
MEng Individual Project

Imperial College London

Department of Computing

Energio: A New Hardware-based Energy
Benchmark Platform to Develop Energy

Ratings for Android Applications

Author:
Leszek Nowaczyk

Supervisor:
Dr. Anandha Gopalan

Second Marker:
Dr. Naranker Dulay

17th June 2020

Abstract

The pace at which battery technology progresses is not able to keep up with the demands of the
rest of smartphone hardware. As a result, there exist efforts to decrease power consumption for
mobile devices. Users are interested in maintaining a good battery life and want to understand
how their battery is drained. While energy ratings are easily accessible for household goods, energy
ratings for mobile applications are not. The creation of such rating is a new area and prior to the
commencement of this project only one other approach was tested - a software based approach
using Orka by a MEng student at Imperial.

In this project we create an energy benchmark platform that utilises a hardware based energy
measurement approach in establishing an energy rating. The platform allows users to benchmark
different applications against each other by uploading UI automation scripts that perform the same
actions for each application and comparing the energy used. The UI automation scripts are ran on
a Google Pixel 2 smartphone, while the energy consumed is measured using an Otii power monitor.
The scripts for each application can be grouped together based on the task performed to create a
benchmark that compares energy usage of the apps to create an energy rating.

Further to this a dataset analysis approach of GreenHub’s data is explored to see if gathering
energy used this way is a feasible alternative to hardware measurements. We tested two ways
of finding the average power used by applications - a discharge approach and a voltage current
approach.

In addition we validate the platform and the ease of creating new benchmarks using it by
creating a benchmark for 5 browsers and 5 Reddit application, and comparing the results against
the existing approaches. We found that out of the 5 browsers tested Opera performed the best
on the 10 tasks, followed by Google Chrome, Brave, Edge and Firefox. Out of the 5 Reddit
applications, in the 6 tasks tested rif is fun has performed the best, followed by Relay, BaconReader,
RedReader and the official Reddit app.

The results were partially validated with Greenspector’s hardware measurement findings, but
were uncorrelated with software approaches. The analysis of Greenhub’s dataset has given mixed
results. While the voltage current approach has shown better results than the discharge approach,
it still has a lot of variability across devices and does not give consistent results.

Acknowledgements

I want to deeply thank Dr. Anandha Gopalan for supervising this project, for his continuous
support, enthusiasm, regular meetings and constructive suggestions throughout my work. I would
also like to thank Dr. Naranker Dulay for his suggestions and advice for the project.

I wish to acknowledge the insight and help provided by Victor Boddy, Amine Halimi and Di-
mitris Moniatis in building my hardware setup, as well as Juan Manuael Artega for access to a
power monitor for testing the feasibility of my ideas earlier in the project.

I would also like to show great appreciation to Qoitech for providing their Otii Enterprise software
license for the purpose of this project and beyond for the department to use.

Finally, I would like to thank my family and friends who have supported me throughout the
pandemic to finish this project.

Contents

1 Introduction 5
1.1 Motivations . 5
1.2 Objectives . 5
1.3 Contributions . 6

2 Background 7
2.1 Battery technology . 7
2.2 Android Operating System . 8

2.2.1 Android Applications . 8
2.2.2 Android Debug Bridge . 8

2.3 Hardware Measurements . 9
2.4 Energy Models . 10

2.4.1 SEMO . 10
2.4.2 PowerBooter . 10
2.4.3 E-Surgeon . 10

2.5 Software Measurements . 10
2.5.1 GreenHub Project . 10
2.5.2 Orka . 11

2.6 Android UI automation tools . 13
2.6.1 UI/Application Exerciser Monkey . 13
2.6.2 DroidMate . 13
2.6.3 Monkeyrunner . 13
2.6.4 UI Automator . 13
2.6.5 AndroidViewClient and CulebraTester . 13

2.7 Rating Systems . 15
2.7.1 EU Energy Efficiency . 15
2.7.2 Google Play Store Rating . 16
2.7.3 Benchmarking . 16

2.8 Smartphone Energy Rating . 17
2.8.1 Aeon . 17
2.8.2 GREENSPECTOR App Mark . 17

3 Project & Implementation 19
3.1 Energio Overview . 19
3.2 Hardware Energy Measurement . 19

3.2.1 Device Choice . 20
3.2.2 Modifying the Google Pixel 2 . 20
3.2.3 Power Monitor Choice . 20

3.3 Energio User Interface . 23
3.3.1 Energio Architecture . 23
3.3.2 User Flows . 24
3.3.3 Technologies used . 25
3.3.4 Energio Pages . 27
3.3.5 Storage Models . 29
3.3.6 Upload File Structure . 31
3.3.7 Measurement Units . 32
3.3.8 Fair Benchmarking . 32

2

3.3.9 Energio Run Options . 32
3.3.10 Identifying Failures . 33
3.3.11 Integration Testing . 33

3.4 Battery dataset analysis - Greenhub . 33
3.4.1 Setting up a database . 33
3.4.2 Battery capacity of devices . 38
3.4.3 Battery capacity web crawler . 39
3.4.4 Summary . 40

4 Evaluation 41
4.1 Energio Results . 41

4.1.1 Building UI automation scripts . 41
4.1.2 Browsers . 42
4.1.3 Reddit Applications . 49
4.1.4 Establishing a rating . 49

4.2 GreenHub . 51
4.2.1 Google Pixel Results . 51
4.2.2 All devices Results . 52
4.2.3 GreeenHub Summary . 53

4.3 Greenspector . 54
4.3.1 Greenspector App Mark vs Energio . 54
4.3.2 Navigation Benchmark . 54
4.3.3 Kraken Benchmark . 54

4.4 Aeon . 55

5 Conclusion 57
5.1 Energio Discussion . 57
5.2 Future Work . 58

5.2.1 Testing more applications . 58
5.2.2 Continuous Integration Energy Readings . 58
5.2.3 Deploying the website in the cloud . 58
5.2.4 Support for other operating systems and devices 58
5.2.5 Django Channels . 58
5.2.6 Remote installation of APK packages . 59
5.2.7 GreenHub Database . 59
5.2.8 GreenHub Analysis . 59

A 60
A.1 Energio Pages Screenshots . 60
A.2 Greenhub SQL query . 62
A.3 Package Names and Version Codes of Applications Tested 63

A.3.1 Browsers . 63
A.3.2 Reddit Applications . 63

A.4 Top 100 most visited websites on mobile devices 64
A.5 Energio Results . 64

A.5.1 Browsing Top Websites . 64
A.5.2 JavaScript Benchmarks . 65
A.5.3 Graphics Benchmarks . 66
A.5.4 Performance Benchmarks . 66
A.5.5 Reddit Applications Energy Results . 67

A.6 GreenHub Results . 68
A.6.1 Browsers . 68
A.6.2 Reddit Applications . 72

3

List of Figures

2.1 Battery Technology Energy Densities, Source: Inventus Power 7
2.2 Mobile OS Market Share . 8
2.3 Simplified Battery Connection Circuit . 9
2.4 Simplified Power Supply Connection Circuit . 9
2.5 Greenhub Database Entity Relationship Diagram 12
2.6 Uiautomatorviewer . 14
2.7 Web View of Culebra Tester . 15
2.8 2021 EU Energy Rating Label, Source: buildup EU 15
2.9 Antutu Benchmark Score . 17
2.10 Google Play Score . 17
2.11 DXOMARK Score . 17

3.1 Automatic Hardware Measurement System . 20
3.2 Soldered capacitors to battery connector . 21
3.3 Insulated connector . 21
3.4 Phone powered by power supply only . 21
3.5 Test Power monitor setup . 21
3.6 Energio Architectural Diagram . 24
3.7 Final Energio Connection Setup . 28
3.8 Energio Index Page . 28
3.9 Energio Result Page . 29
3.10 Energio Database Entity Relationship Diagram . 30
3.11 Greenhub Query Database Entity Relationship Diagram 35
3.12 Greenhub Query Diagram . 35
3.13 Diagram of TOR web crawler . 40

4.1 Energio Browsers result: Browsing . 44
4.2 Energio Browsers results: JavaScript Benchmarks 45
4.3 Energio Browsers results: Efficiency Score JavaScript Benchmarks 45
4.4 Energio Browsers results: Graphics Benchmarks . 47
4.5 Energio Browsers results: Efficiency Score Graphics Benchmarks 47
4.6 Energio Browsers results: Performance Benchmarks 48
4.7 Energio Browsers results: Efficiency Score Performance Benchmarks 48
4.8 Energio Browsers result: All Benchmarks . 48
4.9 Energio Browsers result: Efficiency Score for All Benchmarks 48
4.10 Energio Reddit Applications Results . 50
4.11 DXO Mark Inspired Energy App Rating: Opera 51
4.12 EU Inspired Energy App Rating: Relay . 51
4.13 Greenspector - Browser Navigation source: https://greenspector.com/en/what-are-

the-best-web-browsers-to-use-in-2020/ . 55
4.14 Greenspector - Kraken Efficiency source: https://greenspector.com/en/what-are-

the-best-web-browsers-to-use-in-2020/ . 55

A.1 Energio Benchmarks Page . 60
A.2 Energio Benchmark Page . 61
A.3 Energio Otii Page . 61

4

https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/

Chapter 1

Introduction

1.1 Motivations

With the growing awareness of energy consumption and its implications on both the environment
and costs, people have been investigating ways in which to increase the energy efficiency of tasks
or products. This applies especially to the smartphone industry, where the limited improvements
in battery technology have forced engineers, developers and users to consider energy efficiency
when designing mobile software or hardware. Research has shown that users are conscious of their
battery usage, with applications that are energy wasteful receiving a lower rating on Google Play
store [1]. Other findings also show that users want to understand how their battery is drained and
how they can control it [2].

While there exist wide spread energy ratings for housing, white goods or cars, there is a clear
need for an energy rating system for smartphone applications that allows users to apply the same
energy conscious mindset when installing applications.

Another motivation for establishing an energy rating is that research shows that the worldwide
energy consumption of smartphones is as high as 0.6% [3], and that mobile applications contribute
to at least 6% of global digital CO2 emissions [4]. Therefore establishing an energy rating that
could have even the slightest impact on energy usage could have significant implication on the
global scale.

1.2 Objectives

This project aims to provide energy transparency to app users, by creating an energy benchmarking
platform that can be used to create an energy rating for Android applications. Such a platform,
would allow developers to assess how energy efficient their application is relative to competitors and
allow an energy rating to be created. As the end goal it would allow users to make more conscious
decisions about the applications they install and push developers to think about improving their
energy rating and having energy in mind when building applications.

While hardware energy measurement techniques have been developed, there have been no
attempts prior to the commencement of the project at using these measurements to establish an
energy app rating. Since hardware measurements measure power consumed directly, they are the
most accurate way of measuring energy. The feasibility of creating a benchmarking solution and
a supporting UI automation process should be tested. Applications across the same category can
be tested for battery usage when running the same tasks on the same hardware. In particular
browsers and Reddit applications are a good category to start testing since they provide users with
similar functionality. The results of these relative measurements can serve as a means to calculate
the power used and establish an energy rating.

To asses the benchmarking platform, not only can results from past research be considered, but
also a data analysis approach taken on an existing battery usage dataset. While results from such
analysis estimate the usage, enough data points can give an idea of how energy efficient an app is.
Approaches of extracting power from the dataset have to be explored and a query built to extract
the average power for a given application.

5

1.3 Contributions
1. This project introduces Energio - the first hardware-based energy benchmark platform that

can be used for energy measurment and establishing energy ratings for Android applications.
Energio allows users to upload UI automation scripts to get the energy usage over time and
the average power used. By uploading scripts that accomplish the same tasks on different
applications, the average power used can be compared to create benchmarks.

2. Energio is available at http://energio.co.uk/ (only when the server is running on a computer).
The website allows developers to get hardware energy usage without needing to know the
hardware implementation or having access to the physical device.

3. Two categories of applications, browsing and Reddit applications, are benchmarked using En-
ergio to show the feasibility of the platform. Five applications in each category are compared
against each other and are given a rating in Section 4.1.4.

4. The Greenhub battery usage dataset is explored to show an alternative software based ap-
proach to getting energy usage of applications. In particular two approaches of gathering
average power used for applications were explored - a battery discharge approach and a
voltage current approach. Queries built in this project can serve as basis for future dataset
exploration. Results can be seen in Section 4.2.

5. Energio is open source and available at https://github.com/kyczawon/energio. This gives
others the opportunity to build on top of the platform and findings in this report. It also
allows developers using the platform to understand why anything might have gone wrong
and allows the community to better understand how Energio works.

6

http://energio.co.uk/
https://github.com/kyczawon/energio

Chapter 2

Background

2.1 Battery technology

While the processor speed, memory size and disk capacity is experiencing growth at Moore’s law
level, improving by factors of 800, 120 and 200 respectively between 1990 and 2003, in the same
period of time battery density hasn’t even tripled [5]. This is due to chemical limitations of different
energy storing compounds, which is illustrated in Figure 2.1. As a result, today’s battery capacity
is governed by battery volume, which is directly correlated with device screen sizes [6].

Because of these energy limitations, the mobile CPU market has been dominated by the energy
efficient ARM CPUs. As software becomes more complex and the hardware demands increase
(such as with the introduction of 5G), CPUs have to not only cope with increased performance,
but also meet these energy constraints.

Figure 2.1: Battery Technology Energy Densities, Source: Inventus Power

7

2.2 Android Operating System

Android is a mobile operating system based on a Linux kernel. The company creating the system
was acquired in 2005 by Google and the Android Operating System was released in 2007. The open
source nature of Android, the fact that it can be used in modified form, enhanced or redistributed
royalty free[7] and the backing of Google has helped it become the market leader. As of May 2020,
it has a 72.6% market share as seen Figure 2.2 [8]. The latest version of Android is Android 10,
which was launched in September 2019.

0

10

20

30

40

50

60

70

80

90

05/19 06/19 07/19 08/19 09/19 10/19 11/19 12/19 01/20 02/20 03/20 04/20 05/20

M
ar

ke
t S

ha
re

 (%
)

Mobile Operating System Market Share Worldwide

Android iOS Other KaiOS

Figure 2.2: Mobile OS Market Share

2.2.1 Android Applications

Android applications (apps) are bundled into an Android Package (APK) that contains the com-
piled code for different ARM, x86 and MIPS architectures, as well as other files such as assets,
resources, classes.dex that provide more information and files needed by the application to be
installed and ran.

2.2.2 Android Debug Bridge

Android Debug Bridge (adb) is a command line client-server program that serves as means of
communication with the Android device. It has three components:

1. A client that runs on the development machine. An adb command invokes the client.

2. A daemon (adbd) that runs commands on a device. It is a background process on every
device.

3. A server that manages the transfer of data between the client and the daemon. It is a
background process on the development machine.

When adb is run, an adb server is started (if not running already), which listens on TCP port
5037 for a command from an adb client. It automatically searches and establishes TCP connections
to all deamons running on ports 5555 to 5585. Adb can be run over a USB connection or Wi-Fi.
In both cases, USB debugging needs to be allowed on the Android device in programming settings.
To connect over Wi-Fi, the target device needs to be set to listen on the port 5555 by sending an
adb command adb tcpip 5555 over USB cable.

8

2.3 Hardware Measurements

The most accurate way of measuring the battery consumption on a device is by directly measuring
the power consumed with the help of a power monitor or a scope.

To be able to measure the power consumed by a phone there needs to exist a way to connect
to the positive and negative connections of the battery. However, newer phone batteries come
with custom connectors, where tapping onto the relevant pins is very difficult. As a result it is
easier to take apart the battery and detach it from the custom connector that connects it to the
motherboard. The power monitor connection leads can then be soldered onto the place where the
battery is normally connected and measurements can be made. However, while this solves the
problem of connecting measurement apparatus, it has taken a source of power away.

It is much safer to use an external power source rather than trying to connect the battery back
to the leads. In fact, the already soldered connection leads can be connected to both a power
monitor and a power supply at the same time. However, as it turns out smartphones will not boot
with this setup.

The phone needs more current during boot up than during normal operation and the current
needed quickly changes. Due to the long leads a high loop inductance is created. The drop in
voltage across an inductor is represented by the equation V = L di

dt . As the spikes in current have
high frequency, di

dt is large resulting in a voltage drop too high for the phone to handle.
Figure 2.3 shows a simplified circuit when a battery is normally connected. As the connection

leads are very short, the inductance is very small and the phone is able to handle the voltage drop
across the inductance of the wires during high frequency spikes.

However, when long connections in the form of leads are used, to allow the phone to boot,
capacitors have to be added to form a circuit like in Figure 2.4. The right side of the circuit
mimics the circuit with short connections before, as long as the capacitors are placed as close
as possible to the load (phone). The capacitors will then be able to provide the instantaneous
changes in voltage when the voltage is dropped. Also to decrease the effects of the equivalence
series resistance (ESR) and equivalence series inductance (ESI) of the capacitor, the capacitors can
be placed in parallel.

Qoitech, a company that has tools to help measure mobile energy consumption, recommends
0.5 Farads of total capacitance with voltage rating of at least 50% higher than is expected to be
supplied [9].

Figure 2.3: Simplified Battery Connection Circuit

Figure 2.4: Simplified Power Supply Connection Circuit

9

2.4 Energy Models
Energy models are a mathematical approach to estimating the battery usage of mobile apps based
on available software indicators. They do not require any hardware, however most models are
specific to a particular device and therefore scaling this energy estimation technique becomes
difficult.

2.4.1 SEMO
SEMO [10] developed by Ding et al. is a monitoring tool that uses the state of the battery such
as power remaining or temperature of the battery to estimate the power usage of different apps.
The SEMO system comprises of:

• an inspector - warns users if the battery is in an undesired state

• a recorder - records the battery usage every minute

• an analyzer - uses the battery data saved to analyze the predicted battery usage and can
rank apps accordingly

2.4.2 PowerBooter
PowerBooter [11] is a power model construction technique that relies on battery voltage sensors and
knowledge of battery discharge behavior. The authors of PowerBooter also claim that implementing
new models for new devices is simple with PowerBooter. PowerTutor uses the models generated
by PowerBooter to do online power estimation.

2.4.3 E-Surgeon
There has been a lot of research conducted in the field of energy models. One such solution is E-
Surgeon [12] by Noureddine et al., which consists of a system monitoring library called PowerAPI
and a software monitoring agent called JALEN. PowerAPI supplies E-Surgeon with information
about hardware devices and JALEN uses bytecode instrumentation to estimate (in real-time) the
power consumption of a Java application.

2.5 Software Measurements

2.5.1 GreenHub Project
GreenHub is an open source project that relies on crowd-sourcing to gather battery usage data
from users who install the GreenHub BatteryHub Android app. To encourage regular users to
download it, the app offers real-time battery statistics and monitoring of the current status of the
phone. As users use the app, information about their battery usage is uploaded to the GreebHub
servers.
The project provides developers with 2 tools to access the following data:

1. GreenHub Farmer - provides REST API to query the dataset as well as the option to
download the whole dataset as csv.

2. GreenHub Lumberjack - a command line tool that allows the user to more easily query
the REST API.

At the time of writing the downloadable dataset was last updated in August 2019 and contains
over 38 million samples. The structure and all fields available in the GreenHub dataset are shown
in the entity relationship diagram in Figure 2.5.

In summary, GreenHub contains the following tables:

1. Devices - information about the devices enrolled - model, manufacturer, version, whether it
is rooted etc.

2. Samples - acts as a join for the rest of the tables, but also contains generic information
about the sample such as battery_level, memory occupied, timestamp etc.

10

3. App Processes - contains detailed information about applications running at a given sample
- application name, where it is running (foreground, service etc.), version etc.

4. Settings - information about system settings such as Bluetooth, power saver, location, NFC,
flashlight etc.

5. CPU Statuses - detailed information about CPU - CPU utilization, up time, usage etc.

6. Storage details - detailed information about CPU - size of storage, how much is free etc.

7. Battery details - information about the state of the battery, such as current information,
health, voltage etc.

8. Network details - network information, such as signal strength, speed, status of both Wi-Fi,
mobile network etc.

This dataset is growing every day (although the downloadable dataset was last updated in
August 2019) and by analyzing the different statuses and processes it has the potential to serve as
a basis for an energy app rating.

