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Abstract

Autonomous delivery has the potential to dramatically cut the costs of courier ser-
vices. Significant research has been undertaken regarding autonomous vehicles,
but recent developments in drone technology offer an alternative delivery solution.
Multiple organisations are investigating the potential of drones for package delivery.
Significant media attention has been given to Amazon Prime Air, but little research
has been undertaken to explore alternative use cases.

Meal delivery is one avenue where drones could significantly reduce lead times.
The intrinsic value associated with delivering food faster suggests that drone de-
livery could be an ideal solution. The emergence of Deliveroo and Just Eat have
demonstrated the consumer demand for food delivery services. A drone’s ability to
overcome existing infrastructure constraints and deliver food faster than any ground
based courier makes it the perfect solution to the meal delivery problem.

This project explores the use of drones in a multi-source node delivery network,
where orders can be scheduled from any source node to any delivery location within
that nodes service radius. We present a visual simulation of the drone delivery net-
work in an urban environment and assess the performance of multiple time-value
profit-driven scheduling algorithms. We determine that the reallocation abilities of
global schedulers to cope with demand in localised delivery models are only benefi-
cial in highly dynamic scenarios. Finally, we deduce that drone transit time is a key
factor in minimising lead times in distributed meal courier delivery.
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Chapter 1

Introduction

Since 2016, the number of parcel deliveries has grown at approximately 40% year on
year(46). Much of this growth can be contributed to the acceleration of e-commerce.
In the US alone, e-commerce sales have risen from 5.1% of total retail sales in 2007
to 13% of retail sales in 2017, increasing from $136 billion to $453 billion(24). How-
ever, this enthusiasm for e-commerce has led to consumers wanting their products
ever faster. First came Amazon Primes next day delivery, but consumers who need
their products even faster can pay a premium for Same-Day delivery. Next emerged
Amazon Prime Now, which allows customers to have their packages delivered within
an hour. Amazon Prime‘s guaranteed next day delivery epitomises the current con-
sumer mentality. The ever-increasing consumer demand to receive packages faster
has led to a bottleneck in the last-mile delivery logistics. A survey carried out by
McKinsey noted how younger consumers are more inclined to choose same-day or
instant delivery(29), but that the price of delivery is still the over-arching decision
factor for consumers. On the supplier end, these last mile delivery costs often reach,
or even exceed, 50% of total parcel delivery costs(29). Therefore, there is a need
for suppliers to reduce their costs, whilst satisfying the consumer demand to receive
their packages faster and faster.

Figure 1.1: Proportion of consumers opting for different delivery options (29)

3



Chapter 1. Introduction

The rapid increase in package delivery has resulted in a surge of delivery vehicles
on the roads, further congesting already jammed streets. Moreover, the additional
drivers incur higher labour costs for the companies, resulting in higher delivery costs.
Research has been undertaken to try and implement ground-based autonomous
home delivery(27); however, the developments in drone technology have offer an al-
ternative solution. Amazon Prime Air was first advertised in 2013, with the promise
of being able to deliver packages within 30 minutes(10). Moreover, their reports
claim they have made significant progress in collision avoidance and noise reduc-
tion. Amazon Prime Air was able to successfully deliver its first package on the
7th December 2016 in Cambridge, UK. With this knowledge, it is apparent that the
control and route planning of delivery drones is not an issue. What we will be in-
vestigating is the scheduling of drone deliveries based upon a time discounted cost
model. This time discounted cost model aims to fulfil the consumers time require-
ments whilst maximising both profit and drone utilisation for the supplier. However,
we must consider what circumstances warrant a time discounted model. What prod-
uct does a consumer desire which they are willing to pay more for to receive faster?
Amazon Prime Air is attempting to fulfil this need by delivering goods to its cus-
tomers in 30 minutes or less, but what other products fall into this small time span
window. One example might be medical supplies. In these instances, delivery of
crucial medical supplies is time critical and it makes sense that the consumer would
want to pay more for the products to arrive as fast as possible. Another industry
is food delivery. With the heightened interests in food start ups such as Just Eat,
Deliveroo and UberEats, the Food Delivery Sector is rapidly expanding.

Figure 1.2: Spread of Delivery Start-Ups by sector (29)

As seen in the figure below, Food delivery, Food delivery platform, and Same day/instant

4



Chapter 1. Introduction

delivery start-ups make up the majority of delivery start-ups. The Food Delivery sec-
tor has seen an explosion of interest, with their being 83 start-ups whose median
year of founding was 2012.

Figure 1.3: Analysis of Delivery Start-Ups (29)
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1.1. CONTRIBUTIONS Chapter 1. Introduction

1.1 Contributions

This project expands upon the work of previous Imperial student(6), who proposed
the Least Lost Value (LLV) scheduling algorithm, and compared it against against
First Come First Served (FCFC) and Shortest Job First (SJF) in a single source node
model. We implement our own Unity based model to simulate and visualise a multi-
source node drone delivery network.

We present 4 key contributions:

• An extendable Drone Delivery Network architecture and visualisation tool in
Unity (Chapters 4 and 6).

• An extension of Least Lost Value to multi-source node networks and the imple-
mentation of a dynamic programming inspired Just In Time scheduler (Chapter
5).

• An analysis of time-valued profit driven localised scheduling over global schedul-
ing in a Domino’s Pizza delivery model (Chapter 7).

• An analysis of time-valued profit driven schedulers in a Just Eat delivery model
at different geographical scales with different numbers of source nodes and
drone couriers (Chapter 8).

6



Chapter 2

Background

Here we provide an overview of some of the recent technological developments and
research into the last mile delivery sector. We focus on a few specific companies,
their implementations, use cases, and developments. This will give us a strong un-
derstanding of the current capabilities of drones and what assumptions we can make
for our simulation. We will also cover some of the regulations currently hindering
the execution of drone delivery networks, and perform an analysis of what research
has already been undertaken. Finally, we will give an overview of scheduling algo-
rithms used in the implementation and assessment.

2.1 Last Mile Delivery

2.1.1 Autonomous Vehicles - Ocado

Figure 2.1: Ocado Autonomous Delivery Van(27)
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2.1. LAST MILE DELIVERY Chapter 2. Background

There have been multiple companies investing in autonomous vehicle technologies,
from Tesla to Google, but few have ventured into the autonomous delivery sector.
One of the few forays into this sector is Ocado‘s driverless delivery vehicle, developed
in partnership with Oxbotica(27). Ocado‘s attempts to cut costs on last mile delivery
entailed a test route through the backstreets of Woolwich London in June 2017, with
the company hoping to commercial launch this system by the end of 2019.

Ocado is an interesting case study when it comes to delivery scheduling. Unlike Ama-
zon, Ocado has its own internal system which handles orders from beginning to end.
Most companies delegate delivery to a courier service, but Ocado constructed their
own in-house system. Moreover, they have been operating their internal delivery sys-
tem since 2002, giving them years of experience on last mile delivery scheduling(1).
They were the first to introduce one hour delivery slots, years ahead of Amazon
Prime Now, and have become one of the market leaders in large scale simulations.
All of their Customer Fulfilment Centres were extensively modelled and simulated
before any warehouse foundations were laid. Their latest warehouse design entails
autonomous robots moving along a grid, retrieving totes of groceries to be picked
by individuals(23). It is this simulation, which Ocado wrote from the ground up,
we gained inspiration from. This was due to time spent working in Ocados Simu-
lation Algorithm Development team, where a summer was spent trying to optimise
the warehouse throughput via alternative robot scheduling algorithms.

Figure 2.2: Simulation of Ocado‘s new robotic warehouses(23)

8



Chapter 2. Background 2.2. TIME SENSITIVE DELIVERIES

2.1.2 Amazon Prime Air

Amazon Prime Air is perhaps the most developed autonomous drone solution. Since
it was first announced in 2013, there has not been a lot of information officially re-
leased about the project. In December 2016, Amazon Prime Air successfully carried
out its first test flight and delivered a package in Cambridge, UK. Reports have stated
that engineers have been working on automated collision avoidance with both static
and dynamic obstacles, allowing for the drones to avoid birds(43). Whilst implemen-
tation and testing has been limited by the Civil Aviation Authority, Amazon has been
able to take advantage of relaxed aviation regulations in and around Cambridge.

The company states that first iterations of the service will be available to those in
rural areas, with sufficient space for a drone to land. For those living in urban en-
vironments, additional challenges must be overcome before the service can be fully
implemented. This is due to the current landing mechanism employed by Amazon
Prime Air. At the moment, experiments have only been undertaken where the con-
sumer places a landing mat in their back garden to act as a homing beacon for the
drones, and to signal a safe space to land.(30)

The most recent Amazon Prime Air drone model measures 91.4cm in diameter, has
8 motors and an estimated flight time of 30 minutes(31). They are said to have
a top speed of 80km/h, giving them a range of 16km. The drones will be able to
carry packages weighing up to 2.3kg which incorporates 86% of products currently
available on Amazons marketplace(26).

Whilst there are not many accurate studies of the potential cost savings that drone
delivery could introduce, there are a few studies which give us an idea of the run-
ning costs. Drones have been employed to transport medicines and drug samples
throughout Lesotho where the road infrastructure is poor. The creators of the sys-
tem estimated that their 6.2 miles trip cost only 24cents. Compare this with the cost
of Amazon Prime Now $7.99 and it gives an indicator of the potential gain drone
delivery systems could bring(47). Having spoken to a logistics manager at one of
the Amazon Fulfilment Centres in the UK, I have discovered that the Amazon Prime
service can be a huge expense to the business. To such an extent, that warehouse
managers have been known to hire vans and personally deliver prime packages to
ensure delivery before Christmas, costing in excess of £1000 for a single delivery.

2.2 Time Sensitive Deliveries

Ocado is the prime example of a company which is able to schedule its deliveries to
within 1 hour intervals thanks to its end to end control of its entire logistics system.
It has had huge success in its last mile delivery service, which allows it the full flex-
ibility to cater to its customers‘ needs. Amazon on the other hand, is trying to gain
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Figure 2.3: Cost analysis of different delivery methods

greater control over its last mile delivery service. It is seeking to decrease the lead
time from making an order, to delivery, preying on the customer demand to receive
their products faster. However, neither of these two companies directly operate with
time sensitive deliveries.

With time sensitive deliveries we are referencing products which must arrive within
specified time constraints otherwise their value is diminished. This is quite a small
category of products; however the two notable examples are medicines and food
delivery.

2.2.1 DHL Parcelcopter

DHL was the first parcel delivery service to successfully integrate drones into its de-
livery chain(17). In 2016, they were able to complete a three-month trial in which
their drones made autonomous deliveries to customers in the Bavarian Alps. DHL‘s
first commercial use of its Parcelcopter was in late 2014, when it delivered supplies
to the North Sea island of Juist. The Parcelcopter 2.0 was used to deliver medicines
and other urgent goods over the open sea. It successfully completed numerous 12km
flights over the open sea at an altitude of 50m, and at speeds of up to 40mph. It
made regular express deliveries for a pharmacy on the island, and made weekend
deliveries of supplies when ferries and flights were unavailable. This allowed cus-
tomers to receive their prescriptions and receive urgent medication much faster than
conventional delivery methods.
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Figure 2.4: DHL‘s Parcelcopter 3.0(17)

This demonstrates that there is a need for medical supplies to be delivered in a timely
fashion in hard to reach areas. DHL acknowledges that this is one of the use cases
for their drone delivery system, but they increased its versatility in 2016, when they
developed the Parcelcopter 3.0. Instead of a quadcopter design, the Parcelcopter 3.0
is a tilt-wing aircraft with a payload of up to 2kg(17). This latest iteration is fully
autonomous and can operate at a height of 1200m. It was trialled extensively in the
Bavarian Alps between the towns of Reit Im Winkl to Winklmoosalm, a distance of
8km. It successfully completed consumer parcel delivery in under 8 minutes, a trip
that ordinarily takes 30 minutes by road(19). Alongside this most recent iteration of
the parcelcopter, DHL was able to implement a fully automated parcel loading and
unloading system known as the Parcelcopter Skyport(40). This innovation is what
enabled the delivery service to be used by private customers.

