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Abstract

Most researchers agree that the ”best way to make a machine learning model gen-
eralize better is to train it on more data” (Goodfellow et al., 2016). However, gath-
ering and labelling training data is a laborious, tedious, and costly task. Although
researchers have made significant developments in improving machine learning ar-
chitectures and developing custom hardware, limited focus has been on designing
better ways to acquire and label more training data.

Worse still, the problem of labelling training data becomes more difficult when you
transition into the video domain because of the substantial increase in data size.
Currently available video annotation software tools require you to label each frame
in a video individually which can be prohibitively expensive, often resulting in large
amounts of either unused or unlabelled video data. This is unfortunate as video
data is crucial for training algorithms in many of the most promising areas of ma-
chine learning research such as autonomous vehicle navigation, visual surveillance,
and medical diagnostics.

The dissertation aims to address these problems by building a web application that
can speed up the labelling process of video datasets. The outcome of the dissertation
is the AI-Generate Video Annotation Tool (AIGVA), a web-based application for in-
telligently labelling video data. A set of novel labelling techniques called Cold Label
and Blitz Label were developed to automatically predict frame-level labels for videos.
A scalable and distributed software architecture was built to handle the heavy data
processing related to the machine learning and video processing tasks. The first in-
browser video player capable of frame-by-frame navigation for video labelling was
also built as part of the project.

Quantitative and qualitative evaluations of the AIGVA application all show that the
tool can significantly increase labelling efficiency. Quantitative testing using the
CIFAR-10 dataset suggest that the tool can reduce labelling time by a factor of 14-
19x. User interviews with machine learning researchers were positive with inter-
viewees claiming that they had ”no doubt it could be used today in our research
group”. Furthermore, software testing of the web application and Core Data API
demonstrate ample run-time performance.
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Chapter 1

Introduction

”We’re entering a new world in which data may be more important than software.”

—Tim O’Reilly, founder, O’Reilly Media

1.1 Motivation

While recent advancements in machine learning has shown its potential to solve

complex classification problems, there is still a way to go. For example, in March

2018 Elaine Herzberg was killed by one of Uber’s self-driving cars because the vehi-

cle failed to brake in time. The system misclassified the pedestrian Elaine first as an

unknown object, then as a vehicle, and then as a bicycle with varying expectations of

future travel path (NST, 2019). Examples like this highlight the need to build better

machine learning models.

In applied machine learning, supervised algorithms still outperform other models

for classification tasks. While researchers have found a plethora of novel methods to

improve the generalizability of such algorithms, the size and quality of the training

dataset is still a crucial factor for model performance. The process of acquiring and

labelling data for training machine learning models is, however, a laborious, tedious,

and expensive task. Consequently, most of the recent research focus has been on im-

proving the machine learning models rather than on improving the data collection

1



1.1. MOTIVATION Chapter 1. Introduction

and labelling techniques.

The data labelling task becomes even more difficult when transitioning into the video

domain, due to the substantial increase in data size. This difficulty increases the cost

of data labelling, which often results in large amounts of either unused or unlabelled

video data. As many of today’s most promising areas of machine learning research,

such as autonomous vehicle navigation, visual surveillance, and medical diagnostics,

lie within the video domain, improving data labelling is crucial to progress the qual-

ity of the algorithms. Any efforts to speed up the labelling process could thus bring

significant value to the future of research and real-world application.

While the challenge of labelling video data exists in many fields, this dissertation is

particularly motivated by the challenges faced by a group of machine learning re-

searchers developing algorithms using ultrasound data. Specifically, this dissertation

is written in partnership with the intelligent Fetal Imaging and Diagnosis (iFIND) re-

search project. Previously, researchers in this team have built algorithms to classify

fetal ultrasound scans, a task normally performed by sonographers, medical profes-

sionals trained in identifying and interpreting ultrasound images. Classifying fetal

ultrasound scans is a critical task to check for structural abnormalities and anomalies

in the baby (NHS, 2017).

The iFIND researchers have overall achieved promising algorithmic results that are

comparable with most sonographers, but the neural networks developed have strug-

gled to classify certain challenging cardiac views. To solve this problem, more ul-

trasound data is needed on these specific regions. Fortunately, the research group is

already in possession of many hours of ultrasound video. The main struggle remain-

ing is to first label this data for it to be of any value. Although theoretically possible,

it would be too time consuming and too expensive to request a sonographer, a pro-

fession currently in shortage within the UK, to sift through the massive amount of

video. To help alleviate this problem, this dissertation thus aims to build a tool that

2



Chapter 1. Introduction 1.2. OBJECTIVES

can label such data in an intelligent and fast way. We hope such a tool can lead

to further improvements within both medical imaging diagnostics and more general

domains.

1.2 Objectives

The goal of this dissertation is to develop an application that can significantly im-

prove the speed of labelling video data to be used as training data in machine learn-

ing applications. This goal can be broken down into four key objectives:

• Develop a web-based solution to speed up the process of labelling videos

• Develop novel methods to predict image-level labels for all frames in a video

• Build a scalable software architecture to handle the heavy data processing of

machine learning applications in a web application

• Develop an in-browser video player capable of frame-by-frame navigation

Additionally, this report is conducted in partnership with the intelligent Fetal Imag-

ing and Diagnosis (iFIND) research project. This research project encompasses a

multi-disciplinary team of medical imaging specialists, roboticists, machine learning

engineers and clinicians. The goal of the project is two-fold: (1) to develop new fetal

scanning technologies that can automatically move the ultrasound probe to the right

place, and (2) to improve fetal ultrasound imaging by automating image processing.

This dissertation aims to contribute to latter goal by creating a tool that can speed

up training data creation and therefore aid in the future development of automated

image processing models.

3



1.3. CONTRIBUTIONS Chapter 1. Introduction

1.3 Contributions

The main contributions of this dissertation are the development of the AI-Generated

Video Annotation Tool, the creation of two novel methods of frame-level prediction

in videos, the building of a scalable software architecture to handle machine learning

training and inference, and the development of a frame-by-frame video player for

the web.

The AI-Generated Video Annotation (AIGVA) tool

The AIGVA tool is a web based video annotation tool designed to significantly im-

prove the speed of labelling video data for the use of training data in machine learn-

ing applications. It achieves this speed up through a combination of effective de-

sign principles, web application innovations, and label prediction techniques. The

tool consist of three components: (1) a Python-based Core Data API designed to

handle the heavy data processing involved in machine learning, (2) a File Storage

component used to store both videos, machine learning models and key metadata

information, and (3) a React-based web application that a user can interact with.

Two novel methods of frame-level label prediction in videos

Two novel methods of label prediction are developed: Cold Label and Blitz Label.

”Cold Label” is a label prediction technique developed to address the cold start prob-

lem (i.e. when no labels exist). The ”Cold Label” technique utilizes human-in-the-

loop enabled active learning methods combined with transfer learning techniques to

address this problem. The core idea behind this technique is to ask a user to label

a few important samples from a set of videos and subsequently use those labelled

samples to train a classier that is then used to label all frames. ”Blitz Label” is a label

prediction technique that leverages pre-existing labels to predict new labels. The

core idea behind the technique is that if a user already has labelled some videos,

a machine learning algorithm can leverage that embedded information to annotate

unlabelled videos. Both of these methods are empirically shown to significantly im-

4



Chapter 1. Introduction 1.3. CONTRIBUTIONS

prove the labelling speed.

Scalable software architecture to handle machine learning training and infer-

ence using a web based application

Core to the application are several data and process heavy tasks including: train-

ing machine learning models, extracting frames from videos, running inference on

hundreds of thousands of frames, and processing videos for metadata extraction. As

part of the Core Data API, a complex software architecture was built to handle these

tasks using a network of worker-broker jobs. This was accomplished using a Redis

message broker and Celery task queue as part to handle concurrent execution across

several cores. To further enhance scalability, the Core Data API uses a Gunicorn

server to handle client requests using multiple worker processes. The result of this

architecture is the ability to run several data-heavy tasks concurrently.

A frame-by-frame video player for web applications

To handle frame-level labelling of videos via a web application a video player that

can navigate on a frame-by-frame level is built. No existing JavaScript based video

players offer this key functionality. Therefore I opted to build my own player from

scratch based on the HTML5 Video Media element specification. This player was

demonstrated to work efficiently both quantitatively, using browser performance

tests, and qualitatively through conducting user interviews. Furthermore, this player

was fitted with several custom-built features, based on user feedback, to further en-

hance labelling efficiency such as label skipping and visual representations of labels

throughout the video.

To showcase the AIGVA tool, I have included a series of pictures below showing

how tool can be used in action. Note, these images are computer generated and

conceptual in nature.

5



1.3. CONTRIBUTIONS Chapter 1. Introduction

Figure 1.1: AIGVA App Showcase: Training a label prediction model in-browser

Figure 1.2: AIGVA App Showcase: Collaborative review of labels

6
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Figure 1.3: AIGVA App Showcase: Quickly labelling videos using keyboard shortcuts

Figure 1.4: AIGVA App Showcase: Manually labelling a few frames per video and train-
ing a Cold Label model on those to predict labels for all videos

7
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1.4 Outline

Chapter 2 (Background) reviews the literature on image classification and demon-

strates how more labelled training data is key to improving performance. An analysis

of existing labelling tools is then conducted. Finally, the need for a better labelling

tool is demonstrated by discussing challenges faced by the iFIND ultrasound research

project. A brief discussion on ethics closes this chapter.

Chapter 3 (Method) develops the foundation for a new labelling tool called AIGVA.

A set of novel label prediction techniques are presented and user stories are created

to show how the tool can improve labelling efficiency. Then design principles are

developed which are used to create the subsequent functional requirements of the

web application.

Chapter 4 (Implementation) discusses the implementation of the AIGVA tool. First,

the software architecture and technology stack is developed. Then implementations

of two of key features, video management and label prediction, are presented. The

DevOps and deployment task is then discussed.

Chapter 5 (Evaluation and Results) presents the evaluation of the AIGVA tool.

There are three parts to the evaluation: (1) an empirical evaluation of the label

prediction methods, (2) a quantitative assessment of the performance of the appli-

cation, and (3) a qualitative set of user interviews with machine learning researchers

and a clinical sonographer.

Chapter 6 (Conclusion) concludes the dissertation and discusses the future work.

8



Chapter 2

Background

2.1 Literature Review

To set the development of the AIGVA tool into a wider context, I will review the

literature on image classification and its current limitations. I will then describe the

current approaches used to address these problems.

2.1.1 The Stagnation of Image Classification Performance

Figure 2.1: Original AlexNet CNN Architecture

Image classification is the task of predicting a label or a set of labels for an image.

The task of image classification is one of the central challenges in computer vision

and has a myriad of practical uses including: facial recognition, autonomous vehi-

9



2.1. LITERATURE REVIEW Chapter 2. Background

cle locomotion, and medical image diagnostics. Since the introduction of AlexNet in

2012, deep convolutional neural networks (CNNs) have been the predominant archi-

tecture for image classification tasks. The innovation of AlexNet was using a deeper

and wider architecture than previous CNNs combined with max pooling, fully con-

nected and dropout layers (see Figure 2.1). The performance benchmark for image

classifiers is the ImageNet dataset, for which AlexNet achieved a 62.5% top-1 classifi-

cation rate (Krizhevsky et al., 2012). After AlexNet, many architecture modifications

such as VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2015), DenseNet

(Huang et al., 2016) and SqueezeNet (Iandola et al., 2016) have led to significant

improvements in both classification rate and model size. The current state-of-the-art

performance on ImageNet is EfficientNet-B7, which is 84.4% and was achieved in

May 2019 (Tan and Le, 2019).

Figure 2.2: State-of-the-art ImageNet Top-1 Accuracy Results

The performance of traditional deep learning based image classification algorithms

have slowly begun to stagnate. Figure 2.2 shows the development and perfor-

mance of state-of-the-art methods for the ImageNet classification task since 2012,

with AlexNet on the far left of the chart, and EfficientNet-B7 on the far right. One

can observe how the performance has stagnated since mid 2017 with only minor

improvements of around a single percentage point. The best performance to date,

EfficientNet-B7, only offered a 0.1% total classification improvement to the previ-

ous state-of-the-art GPIPE model. Instead of squeezing out additional model per-

formance, much of the work done in the field has focused on ”carefully balancing

network depth, width, and resolution” to receive near state-of-the-art accuracy with

10
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much lower model size and faster speeds (Tan and Le, 2019). Work has also been

done to investigate alternative model training approaches, such as the AmoebaNet-

A model, which was trained using an evolutionary tournament-style approach and

obtained a 83.9% top-1 classification rate (Real et al., 2018).

2.1.2 Beyond ImageNet: Improving Image Classification Perfor-

mance

To improve the stagnating image classification performance, researchers are look-

ing at three areas: (1) developing better models with higher capacity, (2) increas-

ing computational power, and (3) acquiring better datasets on which to train (Sun

et al., 2017). First, in the area of developing better models, much work has fo-

cused on building novel architectures and models. One of the most promising ar-

eas within architecture modifications is the use of attention networks (Wang et al.,

2017). The core idea behind attention networks is to mimic how humans classify

images by focusing on specific substructures within images that have greater ex-

planatory power. Attention networks have been used to produce state-of-the-art

results in various tasks such as image-based question answering (Yang et al., 2015),

image super-resolution (Zhang et al., 2018), and scan plane detection for fetal ul-

trasound screening (Schlemper et al., 2018a). Other forms of new architectures

include incorporating weights from a pre-trained model through transfer learning

(Shin et al., 2016; Zoph et al., 2017) and incorporating probabilistic priors to learn

from experience (Ghahramani, 2015). Second, researchers have attempted to in-

crease computational power through hardware and software modifications. As the

core computations involved in CNNs are linear algebra manipulations there is an op-

portunity to distribute and parallelize calculations. Custom hardware is being devel-

oped to leverage this parallelizability such as Google’s Tensor Processing Unit (Dean

et al., 2018). Similarly, machine learning frameworks that abstract away many of

the complexities that arise when dealing with distributed systems running on GPUs

and TPUs are being developed such as TensorFlow (Research, 2016).

11



2.1. LITERATURE REVIEW Chapter 2. Background

The final approach to improving image classification is to obtain better training data.

This can be done in one of two ways: either by (1) enhancing existing labelled train-

ing data, or by (2) obtaining additional labelled training data. First, enhancing

existing labelled training data is also called data augmentation, which is a com-

mon practice for most machine learning researchers. Augmenting training data, by

”cropping, rotating, and flipping input images” can significantly improve the gener-

alizability of models (Perez and Wang, 2017). The key idea behind augmentation is

that by manipulating images through various techniques you can still preserve the

original label while increasing the variance of your training data. For example, sup-

pose you had an image of cat and flipped it horizontally. After the flip, the picture is

still that of a cat, yet is significantly different in terms of its pixel composition, which

is what the convolutional neural network uses to train on. Therefore it is possi-

ble to artificially generate more training data by performing these manipulations. A

more advanced method of image augmentation that goes beyond simple flips and ro-

tations is to artificially generate new images using Generative Adversarial Networks

(GANs). These models work by having one neural network attempt to produce coun-

terfeit examples and another neural network trying to predict whether an example

is counterfeit. GANs have outperformed traditional methods in augmenting training

data in certain contexts (Perez and Wang, 2017).

The second approach to improve image classification by obtaining better data is to

acquire additional labelled examples. This involves manually collecting new data

and labelling it. Most researchers agree that the ”best way to make a machine learn-

ing model generalize better is to train it on more data” (Goodfellow et al., 2016).

Specifically, retraining a model with more data usually has the effect of reducing

variance (Ng, 2015). One recent paper examined the relationship between training

data and image classification found ”that the performance on vision tasks increases

logarithmically based on volume of training data size” (Sun et al., 2017). Another

paper found that reducing the amount of ImageNet training data used, unsurpris-

ingly, reduced classification performance (Huh et al., 2016). Obtaining additional

12
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examples is highly effective, but comes with its own set of challenges as we will

examine in the next section.

2.1.3 The Challenges of New Data Acquisition

Having established the importance of acquiring new data for training machine learn-

ing algorithms we now turn our focus on the challenges of such acquisition. There

are two steps involved in acquiring new training data: (1) attaining unlabelled data

and (2) then labelling the data. Although these two steps are often done simultane-

ously, it is useful to distinguish between the two to understand the key challenges.

First, the importance of getting unlabelled data is growing as deeper machine learn-

ing models require more data to successfully converge. In a recent survey on the

challenges in machine learning, the authors found that ”data collection is becom-

ing one of the critical bottlenecks” (Roh et al., 2018). In certain fields, acquiring

more data can be difficult because of structural restrictions. For example, in medical

imaging the data is limited, which makes acquiring sufficient training data to de-

velop classifiers ”difficult or even impossible” (Holzinger, 2016). Second, once the

data has been acquired, the process of labelling poses its own set of challenges. La-

belling certain data may require significant domain expertise such as a sonographer

annotating standard fetal scan planes in ultrasound scans. Furthermore, domain ex-

perts may not always agree on the labelling of certain challenging examples which

produces noise in the dataset. Manually labelling the amount of data needed may

also be prohibitively expensive. In summary, to advance the image classification

space, ”there is a pressing need of accurate and scalable data collection techniques”

(Roh et al., 2018).

Not all labels are created equal. To understand where the need for scalable data col-

lection and labelling needs are greatest I have created the framework seen in Figure

2.3. The 2-by-2 matrix plots the two aforementioned challenges of data collection

on the two axes: (1) the cost of labelling, which is a proxy for both the time and

expertise needed to label an example, (2) the abundance of data, which represents
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Figure 2.3: Label Cost vs. Data Abundance Framework

the availability of unlabelled examples. There are four categories on the low/high

abundance and low/high label cost spectrum. The greatest need for labelling tools

is within the two high label cost spaces, since that is where most savings can be

found. However, it is important to differentiate between high and low abundance

data within the two high label cost categories. High abundance, high label cost data,

such as the millions of hours of recorded vehicle driving data used for developing

autonomous vehicles, need a labelling solution that offers functionality to find ex-

amples of specific high-value events such as car crashes or pedestrian incidents. Low

abundance data, high label cost data, such as most medical data, need a labelling so-

lution that makes it as efficient as possible to review all examples, thereby extracting

as much meaningful data from the examples as possible.

2.1.4 Methods to Increase Data Labelling Efficiency

”The most accurate way to label examples is to do it manually” (Roh et al., 2018).

Unfortunately that is usually not feasible because of the costs involved. The often-

used image classification dataset ImageNet consists of millions of images that were

manually labelled by humans using Amazon Mechanical Turk (Deng et al., 2009).

This process took years and cannot be reproduced by most machine learning re-
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searchers and practitioners because of cost constraints. Therefore researchers have

proposed various ways to reduce the effort of annotating images. In this section I

will discuss three of such methods: human-in-the-loop techniques, active learning

and semi-supervised learning.

Human-in-the-loop

Human-in-the-loop is a term used to describe the inclusion of human collaboration

in a machine task. The key idea behind human-in-the-loop computing is that ”inte-

grating the knowledge of a domain expert can sometimes be indispensable, and the

interaction of a domain expert with the data would greatly enhance the knowledge

discovery process pipeline.” (Holzinger, 2016). Using a human in the loop can be

especially useful in certain domains such as medicine, where researchers are often

confronted with insufficient data that can be both noisy and incomplete. Here a

human may be able to provide valuable insight into the dataset that can improve

classification performance. For example, Yu et al. demonstrated how using human-

in-the-loop approach can significantly improve the precision of labelling large image

datasets (Yu et al., 2015). Additionally, in a 2015 CVPR paper, Russakovsky et al.

developed a labelling pipeline using human-in-the-loop techniques and found that

using ”human verification to update detectors and reduce the search space leads to

the rapid production of high-quality bounding-box annotations” (Russakovsky et al.,

2015). Work done in the field has also demonstrated how using human-in-the-loop

annotations may aid in increasing the interpretability of models (Lage et al., 2018).

Active learning

Close to the idea of human-in-the-loop models is the concept of active learning. The

core idea behind active learning is for a model to ask an oracle (i.e. a human) to

label the most ”interesting” example that a model can learn from. This rests on

the idea that not all data is equally valuable to learn from. Therefore one of the

core challenges of active learning is figuring out ”which questions to pose to hu-

mans” and understanding the labelling cost trade-offs involved (Russakovsky et al.,
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Figure 2.4: Active Learning and Human-in-the-loop Training

2015). Several approaches exist for finding the most valuable examples. First, the

method of uncertainty sampling has the model select examples for which it has the

least confidence in (Roh et al., 2018). Second, query-by-committee takes uncer-

tainty sampling further by training a committee of models on the same labelled data

(Roh et al., 2018). Active learning approaches have been used for image classifica-

tion to reduce the labelling effort in various ways. Joshi et al. developed an active

learning image classification framework using a variation of uncertainty sampling as

their query selection algorithm. They empirically tested their framework on the UCI

and Caltech-101 dataset and saw ”large reductions in the number of training exam-

ples required over random selection to achieve similar classification accuracy” (Joshi

et al., 2009). In a separate work, Kovashka et al. developed a more complicated ac-

tive learning framework and found that they could ”successfully accelerate” object

learning by using significantly fewer images (Kovashka et al., 2011). Human learn-

ing and active learning are similar in many respects. The difference is that active

learning is a special case of ”semi-supervised learning”, that makes use of a human

in the loop (Roh et al., 2018). See Figure 2.4 for an overview of the key difference

between active learning and human-in-the-loop training.
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Semi-supervised learning

Semi-supervised learning makes use of existing labelled data to predict unlabelled

data. The core idea behind semi-supervised learning is to ”exploit labels that already

exist” and therefore ”generate more labels by trusting one’s own predictions” (Roh

et al., 2018). With semi-supervised learning the labels may become ”weak” meaning

that there is some noise in that data. A simple semi-supervised training procedure

may work in the following way (Yarowsky, 1995):

1. Train a model on the labelled data

2. Use the model to predict labels for all the unlabelled data

3. Rank the predictions by their confidences

4. Add the most confident predictions to the set of labelled examples

5. Repeat step 1-4 until all data is labelled

Numerous works have examined the performance of semi-supervised technique on

image classification and labelling with promising results (Guillaumin et al., 2010;

Kingma et al., 2014; Gong et al., 2016). While human-in-the-loop and active learn-

ing techniques can be done without any existing labels, semi-supervised learning

requires a subset of data to be labelled.

An interesting question within the semi-supervised learning field is just how many

(or rather, how few) labels are required to obtain sufficient labelling performance.

Early work in the field demonstrated that a handful of examples may suffice if they

are of high quality, although this is highly domain dependent (Zhou et al., 2007). In

recent years, the question of how to learn from limited information has formed a new

subfield within a machine learning called few-shot learning (FSL). FSL models at-

tempt to classify effectively from a limited number of examples. Thus, FSL can signif-

icantly help to ”reduce the data gathering effort.” (Wang and Yao, 2019). Work done

on a new few-shot learning architecture called matching networks have proven suc-

cessful in achieving state-of-the-art results in the field (Vinyals et al., 2016). While
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FSL ”neither requires the existing of unlabelled samples nor an oracle” it is still often

closely related to semi-supervised learning (Wang and Yao, 2019).

