometric quantities are typically distin-
guished from radiometric quantities by a subscript v.

Luminous Flux is the amount of luminous energy that leaves a light source, and it is measured in
Watts (W).

o,

The amount of luminous energy that leaves a source in a particular direction is the Luminous

Intensity. It is the Flux per unit of solid angle, and it is measured in £

d®,
I =
v dw
The Irradiance is the density of incoming flux on an area. It is the ratio between incoming flux
and surface area, and it is measured in %
do,
E=
dA

Radiance is the intensity, emitted in a certain direction, orthogonally projected on a surface,
where s is the surface area

_ L
~ ds - cosb

The Rendering Equation [35] expresses the fundamental behaviour of luminous energy and is at
the core of the mathematical problem that rendering engines attempt to solve or approximate

L,

Lo(z,d0) = Le(x,&o) + K (z,&o, &) Li(z, & ) dw;
Qarn
In the local form, the Light Transport Equation is expressed in terms of a specific location =« .
Output radiance L, of a location in a direction is the sum of its directly emitted light L. plus
the integral over the sphere of the scattering of the light that it receives. K is the kernel and
describes how light is scattered. L; is the light received from a different direction &; .

The reflectance function of a surface is

KL (I’, Cao, (El) = fr (I, CU(), (Iﬁi)cos(&)
f~ is the BRDF (Bidirectional Reflectance Distribution Function) and 6; is the angle between
«; and the surface normal. The BRDF encodes the surface material properties: the amount of
energy that is reflected in a direction given an incoming light direction. The BRDF is defined
over the hemisphere, while a BSDF (Bidirectional Scattering Distribution Function) is defined
over the sphere and can also model volumetric scattering.

Only numerical methods can solve the integral in the Light Transport Equation, and an infinite
number of samples on all scene surface points is required in order to obtain a correct answer.
The task is extremely computationally expensive, and modern rendering techniques attempt to
find an efficient numerical solution to the Equation, or a visually convincing approximation.

13
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2.1.7 Bias

Given the theoretical ground truth given by fully evaluating the Light Transport Equation, a
rendering algorithm is unbiased if and only if, given an infinite amount of computational time,
the output does not have a systematic error. Therefore, as the number of samples tends to
infinity, the expected difference from the ground truth should be zero.

2.1.8 Ray tracing algorithms
These are some of the most common ray tracing algorithms:

e Direct lighting is a simple kind of ray tracing. Its main purpose is to solve the visibility
problem, and it does not attempt to compute global illumination. Eye rays are shot from
the camera to the first intersection, from which a single shadow ray is used to determine
whether the object is in shadow. Although the shadow ray is shot in a deterministic direc-
tion, Direct lighting can produce noise and requires a number of samples per pixel in order
to correctly render reflective and refractive surfaces, as well as area lights and environment
lights.

e Path tracing isusually considered the most basic form of unbiased ray tracing able to com-
pute global illumination. In path tracing all rays are simulated starting from the camera,
and solve the visibility problem by simply finding the closest intersection with a scene object
along the ray’s travel path. At each intersection with a surface, additional random secondary
rays are generated according to the material properties, and their contribution is added to-
gether. Due to the exponential explosion of secondary rays with an increasing number of
bounces, Monte Carlo methods are employed to sample a single secondary ray at each in-
tersection. Path tracing is a powerful and unbiased general purpose algorithm, although it
shows its performance weakness in scenarios where the majority of light is indirect, such as
indoor scenes.

» Photon mapping [34] consists of two separate passes. In the first pass, photons are shot
from the light sources into the scene, creating a cache of photons in the 3D space. In the
second pass, path tracing is used to explore the photon map and compute the illumination
values of the visible surfaces. Opaque surfaces are rendered in the Final Gather process, in
which illumination is collected from the second bounce to avoid obtaining a patchy look.
Caustics are rendered from an independent photon map that specifically targets refracted
light. Photon mapping is biased due to the finite number of photons generated. Stochas-
tic Progressive Photon Mapping [42] improves Photon Mapping by making the rendering
algorithm unbiased and reducing its memory usage.

e Bi-directional path tracingisan extension of path tracing. Rays are traced at the same
time from the camera and from the light sources, and each of the intersection points ob-
tained from the two directions are joined together by an additional ray, which may or may
not create a valid path. Importance sampling is used to combine and weight the contribu-
tions of each connecting path. Bi-directional path tracing is more effective than standard
path tracing when there is a large amount of indirect lighting thanks to its ability to obtain
valid paths even from hidden light sources. [45]

2.2 Ray tracing inefficiency

One of the most important motivations that have pushed past research efforts into develop-
ing more advanced and performant renderers is the general inefficiency of ray tracing algorithms.

Ray tracing has seen wide adoption thanks to both its simplicity in its ease of implementation
and usage ? and for it being extremely powerful in simulating realistic light effects [14].

2 A minimal ray-tracer can be written in less than 100 lines of code [27], or even fit on a business card [59]

14
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Ray tracing performs numerical integration on the light that each point in the scene is emitting
towards a given viewing direction. At each intersection point, the secondary rays generated will
depend on the properties of the surface. For example, a simple matte surface can shoot secondary
rays in completely random directions to sample a uniform space, and use the average amount
of gathered ray to calculate its diffuse color and intensity, while a perfect mirror generates
secondary rays in exactly one direction given the viewing direction.

P~

R =" >~
— ;

Figure 5: Caustics typically take a very long time to converge. Top image: physically
correct color dispersion requires an accurate model of the material properties and a
large number of samples to converge to the correct color. Bottom image: lighting
effects at the bottom of the pool require solving Diffuse-Specular-Diffuse paths that
are challenging for Path Tracing and Bi-Directional Path Tracing.

With GI, all light contributions are taken into consideration, not only those that come from
direct interaction with the light source. Effects such as indirect lighting and color bleeding are
possible.

An immediate consequence of GI is that rays needs to interact with every object in the scene
and not only with the light sources. It is generally not possible to make assumptions about
the position of the lights anymore. A simple but correct implementation of a diffuse surface
integrator in a GI context would be to shoot secondary rays in random directions, in order to
consider all contributions from any part of the scene.

Such an approach leads to difficulties in obtaining quick convergence towards the ground truth
of the scene, the main reason being the small probability, in the average case, that a randomly
generated ray from any surface in the scene will hit the light source. As computers do not have
infinite computational power, a large number of pixel samples will likely bounce among different
surfaces in the scene without hitting any light source and not contribute to the final pixel level
in an effective way.

The small probability of discovering light sources in a scene where rays are shot randomly leads
to pronounced noise in the rendered scene, and consequently to the necessity of using a large
number of samples in order to obtain a clear image. An especially undesirable category of noise
is typically referred as fireflies [10]. A firefly, such as the one in figure 6 is a type of noisy pixel

15
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Figure 6: Fireflies show themselves as very bright pixels and can be present even
after a large number of samples per pixel have been rendered. In this picture, the
overall noise level is very low, but the bright blue fireflies still persist.

that distinguishes itself for being sparsely distributed in the final image and for being extremely
bright, typically clipping at the limit of an RGB pixel. Fireflies are caused by unlikely ray paths
that have hit a hard to find light path with high contribution. At a low number of samples, they
are very clearly visible as most of the pixels will not have sampled the same kind of contribution,
and it would take a long time to average the sample out to its correct value.

2.3 Machine Learning

Machine Learning studies how to make computers learn in a way that is more similar to how
humans and animals do it. Cristébal Esteban [25] explains that until Machine Learning was
introduced, humans would teach computers how to perform certain tasks using programming
languages. Mathematical problems can be specified in software, so that computers could perform
the operations far faster than any human would be able to. The same way of teaching operations
and activities also works among people, when we teach each other how to do specific actions,
recognize patterns and so on. While descriptive languages based on ifs and rules are effective to
precisely describe many scenarios, they are not the only way we can learn. Certain abilities are
gained not through explicit teaching, but by gathering examples and experience over time. An
example would be the capability of recognizing subjects from images, an activity that humans
and other animals excel at doing, but that is very hard to describe in either words or programming
languages to someone else. Machine Learning introduced a new way of teaching knowledge
domains that are difficult to express using conventional languages, allowing computers to learn
patterns and tasks in a way that is far more natural for humans.

Supervised Learning is based on showing the machine examples together with the correct
label, allowing a model to extract features associated with labels to be able to classify unseen
examples during operation. Unsupervised Learning does not provide labels, and lets the machine
autonomously extract features from the examples. Reinforcement Learning trains the system
towards optimal decisions by using a rewards system.

16
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Machine Learning systems can solve different kinds of problems:

« Clustering - input data is grouped based on similarities and features learned autonomously
by unsupervised learning systems

* Classification - after supervised training, the model predicts the class to which a new exam-
ple belongs, for example to determine the species of an animal in a picture

* Regression - the system learns to compute new values based on some input data

2.3.1 Regression and Neural Networks

We focus on Regression problems in the context of the project.

The simplest kind of regression is Linear Regression [11]. Linear Regression attempts to find a
best-fit linear relationship between the input data and the expected output, in such as way as
to minimize the error between the predicted output and the training expected values. Linear
Regression therefore is based on the analysis of correlation between the input and output
distributions. While Linear Regression is a simple and effective model for many scenarios, it
is highly susceptible to outliers in the datasets, and to multicollinearity, which occurs when
multiple input predictors are correlated to each other, causing skew in the predictions. Linear
Regression is not able to model complex relationships or any kind of non-linear models.

Non Linear Regression can be used to fit more complex functions to the input and output data,
and can be useful to model some events.

Neural Networks have been an important focus of recent research. Neural Networks are inspired
by the way neurons are organized in the brain in order to be able to recognize patterns in
information and carry on computation. Typical neural networks are organized in layers. Each
layer contains neurons that take inputs from previous layers and send information forwards
to the next layer. Artificial neural networks use Forward propagation to obtain outputs, and
Backpropagation to learn from examples.

Gradient Based Learning Methods [47] compute the error gradient from the expected output
and the predicted one in a forward pass of the network, and backpropagates the derivatives
of the error to previous layers to update the weights and achieve a smaller error at each step.
Gradient Descent is the training process of progressively reducing the error rate in order to find a
minimum, and it is the way a neural network learns from its training data.

2.3.2 Multilayer Perceptron

The MultiLayer Perceptron (MLP) is a simple and very common type of Neural Network. Individual
neurons are organized in layers, and each layer is fully connected to the previous one: a neuron
can read the output of each neuron in the previous layer. Figure 7 shows the visualization of an
example MLP with a single hidden layer.

The network can be trained by changing the weight (and bias) assigned to each of the connections.
For example, the output of the first neuron in the hidden layer would be:
hi = act(wiy * iny1 + biy + wig * i1 + big + w1z * iniz + b1z + wig * N4 + b1g)

Where act is an activation function, w; is a weight value, in; is an input of a connection, b; is
a bias value. Activation functions, such as Sigmoid function or Tanh introduce non-linearity to
the neural network, as without them the network would only be a linear combination of its inputs.
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Figure 7: A Multilayer Perceptron has an input layer, an output layer, and one or
more hidden layers. Each layer is fully connected to the previous one.

2.3.3 Activation Functions

Identity (linear) RelLU

Sigmoid TanH

Figure 8: Plots of some activation functions
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Activation functions are placed at the output of each layer, and have the purpose of introducing
nonlinearity in the network behaviour. If a model has no activation functions, it acts as a
linear combination of the input layer data no matter how many layers and neurons are present.
Activation functions allow to model much more complex functions. Figure 8 shows plots of some
of the most commonly used activation functions.

The Identity (Linear) function is the same as using no activation function at all, as it doesn’t
introduce any non-linearity to the system.

ReLU (Rectified Linear Unit) has a linear output if the input is positive, and zero otherwise. This
is one of the most useful and popular activation functions, because it allows the network to
react to relevant information. Compared to many other functions, it also offers performance
advantages thanks to its simplicity.

Sigmoid is useful in classifier networks, as it boosts the relevance of values that are slightly larger
or smaller than zero, allowing to discriminate more precisely between categories. The entire
output space is positive.

TanH has a shape similar to the Sigmoid, but the output space is now ranging between -1 and +1.

There are no rules about what activation function should be used in any scenario, and experi-
mentation and intuition are needed to select the most appropriate ones.

2.3.4 Loss Functions

The network needs to be able to estimate the error between its prediction and the ground truth
in order to be able to determine the direction in which the gradients need to be pushed during
learning. The Loss Function has the role of defining what the sign and magnitude of the error is,
to allow backpropagation to update the parameters.

The Mean Squared Error (MSE), or L2 Loss, computes the sum of the squared errors between pre-
dicted z and expected y outputs. Intuitively, MSE computes an Euclidean distance between two
vectors in a classification problem.

n

1
MSE := - Z(yt — z)?

t=1

The L1 Loss computes the sum of the absolute differences. L1 is less susceptible to outliers in the
dataset, is simple to compute and understand, but it is not differentiable at the point 0.

1 n
L1:= n Z lye — 2|
t=1

The Huber Loss, or Smooth L1, uses a quadratic shape near zero values to make the L1 loss
smoother and differentiable.

2.3.5 Convolutional Neural Networks

Convolutional Neural Networks (CNN) gained huge importance with the success it achieved in
ImageNet classification [43].

The primitive component of a CNN is the convolution. The convolution is a mathematical filter
containing parameters that are multiplied with the input in a dot product. With the input having
more data points than the convolution does, the filter slides step by step to cover the entire input
space. The purpose of a convolution is to recognize and highlight particular shapes and patterns,
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Figure 9: A single convolution, with a filter size of 3x3. As the filter slides across the
input data, a 6x6 input is reduced to a 4x4.

Figure 10: A single convolution, with a filter size of 3x3. Padding of 1 is added to
each side of the input array. The output has the same dimension as the input, 6x6.
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as a matching shape between the input and the convolution creates a larger output. Additionally,
the convolution is space-independent when it slides across the input, and is able to recognize
the feature no matter where it is located.

A convolution has three important parameters: filter size, padding and stride. Figure 9 shows a
simple convolution step on 2D data arrays. The 3x3 convolution filter is applied to all possible
locations in the input, and generates a smaller 2D output array. Therefore applying this kind of
convolution would progressively reduce the dimensionality of the data, and not be suitable for
very deep configurations. A common way to keep the same dimension after the convolution is to
use padding: blank values are added to the sides of the input array to allow the filter to produce
larger outputs. Figure 10 shows the same convolution as before, but the padding make it possible
to obtain the same output dimension. The third important parameter is the stride step size. We
assumed until now a stride of 1: the convolution filter is applied to every possible location in
the input array without skipping any position. Increasing the stride makes the convolution skip
some of the positions, generating smaller outputs. Some CNNs use striding instead of pooling to
decrease the size of the data.

CNN s are inspired by the visual cortex, stimulated when exposed to particular shapes. A typical
network is structured in a stack of layers, each performing a convolution. The dimensionality
of the data can be reduced using pooling operations that summarize small patches with the
maximum or average value, and the final compressed values are processed by a fully connected
layer to output classification classes.

A study by [70] analyzes and explains how CNNs are capable of recognizing complex objects
when structured in a deep stack. After training, convolutions in the first layer are maximally
excited by simple geometric shapes, such as lines in various orientations and simple geometrical
elements. Going deeper into the network, where pooling operations have compressed the data,
the convolutions specialize into recognizing more and more complex items, progressively going
towards higher levels of knowledge, until they become specialized for specific classes, such as
certain animals or objects. The pooling and compression layers are essential to allow the network
to compress low level features into higher level ones.

CNNs have been the subject of many more projects. The GoogLeNet [62], based on Inception
modules and a total of 22 layers, introduces parallel processing to CNNs. Layers are not simply
stacked one on top of each other, but the data flow can fork and go through different convolu-
tions and pooling systems at the same time before being rejoined together and passed to the
next module. The Microsoft ResNet [32] uses an even deeper network of 152 layers, also with
non-linearity in the dataflow introduced by skip connections.

2.3.6 Autoencoders

An Autoencoder is a class of neural network that learns to output the original input data in
presence of noise or missing values. Models can be trained using Unsupervised Learning, as the
only data required for the loss function is the original input without added noise.

A Denoising Autoencoder by [68] is capable of reconstructing the original input given a noisy
and partially occluded image from the MNIST dataset [15].

2.3.7 Overfitting and Dropout

Overfitting occurs when a model performs well on training data, but significantly worse or
even randomly on unseen test data. This phenomenon can be caused by an excessive degree of
freedom in the machine learning model. A network can learn to adapt well to the fixed set of
examples it encountered during training, but perform badly on new data due to the excessive
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Figure 11: A visualization of overfitting. Top: a function is fit to data loosely, but is
able to predict good output given new, unseen inputs. Bottom: the same data points

are used to fit a much more precise function. However, it is not able to give good
results on new data.
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level of specialization. Figure 11 visualizes a machine learning model as a function of its input
data. The model overfits by accurately matching its training data points.

Overfitting can be easily detected by monitoring loss values and other quality metrics during
training on the test set, and can be caused by excessively long training, complex models with a
large number of trainable parameters, or limited amounts of data. One of the most effective ways
to combat overfitting is to increase the quality of the training dataset by adding more examples
and by artificially generating new combinations using data augmentation techniques such as
random crops, rotations, flips and distortions.

