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Abstract

Translation is a universal problem which has applications in many contexts. Source texts are frequently
translated from one language to another to aid communication across the world. Machine translations
are one of the most popular applications of natural language processing.

Evaluating the quality of a translation, particularly machine translation, is traditionally done by a
human annotator, which remains the “gold standard” of the field. This is typically based off factors
of adequacy and fluency.

Automated metrics to evaluate translation quality exist and are generally based off correlation with
the gold standard human annotation. Traditionally, these metrics involve measures of string similarity
and pattern matching. These metrics are much cheaper and faster than human evaluation.

This paper presents a new automated metric for translation evaluation, moving away from string
similarity and focusing instead on semantic similarity between words. This approach is much more
flexible and allows the message and tone of the original text to be better preserved. This is based
on the word embeddings of neural word distributional models and distance metrics based on vector
spaces. Building upon the Word Mover’s distance as a measure within the semantic space, the metric
introduces a fragmentation penalty and a missing word penalty to account for the neglect of fluency
in the default WMD bag-of-words approach.

This word order extension is proven to perform better than standard WMD, with promising results
against other state-of-the-art metrics, including far better performance in comparison with traditional
string matching metrics.

Finally, it is hoped insights provided through this metric provide a building block for the future of
machine translation evaluation. In particular, the concept of using embeddings hopes to make possible
the use of cross-lingual embeddings in the future to allow direct evaluation of a source text and its
machine translation, without the need for a reference human translation as currently is the case.
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Chapter 1

Introduction

1.1 Motivations

Translation is the idea of communicating the meaning of a text from a source language to a different
target language. Translation of texts between different languages has been necessary throughout
history to exchange ideas and communication between groups of different cultures, paving the way
for the globalisation of today. Quality translation plays a pivotal role in international affairs, from
the global scale of politics to the local corner shops welcoming tourists. Having accurate and concise
translations allows people to understand messages from all different types of sources, especially when
they are not speakers of the source language and would not be exposed to the context otherwise.

Traditional human translations are done by an expert translator, who has knowledge and under-
standing of the source and target language both in syntax and in cultural nuance. However, manual
human translations are time-consuming and expensive, meaning they cannot be conducted at great
scale. Automated machine translations have been developed with the growth of computing to mitigate
the labour-intense work of translations. In contrast to traditional human translations, machine trans-
lations do not have the benefit of the complex cognitive abilities a professional translator has, instead
having to rely on programmed understanding to decompose a text into its fundamental meaning. It
also has the challenge of piecing the text into a fluent expression in the target language. As a result,
machine translations under current technology are often imperfect, but provide a good approximation
of the original text both in meaning and in style.

Evaluating the quality of a machine translation is paramount to the continual improvement of
machine translation systems, as they provide a strong indicator of how closely the system’s outputs
correlate with their human counterparts. When assessing the performance of these translation systems,
there is no explicit criteria as to what constitutes as a good translation, as this is a very subjective
area. Different aspects can be considered at different priorities, such as how fluent a translation is,
or how much meaning is preserved. As a result, there are a large number of different methods to
evaluate machine translation systems. Human evaluations tend to evaluate the translation as a whole,
judging it on its perceived quality, whereas automated metrics often compare the translated output
with a pre-created human translation. This is often measuring string similarity between the two, made
possible because both of these texts are in the same language. Automatic evaluation metrics allow for
a much cheaper and faster rating than human evaluation, but may be less reliable without the focus
of a human judge.

1.2 Objectives

However, the approach of the existing automated metrics ignores the source text and its contained
meaning. This makes it harder to evaluate if there has been any deviation from the semantics of
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1.2. OBJECTIVES 3

Source text [ ----_-_______ 3| Human translation
(Language A) r. (Language B)
\\ v

~.,| Machine translation
(Language B)

Figure 1.1: Flow of existing automatic evaluation metrics.

the original text in either the machine translation or the human translation. Given the difficulty of
translating a text even for a human, it is not unlikely that a reference translation used by the automated
metrics omits certain contextual elements that are rich in human language. Figure 1.1 illustrates this:
dotted lines represent where there is a translation between texts, while the solid line represents where
the actual comparison takes place. It can be seen that the actual comparison only takes place between
the two translations, rather than with the source text.

Source text » Machine translation
(Language A) p------------ > (Language B)

Figure 1.2: The objective flow of this project’s evaluation metric.

The objective of this project is to create an evaluation metric that focuses on semantic similarity
rather than string similarity. The idea is to implement semantics of a text using neural word distri-
butional models, then evaluate translations using appropriate distance metrics. Directly using word
meaning in assessing the quality of a translation can better preserve the message and tone of the origi-
nal text. This approach can also eliminate the need for an intermediary human reference translation in
evaluations, as the two texts can be directly compared despite being in two different languages. This
is illustrated in Figure 1.2.



Chapter 2

Background

2.1 Human evaluation

In translation evaluation, humans are ultimately the ones interpreting translated texts. Naturally,
human evaluation has become the gold standard for assessing the accuracy and efficiency of a machine
translation. While manual evaluation may provide the most accurate and reliable ratings for trans-
lation systems, it is both time-consuming and expensive to corral a group of qualified and unbiased
people to partake in studies, making it difficult to use widely. In addition, there can be many correct
translations to a single text, making it hard to settle on a universally faultless translation for each
source. Consistency across multiple judges, and even the same judge, can be difficult to achieve, even
among expert translators. However, most human methods of evaluating a translation aim to quantify
a translation’s quality, reducing ambiguity with a set of specific criteria. Such inter-annotator and
intra-annotator disagreement can also be effectively mitigated with a large sample size [[18], making it
a very powerful tool in evaluating the capacity of a machine translation.

2.1.1 Rating based

One of the first instances of human evaluation [[12] measured intelligibility and informativeness on a
scale from 1 to 9 to find the translation’s standard. Characterising intelligibility as a wording that reads
as ordinary text with no stylistic errors and informativeness as a measure of how close the meaning
is to the original text’s intention, the simple scale produced results which closely correlated the two
criteria, along with that of reading time. While there is the argument to make that the intelligibility
scale can be multidimensional in that the high end ratings look at more nuanced matters of word choice
whereas the low end ratings focus on rudimentary syntax order, translations were found to naturally
tend along this single line. This method formulated by ALPAC paved the way for other rating-based
human assessment systems, targeting a range of other factors.

The ARPA machine translation evaluation metrics [64] targeted adequacy, fluency and compre-
hension as aspects of a successful translated text. To cope with the smaller amount of human talent
available, the researchers created targeted metrics for judges to make decisions on. The adequacy
aspect assessed the degree in which fragments of information from a professional reference translation
could be found in a given machine translation. The fluency assessment was done by evaluating each
sentence, determining whether it was well-formed and linguistically appropriate. The comprehension
evaluation scored ratings on six different questions to determine how successful information transmittal
was in the translation. Normalising the results for each of the factors to be between 0 and 1, the team
were able to create a sense of scale for different machine translation systems. These three metrics have
been used as the basis of many human evaluation studies [26] following this.

Nevertheless, several challenges can still arise from methodological factors both in this research
and in going forward with any human evaluation. Human performance can differ based on experience,
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2.1

HUMAN EVALUATION

Intelligibility
Perfectly clear and intelligible. Reads like ordi-
nary text; has no stylistic infelicities.

Perfectly or almost clear and intelligible but con-
tains minor grammatical or stylistic infelicities
and/or mildly unusual word usage that could,
nevertheless, be easily ”corrected.”

Generally clear and intelligible, but style and
word choice and/or syntactical arrangement are
somewhat poorer than in category 8.

The general idea is almost immediately intelli-
gible, but full comprehension is distinctly inter-
fered with by poor style, poor word choice, alter-
native expressions, untranslated words, and in-
correct grammatical arrangements. Postediting
could leave this in nearly acceptable form.

The general idea is intelligible only after consider-
able study, but after this study one is fairly con-
fident that he understands. Poor word choice,
grotesque syntactic arrangement, untranslated
words, and similar phenomena are present but
constitute mainly "noise” through which the main
idea is still perceptible.

Masquerades as an intelligible sentence, but ac-
tually it is more unintelligible than intelligi-
ble. Nevertheless, the idea can still be vaguely
apprehended. Word choice, syntactic arrange-
ment, and/or alternative expressions are gener-
ally bizarre, and there may be critical words un-
translated.

Generally unintelligible; it tends to read like non-
sense, but with a considerable amount of reflec-
tion and study, one can at least hypothesize the
idea intended by the sentence.

Almost hopelessly unintelligible even after reflec-
tion and study. Nevertheless it does not seem
completely nonsensical.

Hopelessly unintelligible. It appears that no
amount of study and reflection would reveal the
thought of the sentence.

Informativeness

Extremely informative. Makes “all the difference
in the world” in comprehending the meaning in-
tended. (A rating of 9 should always be assigned
when the original completely changes or reverses
the meaning conveyed by the translation.)

Very informative. Contributes a great deal to the
clarification of the meaning intended. By cor-
recting sentence structure, words, and phrases, it
makes a great change in the reader’s impression
of the meaning intended, although not so much
as to change or reverse the meaning completely.
Between 6 and 8.

Clearly informative. Adds considerable informa-
tion about the sentence structure and individual
words, putting the reader “on the right track” as
to the meaning intended.

Between 4 and 6.

In contrast to 3, adds a certain amount of in-
formation about the sentence structure and syn-
tactical relationships. It may also correct minor
misapprehensions about the general meaning of
the sentence or the meaning of individual words.

By correcting one or two possibly critical mean-
ings, chiefly on the word level, it gives a slightly
different “twist” to the meaning conveyed by the
translation. It adds no new information about
sentence structure, however.

No really new meaning is added by the original,
either at the word level or the grammatical level,
but the reader is somewhat more confident that
he apprehends the meaning intended.

Not informative at all; no new meaning is added
nor is the reader’s confidence in his understanding
increased or enhanced.

The original contains, if anything, less informa-
tion than the translation. The translator has
added certain meanings, apparently to make the
passage more understandable.

Table 2.1: Scale of intelligibility and informativeness from the ALPAC study of 1966 [12].



6 CHAPTER 2. BACKGROUND

creating a variance in judgment. Some people may be more familiar with certain styles of writing or
types of vocabulary, giving them a different perspective from that of another reader. The order of
reading different texts can also create unconscious biases in evaluation [64]. Annotators also disagree
on which parts of the sentence are most important when assigning ratings, with conflict on which
phrases are most vital. The length of the sentence can similarly cause difficulty. If it is too long it
can be muddled and hard to classify correctly, whereas if it is too short it can fall between boundaries
on the adequacy front [18]. Even more so, fatigue of the reader can contribute to different ratings
at different times. Further studies [30] have suggested that even with an explicit description for each
level of rating on the scale, annotators can struggle to maintain a consistent standard throughout,
preferring a ranking based system instead.

2.1.2 Ranking based

In a ranking based system, judges are given a set of translations and asked to rank them from best to
worst. This task replaces the arbitrary scales of the rating system with a series of relative judgments,
removing the difficulty in assigning a numerical value for each criteria to each translation [62]. However,
comparing two nearly identical translations can be confusing, as can be having to compare one error’s
severity with another. Judges largely have to decide for themselves which errors have the greater
impact on the translation’s quality.

Introducing multiple evaluators in this system can be difficult when combining conflicting annota-
tions; in a ranking system, scores cannot be averaged as they would in a rating system as this would
ignore the pairwise rankings for each given annotation. This can cause a chunk of ratings to be inval-
idated in tasks like tuning an automatic evaluation metric, which uses rank consistency in calculation
[1g].

Nevertheless, collected rankings still can be used assign a score to translation systems. One option
is to randomly give judges translations of five systems to rank from 1 to 5, allowing for ties [§]. With
the following formula, the pairwise rankings can be used to rate how frequently a system A was rated
to be better than another system B:

#A rated higher than B
#comparisons between A and B — #A tied with B

2.1.3 Post-editing judgment

An alternative approach to directly obtaining an absolute or relative judgment of translation quality,
post-editing methods measure the amount of editing required by a human translator to transform
the machine translation into an acceptable semantically equivalent reference translation. The hu-
man translation error rate (HTER) [5§] is based on the minimum edit distance, taking into account
insertions, deletions, substitutions, and shifts to create an appropriate reference.

#insertions + #deletions + #substitutions + #shifts
#words in average reference translation

HTER =

As no quantitative ratings are assigned when making judgments, awkward decisions about which
attributes are necessary in a good translation and how severely certain errors should be penalised are
entirely avoided. Long sentences are also less of an issue as post-editors can just correct the sentence
incrementally rather than having to come up with a single rating for the entire sentence. The inclusion
of shifts in the edit distance also reduces any excessively heavy penalty for incorrect word order.

However, the HTER has several inherent weaknesses. All types of edits, be it insertion, deletion,
substitution, or shift carry the same weight when calculating the error rate. There is also no distinction
between the importance of each word; for example, a function word “of” would be of the same level as
a content word “peanuts” in the sentence “This is the flavour of peanuts”. In addition, incorrect forms
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of correct the root words are also counted as errors to substitute; an example of this is the sentence
“I’'m fought for freedom” being converted to “I’m fighting for freedom”, despite “fought” and “fighting”
stemming from the same root word “fight”.

2.2 Automatic evaluation

Automatic evaluation metrics that provide a single, quantifiable score for the overall quality of a trans-
lation have become essential in the development of machine translation as they allow easy comparison
of different translation systems without the high costs of human evaluators. Nevertheless, as human
reference is generally taken as the ultimate metric of translation evaluation, automatic evaluation met-
rics are often validated by their high correlation with human judgment. Although a single score does
not give a clear idea about the different dimensions of translation quality, it is an important tool in
training and tuning parameters for translation models as it allows models to be iteratively improved
by optimising the score. Automatic evaluation metrics differ in the way translations are compared
to the reference translation; some directly compare exact lexical matches of words, while others take
various strategies to compute the semantics of a translation. The basic unit of comparison can also
range from single words to phrases, or even distributed representations. Being more reproducible and
tunable, automated metrics can have a distinct advantage over time-consuming and expensive human
evaluations in driving forward translation evaluation.

2.2.1 Edit distance

A straightforward way to measure the lexical similarity of two phrases is to calculate the minimum
edit distance required to transform one to another, taking into account the insertions, deletions, and
substitutions required. This works very similar to the Levenshtein distance, but calculated on words
rather than characters. The word error rate [11] provides a rudimentary approach to this:

#insertions + #deletions + #substitutions
reference length

WER =

An obvious weakness to this metric and that of similar lexical measures is the issue of word order.
Owing to the diversity of language, the reference sentence could be reconstructed in different ways
by translations while maintaining the same meaning, which would wrongly punish a good translation.
Take the following Chinese-English example:

Chinese: HINBEREBME > INEFNERABRESINTHERZEAE » MEAZEENAEHE

English (reference translation): Due to the impending Lunar New Year, the government will strive
to obtain approval from the executive council after the holidays to expand the scope of the commission’s
investigation.

English (translation 1): Due to the appropriate Lunar New Year, government will strive to obtain
after the holidays executive council agreement, to expand commission’s investigation scope.

English (translation 2): To expand the scope of the commission’s investigation, the government
will have to wait until after the impending Lunar New Year to obtain approval from the executive
council.

Both sentences confer the same point of the holiday period delaying any progress to the commission’s
investigation, but translation 2 would be punished far more in the standard WER. metric as the word
order does not match that of the reference translation, whereas translation 1 would receive a much
better score as it follows the same structure, despite it being arguably less fluent.

To address the issue of word order, the position-independent word error rate [b9] ignores the
alignment of words in a sentence, counting the number of times identical words appear in the two
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sentences. This treats the sentences as a “bag-of-words”. Words that don’t match are still substitutions
and the rest are labelled as insertions or deletions depending on the length of the sentence. These
measures are very quick to compute and easily done automatically; but have been suggested to not
have any correlation with the accuracy of language understanding, particularly in the context of speech.
If people trained features other than word recognition accuracy to optimise understanding, they would
still achieve a higher accuracy of language understanding with a low word error rate [63], suggesting a
full understanding needs more than high word recognition accuracy.

2.2.2 BLEU

One of the most commonly used automatic metrics for translation evaluation, BLEU (Bilingual eval-
uation understudy) [48] is based on the idea that the closer a machine translation is to a human
translation, the better it is. Using the concept of dividing up a sentence into n-grams, the implementa-
tion of BLEU compares n-grams of the candidate translation with n-grams of the reference translation,
counting the number of position-independent matches. Taking a single word as a unigram or I-gram,
two consecutive words would be a bigram or 2-gram, and so on.

A happy man eats fruits
| A happy |
]happy man ‘
] man eats \
\eats fruits \

Figure 2.1: An example of the bigrams possible in the sample sentence “A happy man eats fruits.”

The more matches that are found, the better the candidate translation is. The general phenomenon
found by the researchers suggested that a good translation will largely use the same words as a normal
human translation, making this simple matching comparison an efficient and inexpensive tool to use.

The metric is built on the measure of precision, a measure of relevant instances from retrieved
instances. The general method of calculating precision is to find a fraction of the two:

1 t) N tri d
Precision = |(relevant) N (retrieved)|

|(retrieved)]

In the context of text translation, this would be counting the number of matches between the
candidate and reference translations and dividing it by the total number retrieved from the candidate
translation. An inherent weakness of this measure in translation is that the system could overproduce
valid words, resulting in a high precision but nonsensical translation. Take the following example,
matching on unigrams:

Candidate: An an an an.
Reference: An apple fell here.

All four words in the candidate translation match with a word “an” in the reference, which would
give this candidate a perfect precision score despite it being an infeasible translation. BLEU makes
a straightforward modification to this, modifying the precision calculation so that a reference word
becomes exhausted and ignored in any subsequent calculations after a matching candidate word has
been found for it. This modified unigram precision counts the maximum number of times a word
occurs in the reference translation and caps the enumeration of each word in the reference by this
number when finding relevant matches.

