IMPERIAL COLLEGE LONDON

BENG INDIVIDUAL PROJECT

Attribution of Cyber Attacks:
An Argumentation-based Reasoner

Author: Supervisor:
Linna WANG Dr Erisa KARAFILI

June 17, 2018

Contents

1 Introduction

1.1 Motivations
1.2 Objective
1.3 Contributions
1.4 Structure of reporto
2 Background
2.1 Attribution
2.1.1 Case studies of attribution
2.2 Existing approaches to attribution L.
221 Forensicso
222 Cyberdeception.
2.2.3 Socio-cultural modelling
2.3 Argumentationo
2.3.1 Applications of argumentation
2.3.2 Advantages of argumentation
2.3.3 Related studies on the use of argumentation in attribution . .
2.3.4 Why argumentation for attribution
2.3.5 Analysis of argumentation tools
2.4 Abduction
2.4.1 Advantages of abduction
2.5 Foundation knowledge Lo
2.5.1 Argumentation framework
2.5.2 Logic programming
25.3 Gorgias
3 ABR Overview
3.1 Overall architecture
3.1.1 Reasomer
3.1.2 Numerical scoring of solutions
3.1.3 Integration with forensic tools
3.1.4 Visualisation 000
3.1.5 Userinput
3.2 Motivations for designo

4 ABR Reasoner

4.1 Q-model
4.2 Key definitionso
4.3 Corerules e

11
12
12
16
17
17
17
19
20

21
21
22
22
22
23
23
23

4.3.1 Strategic layer overview
4.3.2 Rule walk-through
4.4 Background knowledge oL
4.4.1 General knowledge oL
4.4.2 Domain-specific knowledge L.
4.5 Use of preference-based argumentation
4.5.1 Conflicting rules with preferences
4.5.2 Conflicting rules without preferences
4.6 Use of abducibles o
Other Key Components
5.1 Scoring system
5.1.1 Motivation
5.1.2 Intuition
5.1.3 Implementationo oL
5.2 Forensic tool integration oL
5.2.1 Motivation
5.2.2 Implementation oL
5.3 Visualisation
5.3.1 Motivation
5.3.2 Implementation,
5.4 Standardised rule names
ABR User Interface
6.1 Utils e
6.2 Tool integration
6.3 Insert newrule
6.4 Standard executeo
6.5 Verbose execute
6.6 Custom execute
6.7 Input evidence.
Implementation Details
7.1 Summary of ABR functionalities
7.2 Technology stack
7.3 Implementation details
7.3.1 QueryExecutorjava L
7.3.2 Resultjava. o
7.3.3 Utilsjava o
7.3.4 DerivationNode.javao 0L
7.3.5 Toollntegration.java
Evaluation
8.1 Functionality
8.2 Evaluation of correctness of ABR
8.2.1 Detailsoftests
8.3 Evaluation of performance of ABR
8.3.1 Analysisofresults
8.3.2 Scaling with number of evidences

38
38
38
38
39
40
40
40
45
46
47
50

51
53
93
23
54
55
95
o6

57
57
o7
57
o8
61
63
64
67

8.4 Discussiono 83

8.4.1 Limitations 83
8.4.2 Strengths 84
Conclusion and Future Work 86
9.1 Conclusion L 86
9.2 Futurework 87
Core Gorgias Rules 95
A.1 Explanation of Rules, 95
A.1.1 Rule 1: Group claimed responsibility 95
A.1.2 Rule 2: Has motive and capability 96
A.1.3 Rule 3: APT group to origin country 101
A.1.4 Rule 4: Has location and motive 102
A2 Allrulesused in ABR 103
A.2.1 All technical rules, 103
A.2.2 All operational rules 105
A.2.3 Allstrategicrules Lo 107
Attribution Cases Used to Extract Rules 110
B.1 Stuxnet attacko 110
B.2 APTL . . . 111
B.3 Sony hack 112
B.4 USbank hack 113
B.5 Gaussattack 115
B.6 Wannacry attack oo 116
Adding Strategic Rule Preferences in Gorgias 118
Other Implementation Details 121
D.1 Query limit 121
D.2 Extraction of argument tree L. 121
D.3 Construction of DerivationNode from derivation example 121
D.4 Construction of DerivationNode from argument tree example 123

Abstract

As our lives become increasingly entwined with technology and the Internet, the
impact of cyber attacks will be increasingly damaging. Know yourself, know your
enemy, and you shall win a hundred battles without loss, according to ancient Chinese
military strategist Sun Tzu. Knowing the ‘enemy’ by determining the culprit behind
an attack, also called the attribution of a cyber attack, is fundamental in building
preventive measures against similar culprits.

Some challenges faced by analysts and investigators performing attribution in-
clude managing the huge amounts of data available; gathering and putting together
evidences from different aspects of the attack; and dealing with conflicting evi-
dences. While existing methods of attribution rely heavily on experienced human
analysts and automated tools that focus on extraction or analysis of specific techni-
cal evidences; this project is an effort to automate the attribution process by using
argumentation to reason with both technical and social evidences.

The result is an argumentation-based reasoner (ABR) which, given sufficient ev-
idence, is able to perform the attribution of an attack. ABR also provides a suite
of tools that refines the core reasoner. Firstly, ABR makes the derivations of its
solutions fully transparent. Comprehensive graph visualisations are produced, sup-
porting the result by explaining how the result is derived. Secondly, A BR emphasises
on the incremental and iterative nature of attribution by introducing various fea-
tures that encourage further action from the its users. Lastly, ABR is built to be
flexible, where all the solutions are presented to users with numerical scores to serve
as guidelines, and ultimately the users have control over what kind of reasoning or
solutions they prefer.

Overall, ABR explores the possibility of expressing attribution using a formal
argumentation-based framework while achieving performance level expected of a
real-time interactive application. Being the first tool of its kind that performs attri-
bution using both technical and social evidences combined with background knowl-
edge that models the real world, ABR has the potential to redefine how attribution
is done in the cyber world.

Acknowledgements

I would like to take the opportunity to thank my supervisor, Dr Erisa Karafili,
for her continual support and encouragement throughout the project. I feel really
fortunate to have such an enthusiastic supervisor who is willing to put so much
time and effort into helping me, this project would have been impossible without
her efforts. Additionally, I would like to express my gratitude to Prof. Antonis C.
Kakas, who was extremely helpful and provided much-needed advice on the usage
of the Gorgias framework.

I would like to thank my friend, Ming Hong, for proof-reading this report, and
many others for their invaluable feedback. To all my friends and family, thank you so
much for the friendship and support over the years. I will miss cooking and feasting
after exams, and all the random heart-to-heart sessions we have. My university life
has been so enjoyable and fruitful; I have learnt so much during these three years, I
could not have asked for more.

Chapter 1

Introduction

In this chapter, we first introduce the motivations for the project, before detailing
the objectives and contributions made.

1.1 Motivations

It is expected that by 2021, cyber crime damage costs will hit $6 trillion annually [1].
In 2017, we have seen some of the most egregious attacks, including WannaCry,
NotPetya, Wikileaks CIA Vault 7, as well as the exposure of data of 198 million
US voters [2]. Moreover, the use of the Internet of things (IoT) and other smart
devices are projected to increase exponentially from 2015 to 2025 [3]. With the
sheer amount of personal information we have online and the degree of dependence
on these devices, individuals are also extremely vulnerable and exposed to cyber
attacks. Therefore, it is clear that organizations, countries and individuals alike have
an urgent need to bolster their defences against the myriad of cyber criminals online.
Although the cyber security industry have been trying to keep up by introducing
new and better technology and security techniques, we believe that such a one-size-
fits-all approach is insufficient.

After an attack, if we can find out the profile, motivations and methods used
by the attacker using attribution, we can then respond in a meaningful way to it or
future attacks from similar attackers. This includes strengthening the security of the
systems in a targeted way, specific to the profile of the attacker. For example, certain
hacker groups may only operate in certain times of the year (due to religious or
national holidays), so knowing the identity of the attacker, the defender organisation
can organize its defence resources accordingly [4].

However, it is imperative to ensure that the attributions are correct, as false
attributions can lead to dire consequences, especially if the accused attacker is a
nation-state. When a nation-state have been identified to be supporting a cyber-
operation, victim nation-states often carry out severe actions against its alleged
attacker. For example, after the Sony hack in 2014, the United States imposed an
economic sanction against North Korea, the alleged attacker behind this attack [5].
Meanwhile, many security experts in the private sector have been doubtful of FBI’s
attribution [6], due to lack of conclusive evidence published by the FBI. North Korea
reiterated its denial of involvement, criticizing the United States for its “hostile and
repressive” move [7]. If the attribution was in fact wrong, it would have aggravated
the international relations between United States and North Korea, or even spark a

war.
It is thus crucial to not only solve the problem of attribution, but to solve it with
considerable accuracy or at least indicate any uncertainties in attributions made.

1.2 Objective

The main goal of this project is to construct an argumentation-based reasoner (ABR)
to aid analysts in addressing the attribution problem and produce comprehensive
explanations to support the attribution. By formalising the attribution process, us-
ing both technical and social evidences, we hope to automate parts of the attribution
to reduce the reliance on the knowledge and experience of forensic analysts.

Given various pieces of evidence gathered, the objective of the tool is to return
the following:

Results of attribution: present a list of entities (countries or hacker groups) that
could be responsible for the cyber attack.

Explanation of the result: provide a coherent explanation for the results of at-
tribution.

Rank multiple results: when there are more than one result for a given attack,
be able to rank the results by their relative strength.

Highlight gaps in reasoning: highlight to the user any assumptions or potential
gaps in the reasoning used during attribution.

Path for further investigation: when there are insufficient evidence to make an
attribution, suggest other information that can be given in order to successfully
perform the attribution of a cyber attack.

1.3 Contributions

At the end of this project, we have an argumentation-based reasoner (ABR) that is
able to perform the attribution of an attack using both technical and social evidences,
built using Prolog.

Reasoner built using a formal logic framework Using a preference-based
argumentation framework, the reasoner consists of rules and preferences split into
layers according to a model proposed by Rid and Buchanan (Chapter 4). This model
enables us to represent both technical and social evidences and uses both to arrive
at an answer to the attribution problem. The rules in the reasoner are constructed
by analysing attributions of well-known cases of cyber attacks and extracting the
reasoning process used by investigators and analysts who worked on the cases.

User interface ABR extracts the essential information from the result returned
by the reasoner and present them to the user in a much more coherent manner (than
the default Prolog output) in its graphical user interface (GUI) (Chapter 6). The
GUI offers many ways to interact with ABR, where the user can execute in standard
or verbose mode, insert new rules and evidences, or execute their own custom query.

Visualisation Surrounding the core reasoner, we have built a suite of other tools
and features using Java (Chapters 5 and 7). Structures that are hierarchical in
nature (derivation and argument tree) are visualised by ABR into colour-coded
graphs, which can be viewed from ABR’s GUI (Section 5.3). The derivation graph
serves as a visual explanation of how the solution is derived; while the argument
tree shows how the solution defends itself against counter arguments.

Scores To provide a guideline to users in deciding which result is stronger when
faced with multiple results from ABR, a numerical score is assigned to each attri-
bution result. The scoring system is constructed by analysing how humans might
attempt to score a generic argument.

Forensic tool integration ABR integrates with some forensic tools to automate
extraction of some evidence, fitting itself into the normal work-flow of analysts.

Evaluation Finally, we evaluate the performance of ABR by testing its correct-
ness and performance by using both synthesized test scenarios and real cases of
cyber attacks (Chapter 8). Also considered is how ABR scales as the number of
evidences provided increases.

The result of this project is an interactive tool that, given sufficient evidence,
is capable of returning the attribution result and provides comprehensive diagrams
that explains its results.

1.4 Structure of report

We present the related work and background research that was used as a starting
point for our project in Chapter 2. A high-level overview of ABR is given in Chap-
ter 3, where we briefly describe its architecture and its various components. The
main core of the ABR reasoner is presented in Chapter 4, where we introduce the
reasoning rules and background facts used. ABR is composed of other key com-
ponents, such as the scoring system, forensic tool integration, visualisation of key
structures, as described in Chapter 5, and its user interface, introduced in Chap-
ter 6. Details of the implementations can be found in Chapter 7. We evaluated
ABR, showing the results and details of the test cases in Chapter 8. Finally, we
conclude with our final remarks on the project and some interesting future works in
Chapter 9.

As non-essential reading, we include in Appendix A further explanations of the
core Gorgias rules used in ABR, which are extracted from the cyber attack cases
as shown in Appendix B. Further details regarding some problems we faced in our
project and other implementation details can be found in Appendices C and D
respectively.

Chapter 2

Background

In this chapter, we consider a model proposed by Rid and Buchanan to illustrate
attribution, existing means to perform attribution and their limitations. Next, we
discuss the usefulness of argumentation and abduction in solving some of these
problems. Finally, we introduce some key concepts that are crucial for understanding
the rest of the report.

2.1 Attribution

Attribution of a cyber attack is “determining the identity or location of an attacker
or an attacker’s intermediary” [8]. Due to how the Internet was constructed, tracing
the origin of a cyber attack can be really difficult since attackers can easily forge or
obscure source information [9].

A model that deals with the problem of attribution is proposed in [10]. This
model, proposed by Rid and Buchanan, is called the @-model and it divides the
attribution process into three distinct layers: technical, operational and strategic.
It describes attribution as an incremental process, each of the layers build on top
of each other to form the final attribution. We introduce the three layers of the
Q-model below.

Technical The technical layer comprises the bulk of the work in digital forensics.
It includes scanning and reporting of abnormal computer behaviour. The objective
of this layer is to find out how the attackers compromised the system. Examples of
evidence that belongs to this layer includes the presence of zero-day vulnerabilities,
signatures or unique traits in malware, as well as traits like language indicators.

Operational The operational layer combines information from various sources,
including derived information from the technical layer, non-technical (social) evi-
dences, and the geopolitical context. The objective of this layer is to find out what
attacked the systems, to develop a high-level understanding of the attacker. Such
details include the motivations of the attacker and their general profile.

Strategic The strategic layer uses information from the technical and operational
layer in attempt to draw a conclusion. To unveil the attacker’s intent, analysts can
consider precedents or previous attacks. Attempts to find similarities with previous
cases might help to draw links between cases with similar perpetrators.

4

2.1.1 Case studies of attribution

To explore how analysts use technical, social evidence, and contextual knowledge
for attributing attacks, we present some well-known cases of cyber attacks in this
section. More case studies can be found in Appendix B.

Stuxnet Stuxnet is one of the world’s first large-scale cyber attacks, even dubbed
the World’s First Digital Weapon [11|. Stuxnet was first discovered in 2010 at
the uranium enrichment plant in central Iran. Its code was found to be especially
complex and sophisticated, using four zero-day vulnerabilities, which was the first
clue to investigators that a larger organization was behind this attack, since zero-
day vulnerabilities are rare in the cyber world. A multitude of other technical
evidence including the presence of two fraudulent certificates has also pointed to
the direction that a large organization with substantial resources was responsible.
The large proportion of infected machines that were in Iran sparked suspicions that
the attack could have been a state-sponsored cyber attack [12]. Reports that the
Iranian President Mahmoud Ahmadinejad was using the nuclear program to build
a nuclear weapon serves as a motivation for other nation-states to attack the power
plants as an act of sabotage to Iran’s uranium enrichment program. The United
States and Israel has been allegedly responsible for the attack.

APT1 espionage campaign Since 2004, cyber security breaches at hundreds of
organizations globally were attributed to advanced threat actors commonly called
the Advanced Persistent Threat(APT) groups. APT1 is the most prolific of those
groups, and is believed to be the 2nd Bureau of the People’s Liberation Army
General Staff Department’s 3rd Department, commonly known as Unit 61398 [13].
APT1 has stolen hundreds of tera-bytes of data from more than a hundred organiza-
tions, demonstrating “the capability and intent to steal from dozens of organizations
simultaneously” [13]. This exhibits an abundance of resources of the perpetrator of
this attack. Furthermore, the industries were found to “include four of the seven
strategic emerging industries that China identified in its 12th Five Year Plan” [13],
which serves as the motive for China to carry out the attack. On top of that, tech-
nical evidences point to Chinese involvement, since 98% of the IP addresses used by
APT1 was registered in China, Shanghai. The client systems were also found be set
to use Simplified Chinese language. Moreover, one of the tools used in the attack,
HUC' Packet Transmat Tool, was also found to be registered in China.

Sony hack In 2014, hackers infiltrated the Sony’s computers and stole data from
Sony servers. The Sony hack is an example of a case where attribution still remains
controversial, years after the incident. A group called Guardians of Peace claimed
credit for the attack, but the media and several government agencies claimed that
the attack is state-sponsored by North Korea. This attribution was based on the
fact that North Korea has a strong motive to attack Sony, in retaliation for Sony’s
then yet-to-be-released film, The Interview, a comedy involving a CIA plot to kill
North Korean leader Kim Jong-un [14]. There were also technical evidences indicat-
ing North Korean involvement in the hack. The attackers used proxy servers to hide
their origin during the attack and when sending public statements, but according to
FBI Director James Comey, several times they got “sloppy”, and left their tracks un-

hidden [15]. The FBI then traced the IP addresses to find that they were “exclusively
used by the North Koreans”. The FBI has also found that code in the malware used
by Guardians of Peace in the Sony attack is similar to code used by North Korea in
other attacks. However, many security experts disagree on that attribution. They
commented that there is too little, and conflicting evidence to attribute the attack
to North Korea; and the malware was leaked long before the hack and “any hacker
anywhere in the world could have used it” [16]. Against these comments, FBI claims
that they possess evidences and resources that were not made available to public.

2.2 Existing approaches to attribution

Currently, attribution involves a myriad of different approaches and facets. In the
following section, we consider some of these existing approaches to attribution and
the problems associated with them.

2.2.1 Forensics

Digital forensics, or sometimes called Computer forensics, is defined by the United
States Computer Emergency Readiness Team (US-CERT) to be “the discipline that
combines elements of law and computer science to collect and analyse data from
computer systems, networks, wireless communications, and storage devices in a way
that is admissible as evidence in a court of law” [17]. The main stages of digital
forensic processes [18] are:

1. Collection: obtaining data from various data sources, taking care to isolate
the device to prevent accident infection of more machines.

2. Data examination: evaluate and extract pertinent information from the
data.

3. Information analysis: correlate multiple information sources to reach a con-
clusion regarding the people, location, tool, and events involved in the incident.

4. Evidence reporting: present evidence resulting from analysis, considering
factors such as alternative explanations and audience.

Carrier defines the Complexity Problem and the Quantity Problem in digital
forensics. The Complexity Problem is that “acquired data are typically at the lowest
and most raw format” [19], which requires large amounts of time for highly-skilled
human analysts to decode and understand. The Quantity Problem is caused by
the sheer amount of data to analyse, that can be way too large for a human ana-
lyst to manually analyse every piece of data. To resolve these two problems, data
translation tools and data reduction techniques are used respectively. Carrier also
organised digital forensics into different layers of abstraction [19]. We describe what
these layers mean and list some of the popular tools used in these layers below:

e Physical media analysis: analysis of hard disk, memory chips and recov-
ering deleted data after it has been overwritten, e.g., commercial toolkits like
FTK Toolkit.

e File system analysis: viewing file and directory contents, as well as recov-
ering deleted files, e.g., Disk Drill.

e Application analysis: viewing configuration files, log files, images, docu-
ments and reverse engineering executables. In Linux there are several tools
like GNU Binutils, nm, objdump that can be used to decompile the malware.

There are also decompiler software available on other operating systems, e.g.,
REC Decompiler?.

e Network analysis: analysis of network packets, e.g., Wireshark®; and intru-
sion detection system (IDS) alerts, e.g., Snort? and OSSEC®.

e Memory analysis: identification of the code that a process was running on,
e.g., VirusTotal®.

Below we present two security techniques that can be used for collecting forensic
evidences.

Traceback Techniques

Traceback techniques are used in Network forensics to retrace the origin of the attack.
Some examples of such techniques, like storing logs and traceback queries, perform-
ing input debugging, inserting host monitor functions, are presented by Wheeler
in [8].

Honeypots

Honeypots are components that “provides its value by being attacked by an adver-
sary”, and have been used in cyber security since the 1990s [20]. Honeypots are
useful for detecting and recording malicious activity. Anagnostakis et al. proposed
a honeypot-based detection architecture |21], where the honeypots and the rest of
the system are combined, and suspicious or anomalous activity are routed to the
honeypot system for further examination. The advantage of using honeypots over
normal operational systems is that after detection, a honeypot can be easily dis-
connected from the rest of the system and isolated for further investigations since
it does not actually carry out any useful function as part of the system. Forensic
analysts can then retain and investigate using the attacked state of the honeypot.

Limitations of digital forensics

One of the main limitations of digital forensics lies in the difficulty of differenti-
ating real evidence from forged evidence placed by the attacker intentionally. For
example, focusing on network forensics specifically, source IP of the attacker can be
easily forged or obscured. There are many different technologies that a hacker can
use to obscure their IP, such as virtual private networks (VPNs), proxies or Tor.

'Disk drill: https://www.cleverfiles.com/

2REC Decompiler: http://www.backerstreet.com/rec/rec.htm
3Wireshark: https://www.wireshark.org/

4Snort: https://www.snort.org/

SOSSEC: https://www.ossec.net/

SVirustotal: https://www.virustotal.com/

https://www.cleverfiles.com/
http://www.backerstreet.com/rec/rec.htm
https://www.wireshark.org/
https://www.snort.org/
https://www.ossec.net/
https://www.virustotal.com/

Although there exists some spoof prevention techniques that verifies the validity of
the connection back to the sender, this can only be used during the attack to prevent
unauthorized connections, not in a post-attack investigation.

Furthermore, while forensic techniques in general are good for producing indi-
vidual pieces of evidence from data that are agreeable with each other, it lacks the
ability to deal with conflicting data or conflicting pieces of evidences from different
sources. Since the attacker can easily plant false evidence to lead investigators off
their trail, investigators are very likely to be in a situation with multiple pieces of
conflicting evidences.

Digital forensics is also often extremely human-intensive, requiring many skilled
analysts to work for weeks or even months. Nassif et al. [22] mentions that com-
puter forensic analysis usually involves examining hundreds of thousands of files per
computer, which makes it impossible for a human expert to manually analyse and
interpret all the data. The problem is exacerbated by the fact that a large propor-
tion of the data consists of unstructured text, which makes analysis by computers
challenging too.

Digital forensics only uses technical evidence, but fail to consider other kinds of
evidences such as geopolitical situations and social-cultural intelligence, which could
also provide useful leads during investigations.

2.2.2 Cyber deception

Cyber deception techniques can be used not only for protecting the system from at-
tackers, but also as part of the attribution process. Almeshekah et al. [20] introduced
four different groups of protection mechanism, one of which includes attribution and
deception. Deception-based mechanisms pivots on manipulating the attacker’s per-
ceptions, they are “planned actions taken to mislead attackers and to thereby cause
them to take (or not take) specific actions that aid computer-security defences” [23].
Examples of such mechanisms include booby-trapped software, layered authentica-
tion, endless files, etc.

Such deceptive mechanisms can be used to entice attackers to revealing their
identity and objectives. Since simply detecting the attacker’s IP address is insuffi-
cient as IP addresses can be easily spoofed, Cyber deception can be used to trick
attackers to allow the system to collect information on fixed artefacts such as tools,
behaviours or traits.

Limitations of cyber deception

In order for deception to be successful, constant monitoring and feedback needs to
be in place. Defenders need to observe the attacker’s behaviour and decide whether
to tone down the level of deception by including some true information, or even
stopping the deception entirely. Since attackers frequently turn aggressive when
they find out that they are deceived, the situation in which the attacker discovers
that they were tricked should be avoided.

2.2.3 Socio-cultural modelling

Technical solutions such as adaptive defence strategies and offensive cyber-operations
have some obvious shortcomings. Technical developments restricts the effectiveness

of adaptive defence strategies, and the cyber-operations against the attacker might
spark a cyber-war. Hence, there has been a move towards threat intelligence, which
involves using machine learning techniques to collect and analyse digital communi-
ties such as hacker forums and chat-rooms [24].

Problems with Social-cultural Modelling

There are two major challenges in this approach. Firstly, in order to create the
model, we need to identify the various persona across different digital communities,
which is very challenging since digital communities are usually anonymous. Further-
more, deceptive actions by the true attacker, like constructing a false virtual persona,
can deceive investigators to make a false attribution to a non-existent entity or even
make another person or organization the scapegoat.

2.3 Argumentation

Two main challenges of attribution are targeted in this project are (i) incomplete
information and (ii) the existence of conflicting, possibly deceptive information. To
deal with these challenges, we explore the use of argumentation in the attribution
process. In this section, we first introduce argumentation, then present some appli-
cations of argumentations and its strengths. Next, we look at the related studies on
the use of argumentation in attribution and limitations of these studies. Lastly, we
justify why argumentation should be used for attribution, and look at a few of the
argumentation tools available.

Argumentation is “the act or process of forming reasons and of drawing conclu-
sions and applying them to a case in discussion” [25]. Formal argumentation involves
a set of chained arguments. Each argument has premises and conclusions.

Premise: a set of statements that supports the argument. The premise of an
argument needs to be true in order to prove the conclusion.

Conclusion: a statement that the arguer is trying to convince the listener of.

Arguments can be linked or convergent. In linked arguments, the premises must all
be true in order for the conclusion to follow (logical AND). In convergent arguments,
any one of the premises itself is sufficient to prove the conclusion (logical OR), and
more premises simply reinforce the conclusion [26]. When there are more than one
argument, there are a few ways that one argument can attack another argument.
Argument Y can:

1. Attack the premise of argument X;
2. Ask critical questions to doubt the acceptability of the argument;

3. Raise a counter-argument. A counter-argument is one that leads to the oppo-
site conclusion (e.g., if an argument has conclusion ‘CountryX is the culprit
for the attack’, then its counter-argument is ‘CountryX is not the culprit for
the attack’).

In the case of a persuasion dialogue’, argumentation can ultimately uncover the
strongest arguments on both sides of the argument.

2.3.1 Applications of argumentation

Argumentation has been used in many real-life applications. In this section, we
introduce some of them to demonstrate the advantages of argumentation.

Health industry Argumentation is used in risk assessment and communication
in health care [27]. The Online Patient Education and Risk Assessment (OPERA)
is based on deductive argumentation by association. By using “facts” and “truths”
as premises, and risk explanations as arguments, OPERA presents its claims with
an “ex auctoritate causal link” [28] (explaining the cause-and-effect relations in an
authoritative manner). Such an approach is aimed at giving patients a personal,
comprehensive explanation of the assessment while maintaining some of its author-
itative nature. In OPERA, argumentation is used for the transparency that it
provides to the patients. This enables the patients to understand their situation
that motivates the various decision made by the medical staff, and thus be able to
accept those decisions more easily.

Design industry Another example use case is an analysis of interaction between
designers within a team. Stumpf et al. conducted a study [29] to understand
how designers interact with each other and model the design discourse, ultimately
suggesting useful techniques for better design. In this case, argumentation is used,
since designers naturally tend to fall into persuasive arguments, to “explain, predict,
justify and warrant their artefacts” to each other.

Transport industry Argumentation is also used in the development of an inte-
grated flexible transport systems platform in rural areas in [30]. Velaga et al. used
a resource-bounded argumentation framework, which is a traditional framework ex-
tended with a set of resource bounds. This is to model the fact that arguments
(passenger trying to acquire a ticket) would only acquire resources (a seat on the
train) once they are deemed acceptable. In this case, the negotiation dialogue in ar-
gumentation is used to evaluate the “conflicting choices available to both passengers
and service providers” [30]. Once again, the ability to visualise easily the justifi-
cations for its decisions, for debugging purposes, was one of the main reasons why
argumentation was chosen.

2.3.2 Advantages of argumentation
After looking at the examples of application of argumentation in the previous section,

we review some of the key advantages of using argumentation.

Accessibility /Transparency Making decisions using argumentation is similar to
how humans naturally make decisions, so the rationale for how the decision is made

7A persuasion dialogue is an exchange between two individuals where initial opinions are con-
flicting, and its goal is for one party to convince the other

10

(preferences between rules) can be easily accepted by humans via diagrammatic
forms, achieving transparency. Furthermore, argumentation encourages evaluation
of the argument, assessing relative importance of various factors when making deci-
sions [27].

Incomplete and conflicting information Argumentation captures the fact that

the final decision might change if more information is available (i.e., non-monotonic

reasoning®). More information might reveal counter-arguments that could be stronger
than the original winning argument [31]. In the case of conflicting information,

different forms of argumentation deals with them differently. In preference-based

argumentation, preference rules can be inserted into the knowledge base, where one

rule is preferred to another when the premises of both can be satisfied.

2.3.3 Related studies on the use of argumentation in attri-
bution

In this section, we consider some of these related works on the use of argumentation
in attribution. Argumentation has been used for solving the attribution problem
in [32, 33|, where the work in [32] is an extension of [33].

DePL There has been research and experiments of how argumentation-based
frameworks can be leveraged to improve cyber-attribution decisions. Nunes et al.
show how an argumentation-based framework called DeLP (Defeasible Logic Pro-
gramming) can be constructed [32]. DeLP is constructed using facts, strict rules
and defeasible rules. Using ground truth derived from a DEFCON CTF dataset,
the objective of the framework is to identify the correct team that carried out the
attack.

InCA Shakarian et al. have also introduced an argumentation-based framework
called the Intelligent Cyber Attribution (InCA) designed to aid the attribution pro-
cess [33]. InCA combines argumentation-based reasoning, logic programming, and
probabilistic models to attribute an operation and also to provide explanations to
how the system arrives at its conclusion. InCA is constructed using two separate
models, a probabilistic environment model (EM), and an argumentative analytical
model (AM). The EM is used for reasoning about context information about the
world, and must be in a consistent state. On the other hand, the AM is used for
resolving conflicting information derived using context information from the EM.
The InCA framework leverage on argumentation in the construction of the AM due
to two main features of argumentation. Firstly, using argumentation, they were
able to represent and resolve conflicting information in a formal, logical procedure.
Secondly, the “transparency provided by the system” [33| provides the analyst with
the insight required to identify incorrect inputs, calibrate the model, or collect more
evidence.

8Non-monotonic reasoning represent defeasible inferences, allowing one to draw tentative con-
clusions that might be retracted given further information.

11

Limitations Despite these advances in using argumentation in attribution, there
are still some shortcomings yet to be resolved. Firstly, none of the current works tar-
get the social aspect of attribution. Contextual knowledge such as ongoing conflicts
between countries or rivalry between corporations can be very useful in detecting
motives of potential culprits. Secondly, this project will be the first one to attempt
to use the Q-model [10] to categorise evidence and rules in an argumentation-based
framework, which could lead to more accurate attribution.

2.3.4 Why argumentation for attribution

We summarise below some of the key features of argumentation that makes it suit-
able for use in attribution.

Conflicting information Argumentation handles conflicting information elegantly,
building up various arguments from the available evidences and returning the strongest
ones. In preference-based argumentation, conflicting information are managed by
preferences, where preferences between rules (or facts) can be added to determine
the strength of the argument.

Transparency As mentioned previously, the transparency, or ability to provide
self-explanatory results, is one of the key advantages of argumentation. Trans-
parency is desirable in attribution as it provides a way to visualise the attribution
process to even non-professionals. This makes the attribution more accountable,
since the reasoning behind it can be clearly explained and understood. As analysts
can understand the reasoning process taken by the argumentation-based reasoner,
they are not confined to indiscriminately accepting the given solution, they are able
to comprehend the reasoning process and decide if the solution is appropriate.

Formal and rigorous system Differing from the existing human-driven attribu-
tion process, using argumentation, we are able to semi-automate the process. Instead
of fully relying on the experiences and instincts of human analysts, we construct a
formal, rigorous proof system that aids the process of attribution.

2.3.5 Analysis of argumentation tools

In this section, we compare existing argumentation tools to determine which is the
most suitable for this project. In this section, three tools are compared: Gorgias,
GorgiasB and CaSAPI.

Gorgias

Gorgias® is a general argumentation framework that combines the preference-reasoning
and abduction. The syntax for using Gorgias in SICStus Prolog are as follows:

Query prove(Goals, Delta).

Rule rule(Label, Head, Body).

9Gorgias: http://www.cs.ucy.ac.cy/ nkd/gorgias/

12

http://www.cs.ucy.ac.cy/~nkd/gorgias/

Preference prefer(Labell, Label2).

Conflict conflict(Labell, Label?2).

Abducible abducible(abduciblePredicate(_), [J]).
Fact rule(Label, Fact, [1).

Using Gorgias, we can create a prolog file as presented below:

:- compile('/PATH_TO_GORGIAS/gorgias-src-0.6d/lib/gorgias.pl').
:- compile('/PATH_TO_GORGIAS/gorgias-src-0.6d/ext/lpwnf.pl').

4 Rules

rule(notGuiltyByDefault (X), (neg(isCulprit(X)), [1).
rule(ipGeolocation(X), isCulprit(X), [ipGeoloc(X, IP)]).
rule(spoofedIp(X), neg(isCulprit(X)), [ipGeoloc(X, IP), spoofedIP(IP)]).

/A Facts

rule(factl, ipGeoloc(china, ip1), [1).
rule(fact2, ipGeoloc(us, ip2), [1).
rule(fact3, spoofedIP(ipl), [1).

APriority/Preference
rule(pl(X), prefer(spoofedIp(X), ipGeolocation(X)), [1).
rule(p2(X), prefer(ipGeolocation(X), notGuiltyByDefault(X)), [1).

To test or execute the model, we can use the enter the query
prove ([neg(isCulprit(X))], D) and prove([(isCulprit(X))], D) in the Pro-
log environment to get the following output in Listing 1.

Listing 1 Output from Gorgias
| ?7- prove([neg(isCulprit(X))], D).
X = us,

D = [fact2,ipGeolocation(us)] 7 ;

no

| 7- prove([(isCulprit(X))], D).

X = china,

D = [factl,fact3,factl,spoofedIp(china)] ? ;
no

GorgiasB

GorgiasB' is an extension of Gorgias, where the main difference between GorgiasB
and Gorgias is the presence of a graphical user interface (GUI) in GorgiasB. To build
the initial decision model, we need to perform the following steps:

GorgiasB: http://gorgiasb.tuc.gr/index.html

13

http://gorgiasb.tuc.gr/index.html

1. Add options: options are the final decision to be made, e.g., isCulprit (CountryA),
not (isCulprit(CountryA).

2. Add beliefs: beliefs are relevant knowledge that affect the decision being
made, e.g., originFrom(IP, CountryA).

3. Define initial arguments: arguments are general rules, for example
When [originFrom(IP, CountryA)] choose isCulprit(CountryA).

4. Iteratively define sequences of more specific scenarios: we increase the
level of argument, by specifying scenarios where one option is stronger than the
other. For example, When[originFrom(IP, CountryA), ipIsSpoofed(IP)]
choose not(isCulprit(CountryA)) is a level 2 argument.