2.1.5 Sourcing Image Data From Videos

Sourcing data from videos to be used in image classifiers is a valuable methodology.

Although many of the tools used for video labelling are similar to those in image

classification, I will briefly discuss related work in this field. The key challenge in

handling videos is that in addition to the spatial dimension (single images/frames),

videos also contain a temporal dimension (time). Although the temporal informa-

tion provides an additional challenge, it can also be used to improve the accuracy of

labelling entire videos (Karpathy et al., 2014). A key benefit of the temporal dimen-

sion is the natural data augmentation that is caused by the jittering of the frames.

Researchers have found that even tiny variations in frames can be enough to con-

fuse image classifiers (Zheng et al., 2016) - see Figure 2.5. This suggests that such

temporal locality (i.e. similarity of adjacent frames) can be used as valuable training

data to improve classifiers.

Figure 2.5: Confusing State-of-the-art Classifiers

One area where sourcing training data from videos can be helpful is when dealing

with a lack of difficult classes to predict. A common problem faced when training
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classifiers is that of class imbalance due to limited training data of certain ”hard

examples”. An oft-cited instances of this problem is in the autonomous vehicle space,

where performance of self-driving cars is poor in certain extreme weather conditions,

partly caused by a lack of such hard examples in the training data (Zang et al., 2019).

There is therefore strong motivation to use videos as a source of such hard examples

and recently works have shown that it is possible to ”improve detector performance

on the source domain by selecting hard examples from videos” (Jin et al., 2018).

Closely related to the problem of limited class data is the previously discussed topic

of few-shot learning. Early work has also been successfully done to use few-shot

learning techniques to successfully classify events in videos with limited training

data (Yan et al., 2015).
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2.2 Existing Labelling Tools

In this section I will describe and evaluate the existing tools used for annotating

video data in machine learning research. The six most popular video annotation

tools are: LabelBox, RectLabel, LabelMe, VoTT, VATIC, and CVAT. These tools were

examined to understand their strengths and weaknesses. See Figure 2.6 for a break-

down of the analysis. The main takeaway from the analysis is that all tools have

their relative advantages for specific domains, but no tool has a combination of na-

tive video support, real-time video playback and the ability to auto-generate labels.

Figure 2.6: Comparison of Existing Video Annotation Tools

LabelBox

Figure 2.7: Annotation Tool: LabelBox

LabelBox is a commercial software helps customers like Airbus, Bayer and Hitachi

label data (Lab, 2019a). The platform can handle various label types including
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bounding boxes, polygons, pixelwise and image-level classification. However, there

is no support for video data, which must be converted to images and labelled on a

frame-by-frame basis. It is possible to use your own custom models to predict labels,

but you must create and host your own API service to use this feature.

RectLabel

Figure 2.8: Annotation Tool: RectLabel

RectLabel is a commericial image annotation tool that can be used to label images for

bounding box object detection and segmentation (Rec, 2019). Similar to LabelBox,

it offers no native video support and users must therefore manually convert videos

to images if they wish to label them. No label prediction or video playback solutions

are offered.

LabelMe

Figure 2.9: Annotation Tool: LabelMe

LabelMe is an open-source computer vision annotation tool created by the MIT Com-

puter Science and Artificial Intelligence Laboratory (Lab, 2019b). The tool supports
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instance segmentation, semantic segmentation, bounding box detection and image-

level classification. However, like the previous tools it also does not offer video

supports and videos must be converted to images to be used.

VoTT

Figure 2.10: Annotation Tool: VoTT

Visual Object Tagging Tool (VoTT) is an open-source app from Microsoft designed for

building end-to-end object detection models from images and videos (VoT, 2019).

Unlike previous tools, it offers the ability to upload videos without converting them

to images. However, to label an entire video a user must label every single frame,

which is time-consuming and expensive. There is also no support for label prediction

tools either.

VATIC

Figure 2.11: Annotation Tool: VATIC

Video Annotation Tool from Irvine, California (VATIC) is an interactive video an-

notation tool for computer vision research (VAT, 2019). The tool is specialized to
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crowd-source labelling tasks to the Amazon Mechanical Turk human intelligence

platform. Similar to VoTT, it offers both native video support and frame-level play-

back. However, labelling an entire video is still slow and the tool offers no label

prediction support.

CVAT

Figure 2.12: Annotation Tool: CVAT

Computer Vision Annotation Tool (CVAT) is an interactive video and image annota-

tion tool for computer vision (CVA, 2019). CVAT is specialized for bounding box and

segmentation applications. Unlike previous tools CVAT has the ability to integrate

TensorFlow models to run label prediction. However, this feature is not going to be

supported in the future and requires users to convert their models to OpenVINO IR

format.
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2.3 The iFIND Project: Ultrasound Fetal Scan Plane

Detection

To motivate the need to source labelled images from unlabelled video data to im-

prove classifiers in a real-world context, I will now discuss the challenges faced by

the iFIND ultrasound research team.

The field of image classification in ultrasound imaging presents a series of chal-

lenges for researchers. First, the quality of images is limited by the high levels of

noise present. Second, there is a limitation on the amount of data available pri-

marily caused by the difficulty of data acquisition driven by privacy issues in the

medical field. Third, various image obstructions such as the position of the fetus add

a level of idiosyncrasy across datasets. However, researchers have made substantial

progress in classifying and segmenting ultrasound fetal scan planes (Baumgartner

et al., 2016b; Schlemper et al., 2018b; Baumgartner et al., 2016a; Chen et al., 2015;

Toussaint et al., 2018; Cai et al., 2018). As this research project is conducted as

part of the iFIND project, we will examine the results of two impactful papers pro-

duced by members of the project: Baumgartner et al. (2016b) and Schlemper et al.

(2018b).

Figure 2.13: SonoNet Architecture Reproduced from (Baumgartner et al., 2016b)

In 2016 Baumgartner et al. presented the SonoNet deep learning model, which was
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able to classify 2D fetal ultrasound standard planes. Specifically, they focused on

real-time classification of the 13 scan planes recorded by a sonographer. Their net-

work architecture was based on VGG16 (Baumgartner et al., 2016b) and the final

convolutional neural network architecture shown in Figure 2.13. The researchers

obtained a mean F1-score of 0.798 across the 13 classes. However, the network

struggled to classify different cardiac chambers, leading to low recall values for such

classes.

In 2018 Schlemper et al. extended the SonoNet architecture by adding attention

gates to the network. This addition gave the network the ability to automatically

learn to focus on certain substructures within the image. As a result of this ad-

dition, researchers were able to improve the results of SonoNet significantly. The

introduction of attention gates combined with other modifications increased mean

F1-scores to above 0.90. The majority of the improvement came from higher preci-

sion scores driven by the reduction of false positives. The researchers suggest that

this improvement happens ”because the gating mechanism suppresses background

noise and forces the network to make the prediction based on class-specific features”

(Schlemper et al., 2018b). However, the network still struggled with the most chal-

lenging cardiac views. To improve such cardiac view classification, more data is

needed. Fortunately, hundreds of hours of video data is available, although it re-

mains to be labelled. This labelling process is currently extremely expensive and

time-consuming and therefore the team needs a tool to intelligently label this video

data, while wasting as little of the sonographers’ time as possible.
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2.4 Ethical & Professional Considerations

In this section I will briefly discuss the ethical and professional considerations of this

dissertation. Out of the 29 ethical questions as part of the ethics checklist 1, I only

answered yes to one question: ”Does your project involve human participants?”. I

use human participants for the five user interviews conducted. I chose these par-

ticipants from the BioMedIA research laboratory and through the iFIND ultrasound

research project. They all consented to meet and discuss the project in informal

meeting sessions. I answered no to the other 28 questions on the checklist.

Figure 2.14: AIGVA Securing File Uploads

The other ethical issue relating to my project that I would like to highlight relates

to data privacy. I should start by noting that I collect no personal data as part of

the project. Here I use the European Union’s GDPR definition of personal data that

defines it as any data that relates to an ”identified or identifiable living individual”

(GDP, 2019). However, as part of the tool I have built I do host data on the cloud. To

ensure this data stays private I have built an extensive system that verifies uploads

by keeping track of user tokens. Specifically, when a user attempts to upload an

item to the cloud, the web application requests the Core Data API to generate a pre-

1Ethics Guideline: https://www.doc.ic.ac.uk/lab/msc-projects/ProjectsGuide.html#

ethics
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signed upload link. Once received by the web application, this link grants temporary

write/read access to the client. Now the web application is able to upload a file such

as a video directly to S3 without needing to send any data to the web server, as seen

in Figure 2.14. This significantly increases security by limiting the data accessibility.

This topic is discussed further in the implementation section 4.1.3.
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Method

In this chapter I develop several label prediction techniques that can speed up the

labelling process. Then I show a set of potential user stories to highlight how these

methods can be integrated into a web application. I then take these user stories and

develop a set of design principles that will be used to build the application. Using

these design principles I proceed to create the functional specification of the web

application including visual mockups of all pages.
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3.1 Label Prediction

Labelling is a tiresome and manual process. In this section I develop several ideas

that aim to speed up the process of manually labelling videos by automatically pre-

dicting labels. These ideas rely on much of the literature discussed in the previous

chapter. The three ideas developed are: Cold Label, Blitz Label, and Custom Model

Label. The names and ideas require some explanation but a summary of the ap-

proaches is shown in Figure 3.1.

Figure 3.1: Summary of the Label Prediction Approaches

3.1.1 Cold Label

”Cold Label” is a label prediction technique developed to address the cold start prob-

lem. The cold start problem is the common issue faced in machine learning when

no labels exist. For example, the problem could arise when researchers start a new

project in a new domain and receive a large set of unlabelled videos that need la-

belling. The ”Cold Label” prediction technique attempts to solve this problem by

asking a user to label a few samples from a set of videos and subsequently use those

labelled samples to train a classifier. This classifier can then be used to predict all

frames in entire videos. A summary of the method can be seen in Figure 3.2.
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Figure 3.2: Summary of the Cold Label Prediction Technique

The hypothesis underlying the ”Cold Label” idea is that it should work for several

reasons. First, it should work because videos have inherent similarity within them.

Specifically, across the temporal (time) dimension, individual video frames are sim-

ilar to their neighbor frames. For example, in a sitcom, a character may be speaking

for 5 seconds before the camera switches to another character. If the sitcom was

playing at 25fps 1, then the character would be on screen for 125 frames. The idea

is that there is enough information content in 1-2 of the 125 frames for a model to

label them all. And, to continue with the example, should the character reappear on

the screen in the same or another video, then a model could also generalize to label

these frames.

Second, the ”Cold Label” method should work because of advances in transfer learn-

ing and few-shot learning. Specifically, as discussed in Section 2.1.4, recent improve-

ments have shown that it may now be possible to train a classifier on a small set of

samples and have it generalize well. Third, the ”Cold Label” method should work

because we take the ideas from human-in-the-loop computing to query an oracle

(i.e. a human) to label a subset of frames. By guaranteeing the ”correctness” of

the labels through human intervention, we can hopefully overcome the cold start

problem. We can even incorporate the ideas of active learning by attempting to find

the ”best” frames to label with the highest information content possible. Although
125fps is the PAL (phase alternating line) British television frame-rate standard
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traditional active learning deals with querying the model for selecting the optimal

sample to label, we can reverse engineer this by attempting to guess what the best

sample may be. We explore this idea in the implementation section by developing a

”Unique Image Extraction” algorithm (see 4.3.1).

3.1.2 Blitz Label

”Blitz Label” is a label prediction technique that leverages pre-existing labels to pre-

dict new labels. The core idea behind the technique is that if we already have la-

belled some videos, we can use that embedded information to annotate unlabelled

videos. For examples, suppose as part of a project a researcher had to label 100

videos. Suppose the researcher had already labelled 50. Suppose he could train a

classifier on the 50 labelled videos, and use that classifier to predict labels for the

remaining 50 unlabelled videos. That is the intuition driving the development of the

”Blitz Label” technique. A summary of the method can be seen in Figure 3.3.

Figure 3.3: Summary of the Blitz Label Prediction Technique

The hypothesis underlying the ”Blitz Label” technique is that it should work for

reasons similar to why ”Cold Label” should work. The core intuition is the same:

videos have inherent similarity that could be exploited by utilizing developments

in few-shot and transfer learning. The key difference is that no human labelling is
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required as part of the ”Blitz Label” process, as long as the videos already have some

labelling.

3.1.3 Custom Model

The ”Custom Model Label” is a label prediction technique that enables machine

learning researchers to use their own models as part of the AIGVA platform. The

core problem driving the development of technique is that some domains, such as

medical image analysis, require very complex classification models. Therefore, giv-

ing a user the option to integrate their own machine learning models can tackle this

problem. While machine learning researchers could write their own inference tools

for label prediction, they would not get the benefits of the AIGVA web application,

which also provides a visual tool to examine predictions that can quickly be shared

with domain experts. A summary of the method can be seen in Figure 3.4.

Figure 3.4: Summary of the Custom Model Label Prediction Technique

The hypothesis underlying the ”Custom Model Label” idea is that it should provide

researchers the ability to use their own models. This will hopefully remove any

domain-specific problems that arise when using either one of the Cold or Blitz label

methods.
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3.2 User Stories

To aid in developing the AIGVA tool, a set of user stories have been created. The

idea is to illustrate how different users of varying technical backgrounds can benefit

from using the tool.

3.2.1 User Story #1: Building a Pedestrian Classifier for an Au-

tonomous Vehicle Startup

This user story has been written to show how a non-technical user can use the tool

to significantly speed up the process of labelling videos.

User Story #1.1: Building a Pedestrian Classifier

Figure 3.5: User Story 1.1: Building a Pedestrian Classifier
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Bob, a data analyst at an autonomous vehicle startup, has been given a labelling task

by his boss. The company needs a pedestrian classifier in their driving software and

therefore requires some training data so they can build these models. Bob has been

given 10 hours of dashcam footage from cars and been asked to label all frames for

instances of pedestrians.

1. Bob creates a new project with two labels: ”pedestrian” and ”no pedestrian”

2. Bob uploads the 10 hours of videos to the tool

3. Bob uses ”Cold Label” label prediction technique to manually label a few im-

ages

4. Bob trains a Cold Label classifier in-browser on the manually labelled images

5. Bob uses the Cold Label classifier to quickly predict labels for all 10 hours of

video

6. Bob reviews a few of the videos to make sure the ”Cold Label” prediction tech-

nique worked as intended

7. Bob uses the export tool to generate a .zip file with all the video frames located

in folders named after their labels

8. Bob sends the labelled images in the .zip file to the ML team and they begin

building their classifier
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User Story #1.2: Extending the Pedestrian Classifier

After much testing of their new pedestrian classifier, the machine learning team

unfortunately find that their model is not accurate enough to be deployed in their

driving software yet. To improve the algorithm, they need more training data. Fortu-

nately, their data collection team has acquired 20 additional hours of dashcam video

data. Bob is given these 20 hours of unlabelled data and is again asked to label them

for instances of pedestrians.

Figure 3.6: User Story 1.2: Extending the Pedestrian Classifier

1. Bob’s boss comes a few days later and says he has managed to get 20 additional

hours of dashcam videos that need labelling

2. Bob uploads the 20 hours of new dashcam videos to his existing pedestrian

classifier project
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3. Since Bob already has 10 hours of labelled videos, he trains a ”Blitz Label”

classifier on the previously labelled videos

4. Bob uses the Blitz Label classifier to quickly predict labels for all 20 hours of

video

5. Bob reviews a few of the videos to make sure the ”Blitz Label” prediction tech-

nique worked as intended

6. Bob exports the newly labelled videos and

7. Bob sends the new data to the ML team, who can now build a much more

accurate pedestrian classifier
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3.2.2 User Story #2: Improving Standard Plane Detection in Fe-

tal Ultrasound Classifiers

This user story has been written to show how a technical user can use the tool to

significantly speed up the process of labelling videos.

Figure 3.7: User Story 2: Improving Standard Plane Detection in Fetal Ultrasound Clas-
sifiers

Alice, a machine learning researcher at Imperial College London’s bio-medical image

analysis group, BioMedIA, is working on a project to develop an algorithm to detect

standard scan planes in fetal ultrasound videos. Over the past few months she has

built a classifier that works well on classifying the 13 standard scan plane. However,

it is not quite accurate enough to be deployed in the real-world. Fortunately, she has

just been give access to 30 hours of new ultrasound videos which, if added to the
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training data, she believes can improve the accuracy of the model enough for it to

be deployed. Unftortunately, this data is unlabelled and her sonographer colleague

Charlie is very busy and does not have much time to label the data for her.

1. Alice creates a new project with 13 labels, one for each of the standard ultra-

sound planes

2. Alice uploads the 30 hours of fetal ultrasound videos to the tool

3. Alice easily integrates her current ultrasound model with the ”Custom Model”

API

4. Alice, having uploaded a model, uses the ”Custom Model” label prediction

technique, to predict labels for all 30 hours of video

5. Alice, realizing her knowledge of ultrasound is poor, uses the ”share” function-

ality on some of the newly labelled videos to send them to the sonographer

Charlie

6. Charlie reviews the videos sent to him, corrects a few labels, and lets Alice

know that the videos are now correctly labelled

7. Alice uses the export tool to generate a .zip file with all the video frames located

in folders named after their label

8. Alice uses the new data to retrain her models and fortunately sees that her

F1-scores have improved significantly.
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3.3 Design Principles

User interface design is critical when building an application that needs to be used

for both techincal and non-techincal audiences. Galitz has developed an extensive

set of guidelines for designing great user interfaces (Galitz, 2007). I will use the

relevant principles from Galitz’s works on web development to ensure I cover all

key design considerations when building the AIGVA tool. Below I will briefly discuss

each of these principles and how I plan to include them in the AIGVA tool.

Select the Proper Interaction and Display Devices

I will limit the use of the AIGVA application to work on laptop and desktop devices

only. Because of the smaller screens of mobile and tablet devices, designing for both

large and small screens ”results in the need for different modes” of the application

(Benyon, 2014). Creating several modes of the AIGVA tool would cause significant

development overhead and other features would have to be sacrificed. Therefore

I will limit the supported screen-size to be 1008px2, although the application may

work on smaller sizes.

I will also design the tool as a web application rather than a desktop application. This

is because of two key reasons: (1) web applications do not have to be installed and

new features updates can constantly be pushed to them, and (2) web applications

are easier to use for a non-technical audience because of the familiar surroundings

of a web browser. Because Google Chrome is the most used browser, I will develop

the tool to be used with this browser in mind.

Organize and Layout Windows and Pages

The usability of the layout is crucial to develop an easy to use and consistent inter-

face. Since the tool is directed to a both a technical and non-techincal audience, the

overarching goal of the layout is to be consistent with web application conventions

2Screen sizes and breakpoints: https://bit.ly/2LkLlft
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Figure 3.8: AIGVA Mockup: Application Layout

so as not to confuse the audience. For that reason, I have opted for the classic side-

bar/content pattern as seen in Figure 3.8. On the left side of the screen, the menu

is located for easily accessible navigation. On the remaining part of the screen, the

contents is surrounded by a border. This border gives consistency to the user as im-

portant information will always be displayed in the same location, without the user

needing to scroll. Research has found that ”information displayed with a border

around it is easier to read, better in appearance, and preferable” (Galitz, 2007).

The AIGVA tool will also use breadcrumbs to display where the user is currently lo-

cated. Breadcrumbs are page hierarchies that display the trail a user has taken to

get to a certain page (i.e. Ultrasound Project > Videos > Export). Using bread-

crumbs in web applications have been found to create ”more efficient navigation

and/or improved user satisfaction” (Galitz, 2007).

Choose the Proper Screen-Based Controls

The controls and components are the building blocks of an application. Instead of

building these from scratch I will utilize the Ant Design UI component library (Ant,

2019). This library is one of the most popular and well documented React extensions

and comes with hundreds of pre-built components. See Figure 3.9 for examples of
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these components such as buttons, input fields, cards, stastistics, breadcrumbs and

links. Using this component library will help to ensure that the design is consistent

and sensible throughout the AIGVA tool.

Figure 3.9: AIGVA UI Component Library

Another control consideration is the inclusion of keyboard shortcuts. In a study ”key-

board shortcuts have been found to be significantly faster and more accurate than

mouse clicks” (Galitz, 2007). Therefore I will include the option to use keyboard

shortcuts on pages where significant user interaction is expected.

Provide Effective Feedback and Guidance and Assistance

The human learning loop relies on feedback. When users interact with an object or

component and get no response, they become frustrated. To combat this, I will use

Galitz’s hirearchy of feedback to guide design choices (Galitz, 2007):

• If the wait is less than a second: provide an immediate visual cue when the

operation is completed within 100ms (i.e. button click changes color briefly)

• If the wait is more than a second but less than 10 seconds: provide an

animated ”busy icon” until the operation is complete

• If the wait is greater than 10 seconds: provide a time estimate in the form

of a status or progress bar
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Create Meaningful Graphics, Icons, and Images

Where applicable, I will use visual cues in the form of icons and graphs to dis-

play information. Research has found that the use of such graphics can help ”hold

the users attention, add interest to a screen, [and] support computer interaction”

(Galitz, 2007).

Choose the Proper Colors

Figure 3.10: AIGVA Color Scheme

Color is a crucial element in designing strong visual hierarchies. A study on color

in applications found that it ”has a stronger perceptual influence than proximity or

grouping” (Galitz, 2007). To make the application accesible, I designed a simple

blue-gray-white color scheme (see Figure 3.10). Using the Coolors.co tool I ensured

that the color scheme was clearly visible to users with the most common forms on

color blindness: protanomaly, deuteranomaly, and tritanomaly.

42



Chapter 3. Method 3.4. REQUIREMENTS

3.4 Requirements

In this section, I will describe the functional specification and requirements of the

various components that make up the AIGVA tool. The purpose of this section is to

guide development and inform the reader as to the scope of the project. I hope to

aid the reader in understanding the specifications by providing visual mockups of

key application pages. These mockups were also used to guide the development of

the web application.

The tool consists of three functional groups: project management, video manage-

ment, and label prediction.

3.4.1 Project Management

Project Dashboard

A user is presented with a dashboard as the homepage containing the following:

• A section showing the current project with information about the number of

videos and labels associated with that project

• A graph showing the distribution of labels of the current project

• A table with information about all the projects created and the ability to switch

to another project

• The ability to create a new project by clicking a button

• The ability to edit an existing project by clicking a button

Figure 3.11 shows a mockup of the project dashboard.

Project Add/Edit Page

A user is able to create and modify projects on the add/edit project page. A project

must have the following attributes:
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Figure 3.11: AIGVA Mockup: Project Dashboard Page

• A name defining the project

• A short description

• A set of labels that are non-overlapping

• A default label to be used when new unlabelled videos are uploaded

Figure 3.12 shows a mockup of the project add/edit page.

