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Abstract

Active inference is an emerging framework within computational neuroscience,
which attempts to unify perception and action under the single objective of minimising
the free-energy functional. Similar to model-based reinforcement learning, an active
inference agent relies almost entirely on the characteristics and the quality of its inter-
nal model of the environment to make decisions. Specifically, to perform planning it
simulates the possible future observations given a policy and chooses the path that pro-
duced the lowest values of a pre-defined objective function. Thus, the agent’s decisions
depend on how accurate the simulated observations are, as well as on how informative
they are about the short- and long-term futures. However, both of these components
pose major problems. First, learning a perfectly accurate generative model is not fea-
sible in a sufficiently complex environment, which means that, ideally, an agent should
train only on the most important features of the testbed. But how would an agent
decide what to train on? Second, current state-of-the-art model-based methods suffer
from sequential error accumulation and inefficient long-term predictions. This signifi-
cantly limits their ability to predict farther into the future. Moreover, these methods
do not offer the flexibility to vary the timescale over which the future is predicted.
However, changing how far into the future an agent predicts depending on the context
can be essential for an active inference agent to make more informed decisions. In
this project, we address both of the outlined issues with the use of episodic memory.
Empirical evidence from neuroscience suggests that episodic memory may carry a num-
ber of functional purposes, such as being necessary for the formation of new semantic
memories, assisting humans in the imagination of future scenarios or keeping track
of time. To address the first issue, we propose integration of the Prioritised Replay
Buffer (PRB) into the framework of active inference. Originally applied to improve
the speed of convergence of a model-free reinforcement learning system, we use pri-
oritisation to incentivise the learning of a more action-oriented generative model. To
address the second issue, we introduce the Temporal Episodic Memory (TEM) mod-
ule, in which episodic memories are used to define a subjective timescale by which an
agent perceives the environment. Our results demonstrate considerable improvement
in the agent’s performance on a number of tasks in the Animal-AI environment. PRB
allowed the agent to learn better object-centric representations, while TEM resulted in
a transition model that can systematically vary the temporal extent of its predictions,
and is additionally able to imagine novel future scenarios.
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1 Introduction

Originating from the non-equilibrium steady-state physics, the free-energy principle is an
elegant mathematical formulation, which attempts to provide a unified view of how the
brain operates [1, 2]. In turn, this principle gave rise to the framework of Active Inference
[3], which is being actively studied by researchers bordering neuroscience, cognitive science,
and more recently artificial intelligence. Active inference has an ambitious goal of unifying
perception and action under the single objective of minimising the free-energy functional.
It has been demonstrated that this framework has the potential to tackle such important
issues like exploration-exploitation trade-off or reward engineering [4], solutions for which
naturally arise from the mathematical formulation of the free energy. Nevertheless, the
interest for active inference has been largely limited to the neuroscience community, and the
typical implementations overwhelmingly involve environments with discrete and small state-
spaces. As a result, some attention has recently been directed to scaling the framework,
and a few works have proposed its integration with deep learning methods.

Active inference shares some basic operational principles with model-based reinforcement
learning (RL), in which an agent is similarly equipped with a model of its environment. At
the same time, the field of model-based RL has seen great progress in the application of
deep learning for parametrising an agent’s generative model [5]; however, little work has
been done to apply these developments to active inference. As part of this project, we
review the recent successes of the model-based RL and identify techniques with a strong
potential for application in active inference. In Section 5, we will propose a novel way to
learn a model of the environment with the use of autoregressive methods, which have been
demonstrated to be effective in model-based RL [6].

At the same time, there is overwhelming evidence that episodic memory plays a crucial role
in human learning and decision-making [7]. Although its specific function is still heavily
debated, the majority of studies relate it to the human ability to imagine novel futures and
perform mental time-travel [7]. Furthermore, episodic memory has been found to interplay
with reward-based learning in humans [8], as well as to be necessary for the formation of new
semantic memories [9]. The evidence for the breadth of functional purposes that episodic
memory may capture makes it one of the most intriguing biological features of intelligence,
and provides exciting avenues for research in the field of artificial intelligence. In this project,
we investigate incorporation of episodic memory into an active inference agent and study its
performance in the Animal-AI Environment. Specifically, we introduce and implement two
separate techniques based on episodic memory, and empirically demonstrate the positive
effects on the performance of an active inference agent.

This paper is structured so as to assist the reader in relating the different themes of the
project. In Section 2 we review the literature on model-based reinforcement learning, active
inference, and episodic memory. Additionally, we introduce the mathematical formalisms,
where necessary. In Section 3 we describe the inner-workings of the baseline active inference
agent from Fountas et al. [10] used throughout this project. In Section 4 we introduce
our implementation of a prioritised replay buffer applied to active inference to improve the
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quality of the agent’s generative model. Next, in Section 5 we present a novel approach to
learning a transition dynamics model with the use of episodic memories. Finally, in Section
6 we provide a critical evaluation of the proposed systems and summarise our contributions.
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2 Background and Related Work

This project touches on three main topics – model-based reinforcement learning, active
inference or more broadly the free-energy principle, and episodic memory. We start by
introducing the Animal-AI testbed in Section 2.1. In Section 2.2 we outline the general
framework of model-based RL and cover the current state of the art. Next, in Section 2.3
we set the scene for active inference by discussing some of the latest work that has been
done at the intersection with deep learning. In Section 2.4 we review the work that has
been done to integrate episodic memory into RL agents and, more generally, into learning
systems. Lastly, in Section 2.5 we summarise our findings from the review and formulate
coherent conclusions with reference to the goals of this project.

2.1 Animal-AI Environment

The Animal-AI environment is a virtual testbed that can be used to assess cognitive capa-
bilities of reinforcement learning agents (e.g. object permanence) [11, 12]. In particular, it
was designed to test agents on out-of-training-distribution tasks and was largely inspired
by the methodologies from comparative psychology and the studies of animal cognition. In
this environment, an agent is tasked with reaching a reward, a green sphere, given a partic-
ular setup that may include obstacles (e.g. walls, movable objects), intermediary rewards
(yellow spheres), penalising surfaces, translucent objects, etc. The important characteristic
of this testbed, as the authors point out, is that an agent can be tested for the same cog-
nitive ability in a variety of setups. This largely constraints the performance of over-fitting
agents, encouraging them to learn more robust skills necessary for solving the tasks. This is
in contrast to the majority of current benchmarks and test environments in reinforcement
learning, which tend to assess for special-purpose skills instead [13].

Figure 1: Examples of the Animal-AI environment setups [11].

One of the promising directions for solving out-of-distribution tasks in testbeds such as
the Animal-AI is if an agent possesses an internal model of the environment and is able
to plan its actions with respect to this model [14]. This way, an agent would be able
to devise its next move depending on the context it finds itself in and the learned model
of the environment’s dynamics (i.e. how any given action would change the state of the
environment given the current state). Thus, model-based agents are often cited as being
more capable of generalisation due to their ability to predict consequences of their actions,
which results in them being more robust to previously unseen situations.
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2.2 Model-based Reinforcement Learning

To contextualise the following review of model-based reinforcement learning, it is perti-
nent to reiterate its main connection to the framework of active inference. Active inference
(Section 2.3) relies almost entirely on an agent’s generative model defined over a partially-
observable Markov decision process (POMDPs), which is used to imagine possible future
observations. In turn, Markov decision processes (MDPs) form the foundation of model-
based RL research, with transition (forward) models being its primary focus. Thus, active
inference can borrow from the rich body of research that is being done in this field such
as learning more accurate transition models, calculating future state uncertainty, embed-
ding high-dimensional observations into low-dimensional hidden states, etc. Hence, in what
follows, we discuss the necessary theory and practical work being done in the field of model-
based RL.

2.2.1 Preliminaries

We start defining the general notions of model-based RL with a POMDP. Although most
of the literature assumes fully-observable MDPs, we will describe POMDP as a means to
introduce a more general problem formulation, which will also be useful in Section 2.3 for
the formulation of active inference.

POMDP can be formally defined as a tuple (S,A,Ω,P ,R, O, b0), where:

• S is a set of hidden states;
• A is a set of actions;
• Ω is a set of observations;
• P is a set of transition probabilities;
• R is a set of rewards, such that R : S ×A 7→ R
• O is a set of observation probabilities
• b0 is an initial belief state, defining a probability distribution over a hidden state.

More practically, an agent in an environment at time t receives an observation, ot ∈ O.
The true state of the environment, st ∈ S, is not observable and thus must be inferred by
the agent. This uncertainty is represented as a probability distribution over states, more
commonly referred to as belief state, b(st). The agent then chooses to take an action,
at ∈ A, which transitions it to the next state, st+1, according to the transition probabilities,
p(st+1|st, at) ∈ P . The reward, rt+1 ∈ R, is then retrieved from the state-action pair. After
transitioning to the next state, the agent receives a new observation, ot+1, and the cycle
continues. Figure 2 shows a simple graphical model of a POMDP. The goal of RL is then to
learn a policy, π : S 7→ A, that maximises the expected discounted reward, E[

∑∞
t=0 γ

trt]|π,
where γ is the discounting factor which controls how myopic the agent is. Most commonly,
the reward function is specified, although some works aim to learn it from samples [15].

Importantly, the distinguishing component of model-based RL is the transition dynam-
ics model p(st+1|st, at), which can be used, for instance, to augment a model-free Q-value
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Figure 2: Simple schematic of a POMDP

estimator or perform planning into the future. This affords model-based RL several advan-
tages over model-free approaches, which will be discussed next. Furthermore, such internal
model of the world dynamics is central to the framework of active inference and is part of
an agent’s generative model. Interestingly, just like the theory of evolution does not say
anything about how the species must reproduce, the active inference framework does not
specify how the generative model should be built. Hence, we must resort to clever engineer-
ing when dealing with modelling the transition dynamics, significant knowledge of which we
can borrow from the fast-developing field of model-based RL.

2.2.2 Model-free vs. Model-based

We now briefly summarise the main performance differences between model-free and model-
based RL. In the model-free approach, an agent is trying to directly map its observations of
the environment to a policy without engaging in the task of learning a model of the world.
These approaches have been compared and contrasted in a variety of studies, and the main
distinctions include:

• Model-free RL is generally accepted as requiring a larger number of training samples,
compared to model-based approaches [16];

• Model-free RL does not necessarily generalise well to novel tasks in the same environ-
ment [16];

• Model-free RL achieves better asymptotic performance in narrow tasks, given inaccu-
racies in the learned model for model-based methods (model-bias) [17];

• The learned transition dynamics can potentially be decoupled from any particular
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task, meaning model-based methods afford their use on a number of tasks in the same
environment [14].

Empirical evidence from neuroscience suggests that humans may well operate in both of
these control modes, transitioning from one to another as the learning goes on [18]. This is
also reflected in some studies from social sciences, such as Kahnemann’s famous formulation
of humans’ fast (System 1) and slow (System 2) systems of decision-making [19]. A similar
type of symbiosis of the two systems will be used in our baseline architecture in Section 3.

2.2.3 Review of Model-based RL

There are two most common directions, in which different model-based RL methods diverge
from one another – in how the dynamics model is learned (representation and learning) and
in how the transition dynamics is used. This section is structured by what methods are used
to parametrise the dynamics model with important references to how the dynamics model
is used in each respective work. Throughout, we aim to give an overview of the work that
is being done in the field and, more importantly, the main problems facing it. By the end,
we will draw important conclusions with respect to the identified problems and point out
their relevance to this project.

Linear Models. Some works have explicitly modelled the transition dynamics using lin-
ear models and achieved quite good results, particularly in robotics [20, 21, 22, 23, 24, 25, 26].
In general, however, their application is limited to low-dimensional domains. Therefore,
Watter et al. [21] propose to model the state dynamics with the use of latent state dynam-
ics, which are encoded from the raw, high-dimensional images with the use of variational
autoencoders (VAEs). Their system, E2C, exploits the local linearities of dynamical sys-
tems in the feature space, building up on the previously proposed frameworks like iLQG
control [27] that are prevalent in robotics. However, it is stressed that these models do
not perform well on more complicated non-linear model dynamics. Notably, encoding of
high-dimensional observations into their respective low-dimensional latent representations
has recently become a popular direction of research in model-based RL. It is also one of
the most critical parts of the modern implementations of deep active inference agents, that
similarly embed their observations into an internal latent space with VAEs (see Section 2.3.2
for more details).

Gaussian Processes. Similarly, Gaussian Processes (GPs) have been used to model
transition models. In particular, their probabilistic nature can be used for state uncertainty
estimation, which can be incorporated in the planning module to make more cautious pre-
dictions. Deisenroth and Rasmussen [28] introduced PICLO (Probabilistic Inference for
Learning COntrol) that uses a GP dynamics model to train a policy only on the state
predictions with low uncertainty. In the paper, the authors argue that a poor dynamics
model (also referred to as model-bias) in conjunction with the absence of uncertainty quan-
tification will ultimately yield wrong optimisation steps for the policy. Thus, PILCO used
GPs to model the transition dynamics, which were able to capture prediction uncertainties
generated by the model of the environment; however, PICLO did not incorporate temporal
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correlations between subsequent states, as well had scaling issues due to GPs non-parametric
nature. Similarly, Ko et al. [29] used GPs to model the transition dynamics with relative
success in low-dimensional regimes.

An alternative and recently more prevalent way to parametrise transition models is with
the use of neural networks. These are particularly attractive due to their recent proven
success in a variety of domains, including deep reinforcement learning (DRL) [30], ability
to deal with high-dimensional data, existence of methods for uncertainty quantification,
and a wide range of architectures applicable to different types of data. Forward models
implemented by neural networks generally fall into two camps – based on feed-forward
multilayer perceptrons or on autoregressive models.

Feed-Forward Neural Networks. Up to this point, feed-forward networks are the
most popular way to parametrise a transition dynamics model. Nagaband et al. [17] do
exactly this to assist a model-free learner. Their transition model is used to sample K action
sequences, for which the rewards are calculated, and actions with the highest reward are
chosen. Using model-predictive control1 (MPC), the actions are then continuously executed
and re-evaluated in a closed-loop control loop. This style of planning is also possible in
active inference, in which an agent would recalculate the value of the expected free energy
after every new observation (refer to Section 2.3). However, this procedure suffers from high
computational complexity and is generally wasteful for agents with a good generative model.
Feinberg et al. [32] similarly use a neural network to parametrise the transition model.
However, in their work, the authors attempt to take the best of both worlds by using a model-
based approach to predict the rewards in the short-term, and model-free approach for long-
term predictions. Their system was successful at reducing sample complexity in a number
of OpenAI Gym [33] environment analogues with continuous state-spaces. However, these
analogues were fully-observable, and the state-space of the tasks was limited to relatively
low dimensions.