More recently in 2018, DHL announced that their 4th generation of the Parcelcopter
had been successful in delivering medical supplies to remote areas of East Africa.
The Parcelcopter 4.0 managed to complete more than 180 journeys, travelling over
2200km, and completing a 60km journey from the mainland to an island in the mid-
dle of Lake Victoria(18). It has an increased payload of up to 6kg, and a range of
100km when fully loaded(13). This provides further evidence that drone delivery
services can add great value to time sensitive goods.

Whilst DHL has proved that it is possible to add value to both medical deliveries
and private consumer deliveries in remote hard to reach areas, they are still working
on carrying out field tests in urban areas. Their ultimate aim to provide same-day
drone delivery services to towns and cities.
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Figure 2.5: DHL Pareclcopter generations(17)
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2.2.2 Matternet

Figure 2.6: Matternet drone landing on a Mercedes Vitaro van(14)

DHL are not the only company who have found value in utilising drones for medical
deliveries. A start-up called Matternet has successfully implemented a drone delivery
network in Lesotho(47). Matternet prototyped their drone network in Maseru, the
capital of Lesotho, where paved roads are almost non-existent(28). Their research
showed that the entire 140km capital could be connected by a drone network cost-
ing just $900,000(28). Compared to the cost of building 2km of road at $1,000,000,
this offers an alternative way to establish a delivery network infrastructure.

Matternet used their drones for delivering blood samples throughout Maseru. Blood
samples acted as the perfect cargo for drones since they are small, light, valuable and
time sensitive(47). Whilst these tests are promising, it is important to note that the
drones were able to follow regular paths in Maseru and did not have to deal with pol-
luted airspace and high-rise buildings. However, since their initial tests, Matternet
has also signed a deal to deliver lab samples between two hospitals in Lugano(25),
which suggests possible developments towards the use of drones in urban areas.

In more recent years, Matternet has attempted to implement drones in more con-
gested urban environments. In 2017, they piloted a hybrid van-drone delivery ser-
vice throughout Zurich for 3 weeks. Their aim being to assess the efficiency gains
from incorporating the two methods(11). In this instance though, drones were used
to shuttle parcels from warehouses to vans, allowing delivery drivers to fulfil on
demand orders without having to return to the warehouse. This could reduce the
number of drivers and vehicles needed for delivery services, if delivery vans could
be continuously resupplied with packages whilst en route.

Perhaps the most ingenious part of this system is the ability to convert the roof of
a van into a landing pad. Matternet has been able to work alongside Daimler to
create a fully autonomous landing pad on the roof of Mercedes Vitaro vans(14).
This development will allow drones to deliver packages without having to worry
about landing in an unknown environment.
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2.2.3 Flitery

Flirtey was the first company to successfully carry out food delivery trials(41). In
2016, Flirtey was able to successfully deliver the first pizza by drone to a customer
in Auckland, New Zealand. Flirtey has been working alongside Domino‘s Pizza to try
and develop a more cost effective way of delivering food in a timely manner. They
were also the first company to deliver food by drone in the United States. This time
they worked alongside convenience store 7-Eleven, to deliver doughnuts, coffee, a
chicken sandwich, candy and a slurpee to a customer in Nevada(45).

Figure 2.7: Flitery Drone lowering its delivery on a winch(9)

2.2.4 Uber Express

Most recently, Uber announced it is beginning research into a drone delivery ser-
vice for its UberEats division, known as UberExpress. They hired an operations
manager in October 2018, with plans to launch functional drones in 2019, with a
launch into multiple markets aimed at 2021(8). Just this past week, they announced
they had partnered with McDonald‘s to launch their pilot program in San Diego this
summer(33). Considering that Uber has invested heavily into autonomous cars(16),
it is no surprise that they are researching autonomous drone delivery. Both avenues
would allow Uber to cut its costs by removing the need for drivers.
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2.3 Drone Considerations

2.3.1 Obstacles

There are not many constraints on drone routing, since they are not restricted to road
infrastructure. However, there are a few obstacles which must be taken into account.

Firstly, No Fly Zones (NFZ) must be accounted for. Generally, NFZ‘s are often dic-
tated by the military. They prevent civilian aircraft from entering airspace where mil-
itary training is taking place, or High Intensity Radio Transmission Areas, (HIRTA‘s):
where such signals can interfere with electronics(2). Other NFZ‘s which must be con-
sidered are restricted areas: these usually cover sensitive regions such as prisons and
nuclear facilities. There are also controlled airspace‘s which are most notably found
around airports, due to the heavy air-traffic volumes(37). Finally, there are regis-
tered Prohibited Areas, which in the case of the UK, are listed in the UK Integrated
Aeronautical Information Package(38). This document details all classifications of
airspace in and around the UK. Whilst the regulations surrounding drones are still
to be formalised with regards to their use in a commercial capacity, it is reasonable
to assume that drones will have to conform to some defined NFZ‘s.

It is worth noting that, in an urban setting, drones would have to deal with routing
themselves in and around high-rise buildings. This would not be an issue if drones
are programmed cruise at altitudes above high-rise buildings. However, in the case
of London this would result in drones having to operate above 310m (The Shard),
and in New York above 546m (One World Trade Center). Clearly, this is still to be
decided, but if drones are permitted to be routed below these levels, then we would
have to ensure to avoid static obstacles such as tall buildings. One option would
be to simply set a small No Fly Zone around any building which passes through the
drones operating altitude. However, drone technology has developed to the point
where even consumer drones have collision avoidance built in(12).

The other obstacles to worry about are: other drones, birds, and potentially passen-
ger aircraft. It is unlikely that drones in delivery scenarios would have to contend
with commercial aircraft, since they should be avoiding flight paths due to to NFZ‘s.
However, in urban areas, helicopters could become an issue. The airspace in which
drones and helicopters operate is likely to overlap. Therefore, drones would have to
be fitted with some form of Detect and Avoid (DAA) technology, in order to success-
fully avoid dynamic objects. Amazon has already filed a patent for such a technology
using multispectral sensors(39).

Taking these considerations into account, any drone delivery network must be so-
phisticated enough to schedule optimal routes to avoiding static obstacles, whilst
also reactive enough to avoid dynamic obstacles. However, the purpose of this
project is not to devise a means of routing drones. This has already been researched(7).
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2.3.2 Regulations

Currently, the commercial use of drones is severely restricted prohibited in the UK
by the Civil Aviation Authority (CAA). The CAA requires that direct permission be
obtained before any commercial use of drones may be carried out. Furthermore,
drones cannot be flown in excess of 400 feet (122m), without the CAA‘s permission,
and the operator must maintain direct unaided visual contact with the aircraft(4).
The CAA defines Small Unmanned Aircraft to be those with a weight under 20kg.
Using the Amazon Prime drone as an example, it is safe to assume that small delivery
drones would fall within this category. Whilst Amazon has not disclosed the weight
of its prototype drone, its weight can be estimated at 3.8kg, which would allow it
to carry a payload of up to 2.3kg(31). Since no official guidance on the regulations
concerning the commercial use of drones has been published, we will adhere to the
current regulations, with the exception of maintaining line of sight.

2.3.3 Package Delivery

There are a few different ways for a drone to perform the delivery of its package.
The most obvious is landing to allow the customer to retrieve their package, as
demonstrated in the Amazon Prime trials(30). However, as Flitery demonstrates(9),
drones could be supplied with a winch to lower the packages down to customers.
This removes the need for a clear landing zone. Alternatively, Matternet‘s approach
of using the roof of cars as landing pads(14) may be the most realistic in an urban
environment. One other speculative approach is to supply packages with parachutes.
Whilst this allows the drone to leave faster, it causes other issues, such as ensuring
the package lands in the correct place. Moreover, the CAA currently bans drones
from dropping any articles which could endanger a person or property(4).

2.4 Path Planning

In order to implement a sufficiently realistic simulation of a drone delivery network,
it is necessary to devise a means of navigating drones to and from their destinations.
In conventional path planning, constraints are usually imposed by the existing road
infrastructure. In the case of drones, such infrastructure isn‘t necessary, and you
should be able to path a drone to its destination directly, as the crow flies. However,
as outlined above, one consideration is No Fly Zones. Therefore, we must ensure
that we path our drones around such obstacles.
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2.4.1 Autonomous Air Traffic Control (AATC)

Autonomous Air Traffic Control (AATC) was a collaborative project undertaken be-
tween Imperial students, Microsoft and Altitude Angel. The aim was to navigate
drones from start to finish, whilst avoiding obstacle, and taking the shortest path
possible(7).

The project resulted in a two-tiered system, with a global layer and a reactive
layer(7). The global layer stores a static representation of the world, allowing for
the calculation of an optimal route from source to destination. AATC uses a modi-
fied version of the A* algorithm, known as the Theta* algorithm, for route planning.
It is an any-angle path-finding algorithm which propagates information along grid
edges(15). Whilst the execution time of theta* tends to be worse than the A* algo-
rithm, the theta* algorithm is more successful in finding the shortest route. This is a
primary concern for drones since their range is limited by their battery life. There-
fore, the theta* algorithm is the underlying route planning algorithm which AATC
uses.

The reactive layer of AATC is what allows it to avoid obstacles and dynamic No
Fly Zones. It achieves this through the use of an Artificial Potential Field (APF),
which attracts or repels the drone(7). The destination is assigned a low potential,
and obstacles are assigned a high potential. This means the drone has to navigate to
the point of lowest potential. However, it is noted that this method cannot be relied
upon for full navigation since there are circumstances where a drone could become
stuck: fsuch as encountering a U-shaped object. This is where the global layer is able
to generate a route which avoids such obstacles(7).

Figure 2.8: Visual Representation of Artificial Potential Field(7)
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2.5 Scheduling Algorithms

In order to ensure that time sensitive deliveries are completed, we must have some
way of scheduling the deliveries. Scheduling algorithms have been researched in
depth with respect to CPU scheduling. However, some of these algorithms benefit
from the fact that CPU tasks can be interrupted and completed in quantums. In our
case, when a task is scheduled, it must be completed before the drone is available
to undertake another task. There has already been research undertaken by Knotten-
Belt and Balaji(44), who derived Least Lost Value as an algorithm for maximising
profit per delivery. Here we outline a few general scheduling algorithms and give an
overview of Least Lost Value.