Figure 3.12: AIGVA Mockup: Project Add/Edit Page
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3.4.2 Videos

Video Management Page

The AIGVA tool has a video management page with the following functionality:

• A table showing all the uploaded videos, and their associated metadata (i.e.

frames per second, file location etc.). The table should be paginated, with

maximum 10 videos per page

• A user can upload a video using a simple in-browser upload tool

• A user can delete a video by clicking a button which also deletes labels associ-

ated with the video

• A video must be one of the following supported formats: .mp4, .mpg and

.webm

Figure 3.13 shows a mockup of the video management page.

Figure 3.13: AIGVA Mockup: Video Management Page

Label Review Page

The label review page must contain a table with the following information and ac-

tions:
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• Metadata about each label-set including: the video associated with the label-

set, the number of frames in a label-set, reviewed status (true/false), the date

the label-set was created, the model (if any) used to generate the labels

• A ”review” button that takes a user to the in-browser video player

• A ”share” button that generates a shareable link to the in-browser video player

for that label-set. When clicked, the tool should automatically copy the link to

the users clipboard

Figure 3.14 shows a mockup of the label review page.

Figure 3.14: AIGVA Mockup: Label Review Page

Video Analysis Page

The video analysis page must have an in-browser video player, a label prediction

section, and a label modification tool:

• A video player section with navigation and information presented to the user

– Video navigation should be possible in several ways:

∗ A play and a pause button triggering the video to play/pause

∗ Using a slider that can be used to scan through the movie (like YouTube)
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∗ Frame-by-frame skipping using either buttons or arrow keys with sev-

eral options available for the number of frames to skip (skip 1 frame,

x/4 frames, x/2 frames, x frames, where x is FPS for that particular

video)

∗ Skip-to-next-label navigation using either buttons or arrow keys that

automatically scans the set of labels for the ”next different” frame

– The following video summary statistics should presented and updated in

real-time: FPS, current frame, timestamp, and progress (as %)

– A label preview bar under the video player that matches the length of the

slider should indicate to users the distribution of labels across the video

– Audio should be enabled

• A label prediction section that shows two statistics in real-time:

– The label prediction for the current frame

– The confidence of the label prediction for the current frame

• A label modification tool that enables a user to change labels:

– A user should be able to modify labels by inputting both a start and an

end frame (which can be the same), then selecting a label from the list of

available labels for that project, and ultimately clicking a ”Change Labels”

button

– Changing labels will refresh the page with the updated set of labels and

set their confidence to 100% since they were labelled by the user

Figure 3.15 shows a mockup of the video analysis page.

Label Export

The AIGVA application should have a page that makes it possible to export labels in

two ways: (1) downloading the labels only or (2) downloading the labels and the

corresponding images:
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Figure 3.15: AIGVA Mockup: Video Analysis Page

• The first way of exporting labels is a ”JSON only” export that generates a JSON

file containing frame-by-frame labels for all videos in a project

• The second way of exporting labels is a ”full download” that generates a .zip

file containing both images and their labels

– The output of a ”full download” must be a zipped file with a folder for ev-

ery label containing individual video frames (in the .jpg format) belonging

to that label. This is so they can directly be fed into an ML pipeline

– The user must be able to configure a ”full download” by selecting the

number of frames to skip, if any (i.e. skipping every 8th frame will reduce

the total number of images by a factor of 8)

– The application should show a preview folder structure of a ”full down-

load” by estimating the number of labels per class depending on the num-

ber of frames to skip, if any

Figure 3.16 shows a mockup of the export page.

48



Chapter 3. Method 3.4. REQUIREMENTS

Figure 3.16: AIGVA Mockup: Video Analysis Page

Miscellaneous

• A user must always see their relative location in the application by viewing a

”breadcrumb” at the top of every page (i.e. Project Name / Label Prediction /

Blitz Label)

• The AIGVA tool should have a collapsible sidebar for navigation

• A settings page should exist where a user can customize various settings for

the AIGVA application

• If a user tries to access an invalid subdomain on the AIGVA page, the user must

be redirected to a blank 404 error page

3.4.3 Label Prediction

Real-Time Prediction Pages

A user must be able to predict labels using three methods: cold labelling (no labelled

videos necessary), blitz labelling (some labelled videos necessary) and custom model
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labelling (own custom machine learning model required).

• A user must be able to select one of the three types of machine learning models

and then use it to predict labels for a video

• While a model is predicting labels for a video, the user must be kept informed

as to the progress of the predictions

Figure 3.17 shows a mockup of the prediction page (which is near-identical for Cold,

Blitz and Custom Model Label).

Figure 3.17: AIGVA Mockup: Label Prediction Page (Cold, Blitz and Custom Model
Label)

Cold Labelling

”Cold Labelling” is when a user predicts labels by training a machine learning model

on a few manually labelled frames per video. This works in three steps:

• First, a user should specify the number of frames they are willing to label per

video and the AIGVA tool should then automatically extract that number of

frames from each video uploaded
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• Second, when a list of images have been extracted from all videos, a user

should be able to manually label the frames using a simple graphical user in-

terface (GUI) with the following features:

– For every image to label, the GUI tool should include buttons for all labels

associated with that project and keyboard shortcuts to quickly label an

image

– The GUI tool should provide a progress bar to let the user know how many

labels that are left to manually label

– The GUI tool should have a ”back” button in case an item was wrongly

labelled

• Third, after a user has manually labelled the training data, the user should be

able to train an image classification machine learning model on the data and

monitor its progress

Figures 3.18, 3.19, and 3.20 show mockups of the three Cold Label steps.

Blitz Labelling

”Blitz Labelling” is when a user predicts labels by training a machine learning model

on previously reviewed labels in their project. It works in two steps:

• First, a user should be able to extract training data from reviewed videos:

– A user must have some reviewed videos that have been previously labelled

either manually, by a ”Cold Label” model, by another ”Blitz Label” model,

or by a ”Custom Model”. These videos must have been reviewed by a

human to verify the labels as ”ground truth”

– A user should specify the number of frames they want to skip per video

and the AIGVA tool should then automatically extract that number of

frames from each video marked as ”reviewed”
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Figure 3.18: AIGVA Mockup: Cold Label (Step 1: Extract)

Figure 3.19: AIGVA Mockup: Cold Label (Step 2: Label)

Figure 3.20: AIGVA Mockup: Cold Label (Step 3: Train)
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• Second, after a user has extracted the training data, the user should be able to

train an image classification machine learning model on the data and monitor

its progress

Figures 3.21 and 3.22 show mockups of the two Blitz Label steps.

Figure 3.21: AIGVA Mockup: Blitz Label (Step 1: Extract)

Figure 3.22: AIGVA Mockup: Blitz Label (Step 2: Train)

Custom Model Labelling

”Custom Model Labelling” is when a user predicts labels by using their own cus-

tomized machine learning model and writing a small amount of code to wrap their

model into the AIGVA tool
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• If a user already has a machine learning model, they should be able to integrate

it into the AIGVA tool by implementing a simple Python interface that can be

used to predict frames
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Chapter 4

Implementation

4.1 Software Architecture & Technology Stack

In this section of the report, I will discuss the technologies used to accomplish build-

ing the application. I will describe the overall architecture of the tool and how

individual components interact. Modern web development is complicated for many

reasons. There are an overwhelming amount of tools available that it becomes hard

to know when to use which tool. Furthermore, the interplay between frameworks is

opaque and often breaks, and tools themselves keep evolving from week to week. In

this section I will argue why certain frameworks and tools were chosen over others

in the context of building the AIGVA tool. I will try to illustrate these benefits by

providing small code sections and diagrams where applicable.
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Figure 4.1: AIGVA Architecture Diagram

The entire AIGVA application is divided into three separate components: (1) the Core

Data API responsible for video processing, machine learning and other data related

tasks, (2) the Web Application responsible for providing the UI and browser tool that

a user can interact with, and (3) the File Storage and Database layer responsible for

hosting all video data and application related data.

4.1.1 Core Data API

The Core Data API is the ”heavy lifter” of the application. It provides various API

endpoints for the web application to use when any significant data processing is

needed. This includes: video processing, image extraction, machine learning train-

ing and inference, export functionality and other features.
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Backend Web Framework

A web framework is a piece of software designed to build APIs and web applications.

For the Core Data API, choosing the appropriate framework is the most important

architectural decision as it defines the speed of development. For that reason, I have

defined several key requirements a framework must have.

Key requirements:

• Speed:

– Rationale: The application will have to handle many requests/second

when providing progress updates to data heavy tasks or serving many

users simultaneously

– Ranking metric: Avg. latency (lower is better)

• Data throughput:

– Rationale: Certain application-specific data packets such as videos and

labels are large and thus a framework needs to accommodate high data

throughput

– Ranking metric: Data throughput per second (higher is better)

• Machine learning support:

– Rationale: Most modern ML is done using Python based frameworks, so

having a Python based web-framework makes synchronization easier. The

SonoNet ultrasound model is also written in PyTorch, a Python based ML

framework.

– Ranking metric: Python-based

• Well documented and widely used:

– Rationale: A more well documented framework is easier to work with and

will have a larger user-base, which makes resolving development prob-

lems faster
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– Ranking metric: # GitHub stars (higher is better)

Having formulated the requirements, I analyzed four of the most popular web frame-

works: Flask, Django, Ruby on Rails and Express.js. The table below shows the

comparison.

Figure 4.2: AIGVA Web Framework Comparison

I selected Flask as the web framework for the project since it performed well on

all four criteria. Only Flask and Django were Python based, which ruled out Ruby

on Rails and Express.js. In terms of speed and data throughput Flask outperformed

Django on both parameters. Furthermore, Flask had more GitHub starts, which was

used as a proxy for how well documented the frameworks were. The authors of

Flask describe that it the tool ”designed to make getting started quick and easy, with

the ability to scale up to complex applications” (Git, 2019). Those design principles

make it an ideal tool to use for developing the AIGVA tool.

API Framework

The Core Data API is designed to communicate with the web application in the most

efficient way possible. The most common way of designing such communication

patterns is using the Representational State Transfer (REST) model since they ”em-

phasizes scalability of component interactions” (Fielding, 2000). API’s adhering to

such a pattern are often termed RESTful API’s. While new tools such as GraphQL

promise greater scalability, I have chosen to design the API using REST because of

the breadth of its documentation and ease of integration with Flask.
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To implement the RESTful API I have opted to use the Flask-Restless framework

since ”it provides simple generation of ReSTful APIs for database models defined

using SQLAlchemy.” (Fla, 2019). That is, Flask-Restless creates elegant API’s using

the object-relational-mapping tool SQLAlchemy that I’ve chosen to define my models

using. To demonstrate the simplicity of exposing such an API, I will show an example

of how the route is created for Projects below.

Listing 4.1: API Source Code (Located in: backend/app/app.py)

1 class Project(db.Model):

2 id = db.Column(db.Integer , primary_key=True)

3 name = db.Column(db.Unicode)

4 desc = db.Column(db.Unicode)

5 main_label = db.Column(db.Unicode)

6 label_types = db.Column(db.JSON)

7 date = db.Column(db.DateTime)

8 videos = db.relationship("Video", backref=db.backref(’

project ’))

9 models = db.relationship("Model", backref=db.backref(’

project ’))

10 labels = db.relationship("Label", backref=db.backref(’

project ’))

11

12 manager = flask_restless.APIManager(app , flask_sqlalchemy_db=db)

13 manager.create_api(Project , methods =[’GET’, ’POST’, ’PUT’, ’DELETE ’])

In the code example above, there are two section to note. First, the project model,

which is written using the object-relational-mapper SQLAlchemy. This defines the

schema of a project, which has different attributes such as a name, description,

label types etc. Second, the entire RESTful API which is written in two lines of

code. The first line uses the APIManager to initialize the API endpoints by binding

the Flask application to the database. The second line creates an endpoint for the

project model by specifying which HTTP methods are allowed. When the Flask

app is running the API is live and it is possible to send requests to the /api/project

slug. For example, to get a list of all projects the client simply needs to send a

GET requests to CoreDataAPI:host/api/project/ and the server will return a JSON
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object containing all the projects.

Web Server

Although Flask is shipped with its own development server, it is not suitable for pro-

duction. Therefore a webserver is highly recommended. A webserver sits between

Flask and the outside world. I selected Gunicorn since it is a popular choice for Flask

and Docker. Specifically, Gunicorn is a ”Python WSGI HTTP Server for UNIX” (Gun,

2019) and it works by having multiple worker processes handle requests instead of

a single-threaded worker, which Flask’s development server uses.

Worker-Broker Multi-Processing

One of they key challenges faced when building the AIGVA application was how to

handle concurrent data processing requests. Consider the complex task of predicting

labels for a video. Completion of this tasks may take minutes as it depends on: the

efficiency of the data pre-processing pipeline, the complexity of the machine learn-

ing model, and the length of the video. Now consider a user who wants to predict

labels for 10 videos. The naive solution is to have the user select to predict labels

for one video, wait for the server to finish prediction, then select to predict labels

for the second video, until they have completed all 10. This is time consuming and

inefficient. Instead, it would be much more efficient to have the server handle 10

tasks concurrently.

To create a server architecture that can handle concurrent jobs, one needs to use a

message broker and task queue. The task queue is responsible for receiving tasks

from the Flask application and processing them asynchronously, leaving the Flask

application to handle other requests. When a job is sent to the task queue client, the

client issues the task to a workers, which function as new processes. This enables

pseudo-concurrency. Critical to this implementation is a message broker, which en-

ables the task queue client to talk to its workers and vice versa. This is an entirely

separate server.
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Figure 4.3: AIGVA Redis-Celery Architecture

To build such a system, I opted to use Celery as a task queue and Redis as the message

broker. This a common stack, because of it’s efficiency and compatibility with Flask.

Celery is ”a simple, flexible, and reliable distributed system to process vast amounts

of messages, while providing operations with the tools required to maintain such a

system.” (Cel, 2019) I also selected Celery because of its ability to provide status

updates to the frontend client-side, which provides a more enriched user-experience

as it keeps the end-user informed as to the status of their tasks. Redis is ”an in-

memory data structure store, used as a database, cache and message broker.” (Red,

2019). Minimal configuration is required for it to work efficiently with Celery and

Flask, which was the primary reason why it was chosen.

Video Processing & Image Extraction

A key requirement of the Core Data API is the ability to process videos to perform var-

ious tasks such as video downloading, metadata acquisition, and seeking for image

extraction. Several Python libraries offer such capabilities including Sci-kit Video,

MoviePy, imageIO and OpenCV. Since the video processing functionality is another

critical component of the application, I conducted a thorough analysis based on the

following requirements.

Key requirements:

• Frames per second extraction:

– Rationale: A method to quickly infer the frames-per-second of a video is
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core to the application as it is required when uploading a new video to

the database

– Ranking metric: Availability

• Frame-level image extraction:

– Rationale: The ability to efficiently iterate over frames in a video is key in

several core application features such as predicting labels and exporting

images

– Ranking metric: Availability

• Well documented and widely used:

– Rationale: A more well documented framework is easier to work with and

will have a larger user-base, which makes resolving development prob-

lems faster

– Ranking metric: # GitHub stars (higher is better)

Figure 4.4: AIGVA Video Processing Comparison

Out of the four libraries examined, OpenCV was the clear winner and I have there-

fore chosen to use it (Ope, 2019). It was one of only two libraries to have both

FPS and frame-level image extraction. The other library, scikit-video, only has 0.3K

GitHub stars compared to OpenCV’s 37.1K stars. Furthermore, the ecosystem for

deploying OpenCV on Docker is more developed, which makes deployment more

straightforward. One of the strengths of the OpenCV codebase is its simplicity to

extract metadata. For example, when uploading a new video to the database it is
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important to know both the FPS and frame counts. This is important to do server-

side as doing so on the client-side would be too computationally expensive. With

OpenCV, it is possible to infer these two statistics in just four lines as seen in the

code snippet from the backend route responsible for computing such statistics.

Listing 4.2: Video Metadata Extraction (Located in: backend/app/routes videos.py)

1 cap = cv2.VideoCapture(file_location)

2 fps = cap.get(cv2.CAP_PROP_FPS)

3 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

4 cap.release ()

4.1.2 Web Application

The web application is the ”view” of the AIGVA tool. It functions as the only layer

the user interacts with. Therefore usability, accessibility and performance are critical

features. The web application is structured around a single-page web application

and supported by numerous frontend libraries.

Web App Server & Client Side

Choosing the frameworks of the web application server and client side is the most

important aspect of the frontend architecture as all other choices depend upon this.

The most popular framework choices for building a scalable frontend are: React,

Vue, Angular, and using plain JavaScript/HTML without any additional frontend li-

braries. A good framework must meet several criteria, the most important of which

are listed below.

Key requirements:

• Modernity:

– Rationale: Using a popular and modern tech-stack means more tutorials

and learning materials is going to be available

– Ranking metric: Downloads in last 6 months (higher is better)
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• Performance:

– Rationale: Performance of the framework is largely determined by load

times of the client-side, which is a direct result of the size of the frame-

work

– Ranking metric: Framework size (lower is better)

• Well documented and widely used:

– Rationale: A more well documented framework is easier to work with and

will have a larger user-base, which makes resolving development prob-

lems faster

– Ranking metric: # GitHub stars (higher is better)

• Personal experience:

– Rationale: Modern web frameworks have a steep learning curve. Al-

though limited, I have some experience using a few web frameworks

– Ranking metric: Experience

I have chosen the React framework as it best fits the criteria specified (Rea, 2019b).

Although plain JavaScript is more customizable than React, Vue and Angular, using

plain JavaScript significantly slows development speed and I have therefore decided

not to use it. In terms of performance and documentation, React and Vue are better

choices than Angular. I have some personal experience using React and prefer its

syntax to Vue, thus I have opted for React.

There are additional benefits to coding using a library like React. First, React inte-

grates the model-view-controller pattern through its use of JSX syntax for templates.

This enables object-oriented-like coding as it is easy to re-use components, which

are the building blocks in the React library. Second, React supports using the Node

Package Manager (NPM), which simplifies the installation of many of the dependen-

cies used to build AIGVA. Third, React uses server-side rendering, which makes it
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Figure 4.5: AIGVA Frontend JavaScript Framework Comparison

ideal to build single-page applications when coupled with certain packages.

To use React as the web application framework, I use the create-react-app develop-

ment environment and Node.js server. Rather than setting up the build and envi-

ronment from scratch, the create-react-app tool ”offers a modern build setup with

no configuration” (Cre, 2019). This further speeds up development as the tool takes

care of complicated tasks such as transpiling JavaScript using Babel and enabling

WebPack. Coding in React supports JavaScript ES6 features that are designed to

make the code more re-usable and readable to other developers. An example of this

is the use of modules, that makes it possible to write cleanly structured code, sorted

by folders. For the AIGVA codebase, this means that every separate view/page will

have its own set of components associated as seen in the folder directory below (see

Appendix C.1 for a full overview).

Listing 4.3: Web Application Component Structure (Located in: frontend/src)

1 src

2 components

3 App

4 Charts

5 Dashboard

6 Export

7 LabelReview

8 MLBlitzLabel

9 MLColdLabel

10 MLCustom

11 Navigation

12 Projects

13 Settings

14 VideoAnalysis
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15 VideoFramePlayer

16 VideoManagement

17 constants

The frontend needs to communicate with the backend using asynchronous API calls.

Although JavaScript provides the fetch method to handle API calls, I will use the

Axios package instead, which is a ”Promise based HTTP client for the browser.” (Axi,

2019). Axios is prefereable to the built-in fetch method for three reasons: (1) Axios

automatically transforms response data to JSON, which is how a large portion of

AIGVA data is structured both the front and backend, (2) Axios supports a wider

range of browsers, which makes the tool more accessible to a greater audience, and

(3) Axios makes it simple to chain API calls.

Listing 4.4: Web Application Video Upload Component (Located in: /frontend/src/-

components/VideoManagement/UploadVideo.js)

1 onUploadFinish = e => {

2 const file_name = e.signedUrl.split(’?’)[0]

3 const pid = this.props.store.get(’pid’);

4 const mid = this.props.store.get(’mid’);

5

6 let labels = null;

7 let frame_count = null;

8

9 axios.get(API.BASE_API_URL + ’project/’ + pid)

10 .then(response => {

11 const default_label = response.data.main_label

12 return axios.get(API.BASE_API_URL + ’process_video ’, {

13 params: {

14 file_location: file_name ,

15 default_label: default_label ,

16 }

17 })

18 })

19 .then(response => {

20 labels = response.data.labels

21 frame_count = response.data.frame_count

22 return axios.post(API.BASE_API_URL + ’video’, {
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23 name: this.state.file ,

24 location: file_name ,

25 size: this.state.size ,

26 fps: response.data.fps ,

27 pid: pid ,

28 })

29 })

30 // Additional API calls ...

31 }

To show the benefit of Axios, I have included a code snippet from the frontend com-

ponent responsible for uploading videos. The onUploadFinish method gets called

when a video has been uploaded to the file storage site. The step-by-step API pro-

cess is shown in the table below. To summarize: (1) Axios gets the default label from

the Core Data API and uses it to make an additional call to (2) Core Data API using

the process video route, which runs a task in the background to process the video

for metadata and label generation. (3) The labels and video metadata are then used

to create a video object in the database using a separate API call. The separation

of API calls, enabled by Axios, makes for less verbose code on both the front- and

backend as each call aims to do only one thing.

Charting

For charting I use a combination of two libraries: BizCharts and ApexCharts as shown

in Figure 4.7. BizCharts is optimized for user interactions (Biz, 2019). For example,

on the AIGVA dashboard users can view a summary of the total number of labels

per class, which the user can hover over to get more detail. ApexCharts is designed

to handle larger input data arrays (Ape, 2019). This is useful on the video analysis

page, where a helpful bar is shown below the video to indicate which labels ap-

pear across the video. As videos may become long with frames changing often, the

browser needs to draw a complex chart quickly, which is precisely what ApexCharts

does well.
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Figure 4.6: AIGVA API Example - onUploadFinish Method

File Management

Effective file management includes both successful uploading and downloading of

files. These tasks are central to the AIGVA application. To create a successful archi-

tecture, I use two libraries to solve common issues with file management. First, I

use Moment.js to ”parse, validate, manipulate, and display dates and times” (Mom,

2019). Without Moment.js, rendering user friendly date-time values is cumbersome

and requires verbose code. With Moment.js, it is possible to write one-liners like

moment(item.date).fromNow() to render the time since a video was uploaded or a

model was created in a human readable format. Second, I use FileSaver.js to tackle

the problem of downloading files. FileSaver.js is a ”solution to saving files on the

client-side, and is perfect for web apps” (Fil, 2019). When a user wants to export

data, they have to download a large .zip file sent over as the blob datatype (binary

large object). Without FileSaver.js, a complex object creation/deletion process needs

to happen on the client-side.
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Figure 4.7: AIGVA Charting

Single-Page Application

To make AIGVA more user friendly and fast, I wanted it to be a single-page appli-

cation. A single-page application is a website that dynamically re-renders a page

rather than making a new sever call and refreshing the browser. When coupled

with a routing library, React is an ideal framework to build single-page applications.

While there are several routing libraries available, I have chosen the most popular

and well documented library available, the react-router library. Specifically, I use

the react-router-dom version, which is adapted to be used in modern browsers (Rea,

2019a).