5. Execute: finally, we execute the model to test it.

Figure 2.1: Executing decision model in GorgiasB GUI

Gorgias-B, File: fhomes/lw4715/GorgiasB/ip.pl

F Y

File Manage ian: fiew Run Help

et K ES]

Imstantiate the scenario knowledge for querying

0 4

iplsSpoofed/1 | « | (|ipz) | Add Fact

isCulprit v | (|us) | Explore selected option | | Explore all options

IModel instantiation monitor

- Added to scenario the non-defeasible knowledge:
originFrom(ip1, us)

- Added to scenario the non-defeasible knowledge:
originFrom(ip2, china)

- Added to scenario the non-defeasible knowledge:
lipIsSpoofed(ip2)

---- New Goal: isCulprit{china)? ----
- Instantiated facts:

originFrom{ip1, china)
originFrom(ip1, us)

originFrom(ip1, us)

originFrom(ip2, china)
|i|JIsS|Juofed(i|J2)

Mo solution for this goal.

---- New Goal: isCulprit(us)? ----
- Instantiated facts:
originFrom{ip1, china)
originFrom(ip1, us)
originFrom(ip1, us)
originFrom{ip2, china)
|ipIsSponfed(ip2)

Found solution:
Argument #1:
When [originFrom({IP, us)] choose isCulprit{us)

4 b

Reset

| Options View || & Run scenarios

Although the output from GorgiasB (Figure 2.1) is more comprehensible com-
pared to the output from Gorgias (Listing 1), the use of GUI is a fundamental

14

disadvantage of GorgiasB. Since we plan to build our entire project using the argu-
mentation tool, using the GUI will be too slow, difficult to maintain, and hard to
keep track of different versions.

CaSAPI

Credulous and Sceptical Argumentation, Prolog Implementation (CaSAPI)!! is a
hybrid argumentation system implemented in Prolog that combines abstract and
assumption-based argumentation. In CaSAPI, the user starts the argumentation
process with the command run/3 that takes 3 arguments: derivation type (GB,
AB, or ID), output mode (noisy or silent), and number of solutions. The three
derivation types differ in the level of scepticism of the proponent agent [34]:

Grounded beliefs (GB) derivations Agent is not prepared to take any chances
and is completely sceptical in the presence of seemingly equivalent alternatives.

Ideal beliefs (IB) derivations Agent is wary of alternatives, but is prepared to
accept common ground between them.

Admissible beliefs (AB) derivations Agent will adopt any alternative that is
capable of counter attacking all attacks without attacking itself.

One advantage of CaSAPI is that it can output the tuples < P;, O;, A;, C; > at
each step 7 in the argumentation, where P and O are the set of sentences held by the
proponent and opponent respectively, A is the set of assumptions generated by the
proponent and O is the set of assumptions in attacks generated by the opponent.
These information can be useful for debugging purposes, to check that our model is
performing as intended.

However, unlike GorgiasB and Gorgias, CaSAPI does not explicitly differentiate
between normal rules and preference rules, which might make it less readable and
thus confusing during construction of the model. For example, given the below
CaSAPI rule from [35], it is considerably hard for a human to read and understand
what the rule actually means.

myRule(def (t(villa,villa)), [not(def(t((villa,villa),(villa,villa)))),
not (def (r3(villa,villa)))]).

Choice of argumentation tool

We decided to use Gorgias for this project. The advantages of using Gorgias can be
summarised as follows:

Scalable Compared to GUI-based tools such as GorgiasB, Gorgias allows us to
build our own interface that allow for more automation and uploading large
number of rules instead of being restricted to inputting one rule at a time
manually.

Flexible Since Gorgias is implemented as a library to Prolog, it can be embedded
in our own application using another language'?.

1 CaSAPI: https://www.doc.ic.ac.uk/~ft/CaSAPI/
2http://www.swi-prolog.org/pldoc/man?section=embedded

15

https://www.doc.ic.ac.uk/~ft/CaSAPI/
http://www.swi-prolog.org/pldoc/man?section=embedded

Comprehensive Gorgias labels each rule, which makes the program more readable
and maintainable compared to other tools like CaSAPI.

2.4 Abduction

In this section, we describe how and why abduction is usually used, followed by
advantages of using abduction in attribution.

Abduction is a form of ‘logical inference’. Given an observation, it seeks to find
the ‘simplest and most likely explanation’ for it [36]. This is done by abducing all
possible explanations and considering competing hypotheses. When something is
abduced, it can be assumed to be true. Using an example from [37], if we know that
a car is not working, and we know that there are two possible causes for this: (i)
the battery is flat (flat Battery(car)) or (ii) the car is out of fuel (outO f Fuel(car)).
Then in this case we say that the abducibles (Ab) are the two possible explanations
for the observation:

Ab = { flat Battery(X), outO f Fuel(X)}

All abducible predicates comes with a set of integrity constraints. Integrity con-
straints are rules that ensures the consistency of the abduction system. They are
often written in the form of denials (rules with empty head). In order for the denial
to be true, there must be at least one body predicate that is false. All abducibles
have the following integrity constraint:

< abducible Pred, —abducible Pred

This constraint ensures that the abducible predicate cannot be both true and false
at the same time. While this must be true in order for the system to be consistent,
integrity constraints can also contain other contextual rules that specified by the
system’s designer. For example, back to our previous example, a possible context-
based integrity constraint can be:

+ flatBattery(X),lightsOn(X)

This integrity constraint represents the knowledge that if the lights of a car are on,
we know that the car battery is not flat.

Next, to perform abduction, we try to prove the observation (O) using a set
of background rules (B) by abducing any of the abducible predicates (Ab), while
abiding by the integrity constraints (/C'). Formalising the previous example, we
have:

O = notWorking(car)
B = {notWorking(car) < flatBattery(X).
notWorking(car) < outO f Fuel(X).}
Ab = { flatBattery(X), outO f Fuel(X)}
IC = { «+ flatBattery(X), lightsOn(X).
+ flatBattery(X), - flatBattery(X).
— outO f Fuel(X), ~outO f Fuel(X).}

16

The abduction task is to find a set of abduced predicates (A) that satisfies the
following:

ANUBEO
ANUBEIC
ANUBFE L

For this example, the solution is:

Ay = {flatBattery(car), outO f Fuel(car)}
Ny = {outOf Fuel(car)}
Az = { flat Battery(car)}

2.4.1 Advantages of abduction

In the context of attribution, we use abduction to fill in the knowledge gaps in our
reasoning. When we have insufficient evidence, we would like to see if we can make
some assumptions so that we are able to make the attribution. By abducing some
unavailable knowledge, we are able to make plausible deductions to reason about
who might be the culprit of an attack. Adding this abductive step into our project
means that it will be potentially fallacious, or reach a conclusion based on a false
belief. However, in the real world, it is extremely unlikely that we are able to obtain
all the required evidences and have no gaps in our knowledge before making the
attribution for any case. Thus, the ability to work with incomplete information
makes abduction suitable to use in the attribution process.

2.5 Foundation knowledge

In this section, we introduce the argumentation framework used by ABR, then
give a brief overview of the syntax of Prolog and Gorgias, which will be helpful to
understand the explanations on how ABR works during later discussions in coming
sections.

2.5.1 Argumentation framework

In this section, we present the argumentation framework that we use in ABR, which
is adapted from [38].

Argumentation theory defines the axioms in our framework. It is pair of argu-
ment rules and preference rules, (T,P).

Argument rules 7 is a set of labelled clauses in the form rule; : £ < Ly, ..., L,
where L, L1, ..., L, are ground literals, and rule; is the label, or rule name, of
the rule.

Conclusion of an argument rule rule; : £ < Lq,..., L, is L.

17

Premise of an argument rule rule; : £ < Ly, ..., L, is {L4,..., L, }. It is the set of
conditions required for the conclusion of the rule to be true.

Preference rules P is a set of clauses. A preference rule can either be static or
dynamic. Static preference rules only has a head in the form rule; < rules,
where rule, rules are labels of rules defined in 7. rule; < rule; means that
rules has a higher priority over rule;. Dynamic preference rules are defined
similarly to static preference rules, but with the addition of a body. For
example, the rule (rule;(X) < ruley(X)) < pred(X) means that rule;(X)
will only be preferred to rules(X) if pred(X) is true.

Argument is a set of argument rules and preference rules. It takes the form (7, P),
where T'C 7 and P C P.

Conclusion of an argument Given an argument (7', P), and a set of literals B, a
conclusion of the argument is a literal that can be derived from 7" (given that
the literals in B are true) and supported by P.

Premise of argument (7, P), is a set of all premises of T, i.e., arg premise =

U premise(T;).
T;eT

Conflicting argument is an argument. An argument (77, P’) is a conflicting ar-
gument of another argument (7', P) when the two arguments derive £ and
—L respectively, and rules used in the counter-argument (7", P’) are at least
‘as strong’ as that in (T, P) in terms of priority between rules. This pair of
arguments is also called conflicting arguments.

Derivation of an argument is a list containing - (i) labels (rule;) of argument rules
applied (7T') (ii) labels of preference rules applied (P) and (iii) labels of facts
that proves the premises of the argument rules.

Non-monotonic reasoning

Preference-based argumentation allows us to handle non-monotonic reasoning in
attribution, where the introduction of new evidence (literals) might change the result
of the attribution (due to conflicting arguments). For example, given the argument
pair (T, P):

T = {ruley : attackOrigin(X, Attack) < attackSourcel P(IP, Attack) N ipGeoloc(X, IP),
rules : ~attackOrigin(X, Attack) <+ attackSourcel P(IP, Attack) N ipGeoloc(X, I P)
A spoofedl P(IP)}
P = {prefi : rules > rule;}

If we only had the evidences:
E = {attackSourcel P(ipl, attackl), ipGeoloc(country X, ipl)}

we will get attackOrigin(countryX, attackl) as the conclusion of the argument.
However, if we had the evidences:

E = {attackSourcel P(ip2, attack2), ipGeoloc(country X, ip2), spoofedl P(ip2)}

then the conclusion will be —attackOrigin(countryX, attack?2) instead.

18

Abduction

By introducing a set of abducible predicates Ab, abduction allows us to make as-
sumptions A (A C Ab), for reaching a conclusion £; as long as the assumptions A
satisfy the integrity constraints. This gives us the power to make assumptions to
reason with incomplete evidence, and give analysts a potential lead to follow and

carry out further investigations. We describe in Section 4.6 how abducibles are used
in ABR.

2.5.2 Logic programming

The core reasoner of ABR is built in Prolog, so we briefly go through the basics of
first-order logic and programming in Prolog.

First-order logic

Prolog programs follow the first-order logic (FOL) style, so before we start on Prolog,
we give a short introduction on FOL.

In FOL, sentences or concepts can be represented by predicate symbols and con-
stants. For example, the concept ‘United States imposed sanctions on Iran in 2012
Feb’ can be represented as the literal imposedSanctions(united_states, iran, [2012,
2]). In this case, imposedSanctions/3 is the predicate symbol, /3’ denotes that the
predicate symbol takes 3 arguments. united states,iran and [2012, 2] are constants.
We can also use quantifiers in FOL. ‘3 is read as ‘there is’, denoting that there exists
at least one substitution of the variable makes the formula true. V is read as ‘for all’,
denoting that for all substitutions of the variable, the formula must be true. By us-
ing quantifiers and propositional logic connectives (=, A, V, —), we can build more
complicated formulas such as VX, Att.hasMotive(X, Att), hasCapability(X, Att) —
isCulprit(X, Att).

Prolog

Prolog is one of the most popular declarative logic programming languages. It has
three basic constructs: facts, rules and queries.

Facts Facts are literals that are universally true. They are written as a single literal
with a ‘.” at the end.

Rules Rules denote information that is conditionally true. Prolog rules has the
same meaning as a logic implication with exactly one head. They are written
in the following format: H : —Bj,...,By.. It can be rewritten into the
following FOL formula: H < By A ... A\ By, read as: if By,..., By are all
true, then H is true.

Queries A query asks the Prolog knowledge base (collection of facts and rules) if
a specific formula is true. Queries can be made by typing the formula in the
Prolog environment.

19

2.5.3 Gorgias

Gorgias is a preference framework built on top of Prolog. As mentioned in Sec-
tion 2.3.5, the Gorgias syntax adds another layer on top of the basic Prolog syntax.
All Gorgias constructs can be written in the following form: rule(Label, Head,
Body) where Label is a string, Head is a single literal and Body is a list of literals.
Below we show how the Prolog facts, rules and queries translate into its equivalent
form in Gorgias.

4 Fact

4 Prolog style:

claimedResponsibility(guardiansOfPeace, sonyhack)

/ Gorgias style:
rule(case5_f1(),claimedResponsibility(guardiansOfPeace,
- sonyhack), [1).

/ Rule

4 Prolog stye:

isCulprit(C,Att) :- hasMotive(C,Att), hasCapability(C,Att).
/ Gorgias style:

rule(r_str__motiveAndCapability(C,Att), isCulprit(C,Att),
— [hasMotive(C,Att), hasCapability(C,Att)]).

% Query (to be typed into Prolog environment)
% Prolog style:

| 7- isCulprit(X,Att).

% Gorgias style:

| 7- prove([isCulprit(X, Att)], D).

A caveat to keep in mind is that Prolog and Gorgias not only have different
syntax, but are fundamentally different as well. If we use Prolog system predicates
might not work when placed inside the Gorgias rule/3 predicate. For example, the
following query will fail when run with Gorgias-Visual on SWI-Prolog, even though
in the literal is clearly true.

| 7- prove([member([a, [a,b,c]])], D).
false.

This is why in some of our rules, we use Prolog definitions for conditions outside of
the Gorgias rules, like the following:

rule(bg8() ,,goodRelation(X,Y),[1) :-
- goodRelationList(X,L) ,member(Y,L).

In general, when using Prolog system predicates as part of the body, we put

them outside of Gorgias rules using Prolog conditions, and when using predicates
defined using Gorgias rules, we put them inside the Gorgias rules.

20

Chapter 3

ABR Overview

3.1 Overall architecture

In this chapter we outline how the ABR works on a high-level, showing the high-
level architecture and providing a brief summary of the key components involved.
Details regarding the various components can be found in Chapters 4 and 5. At the
end of this chapter, we also summarise the key driving motivations that shaped how
ABR was constructed.

Figure 3.1: High-level description of ABR

Integration with Reasoner
forensic tools (PrOIOQ)
(Bulk Tor exit exporter, IP
geolocation, Virustotal) Background
Core rules
knowledge
A
_ _ Loaded in real-timis /
| Evidence/Rule/Preferences | during execution | GUI
from Analyst | T » (Java)
) Legend
Output Input when using ABR
ABR components
Standard execution: Verbose execution:
Get list of possible culprits High-level overview of Output from ABR
of attack and derivations other possible evidences
required to make an
visualisations scores attribution

-
3

Analyst
START

The overall flow of information in ABR is illustrated by Figure 3.1. The user
(analyst) interacts with the GUI, which returns and displays the results to the user.
ABR is designed to be used in an iterative process, the user can add more evidences,
rules or preferences after evaluating the results produced by ABR.

The users will input a set of evidences (technical and social) as well as rules
and preferences through the GUI, which can trigger the integrated forensic tools to
automatically extract some evidence. These evidences/rules/preferences are then

21

used by the ABR reasoner, composed of the core rules and background knowledge,
to execute the requested query; the result of which is returned to the GUI.

The result can take two different forms, depending on which mode of execution
(standard or verbose) the ABR is executed in. Standard execution returns the list
of possible culprits; while verbose execution, run when standard execution does not
return any result, returns suggestions of what other evidences are required in order
to get a result in standard execution.

3.1.1 Reasoner

The reasoner is the main component in ABR. It is constructed from two parts, (i)
core Gorgias rules and (ii) background facts. The rules and background facts are
used to analyse the given evidence and to produce a result (attribution of cyber
attack) that is returned to the user.

Core Gorgias Rules The core rules of the ABR are built from well-known at-
tribution cases. We study a full range of cyber attack cases in detail, extracted the
reasoning used by investigators and converted them into rules. The details of which
rules are extracted from which cases can be found in Appendix B.

Background facts Apart from the core Gorgias rules extracted from past cases,
we have also compiled pertinent facts and rules as background facts, or background
knowledge. The background knowledge contains information in two broad cate-
gories:

1. General knowledge that models the common sense and knowledge that ana-
lysts use during investigation, e.g., which countries use English as their first
language.

2. Domain-specific knowledge that models past experiences and knowledge of
analysts, e.g., what are the prominent Advanced Persistent Threat (APT)
groups and what are their profiles.

Details of the rules and background facts used in ABR can be found in Sections 4.3
and 4.4.

3.1.2 Numerical scoring of solutions

Each derivation returned by ABR has a numerical score. The score can serve as a
guideline for users to decide which derivation is stronger. This is useful especially
when ABR attributes an attack to different groups or countries, since the user can
decide, at a glance, which is the strongest attribution. We cover in detail how the
score is calculated and its implementation details in Section 5.1.

3.1.3 Integration with forensic tools

In order to streamline the attribution process when using ABR, we have integrated
it with some useful forensic tools. ABR is able to automate network-based intrusion
detection system (NIDS) log parsing, IP geolocation and checking IPs against output
from the Bulk Tor Exit Exporter. More details are covered in Section 5.2.

22

3.1.4 Visualisation

ABR supports the visualisation of three different structures: (i) derivation, (ii)
attack-and-defense argumentation tree and (iii) overall hierarchy of rules. The
derivation and the argumentation tree are returned by the Gorgias query in string
form, we have implemented a visualisation component that transforms the string
into a colour-coded, labelled graph, which is much easier to read.

The overall hierarchy of rules refers to how all the rules in ABR are ranked, ac-
cording to the preference rules. This hierarchy graph shows which rules are stronger
and which rules are weaker, and more importantly, also identify any cycles that were
accidentally added.

3.1.5 User input

ABR users are able to input facts (evidences), rules, and preferences. We have
implemented a variety of features that enhances this process, we go into the details
of what actions can be performed by the user in Chapter 6.

3.2 Motivations for design

In this section we emphasise the key motivations behind the design of ABR. These
are the motivations that shaped the design and development of various features in
ABR.

Iterative Being able to model the iterative or incremental nature of attribution
is one of the key features of ABR. In the real world, attribution is hardly a sin-
gle atomic operation. Due to its complex nature, attribution is often a process,
consisting of many different teams of people with different expertise, working over
weeks or even months investigating and hypothesising. Therefore, to effectively fit
into the existing work-flow of analysts, ABR aims to provide support alongside ex-
isting methods. Rather than merely returning True or False to whether a country
or group was responsible for an attack, ABR provides possible information for fur-
ther investigations, and compel its users to consider possible gaps in the reasoning
process.

Transparency In order to fit into the iterative process of attribution, we need
transparency. Only if users understand the current output, can they analyse it and
either continue to build on top of it, or steer the reasoner in another direction.

Flexible We recognise that the ABR will not give the correct answer all the time,
as the cases and evidences provided can differ greatly. Therefore, we aim not to
build a perfect tool, but a flexible one, that gives users the ability to choose what
kind of solutions they prefer.

23

Chapter 4

ABR Reasoner

The reasoner is a fundamental part of this project. Its execution permits the attri-
bution to cyber attacks. In this chapter, we cover the various elements that compose
the reasoner. The ABR reasoner is constructed based on the Q-model, that we in-
troduce in the following section; followed by some key definitions and terms that
will be used in explanations; then the core rules and background knowledge that
constitutes the central part of the reasoner. Lastly, we discuss the use of preferences
and abducibles in the reasoner.

4.1 Q-model

Attribution involves both technical and non-technical (or better called social) evi-
dences. Our ABR reasoner works with both types of evidences. To represent and
reason with these evidences, we based the ABR reasoner upon a model from Rid’s
work [10], called the @Q-model.

Figure 4.1: Q-model layers with ABR predicates

Technical

similarMalware

Operational

ceServer

Stategic
isCulprit

motive

contextOfAttack

zeroDay

sophisticationOfMalware

The Q-model consists of three main layers: technical, operational and strategic.
In Figure 4.1, we show the three layers of the Q-model with some of the ABR
predicates associated to each layer. The combination of information in these three

24

layers permits the attribution of a cyber attack. To illustrate, we show below some
examples of rules for each of the three layers:

Technical
requireHighResource(Att) < usesZeroDay(Att).

If the attack (Att) uses zero-day vulnerabilities (usesZeroDay(Att)), then we
say that it requires a lot of resources (require HighResource(Att)).

Operational

hasCapability(X, Att) < hasResources(X), requireHighResource(Att).

If the attack (Att) required a large amount of resources (require HighResour-
ce(Att)), and an entity X has (large amounts of) resources (hasResources(X)),
then X has the capability to carry out the attack (hasCapability(X, Att)).

Strategic
isCulprit(X, Att) < hasCapability(X, Att), hasMotive(X, Att).

If X has both the motive (hasMotive(X, Att)) and the capability (hasCapa-
bility(X, Att)) for carry out the attack, then X is the culprit (isCulprit(X, A-

tt)).

4.2 Key definitions

Before we explain the rules in the reasoner, we introduce some definition that will be
used throughout the explanations later in this chapter. For the first three definitions,
we refer to the following example Gorgias rule:

rule(str_rule 1,isCulprit(C, Att), [hasMotive(C, Att), hasCapability(C, Att)]).

Rulename is the label or id for the rule, it appears as the first argument in the
Gorgias rule. str_rule 1 is the rulename of the example rule.

Head /head predicate is the second argument in the Gorgias rule. isCulprit(C,
Att) is the head of the example rule.

Body predicates are the literals that occur between the square brackets, as the
last argument of the Gorgias rule. hasMotive(C, Att), hasCapability(C, Att)
are the body predicates of the example rule.

Prove When we say a literal L is proved (by a rule), we mean that L is the head of
arule, i.e., rule(_,L,[]) and all the body predicates of the rule are satisfied
(true).

Disprove When we say a literal L is disproved (by a rule), we mean that —L is the
head of a rule, i.e., rule(_,—L,[]) and all the body predicates of the rule are
satisfied (true).

25

Fact are heads of rules with no body predicates. Any literal L in a rule in the form
rule(_, L, []) is a fact.

Background fact is a fact that is defined as part of the background knowledge
(see Section 4.4 for details).

Evidence In the context of ABR, evidences are facts.

Technical evidence are evidence that are obtained from digital forensic processes,
relating to what the attack was about and how it was carried out.

Operational evidence are non-technical evidence that relates to the geopolitical
situation, relating to who performed the attack.

Base evidence are evidence that need to be input by the user directly, there are
no rules that proves either the predicate or its negation.

Derived evidence In contrast with a base evidence, a derived evidence is a piece of
evidence that is proved by another rule (all heads of a rules with a non-empty
body are derived evidences).

Next, we describe the two components that forms the ABR reasoner, (i) the core
rules and (ii) the background knowledge.

4.3 Core rules

The core rules are the Gorgias rules that performs the reasoning behind the attri-
bution. These rules are crafted by studying various attribution cases and extracting
the reasoning that investigators employed to make the attribution and translate
them into argumentation rules (described in detail in Appendix B).

All three layers together, technical, operational and strategic, form the core rules
in the reasoner. In this section, we give an overview of some of the strategic rules
of the reasoner, then delve into one of the core rules of the reasoner to explain how
the layers work together.

4.3.1 Strategic layer overview

We show below some of the rules from the strategic layer!. These rules describe some

circumstances where we can prove an entity to be a culprit (isCulprit(X, Att)) or
not (—isCulprit(X, Att)).

'For the sake of understandability and presentation purposes, we simplified the rule names used
in this section. The actual rule names are parametrized as shown in Section 5.4.

26

str_rule_1: isCulprit(X, Att) <—existingGroupClaimedResponsibility(X, Att).

str_rule 2 : isCulprit(X, Att) <—hasMotive(X, Att), hasCapability(X, Att).

str_rule_3: isCulprit(X, Al) «malwareUsedInAttack(M1, A1),
similar(M1, M2), malwareLinkedTo(M2, X),
notFromBlackMarket(MT1),
notFromBlackMarket(M?2).

str_rule 4 : —isCulprit(X, Att) <——attackOrigin(X, Att).

str_rule 5 : —isCulprit(X, Att) «——hasCapability(X, Att).

str_rule_ 6 : —isCulprit(X, Att) <target(X, Att).

4.3.2 Rule walk-through

Since the layers in ABR are closely linked, instead of explaining each layer separately,
we start from the strategic layer, then move forward to the operation and technical
layer while explaining the rules. To illustrate how the rules in the different layers
are connected, we present?, in detail, one rule from start to end, from the strategic
layer, to operational layer, to technical layer. Explanations of more rules can be
found in Appendix A.

The rule we use in this example is the following rule from the strategic layer:

str_rule 2 :isCulprit(C, Att) <— hasMotive(C, Att), hasCapability(C, Att).

Rule str_rule 2 uses the predicates hasMotive/2 and hasCapability/2; hasM o-
tive/2 is a derived predicate proved in the operational layer and hasCapability/2
is a derived predicate proved in the technical layer. As there are many rules that
proves these two predicates, we break them down into smaller parts and explain
each part separately.

hasMotive(X, Att)

First, we cover the explanations for hasM otive/2.

Rule 1 We show below one of the operational rules used to derive hasM otive/2.

op_rule 1 :hasMotive(C, Att) <target(T, Att), industry(T),
hasEconomicMotive(C,T),
contextO f Attack(economic, Att),
speci ficTarget(Att).

This rule can be read as: if a country/group has an economic motive to attack the
industry that was targeted in the attack, and the context of the attack was economic,

2For presentation purposes, rules in this section are presented in the actual Gorgias syntax, we
instead prepend the rule with a label and use conventional logic operators like ‘<’ for implication
and ‘,’ for logical AND.

27

and the attack had a specific target, then the country/group has motive to carry
out the attack.
The predicates used in this rule are summarised as below:

target(T, Att) is a base evidence, it means 7' is the target of the attack Att.

industry(T) is one of the background facts, it is true when T is an industry (see
Table 4.1 for the full list of background facts).

hasEconomicMotive(C, T) is also a base evidence. When
hasEconomicM otive(country X, industryY’) is true, it means countryX will
benefit economically from attacking industryY. For example, if countryX
has identified industryY as a strategic emerging industry in official public
documents such as white papers or other government reviews, we say that
hasEconomicM otive(country X, industryY’) is true.

specificTarget/1 An attack is assumed to be targeted unless more than one coun-
try is targeted (targetCountry/2)3, or there are technical evidence that show
that the malware was constructed specifically for attacking that particular
organization or country (specificConfigInMalware(M)).

contextOfAttack/2 can be proven if the target is a ‘normal’ industry. A ‘normal’
industry, as opposed to a ‘political” industry, are industries that are not closely
related to a country’s national interests (refer to Table 4.1 for more details).

Rule 2 Another operational rule used to derive hasMotive/2 is given below:

op_rule 2 : hasMotive(C, Att) <targetCountry(T, Att), attack Period(Att, Datel),
hasPolitical Motive(C, T, Date2),
date Applicable(Datel, Date2),
contextO f Attack(political, Att),
speci ficTarget(Att).

This rule can be interpreted as: if a country has a political motive (we will explain
later what this means) to attack the target country, and the order of events fits into
the general timeline (more on date Applicable/2 later), and the attack was a targeted
attack, then the country has motive to perform the attack.

The predicates used in this rule can be summarised below:

targetCountry(T, Att) is a base evidence, denoting that the country 7' is the
country of the target of the attack Att.

attackPeriod(X, Date) is also a base evidence, it denotes the date of the attack.
Date is a list, in the format [YYYY, M M]*.

3Since targetCountry/2 is a base evidence, it can be omitted at the user’s discretion, if the
user deem the number of infections in another country is too insignificant.

4We exclude the day since in many cases even though the malware is discovered on a certain
day, we are unsure of when the systems were actually infiltrated.

28

hasPoliticalMotive(C,T,Date2) is a derived predicate. We have one rule that
derives hasPolitical Motive(C, T, Date2). If the target country has imposed
sanctions on country C, then as a form of retaliation, country C has political
motive to attack the target country 7'.

dateApplicable(Datel, Date2) is an auxiliary rule used to ensure that the trig-
gering event (in this case, the imposing of sanctions) takes place before the
attack, and occurred shortly before the attack. Alternatively, if the event is
long-term and ongoing, we use the constant ongoing in place of the date of
the event in the [YYYY, M M] format, dateApplicable(,ongoing) is always
true.

contextOfAttack(political, Att) can be proved if either the target is a country,
or the target is a ‘political’ industry (industries that are closely related to a
country’s national interests, such as the military or energy sector).

We show below the operational rules used to derive the above mentioned predi-
cates.

op_rule 3 : hasPolitical Motive(C, T, Date) <—imposedSanctions(T,C, Date).

op_rule 4 : contextO f Attack(political, Att) <target(T, Att), country(T).

op_rule 5 : contextO f Attack(political, Att) <target(T, Att), industry(Ind,T),
political Industry(Ind).

Rule 3 We move on to the next operational rule to derive hasM otive/2.

op_rule_6 : hasMotive(X, Att) «target(T, Att), attack Period(Att, Datel),
news(Event, T, Date2),
date Applicable(Datel, Date2),
causeO fConflict(X, T, Fvent),
speci ficTarget(Att).

The general idea of this rule is that if (i) an incident occurred in the target country
and was publicized, and (ii) that incident is the cause of international conflict or
tension with another country shortly before the attack, then the other country has
motive to attack the target country.

To better explain this rule, we use a real-world example. The Sony Pictures
hack in 2014 was attributed to North Korea, that allegedly attacked Sony Pictures
in retaliation for the upcoming North Korean-based comedy “The Interview”. The
relevant evidences are as follows:

target(sony, sonyhack).
attack Period(sonyhack, [2014, 11]).
news(thelnterview, sony, 2013, 10]).

causeO fCon flict(northyorea, sony, thelnterview).

We know that the scandal revolving “The Interview” was publicized in Octo-
ber 2013 (news(thelnterview, sony, [2013,10])), and this sparked conflict between

29

North Korea and Sony Pictures (causeO fCon flict(north _korea, sony, thelnterview)).
The target of the attack was Sony Pictures (target(sony, sonyhack)) and the attack
occurred in November 2014 (attack Period(sonyhack, [2014, 11])), which was shortly
before the attack occurred. Using these evidences and the above rules, we are able to

arrive at the conclusion that North Korea has motive to perform the Sony Pictures
hack.

hasCapability (X, Att)

Next, we briefly cover the explanations for hasCapability/2, which is defined in
both the operational and technical layer. We show below one of the rules in the
operational layer that defines hasCapability(X, Att).

op_rule 7 : hasCapability(X, Att) < requireHighResource(Att),
hasResources(X).

The predicate require HighResource(Att) can be derived from the technical
layer. We show two such rules that derives require High Resource(Att):

tech _rule 1 :requireHighResource(Att) < target(T, Att), highSecurity(T).
tech _rule 2 : require HighResource(Att) < highV olumeAttack(Att),
longDuration Attack(Att).

The predicates highSecurity(T'), highV olume Attack(Att) and long Duration At-
tack(Att) are all base evidences. They have the following definitions:

highSecurity(T) (Organisation or company) T has high-security.
highVolumeAttack(Att) The attack had a high volume.

longDurationAttack(Att) The attack was performed over a long duration (few
months or even years).

4.4 Background knowledge

The other part of the reasoner comprises of the background knowledge or background
facts. Not all evidences or facts are given by the user, the background knowledge
consists of other non-case-specific information. There are two main types of facts
compiled in the background knowledge - (i) general knowledge, and (ii) domain-
specific knowledge. We show in Table 4.1 the full list of predicates in the background
file used by ABR.

4.4.1 General knowledge

The general knowledge consists of information about the (i) characteristics of coun-
tries, such as the first language used in the country and a measure of how advanced
the country’s cyber security scene is; (ii) international relations between nations;
(iii) classification of the types of industry. These facts can be used together with
evidences given by the user to make the attribution. Below we illustrate how the
predicates are used in the rules in the various layers.

30

Language indicators Language indicators in malware can provide useful clues
regrading the possible origin of attacks [10]. There are two types of language arte-
facts: (i) default system language settings and (ii) names used in code. In the
technical layer, the following rules makes use of these language artefacts to deduce
the origin of the attack:

langl : attackPossibleOrigin(X, Att) < sysLanguage(L, Att),
firstLanguage(L, X).

lang?2 : attack PossibleOrigin(X, Att) < languageInCode(L, Att),
first Language(L, X).

If it is found that the general configuration language settings of the attacker’s
machine was language L, (sysLanguage(L, Att)), and the first language of country
X is L, (firstLanguage(L, X)), then the attack might have originated from country
X.

Otherwise, if names of variables or folders in the code are words from a cer-
tain language or reference a specific cultural reference from a specific language
(languageInCode(L, Att)), then similarly, a country that uses L as its first lan-
guage is a possible candidate for attack origin.

Capability of nation The capability of a nation limits the level of attacks it
can possibly sponsor or carry out. We classify the amount of resources owned by a
country into three different groups. A country can (i) have large amount of resources
(hasResources/1) (ii) not have large amount of resources (—(hasResources/1)) (iii)
have no resources (hasNoResources/1).

To estimate a country’s cyber capabilities, we use the Global Cybersecurity Index
(GCI) Groups 2017. The GCI is an integrated index that assesses countries based
on their commitment to five core pillars: legal, technical, organisational, capacity-
building and cooperation [39]. There are three GCI groups: leading, maturing and
initiating. We represent a country’s GCI group using the predicate gci tier/2. In
the operational layer, we have rules for whether a country is capable of carrying out
an attack (hasCapability/2):

hasResourcesl : hasResources(X) < gci_tier(X,leading).
hasResources2 : hasResources(X) < cybersuperpower(X).

hasResources3 : hasNoResources(X) <« gci_tier(X,initiating).

We classify a country as hasResources/1 if it is either in the ‘leading’” GCI group
or is recognised as one of the cyber superpowers [40|. Countries in the ‘initiating’
GCI group are classified as hasNoResources/1.

International relations Good international relations between two countries can
indicate that a state-sponsored attack is unlikely to happen. While it is difficult to
accurately portray relations between all countries, we used some simple rules and
statistics [41, 42, 43] to compile a list of facts regarding whether two countries have
a good relationship (goodRelation/2).

31

Information about relations between countries are incorporated in the operational
layer to narrow down the countries that might have a motive to carry out the attack.

geopoliticsl : mhasMotive(C, Att) < targetCountry(T, Att), country(T),
country(C'), goodRelation(C,T).

It should be recognized that this is an overly simplistic approach for classifying
international relations. Public opinions on international relations could be different
on the actual situation between two countries, or outdated, or it might not even
be possible to simply classify a relation as simply ‘good’ or not. Therefore, even
though we are able to prove that a country likely does not have motive to carry
out an attack based on the estimated relation status, we have added preferences to
prefer other rules when there is a conflict between the other rules and the rules that
uses the background information on geopolitical situation.

