
Imperial College London

MSc Computing

(Artificial Intelligence and Machine Learning)
Department of Computing

MSc Thesis

Deep Learning for Image-Based Profiling in Drug
Discovery

Author: Acer Blake

Supervisors: Professor Ben Glocker,
Dr Ben Jones

Second marker: Professor Abhijeet Ghosh

September 2023

Abstract

Image-based profiling, the task of extracting rich biological data from detailed mi-
croscopic imaging acquisitions, has emerged in recent years as a powerful tool for drug
discovery. In particular, localising and segmenting out cells from fluorescent imaging
experiments allows researchers to compute the drug response profiles of individual cells
over time. At present, the biomedical imaging software community has yet to leverage
state-of-the-art foundation models for cellular detection and segmentation. To this end,
the aims of the following thesis are tripartite. The first is the development of FRETLab,
a machine-learning enabled image analysis platform for fluorescence microscopy. The
second is an exploration of classical and deep unsupervised clustering for drug response
time series analysis. Lastly, the third and final part consists of an investigation into the
potential of few-shot dataset labelling to enable generalisable and low-resource cellular
detection and segmentation for biologists without expertise in machine learning.

Acknowledgements

To my primary supervisor, Professor Ben Glocker, I would like to thank you for
agreeing to my self-proposal and allowing me to undertake a project in drug discovery,
an area I am deeply passionate about, and intend to pursue for my future career. I would
also like to thank you for your advice and supervision over the course of the project. To
my secondary supervisor, Dr Ben Jones, I would like to thank you for helping a non-
biologist understand the nuances of fluorescence microscopy, drug discovery, and biology
more generally. Developing domain knowledge in drug discovery, fluorescent imaging,
and the neurobiology of metabolism has helped the project along greatly. Finally, to
my second marker, Professor Abhijeet Ghosh, I would like to extend my thanks for your
feedback on my initial report, and for collaborating in marking my thesis.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Drug Discovery and the Neurobiology of Metabolism 3
2.2 Fluorescence Microscopy . 6
2.3 Fluorescence Resonance Energy Transfer (FRET) 8
2.4 Image Analysis Pipeline . 9

2.4.1 Pipeline Overview . 9
2.4.2 Pipeline Walkthrough . 10

2.5 Deep Learning . 16
2.5.1 Neural Networks . 16
2.5.2 Convolutional Neural Networks and Fine-Tuning 17
2.5.3 Faster R-CNN Object Detection 18
2.5.4 Vision Transformers . 19

3 Related Work 20
3.1 FRET Imaging Software . 20
3.2 Segmentation . 22

3.2.1 Pre-Foundation Model Approaches 22
3.2.2 Segment Anything Foundation Model 23

3.3 Summary . 27

4 FRETLab 28
4.1 Software Overview . 28
4.2 System Architecture and Design . 38

4.2.1 Datasets . 39
4.2.2 Detection . 42
4.2.3 Segmentation . 50
4.2.4 Clustering . 55

4.3 Evaluation . 56

5 Time Series Analysis 58
5.1 Time Series Clustering . 58

5.1.1 Experimental Details, Procedure, and Preprocessing 59

5.1.2 Inter-Cluster and Intra-Cluster Evaluation Metrics 61
5.1.3 Classical Unsupervised Time Series Clustering 62
5.1.4 Deep Unsupervised Time Series Clustering 63
5.1.5 Cluster Taxonomy . 64

5.2 Morphological Reactivity Prediction and Regression 65

6 Few-Shot Dataset Labelling 66
6.1 Motivation . 66
6.2 Segment Anything Model With Selective Extraction 67

6.2.1 Pipeline . 67
6.2.2 Novelty Detection Methods . 68

6.3 Evaluation . 69

7 Conclusions and Future Work 71
7.1 Legal, Ethical, and Social Considerations 72

Bibliography 76

Appendices 77

A FRETLab User Guide 77

B Time Series Analysis 88

Chapter 1

Introduction

The development of machine learning models for the task of drug discovery has been
identified by the World Health Organisation (WHO) as one of the most promising ap-
plications of artificial intelligence to modern medicine. In their first global report on
artificial intelligence for healthcare [1] the WHO note that over the next two decades
‘the role of AI could evolve,’ and that by 2040, ‘testing of medicines might be virtual
– without animals or humans – based on computer models of the human body’. Chief
among the many subtasks identified by the report as being critical to the automatic
drug discovery pipeline is image analysis, particularly ‘structuring unorganized data
from medical imaging’. In the context of drug discovery, unlabelled data abounds in
the microscopic imaging domain, spanning time-series acquisitions of cell responses to
single-cell image tracking. This abundance of data coupled with the complex dynamics
of cellular interactions makes microscopic imaging a key candidate for deep learning.

The recent successes of deep learning models at executing imaging tasks such as
cell-counting, tracking, and dynamical modelling has significantly accelerated the pace
of drug discovery already [2]. However, there remain three primary unsolved problems.
The first is the practical issue of democratizing deep learning tools, namely that few open
source software tools for deep-learning based microscopic analysis exist, and those that
do are often inaccessible to biologists. While recent efforts have attempted to address
this [3], barriers still remain. Another more theoretical problem is that of determining
precisely how much information can be gleaned about a cell’s reaction to a drug from
images of its morphology. Of particular importance is the question as to whether models
trained on imaging data alone are viable for making sufficiently accurate predictions, or
if only rich, multi-modal genomic, chemical, and bioinformatic amalgams are capable of
such a feat. At present, a standard approach to categorizing cellular responses entails
imaging the fluorescent activity within each cell at regular intervals and extracting a
time series from this [4]. Here there is a clear opportunity for unsupervised clustering on
drug reactivity time series, which could prove useful in identifying meaningful response
profiles. The third challenge is that of generalisation in low resource settings; where
accessible methods exist for achieving state-of-art performance on cellular imaging tasks,
these often require large datasets of images labelled down to the individual pixel level.

1

Chapter 1. Introduction

With the preceding challenges in view, the aims of the present project are three-
fold: to automate the fluorescence microscopy pipeline currently in use by the Jones
lab within Imperial’s Department of Metabolism [5]; to determine whether classical and
deep unsupervised time series clustering can be used to separate out cellular responses
to one of a number of drugs; and finally to investigate the potential of an emerging
foundation model as an aid for few-shot automatic dataset labelling.

Concerning the first of these tasks, automating the Jones lab’s image analysis pipeline,
the primary motivation is to accelerate the turnaround between fluorescent imaging ac-
quisitions and the analysis of the data obtained. Further, pipeline automation has the
effect of standardising the workflow by removing artefacts introduced by the imaging
modality, as well obviating human biases which often contribute to errors or inconsis-
tencies in quantitative measurements and datasets [6]. Removing fluorescence imaging
artefacts such as chromatic aberration, drift, and vignetting is a well-studied area with
a vast body of literature and open-source software behind it. Therefore, the focus here
will be the task of eliminating human involvement and biases in image analysis, which
remains an open problem. A common example is cellular segmentation, a preliminary
step for computing responses to drugs in which the precise pixels belonging to each cell
in an image of a given culture are annotated. This is often achieved by thresholds that
are manually tuned by users. Segmentation will therefore be at the core of this part of
the present report. In particular, herein will be developed an accessible, Python-based
tool for fluorescence microscopy experiments based upon Meta AI’s Segment Anything
Model (SAM) [7]. Emphasis will be placed on the development of CellSAM, a model
fine-tuned to segment out cells from imaging acquisitions and facilitate the determination
of cellular reactivity using a fluorescence energy transfer protocol.

The second project objective, drug response analysis, could potentially aid in discov-
ering biological insights as to why certain cells respond to drugs more than others, and
serve as a principled method by which biologists can begin their investigations. Here,
using the automated pipeline developed as part of the preceding objective, a dataset of
univariate drug response time series will be built. Thereafter, classical and deep unsu-
pervised clustering will then be used to group cells into reactivity clusters with a view
to being able to determine whether meaningful patterns emerge in how neurons respond
over time to various drugs.

Finally, as a tertiary goal, the report will explore the potential of the new paradigm
of foundational segmentation models for generalisable, low-resource, and automatic la-
belling of cell biology datasets. The emphasis here will be on developing a pipeline to
fine-tune the output of the Segment Anything Model, and then testing this method on
a cellular detection dataset with the aim of being able to perform few-shot labelling.

The three aforementioned objectives will be addressed in Chapters 4, 5, and 6 re-
spectively. Before this, however, it will be instructive to first detail the preliminaries for
understanding the project – the subject of Chapter 2, and secondly to survey the related
work in these areas, as conducted in Chapter 3. Finally, Chapter 7 will present closing
conclusions and suggestions for future work, as well as an assessment of the legal, ethical
and social ramifications of the present project.

2

Chapter 2

Preliminaries

This chapter introduces the necessary preliminaries for understanding the broader con-
text in which the present work is set, the objectives the project will aim to meet, and
the work that has been done in relevant areas thus far. This begins with a primer on
the neurobiology of metabolism, followed by an introduction to fluorescence microscopy
as an imaging medium and its applications to drug discovery. Following this, details of
the image analysis pipeline currently in use by the Jones lab will motivate the software
developed in Chapter 4. Finally, as machine-learning will be the focus of the methodol-
ogy used throughout the project, an overview of the current state-of-the-art methods in
deep learning for medical imaging will lay the groundwork for future chapters.

2.1 Drug Discovery and the Neurobiology of Metabolism

As noted in Chapter 1, the present project is being undertaken in conjunction with
Dr Ben Jones of Imperial College London’s Department of Metabolism. The Jones
research group is focused primarily on the development of novel drugs to treat diabetes
by inducing satiety, and, by extension, weight loss. This is being facilitated through the
application of new molecular tools to understand and exploit the biology of G protein-
coupled receptors (GPCRs) for therapeutic benefit.

Proteins are complex molecules made of amino acids that are responsible for many
functions within cells, from providing immunity against foreign particles to transporting
small molecules throughout the body [8]. Membrane receptors, or simply ‘receptors’,
are a class of protein that reside on the outside of a cell’s surface and respond to signals
by binding to ligands – chemical messengers released by a cell to signal either itself or
a different cell [9]. These cell surface receptors act as relays for molecular messages in
the form of light energy, peptides 1, lipids 2, sugars, and proteins. Such signals inform
cells about the presence or absence of sustenance in the form of light or nutrients within
their environment, or they convey information sent by other cells.

1Peptides are typically defined as molecules that consist of between 2 and 50 amino acids, whereas
proteins are made up of 50 or more amino acids [10].

2Organic compounds including fats, oils, hormones, and certain components of membranes [11].

3

Chapter 2. Preliminaries 2.1. Drug Discovery and the Neurobiology of Metabolism

According to the journal Nature, G-protein-coupled receptors (GPCRs) are the
‘largest and most diverse group of membrane receptors in eukaryotes’ 3 [12]. GPCRs
play a role in an vast array of functions in the human body, and increased understanding
of these receptors has greatly affected modern medicine, with recent research estimating
that ‘between one-third and one-half of all marketed drugs act by binding to GPCRs’.

In a recent publication [13] Dr Jones described a new mechanism, termed ‘biased
signalling’, which maximises the action of the glucagon-like peptide 1 receptor (GLP-
1R), a particular GPCR that could potentially improve treatment for diabetes. The
term ‘biased signalling’ refers to the fact that different ligands stabilise distinct receptor
conformations, leading to engagement with different cell signalling networks. The recep-
tor system can thereby be tuned to increase beneficial effects and minimise side-effects.
Following this work, Dr Jones has been funded to uncover the molecular mechanisms
behind biased GLP-1R activation, particularly through the investigation of agonists –
compounds that bind to a cellular receptor and produce the same action as a naturally
produced molecule that ordinarily binds to the receptor [14], in this case GLP-1R.

Figure 2.1: A graphic illustrating the effects of GLP-1 or GLP-1R agonists [15] [16].

Glucagon-like peptide-1 (GLP-1) is a hormone that is secreted from the intestine in
response to nutrient ingestion. In addition to its well-known effects on insulin secretion
and glucose-level maintenance, GLP-1 also plays an important role in the neurobiology
of metabolism. GLP-1 receptors are expressed in several regions of the brain, includ-
ing the hypothalamus, brainstem, and limbic system. Activation of these receptors by
GLP-1 can lead to a range of metabolic effects, including increased energy expenditure,
decreased food intake, and improved glucose metabolism [17].

3Eukaryotes are organisms with well-defined nuclei, often multi-cellular and complex, as opposed to
prokaryotes, which have no distinct nucleus and are single-celled.

4

Chapter 2. Preliminaries 2.1. Drug Discovery and the Neurobiology of Metabolism

One of the central mechanisms by which GLP-1 affects metabolism is through its
effects on the central nervous system’s regulation of food intake. GLP-1 has been shown
to act on the hypothalamus, a key brain region involved in the regulation of energy
balance, to reduce appetite and increase satiety [18]. In addition to its effects on food
intake, GLP-1 also has direct effects on energy expenditure. Studies in rodents have
shown that GLP-1 can increase heat production in brown adipose tissue 4, leading to
increased energy expenditure [20]. Similar studies in humans have also demonstrated
that GLP-1 increases glucose uptake and utilization in skeletal muscle and adipose tissue,
leading to improved glucose metabolism [21].

The Jones research group are currently using mice as a model organism for the
development of diabetes alleviating drugs in humans. In particular, two molecules are
being tested on mouse neurons in vitro: exendin-phe1 (ExF1) and exendin-asp3 (ExD3).
Both molecules are modifications of exendin-4, a GLP-1R agonist currently used to
treat type II diabetes [22]. Exendin-4 was discovered in 1990 by the endocrinologist
Dr. John Eng [23]. His assays 5 revealed that that venom from certain snakes and
lizards, including the Gila monster, caused enlargement of the pancreas, where insulin
is synthesized. Exendin-4 was discovered to be similar in both structure and function to
GLP-1, but only when glucose production is high. While GLP-1 is active in the body
for only a few minutes, exendin-4 may remain active for hours, suggesting that it could
be a long-lasting and effective diabetes treatment [23].

Figure 2.2: Graphs illustrating the reactivity profiles of a culture of neurons. From left
to right: (a) Collective culture reactivity as measured by the amount of positive control,
forskolin (FSK) present. (b) Area under the curve (AUC) for neuronal response. (c) Box
and whisker plot for drug response with the control solution subtracted. (d) Profiles of
responders and super-responders. All data is supplied by the Jones lab.

Key to understanding the efficacy and biological underpinnings of ExF1 and ExD3 is
determining why some neurons respond more to the molecules than others. As pictured
in Figure 2.2, neurons may differ widely in terms of both their peak reactivity and the
length of time for which they display a response. To address this question, we must
first understand the tools currently being employed by the Jones lab to measure cellular
responses, namely fluorescence microscopy and fluorescence resonance energy transfer.

4Adipose tissue is connective fatty tissue that extends throughout the human body [19].
5An assay is a quantitative test to determine the quantity of a given substance in a particular sample.

5

Chapter 2. Preliminaries 2.2. Fluorescence Microscopy

2.2 Fluorescence Microscopy

Cellular imaging plays a central role in characterising biased signalling and related phe-
nomena. For this reason, the Jones research group have established several fluorescence
and fluorescence resonance energy transfer (FRET) – based assays in order to measure
biased signalling. The focus of this project will be on a two-channel ratiometric FRET
method in particular. However, before exploring this technique, it will prove instructive
to first understand fluorescence microscopy and its applications to drug discovery.

Figure 2.3: A general hardware schematic for fluorescence microscopes [24].

Fluorescence microscopy is a powerful imaging technique that enables the visualiza-
tion and analysis of biological processes with high spatial and temporal resolution [25].
The technique utilises fluorescent dyes or proteins called fluorophores that emit light
when excited by a specific wavelength of light. These fluorescent molecules can be intro-
duced into living cells or tissues, allowing the observation of processes such as protein
interactions, signalling events, and cellular transport [25].

As pictured in Figure 2.3, a fluorescent microscope has six major components: a
light source, an excitation filter, an emission filter, a dichroic mirror, an objective lens,
and a detector. The process of registering a fluorescent image involves several steps:
initially, a high-intensity light source, such as a mercury or LED lamp, emits light of a
specific wavelength, usually ultraviolet or blue, which serves as the excitation light. An
excitation mirror ensures that only the desired excitation wavelength reaches the sample.
This excites the fluorophores in the sample, causing them to absorb this energy and emit
light at a longer wavelength. To separate the excitation and emission light, specialized
optical elements are employed. A dichroic mirror reflects the excitation light towards
the sample while allowing the emitted fluorescent light to pass through it. Additionally,
an emission filter selectively allows the emitted fluorescent light to pass through, while
blocking any residual excitation light. The emitted light then reaches a detector, such
as a camera or photomultiplier tube, which captures the image.

6

Chapter 2. Preliminaries 2.2. Fluorescence Microscopy

Figure 2.4: An example of an unprocessed, three-channel image of mouse neurons in
vitro, taken by the Jones lab. Note that while there are three panes, each corresponding
to the same field of view through three separate filters – red, yellow, and cyan, the first
channel (leftmost) is unused. Observe also that acquisitions are rendered in grayscale
by default. The fluorescent imaging acquisitions taken by the Jones lab take the form
of time lapses with 16-bit pixel intensities. The file extension is .tif, representing the
Tagged Image File format (TIF or TIFF), a common image format for microscopy.

In the context of drug discovery, fluorescence microscopy has become an indispensable
tool for understanding the mechanisms underlying the action of drugs and identifying
new drug targets. One of the main advantages of fluorescence microscopy is its ability
to provide real-time visualization of cellular processes, enabling the observation of drug
effects on living cells. This enables researchers to study drug interactions with specific
targets, such as proteins or receptors, and investigate their effects on cellular functions.

Fluorescence microscopy is also well-suited to high-throughput drug screening, where
large numbers of compounds can be rapidly screened for their effects on cellular processes.
This is achieved using automated microscopes and imaging software that can capture
and analyze large amounts of data quickly and efficiently. In addition, as we will shortly
see, fluorescence microscopy can be combined with other imaging techniques, such as
confocal microscopy or FRET imaging, to provide more detailed information about drug-
target interactions and cellular processes. For example, FRET imaging can be used to
monitor protein-protein interactions, providing insights into the biochemical states of
the cells under study. It is this technique we will explore next.

7

Chapter 2. Preliminaries 2.3. Fluorescence Resonance Energy Transfer (FRET)

2.3 Fluorescence Resonance Energy Transfer (FRET)

Fluorescence resonance energy transfer (FRET) is a widely used technique in fluorescence
microscopy that allows the study of protein-protein interactions and other biochemical
processes in living cells. The process of FRET entails measuring the transfer of energy
between two fluorescent molecules, a donor and an acceptor, when they are in close
proximity to each other. In the context of the present project, the donor is a yellow
fluorescent protein (YFP) and the acceptor is a cyan fluorescent protein (CFP). For the
sensitized emission FRET procedure used by the Jones lab, the energy stored in either
protein is indicated by the pixel intensities for each cell, viewed through their respective
channels. When ExF1 or ExD3 are introduced into the culture, a reaction is indicated
by a transfer of brightness from one channel to the other. The ratio of pixel intensities
is then used to measure reactivity. Formally, for the set of pixels belonging to any given

cell, Cell
(t)
i , at a given timestep t, the FRET response of the cell is given by:

FRET (Cell
(t)
i) =

1

|Celli|
∑

pj∈Celli

Y FP (t)(pj)

CFP (t)(pj)
(2.1)

where
Y FP (t)(pj)

CFP (t)(pj)
is the ratio of pixel intensities between the YFP and CFP channels

at time t of pixel pj , with pj being an element of the set Celli. Figure 2.5 provides an
example of the initial energy disparity between the YFP and CFP channels before the
introduction of a drug. Observe that neurons in the yellow channel image display higher
pixel intensities, indicating that a drug induced energy transfer has yet to occur.

