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Abstract

Neural networks have a reputation for behaving as black-boxes. To motivate their usage
in real world systems their interpretability is essential. Evidently, there has been a lot of
discussion in the community regarding this aspect of neural networks.

While most of the recent interest has focused on providing local explanations, there
has been a much lower emphasis on studying the effects of model dynamics and its impact
on explanation. We address the challenges of both over-confident and under-confident
predictions with interpretability using attention distribution. Our results indicate that
the means of using attention distributions for interpretability are highly unstable for un-
calibrated models.

We also conduct a comprehensive study on the behavior of deep learning models
under different random seed initializations. We try to quantify the model in-stability as a
function of random seeds by investigating the effects of the induced randomness on model
performance, attention mechanisms, and the robustness of the model in general.

Our experiments indicate that deep learning models can behave in-consistently, pro-
viding counter-factual explanations, under the impression of different random seeds. We
propose a novel technique called Aggressive Stochastic Weight Averaging (ASWA) and an
extension called Norm-filtered Aggressive Stochastic Weight Averaging (NASWA) which
improves the stability of model over random-seeds. With our ASWA and NASWA imple-
mentations, we are able to improve the robustness of the original model, on an average,
reducing the standard deviation of the model’s performance by 72%.
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Chapter 1

Introduction

Nowadays, artificial intelligence plays a crucial role in different aspects of our day to day
life. Deep learning[GBC16] (and neural networks in general) has been a major driving
force for this progress. It has proven its excellence in a variety of tasks ranging from
image analysis [KSH12], understanding natural languages [CW08], speech recognition
[HDY+12], movie recommendation systems [Xue18] among others. A lot of these ma-
chine learning models (especially, neural networks) are opaque, non-intuitive, and diffi-
cult for people to understand. Therefore, explainable artificial intelligence is essential for
users to trust and understand this technology.

1.1 Problem statement
With the recent advancements in neural networks, an increasingly important aspect for
them is their interpretability. For their practical usage in production systems, it is impor-
tant that neural networks (including Deep neural networks – DNNs) are inferable by their
users. For instance, in a medical diagnosis system, it is not possible to rely on a black-
box model. Each decision in those cases should be open to validation from an expert.
Similarly, in autonomous cars, given the sensitivity of each decision, the models have
to be reliant and transparent. Unfortunately, in terms of explaining their output, neural
networks have a reputation for behaving as a black-box. Their complex structure with
hundreds of parameters and variables makes it hard to understand what the model has
learnt and how it behaves.

As expected, there has been a lot of development towards demystifying these models
and the research continues till this date[EBCV09, MV15, LTB+13, SVZ13, BBM+15].

In this project, we aim to analyze various dynamics of neural models that report its
interpretability. We primarily focus on models that use attention mechanism (explained
in Section 2.3) to explain their outputs.

1.2 Motivation
Some of the key motivations for explainable/interpretable neural networks are mentioned
below.

• To build user trust and transparency. Users can be aware of what the system has
learnt.
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Figure 1.1: Figure highlighting the black-box nature of a neural recommendation system.

• They can helps us to understand the model and check if it works the intended way.

• Sometimes, interpretability also helps us in improving the accuracy of the model
(e.g. attention based neural recommendation systems[Xue18]).

• Recently, there have been legislative enforcements (by the European Union) on the
"right to explanation" which gives users the right to ask for an explanation of an
algorithmic decision that was made about them. This suggests that in the future it
might be necessary for any (user centered) AI system to be explainable.[Lip17]

1.3 Contributions

• In the first part of the project (Chapter 3) we focus on neural-networks based rec-
ommendation systems, especially the ones that claim interpretability using attention
(discussed in Section 2.3).

We analyze various model dynamics like calibration (measure of over-confidence
or under-confidence in the model) (Section 2.4), reliability of attention weights and
the stability of those models. We perform a focused study on the impact of model
interpretability in the context of calibration (discussed in Section 2.4). Specifically,
we address the challenges of both over-confident and under-confident predictions
with interpretability using attention distributions. We try to relate these model dy-
namics with one another. Our results indicate that the means of using attention
distributions for interpretability are highly unstable for un-calibrated models. We
also propose a solution (Section 3.4.3) to fix the problem of un-reliable explanations
(from attention weights) highlighted from our experiments.

• In the second part of this project (Chapter 4), we focus on the stability of DNNs,
used in Natural Language Processing (NLP) systems[CW08], again in the context
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of their interpretability and reliability. We measure the impact of random initializa-
tions on different aspects of DNNs and try to quantify the in-stability in them with
various experiments.

Our analysis suggests that random-seeds can adversely affect the consistency in
models resulting in counter-factual explanations and interpretations. We propose
a novel technique called Aggressive Stochastic Weight Averaging (ASWA)(Section
4.4) and an extension called Norm-filtered Aggressive Stochastic Weight Averaging
(NASWA)(Section 4.4.1) which improve the stability of model over random-seeds
by tweaking the training procedure. With our ASWA and NASWA implementa-
tions, we are able to improve the robustness of the original model, on an average,
reducing the standard deviation of the model’s performance by 72%.

1.3.1 Publications
• Model Explanations under Calibration: Our paper[RJ] (to be published in July)

based on the research done in Chapter 3 has been accepted by The International
Workshop on ExplainAble Recommendation and Search (EARS 2019)1 (a part of
the International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval 2), to be held in Paris in July.

• On Model Stability as a Function of Random Seed: We have written another
paper based on the work from Chapter 4, submitted to The SIGNLL Conference on
Computational Natural Language Learning3 to be held in Hong Kong in November
2019 (results for acceptance to be announced in July).

Both the submitted papers have been added to the Appendix of this report.

1https://ears2019.github.io/
2https://sigir.org/sigir2019/
3https://www.conll.org/2019
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Chapter 2

Background and Related work

In this section, we look at the related works on the range of topics that we will be looking
into during the course of this project. The key topics include neural attention (Section
2.3), calibration (Section 2.4), stability of neural networks (Section 2.5) among others.

In the first part of this project (Chapter 3), we focus on Recommendation systems
(Section 2.1), however, for the second part of the project (Chapter 4), we perform our ex-
periments on Natural language processing (Text-classification and Question-Answering)
based (deep) neural networks (Section 2.6).

2.1 Recommendation systems

Given the growth of content available on the web, users are often greeted with an overflow
of choices. Thus, it is important to advertise content that matches the user’s interests. This
is where recommendation systems have started playing an important role. These systems
incorporate user preferences (implicit or explicit) when picking the items to be served to a
particular user. At this point, recommendation systems are critical instruments to enhance
user experience in many online websites and applications. For instance, 80 percent of
the movies watched on Netflix were suggested to the users from their recommendation
system[Zha18a].

Recommendation systems are used for item filtering based on user preferences in a
variety of areas including movies, news, books, social recommendations and products in
general. There are mainly three approaches to recommendation systems:

• Collaborative Filtering: These methods are based on capturing similarity between
users (or items) based on the multiple user-item interactions and recommending
them likewise. Figure 2.1 shows a user based collaborative filtering model where
we recommend item C to the active user because of the preferences of users that are
similar to them.

• Content based filtering: These models make recommendations based on the user-
item preferences. They try to capture item (content) features that a user prefers. As
we can see in Figure 2.2, in these recommendation systems, the items are recom-
mended based on similarly-featured items that the user has liked in the past.

• Hybrid systems: These models combine multiple techniques together to achieve
better accuracy by capturing better user-item preferences.
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Figure 2.1: Figure showing the working of a Collaborative filtering algorithm. Image
source: [Cha17]

Figure 2.2: Figure showing the working of a Content based filtering algorithm. Image
source: [Cha17]
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Figure 2.3: Basic architecture of an artificial neuron in a neural network. Image source:
[Cas]

2.1.1 Neural networks in recommendation systems
Neural networks

Neural networks (Artificial neural networks) are a framework for machine learning mod-
els where the basic architecture is a collection of artificial neurons connected together
(aggregated in a layered structure). These neurons receive and process signals and then
signal additional artificial neurons connected to them (basic architecture shown in Figure
2.3).

Deep-learning neural-networks

Deep-learning networks are representation-learning models with multiple (neural) layers
of representation. These non-linear modules transform the representation (starting with
the raw input) into a representation at a higher, slightly more abstract level. With the
composition of enough such transformations (layers), it is able to learn complex functions.
Figure 2.4 shows how a deep neural network learns and classifies animals, given their
image as the input.

Motivation for neural networks in recommendation systems

The conventional models used in recommendation systems have limitations on the com-
plexity of the model, the types of inputs etc. A lot of these problems have been overcome
by using deep learning/neural models. The main advantages of using neural-networks in
recommendation systems are[Zha18a]:

• Unlike other algorithms, neural models are capable of capturing complex depen-
dencies and non linearities in large sets of data.

• They can incorporate additional data when training and can learn from large amounts
of auxiliary information, which is usually available to recommendation systems.
For example, in content based filtering, convolution neural network models can be
used to learn intricate user-item relationships.
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Figure 2.4: Working of a (deep) neural network for classifying animals in images. Image
source: [Gun17]
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Figure 2.5: Generalized Matrix Factorization model architecture.

• Neural network models are more flexible and modular than other algorithms which
are designed for particular recommendation problems. Frameworks like Tensor-
flow, Keras etc. make it easy to re-use and combine different neural structures and
formulate powerful hybrids capable of capturing multi-modal features simultane-
ously.

• Particular DL techniques prove to be useful for some typical recommendation prob-
lems e.g. session-based recommendation systems can be modelled with recurrent
neural networks[Hid16].

2.1.2 Models in focus
For our work in Chapter 3, we focus on collaborative filtering based neural recommen-
dation systems. The primary idea is to learn representations for users/items from the
implicit/explicit user interactions and then use those representations to predict ratings.
More importantly, we will look into a subset of these models, which can explain their
recommendations.

Genralized Matrix Factorization (GMF)[He17]

This is one of the simplest neural models and is able to mimic the Matrix Factorization[LS01,
LS99] model. The model obtains user and item embedding vectors (via the Embedding
layer in Figure 2.5) from the one-hot encodings of user and item ID. Then it takes an
element wise product (also called Hadamard product) of the two latent vectors. Then it
applies the weights and the activation function of the last layer to get a single scalar value
representing the predicted rating of the item. One can deduce that the Matrix Factoriza-
tion method is a subset of this model (hence, named Generalized Matrix Factorization).

Neural Collaborative Filtering (NCF)

This model can be seen as an extension to the GMF model discussed in the previous
section. Here, instead of taking an element-wise product of the user/item latent vectors,
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Figure 2.6: NCF model architecture. Image source: [He17]

the model concatenates them and add hidden layers on the concatenated vector, using a
standard Multi Layer Perceptron (MLP) to learn the interaction between user and item
latent features. This way, the model becomes more flexible and is able to learn more
intricate relations.

In terms of the structure (shown in Figure 2.6), the MLP layers are stacked in a tower
fashion, such that the bottom layer is the widest and each successive layer has a smaller
number of neurons (see fig. 2.6). This way the model learns more abstract features with
each successive layer.

Deep item-based collaborative-filtering (Deep ICF)[Xue18]

As the name suggests, deep ICF makes recommendations based on higher order item
relations. Comparing to the NCF model discussed in the previous section, the deep ICF
model differs at the embedding layer. Here, instead of representing users as a latent vector,
it represents them as a group of item latent-vectors, one for each historical item that the
user has interacted with (shown in Figure 2.7).

Next, in the pair-wise interaction layer, it takes the element-wise product of the target
item’s latent vector with each of the historical items’ vectors. Since the number of histor-
ical items of different users may vary, the output of pairwise interaction layer will have
different sizes.

Next, in the pooling layer, it produces a vector of fixed size to facilitate the deep
interaction layers. This is done either via weighted average pooling or attention based
pooling. The output of the pooling layer is a vector which condenses the second-order
interaction between historical items and the target item. Similar to the NCF model, the
higher order interactions are captured with a multi-layer perceptron.
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Figure 2.7: Deep ICF model architecture. Image source: [Xue18]

2.2 Explaining recommendation-systems

For recommendation systems, building models where the recommendation algorithm not
only provides a recommendation list as output, but also naturally works in an explain-
able way and provides explanations to accompany the recommendations has gained some
attention in the community[Zha18a, Zha18b]. The significance of explaining automated
recommendations is widely acknowledged [HKR00, TM07]. Explanations also give users
the opportunity to fix incorrect representations or recommendations. For these reasons,
there has been significant research on ways to explain different types of recommendation
systems. We refer the reader to [ZC18] for a detailed survey on explainable systems.

The main types of explanations that these recommendation algorithms can have are
[Zha18b]:

• User/Item based: These recommendations are mostly for collaborative-filtering
based models. This survey [Her00] discusses various ways of explaining a recom-
mendation system to its users. Figure 2.8 shows an effective explanation which
justifies a recommendation based on how the neighbors (similar users) rated the
target item.

• Feature based: These are usually based on content based filtering algorithms
where recommendations are due to some target item’s feature that the user has ex-
plicitly (or implicitly) shown interest towards. For example, as we can see in Figure
2.9, the recommended item is visually explained by highlighting the decisive fea-
tures in the item. Note that the highlighted parts can be different for different users.
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Figure 2.8: Explaining Collaborative-Filtering recommendations. Image source: [Her00]

Figure 2.9: Personalised visual explanations for content based recommendations. Image
source: [Che18]
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Figure 2.10: Using t-SNE for neighbor based explanations for NCF recommendations.

2.2.1 Explaining neural recommendation systems
Since explaining neural networks and explaining recommendation systems have been
points of research for a few years now, their amalgamation has given us some interesting
approaches to tackle our problem. In this section we will discuss a couple of techniques
that have been proposed to explain their respective recommendation models.

Neighbour based explanations

As mentioned earlier, user/item based explanations work well for collaborative filtering
based methods. We adapt the same technique to generate explanations for a model like
Neural Collaborative Filtering. Here, we project each user latent vector (k dimensions
each) onto a two dimensional plane. This can be done using techniques like PCA (Princi-
pal Component Analysis) or t-SNE (t-Distributed Stochastic Neighbor Embedding).

In Figure 2.10, clusters of users with similar interests can be seen. This way we can
explain a recommendation based on the common interests of users in the same neighbor-
hood as the target user. A similar technique has been used in this paper [Abd16] to further
enhance the accuracy of the recommendation model, while making it more explainable.

Deep item-based collaborative-filtering with attention

As mentioned earlier, in deep ICF, one of the ways to perform pooling is to use an attention
network on the pair-wise product vectors between the historical items and the target items’
latent vectors.

15



Figure 2.11: Deep ICF model architecture with attention based pooling layer. Image
source: [Xue18]

With the attention pooling layer, the model is able to differentiate between the varying
contributions of user’s historically interacted items for the final prediction. For example,
if the user gets recommended to buy a phone cover, the model’s explanation should be the
phones that they purchased before rather than the cameras or clothing products.

Figure 2.12: Illustration of the attention layer in the DeepICF model. The attention
weights are being computed via another hidden neural layer. Image source: [Xue18]

Section 2.3 explains in detail how attention works and how it is used to generate local
explanations.

2.3 Neural Attention-networks
Attention mechanisms[VSP+17], in neural networks, are known to provide the function-
ality for the model to focus on certain parts of the inputs or features.

Technically, the purpose of the attention later is to calculate weights corresponding to
the input features. It consists of a similarity function f , which takes h as input (usually the
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vector representations/embeddings of the input features). The similarity function maps h
to scalar scores (one for each input feature). Then, the scalar scores are passed through a
softmax activation function to get the final attention weights.

2.3.1 Additive attention
The similarity function in Additive attention[BCB14] is defined as:

fadditive(h) = vT tanh(Wh)

2.3.2 Scaled dot-product attention
Scaled dot-product attention[VSP+17] works with the same setup as 2.3.1, except the
similarity function f in this case is different.

fscaled(h) =
Wh√
m

where:

h ∈ RK×m

K : number of input features
m : size of input features

The softmax operation for both Additive and Scaled dot-product attention, remains
the same.

ak = softmax(f(h)k) =
exp(f(h)k)∑

j∈{1,2...n} exp(f(h)j)
∀k ∈ (1, 2, ...K)

2.3.3 Attention in DeepICF
Figure 2.13 shows how the attention layer plays its part (in the case of DeepICF, and
recommendation systems in general [HHS+18]) when the model is calculating its output.
Here, a user U is represented by the list of items i1, i2, ..., in they have interacted with
in the past. The purpose of the attention layer is to calculate a mask for each of these
user input features such that the relevant bits of the input are highlighted for the rest of
the model. This results in some input features having a bigger impact on the decision of
the model than others. In case of the DeepICF model, these weights from attention layer
are computed/learned by another hidden neural architecture which, in some sense, sits
parallel to the model (as shown in Figure 2.12 and 2.13).