When extended to n-grams, the modified precision is similarly computed; after collecting all the
candidate n-gram counts and corresponding maximum reference counts, the candidate counts are
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again capped by the maximum value, summed, and divided by the total candidate n-grams. This
modification to precision p,, means matches made are much likely to be more fluent as they match on
a whole sequence of words rather than just a single word unigram approach which more matches the
aspect of adequacy.

Y>> Countgjp(n-gram)
CeCandidates n—grameC
p =
" > > Count(n-gram’)
C’'eCandidates n—gram’eC’

With this n-gram approach, it was found that the precision of translations decayed exponentially
as the value of n increased. To take this into account, the BLEU metric uses a weighted average of the
logarithm of modified precisions, which allows combining the different n-gram precisions, from 1-gram
to a maximum of 4-gram sizes. This value of a 4-gram maximum was found experimentally, providing
the best correlation with monolingual human judgments.

While the modified precision measures already penalise irrelevant words in the candidate that do
not appear in the reference as well as overuse of a certain word, it does not penalise translations of the
wrong length. The following example illustrates this:

Candidate: A man
Reference: Something must not be working in the house for a man to have this reaction.

Even though the candidate translation has practically no relevance to the reference sentence, it
still carries maximal precision, because the phrase “a man” appears exactly as written in the refer-
ence. The BLEU metric introduces a brevity penalty to deal with this omission of information, a
multiplicative factor to reduce the score of the candidate in these situations. The brevity penalty has
a value of 1 when the candidate translation’s length is the same as the length of any of the reference
translations. As translations with greater length than the reference are already punished for spurious
words in the precision calculation, both extremes of a sentence with incorrect length are handled in
this measurement.

The brevity penalty BP is calculated over the entire corpus rather than sentence by sentence, to
avoid bias against shorter sentences. The penalty is a decaying exponential in r/c, where r is the
length of the reference translation and c is the length of the candidate translation.

BP:{l c>r

el—r/c c<r

Given this, the BLEU score is then calculated taking p, as the geometric average of the modified
n-gram precisions, with n-grams up to length N and positive weights w,, summing to 1. In the standard
BLEU metric, N =4 and w, = 1/N.

N
BLEU = BP x exp( _ wy logpy)

n=1

The BLEU metric in general correlates strongly with human judgment, but is not without several
weaknesses. The 4-gram standard, for example, is not one based on any objective finding but more
a result of experimental perception. That 3-gram and 5-gram maximums have been found to give
similar results, as the exponential decay means that the higher orders already have very small values
[48]. Restricting the search to 4-gram blocks may mean rewarding a translation that is fluent in chunks
of 4 blocks, rather than a holistic approach of assessing the entire text at the same time. The metric
also treats each of the blocks with the same uniform weight, rather than weighing more heavily n-grams
which provide greater information to a translation. It is has also been noted that the correlation for
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professional translators is much smaller than for machines [[19], even though their scores are distinctly
better. This suggests that the differences between professional translators are far more subtle than
those that can be analysed through n-gram statistics.

In addition, BLEU solely focuses on precision, and does not take recall into account. Precision
identifies the proportion of matched n-grams out of the total number of n-grams in the candidate
translation, but recall is centred on the proportion of matched n-grams out of the total number of n-
grams in the reference translation. Recall is important in assessing what degree the translation covers
the content of the reference sentence, but BLEU uses the brevity penalty to compensate, an approach
which can be inadequate [1]].

Nevertheless, BLEU remains one of the most popular metrics in this field, with its correlation to
human judgments a key factor. Its method of averaging out individual sentence errors over an entire
text rather than focusing on the exact wording for each sentence means “quantity leads to quality.”
s

2.2.3 NIST

An approach to rectifying the issue of all n-grams having equal weight without regard to their quality
of information is the NIST metric, which adapts the BLEU metric to introduce a measure of infor-
mativeness [19]. The less frequent an n-gram is in the text, the more important its message is, as its
uniqueness implies the words carry a distinct meaning. On the other hand, a more frequent n-gram
may be comprised of a set of function words that add little to the actual semantics of the text. Take
the following example:

Sentence: “Interesting work in the valley means there is better food in the village”
Bigram 1: “in the”
Bigram 2: “interesting work”

The phrase “in the” occurs twice, but adds little meaning to the interest of the text, whereas the
bigram “interesting work” only occurs once and carries a greater importance to the overall meaning.
These more frequent n-grams will receive lower information weight in calculating the NIST score.

Foccurrences wi...Wy_1

Info(w;...w,,) =lo
( n) 82 Foccurrences wi...wy,

The NIST calculation also adapts the brevity penalty, lower than that of BLEU for candidate
translations that are on the shorter side, but reverting to a similar level for lengthier translations.
This value of # in the calculation is chosen to make the penalty factor 0.5 when the number of words
in the system output is two-thirds of the number of words in the reference. The metric also uses N =5
as standard, with L,.; being the average number of words in the reference translation over all the
reference translations, and Lg,s being the number of words in the candidate translation.

N Z Info(wlwn) I
NIST =Y { witn s X exp {mog? {min Lsys : 1}}

n—=1 ref

W1 ... W,

The NIST study also looked to analyse the effect of several additional parameters on the metric’s
score. While some factors such as the source of the text and the number of reference translations did
not have a major impact on correlation, it was found that segment size would impact the performance of
the NIST algorithm. Increasing the size of the segment that co-occurrences can be restricted produces
poorer performance, as the average number of words in a document increases. However, despite the
fact that smaller segments naturally provide better performance, this constraint is difficult to maintain
and rather unnatural.



2.2. AUTOMATIC EVALUATION 11

2.2.4 ROUGE

Another metric that seeks to improve on the deficiencies of BLEU is the ROUGE metric [38]. This
metric looked to target the subjective brevity penalty, as well as focusing on sentence level structure
and dynamic. Based on the idea of the longest common subsequence (LCS), sentence level structure
similarity is naturally incorporated, helping to identify co-occurring n-grams. An extension of the
algorithm also uses skip-bigrams, a relaxed version of strict n-gram matching.

A sequence Z = (21,29, ..., 2n) is a subsequence of another sequence X = (x1,xo,...,z,) if there
exists a strict increasing sequence (i1, i2, ..., i) of indices of X such that for all j =1,2,..., k, z;; = 2;.
For example, the sequence Z = (B,C, A, B) is a subsequence of X = (A, B,C,D, A, D, B) with a
corresponding index sequence (2,3,5,7). Given two sequences X and Y, the sequence Z is a common
subsequence of X and Y if it is a sequence of both X and Y. The longest common subsequence is
therefore the common subsequence with maximum length.

The ROUGE-L algorithm applies LCS to translation evaluation by treating a translation as a
sequence of words. The longer the LCS of two sequences is, the more similar the two sequences
are. Applying this to a reference translation r length m and a candidate translation c¢ length n, the
metric uses an LCS-based F-measure to estimate the similarity between the two. The unigram-based F-
measure has been found to have strong correlation with human judgments [60]. A measure of accuracy,
the F-measure uses both precision P and recall R in its calculation, with the parameter 3 defined as
the factor in which recall is weighted above precision as follows:

R LCS(r,c)
m
p_ LCS(r,c)
n
_ (14+B*)xRxP
ROUGE-L = RiFxP

And if multiple reference translations r; in a set u, each of m; words are used with a candidate
translation ¢ of n words:

R = maxj_, (LCS(rj’ C)>
m;

P = max_, (LCS(TJ’C)>
n

1+8)xRxP
R+ pB2x P

A distinct advantage of LCS matching rather than strict n-gram matching is that it does not require
consecutive matches of words, but just needs them to be in sequence. This flexibility still preserves
the natural sentence level word order as n-grams. It also means there does not need to be a prede-
fined n-gram length, as the method will just automatically take the common n-grams with the longest
length. As this method only rewards n-gram matches that are in sequence, it can better differentiate
sentences with similar words but vastly opposite meanings, as opposed to the pure n-gram matching
of BLEU.

ROUGE-L = (

Reference: Police killed the gunman
Candidate 1: Police kill the gunman
Candidate 2: The gunman kill police
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In this example, BLEU would not be able to differentiate between the two candidates as it would
match on the unigram “police” and the bigram “the gunman” for both sentences. On the other
hand, the ROUGE-L metric would be able to spot the length 3 subsequence “police the gunman” for
Candidate 1, as opposed to the length 2 subsequence “the gunman” for Candidate 2, giving Candidate
1 a better score.

An extra adaptation is the ROUGE-W metric, which better rewards LCS matches that are of con-
secutive words. Given the following sequences:

X:[ABCDEF (]
Yi: [ABCDHIK]
Yo: [AHBK C1D]

The candidate Y7 is clearly a closer fit to the reference X, but has the same ROUGE-L score as
Ys. A weighted LCS function f used instead of the standard LCS to give greater scores to consecutive
matches. Dynamic programming can be used to keep track of what the longest consecutive match k
is, which can be used as a parameter in the weighted function, such as f(k) = k2.

R:f1<wwc&n@>

f(m)
. (WLCS(r, c)>
P (M
_ (1+p)xRxP
ROUGE-W = =2 o

The ROUGE-S extension to this metric uses skip-bigrams as a match rather than LCS. This better
targets shorter common sequences that are ignored by the LCS approach, but still retains the flexibility
of having non-consecutive matches. A skip-bigram is any pair of words in the sentence order, allowing
for arbitrary gaps. For example, in the sentence “Police killed the gunman”, there are 6 possible skip-
bigrams: “police killed”, “police the”, “police gunman”, “killed the”, “killed gunman”, “the gunman’.
The skip-bigram-based measure compares overlap of these bigrams between the reference and candidate
translations, where S is the number of skip-bigram matches, m is the length of the reference r» and n

is the length of the candidate c:

_ SKIP2(r,c)
~ C(m,2)
p_ SKIP2(rc)
- O0(n,2)
2
ROUGE-S — (1+p°)xRxP

R+pB2x P

The ROUGE metric offers results that bring an improvement on the BLEU and NIST metrics both
in fluency and adequacy. Focusing on non-consecutive matching, the metric allows for more relevant
information to be utilised, as the criteria is not as strict. This means sentence level word orders and
structures are more respected, making the metric far more applicable to the sentence level rather than
the corpus-focused style of BLEU. The focus on recall also eliminates the rather arbitrary brevity
penalty. However, the metric is still only applying string matching, and does not focus on the intrinsic
meanings of words.
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2.2.5 METEOR

METEOR [1] is a metric based on flexible unigram matching. It differs from other metrics by including
matching based on word stems and synonyms, allowing words that are simple variants of a stem word
to be matched where other algorithms would ignore it. Utilising unigram precision, unigram recall and
a measure of fragmentation in a sentence’s word order, METEOR calculates a score that can produce
a good correlation with human reference at both sentence and corpus level via explicit matching word-
to-word of a reference and candidate translation.

The METEOR metric was created to target several flaws in the BLEU baseline; the lack of recall
and explicit word matching, the use of geometric averages of n-grams, and using higher-order n-grams
to indirectly assess fluency instead of an explicit measure of word order and “grammaticality”. The
metric goes through two phases, the first to align unigrams to their counterparts, the second to select
the best alignment. These two phases are repeated for each stage that the algorithm uses; each stage
representing the module used to select the alignments. These stages are run consecutively, starting
from the most straightforward exact word matching, progressing to word stem matching, and then to
synonym matching. Each iteration only appends extra mappings to the alignment, so the order in
which stages are run is a reflection of the priority of each.

The first phase of the METEOR algorithm is alignment. An alignment is a mapping between
unigrams, so that every unigram in each string maps to zero or one unigram in the opposite string,
and none in the same string. In any alignment, a single unigram in one string cannot map to more
than one unigram in the opposite string, but can be mapped to by multiple unigrams. The selection
of mappings depends on the module used. The exact match module maps words onto another only
if they are exactly the same. For example, “blouse” would map to “blouse” but would not map to
“blouses”. The stemmer module maps words onto another if they come from the same stem word,
so “friendship” would map to “friendship” as well as “friendships” as they both come from the same
stem. A stem is the part of the word which is common to all the inflected variants [31], so this example
would not match on the word “friend”, which is instead the root of the word. The synonym module
matches words if they are synonyms of each other; so “good” would map to “well”, but would not have
any link to “mediocre”.

the cat sat on the mat the cat sat on the mat

on the mat sat the cat on the mat sat the cat

Figure 2.2: Two alignments of the same reference and candidate sentence, with the same number of
mappings. The alignment on the left would be selected as it has fewer unigram mapping crossings.

The second phase of METEOR involves selecting the right alignment, which is generally the one
with the largest amount of mappings. If there are two alignments with the same number of mappings,
the set with the fewest unigram mapping crosses is selected. If the two strings are written one on top
of the other and mappings are signified with a line between two words, each line crossing is a “unigram
mapping cross”. Formally, two unigram mappings (c;, ;) and (cg,r;), where ¢; and ¢j, are unigrams in
the candidate translation and r; and 7; are unigrams in the reference translation, are said to cross if
the following evaluates to a negative number, with pos(z) the index of the unigram x in the string.:

(pos(ci) — pos(ck)) x (pos(r;) — pos(ri))

The METEOR score is calculated using the precision and recall of the selected mapping, as well
as a fragmentation penalty to account for the translation’s fluency.
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Unigram precision P is calculated as:
m
we
Unigram recall R is calculated as:

R=

m
Wy
where m is the number of unigrams in the candidate translation also found in the reference translation,
w, is the number of unigrams in the candidate translation, and w, is the number of unigrams in the
reference translation. These two values are combined with the harmonic mean, where recall is weighted
9 times more than precision [52]:

10x Px R

Fmean: R+9P

In addition, a fragmentation penalty is introduced to assess the congruity of the candidate translation.
The more mappings that are not adjacent in the candidate and reference sentence, the higher the
penalty is. To compute this, the unigrams are grouped into chunks, where a chunk is defined as a
group of unigrams that are adjacent in both the candidate and reference translation. The longer the
n-grams, the fewer the chunks, so if the entire candidate translation matches the reference there is only
one chunk. The penalty is computed as:

3
Penalty = 0.5 x (C>

Um

where c¢ is the number of chunks and wu,, is the number of unigrams that have been matched. The
penalty increases with the number of chunks to a maximum of 0.5.

the president spoke to the audience

\ T
the president then spoke to the audience

Figure 2.3: An example of two chunks in two sentences.

The METEOR score for a given alignment is finally given as:
M = Fpean X (1 — Penalty)

METEOR has also been improved in further extensions. The metric has been extended to different
languages [33], tuning different parameter values to different purposes [B4]. A length penalty has
also been introduced to prevent high recall and low precision sentences from receiving a high score
[B5], as well as text normalisation [16] and changes the alignment to include paraphrase matching and
optimisation for the post-editing HTER metric [17].

METEOR has been shown to outperform BLEU at correlation with human judgments, making it a
useful tool in automatic machine translation evaluation. However, it still contains some of the inherent
weaknesses of a pattern matching system, which have to be finely tuned via several parameters to
balance it. The weighting of precision over recall as well as the restriction of the penalty to 50% are all
figures which appear arbitrary, but have gone through many levels of experimentation to reach. The
matching of unigrams is also done on a very static basis; words are only matched if they have been
explicitly labelled as a synonym or a paraphrase in the relevant table. This does not fully embrace the
semantic relatedness of each word, which limits the effectiveness of the metric as two sentences may
not be similar in word form, but can carry the same meaning.
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2.3 Distributional Semantics

Distributional semantics are a novel approach of quantifying words and their semantic meanings. This
is based on the distributional hypothesis, which suggests that linguistic items with similar distributions
have similar meanings [28], or “a word is characterised by the company it keeps” [@] In principle,
words that appear next to “dog” are much more likely to also appear next to “cat”, as opposed
to “coconut”. There are two main styles to achieve these language models: count-based methods
and predictive methods. Both of these styles leverage the distributional hypothesis to create word
embeddings, mapping words and phrases to vectors in a semantic space, with each dimension in the
space representing a different feature of the word. These embeddings can be used in translation
evaluation, taking semantic relatedness into account rather than syntactic string matching.
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Figure 2.4: An example of different country name word vectors, using t-SNE representation to display
the high-dimensional data in 2D. Note how similar countries cluster together; the top left corner
predominantly African countries, the bottom right primarily Latin American countries [@]

2.3.1 Count-based methods

In count-based methods, words are expressed as vectors of co-occurring words. The methods compute
statistics of how often a word appears in the same context as its neighbouring words, and maps
these to a small and dense vector for each word. To do this, a large number of training corpuses
are used to collect information about occurrence of words. The technique takes a space where each
word is represented by one dimension and embeds this into a continuous vector space with a much
smaller dimension. One can imagine that each dimension corresponds to a semantic or grammatical
characteristic. This allows words of a similar context to be in close spatial proximity, allowing the use
of various distance metrics to measure semantic similarity when evaluating translations, so words can
be meaningfully compared even if they never appear together in a document.
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Latent semantic analysis (LSA) is a technique that represents these word counts as a sparse matrix,
using singular value decomposition to reduce the number of rows while maintaining the similarity
structure in its columns. Using a term-document matrix, LSA represents terms in rows and documents
in columns. The values assigned to each cell are generally an indicator of their occurrence in the texts,
but it has been found that weightings towards informativeness and importance work far better than raw
co-occurrence counts [2]. A typical example of weighting is term frequency-inverse document frequency
(tf-idf), where weight is proportional to the number of times the word occurs in each document and
offset by the number of documents it occurs in. This approach allows rare terms to be upweighted
to reflect their importance, as well as adjust for the fact that some words appear more frequently in
general.