2.5.1 First Come First Serve (FCFS)

This algorithm entails using a First In First Out (FIFO) queue. As drone deliveries
arrive, they are added to the end of the queue. As each drone becomes available, the
delivery at the head of the queue is removed and assigned. This is perhaps the most
basic form of scheduling presented here, as it is only reliant on the time the order
was placed. One issue with FCFS, is that shorter deliveries could be blocked behind
one longer delivery, resulting in an increased average service time.

2.5.2 Shortest Job First (SJF)

In our case, Shortest Job First scheduling calculates the distance from source to
destination for each delivery. The deliveries are then prioritised based upon their
distance. The intuition is that the delivery which is geographically the closest would
be completed first, lowering the average service time. This overcomes the pitfalls of
FCFS, since shorter deliveries will not be blocked behind longer deliveries. However,
it is possible for a longer delivery to be blocked indefinitely if shorter tasks keep
getting assigned.

2.5.3 Priority Scheduling

Priority Scheduling is the general form of SJF. Priority scheduling orders jobs accord-
ing to a defined priority metric. In the case of SJF, the priority metric is the shortest
delivery time, which is equivalent to the shortest distance.
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2.5.4 Least Lost Value (LLV)

Recently, Least Lost Value has been proposed as a revenue-driven scheduling al-
gorithm for time sensitive service level agreements. It assumes that the value of
a delivery follows a monotonically decreasing time value function. The Least Lost
Value metric is calculated by considering the value of completing a task immediately,
compared with the value of postponing it until after another task. The task which
would lose the most value if postponed is then chosen(44). This should produce
a schedule which allows the service provider to extract the highest value from the
limited resources, given the time constraints. This algorithm has been evaluated on
a single source node warehouse model, where it attained a higher average profit per
delivery compared to FCFS and SJF(6). In this paper, we have extend LLV to be used
in our multi-source node model.

2.6 Previous work

As the field of drone delivery has been an emergent technology in recent years, there
have been several different avenues of research into drone applications. However,
there are few studies which assess the potential of fully autonomous drone delivery
networks. This may be due to current regulations impeding the progress, or it may
be due to the technicalities of actually delivering the packages to a human recipient.
Nonetheless, there are a few notable papers which have studied different aspects of
drone delivery networks and food delivery networks.

2.6.1 Drone Delivery Assistance

Murray and Chu(36) assess the potential added value that drones may bring to cur-
rent delivery networks by of assisting drivers. They outline three different models
where drones could be used to optimise the delivery network(36). The first involves
using drones to deliver to all participants within range, and using a truck to arrange
delivery of packages outside of drone range. The second employs an optimised as-
signment of customers to either a drone or a truck, allowing a truck to take the most
efficient route, including covering some customers within range. The final solution
proposed in this paper is the use of trucks as an aircraft carrier for drones. This
enables the truck to avoid deliveries which deviate it from the most optimal route
Those deliveries which are not included in the optimal route are assigned to drones,
which would be launched from the truck. Whilst this paper does provide a signif-
icant insight into the integration of drones into a delivery network, its main focus
is evaluating these three ‘sidekick‘ models, and determining a strategy for assigning
deliveries to either a drone or driver. Moreover, it is concerned with package delivery
in the Amazon style warehouse model, where all orders are shipped form a central
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location. Therefore, whilst substantial inspiration can be gained from its attempts,
it falls short of our multi-source model.

2.6.2 Drone Delivery From A Central Warehouse

Balaji(6) undertook a study into time valued delivery models using a fleet of drones
and 2 warehouses. He proposed the LLV algorithm discussed earlier, and assessed its
performance against FCFS and SJF. Balaji‘s work focused on the warehouse model,
where drones are tied to a single source node. Whilst he did model 2 warehouses,
each warehouse had a predefined fleet allocated to it. One limitation of this model
is that the drones are not free to cover dynamic demand as the load on source nodes
changes. This is an avenue which we explore. Balaji‘s project was built on Improba-
ble‘s SpatialOS platform, and it was decided that this platform was too heavyweight
for our needs. However, a proportion of work undertaken in his project can be
adapted for our own. His implementation of Autonomous Air Traffic Control(7), is
built upon and extended to our multi-source model, allowing us to focus on schedul-
ing as opposed to route finding.

2.6.3 Analysis Of Drone Delivery Systems To Satisfy Constraints

The most extensive study found which is relevant to this project is one in which
the reuse, energy consumption, time constraints and budgets of drone delivery net-
works are considered. Vehicle Routing Problems for Drone Delivery(21) proposes
two Vehicle Routing Problems (VRPs), the first of which minimises cost subject to a
delivery time limit, and the second attempts to minimise the overall delivery time
limit subject to a budget(21). Moreover, it also undertakes a study into the effects of
battery weight and payload on the drones energy consumption, and demonstrates
that it approximately follows a linear relationship. This research will be invaluable
when it comes to deciding the assumptions our model is based on.

This paper confirms the approximate linear relationship between payload and energy
consumption, and also highlights the issue of recharging stations. Since our project
will attempt to model a food-delivery service, we will have to consider whether to
have centrally located recharging stations, or whether the source nodes (restaurants)
would have some means of allowing drones to recharge. The idea of hot-swappable
batteries was proposed as a solution to the recharging station issue(34), and is what
we have employed in our simulations.
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Figure 2.9: Payload vs Energy Consumption(21)

2.6.4 The Meal Delivery Routing Problem

One of the few papers relating to food delivery is a study undertaken between Geor-
gia Institute of Technology and Grubhub(42). It formulates the Meal Delivery Rout-
ing Problem (MDRP), and performs a comprehensive investigation into solving the
dynamic delivery problem which has arisen due to the likes of Deliveroo and Just
Eat in the UK. It covers both the optimal route scheduling courier assignment as-
pects, and offline shift scheduling resulting in an in depth analysis of meal delivery
networks. However, their routing relies on the use of drivers, who have hard shift
times, which must be respected, and who can carry multiple orders at once. These
assumptions do not carry over to our model. But we have been able to draw on their
assignment strategies and scenario data to build our own models.

Finally, whilst JustEat has not published any information concerning how they sched-
ule their courier, we were able to deduce that they use pools of drivers to cover geo-
graphical areas(32). Therefore, we have constructed our models to represent one of
these pools which covers a specific area.

2.7 Development Environment

A previous drone delivery simulation, which our project builds upon(6), was writ-
ten in SpatialOS. However, this was in part due to the individual‘s familiarity and
preference for it. SpatialOS is designed to run massive multiplier hyper detailed
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games on a distributed back-end(3). For our simulation, this is excessive. Instead,
we will be making use of Unity, using its physics engine, visualisation tools, and de-
velopement environemnt to construct our simulation. We therefore do not require
the performance which SpatialOS offers, as this additional performance comes at a
cost of increased complexity.

Unity has a large user base and wealth of developer forums and tutorials to assist
the layman in getting started. SpaitialOS, on the other hand, does not yet have as
large a user-base, and whilst it is growing, it is not as well known. We hope that our
simulation will provide a backbone which can be extended and adapted to simulate
different circumstances. With this in mind, we will focus on having an extendable
and modular architecture. This will allow future developers to plug in their compo-
nents, such as alternative schedulers, pathing algorithms and physical scenarios to
test their own ideas.
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Model Assumptions

In order to construct our model we must make a few assumptions about the world
we will be simulating, and the drones we will be using.

3.1 Drone Assumptions

Firstly, we must decide on the details of our drone. Using the Amazon drone as a
starting point, we know from research(31) that they have a potential top speed of
50mph, a battery life of up to 30 minutes, and a range of 16km. These estimates
are in line with consumer drones, except for the top speed. Larger consumer drones
have a top speed of approximately 45mph(20), and these are not designed to carry
any payload. Therefore, we have chosen to give our drones a sustainable speed of
13m/s (30mph) measured when travelling horizontally through the air. We have
also specified a maximum descent speed of 4m/s (9mph), and an ascent speed of
6m/s (13mph), to allow incorporation of ascent and descent times. These are in line
with currently available drones(20).

Our research suggests that Amazon‘s drones can carry a payload of up to 2.3kg(26).
This allows them to carry small food parcels and up to 2 Domino‘s Pizzas, assum-
ing a pizza weighs approximately 2kg. Whilst this does mean the drones may not
be appropriate for larger orders, they are perfectly adequate to serve the individual
customer ordering a meal. Since the battery life of the drone is not a major feature
of this study, we will model the battery life based upon the maximum range of the
drone.

The CAA currently only allows drones to be used at heights of up to 122m. In ac-
cordance with these rules we have designated our drones to operate in the airspace
between 50 - 100m. To minimise the probability of collisions, each drone is assigned
an operating altitude. We have decided to assign these randomly, but an alternative
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Figure 3.1: Delivery Routes for Domino‘s
Scenario

Figure 3.2: Delivery Routes for Just Eat
Scenario

would be to use the airline industry standard, which assigns an altitude based upon
an aircraft‘s heading(5).

3.2 Restaurant Assumptions

We propose two scenarios in this study. The first is the Domino‘s Pizza scenario. Here
we assume that the delivery drones services multiple restaurants which all offer the
same menu. In this scenario, an order is sent to the closest restaurant as seen in fig-
ure 3.1. This scenario is similar to the warehouse model, since each restaurant only
serves the orders which are closest to it. Therefore, deliveries will only ever be within
that restaurants service area. Consequently, it may make sense to station drones at
each restaurant and solely serve that restaurant. We assess this scenario and how
it performs under local scheduling at the restaurant level, and global scheduling, at
the drone fleet level.

Our second scenario models the requirements of a food courier service such as Just
Eat. In this scenario, each restaurant has a different menu, meaning an order is
not sent to its closest restaurant. Instead, a delivery could be anywhere within a
restaurant‘s service radius as seen in figure 3.2. This radius can be dictated by the
restaurant, or by the organisation such as Just Eat, in order to ensure reasonable
delivery times. A quick test of the Just Eat app reveals there are 245 restaurants
which will deliver to my location, 235 of which are within a 3.0 mile radius. There-
fore, we have chosen the restaurant service radius to be 5km. In line with the Meal
Delivery Routing Problem(42), we have set our service time at both restaurant and
delivery locations to be 4 minutes. However, there could be potential to decrease
the restaurant service time if an Airbase(34) system was employed.

24



Chapter 3. Model Assumptions 3.2. RESTAURANT ASSUMPTIONS

It is worth considering the landing options at restaurants. In both scenarios the
restaurants area will be the most crowded airspace as drones are constantly collect-
ing orders. Therefore, to avoid drones crashing into each when they are entering and
leaving restaurants, we have decided to employ a multiple landing pad approach. We
will assume that each restaurant has a choice of landing locations which a drone can
use. We will arrange these locations in a grid as seen in figure 3.3 for simplicity of
simulation purposes. In a real implementation, this challenge would need to be con-
sidered on an individual restaurant basis. One solution could be to use the roof of
employees cars, as tested by Matternet(14). Despite the physical implementations,
a drone controller would only have to be supplied with a list of landing locations to
use.

Figure 3.3: Restaurant landing location layout
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3.3 Time Value Functions

In order to model the customer desire to receive their deliveries faster, we introduce
a Time Value Function. This function models the idea that the delivery is worth more
to the customer now rather than later, and as such it has a greater value the faster
it arrives. We have chosen to model the profit from delivery as a discounted value
step function which degrades by 10% every 6 minutes. Assuming there is a fixed fee
for delivery, the profit is calculated as a percentage of this fee, which is dependent
on the time it is delivered. For example, if the delivery was placed after 30 minutes,
the customer would pay 50% of the delivery fee.

