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Abstract

Multimodal machine translation (MMT) is the task of utilising information from
non-textual modalities to aid textual machine translation (MT). Thanks to the re-
cent rapid development of deep neural networks (DNNs) and their application in
neural machine translation (NMT) and computer vision, the past few years have
witnessed booming research in neural MMT that seeks to achieve visually grounded
NMT based on visual features from DNNs. However, the question still remains as
to if and how visual information helps MMT models translate. Previous work has
explored source degradation to investigate the impact of image features on MMT
model performance. However, little has been done for the video domain, where
the visual modality contains considerably richer information. We therefore carry
out a two-phased project focused on video-based MMT with source corruption. In
Phase 1, we train multimodal transformers on video subtitles with different degrees
of verb masking, and then conduct incongruence and human analyses to assess the
importance of visual information. In Phase 2, multimodal transformers and delib-
eration networks are trained for multimodal cascaded speech translation (MCST)
before their attention is visualised and their normal and incongruent performance
is assessed on varying levels of noisy transcripts. Our Phase 1 results show that the
multimodal transformers deliver competitive performance while improving transla-
tion quality on verb-masked source sentences. Our Phase 2 results, however, reveal
that multimodal models largely fail to utilise visual information to bridge the seman-
tic gap between the transcripts and original subtitles. We also discover in Phase 2
that multihead visual attention works poorly on convolutional visual features and
comparatively better on action category embeddings, but only when the source sen-
tence is strongly related to the video.



Acknowledgments

I have been fortunate enough to have received substantial help throughout the
project. I would like to first thank my advisor, Prof. Lucia Specia, who, with her
expertise in machine translation and natural language processing in general, has
been offering invaluable advice on my research topics and methodology ever since
my Independent Study Option. I would also like to thank Dr. Julia Ive for her helpful
suggestions when I was confused or stuck. Last but by no means the least, I want
to thank Dr. Ozan Caglayan, Dr. Josiah Wang and Dr. Pranava Madhyastha for the
resources and materials for the project, without whom this thesis would not have
been possible.




Contents

1 Introduction

2 Background
2.1 Timeline of Machine Translation Development . . . .. ... .. ... ..
2.2 Neural Machine Translation Architectures . . . . ... ... ... .....
2.2.1 Vanilla RNNs for Seq2Seq MT . . . ... ... ... ........
2.2.2 Powerful RNNVariantS . . . . . . . . . . v v v v v i i i i
2.2.3 Attention . . . . . . ... e e e e e e
2.2.4 Transformer . . . .. ... . ..
2.2.5 Deliberation . . ... ... ... ... ...
2.3 Neural Multimodal Machine Translation . . . .. ... ... ........
2.3.1 Problem. . ... ... .. ...
2.3.2 AsSingle Global Vector . . ......................
2.3.3 AsSpatial Features . ... ... ... ... .. .. ...,
2.3.4 AsObjects . . .. . e e

3 Design

3.1 Automatic Speech Recognition . ... ....................

3.2 Visual Features . . . . . . . . . . i i e
3.2.1 VideoSum (VS) . . . . .t i i i e e e e
3.2.2 Convolutional Layer Output (CLO) . . . . ... ... ... ... ..
3.2.3 Action Category Embedding (ACE) . . ................

3.3 Transformers . . . . . . . o i i i e e
3.3.1 Encoder with Additive Visual Conditioning (Enc-AVC) . ... ..
3.3.2 Decoder with Attention to Visual Features (Dec-AVF) . . ... ..
3.3.3 Transformer with Additive Visual Conditioning (Trans-AVC)
3.3.4 Transformer with Attention to Visual Features (Trans-AVF) .

3.4 Deliberation Networks . . ... ... ... ... . . . . . ... ...,
3.4.1 Additive or Cascade Deliberation at Second Pass . .. ... ...
3.4.2 Deliberation with Additive Visual Conditioning (Delib-AVC) .
3.4.3 Deliberation with Attention to Visual Features (Delib-AVF) . . .

4 Experiments
4.1 Dataset . . . . v v v i e e e e e e e e e e e e
4.2 Source Domains . . . . . . . . e e e e e e e e e

23
23
24
24
24
24
25
25
25

. 26
.. 26

27
27

. 27

27



Table of Contents CONTENTS

4.2.1 Verb Masking for Source Subtitles . . . ... ... ... ...... 31

4.2.2 TranscriptS @s SOUICE . . . . . . v v v v v v ittt e e e e 31

4.3 From Wordsto Vectors . . . . .. ... ... ..., 32
4.4 Shared Training Hyperparameters . ... .. ... ... ... ....... 32
4.5 Phase 1: MMT with Verb Masking . . . . ... .. .. .. .. ........ 33
4.5.1 PreproCcessing . . . .. . . ..ttt 33

452 Models . ... ... .. 33

4.5.3 Training . . . . . o o o v e e e e e e e e e e 34

4.6 Phase 2: MMT with Transcripts . . . . . ... ... .. 34
4.6.1 PreproCessing . . . . . . ... it 34

4.6.2 Models . ... ... .. ... 36

4.6.3 Source Augmentation for Deliberation . .............. 37

4.6.4 TrainiNg . . . . . . o v vt e e e e e e e e e e e 37

4.6.5 Subsetting Test Set with Transcript Faithfulness . . . .. ... .. 38

5 Results & Evaluation 40
5.1 Phase 1: MMT with Verb Masking . . . . ... ................ 40
S5.1.1 Scores . . . .. e 40

5.1.2 Incongruence Analysis . . . .. ... .. .. ... ... 41

5.1.3 Human Analysis . . . . . .. ... .. it 42

5.2 Phase 2: MMT with Transcripts . . . . .. .. ... . ... 46
521 Scores . .. .. .. 46

5.2.2 Incongruence Analysis . . ... .. ... ... ... .. ... ... 49

5.2.3 Attention Visualisation . . . . ... ... ... .. .......... 51

6 Conclusions & Future Work 60
6.1 Contributions . . . . . ... ... .. 60
6.2 Future Work. . . . . .. . . . .. e 62
Bibliography 63
Appendices 70

A Ethics Checklist 71




Chapter 1

Introduction

As arguably the most important channel through which humans convey their thoughts
and feelings, language has always drawn enormous research interest. Among the nu-

merous language-related fields, translation is perhaps one of the oldest, as it brings

convenience to the communication between people speaking different languages

and makes foreign cultures more accessible. However, translation per se is a very

resource-consuming and often tedious task, therefore its automation — machine

translation (MT) (Weaver, 1955)— has been studied for decades.

Once dependent on specialised linguistics expertise to develop rules, MT has evolved
greatly and is not at all language-pair-dependent nowadays. This shift was thanks to
the advent of statistical machine translation (SMT) (Brown et al., 1988) and, more
recently, neural machine translation (NMT) (Kalchbrenner and Blunsom, 2013). The
former achieved probabilistic modelling of languages while the latter has success-
fully for the most part removed the need for human-designed feature engineering
and delegated virtually everything to neural-network(McCulloch and Pitts, 1943)-
based models. Along with the dramatically increased automation has been the sig-
nificant improvement of translation quality—nowadays the overwhelming majority
of MT applications and research are driven by neural networks.

The inevitable limitation of NMT, however, is its largely unimodal nature. De-
spite major architectural breakthroughs such as the attention mechanism (Bahdanau
et al., 2014) and the transformer (Vaswani et al., 2017), NMT still only sees the
source text during translation. Translation these days is more often than not more
than text — video subtitling, for instance, is an inherently multimodal task. It is
extremely unlikely that the professional translators of a movie would produce the
subtitles by inspecting the original-language subtitles alone, not to mention that it is
rare in real life to have the subtitles of a random video ready for translation.

Hence the birth of multimodal machine translation (MMT) (Elliott et al., 2015;
Hitschler et al., 2016). The benefits of having non-textual-modality information are
obvious. Disambiguation, for instance, is considerably easier with visually grounded
translation. Given the sentence “The pianist has finished the sonata” alone, an NMT
model has no way to know for sure whether to translate “the pianist” into “le pi-
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Chapter 1. Introduction

aniste” (masculine) or “la pianiste” (feminine) in French since the gender of the pi-
anist cannot be deduced. In fact, at the time of writing, the translation that Google
Translate produces is “le pianiste”, very possibly due to the gender bias in the train-
ing data (the same goes for words such as “player”). If the sentence is the subtitle
of a video featuring a female pianist, however, a well-trained MMT model will easily
choose to translate it as “la pianiste”, just as a human would.

In recent years, MMT has largely aimed at combining the textual and visual (im-
age) modalities, mostly due to the rapid progress in computer vision (CV) that has
enabled sophisticated visual feature extraction. Well-known convolutional neural
networks (CNNs) (LeCun et al., 1989) such as ResNet (He et al., 2016) and VGG-16
and 19 (Simonyan and Zisserman, 2014) have been adopted to capture the seman-
tics of visual information for MMT. Therefore, MMT research has in essence evolved
into various ways of integrating visual features into NMT models to complement the
source sentence and thus achieve higher-quality translation.

In MMT research, the visual features often come from the fully-connected layer or
the softmax layer as a single global feature vector or from the last convolutional
layer as a grid of image region representations. On datasets such as Multi30K (Elliott
et al., 2016), those multimodal models show better translation quality than the text-
only baseline, and provide numerous examples where visual information is indeed
utilised to aid translation, such as where the model attends to relevant image regions
for translating a related word.

However, the contribution of the visual modality to translation quality in the MMT
models proposed so far is still an open question. For instance, the organisers of the
MMT shared task have the opinion (Barrault et al., 2018a) that the MMT models
devised heretofore have led to mostly insignificant decoding differences according
to automatic metrics and human judgement, while Elliott (2018) observes no serious
performance degradation when MMT models are fed with randomly assigned image
features instead of the correct ones.

To probe this matter further, Caglayan et al. (2019a) carry out a number input degra-
dation schemes on Multi30K, including masking colour words and visually present
entities, and find that visual information boosts translation quality the most when
the corrupted source sentence is inadequate for correct decoding. When the source
sentence is sufficient, however, the sensitivity to the visual modality drops.

Inspired by Caglayan et al. (2019a), we, too, explore the effect of the visual modality
in the presence of source corruption, but this time in the video domain, based on
the assumption that videos generally contain richer information than images and
therefore could offer more to MMT. We conduct our experiments on How2 (Sanabria
et al., 2018), a dataset of instructional videos on YouTube with English subtitles and
Portuguese translations.

Specifically, in two phases, we investigate two separate scenarios: artificial corrup-
tion and random noise. For the former, we execute different degrees of verb mask-
ing on the English subtitles before training multimodal transformers to translate
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Chapter 1. Introduction

those corrupted subtitles into the correct Portuguese translations, as we expect the
visual features from the videos to compensate for the source corruption. For the
random noise scenario, we use a monomodal ASR model to transcribe the videos
and then train multimodal transformers and deliberation networks (Xia et al., 2017)
to translate those transcripts into the correct Portuguese translations. In doing so,
we effectively achieve multimodal cascaded speech translation (MCST) as well as
introducing random noise to the source via transcribing.

Our main experiments include the following:

* training multimodal transformers to translate How2 English subtitles with dif-
ferent extents of verb masking (Phase 1)

* incongruent analysis and human analysis for the multimodal transformers above
for more insight into the models and results (Phase 1)

* training multimodal transformers and two types of deliberation networks for
MCST (Phase 2)

* analysing MCST performance with a novel “incongruence + transcript faith-
fulness” test as well as multihead attention visualisation (Phase 2)

In this thesis, Chapter 2 visits the basics of NMT, the building blocks relevant to our
experiments, as well as recent MMT models. We introduce the design of our systems
in Chapter 3, including the speech recognition system, our visual features, and the
transformer and deliberation networks. The details of our experiments are given in
Chapter 4 and we show the results and analyses in Chapter 5. Finally, Chapter 6
concludes the thesis by listing our contributions and pointing at directions for future
work.




Chapter 2

Background

This project is research about multimodal machine translation (MMT) (Elliott et al.,
2015; Hitschler et al., 2016), a booming area of natural language processing (NLP)
connecting the visual and textual domains. The field is relatively new and based
upon machine translation (MT) (Weaver, 1955), in particular neural machine trans-
lation (NMT) (Kalchbrenner and Blunsom, 2013). Therefore, this chapter serves as
an introduction to the above, with Chapter 2.1 offering a peek at the development
of MT, Chapter 2.2 detailing the NMT building blocks that are essential to MMT and
this project, and Chapter 2.3 visiting relevant MMT research.

2.1 Timeline of Machine Translation Development

Among all the sub-fields of natural language processing (NLP), machine translation
(MT) (Weaver, 1955) is arguably one of the oldest. Defined simply as translating a
source-language sentence into a target language, it is still one of the most thriving
NLP research areas.

At the beginning, MT was approached by linguists in the middle of the 20" century
based on sets of human-defined rules. In those times, a source sentence would first
go through grammatical analysis, its words would be mapped to the target-language
domain in accordance with a pre-defined dictionary, and finally a candidate transla-
tion would be produced utilising the outcome of the previous steps in a strictly rule-
based manner. Unsurprisingly, such procedures were burdensome to design, thanks
to the complexities of languages. This approach was also financially demanding, and
its efficacy was not guaranteed — often unsatisfactory when applied in uncontrolled
environments.

Statistical machine translation (SMT) (Brown et al., 1988), delegating many MT
responsibilities to probability and statistics, started to gain traction at the end of
the last century, and was in a dominant position until the early 2010s. The goal
is simple: maximise the posterior probability of a candidate translation being the
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Chapter 2. Background 2.2. NEURAL MACHINE TRANSLATION ARCHITECTURES

“correct” translation of a source sentence. As its name suggests, the “correctness”
in SMT depends on the statistics, i.e. the source-target language corpora. Through
probabilistic modelling of those corpora, the “correctness” probability can be com-
puted. Despite the less manual nature of SMT, it still requires hand-crafted feature
engineering, adding to the difficulty of the models as well as their dependence on
specific languages and language pairs.

For the past few years, neural machine translation (NMT) (Kalchbrenner and Blun-
som, 2013) has become the go-to approach in most MT tasks. With neural net-
works (McCulloch and Pitts, 1943) to learn features automatically, the human has a
much smaller role to play, making the models a lot simpler as well as more efficient.
Sequence-to-sequence (seq2seq) (Sutskever et al., 2014) is the predominant type of
NMT models, where an encoder learns to map a source-language sentence into a
high-dimensional semantic space and a decoder on the other hand learns to map the
representation back into the domain of target-language sentences. Benefits of this
approach include intuitive trainability on corpora, completely language-independent
feature learning and, most importantly, greatly improved performance over SMT.

2.2 Neural Machine Translation Architectures

2.2.1 Vanilla RNNs for Seq2Seq MT

With the underlying seq2seq structure, what makes NMT models distinct from each
other is how the encoder is set up to represent sentences as tensors in the high
dimensional semantic space and how the decoder learns to do the reverse.

0

o of-f 0 OtH
4o |
50:} w dt I C)St - OSHI o
Unfold T W W w
U U U U
X x

x X
t

Figure 2.1: Vanilla RNN. Source: LeCun et al. (2015)

A recurrent neural network (RNN) (Rumelhart et al., 1988; Werbos et al., 1990),
as shown in Figure 2.1, is an intuitive choice for both the encoder and the decoder,
and indeed has been popular among researchers. Its modus operandi is to unfold
temporally, using a hidden state (s, in this example) in the high dimensional seman-
tic space to represent the semantics of the sentence it has processed thus far. In the
simplest form of an RNN, the hidden state s is initialised in some manner (s,), and
then the model reads as input a new word z; at time step ¢ as well as the hidden
state value s,_, from the preceding time step ¢ — 1. With an activation function (tanh,
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2.2. NEURAL MACHINE TRANSLATION ARCHITECTURES Chapter 2. Background

for instance. Not shown in this example) and matrix multiplication on the inputs (U
for x;, W for s;_1), the network produces a new hidden state s; for the current time
step ¢. An output o; may also be generated from such a process as a result .

Er liebte zu essen .

He loved to eat

Figure 2.2: RNN-Based Seq2Seq MT. Source: Merity (2016)

Figure2.2 shows an example of an RNN-based seq2seq MT model. The encoder
simply reads the source sentence word by word as embeddings and carries out the
aforementioned hidden-state procedure. The decoder is, however, autoregressive,
in that the word it reads at each time step as input is in fact its output from the
previous time step. Also depicted in Figure 2.2 is the common practice: initialising
the decoder with the final hidden state of the encoder. The translation of this model
is thus obtained by converting the word-by-word output of the decoder from the
embedding space to the target-language domain, in this case with a softmax function
(Bridle, 1990).

2.2.2 Powerful RNN Variants

For most RNN-based MT models, the architecture relies on powerful variants of
RNN:s.

0, |—| o, o, —{ 0, —
H;L) H(ZL) H;L) ) H;,L)
f f f f
t t !

S
s
S

=
=
=

—>|
—> m«—>.\,=«—>3
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—>|
—]

=
=
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Figure 2.3: Multi-layer RNN. Source: Zhang et al. (2019)
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Figure 2.4: Bidirectional RNN. Source: Olah (2015a)

Multi-layering (Tutschku, 1995), for instance, is a straightforward yet effective struc-
tural change for RNNs. A multi-layer RNN, as shown in Figure 2.3, simply maintains
a hierarchical hidden state system, so that the inputs to H!, the hidden state at the
[*h layer at time step ¢, are H!™' and H| |, respectively the previous-time-step hidden
state at the same layer and the current-time-step hidden state from the layer below
(which is an input sentence word itself when [ = 1). The output at each time step is
thus generated by the top-layer hidden state. With such a hierarchical architecture,
deeper learning of the input is possible.