2.5.2 Orka
Orka is a software energy estimation technique that uses the findings of Linares-Vasquez et al [13]
who found that the majority of energy is spent calling the Application Programming Interface
(API). Orka uses 807 API call energy cost estimates to estimate battery usage of an app. Orka
was developed by B. Westfield in 2015 [14] to provide feedback on app energy drain at method
level. Then in 2018 it was extended by A. Cornet to provide feedback at source-line level [15].
Orka works by asking a developer to provide a monkey runner script that represents typical use
of an application. It then uses bytecode analysis and performs log injection by decompiling and
recompiling the APK file. It runs the APK file on an emulator or physical device, builds an
execution trace based on logs, and monitors other information such as BatteryStatsInfo.bin or
network usage, to access hardware costs of running the app. At the end of execution Orka outputs
2 CSV files that show the estimated hardware and routine costs of running the app through the
provided scenario.

11

1

*
1

*

1

1

1

1

1

1

1

1

1

1

samples

id int

device_id int

timestamp timestamp

app_version int

database_version int

battery_state int

battery_level double

memory_inactive int

memory_free int

memory_user int

triggered_by text

network_status text

screen_brightness int

screen_on bool

timezone text

country_code text

created_at datetime

updated_at datetime

app_processes

id int

sample_id int

name text

application_label text

is_system_app bool

importance text

version_name text

version_code int

installation_package text

created_at datetime

updated_at datetime

settings

id int

sample_id int

bluetooth_enabled bool

location_enabled bool

power_saver_enabled bool

flashlight_enabled bool

nfc_enabled bool

unknown_source bool

developer_mode bool

created_at datetime

updated_at datetime

cpu_statuses

id int

sample_id int

usage double

up_time int

sleep_time int

created_at datetime

updated_at datetime

storage_details

id int

sample_id int

free int

total int

free_external int

free_system int

total_system int

free_secondary int

total_secondary int

created_at datetime

updated_at datetime

devices

id int

uuid text

model text

manufacturer text

brand text

product text

capacity text

kernel_version text

is_root bool

created_at datetime

updated_at datetime

network_details

id int

sample_id int

network_type text

mobile_network_type text

mobile_data_status text

mobile_data_activity text

roaming_enabled bool

wifi_status text

wifi_signal_strength int

wifi_link_speed int

wifi_ap_status text

network_operator text

sim_operator text

mcc int

mnc int

created_at datetime

updated_at datetime

battery_details

id int

sample_id int

charger text

health text

voltage double

temperature double

capacity int

charge_counter int

current_average int

current_now int

energy_counter int

created_at datetime

updated_at datetime

Figure 2.5: Greenhub Database Entity Relationship Diagram

12

2.6 Android UI automation tools

For the purpose of hardware benchmarking, apps of the same category have to be tested for energy
consumption based on the same tasks. To speed up the process of gathering energy measurements
and make the task execution consistent, scripts have to be written for each app which navigate
through the UI. There exists a wide range of existing UI automation tools which can help solve
this problem. Since benchmarking aims at testing apps without having the source code, the UI
automation tool has to work reliably in a black-box scenario.

2.6.1 UI/Application Exerciser Monkey

The Monkey [16] is a command line tool that is capable of generating pseudo-random user events
such as clicks, touches, or gestures, and some system-level events.

The tool is configurable with settings such as:

• number of events executed

• type of events and frequency

• debugging options like ignoring crashes or timeouts

• operational constraints, such as limiting the tool to a package

2.6.2 DroidMate

DroidMate [17] is a fully automated UI tool that explores the app. In contrast with Monkey it
does not just perform random events, but instead reads the runtime GUI and makes a decision
on what event to click based on the exploration strategy set out. It continues execution until the
stopping criteria has been met. Droid mate can be run as both a command line tool or through
its Java API. As input it takes an Android APK and as output it provides a serialized Java object
that represents the exploration.

2.6.3 Monkeyrunner

Monkeyrunner [18] is a command line tool that runs Python scripts that use the Monkeyrunner
API to control an Android emulator or physical device. Scripts written using Monkeyrunner can
control multiple devices at the same time and provide keystrokes to each device. Then by taking a
screenshot and comparing it to a saved known correct screenshot it can evaluate whether the test
has run correctly. The actions can be recorded in an Android emulator or on physical devices by
running the provided monkey_recorder [19]. This speeds up the process of creating the Python
script.

2.6.4 UI Automator

Uiautomator [20] is a UI testing framework that allows for black box-style automation by targeting
UI components currently displayed on the screen. Uiautomatorviewer, shown in Figure 2.6, is an
accompanying program that allows a user to inspect the UI components that are in the foreground
on the device. The framework provides a UiDevice class that can be used to access and change
device properties, such as device orientation or display size. It also allows simulating a hardware
key press, pressing the Back, Home, or Menu buttons, opening the notification drawer or taking
a screenshot. UI Automator also exposed an API which developers can use to interact with and
manipulate the UI.

2.6.5 AndroidViewClient and CulebraTester

AndroidViewClient is a Python tool that uses UiAutomator as the back end to run automated
tasks. Scripts written using the framework target UI elements with UIAutomator BySelectors,
meaning views can be targeted with IDs or by text they contain. It also allows interaction with
adb and comes with Culebra Tester [21], which is a UI automation tool that allows recording a
sequence of moves. Culebra Tester works through a Culebra Android App installed on the target

13

Figure 2.6: Uiautomatorviewer

device and then using a web UI (as seen in Figure 2.7) on the computer to interact with the mobile
phone UI. The sequence of the UI clicks can be saved and the test can be run.

Culebra Tester supports exporting the sequence of events into a UI Automator Java or Android-
ViewClient Python file, effectively speeding up the process of building UI Automator framework
files.

14

Figure 2.7: Web View of Culebra Tester

2.7 Rating Systems

2.7.1 EU Energy Efficiency

Since 2010, The EU requires products like refrigerators, televisions, air conditioners or washing
machines to have an energy label that ranks products based on their energy usage on the scale
A-G. Currently, once most products reach the rank A in a particular category, additional A+,
A++, and A+++ ranks can be added. However, from 2021 these additional ranks will be removed
as they caused confusion for consumers [22]. In 2021, new labels will be introduced too, providing
additional non-energy related information through pictograms. They will also contain a QR code
which acts as a link to the database that contains more detail information about the product [23].
An example of the new labels, can be seen in Figure 2.8

Figure 2.8: 2021 EU Energy Rating Label, Source: buildup EU

15

2.7.2 Google Play Store Rating
The Google Play Store rating is calculated based on a star rating (between 1 and 5) that users
provide the app. Up until May 2019, it was calculated as the average of all scores throughout the
life of the app. However since then, the newer scores have been assigned a higher score to reflect
how the newer versions of apps have improved [24]. The rating is presented visually through the
use of colors - red which is naturally seen as stimulating and disagreeable is used to show negative
ratings, while green which was found to be quieting and agreeable is used for positive ratings [25]
[26]. As seen in Figure 2.10, in addition the total score is shown big in bold and the sample space
is shown below the rating.

When analyzing a large dataset such as the one GreenHub provides, the same logic could be
followed to give a better reflection of the how efficient the newer versions of the app are.

2.7.3 Benchmarking
Benchmarking is the process of of comparing performance of different programs based on specific
indicators. The biggest disadvantage of benchmarking is that by design it tests very specific tasks
usually in isolation. This means that if the benchmark method is revealed, different programs can
adapt to get better only in that particular area, effectively cheating the system to gain a better
score. To avoid this, benchmarking has to expand to as many indicators as possible to catch
programs that perform well only in particular scenarios.

One way to provide an energy app rating would be to keep factors such as hardware and tasks
constant, and compare how much energy apps use for those scenarios.

Antutu Benchmark

Antutu benchmark is the most popular benchmarking app in the world with over 10 million down-
loads. It compares the performance of different smartphones, by seeing how quickly it performs
tasks, at what level of detail and at what frame rate. It compares the performance of UX, GPU,
RAM, CPU, I/O. Each task is allocated a score, which can be compared with the performance of
other devices based on a ranking and percentage of ‘defeated users’. An example Antutu score for
Google Pixel 3 XL is shown in Figure 2.9.

DXOMARK Camera Benchmark

DXOMARK is a manual benchmark that checks the performance of different smartphone cameras
across the same scenarios for photos and videos. The engineers check for indicators such as exposure
and contrast, color, autofocus, texture, noise, artifacts, flash, and stabilization. Although this
manual testing is time consuming compared to automatic testing like Antuntu, due to its precise
measurements and transparent criteria, it is still considered as the leading way of comparing phones
for photo and video. The final score is calculated by taking a linear combination of the individual
scores and is represented by a number (current scores are around 100). An example of the score
for Huawei Mate 30 Pro 5G can be seen in Figure 2.11.

16

Figure 2.9: Antutu Benchmark Score

Figure 2.10: Google Play Score

Figure 2.11: DXOMARK Score

2.8 Smartphone Energy Rating

2.8.1 Aeon

Aeon [27] is a software based system, that is deployed as a web application whereby specifying an
app category and uploading an APK, an app energy rating is provided. Aeon calls Orka (which
has been extended to work with newer APIs) to estimate the energy used by an application. Aeon
creates an energy app rating by benchmarking against other crowd sourced energy results in the
same category. The rating is given in the same format as the EU Energy Efficiency rating.

Aeon allows the energy of the apps to be evaluated either with a supplied Monkeyrunner script
or by using DroidMate2 to automatically test the app. It then also creates a statement coverage
report using ACVTool to ensure that DroidMate2 automated exploration is representative and
comparable across apps.

The biggest drawback of Aeon’s energy rating system is that it currently is unable to provide
energy feedback for every app due to crashes. This is particularly true with obfuscated black-box
apps on the Google Play store. In the worst case, the authors of Aeon reported only 58% of the
applications to be successfully assessed.

The other disadvantage of using Orka as the underlying grading system is that it is based on
energy estimates for API calls from 2014, which with dynamically changing hardware and operating
system updates may no longer be accurate.

2.8.2 GREENSPECTOR App Mark

In November 2019, GREENSPECTOR, has launched the first efficiency indicator for mobile ap-
plications [28]. In its Playstore Efficiency Report [4], GREENSPECTOR judges applications based
on 5 criteria:

1. Inclusion - The application should work with older versions of Android, on older devices and
at unstable network conditions. It must also not exclude users with disabilities by complying

17

with accessibility standards.

2. Sobriety - The application should limit the amount of energy, resources (CPU, memory)
and network it uses.

3. Performance - Applications must be fast to launch and loading times should be acceptable
in all network conditions.

4. Discretion - The applications does not ask for permissions it does not need and has little
to no trackers.

5. Ecology - The CO2 impact due to usage of resources by the application and wear on the
components should be minimized.

A hundred data points across these categories are collected to come up with the overall ‘business
ecoscore’ out of 100 for the application.

A complementary ‘technical ecoscore’ also out of 100 is created by measuring the hardware
performance on the following 8 tasks:

1. First launch

2. Second launch that is representative of regular launches.

3. Idle foreground

4. Idle Background

5. Rotating the screen

6. State after closing the application

7. Application loading in 3G

8. Application loading in 2G

Greenspector has tested over 1000 applications from 30 categories across the Google Play Store
and published some of the results in their Playstore Efficiency Report. While the final rating is
revealed, the measurements and score for each category is not, making comparing applications on
the energy front not possible.

Further to the study, Greenspector has also released more detailed comparisons for browsers
[29], video conferencing [30], and social media networks [31]. All these studies also reveal the
battery usage as the discharge in mAh over the testing period.

18

Chapter 3

Project & Implementation

The purpose of the first part of this chapter is to go through the implementation details of Energio
- of how it works, what the technology used is and what design decisions have been taken. The
details about the hardware side of the project and the software side are provided. The chapter also
details how the platform is built to enable for gathering of benchmarks. The second part of this
chapter explores how the power used by applications can be extracted from the GreenHub dataset,
and the technical details of how to do so. The reasons for and implementation of a web scraping
script to fetch missing data are also provided.

3.1 Energio Overview

Energio is a benchmarking platform where users can upload Android UI automation scripts to
measure and compare the energy used by different applications. It groups together results in a
presentable way and creates graphs and tables of the results. The goal of the platform is to enable
developers to upload UI automation scripts to benchmark applications across each other without
needing to know the underlying hardware implementation details. Any failures from the script or
platform need to be displayed to the user. To achieve these tasks a way to measure the energy
consumption needs to be created, as well as a website platform that can serve as the user interface
to the system.

3.2 Hardware Energy Measurement

To perform hardware energy measurements on a phone, a custom power lead connection to replace
the battery of the phone has to be made as discussed in Section 2.3. These leads can then be
connected to the power monitor to measure the power used by the phone when running specific
applications. The process of performing these measurements can be automated by creating a
system, with steps as follows:

1. UI automation scripts are fetched from the user.

2. Before running a script on the device, the system should synchronize with the power monitor
to start the measurement.

3. The system runs the UI automation script on the device (scripts use Android Debug Bridge
command to communicate with the phone).

4. Once the script is done executing, the power monitor should be asked to stopped recording
and the results from the measurements fetched to be presented to the user.

Steps 2-4 need to be repeated for each user uploaded script. This system flow is illustrated by
Figure 3.1.

19

Power Montior
Negative Lead

Postive Lead
Phone

Windows UI automation
or

API commands
results Android Debug

Bridge Commands

Laptop

Figure 3.1: Automatic Hardware Measurement System

3.2.1 Device Choice

Google Pixel 2 1 was selected as the smartphone of choice as it still has Google software support
and as a result the latest version of stock Android - Android 10. It is a flagship released in October
2017, so it still has good specs in 2020 (Snapdragon 835 and 4GB RAM), while at the same has a
cost of around £100, which is feasible for this project.

3.2.2 Modifying the Google Pixel 2

To access the battery connector that needs to be modified, the screen of the Pixel 2 was first
detached with the help of a heat gun, then protection panels unscrewed to detach the battery.
Finally, to detach the battery connector, the battery itself was taken apart and the battery leads
were unscrewed from the connector.

As mentioned in Section 2.3 to allow the phone to boot 0.5 Farads of capacitance is recommen-
ded to be added to the connector. To have an extra margin of safety, 10 100µF capacitors 2 were
ordered and soldered in parallel to achieve 1F of total capacitance. The capacitors where soldered
on the board directly (to be as close as possible to the circuit), and in parallel, as seen in Figure
3.2. Finally, to avoid exposing an open circuit when the connector is plugged in, it was further
insulated as in Figure 3.3. The phone powered solely by a power supply is shown in Figure 3.4.

The phone cannot be connected to the computer with a USB C cable, because the phone would
be getting power from the computer, and the energy supplied and measured by Otii would be
significantly less. The cable itself cannot be modified to only have the data channel (cutting the
power), because the data channel relies on the power channel to know when a device is connected.
Therefore, to get good results from the power monitor, the phone has to be connected to the
computer through Wi-Fi adb, which slightly decreases the latency in sending commands.

3.2.3 Power Monitor Choice

The power monitor used for this project needs to be able to supply the 3.85V voltage that the
battery usually supplies, as well as current in the range of milliamps to a few amps that phone
draws. It also needs to be capable of logging the measurements (to match measurements to UI
automation scripts that are ran on the device), and have a high enough sampling rate to be able
to accurately measure the power consumption over time (at least 100Hz).

1https://www.gsmarena.com/google_pixel_2-8733.php
2Taiyo Yuden 1210 (3225M)

20

https://www.gsmarena.com/google_pixel_2-8733.php
https://uk.rs-online.com/web/p/mlccs-multilayer-ceramic-capacitors/1034219/

Figure 3.2: Soldered capacitors to
battery connector

Figure 3.3: Insulated connector

Figure 3.4: Phone powered by
power supply only

Figure 3.5: Test Power monitor
setup

21

Verification of hardware measurement

A power monitor with specifications above is not available in student electrical laboratories at
Imperial College. However, for the purpose of the project, the Power Research Group at Imperial,
gave limited supervised access to their Yokogawa WT332E power monitor. The power monitor
comes with WTViewerFreePlus software that is able to record data samples and export them into
a CSV file. Unfortunately there is no API that programmers can call to collect data. The phone
connected to this power monitor is shown in in Figure 3.5.

Despite no available API and the measurement software being only available for Windows, an
automated energy measurement system can still be created. This was done by using a Windows
GUI automation scripting language, Autoit 3, and the window info tool 4 that comes with it to
find the classNameNN properties of UI elements to reference. Using AutoIt allows to automate
clicks in WTViewerFreePlus to synchronize starting and stopping the recording as needed. The
software automatically creates a csv file after each run and this can be located at a specific path.

While using the power monitor from the Power Group verified that the automated hardware
energy measurement is feasible, the fact that the power monitor is used for research and can only
be used on request at specific time periods, makes the equipment a bottleneck for the project. Not
only would any benchmark software running on this power monitor not be open for use at all time
(due to availability), but it would also make the development and testing process really difficult.

Final Power Monitor Choice

As the proof of concept above worked it was decided to purchase a device for the use of this project
and beyond. While there are many choices for a power monitor that would fit the specifications
required, there are 2 available power monitors with an API that can be easily integrated into
automated tasks. The first, Monsoon5, is the more established in the field of energy consumption
with better hardware that is capable of producing a bigger voltage range and support higher
currents without the need of an external power supply. The second, newer, power monitor from
Qoitech, Otii 6, has a better software stack (supports any language that can communicate over
TCP sockets), but these features require an additional enterprise license. The full summary of the
specifications of both power monitors can be seen in Table 3.1 below.

After contacting Otii, the company agreed to provide the Enterprise license for the department
as long as this project can be featured on their website and future projects mention their name.
As Otii has more software features, while being cheaper, it was chosen as the power monitor to
buy.

3https://www.autoitscript.com/site/autoit/
4https://www.autoitscript.com/autoit3/docs/intro/au3spy.htm
5https://www.msoon.com/specifications
6https://www.qoitech.com/techspec

22

https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/autoit3/docs/intro/au3spy.htm
https://www.msoon.com/specifications
https://www.qoitech.com/techspec

Monsoon Otii
Price with
shipping

$974 £455

Sampling
rate

5 ksps 5 ksps below 19mA, 1 ksps otherwise

Voltage
and
Current
Ranges

0.8-13.5V, 6Amps continuous
current

0-5V, 0-2A continuous current

With External Power supply: 0-5V, 0-2.5A
continuous current, 5A peak current

Sampling
rate

5 ksps 5 ksps below 19mA, 1 ksps otherwise

Current
Accur-
acy

Fine current scale 1 µA: ±(0.1% + 50nA) for currents below 19mA
- +/- 1% or +/- 50 µA
(whichever is greater)

±(0.1% + 150µA) for higher currents.

Coarse current scale 100 µA:
+/- 1% or +/- 1 mA (whichever
is greater)

Voltage
Accuracy

not available ±(0.1% + 1.5mV)

API Python Python, Java, Matlab
GUI
environment

Windows Windows, Mac and Linux

Measuring
inputs

USB, Main channel Main Channel, Sense, ADC, GPO1, GPO2,
TX

Extra
features

USB channel can act as data,
External power supply AU

Battery profiling and emulation

Table 3.1: Comparison of Specifications of Monsoon and Otii Power Monitors

3.3 Energio User Interface

The Energio platform needs a way for people to interact with the system where they can easily
upload new scripts to be tested and view results from their previous benchmarking runs. As the
platform requires direct connection to the smartphone and the Otii Power monitor, the back end
needs to be running on the same computer. This gives 2 possible approaches to build such a UI -
a standalone program or a website. While a standalone program could be done using a technology
like Electron that allows the application to be portable across devices, it was decided to go with
the website approach. This is because if a web server is set up on the computer, the user interface
would be accessible from anywhere and not just available to the person with direct connection to
the hardware.

As a result, the Energio website was built and is available at http://energio.co.uk/ (only when
the host computer is on) and is hosted on a computer with direct connection to Google Pixel 2
and the Otii power monitor.

3.3.1 Energio Architecture

The website back end is built using Django and front end using Django Templates, HTML, CSS
and JavaScript. The website is hosted on the computer with NGINX acting as the web server and
uWSGI as the layer communicating between the Django and NGINX. Django-rq and Redis are
also used to allow tasks to be queued and executed asynchronously. Each of the technologies is
explained in detail in Section 3.3.3.

The Architectural Diagram of Energio is shown in Figure 3.6. The modules in purple (homebrew-
duckdns, NGINX, uWSGI, django-rq, Redis Server and Otii TCP Server) is software that is used
but not written for the purpose of the project. The modules in gray (Urls, Templates, View Logic,
Helpers, Run App Task, Model and Otii) are ones that contain code written to make the website
work, these are:

1. Urls - Contain the regex URL patterns that the website supports and tells Django which

23

http://energio.co.uk/

view logic element to execute.

2. View Logic - For each view (page), described in further detail in Section 3.3.4, the correct
models are loaded or created and the template module called to return the correct HTML
page.

3. Templates - For each page a Django template describes how the data passed from the logic
should be displayed and what actions are allowed for the user to interface with.