A consequence of designing the AIGVA tool as a single-page application is needing to

keep track of certain global parameters. For example, we need to know which project

we have selected across routes. Keeping track of global parameters means needing

access to a global store. A common approach to creating a global store is to use a

state management library like MobX or Redux. However, as the requirements for a

global store are limited for the AIGVA tool, adding a global state management library

would add unnecessary size and complexity to the application. Instead, I opted to

take advantage of Reacts higher order components feature. This allows you to wrap

sub-components in other components using functions. The higher order components

would keep their own state that could be modified using functions accessible to

lower order components.
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4.1.3 File Storage & Database

The file storage and database is the ”memory” of the AIGVA tool. I have decided to

separate the file storage and the database to adhere to the best practice of modern

web development. The file storage is an Amazon S3 Bucket responsible for hosting

static files such as machine learning models, images and videos. The database is a

PostgreSQL relational database responsible for hosting metadata specific to the ap-

plication such as labels, video locations, project details and machine learning model

information.

File Storage

Although it is possible to store static files like images and videos in a PostgreSQL

database, it is inefficient to do so and ”not recommended at all” (Dyl and Przeorski,

2017). Instead using a file system is a better idea since it is both faster and uses less

disk space. Two options exist for implementing a file system: (1) hosting files locally,

or (2) using a cloud service. Using a cloud service is favorable for a tool like AIGVA

as storage is more scalable and easier to configure. The two key requirements for a

cloud storage provider are listed below.

Key requirements:

• Price:

– Rationale: : The AIGVA tool stores data-heavy files like machine learning

models and videos so the cheaper provider the better

– Ranking metric: Monthly per-GB Prices (lower is better)

• React support:

– Rationale: Uploading directly from the front-end is the most efficient op-

tion and native React support is therefore favorable

– Ranking metric: Availability
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The three most popular cloud service file storage providers are: AWS S3, Google

Cloud and Microsoft Azure. I chose AWS S3 over Google Cloud and Microsoft Azure

since it is comparable in price to the others and is the only one with a dedicated

NPM react upload component. AWS S3 is a ”simple storage service for static assets

such as images on Amazon’s servers” (Dyl and Przeorski, 2017).

Figure 4.8: AIGVA File Storage Comparison

To secure S3 uploads, I use the option to pre-sign the uploads by using the Core

Data API to generate an upload link. Once received by the web application, this link

grants temporary write/read access to the client. Now the web application is able

to upload a file such as a video directly to S3 without needing to send any data to

the web server, as seen in Figure 4.9. This significantly increases both speed and

security.

Figure 4.9: AIGVA Securing File Uploads
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Database

I opted for a relational database over a NoSQL database for the AIGVA tool. NoSQL

is great for prototyping because of the lack of a fixed schema. However, with NoSQL

it is more cumbersome to do certain aggregations and joins that are needed in the

AIGVA tool. I have chosen the PostgreSQL implementation of SQL since it is one of

the most popular and widely documented implementations (Pos, 2019). Further-

more, PostgreSQL supports the JSON datatype, which is used to store the labels in

the tool.

Listing 4.5: API Object-Relational Mapping Example (Located in: backend/app/app.py)

1 # Get associated videos from DB

2 video_links =[]

3 videos = Video.query.filter_by(pid=pid)

4 for video in videos:

5 video_links.append(video.location)

To integrate the PostgreSQL database into the Core Data API architecture I em-

ploy two tools: (1) an object-relational mapper, and (2) a database migration tool.

First, I use the SQLAlchemy object-relational mapper, which works as an abstrac-

tion layer. Specifically SQLAlchemy provides ”transparent conversion of high-level

object-oriented operations into low-level database instructions.” (Grinberg, 2014)

This makes working with databases much simpler from a development perspective

as you can interact with them like objects. See the code example above for an

example of how the SQL database can be queried for videos associated with a spe-

cific project, all without writing a line of SQL. This increases safety as it prevents

SQL injections. Second, I use the Flask-Migrate library to handle schema changes

during development. As mentioned before, one of the disadvantages of working

with relational databases is their inflexibility to schema changes, which is inevitable

during development. To mitigate this issue, I use the Flask-Migrate database mi-

gration framework ”to track of changes to a database schemsa, allowing incremental

changes to be applied” (Grinberg, 2014). For a full overview of the database schema,

see Appendix D.4.1.
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4.2 Feature Implementation - Video Management

In this section I will discuss the challenges of implementing one of the core compo-

nents of the tool, the video management component. This consists of the frame-by-

frame video player and the export tool.

4.2.1 Frame-by-frame Video Player

One of the major challenges of the project was to create an in-browser video player

that met the requirements of the application. The key feature that the video player

needed to support was frame-by-frame navigation. The browser would need to con-

stantly be aware of what frame was being played so that the UI displaying the label

prediction and frame statistics can be updated (see Figure 4.10). None of the ex-

isting web video players such as React-Player and Video-React offered this support.

Therefore I needed to write my own in-browser video player.

Figure 4.10: AIGVA Video Player and Analysis Page

After much experimentation, I was able to implement a video player that met all the

aforementioned criteria. First, I attempted to display sequences of pictures instead
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of videos, however that proved too slow. Then, I also attempted to modify existing li-

braries to include frame-level navigation, however that proved too time-consuming.

Ultimately, the solution that worked was to build my own player from scratch based

on the HTML5 Video Media element specification 1. The specification, part of the

official HTML5 release, provides a set of attributes and events you can use to imple-

ment features from scratch. I utilized these low-level building blocks to develop the

following features:

• Play/pause buttons

• Video range slider that allows users to navigate to any time in the video

• A ”frame change” event listener that triggers a UI update

• Frame seeking buttons that could skip X number of frames forwards or back-

wards

• Label skip feature that queries the label set for the next different label and

updates the video

• Keyboard shortcuts to navigate between frames and labels

To illustrate the idea behind the implementation I have included part of the code for

the video player to show the event listener logic - see Listing 4.6. The video frame

player exploits React component lifecycle, which triggers the componentDidMount()

function to run when a component is first rendered. This calls the startUpdatingFrames()

method which initializes an event listener that queries the state every interval. Ev-

ery iteration of the event listerner is a call to the updateFrames() method, which is

responsible for two things: (1) extracting frame-level information from the HTML5

Media Element, and (2) triggering a global UI update which updates the state of

information that depends on the current frame (all the items within the green boxes

on Figure 4.10).

1https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
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To determine the current frame, we need both the current time which we obtain from

the HTML5 ”currentTime” attribute and the FPS which we obtain from the compo-

nents state. Unfortunately, we cannot acquire the FPS from within the browser - or

at least we cannot do so without making the application painfully slow. To overcome

this problem a function was built in the Core Data API that can automatically extract

this information on upload using OpenCV (see Appendix D.1.1). Then when we

load the video analysis page, this information is simply queried from the database,

alongside the labels and other metadata needed. When the user exits the page, the

componentWillIUnmount() method gets invocated through React’s component life-

cycle logic. This method kills all active event listeners, which is critical to prevent

memory leaks from dangling event listeners. Further implementation details can be

found in Appendix D.1.1, but have not been included here for the sake of brevity.

Listing 4.6: Custom-Built Video Frame Player Snippet (Located in: frontend/src/com-

ponents/VideoFramePlayer/index.js)

1 class VideoFramePlayer extends Component {

2 constructor(props){

3 super(props)

4

5 this.vidRef = React.createRef ();

6 this.state = { ... INITIAL_STATE }

7 }

8

9 startUpdatingFrames () {

10 // Check that no other intervals exist to prevent multiple

listeners

11 if (!this.timerID){

12 this.timerID = setInterval (() => this.updateFrames (),

INTERVAL_MS);

13 }

14 }

15

16 stopUpdatingFrames () {

17 clearInterval(this.timerID);

18 }
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19

20 componentDidMount () {

21 // Initialize event listener to update UI on frame change

22 this.startUpdatingFrames ();

23 this.vidRef.current.addEventListener(’canplay ’, this.

handleCanPlayEvent)

24 }

25

26 componentWillUnmount () {

27 // Kill event listener to prevent memory leaks on component

dismount

28 this.stopUpdatingFrames ();

29 this.vidRef.current.removeEventListener(’canplay ’, this.

handleCanPlayEvent)

30 }

31

32 handleCanPlayEvent = () => {

33 this.setState ({ can_play: true})

34 }

35

36 updateFrames () {

37 const current_frame = Math.floor(this.vidRef.current.

currentTime.toFixed (5) * this.state.fps);

38 const current_time = this.vidRef.current.currentTime

39 const current_progress = current_time/this.vidRef.current.

duration

40 this.setState ({

41 frame: current_frame ,

42 time: current_time ,

43 progress: current_progress ,

44 })

45 this.props.sendFrames(current_frame);

46 }
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4.2.2 Export Tool

Figure 4.11: AIGVA Export Page

Building an efficient export functionality also proved an interesting technical chal-

lenge. I implemented two version of the export functionality: (1) a labels only

export, and (2) a full dataset export which included both labels and images. The

first ”labels only” functionality was designed to offer a fast way to download frame-

by-frame labels in a JSON file. This was a relatively simple implementation as it only

required a single API call to the Core Data API to extract labels and then leverages

FileSaver.js to download the file on the client side. The second ”full dataset” export

proved more challenging. This export was requested early on by a key stakeholder

who wanted and ImageNet style output that placed images in ”folders named by

their label, so that they can be fed directly into any ML pipeline” 2. I will briefly ex-

plain its implementation it highlights how the three key components of the software

architecture (the web app, the Core Data API and the File Storage) interact.

2Email correspondence with Prof. Bernhard Kainz
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Figure 4.12: AIGVA Export Implementation Details

A ”full dataset export” was implemented in five steps as shown in Figure 4.12. First, a

user triggers an export in the browser. This hits the api/full download route of the

Core Data API. Then, within the Core Data API, a new celery task is created to handle

this task and a URL is immediately returned to the Web App, which the browser uses

to display the progress bar and let the user know when the task is finished. The

Celery task then begins executing, which creates a folder structure with a subfolder

for each label (see Appendix D.1.2 for details). This task then iterates over all the

videos in the project and executes the api/export video to folder method - see

Listing 4.7. This method uses the OpenCV library to iterate over frames in a video

to store them in a folder. One interesting hyperparamter to note here is the ”skip

factor”. This is an optimization developed to skip over every Nth frame. The user

can specify this factor in the web app as shown in Figure 4.11 in the ”Download

Options.” By default, this option is set to 1, meaning no frames are skipped. But

since this function operates in linear time, increasing the the skip factor to N will

reduce them time taken by a factor of N. Once all frames have been extracted, the

Core Data API compresses the folder to a .zip file and uploads it to the video file

storage. Ultimately, a the link to this zip folder is sent to the web application and a

download is triggered using the FileSaver.js framework.

Listing 4.7: Video Export Method (Located in: backend/app/helpers.py)

1 def export_video_to_folder(video_link , labels , skip_factor =1,

compression_factor =40):

2 """
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3 Export a video to folder.

4

5 Args:

6 video_link [str]: link to video download

7 labels [json]: array of labels for video

8 skip_factor [int]: number of images to skip

9 compression_factor [int]: image compression factor (0 is none

, 100 is full)

10 """

11 cap = cv2.VideoCapture(video_link)

12

13 while(cap.isOpened ()):

14 frameId = cap.get (1)

15 ret , frame = cap.read()

16 if (ret != True):

17 break

18 if (frameId % math.floor(skip_factor) == 0):

19 filename = "./ exports /%s/% s_frame%d.jpg" % (

20 labels[int(frameId)][’Label’], video_name , int(

frameId))

21 cv2.imwrite(filename , frame , [

22 int(cv2.IMWRITE_JPEG_QUALITY),

compression_factor ])

23

24 cap.release ()
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4.3 Feature Implementation - Label Prediction

In this section I will discuss the challenges of implementing one of the most chal-

lenging undertakings as part of the AIGVA project, to develop the infrastructure to

support label prediction and to implement the three labelling techniques: Cold, Blitz

and Custom Model labelling. All three labelling techniques have one thing in com-

mon, they all result in a machine learning model that is used to predict labels. To

reflect this commonality and to prevent code duplication, they all share the same

prediction engine. Therefore I will first discuss how I implemented the three la-

belling techniques, up to the point of them producing a machine learning model,

and then I will describe how the prediction engine works collectively.

4.3.1 Cold Label

Figure 4.13: AIGVA Cold Label Prediction Technique Review

Recall the intuition behind the Cold Label technique: if no videos are labelled, man-

ually label a few frames per video and train a classifier on those to predict labels.

This process has three steps: (1) extract a sample of frames, (2) manually label

sample of frames, and (3) train a classifier on the labelled frames. I will discuss the

implementation challenges of these three sections.

80



Chapter 4. Implementation 4.3. FEATURE IMPL. - LABEL PREDICTION

Figure 4.14: AIGVA Cold Label Implementation - Step 1

(1) Extracting Sample of Frames

The implementation of the overall image extraction architecture is straight-forward.

First a user triggers a request to create a new Cold Label model. Then a Celery task

is created to a sample extract frames from videos. There are two possible methods of

frame/image extraction: uniform sampling or unique image extraction. The meth-

ods will be described in detail below. Once images have been extracted they are

uploaded to the file storage and links to these are sent to the web application, which

is now ready for step 2 - manually labelling a sample of frames.

Figure 4.15: AIGVA Cold Label Implementation Details
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Image Extraction Method #1: Uniform Sampling

One simple implementation to extract images is to have the user to specify the num-

ber of frames they wish to extract and then uniformly sample that number of frames

from a video. For example, say a user had a 10 second long video running at 30

frames per second (300 total frames). No suppose, to save time, the user only

wanted to label 5 images. Then the uniform sampling method would extract: frame

0, frame 60, frame 120, frame 180 and frame 240. See Algorithm 1 below written

as pseudocode (See Appendix D.2.1 for full implementation). Note the calculation

of the ”skip factor” which is calculated as the total number of frames divided by the

number of frames the user wants to label. As the video is read as a stream, a modulo

check is implemented using the skip factor, which limits the number of images to

what is desired by the user.

Algorithm 1 Uniform Image Sampling [Image Extraction Method 1]

Require: video, images to save
capture← openStream(video)
total frames← capture.getFrames()
skip factor ← total frames/images to save
while capture.isOpened() do
ret, frame← capture.read()
if ret 6= true then
break

end if
i← capture.getFrameID()
if (i mod skip factor) == 0 then
saveImage(frame)

end if
end while
capture.closeStream()

82



Chapter 4. Implementation 4.3. FEATURE IMPL. - LABEL PREDICTION

Image Extraction Method #2: Unique Image Extractor

The clear downside to the previous method is that it entirely ignores the content

of the video. Suppose a video changes frames often, then it would make sense to

label more than 5 frames for the same 10 second video (e.g. ultrasound). If only

5 frames are labelled, chances are that the classifier will perform poorly as it was

trained on an insufficient training set. Now suppose instead the 10 second video

was that of a non-moving picture, or rather, a still-frame as is often the case in the

real world (e.g. CCTV footage). In the latter case it would not make much sense to

extract 5 frames, since 1 frame should suffice. This idea requires a method to extract

a set of the most ”unique” images from a video. This method is closely related to

the concept of active learning. Recall, how active learning methods attempt to find

the most ”interesting” samples and sends them to a human to label. While it is

out of the scope of this project to build a full active learning algorithm, one can

approximate such an approach by guessing what the most ”interesting” samples are.

In the context of videos, it means finding the most meaningful/unique still frames

out of a video.

To build an algorithm to extract the most unique images from a video, a process

was designed that compared adjacent frames for a significant differences. If the dif-

ference was above a certain threshold, meaning that a frame was likely ”unique”,

then the algorithm would extract that image - see Algorithm 2. The main challenge

was defining what ”significant difference” between frames meant. I experimented

with several approaches to compare images such as the use of cross correlation and

using feature extraction. However, these method proved inconsistent and compu-

tationally expensive. Instead, I opted for the use of perceptual hashing. This is a

method that computes a hash vector from an image matrix. Unlike cryptographic

hashes where tiny nudges in the input can drastically change the hash, perceptual

hashes ”are close to one another if the features are similar” (pHa, 2019). I opted for

OpenCV’s implementation of perceptual hashing which outputs a 1x8 dimensional

vector (Ope, 2019).
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Algorithm 2 Unique Image Sampling [Image Extraction Method 2]

Require: video, skip factor, hamming threshold
1: capture← openStream(video)
2: last hash← null
3: while capture.isOpened() do
4: ret, frame← capture.read()
5: if ret 6= true then
6: break

7: end if
8: i← capture.getFrameID()
9: if (i mod skip factor) == 0 then

10: current hash← perceptualHash(frame)
11: if last hash == null then
12: saveImage(frame)
13: last hash← current hash
14: else
15: dist← hammingDistance(current hash, last hash)
16: if dist ≥ hamming threshold then
17: saveImage(frame)
18: last hash← current hash
19: end if
20: end if
21: end if
22: end while
23: capture. closeStream()

To obtain a similarity score, a distance measure was required to compare the two per-

ceptual hash vectors. I experimented with Euclidean distances but they performed

poorly. After research on the topic, I found the poor performance of Euclidean dis-

tances documented in the literature, with researchers having found that Hamming

distances are more optimal for semantic comparisons (Norouzi et al., 2012). Re-

sults were much more consistent with a Hamming distance measure and I therefore

I opted for this distance measure instead. Note that the Hamming distance between

vectors x = (x1, x2...xn) and y = (y1, y2...yn) is written as DHamming(x, y)

DHamming(x, y) =
n∑

i=1

δ(xi, yi) (4.1)
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δ(xi, yi) =

0 xi = yi

1 xi 6= yi

(4.2)

Figure 4.16: AIGVA Unique Image Extraction Method Using Perceptual Hashing

To demonstrate the use of the unique image extraction algorithm, an experiment

was conducted with two examples. See Figure 4.16 for the results of the experiment.

In the first example, a 17 second clip from the feature film Lord of the Rings was

sampled at a frame-rate of 1 FPS. The 17 frames were processed by the unique image

extraction algorithm and returned a set of four images. By visual inspection, we can

observe that it correctly extracted four of the most unique images. In another more
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tricky example, autonomous vehicle data was used from the Berkeley Deep Drive

dataset. This was also a 17 second clip sampled at 1 FPS which produced 17 frames.

This time the algorithm returned six frames. Note again how the output frames all

significantly different from each other. Note also how the algorithm correctly only

extracted only one from the last 11 frames where the car is waiting at an empty

intersection.

(2) Label Sample of Frames

Figure 4.17: AIGVA Cold Label Implementation - Step 2

Once a set of sample images had been extracted using either of the two aforemen-

tioned methods, the user can manually label these in the browser. To implement this

functionality I built a label review tool that displays all the labels associated with a

project alongside the image to be labelled. To speed this process up, keyboard short-

cuts were made available. An example of a user labelling a set of extracted frames

can be seen in Figure 4.17.
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(3) Training a Model

Figure 4.18: AIGVA Cold Label Implementation - Step 3

After labelling the extracted images, the user will train a machine learning model

which can later be used to predict labels for entire videos. This was one of the more

challenging implementations as it meant building the infrastructure to support train-

ing and monitoring a machine learning model from the browser. There were three

parts to the implementation: selecting the right machine learning model, customiz-

ing the selected model, and training the model in the browser.

Model Training #1: Selecting The Model

Selecting a model requires balancing trade-offs in accuracy, training time and model

size. Using the most accurate model will not necessarily create the best tool if it

means training time is significantly longer. Therefore, to select the best model an

experiment as run to compare CNNs across these metrics. The experiment used

87



4.3. FEATURE IMPL. - LABEL PREDICTION Chapter 4. Implementation

Figure 4.19: AIGVA Label Prediction CNN Architecture Comparison Chart

the CIFAR-10 dataset which consists of 60000 32x32 colour images in 10 classes,

with 6000 images per class, split into 50000 training images and 10000 test images

(Krizhevsky et al., 2009). I used a set of popular CNN model architectures on this

dataset including ResNet, DenseNet, VGG, SqueezeNet and AlexNet. The experi-

ment was run on a P4000 GPU and all the networks were pre-trained on ImageNet

and then subsequently fine-tuned on the CIFAR-10 dataset during training. The rea-

son for pre-training on ImageNet is to leverage the benefits of transfer learning.

Specifically, researchers have shown that using CNNs pre-trained on natural images

(i.e. ImageNet) train faster and are more robust than CNNs trained from scratch,

while still retaining performance (Tajbakhsh et al., 2016). I used the fast.ai PyTorch

fit one cycle method which optimizes learning rate, momentum and weight decay

to optimize hyperparameters3.

The results of the experiment is shown in Figure 4.19 and Table 4.1. ResNet34

was chosen over the other variants because of the balanced performance across all

three metrics. In terms of accuracy, DenseNet performed the best achieving 93.55%

accuracy on the test set. However, DenseNet also took nearly 6 minutes to train.

Comparatively, ResNet34 achieved nearly the same accuracy, 90.26%, in nearly half

3fit one cycle training optimization: https://docs.fast.ai/training.html
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Model Name Accuracy (%) Time To Train (s) Model Parameters

ResNet18 87.54 130 11689512
ResNet34 90.26 199 21797672
ResNet50 91.68 409 25557032
SqueezeNet1 0 82.27 89 1248424
SqueezeNet1 1 83.30 97 1235496
AlexNet 76.95 95 61100840
VGG16 86.54 373 138365992
DenseNet 93.55 347 7978856

Table 4.1: AIGVA Label Prediction CNN Architecture Comparison Table

the time. Since the first prototype of the AIGVA tool is implemented on CPUs, train-

ing speed matters significantly more than if it was implemented on GPUs. Therefore

I will opt to use ResNet34 over DenseNet as the main model. The other variants

of ResNet, 18 and 50, outperform ResNet34 in terms of training time and accu-

racy respectively. However ResNet18 also comes with a 2.5% performance penalty

and ResNet50 takes more than twice as long to train compared to ResNet34. Other

models including SqueezeNet, VGG and AlexNet all performed worse compared to

ResNet34 in terms of accuracy and additionally the training speed gains were not

large enough to consider switching from the ResNet34 model.

Model Training #2: Customizing The Model

One of the most challenging aspects of practical machine learning is to select the

hyperparameters. The goal behind the implementation of hyperparameter selection

was to simplify it as much as possible for the user. For that reason, control was

limited to three of the most important factors affecting the training of a machine

learning model: the number of training cycles, the train/test split, and the option

to enable early stopping. The number of training cycles will affect the time taken

for the model to train and while a higher value will reduce the training error it

may cause overfitting. To prevent overfitting the option to enable early stopping

was included. The implementation of both the number of training cycles and early

stopping is shown in Listing 4.8.
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Listing 4.8: Core Data API Model Training Code Snippet (Located in: Backend/ap-

p/app.py)

1 for epoch in range(input_cycles):

2 ...