Another tweak is bidirectionality (Schuster and Paliwal, 1997), its simplest form
given in Figure 2.4. The idea addresses the forward, first-word-to-last nature of
a vanilla RNN reading its input — each hidden state only takes into account the
chronologically past input (xg, z1,x;) words as its context, ignoring the potentially
helpful information from the future (x;,1,x;.2, ;). Therefore, a bidirectional RNN
maintains a pair of hidden states: one of them forward (A) just as the vanilla RNN
while the other (A") running in reverse direction. The concatenation of A, and A4,
thus becomes the hidden state of the network at time step ¢, and this approach has
proved effective in tackling the aforementioned only-see-the-past issue.

A major weakness of the vanilla and their variants above is unsatisfactory perfor-
mance at learning long-term dependencies, and another is the vanishing gradient
problem — due to the repeated matrix multiplication (i.e. the W in Figure 2.1)
of the hidden state, it becomes difficult for backpropagation through time (BPTT)
(Werbos et al., 1990) to the early time steps to be effective, as the magnitude of the
gradient flow shrinks rapidly.

To alleviate the two problems above, long short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) as well as gated recurrent units (GRUs) (Chung et al.,
2014) were developed and have been widely applied.

The core idea of the LSTM is to have control over the importance of the previous-
step hidden state and of the current-step input to the current-step hidden state. As
shown in Figure 2.5, the LSTM maintains a protected and controlled cell state C;
at each time step. Since there is no matrix multiplication involved in going from
Cy-1 to (4, this forms an “information highway” and remedies the vanishing gradient
problem. Also, i;, f; and o, are the input gate, forget gate, and output gate re-
spectively, computed based on z; (current-step input word) and h;_; (previous-step
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ir = 0 (Wxixs + Wphi1 +bj)

ft =0 (foxt +th‘ht71 + bf)
ot = 0 (Wyoxs + Whohffl +bo)
¢t = tanh (Wyex; + Wy hyq + be)
Cy = ft Oci_1 +i O G

h; = tanh (o; © c¢)

Figure 2.5: Long Short Term Memory. Source: Ismail et al. (2018)

hidden state). With those learnable gates, the model is able to learn to control how
much of the past (previous-step cell state, C;_;) to forget, how much of the new in-
formation (or “candidate new cell state”, @) to write into the current-step cell state
(C}), and how much of the current-step cell state to write to the current-step hidden
state (h;). Thanks to this level of proactive information flow control, the LSTM has
proved successful in capturing long-term dependencies.

hev A 2t =0 (Wz : [htfla CCt])
Tt =0 (Wr : [ht—laxt])

hy = tanh (W - [ry * hy_1, 24])

htz(l—zt)*ht_l-l-zt*ﬁt

b |

Figure 2.6: Gated Recurrent Unit. Source: Olah (2015b)

The GRU (Figure 2.6) on the other hand is a simplification of the LSTM. It coalesces
the cell state C; and the hidden state h; of the LSTM into a single GRU hidden state
hs, and uses a single update gate z,; to replace the input gate i, and the forget gate f;
in the LSTM. It keeps a reset gate r, to control how much the previous hidden state
h,_; matters to computing the “candidate new hidden state” h,. Despite its reduced
complexity, the GRU has been found effective in a large number of scenarios and
have been popular.

An RNN-based seq2seq model these days is often a combination of the tricks above,
a typical example of which is bidirectional multi-layer GRU or LSTM. They, along
with other variants, cement the position of the RNN as the backbone of many NMT
systems.
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2.2.3 Attention

Powerful as the aforementioned RNN architectures may be, they do not address a
key bottleneck for MT systems: the connection between the encoder and the decoder.
As is depicted in Figure 2.2, the only connection between the encoder and decoder
RNNs is the final hidden state of the former being used to initialise the latter. This
practice in essence forces the encoder to summarise the input sentence as the final
hidden state, and the decoder is only allowed to decipher based on that.

The attention mechanism (Bahdanau et al., 2014) was proposed precisely to rem-
edy this issue. Its basic idea is to offer context for the decoder when the latter is
generating the next word. An example is shown in Figure 2.7a, where the decoder
translates the French sentence “il a m’entarté” into English: he hit me with a pie.
During decoding, the decoder should of course utilise information from the previ-
ous hidden state and output, but it is also helpful to have access to the context: to
generate the word “he”, the decoder should pay adequate attention to the French
counterpart of the word, i.e. “il”, in the source sentence.

E Attention pie
output T

Attention
distribution

scores

s
= c
o} (] = )]
2 S E E S o« =
o 9 i
5, \f i H
oz o
2 S
w e a
=
=2
m’
il a m’  entarté <START> he hit me  with a
entarté
72 Source sentence (input)
(a) Attention Computation (b) Attention Visualisation

Figure 2.7: Attention Computation & Visualisation. Source: See (2019)

Hence the gist of the attention mechanism: quantify the amount of attention that the
decoder ought to pay to every word in the input sentence, and use that information,
together with the decoder hidden state and output from the previous time step, to
generate the next word.

To implement the mechanism, the encoder hidden state i¢ of the i** source word s;
of an L-word input sentence, as well the conventional decoder hidden state h¢ at
the t* time step, are operands of a dot product operation that yields a raw score
at;. With a softmax function based on all the raw scores at the same time step, i.e.
{ar; | 1 < j < L}, a normalised score «,; is produced to represent the amount of
attention the decoder should pay to the it source word at the ¢** decoding step.
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h$ = encoder_function(h§_y, s;)
he = decoder _function(hd |, 0,_1)

Ot = (hf)T : htd
' et

Y — 2.1
YN ens @1

L
hi =) ayy i
k=1
0, = feedforward_neural_network(h?, ht)

The normalised scores {oz;’ ;1 1<j < L} are used as weights to calculate the weighted
sum A of all the encoder hidden states {h¢ | 1 < k < L} as the attention information

w.r.t. the whole input sentence at the ¢*» decoding step. ¢, commonly referred to as
the context vector, along with the conventional decoder hidden state h¢, are fed to a
feedforward neural network (Rumelhart et al., 1988) that produces the final output
o; for the current time step. See Equations 2.1 for the mathematical formulation of
the whole process.

Figure 2.7b shows the attention scores after this procedure. As expected, the decoder
attends considerably to “iI” when generating “he”, and the same applies to “m™ —
“me” as well as “entarté” — “with a pie”.

By remedying the bottleneck with attention, the mechanism enables significant im-
provement of translation quality and interpretability, and has become the pillar of
many modern NMT models.

2.2.4 Transformer

The Transformer (Vaswani et al., 2017) pushes attention even further — it bases the
hidden state representation on attention entirely.

The structure starts with its unique self-attention scheme, as shown in Figure 2.8b.
Specifically, for an input sequence at layer 1: [s},sb,--, s}], three separate hidden
states ¢!, (query), k. (key) and ! (value) are computed for each s.. Hence, ¢, is

. l . . . 1
taken dot product with each £; (1 < j < N) (with scaling the results by \/W)

and then softmax-normalised to yield the attention score (a/, )’ as explained in
Chapter 2.2.3. Those attention scores are, again, used as weights, to weighted-sum
{vf | 1 <j <n}into [(s71), (s51),+ (si5')']. The new sequence is then fed to
a feedforward neural network which carries out identical operations on all the in-
put positions and then generates the output sequence [s{!, st .- si¢1]. By stacking
several such self-attention blocks up and linking the components with residual con-
nections, the transformer is able to learn at the top layer a semantic representation
of the input sentence with self-attention.

10
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Output
Probabilities

Add & Norm
Feed
Forward

(Add&Norm ]« Multi-Head Attention

Add & Norm Multi-Head
Feed Attention
Forward Nx

Add & Norm _Je=
Masked

Multi-Head Multi-Head SoftMax
L

MatMul

Add & Norm

i

Attention Attention
A > LY > Scaled Dot-Product h
L —) Mask (opt.) Attention
Positional A Positional ! l !
Encoding ®_( by Encoding - - _
[ - L?D:é I I Eoblng? I Linear P{ Linear pPJ{ Linear
meT = meI =
Input: Output
e (Sh\ftuegL:igSht) Q KoV \ K Q
(a) Overall Structure (b) Attention (c) Multi-Head Attention

Figure 2.8: Transformer. Source: Vaswani et al. (2017)

To reduce bias, the model also utilises what it calls multi-head attention, as sketched
in Figure 2.8c, where each ¢, k!, and v) are linearly projected M times with
different, learned transformations into {q, ,,q., .-, »/}» (K1 KL o, KL o), and
{vh1, 0} 9,0, 3 ). The mi head then is responsible for conducting the m' atten-
tion scheme based on {¢!, | 1<i< N}, {k!, |1<i< N}, and {v}, |1<i<N}. Fi-
nally, {sl;],sl"5, -+, sl } are concatenated and then projected (again, with a learned
matrix) into si*!. The multi-head attention procedure thus diversifies attention.

Figure 2.8a illustrates the overall structure of the transformer, where on the left the
encoder works exactly in the aforementioned manner while also adding a positional
encoding to each input position — after all, attention is order-agnostic, therefore the
positional encoding introduces necessary information about the token ordering into
the process.

On the right is a decoder block, which is autoregressive. It also starts with positional
encoding and then a self attention unit, but this time with masking to assign negative
infinity to v’s for all the input positions not filled by past outputs. This trick makes
sure no attention is paid to the “future”.

A cross-attention unit then follows in the decoder block, differing from self attention
only in the source of the queries, keys, and values used. As the arrows in Fig-
ure 2.8a, the queries still come from the previous-layer input sequence, whereas the
keys and values are from the encoder top-layer output, thus connecting the encoder
and decoder and essentially building the output of the unit out of materials from the
encoder.

Hence, a self-attention unit, a cross-attention unit, and a feedforward network con-
stitute a decoder block with residual connections. By building up a number of such
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blocks preceding a (linear transformation — softmax) layer, a word is generated at
the top layer. The word then fills the next position of the overall sequence, and the
latter is used as input to the bottom decoder block for the next decoding step.

Since its advent, the transformer has enabled considerable efficiency thanks to its
unique parallelism-friendly attention computation, and most important of all has
surpassed RNN-based models in many MT scenarios. It is one of the most popular
models among NMT researchers, and variants of the architecture are dominating
leaderboards.

2.2.5 Deliberation

There is a weakness present in both RNN-based MT models and the transformer: the
decoder is autoregressive and hence only utilises the output it has hitherto gener-
ated, which is not exactly how a human translator does their job: produce a transla-
tion draft, and then refine it before reaching the final result.

A deliberation network (Xia et al., 2017) simulates this refinement process and
achieves state-of-the-art results. As shown in Figure 2.9, an RNN-based (the deliber-
ation idea is model-independent, so it can be GRU- or LSTM-based too) deliberation
network features a second pass decoder for refinement, in addition to an encoder
and a first-pass decoder with identical functionality to the conventional encoder-
decoder-with-attention structure introduced in Chapters 2.2.1 and 2.2.3.

Specifically, the encoder £ finishes its encoding {h1, ho, -+, hr, }, before the first pass
decoder D; attends to those encodings while autoregressively generates a first pass
translation {, 9, -, §r, } and the corresonding before-softmax hidden states {3, 3,
-+, 57, }. The second pass decoder D, begins its task at this point, autoregressively
decoding while attending separately to both {hy, ho, -+, hy, } and {[51;91], [S2; 92],
[7,;91,]}, where the latter is the sequence of concatenations of hidden states and
their token outputs. Two context vectors ctz, and ctx, are produced as a result,
and they are joint inputs with s, ; (previous-time-step D, hidden state) and ¥, ;
(previous-time-step D, output) to D, to yield s; and then y;.

A transformer-based deliberation architecture is proposed by Hassan et al. (2018),
as Figure 2.10 depicts. It follows the same two-pass refinement process, with every
second-pass decoder block attending to both the encoder output H and the first-pass
before-softmax hidden states S. However, it differs from Xia et al. (2017) in that the
actual first-pass translation 7.
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! i First-Pass Decoder Dy
1

Figure 2.10: Transformer with Deliberation. Source: Hassan et al. (2018)

2.3 Neural Multimodal Machine Translation

Neural multimodal machine translation, as mentioned before, is based on NMT and
primarily focused on ways of integrating visual clues into NMT models, and Chap-
ter 2.3.1 covers the essentials of the topic. A broad categorisation of (N)MMT mod-
els according to those ways is: visual context as a single global vector, as spatial
features, and as objects. Chapters 2.3.2, 2.3.3, and 2.3.4 are dedicated to the three
categories respectively. A selection of models in each category are visited, the ma-
jority of which employs the attention mechanism and are GRU- or LSTM-based with
optional bidirectionality and multilayering (see Chapters 2.2.3 and 2.2.2 for more
details). These details will not be specified for the remainder of this chapter unless
necessary.

2.3.1 Problem

Up until recently, multimodal machine translation has been in the form specified
by the Share Task on Multimodal Machine Translation (Specia et al., 2016; Elliott
et al., 2017a; Barrault et al., 2018a): given an image and its description in English,
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translate the description into a target language. The research work introduced in
Chapters 2.3.2, 2.3.3 and 2.3.4 largely follows this setup.

The mostly commonly used dataset for MMT research, also the official dataset of the
Shared Task, is Multi30K (Elliott et al., 2016), where an example is an (Image, En-
glish description, Target-language translation), as shown in Figure 2.11. The images
and their English descrpitions come from Flickr30K (Young et al., 2014), while the
target-language translation was obtained through crowdsourcing. The translations
were only in German at first, but were then extended to include French and Czech.
For the 2018 Shared Task, the dataset split was 29,000 examples for training, 1,014
for validation, and 1,071 for testing.

En: A boy dives into a pool near a water slide.

De: Ein Junge taucht in der Niihe einer Wasserrutsche in ein
Schwimmbecken.

Fr: Un garcon plonge dans une piscine prés d’un toboggan.
Cs: Chlapec skace do bazénu pobliz skluzavky.

Figure 2.11: An example of the Multi30K dataset, with an image, its English descrip-
tion from Flickr30K, and the crowdsourced translations in German, French and Czech.
Source: Barrault et al. (2018a)

Other datasets have also been used for related purposes. For example, MSCOCO
(Lin et al., 2014) has been utilised for training in unconstrained settings (e.g. Helcl
et al. (2018)), where a model has access to out-of-domain (i.e. non-Multi30k) data
to train its specific components, such as object detection.

MMT metrics are in general directly from NMT. Of those, BLEU (Papineni et al.,
2002) and METEOR (Lavie and Agarwal, 2007) are the most reported in MMT re-
search work, and the latter is favoured by the Shared Task. BLEU (BiLingual Eval-
uation Understudy) is a precision-based automatic metric and among the most es-
tablished in NMT, evaluating the similarity between two sentences based on their
constituent n-grams. Reported scores usually take into account unigram-, bigram-
, trigram- and 4-gram-level BLEU, on the grounds that lower-order BLEU reveals
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translation quality on the lexical level whereas higher-order BLEU shows how well
a model performs on a chunk/sentence basis. A brevity penalty is also given by
BLEU to reduce partiality towards translations that omit parts of the source sentence
but are n-gram-wise accurate. Since BLEU otherwise disregards recall, the brevity
penalty mechanism alleviates this issue.

Unlike BLEU, METEOR (Metric for Evaluation of Translation with Explicit ORdering)
assigns a significantly more important role to recall by rewarding long segments in
the candidate and reference translations that are in alignment. METEOR can also
be language-dependent by considering synonyms and stems with the help of lexical
databases such as WordNet (Miller, 1995).

Finally, lexical translation accuracy (Lala and Specia, 2018) was also adopted as
a metric in the 2018 Shared Task to assess the translation of ambiguous words,
based on the observation that multimodality tends to be substantially helpful for
disambiguation.

2.3.2 As Single Global Vector

The arguably most straightforward manner of incorporating the visual context is to
present a global, vectorial summary of an image to the MMT model. This type of
visual context is also readily available: the output of a fully-connected layer of the
softmax layer of a convolutional neural network (CNN) (LeCun et al., 1989) oper-
ating on images usually suffices and is the typical choice. As a high-level summary
of the picture, the vectorial summary contains little to no information about local
details.

Elliott et al. (2015) proposed a classic approach, shown in Figure 2.12 where the
fully-connected layer output is taken from a CNN and then initialises the encoder
and optionally the decoder. The solid arrows in the figure indicate inputs that must
be provided, whereas the dashed arrows represent optional ones. This setup en-
ables a number of different models varying in their initialisation methods, including
whether to use the vectorial summary as auxiliary initialisation input for the encoder
as well as whether to initialise the decoder with the source encodings or the visual
summary or both. A fully connected neural network is in place to process the textual
and visual information when both are involved, so that the output of the network is
used as the initialising vector.