4. Helpers - A custom python module that handles unpacking zip files as well as queuing
benchmarks for execution.

5. Run App Task - A function that runs asynchronously on django-rq and controls the or-
der of execution, when controlling Otii and the Google Pixel 2. For each application task
combination, the function clears cache, closes applications, runs the initialization UI script,
starts Otii recording, runs the main UI script, gets results from Otii, creates graphs, CSV
files, and calculates the average power used by an application.

6. Otii - A module that groups Otii TCP Client commands into simple functions that perform
Otii functionality needed for measurement. This involves creating Otii objects and calling
the relevant functions for starting Otii, stopping Otii, starting a recording, and stopping a
recording.

Energio.co.uk

90.118.152.110
90.118.152.110:80

NGINX

uWSGI

192.168.1.136:8000

energio.sock

Templates

View Logic
Model

Urls

Helpers

Redis Server

Django
django-rq

Run App Task Otii

Android Debug
Bridge

Computer

User

Hardware

homebrew-
duckdns

SQL
database

 DNS

Google
Pixel

2

TCP server

Otii Power
Monitor

Otti TCP
Client

new IP

Figure 3.6: Energio Architectural Diagram

3.3.2 User Flows
The following user flows explain how the elements of the architecture work together, by going
through 2 typical user flows of the application. Arrows in the Architectural Diagram in Figure

24

3.6 show the data flow that results from user interaction. The technologies used are explained in
Section 3.3.3 and the storage models used in section 3.3.5.

User requests the website

1. The user request the IP address of energio.co.uk from the DNS server which returns the IP
address of the router of the network where the website is hosted.

2. The user then gets redirected to this IP address and the router forwards the request using
port forwarding to the NGINX 8000 port of the computers static local IP address.

3. NGINX is configured to redirect the user to the upstream uWSGI UNIX socket. It also has
the static file path and the upload configured to alias the correct location locally.

4. uSWGI runs Django and forwards the request to Django.

5. Django matches the incoming request against the Regex urls in Urls and executes the asso-
ciated View Logic.

6. The View Logic takes data from the model, displays it using Templates and returns the
response back to uSWGI, which is propagated back to the user through NGINX.

User uploads the benchmark

1. When a user uploads a zip file containing the benchmark files, a POST request is sent that
is handled by the View Logic.

2. The View Logic calls the Helpers to unpack all the files, create a new Benchmark model
object and add a Run App Task job to the django-rq queue.

3. The Run App Task module goes through each folder of the unzipped file to create a Task
object. Each folder contains UI automation scripts to be run for measurement named after
the application they are testing. A Result object is created for each script, and for each
unique application name in that benchmark a unique App object is created.

4. Before each script is run, depending on the user configuration, the cache of the application
is cleared, all applications closed and an initialisation script run.

5. Using theOtiimodule, a message is sent to Otii to start recording, the UI automation script is
executed on the phone through adb and the Otii recording is stopped once the script finishes.
The measurements are fetched from Otii in the form of Pandas frames. A Measurement object
for each samples in the measurement is created and the average power used appended to the
Results object. A screenshot is taken of the final state of the application, a Matplotlib graph
visualising the data is saved to a PNG file and the measurements are also stored in a CSV
file.

6. The cache of the application is cleared.

3.3.3 Technologies used

Otii

With its enterprise feature Otii [32] server allows control of Otii through a TCP socket with any
language that supports TCP communication. Otii provides wrappers available for Python, Java
and Matlab. Python was chosen in order to natively work with the Django framework.

Django

Django [33] is a Python web framework that follows the Model View Controller design pattern.
Django has models that contain the business logic of the application by using object-relational
mapping to hide away the database implementation. Views act as controllers handling HTTP
request and responses, while templates act as views that generate the HTML response. Django
has built in security measures to prevent security issues such as cross site scripting, SQL injection,

25

clickjacking or cross site request forgery [34]. It also comes with its own web server for development
and allows for building reusable modules (called applications) across different projects.

Django was chosen as the web framework for this project, because the rest of the stack (Otii
and UI automation scripts) is written in Python.

NGINX

NGINX [35] is a web server, but it can also act as a load balancer, reverse proxy or HTTP cache.
NGINX was chosen as the choice of web server as it is one of two recommended web servers by
Django (the other being Apache) and tutorials are widely available.

Duck DNS

Since the host computer does not have a static IP address accessible from external networks and
the router’s external IP address is dynamic, a dynamic DNS service needs to be used to provide
the correct IP address for external users.

Duck DNS7 is a free dynamic DNS hosted on AWS. Since the IP address of the router changes
the host computer needs to notify Duck DNS if the router’s IP address changes. On Mac OS this
can be done with a homebrew-duckdns which runs as a Homebrew service in the background. This
creates a DNS record at http://energio.duckdns.org/.

Domain Registration Service Settings

The domain http://energio.co.uk/ was purchased on https://www.123-reg.co.uk/. To link this
DNS record to the domain name, the CNAME record in the domain registration service is made
to point to http://energio.duckdns.org/.

Router Settings

It should be noted that in order for requests to be redirected to the computer from the router, a
static local IP address has to be assigned to the computer on the local network, and port forwarding
set up to forward requests to port 80 of router’s IP address to NGINX’s port 8000 of the computer’s
IP address.

uWSGI

uWSGI [36] is an implementation of the Web Server Gateway Interface (WSGI) Python standard
that is capable of running the Django application taking the requests from the web server and
returning responses from Django.

django-rq

Django-rq [37] is a Django application that uses the Redis Queue (RS) [38] python library to
handle asynchronous execution of python functions. The RS library requires a Redis Server [39] to
be running on the computer to allow for the asynchronous execution and communication to take
place. A Redis Server is a data structure store that acts as a database, cache and message broker.
To process the queue a Redis Server and rq-worker needs to be started, this can be done with a
redis-server and python3 manage.py rqworker respectively when in the Energio application
folder.

User Interface (UI)

Django templates are HTML pages with support for tags that can be used for introducing logic
while rendering. For example, loops, filters or if statements can be introduced based on the data
passed from the Django view. This allows to display elements from the models.

Any UI web framework that uses HTML, CSS and JavaScript can be integrated with Django.
For the purpose of this project the following two were used:

7https://www.duckdns.org/

26

http://energio.duckdns.org/
http://energio.co.uk/
https://www.123-reg.co.uk/
http://energio.duckdns.org/
https://www.duckdns.org/

• Bootstrap 8 - a front end framework that allows to style HTML elements and make them
interactive by adding classes to tags.

• Dropzone.js 9 - a library that provides a drag and drop feature to upload files.

Otii communication

Otii is connected to the host computer through a USB cable as shown in Figure 3.7. Commu-
nication with the Otii power monitor is done through Otii’s TCP server and the corresponding
Otii TCP Client Python module. To start the TCP server one needs to be logged into the Otii
Desktop Application 10 with an Enterprise licence. On start of the Otii application the TCP
server is started. Alternatively the Otii server can be started through the command line otiicli
--server --username <username> --password <password> command. The Otii TCP Client
Python module exposes a convenience function that can be called to interact with Otii from Py-
thon. The custom built Otii module that bundles Otii commands that are needed uses this TCP
client module.

Adb smartphone communication & power monitor connection

To avoid charging the phone through USB and affecting power measurements the smartphone
needs to be connected to the computer through adb over Wi-Fi. Firstly, usb debugging needs to
be enabled on the Pixel 2 to enable adb and then the phone needs to be connected once to run the
tcp server with the command adb tcpip 5555. Once this is complete, the phone can be unplugged.
Then adb needs to be connected using the following command adb connect <ip_address>:5555.
It is recommended to assign a static IP address to the phone from the router, so that the command
stays the same. Another reason for a static IP Address is that the Helpers module needs to know
the IP address, as it needs to reestablish connection in case the phone disconnects when running
a benchmark.

For power and energy measurements, the power leads of the phone need to by plugged into
Otii’s main channel as shown in Figure 3.7. The Otii module sets the voltage to 3.87V as opposed
to 3.85V supplied on average by the battery, in order to give some margin of safety.

3.3.4 Energio Pages

The Energio website currently has 6 pages, which allow users to upload benchmarks, view the
results from all past benchmarks and control Otii. Energio’s pages are in the list below with 2 of
the 6 pages in Figures below and the rest in Section A.1.

• Index (Figure 3.8) - The index page serves as the home page of the website. It allows
users to upload a benchmark with a drag and drop dropzone, select the category of their
benchmark, the execution program for the contained scripts and allows to choose options for
the benchmark - whether to clear cache, close all applications before running and whether
to run the initialisation scripts. The dropzone is created using the Dropzone.js library.
On pressing the submit button a POST request is sent to the same page which creates the
necessary data structures and queues all the scripts to run on the smartphone and the energy
to be measured by Otii.

8https://getbootstrap.com/
9https://www.dropzonejs.com/

10https://www.qoitech.com/download

27

https://getbootstrap.com/
https://www.dropzonejs.com/
https://www.qoitech.com/download

Figure 3.7: Final Energio Connection Setup

Figure 3.8: Energio Index Page

• All Benchmarks (Figure A.1) - Shows all of the past benchmarks in a Bootstrap table.

28

It gives an overview of the progress of each benchmark using a Bootstrap progress bar -
green represents tasks that are finished successfully, red represents tasks that failed and an
animated blue shows the task is currently running (not queued, finished nor failed). See
Section 3.3.5 for all possible states of a benchmark.

• This Benchmark (Figure A.2) - Shows the average power consumed for each task and
application in a Bootstrap table with tasks as rows and applications as columns. This makes
the power consumption comparable for across the benchmark. It also displays the same
progress bar for the current benchmark as in All Benchmarks page. It also displays the logs
for all of the task below the table.

• Result (Figure 3.9) - Displays the measurements collected by Otii in a table for that partic-
ular script, as well as displays graphs of the result and allows for a CSV download. It also
shows the screenshot of final state of smartphone after running the state, and has a toggle
button to show hide logs for this run.

• Otii Controls (Figure A.3) - This page serves as a simple way of controlling Otii - it allows
to turn the main channel to 3.87V required by the phone and turn it off. This page can be
hidden behind a log in screen to protect unauthorized people from interacting with the page.

• django-rq -A page created by the django-rq application that allows to see the RQ jobs cur-
rently enqueued and modify them. This page is behind a log in screen to protect unauthorised
people from interacting with it.

Figure 3.9: Energio Result Page

3.3.5 Storage Models
The uploaded zip file is stored on the /uploads folder of the web server. For each uploaded zip file
there are also reference database entries created, which have information about the benchmark, its
execution and the final results. The full schema of the tables in the database is shown in Figure

29

3.10 and explained below. The reason why Task and App table exist even though both could have
their fields in the Result table is for future extensibility where further information about tasks or
applications could be added.

1

*

1

*

1

*

1

*

1

*

1

*

Benchmark

id int

date datetime

category varchar(200)

file varchar(100)

name varchar(200)

clear_cache bool

close_apps bool

init bool

exec_prog varchar(12)

App

id int

benchmark_id int

name varchar(200)

Task

id int

benchmark_id int

name varchar(200)

Measurement

id int

result_id int

time real

current real

energy real

voltage real

Result

id int

benchmark_id int

task_id int

app_id int

result real

graph_path varchar(100)

screenshot_path varchar(100)

csv_path varchar(100)

status varchar(2)

message varchar(2000)

Figure 3.10: Energio Database Entity Relationship Diagram

Benchmark

When a user submits the files from the Index page, a Benchmark object is created with reference
to the file path, name of the benchmark, date when created and options selected - category
which is tested, whether cache should be cleared (clear_cache), whether apps should be closed
(close_apps), whether initialisation scripts should be run init and what execution program
should be run exec_prog. While exec_prog is stored as a varchar in the database, in Django’s
storage model it is an Enum with only the allowed programs - python2, python3, Java and mon-
keyrunner. This avoids potential attackers from running other programs on the host computer.
The Enum also maps the execution program to more details about the program and the framework
that should be run using it:

• monkeyrunner ⇒ monkeyrunner

• java ⇒ Java 1.8.0_241-b07 (UI Automator)

• python ⇒ python 2.7.16 (androidViewClient)

• python3 ⇒ python 3.7.4

Task

For each folder in the uploaded zip file a Task object is created with the name of the folder and a
benchmark_id foreign key to the benchmark.

App

For each unique file name across all folders an App object is created with the file and a benchmark_id
foreign key to the benchmark.

Result

For each file there is a Result object created that stores the final output of the benchmark -
result (average power used), graph_path, screenshot_path, csv_path, the status of running
the application, and message, which stores the output and errors from script execution. It also
has a foreign key benchmark_id to the benchmark, task_id to task and app_id to app to be able
to identify which application and task the result is for. Furhter to this status is an Enum that
maps 2 character strings to the current state of the application.

• QU ⇒ QUEUED

30

• ST ⇒ STARTED

• CC ⇒ CLEARING CACHE

• CA ⇒ CLOSING APPS

• RI ⇒ RUNNING INIT SCRIPT

• TS ⇒ TAKING SCREENSHOT

• SD ⇒ SAVING DATA

• FA ⇒ FAILED

• FI ⇒ FINISHED

Measurement

For each sample of the energy data recorded by Otii a Measurement object is created that contains
the time of the sample, current, voltage and energy measured.

3.3.6 Upload File Structure

For the uploaded zip file to be correctly executed on Energio it must have a predefined structure.
The zip file must contain folders with Tasks that will be compared across devices. Each of the
Task folders then needs to contain the UI automation scripts which are named after the applica-
tion package name they are testing. For example a script testing Google Chrome would be named
‘com.android.chrome.py’. If the option to use initialisation scripts is selected, the initialization
scripts must be named with ‘_init’ appended to the package name. For example a valid initialisa-
tion script for Google Chrome would be ‘com.android.chrome_init.py’. Files that are used across
benchmarks and should not be executed can be placed in the root of the zip file. For example, the
following structure would work when initialisation option is selected:

Browser Benchmark.zip
common.py
Browsing

com.android.chrome.py
com.android.chrome_init.py
com.brave.browser.py
com.brave.browser_init.py
org.mozilla.firefox.py
org.mozilla.firefox_init.py

Speedometer Benchmark
com.android.chrome.py
com.android.chrome_init.py
com.brave.browser.py
com.brave.browser_init.py
org.mozilla.firefox.py
org.mozilla.firefox_init.py

This structure is enforced in order to simplify the upload user interface to a single upload, and
to support an unlimited amount tests to run without clogging the user interface (the alternative
would be to let the user create task objects one by one and uploading files for each one). Also,
to be able to clear cache of the particular application that is tested the full package name is
needed in the file name. The alternative would be to clear the cache of all applications running,
but that adds about 2 seconds of time for each application installed on the smartphone, making
benchmarks take longer with no impact on the tested application itself (since other applications
are closed regardless).

31

3.3.7 Measurement Units

Otii Measures the total energy consumed over a time period in Joules (J). To compare the average
energy consumed over a set period of time it is more convenient to use the unit of power Watts
(W). The power can be calculated from energy using Equation 1.

Power (W) =
Energy (J)

Time (s)
(1)

The charge of a battery is given in mAh, so the total discharge of a battery when an app
is running could be given in mAh. However, as shown through Equation 2, charge to energy
conversion depends on voltage, so with a changing voltage the energy drawn per mAh would be
different.

Energy (J) = 3.6× V oltage (V)× Charge (mAh) (2)

Although milliampere hour (mAh) are widely used as a unit of charge for batteries and Green-
spector use it in their benchmarks, it is much better to use a unit of Power (Watts). Power in
Watts is comparable between benchmarks ran at different voltages, at different timescales and even
on different devices.

3.3.8 Fair Benchmarking

To create a reliable benchmark the effects of factors other than the one measured have to be
minimised. This allows for a fair comparison between the tested tasks. The following are kept
constant across the tests:

• Adaptive brightness is off and screen brightness of Google Pixel 2 is kept at 60%. The screen
is one of the most energy draining elements, so brightness is kept at 60% so that impact of
the screen is reduced, while also allowing visibility even in bright days (useful for testing the
platform).

• Volume of Google Pixel 2 is at 4/7 for system, notifications, alarm, voice call and ring, and
12/25 for music. The sound settings are set to as close as possible to half volume to mimic
typical use.

• After booting at least 3 minutes cool off time is given before benchmarks are run, as it was
found that 2 minutes is enough for energy use to drop to a steady state.

• Closing applications - before each run, Energio user can select to close all of the applications
on the system (on by default). This is done with a UI automation script.

• Clearing cache - before and after each run the cache of the application tested is cleared if the
Energio user selects the option (on by default). This is done with an adb command.

• Wi-fi - Google Pixel 2 is connected to Wi-fi with 50 Mbps download and upload speeds. Wi-fi
is chosen over 3G as the network is stable and so network performance won’t affect the tests.

• GPS and Bluetooth are disabled, so that they don’t impact the energy drain.

3.3.9 Energio Run Options

• Closing applications - before each run, Energio user can select to close all of the applications
on the system (on by default). This is done with a UI automation script.

• Clearing cache - before and after each run the cache of the application tested is cleared if the
option is selected by the user (on by default).

• Initialization Scripts - before each run initialization scripts can be run to bring the application
to a known starting state. Energio distinguishes initialisation scripts by the ‘_init’ suffix in
the file name. For example a ‘com.android.chrome.py’ script could have an initialisation
script called ‘com.android.chome_init.py’

32

• UI automation execution program - When uploading the benchmark zip file, the UI auto-
mation script execution program can be selected from a dropdown. The selected program is
what is used in the backend to run the UI autoamation scripts uploaded. Energio currently
support running monkeyrunner, Java (UI automator), Python 2 (AndroidViewClient) and
Python3 (AndroidViewClient). Extending to allow other programs only requires extending
the exec_prog Enum in the Benchmark table and installing the required program on the
computer.

3.3.10 Identifying Failures
People using the Energio platform do not have access to the devices (Smartphone and Otii) or
the logs of the server and RQ queue execution. To make identifying what went wrong easier, an
exception handler is attached to the RQ queue which takes a screenshot and saves the current
output and exception in the message field of the Result object. Further to this, any output
from the UI automation scripts (including exceptions) is captured and printed in the message for
each app task run. Finally, even if no exceptions are thrown and the task completes, any print
statements are captured and a screenshot is taken to show the final state of the UI automation
script execution, which allows the users to see if their UI automation script reached the desired
state on the smartphone.

3.3.11 Integration Testing
Firstly, to test whether the DNS is set up correctly, along with NGINX and uWSGI to communicate
with Django it is enough to test whether http://energio.co.uk/ returns the correct response and
the page is loaded correctly in the browser.

To then test the execution of benchmarks two zip files are uploaded separately:

1. Simple execution scripts - These 3 UI automation scripts each only open an application
and wait for 3 seconds. If the running of these scripts succeed, then the following all work:
the adb connection to the phone, closing applications, clearing cache, the TCP connection
to Otii, screenshot, graph creation, CSV file creation and database object creation. If these
scripts work, the Redis Server and django-rq also work in processing jobs asynchronously. To
see if the data collection and database saves and queries work correctly the results of these
simple benchmarks can be viewed. If any of them don’t work, ways of identifying failures in
Section 3.3.10 provide ways of finding which component failed.

2. Failure Scripts - ZIP files that intentionally cause errors test whether the system is able
to catch error and handle them correctly. This includes: wrong folder structure, wrong
file extensions and errors in the UI automation scripts. When an error occurs all the error
messages should be displayed on the website logs and a failure screenshot taken.

3.4 Battery dataset analysis - Greenhub
The second part of this project involved taking an existing Greenhub dataset and analysing it to
see the average power used by applications estimated using software measurements. This approach
can be compared to the Energio benchmark platform to see if results obtained are valid and the
ease of comparing applications for their battery usage.

The tables that Greenhub provides are described in Section 2.5.1. The REST API that Green-
hub provides does not give access to the app_processes table that is needed for the purposes of
this project. They do however, give access to all data through the Greenhub Farmer. The down-
loaded data is in the format of CSV files and unpacked has the size of over 140GB. This makes
them too big to load to RAM and use applications that open CSV files directly.

3.4.1 Setting up a database
The CSV files can however be analysed by setting up a database and making queries to it. MariaDB
was chosen over MySQL, since it is built to load data faster and is more efficient with bigger
datasets. Initially the database was set up on an external 256GB SSD drive and the data uploaded
using the fastest possible upload SQL query, shown in Listing 3.1.

33

http://energio.co.uk/

1 LOCAL INFILE 'filename.csv' IGNORE INTO TABLE table_name FIELDS TERMINATED BY ';'
LINES TERMINATED BY '\n'

Listing 3.1: Greenhub SQL upload query

It took over 12 hours to upload the data and the database took up nearly 210GB. While the
database worked, even filter queries with limits took minutes to run. Once the final query was
finalised, indexes on all of the filtered and joined columns had to be built or else establishing a
rating from the dataset would take too long to run. Building indexes proved to be impossible with
only 45GB remaining on the external drive.