Here, the similarity function f maps each target item iα, user input item ix to a scalar
distribution which then gets transformed to a probability distribution using a softmax
operator. In the case of DeepICF the attention weights are calculated as:

ak =
exp(f(ik, iα))

[
∑

j∈{1,2...n} exp(f(ij, iα))]
β
∀k ∈ (1, 2, ...n)

where:

f(x, y) = hTReLU(W (x� y) + b)

17



Figure 2.13: Figure showing the role of attention weights in the DeepICF model.

Note that β plays an important role here. β set to 1 would recover the original softmax
function, while on the other hand, β < 1 would break the probabilistic explanation of the
attention layer. We refer the reader to [HHS+18] for an explanation on the effect of
different values of β.

These multiplicative masks calculated by the attention layer, intuitively, add a com-
pletely new dimension to the model. In a model without this attention layer, the input
features could only interact with each other by addition. Adding this parallel neural ar-
chitecture to compute weights for the input features expands the space of the functions
that can be approximated by the model.

2.3.4 Explanation using Attention

In neural networks, attention is increasingly being used, not just to improve the model’s
performance but also as a means to explain the model’s predictions. Claims about atten-
tion’s interpretability are getting common in the literature, in various neural network ap-
plications like NLP[XBK+15, L+17, MA16, XMDH17], health-care[CBS+16, MWD+18],
recommendation systems[Xue18, WHF+18] and others[GBY+18]. The attention maps
(heat-maps) are used to indicate which input features to the model were majorly respon-
sible for the model’s predictions.

In Figure 2.14 (from a movie recommendation system from [XHW+18]), for instance,
for target item #1525, the attention-network assigns the maximum weight to the input item
#1254 (one of the previously interacted items of the target user). This information can
be used to generate a human-readable explanation like "You are recommended to watch
#1525 because you watched #1254".

More recently, there has been research on the reliability of attention-maps based ex-
planations [JW19] and if they can be used to explain a model. In this project, we work on
this line of research in the context of the model’s calibration(2.4) and stability(2.5).
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Figure 2.14: Attention map showing weights assigned to input features (historical items).
Image source: [Xue18]
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2.3.5 Attention is not explanation
One of the inspirations for this project is the work from [JW19]. As mentioned in Section
2.3.4, attention is increasingly being used to interpret models. In this paper, however, the
authors argue about the unreliability of attention weights as means to explain a model’s
output. They perform various experiments on a range of datasets to show that explanations
generated using attention distributions may not be stable/reliable. Figure 2.15 (taken from
[JW19]), for instance, highlights the minimal effect permuting the attention weights has
on the output of a binary classification model. Thus, signifying attention’s un-reliable
behaviour as means to explain the model’s outputs. The authors perform various other
experiments to showcase this issue. We would refer the reader to [JW19] to understand
them in detail.

Figure 2.15: Median change in output (x-axis) densities in relation to the max attention
(yaxis) obtained by randomly permuting instance attention weights (SST[SPW+13] as a
binary classification dataset). Orange( ) represents instances predicted as positive, while
blue( ) represents the negative ones. Image source: [JW19]

In our work (especially Chapter 4), we take a step back and look at attention instability
as a part of a bigger problem, which is, model instability. We reason that an analysis on
the model’s stability (subject to random seeds – Section 2.5) precedes the question of
attention reliability/stability (as shown in [JW19]).

2.4 Calibration of neural networks
Modern neural networks are not calibrated i.e, their probability estimates do not match
with their accuracy[Guo17]. This can be an issue for real world decision making systems,
like autonomous cars, where the model should not be overconfident about its decisions.
This mis-calibration, as discussed in the paper [Guo17], can be caused by various factors
like depth/width of the network, weight decay etc.

Classification models used as part of any decision process need to be both accurate
in their predictions, and should also indicate when they are probably incorrect. Model
calibration is the degree to which a model’s predicted probability correlates with its true
correctness likelihood. Calibration measures this property of a model. For example, if
a perfectly calibrated model gives 100 different predictions, each with 80% confidence
(probability), 80 of the predictions should be classified correctly.
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There are a couple of techniques to test the calibration of a neural network model:

• Reliability diagrams: These diagrams plot the expected sample accuracy as a func-
tion of confidence. As we can see in fig. 2.13 below, the model in the left is well
calibrated since the model confidence value aligns with the accuracy of the model.
However, for the model on the right, the model accuracy is lower than the confi-
dence values. This means that the model is over confident about its predictions.

Figure 2.16: Reliability diagrams for well-calibrated (left) and poorly-calibrated (right)
neural models. Image source: [Guo17]

• Expected Calibration Error[NCH15]: This is a scalar statistic for calibration,
thus, is easy to use. ECE is just a weighted average of the gaps (absolute values)
that are shown in the reliability diagrams in Figure 2.16.

Other metrics like Maximum Calibration Error and Negative Log Likelihood (NLE) [FHT01]
have also been defined to do the same.

In this project, we plan on looking at the calibration aspect of neural recommendation
systems in particular (Chapter 3). In the case of neural recommendation systems, due to
mis-calibrations, the explainable models like deepICF might give us, not just overconfi-
dent recommendations, but also explanations that are unreliable.
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2.5 Neural models as a function of random seeds

The problem of in-stability and uncertainty in models (in the context of randomly seeded
trainings) has been examined in [ZKS+16] and it has been a point of discussion in the
community. Most of the previous works on training the models with different seeds have
been about analyzing the performance of the model.

In [EBC+10], the authors analyze the effect of random seed initializations to the train-
ing process of neural networks, especially their performance. Their primarily goal is to
compare the performance of models with and without pre-training, which is not what we
focus on in this project. Nevertheless, the authors highlight this problem with the vari-
ance of the test error achieved from 400 models trained with the same hyper-parameters
but different random seeds. Figure 2.17 shows that there is a substantial variation in the
final test error of these seeded models. This clearly highlights the problem that we are
dealing with as this variance can also affect the stability of the model’s interpretability.

Figure 2.17: Figure from [EBC+10] showing the variance in the Test-Error for neural
network model trained with the same hyper-parameters and different intialization seeds.

In Figures 2.18a and 2.18b (taken from [EBC+10]), the authors visualize the diversity
in the weights learned for the same model, with different initializations. Each point in the
figure represents a function learned (the state of the neural model, reduced to two dimen-
sion via Isomap[TDSL00] or t-SNE[MH08]) at the end of each iteration (after training on
each batch bi). It shows the trajectory of the learning process for the same model, with 50
different random seed initializations. The figures denote iteration progression from blue
( ) to cyan ( ) colored points. I would refer the reader to [EBC+10] to understand exactly
how they represent the (neural-network) functions and perform dimensionality reduction
techniques like t-SNE and Isomap on them.
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(a) Figure showing the Isomap[TDSL00] of the functions represen-
tations, for neural network’s state after each iteration.

(b) Figure showing the t-SNE[MH08] of the functions representa-
tions, for neural network’s state after each iteration.

Figure 2.18: Figure highlighting the diversity in functions being learned by the same
model, with different random seed initializations. The figures denote iteration progression
from blue ( ) to cyan ( ) colored points. Image source: [EBC+10].

In [ZKS+16], the authors again discuss the robustness of neural models. They exam-
ine explicit ensembles, which is essentially training the same model (with same settings),
under different random seed initializations. They use this approach to model the stabil-
ity of the neural network. Another interesting approach, proposed by [BCKW15], called
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Bayes-by-backprop can be seen as an implicit way to create an ensemble of models, since,
here we sample models from a probability distribution on the weights of the model. I
would refer the reader to [BCKW15] to understand the approach in depth.

In Chapter 4, we exclusively work on the model’s stability towards random seed ini-
tializations, in the context of their interpretability.

2.6 Deep Learning based Natural Language Processing
As mentioned earlier, in Chapter 4, we focus on the stability of neural networks based
Natural Language Processing (NLP) models. In this Section we discuss the architecture
of these models and the responsibilities of different layers in them. Our model structure,
datasets and tasks are inspired from [JW19].

The basic model consists of three main parts: the encoder, the attention layer and the
decoder. To start with, each word in the sentence is first converted to its one hot encoded
vector. Next, these one hot encodings are converted to dense vector embeddings using
a word to embedding matrix. There are multiple such word-to-vector representations
publicly available for use like: GloVe[PSM14], word2vec[MCCD13] among others. The
vector embeddings are then passed through the actual encoder layer which is either a
CNN or an LSTM layer in our case. Both take the word embedding as input and output
the hidden vector representations for each word.

Next, these hidden representations are passed through the attention layer which can
be of two types in our case: tanh based attention or scaled-dot-product based attention.
The exact implementations for both are given in Section 2.3. These attention layers assign
a scalar weight to each of the words’ hidden embeddings. After weighting the embedding
with their attention weights, we are left with a single vector which are then passed through
the final linear layer, which outputs the prediction. For binary classification tasks, a sig-
moid activation function is used, while softmax is used for the multi label classifications.
For binary, a binary cross entropy loss is used for training, while for multi-class/Question
answering models, we use a log loss over the softmax output. Figure 2.19 shows clearly
the role of each layer and the dimensionality of its inputs and outputs.

CNN based encoder Now, we look into the architecture of a CNN encoder to briefly
understand what the model is learning. In the case of NLP, the convolutional filters slide
through the words embeddings (instead of pixels, when used in the context of computer
vision based applications). It is beneficial for us to understand briefly how the computa-
tions work in the case of CNNs. This can be done by understanding the dimensions of the
input and the outputs in each step (from Figure 2.20). In the context of our project, it is
not crucial to understand the working of CNNs in and out since we are more interested in
the stability for their weights rather than how they help make accurate predictions. Nev-
ertheless, I would refer the reader to [ZW15] and [YHPC18] to get a detailed explanation
of CNNs and their application in NLP systems.

LSTM based encoder Long Short term memory (LSTM) networks are a variant of
the Recurrent Neural networks (RNNs). The main strength of the RNN (and LSTM)
networks is the ability to memorize the results from previous computations and use them
in the current computation. This is especially beneficial when the inputs are of arbitrary
length, and is also a shortcoming with CNN based models. LSTMs also fix the problem
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Figure 2.19: Figure showing the basic architecture of our neural NLP model.

25



Figure 2.20: Figure showing working of a CNN encoder in an NLP model. Image source:
[ZW15]
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Figure 2.21: Figure showing the working of a Bi-directional LSTM encoder (with Atten-
tion Layer) in an NLP model. Image source: [LPM15]

of vanishing gradients with simple RNNs. Figure 2.21, shows the basic structure of a Bi-
directional LSTM implementation. Again, it is not crucial for our project to understand
the inner workings of these encoders since we are more interested in their stability aspect.
I would refer the reader to [HS97] and [YHPC18] to get a detailed explanation on LSTMs
and their implementation (especially in the context of NLP systems).

Attention Mechanisms The NLP models under consideration in this project use either
Additive or Scaled dot-product based attention mechanisms, discussed briefly in Sections
2.3.1 and 2.3.2 respectively.
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Chapter 3

Model explanations under calibration

Deep learning based recommendation systems have opened up one way of explaining
neural models’ outputs in the context of recommendations [ZC18] — by using attention
distributions. In this context, neural attention mechanisms have gained significant focus,
as they have been shown to not only help the model perform better, but also provide
explanations by highlighting the input features that play a significant part in computing
the model’s output [XHW+18, GRMS99]. However, it is has been recently indicated that
attention may not always provide a reliable form of explanation, especially in the domain
of natural language processing [JMW19].

One of the emerging problems with the modern neural network models (especially
deep neural networks) is their poor calibration [GPSW17]. Over-confident or under-
confident predictions can make a model unreliable, especially in sensitive scenarios like
health care (disease detection), autonomous driving among others [GPSW17].

In this chapter, we focus on a form of recommendation system that aims to answer
why a certain recommendation has been made. Especially, we investigate the reliability
of attention distributions in deep neural attention based recommendation systems.

3.1 Preliminary Work
In this chapter, we focus our preliminary analysis on neural recommendation systems
explained in Section 2.1.2.

3.1.1 Models code setup

We setup the code provided by [Xue18] and [He17] on their respective implementa-
tions of DeepICF1 and NCF2. Both the models are implemented in python. The NCF
model implementation is using the Keras[C+15] library, while the DeepICF one is in
Tensorlfow[AAB+15] itself.

Section 2.1.2 explains their architecture and gives a layer wise description for them.
We decide to do our analysis on these models since they produce state-of-the-art results in
recommendation systems[He17][Xue18]. The DeepICF model, is especially interesitng
since it is able to explain its outputs using the attention layer (as explained in Section
2.3.4).

1https://github.com/linzh92/DeepICF
2https://github.com/hexiangnan/neural_collaborative_filtering
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3.1.2 Dataset
We train, evaluate the models and perform our experiments on the MovieLens3 dataset.
This dataset has been commonly used to evaluate collaborative filtering algorithms. The
dataset contains one million ratings where each user has at least 20 ratings and use the
standard splits. In our study, we retain the standard procedure used in DeepICF (or NCF)
where the original dataset is transformed such that each user item entry is marked as 1:
when there is some interaction between the user and item and -1: when there is no in-
teraction the between the target user and item. Table 3.1 shows the test and train split
that we use for training. Another crucial feature of the dataset is its imbalance in the
number of positive to negative interactions. During training, we have 4 negative samples
(implying no interaction) for each positive sample while for testing we have 99 negative
cases for each positive one. This imbalance is obvious since these models are recommen-
dation/filtering techniques, thus, implying few positive cases amongst a lot of negative
ones.

Dataset Splits #Interactions #Users #Items

Full 1,000,209 6,040 3,706
Train 994,169 6,040 3,706
Test 6,040 6,040 1,921

Table 3.1: Statistics of the MovieLens dataset and standard splits.

3.1.3 Training
For training, the input to the model is a list of user item pairs, with the target label being
if there was an interaction between the user and the item. As mentioned earlier, for each
positive interaction, the model is trained with 4 negative interactions. Note that, we don’t
use the ratings given by the user to the interacted item (any rating, irrespective of its value,
is taken as a positive interaction and a lack of one as a negative interaction). The output
of the model is a score suggesting the likeliness of the user interacting with that item.

3.1.4 Evaluation
For evaluation purposes, the standard metrics used are HR@10 (HitRatio) and NDCG@10
(Normalized Discounted Cumulative Gain [HCKC15]). We further use the binary la-
belling accuracy to investigate the model performance per class, where the classes are
defined as: −1 when there is no interaction between the user and items and 1 when there
is an explicit interaction (user ratings for the item).

Hit-ratio calculation(HR@K): Lets denote the trained model by the function f(u, i),
where u is the target user and i the target item. In the test split, each test case comprises, a
single user with 1 positive (interaction) test case, and 99 negative (interaction) samples for
that particular user. Lets denote the positive interaction item as ip, and the negative ones
as in,1, in,2 ... in,99. Now, we calculate f(u, in,1), f(u, in,2) ... f(u, in,99) and f(u, ip).
Then these function outputs are ranked in descending order. The test case is considered
a hit if f(u, ip) is in the top K values in the sorted list. We do this for each of 6040 test

3https://grouplens.org/datasets/movielens/1m/
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cases and calculate the average number of hits by dividing the number of hits by the total
number of test cases.

NDCG calculation(NDCG@K): NDCG follows the same procedure as Hit ratio, ex-
cept it accounts for the actual position of f(u, ip) in the sorted list as well. Lets say
f(u, ip) is in the kth position in the sorted list. The NDCG for that prticular test case
would be:

NDCG@K = 0 if k > K

NDCG@K =
1

log2(k + 1)
if k ≤ K

3.1.5 Hyperparameter Settings

For training purposes, we use the same hyper-parameters as mentioned in the paper
[XHW+18]. Note that, we set β (discussed in Section 2.3) to 0.8 for training, as pro-
vided by DeepICF’s implementation[Xue18]4.

3.1.6 Embedding Vector Representations

In order to understand what the models are learning, we analyze the user and item embed-
ding vectors learned by them. These vectors abstractly represent what the model thinks
are the preferences for different users and the features of each items. In GMF[He17]
(from Section 2.1.2), for instance, each user and item is represented by an 8 dimensional
vector.

