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Abstract

Alzheimer’s disease, one of the leading causes of dementia, is a very complex
condition, in particular in its heterogeneity. We investigate in this project the use
of Deep Learning to classify Alzheimer’s diseased (AD) subjects against cognitively
normal ones (CN), as well as the stability of Mild Cognitive Impairment (MCI), an
in-between condition.

In medical imaging, the brain is often model as a 3D surface. Interesting features,
such a cortical thickness or curvature, can be extracted from the raw surface, to be
further handled as spherical signals. To exploit the underlying spherical symmetries,
Feng et al. proposed in [1] the use of singular CNNs called Spherical CNNs.

In this project, we extend the work initiated by Feng et al., to explore the Spher-
ical CNNs potential further. We consider using brain scans from the non-invasive
T1-weighted MRI acquisition technique (1.5 Tesla).

Our noteworthy contribution lies in the use of ensemble methods to combine
and improve models’ performance. We also make interesting discoveries to improve
the quality of the classification, such as combining various type of cortical measures
(thickness, volume), or the possibility to make confident predictions even if only
partial brain scans are available.

We additionally achieve state-of-art performance, based on previous works found
in the literature.
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Acronyms

ACC Accuracy.
AD Alzheimer’s Diseased.
ADNI Alzheimers Disease Neuroimaging Initiative.
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Acronyms
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NLP Natural Language Processing.
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SBU Spherical Bilateral Unisequential.

SCNN Spherical Convolutional Neural Network.
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SPE Specificity.
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Chapter 1

Introduction

1.1 Alzheimer’s Disease

The global population is constantly ageing, with a current 72-year life expectancy at
birth for the global population, and reaching more than 80 years in the most devel-
oped countries, based on the latest reports [2]. In such a context, more and more
deaths can be imputed to ageing-associated diseases, especially neurodegenerative
ones such as Alzheimer’s disease. According to a report from Alzheimer’s Disease
International in 2018 [3], the estimated number of people who have dementia was
about 50 million, and this number is expected to triple by 2050. Such numbers
entail many practical challenges, especially regarding the ability to conduct quality
diagnosis at a large scale.

Alzheimer’s disease is one of the most common factors in dementia. It manifests
through the death of brain cells connections and the atrophy of particular brain
areas. It generally causes benign memory loss in early stages, but as brain damages
increase, symptoms can become as serious as being unable to talk, eat, walk. With
no cure at the moment, such symptoms, which involve loss of vital functions, lead
inevitably towards an early death.

For these reasons, challenges of Alzheimer’s disease diagnostic are many. In
general, to get an idea of the disease progression, brain images, such as Magnetic
Resonance Imaging (MRI) scans, are analyzed by medical experts. In a context as
described above, practitioners might become more and more overwhelmed by the
amount of data to treat, so there is a need to find methods to do the job automati-
cally. The idea might not be to substitute totally humans by machines in this field,
but rather to help them by reducing the load of analysis tasks, for them to be able
to focus on the most serious cases. In addition, being able to analyse MRI scans
the best we can is essential to understand the degeneration process in Alzheimer’s
disease and develop drugs.

1.2 Objectives & Challenges

In this project, we aim to explore automatic analysis tools to study Alzheimer’s dis-
ease via brain MRI scans. We study state-of-the-art Machine Learning techniques for
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1.3. CONTRIBUTIONS Chapter 1. Introduction

two classification tasks. The first one has a diagnosis purpose, by trying to differ-
entiate between Alzheimer’s diseased patients (AD) and cognitively normal subjects
(CN). Apart from these two groups, patients can lie in an intermediary state called
Mild Cognitive Impairment (MCI). It describes the phase were cognitive faculties
start to decline because of age, but without causing dementia yet. A subject in an
MCI state can either stay this way, or progress towards a more severe condition
and convert into AD. A second classification task of this project is to predict either
stability or conversion of MCI subjects, for example in a 2-year window.

This second application is potentially more decisive than the first one. As a cure
for Alzheimer’s disease is yet to be found, making an accurate diagnosis can be
necessary to assist people in their disease, for instance by attenuating symptoms in
the best possible way and provide precise monitoring. On the contrary, the MCI
classification task aims to predict a future condition. If it can be done with relatively
good precision, work can be done beforehand to postpone the conversion as long
as possible. However, this classification task is in practice more difficult because of
unclear definition of MCI subjects brain state.

1.3 Contributions

In this project, we continue the work initiated by Feng et al. in [1]. The main idea
behind their work is to use Convolutional Neural Networks (CNNs), modified in a
way that they can take spherical signals as input instead of conventional 2D or 3D
images. While we started using their implementation, we optimized it in a way to
reduce the overall computation time, by a factor of about 6. We reconducted all
of their experiments to validate their choices and modify them when needed. We
introduced other architectures in addition to theirs as a comparison basis. In the
chapter describing our results (from Section 5.4), we detail the original components
of our work. Details about our contribution in curating the ADNI data can be found
in Chapter 3.

It should be noted that no practical implementation will be provided alongside
the submission of this report. In agreement with the supervisor, we wish to keep any
related code private as a research paper is expected to be produced from this project.

1.4 Outline

In Chapter 2, we dive into some theoretical material that we found necessary to ex-
hibit, in order to understand what is really at stake in this project. We first introduce
the acquisition process (MRI) used to get the brain images we use in this project,
as well as pre-processing approaches which can be done to exploit their full poten-
tial. We then come back on Machine Learning fundamentals, from Deep Learning
basics up to theoretical concepts for understanding the main architectures used in
the project. More practical elements such as models’ performance metrics are also
mentioned. The last section explores similar works on Alzheimer’s disease analysis
from the past seven years, to serve as a comparison basis.
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Chapter 3 precisely describes the data used for this project (ADNI cohort). It first
details the data origin and exposes various statistics. In a second part, we explain the
entire pre-processing pipeline used to curate the data as needed by our architectures.

These architectures are described in Chapter 4. We detail in there multiple Deep
Learning models based on the theoretical concepts developed in Chapter 2, for finally
setting up the entire training process.

In Chapter 5, we describe all the experiments we conducted. Our various per-
formance results can be found, as well as the decisions these results made us take
to try to optimize our models the best we could. We particularly explored the inter-
pretability of our models in classifying Alzheimer’s disease.

The final chapter summarizes the entire project. We take a critical look at the
conducted experiments, and mention some future work to explore, with the aim of
producing a research paper.




Chapter 2

Background

2.1 Scanning the brain

Medical images, and especially brain ones, can be acquired via multiple modalities.
Among the most common ones are Computerised Tomography (CT), Positron Emis-
sion Tomography (PET), or Magnetic Resonance Imaging (MRI). In this project, we
only consider brain MRI images.

2.1.1 MRI scans acquisition

MRI is a non-invasive imaging technique involving magnetic field, and does not
involve X-rays ionizing radiations.

In order to acquire an MRI scan, a powerful magnetic field is created around the
body area which needs to be imaged. It forces body protons to get their spin aligned
alongside the established magnetic field lines, creating a constant spin equilibrium.
These protons are then excited by radio wave impulses. Physical quantities, such
as decay rates, can be measured during the spins relaxation phase back to an equi-
librium state. As these measures vary depending on protons’ physical and chemical
environment, they can be used to build a 3D map of the brain by contrasting multiple
tissue substances, as illustrated on Figure 2.1. The magnetization process known as
T1-weighted results in images where the darkest regions potentially indicate bones,
air or cerebrospinal fluid (CSF); the brightest ones fat and melanin; and brain matter
is in between, with grey matter darker than white matter.

The more powerful the magnetic field, the more precise the final image, because
of stronger signal and noise reduction in spin equilibrium. MRI scanner field power
usually goes from 0.2 to 7 Teslas.

A significant drawback of this method lies in the acquisition time. Scanning a 3D
volume with MRI technology can only be performed one 2D slice at a time, because
of some physical limitations of the process. For each slice, radiofrequency pulse and
atom relaxation take time. In addition, the more we want to increase resolution, the
finer we need to sample the acquisition points in K-space.
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Chapter 2. Background 2.1. SCANNING THE BRAIN

Figure 2.1: Example of a T1-weighted brain MRI scan.

2.1.2 Processing into functional features

Raw MRI scans can be exploited by several standard automated tools. The Athinoula
A. Martinos Center for Biomedical Imaging of Harvard Medical School created a
piece of software called Freesurfer [4], which implements several useful processing
tools. In this section, we dive into some of them in detail. The following subsections
mainly describe processing steps originally thought by Dale, Fischl and Sereno [5, 6].

Inter-subject registration

As interpreting images of the human brain is highly facilitated by having them
aligned in a common reference frame, registration of MRI scans between subjects
might be desired. Talairach and Tournoux [7], and after them Collins et al. [8]
contributed into building a generic atlas of the brain (made by aggregating data
from many subjects) and into establishing a process for estimating the registration
between a subject of interest and the atlas.

Skull stripping

MRI brain scans do not exclusively provide a clean brain image. As illustrated on
Figure 2.1, every head element is displayed, from nose and mouth mucous mem-
branes, to neck bones and cranium. Apart from the brain matter, these surrounding
structures are parasitic information we would want to get rid of.

A boundary-based algorithm was initially designed by Dale et al. [5] in the first
version of Freesurfer. It involved the local deformation of a tessellated ellipsoidal
template. Initially aligned with the brain, two forces can then be applied on its
vertices. The first one relies on MRI intensity values on the surface normal from
each vertex, to drive the template outwards brighter areas (corresponding to brain
matter) and towards darker ones (corresponding to CSF). To avoid the vertices to
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move too much from one another, a smoothing force is also applied, which imposes
continuity in edge directions neighbouring a given vertex.

However, such a method is not flawless [9]. The main drawback comes from
the sensitivity of the algorithm to parameters initialization: initial position and size
of the template, forces relative weights and threshold intensity boundary between
“darker” and ”brighter” areas. In practice, recurrent errors were also noticed for in-
ferior areas. For these reasons, Segonne et al. [9] suggest an improved algorithm.
While still relying on deformable surface models to finely shape the brain, they com-
bine it with a watershed approach beforehand. Such region-based methods can be
used to segment an image by exploiting region connectivity to clustering ends. While
these techniques generally result in oversegmentation, they can be an efficient way
of approximating brain boundaries to initialize deformable surface models robustly.
An example of skull stripping using Freesurfer can be seen on Figure 2.2.

(a) Initial T1-weighted MRI (b) Extraction of the brain
scan. matter.

Figure 2.2: Example of skull stripping using Freesurfer.

White matter segmentation

The pial surface (the boundary between grey matter and CSF) is difficult to estimate
in itself because of the relatively low intensity of grey matter voxels. Instead, white
matter voxels, brighter, can be more easily labelled. We will see in the next Section
how it can help to estimate the pial surface.

The main method used by Dale et al. for white matter segmentation is a two-step
algorithm. First, white matter voxels are estimated based on intensity information
only. While inner voxels can be easily classified by this method, uncertainty increases
at edges. These areas are further processed in a second algorithm. In short, cutting
planes are established by imposing a low-intensity variance in neighbouring voxel
intensities for each area delimited by a given plane. It allows to finely classify voxels
as white matter or non-white matter on either side of the planes.

A final contour smoothing is applied by computing connected components. By
first cutting the brain into left and right hemispheres thanks to alignment on the Ta-
lairach atlas, voxels in boundary regions can iteratively be classified (or declassified)

6
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as white matter if at least 66% of neighbouring voxels in a 3 x 3 x 3 surrounding
box are white matter (or non-white matter). This process results in a unique smooth
component for each hemisphere. The complete process is illustrated on Figure 2.3.

(a) Initial brain matter. (b) White matter segmenta- (¢) Hemisphere split and
tion. white matter volume refine-
ment.

Figure 2.3: White matter labelling (from [5]).

Pial surface estimation and cortical measures

White matter segmentation can then be used to estimate better the pial surface than
by directly trying to segment it. In a similar manner as for skull stripping, deformable
models are used to extend the grey/white matter boundary towards the pial surface.
A tessellated surface is initially inferred via the previously segmented white matter
volume. Each vertex can then iteratively move, driven by two forces: a smoothing
one and an intensity-based one to detect intensity changes. With such a method,
the grey/white matter boundary can be refined even further, and the pial surface
precisely estimated (Figure 2.4).

ot

(a) Initial grey/white matter (b) Surface refinement. (c) Extension towards pial
boundary. surface.

Figure 2.4: Pial surface reconstruction steps (from [5]).
The pial surface can then be used to compute local measures such as surface

curvature, or even cortical thickness [10] and volume, by locally measuring distances
between pial surface and grey/white matter interface.

7
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Surface inflation

These cortical measures, locally displayed on the cortical surface, might even be fur-
ther processed to allow for complete visualization. Indeed, sulci measures (grooves)
while potentially being as essential as gyri ones (ridges), can still be partially hid-
den. Fischl et al. suggest in [6] to inflate the cortical surface into a very smooth
shape, where neighbouring sulci and gyri measures would be set on the same level.
Their method involves sulci inflation while enforcing minimal distortion. Figure 2.5b
illustrates the cortical surface after inflation.

While the resulting images are useful for visualization, computer analysis would
gain from a more regular signal in terms of spatial distribution. As we will see later
in this chapter, some analysis methods are particularly efficient in working with
spherical signals. Fischl et al. suggest then to inflate even further the surface to map
it onto a proper sphere, once again by minimizing local distortions. The full process
is summarized on Figure 2.5.

(a) Initial cortical surface. (b) Surface inflation. (c) Spherical map-
ping.

Figure 2.5: Cortical surface inflation (surface curvature measures displayed, from [6]).

2.1.3 Structural atlases

While we only looked at the brain as a whole until now, works have been done in the
past to extract functional brain areas. We study two different segmentation schemes
here: a first one introduced by Desikan et al. [11] in 2006, and the second one in
2010 by Destrieux et al. [12]. We focus on these two functional atlases here because
they are readily available via the Freesurfer software.

Both atlas acquisition methods are actually similar. A cohort of about a few
tens of subjects is selected, chosen from a uniform distribution of age and gender,
each of them having relatively healthy brains. MRI scans from all subjects are then
processed as described in Section 2.1.2 up to inflated brain surfaces as illustrated on
Figure 2.5b. Next, experts manually segmented surfaces into predefined functional
sections. The aggregation of all the segmented brains after registration is what we
call an atlas.

To parcel a new brain scan (assuming it is preprocessed up to an inflated sur-
face), a registration step is first applied to bring the brain surface to the atlas. Then,
a probability distribution over the set of functional sections can be assigned to each

8
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voxel, given the previously manually labelled samples. Refinement can then be ap-
plied by iteratively modifying these probabilities to reduce neighbourhood variance
(we can see it as a smoothing step). More details can be found in [13].

The major difference between the two atlases considered here lies in the defini-
tion of functional brain sections. While the Desikan atlas segments the brain into 36
regions, 75 different sections form the Destrieux one. Illustrated parcellations and
labels can be found in Appendix B (respectively Figure B.1, Table B.1 and Figure C.1,
Table C.1 for Desikan and Destrieux atlases).

2.2 Deep Learning fundamentals

After having described the type of images involved in this project and essential
pre-processing methods, we can now dive into some practical automatic techniques
which can be used for analyzing images and especially brain-related ones.

2.2.1 Motivation for the use of Deep Learning in Medical Imag-
ing

In the early years of image analysis, standard methods involved feature extraction
by traditional means such as Shift-Invariant Feature Transform descriptors [14] or
Harris corner detector [15]. Such a method aims to describe a given image in a
more meaningful way than raw pixels only, in order to understand conveyed in-
formation better, for example by extracting knowledge about frequencies and gra-
dients. The main goal for developing these meaningful representations is to feed,
in a second phase, powerful machine learning techniques, whether it be Support-
Vector Machines or Random Forests for classification, or K-means for clustering (to
name but a few), depending on the final task. In the 2000s, this type of approaches
achieved state-of-the-art performances for image analysis tasks, as benchmarked by
the PASCAL Visual Object Classes challenges [16].

Then, in 2012, a breakthrough in performances happened through the develop-
ment of Deep Learning. The idea between Deep Learning is to use Machine Learning
methods not only for analyzing previously extracted features, but also for letting the
algorithms learn relevant features by themselves. In this way, while Deep Learning
models tend actually to discover themselves features previously used by humans,
they are not constrained by them and can develop their own reasoning to succeed
in a particular image analysis task. Its power is proved by the performance scores
on the ImageNet Large Scale Visual Recognition Challenge [17, 18] these past years.
The error rate in classifying billions of images divided into 1,000 classes was stuck
around 25% until 2012. That year, the AlexNet architecture [19], first Deep Learn-
ing solution to break performances in this challenge, achieved a 16% classification
error. Nowadays, the most advanced Convolutional Neural Networks (CNNs) can
be even better than humans in simple image classification tasks. There is no doubt
that Deep Learning and especially CNNs are now more than ever needed to improve
computer vision performances further.

9
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Figure 2.6: Multi-Layer Perceptron

What about medical imaging? Such a context brings its share of difficulties at
another level than classical computer vision tasks. Even if human experts can an-
alyze medical images and take relevant decisions, these images are sometimes so
complex than the accuracy of the predictions are way lower than any other image
analysis situation. Adding Deep Learning into this context makes sense, whether it
be to help experts being more precise in their analysis or even to relieve them of
this task, which generally takes time and dedication that practitioners can’t afford to
spend.

2.2.2 Multi-Layer Perceptron (MLP)

Before diving into CNNs and more specifically spherical ones, let us motivate the
thought by going back into the basics of Deep Learning: Multi-Layer Perceptrons.
Behind these networks lies the extension of linear regression learning. Linear regres-
sion models, used for example in SVMs, aim to learn a mapping f(x) = y between
inputs « and outputs y, under the assumption that this mapping is linear. The main
objective behind such models is then to learn a weight matrix W such that Wz = y.
With real data samples, such a mapping might not always exist, so W is generally
inferred by minimizing a loss function £(f(x)y), for example the Euclidean distance.