4.4.2 Domain-specific knowledge

Domain-specific knowledge consists of information about (i) prominent groups and
(ii) past attacks. These facts are primarily used in the strategic and technical layer.

Prominent APT groups Advanced Persistent Threat (APT) groups are well-
organised hacker groups that usually pursue their objectives over months or years [44].
Due to their scale, many prominent APT groups are receive instructions and back-
ing from nation states. We have extracted information on prominent APT groups
from FireEye’s report on APT groups [44] and Martin’s article [45]. Each prominent
APT group has (where available) the following facts:

e Name or ID of the group;

e Country of origin of group;

e Countries/organisations targeted by the group in the past;

e Malware linked to the group (malware suspected to be made by group).

We show below some example evidences regarding prominent APT groups that can
be found in the background knowledge. These information are used in both the
strategic and operational layer.

4 information for few prominent APT groups shown,

/4 bg.pl contain other prominent groups that are omitted here.
rule(bg26 () ,prominentGroup(lazarusGrp), [1).
rule(bg27 () ,groupOrigin(lazarusGrp ,north_korea),[]).

rule(bg28() ,malwareLinkedTo(backdoorDuuzer ,lazarusGrp),[]).
rule(bg29() ,malwareLinkedTo(backdoorDestover ,lazarusGrp),[]).
rule(bg30() ,malwareLinkedTo(infostealerFakepude ,lazarusGrp),[]).
rule(bg31() ,malwareLinkedTo (backdoorContopee ,lazarusGrp),[]).

32

Since prominent APT groups are APT groups that are active and have past
records of conducting long attacks on other organizations, they, by definition, have
large amounts of resources, and are thus capable of carrying out any attack (denoted
by the rule below):

str_rule_1: hasCapability(X, Att) < prominentGroup(X).

We can also link the APT group to its country of origin. If we are able to
attribute the attack to an APT group and the country of origin of the APT group
has motive to carry out the attack, we attribute the attack to the country (denoted
by the rule below):

str_rule 2 :isCulprit(C, Att) < prominentGroup(Group),
groupOrigin(Group, C), country(C),
isCulprit(Group, Att), hasMotive(C, Att).

Similarity to an APT-linked malware might also indicate that the culprit might
be the same APT group (denoted by the rule below):

str_rule_ 3 : isCulprit(X, Al) < malwareU sedInAttack(M1, A1),
similar(M1, M2), malwareLinkedTo(M2, X),
notFromBlackMarket(M1),
not FromBlackMarket(M?2).

In the operational layer, APT groups that have attacked the same targets before
has motive to attack them again. While this alone is definitely insufficient to make
the attribution, combined with other evidences, it can steer us towards the culprit
of an attack (denoted by the rule below):

op_rule : hasMotive(Group, Att) < target(T, Att), prominentGroup(Group),
pastTargets(Group, T's), member (T, Ts).

Past attacks Information like the command and communication (C&C) server
(ccServer/2) its domain registration details (domainRegisteredDetails/3) are in-
cluded in the background file. We show an example of such details that can be found
in bg.pl:

/4 ccServer(+DomainName, +MalwareName)

rule(bg79(), ccServer(gowin7, flame),[]).

4 domainRegisteredDetatls (+DomainName, +Name, +Address)
rule(bg80() ,domainRegisteredDetails(gowin7, adolph_dybevek,
< prinsen_gate_6),[]).

These information can help us to spot similarities between past attacks and the
current attack in the technical layer. We use the predicate similar(M1, M2) to
denote that two malware are similar to each other. This similarity can stem from
both malwares using the same C&C server, or the C&C server registered under the
same name or address.

33

IOATOS)290) JO S[IRIOP UOIJRI)SISOT UTRMO(]

oleM[BT JO I9AI9S UOI}RITUNWIWIOD PUR purtItlIO,)

A13unoo /dnois 1exory 0) oIRM[RUI JO UOIINGLIIIR JSe]
dnoi8 1exoey ® Jo (SUOIIRZIURSIO I0 SOLIIUNOD) Jo31R) JSe]
dnoi3 e jo ursLo jo A1puno))

sdnoi3 1oxoey juourword 10} oyeorpaid odAT,

A1yunod o1} ur pesn agengue| ISI]
ur s[rey Arpunoo oy dnois | ([D5)) Xopuj AJLnsesIoqi)) [eqorx

oSTomodradns T0qAD JO 48T

SOLIYUNO0D 10} 9jedrpald odAT,

SoLIISNpul [edo1jrjod J0U oIe et} SOLIISIPUI 918 SOLIJSTIPUI [RULION

S1S9I9JUI [RUOIJRU S, AIJUNOD B 0) PIIR[OI A[9SO[D dIR JRYY) SOLIISNPUL IR SSLIJSNIPUL [RIII[0]
Sormsnpur 10y oyeorpord odAT,

(9 o188 wesurid ‘yeasqAp tydjope
‘) UIMO3) S[TR)9 ([PoI9)SISaY UTeuIop
(ourep‘ L UIMOS)IOATOGOD
(spejjeoUIR] ‘OUIRY)YORIIYUIPIS)dTeM[RUI
IR AZOD N PIUTIAUR[011) O T PO UITOIRM]RTT
d ML eRs, LPour] [
([puerod*--‘eourey] ‘reogAoue])sjosre] jsed
(uoryerepaj ueIssnI ‘IeagAoue])urdi()dnord
(reagAouey)dnorryjueuruold
RITRIISNIE ‘SO)RIS POITUN)UOIIR[IYPOOSI
| DA HR[EYP
(soge)s pojrun ‘ysisuo osensueisiy
(Surpes[‘UOIjRIOpPS] URISSTLI)ION) 103
(Sutmyewr ‘puefod)iar)” 13
SurjenjIuI‘urISTURY SR) I01) 103
HAgEAL tueyofe).on 1
(soges™ pojmun)remodiadnsioqAd
(soge)s” pojrun) A13unoo
(wruooojur) A13snpu[euLIOu
(Areqrprun) Arysnpupreoryrjod
(wruooojur) A1ysnput

uoryeue[dxyy

Qﬁgadvm@ 9%eoIpald

(e8ur10) 98poimouy] oywods-urewiop pue (MO[[oA) 9FPo[MOUY [RISUSS OJUI POPIAIP ‘sjor] PUNoISYoRy 1§ o[qR],

34

4.5 Use of preference-based argumentation

In the next two sections we cover how preferences and abducible predicates were
used in ABR.

ABR uses preference-based argumentation, where preferences are used to specify
relative strength between conflicting rules®. In this section, we highlight the different
ways in which preferences are used in the reasoner and justify why preferences are
not used in some situations.

4.5.1 Conflicting rules with preferences

Some conflicting rules have preferences. When the bodies of both rules are satisfied,
only one can be proven by Gorgias. There are two different ways in which we use
preferences.

Negation as failure Firstly, we use this to model negation-as-failure (NAF)?.
Since Gorgias facts does not have NAF by default, preferences are used to model
NAF in the reasoner.

Contextual knowledge Secondly, we add preferences between conflicting rules
that, using contextual knowledge, we determine that there is more reason to follow
one rule and disregard the other. An example of such rules are the rules involving
spoofed IP addresses.

r_t srclP1(X,Att): attackPossibleOrigin(X, Att) <— attackSourcel P(IP, Att),
ipGeoloc(X, IP).
r_t_spoofIP(X, Att) : mattackPossibleOrigin(X, Att) < attackSourcel P(1P, Att),
spoofedl P(IP, Att),
ipGeoloc(X, IP).
prefer(r_t spoofIP(X, Att),r t srcIP1(X, Att)).

Normally, if we geolocated the source IP of the attack to a country, we derive that
the attack originated from that country (attackPossibleOrigin(X, Att)). However, if
we were also able to derive that the IP was spoofed, then we should instead arrive
at that conclusion —attack PossibleOrigin(X, Att).

4.5.2 Conflicting rules without preferences

We also left some conflicting rules without preferences. Such are for the situations
where it might not be clear-cut whether to disregard one of the rules, and we leave
the decision to the user. Since we run the negative derivation neg(isCulprit(X,Att))
for every positive derivation isCulprit(X,Att) (refer to Section 6.4 for more details),
if a derived evidence could be disproved (or the negation of the derived evidence

8To recap, conflicting rules are rules in which their heads are complementary to each other. So
conflicting rules are any two rules with the form: rulel : L < ... and rule2 : =L «+
9In negation-of-failure (NAF), we say that —p can be derived when we fail to derive p.

35

could be proved), then it will show up under the negative derivations. For example,
given the following two conflicting technical rules:

tech_rulel(X, Att) : attackOrigin(X, Att) < attackPossibleOrigin(X, Att).
tech _rule2(X,Y, Att) : —attackOrigin(X, Att) < attackPossibleOrigin(X, Att),
attack PossibleOrigin(Y, Att),

country(X), country(Y),
X\ =Y.

We deliberately leave out the preference for these two rules in order to give the
user more flexibility in deciding which rule to use. For example, if we managed to
prove the following predicates:

f1: attack PossibleOrigin(countryl, attack).
12 : attack PossibleOrigin(country2, attack).
f3 : country(countryl).
f4 : country(country?).

We are able to prove attackOrigin(countryl, attack) and
attackOrigin(country2, attack) by using the first rule, and we are also able to prove
—attackOrigin(countryl, Att) and —attackOrigin(country2, Att) by using the sec-
ond rule. This is the desired result since we want to leave the user with some
flexibility in which rules they think is stronger in the specific use case.

4.6 Use of abducibles

In this section, we describe the use of abducibles'® in the ABR reasoner. After
declaring a predicate as abducible, it can be used like normal predicates in the
Gorgias rules.

There are two abducible predicates used in ABR, specificTarget/1 and
contextO f Attack /2. These two abducibles are used in different ways. For
specificTarget/1, we have rules to disprove the abducible predicate:

—speci ficTarget(Att) < targetCountry(T'1, Att), targetCountry(T2, Att),
T1\ = T2.

These rules can also be thought of as the integrity constraints. This models how
some facts are assumed to be true unless proven otherwise.

On the other hand, for contextOfAttack/2, we have rules to prove the abducible
predicates:

contextO f Attack(economic, Att) < target(T, Att), industry(Ind,T),
normalIndustry(Ind).
contextO f Attack(political, Att) < target(T, Att), country(T).
contextO f Attack(political, Att) < target(T, Att), industry(Ind,T),
political Industry(Ind).

10 Abducible predicates are predicates that can be assumed to be true.

36

The abducible is then used as part of other rules. In this case, the attribution
will go through even without proving contextO f Attack /2. 1t will be flagged up by
the ABR as abduced predicates, prompting the user to look for more evidence in
order to prove the contextO f Attack/2. This models the situation where there are
incomplete information to fully make an attribution, but the analyst chooses to make
some assumptions in order to put together other pieces of evidences. Later on, the
analyst might go back and try to find more evidence to prove that the assumptions
made during investigation were indeed true.

37

Chapter 5

Other Key Components

In the previous chapter, we introduced the ABR reasoner and details of its con-
struction. Let us now explain the other key components that form ABR. We start
with the (i) scoring system, followed by (ii) forensic tool integration, then (iii) visu-
alisation. At the end, we present a short section on standardisation of rule names
in ABR.

5.1 Scoring system

In ABR, on top of implementing the reasoner, we also devised a scoring system to
compare different derivations. In this section, we cover the motivation for the scoring
system, the intuition as to how the system works, and the actual implementation of
the scoring system.

5.1.1 Motivation

When using ABR, if we have large amounts of evidence, our tool will likely produce
several attributions, or different results for who was behind the attack. To reach a
meaningful conclusion, it is essential that we construct a technique to rank or score
different derivations.

5.1.2 Intuition

To uncover the intuition behind our scoring system, we first examine two different
cases of comparisons between rules.

Case 1 Let us consider the two following rules, where both of them have isCulprit(
C, Att) as head, which is the conclusion of the rule.

rulel : isCulprit(C, Att) < hasMotive(C, Att), attackOrigin(C, Att), country(C).
rule2 : isCulprit(C, Att) < attackOrigin(C, Att), country(C).

It is clear in the above example that rulel should be stronger! than rule2 since the
set of C' and Att that satisfies the former rule is a proper subset of that for the latter
rule. In other words, a more ‘specific’ rule is stronger than a ‘generic’ rule.

1‘Stronger’ here denotes the strength of argument in a colloquial sense.

38

Case 2 While the previous case is a straightforward comparison, since the body
predicates of one rule are a subset of the body predicates of the other rule, there are
also less obvious cases. For example, when comparing the following two rules:

rulel : isCulprit(C, Att) < hasMotive(C, Att), attackOrigin(C, Att), country(C').
ruled : isCulprit(X, Att) < existingGroupClaimedResponsibility(X, Att).

It is hard to spot any definite relation between the results from both rules. However,
intuitively, we would say that rulel is stronger than rule3, because rule3’s body
predicate simply a single piece of evidence (the presence of a group that claimed
responsibility of an attack) while rulel reached its conclusion by analysing the ge-
ographical origin of the attack and motives of a group or country.

Insight The above examples gives insight into how we intuitively decide if a rule is
stronger. Generally, we say that a rule is stronger if its supporting evidences are more
numerous and /or stronger. One simple way of scoring the derivations is to count the
number of evidences used. Since there are two types of evidences: (i) case-specific
evidence input by the user and (ii) background evidence, one possible refinement
is to score case-specific evidence and background evidence differently. Case-specific
evidence should weigh more than background evidence, since attributions based on
more case-specific evidences should be stronger than attributions based mostly on
background evidence. This alleviates the problem of always attributing attacks to
enemy nations, regardless of case evidences, since the user will be able to see that
the score of the derivation is low.

5.1.3 Implementation

When executing prove([isCulprit(X,A)], D), the result of D is the derivation,
which is a list of all the rule names of rules used to prove the predicate. This include
both rules and facts®>. We have chosen to assign each case-specific evidence a score
of 3, and each background evidence a score of 1.

Since users input evidences in Prolog syntax (Head :- Bodyl, Body2, ...)
and all Gorgias rules are created automatically, we have full control over the rule
names. The mapping of the ABR rulenames to their rule types and the files where
they are located in is shown in Table 5.1. Case-specific evidences have rule names
starting with ‘case_” and background evidences have rule names starting with ‘bg_’

To demonstrate the scoring system at work, we show the below example.

D = [ass(notFromBlackMarket(flame)), case3_f13(), case3_f12(), r_t_bm(gauss),
< bg82(), bg86(), case3_f17(), r_t_simCCl(gauss, flame), r_t_similar(gauss,
— flame), case3_f2(), r_str__linkedMalware(equationGrp, gaussattack)]

The above derivation yields a score of 14, since there are 4 case-specific evidences
{case3_f13(), case3_f12(), case3_f17(), case3_f2()} and 2 background ev-
idences {bg82(), bg86()) used (4 * 3+ 2 = 14}. The scores of all solutions are
displayed to the user in the GUI, the user can decide if the score is to be taken into
consideration when comparing different solutions for the attack.

2Facts are a special case of rules, they are rules with no body predicates.

39

5.2 Forensic tool integration

Integration with forensic tools is another important component of ABR. In this sec-
tion we consider the motivations, followed by the implementation of the integration
with each of the forensic tools used in ABR.

5.2.1 Motivation

Integrating with some forensics tools can help to incorporate ABR into the normal
work-flow of analysts. Moreover, some information such as the geolocation and
domain resolution of an IP address are very easy to find, but can be cumbersome to
deal with when handling many IP addresses. ABR integrates with 4 different tools:
(1) Snort, (ii) Tor Exit Exporter, (iii) ip2nation IP geolocation and (iv) Virustotal
IP domain resolution. We give an overview of how all the tool integrations work
together with ABR, before presenting the implementation details for each of the
tools.

5.2.2 Implementation

The tool integrations are implemented in Java. The results are written into file as
Gorgias facts and passed into the reasoner during the execution. The architecture
diagram of the forensic tool integration is shown in Figure 5.1. It illustrates (i) the
order in which the processing is done, (ii) the auxiliary predicates that each process
scans for, (iii) the predicates produced by each process and (iv) the files produced
and imported by each process. Uploading the Snort alert log is the only integration
that requires user action. All the other integrations are started automatically when-
ever a user tries to execute a query; beginning by scanning the user_evidence.pl
file for the auxiliary predicates described in the next paragraph.

Some auxiliary predicates are used to mark an IP address for automatic process-
ing for IP geolocation, IP resolution and checking for Tor exit nodes, indicated in
Figure 5.1 as “Scan for predicate”. These auxiliary predicates are summarised as
below:

targetServerIP(ServerIP, Att) Given the IP address of the server targetted
during an attack, for example targetServerlI P([72,111,1,30],tor ex), Tor
exit node exporter is triggered using the IP 72.111.1.30. The predicates
torI P([103, 1,206, 100], [72, 111, 1, 30]), ... are generated (one for each exit node
returned by the exporter).

ip(IP) Given the predicate ip/1, for example ip([8,8,8,8]), IP geolocation for
8.8.8.8 is triggered. The predicate ipGeoloc(united states, |8, 8,8, 8]) is gen-
erated.

ip(IP, Date) Given the predicate ip/2, for example ip([8, 8,8, 8],[2018, 5]), IP ge-
olocation for 8.8.8.8 is triggered. Additionally, the Virustotal API is also
triggered to find the domain resolution for 8.8.8.8 in May 2018. The predi-
cates ipGeoloc(united_ states, [8,8,8,8]) and ipResolution(’00027.hk’, [8,8,8,8],
[2018,5]) are generated.

40

Figure 5.1: Architecture diagram of integration with forensic tools

User upload
Snort alert log

b

Filtered list of source
and dest IPs

v

User select IPs to add

Scan for
targeiServerlP(ServerlP, Att)

----- |

Tor check exit

: v N §
" (Automated) ‘ i

Produce
ip(IP),

ttackSourcel P(IP, An)

nodes i
o) - G
ip(IP),
torlP(IF, ServeriP)

R |

Execute
Start

Scan files for
ip(IF, Date),
ip(IP, ate

(Automated)
IP geolocation

S

Produce
ipGeoloc(Country, IP)

|

automated geolocation.pl

ABR Reasoner

i
Scan files for
ip(IE, Date)
v

(" (Automated) |
‘ IP domain ‘
resolution

ipResolution(Domain, IF, Date)

Produce

41

!

virustotal.pl

Legend
Q Existing prolog file

' | Tool integration step

Generated file

User interaction

A----» B File B imports A and scans for
predicates from file A

A—* B File A generates File B

A ®™B Ais used as input for B

Next, we proceed to describe how the integration with each tool is implemented.

Tor exit node exporter

The Tor network?® is often utilized by attackers to avoid surveillance via traffic anal-
ysis. Tor distributes the user’s transactions over several different paths via different
Tor nodes instead of taking a direct path to the target server of the requested
page [46].

When attackers are using Tor to communicate with the victim’s machine, we
cannot determine the actual origin IP of the attacker. However, given the victim’s
server IP address, we can obtain a list of IP addresses of Tor exit nodes?, using the
Bulk Tor Exit Exporter tool®. Below we show an example output from the Bulk Tor
Exit Exporter tool using 72.111.1.30 as target server’s IP address.

This 2s a list of all Tor extt nodes from the past 16 hours that can
contact 72.111.1.30 on port 80 #

You can update this list by visiting
https://check.torproject.org/cgi-bin/TorBulkExitlist.py?ip=72.111.1.30 #
This file was generated on Wed May 2 19:04:11 UTC 2018

103.1.206.100

103.234.220.195

103.234.220.197

103.236.201.110

H W B R

The process begins when the user clicks the ‘Execute’ button from the GUI. A
series of steps will then be carried out, summarised as below:

1. Obtain server IP addresses of target machines by processing evidence file
(user_evidence.pl) for predicate targetServerIP/2
e.g., targetServerIP([173,194,36,104] ,attackName).

2. Make request to https://check.torproject.org/ to get list of Tor nodes
that might contact given target server IP addresses.

3. Add rule torIP/2 relating Tor node to IP of target server, and ip/1 to mark
IP for geolocation later.

An example of the tor_ip_list.pl file generated if the predicate targetServerIP(
[173,194,36,104], attackName) was present in the evidence file is the following;:

:- multifile rule/3.

rule(case_torCheck0(), torIP([103,1,206,100], [173,194,36,104]),
- [.

rule(case_torCheck10(), ip([103,1,206,100]), [1).
rule(case_torCheck1(), torIP([103,234,220,195], [173,194,36,104]),
<).

3Tor project: https://www.torproject.org/about/overview.html.en

4Tor exit nodes are the nodes, or machines, that directly connects to requested pages outside
the Tor network

5Bulk Tor Exit Exporter tool: https://check.torproject.org/cgi-bin/TorBulkExitList.
py

42

https://check.torproject.org/
https://www.torproject.org/about/overview.html.en
https://check.torproject.org/cgi-bin/TorBulkExitList.py
https://check.torproject.org/cgi-bin/TorBulkExitList.py

rule(case_torCheck11(), ip([103,234,220,195]1), [1).

These predicates can then be used as part of the following rule from the technical
layer:

spoofedl P(IP, Att) <— malwareUsedInAttack(M, Att), attackSourcel P(1P, M),
targetServerl P(TargetServerl P, Att),
torI P(1P, TargetServerIP).

Snort

ABR allows users to upload Snort alert logs and process them to allow users to
select any suspicious IP addresses to mark them as an attack source IP (using the
predicate attackSourceIP(IP, Att)).

Snort® is a popular network-based intrusion detection system (NIDS). NIDS are
used to monitor the network for potential malicious activity [47]. When the IDS
detects a possible malicious event, it then alerts security teams with useful informa-
tion, e.g., sender and receiver IP addresses, timestamp, return code. Analysts can
then look at the alerts and note down possible attack sources.

One of the main problems when using IDS is the large number of false positives
generated [48], leading to security teams spending long hours reading through the
alerts. Integrating the IDS output with the ABR allows analysts to make use of
information obtained from the IDS without needing to read through every one of
them.

While we are unable to fully automate the process of log analysis since there
could potentially be thousands of alerts generated, and there are no strict rules to
determining which alerts are suspicious and which are just false-alarms, we have
implemented a log processor that filters the log and only displays part of the in-
formation. A snort alert has the following format [49] as shown below (we have
highlighted the fields for alert message, priority level, source IP and destination IP,
which we are interested in).

<timestamp> <hostname> <process_id>: [<gen_id>:<sig_id>:<version>] <alert_msg>
[Classification: <category_name>] [Priority: <priority>]
<network_interface> <ip_prot> <src_IP> -> <dest_IP>

The overview of the ABR Snort log processor is presented in Figure 5.2. We filter
the alerts that satisfies the following conditions: (i) has level >= 3, (ii) message
contains one of the keywords (see Figure 5.2 for list of keywords) and (iii) source IP is
one of the 5 most occurring source IPs in the entire file. Using this filtering method,
from the original 77680 alerts in the tg_snort_full.7z alert file from SecRepo’,
ABR only displays 155 alerts.

We show in Figure 5.3 the result shown to the user after uploading a Snort
alert log. From this list, the user can click any IP to select it as a possible attack
source. Once the user clicks an IP, say ipAddr1l, then attackSourceIP(ipAddrl)

6Snort can be downloaded from https://www.snort.org/.
"The alert file from SecRepo can be downloaded from http://www.secrepo.com/

43

https://www.snort.org/
http://www.secrepo.com/

Figure 5.2: Processing of Snort alert logs

user upload
snort log file

l

o Display in GUI:
Filter: Tl srclP:
Filter: f— céniains src IP is one of top 5 de.stIP'
level >=3 kegwor ds most occurring -)
Y arc IPs message:
keywords = {"bad", "invalid", l
"error", "brute forece", "multiple",
user select
"high amount", "breakin", "infected", suspicious IPs
"malware", "worm", “"trojan", "virus",
"denial of service", "malicious"} i

user_ evidence.pl

Figure 5.3: Screenshot of output from Snort log filter
0@ Processed snart log
Click on IPs to add attackSourcelP(<IP>,a) and ip{<IP>) as evidence.

|src IP: 98.191.251.17
dest IP:192.168.10.10
Msg: ET TROJAN Win32.Zbot.chas/Unruy.H Covert DNS CnC Channel TXT Response (404)

|src IP: 192.168.51.10
dest [P:46.48.154.219
Msg: ET TROJAN P2P Zeus or ZeroAccess Request To CnC (1)

dest IP:37.157.255.172
Msg: ET MALWARE Double User-Agent (User-Agent User-Agent) (7)

Msg: ET TROJAN Suspicious User-Agent (Presto) (7)

dest IP:178.32.190.142
Msg: ET TROJAN ZeroAccess/Max++ Rootkit C&C Activity 1 (16)

Msg: ET TROJAN ZAccess /Sirefef/MAX+ +/Jorik/Smadow Checkin (16)

and ip(ipAddr1) (auxiliary predicate) are added to user_evidence.pl. The pred-
icate attackSourceIP/1 is used by the following rule in the technical layer:

attackPossibleOrigin(X, Att) < attackSourcel P(IP, Att), ipGeoloc(X, IP).

IP geolocation

ABR also incorporate automatic IP geolocation for any IP address marked in

user_evidence.pl, virustotal.pl or tor_ip_list.pl files, using a free IP to
country service ip2nation®. In this case, a http request is sent to http://ip2c.
org/<ip_address>, which returns the name of country where the IP is geolo-
cated. Country names are then converted in a standard way into prolog atoms,
converting everything to lower case then replacing spaces with underscore. For
example, if ip([66,135,192,123]) appears in one of the prolog evidence files,

8ip2nation can be accessed from https://about.ip2c.org/

44

http://ip2c.org/<ip_address>
http://ip2c.org/<ip_address>
https://about.ip2c.org/

ipGeoloc(united_states, [66,135,192,123]) will be generated in
automated_geolocation.pl.
Below we show an example of automated_geolocation.pl generated:

rule(case_autogen_geolocation0(), ipGeoloc(china,[123,123,123,102]), [1).
rule(case_autogen_geolocationl(), ipGeoloc(australia,[103,1,206,109]1), [1).
rule(case_autogen_geolocation2(), ipGeoloc(united_states, [69,195,124,58]), []1).

IP geolocation is used to identify where the attack originated from, according to
the following rule (taken from the technical layer):

attack PossibleOrigin(X, Att) < attackSourcel P(IP, Att),ipGeoloc(X, IP).

Virustotal IP report

To get domain resolution of an IP on a certain date, we require the ip/2 predicate in
the form ip([ipl,ip2,ip3,ip4], [YYYY, MM]). For example, ip([69,195,124,58],
[2018,5]) will automatically generate the domain resolution for IP 69.195.124.58
in May 2018.

We show below an example output using Virustotal public API° using the IP
address 69.195.124.58.

___IP Report__

Resolutions

Host Name : 0556.info

Last Resolved : 2015-11-22 00:00:00
Host Name : 0564.info

Last Resolved : 2015-11-22 00:00:00

The IP report generated from Virustotal includes all the domain resolutions until
the current date. To find out which domain the IP was registered to on the given
date, we need to do some post-processing to the data. We first sort the resolutions
according to its last resolved date, then iterate through the list to find the domain
that the IP is registered to during the given date.

After obtaining the ipResolution/3 predicate, the following technical rule is used
to deduce the command and control server (ccServer) used by the malware.

I Pdomainl(S, M) : ccServer(S, M) < malwareU sedInAttack(M, Att),
attackSourcel P(IP, Att),
ipResolution(S, 1P, D).

5.3 Visualisation

ABR supports the visualisation of three different structures: (i) derivation, (ii)
attack-and-defense argumentation tree and (iii) overall hierarchy of rules. In this

9Virustotal —public API V2.0 adapted from https://kdkanishka.github.io/
Virustotal-Public-API-V2.0-Client/

45

https://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/
https://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/

section, we detail the motivations, then the implementation details for the visuali-
sation of each of the three structures.

5.3.1 Motivation

Without the graph visualisations, the original text form of the derivation and ar-
gumentation tree are rather hard to read and comprehend. On the other hand,
without the visualisation of preference hierarchy, there is no way of spotting errors
in preferences. Below we go into details for each of the structures, explaining the
motivation for the visualisations.

Derivation

We show below an example derivation string, which is the list of rules used to derive
the result of a query, in Listing 2.

Listing 2 Example derivation string

[r_op_notTargetted(example2b), case_example2b_£f2b(), case_example2b_£2(),
— p4a_t(), bgl(), case_example2b_£f10(), case_example2b_£f9(),
r_t_srcIP1(yourCountry, example2b), r_t_attackOrigin(yourCountry,
example2b), case_example2b_£f8(), r_str__motiveAndLocation(yourCountry,
example2b)]

R

Although the derivation string contains all the information required to under-
stand how the prove was constructed, users have to manually search for each of the
rulenames to find out what the rules are.

Argument tree

We also show below the argument tree printed to standard output when we exe-
cute the query visual_prove([isCulprit(X, Att)], D) into the Prolog console,
in Listing 3. The first line of the argument tree shows the winning argument, or

Listing 3 Example argument tree

[bg1(), case_example2b_£f10(), case_example2b_£f9(), r_t_srcIP1(yourCountry,example2b),
r_t_attackOrigin(yourCountry,example2b), case_example2b_f8(), r_str__motiveAndLocation(yourCountry,example2b)] {DEFENSE}
| ___[r_t_nonOrigin(yourCountry,example2b), r_t_noLocEvidence(yourCountry,example2b), p3_t()]
| | ___[r_t_srcIPi(yourCountry,example2b), case_example2b_f10(), case_example2b_f9(), p4a_t()] {DEFENSE}
| ___[r_str__targetItself2(yourCountry,example2b), case_example2b_f2(), p22d(), ass(specificTarget(example2b))]

| ___[r_op_notTargetted(example2b), case_example2b_f2b(), case_example2b_f2()

the derivation of the solution of the query. Subsequently, derivations of attack and
defense (marked by {DEFENSE}) arguments are shown. For each defense argument,
Gorgias attempts to find counter-arguments that are at least as strong as the given
defense argument, and vice-versa. Similar to that for derivations, the default argu-
ment tree was also fairly hard to comprehend, the hierarchy of the various attack
and defense arguments are not immediately obvious.

46

Rule hierarchy

Prior to implementing the visualisation of the rule hierarchy, there was no way of
visualising the relationship between rules or preferences in ABR. Given the large
number of preferences in the reasoner and the fact that the user can add more
preferences, deadlocks or cyclic preferences can be easily introduced.

We show below a series of cyclic preferences, created by extracted part of the
preferences used in the technical layer (preferences pl to p7) and adding one addi-
tional preference (p8) that forms a cycle.

pl:prefer(r_t srclP1(X, Att),r t noLocEvidence(X, Att)).
p2 :prefer(r_t srclP2(X, Att),r t noLocEvidence(X, Att)).
p3 :prefer(r_t_langl(X, Att),r _t noLocEvidence(X, Att)).
pd :prefer(r_t lang2(X, Att),r t noLocEvidence(X, Att)).
pb:prefer(r_t infra(X, Att),r t noLocEvidence(X, Att)).
p6 : prefer(r_t domain(X, Att),r t noLocEvidence(X, Att)).
p7 :prefer(r_t_spoofIP(X, Att),r _t_srclIP1(X, Att)).

p8 : prefer(r_t noLocEvidence(X, Att),r t spoofIP(X, Att)).

It can be seen that it is quite difficult to spot cyclic preferences, especially when it
is a large cycle. When there are cyclic preferences, ABR can get stuck, or not be
able to prove anything, since there are no winning arguments if the rules are stuck
in a deadlock.

5.3.2 Implementation

We now present a high-level description of the implementation of the various visu-
alisations.

Derivation

The visualisation of the derivation string from Listing 2 is shown in Figure 5.4.
This diagram clearly shows the hierarchy of rules applied, with the rulenames in
the ellipses and evidences in the rectangles. It is also colour-coded to show which
layer the evidence, or derived evidence had come from. Red denotes the strategic
layer, yellow denotes the operational layer, blue denotes the technical layer and grey
denotes either a base evidence or background knowledge.

Each rulename in the derivation corresponds to a rule, that has a head and a
list of body predicates. The hierarchy of the derivation graph can be illustrated by
the following example: A node (nl : H < By,...,By) is a child of another node
(n2 : Hy < H,...) since the head of nl is one of the body predicates of n2. This
means that n2 uses the derived evidence from nl during derivation.

The general idea is to create a tree structure from the list of rulenames in the
derivation string. While iterating through the derivation, we either (i) push the rule
onto a stack or (ii) pop rules from the stack and add them as the current rule’s
children if they derive the body predicates of the current rule, before pushing the
parent onto the stack. The details of the algorithm are shown in Section 7.3.4.

47

Figure 5.4: Graph visualisation for derivation

[] [] Derivation
Zoom in (Ctrl+1) Zoom out (Ctrl+0) (Press arrow keys to move)
isCulprit{yourCountry example2b)

\

r_str__motiveAndLocation

i U

hasMotive(yourCountry example2b) country(yourCountry) attackOrigin(yourCountry example2b)

| \ |

case_example2b_f8 bgl r_t_attackOrigin

\

attackPossibleOrigin(yourCountry example2b)

\

r_t_srclPl

N

attackSourcelP([123,123,123,125] example2b) ipGeoloe(yourCountry,[123,123,123,125])
case_example2b_{9 case_example2b_f10

Argument tree

The visualisation of the argument tree string from Listing 3 is shown in Figure 5.5.
From this diagram, the relationship between attack and defense arguments are much
clearer. We also show the preference rule applied that makes one argument stronger
than the other. Like the derivation graph, the argument tree graph is also colour-
coded. Green nodes denote defense arguments and red nodes denote attack argu-
ments.

The hierarchy in an argument tree depends on the ‘level’ of the argument. Re-
viewing the argument tree previously mentioned, we see that there are ‘branches’
indicated by the “|___[” branch in the string. We refer to the depth of the branch
as the ‘level’ of the argument.

[bg1(), case_example2b_f10(), case_example2b_f9(), r_t_srcIP1(yourCountry,example2b),
r_t_attackOrigin(yourCountry,example2b), case_example2b_f8(), r_str__motiveAndLocation(yourCountry,example2b)] {DEFENSE}
| ___[r_t_nonOrigin(yourCountry,example2b), r_t_noLocEvidence(yourCountry,example2b), p3_t()]
| | ___[r_t_srcIP1(yourCountry,example2b), case_example2b_f10(), case_example2b_f9(), p4a_t()] {DEFENSE}
| ___[r_str__targetItself2(yourCountry,example2b), case_example2b_f2(), p22d(), ass(specificTarget (example2b))]

| ___[r_op_notTargetted(example2b), case_example2b_f2b(), case_example2b_f2()

An argument (with level = n) is a child of the closest argument above it that
has level = n — 1. The algorithm for creating the graph from the argument tree
string is similar to that for creating a graph from the derivation string. Starting
from the last line of the string, we either (i) push nodes onto the stack or (ii) pop
the children argument off and push the parent argument onto the stack. The details
are described in Section 7.3.4.