LSA then uses singular value decomposition (SVD) to create a semantic space with much lower
dimension, allowing words to have projections on each other in shared dimensions, rather than having
a dimension for each unique term [[15]. The procedure of SVD is a simple factorisation of any m x n
matrix M, resulting in the form:

M=U%V*

where U is an m X m unitary matrix, ¥ is a diagonal m X n matrix with non-negative real numbers
(singular values) on the diagonal, V' is an n X n unitary matrix, and V* is its conjugate transpose.

Applying this to the m x n term-document matrix X, where element (4, j) is the occurrence of term
7 in document 7, the following formula is reached:

X U by v
x1,1 “o 1‘17]‘ e T1n
g1 ... 0 [ V1 }
Til ... Xy .- Tip = u| ... (w . . .
0 o] [ v ]
_xm,l e xm’j e Qj‘m’n_

Fach singular value in the diagonal matrix 3 has corresponding vectors in U and V, which are
used in compressing the matrix into a smaller representation. By convention, the diagonal values are
ordered by descending value, giving an indication of the amount of impact each has on the behaviour of
the matrix. If decomposed matrix is reduced to just the top k singular values and their corresponding
vectors, a least squared error approximation to the original matrix is achieved using a smaller set of
numbers [24], discarding the values which did not have a large impact on the overall embedding.

This rank k approximation to X can be represented as such:

Xy = Ui Vi

Documents j and ¢ can then be compared in this low-dimensional space by comparing vectors ¥;d;
and Xd,, where d; and d, are columns in V;*. Terms ¢ and p can be similarly compared by comparing
vectors Xt; and Xjt,, where ¢; and ¢, are transposes of the rows in U. Given a query g, it can also
be compared to a document by translating the query to the low-dimensional space and using the same
comparison one would with documents, or vice versa with terms as follows:

¢=3;'U;d;
q =3Vt

Count-based methods such as LSA are well-established means to create word embeddings, providing
a simple and automatic way to construct these semantic spaces. However, these methods have been
found to be outperformed by newer predictive models [2].
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2.3.2 Predictive methods

Predictive models are language models that try to directly predict a word from its neighbours, using
learned word embeddings. These types of language models have been brought about by the growth of
machine learning techniques, which put these vector estimation problems in the context of a supervised
task. Since similar words occur in similar contexts, the system naturally learns to assign similar vectors
to similar words. These feature vectors can also be used in translation evaluation, plotting each word’s
meaning in a semantic space.

The traditional approach to probabilistic language models is based on n-grams [29], storing and
combining frequency counts for word subsequences of different lengths to estimate the likelihood of
each possible next word. In an n-gram model, the probability of observing a sentence (wi, ..., w,) is
approximated as [13]:

m
P(wl, ceny wm) = HP(U)Z|U)1, ...,wi_l)

~ H P(wi|wi—(n—1)a ey Wi—1)

The assumption is made that the probability of observing the i** word w; given the context of the
previous w;_1 words can be approximated by just taking the shortened context history of the previous
n — 1 words instead. This conditional probability can be calculated simply from frequency counts, but
these are often altered with various smoothing techniques to account for unseen n-grams.

count (Wi (n_1), -+ Wi—1, W;)

Plwilwi—n-1), - wiz1) count (w;_(p—1), -+, Wi—1)

Modern predictive models use neural networks to learn distributed representations, utilising their
ability to interchange functionally similar words to compactly represent a function that makes good
predictions [3]. The advantage of this approach is that the model can generalise well to sequences not
in the training set that still have similar features. As neural networks tend to map nearby inputs to
nearby outputs, the predictions that correspond to word sequences with similar features are mapped
to similar predictions. The compact representation of all the different combinations of feature values
also limits the curse of dimensionality, allowing the model to fit a large training set. Neural networks
also allow more complexity in the model, implementing characteristics like similarity, a contrast to the
simple atomic approach of n-grams.

Neural networks are a machine learning architecture that essentially transform numerical vectorised
input x to a numerical vectorised output y via a parameterised function f. The basic unit of these
networks is the neuron, which receives inputs and produces outputs. These inputs are weighted by
learned parameters, and are generally linked to one another in layers. A feedforward neural network
will successively apply these transformations, whereas a recurrent neural network may have layers
that apply transformations to themselves. These layers include the input and output layer, as well as
multiple hidden layers. There can also exist a projection layer, which maps discrete indices from the
input to a continuous vector space for the hidden layers.

In contrast with the traditional n-gram predictive models, a distributed representation contains
many neurons active at the same time to classify an object efficiently. For example, if m binary
features are used then 2™ distinct objects can be described. On the other hand, an n-gram model uses
a local representation, where only units associated with the specific subsequences of the input sequence
are turned on, which grows exponentially with sequence length, causing data sparsity.

Neural network models also find the probability of a sentence by calculating the conditional proba-
bility of each word given its predecessors [4], where a feedforward neural network with a linear projection
layer and a non-linear hidden layer is used to jointly learn the word vectors and a statistical language
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Figure 2.5: An example feedforward neural network architecture [46]

model. The probability P(w¢|w;_(,—1), ..., wi—1) in the context of sentence (w1, ..., w;) is obtained using
a parameter matrix C containing learned features of words. Each word w;_; in the n — 1 word context
preceding w; is mapped to a d-dimensional feature vector Cy,, ,, which is column w;_; of C, containing
the learned features for that word. The n — 1 feature vectors are then concatenated into the vector x:

T = (th7(7L71)717 Y th—(n—l)’d7 thf(n72)717 ot th72ad7 th71717 ot thflad)

The prediction of the next word being k is then obtained as follows, using the softmax activation
function on the output neurons [p]:

ek

P(wt = k|wt_(n_1), ...,wtil) = W
=1

where
h (n—1)d
ap = by + Z Wi; tanh(c; + Z Vijxj)
i=1 j=1

and vectors b, ¢ along with matrices W, V are also parameters. The capacity of this model is controlled
by the number of hidden neurons h and the number of learned features d. Given 6 as the concatenation
of all parameters, the neural network is trained to maximise the training set log-likelihood:

L(Q) = ZlogP(wt|wt—(n+1),...,w1_1)
t

Because of the large number of examples, training the model is not a straightforward task. This is
both slow and expensive, as there is a need to compute and normalise each probability using the score
for all the other words in the current context at every single training step. Optimised algorithms are
often used to avert this, including only using the neural network for a subset of words [56] or caching
softmax normalisation constants [67]. Some approaches also transform the model to be hierarchical,
using binary trees to increase efficiency and reduce training time [47]. Nevertheless, these predictive
models are able to replace the heuristic vector transforms of count-based models with a single well-
defined supervised learning step, while using the same data, and do so with far more encouraging
results.
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Figure 2.6: The neural architecture f(i,w;—1,..., w_(n—1)) = g(i, C(wt-1), ..., C(wy_(,—1)) Where g is
the neural network and C(7) is the i-th word feature vector, specified by [4].

2.3.3 Word2vec

At the forefront of the current state-of-the-art in distributional semantics, word2vec is a model created
by [45] that produces high quality word embeddings at much lower computational cost. The word2vec
model introduces new techniques to train vectors over billions of words, a vast improvement on the
hundreds of millions that other neural techniques can operate on. Word2vec adapts the work of
previous neural network language models, focusing on the interim step where word vectors are learned
without actually constructing the full language model [42].

Word2vec can utilise either of two architectures to produce word embeddings: continuous-bag-of-
words (CBOW) or continuous skip-gram. The CBOW architecture predicts the current word given the
context, whereas skip-gram predicts the surrounding words given the current word. The bag-of-words
approach ignores the order of words in the context, but the skip-gram approach will give more weight
to words closer to the current word by sampling less from words that are distant.

The CBOW model is similar to the feedforward neural network language model. The non-linear
hidden layer is removed and the projection layer is shared for all words, so all words get projected to
the same position and order is irrelevant. In contrast to other models, words from the future are also
used along with previous words to predict the current word. The skip-gram model uses each current
word as the input to the classifier, which has a continuous projection layer. The complexity of these
architectures are both lower than other neural network language models, as most of the complexity
from those models comes from the non-linear hidden layer, which is removed in these simple models.
While data may not be able to be represented as precisely, training is made far more efficient. The
training complexity ¢ of CBOW is:

Q=N x D+ D xlogy(V)
while the training complexity of skip-gram is:
Q=C x (D+ D xlogy(V))

where N x D is the dimensionality of the projection layer, V is the size of the vocabulary and C' is the
maximum distance of words to use in the skip-gram approach.
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Figure 2.7: The two model architectures of [45]. The CBOW architecture predicts the current word
based on the context, and the skip-gram predicts surrounding words given the current word.

The word2vec architecture provides a high quality vector representation for words while allowing far
more efficient training. High dimensionality vectors are able to be trained on a large amount of data,
several orders of magnitude greater than other existing models as a result of the simple architecture.
The accuracy of these vectors are able to detect very subtle semantic relationships between words,
creating a nuanced understanding of word features. In a well-trained set of vectors, relationships
such as country and city can be targeted using simple vector algebra. For example, to find what
city is to Germany as Paris is to France, the calculation X = wvector( “France”) — vector( “Paris”) +
vector( “Germany”) returns the word “Berlin” as X.

The model has some weaknesses in its composition. Words are matched exactly rather than ac-
counting for synonyms and stemmed phrases, meaning word morphology is ignored. Since every word
is treated as an independent vector, there are no common representations at sub-word levels. This
can make learning embeddings more difficult in polysynthetic languages, such as Arabic or German.
Scaling to a new language also means new embedding matrices, such that cross-language sharing of
the same parameters in the model is not feasible. Furthermore, word2vec is unable to handle unknown
words that are not part of the training vocabulary. If asked to define a vector for a word that has
never been encountered before, the model cannot provide a meaningful answer; it would have to dis-
card the request or assign a random value. As with other word embeddings, polysemy is neglected as
all possible meanings for a single word are combined into one vector. This can be targeted using sense
embeddings, where each meaning of a word is its own vector in the semantic space.

The training performance of word2vec is also heavily dependent on hyper-parameters selected [65].
In terms of the two architectures, CBOW provides a faster training time, but skip-gram works better for
infrequent words. The training algorithm to maximise the log-likelihood can also be selected between
the hierarchical softmax, which is better for these infrequent words, and negative sampling, which
works better for frequent words and low dimensional vectors. Frequent words can also be subsampled
to increase training speed [44], while dimensionality can also be increased to provide higher quality
vectors. Up to a certain point, however, the quality gain experienced by increasing the dimension will
diminish. The size of the context window also has an affect on performance; according to the authors
the recommended size is 10 for skip-gram and 5 for CBOW. It has also been suggested much of the
accuracy of word2vec and similar embeddings are not necessarily because of the models, but a result
of the choice of hyper-parameters [37].
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2.3.4 fastText

fastText [Bojanowski:2017] is a different library for efficient text classification and learning word
representations. An open-source and lightweight distribution, fastText builds upon standard word
vectors by including subword information to create a word representation for any given token, even
those not part of the embedding’s vocabulary. This targets one of the weaknesses of the word2vec
method, which uses a distinct vector for each word and ignores the internal structure of a word.

fastText supports supervised and unsupervised training, as well as both skip-gram and CBOW
models. It is able to achieve strong performance for word representations, particularly for rare word
occurrences that utilise character n-grams. Words in the vocabulary have their own embeddings, as
well as embeddings of the n-grams which make up the word. The length of n-grams is an adjustable
parameter that affects the final embedding result. Given the word “table” and an n-gram size 3, where
“<” and “>7” are characters to mark the start and end of a word, the associated bag of n-gram char-
acters will consist of:

{{<ta }7’ {{tab )7, ({abl 7}7 ({ble 7?’ ((le> ”

Note that the n-gram representation of “tab” here will be different from the vector representation
of the word “tab”, as one is a component of a word and one is a word representation itself.

The vector representation of a single word is then simply the sum of all the vector representations
in the bag of character n-grams. This approach allows innate meanings in prefixes and suffixes to be
captured and re-used for different words. It also means that words with similar forms will naturally have
similar embeddings; for example “worker” will have a very similar vector representation as “workers”,
as nearly all of the n-grams will be identical — even if one of the words is not part of the actual
vocabulary of the word vectors.

In terms of training the fastText model, several optimisations are in place to better performance,
which can also double up as limitations in terms of vector quality. For example, the training algorithm
prunes the vocabulary every time the vocabulary exceeds a hard coded size, by increasing the provided
minimum count value. Negative sampling can also be used to speed up training, as can discarding of
popular words to prevent saturation of embeddings. Training can also be initialised with pre-trained
vectors, allowing a trained embedding to build on top of an existing set of vectors [Subedi:2018].

This method proves to be fast in calculation and is able to train on large corpora quickly, while
having strong performance in word similarity and analogy tasks comparable to word2vec and other
similar embedding styles.

2.4 Distance metrics

Given the vector space models provided by word embeddings, various distance metrics for vectors
can be used to measure the similarity of words, and thereby create a similarity metric to assess how
translations match up against each other. This can be applied to translation evaluation, comparing
how candidate translations match up against reference translations.

2.4.1 Cosine similarity

Cosine similarity is a measure of similarity between two non-zero vectors, measuring the cosine of the
angle between them in the vector space. This is a measure of orientation rather than magnitude; two
vectors with the same orientation have a cosine similarity of 1, orthogonal vectors have a similarity
of 0, while diametrically opposed vectors will return -1. This is all independent of magnitude, and
applicable to any number of dimensions. With word embeddings, each dimension represents a different
feature, so if two vectors are oriented similarly, it means they are aligned on many dimensions and
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therefore have similar semantic features. The cosine similarity cos(f) is defined as:

> A;B;

_ AB i i=1
IATBI = o, (o,
> A2\ |3 B
=1 =1

where A; and B; are components of vector A and B respectively.

The soft cosine measure is a variant of this metric, consdering similarities between pairs of features
[67]. While the standard cosine similarity considers each feature as independent and completely dif-
ferent, the soft cosine measure relates features by their similarity. A matrix s can be used to indicate
similarity between features, making the distinction between each dimension less harsh. If there is
no similarity between features, the calculation is the equivalent of the conventional cosine similarity.
Given two N-dimensional vectors a and b and the similarity matrix s, the soft cosine similarity is
calculated as:

cos(6)

N
- Siiaib;
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where s;; = similarity(feature;, feature;).

An advantage of this metric is its low complexity, especially for sparse vectors as only non-zero
dimensions need to be considered when calculating the angle. This works very well with the hundreds
of dimensions that a word embedding vector possesses. However, the metric is only useful if the
magnitude of the vectors do not matter. Vectors are often normalised to use this metric effectively,
but word embeddings from models like word2vec carry semantic significance in a vector’s length as
well as the direction [55] . Nevertheless, it must be noted that the original word2vec paper [45] still
uses cosine similarity as a measure of finding similar words in the semantic space.

2.4.2 FEuclidean distance

The Euclidean distance is a measure of straight-line distance between two points in a Euclidean space.
This is akin to taking a ruler and measuring the length of the line between two points. In vector
spaces, these two points are defined by corresponding vectors A and B , with a component A; and B;
for each dimension. The Euclidean distance can be extended to any number of dimensions n, defined
as follows:

Given vectors are a representation of direction as well as magnitude, the use of Fuclidean distance
can be an appropriate metric for finding distances within the word embedding space. However, this
may not be as optimal for sparse data, as many calculations would have to take place to handle high
dimensionality.

2.4.3 FEarth Mover’s Distance

The Earth Mover’s Distance (EMD) is a measure of the distance between two probability distributions
over a region D. Envisioning each distribution as a pile of earth in the region D, the EMD is the
minimum cost of turning one pile into the other, where the cost is the amount of earth multiplied by
the distance moved. If the two distributions are of the same mass, i.e. the two piles are of the same
size, the EMD is a measure of true distance between the distributions. This can be formulated as a
transportation problem, and solved with a host of established techniques. As a result, EMD has many
applications in pattern recognition [b4].



2.4. DISTANCE METRICS 23

To represent a distribution, EMD generally uses the notion of a signature. A signature contains a
set of clusters and their corresponding weights. Each cluster comprised of a set of points, represented
by a single average point. The cluster can be thought of as an individual feature of the signature, while
the weight is the fraction of the distribution that the cluster represents. The distance between each
of these clusters is the ground distance. As a result, simple distributions may have shorter signatures
than complex ones.

Given two signatures P with m clusters (p1, wp1), ..., (Pm, Wpm) and Q with n clusters (g1, wq1), ..., (gn, Wgm),
where p; and g; are the cluster points and wy; and wy; are their corresponding weights, flow is found
between the two signatures that minimises total cost. D = [d; ;] is the ground distance between clus-
ters p; and g;, while F' = [f; ;] represents the flow between them. The problem is modelled as a linear
programming optimisation:

m n
min} > figdig
i=1 j=1
subject to constraints:
fij 20,1<i<m,1<j<n

n
Zfi,j <wp, 1 <i<m
j=1

m
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i=1

m n m n
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The first constraint permits moving from P to Q and not vice versa. The next two constraints
limit sending and receiving in P and Q by their weights, while the last constraint forces moving the
maximum amount of supplies possible. With optimal flow F', the EMD is calculated by normalising
the minimum cost by the total flow:

D 2 figdi
Z?ll Z?:l Iy

EMD is a metric that naturally extends the idea of distance from that of single elements to that
of distributions of elements. The use of signatures make the measure more compact and efficient
than using histograms, which can have sparse and empty bins. When ground distance is meaningfully
defined, EMD also matches perceptual similarity much better than other measures [53].

While EMD does not naturally handle distributions with different mass, there are approaches to
mitigate this. One is to allow partial matches, where the smaller distribution is compared to a subset
of the larger distribution, discarding the extra “earth” at no extra cost [3]. This approach means
EMD is not a measure of true distance. An alternative is to create or destroy mass in a distribution
rather than transporting it, but incurring a cost penalty. To improve speed and robustness, ground
distances may also be thresholded, reducing the edges in the flow network by an order of magnitude
[60].