Multi-Layer Perceptrons have been introduced in Machine Learning to extend
this idea. These networks are generally fully-connected feedforward networks, com-
posed of multiple linear sequentially (building successive layers and allowing “deep”
architectures), as seen on Fig 2.6. Each layer i is defined by a matrix W;, used to
compute the layer’s output W;x; = y,. With this configuration, the mapping learned
by the network between inputs « = «; and outputs y = y,, is simply

n—1
fla®) = (H VW) ., (2.1)

10
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which is nothing more than a basic linear regression model. The power of the Multi-
Layer configuration comes from the possibility of using non-linear activation func-
tions at the output of each layer. The learned mapping then becomes

f(@®) = g1 Wii... (1 (Wizi))) (2.2)

By varying the output size (number of "neurons”) of each layer and the depth of
the network, Multi-Layer Perceptrons can learn any continuous function, even non-
linear ones.

2.2.3 Convolutional Neural Network (CNN)

Figure 2.7: Illustration of a convolutional layer. The input data is represented by k
channels of m x n matrices, and each output channel is obtained by the convolution of
the input data by a i x j x k kernel.

What about Deep Learning for image analysis? One could argue that images are
just pixel values, which can therefore be used as input for a Multi-Layer Perceptron.
It is a possibility, and for some simple tasks, it might be rather efficient. However,
even for something as basic as classifying handwritten digits, MLPs are outperformed
by Convolutional Neural Networks. Le Cun provides in [20] a benchmark of Machine
Learning solutions for such a task using MNIST images. For an equivalent number
of operations for the recognition task, an MLP exhibits an error rate twice as high as
one of the very first CNNs ever (which uses a LeNet architecture). So what makes
CNNs so particular compared to MLPs? It mainly comes from the fact that 2D im-
ages, inputted as so in CNNs, suffer loss of information by being flattened to fit an
MLP input. By having learnable weights as small windows (kernel) sliding through

11
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,
)
7

conv

Figure 2.8: Translation equivariance of CNN’s feature maps (from [21])

an image (Figure 2.7), CNNs can learn 2D local connectivity information very easily,
contrary to MLPs. Moreover, this connectivity can be learned at different scales by
varying the kernel size and increasing network depth, offering additional freedom.
It is worth noting that in practice, every output neuron (pixel) of a given layer are
obtained via the same kernel (in a mono-channel output configuration). It allows
global consistency and reduces a lot the number of free parameters to be learned
compared to MLPs. For instance, while the two benchmarked networks cited pre-
viously exhibit roughly the same number of operations in a forward pass, the CNN
has 15 times fewer parameters than the MLP, making the underlying learning space
a lot less complex. But the most significant advantage of this weight sharing is in
making the output of a CNN translation invariant, or making the feature maps (the
name commonly given to convolutional layer outputs) translation equivariant (see
Figure 2.8).

We have noticed that CNNs can easily outperform MLPs even for the simplest
image analysis tasks. In a medical context, using CNNs makes even more sense as
involved images are a lot more complex and challenging to interpret.

Mathematically speaking, sliding a kernel through an image is a convolution.
If we have a kernel ¥ and an image X, we can determine the output component
Y (i, j) by the convolution

(X % W) (i,5) = Z Z X (@, O —i,j— )} (2.3)

In practice, correlation, which is faster to compute than convolution, is implemented

In practice, convolutional layers can have multiple channels k as input, with a different kernel
for each one. Equation 2.3 becomes (X * W)(i,5) = Y>> > Xy (¢/,5)®k(i — ', — j'), where X
T

and ¥ are now 3D tensors. To be even more general, outputs can be also composed of multiple
channels /, making ¥ a 4D tensor and (X = ¥')(i,7) = > 5 > Xy (¢, j/)®L (i —i’, j — ;') the general
ik

equation describing the behaviour of Figure 2.7. For the sake of clarity, we have decided to stick to a
mono-channel configuration in this report.
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-
Chair 89% ‘\ Lighting 86%
Balloon 79% ) : Balloon 59%
¢
F
(a) The chair is easily detected on the origi- (b) If we rotate the picture by 180, the chair
nal picture. becomes totally undetected.

Figure 2.9: PCNNs lack of rotational robustness (classification results obtained from
Google Vision API).

instead:
(X W) (i,7) = E g XN+, 5+ 7). 2.49)
il j/

The results of the second equation are actually the same than the first one if we
flipped the kernel in between. As kernels in CNNs are in fact free parameters to
be learned, networks are blind to this trick and behave exactly the same if we use
correlation instead of convolution.

2.3 Spherical CNNs

2.3.1 Motivations

The limits of CNNs come as other invariances appear. For example, in image clas-
sification, an image label does not change if we look at a rotated image. However,
classical CNNs (which we will call Planar CNNs or PCNNs from now on) are sen-
sitive to such transformations, as illustrated on Figure 2.9. Some solutions have
been proposed to overcome this problem, for instance by augmenting datasets with
randomly rotated samples to artificially force networks into learning some kind of
rotation invariance [22, 23].

However, if we deal with spherical signals, PCNNs reach their limits. If we want
to use convolution architecture with such signals, we would want, in the same way
as in PCNNs, having some kind of kernel sliding through the signal. However, to be
properly fitted for a PCNN, a spherical signal must be shrunken into a 2D image, like
a planisphere. Figure 2.10 shows how this transformation makes kernels unevenly
distorted and results in losing any kind of invariances. It actually comes from the fact
that a kernel moving on a sphere is subjected to rotations in the standard 3D space
and, as we said before, common CNNs do not preserve any rotation equivariance.

13
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In order to address this issue, Cohen & Welling suggest an extension of the con-
volution operator (actually correlation to be precise) from translations to rotations
[24], and more generally to any group of transformations [25]. In the next two sec-
tions, we are diving into the theoretical concepts behind it, using some of Cohen &
Welling material. The main derived formulae can be directly found in the summary
table 2.1.

Figure 2.10: Distortion of convolutional windows from the sphere to its planar projec-
tion (from [24]).

2.3.2 Theory of Spherical CNNs

If we go back over Equation 2.3 by extending convolution to the continuous case
between a signal f and a kernel ¢, we have, for all y in R%:

(f*¢)(y) = (W fy) = 5 V() f(y — @) da.? (2.5)

As we mentioned before, for the use of CNNs, we can equally consider correlation
and convolution. In the same way, we can rewrite Equation 2.4:

W y)= | v(@)f(ly+z)de (2.6)
R2
= (x —y)f(x)de (by substituting « by  — y). 2.7)
R2
Actually here, x and y, although both lying in R?, do exactly not represent the same
thing. While x represent the coordinates of a point in the original 2D signal, an

image in our situation, y represent a translation of the kernel. Indeed, if we define
ty : ® — x + y, we can rewrite correlation 2.7 in

WD) = [ 0 @) da 2.8

2The possibility of interchanging f with ¢) comes from the commutativity of the convolution oper-
ator.
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or, by using a matrix representation where 7T is an arbitrary 2D translation matrix:

@ NI = | T 2)f(2) da (2.9)

With the latter, we can clearly see that the codomain is a transformation space rather
than the original 2D signal domain. However, in this particular case, as the 2D
translation space is R? (a 2D translation can be entirely defined by a displacement y
in R?), then the codomain of the above correlation remains R?, even if theoretically
speaking, it is not the same one as the space in which lies a 2D image.

Why have we bothered to derive Equation 2.9 from its original expression? It can
now clearly be extended to any input signal and transformation group. In our situ-
ation, dealing with spherical signal f and rotating kernel v in S? becomes straight-
forward. For any rotation R in the rotation group SO(3) (special orthogonal group),
the correlation of ¢ and f can be written

(Y f)(R) = . Y(R™'x) f(x)dx.? (2.10)

More precisely, SO(3) and S? are respectively 3D and 2D manifolds as they can be
parameterized by the Euler angles ZYZ « € [0, 27], 5 € [0, 7] and v € [0, 27 (with v
= 0 for the sphere). This time, the codomain SO(3) is different from the input space
S2. While the latter equation can be used to define the first convolutional layer
of what Cohen & Welling call Spherical CNNs (SCNNs), we need an integration on
SO(3) to define the behavior of following layers, because the input space is not S
anymore:
xR = | Y(RTQ)f(Q)dQ. (2.11)
From Equation 2.10, we can finally make sure that this extended correlation
preserves rotation equivariance. We remind that a function u is said to be equivariant
by a group action G if for any transformation v in GG, u o v = v o u (which means the
order of function application is of no importance). By defining the operator Lp such
that [Lpf](x) = f(P'x), we have, for any arbitrary rotation P:

(Y *[Lpf)(R) = . V(R ) f(P'x) da

= | ¥(R'Px)f(x)dx (by substituting by Px)  (2.12)
SQ

=(@W*f)(P™'R)
= [Lp(¥* f)I(R),

which properly express the fact that rotating an input signal comes down to rotating
the output feature map*.

3As mentioned before, Cohen & Welling actually extend even further this equation to any trans-
formation group. If ¢ is a function lying in one of such groups, the general form of Equation 2.10 is
(W x £)(g) = [ (g~ (2)) /() da.

“We show the rotation equivariance in 2.12 for an input layer from S? to SO(3), but it obviously
extend to following layers from SO(3) to SO(3).
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2.3.3 Practical implementation of the rotational correlation

In practice, this spherical correlation is implemented via a generalized Fourier trans-
form. Indeed, using a Fast Fourier Transform (FFT) algorithm [26] is more efficient
than naively convolving signals. This result was originally shown in [27] for signals
on R, but can be extended to generalized Fourier transforms (see [28, 29] for more
details).

To compute the Fourier transform of the correlation operation, it can be shown
[24] that ¢ x f = f-iT, or o f = F1 ( f- W) We can generalize Fourier transforms

on S? by using the spherical harmonics Y!(z)® as unit basis functions, for [ upper-
bounded by a bandwidth b defining a frequency limit. We can then define the S?
Fourier transform components as

ff=[ fl@)Y(z)dsb (2.13)
S2

In the same way, we can use the Wigner D-functions D'(R)’ to define the SO(3)
Fourier transform components as

f'=[ f(R)D(R)dR® (2.14)
SO(3)

Figure 2.11 sums up the practical implementation of spherical correlation using a
generalized FFT algorithm °. All the derived equations from the past two sections
for computing this FFT are recapped in Table 2.1.

It should be noted that the practical implementation of the S? convolutional layer
pictured in Figure 2.11 shows a 2D matrix as input while we are originally working
with spherical signals. These signals are in practice discretized on a meshgrid (Fig-
ure 2.12) and flattened into a planisphere. The non-rotated kernel is defined as an
equatorial circle.

>To be precise, Yl(a:) is a vector of size 2/ + 1, indexed by —I < m < [. For this particular case we
do not use the defined notation for vectors but rather the common notation for spherical harmonics
in literature.

®It is to be noted that f! is a vector as Y(x) is, but to be consistent with Fourier transform
notations, we do not use the defined vector notation.

’DY(R) is a matrix of size (2] + 1) x (2] + 1), indexed by —I < m,n < [. As the S? case, we do
not use the defined notation for matrices but rather the common notation of Wigner D-functions in
literature.

81t is to be noted that f! is a matrix as D'(R) is, but to be consistent with Fourier transform
notations, we do not use the defined matrix notation.

Figure 2.11 actually describes the general case were inputs are composed of multiple channels,
adding to the derived formulae a summation over the number of channels. As in Section 2.2.3, for
the sake of clarity, we have derived the entire theory based upon a mono-channel configuration.
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Figure 2.11: Spherical correlation (S? — SO(3)) using Fourier transforms (from [24]).
Both the signal f and kernel ¢ are Fourier transformed, the outer product of outcomes
f' and ' is computed (for every [ smaller than the output bandwidth b) to form a block

in the resultant matrix. A final inverse Fourier Transform is computed to output a 3D
tensor indexed in SO(3).

Space Correlation Fourier Transform Inverse Fourier Transform
B D)= [se-vi@de ©)- [ et fla) = [ Fepe=eae
52 R_ fl Yl d
(xR /¢ fie [ 1@V
~ b
SOB) (v« f)(R) = YR'Q)f(Q)AQ  f'= f(R)D(R)AR f(R) =3 (21 +1) Z Z frnDin(R) AR
SO(3) SO(3)

=0 m=—Iln=-1

Table 2.1: Formulae summary of correlation, Fourier transform and inverse Fourier transform on

R? and their extensions on S? and SO(3). As the S? Fourier transform codomain is SO(3), we do
not define the inverse Fourier transform on S2.
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Figure 2.12: Spherical meshgrid used to sample the initial signal (blue) and equatorial
kernel (orange).
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2.4 Results validation

2.4.1 Class Activation Maps

People often reproach deep neural network models their lack of interpretability. In
particular for medical applications, being able to understand a model’s decisions
and way of thinking might be necessary to validate their behaviour and winning a
large-scale acceptance. In an image analysis context, feature maps contain all the
information needed to comprehend how a trained network is working.

Zhou et al. actually found in [30] that these feature maps can highlight local-
ization information about relevant parts of a given image in the decision process
of a neural network. It is particularly true for the deepest feature maps of a CNN.
Indeed, feature maps in the first layers are mainly based on global image patterns,
and become more and more localized as we go deeper into the network.

Multiple feature maps can be recovered from the last layer of a convolutional
neural network, but how can we combine them in a way that reflects the network’s
decision algorithm? Fortunately, a CNN is generally composed of a fully-connected
subnetwork (MLP) after its convolutional layers, to go down to an output vector
containing a neuron for each class (in a classification task setting). In general, this
vector represents a probability distribution over the set of classes. This configuration
in two subnetworks can be seen as an initial feature extraction task by the con-
volutional layers, followed by an MLP to classify samples based on the previously
extracted features.

To answer the question about feature maps combination, the weights of the MLP
subnetwork contain valuable information about how the network uses each feature
map in its decision process. The most basic ConvNet/MLP configuration is the one
depicted on Figure 2.13. In such a situation, the fully-connected subnetwork is
composed of a single layer, associating a weight from each final feature map to every
output class. Weighting extracted feature maps with the weights associated with a
given class can give an idea of the image regions the networks relies on to build its
decision process. The resulting combination forms what we call a Class Activation
Map (CAM).

While this method fits well for PCNNs, where feature maps lie in the same space
than input images (R? or R?), it is less straightforward in an SCNN architecture
where feature maps lie in the 3D manifold SO(3) and spherical input signals in a 2D
manifold. As we mentioned in Section 2.3.2, SO(3) can be parametrized by the Euler
angles Z(a)Y (8)Z(~), while S? can be similarly described by setting ~ to 0. Feng et
al. then suggest in [1] an extension of the proposed CAM method by considering 2D
slices corresponding to v = 0 in the original 3D feature maps.

2.4.2 Evaluation measures

To evaluate the performance of the multiple architectures we will be using in this
project, we implement several standard measures described below.
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Figure 2.13: Class Activation Map estimation process (from [30]).

g A

Accuracy

The very first indicator we will use is the accuracy. In a binary classification task, we
can consider one of the two target classes as positive and the other one as negative.
We define here TP (for True Positives) the number of positive samples actually be-
ing classified as positive, TN (for True Negatives) the number of negative samples
actually being classified as negative, FP (for False Positives) the number of negative
samples wrongly classified as positive, and FN (for False Negatives) the number of
positive samples wrongly classified as negative.
Using these numbers, we can define the accuracy as

TP + TN
ACC = . 2.15
TP +FP + TN + FN ( )

The accuracy measure gives an idea of the overall performance of a model, as
a number between 0 and 1, 0 meaning that the model makes nothing but mistakes,
while a perfect classifier would get an accuracy of 1.

Sensitivity & Specificity

One major drawback of the accuracy measure is that it does not give any information
about the model performances on the different target classes. For instance, if a set
contains samples equally labelled in both classes, and the accuracy of a given model
is 50%, it could mean that it classifies all the samples as being positive, all the
samples as being negative, or that it makes mistakes for both classes.

To get a more precise idea about a model’s behaviour, we can define its specificity
(SPE) and sensitivity (SEN) as

TP + FN

e (2.16)
SPE—= ———
TN + FP’
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A model’s sensitivity tells us about its ability to correctly classify positive samples,
while its specificity tells us about its ability to classify negative samples correctly. As
the accuracy, both values are between 0 and 1.

Area under a Receiver Operating Characteristic curve

=
oy
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Sensitivity
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Figure 2.14: Example of a ROC curve.

The majority of Machine Learning classifiers actually output a probability distri-
bution over the label space. To get label prediction, in case of binary classification,
a probability threshold of 0.5 is set, and the predicted classes are those with a prob-
ability greater than this threshold. However, setting a 0.5 threshold is not the only
way to obtain classification results. To get a more precise idea about how a given
model behaves for each class, we can observe classification results when moving this
threshold, as depicted on Figure 2.15. By sampling multiple threshold values, what
we call a Receiver Operating Characteristic curve (ROC curve) can be made, draw-
ing a model’s sensitivity given its specificity (in practice 1—specificity) for various
thresholds. Figure 2.14 shows an example of such a curve.

From the ROC drawing, we can finally compute the area under the curve (AUC).
This value, once again up to 1, can be seen as an indicator of a model’s ability to
discriminate between classes.

2.5 Related work

Some works have already been done in the past to study Alzheimer’s disease. In this
section, we review multiple methods which can be found in the literature, specifically
on the two classification tasks we focus on here: AD vs CN and MCI progression.
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Figure 2.15: Moving the classification threshold (or criterion) provides additional in-
formation about a model’s behavior.

Table 2.2 and Table 2.3 (respectively for AD vs CN and MCI progression) review
all these methods and their performance scores, based on the evaluation methods
described in Section 2.4.2.

2.5.1 Spherical CNNs

Feng et al. introduce in [1] the idea of using SCNNs for medical imaging and es-
pecially for Alzheimer’s disease classification. Their architecture exploits spherical
signals made of cortical thickness measures, obtained via Freesurfer as described in
Section 2.1. The current project is mainly a continuation and improvement of their
work, so their results might be the most relevant ones as a comparison basis with
ours. Performances can be found in the tables at the end of this section.