Figure 3.4: Time value function with 10% step

We will be assessing the performance of our schedulers based upon the profit they
are able to achieve. Therefore, we will take into account the total number of orders
completed, the average profit achieved per order, and consequently, the total profit.
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Implementation
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Chapter 4

Simulation Components

In order to model our food delivery network, we must first create the backbone of
the simulation. This will consist of a few key components, which will be designed to
be swapable, allowing the simulation to be easily extended and adapted to different
scenarios.

Firstly, we must create a model of a drone which is able to path itself between way-
points. Secondly, we will require a Route finder which calculates the path a drone
should take. We will also need an Order Generator which can generate orders in the
real world between source nodes (restaurants) and destination nodes (customers).
To start with, we will use a First Come First Serve (FCFS) scheduler to test the sim-
ulation, and we will add alternative schedulers once our base simulation is working.
Finally, we will require a Fleet Controller which coordinates the deliveries. When a
drone becomes available, the Fleet Controller will request the order at the front of
the queue, determine the route by passing the order details to the Route Finder, and
then issue the route instructions to the drone.

4.1 Drone Model

Modern drones are capable of autonomously navigating to GPS coordinates. With
this in mind, our drone controller entity is only concerned with navigating between
its set of waypoints.

We made use of the Unity prefab entity in order encapsulate the drone behaviour
inside an object. The prefab has also allowed us to create a basic visual representa-
tion of our drone for the simulation. The behaviour of the drone is relatively simple;
it needs to navigate between its list of way-points. Unity allows us to model this by
updating the location of the drone with each frame, resulting in a smooth simula-
tion. In order to gain a better understanding of how the drone‘s time is spent, and
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to aid the visualisation, we implemented the status of the drone to be any of the
following:

• Idle

• En Route To Pick Up Point

• Collecting Package

• Package Collected

• En Route To Delivery Location

• Delivering Package

• Package Delivered

• Returning Home

Collecting Package, Package Collected, Delivering Package and Package Delivered
informs us that the drone is descending or ascending respectively. Returning Home
is used to signal that the drone has not received a new order and will return to its
spawn location. This allows to accurately model how much time is spent ascending,
descending and travelling between source and destination. These different statuses
also aided debugging in a number of cases. The only information a drone keeps
track of is its current position, and current Order, which holds the list of way-points
it must navigate to. All of this logic is contained within the Drone Controller.

Figure 4.1: Drone prefab visualisation
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4.2 Order Generation

In order to encapsulate all the details that are relevant to a specific delivery, such as
the pick up point, delivery location and time the order was placed, we created an
Order object to store this information. This Order object can then be passed from the
Order Generator to the Fleet Controller, on to the scheduler, and finally the drone.
Throughout this process, the Order object is enriched with information. It is initially
created with the time the order is placed, its order ID and the pick up and deliv-
ery locations. When the Fleet Controller receives the Order, it extracts the source
and destination locations and passes these to the Route Planner. Once a path is cal-
culated, the Fleet Controller sets the way-points inside the Order object, and then
passes the Order to the Scheduler for it to be queued. When the drone receives the
Order, it adds information such as the pick up and delivery times as it completes the
Order. At this point, the drone registers the completion of the Order with the Fleet
Controller. The Fleet Controller logs the details, and assigns the drone its next Order.

The Order Generator manages the creation of these Order Objects. This is done
by randomly selecting a source location, from the list of source locations in the sim-
ulation settings. A random delivery location is picked which falls outside of the No
Fly Zones. We then randomly sample the inter arrival time between orders using a
Poisson process. Therefore, the order generator creates the next order to be sent,
and holds it until the inter arrival time has elapsed, At that point the order is sent to
the Fleet Controller and the Order Generator creates a new order with a randomly
sampled inter arrival time.

4.3 Route Planner

The route planner is the most one of the most complex parts of the initial simulation.
A considerable amount of work is required to create a representation of the world
before we can calculate routes between points.

4.3.1 World Bitmap

The first step is to create a bitmap of the world. We could choose any resolution
of bitmap, with perhaps the ideal size being 1m. However, that level of granularity
is only necessary for pick up and drop off locations. Path finding can be done at a
lower granularity in order to avoid excessive computation time. To start with, we
will cut the world into a 100x100 grid.

For the first test environment we will use a 1km square area, providing a resolu-
tion of 10m. This bitmap will be used to determine whether or not a location is
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Figure 4.2: The Route an Order takes through the Simulation

within a No Fly Zones (NFZ). It would be unfeasible to manually enter grid loca-
tions as NFZ points, therefore we have taken the approach of supplying the vertexes
of the NFZ‘s. Given the vertexes in order, we can draw the outline of the NFZ by
stepping between each pair of vertexes and setting the corresponding locations in
the bitmap to 1, signalling it is a NFZ.

This same approach was taken in Balaji‘s project(6). However, this meant that every
time a coordinate was requested, it has to be tested to see whether or not it fell
within the boundary drawn by the vertexes. This was achieved by iterating through
all the vertexes, and checking the horizontal and vertical coordinates against those
of each adjoining pairs of vertexes. We chose to take a different approach in order to
avoid these computations. We decided to fill in the interior area of the NFZ‘s. This
meant that we can do a bitmap look up in O(1) time to check whether a point falls
inside a NFZ. This eliminates the need to iterate through the vertexes and will also
allow us to visualise the entire No Fly Zone.

In order to fill in the interior polygon of the NFZ, we implemented a scan line al-
gorithm to iterate through the bitmap. When it detects a boundary it will set all
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Figure 4.3: Scan line fill algorithm

interior points to 1 signalling the NFZ. We confine ourselves to the bounding box
of the NFZ, and scan through line by line, filling in points as necessary. In order to
ensure that our algorithm worked a few basic shaped NFZ tests were undertaken, as
well as some more irregular shapes. In the case of ordinary shapes, correctness of
the algorithm could be automated, but with irregular shapes, it was faster to visually
inspect the results of the test.

Figure 4.4: No Fly Zone Bitmap representation of Battersea park and Brompton
Cemetary

4.3.2 Path Search Algorithm

Once we were confident that the bitmap held a correct representation of the world,
with designated No Fly Zones, we needed to implement a path search algorithm.
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Drones benefit from not being confined to current road infrastructure, and can fly
directly to their destination along the fastest route, assuming no obstructions. Until
this point, we had been using the most basic path finder which simply directs the
drone to its destination as the crow flies. This was useful in testing the correctness of
the drone instructions, and also enabled the construction of a Route Finder interface
which allows us to swap in different path search algorithms as necessary.

As mentioned previously, this project builds upon previous work undertaken in Sim-
ulating Drone Delivery Networks using SpatialOS(6). As such, we have implemented
the same path finding algorithms, but adapted it to use our alternative representa-
tion of the world bitmap.

The path search is comprised of a grid search, which iteratively expands outward
from the source node towards the destination. The next node to be explored is
based upon each explored nodes‘ Euclidean distance to the destination node. This
grid search returns the step-wise path between neighbouring cells in the bitmap,
from the source to destination. This path is then passed to the theta search algorithm
which performs line of sight checks along the path, converting the neighboured grid
path into a set of line of sight way-points which the drone can then follow.

Figure 4.5: Example of Line of Sight check used to skip intermediate grid squares

Once the Theta* Search algorithm had been adapted to use our representation of the
world, we tested that a drone was able to path around No Fly Zones. Since NFZ‘s
are specified by the coordinates on the ground, we visually represent them by a
cuboid the size of the bitmap resolution stretching from the ground to the maximum
allowed drone altitude (100m).
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Figure 4.6: First test of a drone following way-points around a No Fly Zone

4.3.3 Global Layer

As in AATC(7), the navigation components which route a drone between two points
is encapsulated within the Global Layer. This object is supplied with the list of NFZ‘s,
and initialises the world bitmap. It then receives requests from the Fleet Controller
with source and destination coordinates. These coordinates are passed to the Route
Finder, which generates the list of navigation way-points.

4.3.4 Reactive Layer

AATC uses an artificial potential field to calculate the optimal direction to move
relative to dynamic obstacles. It does this by calculating the distance to the nearest
obstacle through the global layer. Realistically, drones would be outfitted with an
array of sensors to detect when they are coming close to an obstacle. With this
in mind, we have made use of Unity’s built in Raycast objects to detect and avoid
obstacles.

4.4 Simulation Life-cycle

The simulation initialises by setting up the Global Layer, Order Generator, and Fleet
Controller. The Global Layer reads in the simulation settings, generates the world
bitmap, and passes this to its Route Finder. The Order Generator receives a copy
of the bitmap, to ensure it does not generate Order‘s within No Fly Zones, and the
list of source locations. A set number of Orders are pre-generated to kick-start the
simulation. The Fleet Controller instantiates the user supplied number of drones for
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the simulation.

The Fleet Controller coordinates the simulation. When an Order is received, the
Fleet Controller passes the start and end locations to the Global Layer which returns
a list of way-points. These way-points are added to the Order, which is then added
to the Scheduler. When a drone is idle, or has just completed its current order, it re-
quests a new Order from the Fleet Controller. Within this request it sends its current
location. The Fleet Controller takes the order from the head of the Scheduler, and
uses the Global Layer to calculate the way-points from the drone‘s current position
to the Order pick up location. The drone‘s current location is passed to the Scheduler
as this information may be used to determine which is the best Order for the drone.

The lifetime of a drone follows a repeated loop. It will initially spawn at one of
the source locations, register itself with the Fleet Controller and set its status to Idle.
If its status is Idle, it will request a new order from the Fleet Controller. When a
drone receives its next order, it will schedule its next way-point from the list of nav-
igation way-points. The navigation way-points do not take into account the ascent
and decent of the drone, they navigate it between destinations at its cruising alti-
tude. Therefore, the drone must coordinate its ascent and descent.

Once the drone reaches its pick up destination, it will descend down to ground
level, changing its status from En Route To Pick Up Point to Collecting Package. At
this point the drone waits for 4 minutes to simulate the handling time. After this
handling time has elapsed, the collection time is set in the Order, the drone visuali-
sation is updated to reflect that it now has an item on board, and it begins ascending
to a safe height. As it begins its ascent, it changes its status from Collecting Package
to Package Collected. Once a safe height is reached, it begins following its delivery
way-points with a status of En Route To Delivery Location. Its behaviour at the deliv-
ery location is the same as at the pick up location with respective status‘ Delivering
Package and Package Delivered. Upon completion of the order, and once it has as-
cended to a safe height, it sets its status to Idle, which triggers a request for the next
order.

These detailed statuses were invaluable when creating the simulation and debug-
ging. Moreover, they have allowed us to accurately model a drone delivery network,
by accounting for ascent and descent times, which occur at different speeds, as well
as handling time for both collection and delivery.
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Scheduler Implementations

The main aim of this project is to analyse the performance of different scheduling
algorithms. As already mentioned, we aim to analyse First Come First Serve (FCFS),
Shortest Job First (SJF) and Least Lost Value (LLV). These have already been anal-
ysed in previous work(6), however this was only in a warehouse model. In that
scenario, the drones are tied to a base and serve within a radius of that base. We will
be assessing how these algorithms perform when drones are not tied to a specific
base and can move freely between source nodes.