Alongside the works that simply use feed-forward networks for the parametrisation of
transition models, significant amount of research has also been dedicated to how they can be
used further to quantify state uncertainty. As mentioned, this can be beneficial for dealing
with model-bias and sequential error accumulation. Crucially, in active inference, an agent’s
generative model is intrinsically probabilistic, thus requiring methods that allow for uncer-
tainty quantification. In model-based RL, one of the most widespread and straight-forward
techniques for this is ensemble methods. For instance, Buckman et al. [34] introduced an
extension to the aforementioned work by Feinberg et al. [32] by incorporating uncertainty
of the roll-out predictions (imagination) using ensembles. This allowed the algorithm to
adaptively sample roll-outs of different lengths, depending on prediction uncertainties. The
algorithm showed improved sample efficiency on several low-dimensional tasks in the Ope-

1This refers to the idea that an agent should i) plan its action according to the internal model of the
world, ii) execute the action, iii) observe the effects of its actions, and finally iv) re-plan the next action
again. This essentially means that an agent has a closed-loop feedback system that allows it to correct for
the inaccuracies in its model, as well environment’s and its actions’ intrinsic stochasticity. MPC has been
used before to overcome model-bias [31], but it suffers from low credit assignment performance and high
computational cost.
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nAI Gym. Several other works [35, 36, 37] also use an ensemble of networks for modelling
world dynamics to overcome overfitting and model-bias. Specifically, Kurutach et al. [35]
use an ensemble of transition models to avoid reliance on any one of them, where as Kalweit
et al. [36] augment a popular Deep Deterministic Policy Gradient (DDPG) algorithm [38]
with artificially-generated roll-outs and adjust the proportion of imagined roll-outs for train-
ing depending on the degree of uncertainty. Further, Clavera et al. [37] use the transition
model to parametrise a diagonal Gaussian, thus taking into account both epistemic (differ-
ence in predictions between ensemble networks) and aleatoric (entropy of the parametrised
diagonal Gaussian) uncertainty. This technique of parametrisation of a belief state resem-
bles a number of current deep active inference works, where the dynamics model is used to
transition from one belief state to another given an action (see Section 2.3.2). Yet, we stress
that all of the afore-mentioned works are still characterised by their relatively simple testing
environments (OpenAI Gym), which puts into question the scope of their application in
more complex testbeds such as the Animal-AI environment.

Bayesian Neural Networks. More sophisticated approaches include Bayesian neural
networks (BNNs) and approximate inference techniques. One such example is Deep PILCO
[39], in which the earlier insights about the connection of Monte Carlo (MC) dropout in
neural networks – as being an approximation to a Gaussian Process – provided a way to
quantify prediction uncertainty [40]. Nowadays, using MC dropout for uncertainty quantifi-
cation in neural networks is one of the most commonly used implementations of BNNs due
to its simplicity and effectiveness; however, some works show evidence of its unsatisfactory
performance for uncertainty quantification [41]. Nevertheless, we employ this method in
our work, see Section 3. More recently, Depeweg et al. [42] used an implementation of
BNNs with the use of α-divergence minimisation, in order to construct an approximation
to the transition dynamics. In their approach, however, the captured uncertainties are used
to sample weights in the transition BNN for a given action (retrieved from a separate de-
terministic, policy network). Based on these sampled weights, their algorithm can then
get an estimated expected cost of any particular transition trajectory (according to some
specified cost function). Assuming that policy, model, and cost function are differentiable,
the algorithm can use stochastic gradient descent to update the policy network parameters.
The work showed improvement to the standard BNNs, enabling uncertainty quantification
over more complex stochastic functions, and presents itself as a great future alternative to
MC dropout for our system.

Segment-Based Approaches. Another potential way to deal with temporal error
accumulation is to predict entire trajectories at once. For instance, Mishra et al. [14]
employ a segment-based approach for predicting the environment dynamics – rather than
create Markov-based predictions (one state at a time conditioned on a state in the previous
time-step), the authors make predictions for the entire segments. This is done with the use
of conditional variational autoencoders and autoregressive decoders. In similar fashion, the
paper encodes policies – generating ‘latent action priors’ – which allow the algorithm to then
sample future actions from the trained conditional decoder. This is aimed at tackling the
issue of agent exploitation of the model-bias, which forces actions that achieve high reward
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under an inaccurate learned transition dynamics.

Meta-Learning. Further approaches include meta-learning methods, which have re-
cently been increasing in popularity. Authors of MB-MPO [43] propose a model-based
approach based on meta-learning that does not strictly rely on the accuracy of agent’s in-
ternal model. Instead, they employ an ensemble of learned forward models and train a policy
that can adapt to any of the models in one gradient step. The authors argue that although
ensemble methods for model uncertainty are useful for the reduction of model-bias, it is not
sufficient for more complicated domains, where, as they argue, meta-learning is necessary.
Authors point to some advantages of this approach: the one-step constraint regularises the
learned policy, encourages exploration by exploiting each of the ensemble model deficiencies,
and leads to faster adaptation to different tasks. However, the proposed method suffers from
a relatively high computational complexity, given that several transition models need to be
trained at once. This significantly limits its use in sufficiently complex environments.

Autoregressive Models. Significant attention has also been directed to transition
models that attempt to bypass Markovian assumptions with the use of autoregressive mod-
els, such as recurrent neural networks (RNNs). In a paper by Ha et al. [6], authors describe
an approach to model the transition dynamics with a Long Short-Term Memory (LSTM)
[44] networks over the latent states of the environment (encoded by a pre-trained VAE), see
Figure 3. Here, however, the transition model is used only to encode temporal information
into the hidden state of an LSTM, which is later used to train a policy network. Although
the use of LSTMs is a step forward to learning temporal relations between events, they
are known to be slow at training – especially in environments where the change in state
given an action is small. Similarly, LSTMs are still limited in their ability to learn relations
between temporally-distant events, which is similarly exacerbated in environments where
little change occurs given an action. The authors also point out that using a VAE (to en-
code the observed states into a latent representation) independently off the policy and the
transition model has a disadvantage, as the VAE would encode irrelevant information that
would not be useful for solving a task. They also stress on the importance of incorporating
curiosity-based exploration in more complex environments in the future work, so that the
agent keeps exploring and refining its model. All of these points will be addressed in this
project using the framework of active inference, a prioritised replay buffer (Section 4), and
a temporal episodic memory module (Section 5). For instance, as will be discussed later on,
active inference intrinsically includes an exploration component in its mathematical formu-
lation, allowing the agent to keep exploring its environment, even at test time. Furthermore,
Section 4 will introduce PRB that will be used to sample training data conducive to learning
more action-centric representations. Lastly, Section 5 will describe a novel way to train an
autoregressive transition model on sequences of selectively picked states, which would allow
the model to bypass the problem of slow environment dynamics and more effectively learn
dependencies between temporally-distant events.

Another recently-proposed system, I2A [16], used an autoregressive transition model to
augment learning with imagination-based approach. Specifically, it used a hybrid approach
with a model-based component complementing the learning of a model-free component.
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Recent work by Ke et al. [45] similarly employs a latent dynamics model using an LSTM.
Additionally, the authors implement a technique to drive the latent states to carry useful
information for longer-term roll-out predictions. They achieve it by introducing a regularis-
ing auxiliary cost with respect to the encodings of future observations. The system showed
improvement in sample complexity and total reward collected against a recurrent policy
algorithm on a number of OpenAI Gym tasks.

Figure 3: Implementation from Ha et al. [6]: i) observation is encoded into a latent state, z, via a
VAE (V); ii) autoregressive transition (M) model encodes a sequence of observed states until the
present time; iii) action-selector (C) produces an action.

Some notable mentions also include hierarchical RL [46], Dyna algorithm SLBO [47],
Guided Policy Search [48], Stochastic Value Gradients [49], and the so-called shooting algo-
rithms RS [50], PETS-RS and PETS-CEM [51]. Several authors have also proposed adaptive
models [52, 53, 54].

2.2.4 Summary and Problem Identification

To summarise, we reviewed a range of methods used to parametrise transition models and
quantify state uncertainty. Specifically, we saw that GPs and linear time-varying models
show excellent performance in low-dimensions but are unsuccessful when it comes to more
complex or high-dimensional environments. Therefore, our review largely focused on deep
learning methods that offer a suite of methods allowing for usage in high dimensions. These
methods have demonstrated their effectiveness in a range of environments with relatively
high complexity. Furthermore, several techniques have been used to quantify state uncer-
tainties in neural networks, such as ensemble methods and BNNs. However, we noted that
the former is computationally expensive, while the latter is still an active area of research.
Within the deep learning framework, we highlighted autoregressive methods, which have
been rising in popularity due their ability to work in non-Markovian environments and
learn temporal dependencies between states.

As discussed, another distinguishing component of the reviewed papers was how the dynam-
ics model was used. This can generally be categorised into four main groups: i) model-based
planner with a model-free action proposer; ii) data augmentation for a Q-function learner
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using imagination roll-outs; iii) information gained from roll-outs used as input to a policy;
iv) purely model-based approach (e.g. model-predictive control).

The important conclusion that becomes evident after the review is that model-bias and error
accumulation are still a major challenge and focus of the research community in model-based
RL. In particular, it is clear that few of the current models attempt to learn long-term
temporal relations between events, which is crucial in environments characterised by the
presence of important, temporally-distant events and sparse rewards. Interestingly, the
afore-discussed models all use the objective (ground-truth) timescale of their environments
to construct an agent’s internal dynamics model. As part of this project, we will try to
answer whether an agent can learn a more useful and subjective timescale of the world,
and thus be able to predict further into the future and with less computational resources.
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2.3 Active Inference

2.3.1 Preliminaries

Active inference is a corollary of the free-energy principle proposed by Karl Friston [1]. In
this framework, an agent embedded in an environment aims to do two things: i) minimise
surprisal from the observations of the environment under the agent’s internal model of this
environment, and ii) perform actions so as to minimise the expected surprisal in the future.

To begin a more formal definition, it is relevant to draw a distinction between the
concepts of a generative process and a generative model. While the former describes the true
generative dynamics by which the observations are generated in an environment, the latter
refers solely to the internal model that an agent possesses of that environment. In the context
of neurobiology, the distinction implies that given that the true state of the environment,
s̄, is not attainable, the brain constructs an internal generative model to explain its sensory
inputs, ot. Figure 4 shows a simplified graphical model of this distinction.

Figure 4: Distinction between a generative process and a generative model. Here, s̄t is
the true hidden state of the environment, st is the state of the environment inferred by the agent,
ot are observable sensory inputs, and at is an action taken by the agent. In this case, we also note
that the generative process is defined as a partially-observable Markov decision process.
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We now proceed to the formal definition. First, we will cover objective (i) – the min-
imisation of surprise under the agent’s generative model of the environment. We start by
defining the surprise as

− logP (o) (1)

where P (o) is the probability of observing observation o. This quantity has various
names in different fields of science, such as negative model evidence or marginal likelihood.
We can immediately observe that the minimisation of this quantity leads to the maximisation
of model evidence, which intuitively implies that the agent aims to perfect its generative
model at explaining the sensory observations from the environment. From the definition of
the generative model in Figure 4, an agent holds that the observations are produced by some
hidden state s, referring to the hidden state that is part of the agent’s generative model.
We can thus write the marginalised joint distribution as:

− logP (o) = − log

∫
s∈S

P (o, s)ds (2)

This integral is intractable (in large state spaces), so we have to resort to variational
inference by introducing an approximate posterior distribution Q(s; θ) parametrised by θ,
such that:

− logP (o) = − log

∫
s∈S

P (o, s)

Q(s)
Q(s)ds (3)

Using Jensen’s inequality, we can bring the log inside the integral:

− logP (o) ≤ −
∫
s∈S

Q(s) log
P (o, s)

Q(s)
ds (4)

Now, we can flip the sign and write the integral as an expectation, which is the variational
free energy (F):

− logP (o) ≤ F = EQ(s)

[
log

Q(s)

P (o, s)

]
(5)

We can see that the expectation upper-bounds the surprise by re-arranging the terms:

− logP (o) ≤ KL [Q(s)||P (s|o)]− logP (o) (6)

since KL-divergence is a non-negative quantity. Similarly, this expression clearly shows
that the free energy is minimised when the approximate posterior, Q(s), becomes the true
posterior, P (s|o). Furthermore, we can decompose the expression alternatively as,

− logP (o) ≤ KL [Q(s)||P (s)]︸ ︷︷ ︸
complexity

−EQ(s) [logP (o|s)]︸ ︷︷ ︸
accuracy

. (7)

This shows that the minimisation of the free energy also means minimising the complex-
ity2 of accurate explanations for the observations, thus realising a form of Occam’s razor.

2Bits of information encoded in the approximate posterior that are not in the prior
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As mentioned before, the objective is to minimise the variational free energy F – which
is equivalent to maximising model evidence and minimising surprise of an observation. How
can an agent achieve this? There are only two ways, in which an agent has control over the
minimisation of this quantity – to adjust the parameters of its generative model or to actively
sample observations that minimise surprise under its generative model by taking actions in
the environment. So far, however, we have not introduced action and temporal dynamics
into the objective. Thus, we come to objective (ii), which states that an agent also tries
to minimise surprise (F) from its observations in the future. This, in turn, implies that an
agent must possess prior beliefs about its actions. The formulation of this prior belief is often
explained using reductio ad absurdum argument [3], which leads to the conclusion that if this
prior belief realises the objective of minimising the free energy, then the prior belief itself
must be that the action will minimise the free energy. Otherwise, a free-energy minimising
agent would take actions that do not minimise the free energy, which is a contradiction.

Thus, we introduce the temporal component and extend the minimisation of surprise
into the future by considering the expected variational free energy (EFE) [2],

G(π, τ) = EP (oτ |sτ )

[
EQ(sτ |π) [logQ(sτ |π)− logP (oτ , sτ |π)]︸ ︷︷ ︸

variational free energy, F

]
(8)

where we additionally take an expectation over the free energy with respect to future
observations at time τ and condition our distributions on policy π. The free-energy minimis-
ing system must, therefore, imagine the future observations given the policy and calculate
the expected free energy conditioned on taking this policy. Then, actions that led to lower
values of the EFE are chosen with higher probability, as opposed to actions that led to
higher values of EFE. Hence, we employ a softmax function, σ(), to define the distribution,
from which an action can be sampled:

P (π) = σ (−γG(π)) (9)

where G(π) =
∑

τ>tG(π, τ), γ is the temperature parameter, and t is the present time-
step. Here, we again see that sampling actions from this distribution would imply that an
agent would act so as to minimise the expected free energy across time.

At this point, a natural question arises – how does one incorporate agent goals in this
framework? By inspecting the described formulations closely, we see that the agent will aim
to act such that it observes what it’s expecting to see, i.e. the prior over the observations,
P (o). Put simply, these observations would lead to the lowest values of surprise, the value
of which the agent is trying to minimise. Hence, the goals are encoded as preferences over
observations. An example of such a prior for the Animal-AI environment can be seen in
Figure 5.