This is when the database had to be rebuilt on Azure. Uploading the data to Azure from the
computer was slow, so instead a virtual machine was set up to which the dataset was downloaded.
Upload speeds from the virtual machine to the cloud MariaDB instance was only a bit slower than
local, with the full upload taking 14 hours. Building the necessary indexes took another 6 hours,
and in total takes 286.7GB.

Querying data for application energy consumption

From the fields that exist in Greenhub, the energy consumed by applications can be assessed in
two ways. One, is to consider the discharge rate of the battery over the period the application
was running and the other is to consider the average power drawn over that period. From this
point, the first method will be referred to as ‘battery discharge method’ and the second method
as ‘voltage current method’.

The battery_details table contains a battery_level field which records the battery per-
centage at a particular point in time. The percentage drop over time can be calculated and if the
capacity of the battery is known, it can be multiplied by the percentage drop to get the discharge
of the battery in mAh. Further to this, when knowing the voltage, the discharge of the battery
can be used to calculate the average power drawn over time as shown in Equation (3) below.

Power (W) = V oltage (V)× Current (I)

= V oltage (V)× Charge (C)

time (s)

= V oltage (V)× 3.6× Charge (mAh)
time (s)

(3)

The other approach is to use the current_now and voltage fields in the battery_details
table to calculate the power drawn over time, by using Equation 1 that relates power to voltage
and current. The average power over a time period can be calculated as the average current
multiplied by the average voltage.

The first approach has a major disadvantage in that a battery level only has 100 possible
values, so the precision of such discharge calculation is very low. The capacity field in the
battery_details table is unfortunately empty, so solely using the dataset the average discharge
can only be given as a percentage drop.

The second approach is the most accurate and precise way of calculating the average power of
a device. However, the problem with the second approach is that in the dataset not all samples of
devices have the current_now field filled. This means that while this approach is more accurate,
it cannot cover the whole dataset and only certain devices can have the power calculated this way.

Querying Power intuition

As both methods have their drawbacks, both will be considered. To calculate power from queries
from Greenhub, 4 tables are of interest - devices, samples, app_processes and battery_details.
All the fields that need to be queried for are shown in an entity diagram in Figure 3.11.

Diagram in Figure 3.12 serves as an illustration of how on a certain device, application pro-
cesses are running over time in the foreground. Greenhub collects its samples at almost regular
intervals. Table 3.2 shows some fake data for samples when Process A is running to illustrate how
the power queries can be built for Greenhub. For each device, samples, battery level, voltage and
current can be queried when a specific application (name='<package name>') is in the foregorund
(importance='Foreground App') and the phone is discharging (battery_level='discharging').

34

1

*
1

*

1

1

samples

id int

device_id int

battery_state int

battery_level double

created_at datetime

devices

id int

model text
battery_details

id int

sample_id int

voltage double

current_now int

app_processes

id int

sample_id int

name text

importance text

Figure 3.11: Greenhub Query Database Entity Relationship Diagram

Foreground
Process A B A C A D

1 22 23 24 25 26 27 28 29210 211 212 213 214 215 216Samples

Time

Figure 3.12: Greenhub Query Diagram

Then continuous samples need to be selected - in this example Samples 1-4, 8 and 11-13 would
be the periods for which the average power should be calculated. Table 3.4 shows the battery
discharge method (with the assumption that a battery is 4000mAh), while Table 3.3 shows the
voltage current method of calculating average power.

Sample 1 2 3 4 8 11 12 13
Time (s) 0 2 7 10 27 34 38 41
Battery Level
(%)

0.99 0.99 0.98 0.99 0.97 0.96 0.95 0.95

Voltage (V) 3.86 3.87 3.82 3.81 3.9 3.81 3.86 0.95
Current (mA) 760 821 800 1000 810 1200 700 0.95

Table 3.2: Greenhub: Illustrational fake samples data

Samples Sample Samples
1-4 8 11-13

Average Voltage
(V)

3.850 3.990 2.873

Average Current
(mA)

793 1000 633

Average Power
(W)

3.056 3.9 1.821

Table 3.3: Greenhub: Illustrational Power Calculation for Voltage Current Method

Samples Samples
1-4 11-13

Discharge (%) 0.01 0.02
Average Discharge (%/s) 0.0014 0.0014
Average Discharge (mAh) 5.714 5.714
Average Power (W) 2.939 1.470

Table 3.4: Greenhub: Illustrational Power Calculation for Battery Discharge Method

35

SQL Query to Get Power

The Greenhub dataset can be used to create a similar benchmarking table as Energio creates - a
table showing the average percentage discharge per second of each device (device corresponding to
a task in Energio) for each benchmarked app. The full SQL query that achieves that is shown in
Listing A.1. It is composed of smaller queries that perform the following:

1. The apps table contains all of the samples where the all of the applications benchmarked are
in the foreground and the phone is discharging.This done by mergin the app_processes table
with the samples and devices tables and filtering on the name of the application running,
importance='Foreground app') and battery_state='Discharging'.

1 with apps as (
2 SELECT samples.id as id, importance , battery_details.voltage as voltage ,

current_now , devices.capacity as capacity , name , samples.device_id as
device_id , battery_level , app_processes.created_at as d, model

3 FROM app_processes JOIN samples ON app_processes.sample_id = samples.id
JOIN devices ON samples.device_id = devices.id JOIN battery_details ON
battery_details.sample_id = samples.id

4 WHERE name in ('com.microsoft.emmx', 'com.brave.browser ', 'com.android.
chrome ', 'com.opera.browser ', 'org.mozilla.firefox ') and battery_state='
Discharging '

5),

Listing 3.2: Greenhub samples SQL query

2. t_start and t_end tables are created that contain the beginning and end timestamps of
periods with consecutive samples respectively. t_start is created by going through the apps
table and for each device calculating the time difference between the current sample and the
previous sample. Samples where the time difference is high signal the start of a sequence of
samples. t_end is created by going through the apps table and for each device calculating
the time difference between the current sample and the next sample. Samples where the time
difference is low signal the end of a sequence of samples.

1 t_start as (
2 select *
3 from (
4 SELECT T1.id,
5 T1.device_id as device_id ,
6 T1.battery_level as battery_level ,
7 T1.d as d,
8 IFNULL(TIME_TO_SEC(TIMEDIFF(T1.d, Max(T2.d))) ,5000) AS TimeDiff
9 FROM apps T1

10 LEFT JOIN apps T2
11 ON T1.device_id = T2.device_id
12 AND T2.d < T1.d
13 GROUP BY T1.device_id , T1.d
14) as x
15 where x.TimeDiff > 40
16),
17 t_end as (
18 select *
19 from (SELECT T1.id ,
20 T1.device_id as device_id ,
21 T1.battery_level as battery_level ,
22 T1.d as d,
23 IFNULL(TIME_TO_SEC(TIMEDIFF(T1.d, MIN(T2.d))) ,-5000) AS TimeDiff
24 FROM apps T1
25 LEFT JOIN apps T2
26 ON T1.device_id = T2.device_id
27 AND T2.d > T1.d
28 GROUP BY T1.device_id , T1.d) as x
29 where x.TimeDiff < -40
30),

Listing 3.3: Greenhub start/end SQL query

36

3. The t_boundaries table contains the start and end dates of consecutive samples for each
device. There can be more than one of these boundaries per device. This table is created by
joining the t_start and t_end tables on device_id and for each t_start date fidning the
earliest date from t_end.

1 t_boundaries as (
2 SELECT
3 T1.device_id as device_id ,
4 T1.d as t1,
5 MIN(T2.d) AS t2
6 FROM t_start T1
7 LEFT JOIN t_end T2
8 ON T1.device_id = T2.device_id
9 AND T2.d >= T1.d

10 GROUP BY T1.device_id , T1.d
11),

Listing 3.4: Greenhub boundaries SQL query

4. The final select query takes the average battery percentage drop in between the boundary
dates for each device and application. This is done by joining the apps table with the
boundaries table on device_id, and for samples between the boundaries taking the minimum
and maximum battery_level. Then the wrapping select takes the average discharge by
taking the difference between the two levels of the time difference between the two boundary
samples.

1 select
2 model ,
3 name ,
4 importance ,
5 sum(count) as num_samples ,
6 sum(total_discharge) / sum(TimeDiff) as avg_discharge ,
7 sum(total_discharge) / sum(TimeDiff) * capacity * 3.6 / sum(TimeDiff) *

AVG(voltage) as avg_power ,
8 AVG(voltage) * AVG(current_now) / -1000 as avg_power2
9

10 FROM (
11 select t1.device_id as device_id ,
12 count (*) as count ,
13 model ,
14 capacity ,
15 name ,
16 voltage ,
17 current_now ,
18 importance ,
19 (MAX(battery_level) - min(battery_level)) as total_discharge ,
20 MAX(battery_level) as max ,
21 min(battery_level) as min ,
22 GROUP_CONCAT(battery_level),
23 TIME_TO_SEC(TIMEDIFF(t_boundaries.t2 ,t_boundaries.t1)) AS TimeDiff
24 FROM apps t1
25 INNER JOIN t_boundaries on t1.d BETWEEN t_boundaries.t1 and

t_boundaries.t2
26 where t1.device_id = t_boundaries.device_id
27 and current_now < 0
28 group by t_boundaries.t1
29 having TimeDiff <>0
30) as y
31 where y.total_discharge > 0
32 group by y.model , y.name , y.importance;

Listing 3.5: Greenhub avg discharge SQL query

5. Finally, optionally the resultant table can be pivoted to create a table like Energio creates
(where the discharge for each device is in rows and applications in columns). Maria db
does not have a dedicated pivot query and instead a dynamic query has to built using SQL
prepared statements. This requires saving the previous full query in steps 1-4 in a temporary

37

table (it is called results in the code below) and then performing the dynamic pivot query.
The full query in Listing A.1 shows how this would be done.

1 SET @sql = NULL;
2 SELECT
3 GROUP_CONCAT(DISTINCT
4 CONCAT(
5 'MAX(IF(name = ''',
6 name ,
7 ''', avg_discharge , NULL)) AS ',
8 CONCAT("'",name ,"'")
9)

10) INTO @sql
11 FROM result;
12

13 SET @sql = CONCAT('SELECT model , ', @sql , ' FROM result GROUP BY model ');
14

15 PREPARE stmt FROM @sql;
16 EXECUTE stmt;

Listing 3.6: Greenhub Pivot SQL queries

Each of the sub queries has been manually tested in isolation to ensure that the full query
works as expected.

3.4.2 Battery capacity of devices

Although Greenhub has the capacity field present in the devices table, it is empty for all devices.
This means that with the query above only the average discharge as percentage of the battery
can be calculated. Therefore energy measurements cannot be compared or averaged out across all
devices, making the only way (using the discharge method) to compare browsers be by comparing
the battery drop for the same device. With so many device models available, even with such a
large dataset not all devices have battery measurements corresponding for them. This leads to the
data in Table 3.5:

Chrome Brave Firefox Opera Edge
GT-I9195 0.007862595 0.013431372 0.026538461
SM-G903F 0.006911764 0.002352941
SM-G920F 0.008483606 0.008461538
SM-G925F 0.014000000 0.007105262
SM-G928F 0.007924527
SM-G930F 0.004166666
SM-G935F 0.010697674
SM-G950F 0.011860464 0.019999999 0.000322581
SM-G955F 0.009999999 0.004999999
SM-J100H 0.009999999 0.003529411

Table 3.5: Greenhub: Battery Discharge Rate for Browsers in the Foreground

The solution to this problem is to fetch all the battery capacities from the web and insert them
into the database. There are 10662 unique device models in the database, so a manual search and
insert is infeasible.

There exists an Open Device Definition Repository (openDDR) 11 that provides a list of devices
on the market and basic information about them like what OS they are running, what is the display
resolution or whether they supports Ajax. Unfortunately it does not contain battery capacity
information.

The only sources that have battery capacity information are phone specification websites, and
data from these websites can be scraped. The most popular website with phone specifications is
https://www.gsmarena.com/. However, GSMArena does not offer an open API and only exposes
device battery statistics in a table of their battery life test. These contain a rating on how long

11https://github.com/OpenDDRmobi/openddr-data

38

gsmarena.com
https://github.com/OpenDDRmobi/openddr-data

the battery should last and not on the capacity of the battery. The only way to fetch the capacity
is to scrape the data directly from the website.

There are 3 community built APIs:

• gsm12 - capable of hosting a local web server with a REST API that can get all brands, the
devices of each brand and the phone specifications.

• gsmarena-scraper-json13 - a Node.js server that offers REST API to get all brands, devices
of each brand, phone specifications, reviews and has a search tool.

• gsmarena-API14 - a PHP library that can get brands, search for devices and get their
details.

All of the APIs were tried and while they offer the ability to fetch details of a device, the user
has to know the exact link to the page (that can be found through getting devices per brand).

The Greenhub dataset only contains the device model and manufacturer. Although two of the
APIs offer search, the search functionality does not work with device models. This is in parallel
with the direct search on the GSMArena website which is also not able to find all devices solely
based on their model names. GSMArena does have a field for models, but that is part of the
specifications of the phone. It would therefore be possible to fetch all of the devices using the
APIs, storing them and then searching through them to find a matching details page with the
model name.

3.4.3 Battery capacity web crawler
As it turns out when Google is provided with a model name and ‘GSMarena’ in the search phrase
is able to match the device name to the model and show the correct specifications page. This
means that a web crawling script can be built that searches the phone model on google and then
scrapes the battery information directly from GSMArena. This makes it a better approach then
using an API where all of the possible devices have to be fetched first.

Such a web crawler performs the following tasks:

1. Perform a SQL query SELECT DISTINCT model FROM devices to get all distinct model
names from the Greenhub database.

And then for each device model:

2. Get the HTML of the google search with ‘GSMArena specification’ prepended before the
device model name.

3. Press on the first link that is from GSMArena and fetch the HTML of the page.

4. Extract the battery capacity value from the specifications table and store it in a dictionary
with the model as key and battery capacity as value.

5. Construct a Pandas dataframe form the dictionary and save the result as CSV on disk.

6. Print information about failures, successes and store information in logs.

This works well for the first 50 consecutive requests and making more requests makes GSMArena
block the host making these requests for 10 hours. One way to avoid this, is to have the web
scrapping script connect to the TOR network and change the IP address every time it is blocked
by GSMArena’s web server.

While using TOR solves GSMArena access, it makes Google search inaccessible. Google is
inaccessible from most TOR devices, requiring a CAPTCHA to be filled, because a lot of people
around the world make requests to Google from these TOR IP addresses. In the end a mixture of
the 2 solutions is used - where Google search is accessed through (step 3) the local computer’s IP
and GSMArena (step 4) through the TOR network.

The final web crawler architecture is visualised in Figure 3.13.
12https://github.com/xpresservers/gsm
13https://github.com/karnadii/gsmarena-scraper-json
14https://github.com/ramtin2025/gsmarena-API

39

https://github.com/xpresservers/gsm
https://github.com/karnadii/gsmarena-scraper-json
https://github.com/ramtin2025/gsmarena-API

Laptop

Entry Relay

Middle
Relays

Exit Relay 2

Exit Relay 1

google.com

gsmarena.com

TOR Network

Figure 3.13: Diagram of TOR web crawler

Failure Exit prevention and logs

The script detects if it gets blocked by GSM Arena by checking whether the status code of the
response matches ‘429 Too Many Requests’. It proceeds to get a new exit relay IP address when
this happens. If a request is other 429 the script goes to search for the capacity of the next model,
and if it is other than 200, it also prints what the status code was (for example some pages return
404 errors). The script also proceeds to the next model if the battery capacity does not exist
on GSM Arena’s page or if any other exception occurs when extracting a link (invalid link from
Google) or no GSM Arena links were found. Whenever any issue resulting in a skipped model
occurs, the reason for abortion is logged and the failed model is added to the list of failures. Failed
models at the end of the script can be searched for manually on manufacturer websites directly.

Web Crawler Execution

To try to find the capacity values for the 10662 unique devices, the custom web scraping script
ran for over 7 hours and the exit relay of the TOR network had to be changed 205 times. The
script successfully scraped the capacity data for 7163 devices. The rest 3499 models could not be
scrapped due to a GSM page not existing for these devices or no battery data present for them.

To update the database the CSV file created by the scraping script was iterated over and an
update statement added to the database.

3.4.4 Summary
In Summary, creating a benchmarking energy platform required modifying hardware and setting
up connections to the power monitor and a smartphone. To enable easy access to the platform
it required a website to be built, which enables users to queue benchmarking UI automation jobs
for which the energy consumption is measured. It allows people to interact remotely with the
system without needing to interact with the hardware directly. The platform back end is built
using Django and an NGINX web server serves the website to users.

The second part of the project involves looking at an existing battery dataset and creating
queries to extract the average power used for applications. Two approaches were considered and
implemented in this section - a power calculated through battery discharge approach and a power
calculated through average voltage and current approach. The battery discharge approach also
required setting up a web crawler that uses the TOR network to fetch data that was missing in
the dataset.

40

Chapter 4

Evaluation

This section evaluates the Energio platform by writing UI automation scripts that create bench-
marks and compare applications of the same category. This is done for Browsers and Reddit
categories, using Monkeyrunner and AndroidViewClient as UI automation tools. The Greenhub
dataset method is also evaluated, by using the SQL query built in section 3.4.1 and comparing
the two described approaches for power extraction (battery discharge method and voltage, current
method. In addition, the results of Energio are compared with Greenspector’s and Aeon’s results.

4.1 Energio Results
To create a Benchmark using the Energio platform it is enough to create UI automation scripts for
each task that perform the accomplish the same goal across all applications tested. In this section,
two UI automation methods are used - Monkeyrunner and AndroidViewClient.

4.1.1 Building UI automation scripts
Monkeyrunner

Monkeyrunner scripts interact directly with ADB and the biggest drawback of such approach is
that touches require pixel coordinates. This means that to write scripts that would work on the
Google Pixel 2, a device or emulator with the same screen dimension is needed to test and get the
coordinates for touch events.

Getting Touch Coordinates

For Monkeyrunner any presses have to be at a specific pixel location on the screen. To find a
location the command 4.1 was built that shows the integer pixel location of the location where the
phone is tapped.

1 adb shell getevent -l | grep ABS_MT_POSITION --line -buffered | awk '{a = substr($0
,54 ,8); sub (/^0+/ , "", a); b = sprintf ("0x%s",a); printf ("%d\n",strtonum(b))}'

Listing 4.1: ADB get tap location command

The command works by getting a list of events, then using grep to search for lines where
‘ABS_MT_POSITION’ is present (gets the line with touch events in hex) and finally using awk
to get the relevant hex values, strip them of zeros and convert hex to decimal that Monkeyrunner
uses. This continuously prints the x and y coordinates in the terminal only the device is tapped.

Getting current activity

All UI automation scripts require to know which application and activity within that application
to launch. To find what the application package name and activity that needs to be launched is
called, the application can be opened on any Android device and the following command executed
on terminal 1:

1https://stackoverflow.com/questions/13193592/adb-android-getting-the-name-of-the-current-activity

41

https://stackoverflow.com/questions/13193592/adb-android-getting-the-name-of-the-current-activity

1 adb shell "dumpsys activity activities | grep mResumedActivity"

Listing 4.2: ADB get activity name

AndroidViewClient

As explained in the background section 2.6.5, AndroidViewClient uses UIAutomator BySelectors
which target views directly. Scripts written using this framework can target views based on ids or
text that they can contain. This makes scripts made using this framework reusable across devices,
meaning that a developer can write these UI automation scripts without access to a Google Pixel
2 device.

To get the IDs or text of the screen AndroidViewClient provides a dump script that shows the
view layout with the corresponding ids and text. This allows for knowing how to target specific
views.

For some UI automation tasks it is convenient to wait for a view to appear and assert that it
shows up before continuing to the next task. To do this a few helper functions were built that help
with this task.