Specifically, the features used in Elliott et al. (2015) come from the penultimate
layer of pre-trained VGG-16 (Simonyan and Zisserman, 2014), a CNN model for
image recognition. Without attention employed at all for the source sentence, the
models were used for MMT and the configuration of the optimal model was found
to be initialising the encoder with auxiliary visual input and initialising the decoder
with only the encoding. It was also observed that the improvement brought by this
model over the text-only baseline was most pronounced where the latter generated
poor translation.
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Figure 2.12: Encoder/Decoder Initialisation with Fully-Connected Layer Output.
Source: Elliott et al. (2015)

Softmax features, on the other hand, are used in Madhyastha et al. (2017), as
depicted Figure 2.13. The intuition behind this idea is that softmax probabilities
represent high-level semantics and can therefore better aid translation. The 1000-
dimensional softmax features in this case are extracted from the 152-layer ResNet
(He et al., 2016), also an image recognition network. While the features are also
used for encoder/decoder initialisation similar to Elliott et al. (2015), Madhyastha
et al. (2017) additionally weighted-sum the word embeddings of the 1000 image
categories with their softmax probabilities (e.g. 0.90 x dog + 0.05 x cat + 0.03 x fox +
.-+ 0.00 x apple), and then add the result to each word in the source sentence. As
for the statistics, the conclusion was that the model with a multimodally initialised
decoder had the best performance, contradicting the observation by Elliott et al.
(2015).
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Figure 2.13: Encoder/Decoder Initialisation with Softmax Layer Output. Source: Mad-
hyastha et al. (2017)

Word embedding modulation is another option for utilising the vectorial summary,
suggest Caglayan et al. (2017). In this scenario, an embedding gate ¢ is obtained as
a result of tanh(W;,,, - V'), where V' is 2048-dimensional taken from the pool5 layer
of ResNet-50 (He et al., 2016) and W, is a learned projection matrix that maps
from the visual space to the embedding space. The gate has the same dimensionality
as a word embedding does and is hence element-wise applied to every word for
modulation. Caglayan et al. (2017) tried combinations of word modulation on the
source/target side and multimodal encoder/decoder initialisation, and found that
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(target-word modulation + unimodal initialisation) achieved the highest METEOR
scores but was considered worse than the baseline according to BLEU, revealing a
metric discrepancy.

Also based on mapping the visual summary to the embedding space, Calixto et al.
(2017b) conduct the transformation and then insert the result as the first and/or
last word(s) of the source sentence (Figure 2.14(a)), as well as multimodal encoder
(Figure 2.14(b)) and decoder (Figure 2.14(c)) initialisation. The visual features are
from the second fully-connected layer of VGG-19 (Simonyan and Zisserman, 2014)
and mapped to the embedding space via a two-layer feedforward network. The first
approach proved to give consistently inferior performance than the initialisation-
based models, and, again, multimodal initialisation for only the encoder or decoder
was found to be better than for both.
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uses image features as words in the  coder hidden states. the decoder hidden state so.
source sequence.

Figure 2.14: Visual Summary as Additional Word(s) / Initialiser. Source: Calixto et al.
(2017b)

Imagination, proposed by Elliott and Kadar (2017), is drastically different from the
methods mentioned so far, in that it is a multitask learning process with no visual
input during decoding. A unique feature of the model is a shared encoder £ whose
output is fed to a translation decoder D+ as well as a visual decoder D, as shown
in Figure 2.15. During training, £ accepts a source sentence as input, the entirety
of its hidden states # utilised via attention by D+ to produce a translation while
H, the average, is given to Dy, a feedforward network that generates a vector in
the visual feature space to approximate the true visual features from a CNN (hence
the name “imagination”). Two training goals are optimised towards: (a) minimise
the translation loss (negative log likelihood of the translation decoder producing the
correct translation) (b) minimise a margin-based difference between the true visual
features and the ones “imagined” by D,,.

During training, the two goals interleave in cycles, where in each cycle the model
is first trained towards the translation loss until convergence (chief objective) and
then optimised based on the imagination loss (secondary objective). For decoding,
as mentioned before, D), is not used at all, with only £ feeding D+ to generate trans-
lations. What this process effectively achieves is that the encoder learns to represent
a source sentence in a visually-grounded fashion, which allows the model to ex-
hibit competitive translation performance compared to other MMT models despite
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its having no access to the visual context. This merit is especially relevant when
out-of-domain data is available for pre-training £ and Dr.
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Figure 2.15: Imagination Model. Source: Elliott and Kadar (2017)

A transformer-based imagination model is put forward by Helcl et al. (2018), which
also witnessed substantial improvement of MMT quality with pre-trained £ and Dr.

Calixto et al. (2019), on the other hand, propose a latent-variable alternative that
also achieves visually grounded translation model during training time and does not
need images at inference time. In this approach, an image and a translation are
seen as independently generated given a “common stochastic embedding” z, such
that z can be drawn from a latent Gaussian distribution given a source sentence s,
and an image vector v is in turn drawn from a Gaussian observational distribution
given z. As for the translation ¢, each target-language word is drawn from a categor-
ical distribution formed by the softmax probabilities produced by an attention-based
decoder that takes z as an additional input at every time step. All the distributions
in this variational model are parameterised by feedforward neural networks, except
the categorical distribution which is by a seq2seq model. This variational approach
is shown to outperform Imagination on Multi30K.

2.3.3 As Spatial Features

As applying attention over the words in an input sentence has enabled significant
improvement in MMT, so has visual attention over the regions in an image. In this
scenario, the visual features are usually the features maps measuring C' x N x N
extracted at a convolutional layer of a CNN, which can be seen as the image being
divided as a grid of N x N cells, each a C-dimensional summary of the corresponding
region in the image. The visual attention is usually distributed across the N x N re-
gions, at which the earliest attempt was Xu et al. (2015), where the image captioning
model learns to focus on (a) particular region(s) of an image when it is generating
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the next word (e.g. looking at the bird in the image helps it come up with the word
“bird”). Spatial-features-based MMT models mostly operate on this basis.

An intuitive way of applying the visual attention in MMT is to execute the context-
vector procedure introduced in Chapter 2.2.3: a feedforward network computes a
attention score for each region w.r.t. the decoder hidden state, and the weighted sum
of those region representations (/N x N in total) is calculated as the visual context
vector. As for how to integrate the visual and textual context vectors, Caglayan et al.
(2017) choose plain concatenation and then perform translation as before based on
the fused context vector.

Calixto et al. (2017a) propose a model in a similar vein, except that it introduces
a time-dependent gate to control the influence of the visual context vector. Specif-
ically, the visual and textual context vectors are calculated as before, but then a
feedforward network is in place to produce a gate, only taking the hidden state from
the previous time step. The visual context vector is then multiplied with the gate to
yield its final value. The idea behind the trick is that words with little presence in
the visual domain, such as “a” and “i” as opposed to “orange”, do not need visual
clues to confuse the decoder. With this method, the model was found to enable im-
proved performance especially when measured by recall-oriented metrics. As shown
in the example in Figure 2.16, the ungated textual attention is properly distributed
according to the German-English lexical relations, whereas the only two words that
utillise gated visual attention for MMT are Mann (man) and Hut (hat), both with
strong presence in the image. This clearly shows the gating mechanism is successful
in incorporating visual attention only when necessary.

N
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(a) Image-target word alignments. (b) Source-target word alignments.

Figure 2.16: Gated Visual Attention & Ungated Textual Attention. Source: Calixto et al.
(2017a)

Delbrouck and Dupont (2017) explore beyond the weighted-sum context vector —
they call it “soft attention” — and focus on two more attention schemes: hard
stochastic attention and local attention. For the former, a multinoulli distribution
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is established according to the attention weights calculated the same way as before,
and, instead of weighted-summing, the context vector is simply one region in its
original C'-dimensional vectorial form sampled from the distribution out of the total
N x N at each decoding step. Local attention, on the other hand, is in essence choos-
ing a small patch around the region sampled by hard attention. The time-dependent
gating scalar introduced by Calixto et al. (2017a) is also employed in all the models
in this work. Despite the hard-attention model risking ignoring inter-region inter-
actions, the results show that it consistently outperformed the others. It was also
found that the gating scalar at many decoding steps was small even for the hard-
attention model, which means that the visual context was ignored almost entirely
for translating those words.

Two other options are investigated by Libovicky and Helcl (2017): flat attention
combination and hierarchical attention combination. To achieve the former, all the
visual representations Hy (/N x N regions in total, C'-dimensional each) and source
sentence encoder hidden states Hg (L in total, S-dimensional each, where L is the
sentence length and S the hidden state dimensionality) are mapped to a common se-
mantic space S, with projection matrices Wy for Hy and W for Hg. The weighted-
sum context-vector procedure is then applied in S to all the mapped vectors. For
hierarchical attention combination, the visual and textual context vectors are com-
puted the conventional way, and then two time-step-dependent scalars are used to
weighted-sum the context vectors to yield the ultimate context vector. As for the
performance, hierarchical attention combination was found to beat flat attention
combination both in terms of automatic-metric results and convergence speed.

Without fusing the visual and textual context vectors directly, Helcl et al. (2018)
utilise the hierarchical nature of the transformer decoder to achieve multimodal
context integration. The main feature of this model is the multimodal decoder
shown in Figure 2.17, where a visual cross-attention layer is inserted in between
the textual cross-attention layer and feedforward layer with residual connections in
each decoder block. The queries (Q) of this layer come from the output of the tex-
tual cross-attention layer below whereas the keys (K) and values (V) are generated
from projected image region representations. In doing so, the model grounds the
decoder hidden state sequence with both the source sentence (textually) and the
region features (visually) before feeding it to the feed-forward layer. With compet-
itive scores, the model also exhibited degraded performance when given randomly
selected “fake” images, thus showing that it had truly learned to exploit visual infor-
mation to help with translation.

2.3.4 As Objects

It can be argued that objects are a better medium of conveying visual information
for MMT, especially for a dataset like Multi30OK where an image description is often
about interactions between objects, such as “a man in a vest is sitting in a chair and
holding magazines”. As a result, object-based MMT models have gained popularity
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Figure 2.17: Multimodal Transformer. Source: Helcl et al. (2018)

in recent years, many of them utilising bounding-box or object-category features.

A pioneer model is proposed by Huang et al. (2016), where the region proposal
network (RPN) in the region-based CNN (RCNN) (Ren et al., 2015) is used to de-
tect objects and extract bounding boxes around them. The largest four bounding
boxes are selected and then provided to VGG-19 (Simonyan and Zisserman, 2014)
together with the original overall image features in their entirety. The outputs of the
last fully-connected layer for those five bounding boxes are taken and mapped to the
word embedding space and, as pseudo words, added at the beginning of the source
sentence. The enhanced source sentence is then decoded with the usual text-based
attention mechanism. The observation is that the model brought modest improve-
ment compared to the text-only baseline.

Gronroos et al. (2018) on the other hand use Mask R-CNN (He et al., 2017) to
generate a segmentation mask for each of the 80 MSCOCO (Lin et al., 2014) ob-
ject categories, based on which an 80-D vector is produced as the visual features.
A feedforward network then takes the object-level features along with the hidden
state at a position of the encoder output or the decoder input to the softmax layer,
so as to compute a gate to be element-wise applied to the hidden state. Thus is the
modulation: a time-dependent object-based gating scheme executed for the encoder
output or the decoder pre-softmax distribution. With the transformer as the under-
lying structure, Gronroos et al. (2018) found the model to lead to relatively small
improvement, as substituting the averaged visual features for the correct ones did
not give rise to considerable difference score-wise.

To associate the objects in an image to the words in the description more closely,
Specia et al. (2019) devise an unsupervised object-to-word alignment strategy which
matches a word with the object, among all the detected, whose label has the largest
cosine similarity with the word in the embedding space.

Then, Explicit Referential Grounding (ERG) (Figure 2.18a) concatenates each word
in the source sentence with the label of its paired object identified using the afore-
mentioned strategy, or with the CCA (Hotelling, 1992) image feature projection of
the object based on its label.
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For Implicit Referential Grounding (IRG), each source word and each visual feature
go through the trainable co-attention procedure (Lu et al., 2016) to yield new cor-
related representations of themselves modulated by the other, achieving object-level
grounding on the source side. Hierarchical attention (Libovicky and Helcl, 2017)
then operates on the new textual and visual representations for translation. The
alignment strategy is optional for IRG in that it defines an auxiliary grounding loss
inspired by Rohrbach et al. (2016) penalising cases where the highest co-attention
weights are allocated to objects that are not the ground truth (i.e. not the ones found
by the strategy).
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Figure 2.18: Two Models Based on Attention over Objects

Ive et al. (2019) propose a deliberation-transformer-based MMT model to refine
the preliminary translation from a text-only decoder with a multimodal second-pass
decoder. The intuition behind the architecture is the general finding within the
MMT community that visual context is helpful for translation only in specific types
of scenarios such as in the presence of ambiguity and from-genderless-language-to-
gendered translation, which makes it sensible to have a quality unimodal translation
first and then improve it based on visual information.

As shown in Figure 2.18b, each second pass decoder has a conventional self-attention
layer and a textual cross attention layer w.r.t. the source sentence, then another
textual cross attention layer follows, attending to the first pass translation, before
sending the output to the subsequent visual cross attention layer that attends to the
image features.

The visual features used are an N-hot object label embedding matrix per example.
Specifically, an object detector (Kuznetsova et al., 2018) decides N out of the total
545 categories of objects are present in the image, and the model therefore only
attends to the 50-D GLoVe embeddings Pennington et al. (2014) of the N categories.
In their experiments, Ive et al. (2019) show that visual information for deliberation
was particularly helpful when the source sentence was noisy or needed considerable
restructuring to be translated into the target language.
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Chapter 3

Design

In this chapter, the details of our multimodal translation models and multimodal
features are explained. As mentioned in previous chapters, we focus on two sce-
narios: translation with and without English subtitles. For the former, we directly
apply multimodal transformers that exploit three types of visual features (VS, CLO,
ACE) in two ways (Enc-AVC, Dec-AVF) to aid translation. For the latter scenario, an
off-the-shelf speech recognition system is employed to yield transcripts, and then
multimodal translation of the transcripts is carried out by multimodal transformers
and deliberation networks. We begin by introducing the speech recognition system,
then move on to visual feature extraction, and finally elaborate on our multimodal
transformers and deliberation networks.

3.1 Automatic Speech Recognition

We use the unimodal baseline ASR model provided by Caglayan et al. (2019b) to
obtain the transcripts for the training, validation and test set audios. The ASR model
consists of a 6-layer bidirectional LSTM-based encoder and a 2-layer GRU-based
decoder.

At the encoder side, tanh projection is applied in between each encoder layer, and
the 27@ and 3"¢ encoder layers execute temporal subsampling (Chan et al., 2016)
which shrinks the sequence of speech features to 1/4 of its original length by jump-
ing two input positions at each time step. Each layer comprises of 320-dimensional
hidden states, hence the final encoder outputs #%,, after the temporal subsam-
pling, are a sequence of 320-D encodings 1/4 of the original length.

The first (bottom) GRU layer of the decoder is first initialised with the mean of the
all the encoder outputs and then autoregressively generates its hidden state 1% . (¢)
at decoding step t. A feedforward network is employed, taking H"%,(t) and H%
as input, to produce a context vector z', ., which, along with %4 .(t), is fed to the
second (top) GRU layer of the decoder. A tanh-based fully-connected layer then
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processes the top GRU layer hidden states, followed by a linear transformation and
finally a softmax layer that deciphers the result into a word based on a vocabulary.

3.2 Visual Features

It is notable that videos differ from images that the former capture actions much
better, which means a video-based action recognition network can contain rich se-
mantic information about the video. Following this direction, we obtain three types
of video visual information as feature maps from two such networks.

3.2.1 VideoSum (VS)

We use off-the-shelf VS features provided by the How2 Challenge (Sanabria et al.,
2018) for the videos on which we operate. In this approach, a video is segmented
into smaller parts of 16 frames each, and the segments are fed to ResNeXt-101 (Xie
et al., 2017), a CNN with 3D convolutional kernels trained for recognition of 400
classes of actions (Hara et al., 2018). The 2048-D feature maps at the fully-connected
layer of the network when given the video segments are averaged as the final VS
features for the video. Therefore, a 2048-D vectorial feature can be seen as a high-
level summary of a video, similar to the single-global-vector approach described in
Chapter 2.3.2.

3.2.2 Convolutional Layer Output (CL0)

In order to have richer visual context, we apply 3D ResNet-50 (Monfort et al., 2019)
network to each video and obtain the output of the last convolutional layer. Specifi-
cally, 16 equi-distant frames are sampled for a video, and they are then used as input
to the network. The network is based on the ResNet-50 (He et al., 2016) pre-trained
on ImageNet (Deng et al., 2009), inflating the originally 2D network into 3D and
fine-tuned on the Moments in Time action video dataset (Monfort et al., 2019). 3D
ResNet-50 hence takes in a video and classifies it into one of 339 categories. The
CLO feature, taken at the conv4 layer of the network, has a 7 x 7 x 2048 dimension-
ality, which can be interpreted as dividing a video spatially into a 7 x 7 grid of 49
regions where each region is temporally summarised as a 2048-D vector, suitable for
the spatial-feature MMT strategy introduced in Chapter 2.3.3.