3 # Break if early stopping and test acc lower than prev

4 if (( input_early_stopping) and

5 (test_accuracy < prev_test_accuracy)):

6 break

Model Training #3: Training The Model

Implementing model training controlled from the browser utilizes all the key in-

novations of the backend as shown in Figure 4.20. First, a user triggers a model

training request and the Core Data API spins up a new Celery task to handle training

the model. Next, the Celery task containing all the model training code runs for

several epochs, constantly reporting the status to a separate server. To keep the user

informed throughout the training process, the web app queries this separate server

for status information. The web app uses this information to display both an overall

model training progress bar and a graph displaying the real-time test/train error.

After model training is completed, the Core Data API uploads the model file to the

S3 file store and creates a new model object in the PostgreSQL database with a link

to the file store. Ultimately, the web app is notified of the training completion and is

now ready for prediction. See Appendix D.2.1 for full implementation details.

Figure 4.20: AIGVA Model Training Implementation
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4.3.2 Blitz Label

Figure 4.21: AIGVA Blitz Label Prediction Technique Review

Recall the intuition behind the Blitz Label technique: if entire videos are already

labelled, train a classifier on those to predict labels. This process has two steps: (1)

ensure you have pre-labelled videos, (2) train a classifier on the labelled frames. I

will briefly discuss the implementation challenges of these two sections.

(1) Pre-Labelled Videos

Once a user has marked a video as ”Reviewed”, then it gets added to the list of videos

eligible to be included for ”Blitz Label”. To utilize these reviewed videos to create a

dataset for a Blitz Label model, a user is first prompted to specify how many frames

they wish to skip. The idea behind this implementation was to offer the option to

not extract every single image since it may lead to overfitting. When the user clicks

”Generate Training Data” a request is sent to the Core Data API to create a Celery

task to handle this process. Upon completion of the task, the ”Next” button becomes

activated and a model can be trained.

91



4.3. FEATURE IMPL. - LABEL PREDICTION Chapter 4. Implementation

Figure 4.22: AIGVA Blitz Label Implementation - Step 1

(2) Training a Model

Training a Blitz Label model works in the same way as a Cold Label model. The only

difference is the input data is given in the form of a .zip file instead of a links to

individual images (see full implementation in Appendix D.2.2 for details). Because

the difference is only 5-10 lines of code, I will refer the reader to the previous Section

4.3.1 for the sake of brevity.

4.3.3 Custom Model

Recognizing that there are limitations to the Cold Label and Blitz Label models, it

was decided to add the option for machine learning researchers to use their own

models. To ensure that this was done in the most effective way possible, I reached

out to several stakeholders to discuss this topic before building it. It quickly became

apparent that a simple Python interface that the researchers could adapt to their own
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Figure 4.23: AIGVA Custom Model Label Prediction Technique Review

models was the simplest method. However, this also required the Dockerization of

the application to ensure deployment would be effortless - see section 4.4.2 for a

discussion on this.

Listing 4.9: Custom Model API (Located in: Backend/app/custommodel.py)

1 def custom_model_predict(img_path):

2 """

3 Custom interface for using your own custom models.

4

5 Args:

6 img_path: filepath to the images that needs to be predicted.

7

8 Returns:

9 prediction [str] : label predicted by your model

10 confidence [float] : confidence that the label is correct in

range 0-1

11 """

12

13 # Write your code here

14

15 return prediction , confidence

The Python interface to be filled in by machine learning researchers is shown in
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Listing 4.9. The method is invoked from the label prediction engine and passes

a path to the image that is to be predicted. The engine expects the method to

return two values: (1) the label predicted by the model, and (2) the confidence

that the label is correct - see Appendix D.2.3 for an example implementation of a

custom model. Once this interface has been implemented the Custom Model option

becomes available in the web application. Label prediction can then be executed like

it is when using a Cold or Blitz Label model.

94



Chapter 4. Implementation 4.3. FEATURE IMPL. - LABEL PREDICTION

4.3.4 Label Prediction Engine

Figure 4.24: AIGVA Label Prediction Pages

The prediction engine is common to all three models. When a user navigates to

any of the label prediction pages, they will be met with similar pages that gives

them access to models of that type, either Cold, Blitz or Custom, and gives them the

ability to run these models to predict labels (see Figure 4.24).

Figure 4.25: AIGVA Label Prediction Implementation

The high level implementation of the label prediction engine is split into five steps
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(see Figure 4.25). First, a user clicks on a ”Predict Labels” button from either of the

three label prediction pages. The Core Data API receives this request and creates

a new Celery task. One of the core requirements of the label prediction engine

is the ability to run multiple predictions concurrently. This was the requirement

that motivated the asynchronous Message-Broker architecture discussed in Section

4.1.1. Here we can observe how the architecture serves its purpose. Specifically, if

multiple videos are selected by the user to be predicted, then multiple Celery tasks

will be created. Then each task will run a label prediction job on its video. This

is a complicated task that involves loading both the video and model into memory,

followed by iterating over frames and running inference - see Appendix D.2.4 for

the full implementation of this Celery task. When inference is complete the newly

predicted labels are written to the PostgreSQL database and the web application is

notified that the task is completed.

96



Chapter 4. Implementation 4.4. DEVOPS

4.4 DevOps

DevOps refers to the process of integrating software development with quality as-

surance and IT operations with the single goal of successfully to deploying the end

product to users (Kim et al., 2016). Having already discussed the development activ-

ities of the project in depth, we now turn to the two nal activities of DevOps: quality

assurance by testing and IT operations through deployment of the application.

4.4.1 Testing

The two crucial aspects of the application to test are the web app and the Core

Data API. To test the web app I conducted several rounds of user interviews. Such

usability testing helped to ”validate design decisions” and let users be ”exposed to the

capabilities of the system early” (Galitz, 2007). The results of these user interviews

are discussed the in the evaluation section 5.3.

Figure 4.26: Core Data API Test Coverage and Results

To test the Core Data API I used the pytest.py and coverage.py libraries. All routes

and helper functions were tested and the results are presented in Figure 4.26. The

tests perform well and cover a high percentage of the code across the Core Data API.

Although an extensive continuous integration suite could have been set up, it was

decided early on that focus should be on developing an extensive prototype. The

nature of prototypes state that they ”should be capable of being rapidly changed”

(Galitz, 2007). For that reason a CI pipeline would have slowed development signif-
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icantly, since the architecture of the application developed over the three months of

development.

4.4.2 Deployment

The objective of good deployment is to make it as simple as possible for users to

install the AIGVA tool on their own system. For that reason, the AIGVA tool is de-

ployed using the Docker container service. A container is a ”special type of virtual

machine that run on top of the kernel of the host operating system” and because

”virtualization stops at the kernel, containers are much more lightweight and effi-

cient than virtual machines” (Grinberg, 2014). The core idea behind Docker is to

make it possible for anyone to run an instance of your container without having to

configure a plethora of packages and drivers.

Listing 4.10: Docker-compose.yml Configuration File (Located in: Backend)

1 version: ’3’

2 services:

3 flask:

4 privileged: true

5 build:

6 context: .

7 dockerfile: Dockerfile

8 command: ./ scripts/run_server.sh

9 ports:

10 - ’5000:5000 ’

11 links:

12 - redis

13 - celery

14 volumes:

15 - .:/ app

16

17 celery:

18 privileged: true

19 build:

20 context: .
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21 dockerfile: Dockerfile

22 command: ./ scripts/run_celery.sh

23 links:

24 - redis

25 volumes:

26 - .:/ app

27

28 redis:

29 image: redis:latest

30 hostname: redis

To containerize the AIGVA tool two separate Docker configuration files were created:

a Dockerfile and a docker-compose. First, the Dockerfile (see Appendix D.3.1) is

responsible for building up a default Ubuntu virtual machine to handle running the

AIGVA tool. This means various setups such as: installing the right Python versions,

running the ”pip installs” needed to run the Flask server and Celery tools, compiling

the C dependencies needed to run OpenCV, configuring Linux user privileges using

the chmod and add-user commands, and building the Redis server. Second, once

the Ubuntu VM was set up, a docker-compose file was needed to run all the servers

required to run the AIGVA tool (see Listing 4.10). Recall that the Core Data API

consists of three key components: the Flask server, the Celery workers, and the Redis

message broker. Each of these three components require their own server to run on.

For that reason, the docker-compose tool was utilized to start all three servers and

link them to each other using a net of dependencies.
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Evaluation & Results

In this section I will evaluate the AIGVA tool and assess the extent to which it

achieved the objectives of the project. I will assess the tool both quantitatively and

qualitatively in several ways. First, I empirically test the AIGVA tool to quantita-

tively show the impact and usefulness of the tool. Second, I quantitatively conduct

rigorous performance testing of the application to understand both the capabilities

and limitations of the tool. Third, I conduct a user survey with key stakeholders and

potential users of the project to qualitatively assess its usefulness.

5.1 Quantitative Evaluation

To quantitatively test the usefulness of the AIGVA tool I have conducted two experi-

ments to investigate the performance and efficiency of several labelling techniques.

5.1.1 Label Prediction - Cold Label

The first experiment I conducted was on the Cold Label prediction technique. The

core idea behind the experiment was to label frames of certain class instances in a

set of videos and then subsequently use those extracted frames to train a classifier

and test its performance. The hypothesis underlying the experiment was that more

accurate labelling methods would produce better classifiers on unseen test data.
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Methodology

Figure 5.1: Quantitative Test of AIGVA Cold Label - Methodology

The experiment consisted of five steps as shown in Figure 5.1 First, I downloaded 12

YouTube videos which had instances of three categories from the CIFAR-10 dataset

(airplane, automobiles and cats) - see Appendix C.3.1 for the full list of the videos.

Second, I used a variety of techniques to label the images as seen in the list be-

low. Each labelling technique was carefully timed from beginning to end and split

into three buckets where applicable: (1) ”labelling time” was time spent manually

labelling any number of images, (2) ”prediction time” was time spent running pre-

dictive algorithms to automatically label videos, (3) ”correction time” was time spent

correcting predicted labels if that was part of the experiment. Third, frames were

extracted using the AIGVA export tool - here only a 16th of the images were ex-

tracted so as not to overfit the training data as it was made up of only 12 videos.

Fourth, an image classification model was trained on the output of each labelling

technique using the fast.ai PyTorch framework. The classifier used was a ResNet34

model pre-trained on ImageNet with the main layers frozen so it was possible to
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fine-tune it to the training data (see Appendix C.3.2 for full model specifications).

Finally, I tested each of the classification models on the CIFAR-10 test set data for

each of the three classes. I obtained the F1-score, accuracy and confusion matrix

for each of the labelling techniques. Furthermore, to keep the training consistent,

I trained each model three times for the same number of epochs and averaged the

accuracy and F1-scores to prevent any major outliers from affecting the results.

Labelling Techniques Used:

1. Randomized: randomly assigning each frame to a category to provide a base-

line

2. Manual #1 (Frame-by-frame): hand-labelling every single frame

3. Manual #2 (Using AIGVA tool): hand-labelling using the AIGVA label review

video player

4. Cold Label #1 (5 images / video): using the Cold Label tool to manually label

5 images for each of the 12 videos, then training a classifier on those images

and using that classifier to predict all frames

5. Cold Label #2 (10 images / video): using the Cold Label tool to manually label

10 images for each of the 12 videos, then training a classifier on those images

and using that classifier to predict all frames

6. Cold Label #3 (w/ Unique Image Extractor): using the Cold Label tool with the

unique image extractor to label all the ”unique” frames per video, then training

a classifier on those images and using that classifier to predict all frames

7. Cold Label #1 + Correction: using the previous method, but then spending

time to correct for mistakes

8. Cold Label #2 + Correction: using the previous method, but then spending

time to correct for mistakes
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9. Cold Label #3 + Correction: using the previous method, but then spending

time to correct for mistakes

Results & Disucssion

Overall, the results show that the AIGVA tool can significantly speed up the process

of frame-by-frame labelling by as much as 14-19x. The results of the experiment

are shown in Table 5.1 and confusion matrices for each of the experiments can be

found in Appendix C.3.3. The first observation to note is that the randomized label

approach performs as expected, with an accuracy of 30%, meaning that it is just as

good as random guessing. This provides a good baseline and sanity check for our

test.

Labelling Technique Time Spent (Mins) Model Performance

Labelling Predicting Correcting Total Accuracy F1-Score

Randomized 0 0 0 0 0.30 0.35

Manual #1 (Frame-by-frame) 303 0 0 303 0.67 0.66

Manual #2 (Using AIGVA tool) 28 0 0 28 0.67 0.66

Cold Label #1 (5 images / video) 1 11 0 12 0.63 0.61

Cold Label #2 (10 images / video) 2 11 0 13 0.64 0.65

Cold Label #3 (w/ Unique Img.) 5 11 0 16 0.65 0.65

Cold Label #1 + Correction 1 11 10 22 0.67 0.66

Cold Label #2 + Correction 2 11 8 21 0.67 0.66

Cold Label #3 + Correction 5 11 5 21 0.67 0.66

Table 5.1: AIGVA Cold Label Results

The second observation to note is the performance of the two manual labelling tech-

niques, Manual #1 and Manual #2. We observe a significant performance improve-

ment of the manually labelled techniques to the randomized approach, with the clas-

sification accuracy jumping to 67%. This confirms that there is explanatory power

in our training data, despite the training data just being sourced from 12 YouTube

videos. Comparing the two manual approaches we observe a significant time saving

of 11x from the 303mins1 taken to label the 18179 frames using the Manual #1
1Manual #1 time spent is an estimation assuming it takes 1 second to label a frame and since

18179 frames needed to be labelled. Thus, data for Manual #1 is the same as data for Manual #2
since both approaches are human labelled and will produce the same result.
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technique to the 28mins taken using the Manual #2 technique. This suggests that

using the AIGVA tool without the label prediction features can significantly speed up

the labelling process.

The third observation to note is the impact of using the three Cold Label techniques

(without corrections). We see the test accuracy drop from 67% using the manual

techniques down to 63%-65% using the three Cold Label techniques. However, the

Cold Label techniques are also faster than the manual techniques. For example, if

you are willing to sacrifice a 2% performance loss (from 67% to 65%), total labelling

time will be reduced to only 16mins. This is 19x faster than having to hand-label

every frame. Furthermore, as expected we see a positive relationship between the

amount of time taken to label a subset of images and the subsequent performance

of the classifiers. In the best performing Cold Label technique, Cold Label #3, the

”Unique Image Extraction” algorithm extracts approximately 3 times the amount of

images for the user to label compared to Cold Label #22. This suggests that the user

of the AIGVA tool must carefully balance the trade-off between time spent labelling

and the ”correctness” of the labels required. However, as we will explore in the final

observation, this trade-off becomes less important if the user decides to manually

validate the labels after they have been predicted using the Cold Label techniques.

The final observation to note, is the performance increase you obtain when using

any of the three Cold Label techniques and subsequently correcting the mistakes

made manually. It took between 5-10mins to correct the labels for each of the Cold

Label techniques. This was of course dependent on the correctness of the labels.

Interestingly, once the corrections were factored in and all labels were correct, the

total time taken did not vary by more than a minute between the Cold Label options

(21-22mins). Hence the ”time-spent labelling versus accuracy” trade-off discussed

in the previous becomes less relevant. Using either of the Cold Label techniques

to obtain initial ”weak” labels and then manually adjusting them proved to be the

2Manually labelled 55 images for Cold Label #1, 110 images for Cold Label #2, 335 images for
Cold Label #3
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fastest approaches obtain a complete set of correct labels. This is because a user

spends much less time manually correcting a video once it has some labels, assum-

ing the labels are mostly correct. Overall, using this combination of Cold Labelling

and correcting cut the time taken to label all videos correctly by 14x compared to

the manual frame-by-frame approach.

Limitations

It is worth noting the limitations of this experiment. Because of the laborious and

time-consuming nature of the task, the experiment was constrained to use only 12

YouTube videos as training data. These videos were relatively simplistic in nature,

with relatively few class changes within each video. Furthermore, the image clas-

sification task was limited to only three classes of moderate visual difference: cats,

airplanes and automobiles. Despite these choices to limit the experiment, the total

time to conduct the experiment was still a full day. All of these limitations mean that

we have to be skeptical when generalizing these results to both larger datasets and

more difficult domains. However, in my opinion, I think that these results offer an

indication at the usefulness of the tool.

There are also several limitations to the Cold Label technique overall. First, despite

the advances in few-shot learning and transfer learning, there is still a minimum

threshold of data required for a classifier to perform well. This threshold varies from

domain to domain. For instances, only few examples may be needed to distinguish

between a cat and a dog, whereas more instances are needed to distinguish between

different breeds of dogs. Second, the complexity of the model used may be insuf-

ficient to capture the difference between classes. Some domains such as detecting

scan planes in fetal ultrasounds are hard, and therefore are likely too difficult for

this type of label prediction. Third, if classes are very imbalanced, sampling a few

images from each video may skip key frames of underrepresented classes.
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5.1.2 Label Prediction - Blitz Label

To quantitatively test the Blitz Label technique I conducted an experiment to inves-

tigate the performance of several labelling approaches. The idea behind the exper-

iment was to time several labelling approaches and then examine how many of the

frames they predicted correctly.

Methodology

Figure 5.2: Quantitative Test of AIGVA Blitz Label - Methodology

The experiment consisted of four steps as shown in Figure 5.2. First, I prepared two

datasets: (1) a dataset consisting of clips from the TV show Game of Thrones with

instances of the two main characters, and (2) the dataset used in the previous exper-

iment of YouTube videos which had instances of three categories from the CIFAR-10

dataset. I chose to conduct the experiment on these two datasets to examine the

difference in performance across different video domains.
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Datasets Used:

1. Dataset #1: 8 videos w/ instances of 2 main characters from Game of Thrones

(Daenerys, Jon Snow) - 4881 total frames

2. Dataset #2: 12 videos w/ instances of 3 CIFAR-10 classes (Cats, Airplanes,

Automobiles) - 18179 total frames

Second, I used a variety of techniques to label the images as seen in the list be-

low. Each labelling technique was carefully timed from beginning to end and split

into three buckets where applicable: (1) ”labelling time” was time spent manually

labelling any number of images, (2) ”prediction time” was time spent running pre-

dictive algorithms to automatically label videos, (3) ”correction time” was time spent

correcting predicted labels if that was part of the experiment. Third, all frames were

extracted using the AIGVA export tool and downloaded locally. Fourth, the down-

loaded frames were processed using a Jupyter notebook. Here I compared the per-

formance each of the labelling techniques by determining the number of frames that

were correctly and incorrectly labelled. I was able to calculate this because I initially

labelled all of the frames manually as part of the experiment.

Labelling Techniques Used:

1. Manual 1 (Frame-by-frame): hand-labelling every single frame

2. Manual 2 (Using AIGVA tool): hand-labelling using the AIGVA label review

video player

3. Manual 75% / Blitz Label 25%: manually labelling 75% of the data and train-

ing Blitz Label model on it, and then using the model to predict frames for the

remaining 25%

4. Manual 50% / Blitz Label 50%: manually labelling 50% of the data and train-

ing Blitz Label model on it, and then using the model to predict frames for the

remaining 50%
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5. Manual 25% / Blitz Label 75%: manually labelling 25% of the data and train-

ing Blitz Label model on it, and then using the model to predict frames for the

remaining 75%

6. Manual 75% / Blitz Label 25% + Correction: using the previous method, but

then spending time to correct for mistakes

7. Manual 50% / Blitz Label 50% + Correction: using the previous method, but

then spending time to correct for mistakes

8. Manual 25% / Blitz Label 75% + Correction: using the previous method, but

then spending time to correct for mistakes

Results & Disucssion

Overall, the results show that the AIGVA tool using Blitz Label can signicantly speed

up the process of frame-by-frame labelling by as much as 8x. The results of the ex-

periment are shown in Table 5.2. The first observation to note is the performance

of the two manual labelling techniques, Manual #1 and Manual #2. For dataset

1, using the AIGVA tool without the label prediction features reduced the labelling

time from 81min3 to 24min - a 3.3x performance improvement. For dataset 2, us-

ing the AIGVA tool without the label prediction features reduced the labelling time

from 303min to 38min - a 8.0x performance improvement. The difference between

datasets can be explained by the difference in dataset complexity. Dataset 2 had

larger groupings of neighbouring labels (i.e. fewer label changes per video) which

meant that using the AIGVA tool, where you can quickly label adjacent frames, was

more efficient for this dataset. Overall, the speedup up 3.3-8.0x shows that even

the AIGVA tool without the label prediction features can signicantly speed up the

labelling process.

3Manual #1 time spent is an estimation assuming it takes 1 second to label a frame and since
either 4881 or 18179 frames needed to be labelled. Thus, data for Manual #1 is the same as data for
Manual #2 since both approaches are human labelled and will produce the same result.
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Labelling Technique Time Taken (mins) Labelling Accuracy

Labelling Training/Prediction Correction Total # Correct # Incorrect % Correct

Dataset #1: Game of Thrones

Manual 100% #1 (Frame-by-frame) 81 0 0 81 4881 0 100.0%

Manual 100% #2 (Using AIGVA tool) 24 0 0 24 4881 0 100.0%

Manual 75% / Blitz Label 25% 18 5 0 23 4624 257 94.7%

Manual 50% / Blitz Label 50% 12 7 0 19 3921 960 80.3%

Manual 25% / Blitz Label 75% 6 8 0 14 3293 1588 67.5%

Manual 75% / Blitz Label 25% + Correction 18 5 2 25 4881 0 100.0%

Manual 50% / Blitz Label 50% + Correction 12 7 3 22 4881 0 100.0%

Manual 25% / Blitz Label 75% + Correction 6 8 6 20 4881 0 100.0%

CIFAR-10 3x Categories #2: YouTube Categories

Manual 100% #1 (Frame-by-frame) 303 0 0 303 18179 0 100.0%

Manual 100% #2 (Using AIGVA tool) 38 0 0 38 18179 0 100.0%

Manual 75% / Blitz Label 25% 29 12 0 41 17558 621 96.6%

Manual 50% / Blitz Label 50% 19 17 0 36 16826 1353 92.6%

Manual 25% / Blitz Label 75% 10 21 0 31 15971 2208 87.9%

Manual 75% / Blitz Label 25% + Correction 29 12 2 43 18179 0 100.0%

Manual 50% / Blitz Label 50% + Correction 19 17 5 41 18179 0 100.0%

Manual 25% / Blitz Label 75% + Correction 10 21 6 37 18179 0 100.0%

Table 5.2: AIGVA Blitz Label Results

The second observation to note is the impact of using Blitz Label (without correc-

tions). For both datasets examined there is a clear positive linear relationship be-

tween the amount of data you label manually and the percentage of labels that are

correct. This is unsurprising as more training data generally produces more accurate

models. For both datasets, the total time taken to label using any of the Blitz Label

techniques is not much less than manually labelling all the data using the AIGVA

tool - although this is still significantly faster than manually labelling videos frame-

by-frame. For example, for dataset 1, using a 50/50 Manual/Blitz Label split reduces

the time taken to label the data from 24min to 19 min but then mislabels ca. 20%

of the data. Similarly, for dataset 2, using a 50/50 Manual/Blitz Label split reduces

the time taken to label the data from 38 min to 36min but then mislabels ca. 7%

of the data. Although these results do not appear too promising for the Blitz Label

technique, it is worth noting that we have measured the total time taken, not the

human time spent. For example, for dataset 2 using a 25/75 Manual/Blitz Label

split reduces the human time taken to label the data from 38 min to 10min but then

mislabels ca. 12% of the data.