2.5.2 Latent Dirichlet Allocation (LDA)

In [31], Yang et al. exploit cortical measures obtained from MRI scans on a struc-
tural level, i.e. thickness or volume of entire cortical regions (obtained for example
via atlas parcellation as described in Section 2.1.3. To study Alzheimer’s disease
classification with such features, they suggest a Latent Dirichlet Allocation (LDA) al-
gorithm. This method, initially thought for Natural Language Processing (NLP) tasks
[32], aim to cluster the data by assigning each sample a probability distribution over
a set of topics, where topics are learned from input features (strictly speaking a prob-
ability distribution over the set of features). In short, the LDA method can cluster
data while having a high level of interpretability (data can be clustered by looking
at probability distributions over topics, and each topic ranks features in order of
importance in terms of decision impact).

Besides, Yang et al. use this LDA model in a supervised fashion, meaning that
they can perform classification tasks while being able to understand relative feature
importance in the algorithm decision process. For instance, by using information
about cortical regions as features, they can extract the ones which are likely to be
related to Alzheimer’s disease.

While their classification results might not be as high as other methods proposed
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in the literature, the interpretability of their model can be very useful for under-
standing Alzheimer’s disease progression.

It should be noted that Yang et al. also suggest using genomic features in addition
to image-based ones in their model, but given the scope of the current project, we
only take an interest here in the results they obtain using cortical imaging features.

2.5.3 Conventional Machine Learning methods

From the beginning of the decade, several papers for classifying Alzheimer’s disease
have emerged in the literature. Almost all of them make use of Support-Vector Ma-
chines based algorithms, like Zhang et al. [33], Cheng et al. [34], Hu et al. [35],
Sabuncu et al. [36] or Beheshti et al. [37], after having processed cortical features in
various ways. It can go from feature reduction, to clustering, to feature ranking via
Genetic Algorithms [37]. Sabuncu et al. [36] also make use of other classification
methods such as Neighborhood Approximation Forest (NAF), a nearest neighbours
approach based on Random Forest architectures, or also Relevance Vector Machines
(RVM), a Bayesian algorithm based on Gaussian Processes. We were careful here to
only select papers which were developing methods using features from MRI scans
only. Some of the papers cited here might also be exploiting other types of images,
but the results reported in tables below were the ones obtained exclusively from MRI
scans.

In studying Alzheimer’s disease, trying to solve classification tasks is not the only
subject in the literature. For instance, an interesting paper was published in 2017
by Filho et al. [38] on the understanding of Alzheimer’s disease progression in the
brain. By looking at cortical measures of structural brain regions (from Destrieux
and Desikan atlases), they were able to discriminate areas were the disease seems to
have a substantial impact. This work, similarly to Yang et al. experiments, can help
in understanding how the disease operates in the brain.
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Table 2.2: Comparison of several methods proposed in the literature for the AD vs CN
classification task using T1-weighted MRI.

Paper ACC (%) AUC (%) SEN (%) SPE (%)

Zhang et al., 2012 [33] 84.80 - - -
Westman et al., 2012 [39] 87.00 93.00 83.30 90.10
Eskildsen et al., 2013 [40] 84.50 90.50 79.40 88.90
Sabuncu et al., 2015 [36] 87.00 - - -

Hu et al., 2016 [35] 84.13 90.00 82.45 85.63
Beheshti et al., 2017 [37] 93.01 93.51 89.13 96.80
Feng et al., 2018 [1] 90.00 91.50 89.90 90.10
Yang et al., 2019 [31] 88.00 - - -

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

Table 2.3: Comparison of several methods proposed in the literature for the MCI pro-
gression classification task using T1-weighted MRI. Some of the proposed methods study
MCI progression over a 3-year period, while others do it on a 2-year period as we do.

Paper ACC (%) AUC (%) SEN (%) SPE (%)

Zhang et al., 2012 [33] 62.00 - 56.60 60.20
Westman et al., 2012 [39] 65.40 73.10 65.40 65.40
Eskildsen et al., 2013 [40] 66.70 67.30 59.00 70.20

Cheng et al., 2015 [34] 73.40 76.40 74.30 72.10
Moradi et al., 2015 [41] 74.74 76.61 88.85 51.59
Hu et al., 2016 [35] 76.69 79.00 71.83 82.26
Beheshti et al., 2017 [37] 75.00 75.08 76.92 73.23
Feng et al., 2018 [1] 71.60 70.70 80.20 62.30

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)
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Data description

3.1 Data gathering

The data used throughout this project exclusively comes from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI, [42]). Initiated by Dr Michael W. Weiner in
2004, its goal is to acquire relevant data for understanding Alzheimer’s disease by
new diagnostic methods.

This study is divided into three phases, and we used data from two of them: the
ADNI-1 and ADNI-2 cohorts.

As mentioned before, we study two classification tasks: AD vs CN, and MCI pro-
gression in a 2-year period. For the latter purpose, two categories of MCI patients are
kept: the ones having stayed stable in the MCI condition for a follow-up period of
at least two years (MCI-p), and those having progressed into AD during this period
(MCI-s).

In the following subsections, we detail the composition of the ADNI-1 and ADNI-
2 cohorts and global statistics on ages and genders, for both classification tasks.
Each cohort has been divided into 10 and 5 folds for the use of cross-validation. The
division of the ADNI-1 cohort in 10 folds comes from Feng et al. and has not been
modified in order to keep a consistent comparison basis. We extend this division into
5 folds by pairing existing folds. The division of the ADNI-2 cohort was performed
exclusively by us. While Feng et al. seemed to focus on balancing the folds in terms
of numbers, we refined into the splitting process. We made sure that the number
of male AD, female AD, male CN, female CN would be the same in each fold. We
went even further by preserving the age distribution of the global cohort in these
subcategories. Detailed statistics on the 5-fold and 10-fold splits for each cohort can
be found in Appendix.
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3.1. DATA GATHERING

Table 3.1: Statistics of the ADNI-1 cohort used for the AD vs CN (green) and MCI-p vs
MCI-s (blue) classification tasks.

Numbers M F Total Numbers M F Total
AD 99 89 188 MCl-p 85 51 136
CN 74 77 151 MCl-s 72 42 114

Total 173 166 339 Total 157 93 250

Ages (std) M F Total Ages (std) M F Total
AD 75.6 (7.4) 74.7(7.7) | 75.2(7.5) MCl-p 75.4(7.1) 73.6(6.6) | 74.7 (6.9)
CN 75.5(5.6) 75.8(5.0) | 75.6(5.3) MCl-s 75.6 (7.5) 73.7(6.9) | 74.9(7.3)

Total 75.6 (6.6) 75.2(6.6) | 75.4(6.6) Total 75.5(7.3) 73.6(6.7) | 74.8(7.1)

3.1.1 ADNI-1

We obtained the ADNI-1 data from Feng et al. They had already balanced it, and we
used it as so. Table 3.1 shows detailed statistical information about gender and age
distribution for each subject group in ADNI-1.

Baseline scans are available for all subjects. Some of them also have follow-
up visits. Table 3.2 details the number of available follow-up visits for AD and CN
subjects. We did not conduct experiments involving follow-up visits for the MCI
classification task, so we only include here information on AD and CN subjects.

Table 3.2: Number of AD and CN scans available for various follow-up visits.

Follow-up month AD CN

0 (baseline) 188 151
6 (0.5 year) 162 144
12 (1 year) 139 140
18 (1.5 years) 1 0

24 (2 years) 101 119
36 (3 years) 1 96
48 (4 years) 0 29
60 (5 years) 0 1
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3.1.2 ADNI-2

Even if Feng et al. did not conduct any experiment on the ADNI-2 cohort, they still
provided us with the data. While the ADNI-1 data contained follow-up visits, we
only had access to baseline scans for the ADNI-2 cohort.

The initial cohort was composed of 347 AD, 540 CN, 311 MCI-p, and 467 MCI-s
subjects. We decided to balance AD and CN subjects by decreasing the number of
CN subjects to 340. We made sure that removed patients were randomly selected in
a way that the original statistics (age and gender) were kept intact. Table 3.3 shows
the detailed statistics of the cohort before and after balance.

For MCI subjects, the processing was less straightforward. As we study the con-
version of MCI subjects on a 2-year window, we first remove all the MCI stable
subjects having a last follow-up visit less than 2 years after the baseline (too much
uncertainty). After this removal, the number of MCI-s subjects went down to 378.
We had then two choices to process the MCI-p subjects: those having a conversion
year greater than 2 could either be removed, or included as being stable on the 2-
year window. In the first situation, we end up with 209 MCI-p and 378 MCI-s; in the
second one, 209 MCI-p and 480 MCI-s. To balance the latter, we randomly removed
MCI-s subjects while being careful to preserve the original statistics. We will call
the resulting cohort CC. To balance the former, we thought about two ways. A first
cohort, which we can call CS2, was obtained in the same way than CC, by carefully
removing MCI-s subjects. A second cohort, which we can call CS4, was obtained
by removing MCI-s subjects having a last follow-up visit close to 2 years. While we
already removed the ones with a last follow-up visit under 2 years, removing even
those with a last follow-up visit close to 2 years assures that the remaining MCI-s
subjects are more likely to remain stable for a long time.

To recap:
- CC contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects having either never converted (while being monitored for at least 2 years)
or converted only after 2 years (MCI-s).
- CS2 contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects who never converted (while being monitored for at least 2 years, MCI-s).
- CS4 contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects who never converted (while being monitored for at least 4 years, MCI-s).
Statistics on the three cohorts are reported on Table 3.4.
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3.2. DATA PROCESSING

Table 3.3: Statistics of the ADNI-2 cohort on the original AD/CN distribution (left) and
the balanced cohort (right).

Numbers M F Total Numbers M F Total
AD 190 157 347 AD 190 157 347
CN 260 280 540 CN 190 150 340
Total 450 437 887 Total 380 307 687
Ages (std) M F Total Ages (std) M F Total
AD 75.9(7.7)  74.1(7.9) | 75.1(7.8) AD 75.9(7.7)  74.1(7.9) | 75.1(7.8)
CN 74.8 (6.0) = 73.5(5.6) | 74.1(5.8) CN 74.8(5.9)  73.5(5.5) | 74.2(5.7)
Total 75.2(6.8) 73.8(6.5) | 74.5(6.7) Total 75.4 (6.9) 73.8(6.8) | 74.7 (6.9)
Table 3.4: Statistics of the ADNI-2 MCI cohorts. Top left: CC; Top right: CS2; Bottom:
CS4.

Numbers M F Total Numbers M F Total
MCl-p 126 83 209 MCI-p 126 83 209
MCl-s 126 84 210 MCl-s 124 84 208
Total 252 167 419 Total 250 167 417

Ages (std) M F Total Ages (std) M F Total
M(Cl-p 74.6 (7.0)  72.7(6.9) | 73.9(7.0) M(Cl-p 74.6 (7.0)  72.7(6.9) | 73.9(7.0)
M(Cl-s 735(6.9) 71.8(7.4) | 72.8(7.1) MCl-s 72.8(7.2)  71.8(7.2) | 72.4(7.2)
Total 74.1(7.0) 723(7.1) | 73.3(7.1) Total 73.7(7.1)  723(7.1) | 73.1(7.1)

Numbers M F Total
MCl-p 126 83 209
MCI-s 121 82 203
Total 247 165 412

Ages (std) M F Total
M(Cl-p 74.6 (7.0)  72.7(6.9) | 73.9(7.0)
MCl-s 71.5(6.7) 71.8(8.0) | 71.6(7.2)
Total 73.1(7.0) 72.2(7.5) | 72.7(7.2)

3.2 Data processing

Raw data consists of T1-weighted MRI brain scans, obtained by 1.5 T MRI scanners,
and pre-processed with the standard Mayo clinic pipeline. This processing essentially
applies intensity normalization and gradient unwrapping (bias-field non-linearity
correction).

The MRI scans were then post-processed by UCSF using Freesurfer [4]. All the
processing steps being applied to the scans are described in Section 2.1. The brain
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3.2. DATA PROCESSING Chapter 3. Data description

region was segmented, and from this point the grey/white matter and pial surfaces
inferred. The former can help build a 3D surface of the brain. Cortical measures
were then computed and mapped onto the 3D pial surface. This volume was finally
inflated to exhibit hidden sulci measures and mapped onto a sphere. All these steps
are illustrated in Figure 3.1. We mainly focus on the exploitation of cortical thickness
measures in this project, but we also, at some point, take an interest in cortical
volume measures.

(a) The initial MRI scans are (b) The brain region is seg-
registered into a common co- mented from registered MRI
ordinate basis. scans.

(c) The grey/white matter (d) To exhibit hidden sulci (e) The surface is mapped
surface is inferred to create measures, the previous onto a sphere with mini-
a 3D surface of the brain. surface is inflated into a mal deformation to derive
Cortical thickness measures smoother version. a proper spherical signal to
can be extracted from local feed spherical CNNs.
distance between pial sur-

face and grey/white matter

boundary, and mapped onto

the 3D surface.

Figure 3.1: Processing steps from T1-weighted structural MRI brain scans to spherical

measures of cortical thickness.

We further processed spherical signals to fit the standard input of Spherical CNNs
(see Figure 2.11). To this purpose, spherical images were flattened onto a plani-
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sphere of size 20, x 2b, determined by an input bandwidth parameter b, which sets up
the input image resolution. This process is illustrated in Figure 3.2. Fully-processed
brain scans become 2D images of size 20y x 2b, (for a given by), depicting spherical
cortical measures acquired originally from raw MRI images.
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(a) The original image is (b) A spherical meshgrid of (¢) The meshgrid is flat-
a sphere made of cortical bandwidth by is generated.  tened onto a 2D regular grid
thickness measures as ob- to input the original image
tained by the process de- mapped on a planisphere.

scribed on Figure 3.1.

Figure 3.2: Processing steps for mapping spherical measures of cortical thickness into a
proper 2D input for SCNNs.
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Chapter 4

Models

In this chapter, we detail the CNNs architectures used in this project, whether it be
SCNN or PCNN. The last part of the chapter elaborates on the protocol we follow to
train models and test their performance.

4.1 Spherical CNN

4.1.1 Layers

The following subsections hold all necessary information about the different types of
layers used to build the SCNN architectures. The practical implementation of these
layers is to be granted to Cohen et al. [11] using the theoretical aspects developed
in Section 2.2.

S? convolutional layer

The input convolutional layer of the SCNN architecture is a S? convolution, as il-
lustrated in Figure 2.11. As mentioned in Section 2.3.3, the actual input of such a
layer is a 2D matrix, indexed in rows by 8 € [0,7] and in columns by « € [0, 27|,
respectively corresponding to rotation angles around the Y axis and the Z axis (Euler
rotation Z(«a)Y (8)Z () with v = 0). A pixel at indexes (7, j) in the 2D input matrix
is then associated to the angles:

_7J
=%

20+ 1)
5o it
4b,

(4.1)

The S? convolutional layer is defined by an output bandwidth and number of
channels. To be consistent with Feng et al. notations, we note S2Conv(b,c) a S?
convolutional layer of output bandwidth b and number of channels c. The ¢ outputs
are feature maps stored as 3D tensors (lying in the 3D manifold SO(3)) of size
2b x 2b x 2b, indexed in rows by 5 € [0, 7], in columns by « € [0, 27, and in the third
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Chapter 4. Models 4.1. SPHERICAL CNN

dimension by v € [0, 27], corresponding to the Euler rotation Z(«)Y (5)Z(7). A pixel
at indexes (i, 7, k) in one of these feature maps is then associated to the angles:

_m
=%
(2i 4+ 1)7
= 4.2
8 10 (4.2)
b
= by

SO(3) convolutional layer

After a first S? layer, all the following convolutional layers are SO(3) layers. In the
same way as the S? one, such a layer is defined by an output bandwidth and a
number of channels. We note SO3Conv(b, ¢) an SO(3) convolutional layer of output
bandwidth b and number of channels c¢. Both the input and output are 3D tensors
lying in SO(3), with the same indexes conventions as described in the S? case.

Batch-Normalization layer

During the training process of a neural network, the distribution of every hidden
layers’ input is likely to change, as layers’ weights are updated at each training step.
As raised by Ioffe & Szegedy in [43], it makes the training more difficult. Indeed, let
us consider a subnetwork computing

Fy(Fi(u, ©1),02) (4.3)

where F; and F;, are arbitrary transformations performed respectively by one layer
and the next one, ©; and ©, their weights, and u the input of the first layer. The
learning scheme for the second layer is to update weights O, given the distribution
of inputs = F(u, ©®,). However, the distribution of these inputs is likely to change
as the training process goes on, which forces ©, to adapt to these changes.

To overcome this issue, and therefore speeding up the training process, Ioffe &
Szegedy thought about normalizing the input data of a given layer by adding a Batch-
Normalization (BN) layer before the next one. In a MLP, if we consider that features
might be decorrelated, the mean and variance of each feature z; of the BN layer
input « are computed over the entire batch of training samples. The normalized
features are defined as:

= S B (4.4)

Var|xz;]

In a CNN, we would want all pixels of the same feature map to be normalized the
same way, to stick to the idea of sharable weights in the convolution operation mak-
ing all pixels similarly treated. To this purpose, the mean and variance are computed
not only over the training batch but also over all the feature map dimensions (three
for the 3D manifold SO(3) in our situation). If the BN layer input is composed of
multiple channels, we would consider different mean and variance for each of them
as channels should be seen as multiple different ways of analyzing the data.
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Ioffe & Szegedy suggest an additional step by adding two learnable parameters
and 3 ! such that the actual output of the BN layer would be y = (y1, v, . . . ) defined

by
v = yx. + B. (4.5)

As the normalization step might modify what the layer can represent, this additional
trick gives more freedom to the way the BN layer normalizes inputs. It especially
allows it to learn the identity function. This way, we make sure that adding such a
layer inside a neural network has little risks to worsen its performances.

Rectified Linear Unit activation function

As mentioned in Section 2.2.2, the power of Deep Learning comes, among other
things, from the possibility to use non-linear activation functions between the output
of a given layer and the input of the next one. The first function to be popularised
in neural networks was the sigmoid (Figure 4.1a). However, this function has a
significant issue when used in neural network training. The update of learnable
parameters in these networks is done by what we call backpropagation. We will not
go into the details of this process here, but the important thing to know is that it
implies successive multiplications of backward chained gradients over the network
layers, activation functions included. For this reason, if the input of a given sigmoid
activation has a high absolute value, the corresponding gradient will be close to zero,
and the weights of upstream layers will not update, stopping the learning process.
To partly overcome this issue, a Rectified Linear Unit (ReLU) activation function can
be used instead (Figure 4.1b), as it does not encounter such a problem for positive
inputs. Besides, using ReLU speeds up the backpropagation process as its gradient is
faster to compute [19].