The formulation of active inference provides an elegant solution for the infamous ex-
ploration/exploitation trade-off – an agent is to indulge in exploitative behaviour under its
model to minimise surprise, while also exploring the environment to avoid being surprised

19



Alexey Zakharov MSc in Artificial Intelligence

in the future [55]. More formally, Eq. 8 can be decomposed into,

G(π, τ) = EP (oτ |sτ )
[
EQ(sτ |π) [logQ(sτ |π)− logP (oτ , sτ |π)]

]
(10)

= EP (oτ |sτ )
[
EQ(sτ |π) [logQ(sτ |π)− logP (oτ )− logP (sτ |oτ , π)]

]
(11)

= −EP (oτ |sτ )Q(sτ |π) [logP (oτ )]︸ ︷︷ ︸
extrinsic value

−EP (oτ |sτ )Q(sτ |π) [logP (sτ |oτ , π)− logQ(sτ |π)]︸ ︷︷ ︸
epistemic value

(12)

Expression 12 shows that low expected free energies encourage the agent to resolve
uncertainty about states (referring to epistemic value) and take actions to increase the
likelihood of the observational prior (referring to extrinsic value) under its generative model.
We can further re-arrange the EFE by considering the Bayes rule and treating Q(sτ |π) as a
prior and P (sτ |oτ , π) as a posterior, such that:

P (sτ |oτ , π) =
P (oτ |sτ , π)Q(sτ |π)

Q(oτ |π)
. (13)

This can now be substituted into expression 12,

G(π, τ) =− EP (oτ |sτ )Q(sτ |π) [logP (oτ )]

− EP (oτ |sτ )Q(sτ |π) [logP (oτ |sτ , π)− logQ(oτ |π)]
(14)

Now, we merge the expectations and split them again in a different way,

G(π, τ) = EP (oτ |sτ )Q(sτ |π) [logQ(oτ |π)− logP (oτ )− logP (oτ |sτ , π)] (15)

= DKL [Q(oτ |π)||P (oτ )]− EP (oτ |sτ )Q(sτ |π) [logP (oτ |sτ , π)] (16)

= DKL [Q(oτ |π)||P (oτ )]︸ ︷︷ ︸
expected cost

+EQ(sτ |π) [H [P (oτ |sτ , π)]]︸ ︷︷ ︸
expected ambiguity

, (17)

where H denotes Shannon entropy.

Eq. 17 splits into two meaningful terms. The expected cost measures the divergence
between an agent’s preferred prior observation, P (oτ ), and the expected policy-conditioned
observations, Q(oτ |π). Thus, the agent would prefer policies that produce observations more
similar to the prior. The expected ambiguity quantifies the predicted uncertainty about the
outcomes given a policy. This means that an agent would prefer policies that lead to more
informative observations [56].

In this project, we will be creating an active inference agent that parametrises its gen-
erative model using deep learning methods. The following literature review is, thus, largely
focused on deep active inference literature.

2.3.2 Review of Active Inference Literature

Up to this point, most of the work on Active Inference has been done in low-dimensional
and discrete state spaces [57, 56, 58, 59]. Recently, however, there has been a rising interest
on applying active inference to environments with continuous and/or large state spaces.
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Figure 5: Example of an observational prior, P (o). An agent in the Animal-AI environment can
be made to expect to see this image. Thus, in the process of surprise minimisation, it will tend to
go towards a green reward.

A work by Ueltzhöffer [60] was one of the earliest papers to implement active inference
with the use of deep learning techniques. There are a few key components of this implemen-
tation. First, the distribution of the next state st+1 is modelled as a factorised Gaussian,
whose sufficient statistics is calculated via a neural network with an input of a preceding
state st. Similarly, the distribution of observations, ot, conditioned on the latent state, st,
take the form of a mean-field Gaussian. Second, the variational posterior density of state
st conditioned on current observations and the previous state st−1 is approximated using
amortized inference with a diagonal Gaussian factorisation. The policy is retrieved by train-
ing a separate neural network pθ(at|st). This implementation was applied to the Mountain
Car problem [61] by instilling the observational prior of being in the correct state of the
environment – similarly to the prior explained in Figure 5. Although this work was first at
merging deep learning and active inference, it has significant limitations such as the agent
having access to the underlying physics of the environment and the apparent simplicity of
the testbed.

Çatal et al. [62] has a similar implementation approach to Ueltzhöffer [60] with a few
modifications. One is the use of a habit network, which calculates an agent’s policy and
which is minimised with respect to the expected free energy. This habit network is also used
to sample actions for the evaluation of the expected free energy. As a result, this paper
provided first inklings for the integration of model-free components into a purely model-
based active inference agent. This symbiosis will similarly be used in our system (Section
3).

Millidge [63], too, has very similar basic components in his implementation. One novelty
is the calculation of the expected free energy by bootstrapping with the use of a separate
EFE network (which maps a state-action pair to EFE). The author points to the limitation
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of this approach, as the approximated values of EFE can be inaccurate, thus reducing the
effectiveness of bootstrapping. Further, they mention optimisation for the precision param-
eter (used for selection of a policy) as a potential avenue for future improvements. Having
used OpenAI Gym environments, Millidge emphasises that the underlying dynamics is still
relatively simple. Because of this, he attributed a limited effect of the epistemic uncer-
tainty term on the performance of the model, and suggests experiments in more complex
environments.

The research community is slowly advancing their deep active inference agents. For
instance, a recent work by Tschantz and colleagues [55] tested their system in continuous
and relatively high-dimensional state spaces, and implemented Bayesian neural networks to
quantify model uncertainty. Specifically, BNNs were implemented using Bayes by Backprop
technique [64]. The authors also used amortized inference for learning latent state represen-
tations. BNNs and amortized inference proved suitable for the calculation of EFE, and our
work similarly employs these two techniques.

Many works specifically refer to the distinct differences between the frameworks of RL
and active inference. A comprehensive review of this was recently published by Sajid et
al. [4]. In this paper, the authors use a very simple OpenAI Gym environment to compare
Q-learning with active inference and, importantly, contrast their approaches, mentioning:

• Reward engineering. As mentioned in Section 2.2, the goal of an RL agent is to
maximise the expected discounted rewards. These rewards, however, need to be for-
mulated explicitly. Moreover, in the absence of any reward signal, a reinforcement
learning agent would have no means of training. Reward engineering can be difficult
and may lead to an agent learning a sub-optimal policy, if formulated erroneously. On
the other hand, in active inference, rewards are encoded as preferred outcomes under
an agent’s prior probability distribution over its observations. Thus, the agent acts so
as to observe what was encoded as a preference in its prior. Moreover, because of this
representation, it is possible to learn these prior preferences by placing a distribution
over them and letting the agent interact with the environment, as demonstrated in
Sajid et al. [4].

• Exploration vs. Exploitation. How does one deal with exploration-exploitation trade-
off in reinforcement learning? Currently, many methods have been proposed based
on some form of weighted intrinsic reward, whose weight must be tuned. In contrast
to the ad-hoc approaches to curiosity in RL [65, 66] – such as policy entropy [67],
state entropy [68], information gain [69], prediction error [70], ensemble divergence
[71], empowerment [72] – it arises naturally from the mathematical formulation of the
free energy.

• Belief over vs. Value of a state. This is commonly emphasised as one of the key
distinctions between the RL and active inference frameworks. In RL, we are primarily
interested in optimising some value function for a given state, where as in active
inference it is the free energy functional over an agent’s belief about the state.
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In Tschantz et al. [73], the authors explored the use of active inference for the creation
of action-oriented models of the world. The basic idea is that an agent’s internal model
must be intrinsically connected to the actions that the agent can take. Similarly to what
was suggested in Ha et al. [6] (learning action-centric latent encodings), the authors suggest
using the expected free energy to induce representations that do not necessarily encode a
more accurate representation of the reality, but rather ones that encode more useful fea-
tures related to goal-directed behaviour. As a result, they found that EFE approach learns
less accurate models (which are action-conditioned) than epistemic/random exploration ap-
proaches, yet performs better in a variety of tasks. This paper discusses a rather important
problem, which was also recently questioned by Freeman et al. [74] in a model-based RL
setting. Specifically, does an agent require a perfect model of the environment to make sen-
sible decisions? In this project, we partly address this problem by training our generative
model with samples that are intrinsically linked to action and the highest number of useful
affordances for our agent (Section 4).

Some works have also attempted to investigate the original formulation of the expected
free energy and instead propose alternative objective functions. Tschantz et al. [75] imple-
ments an active inference agent with the use of the free energy of the expected future. This
new objective function was derived as a more representative definition of the generalisation
of the free energy functional when projected to future states [76]. Alternative objective
functions (specifically, the intrinsic motivation component) for active inference were also
studied by Depeweg et al. [42].

Very recently, Fountas et al. [10] introduced a novel deep active inference system
with the use of Monte Carlo tree search (MCTS). Specifically, the agent is equipped with
a POMDP generative model, which consists of the following components: i) transition
model P (st+1|st, at), ii) state encoder/decoder Q(st|ot) and P (ot|st), and iii) action predic-
tor Q(at|st). All of the mentioned conditional probability distributions have closed-form
formulations (Gaussian- and Bernoulli-distributed) and are parametrised using Bayesian
neural networks with the use of MC dropout [40] and amortized inference [77].

Importantly, the paper tackles the question of efficient EFE calculation using MCTS.
As explained in Section 2.3, action-selection is achieved by calculating the EFE values for
different policies and later sampling actions proportional to the negative EFEs. However,
this process is computationally expensive, given that the number of possible paths increase
exponentially with every step an agent takes. Fountas et al. [10] address this issue by com-
bining MCTS with the action predictor P (at|st) (which is approximated by the variational
posterior, Q(at)). Namely, MCTS generates a weighted tree that is used to sample policies
from the current time-step, where the weights refer to the agent’s estimation of the EFE
given a state-action pair. A more detailed explanation of the architectural details and the
modified version of this model can be found in Section 3.

The proposed architecture showed promising results in the Animal-AI environment by
learning a satisfactory generative model and learning to retrieve the reward on a ‘variation
of preferences’ task. Yet, we must point to two main issues facing this architecture:
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Figure 6: Architecture of the deep active inference agent with MCTS by Fountas et
al. [10]. The model: shows the graphical model of random variables for how observations are
produced. Simulating the future: shows how the future observations are generated. Planning:
shows the MC tree search with the use of the habitual prior.

1. The agent’s transition model was trained on every third step (i.e. given a single chosen
action, an agent would take three such actions in a row – and only then retrieve an
observation). This was done to improve the agent’s transition model at predicting
states farther into the future. As discussed, this is crucial for calculating EFE values
that are representative of the long-term future and, as a consequence, for taking more
sensible actions. Predicting further into the future was also extensively discussed in
Section 2.3.2, where the problems pertaining to learning a good transition model for
temporally-distant events is still an active area of research in model-based RL. In this
project, we will address this issue by asking the following question: can we come up
with a principled way to perform temporal jumps (of arbitrary lengths) by equipping
an active inference agent with means of defining a subjective timescale, over which the
transition dynamics model would be trained? In Section 5, we will attempt to answer
this question with the use of an external episodic memory module and a separate
autoregressive transition model trained over the memories.

2. The current implementation included an on-line learning approach. Specifically, an
agent would be spawned in N ≈ 50 environments, sending back 50 observations used
as a batch to train the generative model. Although this approach produces satisfactory
results, there are three issues associated with it: i) subsequent observations are highly
correlated data points, ii) observations are discarded after one training iteration, and
iii) the samples contained in each batch may not be the best samples to train the neural
networks on. With respect to (i), we stress that temporally-correlated data is generally
considered to be detrimental for training neural networks [78]. With respect to (ii),
observations that are rarely encountered in an environment are discarded in on-line
learning and are used for training only when visited again. Moreover, the generative
model may learn some states better than others, yet the frequency of their appearance
in a training batch is uncontrolled, meaning that the network can be training on
transitions that have been learned well yet rarely encountering poorly-predicted ones.
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Finally, issue (iii) emphasises that an on-line agent is largely constrained by its current
position in an environment to sample data and, thus, has very limited control over
its training batches. These issues are addressed in this project with the use of a
Prioritised Replay Buffer (PRB) [78], see Section 4.

Nevertheless, this paper represents the state-of-the-art system in the framework of deep
active inference and serves as the foundation for this project. The use of MCTS presents
itself as biologically plausible and efficient way for calculating EFE along distant trajectories
[10]. As mentioned, the issues outlined above will be tackled with the use of an external
episodic memory module and a prioritised replay buffer, which are both systems based on
episodic memory. Because of this, the following section will provide a review on episodic
memory in reinforcement learning and neuroscience.

25



Alexey Zakharov MSc in Artificial Intelligence

2.4 Episodic Memory

2.4.1 Background and Motivation

Memory has been largely discussed in the neuroscience, cognitive science and artificial
intelligence communities as one of the necessary components of an intelligent system. In
neuroscience, human memory is usually partitioned into declarative/procedural and short-
/long-term [7]. Declarative memory refers to information relating to facts or events that
can be consciously recalled (declared) and is further categorised into semantic (factual in-
formation) and episodic (personal experiences). Procedural memory is predominantly used
to describe unconscious memory, such as knowing how to ride a bike or type on a keyboard.

In the context of RL, procedural memory has been encapsulated by learning the value
functions in model-free RL and semantic declarative memory by learning the world (forward)
models [79]. The presence of these two types of controllers in a human brain has been studied
in neuroscience and psychology [80], with strong empirical evidence that humans transition
from model-based to model-free control in the process of learning and accumulation of
experience. For instance, learning how to play guitar starts with a strong directed control
(model-based) and, with experience, becomes intuitive and effortless (model-free).

Using forward models when dealing with sequential decision-making imposes a high
computational burden on the semantic memory [18], while also being prone to large errors
as a result of noise or prediction uncertainty. This problem was largely elucidated in Section
2.2, where a number of proposed model-based algorithms attempt to deal with problems
related tomodel-bias, sequential accumulation of prediction error, and long-term predictions.
Accordingly, there results a need for a different, complementary approach to deal with this
issue.

Here, episodic memory is of particular interest, because of its deep temporal nature that
may allow agents to learn long-term dependencies [79]. Episodic memory is used to describe
autobiographical memories that link a collection of first-person sensory experiences at a
specific time and place [81], such as remembering your last birthday party or your first day
at university. Past works from neuroscience provide evidence that episodic memory plays
an important role in human learning [7], capturing a wide range of potential functional
purposes, including assisting in the formation of semantic declarative memories [9] or in the
construction of novel future scenarios [82, 83]. In what follows, we review the applications
of episodic memory in the context of model-based RL, as well as some of the recent works
from neuroscience that informed the design of our system in Section 5.

2.4.2 Review of Episodic Memory in RL Literature

In 2008, a paper published by Lengyel et al. [18] has emphasised the issues with forward
models outlined above and proposed a simple solution based on the use of episodic memory
– instance-based control. In that work, the authors compared model-based approach to
the proposed episodic control in scenarios where very little experience of the environment
is available. Essentially, the model would record states and actions that resulted in a
sufficiently large reward, and would later engage in an exploitative behaviour if the state is
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encountered again. The paper showed the importance of incorporating episodic control as
a low-data regime alternative to model-free and model-based approaches.