3.2.3 Action Category Embedding (ACE)

Higher-level semantic information can be more helpful than convolutional features.
With that in mind, we apply the same 3D ResNet-50 network to a video as we do
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for CLO features, but this time the focus is on the softmax layer output. The original
feature is a 339-D probability vector, and we process it in two ways:

(i) We multiply the 300-D CBOW word2vec embedding (Mikolov et al., 2013)
of each category label with its softmax posterior prediction, thus obtaining a
339x 300 matrix for each video where each row is a probability-scaled word em-
bedding vector. We call it the Probability-Scaled Action Category Embedding
(PSACE) features.

(ii)) We keep the word embeddings for the 10 categories of the highest softmax
probabilities while assigning all-zero 300-D vectors to the other categories. We
call it the Ten-Hot Action Category Embedding (THACE) features.

3.3 Transformers

The first type of our machine translation models is transformers. The vanilla trans-
former decribed in Chapter 2.2.4 is used as a baseline, and we design two variants:
with additive visual conditioning and with attention to visual features, which rely on
an encoder with additive visual conditioning and a decoder with attention to visual
features respectively.

3.3.1 Encoder with Additive Visual Conditioning (Enc-AVC)

In this approach, inspired by Ive et al. (2019), we add a projection of the visual
features to each output of the vanilla transformer encoder, the latter introduced in
Chapter 2.2.4. This projection is strictly linear from the 2048-D VideoSum features to
the 1024-D space in which the self attention hidden states reside, and the projection
matrix is learned jointly with the transformer/deliberation model.

3.3.2 Decoder with Attention to Visual Features (Dec-AVF)

In order to accommodate attention to visual features at the decoder side and inspired
by Helcl et al. (2018), we insert one layer of visual cross attention at each vanilla
transformer decoder block, after the textual cross attention layer and before the
fully-connected layer. The keys and values are therefore from the visual features
whereas the queries are from the hidden states of the textual cross attention layer.

The visual features in this decoder come from one of the three sources: VideoSum,
Convolutional Layer Output, and Action Category Embedding.

(i) For VideoSum, which is originally 1 x 2048 dimensional, we reshape it into
32 x 64-D in row-major order to explore whether segments of fully-connected
layer output of a convolutional neural network can offer more insight than
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using a global vector as a whole. Naturally, the attention is over the 32 rows
of the reshaped features.

(ii) For Convolutional Layer Output, the 7x 7 x 2048 dimensional tensor is reshaped
into 49 x 2048-D, so that the decoder attends to the 49 regions of the video
frames at the visual cross attention layer.

(iii) For Action Category Embedding, the features themselves attention-ready, i.e.
the attention of the decoder is distributed across the 339 action categories,
whether this features are probability-scaled or ten-hot. For the later, it is ex-
pected that the categories with all-zero rows will enjoy no attention at all,
hence the decoder only attends to the action categories detected.

3.3.3 Transformer with Additive Visual Conditioning (Trans-AVC)

This variant features an encoder with additive visual conditioning detailed in Chap-
ter 3.3.1 and a vanilla transformer decoder, therefore utilising visual information
only at the encoder side. Figure 3.1a shows its structure.

simply - apply
VideoSum . . Encoder block simply apply
4 HE o
] 1
we
T l Action Category Embeddings
- rubbing
ResNeXt-101 s cooking ]
sin
T simplesmente-
3D ResNet-50 Y
_ ¥

L |
‘ Decoder Block Convolutional Layer Output ‘ Decoder Block
aplique aplique
(a) Trans-AVC Structure (b) Trans-AVF Structure

Figure 3.1: Two types of multimodal transformer. Note that VideoSum features from
ResNeXt-101 can also be used for AVF, therefore the sketches are just for illustration
purposes.

3.3.4 Transformer with Attention to Visual Features (Trans-AVF)

In contrast to TAVC, we configure this transformer model with a vanilla transformer
encoder and a decoder with attention to visual features as detailed in Chapter 3.3.2.
Obviously, visual cues this time are only for the decoder to exploit. Its structure is
given in Figure 3.1b.
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3.4 Deliberation Networks

As mentioned in Chapter 2.2.5, a deliberation network is aimed at refining the out-
put of a first pass decoder. In this project, the deliberation is based on the trans-
former structure, as in Xia et al. (2017) and Ive et al. (2019).

For deliberation itself, there are two ways of integrating the textual attentions to
the encoder output and to the first pass output: additive and cascade. For han-
dling visual features, we employ additive visual conditioning or visual attention, as
introduced in Chapters 3.3.3 and 3.3.4 respectively.

3.4.1 Additive or Cascade Deliberation at Second Pass

In an additive-deliberation second-pass decoder block, the first layer is still self-
attention, whereas the second layer is the addition of two separate attention sub-
layers. Specifically, the first sub-layer attends to the encoder output in the same way
the vanilla transformer decoder does, while the attention of the second sub-layer is
distributed across concatenated first pass outputs and hidden states. The input to
both sub-layers is the output of the self-attention layer, and the outputs of the sub-
layers are summed as the final output of the second layer and then (after a residual
connection from the second layer) fed to the visual attention layer if the decoder is
multimodal or to the fully connected layer otherwise.

For cascade attention, the only difference from additive deliberation is that at the
second layer, instead of having two sub-layers and summing their results, we sep-
arate them as two actual layers. In other words, the second layer in this model is
textual cross attention to the encoder output while the third layer is textual cross
attention to [first pass output; hidden state] concatenations.

3.4.2 Deliberation with Additive Visual Conditioning (Delib-AVC)

Similar to in Transformer with Additive Visual Conditioning, we add a projection of
the visual features to the deliberation encoder (i.e. vanilla transformer encoder),
and use the vanilla transformer decoder as the first pass decoder and either additive
(Figure 3.2a) or cascade deliberation as the second decoder (Figure 3.2b).

3.4.3 Deliberation with Attention to Visual Features (Delib-AVF)

In a similar vein as Trans-AVF, the encoder in this setting is simply a vanilla trans-
former encoder with self attention and the first pass decoder also just involves tex-
tual cross attention to the encoder outputs, but this time the second pass decoder is
responsible for attending to the first pass output as well as the visual features. For
both additive (Figure 3.3a) and cascade (Figure 3.3b) deliberation, a visual attention
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layer (Dec-AVF, see Chapter 3.3.2) is inserted immediately before the fully-connected

layer, so that now the penultimate layer of a decoder block attends to visual infor-
mation.
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Figure 3.2: Two types of Delib-AVC: one (left) with additive deliberation, the other
(right) with cascade deliberation

28



Chapter 3. Design 3.4. DELIBERATION NETWORKS

impl, . Ist Pass
Encoder

1 Decoder Block
-~
| ianmin 4 i
t 3
Textual cross-attention
Action Category Embeddings simply  apply

y:)bnl:;]gg simplesmente ! \

3D ResNet-50

l Textual cross-attention

Textual cross-attention

-+ «

Deliberation
. Decoder Block
Convolutional Layer Output 5
aplique

(a) Delib-AVF-A Structure

Ist Pass

vl Decoder Block

Self-attention Self-attention
4 A \
E E < Textual cross-attention

Encoder block

Action Category Embeddings simply apply :
rubbing simplesmm!
cooking NI !

Self-attention

Textual cross-attention

Textual cross-attention

n 1

i P e

e B Deliberation
. Decoder Block
Convolutional Layer Output aplique

(b) Delib-AVF-C Structure

Figure 3.3: Two types of Delib-AVF: one (top) with additive deliberation, the other
(bottom) with cascade deliberation




Chapter 4

Experiments

The focus of this project is to study the contribution of visual information to the
translation of corrupted or incomplete source texts. Therefore, we conduct a two-
phased experiment, with differently compromised source texts: in Phase 1, we train
multimodal and text-only transformers to translate English subtitles with different
degrees of verb masking; in Phase 2, multimodal transformers and deliberation net-
works are trained to translate transcripts of How2 videos into Portuguese. For Phase
1, verb masking achieves artificially corrupted source sentence, whereas transcrib-
ing based on speech recognition in Phase 2 necessarily leads to information at the
source side being left out or modified.

We begin this chapter by introducing the dataset (4.1), different types of sources
(4.2) as well as some settings shared by both phases (4.3, 4.4), and then elaborate
on the details of each phase in Chapters 4.5 and 4.6 respectively.

4.1 Dataset

The dataset for our experiments is How2 !, a large-scale dataset for multimodal lan-
guage understanding. It consists of English-language instructional videos segmented
into smaller clips, and we keep its default splits: 184,949 video clips for training,
2,022 for validation, and 2,305 for testing. The clips are around 300 hours in dura-
tion in total, and each on average lasts around 5.8 seconds and has 20 words in its
paired English subtitles. Each video segment also has its crowd-sourced Portuguese
subtitles.

https://github.com/srvk/how2-dataset
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4.2 Source Domains

Our baseline model translates the original English subtitles as source text into Por-
tuguese without any multimodal information. We explore several variants of the
source for our experiments, as detailed below.

4.2.1 Verb Masking for Source Subtitles

Since motion is an important element of videos, it can be argued that verbs in sub-
titles are well represented in videos, and this is also pointed out by the creators of
the How2 dataset (Sanabria et al., 2018) and hence their officially provided Video-
Sum features (extracted from an action recognition network, as described in Chap-
ter 3.2.1). Therefore, we decide to explore whether visual information can be partic-
ularly helpful for translation in cases where some verbs are missing from the source
text. We investigate three scenarios: Original Source (ORG), Mask Action Verbs (ACT)
and Mask All Verbs (ALL).

Mask Action Verbs (ACT): each verb in the subtitles that is associated with one of
the 339 action category labels defined in the Moments in Time dataset (Monfort
et al., 2019) is replaced by a placeholder. Our statistics show that 2.75%, 2.83%,
and 2.84% of the words (tokens) in the training, validation and test set source texts,
respectively, are replaced in this setting.

Mask All Verbs (ALL): each verb in the subtitles is replaced by a placeholder. Our
statistics show that 20.6%, 21.0%, and 20.4% of the words (tokens) in the training,
validation and test set source texts, respectively, are replaced in this setting.

We first POS-tag the subtitles to mark the verbs (so that ALL masking can be achieved
by simply replacing those masked) and then carry out lemmatisation, both with
spaCy 2.0 2. The processed verb tokens are matched against the (also lemmatised)
action category labels from Monfort et al. (2019), and the subtitle tokens associated
with the labels are hence masked for ACT masking 3. The Portuguese translations, on
the other hand, remain unchanged throughout the experiments.

See Figure 4.1 for How2 examples with ACT and ALL masking as well as the original
sentences.

4.2.2 Transcripts as Source

With the ASR model detailed in Chapter 3.1, we obtain lowercased punctuation-free
transcripts. We do not apply any masking to them, since they are considered to
inevitably contain random noise introduced during transcribing time.

2http://spacy.io/ model en_core web_lg
3We retain only the verb component for specialised actions such as playing+music and
adult+male+singing
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m simply apply the cleanser or cream to your hands and apply it
to the face and begin rubbing.

¢ simply apply the cleanser or cream to your hands and apply it
to the face and begin Vv .

A simply V the cleanser or cream to your hands and V it to the
faceand V V.

m you can draw it really lightly , go back and erase it later .
¢ you can V it really lightly , go back and erase it later .
A you V Vit really lightly , vV back and V it later .

m what we are going to be doing is folding the top over and
making a little casing the ribbon iwill slip through .

¢ what we are going to be doing is V the top over and making a
little casing the ribbon will v through .

A what we VV to V V V V the top over and V a little V the ribbon
V V through .

Figure 4.1: Three verb masking examples from the How2 training dataset. In each one,
the first line (m) shows the original sentence, the second (¢) shows the sentence with
action verbs replaced by V , and the third (A) shows the sentence with all verbs replaced
by V.

4.3 From Words to Vectors

It is worth noting that we do not employ any off-the-shelf word embeddings to en-
code our source and target sentence. Instead, in each source/target setting, an n-
dimensional dictionary is established including all the unique words that occur in
the corpus, then (PAD), (EOS) and (UNK) are inserted at the beginning to represent
padding, end-of-sentence and unknown words, respectively. After the source and
target dictionaries are prepared in this manner, every word is hence mapped to a
one-hot vector and then projected to the hidden state space, with the corresponding
embedding matrix jointly learned with the translation model.

4.4 Shared Training Hyperparameters

Our transformer and deliberation models are based upon the transformer archi-
tecture (Vaswani et al., 2017) implemented in the tensor2tensor 4 (Vaswani et al.,
2018) library (1.3.0 RC1) as well as the vanilla transformer-based deliberation mod-
els®> (Xia et al., 2017) and their multimodal variants® (Ive et al., 2019).

Like Ive et al. (2019), we train our transformer and deliberation models largely with
transformer big hyperparameters : 16 attention heads, 1024-D hidden states and a

“https://github.com/tensorflow/tensor2tensor
>https://github.com/ustctf/delibnet
®https://github.com/ImperialNLP/MMT-Delib
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Chapter 4. Experiments 4.5. PHASE 1: MMT WITH VERB MASKING

0.01 dropout rate during training time for layer pre- and post-processing. We apply
size-10 beam search and an alpha of 0.1 in inference time, and record a checkpoint
every 1,800 seconds for every model during training time.

As is pointed out by Popel and Bojar (2018), tensor2tensor defines only training
steps (the number of (mini-)batches processed), as opposed to epochs (the number
of times the whole training set is gone through). Also, the batch_size parameter in
tensor2tensor is the number of tokens processed in one batch on one GPU, hence
the effective batch size is batch_size x #G PUs. Therefore, following the paradigm
in Popel and Bojar (2018), we approximate the number of training epochs with the
formula below for our training purposes:

steps x batch_size x #GPU s
max(#tokens in source corpus,#tokens in target corpus)

epochs =

4.5 Phase 1: MMT with Verb Masking

4.5.1 Preprocessing

Phase 1 is a machine translation task, therefore we preprocess the English subtitles
and Portuguese translations with the following pipeline: tokenisation — removing
non-printing characters — replacing unicode punctuation marks with ASCII approx-
imations — lowercasing — byte pair encoding (BPE) 7.

We use moses 8 for all but the final preprocessing steps. Specifically, tokenizer.perl,
remove-non-printing-char.perl, replace-unicode-punctuation.perl and lowercase.perl
are used for the first four steps. For BPE, we break down the tokenised English
and Protuguese training texts (184,949 sentences in each masking setting) into sub-
word units separately with 20,000 merge operations, leading to 18,963, 18,920,
and 18,405 unique sub-tokens for ORG, ACT, and ALL respectively. Those unique sub-
tokens are then kept in their entirety and collected as one distinct dictionary for
each setting. Similarly, we obtain a dictionary of 19,499 sub-tokens for Portuguese
translations. With the BPE codes for 20,000 merge operations, we then conduct BPE
on the validation and test sets, hence finishing our preprocesing. Note: we do not
share vocabularies between the source and target domains.

4.5.2 Models

For Phase 1, we experiment with five model variants:

(i) text-only transformer (Trans-T0)

"https://github.com/rsennrich/subword-nmt (Sennrich et al., 2015)
8http://www.statmt.org/moses/?n=Moses.0verview
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(i) transformer with additive visual conditioning based on VideoSum features
(Trans-AVC-VS)

(iii) transformer with attention to visual features based on reshaped VideoSum fea-
tures (Trans-AVF-VS)

(iv) transformer with attention to visual features based on convolutional layer out-
put features (Trans-AVF-CL0)

(v) transformer with attention to visual features based on probability-scaled action
category embedding features (Trans-AVF-PSACE)

See Chapters 3.2 and 2.2.4 for more details of the settings above.

All five model variants are trained and tested for three types of masked source texts:
ORG, ACT, and ALL.

4.5.3 Training

For Phase 1, we train all the models on two Nvidia Tesla V100 GPUs (32GB memory
each) with a patience of 10 epochs for early stopping. The batch size is 3072 per
GPU hence 6144 in effect, and a base learning rate of 0.05 with 8,000 warm-up
steps (following Ive et al. (2019)) is used for the Adam optimiser (Kingma and Ba,
2014). Since tensor2tensor 1.3.0 RC1 does not support validation on multiple
GPUs during training, we disable automatic evaluation during training and instead
use an Nvidia RTX 2080 Ti GPU to load each new checkpoint for inference on the
validation set during training. Hence, we achieve on-the-fly validation based on the
true BLEU scores (against the gold standard) obtained by the checkpoints, and stop
the training when the early stopping criterion is met. We pick the checkpoint with
the highest real BLEU score on the validation set for inference on the test set.

Our BLEU computation for checkpoint selection is done using the t2t-bleu script of
tensor2tensor , comparing the outputs of the checkpoint models with the tokenised
& lowercased Portuguese translations.

4.6 Phase 2: MMT with Transcripts

4.6.1 Preprocessing

Punctuation-Related

The transcripts from the speech recognition model are punctuation-free, therefore
the question of whether and how to introduce punctuation was carefully considered.

We started by investigating the impact of punctuation on translation quality. Specif-
ically, we eliminated punctuation from the original English subtitles S, as S, (“pr”
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is short for punctuation-removed) and trained two vanilla transformers 7, and 7,7
on S, and S, respectively. As a result, we recorded a 56.64 BLEU achieved by 7.7,
whereas the figure was 52.60 by 77. Therefore, our conclusion was that punctua-
tion, if correct, was considerably beneficial according to BLEU standards.