A simple and effective way to limit overfitting in classification neural networks is to use Dropout
[61]. Dropout layers randomly set a fraction of the activation values to zero during training (but
not during evaluation). The removal of information either on the inputs or in hidden layers
forces the network to build up resistance to missing information and redundancies in its pattern
recognition capabilities, reducing the probability of overfitting to a limited set of data. Although
the training process becomes slower due to the smaller amount of information available, Dropout
makes it generally possible to train for longer periods without overfitting.

2.4 Existing methods to increase ray tracing efficiency

Ray tracing is an image rendering technique that is typically very inefficient in terms of com-
putational power. It requires to shoot a large number of rays for each pixel to obtain global
illumination, and each ray will need to intersect every geometrical element present in the scene.

There have been many past efforts to increase the efficiency of ray tracing.

2.4.1 Optimizing sampling

A most naive implementation of Monte Carlo Path Tracing would take random bounces from
surfaces and towards light sources. The model is simple and unbiased, but extremely inefficient
due to the fact that most light sources are highly concentrated in small parts of the scene, which
translates in very high variance in the sampled intensities.

Let’s consider a simple material: a perfect mirror, which allows an incoming light ray to be
reflected in exactly one outgoing direction. If a path tracing algorithm always produces random
bounces from an intersection point, the probability of an outgoing ray to have the same direction
as the mirror’s reflection is infinitesimally small, and while the algorithm is still theoretically
unbiased, it’s extremely inefficient. A better approach is to generate the new reflected rays
according to the surface properties; in this case to be always perfect reflections. A similar
scenario happens when sampling light sources: when the primary source of light is a sky dome
with a clear sun, the majority of the luminous contribution is created by the small sun disk. The
rest of the sky is also a light source, and although it has a huge area it produces far less flux than
the sun. Randomly sampling the entire dome would work, but weighting the samples towards
the sun would be far more efficient.

From these examples follows the intuition that weighting the proposed sampling distribution
to match that of the BRDF or that of the incoming light energy can drastically improve the
speed of raytracers. Both BRDF and incoming radiance in fact appear in the Rendering Equation
(Section 2.1.6), and the optimal proposal distribution is that of the product distribution of BRDF
and incoming radiance. We formalize the concepts of estimate variance and importance sampling.

In a noisy image, the high variance of the samples makes it necessary to obtain a larger number

of samples to clear out the noise, but it is time consuming and computationally inefficient due
to the quadratic increase in the number of samples required for a visible improvement in noise

23



2 Background One Shot Radiance Giulio Jiang

reduction.

In a Monte Carlo estimate

1 N
In(f) =5 D_ f(:)
=1
The variance is

var(I(f) = var(f(z:)

The variance of the estimate is inversely proportional to the number of samples taken, and the
final image converges slowly towards the ground truth.

Past research has focused on Importance Sampling to optimize the variance of the drawn
samples.

Importance Sampling provides an unbiased estimate of an unknown function I(f) by using a
proposal probability distribution p(z)

N
1 f(xi)
I(f) = —=
The variance of the Importance Sampling estimate is minimized when the variance of % is low.
Therefore it is optimal to choose the proposal distribution p to be similar to that of f .

Importance Sampling requires drawing random samples from a probability distribution. When a
probability mass function is known, it is necessary to compute a cumulative distribution function
and invert it to obtain the samples.

While the probability distribution of the incoming radiance is generally not known during
rendering, other distributions might be. In a ray tracer, it is safe to assume that the BRDFs of the
surfaces are well defined, and that the intensity distribution of environment maps is also known.
These two distributions can be used together using Multiple Importance Sampling methods,
originally proposed by Veach and Guibas [65] [66], which alternate and weight the sampling from
multiple distributions. Bidirectional Importance Sampling [28] samples directly the product
distribution using Rejection Sampling or Sampling Importance Resampling to obtain the optimal
proposal distribution.

2.4.2 Image level noise reduction

Operating on the final rendered image is the simplest way of reducing noise. As some ray
tracing algorithms generate a kind of noise which resembles the noise captured by digital camera
sensors, general purpose noise reduction algorithms can have a good level of effectiveness.

However, this is not a real solution to the amount of noise produced by ray tracers, and it will
also not work very well in the rendering of animations.

2.4.3 Clamping

Clamping is an effective way of reducing fireflies. The value of a pixel contribution is limited to a
maximum amount to avoid cases where extremely bright outliers create excessively bright pixels
that take a long number of samples to average out. Clamping can be defined in absolute terms,
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or as a ratio of rejected-to-accepted samples.

In most cases clamping will create a visible difference in the final image when rendered to
an infinite number of samples, and it will therefore make any ray tracing technique biased.
Clamping the brightness of rays makes the overall image darker than the ground truth. The
energy removed by light rays by applying clamping is permanently lost and it is not added back
to the scene, making ray tracing engines that use clamping physically inaccurate.

Clamping is widely deployed as an option to reduce fireflies in popular ray tracing engines [22]
[18].

2.4.4 Portals

Portals [13] are abstract objects that indicate surfaces through which all external light should
pass. In interior scenes with bright external lighting, such as direct sunlight, path tracing and
even bi-directional path tracing can struggle to reach small openings, such as windows, from
which most of the light comes. Portals are useful to guide light rays into the scene.

Using carefully placed portals can dramatically increase rendering performance of interior
scenes, but require manual input and can be hard to optimize in case of many small openings.

2.4.5 Russian Roulette

A practical Monte Carlo Path Tracing algorithm cannot trace paths for an infinite number of
bounces for obvious efficiency reasons: the contribution of paths after a large number of bounces
can rapidly fall to become almost insignificant, while being very expensive to compute. A simple
solution is to cut off the maximum number of bounces to a predefined depth level, and return no
light contribution if the maximum depth is reached.

Limiting the maximum recursion depth introduces bias to the algorithm, as long paths that have
been cut off can still contribute to the brightness of the scene. The Russian Roulette [64] solves
this problem by randomly terminating paths with a fixed probability 1—p, and increasing the con-
tribution of non-terminated paths by 1/p. This method is mathematically proven to be unbiased.

The Russian Roulette increases the variance of the estimator, but it is useful to increase the
efficiency of the Path Tracer by reducing the amount of computation required per sample, as
many rays will be terminated early. The majority of visible light only requires approximately
three bounces in a typical scene, and increasing the variance of longer paths that contribute less
to the scene is a good tradeoff.

2.4.6 Metropolis Light Transport

Metropolis Light Transport [67] is a sampling technique that typically performs much better than
random sampling in scenes with strong indirect illumination. Instead of attempting to obtain a
uniform sampling over the global sampling space of all paths, Metropolis sampling is based on
mutations of existing paths. A starting path is necessary, and each subsequent path depends on
the previous one. As the number of paths generated goes to infinity, the covered sampling space
is unbiased.

The advantages that Metropolis Light Transport brings are clear if we consider that the initial
path found using standard Bi-directional path tracing is a valid connection between the camera
and a light source. Mutating an existing, possibly difficult to find path, can produce other difficult
paths, allowing the ray tracer to solve efficiently difficult lighting situations. The use of a single

25



2 Background One Shot Radiance Giulio Jiang

initial path makes it necessary to use different copies of the algorithm rendering the same image
in order to reduce variance on the image level. Additional characteristics of Metropolis Light
Transport are also the patchy areas visible on low quality renders caused by the local search
mechanisms, and the flickering of the frames of rendered animations containing variance on the
image level, compared to the pixel-level flickering of animations rendered with Path Tracing.

2.5 Related Work with Machine Learning

Along with progressive algorithmic refinements on ray tracing techniques, and the introduction
of new methods that allow faster convergence or lower variance, recent research has made several
attempts at applying Machine Learning to computer graphics.

These studies and proposals have operated on different levels, such as post-processing of the
output image, generation of ray sampling directions, or direct derivation of illumination values,
and have demonstrated various degrees of success and applicability.

2.5.1 A Machine Learning Approach for Filtering Monte Carlo Noise

A Machine Learning Approach for Filtering Monte Carlo Noise [36] is an early successful attempt
in using machine learning to augment the quality of the output of a Monte Carlo ray tracer by
removing the noise produced by a Path tracer.

The authors used a neural network to generate optimal feature-based filter parameters to denoise
the output of a MC path tracer. Previous work had already shown that denoising filters that
used additional feature could easily outperform those that only relied on pixel RGB values. The
approach used a ray tracer to generate primary features. Primary features are data values that
can be computed during a standard rendering pass for each pixel: world coordinates, surface
normals, texture values, illumination visibility. When generating primary features for an image
generated with several samples per pixel, the feature values are averaged for each pixel. The
illumination visibility, a binary value, is encoded into the fraction of samples in which shadow
rays were not occluded.

Secondary features are computed from the primary features, and include metrics such as gradi-
ents, mean deviation, and mean absolute deviation. A total of 36 secondary features is computed
for each pixel.

The neural network is a Multi Layer Perceptron which takes on the input layer the secondary
features and outputs filter parameters.

The approach is able to produce high quality results, and shows its ability to outperform all
other existing denoising algorithms. The inclusion of texture and illumination visibility data in
the input layer shows its usefulness in preserving fine detail that would otherwise be lost in the
denoising process, and the network is able to work quite well when extrapolating outside of its
training limits, such as when presented with glossy materials.

The system also shows good performance, averaging a few seconds to denoise a single image at
1200x800, and around one minute for a spatio-temporal filtering of an animation frame.

While this method proves to be successful in many situations, it requires the use of a modified ray
tracer based on PBRTv2 [53] and is not easily applicable to other rendering engines. Furthermore
it does not solve underlying weaknesses of path tracing, such as solving difficult paths involving
multiple transmission layers required for interior lighting through windows and caustics.
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2.5.2 Filtering Monte Carlo Noise in Ray Traced Images

A Monte Carlo denoiser that is not closely tied to a specific rendering engine, and that performs
direct image to image translation, was proposed by [49]. Deep neural networks are trained to
remove noise from a render. The project has obtained good success, often managing to effectively
eliminate all visible noise from the picture and demonstrating itself to be much more effective
than general-purpose noise removal tools for photography.

In order to preserve fine detail, the system takes as inputs the rendered image, and an OpenGL
material rendering which is used to improve the quality of sharp edges and textured surfaces.

Being a noise removal tool, the neural network cannot re-create information that is not present
in the partially rendered image, and can occasionally generate artifacts in difficult situations.

This method is a post-processing noise removal filter specifically trained for Monte Carlo ray
traced images. It shows the usefulness of allowing a neural network to learn some domain
specific information, in this case how to remove the typical noise produced by Monte Carlo
ray tracers. However, it shows significant limitations in the quality of the output compared to
the same scene rendered with a high number of samples, and it has difficulties in adapting to
noise produced by different rendering engines. Metropolis Light Transport (Section 2.4.6) and
Photon Mapping (Section 2.1.8), for example, produce noise patterns that are very different from
those produced by a Path Tracer, and would require a different training set to achieve good results.

While this approach shows some limitations in complex scenes, its extreme simplicity and
adaptability are important strengths. It does not require the modification of any rendering
engine to produce additional primary features, and it works with any ray tracer that is capable of
producing a material preview or direct illumination pass.

2.5.3 Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings

The work by [26] further improves denoising neural networks. Deep Convolutional Neural
Networks (CNN) are used to denoise ray traced images in their output space.

Diffuse and specular components of the low quality render are separated and processed by two
separate deep CNNs. This approach allows to achieve high quality results because it separates
components that present very different levels of dynamic range and noise characteristics. The
filtered components are recomposed into a color image in a post processing step. An additional
step useful to increase the stability of the network in presence of high dynamic range is a log
transform applied to the specular component. The authors have found out that applying a log
transform to the input of other methods can improve quality as well.

Training of the network used images rendered at low quality (16, 32, 128 Samples/px) in
supervised learning. This method currently yields state-of-the-art noise reduction quality in
production renders at a low to medium number of samples.

Similarly to the machine learning method described in Section 2.5.2, this method is highly
optimized for a specific kind of renderer, and makes assumptions about the input quality level of
the image. It is harder to apply in general with arbitrary rendering applications, and it heavily
depends on the quality of the training set. Some kinds of fine details in the scene can be easily
mistaken for noise and removed, and specific effects such as volumetric smoke cannot be dealt
with properly if the training set doesn’t have enough examples containing this kind of elements.

The CNN vyields state of the art denoising results, but it shares some of the weaknesses of
the previous denoising methods: it requires the use of a modified rendering engine, it is not
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universaly applicable, and it does not solve some fundamental limitations of ray tracers.

2.5.4 Interactive reconstruction of Monte Carlo image sequences using a recurrent de-
noising autoencoder

A different approach to applying machine learning post-processing to rendered images is to
reconstruct details that are missing, rather than removing noise from the picture. In an anima-
tion, successive frames retain much of the information from their neighbours, and computation
can be highly optimized by learning temporal features from different frames and reconstructing
missing details.

A Path Tracing render with a single sample per pixel often results in an image which is black
for the majority of pixels, except for those that were generated by a path connecting to a light
source. While the image may look much darker than the reference, the average brightness is
unbiased because most of the individual pixels are much brighter than the maximum dynamic
range of the output.

The method by [29] proposes the application of denoising autoencoders to process Monte Carlo
images rendered with a single pass.

The autoencoder network is trained to reconstruct the full input data given a more compact
intermediate representation. The noisy image, in the encoder stage, is converted to an internal
representation in the network, and the decoder stage up-samples the representation to obtain
an output image which is as close as possible to the reference. An autoencoder network should
also be stable: if fed as input the result of its own processing, the new output should not present
many differences. Each stage uses recurrent connections to retain information from previous
frames.

This reconstruction method yields highly believable images with global illumination despite
the small amount of information that the network can work with. Combined with a fast path
tracer, a noise free image can be obtained in interactive times, in the order of a few hundreds
of milliseconds. While this system does not always yield highly accurate results, either due to
the lack of training examples or of fine details in the low quality render, it does offer a realistic,
noise-free preview with global illumination, and proves the capability of networks to solve
difficult cases in which data is scarce.

2.5.5 Deep Scattering

The work by [37] is a rare example of Machine Learning applied to a level different from that of
the output image. Neural networks are used to estimate Radiance values in volumes with high
scattering values. Dense volumes, such as clouds and fog, are very slow to simulate with standard
Monte Carlo Path Tracing because each light ray bounces many times within the volume with
unpredictable directions before exiting and reaching a light source. Monte Carlo integration is
used to integrate both on the sphere of ray directions, and on the length of the light path. Effects
such as dark patches and silverlining in clouds are highly desired for a realistic image, but they
are hard to produce with approximating solutions.

The Deep Scattering approach encodes the 3D structure of the cloud in a hierarchical point stencil
model able to capture both the fine details near the central point, and the overall shape of the
cloud on a large scale. The hierarchical model is oriented towards the direction of the sunlight
source, and a neural network is trained with several examples of clouds to predict radiance values.

The system is able to render realistic clouds that are virtually indistinguishable from the
ground truth rendered with Path Tracing, while being several orders of magnitude faster.
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The project shows how effective a domain-specific application of machine learning can be in
computer graphics, although the system has considerable difficulties in dealing with any kind
of volume that doesn’t resemble a cloud, such as unusual shapes, smoke, or high density volumes.

2.5.6 Reinforcement learning importance sampling

An interesting modification of a general-purpose Path Tracer by Dahm and Keller [30] shows that
reinforcement learning and the rendering equation are closely related, and that it’s possible to
significantly improve path tracing performance by learning and storing importance information
on the scene surfaces. Reinforcement Learning is a Machine Learning technique which attempts
to achieve optimal results by assigning rewards for good solutions, and penalties for bad ones,
allowing the system to progress towards an optimal answer.

Hemispherical importance maps are stored on voronoi cells on each scene surface. Each im-
portance map is progressively updated using Reinforcement Learning, and is used to obtain ray
tracing paths that are more efficient and more likely to carry important light contribution. The
aim of the learning process is to guide rays towards areas with higher radiance emission.

At each light-surface intersection, the importance map associated with the surface point is
used to generate the next sample. The importance values can be used to guide the sampling
of secondary rays: higher importance directions are sampled more frequently, and the energy
transported is reduced proportionally to the probability of sampling the direction.

This approach shows very good performance in the general case, because the Reinforcement
Learning system adapts quickly to new data, and the use of importance maps to guide light
rays is effective. The importance maps are used for every bounce along a light path, therefore
the system can adapt well to difficult scenes where indirect light is only reachable after several
bounces. Compared to Metropolis Light Transport, the Reinforcement Learning approach shows
more uniform noise patterns, because each pixel is sampled independently. The average path
length and number of zero-contribution paths are drastically reduced compared to Path Tracing
as light rays are guided towards places that emit more light and are more unlikely to go to dark
spots that generate little contribution.