More recently, a primitive sort of memory has also been incorporated into model-free
deep reinforcement learning systems [84, 85] in a form of a buffer that stores tuples of
experience. These experience tuples are then continuously used in a mini-batch learning
(also termed replay) to train deep neural networks parametrising Q-value functions. These
buffers, however, do not incorporate any associative or temporal dependencies [86] between
the memories, and are used primarily to stabilise on-line learning (which otherwise uses
highly-correlated data for training and can therefore lead to catastrophic forgetting). Fur-
thermore, Hansen et al. [86] argue that such use of episodic memory is slow and that
important memories may be removed due to the limited size of the buffer. A work by
Schaul et al. [87] develops on these ideas and uses a prioritised experience replay to sample
experiences that produced larger prediction errors more frequently. Similarly, in this project
we reconcile the technique of data prioritisation with the framework of active inference and
further advance it by analysing the different prioritisation strategies that could be used for
an agent embedded in a complex testing environment (Section 4).

Another idea, coined as Episodic RL, is to simply store the previous visited states in
the memory bank along with an associated sum of discounted rewards after that state (or
trajectories). The agent will then approximate state value as a weighted average of value
functions of all the similar states3 [88, 79]. In the case where the states are similar, such value
approximation can be made rapidly, even with just one-shot learning. This type of learning
is empirically supported from the analysis of hippocampus [89, 90]. Evidence of instance-
based learning in hippocampus has been theorised for some time [91, 92] and contrasts
with the cortical learning that involves statistical summaries of the input [93, 94]. Such
duality provides room for the integration of a fast-learning system that would complement
the slower gradient-based learner. Gerschman et al. [79] points to several problems with
this approach, however. First, the stored trajectories will tend to be short because of the
discounted nature of the reward (myopic agents). Secondly, in continuous environments,
the states are unlikely to be revisited; hence, an agent needs to be able to generalise and
have some metric of state similarity.

Notable recent work by Blundell et al. [95] on Model-free Episodic Control (MFEC)
tackles the problem of sample-inefficiency with the use of episodic memory. The intrinsic
gradient-based updates that characterise neural network learning make changing the Q-
value approximation slow, even for events that carry rich information. Therefore, MFEC
attempts to solve this issue by having a separate fast learner that is based on the replay
of action sequences from the current state. However, tabular records suffer from two main
problems – memory constraints and state generalisation (states are almost never revisited
in continuous environments). The former is tackled by removing memories that were least
recently-updated. The latter is tackled with the use of k -nearest neighbour averaging, i.e.

3Here, similarity can be measured in a variety of ways and is usually defined as a distance metric in the
kernel space [79]
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taking k nearest neighbours of the state at hand and performing linear averaging. With
these tools, Q-value function can be approximated for all states and be iteratively improved
through time and experience. MFEC was further developed to a differentiable version,
creating Neural Episodic Control (NEC) [96], which performed significantly better on a
number of Atari games.

With regards to neural networks, Differential Turing Machines were one of the early
incorporators of memory into a network-based learning system. They used a memory bank
alongside an LSTM to augment the learning process, however struggled to scale to high-
dimensional tasks [97]. Feedback Recurrent Memory Q-Network (FRMQN), along with two
simpler architectures, were introduced by Junhyuk et al. [98]. This architecture employs
external memory, to which it can write high-level features extracted from a neural network
(i.e. encoded observation). It also employs a context vector for memory retrieval using soft
attention mechanisms and action-value estimation.

Moving on, EVA [86] attempts to incorporate the trace information in the replay buffer,
in order to construct an agent that can learn both slowly (using gradient-based updates
of a DQN – parametric) and quickly (using value iteration within episodes by employing
remembered traces – non-parametric). These two modes of Q-value calculation are then
linearly combined to get one estimate. The non-parametric Q-value estimate is calculated
with the use of trajectory-centric planning or kernel-based RL. The former makes use of
the parametric value approximator for counter-factual actions (not encountered previously)
when calculating the Q-value, while the latter is a generalisation of the former.

Zhu et al. [99] record episodic memory as the highest state-action pair for a given state.
The states are transformed into a latent representation with the use of VAEs. Importantly,
the novelty of their work comprises of the use of graphs to record memory contingencies and,
thus, incorporating a form of associative memory. As part of the paper, they also introduced
a value propagation algorithm, which is contrasted with trajectory-centric planning algo-
rithm from EVA [86]. The main difference is that EVA can only propagate value through
each particular episode, whereas the algorithm by Zhu et al. can propagate value between
different episodes. However, like most episodic memory implementations every state-action
pair is added to the buffer, which may be considered a waste of memory without sufficient
justification.

Therefore, Jung et al. [100] more seriously consider the problem of limited memory and
tackle the question of which memories to keep. Interestingly, they approach this problem
by introducing a reinforcement learning system that optimises for a pre-defined reward and
chooses which memories to keep in the buffer. Moreover, their memory system takes into
account spatial and temporal dependencies, where the former is characterised by calculating
the relative importance of a memory to the others and the latter takes into account the
change of memory importance over time.

The use of (episodic) memory also closely touches on one-shot learning. In [101], authors
motivate their work by pointing out the commonalities of rarely-occurring data points in
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the training datasets. Although this work is largely focused on classifications tasks, their
ad-hoc memory module could be incorporated into recurrent neural networks, making it
directly suitable for modelling the world dynamics.

As can be seen, episodic memory can be used in a variety of ways to i) augment the
performance of a gradient-based system, ii) perform instance-based control, and iii) one-
shot learning. In this project, however, we will consider its alternative potential function.
Namely, we design our system by considering episodic memory as events worthy of re-
membering and whose purpose is to assist agent’s ability to imagine possible futures. In
neuroscience, the measure of worthiness of a memory is often studied in the context of the
future, i.e. memories of the past are important because they assist us in making decisions in
the present and ensuring future benefits [102]. In particular, some works have shown that
patients with hippocampal lesions lose their ability to imagine the future [103] and some
explicitly frame its function as to assist mental time-travel [104] (though precise functions
of episodic memory are still subject to heavy debate [7]).

At the same time, recently, Fountas et al. [105] proposed a predictive processing model
(equipped with a generative model) of human time perception with the use of episodic
memories. In particular, it is known that humans do not perceive time evenly and do not
possess an explicit clock mechanism responsible for keeping track of time [106]. As such,
Fountas et al. devised a memory-based computational model that accurately accounted
for the biases in human time perception, marking a potential direction for unifying time
perception and episodic memory. Importantly, the criterion that the authors relied on to
decide on the formation of an episodic memory was the prediction error produced by its
generative model. The selection of this criterion is informed by the experimental evidence
from neuroscience [107, 108, 109]. Similarly, in computer science, a work by Pertsch et al.
[110] on discovering most useful (‘key’) frames in a video sequence for reconstruction and
planning indicates that prediction error was one of the best criteria for deciding on such
frames. By recording episodic memories based on this criterion, Fountas et al. argue that
they were able to capture the subjective timescale, by which humans perceive time. The
success of this episodic memory model has two implications for our project: i) it provides
the basis for defining the active inference agent’s subjective and more useful timescale over
which the transition dynamics can be learned, and ii) it informs the definition of the criterion
by which episodic memories are recorded. More concretely, the problem of learning the
transition model over longer time-steps (discussed in Sections 2.2.3 and 2.3.2) can effectively
be addressed by ignoring the objective timescale of the environment and instead using the
subjective timescale defined over recorded episodic memories. As we will see, the new
subjective timescale allows the agent to vary how far into the future it predicts depending
on the context it finds itself in.
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2.5 Summarising Remarks

In conclusion, we reconcile the different parts of this literature review – model-based re-
inforcement learning, active inference, and episodic memory – and unify them in a single
problem-solution formulation.

In the model-based RL section, we saw some of the most common problems per-
taining to the field, namely model-bias and temporal prediction error accumulation, and
discussed the state-of-the-art algorithms. Similarly, we saw that all of the proposed sys-
tems used the objective timescale of their environments to learn the transition dynamics,
further exacerbating the algorithms’ sequential error accumulation and hindering their abil-
ity to predict further into the future. With respect to autoregressive models, this was also
detrimental to their ability to learn long-term event dependencies, which is crucial in envi-
ronments with sparse rewards. We stressed that these problems are still largely unaddressed.

In the active inference section, we introduced the basic formulations of the frame-
work and similarly discussed the current state of the art in deep active inference. We noted
that active inference almost entirely relies on the quality of the generative model, whose
transition model is naturally susceptible to the same problems of model-bias and error ac-
cumulation. Therefore, we emphasised the need for a system that could learn long-term
temporal dependencies between states and perform temporal jumps over unimportant in-
termediary states, whilst preserving the same qualities of a normal transition model (i.e.
being able to learn the underlying physics of the environment).

The last section on episodic memory primarily described the current methods of
incorporating episodic memory into model-based RL agents. It was found that most of these
techniques either complement gradient-based systems or perform instance-based learning.
At the same time, the neuroscience literature provided us with an alternative interpretation
for the functional purposes of episodic memory; particularly, its use to assist a human in
the imagination of novel future events and mental time-travel. Furthermore, we introduced
a recently-proposed predictive processing system that successfully modelled human time
perception with the use of episodic memories. Specifically, the work by Fountas et al. [105]
used episodic memories to define a subjective timescale, which accounted for the underlying
properties of human time perception. Inspired by this account, we will attempt to answer
whether we can learn a more useful transition dynamics model trained over sequences of
episodic memories.

In what follows, we will use these insights and implement two complementary memory
modules on top of the baseline active inference agent (Section 3). First, in Section 4 we will
reconcile the prioritised experience replay [78] with the framework of active inference in an
attempt to improve the quality of the agent’s generative model. Second, in Section 5 we
devise a novel way to learn an autoregressive transition dynamics model over the subjective
timescale defined by episodic memories.
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2.6 Note on Legal and Professional Considerations

This project deals with a range of theoretical concepts with no direct practical application
or potential for misuse. We stress that this project does not make use of any sensitive
biological data, nor does it involve human or animal participants. All of the training data
has been synthetically generated using the Animal-AI environment. The systems devised
over the course of this project have no connection to any human activities in the physical
reality, do not relate to any military technology, and have no relation to environmentally
harmful activities. All of the used and produced code is open-software and does not fall
under any data protection laws.
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3 Baseline Architecture

We take the deep active inference system devised by Fountas et al. [10] as the starting point
with a few architectural and operational modifications. Following our discussion on active
inference preliminaries in Section 2.3, we first need to define a POMDP generative model –
Figure 7.

Figure 7: Generative model of the baseline agent.

Here, the main components of the generative model are: transition model Pθs(st|st−1, at−1)
parametrised by θs and later denoted as a function (neural network) that takes a state-action
pair as input fθs(·, ·), and latent state decoder Pθo(ot|st) parametrised by θo. The latent
states, s, are assumed to be Gaussian-distributed with a diagonal covariance, where as ob-
servations, o, are Bernoulli-distributed. Note, that every component of the generative and
inference models is parametrised by a neural network. The details of the implementation
and training can be found in Appendix C.1.

Importantly, we modify the original transition model from Fountas et al. [10] to predict
the change in state, rather than the full state4. Hence, the multivariate random variables
are related by s̃t = st−1 + f̃θs(st−1, at−1), where f̃θs(st−1, at−1) is a Gaussian multivariate
random variable with sufficient statistics given by (µfθs , σfθs ) predicted by the transition
network and st−1 is a vector representing latent state at time t− 1. Thus, the next state is
also a Gaussian-distributed multivariate random variable s̃t, with sufficient statistics:

µst = st−1 + µfθs
σst = σfθs

(18)

4This has largely become common practice in the field of model-based RL [17], improving algorithm
efficiency and accuracy especially in environments with slow temporal dynamics (small change in state
given an action).
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Our model also includes two inference networks, which are trained using amortized
inference5: habitual network Qφa(at) parametrised by φa and observation encoder Qφs(st)

parametrised by φs. The habitual network acts as a model-free component of the system,
learning to map inferred states directly to actions. As will be seen shortly, the fast habitual
network will be used in conjunction with the slow MCTS planner.

We can now define the variational free energy for an arbitrary time-step t; following
Fountas et al. [10],

Ft =− EQ(st) [logPθo(ot|st)]
+DKL [Qφs(st)||Pθs(st|st−1, at−1)]
+ EQ(st) [DKL [Qφa(at)||P (at)]]

(19)

where, importantly, P (a) =
∑

π:a1=a
P (π) – summed probability of all policies beginning

with action a (refer to Eq. 9). All the divergence terms are computable in closed-form,
given our assumptions about Gaussian- and Bernoulli-distributed variables.

Finally, we define the EFE for our generative model. Here, we note that the neural
network parameters of the generative model, θ = {θo, θs}, are random variables and are,
therefore, included in the joint probability distribution. Recalling equation 8, we again
follow [10] and define EFE up to some time horizon T :

G(π) =
T∑
τ=t

G(π, τ) =
T∑
τ=t

EQ̃ [logQ(sτ , θ|π)− logP (oτ , sτ , θ|π)] , (20)

where

Q̃ = Q(oτ , sτ , θ|π)

P (oτ , sτ , θ|π) = P (oτ |π)Q(sτ |oτ , π)P (θ|sτ , oτ , π).
(21)

As in the preliminaries, we can decompose Eq. 20 into its meaningful constituents,

G(π, τ) =− EQ̃ [logP (oτ |π)]

+ EQ̃ [logQ(sτ |π)− logP (sτ |oτ , π)]

+ EQ̃ [logQ(θ|sτ , π)− logP (θ|sτ , oτ , π)] .

(22)

Here, we note that:

• EQ̃ [logP (oτ |π)] is the likelihood of our prior observations under the generated obser-
vations, meaning that the expression corresponds to the notion of a reward.

• EQ̃ [logQ(sτ |π)− logP (sτ |oτ , π)] is the epistemic value of the hidden state, which
intrinsically drives the agent to explore the environment.

• EQ̃ [logQ(θ|sτ , π)− logP (θ|sτ , oτ , π)] incorporates uncertainty about the agent’s model
parameters, driving the agent to, similarly, resolve uncertainty about its model pa-
rameters.

5Exact training procedure will be discussed later.
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To make expression 20 computationally feasible, we follow [10] decomposition,

G(π, τ) =− EQ(θ|π)Q(sτ |θ,π)Q(oτ |sτ ,θ,π) [logP (oτ |π)]

+ EQ(θ|π)
[
EQ(oτ |θ,π)H(sτ |oτ , π)−H(sτ |π)

]
+ EQ(θ|π)Q(sτ |θ,π) [H(oτ |sτ , θ, π)]

− EQ(sτ |π) [H(oτ |sτ , π)] .