EMD(P, Q) =

2.4.4 Word Mover’s Distance

An implementation of EMD, the Word Mover’s Distance (WMD) measures the similarity between
two text documents. Based on the word2vec embedding space, the metric treats each document as a
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distribution of word embeddings, and finds the minimum distance that one set of word embeddings
needs to travel to become the other.

To transform one document to another, WMD represents text documents as normalised bag-of-
words (nBOW) vectors. This vector d is a column vector of dimension n, where n is the size of the
word embedding vocabulary. If word i appears ¢; times in the document, the i-th component d; in d

is denoted as chizc WMD removes stop words from this calculation, making it a very sparse vector.
j=16J

The word travel cost between individual word pairs ¢ and j is represented as c(i,j), a measure
of the semantic similarity between the two words. Measures such as the Euclidean distance in the
word2vec space can be used to obtain the cost of “travelling” from one word to another. The distance
of two words is the basis of finding a cost for two documents.

A
document 1 ‘greets’ document 2

Obama ‘Ob:'\“la’ ./V. The
speaks . o , ‘speaks’ President

to President greets

the the
media ‘Chicago’ press

in 4 ‘media’ in
Mlinois o0 Chicago

‘Illinois”  Press

word2vec embedding

Figure 2.8: An illustration of WMD. The non-stop words of both documents, in bold, are embedded
onto a word2vec space. The distance between the two documents is defined as the minimum distance
to move all the words from document 1 to exactly match document 2.

Given two nBOW representations d and d’, each word in d' can be transformed into any word
in d either by a fraction or in its entirety. The composition of the metric is very similar to that of
EMD described above. The cost ¢(i,j) is a ground distance, while the flow F' is here represented as
T. The nBOW components d; and d;- act as weights of the clusters, where each cluster’s position
is given by their position in the word2vec embedding space. In the constraints, rather than limiting
the amount sent and received by these weights, they are made to send and receive the exact amount
specified by the nBOW vector. This is so that all words are matched with the right frequency, instead
of over- or under-compensating for words. WMD does not need any extra normalisation after solving
the transportation problem, so can be obtained by solution of the linear program:

n

N . B ..
WMD(d,d') = min ) 1T”c(z,])
1,]J=—

subject to:

n
ZTZ']‘ =d;,Viel,...n
j=1

n
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The performance of WMD has been shown to have low error rates, attributed to its ability to
complement the large scale of the word2vec embedding. This coupling also allows high interpretability
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of WMD results, as document distances ultimately boil down to word distances within this semantic
space. Not having any hyper-parameters, the metric has very good out-of-the-box functionality.

However, it can be very slow to compute, with a cubic average time complexity [32]. Cheap lower
bounds can be used to relax the optimisation problem, helping instances with many unique words or
a large number of documents. The nBOW approach of WMD also means word order is not taken into
account when finding distances, with no penalty for words being in the wrong position, even if this
distorts the overall meaning of a document. Without normalisation, the WMD result is a distance
that ranges from 0 to infinity, making comparison between two different calculations of the metric
unstandardised.



Part 11

Method Overview and Implementation
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Chapter 3

Implementation

This project’s automated translation evaluation metric is focused on semantic similarity, giving it a
different approach to automated metrics that focus on syntactic matches. In principle, this should
allow it to better take into account the overall meaning of a sentence and its translation as the def-
initions of relevant words will be embedded in the calculation. This is achieved with various neural
word distributional models. Appropriate vector space distance metrics are applied to measure word
similarity.

The implementation uses the Word Mover’s Distance as its basis. To improve it, modified versions
of this metric are pursued to provide a metric that matches the multifaceted human approach of
adequacy and fluency, introducing penalties for words being matched in the wrong order or wrong
position. This will be referred to as WMDg, in reference to its focus on word order.

To assess the metric’s performance, direct comparison with human judgment should prove the
most conclusive, given human assessment remains the gold standard of translation evaluation. Taking
human annotator reviews of existing translations as the benchmark, our metric can be compared to
the performance of other metrics in how close they align with the ratings of the human annotators. By
creating a metric that is consistently aligned with human judgment of translation quality, it creates
a strong basis for the end goal, direct comparison of translation quality between a source text in one
language and a translated text in a second language. If reliable, the metric seeks to replace the position
of human annotators as the standard, making the evaluation process far more automated. Each rating
compares the output of the candidate translation with that of the reference, giving a value of how true
to the reference it is. All of these comparisons are in the same language (language B in the diagram).

This section looks at rudimentary experiments using French and German translations, followed by
a more comprehensive overview using English as the main language. These are the languages that the
source text is translated into, “Language B” in Figure 5.1.

Given a reference translation and a candidate translation in Language B, the flow of the metric
implementation is as follows:

3.1 Reference translations

The reference and candidate translations that are used in the implementation carry corresponding
human ratings for quality of translation. These ratings are numeric and standardised to z-values for
each dataset, making it dimensionless and simple to compare with other datasets. The use of ratings
over rankings means translations of similar quality can be given a similar result, rather than picking
one over the other.

To statistically compare each metric’s performance against the human score, Pearson’s correlation
coefficient is used. This measures the extent in which two variables tend to change together, providing
a value for the linear strength and direction of the relationship. Ranging between -1 and 1, a positive

27
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Source text [ -----o--____ » Reference translation | Human rating
(Language A) »_ (Language B) | (Language B)
\\\ v
\\‘ Candidate translation | Metric 1 rating
(Language B) | (Language B)

| Metric n rating
(Language B)

Figure 3.1: Flow of metric evaluations.

value indicates a positive relationship and a negative value a negative relationship. The strength of
this measure is that the ranges of the two variables do not matter as long as they vary consistently,
meaning the scale of the metrics are not important.

While Pearson’s correlation measures the linear relationship between two variables, the Spearman’s
correlation coeflicient is an alternative that measures the monotonic relationship between variables.
This statistic looks at the correlation between the ranks of each value. However, the relationship
between the human scores and the evaluation metric scores are expected to be linear as scores will
generally increase linearly with quality. As a result, the Spearman correlation is likely not to be too
deviant from the Pearson correlation and will not be pursued heavily.

3.1.1 Datasets

All datasets used for the implementation come from the WMT 2017 conference. The French and
German experiments use data from the Multimodal translation task [8], while the English experimental
data comes from the Metrics evaluation task [[7]. The source language of the former is English, while
the latter has different source languages of Czech, German, Finnish, Latvian, Russian, Turkish, and
Chinese. These texts are focused on the segment-level rather than the system-level, making each
sentence factor more in evaluation. The different source languages are separated when trialling the
metric implementation as the human scores are standardised per dataset.

French and German Data

Data from the Multimodal translation task aims to take a source language image description and
translate it into a target language, using the image itself to make it multimodal. As the task was
not intended for comparing metrics, there is no data for the performance of other metrics on these
translations. Each image has a gold standard caption and a set of candidate translations rated by
humans from a scale of 0 to 100. These ratings are standardised and used in the implementation to
check the metric is performing adequately. For both French and German, there are 1000 reference
translations in the dataset. Fach reference has one or more candidate translations, giving a total of
2521 translations for French and 3485 for German. While there were 25 assessors for German there
were only 7 for French, which may result in some variance [20]. The results from these French and
German experiments are largely preliminary.
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Reference translation Candidate translation
WMD calculation
A 4 A 4
Preprocess Preprocess

v v

Collect frequency counts Collect frequency counts
A 4 A 4

Build histogram Build histogram

\/

Calculate distance matrix

A 4

Solve linear problem

v

Post-calculation adjustments
for word order

Figure 3.2: Flow of metric evaluations.

English Data

The data from the Metrics evaluation task also includes scores of other metrics alongside the human
scores, meaning a direct comparison of correlation coefficients can be used to rate one metric over
another. These metrics include traditional syntactic methods in BLEU as well as more modern methods
such as BLEND which combine many previous metrics [6].  The human scores are also given 15
repeat assessments, the minimum to achieve reliable results [25]. These were combined into a single
mean score. For the data from the metrics task, each language pair has results for 560 different
translations. This is sampled randomly to avoid selecting identical sentences which can impact the
human annotator’s agreement and consistency.

To better aid the experimental procedure, the data provided was formatted into JSON; for each
translation language-pair there would be one file for the reference translations and one for the candidate
translations, linked by an ID provided in the dataset.
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{
"ID": "Translation",
}
Listing 3.1: Formatted reference translations
{
{
n ID " : [
[
"Translation",
Score
] k]
1,
}
}

Listing 3.2: Formatted candidate translations

3.1.2 Preprocessing

To ensure each translation is of the same format before any work is done, ample preprocessing is
required to transform every sentence into an easily tokenisable result. Each character in the candidate
and reference translations are converted into lower case, avoiding scenarios where “Hello” and “hello”
would not match on processing. Punctuation is also stripped from the string where appropriate, but
separation is preserved. For example the phrase “29-year-old” is separated to “29”, “year”, and “old”.
This does mean that some implied meanings may be ignored; a forward slash in “A/B” can refer to the
alternative of “A” or “B”, but can also be used to signify a mathematical ratio in “km/h”. Replacing
the slash with a space defaults this to the former case, but this is where the majority of slashes in
a text come from. Apostrophes are also a tricky edge case; transforming “don’t” to “do” and “n’t”
works just as well as preprocessing it to “dont” as word embeddings exist for both cases, the latter
style is used for simplicity. Percentage and hash symbols are kept as they have semantic value, but
numerical values with decimal points and commas have these removed. Popular phrases that contain
punctuation also remove punctuation for consistency, so the abbreviation “N.Y.” becomes “ny”.

This is an example output of a sentence being preprocessed, where whitespace becomes the delimiter
for tokenisation:

Original sentence: This 3 dollars is $3, 10% of my income/thirty-percent of my
— future. #work

Preprocessed sentence: this 3 dollars is $ 3 10 % of my income thirty percent of
— my future # work}
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3.2 Word Mover’s Distance

Word Mover’s Distance is key to this implementation as it provides a useful vector space metric for
embeddings. To calculate the WMD between a pair of sentences, the vectors and frequency counts of
each word are used to generate normalised bag-of-words vectors for each sentence, which can be used
to calculate the word “travelling” distance between all the tokens. Using the PyEMD library [41] [49]
[60], this distance matrix can be used along with the two sentences’ word occurrence histograms to
get a WMD value. The result also provides a flow matrix, illustrating which words in the candidate
translation have been mapped to each word in the reference translation; the flow of the transportation
problem.

wmd (ref, cand, wordvectors):
ref_list = tokenise(ref)
cand_list = tokenise(cand)

words = dictionary(ref_list + cand_list) #learning vocabulary dictionary
v_ref, v_cand = frequency([ref, cand]) #transforming to token counts
v_ref /= v_ref.sum() #building occurrence histogram

v_cand /= v_cand.sum()

wvs = []
for word in words: #collecting all word vectors
wvs . append (wordvectors [word] )

distance_matrix = distance(wvs) #distance metric to create matriz
wnd, flow = emd(v_ref, v_cand, distance_matrix) #solution of linear program

return wmd, flow

Listing 3.3: Pseudocode for getting the Word Mover’s Distance

The resulting WMD value is a non-negative number, while the flow matrix gives an indication of
the proportions of each word getting mapped to another. Given the following two sentences:

Reference: Bright glowing skies on sunny days.
Candidate: Clear bright blue sky today.

the following token lists and vocabulary dictionary are obtained:

ref_list: ['bright', 'glowing', 'skies', 'on', 'sunny', 'days']

cap_list: ['clear', 'bright', 'blue', 'sky', 'today'l]

words: ['blue', 'bright', 'clear', 'days', 'glowing', 'on', 'skies', 'sky',
— 'sunny', 'today'l

The vocabulary dictionary gives an index to each word that occurs, ordered alphabetically. This
can be used to set up the histograms as well as the distance matrix. The distance matrix is symmetric,
with each value representing the vector distance between the embeddings of each respective word. Each
row and column of the matrix represents a word, also ordered alphabetically.
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v_ref: [0. 0.17 0. 0.17 0.17 0.17 0.17 0. 0.17 0. 1]

v_cand: [0.2 0.2 0.20. 0. 0. 0. 0.20. 0.2]

distance matrix: [[O. 0.42 0.58 0.68 0.53 0.62 0.49 0.38 0.59 0.68]
[0.42 0. 0.45 0.65 0.39 0.64 0.53 0.47 0.35 0.65]
[0.58 0.45 0. 0.68 0.56 0.68 0.61 0.63 0.58 0.62]
[0.68 0.65 0.68 0. 0.75 0.66 0.56 0.63 0.58 0.53]
[0.53 0.39 0.56 0.75 0. 0.68 0.63 0.59 0.53 0.75]
[0.62 0.64 0.68 0.66 0.68 0. 0.73 0.67 0.68 0.52]
[0.49 0.53 0.61 0.56 0.63 0.73 O. 0.24 0.47 0.64]
[0.38 0.47 0.63 0.63 0.59 0.67 0.24 O. 0.53 0.67]
[0.59 0.35 0.58 0.58 0.53 0.68 0.47 0.53 0. 0.67]
[0.68 0.65 0.62 0.53 0.75 0.52 0.64 0.67 0.67 0. 1]

Listing 3.4: Histograms and distance matrix

From this, the linear program can be solved. This returns a WMD value as well as a flow matrix
detailing which words transform to which other words in the opposite sentence. Transforming the
reference translation to the candidate translation is essentially the same problem as transforming the
candidate translation; the implementation will use the former. In the flow it can be seen how much
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Listing 3.5: WMD and flow result

of each word from the reference translation “distribution” gets moved to the candidate translation
equivalent, which is why words which do not appear in the reference translation have a row of all
zeroes. All the entries in the matrix will add up to 1, with each word having equal weighting. In
this case, each word would tally up to one-sixth, with the word “glowing” in the sixth row mapping
four-fifths to “blue” and one-fifth to “today”, for example.

3.3 Word Embeddings

As the focus of the implementation is mostly on the metric itself, the word embeddings used are largely
pre-trained embeddings. These are taken from different available sources online. While this does mean
the different training parameters and datasets gives each embedding a different level of quality, the
results from each can still be used to develop the distance algorithms as the embeddings remain a
controlled variable.

In these experiments, word embeddings for German, French, and several different English em-
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beddings were used. These different embeddings range in quality and function, as some are simple
word2vec embeddings while others are FastText embeddings, which have the benefit of using n-grams
to build out-of-vocabulary words. While the German and French embeddings were from fastText,
they were used as word2vec embeddings for simplified loading times. All embeddings used were of
dimension 300 for consistency and detailed in Table B.1l.

Language Type Vocabulary size Dimension Source

German word2vec 2000000 300 [GermanEmbedding]
French word2vec 2000000 300 21]

English word2vec 3000000 300 [65]

English word2vec (trained) 773377 300 [65]

English fast Text 2000000 300 [43]

English fastText (trained) 1066155 300 [13]

Table 3.1: Word embeddings used in the experiments

3.4 Tweaking WMD

Some parameters within the WMD formula were open to tuning, such as the distance function used,
the handling of words not within the embedding, and the use of stop words. The following section
looks at several experiments to find the best parameters for the standard WMD.

3.4.1 Distance measure

Starting off with the German and French data, the first experiment was to find the best performing
distance metric for the WMD calculation. While the original WMD uses Euclidean distance to deter-
mine the distance between words in the word2vec space, the Cosine distance is also a viable option
as a distance measure as it is less affected by vector magnitude, potentially working better with the
higher dimension vectors used in most word embeddings.

Calculating WMD with Euclidean and Cosine distance measures on the two language datasets, the
resulting Pearson and Spearman correlations are found in Table B.2.

Pearson Spearman
|| |7s|
en-de en-fr en-de en-fr
Euclidean 0.543 0.500 0.546 0.489
Cosine 0.556 0.526 0.562 0.515

Table 3.2: Absolute Pearson and Spearman correlation of German and French data using both Eu-
clidean and Cosine distance as its distance metric.

From these results it shows that the Cosine distance improved the correlation with human scores
for both languages. This is visualised in Figure and

Notably, there are a few vertical lines on the scatter plots, which shows that many of the human
scores are in fact the same, a weakness of the dataset given. Nevertheless, the relationship between
all the assessed sentence pairs is quite linear, explaining the strong correlation scores and the slope on
the scatter diagram.

However, one issue that plagued both of these language pairs was the issue of missing words. The
German set had an out-of-vocabulary rate of 0.3% and the French 0.6%; not high values but still
significantly in the hundreds/thousands of missing words given the size of the vocabulary. For these
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Figure 3.4: WMD against Human scores for French, using Euclidean (left) and Cosine (right) distance.

experiments, sentence pairs with any missing words were excluded from calculations, which amounted
to 1712 out of 3247 in German and 1291 out of 2520 for French, a very large number. Due to my own
inexperience in these languages, this became quite a difficult issue to debug.

As a result of these missing words as well as the general lack of high quality embeddings and
datasets available, the rest of the experiments were done using English embeddings and datasets.

3.4.2 Missing words

Using the English word2vec embedding and the Cosine distance for WMD), there were improvements in
the out-of-vocabulary rate to 0.1% as a result of the larger vocabulary. Most sentence pairs contained
missing words, making it nearly impossible to disregard them in this case. However, these human
ratings are much more varied and avoid the vertical line phenomenon found in the German and French
set.

A strategy for handling missing words consistently was therefore necessary to deal with any en-
countered sentence pairing, even if overall correlation suffers. This should assign a vector within the
semantic space to the missing word, retrieving the same vector when the missing word is come across
again. This allows it to be treated like any other word within the vocabulary. In code, this is best
performed with the Python dictionary as illustrated in Listing B.§. Several strategies for achieving this
are viable — this section looks to find the best performing one across the seven language pairings into
English.