Before we outline the scheduler implementations, it is important to define a few
terms. We define Wait Time to be the time from when an order is received by the
scheduler to when it is picked up by a drone. We define Delivery Time to be the time
taken for the drone to transport the order from source to delivery location. Finally,
Drone travel time is defined as the time taken to travel from a drone‘s final delivery
location to its next pick up location.

5.1 Local Scheduling

In our Domino‘s Pizza scenario we will be assessing the performance of local sched-
ulers. By Local scheduler we mean one which follows the warehouse model. There-
fore, if we use local scheduling, each restaurant will have its own scheduler and
drones will not be able to move between restaurants.

5.1.1 Local First Come First Serve LFCFS

This scheduler employs a First Come First Serve Queue for each restaurant. It is
meant to model our Domino‘s Pizza scenario where each location has a limited num-
ber of drivers who deliver orders once they are ready. Arguably the fairest scheduler,
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it ensures every delivery is carried out. It is the easiest scheduler to implement and
is often used for small scale delivery. However, when under heavy load it results in
longer wait times for all deliveries.

5.1.2 Local Shortest Job First LSJF

Local Shortest Job First prioritises deliveries by their delivery distance. Since we are
scheduling on a local scale, all drones we have control of are based at our location.
Therefore, we need only account for the delivery distance and deliver the shortest
order first in an attempt to maximise profit.

5.2 Global Scheduling

If we move to a global scheduling model, we allow the drones to dynamically move
between source destinations to satisfy demand. It is possible that global scheduling
may not have a significant improvement over local scheduling in the Domino‘s model
due to nature of the orders. Since an order is assigned to its closest restaurant, drone
travel distances are minimised, thus it may be beneficial to run a warehouse model.
However, in our Just Eat model it makes little sense to employ global scheduling
since orders are more dispersed.

5.2.1 First Come First Serve FCFS

First Come First Serve has been included as a control scheduler. However, it is very
likely that the FCFS scheduler will perform poorly because orders will be processed
at a global level. Consequently, drones may be flown from one corner of the world
to the opposite corner in order to respect the FCFS ordering. Whilst FCFS can be
judged as the fairest scheduler, as it will ensure that every order is completed, it is
unlikely to maximise profit on a global scale.

5.2.2 Closest Job First CJF

An improvement on FCFS is Closest Job First. CJF maintains a global FCFS queue,
but when a drone requests the next order, the global queue will be iterated through
and the first job which is closest to the drone will be selected. It is likely that multiple
jobs will be equally close since orders can only originate from a finite number of
source locations. Therefore, the first one is chosen to maintain part of the FCFS
ordering.
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5.2.3 Shortest Job First SJF

Shortest Job First will also be implemented on a global level. The orders will be
sorted by the estimated delivery time which is based upon the distance from source
location to delivery location. This distance is calculated by summing the distance
between each waypoint in the order‘s delivery path. It is an improvement over
simply taking the euclidean distance from the pick up and delivery points, since this
distance is the actual route the drone will fly. However, the estimated duration is
calculated assuming that the drone travels at constant speed between the pick up
and delivery locations, and does not deviate from its route to avoid obstacles.

5.2.4 Enhanced Shortest Job First ESJF

Since Shortest Job First is done on a global level, the scenario where a drone may
be ordered from one side of the world to another still persists. Therefore, we have
proposed Enhanced Shortest Job First which takes into account the drones position
as it finishes its delivery. ESJF will iterate through the SJF queue and choose the
job which has the smallest overall distance. The overall distance is calculated by
adding the delivery distance of the order, following the pre-calculated waypoints,
plus the distance the drone must travel from its current position to the pick up
location. In order to avoid calculating a route from the drone‘s current location to
the pick up location for every order in the queue, we use the Euclidean distance as
an approximation. This is a compromise to save excessive computation time, but
could result in a situation where the drone picks the wrong route. For example, if
there is a large No Fly Zone between the drone‘s current location and the pick up
location, then having to path round the NFZ may result in a greater overall distance
than another order in the queue.

5.2.5 Least Lost Value LLV

At its core, Least Lost Value is a priority queue ordered by the Net Lost Value Met-
ric.To calculate the Net Lost Value of an order, both the Potential Gain Value (the
value of doing a job now), and the Potential Loss Value (the aggregated lost value
of postponing all other jobs), must be calculated. To calculate these potentials we
must also define an Expected Value for each job. Using the time value function V (t)
we defined earlier, we can determine the expected value EV (j, t) of a job j at com-
pletion time t, by calculating which step it falls into. To determine a jobs completion
time, we need only consider the time the order was placed and how long it will take
to complete.

EV (ji, tc) = V (tc)
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The Potential Gain Value is the value of choosing the given order next, minus the
value of waiting to execute that order, and instead executing it at time tc + pi

PGV (ji) = EV (jk, tc) − EV (jk, tc + p̄i)

The Potential Loss Value is the sum of all of the lost values for every other order
which must wait to be completed. For every order except the current order we are
considering, we calculate the value which is lost by postponing it as opposed to
executing it now.

PLV (ji) =
n∑

jk∈J, k 6=i, k−1

(EV (jk, tc) − EV (jk, tc + p))

We can then calculate that Net Lost Value for each order by subtracting the Potential
Gain Value from the Potential Loss Value.

NLV (ji) = PLV (ji) − PGV (ji)

Least Lost Value calculates the potential gain of choosing a given order next, mi-
nus the potential loss of choosing that given order over all the others in the queue.
Therefore, in order to calculate this value the algorithm must iterate through every
order in the queue and calculate its potential gain, which is based on the potential
of every other element in the queue. Hence the complexity of LLV is O(n2). In order
to minimise the computational load LLV is only reordered when the next order is
requested by a drone.

In the original implementation of LLV, the potential gain of orders is calculated
by determining which step an order will be completed in. In Balaji‘s warehouse
scenario(6) he determined which step the order will be completed in by calculating
the current wait time of the order, currenttime − orderplacedtime, and adding the
estimated duration of the order. In his study the duration of the order was known
since it is just the travel time from the warehouse to the delivery point.

However, our scenario is slightly more complicated as the estimated duration of
the order changes depending on which drone completes it. This is an additional
complication to the estimated duration time which must be taken into account in
the Expected Value calculations. We must know the drone‘s current position, and
estimate how long it will take to reach the pickup point, as this will affect which step
the delivery will fall into. As seen in the figure 5.1 and figure 5.2 we have different
expected duration times depending on whether we calculate the expected Value of
completing an order now versus the expected value of postponing it.

Therefore, when it comes to calculating the Expected Duration we have two sce-
narios. In the first scenario we are assuming that the order will be completed next
implying our Estimated Completion Time is:

EstimatedCompletionT ime = WaitT ime + DroneTravelT ime + DeliveryT ime
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Figure 5.1: Travel Distance if Executed
Immediately

Figure 5.2: Travel Distance if postponed
until after order B

Whilst in the second scenario, we are postponing order A until after order B, hence
we have an Estimated Completion Time If Postponed.

EstimatedCompletionT imeIfPostponed = WaitT ime

+ BTravelT ime

+ BDeliveryT ime

+ ATravelT ime

+ ADeliveryT ime.

Where B Travel Time is the time taken to travel from the drone‘s current position, to
the pick up location for order B. Similarly, A Travel Time is the time taken to travel
from the drop off location of order B, to the pick up location of order A. The current
Wait Time of each order can be calculated by subtracting the order placed time from
the current time.

WaitT ime = CurrentT ime−OrderP lacedT ime

Note that we implemented LLV at both a global level, and a local level (Local Least
Lost Value (LLLV), where each restaurant has its own LLV scheduler, to determine if
there were significant difference.
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5.2.6 Just In Time JIT

Just in Time scheduling is a dynamic programming inspired approach which we have
devised. It uses the same estimated completion time calculations as LLV to evaluate
the potential profit of an order, but it also calculates the order’s slack time. We define
slack time as the difference between the time at which the order next loses value tb,
and the estimated completion te time of the order.

SlackT ime = tb − te

Where the boundary time tb is defined as:

tb = max
t

V (t) = V (te)

Figure 5.3 demonstrates this calculation. In this example our boundary time tb is
24 minutes, denoted by the red line. Order A, denoted by the green line, has an
estimated completion time te of 23 minutes, which gives a slack time of 1 minute
(24-23). Order B, denoted by the blue line, has an estimated completion time of 20
minutes, resulting in a slack time of 4 minutes. Therefore, order A would be chosen
as the next order to be completed. The intuition behind JIT scheduling relies on
postponing an order until it is about to lose value. By doing so you are making the
best use of the time available and whilst minimising the expected loss.

Figure 5.3: Slack time comparison for Order A green and Order B blue
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Unfortunately, in our first implementation of the JIT scheduler, we did not give
enough weighting to completing jobs earlier. As a result, it performed quite poorly
and was unable to generate a profit which matched the other schedulers. The distri-
bution of delivery completion times can be seen in figure 5.4. This shows how JIT
does not prioritise orders with higher potential profits. Therefore, we altered our
JIT scheduler to classify orders into groups based upon the potential profit of their
estimated completion time. We then searched through the group with the greatest
profit, and chose the order with the smallest slack time from that group.

Figure 5.4: Distribution completion times for Just In Time Scheduler
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Visualisation

This project could have been solely implemented as a Discrete Event Simulator. This
would result in a simulation time line where we add the completion time of each
event and jump to each event time. However, due to the nature of our simulation
being on a real world map, it was desirable to visualise the simulation. This visual
tool has allowed us to create a relatable scenario and insert realistic assumptions
such as restaurant locations, and No Fly Zones.

6.1 Setup

The visualisation began with moving a drone around the world and routing it be-
tween set points. This allowed us to visualise and test that the drone behaved cor-
rectly when ascending, descending and travelling between locations. Once the basic
logic of the simulation had been implemented, we were able to create a snapshot of
West London to be used for our scenarios. A 5kmx5km section of West London was
taken from Google Earth to form a background for our simulation. This gave us a
2D image as a starting point.

6.2 Bird’s Eye 2D view

With a realistic background in place, we added appropriate No Fly Zones extending
from the ground to the drones‘ maximum operating altitude. Unity‘s line renderer
allowed us to visualise the routes the drones were completing. The visualisation was
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Figure 6.1: Drone not carrying food icon Figure 6.2: Drone carrying food icon

Figure 6.3: Restaurant Icon Figure 6.4: Customer Icon

then enriched to include drone and customer icons, restaurant icons, and images
to distinguish between drones performing deliveries, and those enroute to pick up
an order. This birds eye Scene view has been our main visual tool throughout the
development of the simulation. It has allowed us to quickly identify otherwise tricky
to discover bugs. For example, when the list of idle drones was overruling the local
scheduler forcing drones away from their home location.
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Figure 6.5: Birds eye simulation view with icons and routes
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6.3 3D World Simulation

Developing the simulation in Unity has given us the opportunity to create a full 3D
visualisation in addition to our 2D birds eye view. Unfortunately, the creation of
an accurate 3D model would have expended significant time and effort. Since the
visualisation was a tool for this project and not its main aim, the decision was made
not to spend excessive time on a 3D model. However, we have been able to use a
few pre-existing models to demonstrate our visualisation.

Mapbox(35) has an SDK for Unity which is designed to help you create 3D mod-
els of the world. After briefly experimenting with it, we were able to import a city
simulation model. Upon integrating our simulation with the city model, we able to
simulate a more realistic visualisation from the drone point of view.