Figure 2.5: Visualising the energy disparity between the YFP and CFP channels in a
FRET experiment. Prior to drug introduction the YFP channel is always the more
energetic. Both images are of the same cells at identical time-steps. Note that these two
images are the central and rightmost panes of Figure 2.4 with filters applied.

8

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

2.4 Image Analysis Pipeline

Equipped with an understanding of the neurobiogical questions being pursued by the
present project, fluorescence microscopy as an imaging medium, and finally FRET imag-
ing as applied to drug discovery, we now examine the current image analysis pipeline
within the Jones lab. First, Section 2.4.1 will provide an overview of the pipeline, which
will be followed by a detailed walkthrough for a particular acquisition in Section 2.4.2.

2.4.1 Pipeline Overview

At a high level, the image analysis task is to calculate cellular responses to two drugs:
exendin-phe1 and exendin-asp3, hereafter referred to as ExF1 and ExD3 respectively.
The determination of a given cell’s response to these two molecules is accomplished
through a ratiometric comparison of its pixel intensities under two fluorescent filters.
This is presently achieved by acquiring time lapses of mouse neurons being stimulated
by ExF1 and ExD3, and then comparing the response to these drugs against a control,
or ‘vehicle’ (VeH). The bioimaging software Fiji [26] is used to perform this analysis.

Two channels are recorded to measure changes in one of two fluorescent proteins:
yellow fluorescent protein and cyan fluorescent protein. The response of these channels
indicates the amount of excitation of cylic adenosene monophosphate (cAMP), a neu-
ronal receptor responsible for appetite. The ratio of yellow fluorescent protein to cyan
fluorescent protein is then taken as the measure of activity a given neuron exhibits in
response to the trialled drug.

Ten steps are required to prepare the time lapse acquisitions before they are ready to
be used to collate the data graphed in Figure 2.2. The first of these is flat-field correction,
a process in which patterns of non-uniform illumination produced by the imaging process
are corrected for algorithmically. Following this, the two YFP and CFP channels are
separated, registered, and then merged once again into a single time lapse. This is to
correct for misregistration between images captured through the yellow and cyan filters,
and will be discussed in greater detail in Section 2.4.2. Then, as the medium in which the
neuron culture is suspended is fluid, we correct for cellular drifting over time. With the
images across the two channels now formatted appropriately, we add a uniform constant
to all pixels and separate the channels. This allows for the YFP channel to be divided
by the CFP channel without division errors and computes one element of the ratiometric
FRET metric outlined in the preceding section. A maximum pixel intensity projection
is then used to create boundaries around cells in the z-dimension. This enables manual
user thresholding of pixel intensities so as to produce a binary image from which cells
or ‘regions of interest’ (ROI) can be drawn. These ROIs are then projected onto the
FRET image, each cell’s FRET score is calculated, and finally the results are analysed.

9

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

2.4.2 Pipeline Walkthrough

As previously described, the existing image analysis pipeline is a ten-step process that
combines both automated plug-ins provided within Fiji and manual manipulation of the
time lapse images. The full pipeline and the rationale for each step are detailed below.

1. Apply BASiC flat-field correction algorithm.

Figure 2.6: A schematic for the BASiC flat field correction algorithm [27].

Flat-field correction refers to the process of rectifying non-uniform patterns of illu-
mination in digital images. In the case of microscopy, this often takes the form of
vignetting – a radial pattern of decreasing pixel intensities, as pictured in Figure
2.7. Flat-field correction is necessary as the computation of FRET is sensitive to
differences in pixel intensities within a given time-slice. Adjusting for this is there-
fore a necessary pre-procesisng step. The flat-field correction algorithm currently
in use is BASiC, presented by Peng et al in [27]. The algorithm operates on the
basis of the shading model, which approximates the process of image formation
as a linear function that relates a measured image, Imeas(x) at location x, to its
uncorrupted true correspondence, Itrue(x), as:

Imeas(x) = Itrue(x) · S(x) +D(x) (2.2)

where S(x), the flat-field, represents the change in effective illumination across an
image, and D(x), the dark-field, represents camera offset and thermal noise, which
are present even if no light is being received. The BASiC algorithm attempts to
reconstruct Itrue from Imeas by estimating S(x) and D(x). BaSiC first constructs
a measurement matrix I, which is then decomposed into a low-rank matrix IB
and a sparse residual matrix IR. The low-rank matrix is optimized by promot-
ing the sparsity of the residual matrix with a reweighted L1-norm. Finally, the
optimization problem is solved using a linearized augmented Lagrangian method.

10

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

Figure 2.7: Demonstrating the effect of the BASiC flat-field correction algorithm. At top,
the illumination pattern, or ‘flat-field’ model. Note the radial pattern of illumination
emanating from the centre, with a darker pattern of illumination in the corners. At
middle, the original image from which the flat-field model was calculated. At bottom,
the corrected image produced by dividing the original image by the flat-field model.

11

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

2. Channel separation and registration. Having corrected for region-wise dis-
parities in illumination, the two-channel time lapse is separated into individual
z-stacks, one for the YFP and CFP channels respectively. This step is to allow for
registration between the two channels. Two sources of misregistration contribute
here: user error and chromatic aberration. The latter refers to a property of mi-
croscopic imaging whereby a lens may fail to focus all colours to the same point
due to distinct refractive indices between wavelengths. Human error may also con-
tribute to misalignment as at present the user is required to highlight regions of
interest using a rectangular lasso tool. Consequently, there is no guarantee of com-
plete consistency between the cropped regions. There are four subtasks involved
in executing this step:

(a) Use SIFT registration algorithm. The scale invariant feature transform (SIFT)
algorithm [28] is used to register the two channels.

(b) Record the transformation matrix. The output of the SIFT algorithm is a
transformation matrix that defines a mapping between the YFP and CFP
channels. This must be recorded for later use.

(c) Apply transformation. Armed with the transformation matrix of the pre-
ceding step, the user manually applies the transformation specified to the
template image.

(d) Merge YFP and CFP channels. Once the time lapses have been registered,
they are recombined. While they will later be split once again, another pre-
processing step in the form of drift correction is required. Since this needs to
be done for both channels, it is simplest to recombine them prior to this step.

Figure 2.8: YFP channel (left), CFP channel (middle), and their registered overlap image
(right). Note that the registration is not perfect as only a translation may be applied,
while misregistrations due to aberration are often rigid or affine transformations.

12

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

3. Drift correction. While the neurons being imaged are not motile, cells are liable
to drift over the course of the time lapses due to collisions with debris floating
in the medium in which they are suspended or the introduction of the aqueous
drugs. This motivates drift correction, which accounts for temporal displacements
of individual cells. This is simply another form of image registration, except that
rather than being performed between channels, the registration is performed over
the z-dimension within each channel.

4. Standardisation and channel splitting

(a) Add a uniform constant to pixel intensities. Adding a small constant to all
pixels in the merged image stack avoids division by 0 when calculating FRET.
Recall that the FRET for a particular cell Ci is calculated as a sum involving

the term
Y FP (pj)
CFP (pj)

, where Y FP (pj) is the amount of yellow fluorescent protein

exhibited by a pixel pj ∈ Ci and CFP (pj) is the amount of cyan fluorescent
protein exhibited by pj ∈ Ci. We thus compute a FRET time series by
dividing the YFP channel by the CFP channel. This step ensures that no
illegal divisions by 0 occur, while also avoiding altering the final result.

(b) Split back into individual channels (two separate z-stacks). Here we facilitate
FRET computation in the next step by separating the two channels so the
quotient of YFP over CFP can be calculated.

5. Compute FRET image. The FRET time lapse is produced by calculating the
ratio between the registered YFP and CFP channels. The result is a time lapse
which highlights the reactivity of each cell to the drug being tested or the control.

Figure 2.9: YFP (left), CFP (middle), and ratiometic FRET time lapse (right).

13

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

6. Maximum intensity projection. In calculating FRET we are interested in the
mean ratio of YFP to CFP for each cell throughout the time lapse. Since we are
now dealing with the FRET time lapse, this simply requires localising the exact
pixel set of each neuron and taking the average over these values. To do this, we
need to segment out each neuron. A first preprocessing step towards achieving
this is to compute the maximum pixel intensity over the whole image along the
z-dimension to emphasise the boundaries of each neuron.

Figure 2.10: A FRET time lapse (left) and its maximum intensity projection (right).

7. Cell segmentation. Using the maximum intensity projection image, cells are
segmented so that boundaries may later be drawn around them in the FRET
time lapse, thereby allowing only the activation of individual neurons as measured
by changes in their YFP-CFP ratio to be taken into account and not the image
background. This is currently a two-step manual process:

(a) Thresholding. Segment the cells and produce a binarized image according to
a single intensity threshold. The threshold is set by a combination of intuition
and experimentation.

(b) Analyse particles. The resulting segmentation will be imperfect, and often
includes segmentations representing non-cellular debris. To remedy this, Fiji’s
particle analysis tool is used to impose constraints on the minimum area an
image region must have in order to constitute a valid segmentation.

14

Chapter 2. Preliminaries 2.4. Image Analysis Pipeline

Figure 2.11: Thresholding (left) and particle analysis (right).

8. Region of interest (ROI) projection. Having established a reasonable seg-
mentation, Fiji’s region of interest manager is used to project regions of interest
on to the FRET image. This maps borders from each segmented region in the bi-
narized image to the FRET time lapse. Since we have performed drift correction,
the expectation is that these borders will be faithful outlines of each cell over time.

9. Compute FRET. Now that we have the FRET time lapse and the regions of
interest representing each suspected cell, we can compute the FRET value within
every ROI for each z-slice.

10. Plot time series. Finally, with a time lapse of ratiometric measurements for each
cell, the time series data may be plotted and further analysis may now be done.

Figure 2.12: Visualising the per cell FRET reponses over time to the ExD3 drug.

Several stages in the preceding pipeline may be automated using modern techniques
in deep learning. We turn to the prerequisites for understanding these next.

15

Chapter 2. Preliminaries 2.5. Deep Learning

2.5 Deep Learning

Deep learning is a branch of machine learning which is itself a sub-discipline within the
broader field of artificial intelligence. Here the emphasis is on deep neural networks, par-
ticularly those with three or more layers. As much of the focus of the present work will be
on deep-learning based approaches to object detection, segmentation, and classification,
we will review the common deep learning architectures for these next.

2.5.1 Neural Networks

A neural network is comprised of interconnected computational units called neurons,
which are organized into layers. The fundamental building block of a neural network
is the artificial neuron, or perceptron, which loosely emulates the behaviour of biolog-
ical neurons. Each perceptron receives inputs, applies a transformation, and produces
an output. The inputs are weighted by adjustable parameters, referred to as weights,
and combined with a bias term. This weighted sum is then passed through an activa-
tion function, introducing non-linearity into the network. The output of the activation
function represents the output of the perceptron. Mathematically, the operation of a
perceptron can be formalized as follows:

y = f

(
n∑

i=1

wixi + b

)
(2.3)

where xi is a scalar input, wi represents the corresponding weight, b is the bias term,
and f signifies the activation function. Commonly used activation functions include the
sigmoid function, hyperbolic tangent function, and rectified linear unit (ReLU) function.
These non-linearities play a vital role in enabling neural networks to capture intricate
relationships and make predictions on nonlinear data.

Multiple perceptrons are combined to form a layer, and multiple layers are stacked
together to create a neural network. Within a layer, each neuron is interconnected with
all neurons in the subsequent layer, resulting in a dense pattern referred to as a fully
connected layer. The first layer is the input layer, which receives the raw input data.
The layers between the input and output layers are known as hidden layers. Lastly, the
final layer is responsible for producing the network’s predictions or outputs.

Figure 2.13: A visualisation of a five-layer neural network.

16

Chapter 2. Preliminaries 2.5. Deep Learning

2.5.2 Convolutional Neural Networks and Fine-Tuning

Convolutional neural networks (CNNs) are an extension of traditional neural networks
specialised for processing image data that have emerged as the dominant architecture
for computer vision tasks [29]. The core operation in a CNN is the convolution, which
involves sliding a set of filters or kernels over the input image and computing the dot
product between the filter and local patches of the input. Mathematically, the convolu-
tion operation between an input image X and a filter W is represented as:

(X ∗W)(i, j) =
∑
m

∑
n

X(i+m, j + n) ·W (m,n) (2.4)

where i and j are coordinates of the output feature map. This process enables the
network to learn local features and capture spatial relationships effectively.

The architecture of a typical CNN comprises multiple layers, including convolutional
layers, pooling layers, and fully connected layers. Convolutional layers are responsible
for learning various image features by applying convolution operations. Pooling layers
downsample the spatial dimensions of the feature maps, reducing computational com-
plexity and providing translational invariance. Fully connected layers serve as the final
layers of the network, enabling high-level reasoning based on the learned features.

Figure 2.14: An example of LeNet, an early CNN architecture for digit recognition [30].

Training a neural network involves adjusting the weights and biases to minimize a
suitable objective function, often referred to as the loss function. The most prevalent
technique for training neural networks is backpropagation, which leverages the gradient
of the loss function with respect to the network parameters to update them iteratively.
This iterative process of forward propagation (computing the network’s output) and
backward propagation (updating the parameters based on computed gradients) enables
the network to learn from labelled training examples and improve over time.

Pre-trained CNNs, trained on large-scale datasets like ImageNet [31] or COCO [32],
offer valuable features and learned representations that can be utilized as backbones for
other imaging models. We will see in later chapters that by leveraging pre-trained CNNs,
it is possible to avoid the need for training models from scratch, which is computationally
expensive and time-consuming. Additionally, pre-trained CNNs capture general image
features in their early layers, making them effective feature extractors. By removing the
task-specific layers and using the intermediate feature maps, pre-trained CNNs can serve
as powerful feature generators for object detection – a topic to which we will turn next.

17

Chapter 2. Preliminaries 2.5. Deep Learning

2.5.3 Faster R-CNN Object Detection

As will later be discussed in Chapter 4, object detection will play a crucial role in the
development of a system that can localise and segment out cells in preparation for FRET
analysis. Owing to their robustness and usability, emphasis will be placed on the Faster
R-CNN [33], a two-stage object detection architecture.

The Faster R-CNN consists of three main components: a shared convolutional back-
bone network, a region proposal network (RPN), and a region-based detection network.
The backbone network processes the input image and generates a feature map. The RPN
takes the feature map as input and produces region proposals by sliding a set of prede-
fined anchor boxes across the feature map and predicting their ‘objectness’ scores and
refined bounding box coordinates. The proposals are then used to extract fixed-size fea-
ture maps from the backbone network. Finally, the region-based detection network clas-
sifies each proposed region into different object classes and further refines their bounding
box coordinates. The network is trained in a multi-task manner using a combination of
losses, including the RPN loss and the detection loss, which consist of classification and
regression components. During inference, the network outputs the final detections by
combining the predicted bounding boxes and class probabilities from the RPN and the
detection network. The Faster R-CNN architecture achieves accurate and efficient object
detection by leveraging region proposals and a shared backbone network to localize and
classify objects in images.

Figure 2.15: Faster R-CNN object detector architecture with a ResNet backbone [33].

The Faster R-CNN compares favourably to other state-of-the-art object detection
methods [34]. As a two-stage object detector, the Faster R-CNN has slower inference
times than YOLO [35] and other popular one-stage object detectors. However, the
Faster R-CNN’s superior performance in challenging object detection scenarios makes
it a popular choice in many applications. Moreover, while one-stage detectors achieve
impressive real-time performance, they may struggle with accurate localization of smaller
objects due to their coarse grid-based predictions. This makes the Faster R-CNN the
most appropriate object detector for the task of locating cells in images.

18

Chapter 2. Preliminaries 2.5. Deep Learning

2.5.4 Vision Transformers

While convolutional neural networks are still a foundational model for computer vision
tasks and play a significant role in the present project, the recently developed ‘vision
transformer’ is the base architecture behind the Segment Anything Model, a tool that
will form the core of the cell segmentation pipeline to be discussed in Section 3.2.

Vision transformers represent a novel approach to processing visual data by adopting
the transformer architecture, originally proposed by Vaswani et al [36] for sequence
modelling tasks in natural language processing (NLP). Unlike traditional CNN-based
models that operate on local image patches, vision transformers treat the entire image as
a sequence of patches, enabling the model to capture global dependencies and context.
The vision transformer (ViT) model introduced by Dosovitskiy et al in [37] achieved
competitive results on image classification tasks, showcasing the effectiveness of vision
transformers in capturing global dependencies.

Figure 2.16: A schematic of a vision transformer from the Dosovitskiy et al paper [37].

At the core of vision transformers are self-attention mechanisms, which allow the
model to attend to different parts of the input image when making predictions. The
self-attention mechanism calculates the importance of each patch by considering the
relationships between all patches in the image. This mechanism enables the model to
capture long-range dependencies, making it effective in handling spatial relationships.

The vision transformer architecture consists of an embedding layer that linearly
maps the input image patches to a high-dimensional feature space. These embedded
patches are then processed through a series of transformer blocks. Each transformer
block consists of multiple self-attention layers, followed by feed-forward neural networks,
layer normalization, and residual connections. The self-attention layers enable the model
to capture spatial dependencies, while the feed-forward networks help in modelling non-
linear relationships within the patches. The output of the vision transformer is typically
fed into a classification head, usually a single or multi-layer perceptron, to perform
downstream tasks. For object detection and segmentation tasks, additional components
such as positional encodings are often incorporated to enable spatial awareness.

19

Chapter 3

Related Work

This chapter details relevant existing work in the space of machine learning for fluores-
cence microscopy and microscopic imaging tasks more generally. From the walkthrough
of the existing ten-step pipeline conducted in Section 2.4 we may identify a number of
subfields within deep learning with potential to enhance the existing workflow, each of
which has its own vast body of literature. The discussion that follows will therefore focus
on the core concerns of the project, namely existing FRET imaging software in Section
3.1, and deep learning for image segmentation in Section 3.2.

3.1 FRET Imaging Software

A number of free and open-source software tools exist for automating the FRET analy-
sis pipeline, with many of these being available as Fiji plug-ins. One such is PixFRET,
developed by Feige et al and evaluated in their accompanying paper [38]. Being one of
the earliest plug-ins for FRET imaging, the tool predates modern deep learning and is
therefore largely reliant on traditional computer vision algorithms and user intervention
for several stages of the image analysis process, namely cell segmentation and denoising.
For example, the task of cell segmentation requires the user to draw boundaries separat-
ing cells from the image background manually. This is both time consuming and error
prone, with inter-annotator and intra-annotator effects being liable to influence the final
segmentation. In particular, given that cells tend only to have diameters on the order
of tens or hundreds of pixels, inconsistencies in the segmentation process can lead to
material changes in the final outcome of the FRET calculation.

PixFRET offers no tools for drift correction or inter-channel registration, meaning
the task of FRET analysis for time-lapse acquisitions cannot be fully managed within the
plug-in. The limitations of the software notwithstanding, a key merit of the plug-in is
its usability and ability to accommodate variations in spectral bleed-throughs – a source
of noise in FRET analysis in which fluorescence from a neighbouring channel appears in
the channel of interest [39].