The function waits for the ID for up to a time defined by timeout. To update the state that
AndroidViewClient dump is performed in a while loop every refresh_time seconds and checked
for the view that is being searched. Sometimes AndoirdViewClient dump hangs during screen
transitions, so to avoid this problem an OS signal alarm is attached to timeout after 4 seconds and
the exception caught to retry is again. The pseudo code for a function that wait for an id is shown
in Listing 4.3 below:

1 def wait_for_id(vc, id, timeout = 10, refresh_time = 0.5):
2 while execution time < timeout:
3 try:
4 register system signal alarm for 4 seconds
5 vc.dump
6 unregister system signal alarm
7 if vc.findViewById(id) is None:
8 sleep for refresh_time
9 else:

10 return
11 except (KeyboardInterrupt , SystemExit):
12 raise
13 except:
14 print exception details
15 sleep for refresh_time
16 raise RuntimeError('Failed waiting '+ timeout +'seconds for id: ' + id)

Listing 4.3: ADB get activity name

The same function that waits for text was also created, and additional convenience functions
where the waited for event is touched as soon as it is found.

4.1.2 Browsers
Browsers are one of the most comparable applications as they all serve the same purpose - browsing
the internet. Four browsers which came up first under Google Play search and the default Chrome
browser installed on Google Pixel 2 are tested. The browsers tested are: Google Chrome, Edge,
Firefox, Brave and Opera, and the version and package names tested can be found in Section A.1.
To compare these applications 10 tasks are performed on each browser, all of which explained in
further detail in section 4.1.2 and 4.8.

Initialisation Scripts

To get a consistent and fair result, the cache reset option of Energio is used along with the
initialisation scripts option. This allows placing each application in a known and clear state before
running each benchmark. On each launch after the cache each application has set up pages that
need to be navigated for to reach the browsing page. All of the sync features and personalised
adds of the browsers are turned off. Only Brave’s shields are on as they are a core feature of the
browser. The UI initialisation scripts click through each browser and set it up as follows:

42

• Brave - Google is selected as the default search engine, brave shields are enabled (as they
are a core feature of brave), and brave rewards are disabled.

• Google Chrome - usage statistic are turned off, and the browser faster feature too. Sync
is also turned off.

• Edge - sync is off, sharing data about website you visited is off and sharing usage data
for personalisation is also off. Setting up Edge as the default browsing application is also
skipped.

• Firefox - Sign in is skipped, sync is turned off, and send tab to desktop feature is also off.

• Opera - personalised news and ads are off.

Browsing

To test the browsers energy usage on navigation, a browsing test that goes through the most
popular websites on mobile devices was conducted. The top 100 most popular website visited on
mobile devices was taken from similarweb.com 2 on 10.05.2020 and can be seen in Appendix A.4.

For each task the cache clear option was selected and the initialisation script for each browser
navigated through the initial setup pages to get to the first open tab. The browsing test was
performed using Monkeyrunner by going through the list of top websites to visit and performing
the following steps:

1. Click on the search bar of the browser

2. Type the address of the website

3. Press search button on keyboard

For each application 3 tasks were performed using this method - visiting top 5 websites, visiting
top 10 and visiting top 100 websites. The results from the benchmark can be seen in Table 4.1 and
in Figure 4.1, where the dotted lines represent the average power measured for each application.

Browser Top 5 Power (W) Top 10 Power (W) Top 100 Power (W)
Brave 1.450 1.546 1.692
Edge 1.606 1.692 1.957
Firefox 1.563 1.752 2.270
Google Chrome 1.463 1.601 1.942
Opera 1.415 1.459 1.665

Table 4.1: Browsing Top Websites Results

The Top 100 websites visited test is the most representative of the 3. From this test it can be
seen that Opera performs the best, followed by Brave, Google Chrome, Edge and finally Firefox.

Benchmarks

Another way to test browsers to compare the energy usage when running browser specific bench-
marks. 7 browser benchmarks were selected for this purpose - 3 JavaScript benchmarks, 2 Graphics
benchmarks and 2 performance benchmarks.

To test the performance of the browsers only for the browser benchmarks, the initialisation
scripts go through through the first setup of each browser as in section 4.1.2 and navigate to
the benchmark web page. For MotionMark the screen is also rotated as the benchmark requires
landscape orientation for the run. The UI automation script for which the energy is measured
only presses the start button of each benchmark and waits until a specific id or text appears that
signals the end of the browser benchmark. To verify that the benchmark has executed and to get
the score of the browsing benchmark, the final screenshot can be manually checked for.

Having the score of the benchmark allows for not only an average power analysis, but also a two
dimensional analysis - power per point scored in a browsing benchmark. This allows to compare

2https://www.similarweb.com/corp/blog/mobile-web-top-websites/

43

0.0

0.5

1.0

1.5

2.0

2.5

Opera Brave Google Chrome Edge Firefox

Po
w

er
 (W

)
Browsers: Browsing

Browsing Top 5 Browsing Top 10 Browsing Top 100

Figure 4.1: Energio Browsers result: Browsing

browsers more fairly, as some may consume less energy and have lower power drain, but suffer
from poorer performance. Poorer performance in turns means that an application needs to run for
longer to accomplish the same task and use more energy than it may seem initially seem.

The power used per browsing benchmark point scored is what will be referred to as ‘Efficiency
Score’ and will allow for application comparison across the same benchmark. To make this measure
comparable across all browsing benchmarks it has to be further normalised. This is done in relation
to Google Chrome as it is the default browser on the Google Pixel 2. To normalise the Efficiency
Score, it is divided by the efficiency score of Google Chrome in the same benchmark. This works
well for all benchmarks except for Kraken, because for most benchmarks the better the browser
preforms the better the score. This means that a browser that performs better will have a lower
Efficiency score. However for Kraken the lower the score the better the browser performed. To
go around this, the normalised efficiency is calculated as for other benchmarks, but an additional
mirroring step is performed where all scores are mirrored around 1 to account for how a lower score
should be better.

JavaScript Benchmarks

3 JavaScript benchmarks were chosen to test the energy efficiency of JavaScript related tasks for
each browser. The benchmarks tested for each browser are:

• Octane 2 [40] - A JavaScript benchmark created by Google’s V8 that runs 17 tests to measure
JavaScript Performance. Octane was retired in April 2017 as the V8 team found that most
JavaScript compilers had optimisations in place to achieve high scores in Octane, and any
further optimisations increasing the Octane score actually negatively impacted performance
in real-world scenarios.

• Kraken (1.1) [41] - A JavaScript benchmark created by Mozilla that runs 12 tests that
measure the performance for ai, audio, imaging, json and cryptography.

• JetStream2 [42] - A JavaScrtipt and Web Assembly benchmark created by Apple’s Webkit
that runs a series of tests programming techniques and different workloads.

The results for Octane, Kraken and JetStream2 averaged over 3 trials are in Tables 4.2, 4.3
and 4.4 respectively. More detailed results for each trial are in Appendix A.5.2. Figure 4.2 shows
the average power measured for each applications and Figure 4.3 the Efficiency Score (power per
benchmark point) normalised to Google Chrome. In both Figures the horizontal dotted lines
represent the average of the benchmarks performed for that application.

44

0.0

0.5

1.0

1.5

2.0

2.5

Opera Firefox Brave Chrome Edge

Po
w

er
 (W

)
Browsers: JavaScript Benchmarks

Octane Kraken JetStream2

Figure 4.2: Energio Browsers results: JavaScript
Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Opera Chrome Brave Edge Firefox

Ef
fic

ie
nc

y S
co

re

Browsers: JavaScript Benchmarks

Octane Kraken JetStream2

Figure 4.3: Energio Browsers results: Efficiency
Score JavaScript Benchmarks

Browser Power (W) Score Efficiency Normalised
Brave 1.924 10550 0.182 1.019
Chrome 1.881 10516 0.179 1.000
Edge 2.075 11334 0.183 1.023
Firefox 1.811 6459 0.280 1.567
Opera 1.753 10858 0.161 0.902

Table 4.2: Octane Benchmark Results

Browser Power (W) Score Efficiency Normalised Normalised Mirrored
Brave 2.006 3809.2 0.527 0.976 1.024
Chrome 2.008 3718.7 0.540 1.000 1.000
Edge 1.975 3658.0 0.540 1.000 1.000
Firefox 2.205 3300.6 0.668 1.237 0.763
Opera 1.831 3824.0 0.479 0.887 1.113

Table 4.3: Kraken Benchmark Results

Browser Power (W) Score Efficiency Normalised
Brave 2.248 33.871 66.380 0.995
Chrome 2.304 34.526 66.732 1.000
Edge 2.393 34.771 68.822 1.031
Firefox 2.068 24.516 84.354 1.264
Opera 2.255 34.528 65.319 0.979

Table 4.4: JetStream2 Benchmark Results

As can be seen in the results taking only the power measured into consideration Firefox performs
very well for JavaScript, but once benchmark scores are taken into consideration it can be seen
that Firefox actually performs much worse in terms of energy for each benchmark point it gets. As
expected, Firefox performs exceptionally well in Mozilla’s Kraken benchmark. However it performs
the worst in the other 2 benchmarks. This highlights the importance of using a wide range of tasks
to test an application to catch applications that are optimized only to a specific benchmark.Chrome,
Brave and Edge are all based on the same Chromium engine so a similar result in terms of energy
and performance is to be expected.

For JavaScript Opera is the most energy efficient, followed by Chrome, Brave, Edge and finally
Firefox.

45

Graphics Benchmarks

2 graphics benchmarks were chosen to test the energy efficiency of graphics related tasks for each
browser. The benchmarks tested for each browser are:

• Motionmark 1.1 [43] - A graphics benchmark created by Apple’s Webkit that tests the
graphics system of a browser on CSS, SVG and canvas drawing.

• Wirple [44] - This graphics benchmakrk tests HTML5 3D applications, by looking at the
peformance of Canvas3D and WebGL.

The results for MotionMark and Wirple averaged over 3 trials are in Tables 4.5 and 4.6 respect-
ively. More detailed results for each trial are in Appendix A.5.3. Figure 4.4 shows the average
power measured for each applications and Figure 4.5 the Efficiency Score (power per benchmark
point) normalised to Google Chrome. In both Figures the horizontal dotted lines represent the
average of the benchmarks performed for that application.

Browser Power (W) Score Efficiency Normalised
Brave 2.248 33.87 66.380 0.995
Chrome 2.304 34.53 66.732 1.000
Edge 2.393 34.77 68.822 1.031
Firefox 2.068 24.52 84.354 1.264
Opera 2.255 34.53 65.319 0.979

Table 4.5: MotionMark Benchmark Results

Browser Power (W) Score Efficiency Normalised
Brave 2.253 956 2.358 1.109
Chrome 2.294 1079 2.125 1.000
Edge 2.177 967 2.252 1.059
Firefox 2.032 825 2.463 1.159
Opera 2.169 1055 2.056 0.967

Table 4.6: Wirple Benchmark Results

Just like in the JavaScript benchmarks the average power used for each benchmark would
suggest that Firefox performs very well for graphics benchmarks in terms of energy used. While
that is true, it does so at a performance hit. For Graphics, Firefox and Edge have performed
significantly worse compared to the other browsers for the MotionMark benchmark in terms of the
efficiency score. While Chrome, Brave and Edge are all based on the Chromium JavaScript engine,
the energy results show that they are handling graphics differently internally.

Based on the average efficiency score across the two benchmarks, Chrome performs the best,
followed by Opera, Brave, Edge and Firefox.

Performance Benchmarks

2 performance benchmarks were chosen to test the energy efficiency of performance related tasks
for each browser. The benchmarks tested for each browser are:

• Speedometer 2.0 [45] - A graphics benchmark created by Apple’s Webkit that tests the
graphics system of a browser on CSS, SVG and canvas drawing.

• Basemark [46] - This graphics benchmark tests HTML5 3D applications, by looking at the
performance of Canvas3D and WebGL.

The results for Speedometer and Basemark averaged over 3 trials are in Tables 4.7 and 4.8
respectively. More detailed results for each trial are in Appendix A.5.4. Figure 4.6 shows the
average power measured for each applications and Figure 4.7 the Efficiency Score (power per
benchmark point) normalised to Google Chrome. In both Figures the horizontal dotted lines
represent the average of the benchmarks performed for that application.

46

0.0

0.5

1.0

1.5

2.0

2.5

Firefox Edge Opera Brave Chrome

Po
w

er
 (W

)
Browsers: Graphics Benchmarks

Motionmark Wirple

Figure 4.4: Energio Browsers results: Graphics
Benchmarks

0

0.5

1

1.5

2

Chrome Opera Brave Edge Firefox

Ef
fic

ie
nc

y S
co

re

Browsers: Graphics Benchmarks

Motionmark Wirple

Figure 4.5: Energio Browsers results: Efficiency
Score Graphics Benchmarks

Browser Power (W) Score Efficiency normalised
Brave 2.055 20.7 99.419 0.868
Chrome 2.141 18.7 114.510 1.000
Edge 2.171 18.7 116.286 1.016
Firefox 1.859 18.4 100.832 0.881
Opera 2.079 21.5 96.832 0.846

Table 4.7: Speedometer Benchmark Results

Browser Power (W) Score efficiency normalised
Brave 3.042 230.79 13.180 1.050
Chrome 3.086 245.94 12.546 1.000
Edge 2.982 235.74 12.648 1.008
Firefox 2.965 181.81 16.308 1.300
Opera 3.073 252.60 12.170 0.970

Table 4.8: Basemark Benchmark Results

For the performance benchmark Chrome performs the best in terms of the efficiency score,
followed by Opera, Brave, Edge and lastly Firefox. It is once again the case here that Firefox
performs the best in terms of energy solely when based on the energy consumed during benchmark
execution. However, when the benchmark performance scores are taken into account as well,
Firefox clearly performs worse than the rest of the browsers. It can also be observed that Edge
performs much worse on the MotionMark compared to the other 2 chromium browsers, with the
performance comparable to Firefox.

All Benchmarks

The results for all of the benchmarks run together can be seen in Figure 4.8 and the combined
efficiency scores in Figure 4.9. The dotted lines on both figures represent the averages across all
benchmarks.

Just as for all individual benchmarks it can be seen that Firefox performs the best in terms
of the energy used during the benchmarks, but does so at a significant performance hit. When
considering the average efficiency score, Opera performs the best, followed by the 3 Chromium
based browsers, Chrome, Brave and Edge, and finally Firefox performs the worst.

These results match quite well what the actual performance was when loading top 100 webpages
meaning that testing the energy usage of browsers for specific tasks is representative of real loads,
while providing more detailed analysis into what sort of workloads an application is energy ineffi-

47

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

Firefox Brave Opera Edge Chrome

Po
w

er
 (W

)
Browsers: Performance Benchmarks

Speedomoter Basemark

Figure 4.6: Energio Browsers results: Perform-
ance Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Opera Brave Chrome Edge Firefox

Ef
fic

ie
nc

y S
co

re

Browsers: Performance Benchmarks

Speedomoter Basemark

Figure 4.7: Energio Browsers results: Efficiency
Score Performance Benchmarks

cient on. A full energy analysis like this is especially useful to developers who can see that which
parts of their browser drain the most battery and have the most room for improvement.

0.0
0.4

0.8
1.2
1.6

2.0
2.4
2.8

3.2

Firefox Opera Brave Edge Chrome

Po
w

er
 (W

)

Browsers: Benchmarks

Octane Kraken Speedomoter Motionmark Wirple JetStream2 Basemark

Figure 4.8: Energio Browsers result: All Benchmarks

0
0.25

0.5
0.75

1

1.25
1.5
1.75

2

Opera Chrome Brave Edge Firefox

Ef
fic

ie
nc

y S
co

re

Browsers: Benchmarks

Octane Kraken Speedomoter Motionmark Wirple JetStream2 Basemark

Figure 4.9: Energio Browsers result: Efficiency Score for All Benchmarks

48

4.1.3 Reddit Applications
Reddit Applications serve as an another good category to benchmark applications against each
other as all applications use the same API and are able to present the same data. 5 Reddit
applications - BaconReader, Red Reader, Reddit Official and Relay and rif is fun - were chosen
as previous work (Aeon) have tested these applications allowing Energio’s results to be compared
directly to past findings.

To benchmark Reddit Browsers to each other a public but restricted subreddit ‘\r\energio’ was
created. This allows for the creation of a Reddit page that can be static and will test all applications
for the same content. Using any other page would risk that interaction from external users would
change what is displayed and unfairly judging applications to each other. The ‘\r\energio’ was
populated with a variety of content representative of a typical Reddit page - text posts, shared
posts, image uploads, GIFs, polls and shared external links.

The UI automation scripts were written using AndroidViewClient to be able to assert whether
the script has reached the correct view. As the applications are differently organised, the initialisa-
tion scripts navigated through the application first start up and through the menus to be one click
away from the energio page for the ‘Scroll Energio’ test and one click away from loading the tested
task for the rest. 5 different tasks were chosen to be tested to see mimic typical reddit browsing
experience:

1. Scroll Energio - opens the ‘\r\energio’ subreddit and scrolls through it until it reaches the
end of it.

2. Open shared - opens a shared post that links to a different subreddit.

3. Open post - opens a simple reddit post with text and comments.

4. Open PNG - opens an image that is part of an uploaded post.

5. Open GIF - opens a GIF image that is shared on the platform.

The results with average power across 3 trials can be seen in table 4.9 and more detailed
results for individual trials can be seen in Appendix A.5.5. Figure 4.10 shows the average power
measured for each applications. The horizontal dotted line represent the average of the benchmarks
performed for that application.

Browser Open Post Open Shared Open PNG Scroll Energio Open GIF
Power (W) Power (W) Power (W) Power (W) Power (W)

BaconReader 1.040 1.102 1.113 1.363 1.877
Reddit 1.163 1.070 1.115 1.648 1.655
RedReader 0.980 0.987 1.451 1.426 1.770
Relay 0.822 0.905 1.359 1.351 1.581
rif is fun 0.831 1.047 0.952 1.372 1.796

Table 4.9: Reddit Applications Results

From the results it can be seen that rif is fun has performed the best in terms of energy, followed
by Relay, BaconReader, Reddit Official and final RedReader. Reddit official is the only application
that loads posts on the feed in the expanded form - images take the full width of the screen. This
is evident in the Scroll Energio test, where due to this Reddit Official take the highest average
power. On the other hand Reddit Official performs really well in opening GIFs, because while
other applications use Android’s Webview, Reddit launches a Google Chrome instance which is
more efficient.

4.1.4 Establishing a rating
As discussed in Section 2.7, there are many ways of rating applications to be able to compare
between them. Energio results can be represented in the following ways:

• Measurement Ratings - The average power measurements from each benchmark can be
compared directly between applications for each tasks. To compare applications based on a

49

0.0

0.5

1.0

1.5

2.0

BaconReader Reddit RedReader Relay rif is fun

Po
w

er
 (W

)
Reddit Applications

Open post Open Shared Open PNG Scroll Energio Open GIF

Figure 4.10: Energio Reddit Applications Results

set of task, a sum of average power for each task can be used or the average of all power
averages. The averages of averages approach is better as it is allows more tasks to be added
to the benchmarks without affecting the scale of the results.

• Quantised Letter Ratings - Just like European Union does for it’s energy rating, a quant-
isation of results into buckets can be performed and a letter rating assigned to each bucket.

• Percentage of Defeated Users - Like Antutu benchmark provides the percentage of de-
feated users to give context of the performance, the percentage of defeated applications can
also be part of a rating.

• Relative Ratings - The same approach as DXOMARK can be taken when results of par-
ticular tasks are normalized in relation to a specific marker. In the case of browsers, the
benchmarking results were normalised in relation to Google Chrome.

Table 4.10 shows the relative rating, letter rating and percentage of defeated users approach
for creating a rating for browsers. The Letter ratings for these ratings were arbitrarily chosen to
be in the following ranges <900 → A, 900-1000 → B, 1000-1050 → C and >1050 → D. Just as
before, more applications would have to be tested to make such range letter rating justifiable. The
relative ratings can be displayed similar to how DXOMARK presents their results, showing the
overall rating and relative performance for each tested task. This is shown in Figure 4.11.

Table 4.11 shows the measurement rating, letter rating and percentage of defeated users ap-
proach for creating a rating for Reddit applications. The letter ratings for these ratings ere arbit-
rarily chosen to be in the following ranges: <1.2→ A, 1.2-1.25→ B, 1.25-1.3→ C and >1.3→ D.
More applications would have to be tested to make such range letter rating justifiable. Further to
this a visualisation of a letter rating, along with measurement results is presented in a EU inspired
rating in Figure 4.12.