Random vector

One approach to assigning vectors to missing words is to have a random vector for each. This is finds
the maximum and minimum value for each dimension within the original embedding and selects a
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wmd (ref, cand, wordvectors, missing):

wvs = []
for word in words: #collecting all word vectors
if word in wordvectors:
wvs . append (wordvectors [word] )
else:
if word not in missing:
missing[w] = generate_vector(w)
wvs.append (missing[w])

Listing 3.6: Pseudocode for storing and retrieving missing word vectors

random value between those two numbers for each dimension of the missing word vector.

Single vector

Another way of assigning vectors is to have a single “out-of-vocabulary” vector for all missing words.
One such vector could be the zero vector, as it is likely the most neutral of all values. A random vector
could also be used for each iteration but this would create too much variation for analysis.

Average vector

Taking the average of several different vectors to create the missing word vector is also a possible
method. For these experiments, the average of five random vectors in the vocabulary was used for
each word.

fastText

A different approach to assigning a new vector to each missing word is to utilise fastText embeddings.
Building word vectors of missing words by aggregating the vectors of its n-grams, the fastText embed-
dings will ensure there are no out-of-vocabulary words. However, the performance may be different
against that of word2vec as the embeddings are also of different quality. The embedding will also
be used as a word2vec embedding, without n-gram functionality, to test if performance change is a
result of vector quality rather than function. This was tested using the best performing technique on
word2vec.

Trained embeddings

Another way to try different embeddings is to train them specifically with the dataset that the test
data is based on. Using the given English corpus [40], a word2vec embedding and a fast Text embedding
was trained. Ideally this would help pick up missing words from the test dataset as they come from
the same context. Both models used the skip-gram model, with a minimum count of 5, window size of
10, and a negative sampling “noise words” value of 5 for consistency. These parameters were largely
based on previous empirical studies [36] [44].
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Performance

Assessing the different approaches on the English dataset, it shows that some methods work better
than others across the language pairs, seen in Table B.3.

Embedding Method cs-en de-en  fi-en  lv-en ru-en tr-en zh-en OOV (%)
word2vec Random vector 0.513 0.531 0.687 0.501 0.560 0.557 0.591 0.10
word2vec Single vector (zero) 0.513 0.531 0.689 0.505 0.562 0.561 0.595 0.10
word2vec Average vector 0.500 0.534 0.678 0.492 0.563 0.557 0.572 0.10

fast Text Using n-grams 0.511 0.542 0.700 0.526 0.572 0.577 0.583 O
word2vec (tr.) Single vector (zero) 0.494 0.527 0.685 0.520 0.546 0.539 0.603 0.24

fast Text Single vector (zero) 0.521 0.536 0.704 0.530 0.571 0.566 0.607 0.22

fastText (tr.)  Single vector (zero) 0.485 0.525 0.671 0.513 0.546 0.538 0.597 0.18

Table 3.3: Absolute Pearson correlation of English data for different methods of resolving missing
words. The bottom half of the table shows results of different embeddings using the zero vector
method.

Of the word2vec methods, the single zero vector performs the best, although having a random
vector for each missing word is only slightly worse. The n-gram method of fastText performs better
than these, but this seems more to be an effect of the word embedding quality itself. When the fastText
embedding is used with the single zero vector method instead, it has higher correlations with most
language pairs. While there is not much to split the two, the better performing fastText embedding
with zero vector for missing words is used going forward with these experiments.

The trained embeddings had fairly disappointing results and out-of-vocabulary handling, which
can be traced to several reasons. The first is the minimum count parameter being set to 5, which was
necessary to preserve vector quality, but meant that genuine rare words were not encapsulated. The
second is the training set itself was not as big as the pre-trained one, resulting in a vocabulary size far
smaller. Perhaps most significantly, a large majority of the missing words found were not even English
words, but words from the source language which hadn’t been translated properly. The excerpt in
Listing gives an indication of this.

analysoiman
parraugoso
kurzeme
deder
landzman

Listing 3.7: Excerpt of the missing words found in dataset

3.4.3 Stop words

A deliberation which had to be made when developing WMD was whether to remove stop words in the
calculation. Stop words in natural language processing are generally prepositions or “function words”,
which do not add much to the content of the sentence but are required to keep it grammatically
sound. While the original WMD does not include stopwords in their calculations, their purposes were
more for finding general document similarity. When it comes to assessing translation quality on a
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segment-level basis, including stopwords is more sensible as every element of the sentence is integral
to its translation. This is particularly the case when looking at fluency as each word should be in
the right order for it to be considered a strong translation. Unfortunately not every function word
is in a pre-trained embedding as a result of how commonly they are ignored in language processing.
Nevertheless, with the generic zero vector applied, including stop words in the calculation still performs
better than removing all stop words before calculating WMD), as seen in Table @

cs-en  de-en  fi-en lv-en  ru-en tr-en  zh-en
All words included 0.521 0.536 0.704 0.530 0.571 0.566 0.607
Stop words removed 0.491 0.524 0.677 0.524 0.546 0.558 0.601

Table 3.4: Absolute Pearson correlation of English data with and without stop words in the WMD
calculation.

3.5 Baseline WMD results

Taking the optimal parameters from the previous sections, the baseline WMD scores for the English
language pairs are given in Table . This uses the Cosine distance on the pre-trained fastText
embedding, resolving missing words to the zero vector and including all words, including stopwords.

cs-en de-en fi-en lv-en ru-en tr-en zh-en

WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607

Table 3.5: Absolute Pearson correlation of baseline WMD on English data.

The scatter diagrams for these correlations are shown in Figure @

From the graphs it is fairly evident each language pair has a negative correlation between WMD
and Human scores. Every graph has a fairly concentrated cluster of points along this correlation,
particularly in the middle. Where the line starts to fray is nearer the two ends, where the human
scores for a translation are high or low. This has introduces a lot more volatility in the WMD scores,
ranging very differently from its human counterpart.

This suggests that the standard WMD is not able to deal with translations which are extremely
good or extremely bad in the same way they can handle a regular translation. WMD on its own
essentially only handles the adequacy of words in a translation; there is no fluency component, which
can compromise the overall evaluation of a sentence. Figure gives an example of this. The sentence
gets a perfect WMD score because all of its words align exactly to another one in the vector space,
despite the words being in the complete opposite order. It is necessary to make distinction of fluency
through some sort of measure. This fluency element could be a factor taking a translation from good
to very good or bad to very bad, and is in line with the multifaceted human approach to translation
evaluation which recognises both adequacy and fluency. Adding this to the WMD calculation is key
to the next few sections.

the sun is shining brightly

brightly shining is  the sun

Figure 3.5: The WMD score for this sentence pair is 0.0 despite the words being in a completely
different order.
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Figure 3.6: WMD against Human scores for the seven language pairs.
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3.6 Word order penalties

The most basic approach to calculating fluency is to add a penalty on every time a matched word
in the candidate sentence is not in the same position as its counterpart from the original reference.
Implementation can be done using the WMD flow matrix as it provides an indication of which words
in the reference map to those in the candidate translation. This is added to the result of WMD.

As sentence pairs are naturally not the same length, the method used to match the words was
to find each word’s relative position in the sentence, valued between 0 and 1. This would naturally
reward sentences of the same length, while adding a slight penalty to each word if the sentences were

of different sizes. Figure gives an illustration of this.
Index 0 1 2 3 4 5 6
Today is an important day for us
Relative Position | 0 /e 2/6 36 % Sk 1

Figure 3.7: Example of a relative word position calculation

The code within Listing @ walks through the algorithm used. Going through the flow matrix,
which maps words from the reference to the candidate sentence, the relative position of each word in
the reference is checked against the relative position of each word it matches to in the candidate to
build up this penalty value. An interesting edge case is where two of the same word appears in the
reference; to solve this the helper function closest picks the case with the closest index pair, reflecting
the calculations of WMD. If a sentence only has one word, the word is given a position of 0.5, to reflect
its position as the first and last word of the sequence. Figure and give two simple examples of
this penalty being applied.

penalty(ref_list, cand_list, flow, words):
penalty = 0
for idx_ref, val_ref in enumerate(flow):
word_weight = sum(val_ref)
for idx_cand, val_cand in enumerate(val_ref):
if val_cand != O:
word_ref = words[index_ref]
word_cand = words[index_cand]
pos_refs = relative_position(word_ref, ref_list)
pos_cands = relative_position(word_cand, cand_list)
proportion = val_cand/wordweight

for pos_ref in pos_refs:
#finds closest index of word in candidate sentence
mapped_pos_cand = closest(pos_cands, pos_ref)
word_penalty = abs(pos_ref - mapped_pos_cand) * proportion
penalty += word_penalty
return penalty

Listing 3.8: Pseudocode for calculating a word order penalty
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work is only fun when weather is good there

work is fun only when

is good weather

Word Reference position Matched position Matched word Word penalty
work 0 0 work 0

is 1/8 1/8 is 0

only 2/8 3/8 only 1/8

fun 3/8 2/8 fun 18

when 48 4/8 when 0

weather 5/8 1 weather 3/8

good /8 /8 good 0

there 1 5/8 there 3/8

Figure 3.8: The total penalty for this example would be 1. Note that “is” appears twice in the reference
and the closest pairing is used.

Word Ref. position

Match position Match word

bright glowing skies on sunny days

clear bright blﬁe sky today

Proportion Penalty Word penalty

glowing V5
glowing s

skies s
on s
on 5
sunny Ys
sunny Ys
sunny Ys
days 1

1 0.25 0.25
s 0.12

35 0.12 0.24
1 0.35 0.35
45 0.08

s 0.08 0.16
s 0.11

/s 0.12 0.24
s 0.01

1 0 0

Figure 3.9: The total penalty for this example would be 1.24.

The results from applying these penalties can be seen in Table @ and Figure . The performance
of this was much poorer than the baseline WMD. Upon analysis of the graphs, it showed that the
penalty was punishing sentences too strongly, particularly those which had many words out of position.
This compounded the increase in metric score such that they were far removed from the main cluster.
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Figure 3.10: WMD with word order penalty against Human scores for the seven language pairs.
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cs-en  de-en  fi-en lv-en  ru-en  tr-en  zh-en
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMD word order penalty 0.265 0.261 0.391 0.270 0.315 0.319 0.331

Table 3.6: Absolute Pearson correlation of baseline WMD on English data.

A method of handling this growth is to cap the penalty at a certain value. This allows the penalty
to grow at the same rate, but anything above a certain threshold would all be penalised by a given
maximum value. Experiments were run with the maximum value at 0.05, 0.1, 0.15, 0.2, 0.25, 0.5,
0.75, 1, 5, 10 and 15. The results suggest that any additional penalty to the baseline WMD must
be fairly small, as penalties that skyrocket create too much of a disparity between values, weakening
correlation. This is illustrated in Figure . As shown in Table @, the best performing maximum
value was the one closest to 0. However, capping the penalty at such a low value essentially gives every
contentious sentence the same penalty, making it hard to differentiate between a sentence that only
has a slight loss of fluency against a sentence with every word in a different position. In addition, the
best performing penalties are also barely outperforming the baseline WMD), suggesting this algorithm
for fluency is not particularly useful and practically negligible.
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Figure 3.11: WMD with word order penalty against Human scores for Czech data, with maximum at
0.1 (left) and 5 (right).

cs-en  de-en fi-en Iv-en  ru-en tr-en zh-en
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMD word order penalty 0.265 0.261 0.391 0.270 0.315 0.319 0.331

WMD word order penalty, max 0.05 0.525 0.535 0.703 0.531 0.569 0.567 0.607
WMD word order penalty, max 0.1  0.524 0.529 0.697 0.531 0.561 0.567 0.604
WMD word order penalty, max 0.15 0.519 0.518 0.688 0.530 0.549 0.566  0.600
WMD word order penalty, max 0.2  0.511 0.503 0.676 0.528 0.533 0.564 0.595
WMD word order penalty, max 0.25 0.500 0.487 0.662 0.525 0.516 0.561 0.588
WMD word order penalty, max 0.5 0.440 0.406 0.583 0.501 0.435 0.539 0.541
WMD word order penalty, max 0.75 0.396 0.358 0.521 0.467 0.375 0.522  0.490
WMD word order penalty, max 1 0.367 0.323 0.473 0.425 0.336 0.506 0.465
WMD word order penalty, max 5 0.309 0.303 0.407 0.311 0.325 0.385 0.433
WMD word order penalty, max 10 0.266 0.263 0.396 0.282 0.316 0.330 0.360
WMD word order penalty, max 15 0.265 0.261 0.391 0.270 0.315 0.320 0.333

Table 3.7: Absolute Pearson correlation of baseline WMD on English data.

The discrepancy between penalties before the value is capped is largely because the algorithm
compounds consecutive words which are out of order. The example in Figure m illustrates this.
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Even though the words “”the sun and “shining brightly on a cool summer day” are in the same order
in both sentences, each word is still penalised for being out of position. Despite many of the words
remaining in the same relative order, this has a penalty score of 4.67, even higher than the jumbled,
nonsensical sentence in Figure which scores 3.78.

the sun is shining brightly on a cool summer day

shining brightly on a cool summer day is the  sun

Figure 3.12: This sentence pair has a WMD score of 0.0 and a penalty of 4.67, despite many of the
subsequences being the same.

the sun is shining brightly on a cool summer day

brightly summer is the cool sun day on a shining

Figure 3.13: This sentence pair has a WMD score of 0.0 but only a penalty of 3.78, even though the
words are heavily shuffled and the sentence is far more nonsensical.

3.7 Fragmentation penalties

To prevent the metric from doubly-penalising consecutive out of order words in the translation, the
word order penalty can make use of fragments rather than individual words to achieve a fluency
measure. This is similar to the fragmentation penalty of METEOR [1], which separates word matches
into chunks. To refresh, chunks are a group of unigrams which are adjacent in both the reference and
the candidate translation. The longer each chain of n-grams is, the fewer chunks there are, meaning
if the entire candidate matches the reference there is just one single chunk. The ratio between chunks
and matched unigrams is the key to this fluency component.

Re-examining the same sentence pairs from Figure and , the former can be seen to be
much less fragmented than the latter, and penalised accordingly. This is visualised in Figure and
. It also helps to penalise more nonsensical translations, as the fluency of the reference translation
is more accurately reflected in the level of fragmentation.

[7%

the sun shining brightly on a cool summer day

shining brightly on a cool summer day is the sun

Figure 3.14: This sentence pair has 3 chunks and 10 matched unigrams, giving a ratio of 0.3.
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the sun is shining brightly on a cool summer day

brightly summer is the cool sun @ on a shining

Figure 3.15: This sentence pair has 9 chunks and 10 matched unigrams, giving a ratio of 0.9.

Listing @ gives an indication of how the fragmentation is calculated. For this implementation,
there is assumed a one to one mapping of words from the reference to the candidate translation.
In other words, each word in the reference is only considered to be mapped to one word in the
candidate translation, even if the flow matrix moves it to multiple words. This means that only
the most significant set of chunks are considered for the fragmentation calculation. This is because
fragmentation is a sentence level construct, while the previous word order penalty could be applied on
an individual word basis.

penalty(ref_list, cand_list, flow, words):
chunks = 1
matched_unigrams = 0

current = -1
for i, w in enumerate(ref list):
#finds which word/s the reference word maps to most
index = words.index(w)
flow_from _w = flow[index]
highest_flow = max(flow_from_w)
highest_match_indexes = [i for i, x in enumerate(flow_from_w)
if x == highest_flow]
highest_match_words = [words[i] for i in highest_match_indexes]

#finds which word is closest to reference word
matched_indices = []
for m in matched_words:

occurrences = []

for i, x in enumerate(cand_list):

if x == m:
occurrences.append (i)

matched_indices.append(closest(occurrences, current))

matched_index = closest(matched_indices, current)

if not current + 1 == matched_index:
chunks += 1
current = matched_index

matched_unigrams += 1

return chunks / matched_unigrams

Listing 3.9: Pseudocode for calculating fragmentation in sentence
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In METEOR, the fragmentation penalty takes the ratio between the number of chunks ¢ and the
number of matched unigrams u,,, raises it to the power of 3 and multiplies it by the maximum of 0.5
to scale. It is then applied by subtracting it from 1 and multiplying the original score by this new
factor. To simplify the expression and to better tune these arbitrary parameters for the purposes of
this metric, the “penalty” value referred henceforth is just the value of the ratio:

Penalty = <

m

Since the penalty value is a ratio, it is always restricted to be between 0 and 1. This means the
final values will not balloon as much as the word order penalty did in the previous section, as that
did not have a natural maximum. While restricting the maximum value of the word order penalty did
help performance, it meant that many sentence pairs would end up with the same maximised penalty
value. This ratio should allow a range of values between 0 and 1, allowing better distinction between
sentence pairs.

3.7.1 Additive fragmentation penalty

This section will feature experiments to tune the values of the exponent n and maximum value §, as
well as tuning of its application to the baseline WMD value. Initially the experiments will just add
the fragmentation component onto the base WMD score, similar to the previous section. This gives
the following formula for the fragmentation penalty:

WMD fragment = WMD + § x (Penalty)"”

This results for this are in Table @, compared against the baseline WMD and the best performing
WMD word order penalty.

1) n cs-en de-en fi-en lv-en ru-en tr-en  zh-en
WMD - — 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMD word order - - 0.525 0.535 0.703 0.531 0.571 0.567 0.607

WMD fragment 0.1 1
WMD fragment 0.2 1
WMD fragment 0.3 1 0525 0.534 0.696 0.540 0.580 0.631 0.621
WMD fragment 04 1
WMD fragment 0.5 1

“WMD fragment 0.1 2 0.529 0.545 0.707 0.540 0.585 0.601 0.619
WMD fragment 0.2 2
WMD fragment 0.3 2 0516 0.530 0.686 0.531 0.580 0.624 0.612
WMD fragment 0.4 2
WMD fragment 0.5 2

“WMD fragment 0.1 3 0.525 0.543 0.704 0.537 0.582 0.596 0.615
WMD fragment 0.2
WMD fragment 0.3
WMD fragment 0.4

WMD fragment 0.5
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Table 3.8: Absolute Pearson correlation of baseline WMD on English data.