Reinforcement Learning Light Transport has demonstrated to be a capable ray tracer in difficult
situations, but it presents challenges and possible areas of improvement. Storage of surface
patches for the importance maps needs to scale with the size of the scene or the resolution of
the patches. The number of hemispheres has additional implications on the learning rate of the
system, because each hemisphere needs to be updated independently. Due to the necessity to
apply updates to the hemispheres, it is a challenge to reduce memory usage by merging similar
patches, as it is not easy to predict whether two patches have similar behaviour with respect to
the light they receive. Reinforcement Learning requires a period of learning at the beginning of
the rendering, and can have an impact on images rendered at a very low number of samples per
pixel and before the importance maps have converged to to be optimal.

2.5.7 Deep Shading

Some recent projects have focused specifically on the integration of Global Illumination and
other effects using neural networks. Deep Shading [52] uses primary geometrical features ob-
tained from an OpenGL rasterization pass and a Deep Convolutional Neural Network to generate
a variety of screen-space effects, including Ambient Occlusion, Motion Blur, Anti-Aliasing and
Diffuse Indirect Illumination. The target effects do not try to be physically correct, but are
comparable to the output of some real-time algorithms commonly employed in video games.
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The main attributes used are: positions, normals, depth, depth from focal plane, material diffuse
and glossy coefficients, scattering coefficients, and pre-computed direct light.

The network is a U-shaped CNN. The downscaling and upscaling branches are symmetric and
work with power of 2 sizes.

The approach is capable of generating convincing screen-space effects at interactive rates.
The OpenGL attribute generation is fast and easily implemented in a standard rendering pass,
and the forward pass of the network was also re-implemented as a shader to eliminate the
communication overhead between the rendering engine and the process managing the neural
network. The use of a U-shaped network structure allows to efficiently process per-pixel data,
and to gracefully scale to higher resolution inputs.

The outputs can match in quality and speed some of the state-of-the art real-time algorithms
typically used in video games, such as HBAO ambient occlusion and FXAA anti-aliasing. An
interesting capability of Deep Shading is the possibility to train a single network that combines
several screen-space effects, effectively reducing the evaluation time for any given number of
effects to a constant.

2.5.8 Deep Illumination

Deep Illumination [63] takes a different approach in the estimation of screen-space global
illumination effects. The project focuses the efforts on computing high-performance indirect
illumination from diffuse surfaces, aiming at interactive frame rates.

The approach is different from Deep Shading as the network is not trained on general features,
but is specialized on a per-scene basis. The method effectively stores radiance transfer functions
of diffuse indirect bounces in a neural network.

Conditional Generative Adversarial Networks (CGAN) [51] are used to obtain global illumination
effects given surface normals, distances, diffuse constants and direct illumination. While a
standard Generative Adversarial Network (GAN) aims at generating new content from random
noise, a CGAN produces outputs based on input characteristics. The generator network is based
on 2D convolutions and attempts to generate global illumination images, and the discriminator
network learns to distinguish real global illumination images from those that were obtained
form the generator. The two networks play a Minimax game until it is not possible to distinguish
the generator’s output from the ground truth. Reference ground truth examples are obtained
from Path tracers and other methods capable of Global Illumination effects. Additionally to
the discriminator’s output, an additional L1 loss function is used to ensure that the generator
produces images coherent with the given input data.

This method is capable of producing high quality Global Illumination effects even when new
shapes and objects are introduced in the scene, and is temporally stable for use in animations
and video games.

While the method is fast and temporally stable, we believe that the support of only diffuse
materials and the necessity of training the network for each scene as a preprocessing step are
limiting factors. Deep Illumination targets GI effects in a very restricted environment with a
single scene and very few moving objects, and fails to model Ambient Occlusion correctly.
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3 Motivation

Ray tracing is inefficient, but there is a large amount of unused information in the scene that
could be useful to accelerate rendering convergence. Existing applications of machine learning
in computer graphics mostly work on the final image level to either remove some sampling noise
or add some post-processing effects including Global Illumination.

Current approaches to add GI effects on the image level have limitations: Deep Shading adds
simple real-time effects such as Ambient Occlusion and cannot process highly complex lighting
configurations due to the limited amount of information generated by the OpenGL rendering
engine, and Deep Illumination requires per-scene training, only supports diffuse materials, and
cannot produce Ambient Occlusion.

We believed many of these limitations could be overcome by pushing the use of Machine Learning
to a level deeper than that of the final rendered image. A lower level of information can make an
approach easier to generalize, and the use of data that is more closely related to the underlying
geometrical structure of the scene can help achieve more accurate results under complex lighting
conditions.

We propose One Shot Radiance (OSR) to accelerate the rendering process by making use of infor-
mation contained in the 3D scene description to efficiently calculate indirect light contributions.

3.1 Objectives

In this project we combine ray-traced radiance information with geometrical data such as surface
positions and normals to directly predict indirect illumination for global illumination renders.
The method is suitable for scenes with a large amount of indirect lighting, and aims to efficiently
produce a low-noise indirect illumination layer that can be combined with a direct illumination
pass for a complete image.

We train a deep neural network capable of estimating partial indirect illumination from a few
light samples and geometrical information, and create a proof of concept rendering engine that
produces global illumination by combining the predicted indirect illumination with a direct
illumination pass.

We focus on the following objectives for OSR:

e Obtain smooth and noise-free indirect illumination estimation.

» Achieve good performance on the indirect illumination pass.

Achieve low bias on typical indoor scenes with high indirect illumination.
« Support a wide range of standard non-scattering materials.

« Remove the necessity of pre-processing and per-scene training.
These objectives require to:

» Train a deep neural network that predicts indirect illumination on a given scene point start-
ing from some illumination samples and the local scene geometry.

» Use the predictions of the neural network to obtain an indirect-illumination only pass of
the final image.

« Integrate OSR in an existing ray tracer to obtain a full global illumination rendering engine.
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4 Method

We illustrate the intuition and method of One Shot Radiance, and a high level overview of its
implementation. Section 4.1 presents some general intuitions, Section 4.2 shows how OSR
evaluates the Rendering Equation, Section 4.3 illustrates the interpolation and refinement
strategy, Section 4.5 describes the neural network model.

4.1 Scene knowledge

An average 3D scene can contain millions of triangles, and provides a very large amount of
information that a typical ray tracing algorithm only partially exploits. Randomly bouncing
secondary rays around the scene, while being correct and simple to implement, is not a very
efficient way to obtain an image.

Some of the rays, like the one in figure 12, can go in areas that don’t generate any contribution.
These rays can be completely avoided.

Figure 12: In path tracing some paths will lead to areas that do not generate any
contribution. The highlighted camera ray bounces on a diffuse surface, and the sec-
ondary ray only hits black surfaces.

Others can be very unlikely, but generate highly visible effects, such as caustics. These rays are
required to be sampled in order to obtain a correct image, even if the probability of obtaining
them randomly is extremely low.

Others can be important, but similar to many other rays, such as all secondary rays that hit a
large uniformly-illuminated matte surface. The number of these rays can be reduced without
affecting the quality of the final picture.

These simple examples indicate that the 3D scene contains surface and light information that
can be used to improve the efficiency of rendering.
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The idea in OSR is to use geometric scene information local to an intersection point, together
with a few path-traced samples, to obtain a small radiance map centered around the intersection
containing indirect illumination. This radiance map contains all illumination that is received at
the surface from the upper hemisphere by light which bounced on another surface. Evaluating
the radiance map with respect to the BRDF of the intersection surface point material yields in
the final image the total indirect lighting of the pixel. A small number of samples is evaluated
with Multiple Importance Sampling [65]: a few sampling directions are chosen according to the
BRDF probability density distribution of the surface, and a corresponding set is chosen from the
radiance map. Each sample uses the light information of the selected radiance map pixel and
returns the final radiance value according to the BRDF of the surface and the viewing direction.
The radiance map is mapped at infinity distance around the intersection point, and visibility
tests are skipped as the radiance map contains visibility information. The radiance map does not
contain any direct illumination, such as rays hitting light sources or environment maps directly,
therefore first order bounces and shadow rays are excluded from the final image.

A standard path tracer eventually fully evaluates each hemispherical radiance map at every
intersection point in order to converge, and OSR accelerates the process of evaluating the total
contribution of higher depth bounces using a neural network.

The first bounce direct lighting component is still evaluated using a normal path tracing algo-
rithm, but it is not a significant source of complexity or noise due to its limited path depth (as
all higher depth paths are handled by the neural network), and can be optimized using existing
importance sampling and visibility testing methods.

4.2 OSR Rendering

OSR splits rendering of direct illumination and indirect illumination. The indirect illumination
component is evaluated using cached radiance maps, obtained efficiently using a deep neural
network that reads local geometrical information of the scene.

A standard Path tracer evaluates the Rendering Equation [35] recursively

LO(ZE7 (150) = Le(l', (Eo) + fr(l‘, Wo, Qi)COS(Qi)Li(,T, d}'i)dwi
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Figure 13 shows that a ray in Path tracing bounces on surfaces in the scene until a light is hit, or
the path is terminated. The recursively evaluated radiance, the BRDF f of the material and the
viewing direction «J; are used to obtain the final pixel value. OSR approximates the evaluation
of the Rendering Equation by collapsing all the light bounces beyond the first in a single step.
The ray tracer shoots a ray to find the first intersection point, and evaluates on its hemisphere a
One-Shot Radiance map, a Depth map, and a Normals map. These three images are the inputs
of our Convolutional Autoencoder, which returns a higher quality Radiance map. The output
Radiance map is placed back on the hemisphere around the first intersection point, and contains
an approximation of all the recursive indirect radiance that path tracing would evaluate over
time. The Rendering Equation therefore becomes
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> frlw,@o, @i)cos(0;) Le(l, &)V (2, 1)

l€lights

We replaced the recursive radiance term with R, the high quality radiance map obtained from
the neural network, and evaluate it in the same way according to the BRDF f of the surface and
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Path Tracing

OSR first bounce

1-shot path
distance
normals

Neural network

......

first surface
intersection high quallty
radiance map

Figure 13: Path tracing evaluated multiple bounces until a light source is hit or the
path is terminated by the maximum depth or the russian roulette. OSR only uses
the first intersection to sample low quality intensity, distance and normals and uses
a neural network to estimate a radiance map of all the indirect light received at the

point. The radiance map is evaluated to compute indirect lighting, and direct light
paths are added.
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the viewing direction ;.

Evaluating the entire Radiance map R would still be expensive. Our implementation uses
Multiple Importance Sampling [65] with a small fixed number of samples to obtain indirect
illumination values. We alternate sampling from R as if it were an Environment map with perfect
visibility, and from the probability distribution of the BRDF.

To include direct illumination, the first intersection point also generates shadow rays to light
sources (not shown in the figure). It is important to exclude direct light information from the
Radiance maps, as they don’t have a resolution high enough to produce accurate shadows.

4.3 Progressive refinement and interpolation

The interpolation method of OSR does not use any precomputation to determine the best
sampling locations, but is based on a regular grid on the image film. At each vertex a radiance
map is evaluated, and interpolation is used within the grid. After each complete pass on the
image, the grid size is reduced by a constant factor, allowing the algorithm to progressively refine
the resolution of the indirect illumination.

The interpolation strategy is based on both the distance from the sampled radiance maps and the
orientation of the surface normal. The weight of each radiance map for pixel i is:

W= Wp Wy +Wp + €
Where the position weight w,, is:
wp = dist(pi,p)/r

dist(p;,p) measures the distance in pixels on the film plane between the pixel being evaluated
and the cached radiance map, and r is the distance between two vertices in the grid.

The normals weight w,, is maximal when the pixel’s intersection point and the cached radiance
map’s normals point in the same direction, and becomes zero when their dot product is negative:

wy, =1 — max (0, ( hio o

)

nil - |n|

The weights w of the radiance maps are normalized and converted into sampling probabilities
for the radiance sampling.

This interpolation method here presented can still cause light bleeding and softness when sur-
faces are at different distances from the camera and have the same orientation. We introduce a
third component to complete the 3D dependencies of the interpolation algorithm, the distance
from the camera:

wg = max(0,1 — lzi =2

)

z

Where z is the distance of the intersection point from the camera’s origin, and z; is the distance
of a cached sample from the camera’s origin. We integrate w, in the overall weighting system as:

W= Wp " Wy + Wp - Wq +Wp + €
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4.4 Algorithms

Algorithm 1 Evaluating indirect illumination for a pixel

1: procedure Pixellndirect(Pixel)

2: Ray < Camera.Ray(Pixel) > Generate ray from main camera
3: Intersection <— Scene.intersect(Ray) > Obtain first intersection point
4 IntCamera + newHemisphericCamera(Intersection) > Create a hemispheric camera at
intersection point

5: Intensity < IntCamera.render Path(1) > 1 Sample/px Path
6: Normals < IntCamera.render Normals()
7: Distance < IntCamera.render Distance()
8: Predicted < Network.predict(Intensity, Normals, Distance) > Run neural network
9: L + newSample

10: N0

11: for all P € Predicted do

12: L < L+ Intersection. BRDF'(P.direction, P.value)

13: N+—N+1

return L/ N

Algorithm 2 Evaluating indirect pass

1: procedure RenderIndirect(Scene, Camera)

2 Radius < Initial Radius

3 loop

4 Tasks < Scene.split(Radius * TaskSize)
5: for all T € Tasks do

6 Tiles < T.split(Radius)

7 for all Pizel € Tiles do

8 L + Pixellndirect(Pixel)

9 Camera.addIndirectSample(L)

10: Radius <+ Radius x RadiusUpdate Ratio

We provide high level algorithms of the OSR rendering process.
Algorithm 1 describes the evaluation of a pixel value using the radiance map.

Algorithm 2 describes the progressive refinement updates. The subdivision of the image space
into tasks allows to limit the amount of memory and computation that is taken by OSR at
each step, allowing the algorithm to gracefully scale and be able to operate on large scenes and
high resolution. The parameters InitialRadius and RadiusUpdateRatio define the starting
influence range of an OSR sample, and the ratio by which the radius is updated after a full pass
is completed on the image. With a RadiusUpdateRatio less than 1, the radius slowly converges
towards 1, and the algorithm progressively reduces the size of each tile and refines the resolution
of the output.

4.5 Neural Network
The Neural Network is one of the core components of the OSR project. The objective of the net-

work is to predict a smooth and accurate radiance map from primary features that can be com-
puted quickly by a raytracer.
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Figure 14: Examples of latitude-longitude hemispherical maps generated by OSR.
This sample was generated from one intersection in the scene bathroom, part of the
PBRTv3 example scenes [20]. Image (a) is a path traced intensity map at 1 sam-
ple/pixel. Image (b) is a normals map. Image (c) is the distance map. Image (d) is
the same intensity map, traced at 4096 samples/pixel, used as reference ground truth
during training.
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4.5.1 Input and Output Data

The output data of the network is a radiance map that will be used for the subsequent rendering
stages.

The output is a 32x32 pixel color image with individual Red, Green and Blue channels. Each data
value is a 32 bit floating point, and there are a total of 3072 floating point values for one output
image.

The inputs are three 32x32 pixel maps.

The one-shot intensity map is produced by a path tracer using 1 sample per pixel. The normals
encode the surface normals at the first intersection. The distance map is the distance between
the main camera and the intersection point. There is a total of 7 layers.

Each of the hemispherical maps in both inputs and outputs is a square 32x32 pixel hemispherical
latitude-longitude equirectangular projection [7]. The coverage of a hemispherical map is not
the full sphere, but only the upper hemisphere visible from a scene intersection point, with the
surface normal aligned towards the Z direction of the latitude-longitude map. The up vector used
in the hemispherical maps is the same as the one specified in the global scene, and it is rotated
by 90 degrees towards the global Y vector only when the surface normal also points towards
positive Z.

Figure 15: Left: Original latitude-longitude image. Right: The same image, with in-
tensity correction on latitude. The corrected image presents slightly darker intensity
near the top and the bottom. Being a hemispherical map instead of a full environ-
ment map, the correction is not very strong because the top and bottom edges have
a latitude of 7/4 instead of 7 /2 in a full environment map.

None of the images processed by the neural network account for the latitudinal intensity ad-
justment required to ensure that the cumulative intensity is correct [9]. In an equirectangular
projection the areas are not preserved, and it is necessary to adjust the intensity maps to ensure
that sampling from a lat-long mapping preserves the original intensity values. The areas near the
poles are stretched out horizontally and have a larger area than originally, requiring a multiplica-
tion by sin(©) of the intensity before computing any integral over it. This correction is handled
by the rendering software at a later stage:
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1(6,®) = P(O©, ®)sin(O)

The choice of using a latitude-longitude format for the mappings derives from the simplicity
of converting between cartesian and polar coordinates, and because PBRT already implements
an Environment Camera that uses an equirectangular projection. In the OSR project the
Environment Camera has been modified into the Hemispheric Camera to provide only a single
hemisphere field of view. Although the lat-long format was easy to implement, it is not the
most compact representation, and presents a significant amount of surface distortion at the poles.

4.5.2 Data Normalization

I Relative Normalize I Multiply I Relative Normalize
I Log N Exp I Log
]
B ]
=== Loss
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Normalize [-1,1]

Figure 16: Detailed normalization and transformation steps for input and output
data

With the exception of the normals data that always encodes normalized vectors, the hemispher-
ical maps have an unknown magnitude.