0.8 8
0.6 6
0.4 4
0.2 2

0.0 0
-10.0 -75 -5.0 -25 0.0 25 5.0 75 10.0 -10.0 -7.5 -5.0 -2.5 0.0 25 5.0 75 10.0

(a) Sigmoid function. (b) Rectified Linear Unit.

Figure 4.1: Non-linear activation functions.

It should be noted that these parameters are distinct from the angles defined in the previous
sections. We nonetheless use v and /3 here to described the parameters to stick to Ioffe & Szegedy
notations in [43].
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SO(3) integration

For classification tasks as the ones we study here (labelling an entire image), we
generally want, at a certain point of a CNN, to go down to output feature maps of
one pixel, to then apply some fully-connected layers to exploit the resulting features
in an MLP architecture. To this purpose, an integration over the SO(3) space can
be performed to the outputs of a given SO(3) convolutional layer. In practice, in
a discrete configuration, it goes down to applying a global average pooling (GAP),
averaging values of each feature map over its three dimensions. However, to com-
pensate for the non-uniformity of the SO(3) grid in the Y axis (« and + are in [0, 27]
while g is in [0, 7]), a weighted GAP (WGAP) is used. The weight compensation
along the Y axis is:

. b—1 .
w; = %sin ((2Z + 1)7T) Z 1 sin <(Ql + 1)(2k + 1)7T> , (4.6)

1 ) =2k +1 4b

applied to all elements of indices (i, j, k) (corresponding to (5, a and ~ respectively
as described before), and where b is the bandwidth associated to the feature maps
on which integration is performed. The derivation of this equation is provided by
Kostelec & Rockmore in [44].

4.1.2 SCNN architectures
Feature extraction module

The feature extraction module used by Feng et al. (illustrated in Figure 4.2) is
composed of an input S? layer followed by two SO(3) layers. In between, Batch-
Normalization and ReLU activation are inserted. They start with an image of band-
width 64, dividing it successively by 2 across the convolutional layers and multiply-
ing the number of channels by 2 at the same time. The feature extraction module
can be summarized as S2Conv(32, 32) - BN - ReLU - SO3Conv(16, 64) - BN - ReLU
- SO3Conv(8, 128) - BN - ReLU - wGAP. To extend it to any arbitrary input band-
width b, we have generalized its implementation into S2Conv(b/2, b/2) - BN - ReLU
- SO3Conv(b/4, b) - BN - ReLU - SO3Conv(b/8, 2b) - BN - ReLU - wGAP. We compare
computation time and performance of several input bandwidths in Section 5.3. In
this project, we tested several variants of the global architecture.

Spherical Bilateral Unisequential architecture (SBU)

The output of the feature extraction module is a vector of size 2b, after wGAP inte-
gration of the last layer. Feng et al. chose to feed the feature extraction module with
both left and right hemispheres, and to concatenate the resulting vectors to feed a fi-
nal fully connected subnetwork, as shown in Figure 4.2. This subnetwork comprises
a single layer with two output neurons. The resulting vector can be passed into a
sigmoid function to generate a probability vector over the two classes: AD vs CN
or MCI-p vs MCI-s). The effective classification decision of the network is obtained
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by considering the class with maximum output probability. We call this architecture
SBU, for Spherical Bilateral (two hemispheres) Unisequential (weight sharing).

Feature Extraction Module

1@2b*2b b/2@b*b*b b@b/2*b/2*b/2  2b@b/4*b/4*b/4

ce

Sampling |:># ] 0 # L »

[0--00] €D [0 00]
p 2
sisoubeiq

h

E> S2 Convolution (S2Conv) # SO(3) Convolution (SO3Conv)  2p

é€

# weighted Global Average Pooling (WGAP) # Batch Normalization + ReLU

» Fully-connected (FC) with softmax AN Concatenation

Figure 4.2: Illustration of the Spherical Bilateral Unisequential architecture (inspired
from [1]). The notation a@b*c*d means the corresponding layer contains a feature
maps of shape b x ¢ x d.

Spherical Unilateral architecture (SU)

As sharing weights between both hemisphere might be problematic, we introduce an
architecture taking only one of the two hemispheres as input (could be left or right),
which we call SU for Spherical Unilateral (one hemisphere). The only difference be-
tween this architecture and the previous lies in the shape of the final fully-connected
layer. As an SU model only takes one hemisphere as input, the input size of the
fully-connected layer will be 2b, with no concatenation from a second hemisphere.

Spherical Bilateral Multisequential architecture (SBM)

The drawback of the previous architecture is the loss of information from the re-
moval of one hemisphere. To stick to the idea of avoiding weight sharing but still
using both hemispheres, we introduce a third architecture noted SBM, for Spherical
Bilateral (two hemispheres) Multisequential (independent weights). In this model,
two networks, made of the feature extraction module described above, are trained
in parallel, one for each hemisphere. In practice, it does not change much: right
and left hemispheres are going through their own convolutional subnetwork, and
the resulting vectors after wGAP integration are concatenated to feed a final fully-
connected layer. The difference will mainly come from the weights update being
totally independent for each hemisphere.

34



Chapter 4. Models 4.2. PLANAR CNN

4.2 Planar CNN

We now introduce a Planar CNN model (PCNN) as a comparison basis. To stick with
Feng et al. architecture, we use 2D convolutional layers of stride 2 and kernel size 3,
denoted Conv(c). As a consequence, to build a model with about the same number
of parameters as its spherical equivalent, we slightly modify the architecture used
by Feng et al., and define the main PCNN block as Conv(b’) - BN - ReLU - Conv(2b’)
- BN - ReLU - Conv(4Db’) - BN - ReLU (with & = 24 for b = 32). As for the spherical
architectures, this feature extraction module is followed by a fully-connected sub-
network ending up in a binary probability vector. We use PCNN models with various
architectures, as SCNNs (PU, PBU, PBM).

4.3 Training setup

4.3.1 Preparation of the data for cross-validation

Almost all of our experiments were made on the ADNI-1 cohort, as the data from the
ADNI-2 cohort came later. We still dedicate a section in the next chapter to explore
the possibilities offered by ADNI-2 (Section 5.8).

To evaluate their model’s performances, Feng et al. decided to use a 10-fold
cross-validation setting. They considered 10 models, each of them using 8 folds as
training data, 1 as validation data to perform early-stopping during the training and
avoid over-fitting, and the last one as a test set to get the final performance results.
We have decided to instead go for 5-fold cross-validation in this project. Indeed, as
we saw in the previous chapter, the ADNI-1 cohort is composed of 339 subjects for
the AD-vs-CN task, and 250 for the MCI one. As a result, in a 10-fold setting, each
fold is composed of respectively 34 (or 33) and 25 subjects. We consider that these
numbers are too low to be able to make robust decisions. Indeed, a change in only
one class prediction can make the classification accuracy change by respectively 3%
and 4%. The impact is even twice as the validation accuracy on one fold is used to
select a trained architecture by early stopping and the final performance is evaluated
on another fold. To be able to compare ourselves to Feng et al., we use roughly the
same fold distribution. Detailed statistics of the splitting of ADNI-1 can be found in
Appendix D.

4.3.2 Bagging

In addition, we actually do not consider cross-validation as a way of computing a
model’s performance for averaging the results of each trained model. We rather
decided to combine our trained models and make them part of a ”"super” model.
This model is obtained via an ensemble method called bagging. In short, to classify
a sample, we aggregate the output probabilities of the trained models. In practice,
the very final output probabilities are obtained by summing up the ones of every
single model, and normalizing them back as a probability distribution. The idea
behind a bagging method is that every single model is likely to make classification
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errors, but as they are not trained based on the exact same sets, the classification
errors might be on different samples. In combining them, some of these errors will
be ignored by the aggregation, and the overall performance increased. As we will
see in the next chapter, this method allows a major breakthrough in performance
results.

Besides, for each bagged model we trained, we decided to train 14 similar ones
to explore multiple weight initializations. The idea was to decrease the bias that
fixing a random seed can bring, while performing enough experiments to reduce the
overall variance brought by not fixing the seed, in a reasonable computation time.
The metric values given in Chapter 5 are obtained by averaging the 15 experiment
performances.

4.3.3 Parameter initialization

Regarding the network parameters, we initialized the values with the one of Feng
et al., as our goal is first to replicate their findings. Thus, we started with a 0.1
learning rate, a learning rate decay of factor 10 at mid-experiment, and SGD with
momentum as an optimizer, for a 200 epochs training and batches of size 8. The
number of epochs is not of great importance as early stopping is performed. We only
need to be sure not to underfit, but 200 epochs are sufficient as an training accuracy
of 100% is always obtained at the end of the training.

4.3.4 Learning rate

We tested several strategies to tune the learning rate. We first tried multiple decay
rates: a constant learning rate; a single-step decay, dividing the learning rate by 10
at mid-experiment; a multi-step decay, dividing the learning rate by 2 once every 40
epochs; a continuous exponential decay. We also tried several learning rate values:
0.3, 0.1, 0.05.

4.3.5 Bandwidth

We considered, in our experiments, changing the input bandwidth (originally 64 in
Feng et al. settings) by decreasing it to 32 for computation reasons (see Section 5.3
for more details).
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Evaluation of performances &
successive improvements

In this final chapter, we come back on all the experiments we made in throughout
this project. In particular, in the first three sections, we come back on Feng et al.
choices, either by validating them or slightly modifying them. From Section 5.4, we
go further by investigating potential improvements.

5.1 Validating the use of SCNNs

5.1.1 Architecture comparison

From a theoretical point of view, using SCNNs is more suitable for handling spher-
ical signals than using PCNNs. In this part, we look at this on a practical level by
comparing various performance measures. Besides, as mentioned in Chapter 4, the
weight sharing modality for both hemispheres used in the Bilateral Unisequential ar-
chitecture might not seem evident, so we compare it to the Unilateral and Bilateral
Multisequential ones.

Table 5.1 gathers the performances of every architecture in terms of accuracy,
area under the ROC curve, sensitivity and specificity. These first results come from a
simple cross-validation setting (no bagging).

AD vs CN cross-validation

Let us detail results for the AD-vs-CN classification task. In a Unilateral setup, PC-
NNs seem to perform a little better than SCNNs in exploiting left hemispheres (of
about 1.5% in term of accuracy). However, PCNNs struggle with right hemispheres,
with performances decreasing of about 4 points compared to left hemispheres. It
could mean that right hemisphere relevant information might be more complicated
to read, and especially that it might have more spherical dependencies. The latter
idea might be confirmed by the SU performances on the right hemisphere, increased
compared to left hemisphere use (unlike PU). As a result, combining both hemi-
spheres in a Bilateral way is not that efficient with PCNNs, but makes the most of
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Table 5.1: Performance measures (%) of multiple SCNN and PCNN architectures on a
5-fold cross-validation setting (green part for AD vs CN, blue part for MCI progression).

Architecture ACC (std) AUC (std) SEN (std) SPE (std) ACC (std) AUC (std) SEN (std) SPE (std)

PU (left) 80.81 (1.35) 88.06 (0.69) 76.98(2.80) 85.38(2.71) | 62.12(2.43) 66.34(2.86) 69.88(6.27) 52.68 (8.84)
PU (right) 76.49 (1.14) 84.52 (0.82) 75.32(3.09) 77.90(3.98) | 58.76 (2.12) 63.04(3.08) 69.58 (5.29)  45.58 (5.89)
PBU 80.44 (1.52) 88.41(0.65) 73.06(3.39) 89.25(3.25) | 61.70(2.30) 66.14 (1.45) 72.20 (6.65) 48.91 (7.86)
PBM 80.73 (1.25) 88.86(0.83) 75.90(3.35) 86.51(3.10) | 61.08 (2.48) 65.33(2.14) 70.54 (5.95) 49.57 (6.76)
SU (left) 79.29 (1.49) 88.06 (1.01) 76.44 (3.73) 82.69 (2.53) | 68.40(2.09) 72.61(1.52) 73.04 (4.58) 62.75 (5.38)
SU (right) 82.08 (1.79) 89.71(0.93) 80.32(4.80) 84.19(5.38) | 61.77(2.59) 66.78(2.22) 70.71(5.98) 50.87 (5.67)
SBU 85.68(1.22) 92.28(0.99) 83.87(3.89) 87.85(4.04) | 64.67(2.76) 69.11(2.27) 70.48(6.42) 57.61 (5.13)
SBM 85.00 (2.10)  92.08 (0.67) 82.61(2.57) 87.85(3.60) | 67.32(1.81) 71.69(1.56) 75.83(5.30) 56.96 (6.75)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

both hemisphere information for SCNN models.

SBU models reach an 85.68% accuracy, 92.28% AUC, 83.87% sensitivity and
87.85% specificity’ on average. These numbers are slightly lower than those ob-
tained by Feng et al. There might be two reasons for that: we are using a 5-fold
cross-validation setting instead of a 10-fold one, and we average results over mul-
tiple runs while they decided to go with a fixed random seed. We are nonetheless
confident that these two changes in the test setup produce more accurate results.

SBM models seem to perform slightly worse. While they potentially better cap-
ture differences between left and right hemispheres, SBU models make the most
of left and right hemisphere similarities through weight sharing. Both architectures
have their strengths, and it seems it does not change much in terms of performances.

MCI progression cross-validation

In the MCI progression task, we notice the same phenomenon about right hemi-
spheres. It confirms that right hemisphere information is more difficult to interpret
than left hemisphere’s. However, distinguishing between MCI stable and progressive
subjects seems too complicated for even the SCNN models to be able to handle right
hemisphere data efficiently. As a consequence, SBU models, like PBU ones, are not
able to efficiently combine both hemispheres. Top performances are obtained for a
SU setup using left hemisphere, with a 68.40 accuracy, 72.61 AUC, 73.04 sensitivity
and 62.75 specificity. Once again, the difference between our results and those of
Feng et al. surely comes from the differences in the experiment setup.

The performances of SBM models further validate our readings on left/right
hemispheres. Here, this architecture seems to perform significantly better than SBU
ones, increasing accuracy and AUC by about 2.5%. While SBU struggles in com-
bining left and right hemisphere by weight sharing, SBM brings a certain degree
of freedom which improves the overall performance. Still, the improvement is not
enough to reach the SU results on left hemispheres.

! Specificity measures are slightly lower than in a PBU setting. However, sensitivity is much better,
so it seems that PBU classification tends to be biased towards CN. SBU is then definitely prefered to
PBU.
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5.1. VALIDATING THE USE OF SCNNS

Table 5.2: Performance measures (%) of multiple SCNN and PCNN architectures on a

bagging setting (green part for AD vs CN, blue part for MCI progression).

Architecture Max ACC ACC (std) AUC (std) SEN (std) SPE (std) Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

PU (left) 86.76 84.02 (2.14) 89.50(1.22) 79.46 (3.51) 89.46 (3.75) 72.55 65.49 (4.85) 67.70(3.99) 71.90 (10.18) 57.68 (13.19)
PU (right) 80.88 77.75 (1.56)  86.66 (0.99)  75.59 (3.36)  81.51(3.10) 68.63 60.39 (5.04) 64.46 (3.48) 71.67 (8.15) 46.67 (11.79)
PBU 86.76 83.63(2.21) 89.57(0.98) 74.95(3.46) 93.98 (2.40) 68.63 62.75(4.06)  66.61(2.77)  75.48 (5.03)  47.25 (9.70)
PBM 86.76 84.41(1.99) 90.12 (1.23) 77.12(3.21) 93.12 (3.42) 66.67 61.31(3.10) 66.47 (3.30) 73.81(7.23) 46.09 (10.62)
SU (left) 83.82 82.25(1.71) 89.39(1.12) 77.48(2.64) 87.96 (2.85) 76.47 72.29 (3.22) 7533 (2.57) 74.52(7.13) 69.57 (4.03)
SU (right) 88.24 85.29 (2.42) 90.95(1.04) 82.88(5.56) 88.17 (5.27) 72.55 65.10 (4.21) 69.19 (2.91) 72.14(9.18) 50.87 (5.67)
SBU 94.12 90.49 (1.66) 94.08 (1.08) 88.47 (3.61)  92.90 (4.43) 78.43 67.97 (4.95) 72.14(2.35) 71.19(6.94) 64.06 (7.25)
SBM 92.65 90.88 (1.49) 93.73(0.86) 88.47 (1.90) 93.76 (3.33) 76.47 69.80 (3.54)  75.02 (2.28) 80.48 (9.04) 56.81 (11.56)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

Bagging

Table 5.2 gathers results obtained when combining in a bagging way the 5-fold
trained models. As one can see, this method induces a significant performance in-
crease. In average, best architectures for the AD-vs-CN task see their results increase
of about 5% in accuracy, 2% in AUC, 4.5% in sensitivity, 5% in specificity, while the
increase for the MCI tasks is about 4% in accuracy, 3% in AUC, 1.5% in sensitivity,
and 7% in specificity. In addition, accuracy for the best models among 15 performed
runs can go up to 94.12% for the first task and 76.47% for the second one?.

In the AC-vs-CN setting, the tiny gap between SBM and SBU vanishes. SBM
performs even slightly better in terms of accuracy, but its AUC stays lower. As the
maximum accuracy is reached by an SBU model (94.12% against 92.65%), we de-
cided to stick to this architecture. To recap, given what we saw in this Section, we
decided to go with the SBU architecture for AD-vs-CN, and SU (left hemisphere) for
MCI-progression.

5.1.2 Rotational equivariance

We have validated the use of spherical models in terms of performances. However,
we need to remember that these architectures were initially introduced for preserv-
ing rotational equivariance. It is well known that theory and practice might not
always perfectly match. In Chapter 2, we proved the theoretical rotational equivari-
ance; let us see if it can be validated in practice.