(23)

Now, all the terms are easily computable. Specifically, expectations can be taken by
performing sequential sampling of θ, sτ and oτ – essentially performing a roll-out by imag-
ining future observations at each time τ . Note, that the prediction of the next state using
the change in state is implicit in these mathematical formulations. Similarly, network pa-
rameters, θ, are sampled using MC dropout [40] and entropy terms can be calculated in
closed-form given our assumption of Gaussian and Bernoulli random variables.

Authors of the paper also implement top-down attention mechanism by introducing
variable ω, which is used to modulate uncertainty about hidden states. Specifically, the
latent state distribution is defined as a Gaussian such that s ∼ N(µ, σ2/ω), where µ and σ
are calculated using Eq. 18, and ω is

ω =
a

1 + e−
D−b
c

+ d (24)

where D = DKL [Qφa(a)||P (a)] and a, b, c, d are hyperparameters. Top-down attention is
meant to promote latent state disentanglement and more efficient learning, as indicated by
the empirical results in [10].

Finally, as explained in Section 2.3.2, action selection is aided with MC tree search,
ensuring a more efficient trajectory search. Specifically, MCTS generates a weighted tree
that is used to sample policies from the current time-step, where the weights refer to the
agent’s estimation of the EFE given a state-action pair, G̃(s, a). The nodes of the tree are
predicted via the transition model, Pθs(st|st−1, at−1) – see Figure 6: Planning. Using the
standard MCTS formulation, the authors define the following upper confidence bound [111]:

U(s, a) = G̃(s, a) + cexplore ·Q(s) · 1

N(s, a) + 1
(25)

where N(s, a) is the number of times action a has been taken from state s and cexplore is
a hyperparameter controlling the exploration of the tree. At any given state in the search
tree, trajectory actions are sampled from σ(U(s, a)) if the state has been explored, and
using the habitual prior Qφa(a), if otherwise. At the end of the search, the MCTS is used to
construct the action prior, P (a) = N(ai,s)∑

j N(aj ,s)
, from which the next trajectory of the agent,

consisting of actions ai, will be sampled. Furthermore, the planner is equipped with a
threshold hyperparameter, Tdec, such that if the habitual network finds a clear option for
the next action – it will be taken without continuing the search.
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4 Prioritised Replay Buffer

The general question that this section of the project will attempt to answer is:

Given the baseline architecture outlined in Section 3, what data should our on-line
agent train on?

At close inspection of the baseline architecture, we note three major problems. First,
an on-line agent discards observations after one training iteration. This implies that ob-
servations that occur in the environment rarely (e.g. multiple spheres positioned close to
each other) will also rarely occur in the training batches. In turn, this means that neu-
ral networks will tend to perform well on the most frequently occurring observations and
poorly on rarely-occurring ones. In a testbed like Animal-AI, this can lead to a highly un-
favourable behaviour, given that the majority of agents’ observations are likely to be walls
or the overview of the environment from far. Moreover, even if the network learns some
particular rarely-occurring transition, it is likely that, given enough time, this transition will
be forgotten (via catastrophic forgetting) [78]. Second, an on-line agent will train on tem-
porally correlated data, which is widely considered detrimental for training neural networks
[78]. Third, an on-line agent’s only means of sampling new data is by taking actions in the
environment; yet, this data may not be most optimal for the next training iteration – the
agent is largely constrained by its current position in the environment to acquire training
data.

Thus, we propose an introduction of a stochastic Prioritised Replay Buffer (PRB) [78]
(also discussed in Section 2.4.2) which uses a weak form of episodic memory6. This compo-
nent is aimed at tackling all three of the above issues by storing the transitions experienced
by an agent in a buffer and later sampling batches of data for training, giving priority to
transitions deemed more useful. Originally introduced by DeepMind, PRB (also named
Prioritised Experience Replay) was used to improve training efficiency and effectiveness of
a Deep Q-Learning agent by sampling transitions with a probability proportional to the
produced temporal-difference error [78]. Similarly, in this project, we implement PRB to
promote training on transitions that produce the highest values of variational free energy
with respect to the transition model. We arrive at this by performing a qualitative com-
parison of different prioritisation strategies based on the different components of the total
variational free energy (Eq. 5) in Section 4.2. Finally, we compare the qualitative and
quantitative performances of on-line and PRB agents on a set of randomly generated envi-
ronments in Section 4.3.

4.1 Details

As discussed, our agent possesses three main components – a transition network that predicts
the next state, a variational autoencoder for encoding observations and decoding states, and
a habitual network that directly maps states to actions. In turn, each of these components is

6By weak, we refer to the fact that memories stored in PRB will contain no references to other episodic
memories. In turn, this implies that memories do not hold information about temporal dependencies between
them. The stronger form of episodic memory will be used in Section 5.
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trained on the corresponding loss function quantified by the variational free energy. Recall
the total free energy (Eq. 5),

Ft =− EQ(st) [logPθo(ot|st)] (26a)

+DKL [Qφs(st)||Pθs(st|st−1, at−1)] (26b)

+ EQ(st) [DKL [Qφa(at)||P (at)]] (26c)

Here, expressions (26a) and (26b) are used to train the variational autoencoder, expres-
sion (26b) is used for the transition network, and expression (26c) is used for the habitual
network. The components of the total free energy correspond to a measure of belief update
for each of the networks, and therefore, loosely speaking, quantify the prediction error gen-
erated by each of the networks. We employ these quantities in the implementation of PRB
by sampling training data with a probability proportional to the values of the free energies.

As mentioned, PRB stores all7 transitions experienced by the agent in an environment.
A single transition is represented as a tuple (ot, at, ot+1), where ot and at are an observation
and action taken at time t, and ot+1 is an observation that followed at the next time-step.
The probability of a single transition to be sampled from the buffer is calculated by

pn(i) =
Fα
n,i∑

k F
α
n,k

, (27)

where n ∈ { transition, autoencoder, habitual } referring to a network to be trained, pn(i)

is the probability of the i-th transition to be sampled for training network n, Fn,i is the
variational free energy associated with the i-th transition and network n, and α exponent is
a hyperparameter used to control the degree of prioritisation [78]. In the final version of the
system, we fix n = transition, as prioritisation with respect to the transition model resulted
in the best training samples. This will be discussed in the next section.

Furthermore, changing the sampling distribution in such a manner introduces signifi-
cant bias to the stochastic gradient updates. It is, thus, necessary to correct this bias by
introducing importance sampling weight term [78], such that

wn,i =

(
1

N
· 1

pn(i)

)β
, (28)

where wn,i is the importance sampling weight for the i-th transition in the buffer and for
training network n, N is the number of sampled transitions, and β is a hyperparameter
used for annealing the importance sampling weight. At training, the loss of a corresponding
network is multiplied by this weight, wn,i ·Fα

n,i, thus realising weighted importance sampling.
Moreover, β is linearly increased during the entire training procedure until the maximum
value of 1, as suggested in Schaul et al. [78].

Given the large size of the buffer (100,000 transitions), calculating the probabilities and
performing sampling according to these probabilities can be computationally costly. To

7Up to the size of the buffer
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tackle these challenges, we update the free energy values only for the transitions sampled in
the latest batch (instead of updating every single transition value in the buffer after every
training iteration) and implement an efficient sampling data structure called ‘sum-tree’ [78],
allowing updating and sampling in O(logN). See Appendix A for implementation details.

4.2 Priority Metric

In this section, we perform a qualitative comparison of the different metrics, proportional
to which the data can be sampled from the buffer. Due to the time and computational con-
straints of this project, we are unable to compare the quantitative performance differences;
hence, we conduct a thorough inspection of the observations stored in a buffer during the
learning procedure by sorting observations in the descending order by:

1. Habitual network’s, Qφa , variational free energies, Eq. 26c;

2. Transition model’s, Pθs , variational free energies, Eq. 26b;

3. Autoencoder’s, Qφs and Pθo , variational free energies, Eqs. 26a + 26b;

Figure 8 shows samples from the buffer after ∼250k training iterations. Each column
shows samples sorted (in a descending order) by the corresponding values of free energy
produced by each of the networks – habitual network, transition model, and autoencoder.
Importantly, the trends illustrated in this figure are not specific to the chosen range, but
rather show a more general pattern. To analyse these figures, we pay special attention to
samples bounded with red colour, since these represent training observations that will be
prioritised during training.

By inspecting the observations, it is immediately evident that the samples with respect
to the transition model constitute more favourable states with respect to the potential
actions an agent can take. This is in line with the formulation of the transition-model
variational free energy (Eq. 26b) that is intrinsically linked to action. In general, these
samples are characterised by: i) the strong presence of objects in different configurations, ii)
objects that only recently appeared in the frame (e.g. turning and seeing a green sphere),
and iii) yellow spheres that disappear at the next frame8. Here, we address two important
questions:

Why are these states favourable? To answer this, we must recall that an active inference
agent aims to minimise the variational free energy. It does so by imagining possible futures
from the current state and choosing an action that corresponded to the futures with the
lowest value of the expected free energy. Therefore, the shown states are favourable because
they provide the agent with means of minimising the free energy, i.e. states with the highest
number of affordances with respect to the objects in the environment. Because objects are
a central component of the environment and the only means of minimising the free energy

8Samples shown in Figure 8 constitute the first frames from the transitions, which normally include a
pair of observations (o0, o1). This was done to exemplify the presence of the disappearing yellow spheres in
the buffer, which are considered surprising events for the transition model.
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(recall the observational prior, Figure 5), it is most important for an agent’s generative
model to learn these representations in highest detail.

Why are these states characterised by the presence of objects? We can categorise
the transitions that cause high transition-model prediction error into two main groups:
epistemic surprise and model-imperfection surprise. The former refers to transitions that
the model could not have predicted accurately due to the lack of information – disappearing
spheres or spheres that appear in the frame upon turning. Although these events do appear
at the top of the buffer, they do not constitute the main bulk of ‘surprising’ observations.
Rather, the main bulk of these high prediction-error transitions fall into the latter group.
It is useful to think of these observations as being rich in combinatorial structure. Because
the transition model cannot be assumed to be perfect, nor can it be considered to generalise
perfectly, one of the major sources of transition model prediction error would be the different
contexts in which the objects would appear in the frame. Their relative positions, their size,
their colours, their background are all contributing components to imperfect predictions of
the transition model. In turn, the effects of these components compound in the presence of
objects, which explains their abundant presence in high-error samples.

In line with the above explanations, we note that the least surprising states of the
transition model largely involve far-away scenery and walls. Importantly, these states are
not directly related to the exploitative component of an active inference agent. That is,
these observations do not provide an agent with immediate information to plan its path to
the goal, which means an agent would engage in exploring the environment instead.

In contrast to the transition model, samples with respect to the highest free energies of
the autoencoder and the habitual network mostly involve walls. As discussed these states are
not necessary to be learned with great detail and would, therefore, be a wasteful way to train
the generative model. Additionally, the habitual network samples with high free energies
often contain close green or yellow spheres. This can be explained by the generative model’s
inability to produce consistent predictions of what happens after the sphere is retrieved. As
a result, the habitual network is not able to mimic the behaviour of the planner in such
states, thus producing large prediction errors.
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Figure 8: Buffer observations sorted by free energy values in the descending order.
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We conclude that prioritisation based on the free energy values of the transition model
are most favourable for training a generative model, whose primary aim is to simulate
agent’s future observations with respect to its actions and the objects in the environment.
Interestingly, it is counter-intuitive to discard the idea of training each individual network
with prioritisation based on their individual prediction errors. After all, a neural network
should, theoretically, get better at predicting those samples as the training goes on, thus
learning faster. However, we stress that learning a perfect generative model is not necessary
for solving the task of retrieving a green sphere (e.g. perfectly modeling the environment’s
floor tiles). In this project, we take that learning the generative model with respect to
states with affordances useful for the minimisation of the variational free energy is most
effective. This idea was also discussed in the literature review, where a number of papers
proposed that in order to solve tasks in an environment, the generative model does not need
to be perfect, but rather it must be intrinsically linked to action and agent’s affordances
[6, 74, 73]. Furthermore, empirical results show that the presence of walls as samples with
the highest free energies (of habitual network and autoencoder) persist over the entire course
of training. This is likely an interesting side-effect of the Animal-AI environment, where
walls and the floor tiles contain greater graphical detail than the rest of the environment.
Because of this, the autoencoder struggles to map wall observations onto the latent state,
as well as to reconstruct them with high fidelity. As a result of the bottleneck, which is the
autoencoder’s latent dimension, it will never learn to do it – and so the high values of free
energy persist. This also explains the presence of walls in the habitual network that tries
to map the poorly-represented states to actions.

Additionally, the use of the total variational free energy as the priority metric was dis-
carded based on the above analysis of its individual constituents. Nevertheless, the definition
of alternative metrics remains an open direction for future research (Section 6).

In summary, we reconcile the use of PRB with the framework of active inference. Origi-
nally used to improve the efficiency and performance of a Deep Q-network [78], the system
prioritised samples that produced higher temporal-difference errors. In contrast, we use pri-
oritisation to improve the quality of the agent’s generative model with respect to transitions
that resulted in higher values of transition-model free energies.

4.3 Experimental Results

Figure 9 shows a qualitative comparison of the generative models of an on-line agent vs.
an agent with a replay buffer employing prioritisation according to transition free energies.
Both models have been trained for 750k steps – more details can be found in Appendix
C.1. The displayed imagination roll-outs were hand-picked to display some of the most
important features for the comparison. In practice, the quality of produced roll-outs will not
be strikingly different on average; however, these differences become apparent in more rare
situations. Importantly, this can make all the difference for the quantitative performance of
an agent, as will be shown in the next pages.

It is evident that the generative model with PRB learns better object representations
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and is able to better preserve them over time in a roll-out. In particular, the roll-outs
of the on-line agents are characterized by disappearing spheres, showing what would be
the average observation in the environment instead. On the other hand, PRB agent much
better preserves information about the spheres, which would be crucial for making the right
decisions in an episode. More results showing improved performance of the autoencoder can
be found in Appendix B.

Figure 9: Comparison of on-line vs. PRB imagination roll-outs.
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Furthermore, we test the agents on a set of randomly generated environments, containing
one green sphere (terminal positive reward), one yellow sphere (positive reward), and one
red sphere (terminal negative reward). Agents are restricted to the total of 100,000 steps,
after which the testing terminates. Importantly, these configurations are characterised by
sparse rewards and relatively little episode time (max 500 steps before the environment is
terminated). The agent must, therefore, quickly find the reward by exploring its neighbour-
hood, whilst avoiding the negative reward. Here, the quality of the learned generative and
inference models is of great importance for two main reasons:

1. The agent’s transition model is perfectly myopic, because it is a simple feed-forward
neural network. This means that an agent’s current frame of observation is the only
information it has to reason about the next action. If the agent has seen a faint
silhouette of a green sphere on the side, yet made a turn to drive it out of the frame,
it has no means of remembering that the sphere was there. In an environment with
sparse rewards, one such algorithm decision would significantly reduce the agent’s
chances of getting a reward in an episode. It is for this reason that a generative
model that can better deal with object representations and more accurately perform
imagination roll-outs with respect to objects will be in advantage.