Intensity values in the RGB channels can have several orders of magnitude in a single scene, and
differ even more across different scenes. It would be extremely ineffective to feed the neural
network with raw intensity data from a path tracer, as the magnitude of the values is unknown
and the network would be unable to place them on a relative scale. Training using raw data can
yield disappointing results due to the inability of most loss functions to work on un-normalized
data.

In the OSR training process, several input normalization methods have been attempted:

* Standard normalization - The mean of each example is centered around 0, and each value
is divided by the standard deviation. This is a common normalization strategy proposed by
LeCun [47].

* Per-scene normalization - Each example is scaled according to a probabilistical maximum
computed per training scene, and not for each example. The values are provided by the PBRT
engine and are available for both training set and during typical usage.

e Asymmetric normalization - The input of the neural network is normalized on a per-frame
basis, but the output of the network is compared to the ground truth normalized with a
different scheme.

Both intensity and distance maps are converted from their unknown original magnitude to
a relative magnitude by dividing each value by the mean of the map. Intensity values need
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to be handled in a non-linear way. Light intensity is perceived to increase only as the actual
intensity value increases exponentially. Human vision is sensitive to luminance rather than
energy in photons [55]. A logarithmic transform follows to reduce the high dynamic range peaks.
Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings (Section 2.5.3)
showed that log transforms can significantly improve network performance. Interestingly, even
existing models show significant improvement when used with logarithmic intensity data.

The Batch normalization [33] method is applied in the network to handle internal covariate shift
and eliminate the necessity of dropout.

4.5.3 Loss Function

We considered several loss functions for our neural network, including the Relative Mean Squared
Error (ReIMSE) [58] [36] and a Relative L1 (RelL1).

2
n Pig — Ci,
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n is the number of samples per pixel, p; , are the predicted pixels, and ¢; , are the ground truth
pixels.
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Both of these loss functions attempt to handle high dynamic range inputs gracefully. In our final
model we use the much simpler L1 loss, which outperformed the other functions and works well
with our normalized dataset.

4.5.4 Training Examples

Figure 17: Some scenes part in the training set (cropped to fit)

A set of 43 scenes have been selected from the PBRTvV3 example scenes (http://pbrt.org/
scenes-v3.html), Benedikt Bitterli’s resources (https://benedikt-bitterli.me/resources/),
and our own custom created scenes. As OSR focuses on rendering indirect illumination, the
selection of the training scenes has been weighted to include mostly interior scenes with difficult
illumination, and scenes with strong global illumination.

Each scene has been processed to generate a set of hemispherical maps. Similarly to the approach
taken by Kalantari [36], we change sampling algorithms and seeds to prevent the network from
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overfitting to specific noise patterns rather than higher level features: we use multiple samplers,
including Sobol and Random, to produce varied noise patterns.

Over 16000 individual training examples has been collected.

4.5.5 Model

Our network architecture is shown in Figure 18 and is similar to the U-Net architecture [57], a
convolutional autoencoder with skip connections and regular dimensionality progression. The
encoder and decoder have symmetrical structure: each encoder stage uses two 3x3 convolutions
and doubles the dimensional depth, while each decoder stage has two 3x3 deconvolutions and
reduces the depth by half.

Figure 18: Network layout

All intermediate stages use batch normalization and LeakyReLU activation functions. The out-
put stage has two 3x3 deconvolutions with LeakyReLU, and a final 1x1 convolution with ReLU
activation to output the final data. Each downsampling stage uses a 2x2 Max Pooling, and the
upsampling stages use 2x2 Bilinear Upsampling. We do not use any Dropout layer.
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5 Implementation

We present the implementation details of OSR: the attempted Neural Network models in Section
5.1, the PBRT extension in Section 5.3.

5.1 Neural Network Training Attempts

We experimented different Neural Network models during the development of the project. We
present here our attempts and observations.

1: Per scene normalization

e Linear
LeakyRelLU

e BatchNorm

7168

896 1228
::||||+ 2 :I‘}

Figure 19: Network layout for Models 1, 2, 3

The initial model for the neural network is a deep, fully connected Multilayer Perceptron (MLP).

The network has 5 downscaling layers, and 2 upscaling layers, and processes a flattened array of
the inputs. The 7168 input values are downscaled progressively to 307 values before being scaled
up to the output image size of 3072.

Each of the layers uses a LeakyReLU activation function [50], which is similar to a Linear Rectifier,
although it doesn’t zero negative values but multiplies them by a small constant, chosen to be
0.2 in our case.

Our first approach uses per-scene normalization. For each scene, we estimate a single nor-
malization value for each of our high dynamic range attributes: the single-pass path traced
intensity map, and the distance map. Due to computational requirements, the estimation of
the normalization values is performed only once per scene, and using a limited number of
samples. We describe in detail our normalization estimation approach in Section 5.3.1. The
normalization values are used with the logarithmic and square root transforms to obtain nor-
malized maps for intensity and distances, which are used on the input layer of the neural network.
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Figure 20: Plots of the pixel intensity distributions from the example scene
Breakfast from PBRT. (a) Intensity values distribution of the raw intensity hemi-
spherical maps pixels. Most of the pixels reside in a very small region of the total
dynamic range. (b) Moving to a logarithmic scale, linearized with respect to the per-
ceived brightness, improves the spread of the distribution significantly, although
significant skew is still present. (c) Applying the Gamma correction significantly
improves the distribution characteristic.
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Figure 21: Model 1: Per scene normalization, batch normalization and RPROP opti-
mizer

After applying the logarithmic transform, a histogram visualization of the data still shows that
most of the data points fall within the lower end of the spectrum, with very few points on the
higher side. Even when working with transformed data that presents linear perceived intensity
response, the typical distribution of lighting in a scene is not well distributed. There are few
points in most hemispherical maps being brightly illuminated.

We approach the issue by applying a further layer of transformation: a Gamma correction.
Gamma correction is an important function, widely applied in image processing, displays and
camera response calibration systems to handle the non-linear intensity response typical of many
CRT, TFT and Plasma display technologies [48]. The Gamma function f(z, gamma) = z'/9%mme
applied to a dataset normalized to [0, 1] produces a positive lift which is stronger in the darker
regions. The lift boosts the output response of smaller values, and fits well the distribution of
intensities of a typical hemispherical map used by OSR.

Figure 20 shows that the combination of a log transform and a gamma correction can significantly
move the distribution of pixel intensities, allowing the network to achieve more stable learning.

To further take into account the high dynamic range of the inputs, we use Batch Normalization
[33] in the first 5 layers of the network.

We set up the training loop to use the RPROP optimizer [56], which computes gradients based on
the sign of the loss and discards the magnitude, with a learning rate of 0.0001. The loss function
is the L1.

Figure 21 shows the loss during the first few thousands of iterations in training of this model.
The model is highly unstable, presents very high loss values, and has low learning speed. A visual
analysis of the test examples after 100 epochs of training shows very little relationship between
the ground truth and the predicted images, except for a generic colored halo.

2: Per scene normalization, tweaking parameters

In an attempt to check whether we were working with an excessive learning rate, causing large
instability in the loss values across different iterations, the second model uses the same network
layout, based on the Multilayer Perceptron, but adjusts the learning rate to a more conservative
0.00005.

Figure 22 shows a comparison between this model and the previous one. The lower learning
rate achieves better results during the first iterations, although the visual analysis of the longer
training process at 100 epochs still reveals that the network is unable to return any usable result.
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Figure 22: Orange: Model 1. Blue: Model 2: Per scene normalization, batch normal-
ization and RPROP optimizer, lower learning rate.

There could be several reasons because the first two models were not successful. The network
might not have enough learning power due to its relatively shallow depth and high compression
ratio in the hidden layers, and the per-scene normalization system might not be appropriate for
the input data. The estimated normalization values can be inaccurate due to the way they are
sampled, and can cause in some cases large amounts of data to be clipped out of range.

3: Per Frame Mean and Standard Deviation Normalization
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Figure 23: Model 3: Per frame normalization

In the third model we keep the same neural network layout based on fully-connected layers and
batch normalization, and change the way we normalize the input data.

The input low quality intensity map is normalized by subtracting the mean and dividing by
the standard deviation. This method, proposed by LeCun [47], is a popular general-purpose
normalization mechanism.

To obtain meaningful comparison data from the ground truth images, we normalize the high-
quality path traced intensity maps in the same way, and using the mean and standard deviation
computed on the corresponding input intensity.

The distance maps are normalized in the same way as before, using a per-scene distance normal-
ization value on the root of the distances, followed by a gamma correction curve.

Figure 23 shows the training loss of the third model during the first few iterations. Large spikes
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in the loss are clearly visible in the plot, and the network stops learning after a very small number
of iterations.

In the longer training session the network fails to learn additional information, and the visual
inspection shows mostly random images at the network’s output, losing the blurred colored
halos that models 1 and 2 had.

After we attempted training this model, we realized that the normalization mechanism was
flawed. While it is viable to apply LeCun normalization on the input data, it was not a good idea
to use the same mean and standard deviation to normalize the ground truth. In a path traced
image, the average brightness of a pixel is unbiased: averaging pixel samples in a noisy render
yields approximately the same average intensity compared to a higher-quality one. However, the
standard deviation highly depends on the amount of noise that is present. An image generated
by a path tracer at 1 sample per pixel in the presence of large amounts of indirect illumination
usually contains a few very bright pixels over a dark background. Therefore the standard devia-
tion would be typically very high compared to its high quality counterpart. Using the standard
deviation from the input intensity map to normalize the ground truth causes the comparison
image to heavily depend on the quality of the input. This is undesired behaviour, and causes the
network to behave erratically.

4: Improved Per Frame Normalization
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Figure 24: Network layout for Model 4
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To verify the conclusion of Model 3, Model 4 applies independent normalization to the input
intensity map and the ground truth intensity map. The idea is that these two intensity maps,
although one the refined version of the other, do not need to be normalized in the same way. The
neural network can be allowed to learn how to translate one normalized format into another. It
is more important to use a robust normalization system that works independently of the target
scene and its data values distribution. As long as it is possible to uniquely obtain a post-processed
intensity map given the output of the neural network, any normalization methodology should
work.
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Figure 25: Model 4: independent per frame normalization

In this model we compute for each intensity map its average intensity value, although we expect
them to be similar as path tracing yields unbiased results. Using the mean intensity, an intensity
map’s values are divided by 2 - mean to obtain an average intensity of 0.5. Afterwards, a log
transform is applied to linearize the illumination response.

The distance maps are now also handled on a per-frame basis, using a similar normalization
scheme. The mean distance is used to scale the average value to 0.5, and a square root transform
follows.

The model is similar to the previous one. There are 6 downscaling layers, including the input
layer, and 2 upscaling layers, including the output layer. Each layer uses a LeakyReLU activation
function with a factor of 0.2, and there are is no batch normalization.

Training is based on the Adam optimizer [40]. Adam is a stochastic optimization algorithm that
maintains a dynamic, per-parameter learning rate capable of adapting to changes in gradient
magnitudes over time. These properties make Adam a good choice for large parameter sets in the
presence of noisy data.

Learning rate is set at 0.00005 and the loss function is L1.
Figure 25 shows the loss during the first few iterations of training. It is clear that compared to
the previous models, Model 4 shows much higher learning stability, with all scenes contributing

to the convergence of the network.

After 100 epochs of training, the test examples show the ability of the network to predict many
cases with good accuracy, with several cases that are excessively blurry and a few outliers.

5: Improved Per Scene Normalization
In this model we use a deeper network structure with a lower compression ratio. There is a much
higher number of learnable parameters, and we use the Adam optimizer with a learning rate of

0.0001. The loss function is L1.

The network uses 8 fully-connected compression layers with a LeakyReLU activation function,
and 3 fully-connected upscaling layers.

The training examples have been normalized using the estimated per-scene normalization
values, using log transform for intensities and square root transform for distances, followed by

range compression and gamma correction.

Figure 27 shows the training loss over a long training session. The network is able to achieve
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Figure 26: Network layout for Models 5 and 6
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Figure 27: Model 5: New model with per-scene normalization
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good progress over time. The test examples show good quality across the majority of scenes,
with a few problematic outliers presenting highly noisy output or severe color shift.

6: Asymmetric Normalization
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Figure 28: Model 6: Asymmetric transforms model training
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Figure 29: Detailed normalization and transformation steps for input and output
data

In all previous attempts, the input intensity data and the ground truth maps were treated
using the same normalization methods and transformations, although potentially with different
parameters such as in Model 4.

In the asymmetric normalization model, we handle the two kinds of data in different ways,
allowing the neural network to learn the non-linear relationship between the two. In Figure 29
two streams of data can be distinguished: on the left are the input intensity, distance and normal
maps generated by the renderer, and on the right is the single ground truth intensity map part of
the training suite.
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The downstream transformation applies to the left side. The input data is normalized and
transformed before it is used by the neural network.

The downstream transform for the low-quality intensity map uses a log transform, followed by
a normalization pass that compresses the entire range to fit between 0 and 1, and a gamma
correction. During the process, the mean value of the intensity is recorded.

The downstream transform for the distance map uses a similar strategy: a square root transform
is used, followed by a range normalization and a gamma correction curve. The mean value is not
recorded as it is not needed.

On the right side, at the output of the network, the prediction is compared with a processed
version of the ground truth. The ground truth intensity map is divided by its own mean to convert
the values from an absolute brightness scale to a relative one, and transformed twice using a log
transform to reduce its dynamic range and boost the importance of the darker values, similarly
to what is achieved with the gamma correction.

Due to the asymmetry in the transforms used on the two sides, a third pipeline is necessary for
the upstream component on the right side. The upstream pipeline serves during normal usage to
obtain the output image at its full dynamic range and scale from the output of the network. Each
stage of the right downstream transform is reversed: two exponentiation transforms are used,
followed by a multiplication by the mean intensity of the input intensity map that was recorded
on the left downstream branch. The final pass restores the original absolute intensity scale and
assumes that the input intensity is unbiased.

The network design is similar to Model 5: 8 and 3 fully connected layers with Leaky ReLU
activation functions on downscaling and upscaling sections respectively. The optimizer is Adam,
with a learning rate of 0.0001. The loss function is L1.

Figure 28 shows the training loss of the model during the first 11k iterations. The network has
a smooth learning curve, and although presents higher loss values compared to Model 5 due
to the different output data representation, it demonstrated better learning capability. The
visual inspection of most scenes reveals good predictions, with occasional over blurriness but no
heavily problematic examples in which the result was clearly wrong.

7: Refining the model

Model 7 is built on top of Model 6 by refining the data normalization procedure and by changing
some of the activation functions.

The normalization scheme of Model 6 produced images with relative-scale intensities centered
around an average value of 1. To move the average closer to 0 and make the distribution better
focused within the unit range, we use a target mean value of 0.1.

The model has been updated by changing some of the Leaky ReLU activation functions with
TanH functions.

While we previously used 10% of the training examples for testing, starting from Model 7 we
used over 800 additional testing examples from 2 scenes that are not part of the training.

Figure 31 shows the loss on the training examples, and 32 the loss on the additional test examples
extracted from the 2 new scenes.

The network progressively learns on both curves, although it’s clearly noticeable that the loss

values on the test examples are significantly higher, and that the curve remains mostly stationary
while the loss on the training examples continues to fall. Even though the network is not yet
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Figure 30: Network layout for Model 7
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Figure 31: Training Loss in Model 7
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Figure 32: Test Loss in Model 7
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overfitting, it is struggling to learn attributes that can be generalized to totally new scenes,
although it can perform well on scenes that have been seen.

A visual analysis of the test examples reveals very blurry network output and strong color bias,
with many features being completely missed.

8: Camera Space Normals
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Figure 33: Network layout for Model 8
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Figure 34: Training Loss in Model 8

To reduce the likelihood of the network to overfit to training scenes, we changed the normals
map representation from world space to camera space (see Section 5.3.2), and introduce dropout
in some layers.

Model 8 introduces the Exponential Linear Unit (ELU) [41] activation function. The shape is
similar to a LeakyReLU, and it presents a smooth curve and a mean output value closer to 0.
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Figure 35: Test Loss in Model 8

A dropout layer with a factor of 0.2 has been applied to each hidden layer.

Figures 34 and 35 show the training and testing loss of Model 8 respectively. The introduction of
the dropout layers reduces performance significantly, while it can arguably keep the loss of the
test examples closer to the expected value.

The outputs however are still disappointing and would not be appropriate for use on a generic
scene.

Model 8 is our last model based on fully connected layers.

9: Convolutional Autoencoder

Encoder

Figure 36: Network layout for Model 9

Model 9 moves away from fully connected layers towards convolutional autoencoders.

A Convolutional Neural Network [46] has the ability to process structured 2D data by learning
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Figure 37: Training Loss in Model 9
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Figure 38: Test Loss in Model 9

optimal convolution functions in order to extract features from the inputs. Stacking layers of
convolutions and non-linear activation functions is a powerful solution to process images with
arbitrary functions.

This model is based on the convolutional autoencoder layout used in Interactive reconstruction
of Monte Carlo image sequences using a recurrent denoising autoencoder [29]. The 32x32 input
layers are compressed down to an 8x8 representation by the encoder, and the decoder upsamples
the data in a symmetrical way to the output format. The activation functions used after each
convolutional layer are Exponential Linear Units (ELU) [41], and there is a single dropout layer in
the encoder with a factor of 0.1 to reduce the possibilities of overfitting.