We randomly selected two trained models, a PCNN and an SCNN (on the AD vs
CN task only, no need to consider both tasks to try rotational equivariance). Lines 1
and 3 of Table 5.3 give the performance measures of each model. We then computed
15 times the test results by using the original test cohort, except we applied to each
spherical image a rotation Z(«)Y (5)Z(y), with «, 8 and ~ all randomly chosen in
0,75, 5, §]- As shown by Table 5.3, the spherical model’s performances are almost
unaffected by the performed rotations, with a less than 0.5% gap in accuracy and

20One can notice that the SBU architecture can outperform the SU one in the MCI task. We attribute
it to chance, and still consider SU architectures to be better (besides, a model with a 78.43% accuracy
rather than 76.47% classifies only one extra subject correctly).
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Table 5.3: Evaluation of rotational equivariance in Planar and Spherical models.

Architecture Max ACC ACC (std) AUC (std) SEN (std) SPE (std)
Planar - Non rotated Test - 85.29 90.67 78.38 93.55
Planar - Rotated Test 76.47 68.53 (5.06)  75.07 (4.44)  75.14 (6.15)  60.65 (6.92)
Spherical - Non rotated Test - 91.18 95.64 89.19 93.55
Spherical - Rotated Test 92.65 90.78 (1.41)  95.42 (0.35) 91.35(1.12) 90.11 (2.27)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

AUC, while these scores decrease by about 15% for the planar model.

The average difference in output probabilities between an original sample and
a rotated one is about 12% for spherical models, while being about 37% for planar
ones. Given these numbers, we get that predictions in a planar architecture tend to
switch a lot more than in a spherical one. In a way, spherical models are 3 times
more robust to rotations than planar ones.

Besides, we initially thought that the slight lack of rotational equivariance of the
SCNN might be imputed to the last fully-connected layer. However, we looked at the
feature maps at the end of the convolutional block, and found out that values in these
feature maps differed in average by 13% from an original sample to a rotated one>.
Thus, it seems than in practice, even the convolutional block in itself is not perfectly
rotational equivariant. Still, given the relatively low decrease in performance using
rotated samples, we consider the rotational equivariance of SCNNs to be proven.

(a) Original reference frame. (b) Z-axis rotation. (¢) Y-axis rotation.

Figure 5.1: Rotating a brain around a horizontal axis modifies its spacial structure more
than a rotation around a vertical axis.

As an aside, we also noticed that SCNNs are more robust against rotations on the
Z axis than on the Y axis. This property might be due to brain spacial symmetries.
Indeed, a rotation around the Y axis profoundly modifies the spacial structure of the
brain compared to a Z-axis rotation (see Figure 5.2).

3As one would expect errors to propagate throughout a network, it might seem surprising that this
number is higher than errors for the final output. Actually, 12% was an absolute percentage, while
13% was a relative one. Therefore, these numbers do not relate and no analogy should be made.
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5.2. LEARNING RATE

Table 5.4: Performance measures (%) of various learning rate decay settings (green for

AD-vs-CN on SBU, blue for MCI-progression on SU with left hemisphere).

Decay pattern Max ACC ACC (std) AUC (std) SEN (std) SPE (std) Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

Constant 94.12 91.67 (1.54) 94.61(1.22) 88.47(2.39) 95.48 (2.04) 74.51 70.72 (2.51) 73.51(2.06) 73.57 (6.45)  65.58 (3.74)
Single-step 94.12 90.49 (1.66)  94.08 (1.08) 88.47 (3.61)  92.90 (4.43) 76.47 72.29 (3.22) 7533 (2.57) 74.52(7.13) 69.57 (4.03)
Multi-step 92.65 89.80 (1.52) 93.53(1.27) 87.39(3.34) 92.69 (3.33) 76.47 71.63 (3.22) 74.64 (2.04) 75.48 (7.74)  66.96 (5.88)
Exponential 91.18 89.22 (1.44) 93.26(1.08) 86.13(2.01) 92.90 (2.78) 78.43 72.16 (2.98) 74.62 (2.41) 74.29(6.91) 69.57 (5.20)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

5.2 Learning rate

Throughout this project, we studied multiple decay rates, as described in Section 4.3.4.
As illustrated in Figure 5.2b, the training loss of the initial training setup (single-step
decay at mid-experiment) is really noisy. This is generally due to a too high learning
rate, so we decided to extend the initial one-step decay to multiple steps, and even
further to an exponential decay ("infinite” number of steps). The idea behind this
is to impose lower learning rates earlier in the training process, rather than a single
significant decrease relatively late. As depicted in Figures 5.2c-5.2d, the more decay
steps we use, the smoother is the training loss.

AD vs CN

However, if we compare the genuine performances of each setting, we notice that
the less steps we use, the better is the test performance (see Table 5.4), as least for
the AD vs CN task.

Given this trend, we therefore thought about decreasing the decay rather than
adding steps, by using a constant learning rate. As shown on Table 5.4 and Fig-
ure 5.2a, the trend is confirmed. As we generally prefer a smooth learning curve, it
can be surprising that the performance metrics show an opposite trend. A possible
explanation might be that brain images are so complex that the loss function is highly
non-convex, with a lot of local minima. Under this assumption, a noisier learning
curve signifies a higher number of visited local minima. One might argue that high
learning rates (in the case of a constant learning rate for example) cannot finely dive
into tight minima. Actually here, it might not be that necessary to finely achieve a
low loss, as a 100% training accuracy is always obtained and early-stopping chooses
models that do not achieve a particularly low training loss. For these reasons, it does
not seem necessary to decrease the learning rate during training; rather, we chose
to use a constant learning rate given classification results.

Besides, we tried several learning rates. Apart from 0.1, we tested 0.3 and 0.05.
A 0.1 learning rate seems a good compromise, as performance deteriorates when
we either increase or decrease the learning rate. Detailed metrics can be found in
Appendix (Table G.1).

41



Training loss
© o o o o o o
[ N w Y (9] [o)] ~

o
<)

Training loss
© © o o o o
= N w Y w (o)}

o
<)

5.2. LEARNING RATE Chapter 5. Performances & Improvements

0.7
0.6
0.5
7y
0.2903 204 0.2536
(02903 >
03
0.1013 E /
0.3758 F s
0.3138
0.1
0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
(a) Constant learning rate. (b) Single-step decay.
0.7
0.6
n 0.5
%]
S
o 0.4
£
€03
= 0.0524 = 0.0629
: . )
0.0097 0.0195
N
/ 0.1
0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
(c) Multi-step decay. (d) Exponential decay (continuous).

Figure 5.2: Effect of various decay rates on the training loss; pointers at epochs 50, 100
and 150. Each time, the curve comes from the first trained model out of the four in the
5-fold training setup (see Appendix ?? for additional figures on every model).

MCI Progression

While the various learning decay settings behave the same in terms of training loss
curve, performance metrics comparison is not as straightforward as in the AD-vs-CN
case. As depicted by Table 5.4, single-step and exponential rate decays globally per-
form better than other decay modalities, with single-step achieving slightly better
performance . Therefore, there does not seem to have any linear relationship be-
tween decay rates and performances for the MCI task. It can partly be explained by
the low number of samples per fold (around 50) and the relative complexity of the
MCI task compared to the AD-vs-CN one. Thus, it is difficult to come to any robust
conclusion here. For this reason, we decided to keep to both decay settings.

We tried various learning rate values: 0.3, 0.1, 0.05, for both decay settings.
As depicted on Table G.2, the results are one again not unequivocal. We do not
necessarily expect some sort of trend as for the decay settings. But, we cannot

30ne can notice that the exponential rate decay setting can outperform the single-step one in the
MCI task. As notified earlier, given the number of test samples, this difference is actually slim.
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even tell with confidence which learning rate is really better. A learning rate of 0.05
seems slightly better for an exponential rate decay setting, while a learning rate of
0.3 seems better for a single-step one. Given the results instability, we therefore
decided to stop the MCI-progression experiments. SU models (left hemisphere) with
a 0.3 learning rate, single-step decay, achieve for the MCI task a 73.99% accuracy,
74.73% AUC, 80.95% sensitivity, 65.51% specificity in average over 15 runs, and
a maximum 76.47% accuracy. SU models (left hemisphere) with a 0.05 learning
rate, exponential rate decay, achieve for the MCI task a 72.81% accuracy, 73.14%
AUC, 74.76% sensitivity, 70.43% specificity in average over 15 runs, and a maximum
78.43% accuracy. We come back on the MCI task in Section 5.8, where the ADNI-2
cohort is introduced.

5.3 Input bandwidth

The experiments of the past sections were made with an input bandwidth parame-
ter set to 32, for computational reasons. We decided to also investigate bandwidth
parameters 16, 64 and 128. Table 5.6 gathers information about computation times.
While models in a 16 or 32 bandwidth setting can be trained in a reasonable amount
of time (respectively 2.5 hours and 5 hours), computation times for bandwidth pa-
rameters 64 and 128 were too large for the number of experiments we performed
during the project, even for just a single one in a 128 setting.

We nonetheless compared the performance results of each bandwidth setting (Ta-
ble 5.5), except for a bandwidth of 128. The higher the bandwidth, the better the
performances. Such a result is expected, as a higher bandwidth means a better input
resolution in practice. While we consider the trade-off computation time / perfor-
mance to be better in a 32 bandwidth setting than a 16 one, we cannot say the same
for 64 vs 32. As notified before, the overall computation time of a single experiment
in a 64 setting would have prevented us from conducting all the experiments of this
project. Nevertheless, in the parameter setting defined in the past sections (SBU
with a constant 0.1 learning rate), increasing the bandwidth parameter from 32 to
64 improves the performance. In particular, the average accuracy increases by 0.5%
in average (to 92.16%), and some models achieve a 95.59% accuracy.

We pursued further experiments with a 32 bandwidth setting, but we need to
keep in mind that input images with bandwidth 64 (and potentially 128) improve
classification results.

Table 5.5: Performance metrics (%) of various bandwidth settings in the AD-vs-CN task
(SBU architecture, 0.1 learning rate, no learning rate decay).

Bandwidth Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

16 92.65 90.00 (1.69) 94.69 (0.79) 88.29 (2.21)  92.04 (4.02)
32 94.12 91.67 (1.54) 94.61(1.22) 88.47(2.39) 95.48 (2.04)
64 95.59 92.16 (1.90) 94.59(1.02) 89.73(2.93) 95.05 (2.69)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)
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Table 5.6: Computation time of various bandwidth settings on a NVIDIA TITAN RTX
24GB GPU. "Tteration” means each batch training step, second column exhibits overall
training time over 15 runs.

Chapter 5. Performances & Improvements

Bandwidth Time per iteration Overall 15 bagging runs’ time

16 0.02 seconds 2.5 hours
32 0.02 seconds 5 hours
64 0.2 seconds 15 hours
128 2 seconds 31 days

5.4 Cortical features

In addition to cortical thickness measures, we investigated the use of volume mea-
sures. The first two lines of Table 5.7 exhibit the performance metrics of architec-
tures trained on cortical thickness images, or cortical volume ones. Both achieve
similar results, which is not surprising given the high correlation between thickness
and volume (see Figure 5.3).

We thought also about combining them, by inputting two channels, one for each
image feature. In addition, we examined enhanced architectures. As combining fea-
tures makes the amount of information double, we increased the number of channels
in the layers of the feature extraction module. We can see on Table 5.7 that using
the initial architecture and inputting both features achieves lower results (a loss of
about 0.8% in accuracy, sensitivity, specificity, and 0.4% in AUC, while no model
reaches a 94.12% accuracy). However, the performance improve as the number of
channels in hidden layers increases, up to three times more channels than the initial
setup. It improves metrics values up to 1.3%.

What can we learn about this? First, the network’s initial complexity might not
be sufficient to correctly learn about the data of two input channels. However, if we
increase its complexity too much, it starts to have difficulty in training.

We were able to find configurations were adding cortical volume data improves
performances, while its correlation with cortical thickness is high. Therefore, we
think that adding complementary features, such that surface curvature, might be
even more efficient.

Table 5.7: Performance metrics (%) of various cortical feature combinations in the AD-
vs-CN task (SBU architecture, 0.1 learning rate, no learning rate decay).

Features Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

Thickness 94.12 91.67 (1.54) 94.61 (1.22) 88.47 (2.39) 95.48 (2.04)
Volume 94.12 91.08 (3.22) 94.58 (1.38) 87.39 (5.07)  95.48 (2.38)
Thick + Vol 92.65 90.88 (1.59) 94.18 (0.88) 87.75(2.87) 94.62 (1.99)
Thick + Vol (x2 channels) 94.12 91.57 (1.88) 94.85 (1.13) 88.11 (3.79) 95.70 (1.99)
Thick + Vol (x3 channels) 94.12 92.65(1.24) 95.11(0.64) 89.73 (1.83) 96.13 (1.34)
Thick + Vol (x4 channels) 94.12 91.08 (1.88) 94.70(1.15) 87.21(3.30)  95.70 (1.57)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)
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Figure 5.3: Illustration of cortical thickness (left) and volume (right) measures.

5.5 Hemispheres combination

In the brain, left and right hemispheres are mirrored. The pre-processing pipeline
preserves this symmetry, so that hemispheres inputted in the SBU architecture are
not registered, as illustrated in Figure 5.4.

Intuitively, it seems surprising that weight sharing with unregistered images per-
forms well. Therefore, we mirrored the right hemisphere to get it in the same ref-
erence frame as the left one (and similarly we investigated registration on the right
hemisphere). The first part of Table 5.8 shows that registration worsen the perfor-
mance (of about 0.8% to 1.7% depending on the metric). A possible explanation
might be that registered images are too similar, in that SBU models see these images
as representing the same entity, and do not understand the slight difference which
remains between the two hemispheres.

We also tried to combine hemisphere in a more readable way. We decided, in-
stead of inputting left and right hemisphere images as so, to combine them into
their sum and difference: left+right, left-right. We followed the intuition that both
hemispheres are similar, but slight differences might show spacial heterogeneity in
Alzheimer’s disease. We were careful to register hemispheres before combining

Figure 5.4: Cortical thickness measures of left and right hemispheres.
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Table 5.8: Performance metrics (%) of various hemisphere combinations in the AD-
vs-CN task (SBU architecture, 0.1 learning rate, no learning rate decay).

Combination Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

None (original) 94.12 91.67 (1.54) 94.61(1.22) 88.47 (2.39) 95.48 (2.04)
Registration on left hemisphere (RL) 94.12 90.00 (1.86) 93.79(0.85) 86.31(3.61) 94.41(2.85)
Registration on right hemisphere (RR) 92.65 90.20 (1.64) 93.77 (0.96) 86.85(2.68) 94.19 (2.50)
Combination left+right, left-right (C) 85.29 76.76 (4.24)  86.50 (2.42) 69.55(10.29) 85.38 (8.08)
C+RL 85.29 76.76 (4.13)  87.18(2.60) 69.73 (10.17) 85.16 (6.88)
C+RR 82.35 77.35(3.84) 85.99(2.52) 74.59(9.01) 80.65(7.32)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

Table 5.9: Performance metrics (%) of various hemisphere combinations in the AD-
vs-CN task (SBM architecture, 0.1 learning rate, no learning rate decay).

Combination Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

None (original) 94.12 90.59 (1.55) 94.35(0.76) 87.39(3.78)  94.41 (4.30)
Registration on left hemisphere (RL) 94.12 91.37 (2.07) 94.01(0.87) 87.21(4.27) 96.34 (1.67)
Registration on right hemisphere (RR) 94.12 90.78 (3.17) 94.41(1.05) 87.39(5.56) 94.84 (2.38)
Combination left+right, left-right (C) 91.18 88.24 (1.76) 93.77 (0.76)  83.24 (3.10) 94.19 (2.78)
C+RL 91.18 88.73 (1.73) 93.91(1.01) 85.05(3.94) 93.12(3.19)
C+RR 92.65 89.22 (1.54) 93.44 (0.97) 84.50 (4.02) 94.84 (2.94)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

them. We investigated three situations: leaving the combinations registered onto
the left hemisphere, onto the right one, or having them unregistered back. Combi-
nations are illustrated in Appendix, additional Figure F.5.

As show on the second part of Table 5.8, such combinations highly deteriorate the
SBU architecture performance. The first explanation we see is that the combination
produces images that are too different (Figure F.5) for being correctly exploited
by a SBU architecture with weight sharing. In addition, the registration might not
actually be as straightforward as a simple mirroring. Figure 5.5 shows a possible
transformation to register hemispheres with precision.

SBM architecture

We then switched to a SBM architecture to prevent the flaws of weight sharing. The
same combination experiments have been performed and are gathered in Table 5.9.
With such an architecture, results on registration are improved (about 1%-2%), to
even outperform the original SBM configuration (but still do not outperform the
original SBU configuration). We thought that SBU performance is deteriorated by
registration because images are too similar for the network to understand that they
represent two different hemispheres. It seems this hypothesis holds given the results
on SBM. While the network exploits efficiently the registered image similarities, the
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Figure 5.5: Possible registration between left and right hemispheres.

multisequential setting offers a certain degree of freedom to understand the slight
remaining variations.

Improvements on combinations are even better: accuracy increases by 12% com-
pared to combinations used in a SBU architecture. Overall, they remain lower than
in the unregistered uncombined configuration, but it validates the theory on com-
bined images being too unalike for weight sharing to work properly.

In short, SBU performs better than SBM in the original configuration, but SBM
possibly have more potential. Therefore, rather than training SBM models from
scratch, we used SBU pretrained weights for using SBM as a finely tuning model.
We tried multiple configurations: SBU with unregistered input images, registered,
combined, or registered and combined..., and similarly for SBM. We could not find a
setting achieving outstanding performances. The effect of pretraining is nonetheless
visible; as illustrated on Figure 5.6, the training loss decreases a lot faster when SBM
network’s weights are initialized with pretrained SBU weights. However, as exposed
before, this kind of learning curve might not be suitable for the highly non-convex
training loss that medical imaging entails. It might explain why pretraining does not
seem to induce performance improvement.

5.6 Longitudinal features

After that, we investigated the use of longitudinal features. As shown on Table 3.2,
follow-up visits at 6, 12 and 24 months after baseline can be exploited. We con-
sidered every combinations of these follow-ups: 6 months, 12 months, 24 months,
6 & 12, 6 & 24, 12 & 24, 6 & 12 & 24. Images from each follow-up visit are in-
putted as supplementary channels, in addition to baseline. Table G.3 in Appendix
gathers the results for every combination. Every one of them reaches lower perfor-
mance than baseline only. We impute these results to two factors. On the one hand,
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Figure 5.6: Effect of initializing SBM models with pretrained SBU weights.

the more we consider follow-up visits, the fewer are the available subjects. Cohorts
decrease, and do not decrease evenly throughout the split folds. Fold statistics are
deteriorated, which decreases the training quality. On the other hand, we saw ear-
lier (Section 5.4) that the original feature selection module architecture might not
be complex enough to handle multiple input channels.