The third observation to note is the impact of using Blitz Label with corrections.

This works by running the Blitz Label model and then manually correcting the mis-

placed labels. These results bring the classification accuracy up to 100% in all cases
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because they were manually corrected. This method is the fastest across all tested

approaches. For example, for dataset 2 using a 25/75 Manual/Blitz Label split re-

duces the time taken from 303min using Manual #1 to only 37min, of which only

16min was human time. This represents a performance improvement of over 8.0x.

These results are similar to those found in the previous Cold Label experiment where

using a combination of Cold Label and corrections proved to be the fastest method.

There is also room for significant improvements in training/prediction speed by for

example either optimizing the Core Data API or running the server on a GPU.

Limitations

There are several limitations to this experiment. For similar reasons to the previous

experiment, this experiment used limited toy datasets of either 8 or 12 videos. This

is because of the laborious and time-consuming nature of the manual labelling tasks

involved. Furthermore, the image classication task was constrained to only simple

classes of only moderate visual difference: 2x TV show characters in one dataset,

and 3x CIFAR-10 classes (cats, airplanes and automobiles) in the other. Again, de-

spite these limitations, running the experiment took more than a full day. For the

aforementioned reasons, we have to be careful when generalizing these results to

both larger datasets and more difcult domains.

The ”Blitz Label” method itself may have several shortcomings. First, the method

may be prone to overfitting, as the extracted frames have temporal locality, although

this may also be a benefit as the jittering of the videos can provide natural data aug-

mentation (as discussed in Section 2.1.5). Second, if there is meaningful variation

between the labelled videos used to train the classifier and the unlabelled videos that

the classifier is used on, then the method may not generalize well. Third, similar to

the potential drawbacks of the ”Cold Label” technique, the complexity of the model

used may be insufficient to capture the difference between classes.
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5.2 Performance Testing

5.2.1 Web Application Performance

To test the performance and accessibility of the AIGVA application I use the open-

source Lighthouse tool, which runs various automated audits and computes perfor-

mance metrics for web applications. Modern web development is complicated since

so many tools are used. In production, all of these development choices impact the

user experience. Some developers use a checklist of various questions such as ”how

quickly does the first part of the DOM render?” and ”what is the estimated input

latency?”. However, this approach is cumbersome. Instead most web developers

recommend using a tool to automatically test your site against a long list of pre-built

best practice ”questions” (Sheppard, 2017). That is exactly what Lighthouse does.

The Lighthouse tool runs a website against 41 different metrics and ultimately pro-

duces two scores: a performance score and an accessibility score.

The performance score (Lig, 2019) compares the speed of your website against oth-

ers. The accessibility score is a weighted average of numerous accessibility measures

such as the variation of CSS styles and the presence of ”alt text” for images. Scores

for both measurements are between 0 and 100. 100 is the best possible score which

corresponds to the 98th percentile of all websites and a score of 50 represents the

75th percentile of all websites. See Appendix C.2 for a breakdown of the score

weightings.

I ran the Lighthouse performance and accessibility tests twice for the 15 main pages

of the AIGVA tool. The first time I ran the tests over WiFi to simulate the perfor-

mance to the average user. The second time I ran the tests over an emulated 3G

network, which significantly throttled the internet speed. The purpose of the second

test was to see if the AIGVA tool relied too heavily on the high network speeds it was

developed on to deliver its contents. All the results are shown in Figure 5.3
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Figure 5.3: AIGVA Performance and Accessibility Testing (Using Lighthouse)

The results of the performance and accessibility tests are good overall. There is no

evidence that any part of the web application performs poorly. On the contrary,

all performance scores when the application is run on WiFi are a perfect 100%,

meaning that the all pages of the AIGVA tool load extremely fast when used over a

good internet connection. This also suggests that there are not any inefficient event

listeners in the DOM or memory leaks in the application. Similarly, the performance

scores for the 3G connections are also very high, with the exception of one 87%

score for the export page. I examined the performance of the export page further

to try to understand the root cause of the slightly slower page time. Using a the

built-in performance stack trace DevTool in Google Chrome, I could see all the DOM

events occurring until the entire export page had loaded (see Figure C.1). I found

that the performance penalty came from the label preview folder structure as it

needed to make several API calls to estimate the number of labels per category. As
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the performance penalty is still small enough to produce a score above 80% for the

export page, I will not remove this feature. But one future extension could be to add

the option to toggle the preview on/off in the settings page.

Figure 5.4: AIGVA Performance and Accessibility Testing - Export Page Analysis

The accessibility scores of the tests are equivalent for both WiFi and 3G connections.

Overall, the accessibility scores are good, although there are number of scores below

90%. These lower scores all stem from the same cause: lacking ”Accessible Rich

Internet Applications” (ARIA) features on pages with any form of user input (such as

dropdowns and input text fields). These ARIA features can ”enhance the experience

for users of assistive technology, like a screen reader” (Lig, 2019). However, since

the usage scope of the AIGVA tool is limited to be used in a standard web browser, I

have chosen not to address these ARIA features.

5.2.2 Core Data API Performance

There are several data intensive processes that run as part of the Core Data API.

These include exports, label predictions and machine learning model training. To

test the performance of these tools I have conducted several experiments measuring

the time to run these jobs. All tests were done on a MacBook Pro (13-inch, 2016)

with 2.9 GHz Intel Core i5.
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Export Tool

The average export time depends on the number of frames needed to export. There-

fore the export time can be measured in frames per second. The average export

times for both methods are listed below:

• Export Option A (Labels Only): ∼9900 FPS

• Export Option B (Full Dataset Download): ∼55 FPS

Option A is clearly the fastest export method. This is by design as it only downloads

the labels which are already kept in browser memory. Therefore the only action

performed by the tool is to trigger the download. Option B downloads at 55FPS.

This method is slower by design as it provides both labels and images organized in a

zipped file. Recall, the full dataset download option triggers an API call to the Core

Data API which then iterates over the videos to be exported and extracts a frames as

images and places them in folders corresponding to their labels. Then the Core Data

API uploads this folder as a zipped file to S3 before sending the link to the user.

Label Prediction Performance

The label prediction framerate for a single video is approximately 8 FPS. However,

the AIGVA tool allows for concurrent predictions, which run as separate processes

on a CPU. This pseudo-concurrency can bring the effective framerate up to nearly

11 FPS when running 4 concurrent predictions as shown in Table 5.3. Because of

time constraints, I did not try deploying the Core Data API on a GPU. This could

hypothetically lead to significant performance improvements. One researcher who

also used a ResNet34 model saw improvements of 91x when running inference, as

the time of a forward pass was reduced from 1530.01ms on a CPU to 16.71ms on a

GTX 1080 Ti GPU 4. However, such claims would have to be tested as other factors

such as frame extraction speed could prove to be bottlenecks.

4Data from https://github.com/jcjohnson/cnn-benchmarks
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# Concurrent Predictions Effective FPS

1 8.27
2 9.97
3 10.72
4 10.86

Table 5.3: Relationship Between Number of Concurrent Label Predictions and Predic-
tion Framerate

Note that Effective FPS in this context refers to:

EffectiveFPS =

j∑
i=0

framesj
t

(5.1)

Where j is the number of concurrent prediction jobs, framesj is the total frames

predicted for job j in the time window t measured in seconds.

Model Training Performance

The time taken for a Blitz Label or Cold Label model to train is a factor of the number

of training images used. To examine this relationship between the time taken for the

model to train and the number of input images, I varied the number of input images

exponentially and measured the time taken to train a model. For this experiment

I trained a ResNet model using Blitz Label (note that Cold Label uses exactly the

same model architecture and these results therefore also apply to that technique). I

trained the Blitz Label model for three cycles which is usually sufficient to minimize

the test set error. The results are shown in Table 5.4.

# Training Images Model Training Time (secs) Seconds / Image

111 58 0.52
222 118 0.53
445 247 0.56
888 404 0.45

Table 5.4: Relationship Between Training Images and Model Training Time (Using a
ResNet Blitz Label Model Trained for 3 Cycles)

The model training performance scales almost linearly with the number of input
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images. The results of experiment show that it takes 0.4-0-6 seconds per image

to train a model for three cycles with the tested ranges of training images. There

appears to be a convex relationship between the training images and the seconds /

image to train a model. I suspect this is caused by other non-test processes disturbing

the test results. Rather the takeaway from this experiment is that training time

appears to be reasonable stable in the range 0.4-0-6 seconds per image.
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5.3 User Interview & Feedback

To qualitatively assess the AIGVA tool, I conducted two rounds of interviews. First, I

conducted four semi-structured interviews with machine learning researchers. Sec-

ond, I conducted a single open-ended interview with a Clinical Sonographer that

worked as part of the iFIND ultrasound project.

5.3.1 Machine Learning Researchers

Figure 5.5: AIGVA ML Researchers User Interviews: Selected Quotes

After giving four machine learning researchers from Imperial College London a demo

of the tool, I asked several questions as part of a semi-structured survey - see Ap-

pendix B.1 for full survey transcripts. The first question asks researchers to rate their

agreement with the statement ”The AIGVA tool is useful for someone having to la-

bel video data” from Highly Disagree to Highly Agree. Figure 5.6 shows the results.

Overall, the results are positive and all researchers agree that the tool is useful. Ad-

ditional comments from users, as seen in Figure 5.5, show that reasons researchers

find it useful include: the broad accessibility of the tool, the domain agnostic nature

of the tool, and the ability to use it immediately in its current state.

The second question asks researcher to rate their agreement with the statement

”AIGVA is simple to understand and easy to use” from Highly Disagree to Highly
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Figure 5.6: AIGVA ML Researcher Survey - Question 1 (n=4)

Agree. Figure 5.7 shows the results. All researchers highly agreed with the state-

ment, which suggests that the tool accomplished its goals of being simple and easy to

use. Further comments suggest that the reason for the positive feedback is because

the researchers like the user interface and found it intuitive to use.

Figure 5.7: AIGVA ML Researcher Survey - Question 2 (n=4)

Additional questions in the survey dealt with any feedback, constructive criticism

and feature requests the machine learning researchers had. As there were several

commonalities across answers I have collated them in the following list of feature

requests:

118



Chapter 5. Evaluation & Results 5.3. USER INTERVIEW & FEEDBACK

• Ability to do other types of labelling (i.e. segmentation, bounding boxes and

pose estimation).

• Ability to use other types of data (i.e. image-level data, 3D volumetric data,

and specific medical data such as fMRIs).

• Providing some form of label ownership to know which user or model pro-

duced the label. One researcher wanted this to discard poor labels in case he

discovered that one of his labelers was performing poorly.

• GPU enabled prediction would be ideal to speed up labelling.

• A confidence bar for labels in the video analysis page that, similar to the la-

bel preview bar, would display a heat-map of the confidences across the time

dimension. The idea being that you could quickly see regions where a model

lacked confidence to focus review efforts there.

• A feature that could average/aggregate labels from several reviewers using the

share feature. Then include some visual feature to capture label variability and

display it.

5.3.2 Clinical Sonographer

Figure 5.8: AIGVA Clinical Sonographer Interview
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I was offered the opportunity to interview a clinical sonographer tool who works as

part of the iFIND ultrasound project. Because the tool was still in development at

the time of the interview, I used the opportunity to better understand the problems

faced with current tools and therefore opted for an open-ended interview. I also

presented an early prototype of the AIGVA tool to receive feedback. See Appendix

B.2 for a full transcript.

After demoing an early prototype of the tool, we discussed potential use cases for

sonographers and identified three key uses. First, the AIGVA tool could be useful

for improving current labelling algorithms that are performing poorly. The poor

performance of some current algorithms that attempt to label data is caused by the

domain shift that often happens: either from (1) different sonographers labelling

data or (2) different ultrasound imaging systems used than the ones the model was

originally trained on. Second, the sonographer identified the opportunity to use

the AIGVA tool to not only label ultrasound videos for the use of training machine

learning algorithms but to catalogue ultrasound videos. Specifically, she explained

how current videos are not saved and identified how videos could be stored on

the AIGVA tool and automatically processed for standard planes. Having such a

catalogue that could be very useful to keep an easily searchable database for both

clinical and legal reasons. Third, the sonographer believed that the AIGVA tool

could be useful for training sonographers. Newly trained sonographers could view

different organs/regions across the length of the video using the label preview bar.
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Conclusion & Future Work

6.1 Summary of Achievements

This dissertation reviewed the literature on image classification and demonstrated

that more labelled training data is an important factor in improving classification

performance. The literature review found that videos could be an important source

of such training data and subsequently examined the current landscape of video

annotation tools available. The examination of existing tools found that all were

lacking in label prediction and video playback features and that there was a clear

opportunity to develop such a smart video annotation tool. To further motivate the

development of a smart video annotation tool, the successes and challenges faced by

the iFIND ultrasound research project were discussed.

I proceeded by building the foundation for a smart video annotation tool called

AIGVA. I developed a set of novel label prediction techniques called Cold Label, Blitz

Label and Custom Model Label. Then I presented a set of user stories to show how

these techniques can be used as part of a web application to speed up the video

annotation process. Then I crafted a set of design principles and functional require-

ments that would guide the development of this tool.

With the design principles and functional requirements defined, I presented the im-
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plementation the AIGVA tool. I discuss the software architecture and technology

stack that were selected and the trade-offs involved in the decision making process.

The architecture was divided into three components: (1) the Core Data API respon-

sible for video processing, machine learning and other data related tasks, (2) the

Web Application responsible for providing the UI and browser tool that a user can

interact with, and (3) the File Storage and Database layer responsible for hosting

all video data and application related data. I proceed to discuss two of the most

challenging feature implementations: the video management and label prediction

features. For the video management tool I discussed how I built both an export tool

and a frame-by-frame video player from scratch to enable frame-level labelling of

videos via a web application. For the label prediction feature I presented how the

label prediction engine was built to handle the heavy data processing created by the

Cold, Blitz and Custom model labelling techniques. I discussed the implementation

of the three labelling techniques and the challenges of their building such as the

need to develop an algorithm to extract unique images from videos using perceptual

hashing. I also demonstrate how the application has been tested and then deployed

using Docker.

Finally I evaluated the tool using both quantitative and qualitative measures. I con-

ducted an empirical study on the label prediction methods which suggested that the

AIGVA tool could cut the time used to label videos by a factor of nearly 14-19x. I

assessed the real-time performance of the AIGVA web app and the Core Data API

using a variety of techniques that all suggest that the tool performs well. Finally I

qualitatively assessed the tool by conducting a set of user interviews with machine

learning researchers and clinical sonographers. Both rounds of interviews suggested

that the tool could be useful in practical real-world settings with either minor or no

modifications.
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6.2 Future Work

There are multiple areas where the AIGVA tool could be extended to address its lim-

itations. The application could be improved by adding user management features

such as admin roles and reviewer roles. This would make it possible to develop label

quality assessment tools where an admin can aggregate the labels from several re-

viewers. Furthermore, the tool is limited to image-level classification, meaning that

only a single label can be associated with an image. Additional labelling techniques

such as image segmentation, object detection and pose estimation could also be in-

tegrated to extend the usability of the tool.

Another limitation is that the tool only supports video data currently. Therefore,

additional data types such as image-only data or 3D volumetric data could be sup-

ported to extend use cases further. Extending the upload tool functionality to handle

multiple videos would improve the user experience as currently the upload func-

tionality can only handle one video at a time. Another area that could benefit from

further development is to improve label predictions by either: (1) using GPU infer-

ence instead of CPU inference to speed the process up, or (2) exploring new model

types used for Blitz and Cold Label that could improve the classification rates and

therefore increase prediction accuracy.

Overall the development of the AIGVA tool has been a rewarding and exciting ex-

perience. I hope that both technical and non-technical users will benefit from its

development, which I plan to continue in the future.
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Appendix A

User Guide

A.1 Installation

To install and run the AIGVA app you should start by cloning into the repo.

1 git clone https :// github.com/Emil -Sorensen/AI -Generated -Video -

Anonotation

The AIGVA app has three components that has to be setup: (1) the file storage and

database, (2) the Core Data API, and (3) the web application. A lot of work has been

done to ensure that total setup time is kept at a minimum (should take no more than

5-10mins).

File Storage

The file storage and database is both set up as part of the backend. First you need to

create an AWS S3 bucket that you can use to store files in the cloud (i.e. videos, ma-

chine learning models etc.). Creating a file storage bucket can be done on the AWS

website 1. Once you have obtained your credentials, paste them into the backend

config file shown below.

Listing A.1: File Storage Config (Located in: backend/app/config.py)

1 S3_KEY =

2 S3_SECRET =

1https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
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3 S3_BUCKET =

4 S3_HOST =

To set up the database, you can use any PostgreSQL distribution. You can either host

this locally or in the cloud. For cloud providers, I recommend the site Heroku 2 for

its quick setup. Once you have created a database, paste the credentials into the

same file as before.

Listing A.2: Database Config (Located in: backend/app/config.py)

1 HOST =

2 DATABASE =

3 USER =

4 PORT =

5 PASSWORD =

6 URI =

You have now set up all the config necessary to run the backend.

Core Data API

The Core Data API is Dockerized to make installation as simple as possible. Make

sure you have Docker installed and running on your machine3.

With Docker running on your machine, run the following commands to install and

run the AIGVA Core Data API.

1 cd backend

2 docker -compose build

3 docker -compose up

The Core Data API should now be up and running at port 5000 on your localhost.

Web Application

The web application runs on the React framework and was bootstrapped using

create-react-app. Installing it and running it on your localhost can be done in a
2https://heroku.com
3See https://docs.docker.com/get-started/ for help to install Docker
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few commands. First you need to install the required pacakages by running the

following:

1 cd frontend

2 npm install

After installing all the required packages you can now start the application with the

following command:

1 npm start

The AIGVA web application should now launch in your default browser running on

port 3000. Otherwise you can access the application on http://localhost:3000/

A.2 User Manual

Figure A.1: User Manuals - Available on YouTube

A series of user manuals have been created and uploaded to YouTube.

• User Manual #1: Video/Project Management + Custom-built Video Player:

https://www.youtube.com/watch?v=xSu6PxUhp88&feature=youtu.be

• User Manual #2: Label Prediction Features (Cold + Blitz + Custom Model):

https://www.youtube.com/watch?v=OwDyLwO6SZI&feature=youtu.be
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Full Surveys

B.1 Machine Learning Researchers

User Interviews - ML Researcher 1 29/07/2019

1. Is it difficult to label video data / are the problems?

• Manual labelling is tedious and tiresome

• Can do smart things with ResNet/VGG but they are generally bad as they are

trained on natural images so they cannot domain shift

• Believes the goal is to create something that is agnostic to domains

• Currently would drag labels from folder to folder

2. ”The AIGVA tool is useful for someone having to label video data”? (Highly

Disagree - Highly Agree)

• Highly Agree

• Calls it a ”powerful tool”

• Likes that it has a Python interface for custom models

• Likes that you can ”see” the labels on the video and modify them without

dragging from folder to folder
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• ”I really like that it is domain agnostic”

3. ”The AIGVA tool is simple to understand and easy to use”? (Highly Disagree -

Highly Agree)

• Highly Agree

• Difficult to say without tinkering with it for longer

• Very ”straightforward”

4. What features would you like to see?

• GPU enabled prediction

• Tool between custom model and blitz learning

• Online learning - ability to feed already reviewed labels into models and train

classifier on that

• Some kind of accuracy measure on a test set to understand performance

5. Any other feedback?

• Looks great! Very slick tool.

• Suggested running experiment to show usability. Get a dataset like Caltech

101, which is image classification and craft a narrative. Do 80/20 test train

split

• Step 1: Train ResNet on training data and report classification scores

• Step 2: ”Muddle” i.e. mislabel half the labels of the training data and rescore

it

• Step 3: Use AIGVA to relabel data and show performance compared to model

1 and 2

User Interviews - ML Researcher 2 01/08/2019

1. Is it difficult to label video data / are the problems?
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• Yeah. He’s talked to a fetal cardiologist who has built his own tool.

• The tool workflow was: manually label subset of data, then run inference, then

displays 16 imgs and click the incorrect ones and then manually relabel

2. ”The AIGVA tool is useful for someone having to label video data”? (Highly

Disagree - Highly Agree)

• Agree

• Don’t always have to label data, but if they did it would be very useful.

3. ”The AIGVA tool is simple to understand and easy to use”? (Highly Disagree -

Highly Agree)

• Highly Agree

• ”Really nice user interface”

• ”AIGVA makes data labelling very accessible to a non-techincal audience - you

can do everything without writing a line of code”

• Great even for the general public he worked a Siemens for a period where he

knew they had their own in-house labelling team

4. What features would you like to see?

• Other annotation data: landmark and segmentation

5. Any other feedback?

• He really likes it and can see it be very very useful

• Custom model implementation using python is great. I showed him the inter-

face with docstring and he verified that he liked it.

• Could also be useful for few-shot / meta-learning visualizing how it is doing.

Has fast feedback loop so useful for research.
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• Pretraining on Imagenet good for natural images but may suffer from domain

specific

User Interviews - ML Researcher 3 01/08/2019

1. Is it difficult to label video data / are the problems?

• Yeah it’s a pain. Especially bad in medicine since it’s expensive to get doctors

to label + they don’t always agree.

2. ”The AIGVA tool is useful for someone having to label video data”? (Highly

Disagree - Highly Agree)

• Highly Agree

• Very useful. Any way to speed up the process of preparing data is hugely

useful. Normally people use first 2 weeks of project just manipulating and

curating data.

3. ”The AIGVA tool is simple to understand and easy to use”? (Highly Disagree -

Highly Agree)

• Highly Agree

• Very accessible and easy to use. ”Much better than half the stuff postgrads

make.”

4. What features would you like to see?

• Other types of labelling: segmentation, bounding boxes, and maybe even pose

estimation

• Other types of data: medical data such a segments of fMRIs.

• Worth experimenting with converting medical data into video then inputting

into software

• Maybe a heatmap of the confidences similar to the label preview bar.
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5. Any other feedback?

• Luca at BioMed has been working a lot with videos. He might be interesting to

talk to.

• Really likes the share feature - would be cool if you could share it to many

medical professionals and then average the results. It’s a big thing in ML at the

moment as medical labels are not always 100

• Possibly big commercial opportunity in capturing label variability and display-

ing it

• Check out the company Cloud Factory that works on similar labelling stuff

• Best applications are safety critical -¿ doesn’t matter that Netflix gets a recom-

mendation wrong, but self-driving cars and medical diagnosis need to be much

more correct

• Babylon Health interesting company that has GP (even with 70% accuracy

where avg. doctor is 60% the NHS didn’t approve them - holds them to higher

standard so they went to Lagos instead)

User Interviews - ML Researcher 4 01/08/2019

1. Is it difficult to label video data / are the problems?

• Worked on a project where they had to label cardiac ultrasound and segment

it frame-by-frame. Had built a matlab tool to guess what the next frame was

but it performed quite poorly and had issues with prediction. Used a spline to

smooth it.