Figure 6.6: Mapbox City Visualisation

For our larger Just Eat simulation, we were able to use satellite data of London to
generate a 3D model (22). This data covered a huge swathe of Greater London,
which was a bit excessive for our needs, but we were able to use it to enhance the
visualisation.
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Figure 6.7: London 3D representation from satellite data

Figure 6.8: Drone first person view in London 3D model
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6.4 Custom Editor

Unity allows you to write custom editors for any of the game objects you use. Adding
a custom editor script for our Drone Controller allowed us to view the details about
each drone as the simulation was running. As seen in figure 6.9 we can view the
drones current location, status, order, way-point and destination. We made use of
Unity’s inspector for the Fleet Controller and Customer objects to view real time
details as the simulation progressed.

Figure 6.9: Unity Inspector showing details about each drone
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Simulation Results and Evaluation
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Chapter 7

Domino‘s Pizza Scenario

For our first scenario we will suppose that Domino‘s Pizza has a fleet of deliv-
ery drones. Domino‘s is a prime candidate since they have a number of locations
throughout London which matches our multiple source node model. Domino‘s them-
selves have made forays into pizza delivery by drone(41), however there have not
been many developments since. They epitomise drone delivery research when they
say ”It doesn’t make sense to have a 2 tonne machine deliver a 2kg order.”(41)

7.1 Model Outline

There is one issue with the Domino‘s model. In real life, when you place an order it
is sent to you closest Domino‘s Pizza restaurant. This means that each drone would
only be delivering within a certain radius. Therefore, there would not be the op-
portunity for drones to move between source hubs to satisfy dynamic demand. This
effectively takes us back to each restaurant following the warehouse model, where
drones are tied to their hub. To overcome this, we have scheduled on a global basis.
This means that when an order is received for a given restaurant it can be assigned
to any drone, instead of just the drones which are based at that restaurant. This will
allow the scheduling algorithms the freedom to move drones between restaurants
in order to satisfy demand. We then compare these global scheduling algorithms
against localised scheduling algorithms, where the drones are tied to one location.

To make this first scenario manageable, we will consider a 5km square region of
West London from Hammersmith to Battersea, centering over Fulham. This area of
London contains 6 Domino‘s Pizza restaurants which will allow us to study how well
our scheduling algorithms serve several locations.

The 6 Domino‘s Pizza restaurants we used were: Battersea, Battersea bridge, Ful-
ham, Parsons Green Putney and West Kensington. Their locations can be seen in
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figure 7.1 below.

Figure 7.1: Location of theDomino‘s Pizza restaurants in our simulation

7.2 No Fly Zones

We will introduce No Fly Zones over public parks and the London Heliport. As such
we have set No Fly Zones over Hurlingham Park, Battersea Park, EelBrook Common,
Brompton Cemetary, Bishops Park, Wandsworth Park and the London Heliport which
is located in Battersea. The parks were chosen because the use of drones is banned
in all London parks except Richmond park. The London heliport was chosen since it
is a crowded airspace for helicopters in and out of London. These No Fly Zones can
be seen in figure 7.3.
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Figure 7.2: Location of No Fly Zones in our Domino‘sPizza simulation

7.3 Assumptions

For this scenario we will assume that each Domino‘s Pizza location has 2 drones,
giving us a fleet of 12. For Local First Come First Serve (LFCFS), Local Shortest
Job First (LSJF), and Local Least Lost Value (LLLV), we will lock the drones to their
source locations. This means they will only travel to and from their designated home
restaurant, delivering within that restaurants service area. In the case of the global
schedulers: FCFS, SJF, ESJF, CJF, LLV, JIT; we will not lock the drones to any particu-
lar restaurant. This allows them to travel freely between locations to satisfy demand.
We will run our simulation for 6 hours to model an evening shift.

Since our schedulers will not be effective when the queue is empty, we have to
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ensure that there is a moderate load on the system. Therefore, we set a moderate
load of an order being received on average every 25 seconds, a heavy load of an
order being received every 20 seconds, and a dynamic load. The dynamic load is
introduced to test how the schedulers behave when one source Location suddenly
becomes very busy.

For the dynamic load, we could have just sent every second order to one node to
simulate it being busier than all the other nodes. However, if this was the case in
real life, you would choose to base more drones at that location in the first place,
as you know it receives more orders. Therefore, to simulate a scenario where you
don‘t know which node will be busy, we increase the load on each source location in
turn. This is achieved by altering the order generator to send every second order to
the same source location for a one hour period. Once the hour has elapsed, the next
source location is chosen and the load increased.

Figure 7.3: Birds eye view of London Domino‘s Pizza simulation
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7.4 Results

7.4.1 Moderate Load

Testing the system under moderate load, where an order arrived on average every
25 seconds, we found that all of the schedulers completed approximately the same
number of orders, except for FCFS and SJF (Appendix figure 11.1). The top sched-
ulers completed between 679 and 683 orders, whilst FCFS and SJF fell short with
607 and 630 respectively. For FCFS this is understandable behaviour since drones
may be routed from one corner of the world to the other in order to respect the
queue ordering. In the case of SJF, we are prioritising on delivery time, not taking
into account the drone travel time. As a result, it will also suffer from extended pick
up distances. Therefore, since these two global schedulers performed poorly in the
number of orders completed, total profit, and average profit (Appendix figure 11.2),
we have chosen to exclude them here. Full graphs can be found in the appendix.

Figure 7.4: Average Profit under moderate load for Domino‘s Pizza scenario
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The graph of average profit (figure 7.4), shows that local FCFS performs worst in
this moderate load scenario. Whilst there is very little difference between the other
schedulers, CJF does under perform. This could be due to the fact that it does not
take into account the delivery time, which ESJF does. However, in this scenario,
it is entirely possible that CJF could result in drones becoming stuck serving one
source node. CJF is a global scheduler, but since each order is sent to its closest
restaurant, CJF will force drones to serve that restaurant. If at any point the queue
for a restaurant becomes empty, CJF will force the drone away from that restaurant.
A new drone will only ever be assigned to that restaurant if a different restaurant’s
queue becomes empty. As a result, orders for that restaurant will have an increased
wait time until a new drone is assigned.

An analysis of the queue lengths in figure 7.5 shows that no scheduler, except FCFS
and SJF, ever becomes full. Moreover, it can be seen over the course of the simulation
that the queue length rarely exceeds 15. This means on average, each location has
approximately 2 orders in its queue. Since the local schedulers have 2 drones serving
each source location, they are able to cope with demand. As such there would be no
benefit gained from moving drones between source locations.

Figure 7.5: Queue Length under moderate load for Domino‘s Pizza scenario
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7.4.2 Heavy Load

Our heavy load scenario involved decreasing the average time between orders to 20
seconds. This increases the demand on the drones, resulting in a greater influence
from the schedulers. Again, we have omitted FCFS and SJF from these graphs as
they completed the fewest number of orders and had the lowest average profit. Full
graphs can be found in the Appendix, figures 11.3, 11.4, 11.5.

Figure 7.6: Number of Orders completed under heavy load for Domino‘s Pizza scenario

Figure 7.6, reveals that there is not a vast difference in number of completed or-
ders between the majority of the schedulers. All schedulers except JIT fall Within a
range of 765 - 800 orders completed, with ESJF and CJF completing the most or-
ders. This is understandable as both schedulers are prioritising based on which jobs
can be completed fastest. Moreover, with a higher demand on the restaurants, CJF
is unlikely to suffer the pitfalls mentioned earlier. JIT falls behind the rest of the
schedulers, only completing 708 orders. Interestingly, LLV seems to perform approx-
imately the same irrespective of whether it is applied locally or globally.

Figure 7.7 shows the average profit per order achieved by the schedulers. JIT
achieves the highest consistent average profit of 0.925. LLLV outperforms the re-
maining schedulers, including global LLV. LSJF performs marginally better than
ESJF, supporting the argument in favour of local schedulers over their global coun-
terparts. The local schedulers may be performing better than their global equivalents
as there is no additional travel time added by moving drones between locations. This
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allows all of a drone‘s flight time to be used for deliveries instead of moving between
source locations.

Figure 7.7: Average Profit under heavy load for Domino‘s Pizza scenario

7.4.3 Dynamic Load

It is interesting to consider how the schedulers cope under dynamic load. If every
source locations is under heavy load, there is no reason to move drones between
locations. However, if one location suddenly comes under heavy load, there is an
expected gain in moving drones to that location. This flexibility is allowed by the
global schedulers, and is demonstrated in our dynamic load scenario.

The local schedulers fail to complete as many orders as the global schedulers by
a significant margin. Both ESJF and CJF completed 830 orders, followed closely by
LLV with 817. JIT completed 763, whilst the local schedulers fell to 712 and 711 for
LLLV and LSJF respectively. LFCFS performed the worst, only achieving 680 orders.
These results can be seen in Appendix figure 11.6.

Figure 7.8 shows the average profit for each scheduler. A clear distinction can be
seen between the global schedulers, who are able to dynamically move around the
world and chase the demand, and the local schedulers which become overloaded.
JIT remains the highest performing scheduler on average profit, but a clearer dis-
tinction is drawn between LLV, and both ESJF and CJF, which it outperforms. ESJF
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and CJF both fall short of LLV and JIT as they do not take into account the wait time
of the order. ESJF will always choose the shortest job regardless of how long it has
been waiting. Consequently, it completes more jobs, but neglects those jobs which
will lose profit if postponed. Both LLV and JIT take the wait time into account in
order to calculate the potential profit of an order.

Figure 7.8: Average profit per order under dynamic load for Domino‘s Pizza scenario

Despite JIT having the highest average profit per order, it is unable to achieve the
greatest profit as it completes far fewer orders than the other global schedulers.
This can be seen in figure 7.9. It is likely that in this Domino‘s Pizza scenario the
distances are not great enough to have a significant impact on completion times.
Since each delivery is relatively short, as it is assigned to its closest restaurant, the job
duration may not be long enough to have a significant effect on the profit. Indeed,
the average completion time for every scheduler falls between 10-15 minutes, as
seen in appendix 11.7. In different scenarios with greater delivery times, JIT’s profit
scheduling approach may be more distinct.
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Figure 7.9: Total Profit under dynamic load for Domino‘s Pizza scenario

Figure 7.10: Total Profit under moderate load for Domino‘s Pizza scenario
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7.5 Conclusions

Under moderate load there is very little difference in total profit between the sched-
ulers (figure 7.10). In these circumstances, none of the source nodes are severely
overworked. Therefore, each node is able to cope with its current demand and there
is very little to be gained from the global schedulers. Due to the proximity of the
nodes to each other, and the short delivery distance, the time taken for a drone to
travel between source locations effectively outweighs the potential gain.

However, under heavy load a greater distinction is seen between the schedulers.
JIT performs significantly fewer deliveries, but has the highest average profit per
delivery, figures 7.6 and 7.7. CJF performs poorly because once a drone moves from
one source location to another, it runs the risk of becoming trapped there until the
load on that location decreases. This results in the drone‘s previous location being
neglected. The remaining global schedulers, ESFJ and LLV, perform similarly to their
local counterparts LSJF and LLLV. This can be attributed to the distribution of drones.
If every location is experiencing heavy load then you would split your drones evenly
between them. Consequently, there is little to be gained from the flexibility of global
schedulers.