5.7 Exploiting atlases

To better understand the decisions of our models, we decided to exploit the corti-
cal atlases introduced in Section 2.1.3. As a reminder, the Desikan atlas defines a
36-parcel segmentation of the brain, while the Destrieux atlas suggests 75 parcels.
To understand what lies behind our models’ decision process, we trained multiple
models (always in 15-run setting), one for each structure (by masking the input sig-
nal for every given parcel). This way, we obtained detailed performances for each
individual structure. In addition, we crossed our results with those obtained by Yang
et al. in [31] and Filho et al. in [38]. Classification accuracy for each individual
structure of the Destrieux atlas are displayed on Figure 5.7 and those of the Desikan
atlas on Figure 5.8.

We can see that both atlases include structures which individually achieve more
than 80% accuracy, up to 85% for the best ones. The structure achieving higher
performance in the Destrieux atlas accounts for 3.5% of the total 2D original im-
age, and respectively 3.8% for the best one in the Desikan atlas (see Figure F.6 in
Appendix). These results open up interesting possibilities. If the structural segmen-
tation cannot be done properly, because of a deteriorated MRI scan for instance, we
could potentially still be able to make predictions with high confidence.
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One can notice that previously identified structures (being linked to Alzheimer’s
disease by the two cited papers) do not particularly relate to those we can find for
the Destrieux atlas. On the contrary, the best Desikan parcels, in terms of accuracy,
match well. It probably comes from the 32 bandwidth setting. The Destrieux atlas
is made of small and fine structures; as a 32 bandwidth deteriorates the input res-
olution (and therefore the atlas resolution), the Destrieux atlas might be relatively
impacted, unlike Desikan’s. This phenomenon can be seen on the classification ac-
curacies heat map in Appendix (Figure F.7).

Therefore, this experiment would gain from increasing the bandwidth. Still,
results remain interesting. We could thought for example to use our solution on
bad-quality MRI scans, by masking pre-processed 2D images with some of the best
structures we highlight here, and expect a confident prediction.

5.8 Adding data: ADNI-2 cohort

Table 5.10: Performance metrics (%) of ADNI-1 vs ADNI-2 in the AD- vs-CN task (SBU
architecture, 0.1 learning rate, no learning rate decay).

Cohort ACC (std) AUC (std) SEN (std) SPE (std)

ADNI-1 (cross-validation) 86.10 (2.15) 92.79(1.17) 82.84(3.33)  90.00 (3.08)
ADNI-1 (bagging) 91.67 (1.54) 94.61(1.22) 88.47(2.39) 95.48 (2.04)
ADNI-2 (cross-validation) 87.29 (1.12) 94.55(0.76) 86.01(2.87) 88.58 (2.81)
ADNI-2 (bagging) 90.36 (0.88) 95.80(0.61) 88.31(1.85) 92.45(2.41)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

Table 5.11: Performance metrics (%) of various cohorts in the MCI-progression task
(0.1 learning rate, no learning rate decay).

Combination Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

CC - SU (left) 72.62 67.30 (2.46) 72.00(2.10) 73.81(7.48) 60.79 (7.36)
CC- SBU 72.62 66.67 (2.74)  69.85(1.70)  70.95(7.70)  62.38 (7.91)
CS2 - SU (left) 75.00 70.16 (2.27) 78.29(1.34) 75.08 (6.79)  65.24 (7.83)
CS2 - SBU 78.57 74.84 (2.88) 80.80 (2.47) 70.16 (6.90)  79.52 (6.22)
CS4 - SU (left) 75.00 69.20 (2.51) 76.89 (2.18) 73.43(6.33)  64.79 (5.98)
CS4 - SBU 79.52 72.69 (3.27) 79.75(2.62)  68.25(5.45)  77.24 (4.09)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

One of the main reasons for which we went for a 5-fold setting instead of a 10 one
was the small size of the ADNI-1 cohort, which lower the confidence we have in the
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obtained results. We can even go further by switching cohorts to go for a larger one.
We acquired baseline scans for the ADNI-2 cohort, which includes more subjects than
ADNI-1.

AD vs CN

Table 5.10 gathers performances for the AD vs CN task on ADNI-1 and ADNI-2 co-
horts. Performances of the latter are lower than those of the former on a bagging
setup, but higher by using cross-validation. It means that the ensemble method, on
the ADNI-2 cohort, loses efficiency. Actually, the ADNI-2 cohort is bigger than ADNI-
1. As data augmentation reduces variance, a part of it is already removed when
bagging is applied, so that the performance increase is not as good as for the ADNI-1
cohort.

If the remaining error is not due to variance, it must be a bias error. Therefore,
using a boosting ensemble method rather than a bagging one should pay off. We will
not linger over boosting as we did not implement it during the project, but we keep
it in mind for future work.

MCI progression

In this part, we come back on the MCI-progression task we dropped from Section 5.3.
As the ADNI-2 cohort is larger than ADNI-1, variance is necessarily reduced and
stability is improved. As described in Section 3.1.2, we consider 3 balanced cohorts,
CC, CS2, CS4. As reminder:

- CC contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects having either never converted (while being monitored for at least 2 years)
or converted only after 2 years (MCI-s).

- CS2 contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects who never converted (while being monitored for at least 2 years, MCI-s).

- CS4 contains MCI subjects having progressed in AD in at most 2 years (MCI-p), and
subjects who never converted (while being monitored for at least 4 years, MCI-s).

Table 5.11 gathers some performance results for the three cohorts, on both SU
(left hemisphere) and SBU architecture. The experiments have been conducted with
a learning rate of 0.1 without decay. We chose this parameter setting as it is the
one maximizing the performances. We do not display the others here, as relative
performances along the table are similar.

The intuition about the MCI-progression task on the ADNI-1 cohort being too
complex to properly exploit both hemispheres seems to be right. Indeed, we can see
that CS2 and CS4 cohorts achieve relatively high performances, with low variance
thanks to the data augmentation brought by ADNI-2. For these cohorts, a Bilateral
architecture outperform a Unilateral one. In addition, the CC cohort does not reach
the same performances, and goes back to SBU being outperformed by SU.

CC achieving rather low performances means that including MCI subjects having
converted after 2 years as stables might not be the best of ideas. It is reasonable, in a
sense that models see these subjects on the same level as "actual” stable ones, while
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the probability is high that these switched subjects are in reality closer to converted
ones (the kept ones, converted before 2 years).
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Conclusion

Alzheimer’s is a complex disease for which we know little; a cure is yet to be found,
and its causes are still unknown. The disease could potentially be understood via
brain scans analysis, but they turn out to be rather complex to interpret.

In this project, we showed that rotational equivariant convolutional neural net-
works could achieve state-of-the-art performance on distinguishing Alzheimer’s dis-
eased subjects from cognitively normal ones, as well as on predicting the stability
or progression towards Alzheimer’s disease of mild cognitive impairment subjects.
Indeed, while we worked during this project in a low input resolution configuration,
our models achieved an average accuracy and AUC of about 92.7% and 95.1% in the
AD vs CN classification task, and even 94.1% accuracy for the best models among
them. We even went up to 96.6% for higher input resolutions.

These numbers go down to 75% and 80% on average with at best 79.7% accuracy
for the MCI-progression task. However, this task is much more challenging than
the first one. Firstly, it implies distinguishing between two nuances of the same
condition (MCI). Secondly, this task is predictive, while the first one has diagnosis
purposes. While offering a confident diagnosis is essential, the prediction is always a
more significant concern, as it might help delay symptoms arrival. These difficulties
induce a deterioration of results, but our models turned out to achieve top state-of-
the-art performance on classification through T1-weighted 1.5 T MRI scans.

We investigated possible improvement lines in this project, with varying degrees
of success. While we struggled to exploit hemispheres combinations and longitudinal
features, the combination of multiple cortical features turned out to be efficient.

Future work

A significant issue of this project was about the variance brought by the ADNI-1 co-
hort. It obliged us to increase the computation time by multiplying runs for decreas-
ing the variance. As we saw, working with larger cohorts increases the confidence
we have in the obtained results. The next clear step will be to go entirely for a
larger cohort such as ADNI-2 or ADNI-3, and switch to a bandwidth parameter 64.
The efficiency of ensemble methods have been proven during this project, and a low
variance setting might benefit from boosting methods rather than bagging.

While using cortical volume turned out to improve our models’ performances,

53



Chapter 6. Conclusion

other measures, such as surface curvature, less correlated with the initial cortical
thickness, might further help the classification task.

Finer tuning can also be considered, via smart techniques such as Bayesian Opti-
misation, to perfectly optimize the studied architectures, especially promising ones
such as SBMs.

Finally, the MCI-progression classification task seemed rather difficult to handle.
We think about switching to a regression task, where the final goal is to predict the
conversion year of an MCI subject. Such a task might even be harder to control,
but the use of longitudinal features should help. If it were to work, the community
would definitely gain from it.
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Appendix A
Ethics Checklist

Section 3: This project does not involve human participant directly, but uses data
collected via a large-scale study in North-America (ADNI).

Section 4: The ADNI data used in this project have been recovered directly from
Feng et al. It includes pre-processed brain scans, that we further processed, and
information about gender, Alzheimer’s condition, age of subjects is possessed. How-
ever, the information was previously anonymised in referencing each subject by a
random ID. Moreover, even if we did not recover the data from ADNI directly, we
still went through the entire ADNI process to be accepted for data collection. Even if
this data is officially public, we made sure that we had all the necessary authoriza-
tions to detain and use it.
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Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Doesyour project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Section 2: HUMANS
Does your project involve human participants? X
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human X
Embryos/Foetuses” i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA
Doesyour project involve personal data collection and/or processing? X
Doesit involvethe collection and/or processing of sensitive personal data
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or X
philosophical conviction)?
Doesit involve processing of genetic information? X
Doesit involvetracking or observation of participants? It should be noted
that thisissueis not limited to surveillance or localization data. It also X
applies to Wan data such as IP address, MACs, cookies etc.
Doesyour project involve further processing of previously collected personal
data (secondary use)? For example Does your project involve merging X
existing data sets?
Section 5: ANIMALS
Doesyour project involve animals? X
Section 6: DEVELOPING COUNTRIES
Doesyour project involve developing countries? X
If your project involves low and/or lower-middleincome countries, are any X
benefit-sharing actions planned?
Could thesituation in the country put theindividuals taking part in the X
project at risk?
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the X
environment, animals or plants?
Doesyour project deal with endangered fauna and/or flora /protected areas? X
Does your project involve the use of elements that may cause harm to X
humans, including project staff?
Does your project involve other harmful materials or equipment, e.g. high- X
powered laser systems?
Section 8: DUAL USE
Does your project have the potential for military applications? X
Doesyour project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require X
export licensesin accordance with legislation on dual use items?
Does your project affect current standards in military ethics—e.g., global ban
on weapons of mass destruction, issues of proportionality, discrimination of X

combatants and accountability in droneand autonomous robotics
developments, incendiary or laser weapons?

Section 9: MISUSE




Doesyour project have the potential for malevolent/criminal/terrorist
abuse?

Does your project involve information on/or the use of biological-, chemical-
, huclear/radiological-security sensitive materials and explosives, and means
of their delivery?

Does your project involve the development of technologies or the creation of
information that could have severe negative impacts on human rights
standards (e.g. privacy, stigmatization, discrimination), if misapplied?

Does your project have the potential for terrorist or criminal abuse e.g.
infrastructural vulnerability studies, cybersecurity related project?

SECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright
licensingimplications?

Will your project use or produce goods or information for which there are
data protection, or other legal implications?

SECTION 11: OTHER ETHICS ISSUES

Arethere any other ethicsissues that should be taken into consideration?




Appendix B

Desikan atlas

Table B.1: Desikan atlas description: label values and names of structures (inspired
from [11]).

Index Description

0 Unlabelled region

1 Banks superior temporal sulcus
2 Caudal anterior-cingulate cortex
3 Caudal middle frontal gyrus
4 Corpus callosum

5 Cuneus cortex

6 Entorhinal cortex

7 Fusiform gyrus

8 Inferior parietal cortex

9 Inferior temporal gyrus

10  Isthmuscingulate cortex

11  Lateral occipital cortex

12 Lateral orbital frontal cortex
13  Lingual gyrus

14  Medial orbital frontal cortex
15  Middle temporal gyrus

16  Parahippocampal gyrus

17  Paracentral lobule

18  Pars opercularis

19  Pars orbitalis

20  Pars triangularis

21 Pericalcarine cortex

22 Postcentral gyrus
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23
24
25
26
27
28
29
30
31
32
33
34
35

Posterior-cingulate cortex
Precentral gyrus

Precuneus cortex

Rostral anterior cingulate cortex
Rostral middle frontal gyrus
Superior frontal gyrus
Superior parietal cortex
Superior temporal gyrus
Supramarginal gyrus
Frontal pole

Temporal pole

Transverse temporal cortex

Insula
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Figure B.1: Spatial distribution of the labelled structural regions in the Desikan atlas.
Views from top to bottom and left to right: inferior, anterior, medial, lateral, posterior,
superior.
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Destrieux atlas

Table C.1: Destrieux atlas description: label values and names of structures (inspired

from [12]).
Index Short Name Description
0 - Unlabelled region
1 G_and_S _frontomargin Fronto-marginal gyrus and sulcus
2 G_and_S _occipital_inf Inferior occipital gyrus and sulcus
3 G_and_S _paracentral Paracentral lobule and sulcus
4 G_and_S _subcentral Subcentral gyrus and sulci
5 G_and_S _transv_frontopol Transverse frontopolar gyri and sulci
6 G_and_S _cingul-Ant Anterior part of the cingulate gyrus and sulcus
7 G_and_S_cingul-Mid-Ant Middle-anterior part of the cingulate gyrus and sulcus
8 G_and_S _cingul-Mid-Post Middle-posterior part of the cingulate gyrus and sulcus
9 G _cingul-Post-dorsal Posterior-dorsal part of the cingulate gyrus
10  G_cingul-Post-ventral Posterior-ventral part of the cingulate gyrus
11 G_cuneus Cuneus
12 G_front_inf-Opercular Opercular part of the inferior frontal gyrus
13 G_front_inf-Orbital Orbital part of the inferior frontal gyrus
14  G_front_inf-Triangul Triangular part of the inferior frontal gyrus
15 G_front_middle Middle frontal gyrus
16  G_front_sup Superior frontal gyrus
17  G.Inslg and_S _cent ins Long insular gyrus and central sulcus of the insula
18  G_insular_short Short insular gyri
19  G_occipital middle Middle occipital gyrus
20  G_occipital _sup Superior occipital gyrus
21  G_oc-temp_lat-fusifor Lateral occipito-temporal gyrus
22 G_oc-temp_med-Lingual Ligual part of the medial occipito-temporal gyrus
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

G_oc-temp_med-Parahip
G_orbital

G _pariet_inf-Angular
G_pariet_inf-Supramar
G_parietal sup
G_postcentral
G_precentral
G_precuneus

G_rectus

G_subcallosal
G_temp_sup-G_T_transv
G_temp_sup-Lateral
G_temp_sup-Plan_polar
G_temp_sup-Plan_tempo
G_temporal_inf
G_temporal middle
Lat_Fis-ant-Horizont
Lat_Fis-ant-Vertical
Lat_Fis-post
Pole_occipital
Pole_temporal
S_calcarine

S_central
S_cingul-Marginalis
S_circular_insula_ant
S_circular_insula_inf
S_circular_insula_sup
S_collat_transv_ant
S_collat_transv_post
S_front_inf
S_front_middle
S_front_sup
S_interm_prim-Jensen
S_intrapariet_and_P_trans
S_oc_middle_and_Lunatus
S_oc_sup_and_transversal

S_occipital _ant

Parahippocampal part of the medial occipito-temporal gyrus
Orbital gyri

Angular gyrus

Supramarginal gyrus

Superior parietal lobule

Postcentral gyrus

Precentral gyrus

Precuneus

Straight gyrus, Gyrus rectus

Subcallosal area, subcallosal gyrus

Anterior transverse temporal gyrus

Lateral aspect of the superior temporal gyrus

Planum polare of the superior temporal gyrus

Planum temporale of the superior temporal gyrus
Inferior temporal gyrus

Middle temporal gyrus

Horizontal ramus of the anterior segment of the lateral sulcus
Vertical ramus of the anterior segment of the lateral sulcus
Posterior ramus of the lateral sulcus

Occipital pole

Temporal pole

Calcarine sulcus

Central sulcus

Marginal branch of the cingulate sulcus

Anterior segment of the circular sulcus of the insula
Inferior segment of the circular sulcus of the insula
Superior segment of the circular sulcus of the insula
Anterior transverse collateral sulcus

Posterior transverse collateral sulcus

Inferior frontal sulcus

Middle frontal sulcus

Superior frontal sulcus

Sulcus intermedius primus

Intraparietal sulcus and transverse parietal sulci
Middle occipital sulcus and lunatus sulcus

Superior occipital sulcus and transverse occipital sulcus

Anterior occipital sulcus and preoccipital notch
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69
70
71
72
73
74

Chapter C. Destrieux atlas

S_oc-temp_lat
S_oc-temp_med_and _Lingual
S_orbital _lateral
S_orbital_med-olfact
S_orbital-H_Shaped
S_parieto_occipital
S_pericallosal
S_postcentral
S_precentral-inf-part
S_precentral-sup-part
S_suborbital
S_subparietal
S_temporal_inf
S_temporal_sup

S_temporal_transverse

Lateral occipito-temporal sulcus

Medial occipito-temporal sulcus and lingual sulcus

Lateral orbital sulcus

Medial orbital sulcus

Orbital sulci

Parieto-occipital sulcus

Pericallosal sulcus

Postcentral sulcus

Inferior part of the precentral sulcus
Superior part of the precentral sulcus
Suborbital sulcus

Subparietal sulcus

Inferior temporal sulcus

Superior temporal sulcus

Transverse temporal sulcus

63



Chapter C. Destrieux atlas
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Figure C.1: Spatial distribution of the labelled structural regions in the Destrieux atlas
(from [12]).
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ADNI-1 additional statistics

D.1 AD vs CN cohorts

FOLD 1 FOLD2

Numbers M F Total Numbers M F Total
AD 18 19 37 AD 22 16 38
CN 16 15 31 CN 15 15 30
Total 34 34 68 Total 37 31 68
Ages (std) M F Total Ages (std) M F Total
AD 76.4(7.0) 73.3(8.0) | 74.8(7.6) AD 76.2(6.1) 73.9(6.3) | 75.2(6.2)
CN 75.7 (5.9) 76.1(4.2) 75.9 (5.0) CN 74.4 (5.6) 75.3 (5.8) 74.8 (5.6)
Total 76.1 (6.4) 74.5 (6.7) 75.3 (6.5) Total 75.5 (5.9) 74.6 (6.0) 75.1 (5.9)
FOLD 3 FOLD 4
Numbers M F Total Numbers M F Total
AD 20 18 38 AD 20 17 37
CN 16 14 30 CN 13 17 30
Total 36 32 68 Total 33 34 67
Ages (std) M F Total Ages (std) M F Total
AD 77.2(7.0) 73.8(6.6) | 75.6(6.9) AD 74.5(7.9) 75.7(7.0) | 75.1(7.4)
CN 76.6 (5.9) 74.4(6.2) | 75.6(6.0) CN 749 (5.1) 76.3(4.3) | 75.7 (4.6)
Total 76.9 (6.4) 74.1(6.3) | 75.6(6.5) Total 74.7 (6.8) 76.0(5.8) | 75.4(6.3)
FOLD 5
Numbers M F Total
AD 19 19 38
CN 14 16 30
Total 33 35 68
Ages (std) M F Total
AD 73.7(8.9)  76.6(9.8) | 75.2(9.4)
CN 75.8(5.8)  76.5(4.6) | 76.2(5.1)
Total 746 (7.7) 76.6(7.8) | 75.6 (7.7)

Table D.1: Statistics of the 5-fold splitting in ADNI-1 (AD vs CN).