Item Embedding

First, we extract the embedding vector for all the items (movies, in our case) from the
trained models. Then, in order to visualize them, we transform the 8 dimensional em-
beddings to 2 dimensions using different dimensionality reduction techniques like Prin-
cipal Component Analysis(PCA)[Jol11] and t-SNE[MH08]. We decided to use t-SNE
especially, since it is particularly well suited for visualisation of high dimensional data-
sets[MH08].

4https://github.com/linzh92/DeepICF
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(a) Graph showing 2 dimensional item (movie) embeddings (from PCA) learned by the DeepICF
model. The red( ) points are the horror movies, while the blue( ) ones are action movies.

(b) Graph showing 2 dimensional item (movie) embeddings (from t-SNE) learned by the GMF
model. The red( ) points are the horror movies, while the blue( ) ones are children movies.

Figure 3.1: 2-D visualisation of user embeddings learned from the neural recommenda-
tion models.

In Figure 3.1b, we highlight the horror movies’ embeddings (in red) and the children
movies (in blue) to show how the model is able to group similar movies together just
from the user item interactions. Note that, the model does not know the name, genre
or any other auxiliary information about the items (movies). It is able to group similar
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movies together, solely from the user item interactions during training.

User Embedding

As mentioned earlier, we transform the 8 dimensional user embeddings as well to 2 di-
mensions in order to visualize them on a 2-D graph. Figure 3.2 shows the user embed-
dings obtained from the GMF model, with the red dots highlighting the users of age 56
and above. Unlike the items, the user embeddings are not as clustered based on any of the
auxiliary attributes in particular (or at least the patterns can not be highlighted by simple
dimension reduction techniques).

Figure 3.2: Figure shows the user embeddings obtained from GMF, mapped on to a 2-D
graph using t-SNE. The red( ) points highlight users of age 56 or above. The model does
not cluster the user embeddings (based on their age) as clearly as it did with the item
embeddings. This signifies that the movie preferences of users (in the same age group)
are diverse.

Another technique we tried in order to capture some of the intricate learnings of the
model was to build a distance matrix for all the user embeddings in the dataset. We
used Minkowski distance with p-norm 2 to calculate the distance between two embedding
vectors, which is the same as the Euclidean[Wik19a] distance between them. We used the
Scipy[JOP+ ] library’s spatial.distance_matrix function to compute this. For
each user, we arranged the rest of the user embeddings based on their distance from the
user. This way we were able to extract the users which, according to the model, have
similar behaviour/characteristics/interests. For each user we looked at their top 10 (and
top 3) closest neighbors and were able to notice some patterns from it. In Figure 3.3, for
instance, we observed an increase in the percentage of users belonging to the same age
group, in the top 10 closest neighbors list for a particular user, compared to their general
distribution in the dataset. Thus showing how users in the same age group get clustered
together by the model.
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Figure 3.3: Figure highlights how the model is able to group similar (age group) users
together after training. The closest neighbors to a user (embedding) is based on the Eu-
clidean distance[Wik19a] to all the other user embeddings learned by the model.

All these techniques were able to give us a good idea about what the model is learning.
They represent, abstractly, the model’s behavior. Although these statistics provide good
insight into the model, they are not enough to interpret the model or explain its outputs.

3.1.7 Sigmoid to softmax

One of the model dynamic that we look into is its calibration (discussed in Section 2.4). In
order to plot the reliability diagrams for the NCF and DeepICF models, our first step was
to obtain the prediction confidence from the model for its output. As explained earlier,
both NCF and DeepICF use a sigmoid activation function to get the output score. We
decided to change it to a softmax activation with two output classes to get the model’s
confidence values for its outputs.

Since DeepICF uses a log loss over the model outputs, changing the activation from
sigmoid to softmax automatically changed the loss to a softmax cross entropy loss. Figure
3.4 shows how the loss is calculated in case of DeepICF, before and after we made the
change in the activation function.
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Figure 3.4: Figure showing how in DeepICF we change the activation function from
Sigmoid to Softmax in order to get the confidence scores for the output labels.

3.1.8 Three output DeepICF

Another interesting experiment we tried with DeepICF was to account for the actual rat-
ings as well when training the model. We changed the output of the model, from binary to
a ternary classification problem where the three labels would be: negative interaction, no
interaction, positive interaction between the user and the item. In order to implement this,
we first looked into the distribution of the ratings in the training dataset. As we can see
in Figure 3.5, the mean rating is around 3. We decided to go with 2 and 1 being negative
(interaction) ratings, 3 4 and 5 being positive ratings (no interaction cases remained the
same). Table 3.2 compares the performance of this model (DeepICF 3-output) with the
original model and our other proposed variations to the model.

Figure 3.5: Figure showing the frequency of each rating in the MovieLens 1M dataset.
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3.2 Problem statement and hypothesis
After having done the preliminary work, we were able to get an idea about how neural
recommendation systems work in general, the nature of data they work with, and what
they were learning. With our embeddings based experiments, we were also able to get a
brief understanding on the model’s room for explain-ability.

To start our analysis, we moved on to testing more intricate details about the models.
Since our focus is on recommendation systems that aim to answer why a certain recom-
mendation has been made, we perform our analysis primarily on the DeepICF model.

In the following sections, we try to discover if there exists a link between a model’s
calibration and its explain-ability. We discuss about the reliability of attention distribu-
tions as a means to explain deep neural based recommendation systems, especially in the
context of un-calibrated models. We explain various experiments we conducted on the
DeepICF model, the relevance of those experiments, and our deductions from the results.

3.3 Experiments
We investigate our hypothesis on the utility of attention with a state-of-the-art deep neural
network based model with attention [XHW+18]. In this section, we describe the experi-
ments performed for those purposes.

3.3.1 Calibration
As mentioned in section 2.4, we use the concept of calibration to plot reliability dia-
grams [Ham97]. A reliability diagram can be seen as the accuracy of the model as a
function of its confidence.

Reliability diagrams help us visualize a model’s calibration. A reliability plot which
falls below the identity function suggests that the model is over-confident of its predictions
(blue plot in Figure 3.7) since it means that the ground truth likelihood (accuracy) is less
than the model’s confidence in its predictions. On the other hand, it is considered under-
confident if the reliability plot is above the identity function. For a perfectly calibrated
model, the reliability plot is the identity function.

Interpretation of the DeepICF model

First, we need to have a clear understanding of the model and its output before we start
looking into the plotting the reliability diagrams.

As mentioned earlier, we have an imbalance in the number of positive and negative
instances, both when training and testing. Moreover, in the actual MovieLens dataset,
there are only positive interactions. The negative interactions are obtained by sampling
random items from the entire dataset (while making sure that they are not part of the
positive interactions). This is done for both the training and the testing datasets. This
sampling for negative cases is acceptable during training as these cases are only being
used to train the model, which is not the point of concern for our project.

In the case of the test dataset, 99 negative test cases are sampled for each positive
test case. The evaluation technique being used, commonly known as leave-one-out, is
widely used in literature[BHKR17, HZKC16, RFGST09]. This is also acceptable since
it uses specialized metrics like HitRatio and NDCG to test the performance of the model.
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However, this suggests that, with the given test dataset (with randomly sampled negative
interactions), metrics like Binary classification accuracy can not be used to evaluate the
performance of the model. This also lead us to believe that the semantics of the model’s
output value do not match with those of a typical binary classification model.

Our Approach Given the understanding of the model (in Section 3.3.1), we decided to
plot the calibration curve for the positive and the negative test cases separately. One of the
main reasons we decide to do this is because we want to focus more on the positive inter-
actions than the negative ones (especially because the negative interactions are randomly
sampled out of all the remaining un-interacted items).

For instance, lets take a case with target label t and prediction for the positive label
as p (note that since we are using softmax activation, the prediction of the negative label
would be 1 − p). If the target label is positive and p > 0.5, the test case is classified as
correct while if it is negative, it is classified as incorrect. Similarly, if the target label is
negative and p < 0.5, the test is classified as correct, otherwise incorrect. Note that when
p < 0.5, 1 − p is used as the value to be bucketed. After computing that for all the test
cases, we calculate the ratio of correctly classified test cases for each bucket separately
and plot them against the bucket’s score range (as shown in Figure 3.7).

Note there is a subtle but crucial difference between this approach and the general
approach mentioned in [Guo17]. The x-axis (bucket scores) in the general approach rep-
resents the prediction score of the positive label (or the negative label), while, in our
approach it represents the prediction confidence in the model’s output (be it positive or
negative). Due to this the x-axis in Figure 3.7 starts from 0.5. In the experiments, we
focus on our approach for plotting the calibration for the reasons mentioned earlier.

3.3.2 Attention Permutation

Another important experiment we perform to check the reliability of attention based ex-
planations is permuting the weights randomly and recording the effects of the permuta-
tions on the output of the model (inspired from [JW19]).

Figure 3.6, compared to Figure 2.13, shows how the attention weights are shuffled.
Since the particular weights assigned to the input features are used as the basis for the
explanations, permuting these weights randomly should cause the model’s prediction to
change by a substantial margin. In case the predictions remain unchanged it indicates that
the attention necessarily doesn’t contribute to the predictions. This can be concerning
especially when using attention as grounds for explanations (as shown by [JW19]).
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Figure 3.6: Figure shows how attention weights are shuffled in the DeepICF attention
permutation experiment.

3.3.3 Class balancing loss
As the training split of the dataset is heavily imbalanced: 4 negative labels (no interac-
tions) for every positive label, we use a simple class-weighting heuristic, to cope with
this imbalance and modify the model’s cross-entropy loss. The new loss is calculated by
assigning weights to the losses from the test cases such that the loss contribution from
both the classes (positive and negative interactions) is balanced[KZ01]. We perform our
experiments on the class balanced loss model and measure any improvements in the re-
sults.

3.3.4 Model Stability
In our study, we refer to model stability as the consistency of model predictions and
internal parameters with different runs of the model by only changing random seeds.
[Jia03, Jia07]. The seed values are responsible for regulating the training dynamics
(weight initialization, training batch generation, among others). This way, we get to mea-
sure the impact of these random processes on the output of the model (and the attention
weights). We do a more detailed analysis on this model dynamic later in Chapter 4.

3.4 Results
Table 3.2 compares the performance of the softmax output model with the original Deep-
ICF model and the state-of-the-art Neural Collaborative Filtering model[HLZ+17]. We
observe that the performance of our model is highly competitive and performs as well as
the DeepICF with pretraining. In the following sections, we will investigate the reliability
of models and the attention distribution in the models.
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Figure 3.7: Calibration plot (Our Approach from Section 3.3.1) for the DeepICF model
(softmax output), with positive and negative test cases plotted separately.

3.4.1 Calibration

We plot the reliability diagram for the DeepICF model by bucketing the model predic-
tions based on their confidence and calculating the accuracy for each of the buckets (as
explained in Section 3.3.1).

We see in Figure 3.7, for the positive label, the DeepICF (with attention) model tends
to be over-confident as the confidence increases, where the model tends to be extremely
confident about predicting the positive class without being as accurate. This can be prob-
lematic especially when dealing with real-world production systems (like medical diag-
nosis and autonomous cars). We also notice that the model is seemingly over-confident
in predicting the negative class. This could be because of the imbalance in the training
dataset where the dataset is extremely skewed towards the negative class.

3.4.2 Attention Permutation

What is the effect of over-confidence over attention? In order to test the reliability of
explanations generated from attention, we permute the attention weights randomly and
notice the effect of the permutation on the output of the model (as described in Sec-
tion 3.3.2).

Specifically, in DeepICF, as shown in Figure 2.11 (and Figure 2.13), the attention
based pooling layer assigns a weight for each of the user and item interaction, where the
magnitude of the weights indicate the importance of the interaction. In this experiment,
we randomly shuffle these weights amongst the items and record the difference in the
output prediction score (originally classified interaction label). We randomly shuffle the
weights 100 times (as performed in [JW19]) for each test case, and average the absolute
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variations in the output predictions.
We plot the average variations in false negatives (right axis) against the confidence

of the predicted output for the positive test cases in Figure 3.8. We focus on positive
test cases as it is the most salient label to measure the model, and also for the reasons
mentioned in Section 3.3.1. The plot also contains the reliability diagram for the model
(left axis). We note that the perturbations especially have barely any effect on the mis-
calibrated cases. In both false positives and false negatives (these increase with mis-
calibration), we notice similar trends where the effect of permuting the attention weights
decreases as the confidence in the predicted label increases. Thus, showing that model
explanations generated from the attention distribution become less reliable with over-
confident predictions.

Figure 3.8: Figure showing the effect of attention permutation (right axis) on the predic-
tion score of wrongly (negatively) classified positive test cases (false negatives).

3.4.3 Fixing the effect of Class-imbalance

As mentioned in Section 3.3.3, we try the inverse-class weighted cross-entropy loss in
order to fix the effects of skewness in the training dataset. We retrain the model with the
new loss function and were able to achieve similar HitRatio values to the original model
as shown in Table 3.2. We analysed the effect of attention permutation (Section 3.4.2) on
this model. Figure 3.9 compares the new model to the previous model’s results. We notice
that the new model is considerably more sensitive to attention permutation, compared to
the original one. This suggests that attention based explanations from the class-balanced
loss model are more reliable than the original model.
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Figure 3.9: Figure showing the effect of permuting attention weights in the original model
(softmax cross-entropy loss) vs the model trained with class-balanced loss. Figure high-
lights the increased sensitivity of attention distributions towards random permutations,
hence, implying improved reliance for attention weights as means for local explanations
in the class-balanced loss model.

3.4.4 Stability of DeepICF

We now consider the effect of random seeds and on initialization of model parameters
and in general the model performance. We notice in Table 3.2 — the standard deviation is
generally very low suggesting that the performance of the model is seemingly stable and
it seems to have small deviation.

Model type Hit Ratio@10 (%) NDCG@10 (%)

DeepICF∗ 68.81 41.13
DeepICF∗+Pretrain 70.84 43.80
NeuMF∗+Pretrain 70.70 42.60

DeepICF (ours) 70.41(±0.24) 43.00 (±0.34)
DeepICF+cls-wt 68.61 41.14

DeepICF (3-output) 68.69 40.54

Table 3.2: Performance Comparison for DeepICF and NeuMF[HLZ+17]. ∗ indicates
scores directly from the corresponding papers. The standard deviation (±) is obtained
with 10 runs of the model with different random seeds.

Prediction score stability: For each positive test case, we compute the predicted class
and its confidence for all the seeded models. Then we compute the average variation in
the prediction score (variation from the mean) and plot it against the mean predicted score
(note the prediction score lies between 0 and 1).

Figure 3.10 shows the prediction score stability in the model. We bucket the predic-
tions according to the confidence in the positive label to see the variation in the prediction
scores for different confidence levels. The prediction scores close to 0 (negative predic-
tions) or 1 (positive predictions) are highly stable, especially when compared to the ones
lying in between them. This behavior is expected as the model seems to be unsure about
the items falling in the middle of the positive-negative spectrum. Overall, the model pre-
dictions seem stable as the average variations lie on the lower side for most of the buckets.
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Figure 3.10: Prediction score stability from 10 differently seeded DeepICF models. Note
that the range of the Y-axis in the plot is from 0 to 0.16, while the average absolute
deviation for the prediction scores ranges from 0 to 1.

Attention score stability: What is the effect of random seeds on attention distribution?
As we are interested in the reliability of attention explanations, we focus on the stability
of attention scores in DeepICF. We perform the same experiment by running the same
model but with 10 different random seeds and record the top 10% of the most attentive
items (user-item interactions which get the highest attention weight assigned) for every
particular test case for each model. Then we compare if these top 10 percent most at-
tentive items for a particular test case are consistent for different runs of the models with
different random seeds. We calculate the similarity between two sets of items by comput-
ing the Jaccard Index [Wik19b] of the sets. We calculate the Jaccard Index for every
possible pair of sets of top attentive items and average over them. Figure 3.11 shows that
the average Jaccard Index for positive predictions with high confidence is around
0.5 (where max Jaccard Index is 1, implying completely stable attention scores).

Figure 3.11: Attention weights’ stability from 10 differently seeded DeepICF models.
Note that the range of the Y-axis in the plot is from from 0 to 0.5, while the range for the
Jaccard Index is from 0 to 1.
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This highlights that the attention explanations from two identical models, trained with
different seeds for the same input can vary, severely highlighting the unreliability of such
explanations. Another important observation here is how the attention weights–highly
unstable, are in contrast with the prediction scores–stable. We discuss this problem in
more detail in Chapter 4.