Browser JavaScript Graphics Performance Overall Letter Defeated
Rating Rating Rating Rating Rating Apps (%)

Brave 1013 1102 959 1025 B 60
Chrome 1000 1000 1000 1000 B 80
Edge 1018 1374 1012 1135 B 40
Firefox 1198 1500 1090 1263 D 20
Opera 998 1046 908 984 A 100

Table 4.10: Browser Applications Ratings Based on Benchmarks

50

948Opera v58.2.2878.53403

energ o

Wirple:959
MotionMark:1054

Basemark:960

Speedometer:797

JavaScript958

Graphics1007

Performance878

JetSteam2:979
Kraken:1089
Octane:806

Figure 4.11: DXO Mark Inspired Energy App
Rating: Opera

RELAY RELAY

1.21 W

0.91 W

1.58 W

0.82 W 1.37 W

1.36 W
1.21 W

v10.0.235

v10.0.235

energ o energ o

Figure 4.12: EU Inspired Energy App Rating:
Relay

Reddit
App

Sum Average Letter Defeated
Rating Rating Rating Apps (%)

BaconReader 6.495 1.299 C 60
Reddit 6.651 1.330 D 40
RedReader 6.613 1.323 D 20
Relay 6.017 1.203 B 80
rif is fun 5.998 1.200 A 100

Table 4.11: Reddit Applications Ratings

4.2 GreenHub

4.2.1 Google Pixel Results

Since the Energio benchmark platform measures the energy consumption on a Google Pixel 2 it
would be beneficial to compare the results from the GreenHub dataset for this device. While 23
Google Pixel 2 devices are in the devices dataset and therefore enrolled to GreenHub, there are 0
samples present for these devices. This would imply that while Pixel 2 users have downloaded the
GreenHub BatteryHub, the app was never kept in the background while using other applications.
When extending the range to the whole Pixel line up there are 90 enrolled devices with 5588
samples for all applications. Out of the 10 applications tested through Energio, only 2 are present
in the dataset - Google Chrome with 186 samples and Mozilla Firefox with 186 samples. Running
the query from Section 3.4.1 that calculates the power drawn by these applications gives results in
Table 4.12, where ‘Average Power 1’ refers to the average power found using the discharge method
and ‘Average Power 2’ refers to the average power found using the voltage, current method.

51

Model Impor- Number Average Average Average
App Name tance of Discharge Power 1 Power 2

Samples (%/s) (W) (W)
Pixel 2 XL Google Chrome Service 190 0.010 2.812 2.041
Pixel 2 XL Firefox Service 112 0.011 11.135 2.107
Pixel XL Google Chrome Service 26 0.036 64.319 6.159

Table 4.12: GreenHub results for browsers on Pixel devices

The results for the average power using the first method are not in the expected range of 0.2W-
4W measured through Energio. This can be explained by the fact that this method considers the
battery percentage drop over periods when the app was open. To get better results using this
method, only data with longer opening times can be considered. Extending the query to only take
into account continuous samples where the application was open for at least 30 seconds gives the
results in table 4.13:

Model Impor- Number Average Average Average
App Name tance of Discharge Power 1 Power 2

Samples (%/s) (W) (W)
Pixel 2 XL Google Chrome Service 26 0.001 0.270 2.748
Pixel 2 XL Firefox Service 17 0.004 5.613 2.090

Table 4.13: GreenHub results for browsers on Pixel devices

While considering only samples where the app was open for at least 30 seconds, makes the
method of discharge closer in magnitude to power measured through Energio, the results are still
in ranges that are not reasonable (even running intensive benchmarks in Energio used 3W of
power and a device in stand by used 0.2W). On the other hand, the approach of using voltage and
current to calculate power gives results more acceptable results (except for Pixel XL) even with
so few samples. It should be mentioned however, that the samples for browsers in Greenhub for
Pixel devices are running as services instead of in the foreground. This should in turn mean a
lower average power, but here results are as high as the power measured in benchmarks. When
these browsers are run as a service, the power consumption is more representative of an another
applications running in the foreground. This makes the results above not very accurate.

4.2.2 All devices Results

Browsers

??
The energy usage can be calculated across all devices and only when the desired application is

in the foreground. Across the whole dataset for when the application is in the foreground and the
phone is discharging there are 186 samples for Brave, 59 samples for Edge, 708 samples for Opera,
7012 samples for Firefox and 100,032 samples for Google Chrome.

The query from section 3.4.1 returns 165 rows of devices and the average power for applications.
The full results are in Table A.20. From that table, the weighted average of average power weighted
by the number of samples can be calculated to get the average power across all devices. The devices
with more samples are given higher weighting as more samples should mean more accurate results.
Table 4.14 shows the weighted average power for both methods. Measurement with Energio have
always had all energy measurements in the range between 0.2 and 4W. As can be seen the average
power in this table outside of this expected range. On inspection of the results Table 4.14 it can be
noticed that 5 devices have the average power different by 3 orders of magnitude. Such a difference
is most likely because current was stored in the table in amps instead of milliamps. However, to
avoid speculation, all results where the average power (using method 2) is outside of the 0.2 to 4
Watts range are considered as outliers. Table 4.15 shows the average power without these outliers.

52

App
Name

Number of Weighted Weighted
Samples Average 1 Average 2

Power (W) Power (W)
Google Chrome 14967 27.803 29.751
Firefox 3519 0.100 1.532
Opera 41 6.386 3.267
Edge 23 5.210 1.502
Brave 12 3 760.969 1 457.874

Table 4.14: Greenhub: Browsers Query Average Power Results

App
Name

Number of Weighted Weighted
Samples Average 1 Average 2

Power (W) Power (W)
Google Chrome 13647 0.978 2.528
Firefox 3519 0.100 1.532
Opera 41 6.386 3.267
Edge 23 5.210 1.502

Table 4.15: Greenhub: Browsers Query Average Power Results with Samples Where Power Between
0.2 and 4 W

These results match in magnitude more what was found in Energio. Using these results, the
browsers would be ranked as Edge, Firefox, Chrome, Opera. This does not match what was
found through Energio. The results also vary among each other, which could be indicative of the
workloads at time of measurement being different, hardware and software running these application
being different, or errors in Greenhub sampling results.

Reddit

When it comes to the Reddit applications there is only one application that has samples for when
it is running in the foreground - Reddit Official. Therefore, to calculate the average power all
possible states are allowed. This brings number of samples to 26,098 for Reddit Offical, 10 for rif is
fun, 437 for BaconReader, 1 for Relay and 2 for RedReader. The results using the SQL query from
Section 3.4.1 are in Table A.21. Just as for browsers the weighted average of average power results
weighted by number of samples can be calculated for each power calculation approach. This is
shown in Table 4.16 below.

App
Name

Number of Weighted Weighted
Samples Average 1 Average 2

Power (W) Power (W)
Reddit 9715 2.190 2.027
rif is fun 2 635.040 2.544
RedReader 2 539.460 0.041

Table 4.16: GreenHub results for browser avg power2

These results show that only Reddit has enough samples to get an idea of an energy estimate.
Interestingly, both the discharge approach and the voltage current approach results show close
results. With enough samples this is something that one would expect to happen as the discharge
method has much smaller precision. With more trials the results should converge towards the
correct result by the law of big numbers. But at the same time as shown through the Browser
results in Section ?? even more samples don’t show such convergence.

4.2.3 GreeenHub Summary
Overall, it can be seen that the second approach of using voltage and current to calculate average
power drawn gives more reasonable results.

While GreenHub is continuously gathering information, the released dataset not been updated
since August 2019. This means that an approach of validating Energio measurements by recording

53

measurements while at the same time running the GreenHub BatteryHub could not be done and
analysis had to rely on past data. Unfortunately, the dataset does not contain enough samples for
all applications to make valid conclusions.

Also, as the results in Tables A.21 and A.20 show, the variability in results is very high and
therefore even average power calculations across the devices are hard to establish. This can be
accredited to results being coupled to external factors (other applications running, network, storage
etc.), to varying hardware and software. Analysing the Greenhub dataset, therefore also shows how
important keeping as many factors constant is in getting consistent results. The Energio platform
is able to keep many factors constant across different tests and so results from Energio are much
more consistent.

4.3 Greenspector
On their blog, Greenspector published a comparison and rating of mobile browsers, which contains
a hardware energy measurement benchmark. They performed the tasks and measurements on
Samsung S7 Smartphone, Android 8 on Wi-Fi with 50% brightness. These results can be tested
against the results from using Energio to validate that the platform works and can be used for
building comparison benchmarks like Greenspector have done.

4.3.1 Greenspector App Mark vs Energio
Greenspector App Mark considers 5 axes when establishing a rating for a mobile app, and does
not focus solely on energy use. The score therefore covers more aspects of mobile applications than
just energy.

Energio uses units of power (W) rather than charge (mAh) that Greenspector uses as explained
in section 3.3.7. In summary, using power units is better for comparison across benchmark and
different devices.

Energio is open source and as a benchmarking platform is available to anyone. Also, results
that other people have gathered are openly accessible to anyone to view. While Greenspector have
published 3 studies on their blog an a report on 1000 applications on the market, the company
works on a consulting basis and does not give access to their benchmarking platform. The results
published are also partial and do not give a full overview of the tests performed.

4.3.2 Navigation Benchmark
The methodology in the navigation benchmark for Greenspector was to open 6 websites (Wikipedia,
Youtube, Pintreset, Walmart, Apple and NY Times) with a 20 second time in between. As seen
in Figure 4.13, the test ranks the 5 browsers in the following order - Opera, Chrome, Brave, Edge
and Firefox. This is very close to what was found in the browsing section 4.1.2 of Energio results,
which found the order to be Opera, Brave, Chrome, Edge and Firefox. As the number of websites
tested and the websites loaded are different, a small difference in results is to be expected.

4.3.3 Kraken Benchmark
Greenspector have also looked at Kraken benchmark and have compared browsers on their measure
of efficiency - mAh consumed per a second of a benchmark. As Energy (J) = 3.6×V oltage (V)×
Charge (mAh), their efficiency rating resembles more of a power measure and should be compared
with the average power consumed in Energio benchmarks. Greenspector’s results can be seen in
Figure 4.14.

In Greenspector’s results, the 5 browsers that were compared through Energio, rank in the
following order - Opera, Firefox, Brave, Chrome and Edge. Energio for average power ranked
these browsers as Opera, Edge, Chrome, Brave and Firefox. The order of results do not match
what was found through Energio. This difference in results could be accredited to different devices
used, different operating systems and different application versions. As systems can updated, the
underlying hardware or even application software can have different performance. The fact that
more demanding load like a JavaScript benchmark is more hardware intensive could then explain
why Kraken results are uncorrelated, while navigation results are.

54

Figure 4.13: Greenspector - Browser Navigation source:
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/

Figure 4.14: Greenspector - Kraken Efficiency source:
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/

4.4 Aeon

Aeon tested applications by running DroidMate-2, which explores different application paths, on
Orka for 30 minutes. The results from Aeon [27] are in the table below:

Reddit App Emulator Energy (J) Device Energy (J) Trepn Energy (J)
BaconReader 304.6 288.49 255.804
Reddit 447.87 377.07 287.304
RedReader 151.09 224.94 101.046
Relay 931.84 867.59 335.286
rif is fun 203.79 265.90 210.132

Table 4.17: Aeon Results

In his paper, D. Tsiang, concludes that Orka overestimates the power consumption of applica-
tions, but the relative results of Orka on software estimation are correct relative to another software
estimation method - Trepn.

55

https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/

The results of Orka do not match what was found through Energio. Orka found these 5 Reddit
applications to rank as RedReader, rif is fun, BaconReader, Reddit Official and Relay. The test
done through Energio found the order to be rif is fun, Relay, BaconReader, Reddit Official and
Red Reader.

The differences in the results could firstly be accredited to the fact that Energio measured
the energy consumption through hardware, while Orka estimates the energy using API calls. It
should be mentioned that Orka estimates the energy of only the running application, while Energio
measures the energy consumption of the whole system. Orka uses an API energy call approach
from 2014 to estimate energy usage, which could be inaccurate in Android 10. The energy results
above where also gathered on a Samsung Galaxy S6 running Android 7, which could also influence
the results.

56

Chapter 5

Conclusion

This project introduced the first open source energy benchmark platform that instead of energy
estimates uses actual hardware measurements on a Google Pixel 2. The Energio website hosted
on the local computer serves as a user interface with the benchmarking system and isolates the
complexity of the underlying measurement system. The platform allows anyone to upload their
UI automation scripts to get the energy measurements for it. The main feature of Energio is
that scripts can be grouped together to form a benchmark that puts the energy usage of these
applications against each other.

By evaluating two categories of applications - Browsers and Reddit applications, the Energio
platform was verified to work, be capable of gathering results reliably and offer ways of identifying
failures in the uploaded scripts or the platform. UI automation scripts were written using Mon-
keyrunner and AndroidViewClient to test these two categories of applications. This exercise has
shown that the platform can be used remotely without access to the devices, and results are still
consistent.

The findings from these benchmarks are that Opera preforms the best in terms of Energy,
followed by Google Chrome, Brave, Edge and Firefox. By writing benchmarks that cover a wide
range of tasks applications perform, the most battery inefficient parts of the applications can
be identified too. For example, Firefox was found to be particularly inefficient when running
JavaScript related tasks. Over the 6 tasks performed on 5 Reddit applications rif is fun performed
the best, followed by Relay, BaconReader, RedReader and the official Reddit app.

Further to creating the Energio platform, an alternative way of getting energy performance of
applications of applications was explored - data analysis of the GreenHub dataset. Two ways of
extracting the power usage were explored - a battery discharge approach and a voltage current
approach. The estimation of energy usage of applications based on the average current and average
voltage over the course of running the application has shown more consistent results. However
even the power estimation using this technique has shown too much variance across devices to
be considered a good estimation of relative battery usage of applications. The query and ideas
provided in this project can serve as a starting point for decoupling different factors and accounting
for noise. Removing corrupted data may also be required.

5.1 Energio Discussion
1. scalability & parallelization - the benchmarking platform is scalable, but would need

require more Otii devices along with a smartphone to be running in parallel. In terms of
requests the web server could handle, the limitation for scalability is how much the network
the computer is on can handle and how powerful the computer itself is.

2. cost - The costs of the simplest implementation is £455 for the Otii power monitor about
£100 for the smartphone. It also requires a computer and optionally a domain to host
the website. Using a hardware approach is therefore more expensive than using software
estimation techniques, but the cost is not so high that it prevents people from setting up the
platform themselves.

3. time - By comparison to other software approaches like Orka, the hardware benchmark
is a lot more time consuming. It requires someone to write UI automation scripts. The

57

execution time is also high in comparison. The time it takes to perform a measurement is
highly dependent on how long the UI automation script takes to run. The biggest weakness in
terms of time execution is the queue. If there is a queue of benchmarks waiting to be executed
then the time taken is a lot longer. This can be solved with the scalability considerations
above.

4. accuracy - From the comparisons to results from Greenspector it can be seen that Energio’s
measurements are partially verified. Since the platform uses hardware measurements, the
capabilities of the Otii power monitor define how accurate the platform is.

5. portability - The web server can be deployed anywhere, but has to be on a computer on an
open network. The setup cannot be placed in the cloud, because access to special hardware
needs to be done. It would be possible to host the website in the cloud and then have a
separate web server waiting for local requests.

6. availability - One of the weakest sides of this implementation is that the website is only
available when the computer is on and test can only conducted when both the Otii and the
phone are connected.

5.2 Future Work

5.2.1 Testing more applications

In this project a limited number of applications were tested to test the feasibility of such tool for
establishing an energy rating. However, creating a benchmarking tool where anyone can upload
scripts for energy usage to be tested creates an opportunity to create new scripts and extend the
benchmark tests to different categories and applications.

5.2.2 Continuous Integration Energy Readings

The platform could be integrated directly into git control to enable developers to commit UI
automation scripts that are run every major merge, commit or on a set frequency basis. This
would allow developers to see whether their change have impact on energy usage and catch any
energy related issues before deployment. While there exist software tools like Energy Profiler that
comes with Android Studio to warn about potential energy usage spikes, in practice the energy
consumed could differ and with hardware measurements these issues would be avoided.

5.2.3 Deploying the website in the cloud

While there is a strict constraint where energy measurements have scheduled on a computer with
direct connection to Otii, the website could be deployed anywhere. The website could be hosted
in the cloud to make it capable of handling more traffic, while the measurement queue could be
hosted on a local computer. The website could send requests to an open REST API provided by
the web server of the computer to execute only requests associated with energy measurement and
Otii controls.

5.2.4 Support for other operating systems and devices

In this project only energy benchmarking for Android smartphones was considered. However
provided that UI automation scripts exist for an operating system and the device running it can
be powered through the power monitor, the benchmarking platform could easily be extended to
support other devices. For example, a windows laptop could be powered by the power monitor
and AutoIt UI automation scripts could be run. Or IOS devices could be tested using Xcode’s UI
automation testing tool.

5.2.5 Django Channels

Currently the progress of benchmarks does not refresh automatically on the users screen and instead
pages have to be refreshed manually to fetch updated information from the database. There exists

58

a project called Django Channels that offers web socket like functionality using ASGI and the
Redis Server to communicate updates from the server to a user’s screen.

5.2.6 Remote installation of APK packages
To further allow tests to be done remotely without access to the phone. A UI automaton script
that searches for the required package name on the Play Store could be built to install the desired
package. An alternative would be to allow users to upload any APK they want to the Energio plat-
form, but preventative measures might need to be taken to prevent malicious users from installing
malware APKs.

5.2.7 GreenHub Database
Setting up a faster database and optimizing the query built in this project would allow for the
analysis of the whole table. The major bottleneck for analysis in the limited time frame was that
even with indexing, even queries limited to 100 thousand samples took hours to run.

5.2.8 GreenHub Analysis
While this project built two ways for querying power usage of applications from GreenHub, the
impact of other factors and decoupling of them from results was not taken into account. Further
studies into the dataset could reveal the high variability of results across devices.

59

Appendix A

A.1 Energio Pages Screenshots

Figure A.1: Energio Benchmarks Page

60

Figure A.2: Energio Benchmark Page

Figure A.3: Energio Otii Page

61

A.2 Greenhub SQL query

1 DROP TABLE IF EXISTS result;
2 CREATE TABLE result(model TEXT (65535) , name TEXT (65535) , num_samples int ,

avg_discharge FLOAT);
3 Insert ignore into result SELECT model , name ,num_samples ,avg_discharge from (
4 with apps as (
5 SELECT samples.id as id, importance , battery_details.voltage as voltage ,

current_now , devices.capacity as capacity , name , samples.device_id as device_id
, battery_level , app_processes.created_at as d, model

6 FROM app_processes JOIN samples ON app_processes.sample_id = samples.id JOIN
devices ON samples.device_id = devices.id JOIN battery_details ON
battery_details.sample_id = samples.id

7 WHERE name in ('com.microsoft.emmx', 'com.brave.browser ', 'com.android.chrome ',
'com.opera.browser ', 'org.mozilla.firefox ') and battery_state='Discharging '

limit 1000000
8),
9 t_start as (

10 select *
11 from (
12 SELECT T1.id,
13 T1.device_id as device_id ,
14 T1.battery_level as battery_level ,
15 T1.d as d,
16 IFNULL(TIME_TO_SEC(TIMEDIFF(T1.d, Max(T2.d))) ,5000) AS TimeDiff
17 FROM apps T1
18 LEFT JOIN apps T2
19 ON T1.device_id = T2.device_id
20 AND T2.d < T1.d
21 GROUP BY T1.device_id , T1.d
22) as x
23 where x.TimeDiff > 40
24),
25 t_end as (
26 select *
27 from (SELECT T1.id ,
28 T1.device_id as device_id ,
29 T1.battery_level as battery_level ,
30 T1.d as d,
31 IFNULL(TIME_TO_SEC(TIMEDIFF(T1.d, MIN(T2.d))) ,-5000) AS TimeDiff
32 FROM apps T1
33 LEFT JOIN apps T2
34 ON T1.device_id = T2.device_id
35 AND T2.d > T1.d
36 GROUP BY T1.device_id , T1.d) as x
37 where x.TimeDiff < -40
38),
39 t_boundaries as (
40 SELECT
41 T1.device_id as device_id ,
42 T1.d as t1,
43 MIN(T2.d) AS t2,
44 TIME_TO_SEC(TIMEDIFF(T2.d, T1.d)) as time_diff
45 FROM t_start T1
46 LEFT JOIN t_end T2
47 ON T1.device_id = T2.device_id
48 AND T2.d >= T1.d
49 GROUP BY T1.device_id , T1.d
50 HAVING time_diff > 10
51)
52 select
53 model ,
54 name ,
55 importance ,
56 sum(count) as num_samples ,
57 sum(total_discharge) / sum(TimeDiff) as avg_discharge ,
58 sum(total_discharge) / sum(TimeDiff) * capacity * 3.6 / sum(TimeDiff) * AVG(

voltage) as avg_power ,
59 AVG(voltage) * AVG(current_now) / -1000 as avg_power2
60