The input consists of 7 layers: intensity RGB, normals XYZ, and distance. The output only has
the 3 channels for intensity.

Figures 37 and 38 show that Model 9 has good learning progress, with both training and test loss
values changing at the same rate.

A visual analysis of the predicted examples from the unseen test scenes shows much better
results compared to the fully connected models, although a significant amount of blurriness
remains in many cases.

10: Convolutional Autoencoder with Skip Connections

Further following the model presented in Interactive reconstruction of Monte Carlo image sequences
using a recurrent denoising autoencoder [29], Model 10 extends the previous with small changes
and the introduction of skip connections between some of the layers. The reasoning behind
the use of the skip connections is to allow the network to reconstruct a smooth output from its

54



Giulio Jiang One Shot Radiance 5 Implementation

Decoder
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internal representation while still retaining the finer details obtained from the corresponding
encoder layer.

The 5x5 convolutions and deconvolutions present in Model 9 have been updated to use smaller
3x3 convolutions, more adequate for our application where the size of the input images is small.

In Figures 40 and 41 Model 10 shows similar learning progress compared to Model 9, with slightly
lower overall loss values thanks to the ability of the network to better retain finer details.

The output of the network shows good results across all training and test examples.
11: Modified U-Net

The final model is similar to the U-Net [57], a convolutional autoencoder with skip connections
and regular dimensionality progression. We discuss in more detail the structure of this model in
Section 4.5.5, and its results in Section 6.1.

5.2 Model training

We implemented the neural network model and training process in Python using Pytorch
(http://pytorch.org/). All machine learning processing has been conducted on a single
machine with an Intel i7 4770 processor, 16GB of memory, and an Nvidia GTX 1060 6GB card for
GPU acceleration.

We chose a base layer size of K=64, and a minimum hidden layer dimension of 4x4. These
parameters result in 3 downsizing steps and 3 corresponding upsampling steps.

We used the Adam optimizer included in PyTorch, with a learning rate of 6e — 5. We achieved good
network performance after 20 minutes of training with mini-batches containing 32 examples
each. Our training covers 3 epochs over the augmented dataset: more than half a million
individual examples.

We implemented data augmentation in our Pytorch data loader to include all combinations of
rotation and flipping.

5.3 PBRT Extension

The OSR method and algorithm has been implemented by modifying PBRTv3, a C++ ray tracer
implementing many popular algorithms, such as Path, Bi-directional path and Photon Mapping,
written with a strong educational purpose.

In this section we discuss the implementation details of the PBRT-OSR extension. Starting
from PBRTv3, we implement a new integrator which evaluates direct and indirect illumination
separately, and communicates to the neural network to obtain the radiance map predictions.

5.3.1 Normalization Estimation

The Normalization Estimation process computes the normalization range values used by the
neural network in the Per-scene normalization mechanism (Section 4.5.2). Although the nor-
malization estimation mechanism is not used in the final version of PBRT-OSR, we discuss here
its original implementation.
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The Normalization Estimation pass is executed as a preprocessing step on the entire scene, and
aims at obtaining a measure of the typical dynamic range present. Both intensity and distance
values are obtained.

It would not be possible to compute a highly accurate normalization value in a reasonable
amount of time. Being a preprocessing step that does not generate any additional useful samples
or data, it needs to be cheap compared to the rest of the computation. Therefore OSR uses a
limited number of samples, set by default to 10000, to obtain an estimate of the dynamic range
of the scene.

For each of the samples, a random path is shot into the scene from the main camera, and the
maximum intensity and distance obtained are recorded. The intensity value is computed using
path tracing, following random bounces until the Russian Roulette (Section 2.4.5) terminates the
path or no intersection is found. The distance is the world distance between the first found inter-
section and the camera’s position, or -1 in case no intersection is found. The final normalization
values are

log(maxIntensity)

and

sqrt(maz Distance)

5.3.2 Normal Map Rendering

Both during normal rendering and reference generation (Section 5.3.3) a normal map is required.
The auxiliary camera’s first intersection for each ray is used to determine a sample of the surface
normal.

When the camera ray does not find any intersection, the null normal value of (0, 0,0) is recorded
in the normal map.

Figure 42: An example of normals rotation. a) World space normal map. b) Camera
space normal map

When an intersection is found, the surface normal is recorded after it has been transformed into
camera coordinates. The transformation is aimed at reducing the possibility of overfitting the
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network to specific scene geometry, as many interior scenes have regular and flat surfaces across
large surfaces all oriented in the same world direction. Using a camera-relative normal increases
the variation of the data, and helps the network to learn properties that are better represented
in a local form, similarly to the way surface position points are recorded as distances from the
auxiliary camera.

Figure 42 shows an example of a normal map before and after the rotation into camera coordi-
nates.

5.3.3 Reference Generation

PBRT-OSR can operate in two different modes: Reference and Rendering.

While the Rendering mode can be used by the final user to render a scene, the Reference mode
computes training examples given a scene.

Each training example consists of one-shot, distance, normals and high quality radiance maps.
The Reference mode automatically generates a large number of examples suitable for both
training and validation purposes.

To enable Reference mode, the user can provide the PBRT executable the flag --referece=X
where X is the number of tiles per side to be used. The number of tiles determines the way the
primary image film is subdivided into a regular grid. Each intersection in the grid is used to shoot
a single camera ray into the scene, and the intersection found becomes the viewpoint of one set
of examples.

The process loops for all tiles generated, and for each computes the four maps part of each
training exampls.

The high quality path tracing render’s number of samples can be specified from the command
line by the user.

5.3.4 OSR Rendering

In the rendering process we use two independent steps to compute indirect illumination and
direct illumination.

The direct illumination pass is handled using a standard Direct Lighting integrator implemented
in the original PBRT software.

The indirect illumination uses the Path integrator to collect the neural network’s input maps. The
machine learning evaluation runs in a separate Python process running Pytorch. Each rendering
thread has its own child process, and communication is handled through standard Unix pipes.
Each Python evaluation process loads the saved model parameters, and reads flattened input
data from stdin. The predicted output is written back to stdout.

During the rendering process the PBRT C++ process manages the full data transformation pipeline
shown in Figure 29. The upstream tranformation component uses a slightly different strategy as it
does not multiply its final intensity by the expected mean computed from the one-shot intensity
map. To ensure that output map and input intensity have the same overall luminous intensity,
the output of the network is multiplied by the target mean brightness and divided by its own
brightness. This strategy eliminates any brightness bias caused by imprecision in the predictions.

58



Giulio Jiang One Shot Radiance 6 Evaluation

6 Evaluation

In this section we evaluate the results of the project from both a quality and a performance point
of view. We first evaluate the Neural Network in isolation in Section 6.1, perform an Ablation
Study in Section 6.2, evaluate the rendering output quality in Section 6.3, the interpolation
strategy in Section 6.4.

6.1 Neural Network Evaluation
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Figure 43: Training and Test L1 Loss in Model 11

Figure 43 shows training and test loss values during training. Our model achieves good learning
progress over a 20 minutes learning period, without overfitting to the training dataset.

The network was trained on a collection of 3D scenes, and the evaluation is conducted on three
selected scenes that were never part of the training dataset.

The scene White Room Daytime is part of the original PBRTv3 example scenes [20]. It is an interior
illuminated by three large windows. This scene is a good representation of a typical architectural
visualization, with a good balance between directly illuminated surfaces and global illumination
contribution, and a good level of overall detail. A direct lighting only pass leaves large regions
black where they face directions that have no light sources, and produces an innatural contrast.

The second scene, Veach Ajar by Veach and adapted by B. Bitterli [19], is well known for its
extreme rendering difficulty. The only light source is located behind the almost closed door,
and most of the visible light is indirect. Path tracing and even bi-directional path tracing have
significant difficulty at obtaining a noise-free result, which makes it hard for us to obtain a
ground truth with an acceptable level of quality. While this is clearly an edge case scenario in
global illumination, we show how our neural network performs under worst-case conditions.

The last scene, Mbed1, was custom created for the purpose of this evaluation, and uses simpler,
more geometrical models. There is a single light source that illuminates the room from the
left side, and some strong color contrasts. This scene is not particularly difficult for traditional
algorithms, and is a good evaluation to show any undesired overhead in OSR when dealing with
simpler cases.
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The difference in path tracing sampling difficulty across the test scenes allows us to verify that
our network is able to deal with different input data quality seamlessly, and that it is able to
extrapolate and adapt to geometry not encountered during training.

As with the training set generation, we obtain input maps and ground truth path traced radiance
maps for several viewpoints located at primary surface intersection points. While the PBRT-OSR
implementation re-normalizes the output images to match the expected intensity level of the
entire radiance map, in our tests we compare directly using the final intensities obtained after
the upstream processing to provide an unbiased view of the network performance.

Figure 44 shows a random selection of radiance maps predicted using our neural network
model. The first three columns show the inputs of the network, and the result is compared to a
simple gaussian blur and a reference path traced ground truth rendered at 1024 samples per pixel.

The gaussian blur uses a 1 standard deviation filter width, chosen for its good compromise
between smoothing power and blurriness. A smaller radius would not be able to remove much
noise, while a larger radius would yield considerably blurrier results compared to either ground
truth or network predicted output. Due to the very sparse samples generated by the path tracer,
a simple gaussian blur is a significant improvement over the 1spp (one-shot) intensity map.
Sampling the BRDF of glossy surfaces using the blurred version would yield considerably lower
noise due to the higher probability of hitting a non-black pixel on the hemisphere and due to the
lower overall variance in intensity.

The examples show that the network predicted output can consistently outperform the gaussian
blur by producing sharper images, preserving more detail, and removing more noise. We can
observe that:

» The predicted result is generally sharper than the gaussian blur. This confirms the fact that
we would not be able to use a larger radius for the gaussian blur for difficult cases without
losing even more details.

« The network is able to reconstruct some details that are missing from the one-shot intensity
map, although it can cause artifacts.

» The network has effectively learned to use adaptive blurring filters. In simple cases it be-
haves very similarly to a planar gaussian blur, but in the general case it is able to adapt to
different sampling densities more effectively.

» The network eliminates all visible noise, and can produce images that look smoother and
with less noise even when compared to the high quality path traced reference images. This
shows the ability of the network to extrapolate from the training dataset, which still contains
a small amount of noise in its ground truth examples.

To verify our claims, we run metrics on a large number of radiance evaluation points collected
from the testing scenes, totalling over 1000 distinct testing examples that were not seen during
training.

For each example set of images, we compute the L1 absolute difference from the ground truth,
shown in Figure 45 and the Structural Similarity metric [69], show in Figure 46.

The Gaussian blur does considerably increase the quality of the radiance maps compared to using
raw 1spp renders. The structural similarity increases, as the blur fills many of the black gaps
present in the path traced map.

The network output considerably outperforms the Gaussian blur in both L1 and structural
similarity metrics. We confirm that for both metrics the samples of Gaussian and predicted
belong to different distributions. We compute Kruskal-Wallis null hypothesis testing [44] p
values between the Gaussian and predicted metric values for L1 and Structural Similarity to
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Figure 44: A random selection from the test scenes Veach Ajar, Custom Mbed, White
Room Daytime. All examples show excellent noise removal, occasionally generating
less noise than the reference ground truth. In a) there is some color inaccuracy, with
the predicted image’s purple being less saturated than the ground truth. b) and c),
part of Veach Ajar, are very difficult due to the very sparse sampling of the input
intensity map. They show excellent noise removal, producing less noise than the
ground truth, although c) shows some shape distortions. d) and f) are less sharp than
the ground truth, but still considerably more usable than the gaussian blur versions.
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verify that they belong to different populations, and obtain values less than 0.00001.

6.2 Neural Network Ablation Testing
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Figure 47

The ablation test aims at verifying some hypothesis about the data that the neural network uses
to produce accurate predictions. Training is conducted using the entire dataset of intensity,
normals and distance maps, and repeated with the normals, distance, or both components
removed from the network’s inputs. The structure of the network is left unchanged, and the
ablation is implemented by setting the target components to be zero arrays.
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The evaluation mode is conducted in a similar way, by setting the ablated channels to zero arrays.

The expected result from this experiment is that the network performs better the more informa-
tion it has, and that the addition of normals and distance maps is valuable for the quality of the
predictions.

Figure 47 shows loss values during training and testing using the four different configurations.

Removing both normals and distance information and using only the one-shot intensity map
as the input to the neural network yields the worst results. This is expected as the low quality
path traced image contains very little information. While the network can still achieve better
results than a gaussian blur by adapting to different levels of input sampling density, it remains
an image-level blur filter.

Adding distance information significantly improves performance during training, although the
testing set’s loss values remain very similar to the configuration using only low quality intensity
maps.

Using only normals in addition to the low quality intensity map achieves significantly better
results in the test set. We observe that the addition of normals brings more useful information
to the network than the addition of distances. Normals encode three-dimensional slopes, and
can be useful to detect sharp edges and the direction in which surfaces are facing.

Interestingly, while the addition of distance maps alone did not help the test considerably, using
all three input maps brings a significant boost in performance compared to having normals
only. We conclude that the combination of normals and distances gives a more complete
representation of the 3D structure of the scene.

The Structural Similarity Index test on the entire test suite in Figure 48 confirms that the addition
of normal or distance maps help the network predicting more accurate results, with the normals
being slightly more effective than distances alone. The combination of both additional layers
further increases accuracy, and in particular improves the lower quartile significantly.
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6.3 Final rendering evaluation

The evaluation of the final rendered images is based on both qualitative and quantitative metrics.
We render each of our test scenes at different levels of quality, and present observations, statistics

and comparisons with other methods and rendering algorithms.
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Figure 49: Quality and noise metrics on White Room Daytime. Above: OSR, Below:
Path tracing. Render time: total rendering time in seconds. Entropy: indication of
the amount of noise, measured as the final image size after PNG compression. PSNR:

Peak Signal to Noise Ratio.

We first analyze images of the scene White Room Daytime. We use OSR and Path tracer integrators
at increasing levels of quality in order to pick reasonable sampling levels for both algorithms for
the comparison.

Figure 49 shows OSR and Path tracer plots of the scene rendered at different levels of quality. The
Path tracer uses power of two sampling rates, from 1 to 1024 samples per pixel. A reference image
is also generated using Path tracing at 2048 samples per pixel. OSR is not based on a per-pixel
quality setting, but on two distinct settings: the number of samples per pixels for the direct
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Figure 50: Comparison between Direct (top-left), OSR (top-right), Path 32 (bottom-
left) and Path 2048 (bottom-right)
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Figure 51: The HDR-VPD-2 shows that perceived difference concentrates near the
window areas, and is low in the rest of the scene.

illumination integrator, and the number of tasks to be processed in the indirect illumination
pass. We set the number of direct illumination samples to a fixed amount, enough to produce an
almost noise-free first-bounce component. We then process the scene at different indirect tasks
number, from 0 (no indirect component at all) up to 512.

The plots record:
» Rendering time in seconds

» Entropy in Kb. This is a measure of the amount of noise present in the rendering, and is
reported as the size of the output after tonemapping the visible range and compressing the
image in PNG format

 Peak Signal to Noise Ratio [17], a measure of the similarity between the image and a refer-
ence one

The plots for the Path tracer deliver the expected results: similarity with respect to the reference
increases every time the number of samples is doubled, and the amount of noise decreases at a
steady rate.

The metrics for the OSR output are, however, very different. The similarity to the reference
increases slowly until 16 tasks, after which it remains almost stationary. The similarity metric
saturates at this level due to the fact that OSR is not an unbiased algorithm even if it is capable
of infinite progressive refinements. Some differences in the image cannot be cleared with longer
rendering time, and any artifacts need to be judged subjectively.

The amount of noise decreases very slightly after each increase in number of tasks, although it
starts at a significantly lower level than Path tracing. The OSR indirect passes do not produce
much visible noise, with the small amount present being generated mainly by the direct illumi-
nation component.

As quality does not increase significantly in OSR after a certain number of tasks, we select the
16 tasks rendering to perform subjective comparisons. This image took 75 seconds using OSR,
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and we compare it with the Path traced render with the closest rendering time (73 seconds at
328/px), and the reference rendered at 2048S/px (4445 seconds).

Figure 50 shows a comparison between Direct Illumination only, OSR and Path tracing. The OSR
output looks much less noisy than the equal time path tracing. Lighting on the spherical lamp
looks smooth despite a small amount of light bleeding from the windows area. The light bleeding
is more severe in OSR near the windows, where the radiance maps were not sampled closely
enough to achieve the contrast of the reference. Global illumination details in darker areas look
very convincing and close to the reference.

We show the perceived difference index computed by HDR-VPD-2 [38] in Figure 51. We see
that most of the difference is near the window and central lamp, which are the regions with the
highest amount of light bleeding caused by the sampling and interpolation of radiance maps.
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Figure 52: Quality and noise metrics on Mbedl. Above: OSR, Below: Path tracing.
Render time: total rendering time in seconds. Entropy: indication of the amount of
noise, measured as the final image size after PNG compression. PSNR: Peak Signal
to Noise Ratio.