Hence, as the next step, punctuation introduction was explored. Popular punctua-
tors, such as those with relatively many stars on GitHub, are mostly neural models
trained on materials such as TED talks or website contents (e.g. Tilk and Aluméae
(2016)). Mindful of the potential domain shift from the datasets used by those mod-
els to our transcripts, we trained our own vanilla-transformer punctuator P based
on S, and S, as a trial analysis, and then used the model to “translate” the original
transcripts 7R, into their punctuated version 7R,

We then trained two more vanilla transformers for transcript-Portuguese translation:
7,77 based on TR, and T,;/* based on TR,. Despite the minimal domain shift (i.e.
from the subtitles to the transcripts), 7,/® scored 40.30 BLEU on the validation set,
whereas 7,7 was only able to obtain 39.77. This is surprising, since the bias of P,
caused by its training on the “subtitle domain” instead of the “transcript domain”,
was expected to rectify the “mistakes” made during the transcribing process (e.g. ‘A
lot of these birds aren’t tame” in subtitles, transcribed as “a lot of these birds are
tame”), in addition to introducing punctuation, in terms of the ways in which the
punctuator was assumed to be able to helpful for translation.

Upon closer inspection of TR, and 7R,, we noticed that P generally added natural-
feeling punctuation marks but sometimes wrongly changed words in 7R,. For ex-
ample, the sentence “and you'’re here the shoulders aren’t creeping up” in 7R, was
punctuated into “and you're here , the shoulders aren’t as up .” in 7R, and conse-
quently the former was translated by 7,/% as “e vocé estd aqui , os ombros ndo estao
subindo .” while 7,7% produced “e vocé estd aqui , os ombros ndo estdo tdo altos
” when given the latter, where “subindo” is correct and corresponds to “creeping
up” whereas “tdo altos” is in line with “as up”. In other words, 7,7# generated the
accurate translation of a sentence that was incorrectly modified by P.

Thus, our conclusion was that the merits of P were outweighed by its mistakes. Since
there were unlikely to be better punctuators due to domain shifts, we proceeded
using the punctuation-free original transcripts 7R, for translation in Phase 2.

Vocabularies

As mentioned in the preceding section, we experimented with P which was trained
on S, and S,. Since the vocabulary of S, subsumes that of S, (the only extra tokens
being the punctuation marks) and it is generally a good practice to train a punctuator
with the same dictionary on the source and target sides, we use the same vocabulary
for S,, Spr, TR, and TR,,.

Therefore, we again follow the “tokenisation — removing non-printing characters
— replacing unicode punctuation marks with ASCII approximations” preprocessing
pipeline for both S, and 7R,, then lowercase S, (TR, is already lowercased), and
finally learn 20,000 BPE merge operations on the concatenation of the preprocessed
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S, and TR, leading to a shared vocabulary of 19,300 subtokens. We use the same
Portuguese vocabulary obtained in Chapter 4.5.1.

4.6.2 Models

For Phase 2, we involve all five types of transformers mentioned in Chapter 4.5 ex-
cept that we use Ten-Hot Action Category Embeddings features for (v), making it
Trans-AVF-THACE. Additionally, 10 types of deliberation networks participate. There-
fore, the complete list of models we use in Phase 2 is as follows:

(i) Trans-TO
(ii) Trans-AVC-VS
(iii) Trans-AVF-VS
(iv) Trans-AVF-CLO
(v) Trans-AVF-THACE
(vi) text-only deliberation — additive deliberation at second pass (Delib-T0-A)

(vii) deliberation with additive visual conditioning based on VideoSum features —
additive deliberation at second pass (Delib-AVC-VS-A)

(viii) deliberation with attention to visual features based on reshaped VideoSum fea-
tures — additive deliberation at second pass (Delib-AVF-VS-A)

(ix) deliberation with attention to visual features based on convolutional layer out-
put features — additive deliberation at second pass (Delib-AVF-CLO-A)

(x) deliberation with attention to visual features based on ten-hot action category
embedding features — additive deliberation at second pass (Delib-AVF-THACE-A)

(xi) text-only deliberation — cascade deliberation at second pass (Delib-T0-C)

(xii) deliberation with additive visual conditioning based on VideoSum features —
cascade deliberation at second pass (Delib-AVC-VS-C)

(xiii) deliberation with attention to visual features based on reshaped VideoSum fea-
tures — cascade attention at second pass (Delib-AVF-VS-C)

(xiv) deliberation with attention to visual features based on convolutional layer out-
put features — cascade attention at second pass (Delib-AVF-CL0O-C)

(xv) deliberation with attention to visual features based on ten-hot action category
embedding features — cascade attention at second pass (Delib-AVF-THACE-C)

See Chapters 3.2 and 2.2.5 for more details of the settings above.

As mentioned before, we only have one type of source text in Phase 2: How2 video
transcripts, i.e. TR,.
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It is worth noting that the multimodal deliberation networks in Ive et al. (2019)
utilise the first 3 out of the total 6 decoder blocks at the second pass for additive
attention to the first pass decoding output, which is referred to as “half deliberation”
throughout the remainder of this report. As a preliminary investigation, we trained
both Delib-T0-A and Delib-T0-C with both half and full deliberation, and found full
deliberation to be generally worse-performing with a BLEU delta of as much as 1.5
compared to its half-deliberation counterpart. Therefore, we only use half delibera-
tion for all our experiments involving the models listed above.

4.6.3 Source Augmentation for Deliberation

To obtain more material for training the second pass decoder in deliberation net-
works, we use the trick from Ive et al. (2019): generate the 10-beam first pass
translation candidates for the training examples, so that the amount of training data
becomes 10-fold, as each original example

(source, visual features, gold-standard)
is expanded into

(source, visual features, first-pass translation candidate #1, gold-standard),
(source, visual features, first-pass translation candidate #2, gold-standard),

(source, visual features, first-pass translation candidate #10, gold-standard)

We also experimented with 2- and 4-beam deliberation, the former used by the orig-
inal paper on deliberation networks, before proceeding with 10-beam. Specifically,
we trained Delib-TO-A with 2-beam, 4-beam and 10-beam deliberation separately,
and found the performance on the validation set of the former two to be slightly
lower than the latter (within 0.5 BLEU). Therefore, we ultimately decided to use
10-beam source augmentation for all the deliberation networks.

4.6.4 Training

Considering the nature of deliberation being refining a first-pass translation, we
adopt the strategy from Ive et al. (2019): first train the underlying transformer
model until convergence, and use their weights for initialising the encoder and first
pass decoder of the deliberation model. We then train the network till its conver-
gence.

A distinction from Ive et al. (2019), however, is that we freeze the encoder and first-
pass decoder after they are imported from a trained transformer, so that the only part
of a deliberation network that is trained in this project is the second pass decoder.
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The primary reason for this choice is consistency. As previously mentioned, the
first pass results that the second pass decoder attends to is a sequence of [first-pass
pre-softmax hidden state; first-pass decoding result (token)] concatenations. For
first-pass tokens, we directly use the output of the underlying transformer structure.
If we fine-tune the first-pass decoder, it will mean that the two parts of the afore-
mentioned concatenations will effectively come from two different decoders, which
is inconsistent with the basic idea of deliberation.

Another justification is that we noticed that updating the second-pass decoder only
resulted in significantly quicker convergence and also better performance. Specif-
ically, we trained Delib-TO-A both updating the second-pass decoder only (partial
update) and updating the whole model (full update), and found the parameter size
of the former was 139,565,056 float32 units (4 bytes each) whereas the number
was 374,506,496 for the latter. Therefore, partial update naturally leads to faster
convergence. Surprisingly, a 1.5-BLEU drop was observed when full update was used
compared to partial update. Therefore, we conducted our later Phase-2 experiments
with partial update only.

For Phase 2, we train all the models on one Nvidia RTX 2080Ti (10GB memory each)
with a batch size of 1024, a base learning rate of 0.02 with 8,000 warm-up steps (we
tried 0.05 initially to be consistent with the transformer models and Ive et al. (2019),
but it led to divergence during the training of Delib-AVC-VS-A and Delib-AVC-VS-C,
so we decreased it to 0.02, which prevented the problem) for the Adam optimiser,
and a patience of 3 epochs for early stopping based on approx-BLEU, a metric re-
ported by tensor2tensor and generally reflective of the true BLEU scroes obtained
by the model on the validation set. After the training terminates, we evaluate all the
checkpoints on the validation set and compute the real BLEU scores of their outputs,
based on which we select the best model for inference on the test set.

Like in Phase 1, Our BLEU computation for checkpoint selection is done using the
t2t-bleu script of tensor2tensor , comparing the outputs of the checkpoint models
with the tokenised & lowercased Portuguese translations. It is worth noting that we
only keep the most recent up-to 100 checkpoints simultaneously.

4.6.5 Subsetting Test Set with Transcript Faithfulness

It was observed during preliminary experiments that transcribing quality varies across
examples, where some transcribed sentences differ from the actual subtitles by only
punctuation marks while some others completely changed meaning. Therefore, for
more informative evaluation, we divide the test set into three subsets: faithful, mod-
erately unfaithful, and highly unfaithful.

Specifically, we compare the tokenised and BPE-ed original transcripts (i.e. TR,)
against the tokenised, lowercased, punctuation-removed and BPE-ed subtitles (i.e.
S,-) sentence by sentence and calculate their Levenshtein distances (Levenshtein,
1966), and then normalise the result by the length of the transcript sentence, on
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the grounds that the normalised metric reflects the normalised effort of editing the
transcript sentence into the true subtitle.

For the transcript sentences in the test set that have zero distance to their subtitle
counterparts, we label them as “faithful”. On the other hand, those with a nor-
malised distance larger than 0.25 are tagged “highly unfaithful”, and all the other
sentences are marked as “moderately unfaithful”. This subsetting procedure leads
to 527 faithful, 1,402 moderately unfaithful, and 376 highly unfaithful transcript
sentences in the test set of 2,305 example in total. Our assumption is that visual
information should be helpful for translating the unfaithful examples. We show be-
low one (transcript, subtitle) pair for each faithfulness level (recovered from their
preprocessed forms).

Faithful:
Subtitle: Today we’re going to be learning how to play Portal, a game by Valve
Software.
Transcript: today we’re going to be learning how to play portal a game by valve
software

Moderately Unfaithful:

Subtitle: So I am forcing the clay onto that part of my hand and here we go pushing
it down, forcing it onto center like so.

Transcript: so i'm falseing the clay onto that pot of my hand and here we go pushing
it down pull so get onto center like so

Highly Unfaithful:

Subtitle: DNA actually has a charge so that if you put in the right instrument the
power source generates just the right amount of voltage.

Transcript: today i actually have a charge so to put it in the right as to our source
to generates just to draw it around a bolster
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Chapter 5

Results & Evaluation

5.1 Phase 1: MMT with Verb Masking

5.1.1 Scores

The BLEU (Papineni et al., 2002) scores! achieved by the five models in Phase 1 are
shown in Table 5.1 .

Table 5.1: Results for the test set. We report BLEU scores. Bold highlights our best
results. No multimodal system is significantly different (i.e. p-value < 0.05) from its
text-only counterpart (e.g. (Trans-AVF-CLO, ALL) compared to (Trans-TO, ALL)).

SETUP ORG ACT ALL
TraNS-TO 55.9 53.6 44.1

TRANS-AVC-VS 55.6 53.6 44.2
TRANS-AVF-VS 55.7 53.3 44.0
TRANS-AVF-CLO 55.6 53.8 44.4
TRANS-AVF-PSACE 56.2 53.5 44.5

Trans-TO, our baseline, achieves a BLEU score of 55.9 for ORG. As expected, the base-
line performs slightly (53.6 BLEU) and considerably worse (44.1 BLEU) as the mask-
ing progresses, which is consistent with the proportions of words masked in the
latter two settings introduced in Chapter 4.2.1.

Trans-AVC-VS, exploiting visual features at the encoder side, performs on par with
Trans-TO for ACT (difference within 0.1 BLEU) and ALL (+0.1 BLEU), but slightly
worse for ORG, where a -0.3 BLEU delta is recorded.

One can see that Trans-AVF-VS, using the same visual features as Trans-AVC-VS but
as a matrix on the decoder side, gives degraded performance in all three settings of

!We measure all our model performances with Multeval (Clark et al., 2011) throughout this thesis.
We use tokenised and lowercased reference and hypotheses.
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verb masking compared to the baseline: a 0.2 BLEU drop for ORG, 0.3 for ACT, and
0.1 for ALL. This suggests that the global visual features vector functions better when
used in its original vectorial form than when it is artificially reshaped for attention
from the decoder.

Trans-AVF-CLO, on the other hand, shows more improvements for ACT and ALL, with
a 0.2 BLEU increase for the former compared to the baseline placing the model in the
first place among the five for ACT. The jump for ALL is 0.3 BLEU, also evident.

Finally, Trans-AVF-PSACE enables a 0.3 BLEU improvement compared to the baseline
for ORG and is thus our best model for the setting. It is worth noting that Trans-
AVF-PSACE is also the only multimodal model that beats our Trans-TO baseline for
ORG. For ACT, the model fares worse than the baseline with a 0.1 BLEU drop. For ALL,
however, it again shows a major improvement of 0.4 BLEU over Trans-T0.

Overall, in terms of the BLEU automatic metric results, our multimodal models that
exploit VideoSum features are on par with, if not lagging behind, the text-only base-
line. Trans-AVF-CLO and Trans-AVF-PSACE, which utilise convolutinal and word em-
bedding features respectively, generally fare better than the baseline in more than
one scenarios, proving the benefits of using richer visual information for multimodal
translation.

We note that, interestingly, no multimodal model for ACT is able to achieve a score
similar to Trans-TO for ORG, which is especially interesting for Trans-AVF-CLO and
Trans-AVF-PSACE, since their convolutional and word embedding features come di-
rectly from a CNN that classifies videos into action categories whose labels corre-
spond to the action verbs masked in ACT. This is indication that Trans-AVF-CLO and
Trans-AVF-PSACE have not fully exploited the visual features or that their visual fea-
tures may not have captured the elements that are key to translation.

One can also see that the score gap between ORG and ACT is smaller for some mul-
timodal models than it is for the baseline (2.3 BLEU): Trans-AVC-VS and Trans-AVF-
PSACE shrink the gap by 0.3 and 0.5 BLEU points respectively. Similarly, Trans-AVC-VS
and Trans-AVF-CLO successfully shrink the gap between ORG and ALL by 0.4 and 0.6,
which are indeed pronounced differences.

5.1.2 Incongruence Analysis

It is clear from Table 5.1 that the improvements over the Trans-T0 baseline achieved
by the multimodal models are generally modest, and indeed the baseline performs
even better in some settings. This leads to the fundamental question: does multi-
modality help translation at all?

To find the answer, we follow the incongruent decoding approach proposed by
Caglayan et al. (2019a), where our multimodal models are fed with mismatchd
visual features, and the score difference between the normal and incongruent de-
coding results should be telling of how much visual features matter to the models.
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The general assumption is that a model will have learned to exploit visual infor-
mation to help with its translation, if it shows substantial performance degradation
when it is given wrong visual features.

We carry out the incongruence test on the test set of 2,305 examples, and feed
the visual features to the models in reverse order to ensure the visual features are
incorrect. The score details are in Table 5.2.

Table 5.2: Results for the test set, with incongruence. We report the BLEU score changes
w.r.t. the congruent-decoding counterpart systems in Table 5.1. 1 marks incongruent
decoding results that are significantly different (p-value < 0.05) from their congruent-
decoding counterparts

SETUP ORG ACT ALL
TRANS-AVC-VS 10.1 1077 J1.0°F
TRANS-AVF-VS 101 103 1057

TRANS-AVF-CLO 103 1057 08T
TRANS-AVF-PSACE | 0.1 047 0.3

Immediately clear from the table is the fact that incongruent visual features lead
to degraded performance in all but one scenarios (Trans-AVF-VS for ACT), which is
proof that the multimodal models have learned to utilise visual information to aid
translation.

Upon closer inspection, one will notice that the deltas are relatively small for the
ORG setting: Trans-AVF-CLO shows a 0.3 BLEU decrease, Trans-AVF-VS and Trans-AVF-
PSACE both suffer a drop of 0.1 BLEU, whereas Trans-AVC-VS gains 0.1 BLEU. For ACT,
however, the score differences are all negative and considerably larger: -0.7, -0.3,
-0.5 and -0.4 for Trans-AVC-VS, Trans-AVF-VS, Trans-AVF-CLO, and Trans-AVF-PSACE
respectively. The figures are even more pronounced for ALL: -1.0, -0.5, -0.8 and -0.3
for the mutimodal models.

Those numbers indicate the more incomplete the source text is the more important
visual features are to the multimodal models. A mask-free sentence (e.g. ORG) may
not need visual information to help with translation, while the same information
can be crucial in scenarios where elements present in the visual domain but missing
from the source sentence (e.g. ACT) can be recovered and correctly represented in
the translation by a multimodal model.

5.1.3 Human Analysis

Over the years, it has been pointed out in multimodal machine translation research
that automatic metrics such as BLEU can be an imperfect lens through which trans-
lation quality is determined, since nuances in translations that are signs of good
inference quality according to human judgement may not be well represented by
automatic metrics, such as the translation subtleties for which multimodality is help-
ful (Elliott et al., 2017b; Barrault et al., 2018b).
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Therefore, for Phase 1, four native Portuguese speakers who are also fluent in English
were invited to assess the inference results of three models. Specifically, Trans-
TO, Trans-AVF-CLO, and Trans-AVF-PSACE produced their outputs as our candidate
translations for ACT, and the four annotators were each given the same 50 randomly
selected examples from the test set for which the three models had different outputs
from one another. The Portuguese reference translations for those examples were
also given to the annotators, who were asked to rank the three candidate translations
on a scale of 1 to 3 while allowing ties (Bojar et al., 2017). Also, three-zero ranks
were also permitted for the candidate translations if they were all considered too
low-quality for a judgement. Additionally, the annotators were also asked to take
into account not only the sentence-level translation quality, but also how well the
ACT-masked verbs in the source sentence.