65



D.1. AD VS CN COHORTS

Chapter D. ADNI-1 additional statistics

FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
AD 9 9 18 AD 9 10 19 AD 11 8 19
CN 9 7 16 CN 7 8 15 CN 8 7 15
Total 18 16 34 Total 16 18 34 Total 19 15 34
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 77.1(7.0) 73.5(8.5) | 75.3(7.8) AD 75.7(7.2)  73.1(8.0) | 74.3(7.6) AD 78.1(6.0) 72.8(6.9) | 75.9(6.8)
CN 73.0(5.6) 76.6(5.0) | 74.6(5.5) CN 79.3(4.2) 757 (3.6) | 77.4(4.2 CN 74.2 (7.5)  76.9(6.5) | 75.4(6.9)
Total 75.1(6.5) 749(7.1) | 75.0(6.7) Total 77.2(6.2) 743(6.4) | 75.7 (6.4) Total 76.5(6.8) 74.7(6.8) | 75.7 (6.7)

Numbers M F Total Numbers M F Total Numbers M F Total
AD 11 8 19 AD 9 10 19 AD 11 8 19
CN 7 8 15 CN 8 7 15 CN 8 15
Total 18 16 34 Total 17 17 34 Total 19 15 34
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 74.2(5.9) 75.1(5.9) | 74.6(5.7) AD 78.0(8.1) 72.5(7.6) | 75.1(8.1) AD 76.6 (6.3)  75.5(5.2) | 76.1(5.7)
CN 74.7 (2.8)  73.9(5.1) | 74.3(4.1) CN 77.7(6.4) 72.1(5.8) | 75.1(6.6) CN 75.4(5.5)  76.8(6.2) | 76.1(5.6)
Total 74.4 (4.8) 745 (5.4) | 74.4(5.0) Total 77.8(7.1) 72.4(6.7) | 75.1(7.4) Total 76.1(5.8) 76.1(5.5) | 76.1(5.6)

FOLD 7

FOLD 8

FOLD 9

Numbers M F Total Numbers M F Total Numbers M F Total
AD 12 7 19 AD 8 10 18 AD 12 7 19
CN 6 9 15 CN 7 8 15 CN 7 8 15
Total 18 16 34 Total 15 18 33 Total 19 15 34
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 74.8(9.5)  73.7(6.2) | 74.4(8.2) AD 74.2(5.2)  77.2(7.6) | 75.8(6.6) AD 72.9(8.0) 76.7(12.2) | 74.3(9.6)
CN 749 (5.7) 76.8(4.6) | 76.0(5.0) CN 74.8(4.9)  75.8(43) | 75.4(4.4) CN 76.2(7.1)  77.9(2.6) | 77.1(5.1)
Total 74.8(8.2) 75.4(5.4) | 75.1(6.9) Total 745 (5.9) 76.6(6.2) | 75.6 (5.7) Total 74.2(7.6) 773(8.2) | 75.6(7.9)

FOLD 10

Numbers M F Total
AD 7 12 19
CN 7 8 15
Total 14 20 34
Ages (std) M F Total
AD 74.9(10.8) 76.6 (8.7) | 76.0(9.3)
CN 75.4(4.6) 75.0(5.7) | 75.2(5.1)
Total 75.2(8.0) 76.0(7.5) | 75.6(7.6)

Table D.2: Statistics of the 10-fold splitting in ADNI-1 (AD vs CN).
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D.2 MCI cohort: stable vs progr.

FOLD 1 FOLD 2

Numbers M F Total Numbers M F Total
MCl-p 18 10 28 MCl-p 17 10 27
MCl-s 16 7 23 MCI-s 10 12 22
Total 34 17 51 Total 27 22 49

Ages (std) M F Total Ages (std) M F Total
MCl-p 76.4(7.6) = 73.8(6.3) | 75.5(7.2) MCl-p 74.4(7.7)  733(7.5) | 74.0(7.5)
MCl-s 74.8(9.0) 74.7(7.9) | 74.8(8.5) MCl-s 76.2(6.9)  72.6(7.3) | 74.2(7.2)
Total 75.7(8.2) 74.2(6.7) | 75.2(7.7) Total 75.1(7.3) 72.9(7.3) | 74.1(7.3)

FOLD 3 FOLD 4

Numbers M F Total Numbers M F Total
MCl-p 17 11 28 MCI-p 18 9 27
MCI-s 14 9 23 MCI-s 13 9 22
Total 31 20 51 Total 31 18 49

Ages (std) M F Total Ages (std) M F Total
MCl-p | 75.4(6.8) 76.7(4.0) | 75.9(5.8) MCl-p | 73.8(7.4) 74.9(5.6) | 74.1(6.8)
MCl-s 78.1(6.4) 72.3(8.8) | 75.9(7.8) MCl-s 76.1(6.8) 75.8(4.7) | 76.0(5.9)
Total 76.6 (6.7) 74.7(6.8) | 75.9(6.7) Total 748 (7.1) 753 (5.1) | 75.0(6.4)

FOLD 5

Numbers M F Total
MCl-p 15 11 26
MCl-s 19 5 24
Total 34 16 50

Ages (std) M F Total
MCl-p 77.0(5.9) 69.3(7.7) | 73.7(7.6)
MCl-s 73.8(7.8)  73.6(5.9) | 73.7(7.3)
Total 752 (7.1) 70.7(7.3) | 73.7(7.4)

Table D.3: Statistics of the 5-fold splitting in ADNI-1 (MCI-p vs MCI-s).
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FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 10 4 14 MCl-p 8 6 14 MCl-p 8 5 13
MCl-s 7 5 12 MCl-s 9 2 11 MCl-s 5 6 11
Total 17 9 26 Total 17 8 25 Total 13 11 24

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 79.8(6.2) 71.8(8.1) | 77.5(7.5) MCl-p 72.3(7.4) 75.1(5.1) | 73.5(6.4) MCl-p 72.2(6.2) 71.0(8.8) | 71.7(7.0)
MCl-s 76.3(10.6)  73.2(9.0) | 75.0(9.7) MCl-s 73.7(8.0) 785 (2.7) | 74.6(7.5) MCl-s 74.8(9.5) 70.2(8.4) | 72.3(8.8)
Total 78.3(8.2) 72.6(8.1) | 76.3(8.5) Total 73.0(7.5) 76.0(4.7) | 74.0(6.8) Total 73.2(7.3) 70.6(8.2) | 72.0(7.7)

FOLD 4

FOLD 5

FOLD 6

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 9 5 14 MCl-p 10 4 14 MCl-p 7 7 14
MCl-s 5 6 11 MCl-s 7 4 11 MCl-s 7 5 12
Total 14 11 25 Total 17 8 25 Total 14 12 26

Ages (std) M F Total Ages (std) M [ Total Ages (std) M F Total
MCI-p 76.5(8.7)  75.7(5.9) | 76.2(7.6) MCl-p 76.3(6.0) 75.9(4.3) | 76.2(5.4) MCl-p 74.1(8.2) 77.2(4.1) | 75.6(6.4)
MCl-s 77.6(3.3)  749(5.9) | 76.1(4.9) MCl-s 76.3(7.1)  80.6(3.6) | 77.9 (6.2) MCl-s 80.0(5.5) 65.7(4.7) | 74.0(8.9)
Total 76.9(7.1) 753 (5.6) | 76.2(6.4) Total 76.3(6.3) 78.2(4.5) | 76.9(5.7) Total 77.0(7.4) 72.4(7.2) | 74.9 (7.5)

FOLD 7

FOLD 8

FOLD9

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 7 6 13 MCl-p 11 3 14 MCl-p 7 6 13
MCl-s 6 5 11 M(Cl-s 7 4 11 M(Cl-s 9 3 12
Total 13 11 24 Total 18 7 25 Total 16 9 25

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 73.1(8.8) 743(5.5) | 73.7(7.2) MCl-p 74.2(6.8) 76.0(6.9) | 74.6(6.6) MCl-p 79.9(5.1) 64.9(5.8) | 73.0(9.3)
MCl-s 79.7(3.3)  77.0(5.9) | 78.5 (4.6) MCl-s 73.1(7.8) 74.2(2.8) | 73.5(6.3) MCl-s 73.8(7.8) 72.0(7.4) | 73.3(7.4)
Total 76.2(7.4) 75.5(5.6) | 75.9 (6.5) Total 73.8(7.0) 75.0(4.6) | 74.1(6.4) Total 76.5(7.3) 67.3(6.9) | 73.2(8.3)

Table D.4: Statistics of the 10-fold splitting in ADNI-1 (MCI-p vs MCI-s).

FOLD 10

Numbers M F Total
MCl-p 8 5 13
MCl-s 10 2 12
Total 18 7 25

Ages (std) M F Total
MCl-p 74.5(5.6) 74.6(6.6) | 74.5(5.7)
MCl-s 73.7(8.1) 76.1(3.1) | 74.1(7.4)
Total 74.1(6.9) 75.0(5.6) | 74.3 (6.5)
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Appendix E

ADNI-2 additional statistics

E.1 AD vs CN cohorts

FOLD 1 FOLD2

Numbers M F Total Numbers M F Total
AD 38 31 69 AD 38 32 70
CN 38 30 68 CN 38 30 68
Total 76 61 137 Total 76 62 138
Ages (std) M F Total Ages (std) M F Total
AD 76.0(8.2) 74.1(7.8) | 75.2(8.0) AD 76.0(7.6) 74.1(7.7) | 75.1(7.6)
CN 74.8 (5.8) 73.6 (5.6) 74.2 (5.7) CN 74.8 (5.9) 73.4(5.7) 74.2 (5.8)
Total 75.4(7.1) 73.8(6.7) | 74.7 (6.9) Total 75.4 (6.8) 73.8(6.7) | 74.7 (6.8)
FOLD 3 FOLD 4
Numbers M F Total Numbers M F Total
AD 38 31 69 AD 38 32 70
CN 38 30 68 CN 38 30 68
Total 76 61 137 Total 76 62 138
Ages (std) M F Total Ages (std) M F Total
AD 75.8(7.4) 74.1(8.0) | 75.0(7.7) AD 75.9(8.1) 74.2(8.2) | 75.1(8.1)
CN 74.8 (6.0) 73.5(5.6) | 74.2(5.8) CN 74.9 (6.0) 73.6(5.4) | 74.3(5.7)
Total 75.3(6.7) 73.8(6.9) | 74.6(6.8) Total 75.4(7.1) 73.9(7.0) | 74.7 (7.0)
FOLD 5
Numbers M F Total
AD 38 31 69
CN 38 30 68
Total 76 61 137
Ages (std) M F Total
AD 75.8(7.6) 74.2(8.5) | 75.1(8.0)
CN 74.8(6.1) = 73.5(5.5) | 74.2(5.8)
Total 75.3(6.9) 73.9(7.1) | 74.7 (7.0)

Table E.1: Statistics of the 5-fold splitting in ADNI-2 (AD vs CN).
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E.1. AD VS CN COHORTS Chapter E. ADNI-2 additional statistics

FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
AD 19 16 35 AD 19 15 34 AD 19 16 35
CN 19 15 34 CN 19 15 34 CN 19 15 34

Total 38 31 69 Total 38 30 68 Total 38 31 69
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 75.9(7.6) 74.1(7.8) | 75.1(7.7) AD 76.1(8.9) 74.1(7.9) | 75.2(8.4) AD 76.1(7.7)  74.1(7.7) | 75.2(7.7)
CN 74.8(5.8) 73.6(5.7) | 74.3(5.7) CN 74.7(5.9) 73.5(5.8) | 74.2(5.8) CN 74.9(6.0) 73.5(5.9) | 74.3(5.9)
Total 75.4(6.7) 73.9(6.8) | 74.7 (6.7) Total 75.4(7.5) 73.8(6.8) | 74.7(7.2) Total 75.5(6.8) 73.8(6.8) | 74.7 (6.8)

Numbers M F Total Numbers M F Total Numbers M F Total
AD 19 16 35 AD 19 16 35 AD 19 15 34
CN 19 15 34 CN 19 15 34 CN 19 15 34

Total 38 31 69 Total 38 31 69 Total 38 30 68
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 75.9 (7.7) 74.1 (7.8) 75.1(7.7) AD 75.8 (7.5) 74.1(7.8) 75.0 (7.5) AD 75.8 (7.6) 74.1 (8.5) 75.0 (7.9)
CN 74.7(5.9)  73.4(5.7) | 74.1(5.8) CN 74.8(5.8) 73.6(5.7) | 74.3(5.7) CN 74.8 (6.4) 73.3(5.6) | 74.2(6.0)
Total 75.3(6.8) 73.7(6.8) | 74.6(6.8) Total 75.3(6.6) 73.9(6.7) | 74.6(6.7) Total 75.3(6.9) 73.7(7.1) | 74.6(7.0)
FOLD 7 FOLD 8 FOLD 9

Numbers M F Total Numbers M F Total Numbers M F Total
AD 19 16 35 AD 19 16 35 AD 19 15 34
CN 19 15 34 CN 19 15 34 CN 19 15 34

Total 38 31 69 Total 38 31 69 Total 38 30 68
Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
AD 75.8(7.9)  74.2(8.9) | 75.1(8.3) AD 75.9(8.5) 74.1(7.8) | 75.1(8.1) AD 75.9(7.8) 74.4(9.1) | 75.2(8.3)
CN 74.9 (6.0) 73.7 (5.5) 74.4 (5.8) CN 74.8 (6.1) 73.4 (5.5) 74.2 (5.8) CN 74.8 (6.3) 73.5(5.4) 74.3 (5.9)
Total 75.4(6.9) 74.0(7.4) | 74.7(7.1) Total 75.4(7.3) 73.8(6.7) | 74.7(7.0) Total 75.4(7.1) 73.9(7.4) | 74.7(7.2)
FOLD 10
Numbers M F Total
AD 19 16 35
CN 19 15 34
Total 38 31 69
Ages (std) M F Total
AD 75.8(7.6) 74.1(8.1) | 75.0(7.8)
CN 74.8(6.0) 73.5(5.7) | 74.2(5.8)
Total 75.3 (6.8) 73.8 (7.0) 74.6 (6.9)

Table E.2: Statistics of the 10-fold splitting in ADNI-2 (AD vs CN).