3.5 Conclusion
In this chapter, we have explored the importance of model dynamics and its relation to
explanation using attention. Concretely, we observe that attention may not be reliable
when the selected model is especially mis-calibrated. We have explored one possible way
of stabilizing the model by accounting for the class imbalance. Significantly, we noticed
that using an inverse-class weighted cross-entropy formulation can help improve the sta-
bility of attention distribution. Further, we observe that over different runs of models
with different random seeds, the models seem to obtain different attention distributions.
We posit that our work is extremely relevant to the community and can orient towards an
important discussion on the reliability of using attention as an explanation.
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Chapter 4

Model stability as a function of random
seeds

As mentioned before, there has been tremendous growth in deep neural based models
with state-of-the-art performance. In fact, most recent end-to-end deep learning models
have surpassed the performance of careful human feature-engineering based models in
most NLP tasks. However, deep neural network-based models are often brittle to some
sources of randomness in the training of the models. This could be attributed to several
sources including, but not limited to, random parameter initializations, random sampling
of examples and sampling of activations. It has been observed that these models have,
more often, a set of ‘random seeds’ that yield better results than others. This has also lead
to research suggesting random seeds as an additional hyperparameter for tuning [Ben12]1.

One possible explanation for this could be the existence of multiple local minima in
the loss surface. This is especially problematic as the loss surfaces are non-convex and
may have multiple saddle points making it difficult to have a stable model, that is, to a
large extent, robust to random-seed based effects.

Recently the NLP community has found new interests in interpreting and explaining
deep neural models [JMW19, JW19, AMJ17]. Most of the interpretation based methods
involve one of the following ways of interpreting models: a) Adversarial perturbation
based interpretations: where the interpretation is based on the change in prediction score
with counter-factual perturbations [JMW19, JW19]; b) Interpretations based on feature
attributions using attention or input perturbation or gradient-based measures; [GFT18,
FWGI+18]; c) Explanation using surrogate linear models [RSG16]. These methods can
provide local interpretations based on input samples or features. However, the persisting
randomness makes it difficult to accurately interpret neural models among other forms of
pathologies [FWGI+18].

1http://www.argmin.net/2018/02/26/nominal/
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i take a DRUG why do i feel the <UNK>

(Pr (Ypositive) = 0.86)

i take a DRUG why do i feel the <UNK>

(Pr (Ypositive) = 0.85)

Figure 4.1: Importance based on attention probabilities for two runs of the same model
with same parameters and same hyperparameters, but with two different random
seeds (color magnitudes: pink<magenta<red)

In this chapter we focus on the stability of deep neural models as a function of random-
seeds. We are especially interested in investigating the hypothesis of model stability: do
neural network based models under different random seeds allow similar explanations?
In Figure 4.1, we give an illustration for this question where we have the attention dis-
tributions of two CNN based binary classification models for the Twitter Adverse Drug
Reaction dataset[NSO+15], trained with the same settings and hyper-parameters, but with
different seeds (more examples shown in Figure 4.2). We see that both models obtain the
correct prediction with significantly high confidence. However, we note that both the
models attend to completely different sets of words. This is problematic, especially when
interpreting these models under the influence of such randomness.

We also provide a simple method that can, to a large extent, ameliorate this inherent
random behaviour. In Section 4.4, we propose an aggressive stochastic weight averaging
approach that helps in improving the stability of the models at almost zero performance
loss while still making the model robust to random-seed based instability. We also propose
an improvement to this model in Section 4.4.1 which further improves the stability of
the neural models. Our proposals significantly improve the robustness of the model, on
an average, by 72% relative to the original model and on Diabetes (MIMIC), a binary
classification dataset, by 89% (relative improvement).
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user DRUG add to regime yesterday x

(Pr (Ynegative) = 0.99)

user DRUG add to regime yesterday x

(Pr (Ynegative) = 0.98)

(a) Example taken from the Twitter-Adverse Drug Reaction (ADR) dataset[NSO+15]. Where both
the (differently seeded) models give the same (correct) prediction, but for completely different
attentive items.

new york - us stocks fell on tuesday as health insurers # qqq ; shares slid on worries
that the new york attorney general # qqq probe will hit the entire industry .

(Pr (Ybusiness) = 0.91)

new york - us stocks fell on tuesday as health insurers # qqq ; shares slid on worries
that the new york attorney general # qqq probe will hit the entire industry .

(Pr (Ybusiness) = 0.93)

(b) Example taken from the AGNews dataset [ZZL15]. Both the models correctly classify the
article as business, but for completely different attentive items.

complete entertainment although there are many strange things in the movie that the fairy
tale itself doesn’t have them including the <UNK> characters mother and daughter the
general concept rocks

(Pr (Ypositive) = 0.67)

complete entertainment although there are many strange things in the movie that the
fairy tale itself doesn’t have them including the <UNK> characters mother and daughter
the general concept rocks

(Pr (Ypositive) = 0.77)

(c) Example taken from the IMDB dataset[MDP+11]. Both the models correctly classify the movie
review as positive, with similar confidence score, but for completely different attentive items.

if high crimes were any more generic it would have a universal product code instead of
a title

(Pr (Ynegative) = 0.99)

if high crimes were any more generic it would have a universal product code instead
of a title

(Pr (Ynegative) = 0.98)

(d) Example taken from the SST dataset [SPW+13]. Both the models correctly classify the text
sentiment as negative, with high confidence, but for completely different attentive items.

Figure 4.2: Examples taken from different datasets showing the importance of words
based on attention probabilities for two runs of the same model with same parameters
and same hyperparameters, but with two different random seeds. (Color magnitudes:
pink<magenta<red).
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4.1 Model Stability
Following the discussions in Sections 2.3 (especially 2.3.5), 2.5, and 2.6, we now define
our interpretations of stability. We account for a range of factors (Sections 4.1.1, 4.1.2,
4.1.3) when examining the model’s stability.

4.1.1 Prediction Stability

We define prediction stability in two parts, the first corresponds to the standard measures
of the mean and the standard deviations corresponding to the accuracy of the binary clas-
sification based models on different datasets. We ensure that the models are run with
exactly the same configurations and hyper-parameters but with different random seeds
(setup as shown in Section 4.2). This is a standard procedure that is used in the commu-
nity to report the performance of a model.

4.1.2 Attention Stability

We define attention stability using the robustness of the attention distributions. That is,
we call the attention probabilities of a model stable if the model, over several runs with
different random seeds (but with the same settings and hyper-parameters) has similar
attention probability distributions. We consider this to be extremely important for both
interpretations and explanations using attention and the utility of models in general. We
also find that this is important even for interpretations using leave one out based methods
or local interpretations using surrogate models. This is because, if there is variance due
to random seeds (mostly due to induced randomness in the initialization of weights and
biases), the general interpretations would vary for each model.

We now focus on attention distributions to quantify instability. An important part of
the project was to decide on a metric which could capture the problem of unreliable at-
tention vectors. For this, we needed two compare the attention vectors for two differently
seeded models for the same input.

Before we start analyzing the usability of different metrics for our purpose, we need
to understand what exactly our requirements and constraints are.

The first observation is that we are comparing two lists of the same size. This is always
the case since we only need to compare attention distributions from the same test case
(but for different models). Another important observation is that the lists are probability
distributions (since we apply a softmax activation to get the final attention weights). This
means that for each list, all the elements are between 0 and 1, and they sum up to 1.

We also need to understand what needs to be quantified when comparing two lists.
The most important thing that we need to measure here is that the items (words) which
get high weights assigned to them remain consistent. The metric we choose should be
able to penalize the similarity score if the magnitude of the difference in the weights of
any item is high. This also suggests that we do not care about items which are assigned
low weights in both the distributions. For example, if Item-A is assigned weight 0.5 in the
distribution d1 and 0.1 in the distribution d2, we want the similarity score to be penalized.
On the other hand, if an Item-B is assigned weight 0.005 by distribution d1 and 0.001 by
distribution d2, we do not want the score to be significantly impacted.

We have listed below the metrics that we considered for our analysis and chose to
investigate the instability in models:
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a) Entropy quantification (H): Given two attention distributions for the same test
case from two different models, it measures the entropy between the two probability dis-
tributions. Note that, the higher the entropy the greater the dissimilarity between the two
distributions.

H =
∑

i∈d
Pr1 · log

Pr1
Pr2

where, Pr1 and Pr2 are two attention distributions of the same sample from two different
runs of the model and d is the number of tokens in the sample. Given n differently seeded
models, for each test instance, we calculate the averaged pairwise attention distributions’
entropy.

b) Jaccard Distance (J ): It measures the dissimilarity between two sets. Here higher
values of J indicate larger variances. We consider top-n tokens which have the highest
attention for comparison. Note that, Jaccard distance is over sets of word indices and do
not take into account the attention probabilities explicitly. Jaccard distance is defined as:

J = (1− A∩B
A∪B ) ∗ 100%

where, A and B are the sets of most relevant items. We specifically decided to use ‘most’
relevant (top-n items) as the tail of the distribution mostly consists of values close to 0.

1 i m p o r t numpy as np
2

3

4 d e f g e t _ j a c c a r d _ d i s t a n c e ( a t n _ d i s t 1 , a t n _ d i s t 2 ) :
5 a s s e r t l e n ( a t n _ d i s t 1 ) == l e n ( a t n _ d i s t 2 )
6

7 n = np . math . c e i l ( 0 . 1 ∗ l e n ( a t n _ d i s t 1 ) )
8

9 t o p _ n _ i , t o p _ n _ j = np . a r g p a r t i t i o n ( a t n _ d i s t 1 , −n ) [−n : ] , \
10 np . a r g p a r t i t i o n ( a t n _ d i s t 2 , −n ) [−n : ]
11

12 s e t _ i , s e t _ j = s e t ( t o p _ n _ i ) , s e t ( t o p _ n _ j )
13

14 j a c c a r d _ i n d e x = l e n ( s e t _ i & s e t _ j ) / l e n ( s e t _ i | s e t _ j )
15

16 j a c c a r d _ d i s t a n c e = (1 − j a c c a r d _ i n d e x ) ∗ 100
17

18 r e t u r n j a c c a r d _ d i s t a n c e
19

20

21 a1 = [ 0 . 2 , 0 . 1 , 0 . 1 , 0 . 6 ] # A t t e n t i o n d i s t r i b u t i o n 1
22 a2 = [ 0 . 4 , 0 . 1 , 0 . 4 , 0 . 1 ] # A t t e n t i o n d i s t r i b u t i o n 2
23 p r i n t ( g e t _ j a c c a r d _ d i s t a n c e ( a1 , a2 ) )

Listing 4.1: Python code to calculate the Jaccard distance between the sets of top 10%
attentive items from two attention distributions.

In Figure 4.3, we have shown an example scenario with attention distributions for 10
input features from 2 differently seeded models. As we can see, Item 4 and Item 5 have
been assigned the highest weights by both the models. Hence, the Jaccard distance for
the top 20% attentive items between the two distributions is 0. This highlights one of the
major weaknesses of using Jaccard distance as a metric to compare attention distributions.
It doesn’t take into account the absolute weight values assigned to the items. The Entropy,
however, is able to capture these differences as well (H = 0.66 in this case). In this
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Figure 4.3: Figure showing two attention distributions for 10 input items (features). In
this case,H = 0.66; J = 0

Figure 4.4: Average Jaccard distance calculation process for a particular test case, for N
differently seeded models.

project, we still measure the Jaccard distance since it (leniently, in some sense) captures
the reliability of attention weights as means to give explanations to the model’s outputs.

Figure 4.4 shows the calculation process for the average Jaccard distance for a partic-
ular test case, with N differently seeded models.

4.1.3 Gradient-based Interpretation
Gradient-based feature importance is another way to interpret the model for local expla-
nations. We use the input gradients of the model for each word embedding and compute
the magnitude of the change as a local explanation. We refer the reader to [BSH+10]
for a good introduction to gradient-based interpretations. As all of our models are differ-
entiable, we use this as an alternative method for interpretation. We note that we do not
follow [JW19] and do not disconnect the computational graph at the attention module. We
follow the standard procedure as followed in [FWGI+18]. We use entropy as described in
Section 4.1.2 to quantify the instability.
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4.2 Reproducibility by seed initialization

In order to conduct our experiments, we follow a common practice in machine learning
where we seed the random bits in the training process to make it deterministic.

The most common form of randomness introduced to the training process is by the
initialization of weights of various layers in the neural model. Batch processing like
splitting the test-train data, and shuffling the training batches also induces substantial
randomness to the system. Other techniques like Dropouts[SHK+14] and Stochastic
Optimizations[Bot10] also impart a level to randomness to the process. Moreover, when
using GPUs to train the model, it is possible to have complex libraries introducing their
own source of randomness (which can be particularly hard to account for).

We have to account for all these processes that can play a part in making the process
hard to reproduce. The python code shows all the seed initializations we do to make
sure our experiments are reproducible. Figure 4.5 shows the results from our entropy
experiments (discussed in Section 4.1.2) from two different machines with the same seed.
As we can see, the two plots are almost the same. The remaining differences are hard to
account for, as they might be coming from sources like floating point errors, some third-
party library using different sources of randomness or others. Note that, with out setup,
running the seeded experiments on the same machine, gives us exactly the same results.

1 i m p o r t os
2 i m p o r t numpy as np
3 i m p o r t random
4 i m p o r t t o r c h
5 from t o r c h . backends i m p o r t cudnn
6

7

8 os . e n v i r o n [ ’PYTHONHASHSEED’ ] = s t r ( 4 2 )
9 np . random . seed ( 4 2 )

10 random . seed ( 4 2 )
11 t o r c h . manua l_seed ( 4 2 )
12 cudnn . d e t e r m i n i s t i c = True
13 cudnn . benchmark = F a l s e
14

15 t r a i n _ m o d e l ( . . . )

Listing 4.2: Python code to make training deterministic for pytorch

1 i m p o r t os
2 i m p o r t numpy as np
3 i m p o r t random
4 i m p o r t t e n s o r f l o w as t f
5

6 t f . r e s e t _ d e f a u l t _ g r a p h ( )
7 os . e n v i r o n [ ’PYTHONHASHSEED’ ] = s t r ( 4 2 )
8 np . random . seed ( 4 2 )
9 random . seed ( 4 2 )

10 t f . s e t _ r a n d o m _ s e e d ( 4 2 )
11

12 t r a i n _ m o d e l ( . . . )

Listing 4.3: Python code to make training deterministic for tensorflow
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Figure 4.5: (Almost) Deterministic results (for the Entropy calculations – Section 4.1.2)
for models trained on two different machines.
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Figure 4.6: Image shows how averaging the weights (SWA) can achieve better test error.
Image source: [IPG+18].

4.3 Stochastic Weight Averaging
In this chapter, we also propose a solution to the model-instability problem which is in-
spired from the Stochastic Weight Averaging (SWA) approach proposed in [IPG+18]. The
main motivation behind SWA is to improve the training process of a neural network, and
achieve better performance. They propose a modification to the normal Stochastic Gra-
dient Descent approach. The SWA algorithm can also be seen an alternative approach to
the Fast Geometrix Ensembling (FSE) approach proposed in [GIP+18].

The main idea behind SWA is to average the weights of multiple points in the trajec-
tory of the gradient descent based optimizers (primarily SGD). The algorithm can be seen
as a extension to SGD where, after a certain point in the training process, the learning rate
for SGD is kept constant. This allows the weights to explore the weight space (around
the local optimum). Then, the weights from different iterations are averaged to produce
the final learned weights of the model. For example, if SGD (with constant learning rate)
produces weight samples: w1, w2, . . . , wn. The final weights, according to the SWA
approach is:

wswa =

∑
i=1..nwi
n

Figure 4.6, for instance, shows the SWA algorithm in action where it is able to achieve
better train loss (and hence, better test loss) by averaging on the explored SGD attained
weight samples. I would refer the reader to [IPG+18] to get a detailed understanding of
the algorithm.

Note that it is also interesting to compare this approach with the FSE proposal where
the final output is the average of outputs from an ensemble of models.

In the SWA paper[IPG+18], the authors also show that, compared to SGD (with a
fixed learning rate), their proposed algorithm, has significantly higher chances of produc-
ing weights that are inside the ellipsoid near wopt (the local optimum), under their given
assumptions.

Overall, the principle idea in SWA is to explore the weight space around the local op-
timum and average the weights that are maximally distant from each other (while making
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sure that they are around the same minima region) to converge closer to the optimum val-
ues. Although, in our case, we look at SWA from the perspective of a model’s stability.
In this project, we try to use this idea of the SWA approach to modify the training process
such that the resulting weights (models) are more robust and stable.