We adopt the Ratio of Wins and Ties strategy (Callison-Burch et al., 2011) to process
the scores. Specifically, since we have for each example a ranking among the three
systems, we can count the number of times a system is better, worse or equal to
another system, and then the score of each system becomes the proportion of times
that it defeats or forms a tie with another system. Table 5.3 shows our human
evaluation scores computed in this way.

Trans-TO Trans-AVF-CLO Trans-AVF-PSACE
0.75 0.73 0.81

Table 5.3: Human ranking results for ACT: micro-averaged over four annotators.

In contrast to the BLEU scores given to the three systems shown in Chapter 5.1.1, hu-
man annotators in general favoured Trans-AVF-PSACE which has a BLEU of 53.5, the
lowest among the three. On the other hand, Trans-AVF-CLO, the system favoured by
BLEU, had the least support from the annotators. See Figure 5.1 for some examples
where Trans-AVF-CLO or Trans-AVF-PSACE (i.e. one of the two multimodal models)
beats Trans-TO baseline (text-only).

Although the human evaluation results demonstrate that Trans-AVF-PSACE performs
better than the verdict given by BLEU, this noticeable discrepancy between BLEU and
human judgement warrants more investigation, which we leave for future work.
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Chapter 5. Results & Evaluation

EN

Trans-TO

Trans-
AVF-CLO

Trans-
AVF-
PSACE
PT

So, how do I make sure that I spin all the way around,
or, how do you make sure?

Entio, como eu me certifico de cortar a toda a volta, ou
como voce se certifica?

Entdo, como eu me certifico de dar a volta, ou, como
voceé se certifica?

Entdo, como eu me certifico de que eu viro todo o cam-
inho, ou, como vocé se certifica?

Entdo, como eu me certifico de girar ao redor, ou, como
voce se certifica?

(a) Trans-AVF-CLO guesses the masked word spin correctly as dar a volta, while the Trans-
TO model translates it incorrectly as cortar (cut) and Trans-AVF-PSACE translates it partially

correctly as virar (turn)

EN

Trans-TO

Trans-
AVF-CLO

Trans-
AVF-
PSACE
PT

In this clip we’re talking about footwork, we’re going to
be covering the moving forward aspect of it.

Neste clipe, estamos falando de trabalho de pés, vamos
discutir o aspecto da frente dele.

Neste clipe, estamos falando sobre o trabalho de pés,
vamos cobrir o aspecto da mudanca para a frente.

Neste clipe, estamos falando de footwork, vamos
discutir o aspecto do movimento em movimento.

Neste pequeno video, estamos falando de trabalho de
pés, vamos estar cobrindo o aspecto avancado.

(b) Trans-AVF-CLO guesses talking and covering correctly as falar (talk) and cobrir (cover);

the other models get the first word right, but translate the other word as discutir (discuss)
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EN I might use the sixty degree wedge a bit too, but the
sand wedge obviously is useful for getting out of the
ruff, hitting the ball from the fairway, getting out of
sand.

Trans-TO  Eu poderia usar a cunha de sessenta graus também, mas
a cunha de areia, obviamente, é util para sair do ruff,
tirar a bola do fairway, sair da areia.

Trans- Eu poderia usar a cunha de sessenta graus um pouco

AVF-CLO também, mas a cunha de areia obviamente é util para
sair do pescoco, bater na bola do fairway, saindo da
areia.

Trans- Eu posso usar a cunha de sessenta graus um pouco

AVF- também, mas a cunha de areia obviamente ¢ 1til para

PSACE sair do ruff, bater a bola do fairway, sair da areia.

PT Eu também poderia usar a wedge de sessenta graus,

mas a sand-wedge, obviamente, € til para sair do ruff,
acertar a bola no fairway, sair da areia.

(¢) Trans-AVF-CLO and Trans-AVF-PSACE guess hit correctly as bater (the gold-standard ac-
ertar has the same meaning this example), while the text-only model translates it as tirar
(remove)

Figure 5.1: Examples of improvements of Trans-AVF-CLO and Trans-AVF-PSACE over
the text-only baseline. Underlined text denotes masked words and their translations.
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5.2 Phase 2: MMT with Transcripts

5.2.1 Scores

The BLEU scores achieved by each model detailed in Chapter 4.6.2 under each faith-
fulness setting defined in Chapter 4.6.5 are shown in Table 5.4, where the “overall”
column lists the performances measured on the entire test set (2305 examples) re-
gardless of faithfulness.

Setup Overall Faithful Moderately Unfaithful Highly Unfaithful
Trans-TO 40.3 58.1 40.4 22.2
g Trans-AVC-VS 40.2 57.7 40.4 21.5
& Trans-AVF-VS 40.2 58.6 40.1 22.7
Trans-AVF-THACE 40.3 57.2 40.5 22.1
Trans-AVF-CLO 40.3 58.6 40.1 22.9
Delib-TO-A 38.2 55.3 38.1 21.4
E Delib-AVC-VS-A 36.77 54.3 36.5 1 19.3 7
g Delib-AVF-VS-A 38.3 55.3 38.2 21.2
Delib-AVF-THACE-A 37.57  55.4 37.5 20.0 ¥
Delib-AVF-CLO-A 37.8 55.8 37.8 20.3
Delib-TO-C 37.0 54.3 36.7 21.1
E Delib-AVC-VS-C 36.9 55.3 36.6 19.7
E’ Delib-AVF-VS-C  38.0 f  55.3 38.0 F 20.9
Delib-AVF-THACE-C 37.97  55.0 37.8 7 21.0
Delib-AVF-CLO-C 37.6 54.0 37.57 21.0

Table 5.4: BLEU scores of all the transformer and deliberation models under all the tran-
script settings. Bold highlights our best system in each (architecture, transcript) setting,
and 7 indicates significant difference (p-value < 0.05) compared to the corresponding
baseline, e.g. (Trans-AVF-THACE, moderately unfaithful) compared to (Trans-TO, mod-
erately unfaithful)

One immediate observation is that the translation quality of every model deteriorates
as the transcript faithfulness decreases. From completely faithful to moderately un-
faithful, a BLEU gap of 17 to 18 is generally resulted. A similar amount of score drop
is also presented as the transcripts progress from moderately to highly unfaithful.
Also, one will notice that the model performances under the moderately unfaithful
setting are similar to their overall ones, which indicates that the transcripts are, on
average, on the “moderately unfaithful” level defined previously, also justifying our
threshold choice (i.e. positive normalised Levenshtein distance below 0.25 for being
moderately unfaithful).

A surprising result is that the transformer-based models outperform their deliber-
ation counterparts in every transcript setting, whether they are text-only or mul-
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timodal. Specifically, Trans-TO overall (40.3) beats Delib-T0-A (38.2) by 2.1 BLEU
and Delib-TO-C (37.0) by 3.3, which are considerable score differences. This per-
formance degradation directly contradicts the improvement by deliberation over the
transformer shown by Ive et al. (2019), where Delib-T0-A surpasses Trans-TO by
as much as 1.3 BLEU. It is improbable that our approach is fundamentally flawed,
since we trained Delib-TO-A and Trans-TO on Multi30K which is used by Ive et al.
(2019) and found similar improvements. On the other hand, our text pre- and post-
processing is equally unlikely to be unsound, as we checked repeatedly and also due
to the fact that our Trans-TO shows no abnormality. As for the system output of
the deliberation models, we did not observe any obvious abnormalities common in
machine translation, as was confirmed by a native Portuguese speaker who is also
an MT expert.

For the transformers, one will notice that, interestingly, Trans-T0 is on par with
Trans-AVF-THACE and Trans-AVF-CLO as one of the overall top-performing models,
differing from the latter two within 0.1 BLEU, despite not taking the lead for any
faithfulness level — Trans-AVF-CLO and Trans-AVF-VS are the best (58.6 BLEU) for
faithful transcripts, Trans-AVF-THACE is in the first place (40.5) for moderately un-
faithful ones, and Trans-AVF-CLO tops the list for the highly unfaithful subset. This
can only be explained by a statistical advantage — Trans-T0 is a close second (40.4
BLEU) for moderately unfaithful sentences which constitute more than 60% (1,402
out of 2,305) of the dataset, whereas Trans-AVF-CLO, beating Trans-TO by 0.5 BLEU
for faithful examples and 0.7 BLEU for highly unfaithful (which are substantial im-
provements in MT), is among the worst-performing model (40.1 BLEU, lagging be-
hind Trans-TO by 0.3) for moderately unfaithful examples.

Comparing the ORG column of Table 5.1 and the Overall column of Table 5.4, one
can conclude that visual information in Phase 2 makes statistically less difference
for the transformer-based models — Trans-AVC-VS lags behind Trans-T0 by 0.1 BLEU
compared to the 0.3 in Phase 1, Trans-AVF-VS trails Trans-TO by 0.1 BLEU in con-
trast to the 0.2, and Trans-AVF-CLO is practically the same as Trans-AVF-CLO in Phase
2 but the delta is -0.3 in Phase 1. Granted, there are certain configuration- and
resources-related minor training differences between Phases 1 and 2, but the sta-
tistical closeness between the system scores should come down to the fundamental
distinction: the source. It is probable that the transcripts, as degraded subtitles, pre-
clude more accurate translation and, as a byproduct, bring different models closer
together.

Following the idea of source corruption, one will notice, by comparing the ACT col-
umn of Table 5.1 and the Overall column of Table 5.4, that multimodality is also less
statistically helpful on average, which is best illustrated by the 0.2 BLEU lead (53.8
vs. 53.6) Trans-AVF-CLO has over Trans-TO in Phase 1 in contrast to the virtually no
difference in Phase 2. Since transcribing can be interpreted as introducing random
noise as opposed to the deterministic action verb masking in ACT in Phase 1, it can
be assumed that the same action convlutional features (i.e. CLO) are more useful in
Phase 1 where they can more directly help fill the deliberately replaced verbs due to
the close connection between the features and the verbs.
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Additive deliberation paints a very different picture. The first difference is that
Delib-AVF-VS-A, a multimodal model, now beats the baseline by 0.1 BLEU overall.
The other multimodal additive deliberation networks, however, lag behind Delib-
AVF-VS-A and Trans-TO significantly with deltas as large as 1.5 BLEU (Delib-AVF-VS-
A) compared to Trans-TO. This is in stark contrast to the transformers, where the
unimodal and multimodal systems perform similarly overall. Also different from the
transformers is that Delib-T0-A, a text-only model, is the champion for the highly
unfaithful subset, leaving the second best (Delib-AVF-VS-A) 0.2 BLEU behind. The
distinction is particularly pronounced for models using CLO features: Trans-AVF-CLO
(22.9) surpasses Trans-T0 (22.2) by 0.7 BLEU on this subset, whereas Delib-AVF-CLO-
A (20.3) is defeated by Delib-TO-A (21.4) by 1.1 BLEU. For THACE features, similarly,
Delib-AVF-THACE-A is outperformed by Delib-T0-A by 0.6 BLEU on the moderately
unfaithful examples, despite Trans-AVF-THACE being ranked the best in the same
category.

There are also interesting parallels. For example, Delib-AVF-VS-A secures its overall
performance through its strong results (38.2 BLEU, first place) on the majority subset
— moderately unfaithful examples, not unlike Trans-TO and Trans-AVF-THACE. Also,
CLO features again contribute to the winner model Delib-AVF-CLO-A for the faithful
subset, outperforming its baseline (Delib-T0-A) by 0.5 BLEU, the same amount as the
delta between Trans-AVF-CLO and Trans-TO.

Cascade deliberation yields some results similar to additive deliberation. Delib-AVF-
VS-C (38.0 BLEU) is overall the best cascade-deliberation model just as Delib-AVF-VS-
A is for additive deliberation, also thanks to its dominance (36.7 BLEU) on the mod-
erately unfaithful subset. Again, Delib-T0O-C becomes the winner (21.1 BLEU) on the
highly unfaithful examples, but this time in spite of its considerably weaker overall
results: second last overall (37.0 BLEU) and on the faithful (54.3 BLEU) and moder-
ately faithful (36.7) subsets. Noticeably, Delib-T0-C is substantially worse BLEU-wise
compared to Delib-T0-A with deltas as large as -1.4 on moderately unfaithful exam-
ples, which suggests the choice of deliberation mechanism indeed makes a differ-
ence.

A general observation can be made about the multimodal deliberation networks:
apart from Delib-AVF-VS-C, all the cascade deliberation networks are able to beat
the their baseline (i.e. Delib-T0-C) by a large delta, especially for Delib-AVF-VS-C
(38.0 BLEU) and Delib-AVF-CLO-C (37.9 BLEU) which both surpass the baseline by
close to 1 BLEU. The multimodal advantage is much less obvious the case, however,
for additive deliberation, where AVF and AVC models struggle to compete with the
38.0-BLEU baseline (Delib-T0-A). Also, compared to the pronounced overall score
difference between Delib-T0-A and Delib-T0-C, the multimodal additive-deliberation
systems have much more similar scores with their cascade-deliberation counterparts.

Finally, the transformers and deliberation networks deliver a mixed verdict on the
assumption we make in Chapter 4.6.5 that visual information can be more helpful
for more unfaithful source sentences since the former may be able to help “correct”
the semantic meaning of the latter. What we see in Table 5.4 is that the assump-
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tion clearly holds for two multimodal transformers: Trans-AVF-VS and Trans-AVF-
CLO which beat their Trans-TO baseline by 0.5 and 0.7 BLEU respectively. For de-
liberation, however, Delib-TO-A and Delib-TO-C are the best in their model groups,
contradicting the assumption. We investigate this further in Chapter 5.2.2

5.2.2 Incongruence Analysis

Similar to in Chapter 5.1.2, we carry out the same incongruent decoding with reverse-
order visual features, and the results are shown in Table 5.5. We inspect the results
of transformer-based, additive-deliberation-based, and cascade-deliberation-based
models separately.

Setup Overall Faithful Moderately Unfaithful Highly Unfaithful
" Trans-AVC-VS 1047 |10 } 0.3 } 0.5
E Trans-AVF-VS 103 109%F 1 0.2 -
= Trans-AVF-THACE 1057 1 0.4 1 0.3 11.07
Trans-AVF-CLO } 0.1 1147 10.1 10.4
< Delib-AVC-VS-A 101 1.0 10.3 10.5
E Delib-AVF-VS-A - - - 10.2
2 Delib-AVF-THACE-A 1 0.2 - 10.1 1 0.5
Delib-AVF-CLO-A 10.1 10.7 10.2 10.2
o Delib-AVC-VS-C 106F 207 } 0.5 10.1
.:3 Delib-AVF-VS-C - 10.3 - 10.1
2 Delib-AVF-THACE-C 027 /0.3 10.2 -
Delib-AVF-CLO-C 1 0.2 1 0.5 10.1 1 0.5

Table 5.5: BLEU score deltas caused by incongruent decoding, where “-” means insignif-
icant change (i.e. within 0.1 BLEU) and { marks incongruent decoding results that are
significantly different (p-value < 0.05) from their congruent-decoding counterparts

For the multimodal transformers, the effect of incongruence is obvious, with all
the models experiencing overall BLEU drops, of which the largest is 0.4 (Trans-AVC
VS) and the smallest 0.1 (Trans-AVF-CLO). By inspecting the incongruence impact
on translating the differently faithful subsets, we will notice that the largest drops
tend to be from decoding the faithful transcripts, including a 1.4 BLEU decrease suf-
fered by Trans-AVF-CLO. For moderately and highly unfaithful examples, on the other
hand, the score changes with incongruence are not universally for the worse. In par-
ticular, Trans-AVF-CLO gets a boost of 0.1 and 0.4 from incongurence on the moder-
ately and highly faithful examples respectively. It is also clear that score changes on
the moderately unfaithful generally vary less, as the largest of them is -0.3 (Trans-
AVC-VS). In all, those negative BLEU deltas caused by incongruence are indicative of
the multimodal transformers utilising the visual features to help with their transla-
tion, especially so for faithful transcripts.
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In stark contrast, additive deliberation with incongruent decoding leads to small
overall BLEU increases for Delib-AVC-VS-A (+0.1) and Delib-AVF-THACE-A (+0.2),
virtually no difference for Delib-AVF-THACE-A, and a slight decline (-0.1) for Delib-
AVF-CLO-A. While the score changes are either negative (Delib-AVC-VS-A, Delib-AVF-
CLO-A) or negligible (Delib-AVF-VS-A and Delib-AVF-THACE-A) on the faithful tran-
script sentences, they are universally positive on the highly unfaithful examples for
the multimodal models. This suggests that correct visual information is not as useful
for the additive-delib models as it is for the transformers, and in fact does harm to
the performance of those multimodal additive-delib networks on those sentences.