2. ”The AIGVA tool is useful for someone having to label video data”? (Highly

Disagree - Highly Agree)

• Highly Agree

• ”I have no doubt it could be used today in our research group.”
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• It would probably be most useful to people doing scan plane detection. Could

also be useful for people doing adult cardiac ultrasound - it’s hard to label these

images because certain planes are difficult to find.

• Could also be very useful for training Sonographers.

3. ”The AIGVA tool is simple to understand and easy to use”? (Highly Disagree -

Highly Agree)

• Highly Agree

• ”The interface is very slick”

• ”I don’t see many tools like this that look this good”

4. What features would you like to see?

• Other annotation types: landmark + curve would be useful

• Extension to 4D images: which are 3d images in time dimension

• Also suggested a confidence bar for labels (like label preview bar)

• Confidence for user generated labels should be 100%

5. Any other feedback?

• Label ownership: who authored the label. Was it the machine? Was it the

user? If it was a user, who? He presented the example of having 4 students do

the labelling. If 1 of the 4 was bad, then it would be nice to know which labels

he did to be extra careful.

• Current approach to labelling is dense (i.e. taking into account every frame) -

could use a video software like approach with key-frame labelling

• Really like the tool and could see it being incredibly useful - he loved the model

training in browser

• Ideas to scale to public: rights/security/privacy issues regarding labels + time

spent labelling

• Key idea: ”empower manual labelling”
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B.2 Clinical Sonographer

Clinical Sonographer Interview - August 2019

1. Is it difficult to label video data / are the problems?

• ”Yes. It takes ages.”

• They currently use a version of the SonoNet model to collect and label data.

However, they recently switched machines from GE to Phillips, which has

caused problems since the algorithms used to classify the standard planes were

trained on GE machines. Specifically, the algorithm get a lot of false positives

and even false negatives.

• ”There is a huge variation in quality of images” meaning not all standard planes

are great.

• How it works today: a sonographer will take ca. 13 scans that are freeze-

framed from a video. The video is not saved but only the 13 freeze frames.

• Only very few frames of an ultrasound are considered ”good”. You might have

300 frames of a kidney, but only 5-6 of them are worth saving and worthy of

being a standard plane scan.

2. What are the use cases of a tool like AIGVA for sonographers?

• Use case 1: improving algorithms

• Currently the algorithms are not improving. This a problem because of the

domain shift that often happens: either from (1) different sonographers or (2)

different imaging systems.

• ”It is definitely a clinical problem”

• Use case 2: cataloging videos

• Current videos are not saved. If they could be stored on the AIGVA tool and

automatically processed for standard planes, that could be very useful to keep

an easily searchable database.
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• Could also be useful for legal reasons. Suppose a baby is born with deficiency

that the sonographer missed. Legal issues normally arise here, but since only

the ca. 13 images are saved, it is normally hard to say whether or not a sono-

grapher missed a plane. By saving the videos and making them easily search-

able, you could go back and prove/disprove that sonographers did the right

thing.

• Use case 3: training sonographers

• Could be very useful for new sonographers to view different organs/regions

across the length of the video.

3. Any extensions?

• Extension 1: 3d volume data

• Requires less training and skill to perform a volumetric scan. But quality of

the scan is currently worse. In the future, if scans are better it could cause a

domain shift in the way ultrasound is done before. Less trained people perform

the scans, leaving more time for sonographers to just analyze scans. Like CT

scans today.

• Extension 2: quality control

• Quality control is hugely important but is often not performed around the

world. Like any skill, there are good and bad sonographers. A once good

sonographer may become out of touch with their skills/knowledge etc. over

time.

• A tool that could automatically analyze videos of their ultrasounds and identify

where they saved their scan planes and ”rate” them, would be extremely useful

and would be ”adopted everywhere” according to Jacqui. Think of it like an

audit of quality of service. Would be a great proactive tool able to detect poorly

performing sonographers in advance.
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C.1 Folder Structure

Listing C.1: Web Application Component Structure (Located in: frontend/src)

1 components

2 App

3 index.js

4 Charts

5 LossChart.js

6 Dashboard

7 LabelChart.js

8 index.js

9 Export

10 index.js

11 LabelReview

12 index.js

13 MLBlitzLabel

14 BlitzCreate.js

15 BlitzTrain.js

16 index.js

17 MLColdLabel

18 ColdCreate.js

19 ColdReview.js

20 ColdTrain.js

21 index.js

22 MLCustom

23 index.js

24 Navigation

25 index.js

26 Projects

27 AddProject.js

28 EditProject.js

29 Settings

30 index.js

31 VideoAnalysis

32 index.js

33 VideoFramePlayer

34 LabelPreviewBar.js

35 index.js

36 VideoManagement

37 UploadVideo.js

38 index.js

39 constants

40 api.js

41 routes.js

42 index.js
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C.2 Web Performance Testing

Figure C.1: AIGVA Performance and Accessibility Testing - Lighthouse Score Breakdown
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C.3 Experimentation

C.3.1 List of Videos For AIGVA Experiment

Link Name Frame Count

https://www.youtube.com/watch?v=RWiQm9Quz0s Cats And Dogs React To Farts Compilation 1752
https://www.youtube.com/watch?v=RN36RzSjWNw Funny Cats And Kittens Meowing Compilation 2015 1305
https://www.youtube.com/watch?v=Bejo5TLEpg4 Cute Kittens and Funny Cats Compilation — More Yawns, More smiles 1784
https://www.youtube.com/watch?v=kMhw5MFYU0s Dogs Who Fail At Being Dogs 1397
https://www.youtube.com/watch?v=q5chhdaNQ88 Funny Dogs Playing With Toys - Funny Dog Videos 2017 1227
https://www.youtube.com/watch?v=teQ299N-tj8 Funny Dogs Compilation 2018 - Dog is Sad About Going to The Vet 2010
https://www.youtube.com/watch?v=xk4LFFm1zAA ULTIMATE Planes for children — jet planes, bi-planes, seaplanes, airplanes for kids 1630
https://www.youtube.com/watch?v=RoKeSWzZAwA The Wonderful World of Flying (HD) - Wolfe Air Reel by 3DF 1563
https://www.youtube.com/watch?v=028eol-V74g Airplanes Take Off and Landing Compilation Video (Airplanes Takeoffs) 1431
https://www.youtube.com/watch?v=iK6bx2NMyTo Top 10 Best Crossovers for the Money — Best Affordable CUVs 1474
https://www.youtube.com/watch?v= BL1y6v974Y The 7 Greatest Cars You Can Buy On A Seriously Tight Budget 1856
https://www.youtube.com/watch?v=uJDmjjS0hyc Best small family cars for 2019/2020 — carwow Top 10 1314

Table C.1: List of YouTube Videos Used

C.3.2 Model Used For AIGVA Experiment

An image classification model was trained on the output of each labelling technique

using the fast.ai PyTorch framework. The classifier used was a ResNet34 model pre-

trained on ImageNet with the main layers frozen so it was possible to fine-tune it to

the training data. The code for running the classifier and obtaining results can be

found below.

Listing C.2: ResNet34 Model Used For Experimentation

1 from fastai import *

2 from fastai.vision import *

3

4 classes = [’airplane ’, ’automobile ’, ’cat’]

5 path = Path(’empirical_study/’)

6

7 data = ImageDataBunch.from_folder(path , train="aigva_output", valid="

cifar10_3classes",

8 ds_tfms=get_transforms (), size =224, num_workers =4).normalize(

imagenet_stats)

9

10 learn = cnn_learner(data , models.resnet34 , metrics =[accuracy ,

f1_score ])
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11

12 learn.fit_one_cycle (1)

13

14 interp = ClassificationInterpretation.from_learner(learn)

15 interp.plot_confusion_matrix ()

C.3.3 Confusion Matrices for AIGVA Experimentation

Figure C.2: Confusion Matrix for Experiment 1
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Figure C.3: Confusion Matrix for Experiment 2

Figure C.4: Confusion Matrix for Experiment 3
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Figure C.5: Confusion Matrix for Experiment 4

Figure C.6: Confusion Matrix for Experiment 5
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Figure C.7: Confusion Matrix for Experiment 6

Figure C.8: Confusion Matrix for Experiment 7
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Figure C.9: Confusion Matrix for Experiment 8

Figure C.10: Confusion Matrix for Experiment 9
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Appendix D

Supporting Code

D.1 Web Application

D.1.1 Video Frame Player

React Video Component

Listing D.1: Custom-Built Video Frame Player Full (Located in: frontend/src/compo-

nents/VideoFramePlayer/index.js)

1 class VideoFramePlayer extends Component {

2 constructor(props){

3 super(props)

4

5 this.vidRef = React.createRef ();

6 this.state = {

7 video: this.props.source ,

8 fps: this.props.fps ,

9 duration: 0,

10 time: 0,

11 frame: 0,

12 progress: 0,

13 frames_to_skip: 1,

14 can_play: false ,

15 }

16 }
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17

18 startUpdatingFrames () {

19 // Check that no other intervals exist to prevent multiple

listeners

20 if (!this.timerID){

21 this.timerID = setInterval (() => this.updateFrames (),

INTERVAL_MS);

22 }

23 }

24

25 stopUpdatingFrames () {

26 clearInterval(this.timerID);

27 }

28

29 componentDidMount () {

30 // Initialize event listener to update UI on frame

31 this.updateFrames ();

32 this.vidRef.current.addEventListener(’canplay ’, this.

handleCanPlayEvent)

33 }

34

35 componentWillUnmount () {

36 // Kill event listener to prevent memory leaks on component

dismount

37 this.stopUpdatingFrames ();

38 this.vidRef.current.removeEventListener(’canplay ’, this.

handleCanPlayEvent)

39 }

40

41 handleCanPlayEvent = () => {

42 this.setState ({ can_play: true})

43 }

44

45 updateFrames () {

46 const current_frame = Math.floor(this.vidRef.current.

currentTime.toFixed (5) * this.state.fps);

47 const current_time = this.vidRef.current.currentTime
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48 const current_progress = current_time/this.vidRef.current.

duration

49 this.setState ({

50 frame: current_frame ,

51 time: current_time ,

52 progress: current_progress ,

53 })

54 this.props.sendFrames(current_frame);

55 }

56

57 onPlay = () => {

58 this.startUpdatingFrames ();

59 this.vidRef.current.play();

60 }

61

62 onPause = () => {

63 this.vidRef.current.pause();

64 this.stopUpdatingFrames ();

65 }

66

67 onSliderChange = (value) => {

68 this.setFrameToTimestamp(value)

69 this.updateFrames ();

70 }

71

72 setFrameToTimestamp = (timestamp) => {

73 this.vidRef.current.currentTime = parseFloat(timestamp)

74 }

75

76 frameBackward = (frames) => {

77 const time_minus_a_frame = this.vidRef.current.currentTime -

(1/ this.state.fps)*frames

78 this.setFrameToTimestamp(time_minus_a_frame)

79 this.updateFrames ();

80 }

81

82 frameForward = (frames) => {
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83 const time_plus_a_frame = this.vidRef.current.currentTime +

(1/ this.state.fps)*frames

84 this.setFrameToTimestamp(time_plus_a_frame)

85 this.updateFrames ();

86 }

87

88 labelBackward = () => {

89 const frame_of_prev_label = this.props.getFrameOfPrevLabel ()

90 this.skipToFrameNumber(frame_of_prev_label)

91

92 }

93

94 labelForward = () => {

95 const frame_of_next_label = this.props.getFrameOfNextLabel ()

96 this.skipToFrameNumber(frame_of_next_label)

97 }

98

99 secondsToMinutesSecondsString = (seconds) => {

100 const mins = Math.floor(seconds /60);

101 let secs = seconds %60;

102 if (secs < 10){

103 secs = ’0’ + secs

104 }

105 return mins + ’:’ + secs;

106 }

107

108 skipToFrameNumber = (frame_number) => {

109 const new_time = frame_number/this.state.fps;

110 this.setFrameToTimestamp(new_time)

111 this.updateFrames ()

112 }

113

114 handleFrameSkipChange = (frames) => {

115 this.setState ({ frames_to_skip: frames })

116 }

117

118 handleKeyPress = key => {
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119 if (key === ’right’) {

120 this.frameForward(this.state.frames_to_skip)

121 }

122 if (key === ’left’) {

123 this.frameBackward(this.state.frames_to_skip)

124 }

125 if (key === ’up’) {

126 this.labelForward ()

127 }

128 if (key === ’down’) {

129 this.labelBackward ()

130 }

131 }

132 render () {

133 // JSX TO RENDER PLAYER GOES HERE

134 }

135 }

136

137 export default VideoFramePlayer;

Core Data API Video Processing

Listing D.2: Video Processing API (Located in: backend/app/routes videos.py)

1 @videos_api.route("/api/process_video/", methods =["GET"])

2 def process_video ():

3 """

4 Processes a video and returns json dump with stats.

5 """

6

7 file_location = request.args.get("file_location")

8 default_label = request.args.get("default_label")

9

10 cap = cv2.VideoCapture(file_location)

11 fps = cap.get(cv2.CAP_PROP_FPS)

12 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

13 cap.release ()

14
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15 frames = []

16 for i in range(frame_count):

17 frame = {

18 "Confidence": "0.00",

19 "Frame": ’frame’ + str(i) + ’.jpg’,

20 "Label": default_label

21 }

22 frames.append(frame)

23

24 return json.dumps ({

25 ’fps’: fps ,

26 ’frame_count ’: frame_count ,

27 ’labels ’: frames ,

28 })
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D.1.2 Export Tool

Listing D.3: Full Download API and Celery Task(Located in: backend/app/app.py)

1 @app.route("/api/full_download/", methods = ["GET"])

2 def full_download ():

3 """

4 Fetches information from db and then initiates a celery full

download task

5 """

6

7 pid = request.args.get("pid")

8 skip_factor = request.args.get("frames_to_skip")

9

10 label_types = []

11 file_locations = []

12 label_jsons = []

13

14 # 1. Get label types from DB

15 query = Project.query.filter_by(id=pid).first ().label_types

16 for label_type in query:

17 label_types.append(label_type[’label ’])

18 print(’label_types fetched: ’ + str(label_types))

19

20 # 2. Get file locations and label_jsons from DB

21 query = Label.query.filter_by(pid=pid)

22 for label in query:

23 file_locations.append(label.video.location)

24 label_jsons.append(label.json)

25 print(’file_names and labels fetched: ’ + str(file_locations))

26

27 # 3. Compute and store in folders

28 task = full_download_to_zip.apply_async(args=[ file_locations ,

label_jsons , label_types , skip_factor ])

29

30 return jsonify ({’Location ’: url_for(’taskstatus ’,task_id=task.id)

})
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31

32 @celery.task(bind=True)

33 def full_download_to_zip(self , video_links , label_jsons , classes ,

skip_factor):

34 """

35 Downloads all videos into folders seperated by their labels.

36

37 Args:

38 video_links [str array ]: array of all links to videos

39 label_jsons [json array ]: array of all json arrays with

labels

40 classes [str array]: list of unique label classes

41 skip_factor [int]: number of frames to skip when exporting

42

43 Returns:

44 celery_status_obj [dict]: status of celery task

45 """

46 db.engine.dispose ()

47

48 print(’[Full Download] Starting full download for: ’ + str(

video_links))

49 # 1: Remove any preexisting .zip files

50 zip_list = glob.glob(’./*. zip’)

51 for zip_path in zip_list:

52 os.remove(zip_path)

53

54 # 2: Make an export directory to store frames within

55 shutil.rmtree(’exports ’, ignore_errors=True)

56 os.mkdir(’exports ’)

57 print(’[Full Download] Making directories for the following

classes: ’ + str(classes))

58 for item in classes:

59 os.mkdir(’exports/’ + item)

60

61 for i in range(len(video_links)):

62 self.update_state(state=’PROGRESS ’,

63 meta={’current ’: i + 1, ’total’: len(
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video_links) + 2,

64 ’status ’: ’Extracing frames from: ’ +

str(os.path.basename(video_links[i])) + ’...’})

65 export_video_to_folder(video_links[i], label_jsons[i], int(

skip_factor))

66

67 print(’[Full Download] Succesfully downloaded and process files!’

)

68

69 # 3: Save frame and upload to S3

70 timestr = time.strftime("%Y%m%d-%H%M%S")

71 output_name = ’aigva_full_download_ ’ + timestr

72 shutil.make_archive(output_name , ’zip’, ’exports ’)

73 shutil.rmtree(’exports ’, ignore_errors=True)

74 filename = output_name + ’.zip’

75 size = humanize(os.path.getsize(filename))

76 self.update_state(state=’PROGRESS ’,

77 meta={’current ’: len(video_links) + 1, ’

total ’: len(video_links) + 2,

78 ’status ’: ’Preparing ’ + str(size) +

’ to be downloaded ...’})

79 s3_link = upload_file_to_s3(filename , ’exports ’)

80

81 return {’current ’: len(video_links) + 2, ’total’: len(video_links

) + 2, ’status ’: ’Export completed!’,

82 ’result ’: s3_link}
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D.2 Label Prediction

D.2.1 Cold Label

Listing D.4: Cold Label Image Extraction API (Located in: Backend/app/app.py)

1 @celery.task(bind=True)

2 def cold_generate_training_data_worker(self , pid , images_per_video ,

smart_guess , HAMMING_THRESHOLD =8):

3 """

4 Extracts images_per_video number of images for all videos

associated with a project

5

6 Args:

7 pid [int]: project id

8 images_per_video [int]: number of images to extract per video

9

10 Returns:

11 celery_status_obj [dict]: status of celery task

12 """

13

14 db.engine.dispose ()

15

16 print(’cold_generate_training_data_worker ’)

17 self.update_state(state=’PROGRESS ’, meta={’current ’: 0, ’total’:

1, ’status ’: ’Fetching videos from database ’})

18

19 # 1: Get associated videos from DB

20 video_links =[]

21 videos = Video.query.filter_by(pid=pid)

22 for video in videos:

23 video_links.append(video.location)

24

25 # 2: For each video extract images_per_video # of images and

upload to S3

26 s3_links = []

27 dirname = ’coldlabel ’ + str(pid)
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28 shutil.rmtree(dirname , ignore_errors=True)

29 os.mkdir(dirname)

30 count = 0

31 if smart_guess:

32 for video_link in video_links:

33 cap = cv2.VideoCapture(video_link)

34 video_name = video_link.split("/")[-1]. split(".")[0]

35 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

36 fps = int(cap.get(cv2.CAP_PROP_FPS))

37

38 last_hash = None

39 while(cap.isOpened ()):

40 frameId = cap.get (1)

41 self.update_state(state=’PROGRESS ’, meta={’current ’:

count + 1*( frameId/frame_count), ’total ’: len(video_links), ’

status ’: ’Video ’ + str(count + 1) + ’/’ + str(len(video_links)) +

’: Downloading and extracing images from ’ + video_name })

42 print("Hashing: " + str(frameId) + ’/’ + str(

frame_count))

43 ret , frame = cap.read()

44 if (ret != True):

45 break

46 cap.set(1, frameId + fps)

47

48 #Perform hashing

49 current_hash = cv2.img_hash.pHash(frame)

50

51 # Base case

52 if (int(frameId) == 0):

53 last_img = frame

54 else:

55 hamming_distance = np.count_nonzero(current_hash

!= last_hash)

56 if hamming_distance >= HAMMING_THRESHOLD:

57 last_hash = current_hash

58 loc = dirname + ’/’ + str(video_name) + "

_frame" + str(int(frameId)) + ".jpg"
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59 print(’Saving image: ’ + str(loc))

60 cv2.imwrite(loc , frame)

61 s3_link = upload_file_to_s3(loc , ’

coldlabel_training_images ’)

62 s3_links.append(s3_link)

63 print(s3_link)

64 os.remove(loc)

65 cap.release ()

66 count += 1

67 else:

68 for video_link in video_links:

69 cap = cv2.VideoCapture(video_link)

70 video_name = video_link.split("/")[-1]. split(".")[0]

71 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

72 skip_factor = frame_count /( images_per_video -1)

73

74 while(cap.isOpened ()):

75 frameId = cap.get (1)

76 self.update_state(state=’PROGRESS ’, meta={’current ’:

count + 1*( frameId/frame_count), ’total ’: len(video_links), ’

status ’: ’Video ’ + str(count + 1) + ’/’ + str(len(video_links)) +

’: Downloading and extracing images from ’ + video_name })

77 print(str(frameId) + ’/’ + str(frame_count))

78 ret , frame = cap.read()

79 if (ret != True):

80 break

81 cap.set(1, frameId + skip_factor)

82 loc = dirname + ’/’ + str(video_name) + "_frame" +

str(int(frameId)) + ".jpg"

83 cv2.imwrite(loc , frame)

84 s3_link = upload_file_to_s3(loc , ’

coldlabel_training_images ’)

85 s3_links.append(s3_link)

86 print(s3_link)

87 os.remove(loc)

88

89 cap.release ()
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90 count += 1

91

92 # 3: Return array of S3 links as a result and remove dir

93 shutil.rmtree(dirname , ignore_errors=True)

94

95 return {’current ’: 100, ’total’: 100, ’status ’: ’Predicted!’,

96 ’result ’: s3_links}

Listing D.5: Cold Label Model Training (Located in: Backend/app/app.py)

1 @celery.task(bind=True)

2 def cold_train_model_worker(self , pid , image_links , labels ,

input_cycles , input_split , input_early_stopping=False):

3 """

4 Trains model given a set of .zip file of images organized by

their labels

5

6 Args:

7 pid [int]: project id

8 image_links [str array ]: list of image links

9 labels [str array]: list of labels corresponding to image

links

10 input_cycles [int]: number of cycles to train for

11 input_split [float ]: train test split as pct test

12 input_early_stopping [bool]: enable/disable early stopping

13

14 Returns:

15 celery_status_obj [dict]: status of celery task

16 """

17 db.engine.dispose ()

18

19 # 1: Download images and put in folders seperated by their labels

20 self.update_state(state=’PROGRESS ’, meta={’current ’: 0, ’total’:

1, ’status ’: ’Preparing folder structure ’})

21 dirname = ’coldlabel ’ + str(pid)

22 shutil.rmtree(dirname , ignore_errors=True)

23 os.mkdir(dirname)

24 for label in set(labels):
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25 os.mkdir(dirname + ’/’ + label)

26

27 for i in range(len(image_links)):

28 filename = labels[i] + ’_’ + str(i) + ’.jpg’

29 path = dirname + ’/’ + labels[i] + ’/’ + filename

30 print(’Downloading ’ + str(i + 1) + ’/’ + str(len(image_links

)) + ’: ’ + str(filename))

31 urllib.request.urlretrieve(image_links[i], path)

32 self.update_state(state=’PROGRESS ’, meta={’current ’: (i + 1)

* 0.3, ’total’: len(image_links), ’status ’: ’Downloading ’ + str(i

+ 1) + ’/’ + str(len(image_links)) + ’: ’ + str(filename)})

33

34 num_images = sum([len(files) for r, d, files in os.walk(dirname)

])

35 print(’num_images ’ + str(num_images))