Compared to the baseline WMD and the best performing word order penalty, the fragmentation
penalty can be seen to have stronger correlation with human judgment. The effect of the exponentiation
term n is fairly weak; its effect is mostly just pulling down the magnitude of the penalty, which leads
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to less correlation with human scores. From the results it can be seen that leaving this value at n =1
is the best approach. In terms of the maximum penalty value &, the performance is best around
lower values of 0.1 and 0.2, with the exception of the Turkish-English language pair, which has best
performance at larger values of §. This maximum value gives an indication of the optimal weight of a
fragmentation penalty. Since the adequacy measure of baseline WMD with cosine distance is limited
between 0 and 1, this result suggests that the fluency component is best suited to be around 10 to 20%
of that.

WD

15 -2 15

Figure 3.16: WMD against Human scores for Russian data. Orange is the baseline WMD), blue is with
fragmentation penalty applied with n =1 and ¢ at 0.1 (left) and 0.5 (right).

Analysing some of the results graphically in Figure , it can be suggested that correlation could
be weakened because points are only travelling in one direction, upwards. This is compounded in the
iterations with higher values of 9, as the sentences with extreme fragmentation get dragged further
and further upwards while those without remain on the same footing. Another interesting take from
the baseline WMD is its lower limit. Many of the graphs show several points along the horizontal axis
where WMD is 0. Ideally the WMD score should only be at its lowest when the translation is at its
best, but this is not the case.

3.7.2 Multiplicative fragmentation penalty

These issues could be addressed by allowing bidirectional movement of the WMD value, adjusting the
fluency component up and down instead of just up. Sentence pairs can be rewarded for having high
fluency or punished further for an non-fluent translation. In doing this, the metric should also be able
to encompass a wider range in the fluency measure.

The original fragmentation penalty grows the fragmentation penalty of sentences linearly with the
growth of their penalty ratio, so reward and punishment values cannot just be added and subtracted
from the original WMD), as this would just be a constant defined by the ratio. This would give
the exact same correlations when judged through the Pearson statistic, so multiplying the original
WMD by a fragmentation factor is the preferred strategy. This gives the formula for the bidirectional
fragmentation penalty as:

WMD bid.-fragment = WMD x (1 — Penalty + p)

The newly introduced parameter p decides what proportion of the data is to be rewarded and punished,
based on each sentence’s penalty ratio. If the value of p is 0.3, all sentence pairs with less than 0.3
penalty ratio is multiplied by a factor less than 1, while anything with greater than 0.3 penalty ratio
is multiplied by a factor greater than 1. This factor varies with the penalty ratio, so sentences with
higher ratios are multiplied by a greater fragmentation penalty and sentences with lower ratios are
multiplied by a lower fragmentation penalty. The parameter is tested at increments of 0.1, from 0.1 to
0.9, to find the best performing occurrence.
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The results of the bidirectional fragment experiments are shown in Table @ alongside the best
performing metrics of previous sections.

p cs-en  de-en fi-en lv-en  ru-en tr-en  zh-en
WMD - 0521 0.536  0.704 0.530 0.571 0.566  0.607
WMD word order - 0.525  0.535 0.703 0.531 0.571 0.567  0.607
WMD fragment - 0.531 0.546 0.710 0.543 0.585 0.640 0.623

WMD bid.-fragment 0.1 0.110 0.189 0.189 0.0564 0.272 0.012 0.028
WMD bid.-fragment 0.2 0.200 0.264 0.326 0.160 0.337 0.112 0.157
WMD bid.-fragment 0.3 0.270 0.320 0.427 0.244 0.383 0.210 0.261
WMD bid.-fragment 0.4 0.323 0.363 0.499 0.306 0.418 0.282 0.339
WMD bid.-fragment 0.5 0.361 0.395 0.548 0.352 0.444 0.335 0.396
WMD bid.-fragment 0.6 0.390 0.419 0.583 0.386 0.464 0.374 0.437
WMD bid.-fragment 0.7 0.412 0.437 0.608 0.411 0.479 0.404 0.467
WMD bid.-fragment 0.8 0.428 0.452 0.626 0.429 0.491 0.426 0.490
WMD bid.-fragment 0.9 0.441 0.463 0.640 0.444 0.500 0.444  0.508

Table 3.9: Absolute Pearson correlation of WMD with bidirectional fragmentation penalty, p < 1 on
English data.

The results of this alteration are not as strong as the basic fragmentation penalty. A reason for
this could be how much the penalties and punishments are allowed to grow, creating a big disparity
between values. It is notable that the best performance occurs when the value of p is closest to 1,
suggesting the bidirectional element is not as useful as thought. Figure gives an illustration of
this. The graph with p at 0.1 has very poor correlation as the majority of sentences are multiplied by
a factor close to 0, reducing them all to a very small range and almost creating a horizontal line. It
is clear that to increase distinction between values any multiplicative factor will need to increase the
value of WMD rather than decrease it.

WD
WD

Human Human

Figure 3.17: WMD against Human scores for Chinese data, with values of p at 0.1 (left) and 0.9 (right).

To tackle these issues another experiment was run with values of p at much higher values, the
results of which are in Table . Performance reaches a plateau at high values of p, but still falls
short compared to the basic fragmentation penalty.

The final implementation of this multiplied penalty takes the high p value of 10 and introduces the
extra § element to limit the size in which the multiplicative factor can grow.

WMD bid.-fragment-limit = WMD x (1 — ¢ x (Penalty + p))

The results of this are in Table . While the results are improved from the non-limited version, it
remains weak compared to the basic fragmentation penalty. These experiments show that introducing
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1) cs-en  de-en  fi-en lv-en  ru-en  tr-en  zh-en
WMD - 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMD word order - 0.525 0.535 0.703 0.531 0.571 0.567 0.607
WMD fragment - 0.531 0.546 0.710 0.543 0.585 0.640 0.623

WMD bid.-fragment 1 0.451 0.472 0.650 0.486 0.508 0.458 0.521
WMD bid.-fragment 1.25 0.469 0.488 0.668 0.497 0.522 0.483 0.544
WMD bid.-fragment 1.5  0.480 0.499 0.678 0.504 0.532 0.499 0.559
WMD bid.-fragment 1.75 0.488  0.506 0.684 0.509 0.538 0.510 0.568
WMD bid.-fragment 2 0.493 0511 0.688 0.513 0.543 0.518 0.575
WMD bid.-fragment 2.5 0.500 0.517 0.694 0.518 0.550 0.529 0.583
WMD bid.-fragment 3 0.505 0521 0.697 0.521 0.554 0.536 0.588
WMD bid.-fragment 3.5 0.508 0.524 0.699 0.523 0.557 0.541 0.592
WMD bid.-fragment 5 0.512 0.529 0.701 0.526 0.562 0.549 0.597
WMD bid.-fragment 7.5 0.516 0.532 0.703 0.528 0.565 0.555 0.601
WMD bid.-fragment 10 0.517 0.533 0.703 0.529 0.567 0.558  0.603

Table 3.10: Absolute Pearson correlation of WMD with bidirectional fragmentation penalty, p >= 1
on English data.

a fluency component by a multiplicative factor is not as effective as adding it. In fact, even the best
performing correlations are not too far off from the baseline WMD. As a result, the additive penalties
are the ones used as the final version of the evaluation metric.

) cs-en  de-en  fi-en lv-en  ru-en tr-en  zh-en
WMD — 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMD word order - 0.525 0.535 0.703 0.531 0.571 0.567 0.607
WMD fragment - 0.531 0.546 0.710 0.543 0.585 0.640 0.623
WMD bid.-fragment - 0.517 0.533 0.703 0.529 0.567 0.558 0.603

WMD bid.-fragment-limit 0.1 0.499 0.496 0.655 0.376  0.547 0.595 0.596
WMD bid.-fragment-limit 0.2 0.525 0.539 0.704 0.527 0.577 0.577 0.612
WMD bid.-fragment-limit 0.3 0.524 0.539 0.704 0.529 0.576 0.575 0.611
WMD bid.-fragment-limit 0.4 0.524 0.539 0.704 0.529 0.576 0.574 0.611
WMD bid.-fragment-limit 0.5 0.524 0.538 0.704 0.529 0.575 0.574 0.611

Table 3.11: Absolute Pearson correlation of WMD with limited bidirectional fragmentation penalty,
p = 10 and varying J, on English data.

A look at the correlation between each of the fragmentation penalty styles and the baseline WMD
shows why the results of the basic additive fragmentation work much better. Table shows that the
multiplicative fragmentation penalty has a higher correlation with the baseline WMD as the additive
fragmentation penalty, meaning the latter is better at separating itself from the baseline WMD and
getting more varied, distinguishable results. This is again using the best performing variation of the
metric as the comparison.

cs-en  de-en fi-en lv-en ru-en tr-en zh-en
WMD fragment 0.981 0.982 0.993 0.971 0.975 0.903 0.975
WMD bid.-fragment 0.997 0.997 0.998 0.994 0.997 0.998 0.998

Table 3.12: Absolute Pearson correlation of fragmentation penalty options with baseline WMD.
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3.8 Tackling anomalies

Despite the fairly strong performance of the fragmentation penalty, there remained some standout
anomalous results. This section looks to see if this can be addressed using some improvements to the
basic fragmentation penalty.

3.8.1 Missing word penalty

One of the major causes of translations varying far from the mean is the issue of missing words.
Although the out-of-vocabulary rate is not very high for the embeddings used, the dataset it was tested
on had several sentences which were wholly mistranslated, causing it to be filled with indecipherable
foreign words.

A notable example of this is in the Turkish-English dataset, which has the following sentence pair:

Reference: "THOSE WHO COMMITTED THE COUP ATTEMPT SHOULD BE CLEARED FROM THE STATE"
Candidate: "Blow" GIRISIMINDE BULUNANLARIN DEVLETTEN TEMIZLENMESI GEREKIYOR

The candidate translation is essentially nonsensical when viewed from an English context. Given
the out-of-vocabulary resolution strategy of initialising a zero vector as the representation for each
unique word, this type of occurrence where a large proportion of the machine translation is made of
missing words will grow the fragmentation penalty, but not to the same scale that a human translator
would. This is because the calculated fragmentation penalty still tries to fit a meaning to the word
within the vector space framework, treating it in the same way as a sentence with all words in the
vocabulary. On the other hand, a human translator is far more likely to treat this type of translation
as nonsensical and give it a terrible rating.

This discrepancy should be reflected through a missing word penalty, adding on another variable to
the baseline WMD and fragmentation penalty. This missing word penalty is based on the proportion
of words in the candidate translation which are out of the vocabulary. This ratio is referred to as
“Missing” is weighted by another parameter, o, which is experimentally adjusted in Table against
the best performing WMD fragment settings of each language pair from the previous section. The
equation for this is as follows:

WMD fragment-miss. = WMD + § x Penalty + o x Missing

The results showed that there was not a very large variation on the results between the different
values of a. The best performing value for this parameter was 0.1, which was able to boost the scores
of each language pair’s correlation, proving the effectiveness of this additional penalty. Of course, the
gains were not spectacularly big, but are a good way to handle the rare cases that significantly weaken
the correlation because of this out-of-vocabulary issue.

Nevertheless, one of the main issues that the missing word penalty is not able to handle cleanly is
the case of proper nouns. Many of these names can be fairly obscure and not part of the word vector
dictionary, marking it as a missing word and weakening the correlation.

3.8.2 Number vector

Another type of anomalous result seen in the results of the basic fragmentation penalty are the sentences
which include numbers, many of which are not part of the vocabulary because of the enormity of
variations in numbers. While the aforementioned missing word penalty can handle many of the cases
involving actual words, missing numbers are a slightly different proposition, as these are known values
with easily recognisable ties to other items in the vocabulary, namely other numbers.
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« cs-en  de-en  fi-en Iv-en  ru-en tr-en  zh-en
WMD — 0.521 0.536  0.704 0.530 0.571 0.566 0.607
WMD word order - 0.525 0.535 0.703 0.531 0.571 0.567 0.607
WMD fragment — 0.531 0.546 0.710 0.543 0.585 0.640 0.623

WMD fragment-miss. 0.02 0.532 0.546 0.710 0.543 0.587 0.640 0.624
WMD fragment-miss. 0.04 0.532 0.546 0.711 0.543 0.588 0.640 0.624
WMD fragment-miss. 0.06 0.532 0.545 0.711 0.543 0.589 0.640 0.624
WMD fragment-miss. 0.08 0.532 0.545 0.712 0.542 0.589 0.640 0.624
WMD fragment-miss. 0.10 0.532 0.544 0.712 0.542 0.590 0.640 0.625
WMD fragment-miss. 0.12 0.532 0.544 0.712 0.542 0.591 0.641 0.625
WMD fragment-miss. 0.14 0.532 0.543 0.712 0.541 0.591 0.641 0.625
WMD fragment-miss. 0.16 0.532 0.542 0.711 0.541 0.592 0.640 0.624
WMD fragment-miss. 0.18 0.531 0.541 0.711 0.540 0.592 0.640 0.624
WMD fragment-miss. 0.20 0.531 0.540 0.711 0.539 0.592 0.640 0.624

Table 3.13: Absolute Pearson correlation of WMD with fragmentation penalty and missing word
penalty on English data.

An example of this anomaly comes in the German-English language set:

Reference: They came in at 3: 51.942 on goal.
Candidate: They finished in 3:51.943.

The strategy used here to handle the specific case of numbers as an out-of-vocabulary word is to
introduce a number vector, which is essentially an average vector of all instances in the vocabulary
which are numbers. This replaces the zero vector as the vector representation for any out-of-vocabulary
token which is a number. The comparison of results for this is shown in Table @

cs-en de-en fi-en  lv-en ru-en tr-en  zh-en
WMD fragment-miss. (with n.v.) 0.531 0.545 0.711 0.543 0.592 0.640 0.624
WMD fragment-miss. (without n.v.) 0.532 0.546 0.712 0.543 0.592 0.641 0.625

Table 3.14: Absolute Pearson correlation of WMD with fragmentation penalty and missing word
penalty, with and without the number vector on English data.

The results of this setting are effectively the same with and without the number vector. This
is likely because of the rarity of these sentences and the fact that the number vector is an average
of all numbers found. While this value may be slightly different from zero it may not be overly so
despite their common denominator, as different numbers can carry different meanings. It would be too
arbitrary and perhaps make the experiment ungeneralisable to assign the vector of one known number
to all of the encountered out-of-vocabulary numbers, as there is no guarantee that the number in the
candidate sentence hails from the same context and no guarantee that a chosen number is better suited
than any other number. Indeed, even making this selection random would create too much uncertainty
in the algorithm; as a result this number vector idea was not pursued further.

3.9 Finalising metric

To finalise the metric for comparison with other metrics in the dataset, the best performing parameters
are selected for each language, as well as an overall best performing single parameter. This single value
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gives a good starting point for any future language pairs which might use this metric before any tuning
of the parameters.

The final metric of this project’s implementation is titled WMDg, representing the ordering com-
ponent of the algorithm that attests to its fluency. Complementing the base WMD’s adequacy imple-
mentation, the altered WMD adds a dimension of fluency in order to better match the multifaceted
approach of translation evaluation. This is given as:

WMDg = WMD + § x Penalty + o x Missing

where Penalty is the ratio of chunks to matched unigrams, J is the weight parameter for that fragmen-
tation element, Missing is the ratio of missing words to total words in the candidate translation, and
« the weight parameter for that missing word penalty element.

cs-en de-en fi-en lv-en ru-en tr-en zh-en
6 0.13 0.11 0.09 0.18 0.15 0.50 0.18
o 0.10 0.02 0.10 0.02 0.20 0.12 0.12

Table 3.15: Best performing values of § and o for WMDg.

The best values of § and « for each individual language pair is given in Table . The best
performing parameters overall are the single values of § and « that give the best total value when
summing up all the correlations of the seven language pairs. This gives 0.18 as the value of § and
0.1 as the value of . Most of the values for all the different language pairs are very similar, with
the exception of Turkish-English. This is possibly to do with the sentence structure of the Turkish
language as well as the sentences within the dataset provided.

cs-en de-en fi-en lv-en ru-en tr-en zh-en

WMDo 0.532 0546 0.712 0.543 0.592 0.641 0.625

Table 3.16: Results of WMDg with best performing § and «.

The results of the metric on the seven language pair dataset is displayed in Table . While
some anomalous results still remain, the majority of the points fit along fairly well on the negative
correlation line, improved by the missing word penalty.

3.10 Alternative approaches not used

Some methods to introduce fluency to the metric were also initially considered but were abandoned
for reasons of complexity and practicality.

The first was to include the position of a word in a sentence within the embedding itself, known
as “position embeddings”. This would have allowed fluency to be included inside the WMD calcula-
tion itself, rather than applied as a post-calculation variable. However, these are mostly done with
convolutional neural nets [23] or transformer-based architectures [61] for machine translation, making
it less trivial to add to the code directly. Another idea was to change the calculation of WMD itself,
introducing the fluency component during the solution of the linear problem. This was also a problem
too complex to introduce in the timeframe of the project, so was left as a potential extension instead.