Incongruence with cascade deliberation behaves more similar to the transformer
case. Again, faithful examples all suffer translation quality degradation from 0.3 to
0.5 BLEU with the AVF models and a striking 2.0 BLEU with Delib-AVC-VS-C. Moder-
ately and highly unfaithful subsets generally experience small BLEU deltas ranging
from -0.2 to 0.1 with incongruent decoding of the multimodal models, except Delib-
AVC-VS-C on the moderately unfaithful subset and Delib-AVF-CLO-C on the highly un-
faithful one, both of which are a 0.5 BLEU decrease. Therefore, visual information is
largely a positive force for multimodal cascade deliberation.

Across models, the determination can be made that transformer- and cascade-deliberation-
based multimodal systems in general have evidently deteriorated performances led

to by incongruent decoding, which is proof that correct visual information matters

to those models and aids their decoding. Additive deliberaion on the other hand
shows less reliance on and lower efficiency in utilising the visual features, showing
minor overall BLEU drops and even boosts in the highly unfaithful scenario.

Interestingly, how much the visual modality matters (in other words, how signifi-
cant the performance degradation is) is not necessarily correlated with the BLEU of
the congruent decoding results. For example, Delib-AVF-CLO-C beats Delib-AVC-VS-C
by 0.7 BLEU with normal decoding, but the former only suffers a 0.2-BLEU loss with
incongruence whereas the figure for the latter is 0.6. The same can be said about
Trans-AVF-CLO (-0.1 BLEU) and Trans-AVC-VS (-0.4 BLEU). This means that some mul-
timodal models that are sensitive to incongruence likely complement visual attention
with textual attention but without getting better output relying on the visual modal-
ity. We leave it to future work for further investigating this phenomenon.

On the macro level, we can see that whichever the multimodal architecture, be it
transformer-based or deliberation-based, it is very clear that visual features are most
helpful on faithful examples, based on how much damage incongruence causes. For
highly unfaithful transcript sentences, however, it is a lot less certain, especially
considering the BLEU jumps in additive deliberation. Hence, we can answer the
previous question: No, our action visual features are not more helpful on more
unfaithful examples, but instead on more faithful ones. This is in contradiction to
the conclusions we drew from the incongruence results of Phase 1, where ALL, which
can be considered “more unfaithful” than ORG and ACT, suffered the largest loss of
translation quality. We do not have a definite answer that reconciles those facts, but
one plausible explanation is that our action-based visual features are more suited for
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recovering from targeted verb masking than from source corruption caused by the
random noise of the transcribing process.

5.2.3 Attention Visualisation

To better understand our models, we visualise textual and visual attention on test-set
examples.

Textual Cross Attention with Deliberation

As mentioned in Chapter 5.1.1, the deliberation networks deliver worse performance
compared to their transformer counterparts. Considering the half-deliberation na-
ture of those networks (i.e. second-pass decoder attention to first-pass results only
at the first three layers. See Chapter 4.6.2 for more details), we extract the textual
cross attention paid to the encoder output (English) by Delib-T0-A and Delib-TO-C
at the 6! layer of the their first pass decoders and the 3¢ and 6 layers of their
second pass decoders, as well as their attention to the first pass output (Portuguese),
with an example shown in Figures 5.2 and 5.3. We average the attention weights
at the 16 heads for the illustration. Note that Figures 5.3a and 5.3a are identical,
since Delib-TO-A and Delib-TO-C rely on the same un-fine-tuned encoder and first
pass decoder from Trans-TO.

Despite their different ways of integrating second-pass textual attention to the en-
coder output and first pass [hidden state, decoding result] concatenations, we can
see that Delib-TO-A and Delib-TO-C have similar patterns. In both models, the
shared first pass decoder exhibits appropriate diagonal-style lexical correspondence
between the English words and their Portuguese counterparts, such as find—encontrar
and exit-saida, and the same can be said about the middle (i.e. 37%) layer of the sec-
ond pass decoder. For the second-pass attention to the first pass results, shown in
Figures 5.2d and Figures 5.3d, the correlation is much stronger, as manifested by the
same-word attention all the way from entao-entao to saida-saida.

However, a problem existing in both models is also revealed in Figures 5.2c and 5.3c:
much less focused attention to the encoder output at the last (6¢) second pass layer
compared to at the middle (i.e. 3"%) one. This is a direct contradiction of the received
wisdom about layered attention structures in general that layers higher up tend to
have learned to concentrate on the “useful” or “right” words for translation and
therefore show more focused attention than the previous layers. We believe that this
irregularity is directly responsible for the degraded performance of the deliberation
networks.
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SecondP, EncDec, 3rd layer
EN: So, we've got to find a way to get to the exit.
Tr: so we've got to find a way to get to the exit
1P: entdo , temos que encontrar uma maneira de chegar a saida .
2P: entdo , temos que encontrar uma maneira de chegar a saida .
PT: Entdo, temos que encontrar, uma maneira de chegar a saida.

FirstP, EncDec, 6th layer
EN: So, we've got to find a way to get to the exit.
Tr: so we've got to find a way to get to the exit
1P: entdo , temos que encontrar uma maneira de chegar a saida .
PT: Entdo, temos que encontrar, uma maneira de chegar a saida.

Mgy g qb:nfoaffq, ""'s%"“”a A e, o %:%o,,,,e’ %s’ha%% %o e
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to- 0.03 0.03 003 031 000 003 001 003 000 000 000 0.03 to- 000 001 0.01 ‘043 011 007 0.3 003 0.01 000 0.00 0.00
find - 0.02 0.14 0.29 0.04 005 000 0.01 find - 0.01 004 001 0.07 ﬂ 0.03 0.06 0.02 0.02 0.01 0.00 0.00
a- 0.00 0.00 0.04 0.00 0.01 000 0.02 a- 001 001 001 001 008 ﬂ 0.17 0.07 0.01 0.01 0.00 0.00
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to- 001 0.01 001 0.04 001 003 013 027 000 002 000 0.03 to- 001 001 001 000 000 001 005 [0.44 0.18 001 0.00 0.00
get- 0.00 0.00 0.00 0.02 004 002 003 018 039 011 000 001 get- 001 001 000 001 002 001 001 0.04 ﬁ 0.08 0.00 0.00
to- 000 001 001 001 003 002 001 005 020 023 000 003 to- 000 001 000 000 001 002 001 004 009 030 002 001
the- 0.00 0.00 000 000 000 001 000 002 013 030 001 003 the- 000 001 000 000 002 000 000 001 008 042 019 002
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(a) First Pass Attention to Encoder (b) Second Pass Attention to Encoder
Output, 6 layer Output, 3" layer

SecondP, EncDec, 6th layer
EN: So, we've got to find a way to get to the exit.

Tr: so we've got to find a way to get to the exit SecondP, DecDec, 3rd layer
1P: entdo , temos que encontrar uma maneira de chegar a saida . EN: So, we've got to find a way to get to the exit.
2P: entdo , temos que encontrar uma maneira de chegar a saida . Tr: so we've got to find a way to get to the exit
PT: Entdo, temos que encontrar, uma maneira de chegar a saida. 1P: entdo , temos que encontrar uma maneira de chegar a saida .

2P: entdo , temos que encontrar uma maneira de chegar a saida .
o PT: Entdo, temos que encontrar, uma maneira de chegar a saida.
KX . fe%: e ru""w U"'s%%”'e @ P, s Y .
so- 030 0.03 003 005 003 003 002 004 004 003 001 004 G’?{‘go [@o,o: ‘70:’7%7"@, a%%"e,,e @ O’egsr ‘ %/%
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got- 030 025 028 008 002 006 002 006 002 004 001 005 temos - 0.12 025 000 0.00 001 001 0.00 0.0 000 0.00 001
to- 0.03 0.05 005 0.11 004 008 005 006 002 006 001 0.05 que- 0.00 001 0.02 0.00 0.02 0.00 0.07 0.00 0.01 000 0.00

find - 0.03 011 010 004 025 006 003 002 006 003 001 002 encontrar- 0.00 001 0.0 0.00 000 000 0.0 0.00 0.00 0.00 0.00
a- 004 003 003 009 012 024 006 005 005 006 002 004 uma- 000 000 000 003 000 JUESN 001 000 000 000 0.00 0.00
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to- 002 003 004 005 006 005 004 005 009 014 002 004 a- 000 000 000 000 000 001 004 000 o000 [EEN 0.01 005
the- 0.01 0.02 002 003 004 006 003 003 009 015 007 003 saida- 000 000 000 000 000 000 002 000 004 0.02 0.02
exit- 0.01 0.01 001 001 002 002 010 001 012 0.05 0.01 ,- 000 000 000 0.00 000 000 006 006 0.00 0.00 0.01
<EQS> - 0.02 0.05 0.06 017 010 011 011 0.09 025 0.03 ﬂ <EOS>- 0.00 000 000 003 002 000 007 000 0.00 007 0.14 002

(c) Second Pass Attention to Encoder (d) Second Pass Attention to First
Output, 6" layer Pass Output, 3"¢ layer

Figure 5.2: Textual attention of Delib-T0-A at 4 different layers of first-pass and second-
pass decoders. EN: Original Subtitle; Tr: Transcript Sentence; 1P: First Pass Decoding
Output; 2P: Second Pass Decoding Output; PT: Portuguese Reference
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SecondP, EncDec, 3rd layer
EN: So, we've got to find a way to get to the exit.
Tr: so we've got to find a way to get to the exit
1P: entéo , temos que encontrar uma maneira de chegar a saida .
FirstP, EncDec, 6th layer 2P: ent?o temos que encontrar uma maneilja de chegar ‘a‘sal'c:ia .
EN: So, we've got to find a way to get to the exit. PT: Entdo, temos que encontrar, uma maneira de chegar a saida.
Tr: so we've got to find a way to get to the exit
1P: entdo , temos que encontrar uma maneira de chegar a saida .

PT: Entdo, temos que encontrar, uma maneira de chegar a saida. g, (@,bo: %?co,%, U%”?a,,s% @ %9.9,. o
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exit- 003 007 002 00l 003 005 003 002 001 JEEN 0.10
exit- 0.01 0.00 0.00 000 001 000 002 000 0.18

<EOS> - 0.00 0.02 001 003 000 001 000 017 001 012 000 [NES «E0s> - 0.00] Ruo3) (U013 Ju.01Y JOO2] 002} §OUSR §0.0Z) Rtz QDS

(a) First Pass Attention to Encoder (b) Second Pass Attention to Encoder
Output, 6" layer Output, 3¢ layer

SecondP, EncDec, 6th layer
EN: So, we've got to find a way to get to the exit.

Tr: so we've got to find a way to get to the exit SecondP, DecDec, 3rd layer
1P: entdo , temos que encontrar uma maneira de chegar a saida . EN: So, we've got to find a way to get to the exit.
2P: entdo temos gue encontrar uma maneira de chegar a safda . Tr: so we've got to find a way to get to the exit
PT: Entéo, temos que encontrar, uma maneira de chegar a saida. 1P: entao , temos que encontrar uma maneira de chegar a saida .

2P: entdo temos que encontrar uma maneira de chegar a saida .
PT: Entdo, temos que encontrar, uma maneira de chegar a safda.
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(c) Second Pass Attention to Encoder (d) Second Pass Attention to First

Output, 6" layer Pass Output, 3"¢ layer

Figure 5.3: Textual attention of Delib-TO-C at 4 different layers of first-pass and second-
pass decoders. EN: Original Subtitle; Tr: Transcript Sentence; 1P: First Pass Decoding
Output; 2P: Second Pass Decoding Output; PT: Portuguese Reference
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Visual Attention: Ten-Hot Action Category Embedding

For each THACE-based example, we show two of the 16 equi-distant frames of a video
which were fed to the action recognition network that generated the visual features,
in order to make it possible for the reader to get the gist of the video.

The general observation about visual attention by the transformer and deliberation
networks to ten-hot action category embeddings is that, when the video frames are
closely associated with the detected actions, the averaged head attention (16 heads
in total) is mostly distributed across the categories that are most relevant, no matter
the word that is being generated.

An example of the observation above is given in Figure 5.4 where the video segment
demonstrates a turn-and-kick movement. The Delib-AVF-THACE-A model on average
visibly focuses its attention on four categories: “kicking”, “raising”, “kneeling” and
“exercising”. Among them, “kicking” and “exercising” are obvious elements present
in the video, while “raising” and “kneeling” are visually similar actions. Since the
action category embeddings are not weighted but instead in their original forms,
we can see that the model has learned to focus on the relevant actions. It is also
clear that the model has a relatively narrow range for attention — when generating
Portuguese words such as “entao” (“so”) and “fazer” (“do”), it focuses on the same
relevant action categories as it does for the other more action-related words.

Topl0 SoftmaxEmbed, 6th layer
Head avg, Normal
EN: So you are going to do that turn, and extend that leg out and kick the bag.
Tr: so you're going to do that turn and extend that leg out and kick the bag
1P: entdo vocé vai fazer isso , virar e estender a perna e chutar a sacola .
2P: entdo , vocé vai fazer isso , vire e estenda a perna para fora e chute a bolsa .
PT: Entdo, vocé vai fazer esse turno, e estender essa perna e chutar a bolsa.

R
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squatting - 0.07 0.06 0.07 011 012 010 009 0.05 ﬂ 010 009 009 0.08 011 011
ficking 7” e m oo m 008 . e
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kneeling -| 0.10 0.09 Lil) 009 010 011 011 010 0.09 JPEN 0.10 011
bending - 0.06 003 005 011 005 006 005 008 008 011 006 007 009 006 008 006 005 0.08 007
bowing - 0.06 004 008 006 004 005 006 011 007 009 007 007 009 007 007 008 008 003 007
lifting - 0.0L 003 003 003 004 002 003 005 004 008 004 003 005 006 004 005 005 0.07 005
instructing - 0.08 010 0.06 006 007 008 [012 0.09 0.11 0.09 012 006 012 0.06

stretching - 0.02 008 003 007 O. 0.08 006 007 009 007 0.04 008 005 0.08 003 004 0.06 006

.04 002 O
exerc\smg* 0.11 012 011 012 009 012 012 012 013 012 013 . 012

Figure 5.4: 1°* and 8" frames of a video segment & Average-head attention of the
second pass decoder of Delib-AVF-THACE-A to embeddings of the top 10 THACE categories
detected from the same video segment. EN: original subtitle; Tr: transcript sentence; 1P:
first-pass decoding output; 2P: second-pass decoding output; PT: Portuguese reference;
2P_TOK: BPE-ed & tokenised form of 2P

Interestingly, even when the action category label is presented in its lexical form in
the sentence to be translated, the model does not necessarily pay the most attention
to that category. In this same example, one will notice in Figure 5.4 that the model
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on average is 17% focused on “kicking” when generating the word “chute” (i.e.
“kick” in Portuguese) in contrast to 25% on “kneeling”. If we inspect the attention
of all the heads for “chute” in Figure 5.5, we will see that Head 8 is predominantly
(77%) “kicking”-attending, and Heads 2 and 5, too, are mostly focused on “kicking”.
This means the 16 heads have learned diverse attention schemes, and therefore
the relevant or “correct/interesting” categories may not have the most attention on
average but usually have some heads dealing with them.

Topl0 SoftmaxEmbed, 6th layer, Normal
EN: So you are going to do that turn, and extend that leg out and kick the bag.
Tr: so you're going to do that turn and extend that leg out and kick the bag
1P: entdo vocé vai fazer isso , virar e estender a perna e chutar a sacola .
2P: entao , vocé vai fazer isso , vire e estenda a perna para fora e chute a bolsa .
PT: Entédo, vocé vai fazer esse turno, e estender essa perna e chutar a bolsa.
2P_TOK: entéo , vocé vai fazer isso , vire e estenda a perna para fora e chute
a bolsa .
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kneelmgf 032 0.02 006 004 010 032 001 002 0.00 0.02 026 E

bending - 0.01 010 005 0.08 001 005 003 004 005 002 007 026 001 0.06 004 0.10
bowing - 0.00 011 0.04 026 004 026 002 0.08 004 003 012 002 001 0.03 018 0.09
lifting - 0.03 0.02 011 006 002 0.01 001 0.02 005 012 010 002 0.06 013 006 0.01
instructing - 0.00 011 002 012 024 012 004 001 002 00l 008 001 001 008 003 0.00
stretching - 0.03 003 004 005 002 002 001 006 0.03 001 004 002 004 006 002 001

exercising - 0.18 0.04 012 006 028 001 001 004 012 002 000 0.04 ﬁ 013 012 0.01

Figure 5.5: Multi-head attention of the second pass decoder of Delib-AVF-THACE-A to
embeddings of the top 10 THACE categories detected from the same video segment, when
generating the word “chute” (kick)

For videos that feature more narration than action, the 10 detected categories enjoy
more or less similar attention on average. Figure 5.6 shows such an example, where
the English sentence “So I would advise putting a lot of your practice time into
the sand wedge” has no action verbs, and as a result the average-head attention
has much more evenly spread focus on the action categories when generating the
translated sentence.
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Topl0 SoftmaxEmbed, 6th layer
Head avg, Normal
EN: So, | would advise putting a lot of your practice time into the sand wedge.
Tr: so i would advise putting a lot of your practice time into the sand wedge
1P: entdo , eu aconselho colocar muito tempo de sua pratica na cunha de areia .
2P: entao eu aaaasou colocar muito tempo de pratica na cunha de areia .
PT: Entéo, eu aconselho colocar um pouco do seu tempo de prética na cunha de areia.