Rule hierarchy

ABR can visualise the hierarchy of all the preferences in the reasoner and all the
preferences added by the user. The generated graph highlights rules that are involved
in cycles, so erroneous preferences can be spotted from a glance. Visualising the
preference rules mentioned previously, Figure 5.6 shows the graph for the cyclic

48

Figure 5.5: Graph visualisation for argumentation tree

ec-@® Derivation

Zoom in (Ctrl+1) Zoom out (Ctrl+0) (Press arrow keys to move)

bg1(), case_example2b_f10(), case_example2b_f9(), r_t_srcIP1(yourCountry example2b), r_t_attackOr
igin(yourCountry example2b), case_example2b_f8(), r_str__motiveAndLocation(yourCountry.example2b)

prefer(r_t_nonOrigin(X Att) r_t_attackOrigin(X Att)) \prefer(r_str__targetltseltf2(X_Att),r_str__motiveAndLocation(X Att))

r_t_nonOrigin(yourCountry example2b).r_t n r_str__targetltself2(yourCountry example2b), case_ex
oLocEvidence(yourCountry example2b), p3_t() ample2b_f2(), p22d(), ass(specificTarget(example2b))

}rcfcr(r_t_srCIP 1(X,Att),r_t_noLocEvidence(X,Att)) i

r_t_srcIP1(yourCountry example2b), case_ex 1_op_notTargetted(example2b), case_
ample2b_f10(), case_example2b_f9(), pda_t() example2b_f2b(), case_example2b_f2()

File saved at: img/arg_tree_3.svg

Reload Help

nodes and Figure 5.7 shows the graph if we remove the last preference (p8) that was
creating the loop. With the rule hierarchy graph, users can check it after adding
a new preference to ensure that the preferences are added correctly, no cycles are
formed with existing preferences inside the ABR reasoner or any other previously
defined preferences.

To create the rule hierarchy diagram, we first perform a scan for all the prefer-
ences used across the various files, then draw each pair of rules in a preference as
nodes in a directed graph, with an edge from the stronger rule to the weaker rule.
Special care was to be taken when detecting cycles. When drawing the graph, we it-
erate through the graph, drawing the parent (p) followed by its children ({cy, ..., ¢, }).
Meanwhile, we keep track of the set of nodes that are seen. Starting from one node,
we recursively traverse its children nodes. If we see a node the second time, we
know that there is a cycle. All the nodes in that set form part of the cycle and are
highlighted as ‘recursive preferences’ in the diagram.

Figure 5.6: Part of a usual preference graph

r_t_infra(X Att)

r_t_srelP1{X At

.—-—'—'._._._._'_._.—/—r’
r_t_spoofTPCX At
-‘_‘_‘_‘_-_‘-_'_'_'_“‘—-D
r_t_srelP2(X Att)
T

r_t_noLocEvidence(X Att)

_'_________._._-—-I"
r_t_lang (X Att) /

r_i_lang2(X At

r_t_domain(X Att)

49

Figure 5.7: Recursive preference after adding prefer (r_t_noLocEvidence (X,Att),
r_t_spoofIP(X,Att))

r_t_infra(X Att)

Recursive preference!
_7___,_———*—__7___ Recursive prcfcn:ncﬁ r_t_sreIPTXAL)
rt langl(XA) —) o e ~ Recursive preference! -
~t lang1(X.Aw) r_t_noLocEvidence(X Att) [P r_t_spoofIP{X Att) Recursive preference!

——— T ——
I — Recursive preference! E—
r-l_la“gz(X,AtU / _7___7__eﬂ\‘7ve£emnte 7

r_t_domain(X Att)

5.4 Standardised rule names

In ABR, we allow users to use Prolog syntax (as opposed to Gorgias syntax) as far
as possible when inserting rules and facts. We made this choice for several reasons.

Accessibility While Prolog is a well-known logical programming language, Gor-
gias is much more niche, hence we do not expect our users to know the exact syntax
for Gorgias rules and preferences.

Convenience The conversion of a Prolog rule (Head :- Bodyl, ..., BodyN) to
a Gorgias (rule(rulename, Head, [Bodyl, ..., BodyN])) is very easy and can
be easily automated. Since Prolog rules are shorter, allowing users to input rules in
Prolog style saves them time in typing the longer, more cumbersome Gorgias rules.

Maintainability Constraining users to use Prolog rules also gives us complete
control over the rule names. Having standardised rules for rule names makes it
possible to determine the type of rule (preference rule or normal rule) and the file
that the rule is located in, making the parsing and searching for the rules much easier.
Table 5.1 summarises the format of the rule names used in ABR. Additionally, this
is also a fundamental requirement that allows our scoring system (Section 5.1) to

work.
Table 5.1: Standardised rule names
Rule name Rule type Location
r_t_ <String>() Normal tech.pl
p<Int/String>_t() Preference tech.pl
r_op_<String>() Normal op.pl
p<Int/String>_op() Preference op.pl
r_str <String>() Normal str.pl
p<Int/String>() Preference str.pl
case user f<Int>() Fact user _evidence.pl
p_user <Int>() Preference user _evidence.pl
bg<Int>() Background fact | bg.pl
case _torCheck<Int>() Case-specific fact | toollntegration/tor ip list.pl
case_virustotal res<Int>() Case-specific fact | toollntegration/virustotal.pl
case autogen geolocation <Int>() | Case-specific fact | toollntegration/automated geolocation.pl
case < String/Int>() Case-specific fact | evidence.pl

20

Chapter 6

ABR User Interface

ABR is a tool that is able to perform a myriad of different functions. Therefore,
exposing and presenting these functions to the user in coherent manner is a major
part in building ABR. In this chapter, we present the different ways in which the
user can interact with the ABR GUI, and why the features are useful to the user.

In Figure 6.1 we show an annotated screen-shot that highlights the various op-
tions that the user can select in the ABR main screen. These options are illustrated
in Figure 6.2. We present below a detailed description of the features of ABR for
each option.

Figure 6.1: Annotated ABR main screen

[] o Argumentation-Based Reasoner (ABR)

2. Tool |n'[eg ration (Tool integration ” Insert new rule H View pref diagram Search for a rule) 1. Utils

3. Insert new rule

Name of attack:
Select predefined attacks [4. Standard execute
Get a list of predicates that can be derived by current evidences: Prove all possible predicates 5. Verbose execute

i s =y
ustom query string <list of predicates to prove>) Custom execute
7. Input evidence execute

(Input evidence: N
Select from existing predicates d
Submit Upload
user_evidence.pl:
Update
o J

51

Figure 6.2: User flow diagram

View preference

hierarchy diagram

Utils

Rule directory

(search for rules)

(for automatic IP geolocation,
check against bulk Tor exit exporter

i and Virustotal host resolution)
Add helper predicates

(ip/1 and ip/2)

Tool Integration

User upload Log filtered to display top 5 (most User select suspicious IPs

Enter attack name snort alert log occurring) sre IPs, corresponding —> to add as attack source IP
associated with log dest IPs and snort alert messages

Enter rule to add

Traverse all source prolog files Select preferences
Insert new rule (stagdara lich)!?gBSgr)ltax ~—> to look for conflicts (rules with ————> to add
) Ll P neg(H) as head)
View derivation
diagram
Standard / Filter and display all other
execute Enter View positivll:hdda_rfirvatio?s (:qu::luding Select
——> argumentation S L A > preferred rule
) . Egrcl'w_’t) attack name tree (e.g. isCulprit(countryY,
Main screen IsCulpri attack))
Add
preferences
Filter and display all positive
derivations concluding) Select
with same culprit preferred rule
(e.g. isCulprit(countryX, attack))
Verbose
(EXGCUteb Enter Try to run each body Traverse all source prolog
what can be — predicate of each strategic . files to display rules with .
attack name P e ; pay
proven) rule to give visual display Details unproved prolog predicates Add evidence

as head

Custom
execute
(custom query
string)

Enter custom
query string

Select from
dropdown

Input evidence

Upload file

Edit directly in

user_evidence.pl

52

6.1 Utils

Users can view the rule hierarchy diagram and use the rule directory to search for the
rule by its rule name. Given the large number of rules in ABR itself and numerous
rules or preferences inserted by the user, without these tools, the user will quickly
get lost in all the rules and preferences.

Rule hierarchy diagram The rule hierarchy diagram visualises the relative strength
of rules by processing all the preferences used in ABR. Details of the rule hierarchy
visualisation are covered in Section 5.3.

Rule directory The rule directory serves as a convenient way for users to look
up what rule corresponds to specific rule names, as shown in Figure 6.3. In both the
derivations and argumentation trees, only the rule names are displayed. While
adding all the rules (e.g., rule(rulename, head, [bodyl, ..., bodyn])) will
make it difficult to read the derivations and argumentation trees, having no rules
at all and only the rule names makes the derivations incomprehensible. Having a
rule directory is a good solution that allows the users to understand which rule
corresponds to the rulenames, without cluttering the visualisations.

Figure 6.3: Screenshot of ABR, the name of the rule can be input into the rule
directory to display the corresponding rules.

| JON Search rules
Input rulename to view entire rule
r_str__moti

Search

Results:
rule(r_str__motiveAndCapability(C, Att), isCulprit(C, Att), [hasMotive(C, Att), hasCapability(C, Att)]).
rule(r_str__motiveAndLocation(C, Att), isCulprit(C, Att), [attackOrigin(C, Att), hasMotive(C, Att), country(C)]).

6.2 Tool integration

By using the tool integration, users can insert the helper predicates (ip/1, ip/2
and targetServerIP/2) required for ABR to generate (i) the IP geolocation, (ii)
resolved domain name for the IP, and (iii) the list of Tor exit nodes contacting the
target server. Users can also upload a snort NIDS alert log, where ABR filters the
log and display the top 5 source IP addresses where users can select which addresses
could potentially be the attack source IP for that attack. Further details regarding
tool integration can be found in Section 5.2.

6.3 Insert new rule

When a new rule is inserted by the user, ABR automatically traverse through all
the Prolog source files to look for conflicting rules! and lists them, as shown in
Figure 6.4. The user can then add preferences between the new rule or the old rule.

!Conflicting rules are rules with heads that are complements of each other. In Gorgias, by
default, complement (neg(L), L) is true for any literal L.

93

Adding preferences is essential for pruning out weak or invalid arguments, espe-
cially when large amounts of relevant evidences are present and many derivations
are generated. Therefore, it is important to highlight counter-rules to the user to
add in the necessary preferences.

Figure 6.4: Screenshot of ABR, where inserting new rule
neg(hasMotive(X,Att)) :- isGoodCountry(X) displays all rules with
hasMotive (X,Att) as head.

e0e Add new rule

New rule (in prolog style): negthasMotive(X, Att)) :- isGoodCountry(X) Done

6 conflicts found!
rule(r_op_ecMotive(C,T),hasMotive(C,Att), [target(T.Att),industry(T),contextOf Attack(economic,Att),hasEconomicMotive(C, T), s pecific Target(At)]).

Prefer new rule Prefer r_op_ecMotive(C,T)
rule(r_op_pMotive(C,T),hasMotive(C Att), [targetCountry(T Att),attackPeriod(Att,Date 1),contextOf Attack(political ,Att),has PoliticalMotive(C,T,Date2),dateApplicable(Date1,Date2),s pecificTarget(Att)]).

Prefer new rule Prefer r_op_pMotive(C,T)
rule(r_op_conflict(X.T),hasMotive(X,Att),[targetCountry(T Att),attack Period(Att,Date1),news(News, T,Date2),dateApplicableiDatel,Date2),causeOfConflict(X,T,News), specificTarget(Att)]).

Prefer new rule Prefer r_op_conflict(X,T)
rule(r_op_conflict1(X,T),hasMotive(X,Att),[target(T,Att),attack Period(Att,Date 1),news(News, T,Date2),dateApplicable(Date 1,Date2),causeOfConflict(X,T,News), specificTarget(Att)]).

Prefer new rule Prefer r_op_conflict1(X,T)
rule(r_op_geopolitics 1(C,T),hasMotive(C,Att),[target(T Att),country(T),country(C),poorRelation(C, T)]).

Prefer new rule Prefer r_op_geopolitics 1(C,T)

rule(r_op_geopolitics 2(C,T),hasMotive(C,Att), [target(T Att),country(T),country(C),poorRelation(T,C)]).

Prefer new rule Prefer r_op_geopolitics2(C,T)

6.4 Standard execute

Executing in standard mode executes the query visual_prove([isCulprit (X, <a-
ttackName>)], D) using Gorgias for the given attack name. The standard execu-
tion returns the following information, as illustrated by Figure 6.5:

1. Who is the culprit;
2. Score of derivation;
3. The derivation that led to the conclusion;

4. Argument tree showing counter-arguments against the winning argument (the
derivation);

5. Any negative derivations for the same culprit;
6. Abduced predicates used in derivation;
7. Rules that derives the abduced predicates.

By running the visual_prove/2 query, Gorgias returns the derivation (D) that
led to the conclusion, and also an argument tree. ABR processes the derivation and
argument tree to show a graph diagram, which is much more comprehensible than
the original output. The details regarding this visualisation is covered in Section 5.3.

ABR also shows negative derivations for each proved culprit (neg(isCulprit (X,
Att)) for each X in isCulprit (X, Att)). This shows which are the possible con-
flicting arguments, so users can then decide whether or not to add a preference to
choose one argument or the other.

o4

Figure 6.5: Original results screen (left) and annotated result screen highlighting
key information shown (right).

[] @ Execution Result for examplelc [o) [] Execution Result for examplelc

_) S_ummary: Summary:
X = countryX [Highest score: 18, Num of derivations: 4] X = countryX [Highest score: 18, Num of derivations: 4]
X = randomGroup [Highest score: 3, Num of derivations: 1] X = randomGroup [Highest score: 3, Num of derivations: 1]

Assumptions: . Assumptions:

Abduced predicates: Abduced p,edicﬁgfqbduced predlcales
[ass(notFromBlackMarket(examplelc_m1}), ass(notFromBlackMarket(examplelc_m2}))] és5tnotFrcmBIackMarket(examplelc_mll], ass(notFromBlackMarket(example lc_m2))])
Rules to prove abducibles: Rules to prove abducibles:
notFromBlackMarket: { otFromBlackMarket: {

rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod(usb, M), command# rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod(usb, M), command,
dControlEasilyFingerprinted(M)]). } ControlEasilyFingerprinted(M)]). }

7. Rules deriving abduced predicates
Derivations:

Derivations:
X = countryX, Score:18 = country.
Final strategic rule used: r_str__motiveAndCapability(countryX, examplelc} nal strategic rule used: r_str__motiveAndCapability(countryX, examplelc)

1. Culprit 2. Score

Derivation: Derivation:
[r_op_notTargetted(examplelc), case_examplelc_f9(), case_examplelc_f80, r_str__linkedMal [r_op_notTargettediexamplelc), case_examplelc_f90, case_examplelc_f80), r_str__linkedMal
are(countryX, examplelc), ass(notFromBlackMarket(examplelc_m2)), ass(notFromBlackMarke are(countryX, examplelc), ass(notFromBlackMarket(examplelc_m2)), ass(notFromBlackMarke
examplelec_ml)), case_examplelc_f4(, CBSE_EXBMP!EIC_f_?-(L l_l_similarl(exa_mplelc_ml, ex examplelc_m1l)), case_examplelc_f4(), case_examplelc_f30, r_t_similarl(examplelc_m1, ex
mplelc_m2), case_examplelc_f20, p23d0, r_t_neghighSkill(examplelc), r_t_highResource0(e mplelc_m2), case_examplelec_f2(, p23d0, r_t_neghighSkilllexamplelc), r_t_highResource0(e
ampl_s_ld, r_op_hasCapabilityl{countryX, examplelc), case_examplelec_f50), r_str__motiveAm amplelc), r_op_hasCapabilityl(countryX, examplelc), case_examplelc_f5(, r_str__motiveAn:
apability(countryX, examplelc)] apability(countryX, examplelc)]
Argumentation Tree: Argumentation Tree:
' ' 3. Derivation
[case_examplelc_f10, r_op_claimRespO(randomGroup,examplelc), r_str__claimedResp(rando [case_examplelc_f1(), r_op_claimRespO(randomGroup,examplelc), r_str__claimedResp(rando
Group,examplelc)] {DEFENSE) Group,examplelc)] {DEFENSE} 4. Argumentation free
View Diagram View Argumentation Tree Add rule preference (: View Diagram) (View Argumentation Tree) Add rule preference
l. 5. Negative Derivations
Negative Derivations: 2 2. Negalive Uerivations Negative Derivations: 2
neg(isCulprit{countryX,examplelc)) neg(isCulprit(countryX,example1c)}

|[case_examplelc_f80), r_str__targetltself2(countryX, examplelc)] case_examplelc_f8(), r_str__targetltself2(countryX, examplelc)]

Add rule preference Add rule preference
| neg(isCulpritirandomCroup,examplelc)) neg(isCulprit(randomGroup,examplelc))
i[r,t,altack(}riginDefaull(randomcrcup, examplelc), r_str__negAttackOrigin{randomGroup, e r_t_attackOriginDefault(randomGroup, examplelc), r_str__negAttackOrigin(randomGroup, e
|mplelc)] lelc)]

Add rule preference Add rule preference

To aid the user in evaluating and improving on the attribution, ABR shows a
list of the abduced predicates®>. By showing all the possible rules that can prove
the abducible predicate, we highlight to the user what are the possible paths to
investigate further.

6.5 Verbose execute

When isCulprit/2 cannot be proved in standard mode, users can start executing
in verbose mode. Executing in verbose mode attempts to prove each body predicate
in all the rules with isCulprit/2 as head, i.e., for each rule:

rule(rl, isCulprit(X, Att), [By, ..., By]).

VB € {By,..., By}, execute prove(|B], D). The results are then processed to give
users a visual overview of what predicates are missing to make an attribution. From
Figure 6.6, users can easily see what additional evidences are required to make an
attribution and thus investigate further in that direction and add more evidence to
prove isCulprit/2.

6.6 Custom execute

Other than executing the query prove([isCulprit(X, Att)], D), users can also
execute their own custom query (execute prove ([<customQuery>], D)) from ABR.
This could be useful when trying to test if a derived evidence can be proved. For

2Abduced predicates are assumed to be true, but not explicitly proven.

95

Figure 6.6: Verbose execution result visualising derivable (green) and non-derivable

predicates (red)
i [] L] Possible evidences
Add evidence
Legend: GFéen — predicates proved, Red = predicates not proved

All strategic rules:

rule(r_str__claimedResp(X,Att), isCulprit(X,Att), [existingGroupClaimedResponsibility(X,Att)]).

rule(r_str__motiveAndCapability(C,Atv), isCulprit(C,Att), [hasMotive(C,Att), HASCAPABINYIC, Att)]).

rule(r_str__motive(C,Att), isCulprit(C Att), [ProminentGIOUPLGToup),groupOrigin(Group,C), EOUREAIC), is Culprit(Group,Att), hasMative(C Att)]).
rule(r_str__motiveAndLocation(C,Att), isCulprit(C,Att), [hasMotive{C,Att},attackOrigin(C,Atl},-:}]}.

rule(r_str__loc(C,Att), isCulprit(C,Att), [attackOrigin(C,Att), COUREIVIC)]).

rule(r_str__social(C,Att), isCulprit(C,Att), [Governmentlinkedir,C),country(C) identifiedindividualinAttack(P,Att)]).

rule(r_str__linkedMalware(X,A1), isCulprit(X,Al), [malwareLIsedInAtta{k(Ml,Al},-VI1,M2],malwareLinkedTo(Mz,x},ncthrBIackMarkelUse(M1),no(ForBIackMarket
Use{M2)]).

rule(r_str__noEvidence(X,Att), neg(isCulprit(X,Att),[]).

rule(r_str__noHistory(X,Att), negl(isCulprit(X.Att)),[neg(existingCroupClaimedRes ponsibility (O Att)]).
rule(r_str__negAttackOrigin(X,Att), neg(isCulprit(X,Att)), [HEg(attackORgIng: Att)]).
rule(r_str__noCapability(X,Att), neg(isCulprit(X,Att)),[neg(hasCapability(X,Att))]).
rule(r_str__noMotive(X,Att), neg(is Culprit(X.Att)),[neg(has Mative(x, Att))]).
rule(r_str__weakAttack(X,Att), neg(isCul prit(X,Att)), [HaSRESOUrCestx), neg(requireHighResource(Att))]).
rule(r_str__targetitself1(X,Att), neg(isCul prit(X,At)), [target(X, Att)]).

rule(r_str__targetltself2(x,Att), neg(isCulprit(X,Att)),[targetCountry(X,Att)]).

rule(r_str__lowGciTier(X,Att), neg(isCuIpril(X,Att]},_x,iniliating}]}.

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

example, to check if malware m1 and m2 are similar, users can execute the query

prove([similar(m1, m2)], D)).

6.7 Input evidence

There are several modes of input for insertion of evidence. Users can select from
the dropdown menu of existing predicates, input the evidence directly, or upload a
Prolog file. The evidence is then processed into a Gorgias rule. For example, the
evidence fact1 will be processed to rule(case_user_f0, factl, []).

26

Chapter 7

Implementation Details

In this chapter we explain the implementation details of the ABR components that
were written in Java.

7.1 Summary of ABR functionalities

The functionalities of the Java component of ABR is summarised as follows:

e Standard execution: Extract derivations, argument tree and abduced predi-
cates from Prolog query result.

e Verbose execution: Try to prove all predicates in strategic rules.
e Utility: Parse Gorgias rules to get head and body predicates.

e Forensic tool integrations.

7.2 Technology stack

The primary development language of the ABR back-end is Java. Besides the stan-
dard java libraries, we also use the java-graphviz and jpl libraries for graph vi-
sualisation and interfacing with SWI-Prolog respectively. To connect with forensic
tools, the Virustotal public API client! was used.

7.3 Implementation details

The following classes make up the Java back-end of ABR, represented in Figure 7.1:

e QueryExecutor.java: Main class that interacts with JPL package to execute
Prolog queries.

e Result.java: Data structure to hold all information relating to the result of a
query execution.

e Utils.java: Contains String constants and utility methods that aid in parsing
of rules.

"http://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/

o7

http://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/

Figure 7.1: UML class diagram of Java back-end of ABR

+ Query
+ Utils implements Iterable
Btfields Iterator
[constructors[<< ~ - _ _ _;?‘i‘:wﬂecumr _ _ - >>[Hfields
[# methods clcems:ructors [Flconstructors
 Emethods - [T e LT —
-7 yZm

+ Result £~ S ~.
[Ffields L7 h S
[constructors L | ~ A
[# methods - L . + Term
S . i — fields

D/ ! \:/ [#H constructors

- [H#methods -
+ DerivationNode| + Toollntegration
Ffields ——— [fields
[#t constructors [E constructors
[methods = El methods e

e DerivationNode.java: Data structure used in generation of graph diagrams
using java-graphviz package.

e Toollntegration.java: Helper class containing all the methods relating to foren-
sic tool integration.

Below we describe the above components in detail.

7.3.1 QueryExecutor.java

The QueryExecutor class handles execution of Prolog queries. In ABR, users can
perform two different types of executions, standard and verbose. These two types
involve different implementations, in this section we cover the implementation details
for both of them.

Standard execution

When executing in standard mode, ABR executes the query visual_prove ([isCul-
prit(X, <attackName>)], D), then extracts the following information from the
result:

1. X: Who is the culprit;

2. D: The derivation that led to the conclusion;

3. Any negative derivations for the same X;

4. Abduced predicates used in derivation;

5. Rules with the abduced predicates as head;

6. Argumentation reasoning tree that was printed to standard output.

The culprit and derivation of each solution can be obtained from the query re-
sult directly, by calling Term culprit = map.get("X") and Term derivation =
map.get ("D") respectively on the result map returned by the JPL method. To ob-
tain the negative derivations, we execute prove([neg(isCulprit(X, Att)], D))

o8

for each of the culprits X obtained from the positive derivation. Abduced predicates
can be extracted from the derivation by filtering for rulenames starting with “ass(”,
since the abduced predicates appear as ass(abduciblePred) in the derivation.

Verbose execution

The verbose query mode is used when we have insufficient evidence to make the
attribution and there are no solutions during standard execution. When executing
the verbose query, we would like to see a visual overview of what predicates can be
derived with the available evidence, as shown in Figure 6.6. The verbose execution
algorithm involves variable mapping, which we explain below, and is summarised
in Algorithm 1. Given the name of the attack (attackName in Algorithm 1) and
all strategic rules used in ABR (allStrategicRules), the algorithm returns two lists,
one containing all derivable predicates (derivable), and one containing all the non-
derivable predicates (nonDerivable). The output can be used as hints by the user
to what evidence can be further provided to ABR.

Variable mapping The verbose execution result displayed only shows the ‘deriv-
able’ or ‘not derivable’ predicates for one specific set of constants?, or fully ground
predicates. To understand how we classify the predicates as ‘derivable’ and ‘not
derivable’, we go into details on how the Prolog variables are mapped from one
body predicate of a rule to the next body predicate.

As shown in Algorithm 1, ABR will try to derive each body predicate, going
from left to right®, while keeping track of all the mappings from variable to con-
stants (we refer to this map as the argument map). Before executing the query
prove([bodyPredicate(X1, ..., XN)],D) for each body predicate bodyPredica-
te(X1, ..., XN), we ground the predicate by applying the substitutions in the
argument map, i.e., to replace X1, ..., XN with its corresponding constants.

The derivable and non-derivable predicates are generated in a very specific way,
that might lead to unexpected results in some cases. In short, ABR will always
display only the first result returned by the reasoner, and use the constants in that
particular result in all further queries on other body predicates to its right. This
means that the results returned by the verbose execution will change depending on
the order of evidence given. We justify why we chose this approach later in this
chapter, after going through an example to further illustrate this limitation.

Example We use the following strategic rule (i.e., take allStrategicRules to be
the list containing only the one rule given below) and evidence (written in this
specific order) throughout this example to explain how the variables are mapped:

isCulprit(X, A1) <—malwareUsedInAttack(M1, A1), similar(M1, M?2),
malwareLinkedTo(M2, X), not FromBlackMarket(M1),
not FromBlackMarket(M?2).

?In Prolog, variables in rules can be unified with constants. Variables are arguments starting
with an upper-case character (e.g., Att, X) and constants are arguments starting with a lower-case
character or in quotes (e.g., china, “malwareA”).

3Since Prolog’s internal unification mechanism proceeds from left to right [50], for efficiency
purposes, the rules in ABR are written such that the variables are ground from left to right.
Hence, in verbose execution, we also map the arguments from left to right.

99

Algorithm 1 Verbose execution

1: procedure VERBOSEEXECUTE(attackName, allStrategicRules)
2 derivable + {}

3: nonDerivable < {}
4
)

for rule € allStrategicRules do
bodies + get BodiesFromRule(rule) > The variables “Att”, “A” and
“A1” are reserved for the attack name

6: argumentMap < {“Att” = attackName, “A” = attackName, “A1" =
attackName}
7 for body € bodies do
8: body < replaceVarWithConst(argument M ap, body)
9: map — executeQueryString(body)
10: vars < get AllV ariables(body)
11: if m = null then
12: nonDerivable < m + nonDerivable
13: else
14: for var € vars do
15: constant <— m.get(var)
16: argument M ap.put(var, constant)
17: groundBody < replaceV arWithConst(argumentMap, body)
18: end for
19: end if
20: end for
21: end forreturn derivable, nonDerivable

22: end procedure

malwareU sedInAttack(“malwareA”, “attackName”).
similar(“malwareA” | “malwareB").
similar(“malwareA” | “malwareC”).

malwareLinkedTo(“malwareC” | “someoneElse”).

When executing in verbose mode for the attack “attackName”, ABR will try to
prove the body predicates from left to right. The first predicate that ABR attempts
to prove is malwareU sedInAttack(M1, “attack Name”). The predicate is derivable,
only one result (M1 = “‘malwareA’’) is returned, which is added to the argument map.
Then, we try to derive similar(“malwareA”, M2). The first result returned will be
M2 = “malwareB’’ because the evidence similar(“malwareA”, “malwareB”) was
defined above similar(“malwareA”, “malwareC”). At this point, the argument
map, list of derivable and non-derivable predicates will contain the following:

argumentMap: {Al="attackName", Mi="malwareA", M2="malwareB"}
derivable: {malwareUsedInAttack("malwareA", "attackName"),
— similar("malwareA", "malwareB")}

nonDerivable: {}

ABR then tries to derive the predicate malwareLinkedT o(“malwareB”, X),
which will fail. Similarly, the predicates not FromBlackMarket(“malwareA”) and

60

notFromBlackMarket(“malwareB”) will also fail. The final state of the variables
(argument map, derivable and non-derivable predicates) will be:

argumentMap: {Al="attackName", Mi="malwareA", M2="malwareB"}
derivable: {malwareUsedInAttack("malwareA", "attackName"),

— similar("malwareA", "malwareB")}
nonDerivable: {malwarelLinkedTo("malwareB", X),

— notFromBlackMarket ("malwareA"), notFromBlackMarket("malwareB")}

Limitation of verbose execution Looking back at the evidences used in this
example,

malwarelU sedInAttack(“malwareA”, “attackName”).
similar(“malwareA”, “malwareB”).
similar(“malwareA”, “malwareC™).

malwareLinkedT o(“malwareC” | “someoneElse”).

it is clear that the following solution should also be possible.

argumentMap: {Al="attackName", Ml="malwareA", M2="malwareC"}
derivable: {malwareUsedInAttack("malwareA", "attackName"),

— similar("malwareA", "malwareC"), malwareLinkedTo("malwareC",
<~ "someoneElse")}

nonDerivable: {notFromBlackMarket("malwareA"),

— notFromBlackMarket ("malwareC")}

One might even say that such a solution is “better” since it has more derivable
predicates than the one produced by ABR (3 instead of 2). However, to be able to
produce such a solution, we need to find all possible solutions for every combination
of arguments for every predicate, and then choose the one with the most derivable
predicates.

To evaluate the complexity of such an operation, let’s consider a dummy rule
with 5 body predicates, each with 2 arguments:

H — Bl(X17 X2)7 BQ(X27 X3)7 B3(X37 X4)7 B4(X47 X5)7 B5<X57 XG)

Take for example we have 3 solutions to each body predicate, each with a differ-
ent second argument (e.g., By(a,b), Bi(a,c), Bi(a,d) are all true). Then, using the
method used in ABR, we have 5 executions (one for each of the 5 body predi-
cates). In comparison, if we were to perform an exhaustive execution, we will have
1+ 34324 3%+ 3% = 364 executions. Such an operation will be ezponential time, in
comparison to the linear time approach used by ABR. Therefore, we decide to keep
to the original approach which only considers the first solution, as the exhaustive
approach is clearly extremely time-consuming and is not scalable if there are many
evidences given, which makes it impractical for a real-time application such as ABR.

7.3.2 Result.java

The Result class is the data structure that holds all the relevant information of the
result of a query execution. This is also where ABR performs filtering for user-
specified strategic rule preferences in the case when the culprits are different. We
explain how the filtering is performed in this section.

61

First, to clarify what we mean by user-specified strategic rule, we show an exam-
ple of a user-specified strategic rule preference and its corresponding strategic rules
below.

rule(pref_rule, prefer(str_rulel(X, Att), str_rule2(Y, Att)), [1) :-

rule(str_rulel(X,Att), isCulprit(X,Att),

— [existingGroupClaimedResponsibility(X,Att)]).
rule(str_rule2(C,Att), isCulprit(C,Att),

< [hasMotive(C,Att) ,hasCapability(C,Att)]).

Differing from most preferences used in A BR, this preference is a dynamic preference
that will only be used if X \= Y, i.e., we are able to attribute the attack to different
culprits. Due to how Gorgias was implemented (see Appendix C for details), this
was not implemented in Prolog by adding preference rules as usual, but in Java by
filtering the results before it is shown to the user in the GUI.

Use of Java to filter results

The results returned from the standard execution are filtered according to the strate-
gic rule preferences. The filtering algorithm is shown in Algorithm 2, which consists
of three main steps:

1. Construct non-preferred rules set: this set (rulesToRemove) contains
all the non-preferred rules to be removed. For example, given the preference
rule prefer(rulel, rule2), rule2 will be in the set if one of the derivations uses
rulel. The preference rule will only be used if both rulel and rule2 are used
in at least one of the derivations. Then, all derivations that uses rule2 will
not be shown. Otherwise, the preference rule will not be used and all the
derivations are shown as they are.

2. Filter derivations: the derivations are filtered by removing any derivation
containing the non-preferred rules from the previous step.

3. Re-process summary information: the filtered derivations are re-processed
to get the new list of culprits, maximum scores, and number of derivations.

62

Algorithm 2 Strategic rule filtering
1: \\ The variables derivations and trees are fields of the Result class
2: procedure FILTERBYSTRRULEPREFS(strRulePrefs)
rulesToRemove < {}
\\ 1. populate rulesToRemove
for pref € strRulePrefs do
(preferredRule, nonpreferredRule) < pref
for derivation € derivations do
if derivation.contains(preferredRule) then
rulesToRemove.add(nonpreferred Rule)
10: break
11: end if
12: end for
13: end for
14: \\ 2. filter derivations

15: for i < 0,len(derivations) do

16: derivation < derivations]i]

17: found + false

18: for rule € rulesToRemove do

19: if derivation.contains(rule) then
20: found + true

21: break

22: end if

23: end for

24: if = found then

25: filteredTrees.add(trees|i])

26: filteredDerivations.add(derivation)
27 end if

28: end for

29: \\ 3. Reprocess summary of derivation

30: \\ (function is pretty straightforward so its implementation is omitted here)
31: reprocessSummary(derivations)

32: end procedure

This algorithm results in a set of filtered solutions, which, from the user’s point
of view in the GUI, works in the same way as the other preferences used in ABR
that were added in Prolog. This allows users to express preferences for derivations
generated using specific strategic rules over others, e.g., a user might want to prefer
solutions where the culprit have capability and motive to perform the attack, over
other solutions where the culprit claimed responsibility for the attack.

7.3.3 Utils.java

The Utils class contains String constants, such as file names and rule names, and
utility methods that help us to parse the rules into rule name, head and body
predicates. Rule parsing is mostly done with Regex and the standard Java String
utility functions such as substring and indexOf.

63

7.3.4 DerivationNode.java

DerivationNode is the data structure used to generate graph diagrams visualisations
for both the derivation and the argument tree. ABR creates a graph composed of
DerivationNodes from both of the structures (derivation and argument tree), before
using the java-graphviz package to visualise the generated graph. In this section
we discuss the details of how the DerivationNode graph is constructed from both
the derivation string and argument tree. The motivation for visualising derivation
and argument tree is discussed in Section 5.3.