In the dynamic load scenario the results are very different. Here the global sched-
ulers demonstrate their flexibility to respond to increased load, severely outperform-
ing the local schedulers. JIT consistently achieves a high average profit, but com-
pletes fewer orders. We believe the proximity of orders in this scenario results in
a very tight grouping of average profit. This is a byproduct of the short distances
drones have to travel, due to the closest restaurant order allocation. Therefore, in
this scenario, the greater average profit gained by JIT is not enough to overcome its
lack of completed orders. The order distances are too short, resulting in every sched-
uler having a high average profit. If the distances were greater, we would expect the
average profit of each scheduler to vary more from its counterparts.

Overall, this simulation demonstrates that under moderate load, there is little benefit
scheduling at the global level. Due to the nature of orders being assigned to their
closest restaurant, it is reasonable to operate each restaurant independently with a
warehouse model. However, if the load on restaurants is highly dynamic, there is a
significant benefit in scheduling drones at the global level.
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Just Eat Delivery Model

8.1 Scenario

Domino‘s Pizza is an example of a company which has multiple stores all serving
the same products. However, with the emergence of food delivery companies such
as Just Eat and Deliveroo, this model is changing. These companies serve multiple
restaurants, each with different products. As mentioned in chapter 2, Uber Eats has
begun research into its own drone delivery network. In order to model this scenario
we need a few different assumptions.

In the Domino‘s Pizza model we assumed that an order would be sent to its closest
restaurant. In our Just Eat model this is no longer the case. When an order is
received it is for a specific restaurant and can be anywhere within that restaurant‘s
service radius. The restaurant is free to set its service area, but a mentioned in
section 3.2, we have set our restaurant radius to 5km. This suits our 5kmx5km
scenario as each restaurant can serve the majority of the area. Moreover, it also
adheres to our drone constraints, which have a maximum range of 16km.

This scenario should allow greater freedom to schedule drones to satisfy dynamic
demand. They will no longer be operating within a small radius of their closest
restaurant, but could be sent almost anywhere in our 5kmx5km world. This sug-
gests there will be greater movement of drones between restaurants as their delivery
location could be closer to another restaurant. In this model, it makes little sense to
use local schedulers. Indeed, Just Eat does not operate a model where drivers are
tied to a restaurant, they dynamically move around to satisfy demand. Therefore,
we tested the following schedulers in this scenario: FCFS, SJF, ESJF, CJF, LLV and
JIT.
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8.2 Small Scale Simulation

8.2.1 Assumptions

For our Domino‘s Pizza simulation we used a fleet of 12 drones to serve our six
restaurants. We will maintain these restaurants and the fleet size for this first small
simulation. The reasons for doing so are to test our schedulers on a small scale
model, and also to compare how the change of assumptions effects the results.

8.2.2 Results

We tested this scenario under both a moderate and heavy load, with mean inter
arrival times of times 30 and 25 respectively. These inter arrival times are slightly
higher than the Domino‘s Pizza scenario, reflecting the fact that orders are expected
to take longer to complete, as the order delivery location can be anywhere in the
world.

Moderate Load

Figure 8.1: Average Profit under moderate load for Just Eat small scenario
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Under moderate load the queue length remained under 25 for all schedulers except
for FCFS and SJF. The number of orders completed ranged from 482 for FCFS to 527
for CJF. The ranking by number of orders completed orders was CJF first followed
by LLV, ESJF, JIT, SJF and FCFS. Only 5 orders separated CJF (527), LLV(525) and
ESJF(522). These results can be seen in appendix figure 11.8 The total profit follows
the same hierarchy as number of orders completed (appendix figure 11.9), indicating
there is not significant difference between the schedulers average profit. However,
JIT maintains the highest average profit, with LLV, SJF and ESJF achieving roughly
the same values. Notably, CJF under performs, as seen in figure 8.1.

Heavy Load

Figure 8.2: Number of Orders completed under heavy load for Just Eat small scenario

Under heavy load, with orders arriving on average every 25 seconds, there begins
to be clear differences between the schedulers. Figure 8.2 shows the total number
of orders completed by each scheduler. Despite the variation in number of orders
delivered, the top four schedulers all achieve approximately the same total profit.
Figure 8.3 shows a clear difference in average profit per order. JIT maintains the
highest average profit per order through the simulation. LLV comes second, but per-
forms at a similar level to ESJF. We believe SJF increases its average profit towards
the end of the simulation because its queue becomes full. Therefore, it will begin
rejecting orders which take too long to repeat. Consequently, there will always be
short orders in the queue which SJF prioritises and completes first. This results in
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the average completion time decreasing, and hence the average profit increasing as
the queue fills. The graph of queue length over time can be found in appendix figure
11.10

Figure 8.3: Average Profit under heavy load for Just Eat small scenario

8.2.3 Conclusions

Under heavy load it can be seen that CJF performs worse than under moderate load,
figure 8.1 and figure 8.3. This comes down to CJF choosing the geographical closest
pickup from its delivery location. However, as it searches for the closest job, if there
are multiple jobs with the same pick up location, it will choose the first one it comes
to. Therefore, CJF maintains a layer of FCFS ordering. Under heavy load, the queue
length increases, resulting in the average service time of orders increasing, similarly
to FCFS but not as drastically, as seen in figure 8.3.

LLV performs slightly better than ESJF in both a moderate and heavy load scenario.
This can be attribute to the fact that it takes into account the wait time for an order,
whilst ESJF only takes into account the delivery time and drone travel time. SJF is
able to perform relatively well as its queue is almost constantly full. This is a result
of prioritising shorter jobs, the longer jobs will always be postponed. As such, a
shorter job will always arrive before the longer jobs are executed. This results in SJF
completing a lot of short orders with a high profit, but blocks longer orders until they
are evicted from the queue. The graph of queue length for the heavy load scenario
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can be found in appendix figure 11.11.

JIT is able to consistently outperform the other schedulers on average profit regard-
less of load. In the moderate scenario, the queue is rarely full (appendix figure
11.10). However, it grows faster than LLV, and CJF because there is a priority to
complete jobs with the smallest slack time. ESJF and CJF will minimises the drone
travel time between destinations, whilst JIT will choose a longer travel time if it be-
lieves it can complete an order before it loses value. This is why JIT fails to complete
as many orders.

Overall, it can be seen that as we change assumptions from the Domino‘s Pizza
scenario to the Just East scenario, the increased delivery distances and effect of
drone travel distances become more apparent. The schedulers complete noticeably
different numbers of orders with more distinct average profit levels.
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8.3 Medium Scale Simulation

8.3.1 Assumptions

The small Just Eat scenario is interesting to compare with the Domino‘s Pizza model,
however, Just Eat serves hundreds of restaurants. To better model this we have run
the scenario again on the same geographical area, but with 20 drones and 25 restau-
rants. The idea is to model one of Just Eats driver pools which serve restaurants
within a designated area. The locations of the restaurants were chosen randomly,
and can be seen in figure 8.7. We have adjusted the average inter arrival time for or-
ders to 25 seconds and 20 seconds for moderate and heavy loads respectively. This is
to ensure sufficient orders arrive so that our schedulers are invoked and the queues
do not become empty for long periods.

Figure 8.4: Restaurant Locations for Just Eat Medium Scale Simulation
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8.3.2 Results

Moderate Load

The results under moderate load (Appendix figure 11.12) show ESJF, CJF and LLV all
complete approximately the same number of orders. JIT completes noticeably fewer,
in line with previous scenarios. However, by looking at the average profit in figure
8.5 we can see that CJF consistently outperforms the other schedulers. Moreover,
it actually attains the greatest profit as seen in Appendix figure 11.13. This shows
that CJF is able to perform better when the distances between pick up locations is
smaller. CJF scheduling results in less time spent travelling between restaurants,
consequently, a greater proportion of the drones‘ time is spent completing deliveries.

Figure 8.5: Average Profit under moderate load for Just Eat medium scenario
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Heavy Load

Under heavy load, JIT and LLV maintain the highest average profit, figure 8.6. In-
terestingly, JIT has achieved the highest total profit (Appendix figure 11.14, )despite
completing significantly fewer orders than ESJF, 609 versus 667 respectively. Addi-
tionally, LLV achieves a marginally higher profit than ESJF, whilst also completing
fewer orders (644). However, throughout this scenario the order queues were at full
capacity, Appendix figure 11.15.

Figure 8.6: Average Profit under heavy load for Just Eat medium scenario

8.3.3 Conclusions

Our profit driven schedulers have been able to consistently outperform the other
schedulers when the demand is high. CJF performs poorly a heavy load scenario
due to its underlying reliance on FCFS ordering as a secondary priority. Hence when
the queues are full the average service time decreases in line with FCFS. However, in
the moderate load scenario the addition of restaurants has lowered the drone travel
time for CJF, this allows it to outperform the other schedulers in this circumstance.
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8.4 Large Scale Simulation

Our small and medium Just Eat scenarios allowed us to test how our algorithms
performed when we considered a set of 6 and 25 restaurants. Moreover, it was in-
teresting to compare how the change of assumptions effects the algorithms between
the Domino‘s Pizza and Just Eat Scenarios. However, our medium size scenario limits
orders to within our 5km world. We decided to test how our schedulers performed
on a larger world.

8.4.1 Assumptions

For this larger scenario we have chosen a 10kmx10km area of London. We have
randomly dispersed 50 restaurants throughout this area. Each restaurant has a ser-
vice radius of 5km. In our previous scenario, each restaurant could almost cover
the entire world. This scenario allows us to consider a larger world where each
restaurant only serves a subsection. We have increased the number of drones to 40
and have set moderate and heavy loads of orders arriving every 15 and 10 seconds
respectively. The larger world allowed us to test how increased delivery times and
increased drone dispersion affected the schedulers.

Increasing the size of the world resulted in us having to add additional NO Fly Zones.
We added No Fly Zones over the public parks, as well as: Kensington Palace, St
Jame’s Palace, Buckingham Palace, the Houses of Parliament and Westminster Abbey.
The visualisation of our larger Just Eat snapshot can be seen in figure 8.7
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Figure 8.7: Large Just Eat simulation snapshot
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8.4.2 Results

Moderate Load

In this larger scenario, the schedulers which place emphasis on minimising travel
time, ESJF and CJF complete the most orders. LLV, only just falls short with 997
completed orders compared to ESJF’s 1004 and CJF’s 1007. JIT performs noticeably
fewer orders, completing only 950, whilst FCFS and SJF are on par in this scenario,
completing 812 and 822 respectively. These results can be found in appendix figure
11.16.