Part 111

Conclusions

52



Chapter 4

Results

4.1 Performance against other metrics

Comparing the performance of the best performing WMD metric against the other metrics of the
WMT17 task dataset, the results show that the metric performs at a competitive level, achieving re-
spectable results against state-of-the-art automatic translation evaluation metrics. Taking the finalised
WMD metric WMDg, Table [1] records the performance of the developed metrics, with an entry for
the best overall value of § (0.18) as well as « (0.10). It also has an entry for an “ideal” value of 4 and
a, the combining the best performing values of the parameters for the different language pairs.

cs-en  de-en fi-en lv-en  ru-en tr-en  zh-en
AuToDA 0.499 0.543 0.673 0.533 0.584 0.625 0.583
BEER 0.511 0.530 0.681 0.515 0.577 0.600 0.582
BLEND 0.594 0.571 0.733 0.577 0.622 0.671 0.661
BLEU2VEC SEP 0.439 0.429 0.590 0.386 0.489 0.529 0.526
CHRF 0.514 0.531 0.671 0.525 0.599 0.607 0.591
CHRF++ 0.523 0.534 0.678 0.520 0.588 0.614 0.593
MEANT_ 2.0 0.578 0.565 0.687 0.586 0.607 0.596 0.639
MEANT 2.0-NOSRL 0.566 0.564 0.682 0.573 0.591 0.582 0.630
NGRAM2VEC 0.436 0.435 0.582 0.383 0.490 0.538 0.520
SENTBLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512
TREEAGGREG 0.486 0.526 0.638 0.446 0.555 0.571 0.535
UHH TSKM 0.507 0.479 0.600 0.394 0.465 0.478 0.477

“wmMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607

WMDg, § =0.18, o = 0.10 0.532 0.543 0.709 0.542 0.590 0.615 0.625

WMDg, 6 = IDEAL, a = IDEAL 0.532 0.546 0.712 0.543 0.592 0.641 0.625

Table 4.1: Performance of different metrics in the WMT17 shared task against the two proposed
metrics. Trained/ensemble metrics are highlighted in grey. Bolded values signify the best performing
non-trained metric for each language pair.

Looking at the correlation results given, WMD and WMDg outperforms many of the established
metrics. Notably, the BLEU-based metrics SENTBLEU, NGRAM2VEC and BLEU2VEC__SEP have much
weaker scores, indicating the WMD metric’s success at outperforming traditional methods. Even
the optimised latter two metrics, which make use of fuzzy matches on token and n-gram embedding
similarities, are far worse than that of WMD. Of the metrics in the list, there are three which overall
perform better than the WMD metrics: BLEND, MEANT 2.0 and MEANT__2.0-NOSRL. For the
Russian-English language pair, the CHRF and CHRF+-+ are better performing, but is outdone by
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WMD otherwise. This provides a vote of confidence for using semantic similarity over string similarity,
as the approach is more fluid and allows the connotations of a text to shine through.

Of the metrics which outperform the implemented WMD), all are metrics which have evolved beyond
the basic string matching approach. BLEND is a metric which combines many other metrics, and is
also trained on data to produce a its strong scores [51]. This is less useful when applied to larger
datasets, as practice of this metric requires fairly large amounts of human annotated data to train its
model. Its position as an ensemble metric also means that there is a lot more complexity in calculation
as it will depend on many different variables. The metrics that it uses include many classic lexical
metrics such as BLEU and METEOR; this is complemented by more sophisticated metrics such as
CHARACTER and BEER. The MEANT metrics, on the other hand, are not trained but able to
achieve very high performance. This metric is similar to WMD as it uses distributional word vector
models to evaluate semantic similarity, doing so to gauge the sentence’s structure. However, it is reliant
on semantic role fillers, parsers which indicate the grammatical function of a word within a sentence
— be it an argument, predicate, modifier or any other feature. This creates the labeling that allows
the metric to check whether the candidate translation matches the reference translation semantically
and structurally. These are resources only available to some languages, a limitation that could make
it less useful in a wider context. There exists a NOSRL version, which has fairly strong results, but
may suffer from performance issues as there are many steps within the calculation [39]. However,
this is outperformed by the ideal version WMD g when considering the average correlation of all the
languages, shown in Table §.2.

average correlation of all 7 languages

BLEND 0.633
MEANT_ 2.0 0.608
WDMDg, § = IDEAL, a = IDEAL 0.599
MEANT 2.0-NOSRL 0.598
WMDg, § =0.18, o =0.10 0.594
CHRF++ 0.579
AuTODA 0.577
CHRF 0.577
WMD 0.576
BEER 0.571
TREEAGGREG 0.537
UHH TSKM 0.486
BLEU2VEC__SEP 0.484
NGRAM2VEC 0.483
SENTBLEU 0.481

Table 4.2: Average correlation of different metrics in the WMT17 shared task against the proposed
metrics, ranked in descending order. Trained/ensemble metrics are highlighted in grey.

4.2 Analysis

The WMD and WMDg metrics provide a fairly strong basis for correlation with human scores. Fo-
cusing on semantic similarity works better than traditional purely string matching metrics, but still
has some difficulties against metrics with more comprehensive training and modelling.

The results of WMDg with § = IDEAL are shown graphically in Figure §.1), showing the correlations
of the distribution. It should also be noted that the results of the IDEAL parameters do not vary too
much in comparison with the results of the static parameter values, which are displayed in Figure .2
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Figure 4.1: WMD with word order penalty against Human scores for the seven language pairs. Pa-
rameters § and « are the best values for each language pair.
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Figure 4.2: WMD with word order penalty against Human scores for the seven language pairs. Pa-
rameters § and « are set to static values of 0.18 and 0.10 respectively.



4.2. ANALYSIS o7

This suggests that the static parameters are a good basis for interpreting translation evaluation
for any new language pair. It also suggests that the performance of the metric can be somewhat
limited by its calculations as a finely tuned parameter will not provide a very significant performance
enhancement over a less precise parameter choice.

Nevertheless, it can be seen that a pattern of clustering around the centre of each language pair’s
graph is fairly evident. All of these are on a downwards trend line, showing the association between the
WMDg metric score and the given human score. Having such a dense group of points in the scatter
graph also suggest that the metric is fairly capable of handling straightforward translations where the
quality of the candidate translation is not overly contentious. Where the graphs have more points
straying from the general downwards pattern is around the extreme ends of the human score, along
the horizontal axis. These are sentence pairs where the scores of the annotators mark the translated
sentence as either extremely good or extremely poor. Naturally, this creates more disputable results as
opinions of a good or bad sentence can be affected by many factors, as mentioned previously. However,
as the annotations of this dataset are the combination of 15 different assessments, the human scores
of those points at extreme ends are likely to be reliable.

The range of the WMD metric is slightly variant for each language, as a result of the given dataset
and the inherent properties of each language pair. The basic WMD is constrained between 0 and 1;
with the additional word order penalty this increases to 0 and 1 + §. Naturally those languages with
higher values of § in their IDEAL parameter, such as Turkish, will feature greater values of the WMDg
score. Allowing this value of § to grow for Turkish-English prompts better correlation as points in more
moderate values of WMD can be increased by a greater amount, lowering the discrepancy between
sentences with very poor adequacy scores and those with poor fluency.

The effect of the fragmentation penalty is fairly evident when assessing how the penalty ratio of
chunks to matched unigrams correlates with the human score; providing an indication of how fluency
is important to a translation. Interestingly, the correlation is much better for some languages than
others. This is slightly related to how much the fragmentation penalty impacted the correlation from
WMD to WMDg. Table @ gives an_indication of how the penalty ratios of each sentence correlated
with the human score, while Table @ shows the improvement between WMD and WMDg for each
language.

cs-en  de-en fi-en lv-en ru-en tr-en zh-en
Penalty ratio 0.419 0.406 0.520 0.411 0.457 0.574 0.522

Table 4.3: Correlation between penalty ratio and human score of each sentence for all seven language
pairs.

cs-en  de-en fi-en lv-en ru-en tr-en zh-en

WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMDg 0.532 0.546 0.712 0.543 0.592 0.641 0.625
Difference 0.011 0.010 0.008 0.013 0.021 0.075 0.018

Percentage change (%) 2.11 1.87 1.14 245 3.68 133 297

Table 4.4: Improvement in performance of metric after implementing fragmentation penalty.

It can be seen that the improvement in performance of the Turkish language pair is much better
than the other languages, although the others also have improvements in performance. Nevertheless,
the addition of the fragmentation penalty does not do much to alleviate the impact of extreme values
on the correlation of the majority of points within the central cluster. Figure shows the results
of WMD and WMDg on the same graph. It can be seen that the overall shape of the points on the
scatter graph in both colours remains very similar.
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Figure 4.3: WMD (orange) and WMDg (blue) results against the Human scores for the seven language
pairs.
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One of the reasons the results do not significantly change in the different iterations of the metric
could be down to the dataset itself. The list of translations for each language all feature a fairly large
number of sentences which contain out of vocabulary words, which could lead to words not having fully
comprehensible representations with the zero vector resolution strategy. To analyse whether this is an
impacting factor in the constant shape of the WMD metric results, sentences with out of vocabulary
words are ignored in results of Table {.5.

cs-en  de-en fi-en lv-en ru-en tr-en zh-en
Sentences considered (%) 70.4 684 486 50.4 646 52.6 61.3
WMD 0.525 0.537 0.709 0.536 0.575 0.569 0.609
WMDgo 0.500 0.556 0.641 0.526 0.535 0.513 0.594

Table 4.5: Results of metrics, ignoring out of vocabulary sentences.

The results of this indicate that having words which are out of the embedding’s vocabulary are not
a major factor in the metric’s results. It should be noted that the results of WMD are better than
WMDg when ignoring these out of vocabulary sentences. This is potentially because the fragmentation
penalty is best at handling sentences which are poorly translated, which naturally have more out of
vocabulary words and a large number of chunks.

It is prudent then to analyse what the anomalous sentences skewing the correlation are. Graphically,
these are the points which stray away from the trend line and central cluster. Close inspection of these
specific sentences can provide an indication of where the metric falls down. When contrasted with the
performance of a different metric, it can be seen that some of these anomalies are not present in the
results of other metrics, suggesting an issue with the WMD metric rather than just the dataset. This
direct comparison is in Figure 4.4

WMD
WD

15 2

WD
WD

15 2

(c) tr-en, WMDgo (d) tr-en, MEANT 2.0

Figure 4.4: lv-en has better correlation for MEANT 2.0 and does not contain sparse points that
WMDg does; vice versa is true for tr-en. This shows how anomalous points weaken performance.
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4.3 Anomalous sentences

Taking two sentence examples far from the trend line from each of the different languages, a few
interesting results can be noted.

(1) Reference: The local wildlife will also not give them a break.
Candidate: And the wilderness will not be there.

Human score: -1.805

WMDp score: 0.425

(2) Reference: That is useless.
Candidate: That's useless.
Human score: 1.154

WMDp score: 0.423

Listing 4.1: Czech-English sentence pairs.

(3) Reference: The Assocation "sets an example for the entirety of Bavaria'.
Candidate: The association is considered to be "Bavaria's most exemplary".
Human score: -0.294

WMDp score: 0.586

(4) Reference: Mr Putin lashed out, accusing Ankara of stabbing Moscow in the

— back.
Candidate: Putin distributed and accused Ankara of, Russia in the backs pleases
— to be.

Human score: -1.787
WMDp score: 0.375

Listing 4.2: German-English sentence pairs.

The most obvious discrepancy in some sentence pairs within this extract are the large amounts
of untranslated words, which greatly impacts the final WMD metric. These are treated as out of
vocabulary words and given the generic zero vector by the metric, and are punished accordingly with
the missing word penalty. However, where these sentences struggle compared to other sentences with
missing words is the sentence length. These are largely sentences which are short in length, often just
a few words. Examples (5), (6), (7), and (10) are prime examples of this. The sentences are heavily
punished by the missing word penalty because of their short length, which makes these points shoot
upwards against the trend line. However, as these are generally bad translations, it may actually be
that the human scores are too lenient on these translations. The lack of correlation does not necessarily
mean a lack of agreement in translation evaluation, but a lack of nuance in defining differing degrees
of translation quality.

This difference in sentence length is also a factor in overly punishing sentences without missing
vocabulary, such as (2) and (9). The reference sentence is typically the longer sentence, means the
candidate translation is likely not to have enough depth and substance in their semantics to convey
the same message in such brevity. However, as the WMD metric needs to map every word from the
reference to another in the candidate, some meanings are forcibly distributed to other words in the
transportation problem, even if they do not make a large amount of sense. This makes the WMD
value lower than it probably should be, when it should be higher to reflect the poor semantics. This is
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(5) Reference: The education cuts continue.
Candidate: Koulutusleikkaukset continue.
Human score: -0.742

WMDp score: 0.831

(6) Reference: The offence against Tuuli was a clear one.
Candidate: Tuula violate palpably.

Human score: -1.141

WMDp score: 0.808

Listing 4.3: Finnish-English sentence pairs.

(7) Reference: Heat oil in a frying-pan.
Candidate: Panna uzkarse oil.

Human score: -1.197

WMDp score: 0.947

(8) Reference: It runs from August 19 until October 30.
Candidate: The exhibition is seen from 19.August to 30.0ctober.
Human score: 0.582

WMDp score: 0.793

Listing 4.4: Latvian-English sentence pairs.

because some words in the reference, instead of mapping wholly to one word in the candidate sentence,
might have to map a certain fraction to another word to make up the numbers in the constraints of
the transportation problem.

Proper nouns also remain a problem, as mentioned previously. Examples (3), (4), (12), (13) and
(14) all have names of people or places which are not part of the vocabulary. This makes determining
an appropriate vector for these words very difficult.

Lastly, a key problem with the WMD metric in comparison to human scores is its ability to recognise
appropriate sentence structures and general linguistic features in grammatically correct sentences.
Example (4) has a candidate translation which is very disjointed and grammatically nonsensical. While
there is a fragmentation penalty to handle the general fluency of the sentence, it can be seen that a lot
of the chunks are quite consistent in both sentences; “Mr Putin lashed out” against “Putin distributed”,
“accusing Ankara of ” against “accused Ankara of”, “Moscow in the back” against “Russia in the backs”.
The lack of fluency in this case is in terms of its grammar, which the implemented metric struggles
to detect. This is compounded by the fact that many of the words used are semantically similar,
matching the words across a very small distance in the semantic space. Another interesting feature
of this sentence is their use of the comma as punctuation. As the metric preprocesses away this
sort of punctuation, it is ignored in the calculation. However, in this example the comma is directly
contributing to the lack of fluency and intelligibility of the sentence, which may impact the human
score’s judgment.

This sentence pair is also problematic in its ending, which misses out the semantics of “stabbing”,
replacing it with “pleased”; the candidate translation also inserts this section rather nonsensically into
the sentence. This could potentially be a problem with the source language itself and the way it gets
translated into the target language. Some language pairs are closer in terms of sentence structures
and use of words, whereas others have vastly different structures. While the reference and candidate
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(9) Reference: And there are a host of examples like this throughout the
— country.

Candidate: And such examples of the country mass.

Human score: -1.741

WMDp score: 0.412

(10) Reference: Mr. Coe grimaced.
Candidate: Kou winced.

Human score: -0.793

WMDp score: 0.609

Listing 4.5: Russian-English sentence pairs.

(11) Reference: "THOSE WHO COMMITTED THE COUP ATTEMPT SHOULD BE CLEARED FROM THE
< STATE"

Candidate: "Blow" GIRISIMINDE BULUNANLARIN DEVLETTEN TEMIZLENMESI GEREKIYOR
Human score: -1.227

WMDp score: 1.504

(12) Reference: FETO ringleader Giilen's assets were seized
Candidate: Fed Elbagi Gulen confiscated assets

Human score: -0.012

WMDp score: 1.205

Listing 4.6: Turkish-English sentence pairs.

translations are clearly of a state-of-the-art level, the mismatch between the two languages could
potentially create a lot of inconsistency in finding a “gold standard” translation to work off of. Two
very similar languages are much more likely to end up having similar structures upon translation for
both candidate and reference, both carrying the same semantics and message, while two more polarising
languages could carry the same semantics and message but in two very contrasting styles, making it
less adaptable to the WMD fluency mechanism. Even with the different parameters for each language
pair, this sort of dissimilarity can still affect results.

Noticeably, a large proportion of these anomalous results are towards the negative side of the
human score; that is to say translations which human annotators have judged to be poor candidates.
The corresponding WMDgq scores for these are a mixture of high and low values, suggesting that there
is some inconsistency in the metric’s judgment of poor translations. On the other hand, the metric
is fairly good at matching the human scores for excellent translations, suggesting that it is easier to
quantify the degree of how good a translation is as opposed to how bad a translation is.

cs-en  de-en fi-en lv-en ru-en tr-en zh-en
WDMDg 0.532 0.546 0.712 0.543 0.592 0.641 0.625
WMDg (ignoring selected sentences) 0.537 0.548 0.715 0.551 0.589 0.645 0.632

Table 4.6: Results of WMDg with and without ignoring selected sentence pairs.

Without these few selected sentences, the metric naturally performs better, as seen in Table @ It
is impertinent to selectively remove cases which weaken the results, but this does show that the effect
of a couple of sentences can be very large on the overall results. It also gives an indication of where
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(13) Reference: Helen Glover and Heather Stanning haven't lost a race in five

< years.
Candidate: Helen Graf and Heather Xi Solyariya in five years the outstanding

- defeats.
Human score: -1.727
WMDp score: 0.443

(14) Reference: Trump spokeswoman Hope Hicks didn't immediately return a message

— seeking comment.
Candidate: The Trump spokesmen had not responded to this news.

Human score: 0.315
WMDp score: 0.626

Listing 4.7: Chinese-English sentence pairs.

the metric is lacking in order to better improve results, and perhaps where this metric is limited in its

construct or implementation.



Chapter 5

Evaluation

This chapter aims to give a holistic overview and evaluation of the project’s achievement. To clearly
gauge the work of the implementation, the work done described against the objective of the project laid
out in the introduction. This was to create an evaluation metric focusing on semantic similarity rather
than string similarity, so that assessing the quality of translation can better preserve the message and
tone of the original text. This would enable larger scale translation evaluation as two texts could be
directly compared using neural word distributional models as a basis of a semantic space.

5.1 Metric performance

As described in the previous section, the quantitative performance of the metric is very competitive
with the state-of-the-art metrics. It greatly surpasses the performance of simple string matching
metrics and has strong results for the seven language pairs it was tested on, coming out top for two of
the seven. This is a sign that the concept of WMD as a translation evaluation metric is relevant and
even applicable to further language pairs.