20

Chapter 3. Related Work 3.1. FRET Imaging Software

Another open-source Fiji plug-in for FRET analysis is the FRET and Colocalization
Analyzer [40], a tool for sensitized emission FRET which computes FRET indices using
a ‘pixel-by-pixel’ method. The software provides bleed-through control to control for
artefacts that could lead to false FRET, as well as confidence intervals for FRET in-
dex calculation. Again, the FRET and Colocalization Analyzer predates the advent of
modern deep learning, and therefore does not leverage modern cell-detection or segmen-
tation models, instead using regression to ‘colocalize’ images on the basis of their pixel
intensities and displaying to the user a regression graph that informs further processing.

More modern FRET analysis software has since been developed, with RiFRET be-
ing one such example. Originally released alongisde a paper evaluating intensity-based
ratiometric FRET by Roszik et al in 2009 [41], RiFRET has been actively maintained
since. A second version of the software was released in 2023, alongside a paper assessing
software solutions to pixel-by-pixel autofluorescence corrected FRET [42].

The RiFRET software is considerably more sophisticated than PixFRET, taking
spectral crosstalk, instrument sensitivity, and varying donor-acceptor ratio into account.
RiFRET also provides facilities for pixel-by-pixel autofluorescence correction and batch
mode analysis of large datasets. The same authors of the RiFRET software and accom-
panying papers also provide AccPbFRET, a plug-in for acceptor photobleaching FRET
[43]. However, RiFRET skirts the issue of cellular segmentation by computing ratio-
metric FRET over all pixels and then performing background correction. Background
correction means that an average of intensities in a given area without fluorophores
or cellular materials is subtracted from the image. Autofluorescence can be corrected
by subtracting average background corrected intensities of an unlabelled sample in the
corresponding channel. Another modern open-source analysis tool for cell-level FRET
analysis is the FLIM-FRET Analyzer [44], released in 2017. Again, despite having been
released as recently as 2017, this FRET analysis software is still reliant on conventional
intensity based image segmentation.

In [45], Thomson et al present DeepFRET, an automated and open-source deep
learning pipeline for single-molecule FRET analysis. DeepFRET is the first, and at
present only, open-source FRET software package that leverages deep learning to obviate
the need for human annotation and intervention, requiring user input only in setting a
quality threshold. Here the authors focus less on using deep learning for preprocessing
tasks such as localization and segmentation, and instead emphasise the use of a corrective
method called trace selection. In FRET analysis, trace selection is the process of filtering
out noisy FRET computations. For example, these may arise due to image artefacts,
non-uniform illumination, false segmentations, or misregistration across channels. Here
the authors use simulated data to train a deep neural network to retroactively filter out
corrupted FRET traces and remove them from the downstream analysis.

The primary limitation of the DeepFRET methodology for trace selection is that it
is reliant on high volumes of simulated data. The network is pre-trained on 150,000 sim-
ulated traces that uniformly sample all possible FRET states, their respective lifetimes,
transition pathways, as well as all possible noise levels, ensuring that the data represents
all theoretically possible configurations. This is a computationally expensive procedure,
and is not a method that would generalise well to cell-level FRET analysis.

21

Chapter 3. Related Work 3.2. Segmentation

3.2 Segmentation

Section 2.4.2 introduced the task of segmentation – assigning labels to each pixel in an
image such that each connected component of uniform labels represents a semantically
meaningful object. Further, in the preceding discussion of Section 3.1, we saw that a
number of techniques for carrying out this task exist, with thresholding based on cell
pixel intensities being among the most popular. In this section we explore the potential
of machine learning alternatives for accelerating cell segmentation.

3.2.1 Pre-Foundation Model Approaches

At present, the leading cellular segmentation tool is CellProfiler [46], a general platform
for cellular profiling which integrates Ilastik [47] into its image analysis toolkit. Ilastik
uses a random forest classifier which learns from user provided annotations and outputs
a probability map of class labels for each cell in an image. This probability map can then
be postprocessed by the user to generate segmentation masks for cells in an acquisition.

Another commonly used tool among cell biologists is the trainable WEKA segmen-
tation (TWS) toolkit [48]. This tool enables the training of segmentation pipelines by
using generic hand-tailored image features. TWS operates by transforming the segmen-
tation problem into a pixel classification problem in which each pixel can be classified as
belonging to a specific segment or class. A set of input pixels that has been labelled is
represented in the feature space and then used as the training set for a selected classifier.

More recently, attention has shifted toward deep learning. The first breakthrough in
deep learning for cellular segmentation was the development of the U-Net architecture
[49]. The U-Net architecture consists of an encoder that down-samples the input image
to extract high-level features and a decoder that up-samples to reconstruct the segmen-
tation mask. Skip connections connect corresponding layers between the encoder and
decoder, facilitating multi-scale feature fusion and precise localisation of cell boundaries.
The U-Net architecture excels at cellular segmentation due to its ability to accurately
segment cells with varying shapes, sizes, and complex morphologies.

A more recent deep learning architecture for segmentation is the Mask R-CNN [50],
an extension of the R-CNN framework for object detection outlined in Section 2.5.3.
The Mask R-CNN employs a backbone network such as ResNet [51] to extract features
from input images, a region proposal network to generate potential object-containing
bounding boxes and refine their coordinates, and a region-based CNN for feature ex-
traction from these proposed regions. These extracted features then contribute to both
object classification and bounding box regression. Finally, the Mask R-CNN generates
segmentations using the spatial distribution of objects and their pixel-wise locations.

While the U-net and Mask R-CNN architectures were developed for instance and
semantic segmentation of any objects, a number of models developed explicitly for cell
segmentation have been developed in recent years. One such is CellPose [52], a U-net
based model which is the current state-of the art in generalised cell segmentation. Several
similar tools have also been developed with a focus on specific cell types and shapes, such
as Omnipose [53] and Stardist [54], but at present CellPose remains the most general.

22

Chapter 3. Related Work 3.2. Segmentation

3.2.2 Segment Anything Foundation Model

Taking inspiration from the recent successes of large scale promptable natural language
processing models, recent research by Meta AI has produced the Segment Anything
Model (SAM) [7] a foundation model for segmentation and object detection. The release
of SAM consisted of three parts: a reframing of segmentation as a promptable task, the
SAM model itself, and finally the publication of SA-1B, a dataset of over 1 billion masks
on which SAM was trained.

Figure 3.1: The tripartite structure of the SAM foundation model release [7].

Concerning the core model, the architecture of SAM consists of three sequentially
connected networks: an image encoder, a prompt encoder, and a mask decoder. The im-
age encoder is a masked autoencoder vision transformer (MAE). Having been pretrained
on self-supervised masked image prediction tasks, the purpose of the image encoder is to
compute an image embedding which encodes a useful representation for a given target
image. Once an image embedding has been generated, the prompt encoder receives as
input dense and sparse prompts in the form of bounding boxes, points, or provisional
masks. These sparse and dense prompts are then mapped down into a 256-dimensional
vector using learned positional encodings and convolutions. Lastly, the mask decoder
efficiently maps the image embedding, prompt embeddings, and an output token to a
mask. This model employs a modification of a transformer decoder block followed by
a mask prediction head. The modified decoder block uses prompt self-attention and
cross-attention in two directions to update all embeddings. After running two blocks,
the embeddings are then up-sampled and an MLP maps the output tokens to a linear
classifier, which then computes the mask probabilities at each image location. To rank
masks, the model predicts estimated intersection over union (IoU) scores for each mask.

Figure 3.2: The multiple encoder-decoder architecture of SAM [7].

23

Chapter 3. Related Work 3.2. Segmentation

By separating SAM into an image encoder, a fast prompt encoder, and a mask
decoder, the same image embedding can be reused with different prompts. The authors
note that given a precomputed image embedding, the prompt encoder and mask decoder
can predict a mask from a prompt in ∼ 50ms in a web browser, a demonstration of which
is available online [55] and is shown in Figure 3.3.

Figure 3.3: Demonstrating the performance of SAM on a difficult segmentation task in
the form of a painted image. Box prompts have been provided to indicate an object
of interest. Observe in the left hand image that even when significant occlusions are
present in the prompt, the model is able to resolve the primary subject of the prompt
and produce a segmentation mask exclusively for this.

Figure 3.3 demonstrates the reframing of segmentation as a promptable task. How-
ever, an alternative automatic, or ‘everything mode’, is also available. Here, dense point
prompts are sampled from the given image in a regular grid, thresholded by the quality
of the masks they predict, de-duplicated using non-maximal suppression, and finally the
remaining masks are used as the final segmentation. This is shown in Figure 3.4.

With the majority of images in the SA-1B dataset being of natural scenes with
macroscopic subjects, a question naturally arises as to whether SAM is capable of dealing
with small objects. However, as visualised in Figure 3.5, SAM has been trained to
produce high-quality masks even for dense segmentation tasks. Moreover, the authors
of the SAM paper fine-tuned the model on 10,506 masks from the BBBC038v1 dataset
[56] from the from Broad Bioimage Benchmark Collection. This dataset consists of
a diverse collection of biological images collectively containing a broad range of cell
types. The variety within the dataset is reflective of the types of images collected by
research biologists at universities, biotech companies, and hospitals. In addition, the
cells have been treated and imaged under a number of conditions, including fluorescent
and histology stains, multiple magnification scales, and varying qualities of illumination.
The preceding evidence is suggestive that cell segmentation is a promising candidate
application for the Segment Anything Model.

24

Chapter 3. Related Work 3.2. Segmentation

Figure 3.4: Demonstrating the ‘everything mode’ of SAM on the same segmentation task
of Figure 3.3. Point prompts are first sampled from a regular grid (top). The result-
ing masks are then thresholded by quality and filtered using non-maximal suppression
(middle), and finally the remaining masks are superimposed over the original image and
displayed (bottom). The images of Figure 3.5 were produced using this same method.

25

Chapter 3. Related Work 3.2. Segmentation

Figure 3.5: The segmentation performance of SAM across a wide variety of scenes from
the SA-1B dataset [7]. These masks were annotated fully automatically by SAM, and
have been verified by the authors using human ratings and numerous experiments to be
of high quality and diversity. Images are grouped in increasing order of masks per image
for visualization. Observe the performance of the model on dense scenes.

26

Chapter 3. Related Work 3.3. Summary

3.3 Summary

From the preceding subsections it will be clear to the reader that while a number of
open-source software tools exist for accelerating FRET imaging, either by providing a
self-contained package for FRET analysis as a whole or solving one of the individual
subtasks in the FRET imaging pipeline, there are many desiderata that have yet to be
unified within a single plug-in. Most notably, manual annotation and human supervi-
sion are still key parts of most FRET analysis software. Further, where deep learning
solutions for various subtasks exist, such as for the task of segmentation, these are not
available in commercial software packages. Even for those software packages which incor-
porate machine learning into their pipelines, such as CellProfiler and Fiji, these do not
leverage deep learning, and are reliant on classical feature extraction. The demerit of this
approach is that hand-crafted feature sets are rarely robust enough to capture the full
complexity of cellular textures and morphologies, necessarily limiting the generalisability
of the methods.

Concerning the task of cell segmentation specifically, this is a well-explored image
analysis task with a vast body of literature behind it. However, despite the primacy of
cell segmentation for other downstream applications in medical imaging, no satisfactorily
universal method for cell segmentation yet exists. While a number of specialised and
generalised deep learning algorithms for cell segmentation have been proposed, being
supervised approaches such tools all require large labelled datasets and a significant
amount of postprocessing to fine-tune their underlying models.

Transitioning to the Segment Anything Model as a foundational base for segmen-
tation, three observations are suggestive that the method employed by the model are
suitable for cellular segmentation. The first is the fact that the authors of the paper
explicitly trained the model on extremely dense samples, as visualised in Figure 3.5, as
well as a modest bank of cellular data. The second is that the model is promptable,
allowing for human-in-the-loop interaction, which is criticial for biologists to be able to
specify the areas of cells they are interested in, for example nuclei. Lastly, the final ob-
servation is the fact that the SAM prompt encoder and mask decoder are able to run in
50 milliseconds on a web browser, which hints at the suitability of the model for real-time
interactive segmentation for bioimaging applications. It is this idea that we will explore
in the following chapter. In particular, the next chapter will explore the development of
a tool which incorporates the lessons learned from these three observations to perform
interactive FRET analysis in fluorescence microscopy.

27

Chapter 4

FRETLab

This chapter details the development of FRETLab, a machine-learning enabled software
solution which addresses each of the core processes of the Jones lab’s image analysis
pipeline, as detailed in Section 2.4. The chapter begins with Section 4.1, a high-level
overview of the software and its applications in image analysis and drug discovery. This
is followed by a description of the overall system architecture in Section 4.2, in which is
detailed the core machine learning components, namely in the context of cell detection,
segmentation, and clustering. Finally, the evaluation in Section 4.3 compares FRETLab
to the existing pipeline through the analysis of user stories and assessments of repro-
ducibility, data fidelity, and time efficiency. A user guide is available in Appendix A.

4.1 Software Overview

Available as a standalone executable for Linux OS, FRETLab is a Python-based image
analysis tool with an embedded machine learning pipeline developed using PyTorch.
The graphical user interface was developed using Python’s inbuilt GUI toolkit, Tkinter
[57]. Tkinter allows for the development of intuitive and interactive GUIs that can
be easily integrated with native Python and various image analysis libraries, making
it a natural choice for the present project. To facilitate usability, a wrapper around
Tkinter was used, CustomTkinter [58], which provides added functionality not available
in the base implementation of Tkinter, as well as a modernised UI overlay. The primary
novelty of the software is in combining promptable segmentation with fine-tuned cellular
object detection. While specialised for the image analysis task outlined in Section 2.4,
FRETLab serves as a general demonstration that promptable segmentation models such
as SAM coupled with fine-tuned cellular object detectors can accelerate drug discovery.

The construction of FRETLab is tripartite, with three tabs each providing their
own functionality and utilities. Figure 4.1 highlights the first of these, which is pre-
sented on application launch. Titled ‘Cell view’, the initial tab allows the user to load a
three-channel TIFF stack into the central pane, while the left pane provides utilities for
preprocessing prior to FRET computation. On loading an image stack, a progress bar
in the bottom left corner maintains track of the current frame being processed.

28

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.1: The initial display of the FRETLab software. On application launch, the
user is presented with two panels, with the leftmost providing image processing tools,
and the center displaying the area in which three-channel TIFF images are to be loaded.

At a high level, on loading an image stack using the ‘Upload Image’ button, a Faster
R-CNN object detector is run over the central panel of the topmost frame. As will be
discussed at greater length in Section 4.2.2, the Faster R-CNN has been fine-tuned on a
bounding box dataset hand-annotated by the author using 132 imaging acquisitions from
the Jones lab and containing more than four-thousand neurons. Once the detections have
been generated, these are transferred on to two translucent, interactive Tkinter canvases,
which are superimposed on top of the central and rightmost image panes.

Prior to being displayed, the cellular detections are fed through to CellSAM, a fine-
tuned Segment Anything Model, whereupon segmentation masks are generated for each.
Two copies of each segmentation mask are maintained: a two-dimensional binary seg-
mentation mask and a four-dimensional RGBA mask. The binary masks mark the
precise image pixels belonging to each cell and are reserved for the computation of drug
response, while the RGBA masks are coloured versions of their associated binary masks
with an added alpha channel that allows the opacity of the masks to be modulated in
real time to suit the user’s needs. Figure 4.2 provides some example detections and
segmentations for a previously unseen image stack in the cellular detection test set.

29

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.2: Cellular detections and segmentations produced by FRETLab once an image
stack has been loaded. Bounding boxes indicate the presence of a cell with the confidence
threshold set by the slider. At top, the cellular detections with the segmentation mask
opacity set to 0% for clear visualisation. At bottom, the same detections, but the with
the mask opacity set to 50% to allow the fidelity of the masks to be inspected.

30

Chapter 4. FRETLab 4.1. Software Overview

The demonstrations of the user-guided zero-shot prompt performance of SAM in
Figure 3.3 were suggestive of a similar approach for CellSAM in FRETLab. Here the user
may draw bounding boxes around individual cells should they have been missed by the
object detection pipeline. As the image embedding for the top image frame is computed
on loading the TIFF stack, user prompts may be passed through to the prompt encoder
and mask decoder to produce segmentations in real time. These are then converted
to translucent RGBA masks and overlayed over the current canvas frame. Each mask
is bound to the box prompt that produced it via a dictionary, allowing the user to
delete masks by clicking on the associated bounding boxes. An example is provided in
Figure 4.3. As we will see in Section 4.2.3, CellSAM has been fine-tuned on a cellular
segmentation dataset such that for reasonable perturbations to any given bounding box
prompt the segmentation masks produced are invariant. However, this perturbation
invariance was enforced only within a narrow pixel window. Thus, with some prompt
engineering, the user may ‘guide’ SAM to produce a more faithful segmentation.

Once the image stacks, detections, and segmentations have been displayed, several
utilities become available for use: channel registration, stack registration, vignette cor-
rection, detection thresholding, mask opacity modulation, and the setting of the bound-
ing box thickness. These utilities range from aesthetic user preferences that aim to
make the tool more usable to preprocessing steps that can be used to standardise the
computation of cellular drug response.

Recall from Section 2.4 that channel registration, stack registration, and vignette
correction play a critical role in the original image analysis pipeline. Channel registra-
tion is used to correct for chromatic aberration that occurs between the yellow and cyan
filters, while stack registration is used to correct for temporal drift of the microscope due
to experimental conditions. Finally, vignette correction is used to correct radial patterns
of decreasing pixel intensities emanating from the image centers. To ensure standardis-
ation between the existing image analysis pipeline and FRETLab, the same algorithms
have been used for channel registration, stack registration, and vignette correction. The
registration utilities are both enabled by the package pystackreg [59], while vignette cor-
rection is implemented with the aid of pybasic [60]. Both packages are wrappers around
the exact algorithms employed within the Fiji plug-ins used in the original pipeline. For
pystackreg this is the SIFT-based registration algorithm described in Section 2.4.2, and
for pybasic this is the BASiC algorithm, also described in Section 2.4.2.

Confidence thresholding allows the user to change the detections present on the
screen on the basis of the confidence score computed by the Faster R-CNN. These are
cached at loading time, and thereafter the detections remain on the canvas at all times,
either displayed or rendered transparent according to the current setting. This design
allows the threshold slider to update the detections in real time, as opposed to repeatedly
rerunning the model. An example is provided in Figure 4.4. Further, the detections may
be enlarged by increasing the thickness of the bounding boxes using the provided slider.

The final feature of the ‘Cell view’ tab is a video slider which enables the user to
play through the image stack. Coupled with the bounding boxes superimposed over the
cells, the user may use this feature to determine whether a cell has drifted over time,
and thereby exclude it from the FRET analysis. An example is given in Appendix A.

31

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.3: Drawing segmentation boundaries free-hand with the mouse. At top, the
user’s bounding box coordinates are transfered from the interactive Tkinter canvas
through to the prompt encoder of a fine-tuned version of the Segment Anything Model.
Once the prompt embedding has been computed, this is then run through the mask
decoder, along with the precomputed image embedding, to produce a segmentation in
real time. At bottom, the resulting segmentation mask.