36

37 # 2: Define model hyperparams

38 MODEL = models.resnet18

39 MODEL_NAME = ’resnet18 ’

40 TRAIN_CYCLES = input_cycles

41 IMG_SIZE = 128

42 VALID_PCT = input_split

43 BATCH_SIZE = 16

44

45 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.06, ’total

’: 1, ’status ’: ’Initializing ’ + MODEL_NAME })

46

47 # 3: Model hyperparam calculations

48 BATCH_SIZE = int((1 - VALID_PCT) * BATCH_SIZE)

49

50 #4: Initialize model

51 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.08, ’total

’: 1, ’status ’: ’Normalizing data using ImageNet stats’})

52 data = ImageDataBunch.from_folder(dirname , train=".", valid_pct=

VALID_PCT ,

53 ds_tfms=get_transforms (), size=IMG_SIZE , num_workers =0, bs=

BATCH_SIZE).normalize(imagenet_stats)
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54 list_files(’./’)

55 #os.mkdir(’/ nonexistent ’)

56 learner = cnn_learner(data , MODEL , metrics =[ error_rate ])

57

58 #5: Train model

59 self.update_state(state=’PROGRESS ’, meta={’current ’: (0) * 0.9,

’total ’: TRAIN_CYCLES , ’status ’: "Epoch: 0" + ’/’ + str(

TRAIN_CYCLES) + " | Training ..."})

60 test_accuracy = 0

61 test_accuracies = []

62 train_accuracy = 0

63 train_accuracies = []

64 for epoch in range(TRAIN_CYCLES):

65 learner.fit_one_cycle (1)

66 self.update_state(state=’PROGRESS ’, meta={’current ’: (epoch +

0.5 ) * 0.9, ’total’: TRAIN_CYCLES , ’status ’: "Epoch: " + str(

epoch + 1) + ’/’ + str(TRAIN_CYCLES) + " | Validating ..."})

67 log_preds = learner.model.eval()

68 prob_test , actual_test = learner.get_preds(ds_type=

DatasetType.Valid)

69 prob_train , actual_train = learner.get_preds(ds_type=

DatasetType.Train)

70 prev_test_accuracy = test_accuracy

71 test_accuracy = round (1 - error_rate(prob_test , actual_test)

.item() ,4)

72 train_accuracy = round(1 - error_rate(prob_train ,

actual_train).item() ,4)

73 test_accuracies.append(test_accuracy)

74 train_accuracies.append(train_accuracy)

75 # Break if early stopping is enabled and test accuracy is

lower than prev

76 if (( input_early_stopping ==True) and (test_accuracy <

prev_test_accuracy)):

77 print(’Early stopping ’)

78 self.update_state(state=’PROGRESS ’, meta={’current ’: + (

epoch + 1 ) * 0.9, ’total ’: TRAIN_CYCLES , ’status ’: "[EARLY

STOPPING ACTIVATED] Epoch: " + str(epoch + 1) + ’/’ + str(
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TRAIN_CYCLES) + " | Test Accuracy: " + str(test_accuracy *100) + ’

%’ + " | Train Accuracy: " + str(train_accuracy *100) + ’%’, ’

accuracies ’: json.dumps ({’test_accuracies ’: test_accuracies , ’

train_accuracies ’: train_accuracies })})

79 break

80 print("Test Accuracy: " + str(test_accuracy *100) + ’%’)

81 self.update_state(state=’PROGRESS ’, meta={’current ’: + (

epoch + 1 ) * 0.9, ’total ’: TRAIN_CYCLES , ’status ’: "Epoch: " +

str(epoch + 1) + ’/’ + str(TRAIN_CYCLES) + " | Test Accuracy: " +

str(round(( test_accuracy *100) ,2)) + ’%’ + " | Train Accuracy: " +

str(round(( train_accuracy *100) ,2)) + ’%’, ’accuracies ’: json.

dumps ({’test_accuracies ’: test_accuracies , ’train_accuracies ’:

train_accuracies })})

82

83 # 6: Export model , upload to S3

84 model_name = str(MODEL_NAME) + ’_’ + str(TRAIN_CYCLES) + ’cycles_

’ + str(IMG_SIZE) + ’imgsize_ ’ + str(num_images) + ’noimgs_ ’ + str

(VALID_PCT) + ’valpct ’ ’.pkl’

85 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.95, ’total

’: 1, ’status ’: ’Exporting trained model as ’ + model_name , ’

accuracies ’: json.dumps ({’test_accuracies ’: test_accuracies , ’

train_accuracies ’: train_accuracies })})

86 learner.export(model_name)

87 print(’Uploading to S3’)

88 s3_link = upload_file_to_s3(dirname + ’/’ + model_name , ’

blitzlabel_models ’)

89 print(’S3 Link: ’ + str(s3_link))

90

91 #7: Add model to PostgresDB

92 model_obj = Model(date = datetime.datetime.now(), name =

model_name , location = s3_link , accuracy=float(test_accuracy *100) ,

num_images=num_images , type = ’cold’ , pid = pid , file_size =

humanize(os.path.getsize(dirname + ’/’ + model_name)))

93 db.session.add(model_obj)

94 db.session.commit ()

95

96 #8: Delete model
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97 shutil.rmtree(dirname , ignore_errors=True)

98

99 return {’current ’: 1, ’total’: 1, ’status ’: model_name + ’ ready

for prediction ’, ’result ’: ’Done!’}
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D.2.2 Blitz Label

Listing D.6: Blitz Label Model Training (Located in: Backend/app/app.py)

1 @celery.task(bind=True)

2 def blitz_train_model_worker(self , pid , zip_link , input_cycles ,

input_split , input_early_stopping=False):

3 """

4 Trains model given a set of .zip file of images organized by

their labels

5

6 Args:

7 pid [int]: project id

8 zip_link [str]: link to zip file with images organized by

labels in subfolders

9 input_cycles [int]: number of cycles to train for

10 input_split [float ]: train test split as pct test

11 input_early_stopping [bool]: enable/disable early stopping

12

13 Returns:

14 celery_status_obj [dict]: status of celery task

15 """

16 db.engine.dispose ()

17

18 # 1: Download images and put in folders seperated by their labels

19 self.update_state(state=’PROGRESS ’, meta={’current ’: 0, ’total’:

1, ’status ’: ’Preparing folder structure ’})

20 dirname = ’blitzlabel ’ + str(pid)

21 shutil.rmtree(dirname , ignore_errors=True)

22 os.mkdir(dirname)

23 print(’Downloading ’ + str(zip_link))

24 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.04, ’total

’: 1, ’status ’: ’Computing hyperparameters ’})

25

26 urllib.request.urlretrieve(zip_link , dirname + ’/data.zip’)

27 shutil.unpack_archive(dirname + ’/data.zip’, dirname)

28 num_images = sum([len(files) for r, d, files in os.walk(dirname)
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])

29 print(’num_images ’ + str(num_images))

30

31 # 2: Define model hyperparams

32 MODEL = models.resnet18

33 MODEL_NAME = ’resnet18 ’

34 TRAIN_CYCLES = input_cycles

35 IMG_SIZE = 128

36 VALID_PCT = input_split

37 BATCH_SIZE = 16

38

39 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.06, ’total

’: 1, ’status ’: ’Initializing ’ + MODEL_NAME })

40

41 # 3: Model hyperparam calculations

42 BATCH_SIZE = int((1 - VALID_PCT) * BATCH_SIZE)

43

44 #4: Initialize model

45 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.08, ’total

’: 1, ’status ’: ’Normalizing data using ImageNet stats’})

46 data = ImageDataBunch.from_folder(dirname , train=".", valid_pct=

VALID_PCT ,

47 ds_tfms=get_transforms (), size=IMG_SIZE , num_workers =0, bs=

BATCH_SIZE).normalize(imagenet_stats)

48 list_files(’./’)

49 #os.mkdir(’/ nonexistent ’)

50 learner = cnn_learner(data , MODEL , metrics =[ error_rate ])

51

52 #5: Train model

53 self.update_state(state=’PROGRESS ’, meta={’current ’: (0) * 0.9,

’total ’: TRAIN_CYCLES , ’status ’: "Epoch: 0" + ’/’ + str(

TRAIN_CYCLES) + " | Training ..."})

54 test_accuracy = 0

55 test_accuracies = []

56 train_accuracy = 0

57 train_accuracies = []

58 for epoch in range(TRAIN_CYCLES):
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59 learner.fit_one_cycle (1)

60 self.update_state(state=’PROGRESS ’, meta={’current ’: (epoch +

0.5 ) * 0.9, ’total’: TRAIN_CYCLES , ’status ’: "Epoch: " + str(

epoch + 1) + ’/’ + str(TRAIN_CYCLES) + " | Validating ..."})

61 log_preds = learner.model.eval()

62 prob_test , actual_test = learner.get_preds(ds_type=

DatasetType.Valid)

63 prob_train , actual_train = learner.get_preds(ds_type=

DatasetType.Train)

64 prev_test_accuracy = test_accuracy

65 test_accuracy = round (1 - error_rate(prob_test , actual_test)

.item() ,4)

66 train_accuracy = round(1 - error_rate(prob_train ,

actual_train).item() ,4)

67 test_accuracies.append(test_accuracy)

68 train_accuracies.append(train_accuracy)

69 # Break if early stopping is enabled and test accuracy is

lower than prev

70 if (( input_early_stopping ==True) and (test_accuracy <

prev_test_accuracy)):

71 print(’Early stopping ’)

72 self.update_state(state=’PROGRESS ’, meta={’current ’: + (

epoch + 1 ) * 0.9, ’total ’: TRAIN_CYCLES , ’status ’: "[EARLY

STOPPING ACTIVATED] Epoch: " + str(epoch + 1) + ’/’ + str(

TRAIN_CYCLES) + " | Test Accuracy: " + str(test_accuracy *100) + ’

%’ + " | Train Accuracy: " + str(train_accuracy *100) + ’%’, ’

accuracies ’: json.dumps ({’test_accuracies ’: test_accuracies , ’

train_accuracies ’: train_accuracies })})

73 break

74 print("Test Accuracy: " + str(test_accuracy *100) + ’%’)

75 self.update_state(state=’PROGRESS ’, meta={’current ’: + (

epoch + 1 ) * 0.9, ’total ’: TRAIN_CYCLES , ’status ’: "Epoch: " +

str(epoch + 1) + ’/’ + str(TRAIN_CYCLES) + " | Test Accuracy: " +

str(round(( test_accuracy *100) ,2)) + ’%’ + " | Train Accuracy: " +

str(round(( train_accuracy *100) ,2)) + ’%’, ’accuracies ’: json.

dumps ({’test_accuracies ’: test_accuracies , ’train_accuracies ’:

train_accuracies })})

173



D.2. LABEL PREDICTION Chapter D. Supporting Code

76

77 # 6: Export model , upload to S3

78 model_name = str(MODEL_NAME) + ’_’ + str(TRAIN_CYCLES) + ’cycles_

’ + str(IMG_SIZE) + ’imgsize_ ’ + str(num_images) + ’noimgs_ ’ + str

(VALID_PCT) + ’valpct ’ ’.pkl’

79 self.update_state(state=’PROGRESS ’, meta={’current ’: 0.95, ’total

’: 1, ’status ’: ’Exporting trained model as ’ + model_name , ’

accuracies ’: json.dumps ({’test_accuracies ’: test_accuracies , ’

train_accuracies ’: train_accuracies })})

80 learner.export(model_name)

81 print(’Uploading to S3’)

82 s3_link = upload_file_to_s3(dirname + ’/’ + model_name , ’

blitzlabel_models ’)

83 print(’S3 Link: ’ + str(s3_link))

84

85 #7: Add model to PostgresDB

86 model_obj = Model(date = datetime.datetime.now(), name =

model_name , location = s3_link , accuracy=float(test_accuracy *100) ,

num_images=num_images , type = ’blitz ’ , pid = pid , file_size =

humanize(os.path.getsize(dirname + ’/’ + model_name)))

87 db.session.add(model_obj)

88 db.session.commit ()

89

90 #8: Delete model

91 shutil.rmtree(dirname , ignore_errors=True)

92

93 return {’current ’: 1, ’total’: 1, ’status ’: model_name + ’ ready

for prediction ’, ’result ’: ’Done!’}
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D.2.3 Custom Model

Listing D.7: Custom Model Template - Example (Located in:

Backend/app/custommodel.py)

1 def custom_model_predict(img_path):

2 """

3 This is a custom interface for using your own custom models.

4

5 Called from custom_model_predict_label_and_update_db in app.py

6

7 Args:

8 img_path: filepath to the images that needs to be predicted.

9

10 Returns:

11 prediction [str] : label predicted by your model

12 confidence [float] : confidence that the label is correct in

range 0-1

13 """

14

15 # 1: Load learner

16 learner = load_learner(

17 ’./’, ’./ models/ultrasound_model.pkl’)

18

19 # 2: Open image and predict

20 img = open_image(img_path)

21 pred = learner.predict(img)

22

23 # 3: Parse predictions into correct output format

24 prediction = str(pred [0])

25 confidence = torch.max(pred [2]).item()

26

27 return prediction , confidence
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D.2.4 Prediction Engine

Listing D.8: Label Prediction API and Celery Task (Located in: Backend/app/app.py)

1 @celery.task(bind=True)

2 def downloaded_model_predict_label_and_update_db(self , lid ,

skip_factor , video_link , model , MIN_FRAMES = 10):

3 """

4 Predicts all labels in video using downloaded model and updates

database.

5

6 Args:

7 lid [int]: label id

8 skip_factor [int]: number of frames to skip when predicting

9 video_link [str]: link to video

10 model [str]: link to model

11 MIN_FRAMES [int]: optimization param (min number of adjacent

frames a label can have)

12

13 Returns:

14 celery_status_obj [dict]: status of celery task

15 """

16 db.engine.dispose ()

17

18 #1: Download and open video stream

19 self.update_state(state=’PROGRESS ’,meta={’current ’: 0, ’total’:

1,’status ’: ’Downloading: ’ + str(video_link)})

20 video_name = video_link.split("/")[-1]. split(".")[0]

21 count = 0

22 cap = cv2.VideoCapture(video_link)

23

24 # 2: Download learner model

25 self.update_state(state=’PROGRESS ’, meta={’current ’: 0, ’total’:

1, ’status ’: ’Preparing ML model: ’ + str(model[’name’])})

26 downloaded_model = datetime.datetime.now().strftime("%Y%m%d-%H%M%

S%f") + model[’name’]

27 urllib.request.urlretrieve(model[’location ’], downloaded_model)
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28 learner = load_learner(’./’, downloaded_model)

29

30 # 3: Prepare folder structure and get frame count

31 shutil.rmtree(video_name , ignore_errors=True)

32 os.mkdir(video_name)

33 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

34 output = []

35

36 # 4: Loop through video frame by frame

37 while(cap.isOpened ()):

38 frameId = cap.get (1)

39 ret , frame = cap.read()

40 # 4.1 Exit when video has no more frames

41 if (ret != True):

42 break

43 # 4.2 Only predict every skip_factor frames

44 if (frameId % math.floor(skip_factor) == 0):

45 self.update_state(state=’PROGRESS ’,

46 meta={’current ’: count , ’total’:

frame_count ,

47 ’status ’: ’Predicting Frame ’ + str(

count) + ’/’ + str(frame_count)})

48 # 4.2.1 Create image and open it

49 loc ="./" + video_name + "/frame.jpg"

50 cv2.imwrite(loc , frame)

51 img = open_image(loc)

52

53 # 4.2.2 Get prediction

54 pred = learner.predict(img)

55

56 # 4.2.3 Prepare write

57 tmp = []

58 filename = ’frame ’ + str(count) + ’.jpg’

59 prediction = str(pred [0])

60 confidence = torch.max(pred [2]).item()

61 tmp.append(confidence)

62 tmp.append(filename)
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63 tmp.append(prediction)

64 output.append(tmp)

65 print(str(count) + ’/’ + str(frame_count))

66

67 # 4.2.4 Remove image

68 os.remove(loc)

69 count += 1* skip_factor

70

71 cap.release ()

72 shutil.rmtree(video_name , ignore_errors=True)

73 os.remove(downloaded_model)

74

75 self.update_state(state=’PROGRESS ’,

76 meta={’current ’: count , ’total’:

frame_count ,

77 ’status ’: ’Uploading ’ + str(

frame_count) + ’ labels to database ’ })

78

79 # 5. Run optimiser which only allows a label change if the new

frame is consistently predicted for MIN_FRAMES

80 prev_label = output [0][2]

81 for i in range(len(output)):

82 current_label = output[i][2]

83 if current_label != prev_label:

84 next_change = -1

85 try:

86 for j in range(1, MIN_FRAMES + 1):

87 next_label = output[i+j][2]

88 if next_label != current_label:

89 next_change = j

90 if next_change != -1:

91 output[i][2] = prev_label

92 except:

93 output[i][2] = prev_label

94 prev_label = output[i][2]

95

96 # 6. Create frames array
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97 frames = []

98 for i in range(len(output)):

99 frame = {

100 "Confidence": output[i][0],

101 "Frame": output[i][1],

102 "Label": output[i][2]

103 }

104 frames.append(frame)

105

106 # 7: Commit labels to database

107 query = Label.query.filter_by(id=lid).first ()

108 query.json = frames

109 query.mid = model[’id’]

110 query.reviewed = False

111 query.date = datetime.datetime.now()

112 db.session.commit ()

113

114 return {’current ’: 100, ’total’: 100, ’status ’: ’Predicted!’,

115 ’result ’: ’Success!’}

116

117 @app.route("/api/predict_label/", methods = ["GET"])

118 def predict_label ():

119 """

120 Initiates a label prediction celery task

121 """

122 lid = request.args.get("lid")

123 skip_factor = request.args.get("frames_to_skip")

124 video_link = request.args.get("video_link")

125

126 task = custom_model_predict_label_and_update_db.apply_async(args

=[lid , int(skip_factor), video_link ])

127

128 return jsonify ({’Location ’: url_for(’taskstatus ’,task_id=task.id)

})
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D.3 DevOps

D.3.1 Docker

Listing D.9: Dockerfile (Located in: Backend/)

1 FROM python :3.7

2

3 RUN apt -get update \

4 && apt -get install -y \

5 build -essential \

6 cmake \

7 git \

8 wget \

9 unzip \

10 yasm \

11 pkg -config \

12 libswscale -dev \

13 libtbb2 \

14 libtbb -dev \

15 libjpeg -dev \

16 libpng -dev \

17 libtiff -dev \

18 libavformat -dev \

19 libpq -dev \

20 && rm -rf /var/lib/apt/lists/*

21

22 RUN pip install numpy

23

24 WORKDIR /

25 ENV OPENCV_VERSION="4.1.0"

26 RUN wget https :// github.com/opencv/opencv/archive/${OPENCV_VERSION }.

zip \

27 && unzip ${OPENCV_VERSION }.zip \

28 && mkdir /opencv -${OPENCV_VERSION }/ cmake_binary \

29 && cd /opencv -${OPENCV_VERSION }/ cmake_binary \

30 && cmake -DBUILD_TIFF=ON \
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31 -DBUILD_opencv_java=OFF \

32 -DWITH_CUDA=OFF \

33 -DWITH_OPENGL=ON \

34 -DWITH_OPENCL=ON \

35 -DWITH_IPP=ON \

36 -DWITH_TBB=ON \

37 -DWITH_EIGEN=ON \

38 -DWITH_V4L=ON \

39 -DWITH_FFMPEG =1 \

40 -DBUILD_TESTS=OFF \

41 -DBUILD_PERF_TESTS=OFF \

42 -DCMAKE_BUILD_TYPE=RELEASE \

43 -DCMAKE_INSTALL_PREFIX=$(python3 .7 -c "import sys; print(sys.prefix

)") \

44 -DPYTHON_EXECUTABLE=$(which python3 .7) \

45 -DPYTHON_INCLUDE_DIR=$(python3 .7 -c "from distutils.sysconfig

import get_python_inc; print(get_python_inc ())") \

46 -DPYTHON_PACKAGES_PATH=$(python3 .7 -c "from distutils.sysconfig

import get_python_lib; print(get_python_lib ())") \

47 .. \

48 && make install \

49 && rm /${OPENCV_VERSION }.zip \

50 && rm -r /opencv -${OPENCV_VERSION}

51 RUN ln -s \

52 /usr/local/python/cv2/python -3.7/ cv2.cpython -37m-x86_64 -linux -gnu.

so \

53 /usr/local/lib/python3 .7/site -packages/cv2.so

54

55 EXPOSE 5000

56

57 ADD requirements.txt /app/requirements.txt

58 WORKDIR /app/

59

60 RUN pip install -r requirements.txt --no -cache -dir

61 RUN pip install gunicorn

62

63 RUN adduser --disabled -password --gecos ’’ app
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64 RUN chmod 777 /app/

65 RUN chmod -R 777 ../tmp/

66 RUN mkdir /nonexistent

67 RUN chmod -R 777 ../ nonexistent/

68 RUN ls
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D.4 File Storage and Database

D.4.1 Database Schema

Listing D.10: Database Model (Located in: Backend/app/app.py)

1 class Project(db.Model):

2 id = db.Column(db.Integer , primary_key=True)

3 name = db.Column(db.Unicode)

4 desc = db.Column(db.Unicode)

5 main_label = db.Column(db.Unicode)

6 label_types = db.Column(db.JSON)

7 date = db.Column(db.DateTime)

8 videos = db.relationship("Video", backref=db.backref(’

project ’))

9 models = db.relationship("Model", backref=db.backref(’

project ’))

10 labels = db.relationship("Label", backref=db.backref(’

project ’))

11

12 class Video(db.Model):

13 id = db.Column(db.Integer , primary_key=True)

14 name = db.Column(db.Unicode)

15 location = db.Column(db.Unicode)

16 fps = db.Column(db.Float)

17 size = db.Column(db.Integer)

18 pid = db.Column(db.Integer , db.ForeignKey(’project.id’))

19 labels = db.relationship("Label", backref=db.backref(’video’

))

20

21 class Model(db.Model):

22 id = db.Column(db.Integer , primary_key=True)

23 name = db.Column(db.Unicode)

24 date = db.Column(db.DateTime)

25 location = db.Column(db.Unicode)

26 type = db.Column(db.Unicode)

27 file_size = db.Column(db.Unicode , nullable=True)
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28 accuracy = db.Column(db.Float , nullable=True)

29 num_images = db.Column(db.Integer , nullable=True)

30 pid = db.Column(db.Integer , db.ForeignKey(’project.id’))

31 labels = db.relationship("Label", backref=db.backref(’model’

))

32

33 class Label(db.Model):

34 id = db.Column(db.Integer , primary_key=True)

35 date = db.Column(db.DateTime)

36 json = db.Column(db.JSON) #JSON

37 frame_count = db.Column(db.Integer , nullable=True)

38 reviewed = db.Column(db.Boolean)

39 vid = db.Column(db.Integer , db.ForeignKey(’video.id’))

40 mid = db.Column(db.Integer , db.ForeignKey(’model.id’),

nullable=True)

41 pid = db.Column(db.Integer , db.ForeignKey(’project.id’))
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Figure D.1: AIGVA Database Model
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