While the basic WMD metric is straightforward to calculate and use, the improved WMDg metric
introduces the inconvenience of having two tunable parameters in the calculation, o and §. These two
parameters can be set per language for best results or kept at a static value in a trade-off for slightly
worse correlations. The former would have to necessitate a large enough dataset to test the values on,
which can be expensive as it requires human annotated data to compare correlations.

As elaborated in the previous chapter, the metric also has some inherent weaknesses in its construct.
As it relies on a given neural word distributional model to calculate a WMD score, results are dictated
by the quality of the embeddings used as well as the size of the vocabulary. Embeddings with lower
dimension naturally have a lower quality as not enough semantic detail can be conveyed through each
of the dimensions, while those with higher dimension generally reach a plateau after a given number,
with extra dimensions only causing greater performance complexity [66]. Even embeddings with the
same dimensionality can vary in performance as a result of its training parameters: the training data
used, the type of model trained, the lower frequency limit are all factors that can make one model’s
word vectors more meaningful than another’s.

Similarly, the impact that vocabulary size can have on performance of this WMD metric is signifi-
cant. Embeddings with very few words, perhaps in the hundreds or thousands, are not likely to be able
to account for every word in a translation sentence pair. Instead, many words are going to be left as
out of vocabulary words and dealt with in a specific manner. Even using the 1 million vocabulary size
fastText embedding, at least 30% of every language pair’s 560 sentence pairings contained a missing
word.

Handling of out of vocabulary words is also something the metric does not necessarily do very well.
The proposed strategy is to give every occurrence of an out of vocabulary word the zero vector, acting
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as a constant neutral out of vocabulary value. However, this essentially treats all of these missing
words in the same way; be it a proper noun or an untranslated word still in a foreign language. Ideally
there would be no out of vocabulary vectors in the dictionary, but in the only method that enabled
this, the fastText embeddings using n-grams, performance was poor. As the out of vocabulary rate
was not necessarily high given the 1 million vocabulary size, setting this zero vector universally did
not severely weaken results. Nevertheless, the best possible embeddings should be used for the best
results.

Another weakness of the metric is its ability to deal with sentence pairs where the two sentences are
of varying length. With the implemented fragmentation and missing word penalty, this is compounded
when the sentence is very short, as each word is punished with extra severity. In addition, the makeup
of the WMD calculation itself means that every word in the reference has to map to something in
the candidate sentence; if the sentence lengths of both do not match then there are cases where the
mappings are not bijective, causing some words to map to others just to fulfill the constraints despite
being slightly nonsensical. To handle this the metric could be adapted to include penalties that take
into account sentence length. The brevity penalty of BLEU or NIST could be a starting point for this.

Overall, the WMD metric has several aspects where it is weak, which can be improved upon
and better tuned. However, WMD provides a strong basis for this change, as its results are already
fairly promising compared to the state-of-the-art. Nevertheless, the metric is heavily reliant on the
embedding it is provided, and this coupling is inevitable given the method of calculating semantic
similarity. Should another method less reliant on linguistic resources exist to find similarity of words
within a semantic space exist, the metric can still be used, but this appears unlikely. As the WMDg
version of the metric is merely a heuristic to the basic WMD), the general performance and shape of
its results do not differ too greatly, but the scores do become more optimal.

5.2 Testing

Owing to the expensive nature of human annotation, the experimental dataset was largely focused on
the seven language pairs into English of the WMT17 metrics task. This was limited to 560 sentence
pairs per language, giving a total of 3920 sentences in total. While the French and German data initially
tested had more sentences to reference, their human annotated scores were not well distributed, as many
sentences were given the same score. For more variety in testing and a better overview of the situation,
it was deemed more appropriate to just focus on the English data. Using exclusively English data also
made it easier to understand calculations made when reading logs of the executed code, as this was
a personally intelligible language. However, this certainly did limit the amount of data available to
analyse the metric’s success.

Lack of data also hampered the possibility of using the metric to attempt one of the other objec-
tives of the project, directly comparing source texts to candidate translations. There did not exist an
adequately large or sufficient dataset which gives a human annotated score to a candidate translation
directly in comparison with the source sentence, rather than one which compares the candidate trans-
lation with a reference gold standard translation. This, coupled with time constraints, meant that it
was not possible to use the metric to make this direct comparison. Nevertheless, the idea remains
possible, which will be described in the following chapter.

As the results provided by WMT only show the raw score of each of the other metrics, without any
information about the calculation process, it becomes slightly difficult to interpret the results of the
other metrics and how they are able to perform better than the WMD metric. The correlations can be
compared, as can the individual scores, to see how the metric ranks amongst others and whether other
metrics face the same problems as WMD. Given the general pattern is similar for most of the language
pairs, it suggests the dataset has some translations which are quite problematic for most metrics and
will naturally weaken correlations. However, there are also points which drift away from the general
trend line in WMD that do not in other metrics, showing their ability to handle these cases better
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— but as the implementation details of these are not as readily available it is hard to tell how this
happens.

5.3 Implementation

In terms of implementing the metric, there were several areas which could have been improved. In the
initial stages of the project, the workflow consisted of making changes to the experimental settings,
running the experiments over the entire dataset, then collating the results to calculate correlation and
visualise the data graphically. These experimental settings were mostly things like the distance function
and the amount of sentence preprocessing, as well as the out of vocabulary resolution strategies. This
procedure was fairly time consuming, as each iteration of the experiment would take around half an
hour to complete.

The time taken to execute one experiment iteration was down to two places in the code; loading
the embedding and the actual WMD calculation itself. Given the size of each embedding is several
gigabytes, loading this into memory usually took several minutes. Memory mapping techniques were
used to speed this up so that each embedding only needed to be loaded once; though this was only
applicable for embeddings which did not use the fastText n-gram approach. The actual calculation of
WMD is of reasonable speed, and is of complexity O(p?®log p), where p is the number of unique words
in the sentence pairing. As this value is fairly low, the cubic scale does not hold back the calculation
too much. However, this coupled with the use of embeddings are fairly CPU-dependent, which causes
strain on computing resources. In addition, GPU optimisation is not available for training and using
word2vec and fastText embeddings, making this resource a bottleneck. The amount of memory on the
computer also had an impact on being able to load the embedding. As a result, the experiments had
to be run on college computers, an extra inconvenience when working. Use of Git was key to ensure
version control across multiple computers.

When tuning the parameters § and o for WMDg, the experiments did not need to be run multiple
times, as the WMDg result is only based on adjusting the chunk to matched unigram ratio by these
weights. Collecting the ratio once was enough to adjust this repeatedly afterwards.

By using the PyEMD library, the calculation of WMD was limited to the library’s implementation,
without any possible alteration or optimisation. This fast wrapper for Python includes some optimi-
sations like thresholding the ground distance, but misses out on some optimisations described in the
WMD paper [32] of word centroid distance or prefetching and pruning data.

One key to the smoothness of the implementation and analysis was the creation of logs to record
the process of each WMD calculation. This helped greatly in making sense of the WMD calculation,
removing it from the black box it came in and understanding what each parameter and variable was
doing. Recording all this information was particularly helpful in analysis of anomalous results in the
previous chapter, as the distance matrix and flow matrix of each sentence pair could be reviewed.

As a whole, the implementation of the project was smooth and fairly organised, but the actual
execution of experiments unfortunately suffered from some bottlenecks. Despite this, the WMD ex-
periments run were able to be done without much technical difficulty, and produce results which are
both valid and competitive.

5.4 Usage

As the use of the metric was self-contained within the experiments run, there was never a need for
this project to have a user-facing platform for one to test the metric on. This is potentially something
which would have made gathering qualitative feedback easier from users, as a clean frontend for this
metric would create a good platform for people to query the WMD score for any arbitrary sentence
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pair. Creating a program or API to help visualise this may have helped the presentation of the metric,
although this does remain secondary to the metric’s actual functionality.

5.5 Qualitative feedback

The contents of the project have also gone through evaluation from established reviewers in the field.
This metric has been submitted to the WMT19 conference [L0] along with a brief paper summarising
the gist of the metric’s work and results. As part of the process, the Program Committee reviewed
the work on a 1 to 5 scale on the following criteria: Relevance, Soundness / Correctness, Clarity,
Meaningful Comparison, and Overall Recommendation. The feedback of the two reviewers, along with
their detailed comments, are included in Listing Ell

REVIEWER #1

The authors present an extension to the Word Mover's Distance metric for MT
— evaluation to take word order into account to include fluency in the score.

— They accomplish this by including a weighted fragmentation penalty into the
— score, similar to the one in the METEOR metric. The results show improved
< correlation with human judgments when compared to the original WMD score. This
— gain comes however at the expense of having a tunable parameter in the
« calculation of the score, which is likely to be language-specific.
Relevance (1-5): 5
Soundness / Correctness (1-5): 4
Clarity (1-5): 3
Meaningful Comparison (1-5): 4
Overall Recommendation (1-5): 4
REVIEWER #2
The paper applies a evaluation method (WMD) that has been used to measure document

distance to MT translation evaluation, and modifies the method by introducing a
heuristic penalty to address word order. Experiments show that it is better
than many evaluation metrics using surface string matching but still seems to
fall behind of, e.g., MEANT 2.0, that also uses fuzzy embedding matching. The
method that uses a transformation to measure distance for eval MT seems

R

interesting to me and may serve as a framework for further improvement.
Relevance (1-5): 5
Soundness / Correctness (1-5): 3
Clarity (1-5): 4
Meaningful Comparison (1-5): 4
Overall Recommendation (1-5): 4

Listing 5.1: Reviews of WMD metric from the Program Committee of the WMT19 conference.

From this it can be seen that the overall view of this metric is positive, with strong agreement
on its relevance to translation evaluation. In particular, the second reviewer mentions the promise of
using transformation to measure distance in evaluating machine translations. This is essentially the
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Human WMD Review 1  Review 2 Review 3 Review 4 Review 5
Good Good Good Good Good Good Good
Good Good Good Good Moderate Good Good
Good Moderate | Good Good Good Good Moderate
Good Good Moderate Good Good Good Good
Good Good Good Good Good Good Good
Moderate Good Moderate Moderate Moderate Moderate Moderate
Moderate Moderate | Moderate Good Moderate Moderate Moderate
Moderate Moderate | Good Moderate Moderate Moderate Moderate
Moderate Bad Bad Moderate Bad Moderate Moderate
Moderate Moderate | Moderate Moderate Moderate Moderate Moderate
Bad Bad Moderate Bad Bad Bad Bad

Bad Bad Bad Bad Bad Bad Bad

Bad Bad Bad Bad Bad Bad Moderate
Bad Moderate | Moderate Moderate Bad Bad Bad

Bad Bad Bad Moderate Bad Bad Bad

Table 5.1: Survey results of five peers asked to review 15 sentence pairs from the Chinese-English
dataset.

use of the metric to compare a source text to a candidate translation, which will be elaborated upon
in the conclusion.

Outside of this, feedback was also sought from peers to review the overall sanity of the metric
and approach. To make this process simple and straightforward, the questions asked were simple
categorisation problems, focused on whether the metric worked well on a broader scale rather than
in slight nuances. This broader scale split a sentence pair into three categories: a good translation,
a moderate translation, or a bad translation. Sentence pairs were selected where the human score
and WMD score were in agreement in this categorisation, as well as pairs where they were not. To
prevent ambiguity, only translations well into the upper or lower third of scores were selected as good
or bad translations respectively. There were 15 sentences selected in total. The demographics of this
qualitative survey were a group of five bilingual students, fluent in both English and Chinese. As
a result Chinese-English dataset was the focus of survey, to prevent any misunderstandings due to
mistranslated words or lack of context. The results of this survey are shown in Table p.1l.

The results of this indicate that there is a general consensus around the labelling of sentence pairs.
Most pairs in which the human score and WMD score match are also matched by the reviewers, while
those with a slight variation also see a slight variation from the reviewers. Most noticeably, there is
no great divide over the categorisation of sentences; no sentence pair which skips over the moderate
categorisation and polarises between good and bad. This is a good sign for the metric’s growth as it
suggests that scores are not volatile. It also shows that the correlation between these scores and the
human score is well founded and agreed upon by random users.



Chapter 6

Conclusions & Future Work

The work in this project has achieved the goal of proposing a novel method of evaluating machine
translations, focusing on word embeddings and the semantic space. To make the task achievable in
the given timeframe, its scope had to be reduced to the creation and tuning of this metric, rather
than any application of it to direct translation evaluation problems between a source text in one
language and a candidate translation in another, as outlined in the objective. The metric created has
been able to make use of large scale word embeddings of high dimensionality to measure semantic
similarity. It has also been able to utilise the innovative Word Mover’s Distance to compare values
within the semantic space. This allows sentences to be compared by methods other than traditional
string matching metrics, providing far more flexibility and semantic understanding to the translation
evaluation process.

The results of this work are encouraging, with the metric performing strongly against state-of-
the-art metrics. In particular, the metric greatly outperforms known string matching metrics, only
losing out to the trained ensemble metric BLEND and the linguistic resource dependent MEANT _2.0.
Of course, there remain known weaknesses in the metric; short sentences, embedding quality, out of
vocabulary words to name a few, but both the WMD and WMDg iterations of the metric provide
strong results that are able to perform closely with gold standard human evaluations. The improved
WMDg version of the metric is also able to handle the issue of word order that is neglected by the
baseline WMD’s bag-of-words approach, but it does necessitate the tuning of two parameters a and §
— though static values for these have been proven to provide similar results.

The hope is that the metric designed and implemented in this work provides insights to how the
semantic space can be used within the machine translation evaluation field, as well as how it can then
be extended to other natural language or translation tasks. It was found that combining insights from
previous literature along with creation and experimentation of different components enabled effective
solution of the initial challenge to create an automatic evaluation metric that focused on word meaning
while still maintaining a semblance of fluency.

6.1 Lessons learnt

A key to take away from implementing this type of project is the importance of organisation. This
applies for the writing of code, collation of results, or even the writing of the report. However, where
this most applies is the handling of data and resources. With the many different experimental settings
run during this type of work, it was important not to mix up any results and make sure each setting
was being run with what it was labelled as and not anything else. This ensured integrity of results,
paramount to development of the metric. This was initially a big problem before a good structure was
set up for the project; as the project grew a configuration file was set up to alter these variables in the
code programmatically rather than manually to avoid anything being neglected.

69



70 CHAPTER 6. CONCLUSIONS & FUTURE WORK

The use of WMD as a distance measure within the semantic space was a good starting point
for development of an evaluation metric, which set up the possibilities of word order penalties and
fragmentation penalties. The word order penalty first appeared more intuitive, but it became clear
that it was not a good method to evaluate fluency as compared to the fragmentation penalty. This was
a penalty inspired by previous literature, showing the importance of building and adapting successful
approaches. While the idea of the word order penalty did not work here, the work could remain useful
somewhere along the line for considering word order in a different context.

Another critical take from the project is the need to handle out of vocabulary words in a semantic
embedding focused metric. Simple string based methods do not have this issue, as there is no dictionary
to speak of. Semantic word vectors are the building blocks of this metric and need to be counted for
each occurring word in the sentence pair. There are a multitude of strategies to handle this; the one
chosen for its best performance in this case was the zero vector. There may have been other single
vectors that would have produced better results but this was the most straightforward choice and
required no tuning. The approach of fastText n-grams appeared promising as it meant there would
be no out of vocabulary words; however this was not able to combine well with WMD and produced
poor results. This may have been due to issues with the many mistranslated words in the dataset’s
sentence pairs, which would not have made sense to use n-grams to piece back together. This n-gram
approach remains an available avenue for future work in the area.

This issue of the embedding used is also critical to the success of WMD; the better quality the
embedding is the better results will be. The results in this set of experiments found the best performing
embedding to be the pre-trained fastText embedding of vocabulary size 1 million. Different datasets
may be more optimised for different embeddings or even their own trained embeddings. While training
embeddings was pursued in this project it was not a heavily considered option due to the computing
sacrifice and cost needed to train just one embedding on a corpus just a fraction of the size that pre-
trained embeddings train on. The embeddings which were trained in this experiment may have been
done using suboptimal parameters, leading to poorer performance.

It is also clear from the implementation of this metric that certain values of o and § work better on
different language pairs, which begs the question of how a new language pair will adapt to the metric,
or even how the same language pair will adapt with a new set of sentence pairs as data. This could
be tuned for each language pair with a test set of data, or the static values could be used at a slight
performance loss — which would still likely outperform the baseline WMD.

6.2 Future Work

To improve the metric in the future key weaknesses can be tackled. The most solvable of these is
the sentence length discrepancy which creates the anomalies seen in given examples. This could make
use of a brevity penalty or any other factor that takes into account difference in sentence length. If
implemented, this should improve results for all languages by bringing those points further away from
the general pattern closer to the trend line. Other factors such as embedding quality are less feasible
to change, although they will also bring improved results.

This work within semantic spaces can also be extended to the second part of the objective; allowing
translation evaluations to be directly carried out between a source text in one language to a candi-
date translation in a different language. Comparisons of two segments are currently done within the
monolingual vector space. In the case of these experiments, this is the English vector space. Future
translation evaluations can make use of what is known as cross-lingual embedding spaces to carry out
the same calculations. This carries vectors for two languages in a single vector space, so one space
would represent two languages, and carry words in the vocabulary of both languages. This should place
similar words in both languages in the same area of the vector space, so that comparison can be made
as if all the words were part of one common monolingual space as done throughout this project. Figure

describes how the embeddings of two languages are transformed into one cross-lingual space. Work



6.2. FUTURE WORK 71

into cross-lingual embeddings has been growing in recent years [] and this metric could leverage the
potential of this area in the future to further improve automatic translation evaluation.

Figure 6.1: Transformation of embeddings of two languages X and Y (left) into one cross-lingual
embedding W (right).
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