Derivation

We start by considering the structure of a derivation string, then describing the
graph construction process in detail.

Structure of derivation First, let us look at what is a derivation. A derivation
is a List<Term> (we call the method with the actual JPL Term instead of the String
version used in Results.java). A derivation from Gorgias has the following form, as
shown in Listing 4.

Listing 4 Example derivation string

[p4a_t(), bgl(), case_example5_f2(), case_example5_£f3(),
- r_t_srcIP1(yourCountry,example5),

- r_t_attackOrigin(yourCountry,example5),

- r_str__loc(yourCountry,exampleb)]

A derivation can be represented by a root DerivationNode (conclusion) with the
following key attributes:

e String result (head of rule)
e String rulename
e List<DerivationNode> childNode

The derivation returned by Gorgias is structured in a specific order. For any rule,
the rules that proves its body predicates always appears on its left. Taking the exam-
ple mentioned previously, if we look at the rule r_t_attackOrigin(yourCountry,
exampleb), its body predicate is attackPossibleOrigin(yourCountry, exampleb),
which is found in the rule r_t_srcIP1(yourCountry, example5):

4 attackPossiblelrigin/2 is in body
rule(r_t_attackOrigin(X,Att), attackOrigin(X,Att),
- [attackPossibleOrigin(X,Att)]).

/4 attackPossiblelrigin/2 is in head
rule(r_t_srcIP1(X,Att), attackPossibleOrigin(X,Att),
— [attackSourceIP(IP,Att),ipGeoloc(X,IP)]).

And we can confirm that the rule r_t_srcIP1(yourCountry, example5) ap-
pears on the left of r_t_attackOrigin(yourCountry, exampleb).

64

[pda_t(), bgl(), case_example5_f2(), case_example5_f3(),
— r_t_srcIP1(yourCountry, exampleb), r_t_attackOrigin(yourCountry,
- exampleb), r_str__loc(yourCountry, exampleb)]

Creation of DerivationNode from derivation Next, we explain how we create
a DerivationNode from a derivation. The general idea is to use a stack of Deriva-
tionNode, and iteratively pop DerivationNode which contain the body predicates of
the parent rule off from the stack. The main steps of the createDerivationNode
method are (for each Term in the derivation):

1. if Term is a preference (starts with “p "), continue;

2. else if Term is an abducible (starts with “ass(”) or an evidence (does not start
with “r_”), create DerivationNode and push onto stack;

3. else if Term is a rule, run processRule(rulename, args, stack).
The main steps of processRule are outlined below:

1. DerivationNode currNode = new DerivationNode(...);
2. Iterate through stack;

(a) DerivationNode n = st.pop();

(b) List<String> bodyList = getBody(rulename) // list of body predicates
of rule;

(¢) if (bodyList.contains(getHead(n), args)), currNode.add(n).

An example of illustrating how the example works can be found in Appendix D.3.
The final figure generated from the derivation string in Listing 4 is shown in Fig-
ure 7.2.

Argument tree

The argument tree generated by Gorgias also uses DerivationNode. Below, we briefly
explain the structure of the argument tree and how the ABR generates a Deriva-
tionNode from an argument tree.

Structure of an argument tree An argument tree is a String printed to stan-
dard output by Gorgias’ visual_prove/2 predicate. An argument tree shows de-
fense and attack nodes from the top conclusion node. Defense and attack nodes
are made up of conflicting arguments. We show an argument tree in Listing 5.
Argument trees can also be represented by a root node (conclusion node) with the
following attributes:

String derivation;

int level;

int defenseOrAttackNode;

List<Node> childNode.

The level of a node determines which parent node and child node it is connected to.

65

Figure 7.2: Graph visualisation generated from example derivation string

isCulprit(yourCountry example5)

\

r_str__loc

/

country(yourCountry} attackOrigin(yourCountry exampleS)

\ |

bzl r_i_attackOrigin

\

attackPossibleOrigin{yourCountry gxamples)

|

r_t_srclPl

N

ipGeoloc yourCountry [103,1 206,100]) attackSourcelP([103,1,206,100] example5)

I \

case_example5_f2 case_example5_{3

Creation of DerivationNode from argument tree We can extract the deriva-
tion by splitting the string on newlines and whether the node is defense or attack
by checking if the line contains ‘‘{DEFENSE}’’. The level of the node can be obtained
by level=line.index0f (‘[’)/4, since the level is denoted by the depth of the
“| ___[branch in the String, as seen in Listing 5.

Lastly, we need to connect the nodes to their parents. To perform this operation,
we need to know the level of every node. If we have a node with level = n, its
children nodes are all the nodes below it that has level = n 4 1. Take for example
the argument tree shown in Listing 5, the children of the node on line 1 are the
nodes on line 2 and line 4.

Creation of a graph from an argument tree is done using a stack, similar to the
creation of a graph from a derivation mentioned previously. The graph generated
from the argument tree shown above in Listing 5 is shown in Figure 7.3. An ex-
ample illustrating how the node is created from an argument tree can be found in
Appendix D 4.

Although the derivation diagram and argument tree are different, they share
many commonalities, so to reduce code duplication, we decided to implement both
of them using DerivationNode. When used for argument tree, the rulename field of
a DerivationNode is an empty string.

66

Listing 5 Example argument tree

[bg1(), case_example2b_£f10(), case_example2b_£f9(),
— r_t_srcIP1(yourCountry,example2b), r_t_attackOrigin(yourCountry,example2b),
— r_str__loc(yourCountry,example2b)] {DEFENSE}
| ___[r_t_nonOrigin(yourCountry,example2b),
< r_t_noLocEvidence (yourCountry,example2b), p3_t()]
| | ___[r_t_srcIP1(yourCountry,example2b), case_example2b_£f10(),
< case_example2b_f9(), p4a_t()] {DEFENSE}
| ___[r_str__targetItself2(yourCountry,example2b), case_example2b_£f2(), p22e(),
— ass(specificTarget (example2b))]
| ___[r_op_notTargetted(example2b), case_example2b_f2b(), case_example2b_£2()]
— {DEFENSE}

Figure 7.3: Graph visualisation of argument tree generated from example
bgl(), case_example2b_f10(), case_example2b_{9(), r_t_srcIP1(yourCountry example2b), r_t_attackOr
igin(yourCountry example2b), case_example2b_f8(), r_str__motiveAndLocation(yourCountry example2b)
prefer(r_l_nonOrigm(X,Alt).r_l_altuckOrlglnm:refer(r_str_turgetltse]ﬂ(x.At!),r_slr_moti\-eAndanutlnn(X,Alt))

1_t_nonOrigin(yourCountry example2b),r_t_n r_str__targetltself2(yourCountry example2b), case_ex
oLocEvidence(yourCountry example2b), p3_t() ample2b_f2(), p22d(), ass(specificTarget(example2b))

i:rcfcr(r_t_src[[’ 1(XLAt) r_t_noLocEvidence(X Att)) i

r_t_srcIP1(yourCountry example2b), case_ex r_op_notTargetted(example2b), case
ample2b_f10(), case_example2b_f9(), p4a_t() example2b_f2b(), case_example2b_f2()

7.3.5 Toollntegration.java

Toollntegration is the helper class that contains all the methods relating to forensic
tool integration in ABR. The implementation details of forensic tool integration are
covered in Section 5.2.

67

Chapter 8

Evaluation

In this chapter, we give an evaluation of the usefulness of ABR from several per-
spectives. We present the core functionality of ABR, show how we evaluate the
correctness and performance of ABR by testing different cyber attack scenarios,
and finally, we discuss the scalability of this tool.

8.1 Functionality

ABR has several key features that can support the analyst in conducting investiga-
tion for attribution:

e Collate various different types of evidence: technical, social, historical data of
other attacks.

e With sufficient evidences, attribute the attack to a specific group or country
(standard execution).

e Show the reasoning behind the attribution by visualising the results of the
derivation.

e Show other weaker counter arguments by visualising the argumentation tree.

e Show counter-arguments that are as strong as the winning argument, decide
if one is preferred over the other.

e Show any abduced predicates used in the attribution process, giving users
possible paths to investigate further in to prove the abduced predicates.

e Without sufficient evidence, show what are the other evidences that the analyst
could potentially look for to make an attribution (verbose execution).

e Integration with forensic tools for the convenience of the analyst.

Iterative process These wide array of functionality are designed to make attri-
bution an iterative process. Attribution is not a single operation where the analyst
have all the required evidence and is able to immediately provide the solution. It
involves many rounds of alternative between connecting the dots between evidences
and collecting more evidence.

68

When executing in standard mode, by showing all the abduced predicates, ABR
shows the assumptions made during reasoning process, prompting users to look
for more evidence to validate the assumption. Displaying negative derivations for
each positive one shows the possible counter arguments, encouraging the user to re-
consider the attribution. On the other hand, executing in verbose mode gives users
an overview of possible evidences to gather so that an attribution can be made.

Visualise reasoning behind attribution For each attribution result, ABR can
give a breakdown of how the result came about, showing the breakdown of rules and
evidences used. This visualisation can be understood by even non-professionals,
giving the attribution result more transparency. As the attribution results can be
easily comprehended, it will also be more credible and easily accepted.

Usability Since ABR has so many different functions, knowing how to use and
interpret the results from ABR will be a significant obstacle. Given that ABR is built
on argumentation, it would be good if users are familiar with logical programming
languages like Prolog.

8.2 Evaluation of correctness of ABR

In this section we present the results of the tests we have performed and its implica-
tions on the correctness of ABR. To check the correctness of ABR and confirm that
the rules and preferences works as expected, especially when dealing with conflict-
ing information, we use synthesized scenarios, that are described in Section 8.2.1.
To check that the integrations with forensic tools are correct, we test some synthe-
sized examples that uses forensic tools as well, details of these examples are given
in Section 8.2.1.

The test results and coverage are summarised in Tables 8.1 and 8.2. Many rules
are used in the attribution process of each example, but we focus on just the key
rules and preferences (mentioned in Section 8.2.1) that led to the expected solution.
These are shown in the columns titled ‘Rules tested’ and ‘Preferences tested’!. ABR

returns the expected results for all the test scenarios; confirming the correctness of
ABR.

8.2.1 Details of tests

We now explain the simple scenarios that were used to test the correctness and
performance of ABR in detail, also presenting the results generated by ABR. We
first present some stand-alone test scenarios, then some scenarios that were created
to test the integration with forensic tools in ABR.

1Only the rule names are showed in the tables for simplicity, the full definition of the rules can
be found in Appendix A.2

69

()ozd ‘()e1d

(V “X)Yoenyeom 1S 1

TeagAoue]

qg ordurexry

(1y ‘X)dseypewred I)s 1
(My “X)Anpqedeppuyosnour 18”1
(19y “X)oanoydnonyde” 13”1

UOIRIOPO} URISSNLI ‘IvdgAdue] | g opdurexy

(19v)peggesierjou do 1

dnoxnyuwopuer “¥A1unod

o1 ordurexy

(1Y “X)orem[eNpoxuy 1S I
(MY X)dsoypowre 138”1

()81ed ‘()qred (VV “X)TJEsi[e8IR) 138 I dnoxnwopues q1 ordurexy
(MV X)1hqedeyser do
(GIN ‘TIN) Treqrums 3 1
()pged (v ‘X)Annqedeppuyosnjour 198 I dnornwopuer “YAIuNnod 1 ordurexsy

Po3s9} sootdId]aId

Pogse) somy

yusoy

Po9sa) Sureq seouaIojard pue S9Nl SUIPUOdSoLIod PuUR Sosed)9} Jo Arewrming :1°Q o[qe],

(2N ‘TN TODWIS 3 1
(TN “TIN)Teqroats 4 1 [RI0ISTLILA
(N ‘g)Turewiopd]) 1

AAIUNOD ‘soje)sS pojrun

X0 [RJOJSILIIA

() epd

(MY ‘X)dpoods 3 1 | 10310dX75] 9pPON
(dD)103qpoods 3 1 X5 107, g

X9 109

(1Y ‘D)oo IS 1

(MY XIS 9 T ronwuzd:

suoy Juoy

X0 00[0d30o)ne

P99S9) S9OUIFOI]

Po3soy sy Pa3seay 1007,

sy

Po1s9) Suloq seousIojord pur SO SUTPUOdSILIOD PUR S9SRD 189} UOIIRISOIUI 00} DISUDIOJ JO ATRWUWING :7'Q 9[(R],

70

Simple test scenarios

Example 1 We show the relevant evidences? in Listing 6, the attack name used
is ‘examplel’.

Listing 6 Evidence for examplel

Al examplel

Al expected:

A% randomGroup (clatmResp)

A% countryX (motive and location, linkedMalware)
claimedResponsibility(randomGroup, examplel).
malwareUsedInAttack(examplel_ml, examplel).
simlarCodeObfuscation(examplel_ml, examplel_m2).
malwarelLinkedTo (examplel_m2, countryX).
hasMotive(countryX, examplel).
attackSourceIP([123,123,123,102], examplel).
ipGeoloc(countryX, [123,123,123,102]).

The execution result for example 1 using ABR is shown in Figure 8.1. It corresponds
to our expected result, with randomGroup and countryX as culprits.

Figure 8.1: (Standard) Execution result for examplel

@ [] Execution Result for example1

Summary:
X = randomGroup [Highest score: 3, Num of derivations: 1]
X = yourCountry [Highest score: 10, Num of derivations: 4]

Assumptions:
Abduced predicates:
[ass{notFromBlackMarket{examplel_m1)), ass(notFromBlackMarket(examplel_m2))]

Rules to prove abducibles:
notFromBlackMarket: {
rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod{usb, M), commandAndControlEasilyFingerprinted(M)]). }

Derivations:
X = randomGroup, Score:3
Final strategic rule used: r_str__claimedResp(randomGroup, examplel)

Derivation:
[case_examplel_f1(), r_op_claimRespO(randomGroup, examplel), r_str__claimedResp(randomGroup, example1)]

Argumentation Tree:

[case_examplel_f1(), r_op_claimRespO(randomGroup,examplel), r_str__claimedResp(randomGroup,examplel)] {DEFENSE}

View Diagram View Argumentation Tree Add rule preference

X = yourCountry, Score:3
Final strategic rule used: r_str__motiveAndCapabilitylyourCountry, examplel)

Derivation:
[r_t_neghighSkill(examplel), r_t_highResourceO(examplel), r_op_hasCapabilityl{yourCountry, examplel), case_examplel_f80, r_str
motiveAndCapability(yourCountry, example1)]

Argumentation Tree:
[r_t_neghighSkill(examplel), r_t_highResourceO{examplel), r_op_hasCapabilityl{yourCountry,examplel), case_examplel_f8(), r_str,
motiveAndCapability(yourCountry,examplel)] {DEFENSE}

View Diagram View Argumentation Tree Add rule preference

2The evidences in this section are presented in Prolog style for presentation purposes.

71

Example 1b Example 1b is the same as example 1, except the addition of the evi-
dence targetCountry(countryX, examplelb), asshown in Listing 7, which means
that countryX is the target of the attack examplelb. For this example, we only
expect there to be one culprit, randomGroup, as the following rule and preference,
shown in Listing 8, will suppress the solution of countryX (since specificTarget/1
is an abducible, the dynamic preference will be fired).

Listing 7 Evidence for examplelb

4 examplelb

Al expected:

A% randomGroup (clatmResp)
claimedResponsibility(randomGroup, examplelb).
malwareUsedInAttack(examplelb_ml, examplelb).
simlarCodeObfuscation(examplelb_ml, examplelb_m2).
malwareLinkedTo(examplelb_m2, countryX).
hasMotive(countryX, examplelb).
attackSourceIP([123,123,123,102], examplelb).
ipGeoloc(countryX, [123,123,123,102]).
targetCountry(countryX, examplelb). / added evidence

Listing 8 Relevant rules for examplelb

rule(r_str__targetItself1(X, Att), neg(isCulprit(X, Att)),
<~ [target(X, Att)]).

4 specificTarget (_Att) is abducible
abducible(specificTarget (_Att), []).

4 dynamic preferences that will fire if specificTarget (Att) is true
rule(p21b(), prefer(r_str__targetItselfl1(X, Att),

< r_str__motiveAndCapability(X, Att)), [specificTarget(Att)]).
rule(p21g(), prefer(r_str__targetItselfl(X, Att),

— r_str__linkedMalware(X, Att)), [specificTarget(Att)]).

The execution result for example 1b using ABR is shown in Figure 8.2. It corre-
sponds to our expected result, with only randomGroup as culprit.

Example 1c Example 1lc is the same as example 1b, but with one additional
evidence targetCountry(countryY, examplelb), as shown in Listing 9, so both
countryX and countryY are targets of the attack examplelc. This additional evi-
dence makes it possible to prove neg(specificTarget (examplelc)) using the rule
in Listing 10.

72

Figure 8.2: (Standard) Execution result for examplelb
[) [] Execution Result for example1b
User preferences:

1]
1]
Clear

Summary:
X = randomCroup [Highest score: 3, Num of derivations: 1]

Derivations:
X = randomGroup, Score:3
Final strategic rule used: r_str__claimedResp{randomGroup, examplelb)

Derivation:
[case_examplelb_f1{), r_op_claimRespOirandomGroup, examplelb), r_str__claimedResp{rand
mGroup, examplelb)]

Argumentation Tree:

[case_examplelb_f1{}, r_op_claimRespOirandomGroup,examplelb), r_str__claimedResp{randc
Croup,examplelb)] {DEFENSE}

View Diagram View Argumentation Tree

Listing 9 Evidence for examplelc

A examplelc

Al expected:

A% randomGroup (clatmResp)

A% countryX is mot the only target, not specific attack, so countryX
— might be culprit
claimedResponsibility(randomGroup, examplelc).
malwareUsedInAttack(examplelc_ml, examplelc).
simlarCodeObfuscation(examplelc_ml, examplelc_m2).
malwarelLinkedTo (examplelc_m2, countryX).

hasMotive (countryX, examplelc).
attackSourceIP([123,123,123,102], examplelc).
ipGeoloc(countryX, [123,123,123,102]).
targetCountry(countryX, examplelc).
targetCountry(countryY, examplelc). / added evidence

Listing 10 Relevant rules for examplelc

/, more than one country targetted
rule(r_op_notTargetted(Att), neg(specificTarget(Att)),
< [targetCountry(T1, Att), targetCountry(T2, Att), T1 \= T2]).

Since we have neg(specificTarget (examplelc)), the dynamic preference used
before will no longer fire since the condition (specificTarget(Att)) is false. As
a result of this, we expect to be able to attribute examplelc to randomGroup and
countryX once again.

73

The execution result for example 1c using ABR is shown in Figure 8.3. It cor-
responds to our expected result, with both randomGroup and countryX as culprit
(see ‘Summary’ section at top of Figure 8.3).

Figure 8.3: (Standard) Execution result for examplelc

® & Execution Result for examplelc
Summary:

X = countryX [Highest score: 18, Num of derivations: 4]

X = randomCroup [Highest score: 3, Num of derivations: 1]

Assumptions:
Abduced predicates:
[ass(notFromBlackMarketiexamplelc_m1)), ass(notFromBlackMarket{examplelc_m2))]

Rules to prove abducibles:
notFromBlackMarket: {

rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod(usb, M), command?
dControlEasilyFingerprinted(M)]). }

Derivations:
X = countryX, Score:18
Final strategic rule used: r_str__motiveAndCapability(countryX, examplelc)

Derivation:

[r_op_notTargetted(examplelc), case_examplelc_f9(), case_examplelc_f8(), r_str__linkedMal
are(countryX, examplelc), ass(notFromBlackMarketiexamplelc_m2)), ass(notFromBlackMarke
examplelc_m1l)), case_examplelc_f4(), case_examplelc_f3(), r_t_similarl(examplelc_ml, ex
mplelc_m2), case_examplelc_f20), p23d0, r_t_neghighSkilliexamplelc), r_t_highResourceO(e
amplelc), r_op_hasCapabilitylicountryX, examplelc), case_examplelc_f5(), r_str__motiveAn
apability(countryX, examplelc)]

Argumentation Tree:

[case_examplelc_f1(), r_op_claimRespO(randomGroup.examplelc), r_str__claimedResp(rando
Croup,examplelc)] {DEFENSE}

View Diagram View Argumentation Tree Add rule preference

¥ — rantrs¥ Craras 1R

Example 2 We show below the relevant evidences for example2 in Listing 11.

Listing 11 Evidence for example2

A7 examplel

Al expected:

4% fancyBear (claimResp)

A% russian_federation (APT group link to origin country, has motive
~ and capability)
claimedResponsibility(fancyBear,example2) .
targetCountry(countryX,example?2) .

attackPeriod(example2, [2018,6]).
malwareUsedInAttack(example2_ml,example2).
imposedSanctions(countryX, russian_federation, ongoing).
sophisticatedMalware (example2_ml) .

The execution result for example2 is shown in Figure 8.4. It corresponds to our
expected result, with both russian_federation and fancyBear as culprit.

74

Figure 8.4: (Standard) Execution result for example2

[O) O] Execution Result for example2

Summary:
X = fancyBear [Highest score: 3, Num of derivations: 1]
X = russian_federation [Highest score: 21, Num of derivations: 24]

Assumptions:
Abduced predicates:
[ass(contextOfAttack(political, example2)), ass(specificTarget(example2))]

Rules to prove abducibles:
specificTarget: {

rule(r_t_targettedi(Att), specificTarget(Att), [malwareUsedinAttackiM, Att), s
cificConfiginMalware(M)]).

rule(r_op_notTargetted(Att), neg(specificTarget(Att)), [targetCountry(T1, Att), t
getCountry(T2, Att), T1 \=T2]). }
contextOfAttack: {

rule(r_op_context(economic, Att), contextOfAttack{economic, Att), [target(T,
tt), industryiind, T), normallndustry({Ind)]).

rule(r_op_context(political, Att), contextOfAttack(political, Att), [target(T, Att
country(T)]).

rule(r_op_contextl(political, Att), contextOfAttack(political, Att), [target(T, A
, industry(ind, T}, politicalindustry(Ind)]).}

Derivations:
X = fancyBear, Score:3
Final strategic rule used: r_str__claimedResp(fancyBear, example2)

Derivation:
[case_example2_f1(), r_op_claimRespO(fancyBear, example2), r_str__claimedResp(fancyBear, ¢
ample2)]

Argumentation Tree:

[case_example2_f1(), r_op_claimRespO(fancyBear,example2), r_str__claimedResp(fancyBear,e>
mple2)] {DEFENSE}

View Diagram View Argumentation Tree Add rule preference

X = russian_federation, Score:16
Final strategic rule used: r_str__motiveAndCapability(russian_federation, example2)

Derivation:
[p10c_ti), bgl000), r_op_hasResources l(russian_federation), case_example2_f&(), case_examj
e2_f4(), r_t_highSkill4(example2), r_t_highResourcel(example2), r_op_hasCapability2(russian

Example 2b Example 2b is modified from example 2 by removing the last evi-
dence (sophisticatedMalware(example2_ml)), as shown in Listing 12. After re-
moving this evidence, we are no longer able to attribute the attack to the Russian
federation. This is due to the effects of the stronger preference on the ‘weak attack’
rule than the ‘APT group motive’ rule or the ‘motive and capability’ rule, shown in
Listing 13. The reasoning behind the weak attack rule is that a group or country
that has large amounts of resources is unlikely to preform a weak attack (that does
not require high resources).

5

Listing 12 Evidence for example2b

A examplelb

4l expected:

47 fancyBear (claimResp)
claimedResponsibility(fancyBear, example2b).
targetCountry(countryX, example2b).
attackPeriod(example2b, [2018,6]).
malwareUsedInAttack(example2b_ml, example2b).
imposedSanctions(countryX, russian_federation, ongoing).
4 removed last evidence

Listing 13 Relevant rules for example2b

/4 weak attack rule
rule(r_str__weakAttack(X, Att), neg(isCulprit(X, Att)),
[hasResources(X), neg(requireHighResource(Att))]).

—

4 preferences
rule(pl9(), prefer(r_str__weakAttack(X, A), r_str__aptGroupMotive(X,

- A, [D.
rule(p20(), prefer(r_str__weakAttack(X, A),
< r_str__motiveAndCapability(X, A)), [1).

The execution result for example2b is shown in Figure 8.5. It corresponds to our
expected result, with only fancyBear as culprit.

Figure 8.5: (Standard) Execution result for example2b

‘o0 Execution Result for example2b

Clear

Summary:
X = fancyBear [Highest score: 3, Num of derivations: 1]

Derivations:

X = fancyBear, Score:3
Final strategic rule used: r_str__claimedResp(fancyBear, example2b)

Derivation:
[case_example2b_f1i), r_op_claimRespOifancyBear, example2b), r_str__claimedRespi{fancyBea

examplezh)]

Argumentation Tree:

[case_example2b_f1i), r_op_claimResp0ifancyBear,example2b), r_str__claimedResp(fancyBear
xample2b)] {DEFENSE}

View Diagram View Argumentation Tree

76

Forensic tool test scenarios

Let us now show some of the examples we constructed to test the integration with
forensic tools in ABR.

IP geolocation example We use the following example to test the correctness of
the integration with the ip2nation database. The IP 103.234.220.195 should be ge-
olocated to Hong Kong. Given the evidence attackSourceIP([103,234,220,195],
autogeoloc_ex) and the auxiliary predicate ip([103,234,220,195]), as shown in
Listing 14, we will have hong_kong as the culprit for the attack, according to the
generated facts and rules in Listing 15.

Listing 14 Evidence for autogeoloc ex

/% auto geolocation exzample

47 expected: hong_kong (loc)
attackSourceIP([103,234,220,195], autogeoloc_ex).
ip([103,234,220,195]) .

Listing 15 Relevant rules for autogeoloc ex

4 IP geolocatton generated in automated_geolocation.pl
rule(case_autogen_geolocation_0(),
< ipGeoloc(hong_kong, [103,234,220,195]), [1).

4 from tech_rules.pl

rule(r_t_srcIP1(X, Att), attackPossibleOrigin(X, Att),
- [attackSourceIP(IP, Att), ipGeoloc(X, IP)]).
rule(r_t_attackOrigin(X, Att), attackOrigin(X, Att),

— [attackPossibleOrigin(X, Att)]).

4 from str_rules.pl
rule(r_str__loc(C, Att), isCulprit(C, Att), [attackOrigin(C, Att),
< country(C)]).

The execution result for autogeoloc ex is shown in Figure 8.6. It corresponds to
our expected result, with hong_kong as culprit.

Tor example We use the following example to test the correctness of the integra-
tion with the bulk Tor exit node exporter. We give the same evidence (with different
attack name, now tor ex instead of autogeoloc ex), but we have an extra evidence,
targetServerIP([72,111,1,30], tor_ex), as shown in Listing 16. This will trig-
ger the bulk Tor exit node exporter to export all Tor exit nodes that will reach
the server at IP 72.111.1.30. All of those IPs will be marked as ‘spoofed’ since Tor

77

Figure 8.6: (Standard) Execution result for autogeoloc ex

[NON] Execution Result for autogeoloc_ex

Summary:
X = hong_kong [Highest score: 7, Num of derivations: 1]

Derivations:
X = hong_kong, Score:7
Final strategic rule used: r_str__loc(hong_kong, autogeoloc_ex)

Derivation:
[bg&7(), case_autogen_geolocation_0(), case_autogeoloc_ex_f1(), r_t_srclPl(hong_kong, auto
eoloc_ex), r_t_attackOriginthong_kong, autogeoloc_ex), r_str__locthong_kong, autogeoloc_e

]
Argumentation Tree:
[bgE7(), case_autogen_geolocation_0(), case_autogeoloc_ex_f1(), r_t_srclPl{hong_kong,autos

oloc_ex), r_t_attackOriginthong_kong,autogecloc_ex), r_str__locthong_kong,autogeoloc_ex)
DEFENSE}

View Diagram View Argumentation Tree

exit nodes are just the exit point of the Tor network, not where the traffic actually
originated from. Since 103.234.220.195 is one of those Tor exit nodes for that can
reach 72.111.1.30, it will be marked as spoofed, and so there will be no culprits for
this example, according to the generated facts and rules shown in Listing 17.

Listing 16 Evidence for tor ex

Al tor_ex

A4 expected: mo culprit (spoof)
attackSourceIP([103,234,220,195] ,tor_ex).
ip([103,234,220,195]).
targetServerIP([72,111,1,30], tor_ex).

Listing 17 Relevant rules for tor ex

4 torIP generated from bulk Tor exit node exporter
rule(case_torCheckl1(), torIP([103,234,220,195], [72,111,1,301), [1).

4 from tech_rules.pl

rule(r_t_spoofIPtor(IP), spoofedIP(IP, Att), [attackSourceIP(IP,

- Att), targetServerIP(TargetServerIP, Att), torIP(IP,

- TargetServerIP)]).

rule(r_t_spoofIP(X, Att), neg(attackPossibleOrigin(X, Att)),

< [attackSourceIP(IP, Att), spoofedIP(IP, Att), ipGeoloc(X, IP)]).

The execution result for tor ex are shown in Figure 8.7. It corresponds to our
expected result, with no result for the attribution.

78

Figure 8.7: (Standard) Execution result for tor ex

N XK) Execution Result for tor_ex
User preferences:
a
a
Clear
Summary:

No results for execution. Try clicking 'Prove all possible predicates' to see what other eviden:
can be provided.

Virustotal example This example is used to test the correctness of the in-
tegration with the Virustotal IP resolution. Given the evidence ip([8,8,8,8],
[2018,5], as shown in Listing 18, ABR will request for the resolution for IP 8.8.8.8
in 2018 May. This should return the domain ‘00027.hk’. Combined with the evidence
ccServer (00027 .hk’, example_past_attack_m) and malwareLinkedTo (examp-
le_past_attack_m, countryY), as shown in Listing 19, we will then be able to
prove that countryY is a culprit.

Listing 18 Evidence for virustotal ex

4/ expected:

A% united_states (loc)

A% countryY (linkedMalware)
malwareUsedInAttack(virustotal_ex_malware, virustotal_ex).
attackSourceIP([8,8,8,8], virustotal_ex).

ip([8,8,8,8], [2018,5]). % <p([IP],[YYYY,MM]) for auto Tesolution
-~ using virustotal

ccServer('00027.hk', example_past_attack_m).

malwareLinkedTo (example_past_attack_m, countryY).

The execution result for virustotal ex is shown in Figure 8.8. It corresponds to our
expected result, with united_states and countryY as culprits.

8.3 Evaluation of performance of ABR

In this section we show the performance results obtained by running the previous
test scenarios, as well as past cyber attack cases. Additionally, we performed tests
to analyse the performance of ABR when we use an increasing number of evidences
during the attribution.

8.3.1 Analysis of results

The performances of the test scenarios are summarised in Tables 8.3 and 8.4, while
the performances of some real cases of cyber attacks are summarised in Table 8.5.
By looking at the raw data of total runtime, we notice that there is a large disparity
between different test cases, ranging from 0.4s to 20s. We now discuss what might
have cause this disparity.

79

Listing 19 Relevant rules for virustotal ex

4 IP resolution generated by wirustotal
rule(case_virustotal_resO(), ipResolution('00027.hk', [8,8,8,8],
- [2018,5]), (D).

4 from tech_rules.pl
rule(r_t_IPdomainl(S, M), ccServer(S, M), [malwareUsedInAttack(M,
- Att), attackSourceIP(IP, Att), ipResolution(S, IP, _D)]).

rule(r_t_similar(M1, M2), similar(Mi, M2), [similarCCServer (M1, M2),
— M1 \= M2]).

rule(r_t_simCC1 (M1, M2), similarCCServer (M1, M2), [ccServer(S, M1),
— ccServer(S, M2)]).

4 from str_rules.pl

rule(r_str__linkedMalware(X, A1), isCulprit(X, A1),
« [malwareUsedInAttack(M1, A1), similar(M1, M2),
— malwareLinkedTo(M2, X), notFromBlackMarket(M1),
— notFromBlackMarket (M2)]).

Table 8.3: Summary of performance of test cases (n = total number of derivations)

Number of . Avg runtime
Result unique rules fired | Runtime (s) pcrg derivation (s)
examplel countryX, randomGroup 8 2 0.7127 0.3563
examplelb randomGroup 2 1 0.4168 0.4168
examplelc countryX, randomGroup 8 4 2.270 0.5674
example2 | fancyBear, russian_federation 12 24 20.97 0.8737
example2b fancyBear 2 1 4.305 4.305

Number of derivations Our first hypothesis is that the time difference is due to
number of derivations. A larger number of derivation will not only increase the time
taken for Prolog to generate the solutions, but also more time spent on creating the
derivation and argumentation diagrams. After computing the average runtime per
derivation, we observe that the average time is much more consistent, only ranging
from 4s to below 1s.

Number of unique rules fired There is only one outlier that runs for 4s on
average per derivation (example2b). In attempt to explain this, we also computed
the total number of unique rules used in all the derivations (‘Number of unique
rules fired’ column). However, this justifies neither the difference in total runtime
nor average runtime. For total runtime, example2b (4.3s) uses 2 unique rules but
examplel (0.7s) uses 8 unique rules, and for average runtime, example2b (4.3s) only
uses 2 unique rules, while example2 (0.8s) uses 12 unique rules. Comparing the
results for all the other test cases, we can confirm that there is no direct correlation
between number of rules fired and total and average runtime.

80

Figure 8.8: (Standard) Execution result for virustotal ex

[BON Execution Result for virustotal_ex

Summary:
X = united_states [Highest score: 7, Mum of derivations: 1]
X = countryY [Highest score: 18, Num of derivations: 1]

Assumptions:
Abduced predicates:
[ass(notFromBlackMarket(example_past_attack_m)), ass(notFromBlackMarket(virustotal_ex_malware
]|

Rules to prove abducibles:
notFromBlackMarket: {

rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod(usb, M), commandAndCon
trolEasilyFingerprinted(M)]). }

Derivations:
X = united_states, Score:7
Final strategic rule used: r_str__loc{united_states, virustotal_ex)

Derivation:
[bg67(), case_autogen_geolocation_1(), case_virustotal_ex_f1(), r_t_srcIP1(united_states, virustotal_
ex), r_t_attackOrigin(united_states, virustotal_ex), r_str__loc(united_states, virustotal_ex)]

Argumentation Tree:

[bg&7(), case_autogen_geolocation_1(), case_virustotal_ex_f1(), r_t_srclPl{united_states,virustotal_e
%), r_t_attackOrigin(united_states,virustotal_ex), r_str__loc{united_states,virustotal_ex)] {DEFEMNSE}

View Diagram View Argumentation Tree Add rule preference

X = countryY, Score:18
Final strategic rule used: r_str__linkedMalware(countryY, virustotal_ex)

Derivation:

[ass(notFromBlackMarket(example_past_attack_m)), ass(notFromBlackMarket(virustotal_ex_malware
), case_virustotal_ex_f4(), case_virustotal_ex_f3(), case_virustotal_res0(), case_virustotal_ex_f1(), c
ase_virustotal_ex_f0(), r_t_IPdomain1('00027.hk', virustotal_ex_malware), r_t_simCC1l(virustotal_ex
_malware, example_past_attack_m), r_t_similar(virustotal_ex_malware, example_past_attack_m), ca
se_virustotal_ex_f0(), r_str__linkedMalware{countryY, virustotal_ex]]

Argumentation Tree:

[ass(notFromBlackMarket(example_past_attack_m)), ass(notFromBlackMarket(virustotal_ex_malwar
e)), case_virustotal_ex_f4(), case_virustotal_ex_f3(), case_virustotal_res0(), case_virustotal_ex_f1(),

case_virustotal_ex_fO(), r_t_IPdomain1{00027.hk virustotal_ex_malware), r_t_simCClivirustotal_ex_
malware,example_past_attack_m), r_t_similarivirustotal_ex_malware.example_past_attack_m), case

8.3.2 Scaling with number of evidences

To investigate how ABR performs as the number of evidences increases, we car-
ried out an experiment, using increasing number of attackSourceIP(IP, Att) and
ip(IP) predicates.