2. Better object-centric representations in the latent state play an important role for the
agent’s ability to see objects far away. If the agent’s inference model does not encode
spheres that are small (due to the signal being too small) into its latent representation,
the generative model will not predict its presence in the next states. This is largely
illustrated in the on-line agent’s first two imagination roll-outs, Figure 9. Thus, an
environment with sparse rewards that often appear far away from an agent would put
its generative model to test.

Furthermore, the MCTS was not used to test the agents in this section, given extensive
problems related to the system’s behaviour under it. However, the problems related to
MCTS are not relevant for testing the quality of an agent’s generative model with and
without the PRB. Although these will be discussed in Section 5, we would like to briefly
mention them here.

In short, the use of MCTS results in agents getting stuck at walls, which significantly
increases the length of testing, as the general trends of the agent’s progress cannot be
tracked reasonably well. The reason for why MCTS-based agent gets stuck at walls is
actually a major motivation for the second part of the report. Recall that MCTS works by
sampling different trajectories according to the pre-defined upper-bound and the habitual
prior Qφs(a). After the potential trajectories are defined, an agent executes the actions of
the entire trajectory with the lowest associated EFE. Thus, re-planning of its next actions
occurs only after the agent finishes executing the chosen sequence of actions. At the same
time, as we will see in Section 5.1 (Scenario 1), the agent’s transition dynamics model is
slow and does not predict far into the future. For an agent at a wall, this means that its
imagination roll-outs are largely populated with images of walls, deeming every action as
almost identical. In the process of MCTS planning, this would result in trajectories that
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keep the the agent at a wall for a long time, since to leave it, an agent would have to take
a number of consecutive left or right actions. However, instead, MCTS are likely to include
rather diverse trajectories (e.g. right, right, forward, left, forward, etc.). Because of this
trajectory flexibility and relatively infrequent re-planning under MCTS, the agent spends
much more time at the walls. These reasons will become more apparent in Section 5.

Therefore, instead, we perform a form of model predictive control (MPC), in which an
agent calculates its next action after every step. Furthermore, an agent evaluates only three
policies – N times left, N times forward, and N times right, where N is the number of
times an action is repeated and was chosen to be 5. The agent would then roll-out imagined
observations (using its generative model) for the three given policies, calculate the EFE for
each policy and take an action corresponding to the lowest calculated EFE. Although this
method is more computationally expensive than MCTS, it allows us to better study the
performance of on-line and PRB agents.

Quantitative results presented in Figures 10 and 11 support the initial hypothesis. It
can be seen that the PRB agent shows significant improvement, retrieving rewards faster,
while also being better at avoiding terminal red rewards.

More generally, the results also show that the active inference agents do not only learn
to retrieve green rewards (which match our observational prior from Figure 5), but they
are also attracted to yellow rewards. This can be explained by the dominating exploratory
component of the EFE, which encourages the agents to explore states with high uncer-
tainty. Because yellow spheres disappear at retrieval, the agent’s generative model has high
uncertainty about the states that come after (i.e. what is behind the sphere?). However,
conveniently, the colour of yellow spheres is also relatively close to green in the pixel space,
which provides additional incentive for an agent to reach them. On the other hand, red
spheres do not constitute means of minimising free energy with respect to the green obser-
vational prior. As can be seen, these tend to be avoided.
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Figure 10: Experimental results. Comparison of mean cumulative rewards after 100,000 steps.
Shaded regions represent two standard deviations (over 5 runs) from the mean lines.

Figure 11: Mean number of collected rewards by category. PRB agent systematically
retrieves more green and yellow rewards, while better avoiding negative red rewards. Black lines
represent two standard deviations (over 5 runs) from the mean.

44



Alexey Zakharov MSc in Artificial Intelligence

5 Temporal Episodic Memory Module

Temporal Episodic Memory module (TEM) constitutes the second large part of this project.
In contrast to PRB, here we employ a stronger form of episodic memory that additionally
incorporates information about temporal dependencies between memories. TEM was largely
inspired by three things:

• Problems with model-bias and sequential error accumulation in model-based reinforce-
ment learning; although there is a number of works attempting to tackle these issues
directly, most develop mitigating techniques with the use of uncertainty quantification
(Section 2.2.3).

• Neuroscience literature that studies the functions of episodic memory in the context
of assisting humans in imagination (constructing novel future scenarios) and mental
time-travel (Section 2.4.2).

• Recent works on defining (learning) a subjective timescale with the use of perceptual
content of sensory inputs (Section 2.4.2).

As such, this part of the project will address two questions at once:

1. Can we come up with a principled way to learn the transition dynamics model
over a more useful, subjective timescale of the environment?

2. Can we learn a transition dynamics model that is capable of imagining ‘novel’
observations in the future?

Because these two objectives are quite vague in terms of terminology, we first want to provide
two motivating examples that would justify the objectives and explain the ambiguous terms.

5.1 Motivating Examples

Scenario 1. Suppose an agent observes a green sphere in the distance as shown in
Figure 12. Which way will the baseline agent go? To answer this, we must first and
foremost consider the main incentive of an active inference agent – which is to minimise the
variational free energy. One of the central components of the free energy is the observational
prior, which is the observation that the agent is trying to reach by taking actions in an
environment. Incidentally, the bright walls of the environment provide one of the ways to
minimise the free energy sub-optimally with respect to the green observational prior. This is
because the light-brown colour of the walls is relatively close to the green colour of a sphere
in the pixel space. Recall that our agent will first perform imagination roll-outs in different
directions, imagining the possible observations it may encounter in the near future. Next,
it will calculate the expected free energy for each of the roll-outs and sample an action
with probability proportional to the negative expected free energy. However, given that
the ground-truth, objective dynamics of the environment is slow, the green sphere will only
marginally increase in size, as the agent moves forward. On the other hand, by turning to
the nearest wall, the agent can much faster minimise the variational free energy. Therefore,
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even though the green sphere represents the optimal state for the minimisation of the free
energy, the agent simply has no means to know that going forward will get it to the optimal
state, given the slow timescale of its transition model. If, however, the agent was equipped
with a transition model that performs temporal jumps and predicts a much faster approach
to the green sphere, it would choose to go forward instead. This motivates the learning of
a transition model over more useful, subjective timescales.

Figure 12: Motivating example 1. In the scenario, where a green or yellow sphere is far away,
slow timescale will incentivise the agent to choose to go to a wall, which minimises the free energy
in a sub-optimal way.

Scenario 2. Suppose an agent reaches a light-brown wall. Its colour provides the agent
with a sub-optimal way to minimise the free energy. At the same time, the agent is equipped
with a transition model that learned the dynamics of walls fairly well, thus reducing the
quantity of the exploration component of the EFE (Eq. 20). Performing the roll-outs using
the slow transition dynamics model yields similar observations of walls, providing the agent
with no incentive to leave its current state. In order for the agent to leave the wall, its
imagination must provide it with states that lead to lower free energies. Let’s, however,
inspect what the slow transition dynamics would yield in Figure 13. We note two major
things that would discourage the agent from leaving the wall. First, the slow timescales
of the transition model would populate the imagination roll-outs with wall observations.
Second, the slow transition dynamics model is trained to predict the most likely next state
given the current state and action. In turn, this implies that the model would predict the
average expected observation, which it observed during training in similar states. Given
that the environment is sparsely populated with objects, the generative model predicts
future states in absence of any objects, as can be observed in the top imagination roll-out
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in Figure 13. These two problems are corollaries of how the transition model is trained. In
particular, it is trained using the slow, ground-truth dynamics of the environment and on all
experienced transitions. On the other hand, if the transition model was trained to predict
further into the future (in line with Scenario 1) and predict states deemed as interesting by
the agent (according to some metric), imagination roll-outs for turning right or left from
the wall would contain states that would encourage the agent to leave and explore. Thus, in
addition to the more long-term state predictions, the transition model should be capable of
imagining interesting9 states, which, as we earlier argued in Section 4, are likely to contain
objects that provide means for minimising the free energy. In that sense, this scenario
describes the same problem as Scenario 1, where an agent has no means to know that, by
leaving the wall, it could observe an optimal state for the minimisation of the free energy.

Figure 13: Motivating example 2. An agent equipped with a transition dynamics model that is
both slow and cannot imagine objects will be discouraged to leave the wall, as no better means of
minimising the free energy are provided in its imagination roll-outs.

Given the two motivating examples, we formulate the following characteristics of the
alternative transition model:

1. It must learn the dynamics of the environment over the subjective timescale ,
which would be more useful for the agent’s action selection (see Scenario 1). As such,
the subjective timescale is of variable rate, meaning that the rate of change of states
should vary depending on the context the agent finds itself in. For instance, the
subjective rate of time should be fast in the absence of anything interesting (thus

9The exact formulation of what constitutes an interesting state was foreshadowed in the Section 4 on
PRB, and will be further explained in the coming pages.
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predicting farther into the future) and should decrease as the agent approaches inter-
esting states. An example of this is shown in Figure 14. This property of perceiving
time is also characteristic to humans [105, 112, 106] and has been extensively studied
in neuroscience.

Figure 14: Subjective timescale of variable rate. Bottom sequence shows the ground-truth
sequence of observations. Top (Sub-)sequence shows the formed episodic memories that define the
subjective timescale.

2. It must be capable of imagining objects, where there may be none. In particular,
if we inspect the original, slow transition model, we will find that the model predicts
only what it observes. If the current observation contains no information about any
objects in the surroundings, the original model will not be able to imagine any. This
has two implications. First, it deems any action as almost identical in the absence of
objects – since the transition model would simply predict the walls, the floor and the
sky, given that they are the most likely (average) observations in the environment.
Second, the transition model does not fully incorporate information contained in the
training data. Specifically, the information contained in the training data is useful not
only for learning the physics of the environment – i.e. given the current observation
and the objects within it, how will the chosen action change the observation and
the relative positions of the objects in the frame – but it is also useful for learning
temporal dependencies between states. This means asking questions like: given the
current state, what interesting states does the agent expect to see by turning right?
Learning such dependencies between states can be crucial for an active inference agent
that largely relies on its generative model of observations to make decisions in the
environment. Importantly, this question cannot be answered if the transition model
is expected to predict the most likely next states; therefore, we must come up with an
alternative approach to train a transition model.

Hence, in what follows, we define one potential approach to learning a transition model
with the afore-mentioned characteristics. We then perform extensive analysis of the imag-
ination roll-outs produced by the system, and finally test it against the PRB agent from
Section 4.
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5.2 Architecture

The system described above by definition implies training only on selected observations.
These selected observations define a sub-sequence of states and the subjective timescale, over
which the TEM transition model is trained – see Figure 14. To implement the system, we
create a class EpisodicBank, which contains two basic components – memory accumulation
system and transition model trainer. To proceed with the explanations, we define a few
important terms used hereinafter:

• A ground-truth sequence is a sequence of all states experienced in the environment
during a single episode, Sg = {s0, s1, s2, ..., sT} – Figure 14: bottom row sequence.

• Sub-sequence (subjective sequence) is a sequence of states selectively picked by our sys-
tem, and over which the new transition model would be learned, Se = {sτ1 , sτ2 , sτ3 , ..., sτN}
– Figure 14: top row sequence.

• Each observation in a Sub-sequence is called an episodic memory and consists of
a set of sufficient statistics, s = {µs, σs}, where µs and σs are mean and variance
vectors of a Gaussian-distributed state s, respectively. Additionally, each episodic
memory contains a reference to its preceding (parent) episodic memory and all actions
taken after its formation. The process of recording Sub-sequences is called memory
accumulation.

• TEM transition model is the dynamics model learned over the Sub-sequences, where
as transition model is used to describe the dynamics model over the ground-truth
sequences.

Memory Accumulation. An active inference agent is sent interacting with the en-
vironment under a pre-trained generative model with the use of PRB described in Section
4. During this process, each transition is evaluated based on the transition model free
energy. As we saw in Section 4.2, the free energy with respect to the objective-timescale
transition model, DKL [Qφs(st)||Pθs(st|st−1, at−1)], represents the degree of surprise10 expe-
rienced by the transition model upon taking an action. This can similarly be interpreted
as the prediction error of the transition model. Inspired by the works from neuroscience on
modeling human time perception [105, 106] and the recent work on video frame prediction
[110], we take this metric as the criterion for forming a memory and, thus, defining the
subjective timescale. As the agent moves in the environment, each transition is evaluated
according to this metric; if the value of the free energy exceeds a pre-defined threshold, a
memory is formed and placed into a Sub-sequence. At the end of each episode, the recorded
Sub-sequence is sent to EpisodicBank and stored for later use.

10Note, it may be erroneous to consider the recorded events as surprising, though some of them certainly
are. Rather, as mentioned in the PRB section, the main bulk of these events are events rich in combinatorial
structure. Because the transition model cannot be assumed to be perfect, the major sources of transition
model prediction error would be the different contexts in which objects would appear in the frame. Their
relative positions, their size, their colours, their background are all contributing components to imperfect
predictions of the transition model. As such, the effects of these components increase in the presence of
objects, which is exactly the property we want the accumulation system to have.
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TEM transition model. It is important for the TEM transition model to be an
autoregressive model. As discussed, the purpose of the system is not only to learn the
basic physics of the environment, but also to learn the temporal dependencies between the
recorded states. Therefore, we train an LSTM [44] on the recorded Sub-sequences. We do
this by randomly sampling a batch of 15 Sub-sequences (which may be of variable size),
performing zero-padding to equalise their length to 50, and sending them for training. In
our architecture, an LSTM calculates the hidden state hτ at subjective time τ using a
deterministic mapping,

hτ = fθh(sτ , aτ , hτ−1) = σ(xτWh + hτ−1Uh + bh), (29)

where sτ and aτ are the latent state and action taken at subjective time τ respectively,
xτ is the concatenated vector of sτ and aτ , and θh = {Wh, Uh, bh} are deterministic LSTM
model parameters. Importantly, function fθs is deterministic and serves only to encode
information about preceding steps into the hidden state of the LSTM. This hidden state hτ
is then mapped to a latent state sτ+1 at the next subjective time τ + 1 via a feed-forward
neural network with random-variable parameters, θhs, using Pθhs(sτ |hτ−1) with MC dropout.
The parameters of both of the networks are trained via backpropagation with a loss function
defined as

L =
T∑
τ

DKL

[
Qφs(sτ+1)||Pθhs(sτ+1|hτ )

]
=

T∑
τ

DKL

[
Qφs(sτ+1)||Pθhs(sτ+1|fθh(sτ , aτ , hτ−1))

] (30)

Figure 15: The TEM generative model. Graphical model of how observations are generated
during imagination roll-out. Boxes and circles are deterministic and random variables, respectively.
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The new generative model of observations is shown in Figure 15. Because the mapping
of LSTM is deterministic, the formulation of the variational free energy remains intact with
the exception of the second term that now includes the state prediction produced by the
network Pθhs conditioned on the hidden state of the LSTM,

Fτ =− EQ(sτ )

[
logPθo(oτ |sτ )

]
+DKL

[
Qφs(sτ )||Pθhs(sτ |hτ−1)

]
+ EQ(sτ )

[
DKL [Qφa(aτ )||P (aτ )]

] (31)

Figure 16: The entire pipeline of training a TEM module. First, episodic memories are
accumulated according to the transition model free energy. Next, the Sub-sequences are formed as
sequences of episodic memories, where each sequence refers to the memories recorded in a single
episode. Lastly, Sub-sequences are sampled from EpisodicBank for training the TEM transition
model.