The scene Mbed1 is significantly simpler than White Room. The amount of global illumination
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Figure 53: Comparison between Direct (top-left), OSR (top-right), Path 32 (bottom-
left) and Path 2048 (bottom-right)
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Figure 54: HDR-VPD-2 metric on Mbed1. The perceived difference is low and uni-
form across the image.

is small, although still very visible, and light paths towards the large area light source on the
left side of the scene are mostly easy. There are a few corners and occluded areas that require
the addition of indirect illumination, and we evaluate the effectiveness of OSR in the scenario in
which Monte Carlo algorithms already perform well.

Figure 52 shows that the quality of the final output quickly saturates as the number of tasks
increases. The level of noise is also stable and mostly produced by the direct illumination pass
rendered at 64 samples per pixel.

The Path tracer, however, takes much longer to reach a similar level of similarity, and achieves a
lower amount of noise only after 1024 samples per pixel.

For the comparison we choose the OSR rendering at 8 tasks, as increasing the number of indirect
passes brings almost no visible change. OSR completed the rendering in 138 seconds, which
includes the direct illumination pass. We select the similar-time path traced version at 64
samples per pixel, completed in 167 seconds. Figure 53 shows the detailed comparison, including
direct illumination only and 2048 samples per pixel path traced reference.

Despite the simplicity of the scene, 64 Path tracing samples leave a considerable amount of noise,
while OSR produces smooth and accurate indirect illumination effects in the dark corners. The
magnifications show that OSR is capable of solving global illuminated details without producing
visible artifacts in this scene, and that the overall appearance is very close to the reference. A
comparison with the direct illumination only pass confirms that the residual noise present in the
OSR image is not caused by the indirect illumination pass.

Figure 54 shows the HDR-VPD-2 perceived difference metric on Mbed1. The difference is uniform
across the image and is generally low.
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6.4 Interpolation

(b)

©

Figure 55: Comparison between simple distance based interpolation (a), interpo-
lation based on both distance and surface normals (b), and using distance, surface
normals and 3D position (c). Using surface normals improves smoothness across
surfaces, and removes large artifacts and light bleeding on the edges of the cubes.

Figure 55 shows two images rendered at a limited number of samples. The Simple interpolation
strategy only linearly interpolates using pixel distances on the image plane. Light bleeding
and hard artifacts are clearly visible on the objects. The simple strategy is not able to take into
account surfaces facing different directions, and spreads light values across the image film.

We resolve some major artifacts by including surface normals in the weighting system (Section
4.3). Some artifacts remain near the edges due to the very low number of samples, while the
overall image looks smooth. Where two edges meet each other and sampling is sparse, artifacts
are clearly visible.

The introduction of the third weighting element, the distances from the main camera, further
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improve interpolation quality in the corners by creating a smoother transition while maintaining
sharp contrast.

6.5 Use Cases and Benefits

The typical use scenario is rendering an interior 3D scene where indirect light is significant.
Most interior scenes have very little direct lighting, with most of the paths bouncing on several
surfaces before reaching a light source. Windows and light sources are small, making path
tracing inefficient. From our evaluation we can conclude that OSR is capable of significantly
outperforming Path tracing in a typical interior scene by producing high quality output in a
smaller time frame. The images have convincing GI effects despite some bias being present.
The slowly changing indirect illumination easily masks away minor artifacts and interpolation
imprecisions, while most of the details are preserved by the direct illumination pass.

OSR is appropriate for all use cases that do not require physically accurate rendering algorithms,
and only need to produce high performance and high quality GI that looks convincing and
realistic. Thanks to its particular quality over time curve, OSR is capable of yielding highly
acceptable results after a very short amount of time, making it suitable for high performance
global illumination previews for complex lighting scenarios.
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7 Blender Plugin

We have developed a Blender plugin that allows to export arbitrary scenes to be rendered with
PBRT-OSR. The users can easily download and install the add-on and start using the OSR
renderer through a familiar and easy to use graphical interface.

We show our Blender exporter in Sections 7.1 and 7.2, and its implementation in Section 7.3. We
then show our GUI application in Section 7.4 and its implementation in Section 7.5.

7.1 blendPBRTvV3

Blender [2] is a well known advanced 3D modelling and rendering tool, widely used by the
community. It offers standard mesh editing, sculpting, rigging, animation and much more, and is
one of the industry-standard packages for 3D graphics, with almost universal compatibility with
external renderers and tools. Blender is an open source project, and has evolved over time into
a complex package that offers an incredible number of features to obtain all kinds of graphical
effects.

The best way to make our software easily accessible for the final user is to create an exporter
compatible with a well known 3D software package. Blender is a natural choice as it is open
source, and provides a powerful and flexible API for add-on creation.

At the time of writing, PBRTv3 does not have any official exporter for Blender. The PBRTvV3
documentation recommends the use of Blender’s OBJ exporter to obtain a rough mapping of
meshes and materials. The process requires the manual addition of camera information, light
sources and material properties, which is a long and tedious process. It is easy to make mistakes
when handling the complex 3D coordinate conversions necessary to obtain a PBRT-compatible
representation, as Blender and PBRT do not share the same coordinate system, and specify
camera location and direction in different ways. Converting a scene to PBRT requires therefore
a large amount of time and a lot of trial and error. The development of our Blender for PBRTv3
exporter is therefore a major contribution not only to the OSR project, but for all PBRTv3 users
as the plugin is compatible with standard unmodified PBRTV3 binaries as well.

We created blendPBRTv3 as a standard Blender plugin, that can be installed and used entirely
from the graphical interface. To ease the process of obtaining the necessary dependencies
required to run the neural network, we provide easy-to-use installation scripts, while those users
who are only interested in exporting scenes to PBRTV3 can obtain the exporter only without other
components. The addition of the OSR GUI application makes the entire workflow of modelling,
exporting and rendering of a scene from blender completely graphical, without any need of using
the command line interface of PBRT, or leaving the workspace of Blender.

The plugin adds a rendering engine to the list of available engines in Blender, and offers a
graphical interface to define scene properties, rendering settings, and materials for the objects.
We support the most commonly used features, such as the Perspective Camera, Image-based
lighting, and UV texture mapping. Materials can be defined in the Materials properties tab,
where the plugin produces a mapping for the settings of some native PBRT materials: Matte,
Plastic, Glass, Mirror, Mix. All available channels, such as diffuse colors or roughness values,
can be mapped to image textures instead of constant RGB or Float values for a high degree of
flexibility, and the Mix material allows to recursively combine an arbitrary number of materials
by using texture maps as the mixture coefficient.

The PBRTV3 Blender Plugin has enough features to enable users to easily export new or existing
scenes to be used with PBRTv3 or PBRTv3-OSR. Although we don’t support the full extended
feature set of PBRTV3, our tool makes it easy to render even complex scenarios, and to obtain a
solid starting point for more scenes that would require further processing after exporting. As we
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Blender [/home/gj/git/pbrt-v3-custom-scenes/backyard1/backyard.blend]
k] scere [ R

Figure 56: A simple scene in Blender, exported to PBRTV3 using the exporter. The
scene contains many of the supported features, including environment lighting and
a variety of materials.
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preserved the overall look and feel of the Blender User Interface within the Plugin, users that are
accustomed to Blender and other standard rendering engine exporters should be able to quickly
become productive with our exporter.

The Plugin is fully backward compatible with unmodified PBRTv3, but it supports the extra
feature when used with PBRTv3-OSR of lauching the OSR-GUI directly from Blender. Linking
the GUI application allows the user to have a streamlined workflow in which pressing the Render
button in Blender can automatically launch the renderer with immediate visual feedback on the
final image. Further details on the GUI are in Section 7.4.

In Figure 56 is a scene created in Blender and exported to PBRTv3. We show that our exporter
supports a wide range of features, and is applicable to real world workloads.
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7.2 Blender Exporter Gallery

Blender* [/home/gj/git/pbrt-v3-custom-sce|

Figure 57: Once installed, PBRTv3
appears in the list of available ren-
derers, and the user can select it
from the dropdown list like any
standard renderer.

Image Editor v

Render Presets =

OSR

v Autostart OSR GUI

Figure 58: The Render Settings al-
low the user to specify the res-
olution of the film, the output
directory and the Integrator set-
tings. The OSR renderer is avail-
able among the Integrators, with
settings to control the quality of
the output and a checkbox to start
the GUI after exporting.
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Figure 59: The World panel in-
cludes options for the background
lighting color, and the possibility
to specify an environment map in
PNG or EXR formats to be used as
a light probe.

. light.area

EI S0 pat 3

Wire  Volume Halo

Figure 60: Light sources can be
added as emission materials.
Emission can be specified as an
RGB color, and multiplied by a
power factor.
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greybricks

20 [T it 59| Dat v

Wire  Volume  Halo Wire Volume  Halo

Figure 61: Matte materials only
have a diffuse component. The
diffuse color can be specified as a
fixed color, or as a texture.

Figure 63: Glass defines trans-
parent materials with an internal
volume. All parameters, includ-
ing Reflectivity, Transmission, In-
dex of Refraction and anisotropic
/ Roughness can be controlled using
b S| pat ¢ values or image textures.

Wire  Volume Halo

Plastic

Figure 62: Plastic has individual
Diffuse and Specular components,
each of them can use either an RGB
color or an image texture. Rough-
ness can be specified as a value or
a float image texture, and controls
the blurriness of the reflections.
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Material.002

b 55N Dat 4

Wire  Volume  Halo

Mirror

Figure 64: Mirror materials are
perfectly reflective, and have a re-
flectivity channel.

®  mirror
-

HIBdl )| Dat 4

Wire  Volume  Halo

Mix

Material.001

Figure 65: The Mix material al-
lows to specify two other materials
to be mixed together. The mixing
factor can be a constant value, or
be specified through an image map
to create complex materials.
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Figure 66: Standard PBRT integra-
tors such as Path are supported,
with common options such as the
sampler and number of samples
per pixel to be rendered.
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7.3 Blender Exporter Implementation

We implemented blendPBRTV3 as a standard Blender Add-On using the Blender 2.79 API [3]. The
Blender API has full Python 3 access to every component in the application, including objects,
materials, and Ul panels.

158 def register():
158 bpy.utils.register_class(renderer.IILERenderEngine)

NIV PROPERETES mmsnees s s e S i i R
Scene = bpy.types.Scene

Scene.iilePath = bpy.props.StringProperty(
name="PBRT build path",
description="Directory that contains the pbrt executable",
default=DEFAULT_IILE_PROJECT_PATH,
subtype='DIR_PATH'
)

Scene.iileStartRenderer = bpy.props.BoolProperty(
name="Start OSR renderer",
description="Automatically start OSR renderer after exporting. Not compatible with vanilla PBRTv3",

default=False

Figure 67: register is the entry point of the plugin.

Any Blender Add-on is a Python3 script, or collection of scripts, that implement a very simple
interface composed of 2 functions: register and unregister. The register function is called by
Blender when the plugin is loaded according to the user or scene configuration, and is responsible
for loading and setting up classes, Ul elements, data properties and actions. The unregister
function is called when the plugin is disabled from the User Preferences, and performs all the
actions necessary to clean up the environment and deregistering all custom classes. blendP-
BRTV3’s register registers a new RenderEngine, adds a number of new properties used to store
data specific to PBRT materials and settings, and adds some UI elements. Figure 67 shows the
first few lines of blendPBRTV3.

Mat.iileMaterial = bpy.props.EnumProperty(

name="PBRT Material",

description="Material type",

items=[
("MATTE", "Matte", "Lambertian Diffuse Material"),
("PLASTIC", "Plastic", "Plastic glossy"),
("MIRROR", "Mirror", "Mirror material"),
("MIX", "Mix", "Mix material"),
("GLASS", "Glass", "Glass material"),
("NONE", "None", "Mone material")

Mat.iileMatteColor = bpy.props.FloatVectorProperty(
name="Diffuse color",
description="Diffuse color",
subtype="COLOR",
precision=4,
step=0.01,
min=0.8,
soft_max=1.8,
default=(9.75, ©.75, ©.75)

Mat.iileMatteColorTexture = bpy.props.StringProperty(
name="Diffuse texture",
description="Diffuse Texture. Overrides the diffuse color",
subtype="FILE_PATH"

Figure 68: Configuration of the Materials dropdown and of the properties of Matte
materials.
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A Property in blender is a data slot that can be used to store information and values entered
by the user. The values are stored automatically in the .blend project files. A Property can be
associated to a built-in class, such as an Object, Material, or Scene, and all instances of the type
inherit the property. Properties are designed to be easily configurable and accessible, as each
type of Property has its associated Ul element configuration to be easily added to a graphical
panel, and can be read and written like a regular Python3 variable in a completely transparent
way. We extensively use properties to define data fields that store PBRT settings, material color
values, texture image paths and more.

In Figure 68 we show some lines where we define the list of materials and the properties specific
for the Matte material. The EnumProperty can be used to define a dropdown list. The Material
type list is fixed, but the API allows to pass a function instead of a list to obtain dynamic lists. The
definition of two properties for Matte materials follows. The Diffuse color is a color FloatVector
property, which is associated to a color picker in the user interface. The Diffuse color texture is
a StringProperty that stores the path to an image file. Defining the subtype FILE_PATH makes
the UI open a file browser when the user clicks on the property.

class MaterialButtonsPanel:
bl_space_type = 'PROPERTIES'
bl_region_type = 'WINDOW'
bl_context = "material”
108 # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here

class MATERIAL_PT_material(properties_material.MaterialButtonsPanel, Panel):
bl_label = "Material"
COMPAT_ENGINES = {renderer.IILERenderEngine.bl_idname}

def draw(self, context):
layout = self.layout

mat = properties_material.active_node_mat(context.material)

layout.prop(mat, "iileMaterial”, text="Surface type")

if mat.iileMaterial == "MATTE":
layout.prop(mat, "iileMatteColor", text="Diffuse color")
layout.prop(mat, "iileMatteColorTexture", text="Diffuse texture")
elif mat.iileMaterial == "PLASTIC":

layout.prop(mat, "iilePlasticDiffuseColor", text="Diffuse color")
layout.prop(mat, "iilePlasticDiffuseTexture", text="Diffuse texture")
layout.prop(mat, "iilePlasticSpecularColor", text="Specular color")

layout.prop(mat, "iilePlasticSpecularTexture", text="Specular texture")
layout.prop(mat, "iilePlasticRoughnessvalue", text="Roughness")
layout.prop(mat, "iilePlasticRoughnessTexture", text="Roughness texture")

Figure 69: Definition of the Materials UI panel.

Custom User Interface panels can be defined in a plugin as classes. In Figure 69 we
show a few lines from our custom Materials panel, which inherits from Blender’s built-in
MaterialButtonsPanel, which specifies a location within Blender. The COMPAT_ENGINES spec-
ifies the list of RenderEngines that are compatible with this graphical panel, and we only add
blendPBRTv3. The main function in a panel is the draw method. We simply add in the UI the
properties that we have previously defined in register. The flexibility of the Ul allows to have
control flow in the draw method. In our case we use if statements to show or hide properties
that are specific to particular materials.

# Render Button

properties_render .RENDER_PT_output.COMPAT_ENGIMNES.add(renderer.IILERenderEngine.bl_idname)

# Dimensions

properties_render .RENDER_PT_dimensions.COMPAT_ENGINES.add(
renderer.IILERenderEngine.bl_idname)

Figure 70: Existing panels can be re-used by adding blendPBRTv3 to the list of com-
patible engines.
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Some of the panels in Blender can be reused. This saves programming time, and leaves the user
interface identical to the default. Reusing of an existing panel can be achieved by adding our
RenderEngine to the list of supported engines, as shown in Figure 70.

220 bl_idname = "iile_renderer" # internal name
bl_label = "PBRTv3" # Visible name
bl_use_preview = False # capabilities

def render(self, scene):

# Check first-run installation
install.install()

# Compute film dimensiens

30 scale = scene.render.resolution_percentage / 100.0
1 sx = int(scene.render.resolution_x * scale)

232 sy = int(scene.render.resolution_y * scale)

Figure 71: The RenderEngine defines the single render method.

The main component of the plugin is the implementation of the bpy.types.RenderEngine
class, which defines a new rendering engine. Here we define our custom rendering function that
exports the scene to disk. Figure 71 shows that the class defines the render method, which is
called by Blender when the user initiates a Render action.

The rendering process of blendPBRTv3 can be subdivided as several tasks:

1. Export the scene to OBJ and MTL files
. Run obj2pbrt

. Compute scene transformation and write camera and film settings

2
3
4. Resolve materials dependencies and properties
5. Parse and update light sources

6

. Launch OSR GUI
1. Export to OBJ and MTL

The plugin first initiates the meshes by exporting the entire scene into the OB] format [24] using
the Blender built-in OB] exporter. This step outputs a .obj and a .mt1 files, containing the
primitives vertices, UV coordinates, and basic material properties.

import bpy
outobj = "/home/gj/git/naevys/supplementary/bathroom_green/out/exp.obj"
bpy.ops.export_scene.obj(filepath=outobj, axis_forward="Y", axis_up="-Z", use_materials=True)

Figure 72: A generated Python3 script for the auxiliary Blender instance.