32

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.4: Demonstrating the effects of confidence thresholding. Both the cellular
detections and segmentations can be thresholded in real time utilising the detection
confidence slider. At top, a detection confidence of ≥ 0%. At bottom, a detection
confidence of ≥ 50%.

33

Chapter 4. FRETLab 4.1. Software Overview

Once the user has processed the image stacks and verified the segmentation masks,
they may compute the FRET response. Once the ‘Compute FRET’ button has been
clicked, the tool will process all image stacks in order. At each time-step, the Hadamard
product is taken between each binary segmentation mask and both the YFP and CFP
channels. Then, the pixel ratios between the extracted neuronal crops are summed and
averaged by the total number of pixels contained in the crops. The scalar value produced
by this process is the drug response of each cell Ci at time-step t.

Once the FRET score has been computed for each cell across all time-steps, the
interface is set to the second tab of the application, titled ‘FRET view’. As shown in
Figure 4.5, the ‘FRET view’ tab plots the data, and provides utilities for exporting
both the raw FRET output and graphs. Four views are provided to aid the analysis of
the data: the raw time series data for each cell across each frame in the acquisition, a
smoothed version of the raw time series data, a heatmap, and finally a histogram which
charts the average FRET ratio per cell over time.

Figure 4.5: The ‘FRET view’ tab for displaying and exporting FRET data.

Of particular interest when inspecting FRET data are cells which have atypical
response profiles. Thus, as per Figure 4.6, on returning to the ‘Cell view’ tab after
FRET computation, the drug response of an individual cell can be visualised by hovering
over it with the cursor. Paired with the ability to set the mask opacity to 0 and play the
time lapse, it is possible to quickly discern whether an atypical response by any given
cell is the consequence of noise, such as drift or occlusions, or a genuine readout.

34

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.6: Inspecting the reactivity of two different neurons using the ‘Cell view’ tab.
After the FRET score has been computed for each neuron, users may hover over each
cell and visualise drug response in real time. A magnified neuronal crop accompanies
the time series and the bounding box of the active neuron is highlighted.

35

Chapter 4. FRETLab 4.1. Software Overview

The final tab is the clustering facility, which provides methods for clustering the data
generated by the ‘Cell view’ tab. Users may cluster time series data generated within
the current session, or upload a folder of files with a uniform format 1 and cluster them
as a whole 2. Files may be those previously generated by FRETLab or another tool.

Figure 4.7: The ‘Clustering facility’ tab. On launching the tab for the first time, users
are prompted to either cluster the data produced during the current session, if available,
or upload a folder of previously generated FRET data as exported from the ‘FRET view’
tab. If the latter option is selected, all files will be treated as a singular dataset and the
clustering will be applied to this unified dataset. Options are provided for exporting the
produced graphs and clustering data.

The clustering facility was used to provide an initial insight into the nature of the
data and identify whether it would be feasible to further investigate the possibility of
identifying meaningful response clusters in the FRET curves. Three clustering algo-
rithms are currently available from the drop-down menu: k-means, k-medioids, and
kernel k-means. Each method employs a shift invariant dynamic time warping metric.
Further details on clustering are given in Section 4.2.4 and Chapter 5.

1Either .csv or .npy, being the options provided by the ‘FRET view’ tab.
2This requires that the acquisitions be of the same length.

36

Chapter 4. FRETLab 4.1. Software Overview

Figure 4.8: Results from the clustering facility for the FRET computation performed
in Figure 4.5. A drop-down menu is provided to enable the user to cluster the data up
to a maximum of 10 clusters. This limit was imposed on the basis of biological domain
knowledge of the maximum plausible number of groupings expected from the neurons.

37

Chapter 4. FRETLab 4.2. System Architecture and Design

4.2 System Architecture and Design

The FRETLab software is comprised of six core classes: UI, Segmentor, Faster R-CNN,
BASiC, FRET, and Cluster, each contained within their own respective .py files. Figure
4.9 presents a class diagram highlighting the system architecture.

Figure 4.9: A high-level class diagram for the FRETLab software. For brevity and
simplicity, only the core public methods for each class are displayed.

The central controller is the UI class, which invokes the remaining classes in response
to user input. The core deep learning components are the Faster R-CNN and Segmentor
classes, which are wrapper classes around the PyTorch Faster R-CNN and SAM models
respectively. The FRET class is responsible for computing the raw and smoothed FRET
matrices for each acquisition, which are then formatted and displayed by the UI class.
Finally, the Cluster class receives FRET matrices and performs clustering, the results
of which are relayed to the user through the UI class. In the following sections we
will examine how the fine-tuned cellular object detector and segmentation models were
developed. However, before delving more deeply into the machine learning components
of FRETLab, we first turn to the datasets used to train the models.

38

Chapter 4. FRETLab 4.2. System Architecture and Design

4.2.1 Datasets

Before examining the deep learning components of FRETLab, it will be instructive to
first critically examine the in-house and external validation datasets used to train and
evaluate the two core models. Both datasets will be used in Sections 4.2.2, and 4.2.3
for detection and segmentation respectively. Further, Chapter 5 on time series analysis
using the FRETLab tool will analyse the data generated from the in-house dataset.

In-House Neuron Dataset

The in-house dataset consists of 132 unlabelled TIFF image stacks available via the
Imperial RDS. Each image contains approximately twenty to sixty neurons, as well as
cellular debris and glial cells 3. All image stacks were acquired by the Jones lab using
the same microscope and fluorescent imaging procedure. The experiments are grouped
under ExD3, ExF1, and the positive control drug, VeH. Each experiment consists of
several fields of view (FOV) for each drug, with the typical number of FOVs being four
or five. While procedurally consistent across experiments, given that the dataset was
not originally acquired with machine learning in mind, there are several limitations:

� Low image quality: Some imaging acquisitions are of low quality due to equip-
ment errors or changes in lighting conditions between experiments. While some
imaging artefacts such as misregistration and vignetting are expected and may be
addressed by a standard preprocessing pipeline, others are less readily corrected.

� Non-standard series length: The majority of the image stacks have been stan-
dardised to 271 time steps in length. However, many acquisitions, particularly
those for the ExF1 drug, are much shorter in length. This issue will become par-
ticularly relevant to the matter of time series analysis in Chapter 5.

� Inconsistency in positive controls: As noted in Section 2.4, the experimental
procedure for a FRET drug testing experiment within the Jones lab is to image
neurons in a culture in four stages: a baseline stage, the drug introdcution stage
(ExF1 or ExD3), followed by two periods in which positive controls are added.
While the baseline and drug introduction stages were tightly regulated, the intro-
duction of the controls occasionally varies significantly between experiments. Once
again, this issue will inform the time series analysis experiments in Chapter 5.

� Low quantity: Perhaps the primary limitation of the dataset is the low total
cell count. The total cell count is ∼ 4, 000, considerably lower than for analogous
datasets, for which examples number in the tens or hundreds of thousands. How-
ever, this problem is partially offset by the highly homogeneous appearance of the
neurons, and can be further mitigated by generous use of data augmentation.

The preceding observations were factored in when building the detection and seg-
mentation pipelines, and will be alluded to throughout the remainder of the report.

3A glial cell is any non-neuronal cell in the brain that supports neuronal functions [61].

39

Chapter 4. FRETLab 4.2. System Architecture and Design

CellPose Dataset

CellPose [52] is a dataset of 70,000 segmentation masks over 608 images, and was released
alongside the general purpose U-net based model for cellular segmentation described in
Section 3.2.1. The authors collected the images from a variety of sources, with the
majority being sourced from internet searches for keywords such as ‘cytoplasm’, ‘cellular
microscopy’, or ‘fluorescent cells’. The dataset consists primarily of fluorescently labelled
proteins, but also includes images of cells from brightfield microscopy and images of
membrane-labelled cells. The authors further included a small set of images from other
types of microscopy, as well as a small set of nonmicroscopy images that contained large
numbers of repeated objects such as fruits, rocks, and jellyfish. The authors justify the
inclusion of non-cellular objects by hypothesizing that the inclusion of such images in
the training set would allow their U-net based network to generalize more robustly.

The dataset was chosen because of the diversity it offers. Further, the model released
alongside the dataset is considered the state-of-the-art in general cell segmentation. This
provides a strong benchmark against which to compare CellSAM, the fine-tuned Segment
Anything Model which is discussed in Section 4.2.3.

Figure 4.10: An example of the diversity of imaging protocols, culture densities, and cell
morphologies present in the CellPose dataset [52]. Here the styles from all of the cells in
the dataset were embedded using t-SNE. Each point represents a different image. The
legend is as follows: dark blue, Cell Image Library; blue, cytoplasm; cyan, membrane;
green, non-fluorescent cells; orange, microscopy other and red, non-microscopy.

40

Chapter 4. FRETLab 4.2. System Architecture and Design

Despite being one of the more general and accessible cell segmentation datasets
available, the CellPose dataset suffers from several limitations which are addressed below:

� Non-cellular images: As previously mentioned, the CellPose dataset contains a
number of non-cellular images. While the inclusion of such images is justified in
the initial CellPose paper by the argument that they contain the same fundamental
properties as cells, namely being self-contained, overlapping, and dense, this creates
a clear bias in how suitable the dataset is for methods which look expressly for
cells and cells alone. This point will be addressed further in Section 4.2.3.

� Low image quality: As the majority of the images acquired for the CellPose
dataset were sourced from the internet via an image search, many of them contain
artefacts. Examples include watermarks, filters, and noise introduced by up and
downsampling many of the images to a standard resolution.

� Unrepresentative images: Many of the CellPose images are unrepresentative of
real-world microscopy acquisitions. For instance, comparing the debris laden and
imperfect images of Figure 2.4 from the in-house dataset to those of Figure 4.10,
one may quickly identify that the CellPose images are those which are intended to
accompany publications, and are therefore not entirely representative.

� Degenerate masks: As will be discussed in Section 4.2.3, the CellPose dataset
was repurposed for promtable segmentation by converting all 70,000 segmentation
masks into encompassing bounding boxes. These bounding boxes are of the form
(xmin(oi), ymin(oi), xmax(oi), ymax(oi)) where oi is the ith cell in an image and each
function returns either the maximum or minimum x and y co-ordinate of the given
cellular object. Thus, each box is the minimal area rectangle that encompasses all
pixels belonging to the mask associated with the corresponding cell. A requirement
of using bounding boxes to train object detection models is that 0 ≤ xmin <
xmax, and 0 ≤ ymin < ymax, otherwise the area of the bounding box will be
undefined. The conditions for both the x and y functions are violated however,
as CellPose contains erroneous masks consisting of single pixels or straight lines –
likely resulting from errors in the annotation process. Therefore, a secondary post-
processing stage was required in which all bounding boxes violating the constraints
above were removed.

� Low cell count: While substantially larger than the in-house neuron dataset, the
number of data points offered by CellPose is still modest by modern deep learning
standards.

While several other datasets exist for cellular detection and segmentation, with the
largest being EVICAN [62] and LIVECell [63], these lack the diversity required to prove
the generality of the method being developed. For example, while the LIVECell dataset
contains a range of cell morphologies, all images were acquired using the same label-
free, non-fluorescent imaging technique. Similarly, the EVICAN dataset contains only
bacterial cells with simple morphologies, and is therefore not suitable for assessing the
generalisability of a cell segmentation model.

41

Chapter 4. FRETLab 4.2. System Architecture and Design

4.2.2 Detection

The first step in constructing an automatic cellular segmentation pipeline using SAM
was to establish the out-of-the-box performance of SAM on the in-house dataset. For
macroscopic images of natural scenes, the impressive out-of-the-box performance of SAM
in everything mode, as demonstrated in Figure 3.4, was suggestive that such a sampling
based approach would be appropriate for the present task of segmenting cells too. How-
ever, as can be seen from Figure 4.11, the performance of the model on the in-house
fluorescence microscopy dataset is respectable, but far from the human-assisted bench-
marks. We may attribute this to the previously highlighted fact that SAM was trained
on a dataset consisting primarily of photographs of real-world scenes. As such, the model
excels at generating masks for macroscopic objects, and is not optimized for dealing with
noisy microscopic images containing debris and poorly illuminated cells with ill-defined
boundaries. We now turn to the three key failure modes of SAM for cell segmentation.

SAM Failure Modes

� Overdetection =⇒ Oversegmentation: The first is overdetection leading to
oversegmentation. Particularly evident in the first two columns of Figure 4.11 is
the tendency of SAM to misinterpret the entire image background as an object
and segment it out. A first remedy would be to mitigate this issue using heuristics
such as size-based thresholding. However, as may be seen from Figure 4.11, partial
background oversegmentation may also occur, making this a difficult task.

� Overdetection =⇒ Undersegmentation: The second failure mode is overde-
tection resulting in undersegmentation. Observing the bottom entry of the second
column of Figure 4.11, we observe that SAM occasionally generates masks corre-
sponding to part of an cell of interest, or for small particulate debris.

� Underdetection =⇒ Undersegmentation: The final failure mode is failing to
detect a cell at all, resulting in no mask being produced for it; underdetection
leading to undersegmentation. Using everything mode this may occur for two
reasons: either no point in the sample grid fell over the surface of the cell, or one
did and the mask quality threshold was too low and was subsequently removed.

Three potential approaches suggest themselves when observing the out-of-the-box
performance of SAM on the in-house fluorescence microscopy data. The first approach
would be to increase the sample density in everything mode. Indeed SAM’s ‘predictor’
class provides just such an option. However, as might be anticipated from Figure 4.11,
using denser sampling is not effective for noisy images in which debris is present. An
alternative method would be to create an interactive tool to allow users to provide
bounding boxes for each cell in an image, and feed threse through to SAM to produce
an output. The limitation of this approach is time, as biologists would be required to
label tens to hundreds of cells per image. The final approach is to utilise the zero-shot
prompt capabilities of SAM by training an object detector to produce bounding boxes
for each cell and using these predictions as prompts for SAM. This is the approach taken
by FRETLab, and is the subject to which we turn next.

42

Chapter 4. FRETLab 4.2. System Architecture and Design

SAM (Everything Mode) User Prompted (Bounding Box)

Figure 4.11: Performance of SAM on a sample of neuronal image acquisitions from the
RDS (first two columns) against the same images with user provided bounding box
prompts (third and fourth columns). All images were generated using the ViT-H SAM
checkpoint, the most powerful version of the model.

43

Chapter 4. FRETLab 4.2. System Architecture and Design

Dataset Labelling and Preprocessing

Having established that neither the default version of SAM alone nor SAM aided by
human provided prompts were adequate for the needs of the project, the next task
was to investigate the application of machine learning for localising and bounding cells.
Producing a model that is capable of reliably localising cells with tight bounding boxes
was the first step in constructing a machine learning pipeline for cellular segmentation.
A prerequisite for developing such a model was to create a dataset to enable the testing
of various methods for cellular detection.

The available data for the present project takes the form of ∼300GB of raw and
unprocessed TIFF image stacks acquired by the Jones lab. These were made available
via the Imperial Research Data Store (RDS). The first frame of every acquisition was
extracted from each image stack and converted to a JPEG format to ensure compatability
with online dataset labelling tools. The Roboflow software [64] was used to create the
dataset. In total, 132 images were annotated, with ∼4000 cells circumscribed with
bounding boxes. Of these annotated images, 88 were reserved for the training set, 25
were reserved for the validation set, and the remaining 19 constituted the test set. This
split was determined on the basis of the number of cells contained in the images, with
the divison being an 80:10:10 assignment for the number of annotations in the training,
validation, and test sets respectively. Once constructed, the dataset was exported into a
Pascal VOC xml format [65]. Pictured in Figure 4.13, Pascal VOC is a standard format
commonly used to train object detection models.

As we will see in future sections, though modest in size, the in-house neuron dataset
was effective in demonstrating the efficacy of using an object detector to localise cells
and forwarding these predictions as prompts to SAM. We turn next to the method by
which the data was annotated.

Figure 4.12: Illustrating the annotation process using the Roboflow platform.

44

Chapter 4. FRETLab 4.2. System Architecture and Design

To ensure the development of a high quality dataset, a protocol was developed by
which the raw microscopy images were processed and annotated. The protocol for the
construction of the dataset was as follows:

� All non-overlapping cells with clearly visible nuclei and membranes were circum-
scribed by a bounding box.

� In such cases in which the boundaries of a cell’s extent were not clear, leading to
material ambiguity as to where the cell membrane terminates, these cells were not
annotated.

� Overlapping cells were not annotated unless their overlap concerned only their
dendrites. This is because cells which overlap in their central regions are not of
use in calculating the FRET metric, as overlapping clusters of two or more cells
will represent the reactivity of multiple cells as that of a single cell.

� All bounding boxes were drawn so as to encompass one single cell, with a margin
of a few pixels width on all sides. It was permitted for two bounding boxes to
overlap, and possibly even to contain the partial extent of another cell, so long as
it was apparent which cell was the subject of the annotation.

� All annotated images were checked in a second pass over the dataset by the author
for quality assurance.

Figure 4.13: A sample of the Pascal VOC xml format in which the bounding boxes for
the neuron dataset are stored. The dataset can be found in the Neuron Dataset folder.

45

Chapter 4. FRETLab 4.2. System Architecture and Design

Object Detection Metrics

Before quantitatively evaluating various methods for cellular object detection against
the in-house dataset, it will be necessary to first briefly review object detection metrics.
The object detection literature contains a number of evaluation metrics, with the most
commonly used being variants of accuracy, precision, and recall. All three metrics are
defined in terms of true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). Accuracy, given by Equation 4.1, tells us the overall correct detec-
tion rate of the model. However, while appropriate for single class problems such as the
present task, accuracy alone is often an unreliable metric on account of being susceptible
to the total number of predictions made. For this reason, we also consult two further
metrics, precision and recall.

Accuracy =
TP + TN

TP + FP + FP + FN
(4.1)

Precision, defined as the ratio of the true positive predictions to the total number of
positive predictions per Equation 4.2, is a representation of the confidence we may have
in positive predictions produced by a model. In the context of object detection, precision
is the answer to the question as to how much trust we should have that a bounding box
represents an object when a model predicts one.

Precision =
TP

TP + FP
(4.2)

Relatedly, but in contrast to precision, recall is defined as the ratio of the total true
positive detections to the total number of ground truth bounding boxes. Recall answers
the question as to how many objects that are actually present in an image are detected
by the model.

Recall =
TP

TP + FN
(4.3)

The precision-recall (PR) tradeoff can be visualised as a curve which shows the
precision of a model at various recall intervals. We can think of this as a summary of
how precise the model is when we demand a certain level of correct detections. A method
we can consult to summarise this tradeoff is average precision (AP). Average precision
summarizes the precision-recall curve to a single scalar value. Per Equation 4.4, the
average precision is calculated as the area under the precision-recall curve and reflects
how well a model maintains a high precision while detecting objects at different levels
of recall. The metric is bounded between 0 and 1 and is high when both precision and
recall are high, and low when either of them is low across a range of confidence threshold
values. Average precision considers both false positives and false negatives and provides
a more comprehensive view of a model’s performance compared to accuracy alone.

AP =

∫ 1

0
p(r) dr (4.4)

46

Chapter 4. FRETLab 4.2. System Architecture and Design

Average recall, similar to average precision, is calculated by averaging recall values at
different precision thresholds. Given in Equation 4.5, average recall represents how well
a model can identify objects across varying levels of confidence, helping to understand
how reliably the model detects objects at different precision levels.