Action Encoding. The initial training scheme of the TEM transition model included
training on Sub-sequences in the form of {sτ1 , aτ1 , sτ2 , aτ2 , ...}, where aτ1 is the action taken
at time τ1 (i.e. the first action taken after memory sτ1). However, this system struggled to
learn meaningful dependencies between actions and next states, see Figure 17. Specifically,
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using a single action – that was made at the time-step of the preceding memory – to represent
an entire trajectory (consisting of an arbitrary number of actions) is not ideal.

Figure 17: Action-conditioned imagination roll-outs without action encoding. The initial
TEM transition model struggled to learn action-conditioned predictions. It can be seen that the
model does not differentiate between different actions very well.

Therefore, we implement a simple heuristic that is enough to provide the system with the
information about the entire trajectory taken by the agent. More concretely, the purpose
of the heuristic is to summarise a sequence of actions taken from one memory to reach the
next one. A sequence of actions, A = {aτ1 , aτ1+1, ...aτ1+(N−1)}, takes the agent from state sτ1
to state sτ2 , where the time between these states τ2− τ1 = N , and a ∈ {aforward, aright, aleft}.
We employ polar coordinates relative to the agent’s position in Cartesian coordinates at
time τ1 and perform iterative updates of its position after every action until the time-step
of the next episodic memory.

Agent’s position, p, is represented by a vector of x- and y-coordinates,

pt =

[
x

y

]
=

[
0

0

]
t=τ1

(32)

Polar coordinates are used to update position, p, after every action. This is done by
holding information about the agent’s orientation, θ, which is changed whenever the agent
makes a turning action, and calculating the next position in Cartesian coordinates whenever
an agent takes a forward action using,

pt+1 = pt +

[
sin θ

cos θ

]
(33)

Finally, when the agent’s final position is calculated, we retrieve an angle φ, as shown in
Figure 18. This angle is used to decide on the action that summarises the trajectory using

a =


aforward |φ| ≤ 22.5◦

aright 22.5◦ < φ < 180◦

aleft −22.5◦ > φ ≥ −180◦,
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excluding special cases. These include situations when the agent does not take forward
actions, for which the inference of a summarising action is trivial. A general example of
encoding a sequence of actions is shown in Figure 18. Although this heuristic showed
improvement, trajectory encoding is one of the most limiting parts of the TEM module and
is a promising direction for further research.

Figure 18: Calculating angle φ, in order to summarise a sequence of actions.

5.3 Memory Accumulation Inspection

Figure 19 shows examples of the recorded Sub-sequences during memory accumulation. It
is useful to study them in the context of the described characteristics our TEM transition
model was intended to have. First, we see quite a distinct slowing down and speeding up
of the timescale defined by these sequences (see red and green underlining). In particular,
the model tends to skip observations in situations when objects are far away, and increase
their frequency as objects get closer. Second, it is quite often that surprising events occur
in the Sub-sequences (see blue underlining). These events are important, as they provide
the TEM transition model with the ability to learn to predict interesting events given the
current state. For instance, in the shown Sub-sequences, the surprising events are all in
situations when an agent turns around from a wall and observes a green or yellow sphere.
As we discussed in the Motivating Scenario 2, if the TEM transition model learns to predict
a green or a yellow sphere in its imagination roll-out, it could provide the agent with an
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enhanced ability to take the correct action given its sub-optimal state, in which the baseline
agent would be prone to get stuck.

Figure 19: Examples of recorded Sub-sequences. The Sub-sequences are characterised by the
slowing and speeding timescale – depending on the context – and by the presence of surprising
events.
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5.4 TEM Imagination Roll-out Inspection

In this section, we analyse the qualitative results by studying imagination roll-outs produced
by the system under the TEM transition model. Importantly, we inspect the roll-outs with
respect to the two characteristics outlined in Section 5.1.

Subjective Timescale. First, we perform simple roll-outs in controlled configurations
for each type of sphere. Specifically, we test the model for its ability to speed up and slow
down the timescale depending on how far the objects are, as well as whether the action
encoding allows the model to learn action-conditioned predictions (the problem which was
shown in Figure 17). The retrieved roll-outs are shown in Figure 21.

The displayed TEM imagination roll-outs indicate that the model performs longer tem-
poral jumps when an object is farther away. This can be seen more clearly when compared
with the ground-truth roll-out shown in Figure 20. Similarly, the transition model tends to
slow down the subjective timescale when the object is closer. This is in line with what we
expected the model to do, and is explained by the fact that the system deemed states closer
to spheres more interesting during training. This trend appears to be systematic and can
be confirmed by studying random roll-outs shown in Figure 23 later in the section.

It can also be observed that the action encoding resulted in significantly improved action-
conditioned predictions. It can be seen that forward predictions result in the spheres getting
closer, while left- and right-action predictions move the spheres in the correct directions.
Interestingly, the left and right predictions for the red sphere diverge from the behaviour
of the model for yellow and green spheres. Specifically, the red sphere is much quicker
to disappear from imagination roll-outs. This can indicate that the model may have not
trained enough on these transitions, given that an active inference agent tends to avoid it.

One other interesting observation is the significant entanglement of the green and yellow
spheres. This is likely due to the similarity of their colours, forcing the autoencoder’s
bottleneck to keep their latent clusters close together.

Figure 20: The ground-truth observations given a forward action with a yellow sphere. This
is useful to study with respect to the subjective timescale learned by the TEM model – Figure 21
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Figure 21: TEM imagination roll-outs in controlled environments. The model learns to
predict further into the future, when objects are far away, and vice versa. Action-conditioned
predictions are also significantly improved with action encodings introduced in Section 5.2
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Imagining objects. Next, we investigate the model’s ability to imagine objects in
the roll-outs. As discussed, this property would be conducive for the agent’s ability to
make more exploratory decisions, when it is stuck in a sub-optimal state. It would also be a
natural consequence of the training procedure we employed, in which the system is trained on
entire sequences of surprising11 and temporally-dependent states. Figure 22 shows examples
generated in the first 50 random imagination roll-outs. We stress that these samples were
not selectively picked from a large number of roll-outs, rather they frequently occurred in
the produced sequences.

From these roll-outs, it becomes evident that the model is able to imagine objects given
an initial, uninteresting state. Moreover, the observations produced by the model are en-
tirely plausible given the path the agent is taking and the context it finds itself in. This
indicates that the TEM transition model does indeed produce semantically meaningful pre-
dictions. Furthermore, it is pertinent to note that the roll-outs comply with the physics of
the environment. One aspect that could be indicative of this is if the shape and brightness of
the walls change in accordance with the true physics of the environment; indeed, this is the
case in the provided roll-outs. This point is crucial, as it potentially refutes the hypothesis
that these imagined objects were predicted at random. If the model is able to predict a
plausible evolution of its surroundings given its action, then it is, loosely speaking, aware of
its environmental context. And given the intentional design of our model, the appearance
of these objects indicates that the model predicts these states as likely, given the initial
observation. It is also similar to how a human agent would treat the initial, uninteresting
observation – if there are no objects in the current frame, then they must be elsewhere.
This is in stark contrast to the original, slow transition model that is not able to imag-
ine objects that are not present in the initial frame. See Figure 37 in Appendix D, which
shows imagination roll-outs from the same initial states but using the objective-timescale
transition model.

Additional Examples. Lastly, before moving to the quantitative results, we provide a
few extra randomly generated roll-outs in Figure 23. Again, we note that these were picked
from the same batch of 50 randomly-generated roll-outs. Here, we similarly show that the
model is able to predict a much faster approach to spheres and slow its prediction timescale
when they are close. Similarly, the model is able to correctly predict the expected future
observations given an action in the respective direction. These are exemplified by the second
and last sets of roll-outs in the figure. One additional interesting observation that can be
made from studying these samples is the presence of disappearing and later re-appearing
objects. We believe, this can be attributed to the architectural nature of the TEM model.
Specifically, the TEM transition model is an autoregressive model, which means it encodes
information about the preceding states. If a sphere appears far away, the decoder is unlikely
to reconstruct it in the image given the insignificant signal in the latent space (i.e. the
bottleneck of the autoencoder). However, this small signal is likely to persist through time
and later increase as the TEM model predicts the sphere to get closer and bigger. As a
result, the TEM model has better representational power with respect to object permanence,

11Again, we note that surprising merely implies events with transition-model free energies above a certain
threshold.
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which is one of the major research focuses in the Animal-AI environment.

Figure 22: TEM model can imagine objects from uninteresting states. Arrows indicate
roll-outs with imagined objects. Given the initial state and the imagined observations, the system
will be less prone to go to a wall.
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Figure 23: Random roll-outs generated with the TEM transition model.
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5.5 Experimental Results

In this section, we investigate the quantitative performance of an agent equipped with
the TEM transition model. We first compare the TEM agent’s performance with the PRB
agent from Section 4, which we take as the baseline, using the same experimental setup.
Second, we test the system on a range of tasks analogous to those from the Animal-AI 2019
competition [12].

As mentioned, to compare the TEM agent to our baseline agent with PRB, we employ
the same experimental setup used to test on-line vs. PRB agents in Section 4.3. Recall that
we did not implement MCTS then due to the agents’ tendency to spend significant amount
of time at the walls. Instead, we employed model-predictive control (MPC) that would
allow the agent to re-evaluate its plan after every taken action. However, MPC struggles
from being computationally-expensive, and to which MCTS offers an efficient alternative.
Because the use of MCTS affords computational savings and biological plausibility, its im-
plementation in the final system is highly desirable. We show that our system equipped
with TEM transition model and the efficient MCTS algorithm outperforms the PRB agent
with MPC.

Importantly, we do not use the habitual network in MCTS to perform early action
selection12; thus, the model must rely entirely on the calculated values of the expected free
energy with respect to its generative model. As a result, the habitual network is used only
as a prior to search the tree of possible trajectories. This allows us to better understand
the performance of an agent’s generative model, of which the TEM module is a major part.
Appendices C.1 and C.2 include the MCTS hyperparameters chosen for the experiments. In
what follows, we compare the TEM agent equipped with MCTS (TEM-MCTS) against both
the PRB baseline agent using MCTS (PRB-MCTS) and MPC (PRB-MPC) for planning.

We stress that the compared TEM and PRB agents share the same autoencoder –
both the architecture and the network weights. Thus, the performance improvements can
more confidently be attributed to the main distinguishing component – the transition model.

Figures 24 and 25 summarise the experimental results. It can be observed that the TEM-
MCTS agent outperforms the other systems in acquiring more rewards within the 100,000
steps. In particular, we note that the TEM-MCTS agent showed significant improvement
against the baseline PRB-MCTS. This substantiates the analysed qualitative characteristics
of the TEM module in Section 5.4 and provides empirical support for the hypothesised im-
provements of the system. Similarly, we also show that TEM-MCTS model retrieves more
cumulative reward than the PRB-MPC agent, which uses a computationally expensive plan-
ning procedure, as mentioned earlier. Specifically, our agent achieves a higher cumulative
reward in less than half the time, ∼6 hours, compared to ∼14 hours for PRB-MPC. How-
ever, TEM-MCTS receives more negative rewards, which is a consequence of the fact that
re-planning of the agent’s actions occurs only after the entire pre-planned trajectory has
been executed. Therefore, MPC-based system is more able to avoid red spheres, as the
re-evaluation of its trajectory happens after every step.

12Recall that, in the original system with MCTS, an agent employed a habitual network to select an
action, if the habitual network was confident about its decision above a certain threshold, Tdec.
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Figure 24: Performance of the TEM agent compared to the baseline agents. The figure
shows the mean cumulative rewards collected by the agents (with one standard deviation over 5
runs), including the PRB agent with model-predictive control from Section 4.3. It can be seen that
the TEM-MCTS agent shows improved performance even when compared with PRB-MPC.

Figure 25: Mean number of rewards by category. TEM-MCTS agent collects more green and
yellow rewards than PRB-MCTS and PRB-MPC agents. However, PRB-MPC collects fewer red
rewards than TEM-MCTS, which is likely related to the ability of the former to evaluate its action
after every step. Black lines indicate one standard deviation over 5 runs.
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Specific Configurations Testing. Finally, we compare the performance of TEM-
MCTS against PRB-MCTS on a number of configuration maps analogous to those from the
2019 Animal-AI competition [12]. These tasks are characterised by the very limited episode
time (250 steps compared to 500 in our previous tests) and allow us to better understand
the agent’s performance given a number of fixed configurations. Both agents are tested 10
times on each configuration. Specifically, we use basic tasks like:

1. Green sphere ahead, Figure 26

2. Positional variations, Figure 27

3. Exploration tasks, Figure 28

4. Multiple foods tasks, Figure 29

As during training, the sphere size was set to 5, where possible.

The results in the figures below show that the agent with the TEM module significantly
improves against its baseline that uses the objective-timescale transition model.

Green Ahead. TEM system is able to successfully retrieve green rewards in Green Ahead
tasks (Figure 26). In contrast, the baseline agent begins to struggle with the tasks, once the
initial distance between the sphere and the agent increases. Once again, this confirms the
observed temporal jumps that the TEM agent can perform when a sphere is farther away,
thus incentivising the agent to go forward and not turn away from it.

Variations. The TEM agent similarly better solves Variations tasks (Figure 27). These
tasks require an agent to choose the correct direction of movement from the beginning, as
well as approach a relatively distant sphere in a limited amount of time.

Exploration. These tasks were significantly more challenging for both of the agents (Figure
28). However, the TEM agent still performs better than the baseline agent. By inspecting
the actual behaviour of the TEM agent, we found that it always turned around and was
almost never stuck at walls. This particular type of test provided more significant grounds
to believe that the TEM agent’s ability to imagine objects is able to remove it from the
sub-optimal state at a wall. In contrast, we emphasise a severely limited performance of
the baseline agent, which struggled with this very problem. Still, the TEM agent was often
not fast enough to reach the reward. Furthermore, we noticed that the TEM system was
more prone to turn right for exploration, thus performing worse on tasks where the correct
choice was to go left. Additionally, we note that both systems generally performed better
on yellow spheres, as their contrasting colour was better represented in the latent space of
the autoencoder and could be more easily recognised in the distance.