A plugin action in Blender is un synchronously and is required to return upon finishing. Addi-
tionally, in order for Blender to be able to run multiple actions concurrently, any action is not
permitted to perform UI refreshes or draw operations as they can cause conflicts and crashes.
The OB]J exporter in Blender unfortunately does draw updates to the mouse cursor to show its
progress. This behaviour is not permitted in a plugin, and we have indeed experienced random
crashes. To solve this issue, we perform the task using a separate Blender instance started in CLI
mode, running a Python script generated by blendPBRTv3 that exports the scene into the output
directory. Figure 72 shows a script generated by the exporter.
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The approach of using an independent instance to avoid graphical update conflicts has worked
very well in all scenarios, but brings a few minor disadvantages: memory usage is increased due
to the necessity of loading the scene an additional time, and the user is required to save the
project to disk before rendering, as any unsaved changes might not be reflected in the exported
files.

The OBJ format does not encode which coordinate system is used. To account for the different
coordinate systems between Blender and PBRT, we configure the OBJ exporter to assume Y axis
forward and -Z axis up.

2. obj2pbrt

The OBJ and MLT files contain all the objects in the scene, and a rough approximation of their
materials. PBRTV3 includes an executable, obj2pbrt, which takes an OBJ file and outputs a
corresponding PBRT scene file containing geometry and some material information.

blendPBRTv3 needs to find the PBRT executables in order to perform this step. For compatibility
with the original PBRTvV3 project and possibly its forks, we distribute the plugin with PBRT-OSR
included, or excluded. If the PBRT project is found in the plugins directory, the exporter auto-
matically extracts the files. Alternatively, the exporter attempts to use the pbrt and obj2pbrt
executables present in the PATH, and, as a third options, allows the user to specify the path to the
directory where the executables are located.

After obtaining the PBRT scene files, we use PBRT’s —--toply function to extract large objects
into PLY files, and make the scenefile smaller and easier to work with.

At this stage the PBRT scene only contains basic geometrical information, and lacks specifications
for the camera setup, lighting and materials.

3. Transformations, Camera and Film

Global settings and properties, such as the World to Camera transformation, camera properties,
film, integrator and sampling settings can be defined at the beginning of a PBRT scene file.
The rest of the information that was generated by obj2pbrt can be appended within the tags
WorldBegin and WorldEnd.

Film "image" "dinteger xresolution" 1344 "dinteger yresolution" 756

Integrator "path"

Sampler "random" "integer pixelsamples" 24

Scale -1 11

Rotate 86.89294945103937 0.9999234676361084 -0.0036497358232736588 0.011825548484921455
Translate 0.06754249334335327 2.7398598194122314 0.10883814096450806

Camera "perspective" "float fov" [24.56717103880224]

WorldBegin

Figure 73: Camera and global settings generated by blendPBRTv3.

Figure 73 shows an example scene file header generated by blendPBRTv3. Image film settings are
read from the Blender API, and Integrator and Sampler are obtained from the custom properties
we defined in the exporter.

World to Camera tranformation directives in the scene file are applied to the global transfor-
mation matrix, which is always initialized as the Identity matrix. When the Camera object is
initialized, the current transformation matrix is used. The first transformation is a flip on the X
axis, necessary to switch from a right-handed coordinate system (Blender) to a left-handed one
(PBRT). The Rotation defines the rotation magnitude in degrees, and the 3D vector that is used
as rotation axis. Blender by default uses XYZ Euler rotation coordinates, but can be configured
to use Axis Angle values that can be easily mapped to PBRT rotations. The translation simply
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encodes the world location of the camera.

We currently only support the perspective camera, which takes a Field of View argument, also
read from the default camera properties.

At the end of the header, we write WorldBegin to signal the beginning of materials and objects
definitions.

4. Resolve materials

Material types and parameters are encoded for each object, in properties that are defined during
plugin registration. blendPBRTv3 currently supports Matte, Plastic, Mirror, Mix, Glass and None
material types.

All materials have straightforward properties such as diffuse and specular colors, with the excep-
tion of the Mix material. A Mix material is a weighted blend of two other materials. The inputs of
Mix are therefore two material names, and a weighting factor that can be a constant or a texture.
The definition of the Mix material therefore allows to create complex materials starting from
more basic ones, and blending them over the surface depending on the values of a texture. Mix
materials can be recursively chained with other Mix materials in an arbitrarily deep configuration.

In a PBRT scene file, materials can be pre-defined before being usage by assigning names.
Material names are a useful feature because it allows the plugin to determine the corresonding
materials assigned to each object by finding the correct material in the Blender API by its name.
Additionally, names are used to specify Mix material components.

When a Mix material is defined, its two component materials need to have already been defined.
This requirement poses the need of processing the materials in a particular order. blendPBRTv3
starts materials processing by recursively building a tree of dependencies. The exporter visits
each material defined in Blender, and adds its component dependencies before the material itself
if the type is Mix. As Mix components can also have type Mix, the process is recursive.

Once the dependencies order have been resolved, we translate each material property in its
corresponding PBRT scene syntax.

MakeNamedMaterial "ground"
"string type" "plastic"
"rgh Kd" [ ©.029745731502771378 0.029745731502771378 0.029745731502771378 ]
"rgh Ks" [ ©.4720805883407593 0.4720805883407593 0.4720805883407593 ]
"float roughness" [0.019999999552965164]
"bool remaproughness" "true"

Figure 74: Named materials define a name and a list of attributes.

Figure 74 shows a Plastic material exported by the plugin. The material has a name, and a list of
attributes.

Most of the attributes can use an image texture instead of a constant value. The UI allows
the user to select the path to an image file. blendPBRTv3 copies the selected texture in the
output directory using a sequentially generated file name, and links the texture to the appro-
priate channel. An example of a texture map assigned to a material channel is shown in Figure 75.

5. Parse and update light sources
blendPBRTv3 supports two kinds of light sources: Infinite and Emission objects. A single Infinite

light source can be defined in the World properties panel in Blender, and it can be a single
environment color, or an environment map in PNG or EXR format. The Infinite light is added to
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Texture "tex_l.png" "color" "imagemap" "string filename" "tex_l.png"
MakeNamedMaterial "Material.0o8"

"string type" "matte"

"texture Kd" "tex_l.png"

Figure 75: Image textures are supported in many material channels.

AttributeBegin
ArealightSource "area"
“"rgb L" [ 1000.0 856.9439053535461 768.8772678375244 ]
NamedMaterial "sun"
Shape "trianglemesh"
"integer indices" [ 0120 23]
"point P" [ -8.13628292 -5.23525286 -2.78938508 -8.13628292 -5.23525286 -3.318151
-8.13628292 -4.70648718 -3.318151 -8.13628292 -4.70648718 -2.78938508 ]
"normal N" [1001001001060]
AttributeEnd
# Name "Circle.012_Circle.@36"

Figure 76: An example of ArealLightSource attribute.

the scene file in a way that is similar to that used to generate materials.

Objects can be configured to emit light, and generalize all other kinds of light sources. The PBRT
ArealightSource is in fact defined over an object, and can assume therefore any shape despite
its name referring to Area lights. The plugin allows the user to specify an Emission value for
a material. We did not define a custom Emission property, but re-used the one defined for the
Blender Internal Render Engine, as the OBJ exporter is capable of reading emission values and
generate corresponding emission values that are converted to AreaLightSource by obj2pbrt.
We use an additional property to allow the user to define an emission color.

The exporter parses the PBRT scene file. The parser reads the input line by line, and groups up
structures into blocks based on their indentation level. The exporter then analyzes each block,
and performs the following operations:

» Delete the body of all MakeNamedMaterial blocks because the exporter generates more de-
tailed materials in step 4.

» Add emission color to all AreaLightSource attributes by matching their assigned material
names.

Figure 76 shows an example of an ArealLightSource attribute processed by blendPBRTv3.

The scene information generated in steps 3 and 4 are written at the beginning of the processed
PBRT scene file, and the new output is written to the output directory of the project.

6. Launch OSR GUI

When the OSR integrator is selected, the user can choose whether to run the export job only, or
launch the GUI application automatically. The GUI executable resides in a parent directory of the
PBRT binaries, and is automatically found by the plugin assuming that the directory structures
was not modified. The process is started as a Python3 subprocess, and launched synchronously.
The GUI starts rendering automatically.

7.4 OSR GUI

We implemented a simple GUI for PBRTv3-OSR that can be started automatically from the
Blender Plugin. This makes the workflow simple and graphically based. The scene starts to
render after the user presses the Render button in Blender, and the GUI produces visual feedback
on the current state of the final image with very little delay.
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Exposure Direct/Indirect/Combined Zoom
controls selector

Realtime
preview

Progress Save
monitor image

Figure 77: A screenshot of the GUI when rendering a scene. The GUI has tonemap-
ping settings, and shows the progress of both direct and indirect illumination passes.
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The OSR GUI shows the realtime rendering output of PBRT in its main frame. The image can
be resized by the user and navigated using standard controls. By default, the GUI applies an
automatic linear tonemapping to the high dynamic range image produced by PBRT, and the user
can override this by setting manually the gain factor.

At the top of the preview, it is possible to switch between the combined output, direct illumi-
nation only and indirect illumination only. This can be a useful feature to visually determine
the balance of computational resources to be allocated to the direct and indirect illumination
components.

The currently displayed image can be saved by the user as an LDR image using the Save As button,
and two progress bars display the progress on direct and indirect passes.

7.5 OSR GUI Implementation

The GUI is written in Javascript, HTML and CSS using the Electron framework [6]. Electron is
based on the Chromium Browser [5], Node.js [16] and the Chrome V8 Javascript engine [4]. These
tools make it possible to write a graphical desktop application using javascript, HTML and CSS.
The full compatibility with both browser javascript libraries and Node.js javascript components
make the system extremely flexible thanks to a large amount of code and tools already available.

In the frontend we used Angular]S [1] to handle data distribution and events, and in the backend
a few standard Node.js libraries to manage processes and files.

The application runs in a single browser window based on W3CSS styling [23]. The colors have
been customized to match those in Blender to make the appearance more uniform.

After all native components are loaded, the GUI starts PBRT in a Node.js child process. Bidi-
rectional communication with PBRT is based on both standard in and out streams, and files
exchanged in a Control Directory. The Control Directory is a temporary location on disk where
PBRT can output intermediate results, such as partially rendered high dynamic range images,
while the standard streams are mainly used to signal events and updates, such as the progress on
the rendering or the availability of new files in the Control Directory.

Tonemapping from the high dynamic range PFM files produced by PBRT to a low dynamic range
format is performed using an additional tool, cpfin, written in C++ for performance reasons. While
our Python3 pfm module, used extensively for our machine learning model, has the necessary
features, it takes a relatively long time to load the libraries and process the data. Executing a
single tonemap task of a 2 Megapixel image using pfin through a subprocess call from the GUI
takes 0.5 seconds, while cpfm requires less than 0.1 seconds. Although this difference might not
generally lead to rewriting software in a different language, the difference in usability in our case
is important, because the tonemapper is called every time a new update is produced by PBRT and
needs to be displayed by the GUI, as well as when the user updates tonemapping settings and
expects an immediate change in the preview.

The two parameters for HDR to LDR linear tonemapping are gain and gamma, and are applied as:

1/gamma

la:,y,c = 255 * clamp(hz’y’c * 2!]ain)

Where [, , . is the output LDR value for a pixel (x, y) with 8 bits per channel, i, , . is the input
HDR value of a pixel, and the clamp function clips values to fall within the 0 to 1 range. Gain is
determined by the automatic tonemapping mode or provided by the user, and Gamma is set at a
fixed 1.8 in the GUI code.

¢pfin can perform both automatic and manual tonemapping. In automatic mode, there is no
additional command line argument, and the software computes the mean brightness of the
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input image, and first attempts to set a gain level that would push the mean to be 1.0. cpfm
proceeds by progressively reducing the gain factor by 1 until less than 5% of the image is clipped
at its top. After determining the gain level, gamma correction is applied, and the final image
is saved in BMP format, chosen for its performance due to the lack of compression. In man-
ual mode, the gain parameter is passed on the command line, and used directory for tonemapping.

The automatic tonemapping strategy in cpfm is robust and yields a balanced output in all tested
scenarios. Furthermore, its output is stable with different levels of noise.
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8 Discussion

The OSR project offers a new biased rendering method for global illumination capable of pro-
ducing high quality results in a small amount of time, while supporting a wide range of material
types and scene compositions.

Compared to other methods, OSR does not require any form of precomputation on the target
scene, and accelerates the computation of global illumination at a virtually unbounded number
of indirect bounces at the cost of a small amount of bias introduced.

8.1 Limitations

Even though the progressive refinement algorithm permits the user to set an arbitrary number
of passes, OSR remains a biased approach to global illumination. The neural network, although
very accurate in typical scenarios, can produce artifacts, inaccurate results, and loss of detail,
causing hard to correct errors.

A second important limiting factor is the fixed resolution of the radiance maps, set for OSR at a
default of 32x32 pixels. Small details are inevitably lost.

These two limitations become particularly visible when computing globally illuminated glossy
reflections, which appear less defined, although less noisy, than the path traced reference.

Temporal stability is another limitation of OSR. The rendering tiles can have large variations
from one sample to another, and while being perceived as smooth transitions in a single frame,
animations would display them as low frequency flickering of large areas in the scene. The
lack of temporal stability indicates that OSR would not be adequate for animation rendering.
To solve the temporal stability issue, a persistent caching system for radiance maps can be
implemented, allowing animations to be rendered at faster rates and with less temporal noise
caused by flickering of radiance maps.

Due to the low resolution of the indirect radiance maps, OSR is not capable of producing accurate
caustics, which require a much denser sampling of indirect light. As light that travels from glass
windows can also be considered as a kind of caustics, OSR is not adequate to render interior
scenes illuminated through windows, similarly to how Path tracers have extreme difficulty at
finding valid paths in the same scenario. In such a case, the Direct illumination component
would be completely black, and the OSR integrator would be attempting to resolve all light paths,
even those that would appear to be directly illuminating the scene. The overall scene would
look highly splotchy and unrealistic: the underlying one-shot maps are not accurate enough as
those are also based on a Path tracer, but OSR still attempts to generate shadows and ambient
occlusion. Under these scenarios, Bidirectional Metropolis Light Transport and Photon Mapping
remain primary choices for both performance and quality.

8.2 Future Work

In the current implementation, OSR uses separate Python processes to evaluate the neural
network at runtime. The evaluation processes use a significant fraction of the computing power
during rendering, and a re-implementation of the network structure in the PBRT C++ process
would significantly boost performance.

The progressive refinement algorithm used in OSR requires no preprocessing and very little

additional memory to run. However in some scenarios predetermined and optimized radiance
interpolation points can be a more effective solution, and implementing the possibility to choose
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between the two strategies would be a useful future extension.

To solve the temporal stability issue, a persistent caching system for radiance maps can be
implemented, allowing animations to be rendered at faster rates and with less temporal noise
caused by flickering of radiance maps.

An interesting extension of OSR would be the use of Metropolis Light Transport (MLT) as un-
derlying rendering algorithm instead of Path Tracing. Although each Metropolis sample is more
expensive than a Path sample, the ability of MLT in solving difficult light paths could boost OSR’s
ability to resolve indirect illumination, especially when light travels through refractive media
before entering the scene. The complementing direct illumination pass can also be achieved
using MLT by setting an appropriate maximum depth level.
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9 Conclusion

We present One Shot Radiance, a novel ray tracing method that uses Convolutional Autoencoders
to obtain high performance and accurate global illumination effects. All paths beyond the first
bounce are estimated using a Neural Network that uses low quality One-shot, distance and
normal maps. We show that our method achieves competitive performance while being able
to produce higher quality images than same-time Path Tracing, with a significantly smaller
amount of noise. Our method supports a wide range of material types and does not need offline
precomputation or per-scene training. The re-integration of directly illuminated component
using a separate integrator maintains fine details and high resolution shadows in the scene
without introducing a significant amount of noise. OSR produces high quality images with low
noise in a very short amount of time, and is suitable for all applications that do not require
physical correctness.

The Blender Add-on for PBRT-OSR and the Graphical user interface make the software accessible
and ready for use, by providing a workflow that is well integrated in Blender and that does not
require any programming knowledge.

9.1 Challenges and Lessons Learned

The implementation of OSR has encountered a number of challenges. The choice of PBRTV3 as
the base rendering engine was appropriate. PBRT was written with an educational intention,
as it is the implementation of the omonimous book. Despite this, working with the C++ source
code of the engine required a long period of time to start understanding how it works and
how it can be extended with a new integrator. The overall code of the project is well writ-
ten, but there is a tendency of leaving large parts of the source code uncommented because
most of the explanation is in the book. While this is fine for readers that explore the inner
workings of a physically based rendering engine, it slows down development considerably, as
often variable names are short and mysterious, and geometrical conventions are not always clear.

It could have been a more interesting choice to write OSR based not on an educational and
research oriented rendering engine, but on a production quality one that is effectively used by
creators and 3D artists. Production rendering engines such as LuxCoreRender [12] have a much
stronger focus on real world performance and usability, and their development is guided by what
users need from the software.