4.4 Aggressive Stochastic Weight Averaging (ASWA)
Stochastic weight averaging (SWA) [IPG+18], as explained in Section 4.3, works by aver-
aging the weights of multiple points in the trajectory of gradient descent based optimizers.
The algorithm typically uses modified learning rate schedules. SWA is itself based on the
idea of maintaining a running average of weights in stochastic gradient descent based op-
timization techniques [Rup88, PJ92]. The principle idea in SWA is averaging the weights
that are maximally distant helps stabilize the gradient descent based optimizer trajectory
and improves generalization. [IPG+18] use the analysis of [MHB17] to illustrate the
stability arguments where they show that, under certain convexity assumptions, SGD it-
erations can be visualized as samples from a Gaussian distribution centred at the minima
of the loss function. Samples from high-dimensional Gaussians are expected to be con-
centrated on the surface of the ellipse and not close to the mean. Averaging iterations
is shown to stabilize the trajectory and further improve the width of the solutions to be
closer to the mean.

The paper[IPG+18] suggests using SWA usually after pre-training the model (at least
until 75% convergence) and after which they suggest sampling weights at different steps
either using large constant or cyclical learning rates. As SWA is well defined for convex
losses [PJ92], the authors connect SWA to non-convex losses by suggesting that the loss
surface is approximately convex after convergence.

In this project, however, we focus on the stability of deep neural models as a function
of random-seeds. Our proposal is based on SWA, but we extend it to the extremes and call
it Aggressive Stochastic Weight Averaging (ASWA). We assume that, for small batch size,
the loss surface is locally convex. In our algorithm we follow the same concept of SWA,
where we keep a moving average of the weights of the model and update the original
model weights with them at the end of each epoch, except that, we do not wait for the
model to converge to start the weight averaging process. Instead we start from the first
iteration of the model training itself. Also, we perform the weight averaging at every step
of the batch size b (i.e, each iteration). We further relax the conditions for the optimizer
and assume that the optimizer is based on some version of gradient descent — this means
that our modification is valid even for other pseudo-first-order optimization algorithms
including Adam [KB14] and Adagrad [DHS11].

Another subtle (but crucial) difference between the SWA and ASWA is the way we use
the moving averaged weights. At the end of each epoch, instead of swapping the original
weights with the averaged ones (as proposed by SWA), we discard the original weights
and assign the averaged weights’ value to them. This can be noticed in Figure 4.10 where
the model, in some sense, gets a restart at the end of each epoch. This makes for the
conservative behaviour of the algorithm which, intuitively, helps it to converge into more
stable weights. Since we were using the Pytorch library for SWA’s implementation2,
we decided to modify the original library code to implement ASWA. Figure 4.7 shows the
exact change we made to the library to implement our algorithm. In the swap function

2https://github.com/pytorch/contrib
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Figure 4.7: Figure showing changes proposed to the swap function in the original SWA
implementation. In ASWA, the value of the swa_buffer remains unchanged, and is
not replaced with the current weights.

Figure 4.8: Definition of the copy_ function from Pytorch.

(called at the end of each epoch) we don’t replace the value stored in the moving averaged
weights (swa_buffer). Note that the definition of the copy_ function is shown in
Figure 4.8 (taken from the official documentation of Pytorch3).

In our setup, we investigate the utility of averaging weights over every iteration (an
iteration consists of one batch gradient descent).

In Figures 4.9 and 4.10, we show an SGD optimizer (with momentum) and the same
optimizer with SWA over a 3-dimensional loss surface with a saddle point. We observe that
the original SGD reaches the desired minima, however, it almost reaches the saddle point
and does a course correction and reaches minima. On the other hand, we observe that SGD
with ASWA is very conservative, it repeatedly restarts and reaches the minima without
reaching the saddle point. We empirically observe that this is a desired property for the
stability of models over runs of the same model but with different random initialization.
The grey circles in Figure 4.10 highlight this conservative behaviour of SGD with ASWA
optimizer, especially when compared to the standard SGD.

We note, [PJ92] show that for convex losses, averaging SGD proposals achieves the
highest possible rate of convergence for a variety of first-order SGD based algorithms.

Algorithm 1 shows the implementation pseudo-code for SWA. Unlike [IPG+18], we
average our weights at each batch update and assign the ASWA parameters to the model
at the end of each epoch. That is, we replace the model’s weights for the next epoch with
the averaged weights.

3https://pytorch.org/docs/stable/tensors.html
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Figure 4.9: Trajectory for normal Stachastic gradient descent algorithm with red and black
arrows indicating movements from consecutive epochs.

Figure 4.10: Trajectory for the ASWA algorithm with red and black arrows indicating
movements from consecutive epochs with restarts. Conservative behaviour of ASWA
algorithm helps it avoid the saddle point.
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Algorithm 1: Aggressive SWA algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
e← 0;
while e < m do

i← 1
while i ≤ n do

Wswa ← Wswa +
(W−Wswa)
(e∗n+i+1)

;
W ← W −O(α,W );
i← i+ 1

W ← Wswa;
e← e+ 1

Algorithm 2: Norm-filtered Aggressive SWA algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
7: Ns = List of previous iterations’ norm differences
e← 0;
while e < m do

i← 1
while i ≤ n do

Ncur ← ‖W −Wswa‖1;

Nmean ←
∑|Ns|

i=1 Ns[i]

|Ns| ;
if Ncur > Nmean then

Wswa ← Wswa +
(W−Wswa)
(e∗n+i+1)

;
Ns ← [Ncur];

else
Ns ← Ns + [Ncur];

W ← W −O(α,W );
i← i+ 1

W ← Wswa;
e← e+ 1
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4.4.1 Norm-filtered Aggressive Stochastic Weight Averaging (NASWA)

We observe that the ASWA algorithm is especially beneficial when the norm difference
of the parameters of the model, at two different iterations, are high. We hypothesise that
in general, the norm difference indicates the divergence between optimizers’ steps and
we observe that the larger the norm difference, the greater the change in the trajectory.
Therefore, we propose to maintain a list that stores the norm differences of the previous
iterations. If the norm difference of the current iteration is greater than the average of the
list, we update the ASWA weights and reinitialize the list with the current norm difference.
When the norm difference, however, is less than the average of the list, we just append
the current norm difference to the list. After the completion of the epoch, we assign the
ASWA parameters to the model. This is shown in Algorithm 2. We call this approach
Norm-filtered Aggressive Stochastic Weight Averaging.

4.5 Experiments
We base our investigation on similar sets of models as [JW19] (as discussed in Section
2.6). We also use the code4 provided by the authors for our empirical investigations for
consistency and empirical validation. We describe our models and datasets used for the
experiments below.

4.5.1 Models

We consider two sets of commonly used neural models for the tasks of binary classifi-
cation and multi-class natural language inference. The basic structure of the model is
explained in Section 2.6. We use CNN and bi-directional LSTM based models with at-
tention. We follow [JW19] and use similar attention mechanisms using a) additive atten-
tion [BCB14]; and b) scaled dot product based attention [VSP+17]. We jointly optimize
all the parameters for the model, unlike [JW19] where the encoding layer, attention layer
and the output prediction layer are all optimized separately. We experiment with several
optimizers including Adam [KB14], SGD and Adagrad [DHS11] but most results below
are with Adam.

For our ASWA and NASWA based experiments, we use a constant learning rate for
our optimizer. Other model-specific settings are kept the same as [JW19] for consistency.

Dataset Avg. Length Train Size Test size

IMDB 179 12500 / 12500 2184 / 2172
Diabetes(MIMIC) 1858 6381 / 1353 1295 / 319

SST 19 3034 / 3321 652/653
Anemia(MIMIC) 2188 1847 / 3251 460 / 802

AgNews 36 30000 / 30000 1900 / 1900
ADR Tweets 20 14446 / 1939 3636 / 487

SNLI 14 182764 / 183187 / 183416 3219 / 3237 / 3368

Table 4.1: Dataset characteristics. Train size and test size show the cardinality for each
class. SNLI is a three-class dataset while the rest are binary classification

4https://github.com/successar/AttentionExplanation
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4.5.2 Datasets
The datasets used in our experiments are listed in Table 4.1 with summary statistics.
We further pre-process and tokenize the datasets using the standard procedure and fol-
low [JW19]. We note that IMDB [MDP+11], Diabetes (MIMIC) [JPS+16], Anemia
(MIMIC) [JPS+16], AgNews [ZZL15], ADR Tweets [NSO+15] and SST [SPW+13] are
datasets for the binary classification setup. While SNLI [BAPM15] is a dataset for the
multiclass classification setup and CNN News Articles [HKG+15] for cloze style ques-
tion answering. Figure 4.2 shows examples from some of these datasets. I would refer
the reader to [JW19] to get a better understanding on all the different datasets.

4.5.3 Settings and Hyperparameters
We use a 300-dimenstional embedding layer which is initialized with FastText [JGB+16]
based free-trained embeddings for both CNN and the bi-directional LSTM based models.
We use a 128-dimensional hidden layer for the bi-directional LSTM and a 32-dimensional
filter with kernels of size {1, 3, 5, 7} for CNN. For others, we maintain the model settings
to resemble the models in [JW19]. We train all of our models for 20 Epochs with a
constant batch size of 32. We use early stopping based on the validation set using task-
specific metrics (Binary Classification: using roc-auc[GS+66], Multiclass and question
answering based dataset: using accuracy).

Dataset CNN(%) CNN+ASWA(%) CNN+NASWA(%)

IMDB 89.8 (±0.79) 90.2 (±0.25) 90.1 (±0.29)
Diabetes 87.4 (±2.26) 85.9 (±0.25) 85.9 (±0.38)

SST 82.0 (±1.01) 82.5 (±0.39) 82.5 (±0.39)
Anemia 90.6 (±0.98) 91.9 (±0.20) 91.9 (±0.19)
AgNews 95.5 (±0.23) 96.0 (±0.11) 96.0 (±0.07)

Tweet 84.6 (±2.65) 84.4 (±0.54) 84.4 (±0.54)

Table 4.2: Performance statistics obtained from 10 differently seeded CNN based models.
Table compares accuracy and its standard deviation for the normally trained CNN model
against the ASWA and NASWA trained models, whose deviation drops significantly, thus,
indicating increased robustness.

4.6 Results
In this section, we summarize our findings for 10 runs of the model with 10 different
random seeds but with identical model settings.

4.6.1 Model Performance and Stability
We first report model performance (classification accuracy) and prediction stability. The
results are reported in Table 4.2.

We note that the original CNN based models, on an average, have a standard devia-
tion of ±1.5%. Which seems standard, however, we note that ADR Tweets dataset has
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Dataset LSTM(%) LSTM+ASWA(%) LSTM+NASWA(%)

IMDB 89.1 (±1.34) 90.2 (±0.32) 90.3 (±0.17)
Diabetes 87.7 (±1.44) 87.7 (±0.60) 87.8 (±0.55)

SST 81.9 (±1.11) 82.0 (±0.60) 82.1 (±0.57)
Anemia 91.6 (±0.49) 91.8 (±0.34) 91.9 (±0.36)
AgNews 95.5 (±0.32) 96.1(±0.17) 96.1 (±0.10)

Tweet 84.7 (±1.79) 83.8 (±0.45) 83.9 (±0.45)

Table 4.3: Classification accuracy statistics obtained from 10 differently seeded LSTM
based models.

a very high standard deviation of ±2.65%. We observe that ASWA and NASWA almost
always are able to get higher performance with very low standard deviation. This sug-
gests that both ASWA and NASWA are extremely stable when compared to the standard
model. They significantly improve the robustness, on an average, by 72% relative to the
original model and on Diabetes (MIMIC), a binary classification dataset, by 89% (relative
improvement). We observe similar results for the LSTM based models in Table 4.3.

(a) CNN models (b) LSTM models

Figure 4.11: Prediction’s standard deviation for CNN and LSTM based models for all
binary classification datasets under consideration. Predictions are bucketed in intervals of
size 0.1, starting from 0 (containing predictions from 0 to 0.1), until 0.9

We further analyze the prediction score stability by computing the mean standard de-
viation over the binned confidence intervals of the models in Figure 4.11a. We note that
on an average, the standard deviations are on the lower side. However, we observe that
the mean standard deviation of the bins close to 0.5 is on the higher side as is expected
given the high uncertainty. On the other hand both, ASWA and NASWA based models
are relatively more stable than the standard CNN based model (Figures 4.12a, 4.12b). We
observe similar behaviours for the LSTM based models in Figure 4.11b. This suggests
that our proposals, both ASWA and NASWA, are able to obtain relatively better stabil-
ity without any loss in performance. We also note that both ASWA and NASWA had
relatively similar performance over more than 10 random seeds.
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(a) CNN+ASWA (b) CNN+NASWA

(c) LSTM+ASWA (d) LSTM+NASWA

Figure 4.12: Improved prediction stability from ASWA and NASWA for CNN and LSTM
based models
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4.6.2 Attention Stability
We now consider the stability of attention distributions over as a function of random seeds.
We first plot the results of the experiments for standard CNN based binary classification
models over uniformly binned prediction scores for positive labels in Figure 4.13a. We
observe that, depending on the datasets, the attention distributions can become extremely
unstable (high entropy). We specifically highlight the Diabetes(MIMIC) dataset’s entropy
distribution. We observe similar, but relatively worse results for the LSTM based models
in Figure 4.13b. In general, we would expect the entropy distribution to be close to zero
however, this doesn’t seem to be the case. This means that using attention distributions to
interpret models may not be reliable and can lead to misinterpretations.

(a) CNN models (b) LSTM models

Figure 4.13: Average attention entropy against the bucketed predictions for CNN and
LSTM based models. Figure highlights the high entropy between attention based dis-
tributions from differently seeded models (especially for the Diabetes-MIMIC datatset),
indicating towards model instability.

(a) CNN models (b) LSTM models

Figure 4.14: Average Jaccard distance between attention-distributions, against the buck-
eted predictions for CNN and LSTM based models. Figure highlights the high Jaccard-
distance between attention based distributions from differently seeded models, again, in-
dicating towards model instability.

We use the top 20% of the most important items (indices) in the attention distribution
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for each dataset over 10 runs and plot the Jaccard distances for CNN and LSTM based
models in Figure 4.14a and Figure 4.14b. We again notice a similar trend of unstable
attention distributions over both CNN and LSTM based attention distribution.

In the following sections, we focus on CNN based models with additive attention.
Our results on LSTM based models are also shown in Figure 4.16. We note that the
observations for LSTM models are, in most cases, similar to the behaviour of the CNN
based models. Results for the scaled dot-product attention based models are also shown
in 4.17 and we notice a similar trend as the additive attention.

We now focus on the effect of ASWA and NASWA on binary and multi-class CNN
based neural models separately.

Binary Classification In Figure 4.15, we plot the results of the models with ASWA and
NASWA. We observe that both these algorithms significantly improve the model stability
and decrease the entropy between attention distributions. For example, in Figure 4.15b,
both ASWA and NASWA decrease the average entropy by about 60%. We further notice
that NASWA is slightly better performing in most of the runs. This empirically vali-
dates the hypothesis that averaging the weights from divergent weights (when the norm
difference is higher than the average norm difference) helps in stabilizing the model’s
parameters, resulting in a more robust model.

(a) IMDB (b) Diabetes (c) SST

(d) Anemia (e) AgNews (f) ADR Tweets

Figure 4.15: Attention stability improvement from ASWA and NASWA on CNN based
models.
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(a) IMDB (b) Diabetes (c) SST

(d) Anemia (e) AgNews (f) ADR Tweets

Figure 4.16: Attention stability improvement from ASWA and NASWA on LSTM based
models.

(a) Entropy improvement for dot Attention
based CNN model for SST dataset.

(b) Entropy improvement for dot Attention
based CNN model for Diabetes dataset.

Figure 4.17

Multi-class Classification In Figure 4.18, we plot the entropy between the attentions
distributions of the models for the SNLI dataset (CNN based model), separately for each
label (neutral, contradiction, and entailment). We notice, similar observations as the bi-
nary classification models, the ASWA and NASWA algorithms are able to significantly
improve the entropy of the attention distributions and increases the robustness of the
model with random seeds.
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(a) Label 0 prediction vs entropy (b) Label 1 prediction vs entropy

(c) Label 2 prediction vs entropy

Figure 4.18: Attention stability improvement from ASWA and NASWA on CNN based
model for the SNLI dataset.