AR =

∫ 1

0
p(p) dp (4.5)

Maximum average precision (mAP) and maximum average recall (mAR) are another
pair of commonly used metrics. Defined as the average AP and AR across all classes,
mAP and mAR are given by:

mAP =
1

N

N∑
i=1

APi mAR =
1

N

N∑
i=1

ARi (4.6)

where i represents one of N possible classes. However, as we are presently in a binary
classification setting with only one object class, mAP and mAR reduce to AP and AR
respectively. Therefore we will not be consulting these metrics in the following analysis.
Similarly, other popular multi-class metrics will not be used.

When we consider that a model’s predicted bounding box for an object may not be
perfectly aligned with a ground truth label but nevertheless be an accurate detection in
a meaningful sense, the question as to how a bounding box can be classified as a true
positive, true negative, false positive or false negative detection naturally arises. For
this we use the intersection over union (IoU) metric, also known as the Jacquard index,
defined for any two bounding boxes A and B as:

IoU =
A ∩B

A ∪B
(4.7)

where IoU ∈ [0, 1]. Intuitively, the IoU of two bounding boxes tells us their degree of
overlap, where 1 represents two identical detections and 0 represents two entirely disjoint
bounding boxes. Equipped with this metric, we may use thresholds to stablish what IoU
a detection is required to have with another ground truth bounding box in order to be
considered a true positive detection. Many such thresholds are in use [66], with 0.5 and
0.75 being common benchmarks.

In evaluating cell detection baselines and the performance of deep learning models,
thresholds will be denoted using subscripts. For example, AP0.5 represents the average
precision of a model with an IoU threshold of 0.5 consistuting a true positive. Colon
notation may also be used to represent the average of a metric over a range of thresholds.
For instance, AP0.5:0.95 represents the mean of the average precision in the interval
[0.5, 0.95] using thresholds with a step size of 0.05 between each.

47

Chapter 4. FRETLab 4.2. System Architecture and Design

Cell Detection Baselines

Before establishing the need for a deep learning approach, several classical computer
vision baselines were first trialled. Table 4.1 summarises the results of each method.

The first method trialled was thresholding, the technique used to localise cells in the
current image analysis pipeline and described in Section 2.4. Thresholding with a fixed
intensity parameter established by the author through empirical experimentation proved
to be reasonably successful. However, as there are frequent non-uniform changes in in-
tensities due to changing experimental conditions, the method was inconsistent between
images. In an attempt to guard against this, several other variants of thresholding were
tested, including adaptive Gaussian thresholding [67] and adaptive mean thresholding
[68], both of which estimate intensity thresholds on local image patches.

A more advanced baseline in the form of the circular Hough transform was used
next. The circular Hough transform is a feature extraction technique used in digital
image processing for detecting approximately circular objects in images [69]. Since the
neurons being tested by the Jones lab are highly circular, per Figure 2.4, this method
was thought to be appropriate for the task at hand.

Finally, blob detection was tested. Blob detection methods are aimed at detecting
regions in a digital image that differ in properties, such as brightness or colour, compared
to surrounding regions [70]. This method suffered from overdetection, as there are many
small particles in the in-house dataset images which were inadvertently detected.

Method Pr0.5 Pr0.75 Re0.5 Re0.75
Circular Hough Transform 0.63 0.58 0.60 0.58
Thresholding 0.57 0.54 0.78 0.70
Adaptive Gaussian Thresholding 0.41 0.36 0.58 0.52
Adaptive Mean Thresholding 0.44 0.39 0.46 0.40
Blob Detection 0.27 0.18 0.30 0.27

Method Acc0.5 Acc0.65 Acc0.75 Acc0.85
Circular Hough Transform 0.55 0.49 0.37 0.18
Thresholding 0.59 0.52 0.41 0.29
Adaptive Gaussian Thresholding 0.50 0.44 0.41 0.21
Adaptive Mean Thresholding 0.49 0.42 0.24 0.19
Blob Detection 0.33 0.29 0.21 0.21

Table 4.1: Object detection results for various cell detection methods.

As can be seen from Table 4.1, the circular Hough transform and regular thresh-
olding significantly outperform the remaining baselines. However, with neither method
achieving an overall accuracy of ≥ 60% nor a precision above 63%, none of the baseline
methods perform nearly well enough for a producion platform. Further, while suitable
for the neurons under study, the circular prior the Hough transform imposes is not suit-
able for generalising to other cell types. Similarly, the detections of the thresholding
baseline required filtering using bounds for the minimum and maximum area.

48

Chapter 4. FRETLab 4.2. System Architecture and Design

Cellular Detection with Deep Learning

Once it had been established that classical algorithms were unsuitable for the present
task, deep learning methods were tested. Per Section 2.5.3, a common method of ap-
proaching tasks such as object detection is to fine-tune exisiting convolutional archi-
tectures for domain specific applications. Table 4.2 summarises the performance of the
models tested, namely Faster R-CNN, RetinaNet, FCOS, SSD, and SSDLite. Further,
given that the FRETLab application is intended for low-resource settings, Table 4.2
additionally summarises the model sizes, inference speeds, and resource constraints.

Method Backbone AP0.5 AP0.75 AP0.95 AP0.5:0.95

Faster R-CNN ResNet50 0.903 0.461 0.214 0.415
Faster R-CNN MobileNet V3 Large 0.875 0.376 0.205 0.391
RetinaNet ResNet50 0.831 0.310 0.198 0.357
FCOS ResNet50 0.811 0.255 0.201 0.334
SSD VGG16 0.766 0.276 0.276 0.318
SSDLite MobileNet V3 Large 0.728 0.221 0.180 0.301

Method Backbone Acc0.5 Acc0.75 Acc0.95 Acc0.5:0.95
Faster R-CNN ResNet50 0.917 0.855 0.765 0.815
Faster R-CNN MobileNet V3 Large 0.882 0.823 0.741 0.801
RetinaNet ResNet50 0.831 0.795 0.732 0.778
FCOS VGG16 0.847 0.805 0.729 0.746
SSD VGG16 0.810 0.798 0.766 0.732
SSDLite MobileNet V3 Large 0.740 0.718 0.670 0.699

Method Backbone Parameters Memory Inf Speed (s)

Faster R-CNN ResNet50 41,299,161 180MB 1.2
Faster R-CNN MobileNet V3 18,930,229 85MB 0.8
RetinaNet ResNet50 32,168,694 160MB 0.6
FCOS ResNet50 32,064,455 160MB 0.6
SSD VGG16 23,745,908 80MB 0.4
SSDLite MobileNet V3 Large 3,708,680 7MB 0.3

Table 4.2: Object detection results for various cell detection methods. Inference speed
was computed as the average time for a forward pass on a CPU.

Per Table 4.2, a Faster R-CNN with a ResNet50 backbone outperforms all other
object detectors tested in every category except inference speed and model size. However,
as the FRETLab pipeline caches detections, the object detector needs to run only once,
and the marginal difference in inference speed can be discounted against the loading time
of the TIFF stacks. As such, the Faster R-CNN with a ResNet50 backbone was selected
as the primary cell detector. Note the steep decline in average precision performance
between IoU = 0.5 and IoU = 0.75 in each case. We may attribute this to the small
size of the ground truth bounding boxes, as each cell has a roughly 15 pixel radius.

49

Chapter 4. FRETLab 4.2. System Architecture and Design

4.2.3 Segmentation

Ground truth segmentations are not available for the in-house neuron dataset. Thus, to
quantitatively evaluate the performance of CellSAM for the task of cellular segmentation,
the CellPose dataset was used. However, before discussing how CellSAM was trained
and evaluated, it will be instructive to first examine segmentation metrics.

Segmentation Metrics

As for the task of detection in Section 4.2.2, evaluating cell segmentation performance
leans upon accuracy, precision, and recall. Here again a threshold is required using the
intersection over union measure. In the context of segmentation masks, IoU remains
defined per Equation 4.7, with IoU ∈ [0, 1]. Now, however, the sets A and B contain co-
ordinates for each pixel belonging to the predicted and ground truth masks respectively.

Similarly to IoU, the Dice similarity coefficient is another measure of overlap between
the predicted and ground truth regions. Per Equation 4.8, it is calculated as twice the
intersection divided by the sum of the sizes of the predicted and ground truth regions:

DSC(G,S) =
2|G ∩ S|
|G|+ |S|

(4.8)

where G and S are ground truth and predicted masks respectively. The main dif-
ference between IoU and Dice is in the way they handle the denominator. In IoU, the
denominator includes the union of the predicted mask and ground truth mask areas,
whereas in Dice, the denominator is the sum of the areas of the predicted mask and the
ground truth mask. As a consequence, IoU tends to be more sensitive and penalizes
under and oversegmentation more [71], whereas the Dice score is more robust to false
positives and false negatives. This is particularly important in cell segmentation tasks,
since it is necessary for metrics to be reliable for minute cells with low mask volume.

Turning to metrics which assess the fidelity of segmentation boundaries, the average
symmetric surface distance (ASSD), given by Equation 4.9 [72], is particularly useful
when accurate delineation of object boundaries is critical. Defined as the average of the
closest distances from points on the boundary of a predicted mask to the boundary of
the ground truth mask and vice versa, this metric provides insight into how well the
predicted boundary matches the ground truth boundary. Low ASSD values indicate a
strong match between the predicted and ground truth boundaries, while higher values
suggest that there are significant discrepancies between the two. Here d(g, S) denotes
the distance between pixel g ∈ G and its closest point on the surace of S.

ASSD =
1

|S|+ |G|
×

∑
s∈S

d(s,G) +
∑
g∈G

d(g, S)

 (4.9)

When referring to ASSD in the following discussion, we will be using the Chebyshev
distance, defined for two points (x1, y1) and (x2, y2) as max(|x1 − x2|, |y1 − y2|). This
can be thought of as the length of the shortest path from one pixel location to another
using an eight-way neighbourhood.

50

Chapter 4. FRETLab 4.2. System Architecture and Design

CellSAM: Fine-Tuning SAM for Cellular Segmentation

The process of fine-tuning SAM for cellular image data was inspired by MedSAM [73],
a variant of the Segment Anything Model which has been adapted and fine-tuned for
biomedical image segmentation. Here, the authors simplify the task of fine-tuning SAM
for various anatomical segmentation tasks by focusing only on the mask decoder.

As discussed in Section 3.2, SAM is composed of three components: an image en-
coder, a prompt encoder, and a mask decoder. Taking the form of a large vision trans-
former 4, the image encoder is the computational bottleneck, taking several seconds to
compute an image embedding. Both the prompt encoder and mask decoder, however,
are lightweight MLPs. The mask decoder is reponsible for ‘decoding’ the combination
of the image embedding and prompt embedding into a plausible segmentation. The
moderate size of the mask decoder coupled with its responsibility for producing the final
masks suggests a training approach in which the remainder of the model is frozen.

An alternative method to fine-tune SAM is to freeze only the prompt encoder while
training the image encoder and mask decoder simultaneously. This is the approach taken
in the second version of MedSAM, and is justified as an extension over the previous
approach by the development of higher-quality embeddings for domain specific tasks.
Both approaches were tested as part of the development of the cellular segmentation
model we will hereafter refer to as CellSAM. However, due to GPU resource restraints,
only the former method was able to be fully developed upon and evaluated, as training
even the ViT-B image encoder quickly becomes infeasible at modest batch sizes. Figure
4.14 provides a schematic for fine-tuning SAM by training only the mask decoder.

Figure 4.14: A schematic for fine-tuning CellSAM by freezing the image encoder and
prompt encoder. Only the mask decoder is trained. Inspired by and adapted from [73].

The training procedure was as follows. First, the minimum area bounding box cir-
cumscribing each ground truth segmentation was created for every cell in the training
set. Then, for each image in a batch, a single cell’s bounding box would be sampled
uniformly at random. This was used as the prompt for CellSAM, which would then
generate a predicted mask. These ground truth and prediction pairs were then used to
fine-tune the mask decoder. When testing the method, two approaches were trialled: an
oracular method, in which the minimum area bounding box encompassing each ground
truth mask was provided as a prompt, and a detection method, in which prompts were
provided by a Faster R-CNN trained on the training set. The purpose of performing
both experiments was to separate out segmentation performance from prompt quality.

491M, 308M, 636M parameters for ViT-B, ViT-L, and ViT-H respectively.

51

Chapter 4. FRETLab 4.2. System Architecture and Design

To achieve efficient fine-tuning, two other techniques are adopted from the MedSAM
paper. The first is pre-computing the image embeddings. Given the cost of repeatedly
generating these embeddings while training, the procedure was to instead pre-compute
all of the embeddings in advance and load them into memory for efficient access and
batching. The second technique is to encourage small-scale translation invariance by
randomly perturbing the four corners of each ground truth bounding box. By perturbing
each corner of the ground truth bounding boxes the model becomes robust against
prompts which do not perfectly encompass the cell of interest. This was done using a
perturbation factor of five pixels, a setting which was found to work well empirically
through experiments with this parameter. Larger perturbations can result in the model
being prompted for the wrong cell, as the dataset contains cells which are on the order
of only tens of pixels wide.

Concerning preprocessing, as the images in the CellPose dataset are not of a standard
size, all ground truth training and test masks were resized to shape 256×256 using nearest
neighbour interpolation. Further, as noted in Section 4.2.1, degenerate masks which do
not correspond to accurate segmentations were removed from the training and test sets.
Non-cellular images were retained to avoid altering the test set and to facilitate a fairer
comparison between the CellPose model and CellSAM.

The training hyperparameters are given in Table 4.3 and were modified on the basis
of the method being tested. Due to the highly variegated morphologies in the dataset,
higher batch sizes proved to be the most decisive parameter adjustments in reducing the
loss during training. Further necessitating larger batch sizes was the presence of noisy
annotations, generated either as part of the original labelling process or as an inevitable
consequence of rescaling the segmentation masks to a standard size.

Batch Size Training Epochs Learning Rate Optimizer Weight Decay

64 50 0.0001 Adam 0.0001

Table 4.3: Training hyperparameters for the final version of CellSAM.

Following the recommendation of a recent survey [74] and the MedSAM paper, the
loss function used is the Dice cross entropy loss, an unweighted sum of the conventional
Dice loss and cross entropy loss. This hybrid loss function was found to to work well
empirically by the author. The Dice and cross entropy losses are given by:

LCE = − 1

N

N∑
i=1

gi log si LDICE = 1−
2
∑N

i=1 gisi∑N
i=1(gi)

2 +
∑N

i=1(si)
2

(4.10)

where N is the number of pixels in the image I, and gi, si are the predicted seg-
mentation and ground truth of pixel i, respectively. Thus, the final loss L is simply the
unweighted combination of LCE and LDICE as:

L = LCE + LDICE (4.11)

52

Chapter 4. FRETLab 4.2. System Architecture and Design

Evaluation

Here the focus is on benchmarking CellSAM against the base implementation of SAM and
the CellPose model on the CellPose dataset. Note that the CellPose authors use several
test time enhancements to further increase the predictive power of their model in their
original paper, including ‘test time resizing, ROI quality estimation, model ensembling,
and image tiling with overlaps’. These methods are not replicable, thus all models were
assessed using unprocessed test set images resized to 256 × 256. The following results
are for the oracular (O) and detection (F) methods previously described.

Figure 4.15: Visualising the average intersection over union and Dice similarity score as
a function of cellular area for the base implementation of SAM, CellSAM, and CellPose.

As can be seen from Figures 4.15 and 4.16, in the oracular setting, denoted (O), both
the base implementation of SAM and CellSAM are competitive with and in many cases
outperform the current state-of-the-art in general cell segmentation, CellPose. Charting
the average IoU and Dice scores against cellular area in Figure 4.15, we can see that
CellSAM outperforms both the base implementation of SAM and CellPose consistently
for cells with pixel areas in the interval [0,∼ 2400]. Similarly, looking at the average
precision against IoU threshold at the top of Figure 4.16, CellSAM continues to be more
performant than both the base implementation of SAM and CellPose at all values ≥ 0.3.

53

Chapter 4. FRETLab 4.2. System Architecture and Design

Figure 4.16: At top, the average precision of each model as a function of the IoU thresh-
old. At bottom, the average symmetric surface distance as a function of cellular area.

Next, turning to the quality of the segmentation boundaries, we consult the bottom
plot of Figure 4.16, where we can see the ASSD against cellular area. In the oracular
setting, both SAM and CellSAM perform well, with an average ASSD of never more
than 5 pixels. Through the author’s experimentation, a key failure mode of SAM is the
model’s tendency to only segment out cell nuclei when provided with a prompt that
encompasses a whole cell. This tends to occur for larger cell types, as SAM was trained
on a segmentation dataset which contained this task. This failure mode is not present
in CellSAM, as the model has been tuned to segment whole cells.

While expectedly worse, the performance of the models when provided with detec-
tions from a Faster R-CNN, represented by (F), remain competitive with CellPose for
the IoU, Dice, and AP metrics, but are considerably poorer for ASSD. However, per
Section 4.2.1, we may attribute this to the fact that the dataset contains non-cellular
objects and class imbalances between cell types. Consequently, a detector simply cannot
localise many of the objects in the test set, making an equal comparison difficult. The
true performance of the full pipeline on an unbiased dataset is likely to fall between
the two approaches, with detection being the bottleneck to performance. In summary,
while the base performance of SAM is impressive, with changes only to the mask de-
coder performance can be improved appreciably. Perfectly prompted, both SAM and
CellSAM outperform CellPose and achieve exceptional average precision even at high
IoU thresholds. Training the image encoder would likely enhance performance further.

54

Chapter 4. FRETLab 4.2. System Architecture and Design

4.2.4 Clustering

Several clustering algorithms are available from within the clustering facility tab, namely
k-means, k-medioids, and kernel k-means. These were implemented using the sktime [75]
package, an extension of sklearn [76] providing utilities for time-series clustering.

Key to performing time-series clustering is the selection of an appropriate distance
metric. Conventional distance measures over vectors, such as Euclidean distance, are
inappropriate in the case of time-series clustering. This is because Euclidean distance is
not shift invariant, and will therefore produce large values for identical time series which
are shifted in time. For the task of comparing drug responses, the shape of a time series
is of primary concern. However, slight changes in experimental conditions, such as non-
uniform diffusion of a drug, may cause shifts in the time at which a cell’s curve changes
shape. This is a confounding variable, and requires a distance metric invariant to such
experimental variability. Dynamic time warping has been implemented as a solution to
this problem. The method operates by comparing the Euclidean distance between X
and Y across all possible discrete time shifts between them and taking the minimum.

Dynamic-Time-Warping(X,Y)

1 n← length of X
2 m← length of Y
3 � Initialize the cost matrix
4 for i← 0 to n
5 do for j ← 0 to m
6 do D[i][j]←∞
7 D[0][0]← 0
8 � Fill in the cost matrix
9 for i← 1 to n

10 do for j ← 1 to m
11 do cost← distance(X[i], Y [j])
12 D[i][j]← cost+min(D[i− 1][j], D[i][j − 1], D[i− 1][j − 1])
13 return D[n][m]

Figure 4.17: Pseudocode for dynamic time warping between two vectors X and Y.

Two key preprocessing steps are performed prior to clustering the time series. The
first is smoothing, as shown in the top right image of Figure 4.5. Smoothing is performed
using 1D convolutions along the length of each time series, with a kernel size of k = 10.
The kernel weights are set to 1

k , and thus, for each neuron, the FRET score at each time
step is the average of the scores within the fixed window. This eliminates noise caused
by fluctuating experimental conditions over time, such as lighting and cellular drift.