70



Chapter E. ADNI-2 additional statistics E.2. MCI - COHORT CC

E.2 MCI - Cohort CC

FOLD 1 FOLD 2

Numbers M F Total Numbers M F Total
MCl-p 25 17 42 MCl-p 25 16 41
MCI-s 25 17 42 MCl-s 25 17 42
Total 50 34 84 Total 50 33 83

Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6 (7.1) 72.8(6.9) | 73.9(7.0) MCl-p 745 (6.8) 72.8(7.1) | 73.8(6.9)
MCl-s 73.5(7.1) 71.8(7.6) | 72.8(7.2) MCl-s 73.5(7.1) 71.8(7.5) | 72.8(7.2)
Total 74.0(7.0) 723(7.2) | 73.3(7.1) Total 74.0(6.9) 72.3(7.2) | 73.3(7.0)

FOLD 3 FOLD 4

Numbers M F Total Numbers M F Total
MCl-p 26 17 43 MCl-p 25 17 42
MCl-s 25 16 41 MCl-s 26 16 42
Total 51 33 84 Total 51 33 84

Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6 (7.5)  72.7(7.5) | 73.9(7.5) MCl-p 74.7 (6.8)  72.7(6.9) | 73.9(6.8)
MCl-s 73.5(7.1) 71.8(7.5) | 72.8(7.2) MCl-s 73.5(7.1) 71.8(7.5) | 72.9(7.2)
Total 74.1(7.2) 723(7.4) | 73.4(7.3) Total 74.1(6.9) 72.3(7.1) | 73.4(7.0)

FOLD 5

Numbers M F Total
MCl-p 25 16 41
MCl-s 25 18 43
Total 50 34 84

Ages (std) M F Total
MCl-p 746 (7.2) 72.6(6.8) | 73.8(7.0)
MCl-s 73.5(7.0) 71.8(7.6) | 72.8(7.2)
Total 74.1(7.1) 72.2(7.1) | 73.3(7.1)

Table E.3: Statistics of the 5-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CC).
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E.2. MCI - COHORT CC

Chapter E. ADNI-2 additional statistics

FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
MCI-p 13 8 21 MCl-p 12 9 21 MCl-p 13 8 21
MCl-s 12 9 21 MCl-s 13 8 21 MCl-s 12 8 20
Total 25 17 42 Total 25 17 42 Total 25 16 41

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6(7.1) 72.8(6.9) | 73.9(6.9) MCl-p 74.5(7.4)  72.8(7.3) | 73.8(7.2) MCl-p 74.6 (6.9) 72.9(7.8) | 73.9(7.1)
MCl-s 73.5(7.2) 71.8(7.8) | 72.8(7.3) MCl-s 73.5(7.2) 71.8(7.8) | 72.8(7.3) MCl-s 73.5(7.2)  71.9(7.8) | 72.9(7.3)
Total 74.0(7.0) 723(7.2) | 73.3(7.1) Total 74.0(7.2) 723(7.4) | 73.3(7.2) Total 74.1(6.9) 72.4(7.5) | 73.4(7.1)

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 12 8 20 MCl-p 13 9 22 MCl-p 13 8 21
MCl-s 13 9 22 MCl-s 12 20 MCl-s 13 8 21
Total 25 17 42 Total 25 17 42 Total 26 16 42

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.5(7.0)  72.7(6.9) | 73.7 (6.8) MCl-p 74.6 (6.8) 72.6(6.8) | 73.8(6.7) MCl-p 74.7 (8.3) 72.9(8.7) | 74.0(8.3)
MCl-s 735(7.2)  71.8(7.8) | 72.8(7.3) M(Cl-s 735(7.2)  71.7(7.7) | 72.8(7.3) M(Cl-s 735(7.2)  71.8(7.8) | 72.9(7.3)
Total 74.0(7.0) 72.2(7.2) | 73.3(7.0) Total 74.1(6.9) 72.2(7.0) | 73.3(6.9) Total 74.1(7.6) 72.4(8.0) | 73.4(7.7)

FOLD 7

FOLD 8

FOLD 9

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 13 8 21 MCl-p 12 9 21 MCl-p 12 8 20
MCl-s 13 8 21 MCl-s 13 21 MCl-s 13 9 22
Total 26 16 42 Total 25 17 42 Total 25 17 42

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.7(7.0)  72.7(7.1) | 73.9(6.9) MCl-p 74.8(6.9)  72.7(7.2) | 73.9(6.9) MCl-p 74.7(7.3)  72.6(7.3) | 73.8(7.2)
MCl-s 73.5(7.2) 71.8(7.7) | 72.9(7.3) MCl-s 73.5(7.2) 71.8(7.8) | 72.9(7.3) MCl-s 73.5(7.2) 71.8(7.8) | 72.8(7.3)
Total 74.1(7.0) 722(7.2) | 73.4(7.0) Total 74.1(6.9) 723(7.2) | 73.4(7.0) Total 74.1(7.1) 722(7.3) | 73.4(7.2)

FOLD 10

Numbers M F Total
MCl-p 13 8 21
MCl-s 12 9 21
Total 25 17 42

Ages (std) M F Total
MCl-p 74.6(7.4)  72.6(6.8) | 73.9(7.1)
MCl-s 735(7.2)  71.8(7.8) | 72.7(7.3)
Total 741(7.2) 72.2(7.) | 73.3(7.1)

Table E.4: Statistics of the 10-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CC).
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Chapter E. ADNI-2 additional statistics E.3. MCI - COHORT CS2

E.3 MCI - Cohort CS2

FOLD 1 FOLD 2

Numbers M F Total Numbers M F Total
MCI-p 25 17 42 MCl-p 25 16 41
MClI-s 25 17 42 MCl-s 25 17 42
Total 50 34 84 Total 50 33 83

Ages (std) M F Total Ages (std) M F Total
MCI-p 74.6(7.1) 72.8(6.9) | 73.9(7.0) MCl-p 74.5(6.8)  72.8(7.1) | 73.8(6.9)
M(Cl-s 72.8(7.4)  71.8(7.4) | 72.4(7.3) MCl-s 72.8(7.3)  71.8(7.4) | 72.4(7.3)
Total 73.7 (7.2) 72.3 (7.1) 73.1(7.2) Total 73.7 (7.0) 72.3(7.1) 73.1(7.1)

FOLD 3 FOLD 4

Numbers M F Total Numbers M F Total
MCl-p 26 17 43 MCI-p 25 17 42
MCI-s 25 16 41 MCl-s 24 17 41
Total 51 33 84 Total 49 34 83

Ages (std) M F Total Ages (std) M F Total
MCI-p 74.6 (7.5) 72.7 (7.5) 73.9 (7.5) MClI-p 74.7 (6.8) 72.7 (6.9) 73.9 (6.8)
MCI-s 72.8 (7.3) 71.8 (7.4) 72.4 (7.3) MCl-s 72.8 (7.3) 71.8 (7.5) 72.4 (7.3)
Total 73.8(7.4) 723 (7.3) | 73.2(7.4) Total 73.8(7.1) 723 (7.1) | 73.2(7.1)

FOLD 5

Numbers M F Total
MCI-p 25 16 41
MCI-s 25 17 42
Total 50 33 83

Ages (std) M F Total
MCl-p 746 (7.2)  72.6(6.8) | 73.8(7.0)
MClI-s 72.8 (7.4) 71.8 (7.4) 72.4 (7.3)
Total 73.7(7.3) 72.2(7.0) | 73.1(7.2)

Table E.5: Statistics of the 5-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CS2).
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E.3. MCI - COHORT CS2

Chapter E. ADNI-2 additional statistics

FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 13 8 21 MCl-p 12 21 MCl-p 13 8 21
MCl-s 12 9 21 MCl-s 13 8 21 MCl-s 12 9 21
Total 25 17 42 Total 25 17 42 Total 25 17 42

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6(7.1) 72.8(6.9) | 73.9 (6.9) MCl-p 745 (7.4)  72.8(73) | 73.8(7.2) MCl-p 74.6(6.9) 72.9(7.8) | 73.9(7.1)
MCl-s 72.8(7.5)  71.7(7.7) | 72.3(7.4) M(Cl-s 72.8(7.5)  71.8(7.6) | 72.4(7.4) M(Cl-s 72.8(7.4)  71.8(7.6) | 72.4(7.3)
Total 73.7 (7.2) 72.2 (7.1) 73.1(7.1) Total 73.6 (7.4) 72.4 (7.3) 73.1(7.3) Total 73.7 (7.0) 72.3 (7.4) 73.2(7.1)

FOLD 4

FOLD 5

FOLD 6

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 12 8 20 MCl-p 13 22 MCl-p 13 8 21
MCl-s 13 8 21 MCl-s 12 8 20 MCl-s 13 8 21
Total 25 16 41 Total 25 17 42 Total 26 16 42

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.5(7.0) 72.7(6.9) | 73.7 (6.8) MCl-p 74.6 (6.8) 72.6(6.8) | 73.8(6.7) MCl-p 74.7 (8.3) 72.9(8.7) | 74.0(8.3)
MCl-s 72.8(7.5)  71.8(7.7) | 72.4(7.4) M(Cl-s 72.9(7.5)  71.9(7.6) | 72.5(7.3) MCl-s 72.8(7.5)  71.8(7.7) | 72.4(7.4)
Total 73.6(7.2) 72.2(7.1) | 73.1(7.1) Total 73.8(7.1) 72.2(7.0) | 73.1(7.0) Total 73.8(7.8) 72.3(8.0) | 73.2(7.8)

FOLD 7

FOLD 8

FOLD 9

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 13 8 21 MCl-p 12 21 MCl-p 12 8 20
MCl-s 12 9 21 MCl-s 12 20 MCl-s 13 8 21
Total 25 17 42 Total 24 17 41 Total 25 16 41

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.7(7.0)  72.7(7.1) | 73.9(6.9) MCl-p 74.8(6.9) 72.7(7.2) | 73.9(6.9) MCl-p 74.7(7.3)  72.6(7.3) | 73.8(7.2)
MCl-s 72.8(7.5)  71.8(7.7) | 72.4(7.4) M(Cl-s 72.8(7.5)  71.8(7.7) | 72.4(7.4) M(Cl-s 72.8(7.5)  71.8(7.7) | 72.4(7.4)
Total 73.8(7.2) 722(7.2) | 73.1(7.1) Total 73.8(7.1) 723(7.2) | 73.2(7.1) Total 73.7(7.3) 722(7.2) | 73.1(7.2)

FOLD 10

Numbers M F Total
MCl-p 13 8 21
MCl-s 12 21
Total 25 17 42

Ages (std) M F Total
MCl-p 74.6 (7.4) 72.6(6.8) | 73.9(7.1)
MCl-s 72.8(7.5) 71.8(7.6) | 72.4(7.4)
Total 73.8(7.4) 72.2(7.0) | 73.1(7.2)

Table E.6: Statistics of the 10-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CS2).
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Chapter E. ADNI-2 additional statistics E.4. MCI - COHORT CS4

E.4 MCI - Cohort CS4

FOLD 1 FOLD 2

Numbers M F Total Numbers M F Total
MCI-p 25 17 42 MCl-p 25 17 42
MCI-s 24 17 41 MCl-s 24 16 40
Total 49 34 83 Total 49 33 82

Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6 (6.8) 72.7(7.1) | 73.8(6.9) MCl-p 74.6(7.0)  72.7(7.4) | 73.8(7.2)
MCI-s 71.4(7.2) 71.7 (7.8) 71.5 (7.4) MCI-s 71.5(7.1) 71.8(7.8) 71.6 (7.3)
Total 73.0(7.1) 722(7.3) | 72.7(7.2) Total 73.1(7.1) 722(7.5) | 72.8(7.3)

FOLD 3 FOLD 4

Numbers M F Total Numbers M F Total
MCl-p 25 16 41 MCl-p 26 16 42
MCl-s 24 17 41 MCl-s 24 16 40
Total 49 33 82 Total 50 32 82

Ages (std) M F Total Ages (std) M F Total
MCl-p 74.7 (6.9)  72.8(7.3) 73.9 (7.0) MCl-p 74.6 (7.3) 72.8 (6.7) 73.9(7.1)
MCl-s 715 (6.7) 71.8(8.9) | 71.6(7.6) MCl-s 715 (6.5) 71.7(8.8) | 71.6(7.4)
Total 73.1(6.9) 72.3(8.0) | 72.8(7.3) Total 73.1(7.0) 723(7.7) | 72.8(7.3)

FOLD 5

Numbers M F Total
MCl-p 25 17 42
MCI-s 25 16 41
Total 50 33 83

Ages (std) M F Total
MCl-p 74.6(7.3)  72.7(6.7) | 73.8(7.1)
MCI-s 71.4 (6.6) 71.7 (7.8) 71.5(7.0)
Total 73.0(7.1) 72.2(7.2) 72.7 (7.1)

Table E.7: Statistics of the 5-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CS4).
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E.4. MCI - COHORT CS4

Chapter E. ADNI-2 additional statistics

FOLD 1 FOLD 2 FOLD 3

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 13 9 22 MCl-p 12 8 20 MCl-p 13 8 21
MCl-s 12 8 20 MCl-s 12 9 21 MCl-s 12 8 20
Total 25 17 42 Total 24 17 41 Total 25 16 41

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6(7.0)  72.6(7.8) | 73.8(7.2) MCl-p 74.6 (6.9) 72.8(6.9) | 73.9 (6.8) MCl-p 74.6(7.3)  72.7(8.4) | 73.9(7.6)
MCl-s 715(6.7) 71.7(8.0) | 71.5(7.0) MCl-s 713(8.0) 71.7(8.0) | 71.5(7.8) MCl-s 71.5(7.8)  71.8(8.1) | 717 (7.7)
Total 73.1(6.9) 72.2(7.6) | 72.7 (7.1) Total 73.0(7.5) 72.2(7.3) | 72.7 (7.4) Total 73.1(7.5) 723(8.0) | 72.8(7.6)

FOLD 4

FOLD 5

FOLD 6

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 12 9 21 MCl-p 12 8 20 MCl-p 13 8 21
MCl-s 12 8 20 MCl-s 12 9 21 MCl-s 12 8 20
Total 24 17 41 Total 24 17 41 Total 25 16 41

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCl-p 74.6 (7.0)  72.6(7.0) | 73.8(6.9) MCl-p 74.6(7.1) 72.7(6.9) | 73.8(6.9) MCl-p 74.7 (7.0) 72.8(8.1) | 74.0(7.3)
MCl-s 71.5(6.7) 71.7(8.0) | 71.6(7.0) MCl-s 71.5(7.0) 71.8(8.1) | 71.6(7.3) MCl-s 71.5(6.7) 71.9(10.3)| 71.7 (8.0)
Total 73.1(6.9) 72.2(7.3) | 72.7(7.0) Total 73.0(7.1) 72.2(7.3) | 72.7(7.1) Total 73.1(6.9) 72.4(9.0) | 72.8(7.7)

FOLD 7

FOLD 8

FOLD 9

Numbers M F Total Numbers M F Total Numbers M F Total
MCl-p 13 8 21 MCl-p 13 8 21 MCl-p 12 9 21
MCl-s 12 8 20 MCl-s 12 8 20 MCl-s 13 8 21
Total 25 16 41 Total 25 16 41 Total 25 17 42

Ages (std) M F Total Ages (std) M F Total Ages (std) M F Total
MCI-p 74.7 (7.0) 72.8(6.9) | 74.0(6.9) MCl-p 74.6(7.9) 72.8(6.9) | 73.9(7.4) MCl-p 74.5(8.0) 72.7(7.0) | 73.7(7.4)
MCl-s 71.5(6.6) 71.7(10.0) | 71.6 (7.9) MCl-s 715(6.7)  71.8(8.1) | 71.6(7.1) M(Cl-s 714 (6.7) 71.7(8.0) | 71.5(7.0)
Total 73.2(6.9) 72.2(83) | 72.8(7.4) Total 73.1(7.4) 723(7.3) | 72.8(7.3) Total 72.9(7.4) 72.2(7.2) | 72.6(7.2)

FOLD 10

Numbers M F Total
MCl-p 13 8 21
MCl-s 12 20
Total 25 16 41

Ages (std) M F Total
MCl-p 74.6 (7.0) 72.8(6.9) | 73.9(6.9)
MCl-s 71.4(6.8)  71.7(8.2) | 71.5(7.2)
Total 73.1(7.0) 72.2(7.4) | 72.7 (7.0)

Table E.8: Statistics of the 10-fold splitting in ADNI-2 (MCI-p vs MCI-s, cohort CS4).
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Figure F.2: Training losses on the SBU architecture for the AD-vs-CN task, with an
initial learning rate of 0.1 decreased to 0.01 at epoch 100 (pointers at epochs 50, 100

and 150).
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Figure F.5: Hemisphere combinations left+right (on the left) and left-right (on the

right).
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Chapter F. Additional figures

Figure F.6: Masked top performing Desikan (left, n9: inferior temporal gyrus) and De-
strieux (right, n23: Parahippocampal part of the medial occipito-temporal gyrus) struc-
tures.

Figure F.7: Heat map of classification accuracies for each individual structure in Desikan
(left) and Destrieux (right) atlases — blue to red from low to high accuracy.

1.0

0.95

'

<0.9

Figure F.8: Average Class Activation Map for Spherical CNNs (from [1]).
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Appendix G

Additional tables

Table G.1: Performance metrics (%) of various learning rates in the AD-vs-CN task (SBU
architecture, no learning rate decay).

Learning rate Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

0.3 94.12 91.27 (2.19) 94.89 (1.15) 88.11(3.51)  95.05 (2.95)
0.1 94.12 91.67 (1.54) 94.61(1.22) 88.47 (2.39) 95.48 (2.04)
0.05 92.65 89.61(1.80) 93.43(0.61) 84.32(3.42) 95.91(1.48)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)

Table G.2: Performance metrics (%) of various learning rates in the MCI-progression
task (SU architecture with left hemisphere; left: exponential decay rate, right: single-

step decay).

Learning rate Max ACC ACC (std) AUC (std) SEN (std) SPE (std) Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

0.3 76.47 70.59 (4.32) 73.79(1.93) 74.05(10.84) 66.38 (8.29) 76.47 73.99 (2.51) 74.73(1.45) 80.95(6.57) 65.51 (7.79)
0.1 78.43 72.16 (2.98) 74.62 (2.41) 74.29(6.91) 69.57 (5.20) 76.47 72.29(3.22) 75.33(2.57) 74.52(7.13) 69.57 (4.03)
0.05 78.43 72.81(2.55) 73.14(1.29) 74.76 (5.48)  70.43 (5.50) 76.47 72.29 (3.77) 7428 (1.55)  72.62(9.51)  71.88 (4.89)

(ACC: Accuracy / AUC: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)
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Chapter G. Additional tables

Table G.3: Performance metrics (%) of multiple longitudinal combinations in the AD-
vs-CN task (SBU architecture, constant 0.1 learning rate).

Longitudinal features Max ACC ACC (std) AUC (std) SEN (std) SPE (std)

Baseline 94.12 91.67 (1.54) 94.61(1.22) 88.47(2.39) 95.48 (2.04)
B + 6-month visit 90.77 87.28(2.99) 92.36(0.91) 80.57(6.13) 95.11 (2.48)
B + 12-month visit 90.16 85.36 (2.66) 93.38(0.76)  75.11(5.02) 95.27 (2.06)
B + 24-month visit 92.16 88.37(2.28) 94.76 (1.36)  85.87(3.96) 90.77 (2.83)
B +6M + 12M 91.53 84.86(3.30) 91.67(1.40) 74.71(6.60) 94.67 (1.69)
B + 6M + 24M 92.00 87.87 (3.34) 94.13(1.05) 84.72(6.80) 90.77 (2.83)
B +12M + 24M 91.84 88.03 (2.54) 94.75(1.36) 84.35(5.14) 91.28 (1.76)
B + 6M + 12M + 24M 93.75 88.33(3.03) 95.00(1.49) 83.03 (6.76)  92.82 (2.46)

(ACC: Accuracy / AUC

: Area under a ROC curve / SEN: Sensitivity / SPE: Specificity)
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