Figure 4.19 highlights the achievements of our proposed techniques in terms of the at-
tention weights’ stability. It plots the standard deviation of the attention weights assigned
to each word for a particular test case in the Twitter dataset (same as the one in Figure 4.1),
comparing the results from the original model (trained normally), against a model trained
using ASWA. As we can see, the deviation in the weight assigned to the word "why" is
originally around 0.15. While, with the ASWA trained model, we are able to decrease the
standard deviation by more than 80%. This decrease is deviation can be noticed for the
rest of the words in the sentence as well. Similarly, Figure 4.20 illustrates the stability im-
provement on the test case shown in Figure 4.2a with our NASWA optimizer. Note that,
for both the cases shown, the model prediction doesn’t change significantly, although, the
stability of the prediction scores improve with the ASWA and NASWA optimizers (as
discussed in Section 4.6.1)
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Figure 4.19: Figure highlighting the improvement in the stability of attention weights in
a particular test case from the Twitter dataset.
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Figure 4.20: Figure highlighting the improvement in the stability of attention weights in
a particular test case from the Twitter dataset.

4.6.3 Gradient-based explanations

We now look at an alternative method of interpreting deep neural models and look into
the consistency of the gradient-based explanations to further analyze the model’s insta-
bility. For this setup, we focus on binary classifier and plot the results on the SST and
the Diabetes dataset in particular since they cover the low and the high end of the entropy
spectrum (respectively). We notice similar trends of instability in the gradient-based ex-
planations from model inputs as we did for the attention distributions. Figure 4.21 shows
that the entropy between the gradient-based explanations from differently seeded models
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closely follows the same trend as the attention distributions.

(a) Diabetes (b) SST

Figure 4.21: Gradient based explanation’s stability improvement from NASWA on CNN
based models.

This result further strengthens our claim on the importance of model stability and
shows that over different runs of the same model with different seeds we may get different
explanations using gradient-based feature importance. Moreover, Figure 4.21 shows the
impact of ASWA and NASWA towards making the gradient-based explanations more
consistent, thus, significantly increasing the stability.

4.7 Discussion

Recent advances in adversarial machine learning [NVL+15, ZKS+16] have investigated
robustness to random initialization based perturbations, however, to our knowledge, no
previous study investigates the effect of random-seeds and its connection on model in-
terpretation. Our study analyzed the inherent lack of robustness in deep neural models
for NLP. Recent studies cast doubt on the consistency and correlations of several types
of interpretations [DVK17, JW19, FWGI+18]. We hypothesise that some of these is-
sues are due to the inherent instability of the deep neural models to random-seed based
perturbations.

Our analysis (in Section 4.5) shows that, on multiple runs of the model with equiva-
lent settings, models may use completely different routes to reach similar decisions with
high confidence. This issue of variance in all black-box interpretation methods over dif-
ferent seeds will continue to persist until the models are fully robust to random-seed based
perturbations. Our work however, doesn’t provide insights into instabilities of different
layers of the models. We hypothesise that it might further uncover the reasons for the
relatively lower correlation between different black-box interpretation methods as these
are effectively based off on different layers and granularity.

There has been some work on using noisy gradients [NVL+15] and learning from
adversarial and counter-factual examples [FWGI+18] to increase the robustness of deep
learning models. [FWGI+18] show that neural models may use redundant features for pre-
diction and also show that most of the black-box interpretation methods may not be able
to capture these second-order effects. Our proposals show that aggressively averaging
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weights leads to better optimization and the resultant models are more robust to random-
seed based perturbation. However, our research is limited to increasing consistency in
neural models. Our approach further uses first order based signals to boost stability. We
posit that second-order based signals can further enhance consistency and increase the
robustness.

4.8 Conclusions
In this chapter, we study the instability of deep neural models in NLP as a function of
random initialization seeds. We analyze model performance and robustness of the model
in the form of attention entropy and gradient-based feature importance entropy across
multiple runs of the models with different random seeds. We propose a novel solution
that makes use of aggressive weighted averaging and further extend it with norm-filtering
and show that our proposed methods largely stabilize the model to random-seed based
perturbations and, on an average, significantly reduce the standard deviations of the model
performance by 72%. We further show that our methods significantly reduce the entropy
in the attention distribution and the gradient-based feature importance measures across
runs.
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Chapter 5

Evaluation

Throughout the project we have been careful about evaluating our experiments since we
wanted to make sure that our research was publishable. As mentioned earlier, we have
been accepted to present our paper (based on the work in Chapter 3) in the EARS 2019
workshop1. We have submitted another paper (based on the work in Chapter 4) to the
CoNLL2 conference. We have ensured that the results and conclusions that we have
discussed in various parts of the project are all backed with some form of empirical or
theoretical results.

Performance
For our work on recommendation systems like DeepICF and NCF (Section 2.1.2), we
follow the standardized metrics like HitRatio and NDCG to measure and compare the
performance of our proposed models (explained in Section 3.1.4). Table 3.2 compares the
performance of our modified models with the baseline state-of-the-art NCF and DeepICF
models.

Moreover, for our work in Chapter 4, we measure the performance using the stan-
dard classification accuracy metric. Tables 4.2 and 4.3 compare the performance of our
proposed techniques against the baseline trained models.

Calibration
In Chapter 3, we use the reliability diagrams (explained in Section 2.4) to evaluate the
calibration of the models under inspection. These diagrams help us visualize and ana-
lyze the over-confidence (or under-confidence) in our models, for a range of confidence
values. Figure 2.16, for instance, distinctly visualizes the degree of over-confidence in a
model and how it varies with different confidence scores. We further use these reliability
diagrams to form a connection between the calibration of a model and the reliability of its
attention weights (as shown in Figure 3.8).

Attention stability
Measuring the stability of attention weights is an important aspect of the project. As
discussed in Section 4.1.2, we did a comprehensive examination on the metrics to be used

1https://ears2019.github.io/
2https://www.conll.org/2019
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to compare two attention distributions. We rely on these metrics to measure the reliability
of a model’s explanations (generated using their attention distributions). We mainly use
Entropy and Jaccard distance for that purpose in Chapters 3 and 4.

Furthermore, in Chapter 4, we perform a thorough analysis on our proposals. We
experimented with over 8 different datasets (SST, MIMIC-Diabetes, MIMIC-Anemia,
Twitter, IMDB and others mentioned in Section 4.5.2) for Binary/Ternary classification,
and Question-Answering tasks. We also tried different models architectures with LSTM,
CNN based encoders and tanh, scaled dot-product based attention decoders.

In Chapter 3, however, we discuss our results from calibration and attention stability
only from a limited number of experiments. This could have been improved, and further
research/experiments should be done in order to make stronger conclusions.

For all our experiments, we also followed the standard procedure of seeding the pro-
cess to make sure the experiments are easily reproducible (as mentioned in Section 4.2).
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Chapter 6

Conclusion

In this project, we looked into an exceedingly important aspect of neural networks – their
interpretability. Even with state-of-the-art results in a plethora of applications, their usage
is restricted by their black-box nature. Nevertheless, there has been significant successful
research in the last few years attempting to open this black-box.

This project aims to contribute to this ongoing research by opening the discussion to
model dynamics like calibration and stability which, according to us, have the ability to
affect a model’s interpretability.

In Chapter 3, we try to draw a link between a model’s calibration and the reliability
of its attention weights, in the context of local explanations. We test our hypothesis on
neural recommendation systems, although, we believe that the interaction between these
two model dynamics should be prevalent in other neural models as well.

In Chapter 4, we look at model interpretability, from the perspective of its stability. We
attempt to quantify the in-stability, imparted to the models during the training process. We
further try to reduce this instability with our proposed algorithms – ASWA and NASWA
(Section 4.4).

All these experiments we conduct and questions we ask correspond to the broader
theme of model interpretability, especially in the context of deep learning. We believe the
problems highlighted by our research are some of the basic issues that these models will
have to overcome for better reception in the real world applications.

6.1 Challenges

The biggest challenge faced during the course of the project, especially in my case, was
to be up-to-date with the state-of-the-art work. Given the broad range of topics that we
touched upon in this project, it was very important for me to have meaningful context
on them and the work relating to them. My supervisor guided me throughout the project
and that significantly helped me tackle this challenge. It also helped us shape and give a
direction to the project.

Another set of challenges faced during the course of this project stem from the fact
that most of the research we did involves state-of-the-art work. For instance, in Chapter 3,
although calibration has been a part of the literature for a long time, we could not find any
work relating it to a model’s interpretability. Besides, interpreting neural recommendation
systems is a relatively new field of research in itself. The inspirations for our work in
Chapter 4 – [JW19, IPG+18], are also very recent. This meant we had to be particularly
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careful with our experiments and deductions since there is not enough research backing
our work.

Working with neural networks brings its own set of challenges, given their black-box
nature. It is especially hard to account for or reason about all the anomalies that may
occur during the experiments (Figure 4.16f for instance).

Other challenges faced include debugging with libraries like Tensorflow, working
with a variety of code bases (although, using an IDE like PyCharm1 helped us navigate
and understand the code) and datasets, and managing deadlines for paper submissions (for
the conferences) with the college report deadlines among others.

6.2 Limitations and Future work
Although the analysis done in the project is state-of-art, it is still far from being conclu-
sive. In the sections below, we discuss some limitations of our work and some possible
extensions to the research done in the project.

6.2.1 Model explanations under Calibration (Chapter 3)
One of the shortcomings of our research in this Chapter 3 is that it is confined to a single
model (DeepICF) and a single dataset (MovieLens). To the best of our knowledge, there
are not many neural recommendation systems which use attention mechanism (due to the
novelty of the field). Nevertheless, the same questions can be asked for other binary clas-
sification neural models (like sentiment analysis, image classification, and others) which
use attention mechanism, especially the ones which are un-calibrated. A generalized anal-
ysis on different models and datasets would significantly strengthen the hypothesis.

Another interesting work can be looking into other ways to make the attention more
reliable. For instance, in our work, we try the inverse-class weighted cross-entropy loss
(Section 3.4.3), another interesting technique could be to sample lesser negative test cases
for the training dataset. That way, we would not need to modify the loss, since the dataset
would be balanced itself.

6.2.2 Model stability as a function of random seeds (Chapter 4)
In Chapter 4, we were able to perform a lot more comprehensive research on our hypoth-
esis and proposal, as compared to Chapter 3. Nevertheless, there remain many interesting
questions that are un-answered in this field of research.

One of the future directions for this project can be about further investigating the
proposed approaches and analyzing the model’s conduct when the weights get averaged
at each iteration. The example in Figure 4.10 provides an intuition for how the ASWA and
NASWA algorithms (Section 4.4) work, but it is also important to follow their behavior
in a model as complicated as a deep neural network. In Figure 4.16f as well, we need to
inspect why the LSTM based models, trained with ASWA and NASWA optmizers, give
inconsistent results for the Twitter dataset, especially towards the right end of the x-axis
when the confidence in the label is high.

Another extension to the project can be fine tuning the NASWA algorithm. As men-
tioned in Section 4.6.2, there is a possibility that averaging over weights from parameters

1https://www.jetbrains.com/pycharm/
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whose norm difference is relatively higher might lead to better results. We can alter the
NASWA algorithm to compare norm-differences from different parameters and take only
specific parameters into account (instead of averaging the norm-difference from all of
them) when deciding to skip a particular iteration for the running average.

One can also extend the project to datasets and models outside NLP applications and
try to apply the techniques proposed and see if they work for them as well.

As mentioned earlier, we can also perform a layer-wise stability analysis for the
model. That way we would be able to point out the layers/parameters that particularly
contribute to the instability of the model. This could eventually help us narrow down the
stability problem to granular versions and thereby enable us to find better solutions.
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ABSTRACT
Explaining and interpreting the decisions of recommender systems
are becoming extremely relevant both, for improving predictive
performance, and providing valid explanations to users. While most
of the recent interest has focused on providing local explanations,
there has been a much lower emphasis on studying the effects of
model dynamics and its impact on explanation. In this paper, we
perform a focused study on the impact of model interpretability in
the context of calibration. Specifically, we address the challenges
of both over-confident and under-confident predictions with inter-
pretability using attention distribution. Our results indicate that
the means of using attention distributions for interpretability are
highly unstable for un-calibrated models. Our empirical analysis on
the stability of attention distribution raises questions on the utility
of attention for explainability.
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1 INTRODUCTION
Recommendation systems are used for item filtering based on user
preferences in a variety of areas including movies, news, books,
social recommendations and products in general. Some commonly
used approaches to recommendation systems include Collaborative
filtering, Content-based filtering and hybrid systems. There has
been an increased interest in the community in utilizing deep learn-
ing based models for recommender systems [18]. These models can
alleviate several limitations of traditional models including complex
non-linear transformations, interactions with different types and
modalities of inputs. Deep learning based models have been partic-
ularly shown to be flexible and are known to incorporate additional
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data when training and can learn from large amounts of auxiliary
information, which is usually available to recommendation systems.
As deep models are modular than other rigid algorithms they are
easily adaptable and extendable.

The significance of explaining automated recommendations is
widely acknowledged [7, 13]. Explanations build user trust, improve
their experience, and also give them the opportunity to fix incor-
rect representations or recommendations. For these reasons, there
has been extensive research on ways to explain different types of
recommendation systems. We refer the reader to Zhang and Chen
[19] for a detailed survey on explainable systems.

Deep learning based recommendation systems have opened up
one way of explaining neural models’ outputs in the context of
recommendations [19] — by using attention distributions. In this
context, neural attention mechanisms have gained significant focus,
as they have been shown to not only help the model perform better,
but also provide explanations by highlighting the input features
that play a significant part in computing the model’s output [2, 17].
However, it is has been recently indicated that attention may not
always provide a reliable form of explanation, especially in the
domain of natural language processing [8].

One of the emerging problems with the modern neural net-
work models (especially deep neural networks) is their poor calibra-
tion [3]. Over-confident or under-confident predictions can make a
model unreliable, especially in sensitive scenarios like health care
(disease detection), autonomous driving among others [3].

In this paper, we focus on a form of recommendation system
that aims to answer why a certain recommendation has been made.
Especially, we investigate the reliability of attention distributions
in deep neural attention based recommendation systems.

2 BACKGROUND AND TOOLS
In this paper, we investigate the utility of attention with a state-of-
the-art deep neural network based model with attention [17]. In
this section, we succinctly describe the necessary background and
the tools under consideration.

2.1 Attention Distribution
Attention mechanisms, in neural networks, are known to provide
the functionality for the model to focus on certain parts of the
inputs or features. An attention mechanism in recommendation
systems is usually over u, a user representation, with the set of
item specific representations {vi } ∈ V where V is the domain
of all item representations. A compatibility function maps u and
{vi } to a scalar distribution, which is then typically converted into
a probability distribution using a softmax operator. This usually
results in a distribution where some items get more probability
mass than others, indicating their influence in the decision made by
the system. In this paper, we focus on such attention distributions
and are interested in their reliability. We are especially interested
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in understanding the behaviour of the models when the models are
mis-calibrated.

Explanation using Attention. In neural recommendation systems
(and neural networks in general), attention is increasingly being
used, not just to improve the model’s performance but also as a
means to explain the model’s predictions [1, 14, 17]. The attention
maps (heat-maps) are used to indicate which input features to
the model were majorly responsible for the model’s predictions. In
Figure 1 (from amovie recommendation system fromXue et al. [17]),
for instance, for target item #1525, the attention-network assigns
the maximum weight to the item #1254 (one of the previously
interacted items of the target user). This information can be used to
generate a human-readable explanation like "You are recommended
to watch #1525 because you watched #1254".

More recently, there has been research on the reliability of
attention-maps based explanations [9] and if they can be used
to explain a model. In this paper, we work on this line of research in
the context of recommendation systems and their calibration(2.2).

2.2 Model Calibration
Classification models used as part of any decision process need to
be both accurate in their predictions, and should also indicate when
they are probably incorrect. Model calibration is the degree to which
a model’s predicted probability correlates with its true correctness
likelihood. Calibration measures this property of a model. For exam-
ple, if a perfectly calibrated model gives 100 different predictions,
each with 80% confidence (probability), 80 of the predictions should
be classified correctly.

We use the concept of calibration to plot reliability diagrams [4].
A reliability diagram can be defined as the accuracy of the model
as a function of its confidence. First, we bucket all the predictions
based on the predicted probabilities. Reliability diagrams help us
visualize a model’s calibration. A reliability plot which falls below
the identity function suggests that the model is over-confident of
its predictions (blue plot in Figure 3) since it means that the ground
truth likelihood (accuracy) is less than the model’s confidence in
its predictions. On the other hand, it is considered under-confident
if the reliability plot is above the identity function. For a perfectly
calibrated model, the reliability plot is the identity function.

2.3 Attention Permutation
One of the experiments we perform to check the reliability of at-
tention based explanations is permuting the weights randomly and
recording the effects of the permutations on the output of the model
(inspired from Jain and Wallace [9]).