Multiple Foods. Multiple food tasks required an agent to be much more exploitative and
quick, given a fairly densely populated map (Figure 29). We observed the TEM agent to
be much better at going straight to a yellow reward once observed. This can be attributed
to its ability to imagine a much faster approach, which made its choices greedier and more
obvious during MCTS.
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On the other hand, over the course of this testing, it became clear that the overall
performance of the entire system is still quite limited. In particular, we emphasise two
hindering factors – the observation resolution and the autoencoder. For training, we used
observations of 32x32 pixels, which significantly restricts what the agent is able to see. For
instance, smaller spheres can only be seen when an agent approaches them really closely,
where as a relatively large sphere will take only one pixel of the entire observation, if far
away. Furthermore, the agent is still largely short-sighted, as the autoencoder is poor at
encoding and reconstructing small objects present in an image. These and other limitations
of the system will be discussed in more detail in Section 6.

Figure 26: Green Ahead : reward ahead.
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Figure 27: Positional Variations: reward ahead but in different positions.
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Figure 28: Exploration: turn around and get a reward.

Figure 29: Multiple Foods: get at least two yellow foods.
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6 Evaluation and Future Work

In this section, we provide a critical evaluation of the entire system, as well as its newly-
introduced constituent parts. We start by briefly summarising the main contributions and
results of this project. Next, we integrate the discussion about limitations with future
research directions, as the two are inseparably linked together.

6.1 Contributions

The main theme of the project was the integration of episodic memory into an active in-
ference agent. We proposed two methods based on the weak and strong forms of episodic
memory to improve the performance of the state-of-the-art baseline agent from Fountas et
al. [10].

Prioritised Replay Buffer. We reconciled the framework of active inference with the
pre-dominantly RL technique of prioritised sampling, which, to our knowledge, has never
been attempted before. Specifically, we performed a thorough analysis of the different
prioritisation strategies based on the values of the free energies, and empirically validated
the improvement in the agent’s generative model, and as a result of the entire system.

TEMModule. We proposed a novel approach to learning a transition dynamics model with
the use of episodic memory, which showed significant improvement in the active inference
agent’s performance on a number of tasks. Inspired by the problems of inaccurate and
inefficient long-term predictions in model-based RL and the recent neuroscience literature
on episodic memory and human time perception, we merged ideas from the different fields
into one new technique of learning a forward model. We demonstrated empirical evidence
of the system’s improved performance over its baseline counterpart, as well as exemplified
some important characteristics of the newly-devised system, such as the abilities to imagine
objects or to vary the speed of the prediction timescale. Furthermore, the application of
our technique is not limited to active inference, and has the potential for integration in
model-based reinforcement learning.

6.2 Limitations and Future Work

Overall System. The most striking limitation of the entire system is the size of the
input observations used to train our agent (only 32x32 pixels), which is certainly not enough
to get a good performance in the environment. This was largely exemplified by the results
of the agent on the original Animal-AI competition tests, in which small spheres did not
appear in the ground-truth observations even at very close distances. Similarly, even a
relatively large sphere would take up only one pixel of the entire frame, if placed sufficiently
far from the agent. Thus, the model would undoubtedly benefit from increasing the size of
its input.

This problem is further exacerbated by the relatively poor performance of the variational
autoencoder. Arguably, it is the most critical part of the entire system, acting as a bridge
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between the agent’s internal model and the outside environment. In particular, we refer to
the agent’s ability to encode observations into useful hidden state representations, and its
ability to decode hidden states into accurate imagined frames. The use of prioritisation with
PRB was an attempt to improve the quality of the generative model with respect to the
more important states in the environment, as well as to learn more object-centric represen-
tations. The results showed visible improvements; however, the system is still limited by
the intrinsic architecture of the autoencoder. For instance, the model struggled to represent
multiple or small objects in the same frame (Figure 30) and the proposed latent space reg-
ularisation is still not directly conducive to learning object-centric representations. For this
reason, we believe our system would benefit greatly from the more advanced autoencoding
architectures, such as variational autoencoders with discrete latent space [113] or slot-based
mechanisms [114].

Figure 30: Autoencoder struggles to reconstruct frames with small or multiple objects.

Furthermore, we stress the relative simplicity of the test configurations. Although, the
setup was specifically designed to be simple and sparse in rewards, we suggest further
experiments using more complicated tasks.

Prioritised Replay Buffer. Although the use of PRB yielded satisfactory improve-
ments – both qualitative and quantitative – a more rigorous analysis of its effects is required.
Specifically, in Section 4.2, we motivated the choice of the priority metric by inspecting the
sorted buffer of transitions and providing justifications for the most useful priority metric.
However, the explanations are limited to qualitative evidence and would benefit from more
mathematical and theoretically-grounded reasons.

TEM Agent. TEM transition model has a number of limitations that would, if ad-
dressed, yield a better performance. Firstly, the action-encoding heuristic significantly con-
straints the model’s applicability to more complex environments. This becomes evident if
we consider environments where the order in which the actions are taken matters (e.g. going
behind a wall). The current action encoding does not take this into account, resorting to a
very simple summarisation technique instead. Thus, a promising direction of research is to
come up with a more principled way to encode entire trajectories, which would additionally
include information about action ordering. Here, segment-based approaches [14] discussed
in Section 2.2.3 are of particular interest.
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Secondly, the threshold for forming episodic memory was chosen manually by inspecting
the distribution of surprise values in the buffer. Because the threshold is fixed, memory
accumulation can have lengthy periods of no recorded memories. In turn, this limits the
system’s ability to learn the physics of the environment and can confuse it given that no
clear temporal relation between two events can be traced. Here, the system could benefit
from a dynamic, exponentially-decaying threshold as implemented in Fountas et al. [105],
which allows for a more temporally-equidistant formation of memories. For instance, in
the absence of anything surprising, the threshold would slowly decay, allowing the system
to form a memory. However, more work would need to be done to preserve the slowing
and speeding of the subjective timescale, which is a necessary characteristic of the devised
transition model.

Thirdly, the TEM model’s ability to imagine objects could potentially be related to its
autoregressive nature, as opposed to the characteristics of the collected memories. There-
fore, we suggest further tests against an active inference agent equipped with an objective-
timescale autoregressive dynamics model.

Next, we believe the system would greatly benefit from imagination roll-outs given the
entire history of states observed in an episode. Although the current model is autoregres-
sive, its initial hidden state in a roll-out is taken as the current state of the agent in an
environment. Specifically, the zeroth (h0) and the initial (h1) LSTM hidden states in a
roll-out are actually:

h0 = 0, (34)

h1 = fθh(s̃1, a1, h0), (35)

where s̃1 is the last state observed by the agent in the environment, and a1 is the first
action taken in the imagination roll-out. Here, the tilde above the state variable is used to
denote states that were observed in the environment, rather than imagined.

All the next LSTM hidden states are calculated via iterative application of function fθh
discussed in Section 5.2:

ht = fθh(st, at, fθh(st−1, at−1, ht−2)), (36)

Importantly, we see that the roll-out is performed only with respect to the last-observed
state and all the following imagined states. Ideally, however, we want the agent to make
imagination roll-outs with respect to all the preceding states it observed in the environment,
such that:

h0 = hepisode, (37)

h1 = fθh(s̃1, a1, h0), (38)

where hepisode is the LSTM hidden state calculated from the sequence of all previously
observed states in an episode. This way, we expect the transition model to have a better
predictive power, given that it would have more information about the agent’s preceding
observations.
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Lastly, the current implementation of the TEM agent relies on having a separate objective-
timescale transition model. As we saw, this transition model is used to collect episodic
memories that are later used to train the TEM transition model. Having two separate net-
works working asynchronously may not be the most computationally-efficient and elegant
way to achieve the goals we set out. An appealing future direction of research could include
having a single autoregressive transition model that slowly transitions from training on an
objective timescale to training on a subjective timescale, as the memory formation proceeds.
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7 Conclusion

In this project, we introduced two ways of integrating episodic memory into an active
inference agent. In particular, we implemented two systems that effectively addressed the
questions outlined in the beginning of Sections 4 and 5:

Section 4: Given the baseline architecture outlined in Section 3, what data should
our on-line agent train on?

Section 5: Can we come up with a principled way to learn the transition dynamics
model over a more useful, subjective timescale of the environment?

Section 5: Can we learn a transition dynamics model that is capable of imagining
‘novel’ observations in the future?

We started by using a weak form of episodic memory, in order to have better control of
what our generative model learns. We integrated the idea of prioritised experience replay
with the framework of active inference, which proved to be an effective way to improve
the agent’s performance. Specifically, we found that prioritising data with higher values of
transition-model free energy was conducive for learning the more important features of the
environment.

In the second part of the report, we considered how the temporal information of the
memories could be employed to answer the latter two questions. As a result, we developed a
novel technique for learning a transition dynamics model over a subjective timescale, which
exhibited interesting characteristics useful for solving tasks in the Animal-AI environment.
We found that the learned subjective timescale provided the agent with better means of
making more informed decisions in the environment. We similarly showed that the new
model was capable of imagining novel future scenarios.

Our work has once again demonstrated the practical value and the extent of applications
of episodic memories. Furthermore, by applying techniques that have been primarily used
in the field of RL to active inference, we are slowly making steps to bridge the gap be-
tween the two fields, which in reality share lots of similarities. Additionally, we believe this
project can provide strong grounds for future research on learning subjective-timescale tran-
sition models. As mentioned, these models more closely mimic the characteristics of human
time-perception and can provide more flexible, informative and computationally-efficient
predictions of the future.
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A Implementation of Prioritised Replay Buffer

Prioritised Replay Buffer (PRB) is used to save experienced transitions and sample them at
training proportional to a chosen metric (Section 4). Our implementation of PRB consists
of three main components:

1. SimpleMemory class that stores all the information about a single transition needed
for training the networks.

2. Data structure to store a large number of SimpleMemory objects (100,000) and to
access them efficiently at sampling.

3. Efficient sampling algorithm that allows sampling the transitions in O(logN).

The SimpleMemory class is a weak form of episodic memory that only stores informa-
tion about a single given transition and, thus, does not incorporate any information about
temporal dependencies within an episode. As such, SimpleMemory has the following at-
tributes: i) preceding observation (o0), ii) action taken after observing o0 (a0), iii) following
observation (o1), iv) individual free energies produced by each network at the latest training
iteration with this transition (Fh, Ft, Fa)13. The values of individual free energies are used
for priority sampling, depending on the sampling mode chosen.

To store these objects in an efficient manner, we use a collections.deque structure, which
allows for memory-efficient appends and pops in O(1), as opposed to O(n) for a normal list
[129]. We also specify the maximum length of the deque at 100,000.

To sample from a deque of 100,000 transitions, we implement a fast sampling method
with the use of a data structure called sum-tree [78]. Sum-tree is a binary tree structure,
where the values of the children of a node sum to the value of a node, see Figure 31. The
values of the leafs correspond to the corresponding metric chosen (e.g. free energy values of
the transition model); hence, the top node is a sum of all free energy values in the buffer,
Fsum.

Figure 31: Sum-tree structure. The leaf nodes represent the free energy values of each transition
in a buffer. The value of each parent node is a sum of its children.

13h refers to the habitual network, t refers to the transition model, and a refers to the autoencoder
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Sampling from this data structure is done by first sampling from a uniform distribution
v ∼ U(0, Fsum). Then, the structure is traversed downwards, in an iterative way, by first
considering the left-hand child and comparing whether the sampled value, v, is less than
the child’s value. Once this condition is met, the algorithm moves to the right-hand child of
the node where the condition has been met, and subtracts the left-hand child’s value from v

(such that in the next steps v = v−childleft). It then continues in the same iterative fashion
until the bottom of the tree. When the algorithm reaches a leaf node, it retrieves its index
(i.e. its location in the buffer), accesses it in the buffer, and places it in the next training
batch – Figure 34. Our implementation was also inspired by [127].

Figure 32: Simplified example of sampling in the sum-tree structure. Iterative sampling
algorithm path (blue) reaches a leaf node, which refers the algorithm to a slot in the buffer.

Figure 33: Resulting sampled batch distribution shifts towards higher values of free energy.
Orange: probability density function (pdf) over the entire dataset; Blue: pdf over a single sampled
batch with prioritisation.
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B Additional results of On-line vs. PRB comparison

Figure 34: Reconstruction Comparison of On-line vs. PRB agents. These results showcase
the improved performance of the autoencoder that was trained with PRB vs. the on-line approach.
Original observations (on the left) were passed through the compared autoencoders (columns on
the right).
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C Architectural Details

C.1 On-line and PRB Agent

The on-line and PRB agents shared the same baseline architecture and training hyperparam-
eters. As mentioned, each component of the generative and inference models is parametrised
by feed-forward neural networks (including fully-connected, convolutional and transpose-
convolutional layers), whose architectural details can be found in Figure 35. The latent
bottleneck of the autoencoder, s, was made to be of size 10. The hyperparameters of the
top-down attention mechanism were: a = 2, b = 0.5, c = 0.1, and d = 5. Further, we
restricted the action space to just 3 actions – forward, left, right. For testing, we optimised
the MCTS parameters of the PRB-MCTS agent, setting cexplore = 0.1 and Tdec = 0.8. Fur-
thermore, we perform 30 simulation loops, each with depth of 1. The networks were trained
using separate optimisers for stability reasons. The habitual and transition networks are
trained with a learning rate of 0.0001; the autoencoder’s optimiser had a learning rate of
0.001. Both on-line and PRB agents were trained on batch size 50. All of the networks were
implemented using Tensorflow v2.2 [131]. Tests were performed in Animal-AI v2.0.1 [11].

Figure 35: Baseline agent architecture.
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As discussed, each network was trained with its corresponding loss function, which are
the constituent parts of the total variational free energy. In particular, autoencoder was
trained using Eqs. 26a and 26b, transition model using Eq. 26b, and habitual network
using Eq. 26c.

Furthermore, following the training procedure from Fountas et al. [10], we stabilise the
convergence of the autoencoder by modifying the loss function to:

Lautoencoder =− EQ(st)

[
logPθo(ot|st)

]
+ γDKL

[
Qφs(st)||Pθs(st|st−1, at−1)

]
(39)

+ (1− γ)DKL

[
Qφs(st)||N(0, 1)

]
, (40)

where γ is a hyperparameter that gradually increases from 0 to 0.8 during training.
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C.2 TEM Architecture

The TEM transition model was trained on batch size 15 and a learning rate of 0.0005. Each
batch consisted of zero-padded sequences with length 50. Further, we use a Masking layer
to ignore zero-padded parts of the sequences in the computational graph. The training
was stopped at 200k training iterations. For testing TEM-MCTS, we optimise the MCTS
parameters, setting cexplore = 0.1 and Tdec = 0.8. Furthermore, we perform 15 simulation
loops, each with depth of 3.

Figure 36: Additional networks introduced by the TEM module.
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D PRB Transition Model Imagination

Figure 37: The original, slow transition model is not able to imagine objects. As discussed
in the main body of the report, the slow transition model is not able to imagine objects appearing
in the frame as a direct corollary of how it is trained.
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