Below we show an example of the list of evidences when n = 10:

rule(£f0(),attackSourceIP([103,234,220,195], ex),[]).
rule(f0a(),ip([103,234,220,195], [1).
rule(f1(),attackSourceIP([103,234,220,197], ex),[]).
rule(f1a(),ip([103,234,220,197]1, [1).
rule(f2(),attackSourceIP([103,236,201,110], ex),[]).
rule(f2a(),ip([103,236,201,1101, [1).
rule(£f3(),attackSourceIP([103,250,73,13], ex),[]).
rule(£f3a(),ip([103,250,73,13]1, [1).

rule(f4() ,attackSourceIP([103,27,124,82], ex),[]).
rule(f4a(),ip([103,27,124,82], [1).

rule(£f5() ,attackSourceIP([103,28,52,93], ex),[]).
rule(f5a(),ip([103,28,52,93], [1).

81

Table 8.4: Summary of performance of forensic tool integration test cases (n = total

number of derivations)

Number of
unique rules fired

Result n | Runtime (s)

Avg runtime
per derivation (s)

autogeoloc ex hong kong 3 1] 0.719287352

0.719287352

tor _ex - - 1] 0.257613654

0.257613654

virustotal ex | united states, countryY 7 2 | 1.760543103

0.8802715515

Table 8.5: Performance of ABR when executing case study attribution cases (n =

total number of derivations)

Number of . Avg runtime

Result unique rules fired | Runtime (s) per dirivation (s)
aptl china 8 7 2.826 0.4037
wannacryattack lazarusGrp 2 1 0.1244 0.2407
gaussattack equationGrp 6 18 2.370 0.1317
stuxnetattack united _states, israel 13 6 4.640 0.7602
sonyhack guardiansOfPeace, iran, north korea 8 3 3.438 1.146
usbankhack iran 9 8 2.867 0.3584

13

14

15

16

17

18

19

20

rule(f6(),attackSourceIP([103,28,53,138], ex),[1).
rule(f6a(),ip([103,28,53,1381, [1).

rule(£f7() ,attackSourceIP([103,3,61,114], ex),[]1).
rule(f7a(),ip([103,3,61,114], [1).

rule(£f8() ,attackSourceIP([103,8,79,229], ex),[1).
rule(f8a(),ip([103,8,79,229], [1).
rule(£f9(),attackSourceIP([103,87,8,163], ex), []).
rule(f9a(),ip([103,87,8,163], [1).

Each IP address specified in the ip(IP) predicate is automatically geolocated,
and when we query prove ([isCulprit(X, ex)],D), each of the different countries
corresponding to the IPs will show up as a culprit, using the following rule:

rule(r_str__loc(C, Att), isCulprit(C, Att), [attackOrigin(C, Att),
< country(C)]).

The results of the experiment are shown in Table 8.6. We observe that while both
the Prolog execution time and the total runtime increases linearly up to n = 100
(Figure 8.9), after reaching n = 100, the increases in both seem to slow down
significantly (Figure 8.10). This can be explained by the fact that we introduced a
limit of 100 in the QueryExecutor class (see Appendix D.1). Since we only obtain
the first 100 solutions, all the other IP addresses will be automatically geolocated
when we preprocess the files, but ABR will not spend extra time proving more
solutions from it.

Although this hard limit means that we might not show the full results when
there are more than 100 solutions, but since ABR is a tool that works closely with
human users, it is unlikely that the user can read and comprehend more than 100
different solutions. The user can reduce the number of solutions by adding custom
preferences to disregard irrelevant solutions.

82

Figure 8.9: Part of execution time against number of evidences (n) graph, up to
n = 100

60

50

S
o

Runtime (s)
W
(=]

20

(D

0 20 40 60 80 100 120
Number of evidences used (n)

—&®— Prolog execution time Total runtime Linear (Total runtime)

Table 8.6: Performance of ABR when executing example with increasing number of
attack source IPs (n = number of different IPs used as evidence)

n | Prolog execution time (s) | Total runtime (s)
10 1.657 8.934
20 2.824 11.98
30 3.741 19.28
40 5.072 23.78
50 6.555 31.26
60 8.297 35.08
70 9.761 39.17
100 13.84 46.70
150 16.28 52.00
200 17.20 55.08
300 19.09 60.38

8.4 Discussion

Finally, we discuss some of the key limitations and strengths of ABR.

8.4.1 Limitations

Limitation of verbose execution As mentioned in Section 7.3.1, one limitation
of the verbose execution of ABR, is that the overview generated only considers
the first solution generated by the ABR reasoner. This means that ABR might
underestimate the number of predicates that are derivable, giving the user a false
impression. However, this might not be a big problem since the verbose execution is
meant as a general overview of derivable predicates, not a detailed representation.
When using A BR, users will likely run the verbose execution many times after adding
additional evidences. Therefore, we have chosen to prioritise efficiency (which we
explain later in this chapter) over producing the ‘best’ output every time.

83

Figure 8.10: Full execution time against number of evidences graph

70
60

50

o
o

w
o

Runtime (s)

20

10

0 50 100 150 200 250 300 350

Number of evidences used (n)

—&—Prolog execution time Total runtime

Usability There is some room for improvement regarding the usability of the GUI.
Given the large number of features that could be accessed from the main screen, a
new user most likely will not be able to immediately know how to use it. Especially
for users who are unfamiliar with logical programming and the notations used in
ABR, it might take some time to understand what the predicates mean before they
are able to convert the evidences they have into predicates and insert them into ABR.
To use the tool efficiently, users will first have to overcome ABR’s steep learning
curve, which could be accomplished with the help of user guides and tutorials.

Misinformation of past attacks Wrong attributions can be made if it is based
on ‘facts’ derived from previously wrongly attributed attacks. For example, the Sony
hack attribution was built on the (alleged) claim that North Korea was responsible
for the assault on South Korean banks in 2013 [14]. The attribution of the Sony
attack thus leverage on the correctness of the previous attributions. ABR is unable
to resolve this dependency, since information derived from past attributions are
used as ground truths in the background knowledge. Although this problem can
be avoided by not using any information from previously attributed attacks, this
will reduce the amount of evidence available. Analysts will then need to find more
evidence from other sources in order to make the attribution. The attribution could
sometimes even become impossible if the attackers did not leave much significant
evidence behind. This problem is not specific to ABR, it is also faced by even the
most experienced forensic analysts using existing methods.

8.4.2 Strengths

General performance As shown in Sections 8.2 and 8.3, the rules and prefer-
ences in ABR work as intended and the performance is acceptable for a real-time
interactive application, with the longest runtime being 20s. Moreover, we have con-

84

firmed that even with extremely large number of evidences (up to 300), the total
runtime is still around 60s (see Figure 8.10). According to the time scales in user
experience [51], 1 minute is the time in which users should be able to “complete sim-
ple tasks”. ABR’s performance is acceptable, given that it is a tool, not a website;
its users are likely to be more patient than the website users mentioned in [51].

Performance of verbose execution Despite the drawbacks of using our current
approach in verbose execution mentioned previously, we see them as a necessary
trade-off for efficiency. Our approach of only considering the first solution makes the
verbose execution a linear time operation, while attempting to consider all possible
solutions is an exponential time operation; which is unsustainable for a real-time
interactive application.

Usability Part of the problems associated with the usability of ABR stems from
the fact that ABR provides the user with such numerous functions that can be
performed from the GUI. Moreover, we can alleviate this problem by providing a
comprehensive user guide with examples and tutorials on how to use the tool. Once
users overcome the initial steepness of the learning curve, they will be able to fully
utilise ABR.

Functionality ABR achieved the intended design motivations highlighted in Sec-
tion 3.2, fitting into the iterative process of attribution, being transparent in its proof
process and providing flexibility to users. Furthermore, ABR is the first tool of its
kind that performs attribution using both technical and social evidences, combined
with background knowledge that models the real world. ABR also has a suite of
features built to support the core reasoner, including integration with forensic tools
to automate extraction of evidences; assigning scores to each derivation using our
own scoring system; visualisation of key structures relating to the execution results;
and integrating any new evidences or rules into the rest of the ABR reasoner. These
additional features help to shape the whole experience of using ABR, presenting
necessary details to the user in a comprehensible manner.

85

Chapter 9

Conclusion and Future Work

We present in this chapter the conclusions with respect to the main achievements of
this project, followed by some interesting ideas of how this project can be extended
in future works.

9.1 Conclusion

In the 21st century, our lives are increasingly entwined with technology, which is
becoming more and more interconnected. As this dependency and connectivity
grows, we, as individuals and as part of nation-states, become increasingly vulnerable
to cyber attacks. To better equip ourselves from these cyber attacks, accurate and
timely attribution is critical in bolstering defences in a targeted way.

This project takes an initial step towards formalising the attribution process in-
volving both technical and social evidences, using argumentation reasoning to model
the deliberation of the analysts during attribution. The scope of this project is es-
pecially wide, stemming from complexity and sheer volume of information available
on the topic of cyber security. Furthermore, our task was more than just compre-
hending existing methods of attribution in cyber security, but extracting the core
reasoning used by experienced analysts into formal reasoning rules. We arranged
the rules extracted from various case-studies, combining them to form one cohe-
sive reasoner that uses an argumentation-based framework to return the attribution
results.

During the course of this project, we encountered some unexpected challenges,
e.g., struggles with the Gorgias framework, partly due to the limited documentation
on its usage. We also changed the Prolog environment from SICStus Prolog to SWI-
Prolog mid-way during implementation, consequently having to rewrite parts of the
code.

Our main result for this project was the produced tool that achieves our initial
design motivations of (i) modelling the iterative nature of attribution, (ii) achieving
transparency by using comprehensive visualisations and (iii) having a flexible tool
that allows the users to make the final decisions.

Beyond the basic setted functions, we also assembled a suite of tools/features
that refines the functionality of ABR. Forensic tools are integrated into ABR to
automate the extraction of some evidences, reducing the time spent on manually
extracting these information, further automating the attribution process. In regard
to assisting the user in adding new rules and preferences, we visualise the preference

86

hierarchy, clearly showing how the rules relate to each other in terms of strength.
This aids the user when adding their own rules and preferences by highlighting
any deadlocks that were accidentally introduced. Additionally, when a new rule is
inserted, ABR automatically scans for conflicting rules and display them to users
and allows the users to add preferences between the new and existing rules. These
features are key in guiding users when adding their own rules, in order to properly
incorporate the new rules into the ABR reasoner.

Overall, ABR is powerful tool for automating parts of the attribution process.
With further work described in the next section, ABR will redefine how attribution
of cyber attacks is performed.

9.2 Future work

We now consider some interesting ideas of improvements that can enhance ABR
that are left as future work.

Automated scraping for information about attacker on digital platforms
An automated mechanism to obtain information that could pertain to the attacker
would be beneficial, compared to manually looking through forums, blogs and other
digital platforms. Since information such as the geopolitical scene might change
over time, being able to automatically update the background knowledge will also
be extremely helpful in keeping ABR updated with the times. This could be im-
plemented by employing NLP techniques to extract relevant evidences from news
articles, blogs, or technical papers, in a similar way to [52].

More sophisticated measure of cyber capability Currently, we only classify
countries into three categories: (i) having large amount of resources (ii) having mod-
erate amount of resources and (iii) having little or no resources. As future work, more
sophisticated or detailed classification could be considered. In the report from Billo
and Chang in [53|, an in-depth study on the cyber capability of a few nation-states,
as well as the motives that drive the nation states’ actions is presented. Construct-
ing a more detailed profile for the key nation-states will improve the accuracy of
ABR, by matching the specific attributes of the attacker to distinct characteristics
of nation-states.

Probabilities on results Incorporating the idea of probabilities from the InCA
framework [33] could be a useful addition to ABR. The attribution results returned
by ABR could have a corresponding probability, according to how definite, the at-
tribution is. This probability could be linked to the reliability of the evidences used.
For example, the IP address is a fairly weak evidence since it can be easily spoofed,
but similarities in the code of malware used in the attack is a strong evidence. This
extension can be used to resolve two major challenges in attribution.

Firstly, attackers might deliberately plant false evidences to mislead investiga-
tors. It is extremely difficult, even for experienced human analysts, to spot such
deceptive evidences. However, though we are not likely to spot which evidences are
deceptive, we can make use of the probabilities on the credibility of the evidence to
reduce the effect of such deceptive evidences on the results given by ABR.

87

Another problem with attribution, according to Jeffrey Carr, president and CEO
of Taia Global, is governments potentially make wrong attributions, and inaccurate
information may be provided by ally nations. Take for example the Sony hack
mentioned in Section 2.1.1, the FBI released a statement in less than a month that
it has “concluded that the North Korean government is responsible” [54]. However, in
the private sector, the view is not unanimous. Some were suspicious of how quickly
the attribution was publicly confirmed after the attack, and later on, other evidence
that Russians could have been involved was uncovered, that brings more doubt to
the original attribution. Since evidence provided by the analyst is not cross-checked
with other sources, if inaccurate evidences are given, ABR could make the wrong
attribution.

In response to this problem, we could try to make use of contextual information
to detect if a particular source of information, (e.g., a country or organisation), will
benefit from giving inaccurate information; and if the information they gave is in
their favour. Then, we could assign a credibility value to each ground truth in ABR,
based on how much they benefit from giving inaccurate information and the degree to
which the information is in their favour. We can then set a threshold on the ground
truths to remove any ground truths with credibility value below the threshold value.
However, the formula to assigning credibility will likely be extremely difficult to
formulate, since both (i) the amount of benefits an entity will get from providing
inaccurate information and (ii) how favourable the information is to the entity, are
hard to quantify.

88

Bibliography

1]

2l

3]

4]

[5]

(6]

7]

8]

9]

[10]

S. Morgan, “Top 5 cybersecurity facts, figures and statistics for 2017.”
https://www.csoonline.com/article/3153707/security/
top-b-cybersecurity-facts-figures-and-statistics-for-2017.html
[Online. Last accessed: 2017-12-26], 2017.

L. H. Newman, “The Biggest Cybersecurity Disasters of 2017 So Far.”
https://www.wired.com/story/2017-biggest-hacks-so-far/ [Online.
Last accessed: 2017-12-26], 2017.

Statista, “IoT: number of connected devices worldwide 2012-2025.”
https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/ [Online. Last accessed:
2017-12-26], 2018.

K. J. Higgins, “How Lockheed Martin’s ‘Kill Chain’ Stopped SecurID”
https://www.darkreading.com/attacks-breaches/
how-lockheed-martins-kill-chain-stopped-securid-attack/d/d-id/
11391257 [Ounline. Last accessed: 2017-12-22].

Z. J. Miller, “Sony Hack: Barack Obama Sanctions North Korea After
Cyberattack.” http://time.com/3652479/

sony-hack-north-korea-the-interview-obama-sanctions/ |[Online. Last
accessed: 2018-01-26], 1 2015.

M. J. Schwartz, “FBI’s Sony Attribution: Doubts Continue.”
https://www.bankinfosecurity.com/

fbis-sony-attribution-doubts-continue-a-7765 [Online. Last accessed:
2018-01-26], 2015.

J.-a. Song, M. Murphy, and H. Kuchler, “North Korea blasts US over new
sanctions amid cyber attack feud.”
https://www.ft.com/content/1f47b7b0-93e4-11e4-92dd-00144feabdcO
[Online. Last accessed: 2018-01-12|, 2015.

D. A. Wheeler and G. Larsen, “Techniques for Cyber Attack Attribution,”
IDA Paper, p. 82, 2003.

R. K. Goutam, “The Problem of Attribution in Cyber Security,” International
Journal of Computer Applications, vol. 131, no. 7, pp. 9758887, 2015.

T. Rid and B. Buchanan, “Attributing Cyber Attacks,” Journal of Strategic
Studies, vol. 38, pp. 4-37, 1 2015.

89

https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics-for-2017.html
https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics-for-2017.html
https://www.wired.com/story/2017-biggest-hacks-so-far/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.darkreading.com/attacks-breaches/how-lockheed-martins-kill-chain-stopped-securid-attack/d/d-id/1139125?
https://www.darkreading.com/attacks-breaches/how-lockheed-martins-kill-chain-stopped-securid-attack/d/d-id/1139125?
https://www.darkreading.com/attacks-breaches/how-lockheed-martins-kill-chain-stopped-securid-attack/d/d-id/1139125?
http://time.com/3652479/sony-hack-north-korea-the-interview-obama-sanctions/
http://time.com/3652479/sony-hack-north-korea-the-interview-obama-sanctions/
https://www.bankinfosecurity.com/fbis-sony-attribution-doubts-continue-a-7765
https://www.bankinfosecurity.com/fbis-sony-attribution-doubts-continue-a-7765
https://www.ft.com/content/1f47b7b0-93e4-11e4-92dd-00144feabdc0

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

23]

[24]

K. Zetter, Countdown to Zero Day : Stuxnet and the launch of the world’s
first digital weapon. New York City, USA: Crown Publishing Group, 2014.

K. Zetter, “How Digital Detectives Deciphered Stuxnet, the Most Menacing
Malware in History.” https://www.wired.com/2011/07/
how-digital-detectives-deciphered-stuxnet/ [Online. Last accessed:
2017-12-06], 2011.

Mandiant, “Exposing One of China’s Cyber Espionage Units,” tech. rep.,
Mandiant, 2013.

A. Altman and Z. J. Miller, “Sony Hack: FBI Accuses North Korea in Attack
That Nixed The Interview.”
http://time.com/3642161/sony-hack-north-korea-the-interview-fbi/
[Online. Last accessed: 2018-01-10], 2014.

J. Roman, “FBI Defends Sony Hack Attribution.”
https://www.bankinfosecurity.com/sony-a-7762 |Online. Last accessed:
2018-01-20], 2015.

B. Todd and B. Brumfield, “Experts doubt North Korea was behind the big
Sony hack.” http://edition.cnn.com/2014/12/27/tech/
north-korea-expert-doubts-about-hack/index.html [Online. Last
accessed: 2018-01-18], 2014.

US-CERT, “Computer Forensics.” 2008.

K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to integrating forensic
techniques into incident response,” tech. rep., National Institute of Standards
and Technology, Gaithersburg, MD, 2006.

B. Carrier, “Defining Digital Forensic Examination and Analysis Tools Using
Abstraction Layers,” International Journal of Digital Fvidence Winter, vol. 1,
no. 4, 2003.

M. H. Almeshekah and E. H. Spafford, Cyber Deception, Building the
Scientific Foundation. Springer International Publishing, 2016.

K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. D. Keromytis, “Detecting Targeted Attacks Using Shadow Honeypots,” in
14th USENIX Security Symposium, (Baltimore, MD, USA), 2005.

L. F. d. C. Nassif and E. R. Hruschka, “Document Clustering for Forensic
Analysis,” IEEE Transactions on Information Forensics and Security, vol. 8,
pp. 46-54, 1 2013.

J. J. Yuill, Defensive Computer-Security Deception Operations. PhD thesis,
North Carolina State University, 12 2007.

P. Shakarian and J. Shakarian, “Socio-cultural modeling for cyber threat
actors,” in Artificial Intelligence for Cyber Security, Papers from the 2016
AAAI Workshop, (Phoenix, Arizona, USA), Al Access Foundation, 2016.

90

https://www.wired.com/2011/07/how-digital-detectives-deciphered-stuxnet/
https://www.wired.com/2011/07/how-digital-detectives-deciphered-stuxnet/
http://time.com/3642161/sony-hack-north-korea-the-interview-fbi/
https://www.bankinfosecurity.com/sony-a-7762
http://edition.cnn.com/2014/12/27/tech/north-korea-expert-doubts-about-hack/index.html
http://edition.cnn.com/2014/12/27/tech/north-korea-expert-doubts-about-hack/index.html

[25]

[26]

27]

28]

29]

[30]

31

32|

[33]

[34]

[35]

[36]

[37]

[38]

Merriam-Webster, “Argumentation.”
https://www.merriam-webster.com/dictionary/argumentation [Online.
Last accessed: 2018-06-17].

D. Walton, “Argumentation Theory: A Very Short Introduction,” in
Argumentation in Artificial Intelligence (G. Simari and I. Rahwan, eds.),
pp. 1-22, Boston, MA: Springer US, 2009.

J. Mackay, P. Schulz, S. Rubinelli, and A. Pithers, “Online Patient Education
and Risk Assessment,” Patient Education and Counseling, 2007.

S. Rubinelli, P. J. Schulz, and U. Hartung, “Argument-driven online genetic
counselling,” Argument and Computation, vol. 1, no. 3, pp. 199-214, 2010.

S.C. Stumpf and J.T. McDonnell, “Talking about team framing,” Design
Studies, vol. 23, pp. 523, 1 2002.

N. R. Velaga, “Development of an integrated flexible transport systems
platform for rural areas using argumentation theory,” Research in
Transportation Business € Management, vol. 3, pp. 62-70, 8 2012.

W. Ouerdane, N. Maudet, and A. Tsoukias, “Argumentation Theory and
Decision Aiding,” in Trends in Multiple Criteria Decision Analysis,
pp. 177-208, Springer, Boston, MA, 2010.

E. Nunes, N. Kulkarni, P. Shakarian, A. Ruef, and J. Little, “Cyber-Deception
and Attribution in Capture-the-Flag Exercises,” in Cyber Deception, Building
the Scientific Foundation (S. Jajodia, V. S. Subrahmanian, V. Swarup, and
C. Wang, eds.), pp. 149-165, Springer, 7 2016.

P. Shakarian, G. I. Simari, G. Moores, and S. Parsons, “Cyber Attribution:
An Argumentation-Based Approach,” in Cyber Warfare - Building the
Scientific Foundation, pp. 151-171, Springer, Cham, 2015.

D. Gaertner and F. Toni, “CaSAPI: a system for credulous and sceptical
argumentation,” in Workshop on Argumentation for Non-Monotonic
Reasoning, p. 80-95, 2007.

H. Prakken and G. Sartor, “On the relation between legal language and legal
argument,” in 5th international conference on Artificial intelligence and law,
(New York, New York, USA), pp. 1-10, ACM Press, 1995.

Wikipedia, “Abductive reasoning.”
https://en.wikipedia.org/wiki/Abductive_reasoning [Online. Last
accessed: 2018-06-07].

M. Denecker and A. Kakas, “Abduction in Logic Programming,” pp. 402-436,
2002.

E. Karafili, A. C. Kakas, N. I. Spanoudakis, and E. C. Lupu,
“Argumentation-based Security for Social Good,” in AAAI 2017 Spring
Symposium on Al for Social Good, 5 2017.

91

https://www.merriam-webster.com/dictionary/argumentation
https://en.wikipedia.org/wiki/Abductive_reasoning

[39] International Telecommunication Union and M. Minges, “Global
Cybersecurity Index (GCI) 2017,” tech. rep., 2017.

[40] K. Breene, “Who are the cyberwar superpowers?.” https://www.weforum.
org/agenda/2016/05/who-are-the-cyberwar-superpowers/ |Online. Last
accessed: 2018-05-26], 2016.

[41] R. Pratka, “Which countries are allies and which are enemies?.”
https://www.msn.com/en-gb/news/photos/
which-countries-are-allies-and-which-are-enemies/ss-BBBNVNJ

[Online. Last accessed: 2018-04-20], 2017.

[42] YouGov, “America’s Friends and Enemies.”
https://today.yougov.com/topics/politics/articles-reports/2017/
02/02/americas-friends-and-enemies [Online. Last accessed: 2018-04-19],
2017.

[43| Brilliant Maps, “Who Americans Consider Their Allies, Friends and Enemies.”
https://brilliantmaps.com/us-allies-enemies/ |Online. Last accessed:
2018-04-19], 2017.

[44] FireEye, “Advanced Persistent Threat Groups.”
https://www.fireeye.com/current-threats/apt-groups.html [Online.
Last accessed: 2018-02-21].

[45] S. Matin, “8 Active APT Groups To Watch.” https://www.darkreading.
com/endpoint/8-active-apt-groups-to-watch/d/d-1d/1325161 [Online.
Last accessed: 2018-02-21|, 2016.

[46] Tor Project, “Tor Project: Overview.”
https://www.torproject.org/about/overview.html.en [Online. Last
accessed: 2018-06-10].

[47] Wikipedia, “Intrusion detection system.”
https://en.wikipedia.org/wiki/Intrusion_detection_system [Online.
Last accessed: 2018-05-11].

[48] “Is Signature and Rule-Based Intrusion Detection Sufficient? | CSO Online.”
https://www.csoonline.com/article/3181279/security/
is-signature-and-rule-based-intrusion-detection-sufficient.html
[Online. Last accessed: 2018-05-11], 2017.

[49] eTutorials, “Recipe 9.23 Decoding Snort Alert Messages.” http:
//etutorials.org/Linux+systems/linux+security/Chapter+9.+Testing+

and+Monitoring/Recipe+9.23+Decoding+Snort+Alert+Messages/ [Online.
Last accessed: 2018-02-21].

[50] P. M. Nugues, “An Introduction to Prolog,” in Language processing with Perl
and Prolog : theories, implementation, and application, ch. Appendix A,
p. 662, Berlin Heidelberg: Springer-Verlag, 2014.

92

https://www.weforum.org/agenda/2016/05/who-are-the-cyberwar-superpowers/
https://www.weforum.org/agenda/2016/05/who-are-the-cyberwar-superpowers/
https://www.msn.com/en-gb/news/photos/which-countries-are-allies-and-which-are-enemies/ss-BBBNVNJ
https://www.msn.com/en-gb/news/photos/which-countries-are-allies-and-which-are-enemies/ss-BBBNVNJ
https://today.yougov.com/topics/politics/articles-reports/2017/02/02/americas-friends-and-enemies
https://today.yougov.com/topics/politics/articles-reports/2017/02/02/americas-friends-and-enemies
https://brilliantmaps.com/us-allies-enemies/
https://www.fireeye.com/current-threats/apt-groups.html
https://www.darkreading.com/endpoint/8-active-apt-groups-to-watch/d/d-id/1325161
https://www.darkreading.com/endpoint/8-active-apt-groups-to-watch/d/d-id/1325161
https://www.torproject.org/about/overview.html.en
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://www.csoonline.com/article/3181279/security/is-signature-and-rule-based-intrusion-detection-sufficient.html
https://www.csoonline.com/article/3181279/security/is-signature-and-rule-based-intrusion-detection-sufficient.html
http://etutorials.org/Linux+systems/linux+security/Chapter+9.+Testing+and+Monitoring/Recipe+9.23+Decoding+Snort+Alert+Messages/
http://etutorials.org/Linux+systems/linux+security/Chapter+9.+Testing+and+Monitoring/Recipe+9.23+Decoding+Snort+Alert+Messages/
http://etutorials.org/Linux+systems/linux+security/Chapter+9.+Testing+and+Monitoring/Recipe+9.23+Decoding+Snort+Alert+Messages/

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Nielsen, Jakob, “Powers of 10: Time Scales in User Experience.”
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
[Online. Last accessed: 2018-06-12], 2009.

A. Wyner, J. Schneider, K. Atkinson, and T. Bench-Capon, “Semi-Automated
Argumentative Analysis of Online Product Reviews,” in Computational
Models of Argument, (Vienna, Austria), pp. 43-50, 2012.

C. Billo, W. Chang, and C. G. Billo, “Cyber Warfare: An analysis of the
means and motivations of selected nation states,” tech. rep., Institute for
Security Technology Studies, Dartmouth College, 2004.

T. Armerding, “Whodunit? In cybercrime, attribution is not easy.”
https://www.csoonline.com/article/2881469/malware-cybercrime/

whodunit-in-cybercrime-attribution-is-not-easy.html [Online. Last
accessed: 2017-12-16], 2015.

B. Bartholomew and J. A. Guerrero-Saade, “Wave your false flags! Deception
tactics muddying attribution in targeted attacks,” in Virus Bulletin
Conference, 2016.

Nicole Perlroth, “Online Banking Attacks Were Work of Iran, U.S. Officials
Say.” http://www.nytimes.com/2013/01/09/technology/
online-banking-attacks-were-work-of-iran-us-officials-say.html
[Online. Last accessed: 2017-11-21], 2013.

D. Goldman, “Major banks hit with biggest cyberattacks in history.” http://
money.cnn.com/2012/09/27/technology/bank-cyberattacks/index.html
[Online. Last accessed: 2017-11-22|, 2012.

A. Fitzpatrick, “Meet the ‘Gauss’ Virus, Stuxnet and Flame’s New Cousin.”
https:
//mashable.com/2012/08/09/gauss-virus/7europe=true#M8vbwovsp5q0
[Online. Last accessed: 2018-05-31|, 2012.

Kaspersky Lab Global Research and Analyst Team, “Gauss: Abnormal
Distribution,” tech. rep., Kaspersky Lab, 2012.

L. Dignan, “Meet Gauss: The latest cyber-espionage tool.” https://www.
zdnet.com/article/meet-gauss-the-latest-cyber-espionage-tool/
[Online. Last accessed: 2018-05-31|, 2012.

S. Knapton, “Home Office blames North Korea for devastating
NHS‘WannaCry’ cyber attack.”
http://www.telegraph.co.uk/science/2017/10/27/
home-office-blames-north-korea-devastating-nhs-wannacry-cyber/
[Online. Last accessed: 2017-11-26], 2017.

R. Browne, “North Korea hackers trying to steal bitcoin to evade sanctions.”
https://www.cnbc.com/2017/09/12/
north-korea-hackers-trying-to-steal-bitcoin-evade-sanctions.html
[Online. Last accessed: 2017-11-25], 2017.

93

https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.csoonline.com/article/2881469/malware-cybercrime/whodunit-in-cybercrime-attribution-is-not-easy.html
https://www.csoonline.com/article/2881469/malware-cybercrime/whodunit-in-cybercrime-attribution-is-not-easy.html
http://www.nytimes.com/2013/01/09/technology/online-banking-attacks-were-work-of-iran-us-officials-say.html
http://www.nytimes.com/2013/01/09/technology/online-banking-attacks-were-work-of-iran-us-officials-say.html
http://money.cnn.com/2012/09/27/technology/bank-cyberattacks/index.html
http://money.cnn.com/2012/09/27/technology/bank-cyberattacks/index.html
https://mashable.com/2012/08/09/gauss-virus/?europe=true#M8v5wovsp5q0
https://mashable.com/2012/08/09/gauss-virus/?europe=true#M8v5wovsp5q0
https://www.zdnet.com/article/meet-gauss-the-latest-cyber-espionage-tool/
https://www.zdnet.com/article/meet-gauss-the-latest-cyber-espionage-tool/
http://www.telegraph.co.uk/science/2017/10/27/home-office-blames-north-korea-devastating-nhs-wannacry-cyber/
http://www.telegraph.co.uk/science/2017/10/27/home-office-blames-north-korea-devastating-nhs-wannacry-cyber/
https://www.cnbc.com/2017/09/12/north-korea-hackers-trying-to-steal-bitcoin-evade-sanctions.html
https://www.cnbc.com/2017/09/12/north-korea-hackers-trying-to-steal-bitcoin-evade-sanctions.html

[63] Skynews, “‘Strong evidence’ North Korea-linked group was behind NHS
cyberattack.” https://news.sky.com/story/
cyberattack-tech-firms-investigate-north-korea-linked-hackers-10879388
[Online. Last accessed: 2017-11-26], 2017.

[64] BBC-News, “More evidence for WannaCry ‘link’ to North Korean hackers.”
http://www.bbc.co.uk/news/technology-40010996 [Online. Last accessed:
2017-11-30], 2017.

94

https://news.sky.com/story/cyberattack-tech-firms-investigate-north-korea-linked-hackers-10879388
https://news.sky.com/story/cyberattack-tech-firms-investigate-north-korea-linked-hackers-10879388
http://www.bbc.co.uk/news/technology-40010996

Appendix A

Core Gorgias Rules

In this chapter, we explain some of the key strategic rules that derives isCulprit (X,
Att), and list all the technical, operational and strategic rules and corresponding
preferences used in ABR for completeness.

A.1 Explanation of Rules

The layers in ABR are closely linked, instead of talking about each layer separately,
we go through specific rules, starting from the strategic layer, then move forward
to the operation and technical layer while explaining. (Rule 2 is also explained in
Section 4.3.)

A.1.1 Rule 1: Group claimed responsibility

Starting with the first rule, we show the strategic rule and the corresponding rules
to prove its body predicate existingGroupClaimedResponsibility/2:

4 from str_rules.pl
rule(r_str__claimedResp(X,Att), isCulprit(X,Att),
< [existingGroupClaimedResponsibility(X,Att)]).

4 from op_rules.pl

rule(r_op_claimRespO(X,Att),

< existingGroupClaimedResponsibility(X,Att),

< [claimedResponsibility(X,Att)]).

rule(r_op_claimRespl(X,Att),

- neg(existingGroupClaimedResponsibility(X,Att)),

< [claimedResponsibility(X,Att), noPriorHistory(X)]).
rule(p5_op() ,prefer(r_op_claimRespl(X,A),r_op_claimRespO(X,A)),[]).

Both claimedResponsibility/2 and noPriorHistory/1 are base evidences. We
can prove that a country or group was behind the attack (isCulprit/2) if it pub-
licly claimed responsibility for the attack. However, in many cases groups claiming
responsibility might be just a facade to mislead us. A hacktivist group with ab-
solutely no history or lineage claiming responsibility for a large-scale attack is one
possible hint that the group is not the true culprit of the attack [55]. This is

95

why we introduced the predicate existingGroupClaimedResponsibility/2 in the
operational layer, that denotes the fact that a group that has some prior history
(we are unable to prove noPriorHistory (X)) has claimed responsibility for the at-
tack. The preference rule (p5_op()) ensures that when both predicates are present,
only neg(existingGroupClaimedResponsibility(X,Att)) will be proven.