The other preprocessing step is filtering. Section 3.1 discussed DeepFRET, a method
of training a deep neural network for false FRET detection. Recall that using this
method, valid and false FRET traces are simulated, and these simulated time series are
used to train a classifier. The method employed by FRETLab is simpler. Given that
the Jones lab have a biological prior on the feasible range of FRET ratios for each drug,
we simply omit those traces which are outside of this range.

55

Chapter 4. FRETLab 4.3. Evaluation

4.3 Evaluation

The FRETLab software was provided to the Jones lab for a period of two weeks prior to
the conclusion of the project so as to enable users to test the software, provide feedback,
and have critical requests addressed. The author installed the software as a standalone
executable in person and provided a walkthrough on its use. The following is verbatim
feedback from Dr Ben Jones, an expert cell biologist and the primary user of the software:

We have been analysing our FRET imaging experiments using ImageJ. For
every experiment or series of experiments this involves constructing a macro
to perform the required analyses, taking ∼15-20 minutes, and then applying
this to other image stacks from the same series (∼5 minutes per stack).
FRETLab, just using the default settings, was able to analyse an image stack
and produce high quality data in a fraction of this time, increasing the time we
have available to design and perform experiments, and interpret our results. I
found the user interface very intuitive and easy to use. The cell segmentation
was highly accurate – the default setting was almost always in agreement
with what I would have selected. The outputs generated were very useful
for including in presentations – obviously having the raw data means we can
prepare our own figures where different appearance is needed (for a publication
for example). The clustering facility was a great addition and I believe will
generate interesting hypotheses once we have more data to analyse.

There are three ways FRETLab could be improved to make it more flexible
for our workflows and for other researchers:

1. Batch processing option – our live cell imaging experiments typically in-
clude several fields-of-view of the same sample, and being able to analyse
these as a batch without needing to interact with FRETLab for each stack
would be very helpful, with even larger benefits for high content imaging
applications e.g. in multi-well plates.

2. Being able to re-train the detection AI for different cell types would be a
huge advantage. I realise that implementing this would be a significant
challenge in its own right.

3. More minor suggestions could include allowing the software to cope with
different image sizes and making channel images on the camera chip
user-selectable, as other users may run FRET analysis using different
wavelengths.

In its present form FRETLab will make a significant difference to our image
analysis workflow, and if in the future some of the suggestions above are
possible to implement, this will make it even more useful.

56

Chapter 4. FRETLab 4.3. Evaluation

From the preceding user story, we can see that speed, accuracy, and usability are
the key merits of the software. Concerning speed, as noted by Dr Jones, the existing
pipeline takes approximately 15-20 minutes to process a single image stack for the first
time. Then, once recorded, further analyses take 5 minutes. Comparably, FRETLab
takes approximately 4 minutes for any acquisition, with the bottleneck in processing
time being loading the 2GB image files and computing the vignette correction. Thus,
FRETLab represents a four to five factor speedup over the existing pipeline. On this
note it should also be observed that the time estimate of 15-20 minutes using the original
pipeline is for an expert Fiji user such as Dr Jones with high familiarity with the image
analysis pipeline. The author’s replications of the pipline took ∼ 45 minutes on average.

Concerning accuracy of both the detections and segmentations, Section 4.2.2 demon-
strated the high hit rate of the Faster R-CNN used to perform the cellular detections.
Further, Section 4.2.3 established that SAM can be made to be competitive with and
even outperform the current state-of-the-art in cell segmentation, CellPose. Since no
segmentation masks were available for the in-house neuron dataset, the segmentation
model was not trained on any of the images produced by the Jones lab. Therefore,
the validation of an expert cell biologist that the masks produced by FRETLab on the
in-house data are of high-quality indicates the generalisability of the proposed method.

Finally, regarding usability, FRETLab was developed with the intention of abstract-
ing away the complexities of the machine learning pipeline underlying it. To this end,
Dr Jones’ feedback indicates this aim was met. With drag and click tools for interactive
segmentation, detection thresholding, and clustering, the barrier to use is low.

Moving on to sources of improvement, Dr Jones’ feedback highlights three sources
of potential improvement for future work: generalisation to multiple cell types, support
for batch computation of FRET data, and generalisation to other FRET modalities.
Regarding the first of these, zero-shot generalisation to multiple novel cell types is an
exceedingly difficult task, as there are no large scale datasets for either cell segmentation
or detection that cover a sufficiently wide number of cell types and imaging modalities.
No model has yet been developed that does this satisfactorily in the literature. The
author experimented with training a generalised cell detector by repurposing the CellPose
dataset as a detection dataset. However, the performance was found to be inadequate
when tested on the in-house dataset. In both Chapter 6 and the discussion of future
work in Chapter 7, we will touch on this matter further.

Concerning batch processing, this feature was implemented without a user interface
for the author’s personal experiments with time series clustering, as discussed in Chapter
5. However, time and resource constraints prevented its inclusion in the final project
release. The next iteration of the software will provide support for this feature.

Finally, regarding generalising to different image formats, sizes, and FRET styles,
there is no data available for this for the present project, as all neuron FRET data
produced by the Jones lab has a uniform file type, size, and FRET modality. Thus,
had these features been implemented, there would have no means by which to test or
use them immediately. A balance was therefore struck between producing generalisable
software and the demands of the remainder of the project. However, in future releases,
support for these features will be provided.

57

Chapter 5

Time Series Analysis

This chapter presents the results of the exploratory data analysis conducted using the
FRETLab pipeline developed in Chapter 4 . In particular, Section 5.1 details the process
of using the FRETLab software to construct and analyse a drug reactivity dataset using
imaging acquisitons from the ExD3 drug trials. This begins with an explanation of the
overall time series pipeline and clustering metrics in Sections 5.1.1 and 5.1.2. Then, using
classical dimensionality reduction methods, Section 5.1.3 investigates whether meaning-
ful clusters of response profiles can be found in the data. Next, in Section 5.1.4, we
explore deep clustering through temporal convolutional autoencoders. A summary of
the clustering results and a taxonomy of the clusters is given in Section 5.1.5. Lastly, in
Section 5.2, we conclude with experiments in reactivity prediction.

5.1 Time Series Clustering

The primary objective of the present chapter is to determine whether a quantitative
determination can be made as to whether the neurons under study can be said to form
meaningful clusters with respect to their response profiles. Evidence collected using the
FRETLab tool is suggestive that such is the case. For instance, Figure 4.8 highlights
what looks to be a tight grouping of response profiles for the ExD3 drug. Further, recall-
ing back to Figure 2.2, the Jones lab have already established FRET ranges, grouping
neurons into responders and super responders. However, these ranges are arbitrarily set
and do not have any cluster evaluation metrics underlying them.

The following sections explore the results of classical and deep-learning based unsu-
pervised time series clustering. Of the two drugs being tested, ExD3 and ExF1, the data
for the ExD3 drug is the most amenable to analysis. As mentioned in Section 4.2.1, one
issue with the in-house dataset is non-standard series length. In particular, for many of
the ExF1 acquisitions, the experiments vary in length by up to 171 timesteps. Thus it
was decided to focus exclusively on the data for the ExD3 drug. The ExD3 drug data
is partitioned into eight experiments, each of which consists of four to five imaging ac-
quisitions with a unique field of view, combining to make 37 independent trials in total.
The full experimental set-up is explored next.

58

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

5.1.1 Experimental Details, Procedure, and Preprocessing

The first preprocessing step was the removal of errant FRET traces using a biological
prior on expected ranges. For the purpose of the following experiments, the FRET traces
were required to be within the interval [0, 2.5], otherwise they were excluded. The second
preprocessing step was truncation. As noted in Section 4.2.1, one of the limitations of
the in-house neuron dataset is that there are occasionally considerable differences in the
introduction of the control drugs. This is a confounding variable, as it effects the drug
response curves in a way that is independent of the inherent biochemistry of the cells
being studied. Thus, all time series were truncated at time point 156.

Three sets of experiments were performed for classical unsupervised time series clus-
tering, and two for deep unsupervised clustering. In the first experiment, the clustering
method under investigation was applied at the individual FOV level. This was to exam-
ine the behaviour of neurons under the exact same experimental conditions. The second
trial was to examine the trends at the experiment level, encompassing up to four of five
FOVs, each taken at different times. Finally, all of the data from each experiment across
all fields of view were amalgamated and clustered. The aim of this multilevel analysis
was to determine whether there are any global properties of the time series that persist
even across different experimental conditions. The experimental workflow along with
summary statistics are given in Figure 5.1 and Table 5.1 respectively.

Figure 5.1: Workflow for time series analysis, classification and regression tasks.

59

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

Experiment FOV Cell Count Mean Median Range Stdv Var

410A Pos 0 67 1.37 1.36 0.33 0.0007 0.014
Pos 1 58 1.36 1.35 0.33 0.0006 0.014
Pos 2 44 1.42 1.42 0.37 0.0012 0.018
Pos 3 41 1.40 1.40 0.30 0.0006 0.014

Total 210 1.38 1.38 0.37 0.0008 0.015

410B Pos 0 74 1.36 1.35 0.40 0.0014 0.023
Pos 1 41 1.36 1.36 0.28 0.0007 0.017
Pos 2 44 1.32 1.31 0.49 0.0029 0.032
Pos 3 25 1.36 1.35 0.56 0.0020 0.024

Total 184 1.35 1.34 0.56 0.0017 0.024

411A Pos 0 58 1.58 1.57 0.48 0.0030 0.029
Pos 1 49 1.54 1.56 0.51 0.0039 0.031
Pos 2 61 1.64 1.65 0.40 0.0027 0.027
Pos 3 48 1.60 1.60 0.46 0.0022 0.022

Total 216 1.59 1.60 0.51 0.0029 0.027

414A Pos 0 34 1.50 1.50 0.49 0.0028 0.029
Pos 1 37 1.43 1.43 0.38 0.0008 0.016
Pos 2 38 1.41 1.41 0.40 0.0017 0.025
Pos 3 28 1.48 1.48 0.24 0.0002 0.012
Pos 4 36 1.50 1.49 0.48 0.0024 0.022

Total 173 1.46 1.46 0.49 0.0016 0.021

414B Pos 0 40 1.57 1.56 0.40 0.0025 0.029
Pos 1 35 1.56 1.55 0.37 0.0020 0.027
Pos 2 20 1.48 1.48 0.53 0.0022 0.021
Pos 3 29 1.43 1.43 0.28 0.0005 0.016
Pos 4 22 1.38 1.38 0.24 0.0007 0.017

Total 146 1.50 1.49 0.53 0.0016 0.023

415A Pos 0 24 1.55 1.55 0.38 0.0025 0.033
Pos 1 30 1.55 1.55 0.35 0.0023 0.032
Pos 2 53 1.42 1.42 0.58 0.0022 0.026
Pos 3 23 1.50 1.48 0.61 0.0066 0.053
Pos 4 30 1.47 1.46 0.40 0.0014 0.023

Total 160 1.49 1.48 0.61 0.0028 0.032

415B Pos 0 27 1.54 1.54 0.24 0.0003 0.013
Pos 1 37 1.50 1.50 0.29 0.0009 0.020
Pos 2 35 1.47 1.46 0.57 0.0025 0.027
Pos 3 39 1.46 1.46 0.43 0.0018 0.023
Pos 4 25 1.56 1.56 0.28 0.0009 0.020

Total 163 1.50 1.49 0.57 0.0014 0.021

ACTB Pos 0 38 1.48 1.48 0.43 0.0013 0.017
Pos 1 51 1.55 1.54 0.61 0.0028 0.025
Pos 2 42 1.43 1.43 0.39 0.0022 0.027
Pos 3 26 1.50 1.49 0.39 0.0022 0.023
Pos 4 48 1.53 1.52 0.59 0.0037 0.031

Total 205 1.50 1.50 0.61 0.0025 0.025

Summary 1457 1.47 1.47 0.61 0.0019 0.023

Table 5.1: Experimental details and FRET statistics for the eight ExD3 drug trials.

60

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

5.1.2 Inter-Cluster and Intra-Cluster Evaluation Metrics

In order to quantitatively evaluate the results of cluster analysis experiments, we will con-
sult several metrics: silhouette score, Calinski-Harabasz index, and the Davies-Bouldin
index. Taken in combination, these will allow us to gauge inter and intra-cluster validity.

Silhouette Score

The silhouette score [77] ranges from −1 to +1, where a high value indicates that a
data point is well matched with its own cluster and poorly matched to neighbouring
clusters. To understand the silhouette score, we must derive two terms. The first is a(i),
a measure of how well suited a given data point i ∈ CI is to its own cluster CI .

a(i) =
1

|Ci| − 1

∑
j∈CI ,i ̸=j

d(i, j) b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (5.1)

That is, a(i) is the average distance of data point i from every other data point in
the same cluster. The next term is b(i), the minimum mean distance between a given
data point i and all data points belonging to a different cluster, over all clusters.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(5.2)

The final score, s(i), is given by Equation 5.2. By the definition of s(i), −1 ≤ s(i) ≤ 1.

Calinski-Harabasz Index

The Calinski-Harabasz index [78] is a score in the interval [0,∞) which measures the ratio
of the between-cluster variance to the within-cluster variance. Defined per Equation 5.3,
a higher Calinski-Harabasz value indicates better separation between clusters.

CH =
B

W
× N − k

k − 1
(5.3)

Where B is the between cluster variance, W is the within cluster variance, N is the
total number of data points, and k is the number of clusters.

Davies-Bouldin Index

The Davies-Bouldin index [79] is a score in the interval [0,∞) which measures the average
similarity between each cluster and its most similar cluster. The lower the Davies-
Bouldin index, the better the clustering quality. The formula for calculating the Davies-
Bouldin index for a set of clusters is as follows:

DB =
1

n

n∑
i=1

max
j ̸=i

(
Si + Sj

Mij

)
(5.4)

Where N is the number of clusters, Si and Sj are the average distances from the
samples in clusters i and j to the centroids of clusters i and j respectively, and Mij is
the distance between the centroids of clusters i and j.

61

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

5.1.3 Classical Unsupervised Time Series Clustering

The classical clustering results are suggestive of k = 2 clusters, which aligns well with the
intuition provided by the clustering facility of the FRETLab tool. While the Calinski-
Harabasz score is sporadic, the other metrics are consistent in this regard. As shown by
the silhouette plot of Figure 5.2 and Table 5.2, this is borne out clearly when clustering
all 1457 data points as a whole. While there is more variability in the FRET curves
at the indivdual FOV and experiment level per Table 5.1, k = 2 clusters continues to
dominate when the leading cluster is tallied across the three metrics for each of the 37
trials. Silhouette plots for the eight experiments are given in Appendix B.

Three features are relevant to the interpretation of a silhouette plot: the average
silhouette score, the relative areas of the clusters, and whether all clusters exceed the
average silhouette score line. Concerning the average silhouette score, an industry stan-
dard threshold for a good clustering value is a silhouette score ≥ 0.5 [77]. Further, we
take an interest in the relative areas of the clusters, as this indicates how many data
points are assigned to each. Finally, it is desirable that the average silhouette score for
each cluster be above the mean trendline, given in red. One or more clusters below the
the trend line indicates that the average score is being raised by the other clusters.

Method Silhouette Davies-Bouldin Calinski-Harabasz Leader
K-meansDTW 0.53, 0.46, 0.45, 0.44 0.64, 0.69, 0.73, 0.75 2297, 2353, 2379, 2416 k = 2
K-medioidsDTW 0.53, 0.46, 0.45, 0.43 0.64, 0.70, 0.74, 0.76 2296, 2347, 2357, 2343 k = 2
Kernel KMDTW 0.53, 0.47, 0.44, 0.44 0.65, 0.71, 0.74, 0.78 2300, 2342, 2371, 2340 k = 2
PCA: K-means 0.52, 0.47, 0.44, 0.44 0.64, 0.70, 0.71, 0.74 2327, 2406, 2451, 2514 k = 2
PCA: Spectral 0.52, 0.43, 0.28, 0.30 0.63, 0.87, 0.50, 0.47 2228, 1057, 335, 336 k = 2
Agglomerative 0.53, 0.43, 0.43, 0.41 0.65, 0.78, 0.72, 0.73 2273, 1916, 2231, 2052 k = 2

Table 5.2: Silhouette, DB, and CH scores for clusters k ∈ {2, 3, 4, 5}, in left to right
order. The leader column indicates the value of k with the majority metric leads.

Figure 5.2: Silhouette plots for k ∈ {2, 3, 4, 5} on the aggregated data using K-means.

62

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

5.1.4 Deep Unsupervised Time Series Clustering

Deep unsupervised clustering was carried out by performing dimensionality reduction
using a temporal convolutional autoencoder (TCN-AE) as opposed to classical techniques
such as PCA. A temporal convolutional autoencoder is a convolutional autoencoder with
1D convolutional layers and has been shown to demonstrate robustness to noise [80]. The
motivation here was to determine whether non-linear dimensionality reduction would
change the optimal number of clusters per the metrics used in the previous subsection.

The procedure was to first perform dimensionality reduction on the aggregated time
series data by passing it through the TCN-AE. The resulting latent vectors were then
clustered using the same clustering algorithms as in the preceding section. The key
hyperparameter here is the size of the latent dimension in the autoencoder, which we
may think of as being equivalent to the number of components used when performing
PCA. The results of deep unsupervised clustering are volatile for low dimensional latent
spaces, but remain consistent as the size of the latent space is scaled beyond five vari-
ables. The author’s conjecture is that beyond this number of latent variables, most of
the variability between each time series has already been captured, and there is little
additional information captured in the added dimensions. Again, as shown by Table
5.1.4, the indication is that k = 2 is the optimal number of clusters.

Figure 5.3: Architecture diagram for the temporal convolutional autoencoder. After
truncation to time point 156 and performing running average smoothing with a 1D
convolutional kernel of length 10, the input time series curves are of length 147. ReLU
activations were used in between convolutional and transpose convolutional layers. Here
B is the batch size, Cout represents the number of output channels for a particular
convolutional layer, and L is the dimensionality of the latent space.

Method Silhouette Davies-Bouldin Calinski-Harabasz Leader
K-means 0.52, 0.40, 0.41, 0.36 0.51, 0.79, 0.74, 0.82 1694, 1688, 1860, 1866 k = 2
Spectral 0.46, 0.40, 0.41, 0.20 0.50, 0.56, 0.55, 1.01 1671, 765, 921, 416 k = 2
Agglomerative 0.53, 0.43, 0.43, 0.41 0.67, 0.78, 0.72, 0.73 2273, 1916, 2231, 2052 k = 2

Table 5.3: Evaluation results for deep unsupervised clustering, with clustering performed
on the latent vectors produced by a TCN-AE. Formatted as described in Table 5.2.

63

Chapter 5. Time Series Analysis 5.1. Time Series Clustering

5.1.5 Cluster Taxonomy

Having arrived at a suspected number of clusters at k = 2, we now develop a taxonomy
of the clusters and their characteristics. We do this by exporting the cluster data using
the FRETLab tool and then by computing statistics for each cluster.

Figure 5.4: Visualising the cluster taxonomy using a single field of view sample.