Interestingly, LuxCoreRender derived from LuxRender, which in turn was originally based on
PBRT, but over the years the project has diverged very significantly from its parent codebase,
and can be safely considered as a completely new rendering engine now. Developing OSR on
LuxCoreRender would have been a different experience, posing a new set of challenges and
difficulties that could have been paid off by the excellent integration with Blender and by he
possibility of having our extension accepted in the main project branch.

One of the primary reasons that drove us to develop the Blender Plugin was in fact the very
poor real world usability of PBRTv3. With the exception of the set of example scenes from the
official website, there is a strong lack of PBRT-compatible projects on the web. Converting a
Blender scene for PBRTvV3 required a large amount of manual adjustments and trial and error,
and the small number of available scenes was becoming a limiting factor for our neural network’s
dataset. Developing our own Blender Plugin and exporter was an interesting challenge, and the
compatibility of the plugin with the original PBRTv3 can be a great addition to the community of
researchers that use PBRT for their projects. The Blender API is vast and powerful, and learning
how to develop and integrate an Add-on is valuable experience.

The work on the Neural Network has taken a significant amount of time in the project. The
lack of previous experience in Machine Learning has required a period of reading and docu-
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mentation, while the simplicity and accessibility of PyTorch made the whole process reasonably
smooth and enjoyable. As illustrated in Section 5.1, training the model has involved a num-
ber of failed attempts, but a lot was learned in the process and we are happy about our final results.

The development effort spent on the OSR project has been significant, with over 20000 lines
of code written in C, C++, Python, Javascript, HTML and CSS. The final result is a working
application that demonstrates a new application of Machine Learning to Computer Graphics that
is usable in real-world scenarios to accelerate rendering of Global Illumination.
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Appendices

A Additional Comparisons

Figure 78: Bathroom green. Original scene by cenobi (http://www.blendswap.com/
blends/view/52486). Top: Path 56 seconds, Bottom: OSR 57 seconds.
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Figure 79: Full house. Original scene by alecfara (https://www.blendswap.com/
blends/view/15938). Top: Path 52 seconds, Bottom: OSR 53 seconds.
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Figure 80: Kitchen. Original scene by lukethsdhafdf (http://www.blendswap.com/
blends/view/48418). Top: Path 85 seconds, Bottom: OSR 90 seconds.
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Figure 81: Stairway. Original scene by Anticreep (http://www.blendswap.com/
blends/view/21326). Top: Path 211 seconds, Bottom: OSR 200 seconds. This scene
has extremely difficult lighting. Path struggles at obtaining a clear image, while OSR
produces far less noise at the cost of bias and softness.
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Figure 82: Stairway. Original scene by muhtesemozcinar (http://www.blendswap.
com/blends/view/72190). Top: Path 90 seconds, Bottom: OSR 60 seconds.
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B Important Code

We present some of the most important pieces of code part of the project. Please note that
references in the code to IISPT or IILE are due to name changes of the project that have not been
updated in the code.

The core of the PBRTvV3 extension is the new Integrator that runs the OSR code. The integrator
is based on the same interface as all other integrators in PBRT, and implements the following
methods:

void Preprocess(const Scene &scene);

Spectrum Li(const RayDifferential &r,
const Scene &scene,
Sampler &sampler,
MemoryArena &arena,
int depth
) const;

void Li_reference(const RayDifferential &ray,
const Scene &scene,
Point2i pixel
) const;

void Render (const Scene &scene);

void render_normal_2(const Scene &scene);

void render_reference(const Scene &scene);

Preprocess has an empty body, as OSR does not require any preprocessing. Li is not used in the
code because we implement a custom render loop. The main Render function differentiates the
two separate cases of Reference generation (Section 5.3.3) and normal rendering.

In the Reference generation main loop a regular grid on the image film is used to determine the
viewpoints for the example sets:

for (int px_y = 0; px_y < sampleExtent.y; px_y += reference_tile_interval_y) {
for (int px_x = 0; px_x < sampleExtent.x; px_x += reference_tile_interval_x)
— {

ref_idx++;

if ((ref_idx % reference_control_mod) != reference_control_match) {
// This pixel is not a job of the current process
continue;

¥

CameraSample current_sample;
current_sample.pFilm = Point2f (px_x, px_y);
current_sample.time = O;

RayDifferential ray;

Float rayWeight = camera->GenerateRayDifferential (current_sample, &ray);

// It's a single pass per pixel, so we don't scale the differential

ray.ScaleDifferentials(1);

// The Li method, in reference mode, will automatically save the reference
— 1images
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// to the out/ directory
Li_reference(ray, scene, Point2i(px_x, px_y));

3

In Li_reference, the first intersection point is computed and used to place the auxiliary camera
for the new viewpoint:

// Find closest ray intersection or return background radiance
Surfacelnteraction isect;
if (!scene.Intersect(ray, &isect)) {

return;

3

// Invert normal if the surface's normal was pointing inwards

Normal3f surfNormal = isect.n;

if (Dot(Vector3f(isect.n.x, isect.n.y, isect.n.z), Vector3f(ray.d.x, ray.d.y, ray
— .d.z)) > 0.0) {
surfNormal = Normal3f(-isect.n.x, -isect.n.y, -isect.n.z);

}

// auxRay is centered at the intersection point, and points towards the
— intersection

// surface normal

Ray auxRay = isect.SpawnRay(Vector3f (surfNormal));

// testCamera is used for the hemispheric rendering
std::string reference_d_name = generate_reference_name("d", pixel, ".pfm");
std: :shared_ptr<HemisphericCamera> auxCamera (
CreateHemisphericCamera (

PbrtOptions.iisptHemiSize,

PbrtOptions.iisptHemiSize,

dcamera->medium,

auxRay.o,

auxRay.d,

reference_d_name

)
)

The rendering using the auxiliary camera proceeds as a standard render job. The Auxiliary
integrator is based on a standard Path tracer, with modifications to exclude direct radiance from
light sources.

The normal rendering loop is fully optimized for multithreading, and relies on a Thread Pool and
an additional class named the Render Runner:

// Create thread pool

unsigned noCpus = iile::cpusCountFull();
// noCpus = 1;

ThreadPool threadPool (noCpus);

std: :vector<std::future<void>> futures;

// Start threads
for (int i = 0; i < noCpus; i++) {
std: :shared_ptr<IisptNnConnector> nnConnector =
iile: :NnConnectorManager: :getInstance() .getInstance() .get(i);
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futures.push_back(threadPool.enqueue([i, schedule_monitor,
< film_monitor_indirect, film _monitor_direct, this, &scene, nnConnector
— 10 {
std: :shared_ptr<IisptRenderRunner> runner (
new IisptRenderRunner (
schedule_monitor,
film_monitor_indirect,
film_monitor_direct,
camera,
dcamera,
sampler,
i,
camera->film->GetSampleBounds (),
nnConnector
)
);
if (1% 2==0 {
runner->run_direct (scene) ;
runner->run(scene) ;
} else {
runner->run(scene) ;
runner->run_direct (scene) ;

}
s
3

// Wait for threads to finish

for (int i = 0; i < noCpus; i++) {
futures[i].get();

}

The indirect illumination render loop in each Runner obtains a task from the Task Manager and
computes One Shot radiance maps, Normals and Distances on the local grid. The films are sent to
the Neural Network process, and the results are normalized back to match the average intensity
of the One Shot map.

int tile_x = sm_task.x0;
int tile_y = sm_task.yO;
while (1) {
IisptPoint2i hemi_key;
hemi_key.x = tile_x;
hemi_key.y = tile_y;
Point2i pixel (tile_x, tile_y);
sampler_next_pixel();
CameraSample camera_sample =
sampler->GetCameraSample (pixel) ;
RayDifferential r;
main_camera->GenerateRayDifferential(
camera_sample,
&r
)3
r.ScaleDifferentials(1.0);
Surfacelnteraction isect;
Spectrum beta;
Spectrum background;
RayDifferential ray;
Spectrum area_out;
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bool intersection_found = find_intersection(
r,
scene,
arena,
&isect,
&ray,
&beta,
&background,
&area_out
)3
if ('intersection_found || beta.y() <= 0.0) {
hemi_points[hemi_key] = nullptr;
} else {
Normal3f surface_normal = isect.n;
Vector3f sf_norm_vec = Vector3f(isect.n.x, isect.n.y, isect.n.z);
Vector3f ray_vec = Vector3f(ray.d.x, ray.d.y, ray.d.z);
if (Dot(sf_norm_vec, ray_vec) > 0.0) {
surface_normal = Normal3f (
-isect.n.x,
-isect.n.y,
-isect.n.z
)3
}
Ray aux_ray = isect.SpawnRay(Vector3f (surface_normal));
std: :unique_ptr<HemisphericCamera> aux_camera (
CreateHemisphericCamera (
PbrtOptions.iisptHemiSize,
PbrtOptions.iisptHemiSize,
dcamera->medium,
aux_ray.o,
aux_ray.d,
std: :string("/tmp/null")
)
);
d_integrator->RenderView(
scene,
aux_camera.get ()
)3
std::unique_ptr<IntensityFilm> aux_intensity =
d_integrator->get_intensity_film(aux_camera.get());
NormalFilm* aux_normals =
d_integrator->get_normal_film() ;
DistanceFilm* aux_distance =
d_integrator->get_distance_£film();
float intensityMean = normalizeMapsDownstream(
aux_intensity.get(),
aux_normals,
aux_distance
)3
int communicate_status = -1;
std::shared_ptr<IntensityFilm> nn_film =
nn_connector->communicate(
aux_intensity.get(),
aux_distance,
aux_normals,
communicate_status
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);
transformMapsUpstream(nn_film.get(), intensityMean);
if (communicate_status) {
std::cerr << "iisptrenderrunner.cpp: Thread " << thread_no << "
«— " << "NN communication issue" << std::endl;
raise (SIGKILL);
¥
aux_camera->set_nn_film(nn_film);
hemi_points[hemi_key] = std::move(aux_camera) ;
}
bool advance_tile_y = false;
if (tile_x == sm_task.x1 - 1) {
tile_x = sm_task.x0;
advance_tile_y = true;
} else if (tile_x >= sm_task.x1) {
std: :raise(SIGKILL);
} else {
tile_x = std::min(
tile_x + sm_task.tilesize,
sm_task.x1l - 1
);
}
if (advance_tile_y) {
if (tile_y == sm_task.yl - 1) {
break;
} else {
tile_y = std::min(
tile_y + sm_task.tilesize,
sm_task.yl - 1

)3

}

The evaluation code renders pixel values using the cached radiance maps in the previous step.

for (int fy = sm_task.y0; fy < sm_task.yl; fy++) {
for (int fx = sm_task.x0; fx < sm_task.x1l; fx++) {
Point2i f_pixel (fx, fy);
Point2i neigh_s (
fx - (iispt::positiveModulo(fx - sm_task.xO, sm_task.tilesize)),
fy - (iispt::positiveModulo(fy - sm_task.yO, sm_task.tilesize))

);
Point2i neigh_e (

std: :min(
neigh_s.x + sm_task.tilesize,
sm_task.x1 - 1
),

std::min(
neigh_s.y + sm_task.tilesize,
sm_task.yl - 1
)

);

Point2i neigh_r (
neigh_e.x,
neigh_s.y
)
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Point2i neigh b (
neigh_s.x,
neigh_e.y
)3

}

Weighting of each of the four maps is computed using the distance and normals rules (Section
4.3):

static float weighting_ distance_positions(

Point2i a,
Point2i b,
float tile_distance
)
{
float pdist = points_distance(a, b);
float res;
if (tile_distance != 0.0) {
res = pdist / tile_distance;
} else {
res = pdist;
+
if (res < 0.0) {
return 0.0;
}
if (res > 1.0) {
return 1.0;
}
return res;
}
static float weighting_distance_normals(
Vector3f a,
Vector3f b
)
{
// Check for invalid vectors
float al = a.Length();
float bl = b.Length();
if (al <= 0.0 || bl <= 0.0) {
return 1.0;
}
a=a/ al;
b=Db/ bl;
float dt = Dot(a, b);
if (dt < 0.0) {
return 1.0;
} else {
return 1.0 - dt;
}
}

The weighted hemispheres are sampled using weighted probabilities.

T
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Spectrum IisptRenderRunner: :sample_hemisphere(
const Interaction &it,
int len,
float* weights,
HemisphericCamera** cameras

)
Spectrum L(0.f);
int samples_taken = O;

for (int i = 0; i < len; i++) {
HemisphericCamera* a_camera = camerasl[i];
float a_weight = weights[i];

// Attempt HEMISPHERIC_IMPORTANCE_SAMPLES to sample this camera
// The expected number of samples across all the cameras will be
// HEMISPHERIC_IMPORTANCE_SAMPLES
for (int j = 0; j < HEMISPHERIC_IMPORTANCE_SAMPLES; j++) {
float rr = rng->uniform_float();
if (rr < a_weight) {
samples_taken++;
if (a_camera != NULL) {
int rx = rng->uniform_uint32(PbrtOptions.iisptHemiSize);
int ry = rng->uniform_uint32(PbrtOptions.iisptHemiSize);
L += estimate_direct(it, rx, ry, a_camera, rng.get());

}

if (samples_taken > 0) {
return L / samples_taken;
} else {
return Spectrum(0.0);
}
}

The Task Monitor is the shared object that controls the structure and size of the indirect illumi-
nation tasks.

IisptScheduleMonitorTask IisptScheduleMonitor: :next_task() {
std::unique_lock<std::mutex> lock (mutex);

int effective_radius = std::floor(current_radius);
if (effective_radius < 1) {
effective_radius = 1;

}

int task_size = effective_radius * NUMBER_TILES;

// Form the result

// The current nextx and nexty are valid starting coordinates
IisptScheduleMonitorTask res;

res.x0 = nextx;

res.y0 = nexty;
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res.xl = std::min(res.x0 + task_size, bounds.pMax.x);
res.yl = std::min(res.y0 + task_size, bounds.pMax.y);

res.tilesize = effective_radius;
res.pass = pass;
res.taskNumber = taskNumber++;

// Advance to the next tile

nextx += task_size;

if (nextx >= bounds.pMax.x) {
// Reset x, advance y
nextx = bounds.pMin.x;
nexty += task_size;

3

if (nexty >= bounds.pMax.y) {
// Reset y, advance radius
nexty = bounds.pMin.y;
current_radius *= update_multiplier;
pass+t;

return res;

}

The core of the Neural Network is the model, defined in PyTorch.

K = 64
class IISPTNet(torch.nn.Module):

def __init__(self):
super (IISPTNet, self).__init__Q

Input depth:
Intensity RGB
Normals XYZ
Distance Z

H O H O H

7 channels

HH*

Output depth:
Intensity RGB
# 3 channels

+*+

# In 32x32
self.encoder0 = nn.Sequential(

nn.Conv2d(7, K, 3, stride=1, padding=1),

nn.LeakyReLU(0.2),

nn.Conv2d(K, K, 3, stride=1, padding=1),

nn.LeakyReLU(0.2)

)
# Out 32x32
# In 32x32

self.encoderl = nn.Sequential(
nn.MaxPool2d(2),

nn.Conv2d (K, 2+K, 3, stride=1, padding=1),

107




B Important Code One Shot Radiance Giulio Jiang

nn.LeakyReLU(0.2),

nn.BatchNorm2d (2*K) ,

nn.Conv2d (2+K, 2*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2)

)
# Out 16x16
# In 16x16

self.encoder2 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d (2*K, 4*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.BatchNorm2d (4*K) ,
nn.Conv2d (4*K, 4*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2)

)

# Out 8x8

# In 8x8 —> 4x4
self.encoder3 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(4*K, 8*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.BatchNorm2d (8*K) ,
nn.Conv2d (8+K, 4*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2, mode="bilinear")
)
# Out 8x8

# In 8x8 + skip from encoder2

self.decoder0O = nn.Sequential(
nn.ConvIranspose2d (8+K, 4*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.BatchNorm2d (4*K) ,
nn.ConvTranspose2d (4*K, 2*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2, mode="bilinear"),

)

# Out 16x16

# In 16x16 + skip from encoderl

self.decoderl = nn.Sequential(
nn.ConvIranspose2d (4%K, 2*K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.BatchNorm2d (2*K) ,
nn.ConvTranspose2d (2*K, K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2, mode="bilinear"),

)

# Out 32x32

# In 32x32 + skip from encoderO

self.decoder2 = nn.Sequential(
nn.ConvTranspose2d(2+#K, K, 3, stride=1, padding=1),
nn.LeakyReLU(0.2),
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)

nn.ConvTranspose2d(K, K, 3, stride=1, padding=1),

nn.LeakyReLU(0.2),
nn.Conv2d(K, 3, 1, stride=1, padding=0),
nn.ReLU()

# Out 32x32

def forward(self, x):

x0 = self
x1 = self.
x2 = self
x3 = self.
x4 = self
x5 = self
x6 = self
return x6

.encoder0(x)

encoder1 (x0)

.encoder2(x1)

encoder3(x2)

.decoderO(torch.cat((x3, x2), 1))
.decoderi(torch.cat((x4, x1), 1))
.decoder2(torch.cat ((x5, x0), 1))
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