61 FROM (
62 select t1.device_id as device_id ,
63 count (*) as count ,

62

64 model ,
65 capacity ,
66 name ,
67 voltage ,
68 current_now ,
69 importance ,
70 (MAX(battery_level) - min(battery_level)) as total_discharge ,
71 MAX(battery_level) as max ,
72 min(battery_level) as min ,
73 GROUP_CONCAT(battery_level),
74 TIME_TO_SEC(TIMEDIFF(t_boundaries.t2 ,t_boundaries.t1)) AS TimeDiff
75 FROM apps t1
76 INNER JOIN t_boundaries on t1.d BETWEEN t_boundaries.t1 and

t_boundaries.t2
77 where t1.device_id = t_boundaries.device_id
78 and current_now < 0
79 group by t_boundaries.t1
80 having TimeDiff <>0
81) as y
82 where y.total_discharge > 0
83 group by y.model , y.name , y.importance) as t;
84 SET @sql = NULL;
85 SELECT
86 GROUP_CONCAT(DISTINCT
87 CONCAT(
88 'MAX(IF(name = ''',
89 name ,
90 ''', avg_discharge , NULL)) AS ',
91 CONCAT("'",name ,"'")
92)
93) INTO @sql
94 FROM result;
95

96 SET @sql = CONCAT('SELECT model , ', @sql , ' FROM result GROUP BY model ');
97

98 PREPARE stmt FROM @sql;
99 EXECUTE stmt;

Listing A.1: Greenhub SQL query

A.3 Package Names and Version Codes of Applications Tested

A.3.1 Browsers
App Name Package Name Version Code
Brave com.brave.browser 1.8.112
Edge com.microsoft.emmx 45.03.4.4958
Firefox org.mozilla.firefox 68.8.1
Google Chrome com.android.chrome 83.0.4103.83
Opera com.opera.browser 58.2.2878.53403

Table A.1: Browsers: Package Names and Version Codes

A.3.2 Reddit Applications

App Name Package Name Versin Code
BaconReader com.onelouder.baconreader 5.7.0
Reddit com.reddit.frontpage 2020.20.1
RedReader org.quantumbadger.redreader 1.9.11
Relay free.reddit.news 10.0.235
rif is fun com.andrewshu.android.reddit 4.16.19

Table A.2: Reddit Applications: Package Names and Version Codes

63

A.4 Top 100 most visited websites on mobile devices

Website Website Website
1 google.com 35 reddit.com 69 livejasmin.com
2 facebook.com 36 msn.com 70 foxnews.com
3 youtube.com 37 news.yahoo.co.jp 71 tribunnews.com
4 baidu.com 38 ebay.com 72 cookpad.com
5 ucnews.in 39 accuweather.com 73 google.de
6 wikipedia.org 40 rakuten.co.jp 74 zhihu.com
7 twitter.com 41 whatsapp.com 75 craigslist.org
8 xvideos.com 42 bbc.com 76 redtube.com
9 instagram.com 43 mail.ru 77 amazon.de
10 pornhub.com 44 bbc.co.uk 78 duckduckgo.com
11 xnxx.com 45 bing.com 79 anybunny.tv
12 yahoo.co.jp 46 fandom.com 80 twitch.tv
13 google.com.br 47 ok.ru 81 news.google.com
14 yandex.ru 48 office.com 82 dailymail.co.uk
15 yahoo.com 49 weather.com 83 ameblo.jp
16 bit.ly 50 irs.gov 84 pornhubpremium.com
17 naver.com 51 bongacams.com 85 nytimes.com
18 youtu.be 52 tiktok.com 86 archiveofourown.org
19 amazon.com 53 quora.com 87 cgtn.com
20 xhamster.com 54 auone.jp 88 chaturbate.com
21 worldometers.info 55 daum.net 89 livedoor.jp
22 globo.com 56 youporn.com 90 microsoftonline.com
23 ucweb.com 57 taobao.com 91 google.co.in
24 smt.docomo.ne.jp 58 amazon.co.jp 92 goo.ne.jp
25 zoom.us 59 walmart.com 93 nbryb.com
26 taboola.com 60 sohu.com 94 linkedin.com
27 live.com 61 imdb.com 95 netflix.com
28 qq.com 62 line.me 96 news.naver.com
29 samsung.com 63 fc2.com 97 tsyndicate.com
30 cnn.com 64 covid19india.org 98 hurriyet.com.tr
31 vk.com 65 sogou.com 99 syosetu.com
32 pinterest.com 66 theguardian.com 100 apple.com
33 outbrain.com 67 wordpress.com
34 uol.com.br 68 paypal.com

Table A.3: Top 100 most visited websites on mobile devices

A.5 Energio Results

A.5.1 Browsing Top Websites

Browsing Top 5

Browser Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

Brave 1.432 1.480 1.437 1.450
Edge 1.642 1.597 1.580 1.606
Firefox 1.501 1.561 1.626 1.563
Google Chrome 1.492 1.439 1.457 1.463
Opera 1.421 1.397 1.428 1.415

Table A.4: Browsers: Browsing Top 5 Task Results

64

Browsing Top 10

Browser Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

Brave 1.537 1.491 1.611 1.546
Edge 1.649 1.702 1.726 1.692
Firefox 1.657 1.788 1.811 1.752
Google Chrome 1.574 1.605 1.625 1.601
Opera 1.441 1.496 1.439 1.459

Table A.5: Browsers: Browsing Top 10 Task Results

Browsing Top 100

Browser Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

Brave 1.694 1.672 1.709 1.692
Edge 2.004 1.914 1.953 1.957
Firefox 2.303 2.224 2.283 2.270
Google Chrome 1.963 1.947 1.917 1.942
Opera 1.637 1.759 1.598 1.665

Table A.6: Browsers: Browsing Top 100 Task Results

A.5.2 JavaScript Benchmarks

Octane

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 1.873 2.013 1.885 1.924 10521 10558 10571 10550
Chrome 1.768 1.985 1.890 1.881 10567 10506 10475 10516
Edge 2.118 2.076 2.030 2.075 11337 11364 11302 11334
Firefox 1.791 1.838 1.803 1.811 6406 6489 6481 6459
Opera 1.682 1.763 1.813 1.753 10990 10588 10996 10858

Table A.7: Browsers: Octane Results

Kraken

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 1.988 2.018 2.013 2.006 3826.3 3789 3812.4 3809.2
Chrome 1.998 2.014 2.011 2.008 3722.6 3728.5 3705 3718.7
Edge 1.924 1.960 2.042 1.975 3669.7 3667.7 3636.6 3658
Firefox 2.268 2.115 2.231 2.205 3304.5 3305.2 3292.2 3300.6
Opera 1.827 1.757 1.910 1.831 3881.9 3795 3795.1 3824.0

Table A.8: Browsers: Kraken Results

JetStream2

65

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 2.261 2.235 2.249 2.248 33.583 34.000 34.029 33.871
Chrome 2.319 2.296 2.297 2.304 34.357 34.547 34.674 34.526
Edge 2.397 2.381 2.401 2.393 34.797 34.719 34.796 34.771
Firefox 2.011 2.105 2.088 2.068 24.245 24.690 24.612 24.516
Opera 2.282 2.226 2.258 2.255 34.533 34.600 34.451 34.528

Table A.9: Browsers: JetStream2 Results

A.5.3 Graphics Benchmarks

MotionMark

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 2.165 2.127 2.173 2.155 44.770 57.220 56.600 52.863
Chrome 2.205 2.218 2.212 2.212 60.290 58.620 59.320 59.410
Edge 2.174 2.093 2.187 2.151 31.280 30.770 40.600 34.217
Firefox 1.804 1.793 1.756 1.784 26.860 26.530 24.660 26.017
Opera 2.213 2.162 2.137 2.171 57.400 49.240 48.840 51.827

Table A.10: Browsers: MotionMark Results

Wirple

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 2.225 2.284 2.251 2.253 864 1019 984 956
Chrome 2.318 2.295 2.269 2.294 1062 1080 1096 1079
Edge 2.242 2.285 2.005 2.177 932 1045 924 967
Firefox 2.067 2.053 1.975 2.032 851 760 864 825
Opera 2.209 2.157 2.140 2.169 1055 1030 1079 1055

Table A.11: Browsers: Wirple Results

A.5.4 Performance Benchmarks

Speedometer

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 2.054 2.049 2.061 2.055 20.800 20.500 20.700 20.667
Chrome 2.138 2.147 2.139 2.141 18.400 18.800 18.900 18.700
Edge 2.179 2.175 2.158 2.171 18.500 18.600 18.900 18.667
Firefox 1.820 1.875 1.881 1.859 18.600 18.200 18.500 18.433
Opera 2.077 2.078 2.081 2.079 21.400 21.500 21.500 21.467

Table A.12: Browsers: Speedometer Results

Basemark

66

Browser
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average
Power Power Power Power Score Score Score Score
(W) (W) (W) (W)

Brave 3.018 3.036 3.071 3.042 226.65 237.04 228.67 230.79
Chrome 2.962 3.178 3.117 3.086 242.63 249.51 245.68 245.94
Edge 2.891 2.934 3.120 2.982 229.76 238.17 239.29 235.74
Firefox 2.848 2.963 3.084 2.965 183.56 183.76 178.12 181.81
Opera 2.975 3.067 3.177 3.073 253.91 262.38 241.49 252.59

Table A.13: Browsers: Basemark Results

A.5.5 Reddit Applications Energy Results
Open PNG Task

Reddit
App

Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

BaconReader 1.083 1.109 1.146 1.113
Reddit 1.150 1.120 1.076 1.115
RedReader 1.196 1.980 1.176 1.451
Relay 1.462 1.320 1.294 1.359
rif is fun 0.975 0.949 0.931 0.952

Table A.14: Reddit: Open PNG Task Results

Open Post Task

Reddit
App

Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

BaconReader 1.073 1.017 1.031 1.040
Reddit 1.141 1.165 1.182 1.163
RedReader 0.999 0.990 0.950 0.980
Relay 0.822 0.864 0.780 0.822
rif is fun 0.832 0.833 0.829 0.831

Table A.15: Reddit: Open Post Task Results

Open GIF Task

Reddit
App

Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

BaconReader 1.859 1.863 1.909 1.877
Reddit 1.717 1.550 1.698 1.655
RedReader 1.768 1.759 1.784 1.770
Relay 1.553 1.574 1.615 1.581
rif is fun 1.778 1.839 1.772 1.796

Table A.16: Reddit: Open GIF Task Results

Open Shared Task

Reddit
App

Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

BaconReader 0.984 1.045 1.278 1.102
Reddit 1.053 1.104 1.054 1.070
RedReader 0.970 0.928 1.063 0.987
Relay 0.898 0.919 0.899 0.905
rif is fun 1.051 1.044 1.047 1.047

Table A.17: Reddit: Open Shared Task Results

67

Scrolling Energio Task

Reddit
App

Trial 1 Trial 2 Trial 3 Average
Power (W) Power (W) Power (W) Power (W)

BaconReader 1.314 1.380 1.394 1.363
Reddit 1.650 1.636 1.657 1.648
RedReader 1.489 1.473 1.315 1.426
Relay 1.373 1.327 1.352 1.351
rif is fun 1.327 1.473 1.315 1.372

Table A.18: Reddit: Scrolling Energio Task Results

A.6 GreenHub Results

A.6.1 Browsers

model

Number Average Average Average Average
App of Time Discharge Power 1 Power 2
Name Samples Running (%/s) (W) (W)

(s)
A574BL Google Chrome 3052 24.680 0.008 0.053 2.153
ASUS_Z007 Google Chrome 1080 58.627 0.004 0.026 2.333
Lenovo
A6010

Google Chrome 1057 35.395 0.007 0.151 3.863

ASUS_T00J Google Chrome 833 29.083 0.006 (null) 2.438
Andromax
C46B2H

Google Chrome 589 34.878 0.005 (null) 2.124

ASUS_T00F Google Chrome 567 28.733 0.006 (null) 2.605
ONE A2001 Google Chrome 357 49.833 0.002 0.092 2.589
Z557BL Google Chrome 330 37.563 0.006 0.436 2.337
Andromax A
A16C3H

Google Chrome 308 17.692 0.008 (null) 3.977

LGMP260 Google Chrome 304 34.353 0.005 0.166 1.636
XT1060 Google Chrome 272 80.091 0.003 0.090 2.398
5056N Google Chrome 267 39.000 0.002 0.037 2.492
5056A Google Chrome 252 36.682 0.003 0.135 3.178
GT-I9195 Google Chrome 217 24.588 0.013 0.404 2.334
Andromax
B26D2H

Google Chrome 205 19.000 0.010 (null) 3.322

VS986 Google Chrome 187 24.037 0.003 0.194 2.658
GT-N8000 Google Chrome 178 131.158 0.002 0.069 0.004
LGMS210 Google Chrome 171 18.080 0.010 753.809 1 698.280
SH-05F Google Chrome 156 43.000 0.004 (null) 1.697
LG-TP260 Google Chrome 143 17.750 0.009 1.566 2.077
LG-H810 Google Chrome 133 34.286 0.010 1.580 3.158
LG-M153 Google Chrome 133 22.539 0.010 1.191 2.397
XT1585 Google Chrome 113 25.429 0.007 2.001 3.745
ARK Benefit
A3

Google Chrome 111 69.250 0.009 (null) 6.083

SM-T561M Google Chrome 111 20.539 0.004 1.009 0.004
RIDGE FAB
4G

Google Chrome 107 24.143 0.006 1.536 3.895

QMobile Z9 Google Chrome 105 25.091 0.005 0.488 2.507
ASUS_Z002 Google Chrome 102 32.000 0.005 0.957 2.775
ASUS_T00G Google Chrome 98 45.833 0.005 (null) 1.817
VS501 Google Chrome 96 15.857 0.009 3.179 1.587

68

model

Number Average Average Average Average
App of Time Discharge Power 1 Power 2
Name Samples Running (%/s) (W) (W)

(s)
Andromax
A16C3H

Google Chrome 90 35.412 0.002 (null) 3.726

Moto G (5) Google Chrome 89 15.900 0.007 1.784 1.661
C6833 Google Chrome 87 19.263 0.005 0.564 3.210
HUAWEI
SCC-U21

Google Chrome 87 19.750 0.007 1.332 3.978

Redmi Note 3 Google Chrome 82 33.750 0.008 1.695 2.373
Z851M Google Chrome 79 43.500 0.009 1.352 2.749
Moto E (4) Google Chrome 77 29.100 0.007 0.885 1.917
Z981 Google Chrome 77 38.250 0.004 0.512 3.714
GT-P5200 Google Chrome 76 41.000 0.005 0.957 0.004
VS980 4G Google Chrome 76 32.889 0.006 0.776 0.114
Lenovo
A6000

Google Chrome 74 15.286 0.008 2.414 1.865

Z558VL Google Chrome 74 19.000 0.007 2.618 2.685
GT-I9190 Google Chrome 69 20.900 0.006 0.702 1.645
LG-K120 Google Chrome 67 22.556 0.005 0.665 1.454
Z958 Google Chrome 66 15.750 0.013 4.447 2.051
General Mo-
bile 4G Dual

Google Chrome 65 17.000 0.010 (null) 4.300

LGL158VL Google Chrome 62 32.100 0.004 0.533 2.589
Z220 Google Chrome 57 28.667 0.007 1.248 1.831
ASUS_Z00ED Google Chrome 56 31.250 0.007 1.823 5.284
A0001 Google Chrome 53 20.444 0.007 1.642 0.004
Z839 Google Chrome 50 28.333 0.004 (null) 2.919
LG-H815 Google Chrome 49 30.667 0.008 3.403 2.377
Lenovo
A2020a40

Google Chrome 48 39.286 0.003 0.314 3.705

LM-X210(G) Google Chrome 48 20.000 0.013 4.318 0.651
SM-T560 Google Chrome 48 22.000 0.005 2.723 0.004
SM-G3815 Google Chrome 47 25.800 0.006 1.262 3.000
Ilium LT500 Google Chrome 42 26.571 0.005 (null) 7.727
Aquaris M5 Google Chrome 41 19.600 0.005 2.089 2.757
Lenovo
K33b36

Google Chrome 41 16.250 0.010 6.062 2.437

RS988 Google Chrome 41 11.000 0.014 15.939 2.482
Z959 Google Chrome 41 26.750 0.005 1.871 6.530
LG-H950 Google Chrome 40 19.000 0.006 3.105 3.240
LGUS215 Google Chrome 39 22.800 0.006 1 904.810 1 863.580
E2363 Google Chrome 38 33.500 0.009 4.576 2.559
LM-X410.F Google Chrome 34 36.667 0.004 1.410 1.536
GT-I9192 Google Chrome 33 36.000 0.004 0.966 3.027
Andromax
A26C4H

Google Chrome 32 35.000 0.009 (null) 3.780

ASUS_A009 Google Chrome 32 75.500 0.003 0.737 1.678
Z3001S Google Chrome 32 52.333 0.009 1.603 2.196
LG-D855 Google Chrome 31 25.667 0.003 1.729 0.034
L50 Google Chrome 30 20.500 0.006 1.834 1.994
SM-N930F Google Chrome 30 22.000 0.005 3.503 0.003
LT30p Google Chrome 29 12.000 0.018 19.358 2.030
MI 5s Google Chrome 29 15.500 0.026 11.895 2.499
YD201 Google Chrome 29 65.750 0.000 0.056 3.191

69

model

Number Average Average Average Average
App of Time Discharge Power 1 Power 2
Name Samples Running (%/s) (W) (W)

(s)
LG-D802 Google Chrome 28 24.000 0.003 1.738 0.100
LG-D410 Google Chrome 26 42.500 0.002 0.935 1.328
Andromax
B16C2H

Google Chrome 25 20.333 0.006 (null) 6.156

E6653 Google Chrome 25 25.333 0.007 3.647 1.332
HUAWEI
G7-L03

Google Chrome 25 44.000 0.003 1.161 0.805

ONEPLUS
A3003

Google Chrome 25 15.500 0.011 15.596 1.554

Redmi Note
5A

Google Chrome 25 28.000 0.005 3.804 2.467

VS425PP Google Chrome 25 20.000 0.004 (null) 1.935
A577VL Google Chrome 24 20.000 0.005 4.994 3.149
Alcatel_5044C Google Chrome 24 17.000 0.006 3.401 1.833
Aquaris X5
Plus

Google Chrome 24 49.333 0.001 0.456 2.813

E6853 Google Chrome 24 20.000 0.016 12.349 2.562
LGM-K121K Google Chrome 24 47.500 0.003 1.151 2.489
Moto G (5S)
Plus

Google Chrome 24 42.000 0.007 (null) 1.509

SO-02F Google Chrome 24 21.250 0.015 5.307 2.611
XT1045 Google Chrome 24 34.000 0.017 4.725 1.833
GT-S7275R Google Chrome 23 52.400 0.002 0.144 1.474
VF-895N Google Chrome 22 31.667 0.002 0.605 3.283
305SH Google Chrome 19 15.750 0.005 2.309 1.736
GT-N8013 Google Chrome 19 33.571 0.005 1.793 0.004
LG-M703 Google Chrome 19 17.000 0.005 5.956 2.139
Moto G (4) Google Chrome 18 17.000 0.009 20.292 3.522
C103 Google Chrome 17 27.333 0.007 4.694 2.873
LGT02 Google Chrome 17 42.000 0.007 11 650.000 2 669.710
HS-L671 Google Chrome 16 13.333 0.006 (null) 3.980
XT1058 Google Chrome 16 16.000 0.009 19.305 2.263
ASUS_Z00RD Google Chrome 15 28.000 0.002 1.017 2.268
Redmi Note 4 Google Chrome 15 23.500 0.007 9.042 1.351
C6743 Google Chrome 14 40.000 0.004 2.466 5.147
XT1033 Google Chrome 14 18.500 0.004 2.926 2.926
RAINBOW
LITE 4G

Google Chrome 13 67.000 0.002 0.693 4.399

DLI-TL20 Google Chrome 12 12.000 0.037 132.548 3.380
E2306 Google Chrome 12 13.000 0.016 37.147 3.913
K010 Google Chrome 12 20.500 0.024 38.535 2.137
SM-T561 Google Chrome 12 38.000 0.002 1.065 0.003
LG-H440AR Google Chrome 11 15.000 0.013 12.230 2.646
Redmi 4X Google Chrome 11 36.500 0.004 2.912 1.900
SM-N910F Google Chrome 11 47.000 0.003 0.559 0.004
GT-N8020 Google Chrome 9 83.500 0.002 1.056 0.004
XT1032 Google Chrome 9 16.000 0.008 13.737 1.314
Karbonn
Aura 1

Google Chrome 8 22.000 0.010 (null) 5.692

LG-M430 Google Chrome 8 13.000 0.011 35.024 1.846
C6603 Google Chrome 7 14.000 0.001 1.566 2.846
KYOCERA-
C6742