Cluster 1 Cluster 2
Experiment Mean Median Range Stdv Mean Median Range Stdv
410A 1.63 1.62 0.34 0.0021 1.55 1.54 0.32 0.0023
410B 1.66 1.65 0.52 0.0019 1.54 1.54 0.39 0.0017
411A 1.60 1.59 0.49 0.0017 1.53 1.52 0.37 0.0015
414A 1.60 1.61 0.47 0.0018 1.53 1.51 0.35 0.0021
414B 1.64 1.64 0.49 0.0018 1.56 1.55 0.31 0.0015
415A 1.62 1.63 0.57 0.0029 1.51 1.51 0.32 0.0024
415B 1.65 1.64 0.54 0.0016 1.55 1.51 0.32 0.0016
ACTB 1.62 1.62 0.51 0.0025 1.53 1.51 0.38 0.0012

Table 5.4: Statistics for each cluster using K-Means with dynamic time warping.

As can be seen from Figure 5.4, the clusters separate out relatively neatly when
visualised. In particular, we observe two key features distinguishing the clusters. The
first is their height, with the first cluster starting with an elevated FRET response. The
second is range, with the second cluster having a narrower range of FRET values. These
insights are supported by the data in Table 5.4, which shows that the average range
of FRET is narrower for cluster two, as well as the mean and median FRET response
being lower. In conclusion, the preceding analysis suggests that there may indeed be two
classes of neurons, those which have an elevated initial response and a steeper decline,
and those with a narrower reactivity range. This may suggest a point of biological
difference between the neurons that could inform future research.

64

Chapter 5. Time Series Analysis 5.2. Morphological Reactivity Prediction and Regression

5.2 Morphological Reactivity Prediction and Regression

Once it had been established through the preceding experiments in classical and deep
unsupervised clustering that there may indeed be biologically meaningful response pro-
files, the question arose as to whether these profiles could be predicted from image crops
of the neurons alone. This task, morphological reactivity prediction, would provide
meaningful biological insights into the neurobiology of metabolism and aid biologists in
directing their experiments. Similarly, morphological reactivity regression, the task of
predicting numerical features such as minimum FRET response, maximum FRET re-
sponse, and approximate entropy, would help direct biochemical investigations into what
distinguishes the neurons under study. While the prediction results were ultimately on
par with chance, and the regression results were within close range of a mean-predictor
baseline, it is nevertheless instructive to examine the prediction and regression pipelines
so as to guide future work.

Both methods utilised a convolutional neural network. For the prediction task, a
crop of a neuron was fed into the network, processed by several convolutional layers, and
finally fed through an MLP with k = 2 outputs, per the preceding analysis of the number
of clusters in the data. Cross entropy was used as the loss function. The regression task
utilised a similar architecture, but with the mean squared error loss function.

Based on similar research in image-based profiling [81], the literature suggests that
ultra high-resolution is a requirment for achieving statistically significant results, and
this may be aided further by the addition of other biochemical data sources such as
genomic data in order to create multimodal inputs. Per Figure 5.5, high-resolution data
was not available for the present project, as the imaging acquisitions were intended for
high-volume drug screening, and therefore compromise resolution for a wide field of view.

As will be discussed in Chapter 7 in the discussion of future work, here would be an
opportunity to acquire a large scale dataset of single cell resolution images and apply
the same pipeline once more to determine conclusively whether such a task is possible
for the neurons and drugs under study.

Figure 5.5: Examples of the neuronal crop images used for both the cluster membership
prediction and regression tasks. Observe the low resolution of the neuron crops.

65

Chapter 6

Few-Shot Dataset Labelling

This chapter introduces the Segment Anything Model With Selective Extraction (SAM-
WISE), an experimental first step towards a generalisable pipeline for few-shot segmen-
tation and bounding box labelling of cell-biology datasets. We begin with the motivation
for the problem in Section 6.1, describe the method and its preliminaries in Section 6.2,
and finally conclude with an evaluation in Section 6.3.

6.1 Motivation

The evaluation of CellSAM in Section 4.2.3 demonstrated the ability of the Segment
Anything Model to produce faithful and high-quality masks that are competitive with
current state-of-the-art methods for cell segmentation. Further, the FRETLab software
demonstrates the practicality of a fine-tuned SAM paired with a cellular object detector.
The bottleneck here, however, is that thousands of hand-annotated labels were required
to produce the dataset to train the object detector to accurately localise the cells. This
motivated an exploration into the use of SAM for few-shot dataset labelling.

The possiblity of using SAM to automatically label datasets is suggested by the fact
that the model already has inherent object detection capabilities, and in many cases is
capable of segmenting all objects in an image. The authors of the Segment Anything
[7] paper suggest this potential for the model, noting that in constructing SAM they
iterated between using their ‘efficient model to assist in data collection and using the
newly collected data to improve the model’. Their approach was to construct what
they termed a ‘data engine’. The data engine had three stages: assisted-manual, semi-
automatic, and fully automatic. In the first stage, SAM assisted annotators in annotating
masks, similar to the classical interactive segmentation setup. In the second stage, SAM
was used to automatically generate masks for a subset of objects by prompting it with
likely object locations and the annotators then focused on annotating the remaining
objects. In the final stage, the authors prompted SAM with a regular grid of points, per
Figure 3.4, and had it generate masks automatically. The task of cell segmentation has
several properties which make it ideal for this type of method, namely low ambiguity
and high object homogeneity. We turn to an experimental method for this next.

66

Chapter 6. Few-Shot Dataset Labelling 6.2. Segment Anything Model With Selective Extraction

6.2 Segment Anything Model With Selective Extraction

The Segment Anything Model with Selective Extraction (SAMWISE) is predicated on a
simple idea. When generating masks in everything mode, SAM often correctly segments
out cells perfectly but includes erroneous masks in its final output. The idea is to extend
this idea, deliberately increasing the sample density of the prompt grid and aggressively
oversegmenting the image. This produces a mask set which contains high quality masks
for all of the cells in the image, in addition to many low quality errant masks for debris or
the image background. The task then becomes one of filtering out only false detections.

6.2.1 Pipeline

The pseudocode for SAMWISE is given in Figure 6.1. The first step is to have the user
label a small set of exemplar cells using SAM and then perform feature extraction on
the area under the segmentation masks. These are then used to fit a novelty detection
classifier. In the second stage, the dataset is deliberately oversegmented by SAM by
prompting it with a dense grid of foreground points. Finally, a second pass is made
over the automatically segmented dataset, and the areas under all masks are filtered or
retained on the basis of their features. Abstracted away is the matter of how feature
extraction and novelty detection are performed. This is because the method is agnostic
about these implementation choices. Section 6.2.2 will explore several possible methods.

SAMWISE(D,Mk)

1 � Input: Dataset D and user-provided masks Mk

2 � Output: Filtered bounding boxes Bfiltered

3 Perform feature extraction on areas under Mk to obtain feature matrix Fk

4 Fit a novelty detection model on Fk � e.g., One-Class SVM
5 Automatically label the dataset D using the model
6 Initialize an empty set Bfiltered

7 for image I in D
8 do
9 for mask Mi in I

10 do
11 Extract features from Mi ⊙ I to obtain feature vector Fi

12 if Novelty Detection Model predicts Fi as non-anomalous
13 then Add Bounding-Box(Mi) to Bfiltered

14 return Non-Maximal-Suppression(Bfiltered)

Figure 6.1: High-level pseudocode for the SAMWISE pipeline.

The dataset used to evaluate the method is the Blood Cell Count and Detection
dataset (BCCD) produced by MIT [82]. Consisting of 364 images across three classes:
white blood cells, red blood cells, and platelets, the dataset contains 4888 labels total.
The BCCD dataset has several properties which make it suitable for evaluating the
method, namely that the classes are clearly visibly distinct, the task of distinguishing
each class is of clear practical utility, and the dataset is a commonly used benchmark
for biomedical imaging. Examples images are given in Figure 6.2.

67

Chapter 6. Few-Shot Dataset Labelling 6.2. Segment Anything Model With Selective Extraction

6.2.2 Novelty Detection Methods

Several classifiers were trialled to test the SAMWISE method, namely support vector
machines, local outlier factor, and random forests. These are briefly summarised below.

One-Class Support Vector Machine

The assumption of a one-class support vector machine (SVM) [83] is that the majority of
the training data is normal, and the goal is to create a model that captures the charac-
teristics of this majority class. The training data consists of feature vectors representing
instances from the normal class. The one-class SVM seeks to find a hypersphere that
best encapsulates the training data. This hypersphere should have a maximum margin
from the closest data points of the normal class. The decision boundary of the SVM is
determined by finding the hypersphere that minimizes the following objective function:

min
w,ξ,ρ

(
1

2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ

)
s.t: w · Φ(xi) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n (6.1)

Here, w represents the weight vector, ξi are slack variables, ρ is the radius of the
hypersphere, ν is the user-defined parameter controlling the trade-off, Φ(xi) represents
the feature mapping of input data xi, and n is the number of training examples.

Random Forest

A random forest consists of an ensemble of fixed-depth decision tree classifiers, each
trained on a subset of both the training examples and the feature set. When a new data
point is presented for prediction, each decision tree in the random forest independently
classifies or scores the data point. In the context of outlier detection, the output from
each tree can be considered as a measure of how outlying the data point is [84]. The
predictions from individual trees are then aggregated to produce a single outlier score
for the data point. As discussed in Section 3.2, this is the method currently employed
for trainable segmentation in popular bioimaging libraries.

Local Outlier Factor

The Local Outlier Factor (LOF) [85] aims to identify outliers or anomalies in a dataset
by measuring the local deviation of a data point with respect to its neighbours, making
it particularly effective for detecting anomalies in complex, non-uniformly distributed
datasets. The LOF of a point A measures how much the local density of A differs from
the local densities of its neighbours. It is calculated as the ratio of the average local
reachability density of A’s neighbours to the local reachability density of A itself. A
high LOF value for a point indicates that it has a significantly lower density than its
neighbours, marking it as a likely outlier or anomaly.

68

Chapter 6. Few-Shot Dataset Labelling 6.3. Evaluation

6.3 Evaluation

The results of the SAMWISE experiments are summarised below in Table 6.3. To
develop and test the method, a simple utility was developed based on the techniques
employed by FRETLab. This enabled the author to segment exemplars for each class
with the SAM ViT-H checkpoint. Exemplars were kept consistent across experiments.

Classifier Features P0.5 P0.75

RBC WBC RBC WBC

One-class SVM RGB Histogram 0.60 0.59 0.57 0.54
Random Forest Multi-scale local 0.67 0.65 0.63 0.62
Local Outlier Factor RGB Histogram 0.62 0.58 0.57 0.55

Classifier Features R0.5 R0.75

RBC WBC RBC WBC

One-class SVM RGB Histogram 0.66 0.65 0.62 0.60
Random Forest Multi-scale local 0.84 0.87 0.79 0.76
Local Outlier Factor RGB Histogram 0.64 0.62 0.60 0.59

Classifier Features Acc0.5 Acc0.75
RBC WBC RBC WBC

One-class SVM Histogram 0.60 0.51 0.55 0.49
Random Forest Multi-scale local 0.70 0.77 0.67 0.71
Local Outlier Factor Histogram 0.62 0.63 0.56 0.59

Table 6.1: Per class precision, recall, and accuracy metrics for various outlier detection
methods. The titles RBC and WBC indicate white and red blood cells respectively.

As can be seen from Table 6.3, the random forest method trained with multiscale
local features was the most successful across all categories. This may be attributed to
the fact that this method uses pixel-level features to train an ensemble of decision trees
which subsample both the features and the exemplar pixels. A majority class vote within
the boundaries of each mask produced by SAM are then taken. This provides robustness,
as each pixel is treated independently, as opposed to evaluating the features of the mask
as a whole against the positive exemplars, as is done by the remaining methods.

A noticeable trend among all classifiers is a shared bias with respect to the precision-
recall tradeoff. Every method displays higher recall than precision, indicating that while
the vast majority of cells are detected for each class, a significant number of false positives
also occur. We may attribute this to the oversegmentations produced by SAM. This effect
is visualised in the bottom row of Figure 6.2, which shows the detections produced by
the random forest filtering method for the white blood cell class using a single exemplar.

While more work remains to be done to refine the method, the preceding evaluation
suggests that human-in-the-loop few-shot prompting could potentially enable dataset
labelling in low-resource settings. As discussed in Section 7, an extension to this method
would be to use deep learning to extract features from the masks. Experiments with
convolutional autoencoders were conducted in this vein, but none yielded results.

69

Chapter 6. Few-Shot Dataset Labelling 6.3. Evaluation

Figure 6.2: Demonstrating the performance of SAMWISE after using 1-shot exemplar
prompting on the white blood cell class (stained pink) with a random forest filterer. The
first column is the original segmentation produced by SAM. The second column shows
the same segmentation masks post filtering and non-maximal suppression. The final
column shows the bounding box detections. Per the last row, a current failure mode is
underdetection of part of a cell’s anatomy, as opposed to the whole cell.

70

Chapter 7

Conclusions and Future Work

This final chapter presents the author’s concluding remarks and evaluation of the project
as a whole. Alongside this is an examination of future work that could stand to compli-
ment the project and extend the methods developed. Here we focus on each of the main
three project components: the FRETLab software, time series analysis, and few-shot
dataset labelling. Legal, ethical, and social considerations are given in Section 7.1.

The primary objective of the work outlined over the preceding six chapters was to
explore the foundational Segment Anything Model (SAM) for cellular segmentation, and
to develop an application which facilitates this task in the context of drug discovery. To
this end, the FRETLab application was developed. The development of the applica-
tion spanned the full machine-learning pipeline: preprocessing an in-house dataset of
raw images, labelling thousands of cells by hand to create a detection dataset, training
and fine-tuning existing models, developing a new method, benchmarking performance
against a widely available dataset, building a user-friendly front end, and finally col-
laborating with an end-user to create a usable product. The user story of Section 4.3
confirms the tool’s usefulness in accelerating the image analysis process for drug discov-
ery. Further, quantitative analyses show that CellSAM, the specialised version of SAM
the present project developed for cellular segmentation, is competitive with the current
state-of-the-art model in general cell segmentation, CellPose.

In future work, the FRETLab software could be extended by generalising to multiple
cell types and other variants of FRET analysis. Generalising the tool would enable other
labs with different experimental procedures to make use of the software. One manner in
which this could be achieved is by exploring the possibility of generating a large scale
dataset for general cell segmentation. A plausible avenue of research here could be sim-
ulating a broad range of cell morphologies using generative methods such as generative
adversarial networks [86] or diffusion [87]. Alternatively, since these methods themselves
require large volumes of data, classical simulations could be performed and then tech-
niques such as neural style transfer [88] could be used to imbue the cells with realistic
features. The merit of such an approach is that simulated cells would be accompanied by
ground truth segmentations and detections, which could then be used to train a highly
generalised model which extends the CellSAM pipeline discussed in Section 4.2.3.

71

Chapter 7. Conclusions and Future Work 7.1. Legal, Ethical, and Social Considerations

A further avenue of exploration would be to expand upon CellSAM. While experi-
ments with CellSAM proved to be very promising, due to constraints on both time and
compute resources, only ViT-B and not the larger variants of the SAM backbone were
able to be used. ViT-B, the smallest version of the SAM image encoders, with 91 mil-
lion parameters, was found by the authors of the original SAM paper to be signficantly
worse than the ViT-L (308M) and ViT-H (636M) models. Future work could explore
either securing greater compute resources and further developing CellSAM with a more
powerful image encoder, or distilling SAM and enabling it to be competitive with these
larger image encoders. Such work has been explored by [89] and would be a promising
line of research.

The second project objective was to determine whether meaningful groupings arise
in the response profiles of the neurons being tested. Indeed, the time series clustering re-
sults of Chapter 5 strongly suggest that neuronal responses can be meaningfully grouped
and categorized into two distinct clusters. Following this, the project pushed further,
and through the use of convolutional neural networks, experiments were conducted with
a view to being able to predict this cluster membership from images of individual neurons
alone. While the predictive accuracies of the models tested were on par with chance,
the question as to whether cellular morphology alone is an accurate predictor remains.
In future work, images taken at single cell resolution could be used to construct a new
dataset, one which would consist of cell-time series pairs. Armed with higher resolution
data, rich biochemical information could be gleaned from the images, allowing a convo-
lutional neural network to learn features associated with drug response. Were such an
approach to prove successful, visualisation techniques such as guided backpropagation
[90] could be used to determine which cellular features in particular are being used to
determine which cluster a given cell belongs to. This would provide actionable biological
insights that biologists could use to inform future experiments.

Finally, the experiments in few-shot dataset labelling arose due to the author’s ex-
perience hand-annotating a cellular detection dataset over thousands of cells. However,
given that the Segment Anything Model has been trained on a dataset of 1 billion masks
– the largest publicly available dataset yet published – the model already has impressive
powers of generalised object detection. This led to the development of SAMWISE, an
exploratory and general method for few-shot automatic dataset labelling. Due to time
and resource constraints, the method was only able to be developed and tested on a
small scale dataset. In future work, SAMWISE could be extended with deep-learning
based filtering techniques and validated against a larger scale dataset such as LIVECell.

7.1 Legal, Ethical, and Social Considerations

The neuronal imaging data produced by the Jones lab and used throughout this project
is sourced from mouse dissections. All such dissections are performed in a humane way
and with the sole aim of advancing biomedical discovery, namely for the development of
diabetes alleviating drugs. Further, the Jones lab operate with a license. All data used
was pre-existing, and no dissections were commissioned for the present project.

72

Bibliography

[1] World Health Organization. Ethics and governance of artificial intelligence for health. World Health
Organization, 2021.

[2] Debleena Paul et al. “Artificial intelligence in drug discovery and development”. In: Drug discovery today
(2021).

[3] Chamier et al. “Democratising deep learning for microscopy with ZeroCostDL4Mic”. In: Nature commu-
nications (2021).

[4] Daniel R. Stroik et al. “Targeting protein-protein interactions for therapeutic discovery via FRET-based
high-throughput screening in living cells”. In: Scientific reports (2018).

[5] Dr Ben Jones: Research Projects. url: https://www.imperial.ac.uk/people/ben.jones/research.html.

[6] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. “Pervasive Label Errors in Machine Learn-
ing Datasets Destabilize Benchmarks”. In: 35th Conference on Neural Information Processing Systems
(NeurIPS 2021) (2021).

[7] Alexander Kirillov et al. “Segment Anything”. In: arXiv:2304.02643 (2023).

[8] What are proteins and what do they do? url: https://medlineplus.gov/genetics/understanding/
howgeneswork/protein/.

[9] Physiology, Cellular Receptor. url: https://www.ncbi.nlm.nih.gov/books/NBK554403/#:~:text=These%
20receptors%20are%20also%20known%20as%20transmembrane%20receptors.,large%20to%20make%20it%

20through..

[10] Peptides. url: https://www.nature.com/scitable/definition/peptide-317/#:~:text=A%20peptide%
20is%20a%20short,and%20protein%20can%20be%20arbitrary..

[11] Biochemistry, lipids. url: https://www.ncbi.nlm.nih.gov/books/NBK525952/#:~:text=Lipids%20are%
20fatty%2C%20waxy%2C%20or,Waxes.

[12] GPCR. url: https://www.nature.com/scitable/topicpage/gpcr-14047471/#:~:text=G%2Dprotein%
2Dcoupled%20receptors%20(,lipids%2C%20sugars%2C%20and%20proteins..

[13] Ben Jones et al. “Targeting GLP-1 receptor trafficking to improve agonist efficacy”. In: Nature communi-
cations (2018).

[14] Agonist. url: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/agonist.