A.1.2 Rule 2: Has motive and capability
Rule 2 uses the predicates hasMotive/2 and hasCapability/2.

4 from str_rules.pl
rule(r_str__motiveAndCapability(C,Att), isCulprit(C,Att),
< [hasMotive(C,Att) ,hasCapability(C,Att)]).

hasMotive(X, Att) Since there are many rules that proves these two predicates
(9 for hasMotive/2 and 4 for hasCapability/2), we break them down into smaller
parts. First, we cover the explanations for hasMotive/2.

4 from op_rules.pl
rule(r_op_ecMotive(C,T), hasMotive(C,Att),
-~ [target(T,Att),industry(T), hasEconomicMotive(C,T),
—» contextOfAttack(economic,Att), specificTarget(Att)]).

abducible(specificTarget (_Att), []).
rule(r_op_notTargetted(Att), neg(specificTarget(Att)),
< [targetCountry(T1, Att), targetCountry(T2, Att), T1 \= T2]).

abducible(contextOfAttack(economic, _Att), []).
rule(r_op_context(economic,Att), contextOfAttack(economic,Att),
< [target(T,Att), normallndustry(Ind)]).

This rule can be read as: if a country/group has an economic motive to attack
the industry that was targeted in the attack, and the context of the attack was
economic, and the attack had a specific target, then the country/group has motive
to carry out the attack.

The predicate target (T, Att) is a base evidence, where T is the target of the
attack Att, while the predicate industry(T) is one of the background facts. It is
true when T is an industry (see table:bg for the full list of background facts).

The predicate hasEconomicMotive(C, T) is also a base evidence. When
hasEconomicMotive (countryX, industryY) is true, it means countryX will bene-
fit economically from attacking industryY. For example, if countryX has identified
industryY as a strategic emerging industry in official public documents such as white
papers or other government reviews, we say that hasEconomicMotive (countryX,
industryY) is true.

The predicate context0fAttack/2 and specificTarget/1 are both abducibles.
In Section 4.6, we cover the details of the use of abducibles in ABR. Briefly, an attack
is assumed to be targeted unless more than one country is targeted (targetCountry/2).

96

10

11

12

13

14

Since targetCountry/2 is a base evidence, it can be omitted at the user’s discretion,
if the user deem the number of infections in another country is too insignificant.

The predicate contextOfAttack(economic, Att) can be proven if the target is
a ‘normal’ industry. A ‘normal’ industry, as opposed to a ‘political’ industry, are
industries that are not closely related to a country’s national interests (see Table 4.1
for more details).

4 from op_rules.pl

rule(r_op_pMotive(C,T), hasMotive(C,Att),
< [targetCountry(T,Att), attackPeriod(Att,Datel),
< hasPoliticalMotive(C,T,Date2), dateApplicable(Datel,Date2),
- contextOfAttack(political,Att), specificTarget(Att)]).

rule(r_op_pMotivel(C,T,Date),
- hasPoliticalMotive(C,T,Date), [imposedSanctions(T,C,Date)]).

rule(r_op_context(political, Att), contextOfAttack(political, Att),
< [target(T, Att), country(T)]).

rule(r_op_contextl(political, Att), contextOfAttack(political, Att),
— [target(T, Att), industry(Ind, T), politicalIndustry(Ind)]).

A% Auzilliary rule

47 datedpplicable(Y1,M1,Y2,M2) is true if Y2 M2 is before Y1 M1 but
~ close enough (within 1 year)

rule(r_op_date(ongoing), dateApplicable(_, ongoing), []).
rule(r_op_datel(Y, M), dateApplicable([Y, M], [Y, MI), [1).
rule(r_op_date2(Y, M1, M2), dateApplicable([Y, M1], [Y, M2]), [M2 <
-~ M1]).

rule(r_op_date3(Y1l, Y2), dateApplicable([Y1l, _]1, [Y2, _1), [Y2 < Y1,
< Y2 > (Y1 - 2)]).

This rule can be interpreted as: if a country has a political motive (we explain
later what this means) to attack the target country, and the order of events fits
into the general timeline (more on dateApplicable/2 later), and the attack was a
targeted attack, then the country has motive to perform the attack.

The predicate targetCountry (T, Att) is a base evidence, saying that country
T is the country that was targeted by attack Att.

The predicate attackPeriod (X, Date) denotes the date of the attack. Date is
a list, in the format [YYYY,MM]. We exclude the day since in many cases even though
the malware is discovered on a certain day, we are unsure of when the systems were
actually infiltrated.

The predicate hasPoliticalMotive(C,T,Date2) is a derived predicate. ABR
has one rule that proves hasPoliticalMotive(C,T,Date2). If the target country
has imposed sanctions on country C, then as a form of retaliation, country C has
political motive to attack the target country (T).

The predicate dateApplicable/2 is an auxiliary rule used to ensure that the
triggering event (in this case, the imposing of sanctions) takes place before the
attack, and occurred shortly before the attack. Alternatively, if the event is long-
term and ongoing, we use the constant ongoing in place of the date of the event

97

([YYYY,MM]), dateApplicable(_, ongoing) is always true.

Lastly, we can prove contextOfAttack(political, Att) if either the target is
a country, or the target is a ‘political” industry (industries that are closely related
to a country’s national interests, such as the military or energy sector).

4 from op_rules.pl

rule(r_op_conflict1(X,T), hasMotive(X,Att), [target(T,Att),
— attackPeriod(Att,Datel), news(Event,T,Date2),
< dateApplicable(Datel,Date2), cause0fConflict(X,T,Event),
— specificTarget(Att)]).

The main idea behind this rule is that if (i) an incident occurred in the target
country and was publicized, and (ii) that incident is the cause of international conflict
or tension with another country shortly before the attack, then the other country
has motive to attack the target country.

To better explain this rule, we use a real-world example. The Sony Pictures
hack in 2014 was attributed to North Korea, that allegedly attacked Sony Pictures
in retaliation for the upcoming North Korean-based comedy “The Interview”. The
relevant evidences are as follows:

/ evidences are written in Prolog syntaz for stimplicity
target (sony, sonyhack).

attackPeriod(sonyhack, [2014,11]).

news (theInterview, sony, [2013,10]).
cause0fConflict(north_korea, sony, thelnterview).

We know that the scandal revolving “The Interview” was publicized in Octo-
ber 2013 (news(theInterview, sony,[2013,10])), and this sparked conflict be-
tween North Korea and Sony Pictures (causeOfConflict(north_korea, sony,
theInterview)). The target of the attack was Sony Pictures (target (sony, sonyhack))
and the attack occurred in November 2014 (attackPeriod (sonyhack, [2014,11]1)),
which was shortly before the attack occurred. So using these evidences and the above
rules, we are able to arrive at the conclusion that North Korea has motive to perform
the Sony Pictures hack.

4 from op_rules.pl

rule(r_op_nonGeopolitics1(C,T), neg(hasMotive(C,Att)),
< [targetCountry(T,Att), country(T), country(C),

- goodRelation(C,T)]).

rule(r_op_nonGeopolitics2(C,T), neg(hasMotive(C,Att)),
- [targetCountry(T,Att), country(T), country(C),

- goodRelation(T,C)]).

These rules make use of the background facts goodRelation/2. We clarify how
these facts are used in detail in Section 4.4.1.

4 from op_rules.pl

rule(r_op_grpPastTargets(Group, Att),

- hasMotive(Group,Att), [target(T,Att), prominentGroup(Group),
- pastTargets(Group,Ts), member(T,Ts)]).

98

The above rule makes use of background facts prominentGroup/1 and pastTargets/2.
In essence, this rule says that if a prominent Advanced Persistent Thread (APT)
group has performed an attack on the target of this attack before, then they possibly
have motive to perform this attack too. More details can be found in Section 4.4.2.

hasCapability (X, Att) Next, we cover the explanations for hasCapability/2,
where its derivation rules are shown below.

4 from op_rules.pl

rule(r_op_hasCapabilityl (X, Att), hasCapability(X, Att),

< [neg(requireHighResource(Att))]).
rule(r_op_hasCapability2(X, Att), hasCapability(X, Att),

< [requireHighResource(Att), hasResources(X)]).
rule(r_op_noCapability1(X, Att), neg(hasCapability(X, Att)),
— [requireHighResource(Att), neg(hasResources(X))]).

rule(r_op_noCapability2(X, Att), neg(hasCapability(X, Att)),
< [hasNoResources(X)]) .

In Table A.1, we summarise the situations where hasCapability (X,Att) is true.
Using logical notation, the first three rules can be represented by

—require HighResource(Att) V hasResources(X) — hasCapability(X, Att)

Gorgias does not support the use of the ‘or’ operator within the body, so we used
several rules to implement this relationship. While neg(hasResources (X)) is be
read as ‘X does not have (large amounts) of resources’; hasNoResources (X) is read
as ‘X has little or no resources’. The last rule says that if X has little or no resources,
then X will not be able to perform any attack, even if the attack does not require
large amounts of resources.

Table A.1: Summary table of when hasCapability(X,Att) is true

hasResources(X) neg(hasResources(X))
requireHighResource(Att) v'hasCapability(X, Att) | Xneg(hasCapability(X, Att))
neg(requireHighResource(Att)) | vhasCapability(X, Att) | vhasCapability(X, Att)

The predicates requireHighResource/1 and hasResources/1 are both derived
evidences. We now discuss how they are derived.

4 from tech_rules.pl
rule(r_t_highResourceO(Att), neg(requireHighResource(Att)),

o [neg(highlLevelSkill (Att))]).
rule(r_t_highResourcel (Att), requireHighResource(Att),
o [highLevelSkill(Att)]).
rule(r_t_highResource2(Att), requireHighResource(Att),
o [target (T, Att), highSecurity(T)]).
rule(r_t_highResource3(Att), requireHighResource(Att),
< [highVolumeAttack (Att),

< longDurationAttack(Att)]).

99

10

1

10

11

12

/ preferences

rule(pl2a_t(), prefer(r_t_highResourcel(Att),
— r_t_highResourceO(Att)), [1).
rule(pl2b_t(), prefer(r_t_highResource2(Att),
- r_t_highResourceO(Att)), []).
rule(pl2c_t(), prefer(r_t_highResource3(Att),
- r_t_highResourceO(Att)), [1).

Taking into account the preferences, we can summarise the above rules by the fol-
lowing logical notion:
require HighResource(Att) < (highLevel Skill(Att)V
(highSecurity(T) A target(T, Att))V
(highV olume Attack(Att) A long DurationAttack(Att)).

The predicates highSecurity/1, highVolumeAttack/1, longDurationAttack/1
are all base evidences, and have the following intuitive definitions:

highSecurity(T) (Organisation or company) T has high-security;
highVolumeAttack(Att) The attack had a high volume;

longDurationAttack(Att) The attack was performed over a long duration (few
months or even years).

The predicate highLevelSkill/1 is a derived evidence. We show below the rules
that proves highLevelSkill/1.

rule(r_t_neghighSkill(Att), neg(highLevelSkill(Att)), [1).
rule(r_t_highSkill1(Att), highLevelSkill(Att),

< [hijackCorporateClouds (Att)]).
rule(r_t_highSkill2(Att), highLevelSkill(Att),
as [malwareUsedInAttack(M, Att),

< usesZeroDayVulnerabilities(M)]).
rule(r_t_highSkill3(Att), neg(highLevelSkill(Att)),

— [malwareUsedInAttack(M, Att), fromBlackMarket(M)]).
rule(r_t_highSkill4(Att), highLevelSkill(Att),

< [malwareUsedInAttack(M, Att), sophisticatedMalware(M)]).

/ preferences
rule(pl0a_t(), prefer(r_t_highSkill1l(Att), r_t_neghighSkill(Att)),
ere E;iéb_t (), prefer(r_t_highSkill2(Att), r_t_neghighSkill(Att)),
rzle E;ibc_t (), prefer(r_t_highSkill4(Att), r_t_neghighSkill(Att)),
£;1egiiia_t(), prefer(r_t_highSkill3(Att), r_t_highSkill2(Att)),
rzle g)iib_t (), prefer(r_t_highSkill3(Att), r_t_highSkill4(Att)),

- [D.

100

There are many base evidences in these rules. We summarise their definitions below:
malwareUsedInAttack(M, Att) M is the malware used in the attack Att;

hijackCorporateClouds(Att) Corporate cloud servers were hijacked as part of
the attack Att;

usesZeroDay Vulnerabilities(M) At least one zero day vulnerability was used in
the malware M;

fromBlackMarket(M) The malware M was being sold on the black market;
sophisticatedMalware(M) The malware M was technically sophisticated.

After applying the preferences, we have the following definition for highLevelSkill (Att)
in logical notation:

highLevel Skill(Att) < hijackCorporateClouds(Att)V
(malwareU sedInAttack(M, Att)A
- fromBlackMarket(M)A
(sophisticated M alware(M)V
usesZeroDayVulnerabilities(M))).

If the malware used in the attack was bought from the black market, meaning it
was not an original malware, not that much resources are required to perform the
attack, regardless of how high level the malware is.

4 from op_rules.pl

rule(r_op_hasResources1(X), hasResources(X), [gci_tier(X,

« leading)]).

rule(r_op_hasResources2(X), hasResources(X), [cybersuperpower(X)]).
rule(r_op_hasNoResources(X), hasNoResources(X), [gci_tier(X,

~ initiating)]).

gci_tier/2 and cybersuperpower/1 are background facts. gci_tier (X, Group)
means the country X is in Global Cybersecurity Index' group (as of 2017) Group.
Group can take 3 possible values: leading, maturing, initiating (in order of
descending GCI index). The higher the GCI, the higher the cybersecurity capabil-
ities of the country. cybersuperpower (X) means country X is identified as a cyber
superpower. More details on the GCI index and cyber superpowers can be found in
Section 4.4.1.

A.1.3 Rule 3: APT group to origin country

The below rule describes the situation when an attribution to an APT group can
be extended to its country of origin.

"https://www.itu.int/dms_pub/itu-d/opb/str/D-STR-GCI.01-2017-PDF-E.pdf

101

https://www.itu.int/dms_pub/itu-d/opb/str/D-STR-GCI.01-2017-PDF-E.pdf

1

1

rule(r_str__aptGroupMotive(C,Att), isCulprit(C,Att),
< [prominentGroup(Group), groupOrigin(Group,C), country(C),
< 1isCulprit(Group,Att), hasMotive(C,Att)]).

If we could make the attribution to an APT group (prominentGroup(Group),
isCulprit (Group,Att)) and its country of origin has the motive to perform the
attack (groupOrigin(Group,C), hasMotive(C,Att)), then we extend the attribu-
tion to the country.

A.1.4 Rule 4: Has location and motive

When we can prove that the attack originated from a country and that country has
motive to perform the attack, then we attribute the attack to that country, as shown
below.

rule(r_str__motiveAndLocation(C,Att), isCulprit(C,Att),
— [attackOrigin(C,Att), hasMotive(C,Att), country(C)]).

attackOrigin(X, Att) attackOrigin(X, Att) means the attack Att was found
to have come from country X. These are the rules pertaining to attackOrigin/2 (or
its negation):

4 from tech_rules.pl

rule(r_t_attackOriginDefault (X, Att), neg(attackOrigin(X, Att)),
< [1).

rule(r_t_attackOrigin(X, Att), attackOrigin(X, Att),

— [attackPossibleOrigin(X, Att)]).
rule(r_t_conflictingOrigin(X, Y, Att), neg(attackOrigin(X, Att)),
< [attackPossibleOrigin(X, Att), attackPossibleOrigin(Y, Att),
— country(X), country(Y), X \= Y]).

attackPossibleOrigin(X, Att) is an auxiliary predicate. These rules denote that
if we can prove one country is the possible attack origin, then that is the attack
origin. However, if we can prove two distinct possible attack origins, then neither is
the attack origin.

rule(r_t_noLocEvidence(X, Att), neg(attackPossibleOrigin(X, Att)),
- [.

rule(r_t_srcIP1(X, Att), attackPossibleOrigin(X, Att),

< [attackSourceIP(IP, Att), ipGeoloc(X, IP)]).
rule(r_t_srcIP2(X, Att), attackPossibleOrigin(X, Att),

< [majorityIpOrigin(X, Att)]).

rule(r_t_spoofIP(X, Att), neg(attackPossibleOrigin(X, Att)),

— [attackSourceIP(IP, Att), spoofedIP(IP, Att), ipGeoloc(X, IP)]).
rule(r_t_spoofIPtor(IP), spoofedIP(IP, Att), [attackSourceIP(IP,
-~ Att), targetServerIP(TargetServerIP, Att), torIP(IP,

- TargetServerIP)]).

rule(r_t_langl (X, Att), attackPossibleOrigin(X, Att),

< [sysLanguage(L, Att), firstLanguage(L, X)]).

102

rule(r_t_lang2(X, Att), attackPossibleOrigin(X, Att),

- [languageInCode(L, Att), firstLanguage(L, X)1).
rule(r_t_infra(X, Att), attackPossibleOrigin(X, Att),

- [infraUsed(Infra, Att), infraRegisteredIn(X, Infra)]).
rule(r_t_domain(X, Att), attackPossibleOrigin(X, Att),

— [malwareUsedInAttack(M, Att), ccServer(S, M),

< domainRegisteredDetails(S, _, Addr), addrInCountry(Addr, X)]).

A.2 All rules used in ABR

In this section we show all the rules used in the technical, operational and strategic
layers in ABR.

A.2.1 All technical rules

Below we show all the technical rules and their preferences that can be found in
tech_rules.pl.

rule(r_t_neghighSkill(Att), neg(highLevelSkill(Att)), [1).
rule(r_t_highSkilll(Att), highLevelSkill(Att), [hijackCorporateClouds(Att)]).
rule(r_t_highSkill2(Att), highLevelSkill(Att), [malwareUsedInAttack(M, Att),
< usesZeroDayVulnerabilities(M)]).

rule(r_t_highSkill3(Att), neg(highLevelSkill(Att)), [malwareUsedInAttack(M,
— Att), neg(notFromBlackMarket(M))]).

rule(r_t_highSkill4(Att), highLevelSkill(Att), [malwareUsedInAttack(M, Att),
— sophisticatedMalware(M)]).

rule(r_t_highResourceO(Att), neg(requireHighResource(Att)),

< [neg(highLevelSkill(Att))]).

rule(r_t_highResourcel (Att), requireHighResource(Att), [highLevelSkill(Att)]).
rule(r_t_highResource2(Att), requireHighResource(Att), [target(T, Att),

— highSecurity(T)]).

rule(r_t_highResource3(Att), requireHighResource(Att), [highVolumeAttack(Att),
< longDurationAttack(Att)]).

rule(r_t_IPdomain1(S, M), ccServer(S, M), [malwareUsedInAttack(M, Att),

— attackSourceIP(IP, Att), ipResolution(S, IP, _D)]).
rule(r_t_IPdomain2(S, M), neg(ccServer(S, M)), [malwareUsedInAttack(M, Att),
— attackSourceIP(IP, Att), spoofedIP(IP, Att), ipResolution(S, IP, _D)]).
rule(r_t_IPdomain3(S, M), neg(ccServer(S, M)), [malwareUsedInAttack(M, Att),
— attackSourceIP(IP, Att), attackPeriod(Att, D1), ipResolution(S, IP, D),

< neg(recent(D, D1))]).

15
16
17

18

19

20

21

4 to get auto ip resolution via virustotal
rule(r_t_IP(IP, Date), ip(IP, Date), [ip(IP), attackSourceIP(IP, Att),
< attackPeriod(Att, Date)]).

rule(r_t_noLocEvidence(X, Att), neg(attackPossibleOrigin(X, Att)), [1).
rule(r_t_srcIP1(X, Att), attackPossibleOrigin(X, Att), [attackSourceIP(IP,
— Att), ipGeoloc(X, IP)]).

rule(r_t_srcIP2(X, Att), attackPossibleOrigin(X, Att), [majorityIpOrigin(X,
< Att)]).

103

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45
46
47
48

49
50

51

52

53

54

rule(r_t_spoofIP(X, Att), neg(attackPossibleOrigin(X, Att)),

— [attackSourceIP(IP, Att), spoofedIP(IP, Att), ipGeoloc(X, IP)]).
rule(r_t_spoofIPtor(IP), spoofedIP(IP, Att), [attackSourceIP(IP, Att),

— targetServerIP(TargetServerIP, Att), torIP(IP, TargetServerIP)]).
rule(r_t_langl (X, Att), attackPossibleOrigin(X, Att), [sysLanguage(L, Att),
< firstLanguage(L, X)]1).

rule(r_t_lang2(X, Att), attackPossibleOrigin(X, Att), [languageInCode(L, Att),
— firstLanguage(L, X)1).

rule(r_t_infra(X, Att), attackPossibleOrigin(X, Att), [infraUsed(Infra, Att),
— infraRegisteredIn(X, Infra)]).

rule(r_t_domain(X, Att), attackPossibleOrigin(X, Att), [malwareUsedInAttack(M,
— Att), ccServer(S, M), domainRegisteredDetails(S, _, Addr),

< addrInCountry(Addr, X)1).

rule(r_t_recent1(Y), recent([Y, _1, [Y, _1), [1).

rule(r_t_recent2(Y1, Y2, M1, M2), recent([Y1l, M1], [Y2, M2]), [Y1 is Y2 - 1,
< M1 > M2]).

rule(r_t_recent3(Y1l, Y2, M1, M2), recent([Y1l, M1], [Y2, M2]), [Y2 is Y1 - 1,
< M2 > M1]).

rule(r_t_attackOriginDefault (X, Att), neg(attackOrigin(X, Att)), [1).
rule(r_t_attackOrigin(X, Att), attackOrigin(X, Att), [attackPossibleOrigin(X,
< Att)]).

rule(r_t_conflictingOrigin(X, Y, Att), neg(attackOrigin(X, Att)),

— [attackPossibleOrigin(X, Att), attackPossibleOrigin(Y, Att), country(X),
— country(Y), X \= Y]).

rule(r_t_bm(M), notFromBlackMarket(M), [infectionMethod(usb, M),
— commandAndControlEasilyFingerprinted(M)]).

rule(r_t_similarDefault (M1, M2), neg(similar(Mi, M2)), [I1).
rule(r_t_similar (M1, M2), similar(Mi, M2), [similarCCServer(Mi, M2), M1 \= M2]).
rule(r_t_simCC1 (M1, M2), similarCCServer(M1, M2), [ccServer(S, M1), ccServer(S,
- M2)]1).

rule(r_t_simCC2(M1, M2), similarCCServer (M1, M2), [ccServer(Si, M1),

— ccServer(S2, M2), S1 \= S2, domainRegisteredDetails(S1, _, A),

— domainRegisteredDetails(S2, _, A)]).

rule(r_t_simCC3 (M1, M2), similarCCServer(M1, M2), [ccServer(Si, M1),

— ccServer(S2, M2), S1 \= S2, domainRegisteredDetails(S1, Name, _),

— domainRegisteredDetails(S2, Name, _)]1).

rule(r_t_similar1 (M1, M2), similar(M1, M2), [similarCodeObfuscation(Mi, M2)]).
rule(r_t_similar2(M1, M2), similar(M1, M2), [sharedCode(M1, M2)]).
rule(r_t_similar3(M1, M2), similar(M1, M2), [malwareModifiedFrom(M1, M2)]).
rule(r_t_similard(M1, M2), similar(Mi, M2), [M1 \= M2, fileCharaMalware(C1i, M1),
— fileCharaMalware(C2, M2), similarFileChara(Ci, C2)]).

rule(r_t_targetted(Att), specificTarget(Att), [malwareUsedInAttack(M, Att),
— specificConfigInMalware(M)]).

rule(r_t_similarFileCharal1(C1, C2), similarFileChara(C1, C2),

< [fileChara(Filename, _, _, _, _, _, Cl1), fileChara(Filename, _, _, _, _, _,
- C2)1).

rule(r_t_similarFileChara2(C1, C2), similarFileChara(Cl, C2), [fileChara(_, MD5,
<~ _, _» _, _, C1), fileChara(_, MD5, _, _, _, _, C2)1]).
rule(r_t_similarFileChara3(Cl, C2), similarFileChara(Cl, C2), [fileChara(_, _,
~ _, _, Desc, _, C1), fileChara(_, _, _, _, Desc, _, C2)]1).

104

55

56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81

© 0 N O U R W N

— e
= O

12
13

14

15

16

rule(r_t_similarFileChara4(C1, C2), similarFileChara(Cl, C2), [fileChara(_, _,
— Size, CompileTime, _, Filetype, C1), fileChara(_, _, Size, CompileTime, _,
— Filetype, C2)1).

4 preferences

rule(pl_t(), prefer(r_t_attackOrigin(X, Att), r_t_attackOriginDefault(X, Att)),
- .

rule(pda_t(), prefer(r_t_srcIP1(X, Att), r_t_noLocEvidence(X, Att)), []1).
rule(pd4b_t(), prefer(r_t_srcIP2(X, Att), r_t_noLocEvidence(X, Att)), [1).
rule(p5_t(), prefer(r_t_langl(X, Att), r_t_noLocEvidence(X, Att)), [1).
rule(p6_t(), prefer(r_t_lang2(X, Att), r_t_noLocEvidence(X, Att)), [1).
rule(p7_t(), prefer(r_t_infra(X, Att), r_t_noLocEvidence(X, Att)), [1).
rule(p8_t(), prefer(r_t_domain(X, Att), r_t_nolLocEvidence(X, Att)), []).
rule(p9a_t (), prefer(r_t_spoofIP(X, Att), r_t_srcIP1(X, Att)), [1).
rule(p9b_t (), prefer(r_t_spoofIP(X, Att), r_t_srcIP2(X, Att)), [1).
rule(plOa_t (), prefer(r_t_highSkilll(Att), r_t_neghighSkill(Att)), [1).
rule(plOb_t(), prefer(r_t_highSkill2(Att), r_t_neghighSkill(Att)), [1).
rule(pl0c_t(), prefer(r_t_highSkill4(Att), r_t_neghighSkill(Att)), []1).
rule(plib_t(), prefer(r_t_highSkill3(Att), r_t_highSkill2(Att)), [1).
rule(plic_t(), prefer(r_t_highSkill3(Att), r_t_highSkill4(Att)), []).
rule(pl2a_t (), prefer(r_t_highResourcel(Att), r_t_highResourceO(Att)), [1).
rule(p12b_t(), prefer(r_t_highResource2(Att), r_t_highResource0(Att)), [1).
rule(pl2c_t(), prefer(r_t_highResource3(Att), r_t_highResourceO(Att)), [1).
rule(pl3a_t(), prefer(r_t_IPdomain2(S, M), r_t_IPdomainl(S, M)), []).
rule(p13b_t (), prefer(r_t_IPdomain3(S, M), r_t_IPdomainl(S, M)), [1).
rule(pil4a_t (), prefer(r_t_similar(M1, M2), r_t_similarDefault (M1, M2)), [1).
rule(pl14b_t (), prefer(r_t_simCC1(M1, M2), r_t_similarDefault(M1i, M2)), [1).
rule(pl4c_t(), prefer(r_t_simCC2(M1, M2), r_t_similarDefault(M1, M2)), [1).
rule(pl4d_t (), prefer(r_t_simCC3(M1, M2), r_t_similarDefault(M1i, M2)), []).

A.2.2 All operational rules

Below we show all the operational rules and their preferences that can be found in
op_rules.pl.

A% Main rules:

abducible(specificTarget (_Att), [1).
abducible(contextOfAttack(political, _Att), [1).
abducible(contextOfAttack(economic, _Att), []1).

rule(r_op_hasResources1(X), hasResources(X), [gci_tier(X, leading)]).
rule(r_op_hasResources2(X), hasResources(X), [cybersuperpower(X)]).
rule(r_op_hasNoResources(X), hasNoResources(X), [gci_tier(X, initiating)]).

/4 more than one country targetted
rule(r_op_notTargetted(Att), neg(specificTarget(Att)), [targetCountry(T1, Att),
— targetCountry(T2, Att), T1 \= T2]).

rule(r_op_hasCapabilityl(X, Att), hasCapability(X, Att),

— [neg(requireHighResource(Att))]).
rule(r_op_hasCapability2(X, Att), hasCapability(X, Att),

< [requireHighResource(Att), hasResources(X)]).
rule(r_op_noCapabilityl(X, Att), neg(hasCapability(X, Att)),
— [requireHighResource(Att), neg(hasResources(X))]).
rule(r_op_noCapability2(X, Att), neg(hasCapability(X, Att)),
<» [hasNoResources(X)]).

105

17
18
19

20

21

22

23

24

25

26
27

28
29

30

31
32

33

34
35

36

37

38

39
40
41
42
43
44
45

46
47
48
49
50
51

rule(r_op_ecMotive(C, T), hasMotive(C, Att), [target(T, Att),

— industry(T), contextOfAttack(economic, Att), hasEconomicMotive(C, T),

— specificTarget (Att)]).

rule(r_op_pMotive(C, T), hasMotive(C, Att), [targetCountry(T, Att),

— attackPeriod(Att, Datel), contextOfAttack(political, Att),

< hasPoliticalMotive(C, T, Date2), dateApplicable(Datel, Date2),

— specificTarget (Att)]).

rule(r_op_pMotivel(C, T, Date), hasPoliticalMotive(C, T, Date),

— [imposedSanctions(T, C, Date)]).

rule(r_op_conflict(X, T), hasMotive(X, Att), [targetCountry(T, Att),

< attackPeriod(Att, Datel), news(Event, T, Date2), dateApplicable(Datel,

— Date2), causeOfConflict(X, T, Event), specificTarget(Att)]).
rule(r_op_conflictl(X, T), hasMotive(X, Att), [target(T, Att), attackPeriod(Att,
— Datel), news(Event, T, Date2), dateApplicable(Datel, Date2),

— cause0fConflict(X, T, Event), specificTarget(Att)]).
rule(r_op_nonGeopolitics1(C, T), neg(hasMotive(C, Att)), [targetCountry(T, Att),
— country(T), country(C), goodRelation(C, T)]).

rule(r_op_nonGeopolitics2(C, T), neg(hasMotive(C, Att)), [targetCountry(T, Att),
— country(T), country(C), goodRelation(T, C)]).

rule(r_op_grpPastTargets(Group, Att), hasMotive(Group, Att), [target(T, Att),
— prominentGroup(Group), pastTargets(Group, Ts), member(T, Ts)]). /WEAK RULE

rule(r_op_claimRespO(X, Att), existingGroupClaimedResponsibility(X, Att),

— [claimedResponsibility (X, Att)]).

rule(r_op_claimRespl (X, Att), neg(existingGroupClaimedResponsibility(X, Att)),
— [claimedResponsibility(X, Att), mnoPriorHistory(X)]).

rule(r_op_sociall(P, C), governmentLinked(P, C), [geolocatedInGovFacility(P,

- OD.

rule(r_op_social2(P, C), governmentLinked(P, C), [publicCommentsRelatedToGov(P,
-~ OD.

A% politicallndustries are industries that are closely related to well-being of
— country/sensitive to national interests

rule(r_op_context(economic, Att), contextOfAttack(economic, Att), [target(T,
— Att), industry(Ind, T), normalIndustry(Ind)]).

rule(r_op_context(political, Att), contextOfAttack(political, Att), [target(T,
— Att), country(T)]).

rule(r_op_contextl(political, Att), contextOfAttack(political, Att), [target(T,
— Att), industry(Ind, T), politicalIndustry(Ind)]).

A% Auziliary rules

A Y2 M2 is before Y1 M1 but recent enough (within 1 year)
rule(r_op_date(ongoing), dateApplicable(_, ongoing), []).

rule(r_op_datel(Y, M), dateApplicable([Y, M1, [Y, MI), [1).

rule(r_op_date2(Y, M1, M2), dateApplicable([Y, M1], [Y, M2]), [M2 < M1]).
rule(r_op_date3(Y1l, Y2), dateApplicable([Y1, _1, [Y2, _1), [Y2 <Y1, Y2 > (Y1 -
- 2)1).

4 preferences

rule(pla_op(), prefer(r_op_ecMotive(C, T), r_op_nonGeopolitics1(C, T)), [1).
rule(pib_op(), prefer(r_op_ecMotive(C, T), r_op_nonGeopolitics2(C, T)), [1).
rule(p2a_op(), prefer(r_op_conflict(C, T), r_op_nonGeopoliticsi(C, T)), []).
rule(p2b_op(), prefer(r_op_conflict(C, T), r_op_nonGeopolitics2(C, T)), []).

106

52
53
54

56
57

Ut W N =

10
11

12

13

14
15

16

17

18

19

20

21

22
23

24
25

26
27

rule(p3a_op(), prefer(r_op_conflictl1(C, T), r_op_nonGeopolitics1(C, T)), [1).
rule(p3b_op(), prefer(r_op_conflict1(C, T), r_op_nonGeopolitics2(C, T)), [1).
rule(pd4a_op(), prefer(r_op_pMotive(C, T), r_op_nonGeopolitics1(C, T)), [1).
rule(pdb_op(), prefer(r_op_pMotive(C, T), r_op_nonGeopolitics2(C, T)), [1).
rule(p5_op(), prefer(r_op_claimRespl(X, A), r_op_claimRespO(X, A)), [1).
rule(p6_op(), prefer(r_op_noCapability2(X, Att), r_op_hasCapabilityl(X, Att)),
- .

A.2.3 All strategic rules

Below we show all the strategic rules and their preferences that can be found in
str_rules.pl.

abducible (notFromBlackMarket(_), [1).

/4 helper rules

rule(r_str_emptyHasCap(Att), hasCapability([]l, Att), [1).
rule(r_str_allHaveCap([X|L], Att), hasCapability([X|L], Att), [\+ is_list(X),
— is_list(L), hasCapability(X, Att), hasCapability(L, Att)]).
rule(r_str_prominentGrpHasCap(X, Att), hasCapability(X, Att),

< [prominentGroup(X)]).

rule(r_str__claimedResp(X, Att), isCulprit(X, Att),
— [existingGroupClaimedResponsibility (X, Att)]).