Google Chrome 7 16.000 0.004 7.649 3.149

70

model

Number Average Average Average Average
App of Time Discharge Power 1 Power 2
Name Samples Running (%/s) (W) (W)

(s)
Lenovo
A6020l36

Google Chrome 7 43.000 0.001 0.540 7.899

S4035_4G Google Chrome 7 32.000 0.009 (null) 3.347
ASUS_X014D Google Chrome 6 16.000 0.001 0.546 1.618
GT-I9301I Google Chrome 6 61.500 0.009 2.049 0.289
LS-5016 Google Chrome 6 14.000 0.004 8.379 1.851
LGUS110 Google Chrome 5 20.500 0.006 4.053 1.667
MotoE2 Google Chrome 5 27.000 0.001 1.747 2.135
SAMSUNG-
SM-N910A

Google Chrome 5 25.000 0.004 7.630 0.004

STARADDICT
6

Google Chrome 5 14.000 0.006 (null) 1.772

X10 Google Chrome 5 12.000 0.053 85.680 5.016
6055K Google Chrome 4 32.000 0.001 1.197 0.030
Coolpad A8 Google Chrome 4 52.000 0.010 7.629 5.446
G620S-L01 Google Chrome 4 21.500 0.000 0.289 1.369
MI 2S Google Chrome 4 35.000 0.001 0.435 3.078
Neffos Y5 Google Chrome 4 15.000 0.003 9.012 2.682
SM-T113NU Google Chrome 4 16.500 0.003 3.920 0.004
UL40 Google Chrome 4 24.000 0.001 2.024 2.631
6070K Google Chrome 3 20.000 0.002 3.078 1.136
Aquaris X5 Google Chrome 3 13.000 0.002 5.053 1.260
C5502 Google Chrome 3 33.000 0.001 0.607 1.835
Coolpad 5267 Google Chrome 3 18.000 0.008 (null) 1.323
GT-I8730 Google Chrome 3 59.000 0.004 2.151 2.360
LG-M250 Google Chrome 3 11.000 0.015 47.451 3.314
LG-MS770 Google Chrome 3 11.000 0.002 3.621 1.121
RIDGE 4G Google Chrome 3 11.000 0.003 8.483 5.904
Z899VL Google Chrome 3 39.000 0.000 0.270 1.672
5027B Google Chrome 2 18.000 0.019 18.617 2.661
ASUS_T00I Google Chrome 2 16.000 0.003 2.450 2.269
K014 Google Chrome 2 13.000 0.001 5.455 0.004
Le 1 Pro Google Chrome 2 21.000 0.004 10.736 1.525
Lenovo
K33a48

Google Chrome 2 12.000 0.001 2.738 2.307

LS-4505 Google Chrome 2 13.000 0.002 2.968 2.550
Moto Z2 Play Google Chrome 2 11.000 0.073 294.188 1.590
ONE E1003 Google Chrome 2 14.000 0.001 1.679 2.411
Redmi 5A Google Chrome 2 19.000 0.019 40.403 2.537
SM-J327T1 Google Chrome 2 17.000 0.006 12.377 0.004
XT1580 Google Chrome 2 17.000 0.001 3.794 1.669
LGMS210 Brave 12 13.000 0.002 3 760.970 1 457.870
GT-I9195 Edge 23 18.500 0.022 5.210 1.502
ASUS_Z011D Opera 41 18.333 0.009 6.386 3.267
GT-I9192 Firefox 3295 40.776 0.004 0.008 1.422
HTC 10 Firefox 155 16.000 0.007 1.520 3.261
GT-I9195 Firefox 25 28.400 0.011 1.978 3.550
LG-M150 Firefox 22 28.000 0.004 (null) 2.892
Redmi 4X Firefox 20 36.000 0.002 0.678 1.987
ASUS_Z002 Firefox 2 17.000 0.005 13.134 3.610

Table A.20: Greenhub: Browsers Query Power Results

71

A.6.2 Reddit Applications

model

Number Average Average Average Average
App Import- of Time Discharge Power 1 Power 2
Name ance Samples Running (%/s) (W) (W)

(s)
Nexus 5 Reddit Service 3498 10.527 0.019 0.345 1.886
ONE
A2003

Reddit Service 1715 20.535 0.018 0.394 3.406

ONEPLUS
A3003

Reddit Service 1088 12.254 0.014 0.784 1.537

MI 5 Reddit Service 1085 7.197 0.031 2.418 1.391
S60 Reddit Service 782 22.058 0.010 0.454 1.120
Redmi 4X Reddit Service 423 42.643 0.007 0.663 1.068
RIDGE
FAB 4G

Reddit Service 240 16.500 0.010 1.268 3.691

Lenovo
A6020a40

Reddit Service 208 8.808 0.037 6.110 2.746

LML413DL Reddit Service 160 18.000 0.016 5.351 1.897
A574BL Reddit Service 146 13.700 0.009 1.671 2.033
A0001 Reddit Service 90 13.533 0.013 2.637 0.004
Aquaris
X5 Plus

Reddit Service 84 12.429 0.021 10.360 2.243

RIDGE
FAB 4G

Reddit Foreground 78 14.167 0.008 3.635 3.760

LG-TP450 Reddit Service 69 13.000 0.015 6.114 1.611
Redmi 4X Reddit Background 20 22.000 0.007 18.639 1.501
Mi 4i Reddit Service 15 3.667 0.016 64.106 3.083
LG-K550 Reddit Service 7 28.000 0.011 15.511 1.733
Redmi
Note 3

Reddit Background 4 1.000 0.030 1 627.130 1.566

ONE
A2001

Reddit Service 3 1.000 0.020 948.024 0.818

MI 5 rif is fun Service 2 2.000 0.030 635.040 2.544
Redmi
Note 3

RedReader Background 2 1.000 0.010 539.460 0.041

Table A.21: Greenhub: Reddit Query Power Results

72

Bibliography

[1] Wilke C, Richly S, Götz S, Piechnick C, Aßmann U. Energy Consumption and Efficiency in
Mobile Applications: A User Feedback Study. 2013;Available from: https://ieeexplore.
ieee.org/abstract/document/6682059.

[2] Heikkinen MV, Nurminen JK, Smura T, Ham H. Energy efficiency of mobile handsets:
Measuring user attitudes and behavior. Telematics and Informatics, Volume 29, Issue 4.
2012;p. 387–399. Available from: https://www.sciencedirect.com/science/article/pii/
S0736585312000068.

[3] Somavat P, Jadhav S, Namboodiri V. Accounting for the energy consumption of personal
computing including portable devices. Publication:e-Energy ’10: Proceedings of the 1st Inter-
national Conference on Energy-Efficient Computing and Networking. 2010 April;p. 141–149.

[4] GREENSPECTOR. Playstore Efficiency Report 2019;. [Accessed 10 Jun, 2020].
Available from: https://greenspector.com/wp-content/uploads/2020/01/Playstore_
Efficiency_Report_2019_EN.pdf.

[5] Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. 2005;Available
from: https://ieeexplore.ieee.org/document/1401839.

[6] Halpern M, Zhu Y, Reddi VJ. Mobile CPU’s Rise to Power: Quantifying the Impact of
Generational Mobile CPU Design Trends on Performance, Energy, and User Satisfaction.
2016;Available from: https://ieeexplore.ieee.org/document/7446054.

[7] Android is for everyone;. [Accessed 22 Jan, 2020]. Available from: https://www.android.
com/everyone/.

[8] Mobile Operating System Market Share Worldwide; 2019. [Accessed 20 Jun, 2020]. Available
from: https://gs.statcounter.com/os-market-share/mobile/worldwide.

[9] Qoitech. How to measure smartphone energy consumption (Samsung S7 Example). 2018
February;[Accessed 22 Jan, 2020]. Available from: https://www.qoitech.com/blog/
how-to-measure-smartphone-energy-consumption.

[10] Ding F, Xia F, Zhang W, Zhao X, Ma C. Monitoring Energy Consumption of Smartphones.
2011 International Conference on Internet of Things and 4th International Conference on
Cyber, Physical and Social Computing. 2011 Oct;.

[11] Zhang L, Tiwana B, Dick RP, Qian Z, Mao ZM, Wang Z, et al. Accurate Online Power Es-
timation and Automatic Battery Behavior Based Power Model Generation for Smartphones .
2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). 2010 Oct;.

[12] Noureddine A, Bourdon A, Rouvoy R, Seinturier L. Runtime monitoring of software energy
hotspots. 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. 2012 Sept;p. 160–169. Available from: https://ieeexplore.ieee.
org/document/6494916.

[13] Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Oliveto R, Penta MD, Poshyvanyk D.
Mining energy-greedy API usage patterns in Android apps: an empirical study. MSR 2014:
Proceedings of the 11th Working Conference on Mining Software Repositories. 2014 May;p.
2–11. Available from: https://dl.acm.org/doi/10.1145/2597073.2597085.

73

https://ieeexplore.ieee.org/abstract/document/6682059
https://ieeexplore.ieee.org/abstract/document/6682059
https://www.sciencedirect.com/science/article/pii/S0736585312000068
https://www.sciencedirect.com/science/article/pii/S0736585312000068
https://greenspector.com/wp-content/uploads/2020/01/Playstore_Efficiency_Report_2019_EN.pdf
https://greenspector.com/wp-content/uploads/2020/01/Playstore_Efficiency_Report_2019_EN.pdf
https://ieeexplore.ieee.org/document/1401839
https://ieeexplore.ieee.org/document/7446054
https://www.android.com/everyone/
https://www.android.com/everyone/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.qoitech.com/blog/how-to-measure-smartphone-energy-consumption
https://www.qoitech.com/blog/how-to-measure-smartphone-energy-consumption
https://ieeexplore.ieee.org/document/6494916
https://ieeexplore.ieee.org/document/6494916
https://dl.acm.org/doi/10.1145/2597073.2597085

[14] Westfield B, Gopalan A. Orka: A new technique to profile the energy usage of android
applications. 2016 5th International Conference on Smart Cities and Green ICT Systems
(SMARTGREENS). 2016 April;p. 213–224.

[15] Cornet A, Gopalan A. A Software-based Approach for Source-line Level Energy Estimates
and Hardware Usage Accounting on Android. ENERGY 2018, The Eighth International
Conference on Smart Grids, Green Communications and IT Energy-aware Technologies. 2018
May;p. 32–37.

[16] UI/Application Exerciser Monkey;. [Accessed 22 Jan, 2020]. Available from: https:
//developer.android.com/studio/test/monkey.

[17] Jamrozik K, Zeller A. DroidMate: A Robust and Extensible Test Generator for Android.
In: 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft); 2016. p. 293–294.

[18] monkeyrunner;. [Accessed 22 Jan, 2020]. Available from: https://developer.android.com/
studio/test/monkeyrunner.

[19] monkey recorder;. [Accessed 22 Jan, 2020]. Available from: https://android.googlesource.
com/platform/sdk/+/ics-mr0/monkeyrunner/scripts/monkey_recorder.py.

[20] UI Automator;. [Accessed 22 Jan, 2020]. Available from: https://developer.android.com/
training/testing/ui-automator.

[21] Milano DT. Culebra Tester;. [Accessed 22 Jan, 2020]. Available from: http://culebra.
dtmilano.com/.

[22] Energy labels. 2020;[Accessed 22 Jan, 2020]. Available from: https://europa.eu/
youreurope/business/product-requirements/labels-markings/energy-labels/index_
en.htm.

[23] Understanding The EU’s New Energy Efficiency Labels. 2019 March;[Accessed
22 Jan, 2020]. Available from: https://industryeurope.com/
understanding-the-eus-new-energy-efficiency-labels/.

[24] Glick K. I/O 2019: New features to help you develop, release, and grow your business on
Google Play. 2019;[Accessed 22 Jan, 2020]. Available from: https://android-developers.
googleblog.com/2019/05/whats-new-in-play.html.

[25] Goldstein K. Some experimental observations concerning the influence of colors on the func-
tion of the organism. 1942;p. 147–151. Available from: https://journals.lww.com/ajpmr/
Citation/1942/06000/SOME_EXPERIMENTAL_OBSERVATIONS_CONCERNING_THE.2.aspx.

[26] Stone NJ, English AJ. Task type, posters, and workspace color on mood, satisfaction, and
performance. Journal of Environmental Psychology. 1998;p. 175–185. Available from: https:
//www.sciencedirect.com/science/article/pii/S0272494498900846.

[27] Tsiang D. Developing an Energy Efficiency Rating Framework for Android Applications [mas-
ter’s thesis]; 2019.

[28] Derudder K. GREENSPECTOR App Mark;. [Accessed 10 Jun, 2020]. Available from: https:
//greenspector.com/en/greenspector-app-mark/y.

[29] Philippot O. What are the best web browsers to use in 2020?; 2019. [Ac-
cessed 10 Jun, 2020]. Available from: https://greenspector.com/en/
what-are-the-best-web-browsers-to-use-in-2020/.

[30] Leboucq T. Which video conferencing mobile application to reduce your impact?;
2020. [Accessed 10 Jun, 2020]. Available from: https://greenspector.com/en/
which-video-conferencing-mobile-application-to-reduce-your-impact/.

[31] Derudder K. What’s the carbon impact for social network applications?; 2020.
[Accessed 10 Jun, 2020]. Available from: https://greenspector.com/en/
social-media-carbon-impact/.

74

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://android.googlesource.com/platform/sdk/+/ics-mr0/monkeyrunner/scripts/monkey_recorder.py
https://android.googlesource.com/platform/sdk/+/ics-mr0/monkeyrunner/scripts/monkey_recorder.py
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
http://culebra.dtmilano.com/
http://culebra.dtmilano.com/
https://europa.eu/youreurope/business/product-requirements/labels-markings/energy-labels/index_en.htm
https://europa.eu/youreurope/business/product-requirements/labels-markings/energy-labels/index_en.htm
https://europa.eu/youreurope/business/product-requirements/labels-markings/energy-labels/index_en.htm
https://industryeurope.com/understanding-the-eus-new-energy-efficiency-labels/
https://industryeurope.com/understanding-the-eus-new-energy-efficiency-labels/
https://android-developers.googleblog.com/2019/05/whats-new-in-play.html
https://android-developers.googleblog.com/2019/05/whats-new-in-play.html
https://journals.lww.com/ajpmr/Citation/1942/06000/SOME_EXPERIMENTAL_OBSERVATIONS_CONCERNING_THE.2.aspx
https://journals.lww.com/ajpmr/Citation/1942/06000/SOME_EXPERIMENTAL_OBSERVATIONS_CONCERNING_THE.2.aspx
https://www.sciencedirect.com/science/article/pii/S0272494498900846
https://www.sciencedirect.com/science/article/pii/S0272494498900846
https://greenspector.com/en/greenspector-app-mark/y
https://greenspector.com/en/greenspector-app-mark/y
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-2020/
https://greenspector.com/en/which-video-conferencing-mobile-application-to-reduce-your-impact/
https://greenspector.com/en/which-video-conferencing-mobile-application-to-reduce-your-impact/
https://greenspector.com/en/social-media-carbon-impact/
https://greenspector.com/en/social-media-carbon-impact/

[32] Qoitech. Otii Enterprise;. [Accessed 10 Jun, 2020]. Available from: https://www.qoitech.
com/products/enterprise.

[33] Django. Django overview;. [Accessed 10 Jun, 2020]. Available from: https://www.
djangoproject.com/start/overview/.

[34] Django. Security in Django;. [Accessed 10 Jun, 2020]. Available from: https://docs.
djangoproject.com/en/3.0/topics/security/.

[35] NGINX. What is NGINX?;. [Accessed 10 Jun, 2020]. Available from: https://www.nginx.
com/resources/glossary/nginx/.

[36] uWSGI. Setting up Django and your web server with uWSGI and nginx;. [Accessed 10
Jun, 2020]. Available from: https://uwsgi-docs.readthedocs.io/en/latest/tutorials/
Django_and_nginx.html.

[37] rq. Django-RQ. GitHub; 2020. [Accessed 10 Jun, 2020]. Available from: https://github.
com/rq/django-rq.

[38] Driessen V. Redis Queue;. [Accessed 10 Jun, 2020]. Available from: https://python-rq.
org/.

[39] Redis. Introduction to Redis;. [Accessed 10 Jun, 2020]. Available from: https://redis.io/
topics/introduction.

[40] team V. Retiring Octane;. [Accessed 12 Jun, 2020]. Available from: https://v8.dev/blog/
retiring-octane.

[41] Mozilla. Kraken JavaScript Benchmark;. [Accessed 12 Jun, 2020]. Available from: https:
//krakenbenchmark.mozilla.org/.

[42] webkit. In-Depth Analysis;. [Accessed 12 Jun, 2020]. Available from: https://browserbench.
org/JetStream/in-depth.html.

[43] webkit. About MotionMark 1.1;. [Accessed 12 Jun, 2020]. Available from: https://
browserbench.org/JetStream/in-depth.html.

[44] Debouvere B. Wirple;. [Accessed 12 Jun, 2020]. Available from: https://www.wirple.com/.

[45] webkit. About Speedometer 2.0;. [Accessed 12 Jun, 2020]. Available from: https://
browserbench.org/Speedometer2.0/.

[46] Oy B. Basemark Web 3.0;. [Accessed 12 Jun, 2020]. Available from: https://web.basemark.
com/.

75

https://www.qoitech.com/products/enterprise
https://www.qoitech.com/products/enterprise
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
https://docs.djangoproject.com/en/3.0/topics/security/
https://docs.djangoproject.com/en/3.0/topics/security/
https://www.nginx.com/resources/glossary/nginx/
https://www.nginx.com/resources/glossary/nginx/
https://uwsgi-docs.readthedocs.io/en/latest/tutorials/Django_and_nginx.html
https://uwsgi-docs.readthedocs.io/en/latest/tutorials/Django_and_nginx.html
https://github.com/rq/django-rq
https://github.com/rq/django-rq
https://python-rq.org/
https://python-rq.org/
https://redis.io/topics/introduction
https://redis.io/topics/introduction
https://v8.dev/blog/retiring-octane
https://v8.dev/blog/retiring-octane
https://krakenbenchmark.mozilla.org/
https://krakenbenchmark.mozilla.org/
https://browserbench.org/JetStream/in-depth.html
https://browserbench.org/JetStream/in-depth.html
https://browserbench.org/JetStream/in-depth.html
https://browserbench.org/JetStream/in-depth.html
https://www.wirple.com/
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
https://web.basemark.com/
https://web.basemark.com/

	Introduction
	Motivations
	Objectives
	Contributions

	Background
	Battery technology
	Android Operating System
	Android Applications
	Android Debug Bridge

	Hardware Measurements
	Energy Models
	SEMO
	PowerBooter
	E-Surgeon

	Software Measurements
	GreenHub Project
	Orka

	Android UI automation tools
	UI/Application Exerciser Monkey
	DroidMate
	Monkeyrunner
	UI Automator
	AndroidViewClient and CulebraTester

	Rating Systems
	EU Energy Efficiency
	Google Play Store Rating
	Benchmarking

	Smartphone Energy Rating
	Aeon
	GREENSPECTOR App Mark

	Project & Implementation
	Energio Overview
	Hardware Energy Measurement
	Device Choice
	Modifying the Google Pixel 2
	Power Monitor Choice

	Energio User Interface
	Energio Architecture
	User Flows
	Technologies used
	Energio Pages
	Storage Models
	Upload File Structure
	Measurement Units
	Fair Benchmarking
	Energio Run Options
	Identifying Failures
	Integration Testing

	Battery dataset analysis - Greenhub
	Setting up a database
	Battery capacity of devices
	Battery capacity web crawler
	Summary

	Evaluation
	Energio Results
	Building UI automation scripts
	Browsers
	Reddit Applications
	Establishing a rating

	GreenHub
	Google Pixel Results
	All devices Results
	GreeenHub Summary

	Greenspector
	Greenspector App Mark vs Energio
	Navigation Benchmark
	Kraken Benchmark

	Aeon

	Conclusion
	Energio Discussion
	Future Work
	Testing more applications
	Continuous Integration Energy Readings
	Deploying the website in the cloud
	Support for other operating systems and devices
	Django Channels
	Remote installation of APK packages
	GreenHub Database
	GreenHub Analysis

	
	Energio Pages Screenshots
	Greenhub SQL query
	Package Names and Version Codes of Applications Tested
	Browsers
	Reddit Applications

	Top 100 most visited websites on mobile devices
	Energio Results
	Browsing Top Websites
	JavaScript Benchmarks
	Graphics Benchmarks
	Performance Benchmarks
	Reddit Applications Energy Results

	GreenHub Results
	Browsers
	Reddit Applications