[15] José Francisco Kerr Saraiva and Andrei C Sposito. “Cardiovascular effects of Glucagon-like peptide 1
(GLP-1) receptor agonists”. In: Cardiovascular Diabetology (2014).

[16] GLP-1R and Diabetes. url: https://bpsbioscience.com/glp-1r-diabetes.

[17] Michel Garcia Maciel et al. “The effect of glucagon-like peptide 1 and glucagon-like peptide 1 receptor ag-
onists on energy expenditure: A systematic review and meta-analysis”. In: Diabetes Research and Clinical
Practice (2018).

[18] Meera Shah and Adrian Vella. “Effects of GLP-1 on appetite and weight”. In: Reviews in Endocrine and
Metabolic Disorders (2015).

[19] What is adipose tissue? url: https://my.clevelandclinic.org/health/body/24052-adipose-tissue-
body- fat#:~:text=Adipose%20tissue%2C%20otherwise%20known%20as, (bone%20marrow%20adipose%

20tissue)..

[20] Ismael Gonzalez-Garcia et al. “Glucagon, GLP-1 and Thermogenesis”. In: International Journal of Molec-
ular Sciences (2019).

[21] Haitham Abdulla et al. “Effects of GLP-1 Infusion Upon Whole-body Glucose Uptake and Skeletal Muscle
Perfusion During Fed-state in Older Men”. In: The Journal of Clinical Endocrinology and Metabolism
(2023).

[22] Shayan Fakhraei Lahiji et al. “Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment
of type 2 diabetes”. In: Scientific reports (2018).

[23] Exendin-4: From lizard to laboratory...and beyond. url: https://www.nia.nih.gov/news/exendin-4-
lizard-laboratory-and-beyond.

[24] Xinyi Wang and Yunyan Lai. “Three basic types of fluorescence microscopy and recent improvement”. In:
E3S Web of Conferences (2021).

[25] Michael J. Sanderson et al. “Fluorescence microscopy”. In: Cold spring harbor protocols (2014).

73

Bibliography Bibliography

[26] Fiji. url: https://imagej.net/software/fiji/.

[27] Tingying Peng et al. “A BaSiC tool for background and shading correction of optical microscopy images”.
In: nature communications (2017).

[28] David G. Lowe. “Object Recognition from Local Scale-Invariant Features”. In: International Conference
on Computer Vision (1999).

[29] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Networks”. In: Computing
Research Repository (CoRR) (2015).

[30] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In: IEEE (1998).

[31] ImageNet. url: https://www.image-net.org/.

[32] COCO. url: https://cocodataset.org/#home.

[33] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Net-
works”. In: IEEE Pattern Analysis and Machine Intelligence (2015).

[34] Shrey Srivastava et al. “Comparative analysis of deep learning image detection algorithms”. In: Journal
of Big Data (2021).

[35] Joseph Redmon, Santosh Divvala, and Ross Girshick. “You Only Look Once: Unified, Real-Time Object
Detection”. In: CVPR (2016).

[36] Ashish Vaswani et al. “Attention Is All You Need”. In: NeurIPS (2017).

[37] Alexander Kolesnikov Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”. In: ICLR (2020).

[38] Jerome N Feige et al. “PixFRET, an ImageJPlug-in for FRET Calculation That Can Accommodate
Variations in Spectral Bleed-throughs”. In: Microscopy Research and Technique (2005).

[39] S Bolte and F P Cordelières. “A guided tour into subcellular colocalization analysis in light microscopy”.
In: Journal of Microscopy (2006).

[40] Muriel Haas et al. “FRET and colocalization analyzer – A method to validate measurements of sensitized
emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in”. In: Microscopy
Research and Technique (2006).

[41] János Roszik et al. “Evaluation of intensity-based ratiometric FRET in image cytometry-Approaches and
a software solution”. In: Cytometry Part A (2009).

[42] István Rebenku et al. “Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy im-
proves accuracy for samples with spatially varied autofluorescence to signal ratio”. In: Scientific Reports
(2023).

[43] János Roszik, János Szöllősi, and György Vereb. “AccPbFRET: An ImageJ plugin for semi-automatic,
fully corrected analysis of acceptor photobleaching FRET images”. In: Scientific Reports (2008).

[44] Jiho Kim et al. “FLIM-FRET analyzer: open source software for automation of lifetime-based FRET
analysis”. In: Source Code for Biology and Medicine (2017).

[45] Johannes Thomsen et al. “DeepFRET, a software for rapid and automated single-molecule FRET data
classification using deep learning”. In: eLife (2020).

[46] Anne E Carpenter et al. “CellProfiler: image analysis software for identifying and quantifying cell pheno-
types”. In: Genome Biology (2006).

[47] Stuart Berg et al. “Ilastik: interactive machine learning for (bio)image analysis”. In: Nature methods
(2019).

[48] Ignacio Arganda-Carreras et al. “Trainable Weka Segmentation: a machine learning tool for microscopy
pixel classification”. In: Bioinformatics (2017).

[49] Thorsten Falk et al. “U-Net: deep learning for cell counting, detection, and morphometry”. In: Nature
methods (2018).

[50] Kaiming He et al. “Mask R-CNN”. In: IEEE (2017).

[51] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE CVPR (2016).

[52] Carsen Stringer, Michalis Michaelos Tim Wang, and Marius Pachitariu. “Cellpose: a generalist algorithm
for cellular segmentation”. In: Nature methods (2020).

[53] Carsen Stringer Kevin J. Cutler et al. “Omnipose: a high-precision morphology-independent solution for
bacterial cell segmentation”. In: Nature methods (2022).

[54] Uwe Schmidt et al. “Cell Detection with Star-convex Polygons”. In: MICCAI (2018).

[55] Segment Anything. url: https://segment-anything.com/demo.

74

Bibliography Bibliography

[56] Kaggle 2018 Data Science Bowl. 2018. url: https://bbbc.broadinstitute.org/BBBC038.

[57] Tkinter. url: https://docs.python.org/3/library/tkinter.html.

[58] CustomTkinter. url: https://customtkinter.tomschimansky.com/.

[59] Pystackreg. 2023. url: https://pystackreg.readthedocs.io/en/latest/.

[60] Pybasic. 2023. url: https://github.com/linum-uqam/PyBaSiC.

[61] Neuroglial cells. 2001. url: https://www.ncbi.nlm.nih.gov/books/NBK10869/.

[62] Mischa Schwendy, Ronald E Unger, and Sapun H Parekh. “EVICAN—a balanced dataset for algorithm
development in cell and nucleus segmentation”. In: Bioinformatics (2020).

[63] Christoffer Edlund et al. “LIVECell—A large-scale dataset for label-free live cell segmentation”. In: Nature
methods (2021).

[64] Roboflow. 2023. url: https://roboflow.com/.

[65] Pascal VOC. url: http://host.robots.ox.ac.uk/pascal/VOC/.

[66] Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva. “A Survey on Performance Metrics for
Object-Detection Algorithms”. In: IEEE (2020).

[67] Nehal Abdul Rehman and Farah Haroon. “Adaptive Gaussian and Double Thresholding for Contour
Detection and Character Recognition of Two-Dimensional Area Using Computer Vision”. In: Engineering
Proceedings (2023).

[68] Payel Roy et al. “Adaptive thresholding: A comparative study”. In: IEEE (2014).

[69] Mohamed Rizon et al. “Object Detection using Circular Hough Transform”. In: American Journal of
Applied Sciences (2005).

[70] Kay Thwe Min Han; Bunyarit Uyyanonvara. “A Survey of Blob Detection Algorithms for Biomedical
Images”. In: IEEE (2016).

[71] Dominik Müller, Iñaki Soto-Rey, and Frank Kramer. “Towards a guideline for evaluation metrics in medical
image segmentation”. In: BMC research notes (2022).

[72] Varduhi Yeghiazaryan and Irina Voiculescu. An Overview of Current Evaluation Methods Used in Medical
Image Segmentation. Tech. rep. RR-15-08. Oxford, UK: Department of Computer Science, 2015, p. 22.

[73] Jun Ma et al. “Segment Anything in Medical Images”. In: arXiv preprint arXiv:2304.12306 (2023).

[74] Lena Maier-Hein et al. “Metrics reloaded: Recommendations for image analysis validation”. In: arXiv
preprint arXiv:2206.01653 (2022).

[75] Sktime. url: https://www.sktime.net/en/stable/.

[76] Sklearn. url: https://scikit-learn.org/stable/.

[77] Edwin S. Dalmaijer, Camilla L. Nord, and Duncan E. Astle. “Statistical power for cluster analysis”. In:
BMC Bioinformatics (2022).

[78] Tadeusz Calinski and Harabasz Ja. “A Dendrite Method for Cluster Analysis”. In: Communications In
Statistics (1974).

[79] David L. Davies and Don Bouldin. “A Cluster Separation Measure”. In: IEEE (1979).

[80] Markus Thill et al. “Temporal convolutional autoencoder for unsupervised anomaly detection in time
series”. In: (2021).

[81] Srinivas Niranj Chandrasekaran et al. “Image-based profiling for drug discovery: due for a machine-learning
upgrade?” In: Nature Reviews Drug Discovery (2020).

[82] BCCD Dataset. 2018. url: https://github.com/Shenggan/BCCD_Dataset.

[83] Bernhard Scholkopf et al. “Support Vector Method For Novelty Detection”. In: NeurIPS (1999).

[84] Qi-Feng Zhou et al. “Two approaches for novelty detection using random forest”. In: Expert Systems With
Applications (2015).

[85] Markus M. Breunig et al. “LOF: Identifying Density-Based Local Outliers”. In: ACM SIGMOD (2000).

[86] Ian Goodfellow et al. “Generative Adversarial Networks”. In: NeurIPS (2014).

[87] Robin Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. In: arXiv preprint
arXiv:2112.10752 (2022).

[88] Alexander S. Ecker Leon A. Gatys and Matthias Bethge. “A Neural Algorithm of Artistic Style”. In:
Journal of Vision (2015).

[89] Chaoning Zhang et al. “Towards Lightweight SAM for Mobile Applications”. In: arXiv:2306.14289 (2023).

[90] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Convolutional Net”. In: ICLR (2014).

75

Appendices

76

Appendix A

FRETLab User Guide

Appendix A provides instructions on using the FRETLab software. FRETLab was
compiled into a standalone distributable folder which launches from a single exe file using
PyInstaller. The software was developed for Ubuntu 22.04.03 but will be compatible with
later releases of Ubuntu.

To launch the application, navigate to the folder in which the software has been
stored. Run the FRETLab.exe file using a double left-click or by expanding the file-
browser menu with a right-click and selecting ‘Run’. A custom splash screen will be
displayed while the software is loading, per Figure A.1.

Figure A.1: Launching the FRETLab software.

77

Appendix A. FRETLab User Guide

Once the application has launched, the splash screen will be replaced by the main
application window. By default, the main application window will be set to the ‘Cell
view’ tab, in which image processing of three-channel TIFF files may be executed. Only
two options are available to the user at this point: uploading a three-channel TIFF
stack or switching tabs to the clustering facility by clicking the tab with the mouse. The
clustering facility may be used as a standalone component. This use of this tab will be
discussed in the following pages.

Figure A.2: The initial display of the FRETLab software. On application launch, the
user is presented with two panels, with the leftmost providing image processing tools,
and the right displaying the area in which three-channel TIFF images are to be loaded.

To upload an image stack, click the ‘Upload Image’ button. This will open a dialog
box linked to the directory in which the software is saved. Navigate to the desired folder
and select a three-channel TIFF image. Once the file has been selected, the loading bar
in the bottom left corner of the application will inform the user of the current stack
frame being processed. As shown in Figure A.3, when the TIFF stack has been loaded,
the top image frame will be displayed along with detections and segmentations.

78

Appendix A. FRETLab User Guide

Figure A.3: Cellular detections and segmentations produced by FRETLab once an image
stack has been loaded. Bounding boxes indicate the presence of a cell with the confidence
threshold set by the slider. At top, the cellular detections with the segmentation mask
opacity set to 0% for clear visualisation. At bottom, the same detections, but the with
the mask opacity set to 50% to allow the fidelity of the masks to be inspected.

79

Appendix A. FRETLab User Guide

Several utilities become available for use once the TIFF stack has been loaded, namely
channel registration, stack registration, vignette correction, detection thresholding, mask
opacity modulation, box thickness adjustment, and FRET computation. These utilities
range from aesthetic user preferences that aim to make the tool more usable to prepro-
cessing steps that can be used to standardise the computation of cellular drug response.

Channel registration is used to correct for chromatic aberration that occurs between
the yellow and cyan filters, while stack registration is used to correct for temporal drift
of the microscope due to experimental conditions. Finally, vignette correction is used to
correct radial patterns of decreasing pixel intensities emanating from the image centers.
To ensure standardisation between the existing image analysis pipeline and FRETLab,
the same algorithms have been used for channel registration, stack registration, and
vignette correction. The registration utilities are both enabled by the package pystackreg,
while vignette correction is implemented with the aid of pybasic. Both packages are
wrappers around the exact algorithms employed within the Fiji plug-ins used in the
original pipeline. For pystackreg this is the SIFT-based registration algorithm, and for
pybasic this is the BASiC algorithm.

Confidence thresholding allows the user to change the detections present on the
screen on the basis of the confidence score computed by the detection model. These
are cached at loading time, and thereafter the detections remain on the canvas at all
times, either displayed or rendered transparent according to the current setting. This
design allows the threshold slider to update the detections in real time, as opposed to
repeatedly rerunning the model. An example is provided in Figure A.4. Further, the
detections may be enlarged by increasing the thickness of the bounding boxes using the
provided slider.

Should the output of the object detection and segmentation pipeline require refine-
ment, the user may draw bounding boxes around individual cells and the software will
produce a new segmentation in real time. An example is given in Figure A.5. The
segmentation model has been fine-tuned on a cellular segmentation dataset such that
for reasonable perturbations to any given bounding box prompt the segmentation masks
produced are invariant. However, this perturbation invariance was enforced only within
a narrow pixel window. Thus, with some prompt engineering, the user may ‘guide’
SAM to produce a more faithful segmentation. Both the automatic and user drawn
segmentations may be deleted by left clicking the encompassing bounding boxes with
the mouse. The automatic segmentations can be made to reappear by clicking on the
threshold slider.

The final feature of the ‘Cell view’ tab is a video slider which enables the user to
play through the image stack. An example is given in Figure A.6. Coupled with the
bounding boxes superimposed over the cells, the user may use this feature to determine
whether a cell has drifted over time, and thereby exclude it from the FRET analysis.

80

Appendix A. FRETLab User Guide

Figure A.4: Demonstrating the effects of confidence thresholding. Both the cellular
detections and segmentations can be thresholded in real time utilising the detection
confidence slider. At top, a detection confidence of ≥ 0%. At bottom, a detection
confidence of ≥ 50%.

81

Appendix A. FRETLab User Guide

Figure A.5: Drawing segmentation boundaries free-hand with the mouse. At top, the
user’s bounding box coordinates are transfered from the interactive canvas through to a
specialised cellular segmentation model. At bottom, the resulting segmentation.

82

Appendix A. FRETLab User Guide

Figure A.6: Viewing the image stack with the mouse using the video slider. Several
examples of cellular drift over time have been highlighted with bounding boxes.

83

Appendix A. FRETLab User Guide

Once the user has processed the image stacks and verified the segmentation masks,
they may compute the FRET response. Once the ‘Compute FRET’ button has been
clicked, the tool will process all image stacks in order. At each time-step, the Hadamard
product is taken between each binary segmentation mask and both the YFP and CFP
channels. Then, the pixel ratios between the two extracted neuronal crops are summed
and averaged by the total number of pixels contained in the crop. The scalar value
produced by this process is the drug response of each cell Ci at time-step t.

Once the FRET score has been computed for each cell across all time-steps, the
interface is set to the second tab of the application, titled ‘FRET view’. As shown in
Figure A.7, the ‘FRET view’ tab plots the data, and provides utilities for exporting
both the raw FRET output and graphs. Four views are provided to aid the analysis of
the data: the raw time series data for each cell across each frame in the acquisition, a
smoothed version of the raw time series data, a heatmap, and finally a histogram which
charts the average FRET ratio per cell over time.

Figure A.7: The ‘FRET view’ tab for displaying and exporting FRET data.

Of particular interest when inspecting FRET data are cells which have atypical
response profiles. Thus, as per Figure A.8, on returning to the ‘Cell view’ tab after
FRET computation, the drug response of an individual cell can be visualised by hovering
over it with the cursor. Paired with the ability to set the mask opacity to 0 and play the
time lapse, it is possible to quickly discern whether an atypical response by any given
cell is the consequence of noise, such as drift or occlusions, or a genuine readout.

84

Appendix A. FRETLab User Guide

Figure A.8: Inspecting the reactivity of two different neurons using the ‘Cell view’ tab.
After the FRET score has been computed for each neuron, users may hover over each
cell and visualise drug response in real time. A magnified neuronal crop accompanies
the time series and the bounding box of the active neuron is highlighted.

85

Appendix A. FRETLab User Guide

The final tab is the clustering facility, which provides methods for clustering the data
generated by the ‘Cell view’ tab. Users may cluster time series data generated within
the current session, or upload a folder of files with a uniform format 1 and cluster them
as a whole 2. Files may be those previously generated by FRETLab or another tool.

Figure A.9: The ‘Clustering facility’ tab. On launching the tab for the first time, users
are prompted to either cluster the data produced during the current session, if available,
or upload a folder of previously generated FRET data as exported from the ‘FRET view’
tab. If the latter option is selected, all files will be treated as a singular dataset and the
clustering will be applied to this unified dataset. Options are provided for exporting the
produced graphs and clustering data.

The clustering facility may be used to provide an initial insight into the nature of
the data and identify whether any trends occur in the FRET curves. Three clustering
algorithms are currently available from the drop-down menu: k-means, k-medioids, and
kernel k-means. Each method employs a shift invariant dynamic time warping metric.

1Either .csv or .npy, being the options provided by the FRET view tab.
2This requires that the acquisitions be of the same length.

86

Appendix A. FRETLab User Guide

Figure A.10: Results from the clustering facility for the FRET computation performed
in Figure 4.5. A drop-down menu is provided to enable the user to cluster the data up
to a maximum of 10 clusters. This limit was imposed on the basis of biological domain
knowledge of the maximum plausible number of groupings expected from the neurons.

The exported cluster data will be organised into c rows, where c is the number of
segmented cells in the acquisition for which the FRET score was computed. Further,
there will be t+ 1 columns, where t is the number of timesteps in the acquisition. The
first column will contain the cluster labels, which are integers from 0 to n−1, where n is
the number of clusters selected. All columns from the second column rightwards contain
the raw FRET data at each time point for every segmented cell.

87

Appendix B

Time Series Analysis

Appendix B presents the silhouette plots that support the time series analysis of Chapter
5. In particular, presented below are the silhouette plots for the eight independent ExD3
drug trials. Observe the dominance of the average silhouette score for k = 2 clusters
across all experiments with the exception of the 410A experiment.

Figure B.1: Experiment 410A

88

Appendix B. Time Series Analysis

Figure B.2: Experiment 410B

Figure B.3: Experiment 411A

89

Appendix B. Time Series Analysis

Figure B.4: Experiment 414A

Figure B.5: Experiment 414B

90

Appendix B. Time Series Analysis

Figure B.6: Experiment 415A

Figure B.7: Experiment 415B

91

Appendix B. Time Series Analysis

Figure B.8: Experiment ACTB

92