4 rules proving (neg)isCulprit

rule(r_str__motiveAndCapability(C, Att), isCulprit(C, Att), [hasMotive(C, Att),
< hasCapability(C, Att)]).

rule(r_str__aptGroupMotive(C, Att), isCulprit(C, Att), [prominentGroup(Group),
— groupOrigin(Group, C), country(C), isCulprit(Group, Att), hasMotive(C,

< Att)]).

rule(r_str__motiveAndLocation(C, Att), isCulprit(C, Att), [attackOrigin(C, Att),
— hasMotive(C, Att), country(C)]).

rule(r_str__loc(C, Att), isCulprit(C, Att), [attackOrigin(C, Att), country(C)]).
rule(r_str__social(C, Att), isCulprit(C, Att), [governmentLinked(P, C),

— country(C), identifiedIndividualInAttack(P, Att)]).
rule(r_str__linkedMalware(X, Al), isCulprit(X, A1), [malwareUsedInAttack(Mi,

< A1), similar(M1, M2), malwareLinkedTo(M2, X), notFromBlackMarket(M1),

— notFromBlackMarket (M2)]).

rule(r_str__noEvidence(X, Att), neg(isCulprit(X, Att)), [1).
rule(r_str__noHistory(X, Att), neg(isCulprit(X, Att)),

— [neg(existingGroupClaimedResponsibility (X, Att))]).
rule(r_str__negAttackOrigin(X, Att), neg(isCulprit(X, Att)),

— [neg(attackOrigin(X, Att))]).

rule(r_str__noCapability(X, Att), neg(isCulprit(X, Att)), [neg(hasCapability(X,
< Att))]).

rule(r_str__noMotive (X, Att), neg(isCulprit(X, Att)), [neg(hasMotive(X, Att))]).
rule(r_str__weakAttack(X, Att), neg(isCulprit(X, Att)), [hasResources(X),

— neg(requireHighResource(Att))]).

rule(r_str__targetItself1(X, Att), neg(isCulprit(X, Att)), [target(X, Att)]).
rule(r_str__targetItself2(X, Att), neg(isCulprit(X, Att)), [targetCountry(X,

— Att)]).

4 preferences

107

28

29

30
31

32

33

34

35

36

37
38

39
40

41
42

43

44

45
46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

61

rule(pOa(), prefer(r_str__claimedResp(X, A), r_str__noEvidence(X, A)), [1).

— JWith any evidence, we prefer to attribute the culprit accordingly
rule(pOb(), prefer(r_str__motiveAndCapability(X, A), r_str__noEvidence(X, A)),
- [D.
rule(p0c(),
rule(p0d(),

prefer(r_str__aptGroupMotive(X, A), r_str__noEvidence(X, A)), [1).
prefer(r_str__motiveAndLocation(X, A), r_str__noEvidence(X, A)),

- .
rule(pOe(),
rule(p0f (),
rule(p0g(),

rule(p6(), prefer(r_str__noCapability(X, A)

prefer(r_str__loc(X, A), r_str__
prefer(r_str__social(X, A), r_str__noEvidence(X, A)), [1).
prefer(r_str__linkedMalware(X, A), r_str__noEvidence(X, A)), [1).

noEvidence(X, A)), [1).

r_str__claimedResp(X, A)), [1). 7/

— hacker group might claim responsibility for attack backed by nation state

rule(p8(), prefer(r_str__noCapability(X, A)
rule(p9(), prefer(r_str__noCapability(X, A)
- [D.

rule(p10(), prefer(r_str__noCapability(X, A),

rule(p11(),
— social
rule(p12Q),
rule(p18Q),

- [1.
rule(p19(), prefer(r_str__weakAttack(X, A),
- [D.

rule(p20(), prefer(r_str__weakAttack(X, A),
- A, [D.

rule(p21la(), prefer(r_str__targetItselfl (X,
— [specificTarget (Att)]).

rule(p21b(), prefer(r_str__targetItselfl(X,
— Att)), [specificTarget(Att)]).
rule(p21c(), prefer(r_str__targetItselfl(X,
— Att)), [specificTarget (Att)]).
rule(p21d(), prefer(r_str__targetItselfl(X,
- Att)), [specificTarget (Att)]).
rule(p2le(), prefer(r_str__targetItselfl(X,
— [specificTarget (Att)]).

rule(p21f (), prefer(r_str__targetItselfl(X,
— [specificTarget (Att)]).

rule(p21g(), prefer(r_str__targetItselfl(X,
— [specificTarget (Att)]).

rule(p22a(), prefer(r_str__targetItself2(X,
— [specificTarget (Att)]).

rule(p22b(), prefer(r_str__targetItself2(X,
— Att)), [specificTarget(Att)]).
rule(p22c(), prefer(r_str__targetItself2(X,
- Att)), [specificTarget (Att)]).
rule(p22d(), prefer(r_str__targetItself2(X,
- Att)), [specificTarget (Att)]).
rule(p22e(), prefer(r_str__targetItself2(X,
— [specificTarget (Att)]).

rule(p22f (), prefer(r_str__targetItself2(X,
— [specificTarget(Att)]).

rule(p22g(), prefer(r_str__targetItself2(X,
— [specificTarget (Att)]).

108

r_str__aptGroupMotive (X, A)), [1).
r_str__motiveAndLocation(X, A)),

r_str__loc(X, A)), [1).

prefer(r_str__noCapability(X, A), r_str__social(X, A)), [1). 7/
evidences e.g. twitter posts/ emails can be easily forged
prefer(r_str__noCapability(X, A), r_str__linkedMalware(X, A)), [1).
prefer(r_str__linkedMalware(X, A), r_str__negAttackOrigin(X, A)),

r_str__aptGroupMotive(X, A)),

r_str__motiveAndCapability (X,

Att), r_str__claimedResp(X, Att)),
Att), r_str__motiveAndCapability(X,
Att), r_str__aptGroupMotive (X,
Att), r_str__motiveAndLocation(X,
Att), r_str__loc(X, Att)),

Att), r_str__social(X, Att)),

Att), r_str__linkedMalware(X, Att)),

Att), r_str__claimedResp(X, Att)),
Att), r_str__motiveAndCapability(X,
Att), r_str__aptGroupMotive (X,
Att), r_str__motiveAndLocation(X,
Att), r_str__loc(X, Att)),

Att), r_str__social(X, Att)),

Att), r_str__linkedMalware(X, Att)),

62 rule(p23a(), prefer(r_str__linkedMalware(X, A), r_str__noHistory(X, A)), [1).
63 rule(p23c(), prefer(r_str__linkedMalware(X, A), r_str__noMotive(X, A)), [1).
64 rule(p23d(), prefer(r_str__linkedMalware(X, A), r_str__weakAttack(X, A)), [1).

109

10

11

12

13

Appendix B

Attribution Cases Used to Extract
Rules

In this section we list the real-world cyber attacks, together with their evidence!
and reasoning rules that were extracted from each case. See Section 4.3 for the
description of the rules and how they are combined together to derive the conclusion.

B.1 Stuxnet attack

Below we show the rules and evidences extracted from [12, 11|. See Section 2.1.1
for a summary of the cyber attack case.

Evidences

target (iranian_org,stuxnetattack).
industry(nuclear,iranian_org) .
targetCountry(iran, stuxnetattack) .
usesZeroDayVulnerabilities(stuxnet) .

news (nuclear,iran,ongoing) .
cause0fConflict(united_states, iran, nuclear).
causeOfConflict(israel, iran, nuclear).
attackPeriod(stuxnetattack, [2010,7]).
malwareUsedInAttack(stuxnet, stuxnetattack).
specificConfigInMalware (stuxnet) .
infectionMethod (usb, stuxnet).

target (iran_nuclear_facilities, stuxnetattack).
industry(nuclear, iran_nuclear_facilities).

Rules used

4 tech_rules.pl
rule(r_t_targetted(Att), specificTarget(Att),
< [malwareUsedInAttack(M, Att), specificConfigInMalware(M)]).

IEvidences are listed in Prolog style for presentation purposes.

110

10

11

12

13

14

15

rule(r_t_highSkill2(Att), highLevelSkill(Att),

as [malwareUsedInAttack(M, Att),

< usesZeroDayVulnerabilities(M)]).
rule(r_t_highResourcel (Att), requireHighResource(Att),
o [highLevelSkill(Att)]).

rule(r_op_contextl(political, Att), contextOfAttack(political,
~ Att), [target(T, Att), industry(Ind, T),
- politicallndustry(Ind)]).

/4 op_rules.pl

rule(r_op_conflict(X, T), hasMotive(X, Att), [targetCountry(T, Att),
— attackPeriod(Att, Datel), news(Event, T, Date2),

—» dateApplicable(Datel, Date2), causeOfConflict(X, T, Event),

— specificTarget(Att)]).

rule(r_op_hasCapability2(X, Att), hasCapability(X, Att),

- [requireHighResource(Att), hasResources(X)]).
rule(r_op_hasResources2(X), hasResources(X), [cybersuperpower(X)]).

4 str_rules.pl
rule(r_str__motiveAndCapability(C, Att), isCulprit(C, Att),
< [hasMotive(C, Att), hasCapability(C, Att)]).

B.2 APT1

Below we show the rules and evidences extracted from [56, 57|. See Section 2.1.1
for a summary of the cyber attack case.

Evidences

majorityIpOrigin(china, aptl). % many IPs detected, but the majority
— of them originated from china

sysLanguage(chinese, aptl). / attacker's system default language

— configuration detected from malware is chinese
firstLanguage(chinese, china).

infraUsed(aptl_infra, aptl).

infraRegisteredIn(china, aptl_infra). 7 infrastructure registered in
— china

hasEconomicMotive(china, infocomm). / china has economic motive to
— attack organizations in the infocomm indusiry

target(v, aptl). / the target of the aptl attack are a group of

- wvictims 'v'

industry(infocomm, v). / thts group of wictims are part of the

— tnfocomm industry

highVolumeAttack(aptl) .

111

10

11

12

13

14

15

16

17

10

11

12

13

14

longDurationAttack(aptl).

4 'superhard’' and 'dota’ are handle names of individuals tdentified
— as part of the attackers
identifiedIndividualInAttack(superhard, aptl).
identifiedIndividualInAttack(dota , aptl).

4 'superhard’' was geolocated to frequent one of the government

— facilities in china

geolocatedInGovFacility(superhard, china). /

4 'dota' released some comments on social media hinting that he was
— related to the chinese government
publicCommentsRelatedToGov(dota , china).

Rules used

4 tech_rules.pl

rule(srcIP(X,Att), attackPossibleOrigin(X,Att),

— [majorityIpOrigin(X,Att)]).

rule(langl (X,Att), attackPossibleOrigin(X,Att), [sysLanguage(L,
< Att), firstLanguage(L, X)]).

rule(infra(X,Att), attackPossibleOrigin(X,Att), [infraUsed(Infra,
- Att), infraRegisteredIn(X, Infra)l).

rule(highResource3(Att), requireHighResource(Att),
— [highVolumeAttack(Att),longDurationAttack(Att)]).

/ op_rules.pl

rule(ecMotive(C,T), hasMotive(C, Att), [industry(T), target(T, Att),
— hasEconomicMotive(C, T), specificTarget(Att)]).
rule(r_op_hasResources2(X), hasResources(X), [cybersuperpower(X)]).

4 str_rules.pl
rule(r_str__motiveAndLocation(C, Att), isCulprit(C, Att),
— [attackOrigin(C, Att), hasMotive(C, Att), country(C)]).

rule(r_str__motiveAndCapability(C, Att), isCulprit(C, Att),
— [hasMotive(C, Att), hasCapability(C, Att)]).

B.3 Sony hack

Below we show the rules and evidences extracted from [14, 15, 16]. See Section 2.1.1
for a summary of the cyber attack case.

Evidences

112

10

claimedResponsibility(guardiansOfPeace, sonyhack) .
target (sony, sonyhack).
targetCountry(united_states, sonyhack).

news (theInterview, sony, [2013,10]).
attackPeriod(sonyhack, [2014,11]).
cause0fConflict(north_korea, sony, thelnterview).
majorityIpOrigin(north_korea, sonyhack).
malwareUsedInAttack(trojanVolgmer, sonyhack).
malwareUsedInAttack(backdoorDestover, sonyhack).

Rules used

/ tech_rules.pl
rule(r_t_srcIP2(X, Att), attackPossibleOrigin(X, Att),
< [majorityIpOrigin(X, Att)]).

4 op_rules.pl

rule(r_op_claimRespO(X, Att), existingGroupClaimedResponsibility(X,
< Att), [claimedResponsibility(X, Att)]).

rule(r_op_conflict1(X, T), hasMotive(X, Att), [target(T, Att),

— attackPeriod(Att, Datel), news(Event, T, Date2),

— dateApplicable(Datel, Date2), causeOfConflict(X, T, Event),

- specificTarget(Att)]).

J str_rules.pl

rule(r_str__claimedResp(X, Att), isCulprit(X, Att),
— [existingGroupClaimedResponsibility (X, Att)]).

rule(r_str__linkedMalware(X, A1), isCulprit(X, A1),
— [malwareUsedInAttack(M1, A1), similar(M1, M2),

— malwareLinkedTo(M2, X), notFromBlackMarket(M1),
— notFromBlackMarket (M2)]).

B.4 US bank hack

Iran was blamed for the 2012 denial of service (Dos) attacks on banks in United
States, causing websites of many banks to suffer slowdowns and even unreachable
for many customers [57]. Experts said that attackers were “crafting their own private
clouds, by creating networks of individual machines or by stealing resources whole-
sale from poorly maintained corporate clouds” [56]. These web hosting services were
infected by a malware called Itsoknoproblembro. Botnets can usually be traced back
to a specific control centre, but Itsoknoproblembro was crafted in a way that made it
untraceable. The skills required to carry out such a large-scale sophisticated attack
indicated that the attack being backed up by a large organization with sufficiently
large capability and resources. Furthermore, economic sanctions and online attacks
(Flame, Duqu and Stuxnet) by the United States against Iran constitutes a strong

113

10

11

12

13

14

motive for Iran to carry out the attack. Consequently, despite independent hack-
tivist group, Izz ad-Din al-Qassam Cyber Fighters, claiming responsibility for the
attacks, investigators believed that the claim was in fact a disguise for the Iranian
government [56], who was the true source of the attack.

Below we show the rules and evidences extracted from [56, 57].

Evidences

targetCountry(usa , usbankhack).

imposedSanctions(usa, iran, [2012, 2]). / usa imposed a new wave of
— sanctions on tran on 2012 Feb

hijackCorporateClouds (usbankhack). / in the us bank hack, corporate
— cloud servers were htijacked

sophisticatedMalware (itsoknoproblembro) .
malwareUsedInAttack(itsoknoproblembro , usbankhack).
attackPeriod(usbankhack , [2012, 9]). / the attack happened in 2012
- Sept

target (us_banks, usbankhack). / target of the attack are US banks
industry(banking, us_banks). / the US banks belong to the banking
- tndustry

Rules used

4 tech_rules.pl

rule(highSkilll, highLevelSkill(Att), [hijackCorporateClouds(Att)]).
rule(highSkill2, highLevelSkill(Att), [malwareUsedInAttack(M, Att),
- sophisticatedMalware(M)]).

rule(highResourcel, requireHighResource(Att),
— [highLevelSkill(Att)]).

J op_rules.pl

rule(hasCapabilityl, hasCapability(_X, Att),

< [neg(requireHighResource(Att))]).
rule(hasCapability2, hasCapability(X, Att),

< [requireHighResource(Att), hasResources(X)]).
rule(noCapability, neg(hasCapability(X, Att)),

< [requireHighResource(Att), neg(hasResources(X))]).

rule(pMotive(C,T), hasMotive(C, Att), [targetCountry(T, Att),
— attackPeriod(Att, Datel), hasPoliticalMotive(C, T, Date2),
—» dateApplicable(Datel, Date2), specificTarget(Att)]).
rule(pMotive(C,T,Date), hasPoliticalMotive(C, T, Date),

« [imposedSanctions(T, C, Date)]).

114

15

16

10

11

12

13

14

15

16

17

18

19

4 str_rules.pl
rule(motiveAndCapability(C,Att),isCulprit(C,Att),
< [hasMotive(C,Att) ,hasCapability(C,Att)]).

B.5 Gauss attack

“Gauss” is a virus discovered in 2011. It targeted the middle east region, mostly
concentrated on attacking Lebanese banks, stealing data and spying on bank trans-
actions [58]. The Gauss attack is widely believed to be a state-sponsored attack
backed up by the United States. Gauss is found to be very similar to Flame, Duqu
and Stuxnet. It shares several similarities with its closest relative, Flame. These
similarities includes using a similar architecture, same encoded names, similar com-
mand and control servers [59]. This similarity has led to the conclusion that Gauss

“comes from the same factory or factories” as Flame, Duqu and Stuxnet [60].
Below we show the rules and evidences extracted from [59, 60, 58].

Evidences

4 expected: equationGroup (linkedMalware)
malwareUsedInAttack(gauss, gaussattack).
sophisticatedMalware(gauss) .

targetCountry(lebanon, gaussattack). 7 Note: other countries were
— attacked too, but focus is on lebanon

infectionMethod(usb, gauss). / gauss malware infects machines by
—~ USB

/ the control and command used by gauss was easily fingerprinted.
— Unique fingerprint detection of CHC traffic can be used by

— anti-virus software to flag the malware
commandAndControlEasilyFingerprinted(gauss) .

4 'gowin7' and 'secuurity' are command and control servers used by
— gauss

ccServer(gowin7, gauss).

ccServer(secuurity, gauss).

4 the domains are registered under the name 'Adolph Dybevek' and
— wunder the address 'Prinsen Gate 6'
domainRegisteredDetails(gowin7, adolph_dybevek, prinsen_gate_6).
domainRegisteredDetails(secuurity , adolph_dybevek,

< prinsen_gate_6).

attackPeriod(gaussattack, [2011, 9]). / the attack occured in 2011
-~ Sept

4 background evidence (flame malware)

malwareLinkedTo(flame, equationGrp). / 'flame' malware said to by
— made by 'equation group'’

target (middleeast , flameattack).

malwareUsedInAttack(flame, flameattack).

115

20

21

22

23

ccServer(gowin7, flame).
ccServer(secuurity, flame).
domainRegisteredDetails(gowin7, adolph_dybevek, prinsen_gate_6).

domainRegisteredDetails(secuurity, adolph_dybevek, prinsen_gate_6)

Rules used

J tech_rules.pl
rule(bm, notFromBlackMarket (M),
< [infectionMethod(usb,M) ,commandAndControlEasilyFingerprinted(M)]).

4 2 malwares are similar to each other if they have similar C&C

< servers

rule(similar,similar(M1, M2), [similarCCServer (M1, M2), M1 \= M2]).
rule(simCC1, similarCCServer (M1, M2), [ccServer(S, M1), ccServer(S,
o M2)D).

rule(simCC2, similarCCServer (M1, M2), [ccServer(S1, M1),

- ccServer(S2, M2), S1 \= S2, domainRegisteredDetails(S1,_,A),

—» domainRegisteredDetails(S2,_,A)]).

rule(simCC3, similarCCServer (M1, M2), [ccServer(S1, M1),

- ccServer(S2, M2), S1 \= S2, domainRegisteredDetails(S1,Name,_),
— domainRegisteredDetails(S2,Name,_)]).

4 str_rules.pl

rule(linkedMalware(X,A1), isCulprit(X,Al),

— [malwareUsedInAttack(M1,A1), similar(M1,M2),
— malwareLinkedTo(M2,X), notFromBlackMarket(M1),
— notFromBlackMarket (M2)]).

B.6 Wannacry attack

WannaCry

The recent NHS ransomware attack has also been attributed to a nation state. The
UK home office “can be as sure as possible” and “it is widely believed in the commu-
nity and across a number of countries that North Korea had taken this role” [61].
Prior to the NHS incident, there have been reports of North Korean hackers using
malicious software to extort Bitcoin [62|. Investigators have also discovered that
the WannaCry code shares connections to previous attacks attributed to Lazarus
Group, a North-Korean-linked group [63]. Despite this, some experts say that the
lack of sophistication of WannaCry indicates a lack of structure thus “rather than
being a nation-state campaign, it looked more like a ‘typical’ cyber-crime campaign
that sought to enrich its operators” [64].
Below we show the rules and evidences extracted from [62, 63, 64].

116

10

11

12

13

14

15

Evidences

malwareUsedInAttack(wannacry, wannacryattack).
malwareUsedInAttack(trojanAlphanc, wannacryattack).
malwareModifiedFrom(trojanAlphanc, backdoorDuuzer).
malwareUsedInAttack(trojanBravonc, wannacryattack).

4 'backdoorBravonc' and 'infostealerFakepude' use similar code
— obfuscation techniques
similarCodeObfuscation(backdoorBravonc, infostealerFakepude).
4 'wannacry' and 'backdoorCantopee’ have some shared code
sharedCode (wannacry, backdoorCantopee).

4 wannacry attack occured on 2017 May
attackPeriod(wannacryattack, [2017, 5]).

4 wannacry attack did not have a specific target, multiple countries
— and industries were attacked

neg(specificTarget (wannacryattack)) .

4 NHS was one of the targets

target (nhs, wannacryattack).

targetCountry(uk, wannacryattack).

Rules used

/ tech_rules.pl

rule(r_t_similar1(Mi, M2), similar(M1, M2),

— [similarCodeObfuscation(M1, M2)]).

rule(r_t_similar2(M1, M2), similar(M1, M2), [sharedCode(Mi, M2)]).

4 str_rules.pl

rule(r_str__linkedMalware(X, A1), isCulprit(X, Al),
— [malwareUsedInAttack(M1, A1), similar(M1, M2),
— malwareLinkedTo(M2, X), notFromBlackMarket(M1),
— notFromBlackMarket (M2)]).

117

Appendix C

Adding Strategic Rule Preferences in
Gorgias

In this chapter, we explain why it is difficult to add strategic rule preferences for
different culprits in Gorgias.

We first give an example of what we would like to achieve. Given two strategic
rules that derives isCulprit (X, Att) (Listing 20), we will like to be able to add a
preference as shown in Listing 21, to prefer the first rule (over the second) if we are
able to derive different culprits using the two rules (if X \= Y).

Listing 20 Two strategic rules both deriving isCulprit (X, Att)

rule(r_str__motiveAndCapability (X, Att), isCulprit(X, Att),

— [hasMotive(X, Att), hasCapability(X, Att)]).
rule(r_str__loc(X, Att), isCulprit(X, Att), [attackOrigin(X, Att),
-~ country(X)]).

Listing 21 Prefer the rule r_str__motiveAndCapability(X, Att) over
r_str__loc(Y, Att) if the rules derive different culprits

rule(p, prefer(r_str__motiveAndCapability(X, Att), r_str__loc(Y,
o Att)), [I) (- X \=1Y.

Next, we explain the difficulty involved in doing this in Gorgias. Normally,
preferences can be written directly into the Prolog file and be processed by the
Gorgias framework. By writing rules as the ones described below,

rule(p, prefer(rulel, rule2), []).
4 L is any literal

rule(rulel, L, [bodyl, ...]1).
rule(rule2, neg(L), [body2, ...]1).

118

10

11

we are able to make a preference of rulel over rule2 when both can be proven.
In order for the preference rule to fire, the two rules in the preference must be in
conflict. In the Gorgias framework, conflict is expressed by the following Prolog
code:

4 from gorgias-src-0.6d-Visual-20Feb2018/1ib/gorgias.pl
conflict(ass(L), ass(NL)) :-

complement (L,NL) .
conflict(Sigl, Sig2) :-

rule(Sigl, Headl, _),

rule(Sig2, Head2, _),

complement (Headl, Head2).

complement (prefer(Sigl, Sig2), prefer(Sig2, Sigl)):- !.
complement (neg(L), L):- !.
complement (L, neg(L)).

While neg (L) and L are predefined to be in conflict (line 10), the predicates isCulprit(
X, Att) and isCulprit(Y, Att) when X # Y are not in conflict by default. We
can include the predicate complement (isCulprit (X, Att), isCulprit(Y, Att))
:- X \= Y to denote the predicates isCulprit(X, Att) and isCulprit(Y, Att)
as complementary. However, because of the way conflict(Sigl, Sig2) is defined,
the body of the rule does not get called, and the arguments in the head are not
ground when proving conflict(Sigl, Sig2).
To clarify what we mean by this, let us look at the following simple example.

:- compile('lib/gorgias2').
:- compile('ext/lpwnf2').

complement (p(X), p(Y)) :- X \= Y.
rule(r1(X), p(X),[a(X)]).
rule(r2(X), neg(p(X)),[1).

rule(f1, a(1),[1).
rule(f2, a(2),[]).
rule(p, prefer(ri(1), ri1(2))).

This example has two rules, two facts and one preference. Without the preference,
both p(1) and p(2) can be proven by r1(1) and r1(2). To add a preference for
r1(1) over r1(2), we have added the extra complement/2 predicate to make p(1)
and p(2) complementary. If we execute prove ([p(X)],D) now, we would expect to
only see the result X = 1. However, what we actually see is that we can still prove
both p(1) and p(2).

?- prove([p(X)],D).

|

X=1,

D = [f1, r1(1)] ;
X =2,

D = [f2, r1(D] ;
false.

119

To reveal the cause of this problem, we execute conflict(Sigl,Sig2) as shown
below:

| ?- conflict(Sigl,Sig2).

Sigl = ass(prefer(_4056, _4058)),
Sig2 = ass(prefer(_4058, _4056)) ;
Sigl = r1(_4048),

Sig2 = r2(_4048) ;

Sigl = r2(_4048),

Sig2 = r1(_4048) ;

false.

Breaking down the result, the first pair of Sigl and Sig2 are just any two prefer-
ences prefer (L1,L2) and prefer(L2,L1) for any literals L1,L2 are in conflict. The
second and third pair shows that r1(X) and r2(X) are in conflict (since their heads
are the negation of each other). However, we do not see Sigl = r1(1), Sig2 =
r1(2), which is required for the preference relation prefer(r1(1), r1(2)) to fire.
As mentioned before, this is the problem that arises due to the fact that the argu-
ments in the rule names are not ground when Gorgias computes conflict(Sigl,
Sig2).

Due to this problem, we have implemented preferences between strategic rules
when different culprits are derived in Java, instead of in Gorgias.

120

Appendix D

Other Implementation Details

In this chapter, we include the explanations of some implementation details of ABR
that are not essential for understanding how ABR works.

D.1 Query limit

In ABR, we set the limit to 100 for normal queries. This means that we will only
show the first 100 results obtained from Prolog. During execution, we rarely hit the
limit of 100, it is just a precautionary limit, for example if the user accidentally adds
recursive rules. For the negative derivations, we limit the number to 10. The purpose
of the negative derivations is to help analyst to spot conflicting arguments and add
preferences to resolve them. Displaying up to 10 negative derivations for each unique
culprit X is sufficient to achieve that purpose, and can reduce the processing time
for each execution.

D.2 Extraction of argument tree

By default, visual_prove/2 prints out the argument tree in standard output. To
extract that into ABR, we can either change the default implementation of Gorgias
or save the output to a file and parse the file. We chose the latter due to the
complexity of the Gorgias framework implementation. First, we have to pipe the
Prolog output to another file. To achieve this, we used the built-in SWI-Prolog
predicates tell (+SrcDest) and told/0'. These queries opens SrcDest to use it as
the current output stream and closes the current output stream respectively. After
execution, the file visual.log contains n argument trees, one for each of the n
solutions. Since within each argument tree there are no new lines, we are able to
split the n argument trees by splitting on “\n\n”.

D.3 Construction of DerivationNode from deriva-
tion example

To illustrate how the DerivationNode is constructed from the derivation string, we
show an example of how a DerivationNode is constructed from the following deriva-

http://www.swi-prolog.org/pldoc/man?predicate=tell/1

121

http://www.swi-prolog.org/pldoc/man?predicate=tell/1

tion:

[pda_t(), bgl(), case_example5_£f2(), case_example5_£3(),
< r_t_srcIP1(yourCountry,exampleb),

< r_t_attackOrigin(yourCountry,example5),

— r_str__loc(yourCountry,example5)]

The 1st Term p4a_t () is a preference, so we continue onto the next term. bgl () is
an evidence, we create a new DerivationNode and push it onto the stack (Table D.1).

Table D.1: Stack after pushing 2nd Term
DerivationNode d1
rulename: bgl()

result: country(myCountry)

children: ||

case_example5_f2() and case_example5_£f3() are, again, evidences, so we create
new DerivationNodes and add them onto the stack (Table D.2).

Table D.2: Stack after pushing 4th Term
DerivationNode d3
rulename: case exampleb f{2()
result: ipGeoloc(yourCountry,[103,1,206,100])
children: ||
DerivationNode d2
rulename: case_exampleb f3()
result: attackSourcelP([103,1,206,100],exampleb)
children: ||
DerivationNode d1
rulename: bgl()
result: country(yourCountry)
children: ||

The 5th Term (r_t_srcIP1(yourCountry, example5)) is a technical rule. The
rule is:

rule(r_t_srcIP1(X,Att), attackPossibleOrigin(X,Att),
- [attackSourceIP(IP,Att),ipGeoloc(X,IP)]).

Since the body predicates correspond to the top 2 DerivationNodes on the stack,
we pop them off the stack and add them as children to the new DerivationNode
created from the 5th Term (Table D.3).

122

Table D.3: Stack after pushing 5th Term
DerivationNode d4
rulename: r_t_srcIP1(yourCountry, exampleb)
result: attackPossibleOrigin(yourCountry, example5)
children: [d2, d3|
DerivationNode d1
rulename: bgl()

result: country(yourCountry)
children: ||

The 6th and 7th terms are also rules, technical and strategic rules respectively. They
are processed similarly to give the final stack as follows in Table D.4.

Table D.4: Final state of the stack
DerivationNode d6

rulename: r_str_ loc(yourCountry, exampleb)

result: isCulprit(yourCountry, example5)
children: [d5, d1]

At the end, the stack only contains one DerivationNode, which is the root node
with result isCulprit(X, Att). We can then use the java-graphviz package to
visualise the DerivationNode. The figure generated from DerivationNode d6 is shown
in Figure D.1.

D.4 Construction of DerivationNode from argument
tree example

We illustrate how the DerivationNode is created from an argument tree, with a
walk-through example. We show below the argument tree that will be used in this
example:

[bg1(), case_example2b_£f10(), case_example2b_£f9(),
— r_t_srcIP1(yourCountry,example2b), r_t_attackOrigin(yourCountry,example2b),
< r_str__loc(yourCountry,example2b)] {DEFENSE}
| ___[r_t_nonOrigin(yourCountry,example2b),
— r_t_noLocEvidence (yourCountry,example2b), p3_t()]
| ___[r_t_srcIP1(yourCountry,example2b), case_example2b_£10(),
— case_example2b_f9(), p4a_t()] {DEFENSE}
| ___[r_str__targetItself2(yourCountry,example2b), case_example2b_£f2(), p22e(),
— ass(specificTarget (example2b))]
| ___[r_op_notTargetted(example2b), case_example2b_f2b(), case_example2b_£2()]
— {DEFENSE}

Starting from the last line of the string, the first node is pushed into the stack
(Table D.5).

123

Figure D.1: Graph visualisation generated from DerivationNode d6

isCulprit{yourCountry example5)

.

r_str__loc

PN

country(yourCountry) attackOrigin(yourCountry example3)

\ i

bal r_t_attackOrigin

|

attackPossibleOrigin(yourCountry example5)

|

1 t_srclPl

N

ipGeoloc(yourCountry [103,1.206.100]) attackSourcelP([103,1,206,100] example3)

I \

case_example5_f2 case_example5_{3

Table D.5: Stack at node 1

Node nl

Derivation: [r_op notTargetted(example2b), case example2b {2b(),...
level: 2

type: DEFENSE

child:]

The level of the node on top of the stack is 2 and the level of the current node is
1, so the top node is popped off the stack and added the the new node, which is
pushed onto the stack (Table D.6).

Table D.6: Stack at node 2

Node n2

Derivation: [r_str targetltself2(yourCountry,example2b),...
level: 1

type: ATTACK

child: [n1]

The new node has level 2, the top node is not a child of the current node, so the
new node is simply pushed onto the stack (Table D.7).

124

Table D.7: Stack at node 4

Node n3

Derivation: [r_t srcIP1(yourCountry,example2b),...

level: 2

type: DEFENSE

child:]

Node n2

Derivation: [r_str_ targetltself2(yourCountry,example2b),...
level: 1

type: ATTACK

child: [n1]

The new node has level 1, the top node is a child node, so it is popped off again and
added as a child node (Table D.8).

Table D.8: Stack at node 5

Node n4

Derivation: [r_t nonOrigin(yourCountry,example2b),...

level: 1

type: ATTACK

child: [n3]

Node n2

Derivation: [r_str_ targetltself2(yourCountry,example2b),...
level: 1

type: ATTACK

child: [n1]

The last node has level 0. Both nodes on the stack are its children so they are both
popped off and added as children nodes. The final node left is the conclusion node,
also the root node of the argument tree (Table D.9).

Table D.9: Final state of stack
Node nb

Derivation: |[bgl(), case_example2b_{10(),...
level: 1

type: DEFENSE

child: [n2, n4]

125

	Introduction
	Motivations
	Objective
	Contributions
	Structure of report

	Background
	Attribution
	Case studies of attribution

	Existing approaches to attribution
	Forensics
	Cyber deception
	Socio-cultural modelling

	Argumentation
	Applications of argumentation
	Advantages of argumentation
	Related studies on the use of argumentation in attribution
	Why argumentation for attribution
	Analysis of argumentation tools

	Abduction
	Advantages of abduction

	Foundation knowledge
	Argumentation framework
	Logic programming
	Gorgias

	ABR Overview
	Overall architecture
	Reasoner
	Numerical scoring of solutions
	Integration with forensic tools
	Visualisation
	User input

	Motivations for design

	ABR Reasoner
	Q-model
	Key definitions
	Core rules
	Strategic layer overview
	Rule walk-through

	Background knowledge
	General knowledge
	Domain-specific knowledge

	Use of preference-based argumentation
	Conflicting rules with preferences
	Conflicting rules without preferences

	Use of abducibles

	Other Key Components
	Scoring system
	Motivation
	Intuition
	Implementation

	Forensic tool integration
	Motivation
	Implementation

	Visualisation
	Motivation
	Implementation

	Standardised rule names

	ABR User Interface
	Utils
	Tool integration
	Insert new rule
	Standard execute
	Verbose execute
	Custom execute
	Input evidence

	Implementation Details
	Summary of ABR functionalities
	Technology stack
	Implementation details
	QueryExecutor.java
	Result.java
	Utils.java
	DerivationNode.java
	ToolIntegration.java

	Evaluation
	Functionality
	Evaluation of correctness of ABR
	Details of tests

	Evaluation of performance of ABR
	Analysis of results
	Scaling with number of evidences

	Discussion
	Limitations
	Strengths

	Conclusion and Future Work
	Conclusion
	Future work

	Core Gorgias Rules
	Explanation of Rules
	Rule 1: Group claimed responsibility
	Rule 2: Has motive and capability
	Rule 3: APT group to origin country
	Rule 4: Has location and motive

	All rules used in ABR
	All technical rules
	All operational rules
	All strategic rules

	Attribution Cases Used to Extract Rules
	Stuxnet attack
	APT1
	Sony hack
	US bank hack
	Gauss attack
	Wannacry attack

	Adding Strategic Rule Preferences in Gorgias
	Other Implementation Details
	Query limit
	Extraction of argument tree
	Construction of DerivationNode from derivation example
	Construction of DerivationNode from argument tree example