Since the particular weights assigned to the input features are
used as the basis for the explanations, permuting these weights ran-
domly should cause the model’s prediction to change by a substan-
tial margin. In case the predictions remain unchanged it indicates
that the attention necessarily doesn’t contribute to the predictions.
This can be concerning especially when using attention as grounds
for explanations.

2.4 Model Stability
In our study, we refer to model stability as the consistency of model
predictions and internal parameters with different runs of the model

by only changing random seeds. [10, 11]. The seed values are re-
sponsible for regulating the training dynamics (weight initialization,
training batch generation, among others). This way, we get to mea-
sure the impact of these random processes on the output of the
model (and the attention weights).

Figure 1: Attention map showing weights assigned to input
features

3 EXPERIMENTAL SETUP
In the following sections we describe our experiments and observa-
tions.

3.1 DeepICF with attention
The DeepICF model uses a deep neural network to learn latent
low-dimensional embeddings of users and items that capture im-
plicit and explicit user interactions. It uses a pair-wise interaction
layer, which consists of an element-wise product (also called the
Hadamard product[15]) of the target item’s latent vector with each
of the historical items’ vectors. The model then follows this with the
pooling layer whose output is a vector of fixed size, to facilitate the
deep interaction of layers. This is done via attention based pooling.
The output of the pooling layer is a vector which condenses the
second-order interaction between historical items and the target
item (we refer the reader to Xue et al. [17] for a detailed explanation
of the model). Finally, the higher order interactions are captured
with a multi-layer perceptron. The output of the model is a sigmoid
on the final layer’s weighted sum.

Modifications:We replaced sigmoid function with a softmax with
two outputs over the two classes and trained the model with cross-
entropy loss.
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Figure 2: Deep ICF with Attention (from Xue et al. [17])

3.2 Dataset, Evaluation and Hyperparameters
We train, evaluate the model and perform our experiments on
the MovieLens1 dataset. This dataset has been commonly used to
evaluate collaborative filtering algorithms. The dataset contains
one million ratings where each user has at least 20 ratings and use
the standard splits. In our study, we retain the standard procedure
used in DeepICF where the original dataset is transformed such that
each user item entry is marked as 1: when there is some interaction
between the user and item and -1: when there is no interaction the
between the target user and item.

Evaluation: For evaluation purposes, the standard metrics used
are HitRatio (HR@10) and the NDCG@10(Normalized Discounted
Cumulative Gain [5]) as the main metrics. We further use the binary
labelling accuracy to investigate the model performance per class,
where the classes are defined as: −1 when there is no interaction be-
tween the user and items and 1 when there is an explicit interaction
(user ratings for the item).

Hyperparameter Settings: For training purposes, we use the same
hyper-parameters as mentioned in the paper [17]. We use the origi-
nal DeepICF implementation2.

4 RESULTS
Table 1 compares the performance of the softmax output model with
the original DeepICF model and the state-of-the-art Neural Matrix
Factorization model[6]. We observe that the performance of our
model is highly competitive and performs as well as the DeepICF
with pretraining. In the following sections, we will investigate the
reliability of models and the attention distribution in the models.

4.1 Calibration
We plot the reliability diagram for the DeepICF model by bucketing
the model predictions based on their confidence and calculating
the accuracy for each of the buckets.

We see in Figure 3, for positive test cases, the DeepICF (with atten-
tion) model seemingly tends to be over-confident as the confidence
increases, where the model tends to be extremely confident about
predicting the positive class without being as accurate. This can be
1https://grouplens.org/datasets/movielens/1m/
2https://github.com/linzh92/DeepICF

Figure 3: Calibration plot (Reliability diagram) of the Deep-
ICF model.

problematic especially when dealing with real-world production
systems. We also notice that the model is seemingly over-confident
in predicting the negative class. This could be because of the imbal-
ance in the dataset where the dataset is extremely skewed towards
the negative class. We also note that the test-set has a very high
degree of imbalance in the number of positive and negative test
cases in our test set (1 positive sample for every 99 negative tests).
This is impacted in Figure 3 as it shows the curves for positive and
negative test samples separately.

4.2 Attention Permutation
What is the effect of over-confidence over attention? In order to
test the reliability of explanations generated from attention, we
permute the attention weights randomly and notice the effect of the
permutation on the output of the model (as described in Section 2.3).

Specifically, in DeepICF, as shown in Figure 2, the attention
based pooling layer assigns a weight for each of the user and item
interaction, where the magnitude of the weights indicate the im-
portance of the interaction. In this experiment, we randomly shuffle
these weights amongst the items and record the difference in the
output prediction score (originally classified interaction label). We
randomly shuffle the weights 100 times (as performed in Jain and
Wallace [9] for each test case, and average the absolute variations
in the output predictions.

We plot the average variations in false negatives (right axis)
against the confidence of the predicted output for the positive
test cases in Figure 4. We focus on positive test cases as it is the
most salient label to measure the model. The plot also contains the
reliability diagram for the model (left axis). We note that the per-
turbations especially have barely any effect on the mis-calibrated
cases. In both false positives and false negatives (these increase
with mis-calibration), we notice similar trends where the effect of
permuting the attention weights decreases as the confidence in the
predicted label increases. Thus, showing that model explana-
tions generated from the attention distribution become less
reliable with over-confident predictions.
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Figure 4: Figure showing the effect of attention permutation
(right axis) on the prediction score of wrongly (negatively)
classified positive test cases (false negatives).

4.3 Fixing the effect of Class-imbalance
As the training split of the dataset is heavily imbalanced: 4 negative
labels (no interactions) for every positive label, we use a simple class-
weighting heuristic, to cope with this imbalance in the training
set and modify our cross-entropy loss. The new loss is calculated
by assigning weights to the losses from the test cases such that
the loss contribution from both the classes (positive and negative
interactions) is balanced[12]. We retrain the model with the new
loss function and were able to achieve similar HitRatio values to
the original model as shown in Table 1. We analysed the effect of
attention permutation (Section 4.2) on thismodel. Figure 5 compares
the new model to the previous model’s results. We notice that the
new model is considerably more sensitive to attention permutation,
compared to the original one.This suggests that attention based
explanations from the class-balanced loss model are more
reliable than the original model.

Figure 5: Effect of permuting attention weights.

4.4 Stability of DeepICF
We now consider the effect of random seeds and on initialization
of model parameters and in general the model performance. We
notice in Table 1 — the standard deviation is generally very low
suggesting that the performance of the model is seemingly stable
and it seems to have small deviation.

Attention score stability: What is the effect of random seeds on
attention distribution? As we are interested in the reliability of
attention explanations, we focus on the stability of attention scores

Model type Hit Ratio@10 (%) NDCG@10 (%)

DeepICF∗ 68.81 41.13
DeepICF∗+Pretrain 70.84 43.80
NeuMF∗+Pretrain 70.70 42.60
DeepICF (ours) 70.41(±0.24) 43.00 (±0.34)
DeepICF+cls-wt 68.61 41.14

Table 1: Performance Comparison for DeepICF and
NeuMF[6]. ∗ indicates scores directly from the correspond-
ing papers. The standard deviation (±) is obtained with 10
runs of the model with different random seeds.

in DeepICF. We perform the same experiment by running the same
model but with 10 different random seeds and record the top 10%
of the most attentive items (user-item interactions which get the
highest attention weight assigned) for every particular test case for
each model. Then we compare if these top 10 percent most attentive
items for a particular test case are consistent for different runs of
the models with different random seedst. We calculate the similarity
between two sets of items by computing the Jaccard Index [16]
of the sets. We calculate the Jaccard Index for every possible pair of
sets of top attentive items and average over them. Figure 6 shows
that the average Jaccard Index for positive predictions with high
confidence is around 0.5 (where max Jaccard Index is 1, imply-
ing completely stable attention scores). This highlights that the

Figure 6: Attention score stability.

attention explanations from two identical models, trained
with different seeds for the same input can vary, severely
highlighting the unreliability of such explanations.

5 CONCLUSION
In this paper, we have explored the importance of model dynamics
and its relation to explanation using attention. Concretely, we ob-
serve that attention may not be reliable when the selected model
is especially mis-calibrated. We have explored one possible way
of stabilizing the model by accounting for the class imbalance.
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Significantly, we noticed that using an inverse-class weighted cross-
entropy formulation can help improve the stability of attention
distribution. Further, we observe that over different runs of models
with different random seeds, the models seem to obtain different at-
tention distributions. We posit that our work is extremely relevant
to the community and can orient towards an important discussion
on the reliability of using attention as an explanation.
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Abstract
In this paper, we focus on quantifying model
stability as a function of random seeds by in-
vestigating the effects of the induced random-
ness on model performance and the robust-
ness of the model in general. We specifi-
cally perform a controlled study on the effect
of random seeds on the behaviour of atten-
tion and gradient-based interpretations. Our
analysis suggests that random-seeds can ad-
versely affect the consistency in models re-
sulting in counter-factual explanations and in-
terpretations. We propose a novel technique
called Aggressive Stochastic Weight Averag-
ing (ASWA) and an extension called Norm-
filtered Aggressive Stochastic Weight Averag-
ing (NASWA) which improves the stability of
model over random-seeds. With our ASWA
and NASWA implementations, we are able to
improve the robustness of the original model,
on an average, reducing the standard deviation
of the model’s performance by 72%.

1 Introduction

There has been tremendous growth in deep neural
based models with state-of-the-art performance.
In fact, most recent end-to-end deep learning mod-
els have surpassed the performance of careful hu-
man feature-engineering based models in most
NLP tasks. However, deep neural network-based
models are often brittle to some sources of ran-
domness in the training of the models. This could
be attributed to several sources including, but not
limited to, random parameter initializations, ran-
dom sampling of examples and sampling of activa-
tions. It has been observed that these models have,
more often, a set of ‘random seeds’ that yield bet-
ter results than others. This has also lead to re-
search suggesting random seeds as an additional
hyperparameter for tuning (Bengio, 2012)1.

1http://www.argmin.net/2018/02/26/
nominal/

One possible explanation for this could be the
existence of multiple local minima in the loss sur-
face. This is especially problematic as the loss
surfaces are non-convex and may have multiple
saddle points making it difficult to have a stable
model, that is, to a large extent, robust to random-
seed based effects.

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.99)

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.98)

Figure 1: Importance based on attention probabil-
ities for two runs of the same model with same
parameters and same hyperparameters, but with
two different random seeds (color magnitudes:
pink<magenta<red)

Recently the NLP community has found new
interests in interpreting and explaining deep neu-
ral models (Jain et al., 2019; Jain and Wal-
lace, 2019; Alvarez-Melis and Jaakkola, 2017).
Most of the interpretation based methods involve
one of the following ways of interpreting mod-
els: a) Adversarial perturbation based interpreta-
tions: where the interpretation is based on change
in prediction score with counter-factual perturba-
tions (Jain et al., 2019; Jain and Wallace, 2019);
b) Interpretations based on feature attributions us-
ing attention or input perturbation or gradient-
based measures; (Ghaeini et al., 2018; Feng et al.,
2018); c) Explanation using surrogate linear mod-
els (Ribeiro et al., 2016). These methods can pro-
vide local interpretations based on input samples
or features. However, the persisting randomness
makes it difficult to accurately interpret neural



models among other forms of pathologies (Feng
et al., 2018).

In this paper, we focus on the stability of deep
neural models as a function of random-seeds. We
are especially interested in investigating the hy-
pothesis of model stability: do neural network
based models under different random seeds allow
similar explanations? In Figure 1, we show an il-
lustration of this question where we have the atten-
tion distributions of two CNN based binary clas-
sification models for sentiment analysis, trained
with the same settings and hyper-parameters, but
with different seeds. We see that both models ob-
tain the correct prediction with significantly high
confidence. However, we note that both the mod-
els attend to completely different sets of words.
This is problematic, especially when interpreting
these models under the influence of such random-
ness.

We also provide a simple method that can, to a
large extent, ameliorate this inherent random be-
haviour. In Section 3, we propose an aggressive
stochastic weight averaging approach that helps
in improving the stability of the models at al-
most zero performance loss while still making the
model robust to random-seed based instability. We
also propose an improvement to this model in Sec-
tion 3.1 which further improves the stability of
the neural models. Our proposals significantly im-
prove the robustness of the model, on an average,
by 72% relative to the original model and on Dia-
betes (MIMIC), a binary classification dataset, by
89% (relative improvement).

2 Model Stability

In this section, we define prediction, attention-
based explanation, and gradient-based explanation
stability.

2.1 Prediction Stability

We define prediction stability in two parts, the first
corresponds to the standard measures of the mean
and the standard deviations corresponding to the
accuracy of the binary classification based mod-
els on different datasets. We ensure that the mod-
els are run with exactly the same configurations
and hyper-parameters but with different random
seeds. This is a standard procedure that is used
in the community to report the performance of the
model.

2.2 Attention Stability

We define attention stability using the robustness
of the attention distributions. That is, we call
the attention probabilities of a model stable if
the model, over several runs with different ran-
dom seeds (but with the same settings and hyper-
parameters) has similar attention probability dis-
tributions. We consider this to be extremely im-
portant for both interpretations and explanations
using attention and the utility of models in general.
We also find that this is important even for inter-
pretations using leave one out based methods or
local interpretations using surrogate models. This
is because, if there is variance due to random seeds
(mostly due to induced randomness in the initial-
ization of weights and biases), the general inter-
pretations would vary for each model.

We now focus on attention distributions to
quantify instability. We use two metrics to inves-
tigate the instability in models: a) Entropy quan-
tification (H): Given two attention distributions
for the same test case from two different models,
it measures the entropy between the two probabil-
ity distributions. Note that, the higher the entropy
the greater the dissimilarity between the two dis-
tributions.

H =
∑

i∈d
Pr1 · log

Pr1
Pr2

where, Pr1 and Pr2 are two attention distributions
of the same sample from two different runs of the
model and d is the number of tokens in the sam-
ple. Given n differently seeded models, for each
test instance, we calculate the averaged pairwise
attention distributions’ entropy.

b) Jaccard Distance (J ): It measures the dis-
similarity between two sets. Here higher values
of J indicate larger variances. We consider top-n
tokens which have the highest attention for com-
parison. Note that, Jaccard distance is over sets of
word indices and do not take into account the at-
tention probabilities explicitly. Jaccard distance is
defined as:

J = (1− A∩B
A∪B ) ∗ 100%

where, A and B are the sets of most relevant
items. We specifically decided to use ‘most’ rel-
evant (top-n items) as the tail of the distribution
mostly consists of values close to 0.



2.3 Gradient-based Interpretation

Gradient-based feature importance is another way
to interpret the model for local explanations. We
use the input gradients of the model for each
word embedding and compute the magnitude of
the change as a local explanation. We refer the
reader to Baehrens et al. (2010) for a good intro-
duction to gradient-based interpretations. As all of
our models are differentiable, we use this as an al-
ternative method for interpretation. We note that
we do not follow Jain and Wallace (2019) and do
not disconnect the computational graph at the at-
tention module. We follow the standard procedure
as followed in Feng et al. (2018). We use entropy
as described in Section 2.2 to quantify the instabil-
ity.

3 Aggressive Stochastic Weight
Averaging (ASWA)

Stochastic weight averaging (SWA) (Izmailov
et al., 2018) works by averaging the weights of
multiple points in the trajectory of gradient de-
scent based optimizers. The algorithm typically
uses modified learning rate schedules. SWA is
itself based on the idea of maintaining a run-
ning average of weights in stochastic gradient
descent based optimization techniques (Ruppert,
1988; Polyak and Juditsky, 1992). The principle
idea in SWA is averaging the weights that are max-
imally distant helps stabilize the gradient descent
based optimizer trajectory and improves general-
ization. Izmailov et al. (2018) use the analysis
of Mandt et al. (2017) to illustrate the stability ar-
guments where they show that, under certain con-
vexity assumptions, SGD iterations can be visual-
ized as samples from a Gaussian distribution cen-
tred at the minima of the loss function. Samples
from high-dimensional Gaussians are expected to
be concentrated on the surface of the ellipse and
not close to the mean. Averaging iterations is
shown to stabilize the trajectory and further im-
prove the width of the solutions to be closer to the
mean.