Figure 8.8: Average Profit under moderate load for Just Eat large scenario

The results show that JIT no longer achieves the highest average profit, figure 8.8.
CJF consistently achieves the highest profit, followed by ESJF. The average delivery
time of each scheduler is approximately the same (Appendix figure 11.18), meaning
CJF has the lowest average wait time (Appendix figure 11.19. This is understand-
able since CJF picks the closest pick up location, and if there are multiple orders
for that location, chooses the one which was placed first. In this larger scenario
there are 50 restaurants distributed throughout the world. A higher concentration
of restaurants results in shorter travel times between restaurants. Moreover, each
restaurant is unlikely to have a large queue of orders, meaning CJF‘s FCFC bias does
not have as significant effect as when one restaurant is under heavy load. Therefore,
CJF minimises the drone travel time, and hence the order wait time, which allows
it to complete orders faster than the other schedulers. The secondary reliance on
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FCFS ordering also means longer jobs are not continuously postponed, as long as
one restaurant is not heavily loaded. The total profit hierarchies equate to the num-
ber of orders completed in this scenario as a result of the average profit ordering.
(Appendix figure 11.17)

To understand why JIT performed poorly in this scenario, we can take a look at its
completion time distribution in figure 8.9. The graph shows a spike just after 18
minutes, as well as a spike after 12 minutes. We would expect these spikes to be
just before each 6 minute period as JIT aims to complete an order just before it
loses value. We believe the shift in completion times is a result of how JIT calculates
its estimated completion time. It does not carry out a full path search for each
calculation. This would require n path searches where n is the current length of
the queue every time a drone requests a new order. To avoid this computation, the
drone travel time is calculated based upon the Euclidean distance with a buffer time
added, to account for this uncertainty. In the smaller scenarios it appears this buffer
time, which was set to 60 seconds, was sufficient for JIT to complete its orders on
time. However, in this larger scenario there are more No Fly Zones resulting in
longer paths to avoid them. Therefore, JIT is failing to complete most of its orders
when it expected to. LLV suffers from this same calculation issue.

Figure 8.9: JIT Completion Time Distribution for Just Eat large scenario
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Heavy Load

Interestingly, under heavy load this problem does not persist. JIT and LLV achieve
the highest average profit per order, as seen in figure 8.10. We believe this is due
to the queue for each scheduler being almost constantly full in this scenario. The
graph of queue lengths can be found in Appendix figure 11.20 JIT will constantly be
choosing the order with the highest potential that falls closest to the boundary time.
When the queue is full or near capacity, any order which is added will start with
0 wait time. Assuming the order is close enough to fall into the top profit bracket,
JIT will always choose this order. Hence it cherry picks the newest orders since it
achieve a higher profit.

Figure 8.10: Average Profit under heavy load for Just Eat large scenario

8.4.3 Conclusions

This larger scenario has demonstrated that under moderate load CJF performs ex-
tremely well as it minimises the drone travel time. Due to the greater density of
restaurants in this scenario, there is almost always a restaurant nearby which CJF
chooses, provided it has an order waiting. CJF’s secondary reliance on FCFS means
that as long as the order queue remains steady, it can maintain a low average com-
pletion time.

The approximations in JIT and LLV have caused them to suffer under moderate load
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scenarios. The extended travel time adds uncertainty to their estimates, resulting in
often missed deadlines.

8.5 Evaluation Summary

These three simulations show that our schedulers perform differently in the alter-
native scenarios. Under heavy load, JIT and LLV are able to extract the greatest
average profit from the orders they complete. This is achieved by either optimising
the drones time in the case of JIT, where orders are prolonged until they are about to
lose value, or by calculating which order is going to lose the most value if postponed,
in the case of LLV.

However, under moderate load conditions, and in our medium and large scenarios
where we have substantially more restaurants, CJF achieves the highest average
profit. This comes down to two factors. Firstly, it minimises the drone travel time
by only ever travelling to its closest restaurant when completing an order. Secondly,
in the medium and large scenarios, there are more restaurants which results in the
queue for each restaurant being shorter. When the queue for a restaurant is long,
CJF suffers as it maintains an underlying FCFS ordering. This is seen in our small
Just Eat scenario where CJF performs poorly. ESJF has acted as our baseline to test
against, since on a global scale SJF does not take into account enough information,
and FCFS suffers from impractical drone movement to adhere to its ordering.

One downside to all of these schedulers, with the exception of FCFS, is that the
pay no attention to orders which are continuously postponed. In a meal delivery
context, it would be unreasonable to continuously post pone a customer‘s order due
to an alternative being more practical to complete. However, under a purely profit
orientated approach, higher income can be achieved by postponing inconvenient
orders.

74



Chapter 9

Project Evaluation

Whilst we were successfully in constructing a simulation for a drone delivery net-
work, our project does have its limitations. Firstly, since we had no industry partner
for this project, we had no initial data from which to base our simulations. The
study of GrubHub‘s Meal Delivery Routing Problem(42), was our best source for re-
alistic assumptions. Consequently, our simulation is somewhat simplified as a result
of these assumptions. One improvement would be to break apart these assumptions
and add a level of randomness to the simulation, in order to better reflect the real
world uncertainty. However, without help from an industry partner, it is hard to
decide how one would adjust these assumptions.

Creating an accurate visualisation for our simulation was by far the most time con-
suming part of this project. Significant time was spent ironing out bugs to create an
accurate and reliable visual. Unfortunately, this meant less time was spent on simu-
lating alternative scenarios. We were successful in assessing our schedulers on both
our Domino‘s Pizza and Just Eat models, which was one of our main aims. How-
ever, further analysis into the Just Eat model with varying numbers of drones and
restaurants may have provided more insight. Despite this, we have shown that un-
der different order loads, and simulation sizes, there are distinct differences between
scheduler performance.
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Conclusions

We set out to construct a simulation of a drone delivery network for multiple source
nodes and assess which schedulers would be most profitable. We have success-
fully implemented a simulation and tested it on both a localised delivery model, our
Domino‘s Pizza scenario, and a distributed delivery model, our Just Eat Scenario.

10.1 Global Schedulers

We have presented multiple multi-source-node oriented global schedulers, which at-
tempt to solve the unique problems faced in meal delivery. Accounting for customer
wait time as well as drone travel time, these schedulers have proven to perform bet-
ter than FCFS and SJF. We have also extended LLV to a multi-source-node network,
and presented JIT as a scheduler which exploits the applied time value function to
maximise profit.

10.2 Global Scheduling vs Local Scheduling

Our localised delivery model covered in chapter 7 demonstrated that there is little
gain in scheduling at a global level over a local level. This comes down to the na-
ture of orders being assigned to their closest restaurant, resulting in each restaurant
having a very small service area. By scheduling drones locally in a warehouse style
model, where drones are tied to a location, no time is wasted moving drones be-
tween restaurants. Therefore, the potential gain from dynamically moving drones
between restaurants, is outweighed by the time wasted in transit between restau-
rants. The only exception to this is if the load on restaurants is highly dynamic and
shifts. In this scenario, local scheduling is unable to cope with the sudden load,
whilst global scheduling can reassign drones as necessary.
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10.3 Just Eat Model

The Just Eat model employed in this project demonstrates that under a moderate
load, drone transit time between restaurants is key to decreasing lead time. This is
demonstrated by our CJF model, which seeks to minimise the amount of time travel-
ling between source nodes, as this drone time could otherwise be spent completing
deliveries. However, under heavy load, or in cases where there are few restaurants
and the restaurant queues are large, CJF succumbs to its underlying FCFS schedul-
ing. In these heavy load scenarios, our JIT scheduler is able to extract the most profit
from each order by prolonging orders to the point at which they are about to lose
value.
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Future Work

Whilst we were successful in simulating a multiple source node drone delivery net-
work, there were a few avenues we were not able to explore within the confines of
this project. Here we present some of the ways our simulation and research could
be extended.

11.1 Pool Size Analysis

From our research, we discovered that Just Eat uses pools of drivers to cover specific
areas (32). We have been able to model one of these pools covering a fixed area of
London, but it would be interesting to assess how this driver pool approach works
with a drone network on a larger scale. An analysis of optimal drone pool size, or
indeed fixed drone pool sizes over dynamic sizes could lead to interesting results.
Additionally, a test of pooling versus global scheduling on a large scale could reveal
further insight. This would reveal whether a complex global scheduler with total
freedom to redistribute drones across the service area outperforms the simpler pool
sub-problem approach.

11.2 Rolling Horizon Scheduling

In the study undertaken by Goergia Institue of Technology and GrubHub(42), they
describe how they implemented a Rolling Horizon algorithm which would period-
ically recalculate and assign orders. Whilst their implementation does not directly
follow a time value function like our simulation, they were still attempting to min-
imise delivery time whilst optimising the use of their couriers. It would be interesting
to apply a similar style algorithm which determines the best order for a drone based
upon its estimated completion time.
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11.3 Increasing Simulation Realism

In our simulation we had to make a number of assumptions. For example, we as-
sumed our drones would travel at constant speed. This is unlikely to be true in the
real world. Therefore, in order to better model the real world, it would be beneficial
to add a layer of randomness. For example, you could dynamically alter a drone‘s
speed, mimicking the effects of wind in the real world, which adds a level of un-
certainty and realism to the simulation. Moreover, we also assumed constant worst
case handling times in line with our research. This is another area for improvement,
though without sufficient data one would struggle to model it accurately.

11.4 Alternative Order Generators

We modelled our order arrival rate as a Poisson variable. This assumes that each
order is independent. On the surface this may be a reasonable assumption, but this
may break down at peak meal times. For example, there is likely to be a peak in
orders when the work day finishes as people arrive home. Moreover, our simulation
was run for 6 hours to model this evening shift. It would be interesting to apply a
variable, or cyclical Order Generator which reflects the surge of orders at specific
times, e.g. at lunch and dinner.
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11.5 Domino‘s Pizza Scenario Graphs

11.5.1 Moderate Load

Figure 11.1: Number of Orders completed under moderate load for Domino‘s Pizza
scenario
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Figure 11.2: Average Profit under moderate load for Domino‘s Pizza scenario
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11.5.2 Heavy Load

Figure 11.3: Number of Orders completed under heavy load for Domino‘s Pizza scenario
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Figure 11.4: Total Profit under heavy load for Domino‘s Pizza scenario

Figure 11.5: Average Profit under heavy load for Domino‘s Pizza scenario
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11.5.3 Dynamic Load

Figure 11.6: Number of Orders completed under dynamic load for Domino‘s Pizza sce-
nario
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Figure 11.7: Average Order Completion Time under dynamic load for Domino‘s Pizza
scenario
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11.6 Just Eat Small Scenario Graphs

11.6.1 Moderate Load

Figure 11.8: Number of Orders completed under moderate load for Just Eat small sce-
nario
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Figure 11.9: Total Profit under moderate load for Just Eat small scenario

Figure 11.10: Queue Length over time under moderate load for Just Eat small scenario
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11.6.2 Heavy Load

Figure 11.11: Queue Length over time under heavy load for Just Eat small scenario
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11.7 Just Eat Medium Scenario Graphs

11.7.1 Moderate Load

Figure 11.12: Number of Orders completed under moderate load for Just Eat medium
scenario
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Figure 11.13: Total Profit under moderate load for Just Eat medium scenario
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11.7.2 Heavy Load

Figure 11.14: Total Profit under heavy load for Just Eat medium scenario
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Figure 11.15: Queue Length under heavy load for Just Eat medium scenario
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11.8 Just Eat Large Scenario Graphs

11.8.1 Moderate Load

Figure 11.16: Number of Orders Completed under moderate load for Just Eat large
scenario
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Figure 11.17: Total Profit under moderate load for Just Eat large scenario

Figure 11.18: Average Delivery Time under moderate load for Just Eat large scenario
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Figure 11.19: Average Wait time under moderate load for Just Eat large scenario
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11.8.2 Heavy Load

Figure 11.20: Queue Length under heavy load for Just Eat large scenario
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