Q & Lrs
Yy« o To Ve o w, O Mo Tmy @ ey o Yy @ e

| ' | ' | '
coaching- 0.10 0.09 0.09 0.09 009 009 010 010 0.09 0.09 007 011 0.09 0.08 0.10
hitting - 0.09 0.10 0.11 010 010 010 010 010 009 0.09 010 009 010 009 010 009 0.09

punting , 0.11 0.09 0.09 0.09 010 010  0.11 ﬂ 0.11
gripping- 0.11 0.10 0.10 0.09 009 009 009 010 011 011 010 0.11 009 011 010 010
putting - 0.08 0.09 0.11 010 0.10 010 010 009 009 0.09 010 008 0.09 008 009 008 007
swinging - 0.08 0.02 010 010 010 010 010 010 009 0.09 009 008 0.09 009 010 0.09 009
playing+sports - 011 011 0.10 o010 010 010 o010 010 011 011 010 010 010 011 010 010 011
placing - 0.10 0.11 011 011 011 011 011 010 010 0.10 0.09 [0.11 0.08 0.11 o0.08 009
instructing - 0.08 0.09 010 010 0.10 010 010 0.09 009 009 009 009 009 009 008 009 007

blocking - 012 011 o011 o011 011 o011 011 01l}0 011 010 011 010 011 009 011 0.09 011

Figure 5.6: 1°* and 15" frames of a video segment & Average-head attention of the
second pass decoder of Delib-AVF-THACE-C to embeddings of the top 10 THACE categories
detected from the same video segment. EN: original subtitle; Tr: transcript sentence; 1P:
first-pass decoding output; 2P: second-pass decoding output; PT: Portuguese reference;
2P_TOK: BPE-ed & tokenised form of 2P

Visual Attention: Convolutional Layer Output

CLO features, coming from the convolutional layers, are usually assumed to contain
more information than higher-level semantic information such as THACE. Indeed, we
have found CLO-based transformer and deliberation networks to manifest their ca-
pability of capturing objects despite CLO being from an action recognition network.
In fact, our observation is that it is easier to find examples where a CLO-based model
focuses on an object in a video when the corresponding word is being translated,
than to find instances where it exploits video regions for translating verbs. However,
an important caveat is the aforementioned “good” localisation behaviour tends to
exist only in a few heads, while the attention of the other heads is much less in-
terpretable and arguably nonsensical, causing the average-head attention to appear
useless. For each example in this section, we superimpose the upsampled attention
heatmap onto the 8 of the 16 equi-distant frames of a video which were fed to the
action recognition network that generated the visual features.

Figure 5.7 shows a typical example of the description above from Trans-AVF-CLO.
Inspecting only Figure 5.7a, one will easily reach the conclusion that the average
attention here has no obvious way to be explained, since the attention for translat-
ing every word of the output sentence is focused on the upper right corner of the
video. However, the multihead attention shown in Figure 5.7b when the word being
generated is “bochecha” (cheeck) is not so simple — there are heads attending to the
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Avg-Head
EN: I'm using a little brush, a little angle brush, and I'm going
right onto the cheekbones.
Tr: i'm using that little brush a little angle brush i'm just going
right onto the cheek bones
Out: estou usando esse pequeno pincel , um pequeno pincel de angulo ,
eu estou indo direto para os ossos da bochecha .

Conv, 6th layer
MultiHead, Normal
EN: I'm using a little brush, a little angle brush, and I'm going
right onto the cheekbones.
Tr: i'm using that little brush a little angle brush i'm just going
right onto the cheek bones

PT: Eu estou usando um pequeno pincel, um pequeno &ngulo e estou indo
direto para as magas do rosto.

Out: estou usando esse pequeno pincel , um pequeno pincel de angulo ,
eu estou indo direto para os ossos da bochecha .
PT: Eu estou usando um pequeno pincel, um pequeno &ngulo e estou indo
direto para as magas do rosto.
Out_TOK: estou usando esse pequeno pincel , um pequeno pincel de
angulo , eu estou indo direto para os ossos da bochecha .

estou usando esse pequeno

e

o~
-

pincel

Head 0 Head 1 Head 2 Head 3
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(b) Multihead attention for “bochecha”
(a) Average-head attention (cheek)
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da bochecha

Figure 5.7: Average-head attention for whole sentence & Multihead attention for
“bochecha” (cheek), from Trans-AVF-CLO. EN: original subtitle; Tr: transcript sentence;
Out: decoding output; PT: Portuguese reference

upper left (e.g. Head 0) and lower left (e.g. Head 11) corners as well. In particular,
the most heated attention area of Head 1 perfectly covers the cheek of the woman
in the video. This sole head that has learned to attend to the correct region, how-
ever, is overwhelmed by the other heads with “wrong” attention when average-head
attention is taken, leading to the upper-right-corner attention for “bochecha” shown
in Figure 5.7a.

Apart from corners, edges are also commonly found to be where the average-head
attention resides. In Figure 5.8a, the regional attention for every word in the output
is again very similar and on the top and left edges predominantly without involving
any objects. However, Head 1 has learned to focus on where the hands of the per-
son meet the bicycle handle, when the model is translating “back brake” into “freio
traseiro”. Similarly, this one head is not able to move the average attention to the
“right” place.

There are also examples where a head associates a region with an action instead
of an object. In Figure 5.9b, the attention for the word “bater” (hit) is around the
area covering the man’s hand, arm and elbow, especially the latter. Then, again,
the average head attention shifts to the lower left corner as depicted in Figure 5.9a.
Generally, as mentioned before, it is harder to find individual head attention corre-
sponding to actions as opposed to objects.

There are also a large number of examples where none of the heads attend to the
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Conv, 6th layer
Avg-Head, Normal
EN: Lock your back brake so you don't roll backwards.
Tr: lock your back brake so you don't roll backwards
1P: tranque seu freio traseiro para que vocé n&o role para tras .
2P: bloqueie seu freio traseiro para nao rolar para tras .
PT: Tranque o freio traseiro para nao rolar para tras.

bloqueie freio traseiro

E—

W aak

para

sl

(a) Average-head attention

Conv, 6th layer Conv, 6th layer
MultiHead, Normal MultiHead, Normal
EN: Lock your back brake so you don't roll backwards. EN: Lock your back brake so you don't roll backwards.
Tr: lock your back brake so you don't roll backwards Tr: lock your back brake so you don't roll backwards
1P: tranque seu freio traseiro para que vocé nao role para tras . 1P: tranque seu freio traseiro para que vocé nao role para tras .
2P: bloqueie seu freio traseiro para nao rolar para trés . 2P: bloqueie seu freio traseiro para nao rolar para trés .
PT: Tranque o freio traseiro para nao rolar para tras. PT: Tranque o freio traseiro para nao rolar para tras.
2P_TOK: bloqueie seu freio traseiro para nao rolar para tras . 2P_TOK: bloqueie seu freio traseiro para néo rolar para tras .
Head 0 Head 1 Head 2 Head 3 Head 0 Head 1 Head 2
|

Head 4 Head 5 Head 6 Head 8

Head 9 Head 10 Head 11 Head 12 Head 13 Head 9 Head 11 Head 12 Head 13
ﬁ v w | V-n

Head 14 Head 15 Head 14 Head 15

| #w‘ﬂ ﬁ;

(b) Multihead attention for “freio” (brake) (c¢) Multihead attention for “traseiro” (rear)

Figure 5.8: Average-head attention for whole sentence & Multihead attention for “freio”
(brake) and “traseiro” (rear), from Delib-AVF-CLO-A. EN: original subtitle; Tr: transcript
sentence; 1P: first-pass decoding output; 2P: second-pass decoding output; PT: Por-
tuguese reference; 2P_TOK: BPE-ed & tokenised form of 2P

“interesting” region(s) of a video when translating an action or object word, espe-
cially where the source sentence is not closely associated with the video contents,
e.g. when it is more narration than action. Nonetheless, the observation still holds
that head diversity enables certain heads to attend to key regions in some scenarios.
As to how this focusing-on-interesting-areas head behaviour can be encouraged and
advanced, we leave it to future work.
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Conv, 6th layer
MultiHead, Normal
EN: Now that we've talked about hitting the different types of
pitches.
Tr: now that we've talked about hitting a different type of pitched
Out: agora que falamos sobre bater em um tipo diferente .
PT: Agora que falamos sobre bater em diferentes tipos de langamentos.
Out_TOK: agora que falamos sobre bater em um tipo diferente .

-Head
EN: Now that we've talked about hitting the different types of
pitches.
Tr: now that we've talked about hitting a different type of pitched
Out: agora que falamos sobre bater em um tipo diferente .
PT: Agora que falamos sobre bater em diferentes tipos de langamentos.

agora falamos sobre
. . _ Head 9 Head 10 Head 11 Head 12 Head 13
-
Head 14 Head 15
(a) Average-head attention (b) Multihead attention for “bater” (hit)

Figure 5.9: Average-head attention for whole sentence & Multihead attention for “bater”
(hit), from Trans-AVF-CLO. EN: original subtitle; Tr: transcript sentence; Out: decoding
output; PT: Portuguese reference
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Chapter 6

Conclusions & Future Work

6.1 Contributions

In this thesis project, we primarily investigated the impact of visual features on mul-
timodal machine translation based on How2 in the presence of corrupted source
sentences. Our major contributions are as follows:

* We explored using multimodal transformers to translate How2 video subti-
tles in English with different degrees of verb masking into Portuguese, and
achieved competitive performance. The BLEU results showed that our multi-
modal models were able to exploit the visual information to boost the trans-
lation performance. In particular, we found that the visual features from 3D
ResNet-50, an action recognition network, were most helpful in terms of im-
proving the model performance in cases of heavy verb masking, thus showing
the importance of action-related visual information in helping the model re-
cover from verb-related source corruption.

* We carried out incongruence analysis and human analysis for the multimodal
transformers, offering more insight into the performance of those models. With
incongruence, we recorded almost universal performance degradation, which
was especially the case for the settings with verb masking, thus further demon-
strating the effective utilisation of visual information by the models. Our hu-
man analysis on the other hand yielded concrete examples where the multi-
modal models recovered masked verbs using visual context, while at the same
time revealed a discrepancy between human judgement and BLEU scores.

* We employed multimodal transformers and two types of multimodal delibera-
tion networks for translating from English transcripts into Portuguese, a novel
attempt at multimodal speech translation. Contrary to verb masking which
is artificial and deterministic noise on the source side, transcribing introduces
random corruption of the source. Also, multimodal cascade deliberation as an
MMT architectural choice has never been tried before in other research to the
best of our knowledge at the time of writing, so we used it for our experiments
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and found it to deliver similar performance as additive deliberation does.

* We devised the novel way of measuring congruent and incongruent multimodal
speech translation results based on the faithfulness of the source transcript sen-
tence with respect to its subtitle counterpart. By doing so, we discovered that
the multimodel models suffered the most performance degradation on the ex-
amples that were most similar (i.e. faithful) to the subtitles instead of on the
unfaithful examples where the models had been expected to exploit visual in-
formation to bridge the semantic gap between the transcripts and subtitles. In
fact, we found incongruence to boost performance on those highly unfaithful
examples in a number of cases. This, against the backdrop of our Phase 1 re-
sults, indicates that random noise is indeed harder from which to be recovered
than artificially introduced source corruption, and that there is much work to
be done on this. We also found that sensitivity to incongruence does not mean
the visual modality necessarily boosts translation quality.

* We visualised the multihead attention of THACE- and CLO-based tranformers
and deliebration networks to achieve more interpretability, a novel analysis
that has not been attempted in other research to the best of our knowledge at
the time of writing. As a result, we were able to see that, when the source sen-
tence was closely related to the actions present in the video, the THACE-based
models were able to narrow their attention down to a few prominent action
categories and execute their decoding based on that. This focus of attention
was noticeably less strong when the video was semantically distant from the
sentence. CLO-based models, however, generally had misplaced attention to
video regions on average, but some heads were found to be able to focus on
the relevant parts of a video during the generation of certain words, in partic-
ular nouns as opposed to action verbs, despite the fact that CLO were from an
action recognition network. Those few heads nonetheless were not powerful
enough to shift the average attention to the “interesting” regions.

We also spent a considerable amount of time porting the deliberation network imple-
mentation from the old, tensor2tensor -1.3.0-based version to the latest tensor2tensor
, and this is still ongoing work. Our plan is to carry out follow-up deliberation-based
projects on the new version and then make it publicly available on GitHub.

Phase 1 of this project was undertaken as our participation in the How2 Challenge
2019, workshop of International Conference on Machine Learning. Our paper, Pre-
dicting Actions to Help Predict Translations (available at https://arxiv.org/abs/
1908.01665), was accepted to the workshop, and our system “Attention over Image
Features” is at the time of writing at the top of the Machine Translation Leaderboard
(https://srvk.github.io/how2-challenge/) of the challenge.
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6.2 Future Work

Future work of this project is chiefly about delving into the unanswered questions
raised in previous chapters. Possible directions include:

* Investigating the discrepancy between human judgement and BLEU scores that
arose in Phase 1. This can grow into a genuinely interesting and helpful quality
estimation (Blatz et al., 2004; Specia et al., 2009) question for future MMT
research.

* Probing further the link between model performance and sensitivity to incon-
gruence. we discovered that these two are not correlated, therefore much
insight can be offered into the still relatively black-box MMT models if the rea-
son why and the way how multimodal models with already weak performance
loses translation quality greatly in the presence of incongruence.

* Focusing on MMT quality improvement on unfaithful examples. In Phase 2,
we had the surprising finding from our incongruence analysis that visual in-
formation did not help or even harmed multimodal performance on unfaithful
transcripts. Since this is the subset where multimodality should enable sub-
stantial compensation for source corruption, it will be very helpful for source-
corruption related MMT resarch if the reason behind this abnormality is iden-
tified.

* Ameliorating multihead attention of CLO-based models. An important obser-
vation about CLO-based transformer and deliberation models is that the few
good heads that had learned appropriate attention were sidelined by the low-
quality majority of heads. Previous work mentioned in Chapter 2.3 was able to
achieve much more focused attention over image regions, therefore it is rea-
sonable to believe transformer-based models should be capable of at least the
same. Remedying or improving CLO-based multihead attention will be signifi-
cant for transformer-based MMT models.
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Appendix A

Ethics Checklist

Yes/No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? No
Does your project involve the use of human embryos? No
Does your project involve the use of human foetal tissues / cells? No
Section 2: HUMANS
Does your project involve human participants? Yes

Section 3: HUMAN CELLS / TISSUES

Does your project involve human cells or tissues? (Other than from | No
Human Embryos/Foetuses i.e. Section 1)?

Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or process- | No
ing?

Does it involve the collection and/or processing of sensitive personal | No
data (e.g. health, sexual lifestyle, ethnicity, political opinion, reli-
gious or philosophical conviction)?

Does it involve processing of genetic information? No

Does it involve tracking or observation of participants? It should | No
be noted that this issue is not limited to surveillance or localization
data. It also applies to Wan data such as IP address, MACs, cookies
etc.

Does your project involve further processing of previously collected | No
personal data (secondary use)? For example Does your project in-
volve merging existing data sets?

Section 5: ANIMALS

Does your project involve animals? No
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? No

If your project involves low and/or lower-middle income countries, | No
are any benefit-sharing actions planned?
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Could the situation in the country put the individuals taking part in | No
the project at risk?

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm | No
to the environment, animals or plants?

Does your project deal with endangered fauna and/or flora /pro- | No
tected areas?

Does your project involve the use of elements that may cause harm | No
to humans, including project staff?

Does your project involve other harmful materials or equipment, e.g. | No
high-powered laser systems?

Section 8: DUAL USE

Does your project have the potential for military applications? No

Does your project have an exclusive civilian application focus? No

Will your project use or produce goods or information that will | No
require export licenses in accordance with legislation on dual use
items?

Does your project affect current standards in military ethics e.g., | No
global ban on weapons of mass destruction, issues of proportion-
ality, discrimination of combatants and accountability in drone and
autonomous robotics developments, incendiary or laser weapons?

Section 9: MISUSE

Does your project have the potential for malevo- | No
lent/criminal/terrorist abuse?

Does your project involve information on/or the use of biological-, | No
chemical-, nuclear/radiological-security sensitive materials and ex-
plosives, and means of their delivery?

Does your project involve the development of technologies or the | No
creation of information that could have severe negative impacts on
human rights standards (e.g. privacy, stigmatization, discrimina-
tion), if misapplied?

Does your project have the potential for terrorist or criminal abuse | No
e.g. infrastructural vulnerability studies, cybersecurity related
project?

SECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are copy- | No
right licensing implications?

Will your project use or produce goods or information for which | No
there are data protection, or other legal implications?

SECTION 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consider- | No
ation?

Table A.1: Ethics Checklist

72



Chapter A. Ethics Checklist

Summary

We had human participants who assessed our systems in Phase 1 of the project,
as explained in Chapter 5.1.3. The four people chosen were my supervisor, Prof.
Lucia Specia, and three current and former colleagues of hers. They are all adults,
and were selected based on the fact that they are all native Portuguese speakers
proficient in English and well-versed in natural language processing. We sent an
email to each of them detailing our need for human analysis and asking them if they
could help, and they consented to participation with their affirmative replies. They
agreed to take part in the analysis without being paid, and we thank them for their
valuable help.

Hence, there are no legal or professional issues involved in this project.
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