Izmailov et al. (2018) suggest using SWA usu-
ally after pre-training the model (at least until 75%
convergence) and after which they suggest sam-
pling weights at different steps either using large
constant or cyclical learning rates. As SWA is well
defined for convex losses (Polyak and Juditsky,
1992), the authors connect SWA to non-convex
losses by suggesting that the loss surface is ap-

proximately convex after convergence.
In this paper, we focus on the stability of deep

neural models as a function of random-seeds. Our
proposal is based on SWA, but we extend it to the
extremes and call it Aggressive Stochastic Weight
Averaging. We assume that, for small batch size,
the loss surface is locally convex. Hence, we pro-
pose to perform the weight averaging at every step
of the batch size b. We further relax the condi-
tions for the optimizer and assume that the op-
timizer is based on some version of gradient de-
scent — this means that our modification is valid
even for other pseudo-first-order optimization al-
gorithms including Adam (Kingma and Ba, 2014)
and Adagrad (Duchi et al., 2011).

In our setup, we investigate the utility of averag-
ing weights over every iteration (an iteration con-
sists of one batch gradient descent).

Algorithm 1: Aggressive SWA algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
e← 0;
while e < m do

i← 1
while i ≤ n do

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

In Figure 2, we show an SGD optimizer (with
momentum) and the same optimizer with SWA
over a 3-dimensional loss surface with a saddle
point. We observe that the original SGD reaches
the desired minima, however, it almost reaches
the saddle point and does a course correction and
reaches minima. On the other hand, we observe
that SGD with ASWA is very conservative, it re-
peatedly restarts and reaches the minima without
reaching the saddle point. We empirically ob-
serve that this is a desired property for the stability
of models over runs of the same model but with
different random initialization. The grey circles
in Figure 2 highlight this conservative behaviour



of SGD with ASWA optimizer, especially when
compared to the standard SGD.

(a) Trajectory for Stochastic Gradient Descent

(b) Trajectory for Stochastic Gradient Descent with
ASWA

Figure 2: Trajectory for gradient descent algorithms
with red and black arrows on (b) indicating movements
from consecutive epochs with restarts. Conservative
behaviour of ASWA algorithm helps it avoid the sad-
dle point.

We note, Polyak and Juditsky (1992) show
that for convex losses, averaging SGD proposals
achieves the highest possible rate of convergence
for a variety of first-order SGD based algorithms.

Algorithm 1 shows the implementation pseudo-
code for SWA. We note that, unlike Izmailov et al.
(2018), we average our weights at each batch
update and assign the ASWA parameters to the
model at the end of each epoch. That is, we re-
place the model’s weights for the next epoch with
the averaged weights.

3.1 Norm-filtered Aggressive Stochastic
Weight Averaging (NASWA)

We observe that the ASWA algorithm is especially
beneficial when the norm difference of the param-
eters of the model, at two different iterations, are
high. We hypothesise that in general, the norm
difference indicates the divergence between opti-
mizers’ steps and we observe that the larger the
norm difference, the greater the change in the tra-

Algorithm 2: Norm-filtered Aggressive SWA
algorithm

Require:
1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
7: Ns = List of previous iterations’ norm

differences
e← 0;
while e < m do

i← 1
while i ≤ n do

Ncur ← ‖W −Wswa‖1;

Nmean ←
∑|Ns|

i=1
Ns[i]

|Ns| ;
if Ncur > Nmean then

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

Ns ← [Ncur];
else

Ns ← Ns + [Ncur];

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

jectory. Therefore, we propose to maintain a list
that stores the norm differences of the previous it-
erations. If the norm difference of the current it-
eration is greater than the average of the list, we
update the ASWA weights and reinitialize the list
with the current norm difference. When the norm
difference, however, is less than the average of the
list, we just append the current norm difference to
the list. After the completion of the epoch, we
assign the ASWA parameters to the model. This
is shown in Algorithm 2. We call this approach
Norm-filtered Aggressive Stochastic Weight Aver-
aging.

4 Experiments

We base our investigation on similar sets of mod-
els as Jain and Wallace (2019). We also use the
code provided by the authors for our empirical in-
vestigations for consistency and empirical valida-
tion. We describe our models and datasets used for
the experiments below.



4.1 Models
We consider two sets of commonly used neural
models for the tasks of binary classification and
multi-class natural language inference. We use
CNN and bi-directional LSTM based models with
attention. We follow (Jain and Wallace, 2019) and
use similar attention mechanisms using a) additive
attention (Bahdanau et al., 2014); and b) scaled dot
product based attention (Vaswani et al., 2017). We
jointly optimize all the parameters for the model,
unlike Jain and Wallace (2019) where the encod-
ing layer, attention layer and the output prediction
layer are all optimized separately. We experiment
with several optimizers including Adam (Kingma
and Ba, 2014), SGD and Adagrad (Duchi et al.,
2011) but most results below are with Adam.

For our ASWA and NASWA based experi-
ments, we use a constant learning rate for our op-
timizer. Other model-specific settings are kept the
same as Jain and Wallace (2019) for consistency.

Dataset Avg. Length Train Size Test size

IMDB 179 12500 / 12500 2184 / 2172
Diabetes(MIMIC) 1858 6381 / 1353 1295 / 319

SST 19 3034 / 3321 652/653
Anemia(MIMIC) 2188 1847 / 3251 460 / 802

AgNews 36 30000 / 30000 1900 / 1900
ADR Tweets 20 14446 / 1939 3636 / 487

SNLI 14 182764 / 183187 / 183416 3219 / 3237 / 3368

Table 1: Dataset characteristics. Train size and test size
show the cardinality for each class. SNLI is a three-
class dataset while the rest are binary classification

4.2 Datasets
The datasets used in our experiments are listed
in Table 1 with summary statistics. We fur-
ther pre-process and tokenize the datasets us-
ing the standard procedure and follow Jain and
Wallace (2019). We note that IMDB (Maas
et al., 2011), Diabetes(MIMIC) (Johnson et al.,
2016), Anemia(MIMIC) (Johnson et al., 2016),
AgNews (Zhang et al., 2015), ADR Tweets (Nik-
farjam et al., 2015) and SST (Socher et al., 2013)
are datasets for the binary classification setup.
While SNLI (Bowman et al., 2015) is a dataset
for the multiclass classification setup and CNN
News Articles (Hermann et al., 2015) for cloze
style question answering.

4.3 Settings and Hyperparameters
We use a 300-dimenstional embedding layer
which is initialized with FastText (Joulin et al.,
2016) based free-trained embeddings for both
CNN and the bi-directional LSTM based models.

We use a 128-dimensional hidden layer for the bi-
directional LSTM and a 32-dimensional filter with
kernels of size {1, 3, 5, 7} for CNN. For others, we
maintain the model settings to resemble the mod-
els in Jain and Wallace (2019). We train all of our
models for 20 Epochs with a constant batch size
of 32. We use early stopping based on the valida-
tion set using task-specific metrics (Binary Classi-
fication: using roc-auc, Multiclass and question
answering based dataset: using accuracy).

Dataset CNN(%) CNN+ASWA(%) CNN+NASWA(%)

IMDB 89.8 (±0.79) 90.2 (±0.25) 90.1 (±0.29)
Diabetes 87.4 (±2.26) 85.9 (±0.25) 85.9 (±0.38)

SST 82.0 (±1.01) 82.5 (±0.39) 82.5 (±0.39)
Anemia 90.6 (±0.98) 91.9 (±0.20) 91.9 (±0.19)
AgNews 95.5 (±0.23) 96.0 (±0.11) 96.0 (±0.07)

Tweet 84.6 (±2.65) 84.4 (±0.54) 84.4 (±0.54)

Table 2: Performance statistics obtained from 10 dif-
ferently seeded CNN based models. Table compares
accuracy and its standard deviation for the normally
trained CNN model against the ASWA and NASWA
trained models, whose deviation drops significantly,
thus, indicating increased robustness.

5 Results

In this section, we summarize our findings for 10
runs of the model with 10 different random seeds
but with identical model settings.

5.1 Model Performance and Stability
We first report model performance and prediction
stability. The results are reported in Table 2.

Dataset LSTM(%) LSTM+ASWA(%) LSTM+NASWA(%)

IMDB 89.1 (±1.34) 90.2 (±0.32) 90.3 (±0.17)
Diabetes 87.7 (±1.44) 87.7 (±0.60) 87.8 (±0.55)

SST 81.9 (±1.11) 82.0 (±0.60) 82.1 (±0.57)
Anemia 91.6 (±0.49) 91.8 (±0.34) 91.9 (±0.36)
AgNews 95.5 (±0.32) 96.1(±0.17) 96.1 (±0.10)

Tweet 84.7 (±1.79) 83.8 (±0.45) 83.9 (±0.45)

Table 3: Performance statistics obtained from 10 dif-
ferently seeded LSTM based models.

We note that the original CNN based mod-
els, on an average, have a standard deviation of
±1.5%. Which seems standard, however, we
note that ADR Tweets dataset has a very high
standard deviation of ±2.65%. We observe that
ASWA and NASWA almost always are able to get
higher performance with very low standard devia-
tion. This suggests that both ASWA and NASWA
are extremely stable when compared to the stan-
dard model. They significantly improve the ro-
bustness, on an average, by 72% relative to the



original model and on Diabetes (MIMIC), a binary
classification dataset, by 89% (relative improve-
ment). We observe similar results for the LSTM
based models in Table 3.

(a) CNN models (b) LSTM models

Figure 3: Prediction’s standard deviation for CNN
and LSTM based models for all binary classification
datasets under consideration. Predictions are bucketed
in intervals of size 0.1, starting from 0 (containing pre-
dictions from 0 to 0.1), until 0.9

We further analyze the prediction score stabil-
ity by computing the mean standard deviation over
the binned confidence intervals of the models in
Figure 3a. We note that on an average, the stan-
dard deviations are on the lower side. However,
we observe that the mean standard deviation of the
bins close to 0.5 is on the higher side as is expected
given the high uncertainty. On the other hand
both, ASWA and NASWA based models are rel-
atively more stable than the standard CNN based
model. We observe similar behaviours for the
LSTM based models in Figure 3b. This suggests
that our proposals, both ASWA and NASWA, are
able to obtain relatively better stability without any
loss in performance. We also note that both ASWA
and NASWA had relatively similar performance
over more than 10 random seeds.

5.2 Attention Stability

(a) CNN models (b) LSTM models

Figure 4: Average attention entropy against the buck-
eted predictions for CNN and LSTM based models.
Figure highlights the high entropy between attention
based distributions from differently seeded models (es-
pecially for the Diabetes-MIMIC datatset), indicating
towards model instability.

We now consider the stability of attention dis-
tributions over as a function of random seeds. We
first plot the results of the experiments for stan-
dard CNN based binary classification models over
uniformly binned prediction scores for positive la-
bels in Figure 4a. We observe that, depending on
the datasets, the attention distributions can become
extremely unstable (high entropy). We specifi-
cally highlight the Diabetes(MIMIC) dataset’s en-
tropy distribution. We observe similar, but rela-
tively worse results for the LSTM based models
in Figure 4b. In general, we would expect the en-
tropy distribution to be close to zero however, this
doesn’t seem to be the case. This means that using
attention distributions to interpret models may not
be reliable and can lead to misinterpretations.

(a) CNN models (b) LSTM models

Figure 5: Jaccard distance highlighting instability in at-
tention distributions of CNN and LSTM based models.

(a) CNN+ASWA (b) CNN+NASWA

(c) LSTM+ASWA (d) LSTM+NASWA

Figure 6: Improved prediction stability from ASWA
and NASWA for CNN and LSTM based models

We use the top 20% of the most important
items (indices) in the attention distribution for
each dataset over 10 runs and plot the Jaccard dis-
tances for CNN and LSTM based models in Fig-
ure 5a and Figure 5b. We again notice a similar



(a) IMDB (b) Diabetes (c) SST

(d) Anemia (e) AgNews (f) ADR Tweets

Figure 7: Attention stability improvement from ASWA and NASWA on CNN based models.

(a) Label 0 prediction vs entropy (b) Label 1 prediction vs entropy (c) Label 2 prediction vs entropy

Figure 8: Attention stability improvement from ASWA and NASWA on CNN based model for the SNLI dataset.

trend of unstable attention distributions over both
CNN and LSTM based attention distribution.

In the following sections for space constraints,
we focus on CNN based models with additive at-
tention. Our results on LSTM based models are
provided in the attached supplementary material.
We note that the observations for LSTM mod-
els are, in most cases, similar to the behaviour
of the CNN based models. Scaled dot-product
based models are also provided in the supplemen-
tary material and we notice a similar trend as the
additive attention.

We now focus on the effect of ASWA and
NASWA on binary and multi-class CNN based
neural models separately.

Binary Classification In Figure 7, we plot the
results of the models with ASWA and NASWA.
We observe that both these algorithms signifi-
cantly improve the model stability and decrease

the entropy between attention distributions. For
example, in Figure 7b, both ASWA and NASWA
decrease the average entropy by about 60%. We
further notice that NASWA is slightly better per-
forming in most of the runs. This empirically val-
idates the hypothesis that averaging the weights
from divergent weights (when the norm difference
is higher than the average norm difference) helps
in stabilizing the model’s parameters, resulting in
a more robust model.

Multi-class Classification In Figure 8, we plot
the entropy between the attentions distributions
of the models for the SNLI dataset (CNN based
model), separately for each label (neutral, contra-
diction, and entailment). We notice, similar ob-
servations as the binary classification models, the
ASWA and NASWA algorithms are able to signif-
icantly improve the entropy of the attention distri-
butions and increases the robustness of the model



(a) Diabetes (b) SST

Figure 9: Gradient based explanation’s stability im-
provement from NASWA on CNN based models.

with random seeds.

5.3 Gradient-based explanations

We now look at an alternative method of inter-
preting deep neural models and look into the con-
sistency of the gradient-based explanations to fur-
ther analyze the model’s instability. For this setup,
we focus on binary classifier and plot the results
on the SST and the Diabetes dataset in particular
since they cover the low and the high end of the
entropy spectrum (respectively). We notice similar
trends of instability in the gradient-based explana-
tions from model inputs as we did for the atten-
tion distributions. Figure 9 shows that the entropy
between the gradient-based explanations from dif-
ferently seeded models closely follows the same
trend as the attention distributions. This result fur-
ther strengthens our claim on the importance of
model stability and shows that over different runs
of the same model with different seeds we may get
different explanations using gradient-based fea-
ture importance. Moreover, Figure 9 shows the
impact of ASWA and NASWA towards making
the gradient-based explanations more consistent,
thus, significantly increasing the stability.

6 Discussion

Recent advances in adversarial machine learn-
ing (Neelakantan et al., 2015; Zahavy et al., 2016)
have investigated robustness to random initializa-
tion based perturbations, however, to our knowl-
edge, no previous study investigates the effect of
random-seeds and its connection on model inter-
pretation. Our study analyzed the inherent lack of
robustness in deep neural models for NLP. Recent
studies cast doubt on the consistency and corre-
lations of several types of interpretations (Doshi-
Velez and Kim, 2017; Jain and Wallace, 2019;
Feng et al., 2018). We hypothesise that some of
these issues are due to the inherent instability of

the deep neural models to random-seed base per-
turbation. Our analysis shows that, on multiple
runs of the model with equivalent settings, mod-
els may use completely different routes to reach
similar decisions with high confidence in Sec-
tions 4. This issue of variance in all black-box in-
terpretation methods over different seeds will con-
tinue to persist until the models are fully robust to
random-seed based perturbations. Our work how-
ever, doesn’t provide insights into instabilities of
different layers of the models. We hypothesise that
it might further uncover the reasons for the rela-
tively lower correlation between different black-
box interpretation methods as these are effectively
based off on different layers and granularity.

There has been some work on using noisy gradi-
ents (Neelakantan et al., 2015) and learning from
adversarial and counter-factual examples (Feng
et al., 2018) to increase the robustness of deep
learning models. Feng et al. (2018) show that neu-
ral models may use redundant features for predic-
tion and also show that most of the black-box in-
terpretation methods may not be able to capture
these second-order effects. Our proposals show
that aggressively averaging weights leads to bet-
ter optimization and the resultant models are more
robust to random-seed based perturbation. How-
ever, our research is limited to increasing consis-
tency in neural models. Our approach further uses
first order based signals to boost stability. We
posit that second-order based signals can further
enhance consistency and increase the robustness.

7 Conclusions

In this paper, we study the inherent instability of
deep neural models in NLP as a function of ran-
dom seeds. We analyze model performance and
robustness of the model in the form of attention
entropy and gradient-based feature importance en-
tropy across multiple runs of the models with dif-
ferent random seeds. We propose a novel solu-
tion that makes use of aggressive weighted av-
eraging and further extend it with norm-filtering
and show that our proposed methods largely sta-
bilize the model to random-seed based perturba-
tions and, on an average, significantly reduce the
standard deviations of the model performance by
72%. We further show that our methods signif-
icantly reduce the entropy in the attention distri-
bution and the gradient-based feature importance
measures across runs.
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