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Abstract

This thesis presents the development of a virtual volumetric display designed to simulate vol-
umetric displays for Human-Computer Interaction (HCI) research. The primary objective is
to create a cost-effective, reproducible, and simple system that enables researchers to explore
the usability of volumetric displays without requiring access to expensive and specialised hard-
ware. The system employs head and hand tracking to render 3D content on a standard 2D
monitor, creating the illusion of depth and allowing natural interaction with virtual objects.

A comprehensive user study was conducted to evaluate the effectiveness of the system. The
study compared user performance in tasks requiring spatial interaction under different con-
ditions: 3D versus 2D views and direct hand interaction versus teleoperation. The results
showed a significant improvement in task performance when using a 3D view with direct
hand interaction, highlighting the importance of intuitive and immersive interaction modes in
volumetric display research.

Future work includes expanding the system’s compatibility with different hardware and op-
erating systems, improving hand tracking accuracy, and exploring multi-user support.
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1.1. MOTIVATIONS Chapter 1. Introduction

1.1 Motivations
A volumetric display is a type of graphical display device that natively represents objects and
scenes natively in 3D. These displays differ from more traditional virtual reality devices in
that they are not immersive: rather, they coexist with their surroundings. They can be viewed
from any angle without the need for special visual apparatus and can be observed by multiple
people simultaneously [33].

There is no real consensus on what constitutes a volumetric display or the best way to build
one. As we cover in the Background 3.2, currently there are many approaches being explored
by both academic and industrial research groups to develop these displays.

Figure 1.1.1: PerspectaRAD being used
to view a CT image of a patient’s head [70]

Figure 1.1.2: Graph Visualization on the Voxon
Photonics VX1 [92]

Due to their capacity to display objects and scenes to multiple viewers simultaneously, vol-
umetric displays have been applied in a variety of professional and academic fields, such as
medical imaging [42] (see Fig 1.1.1), scientific visualization (see Fig. 1.1.2), computer-aided
design [83], and military visualization [75] [33] [7].

As volumetric displays become more advanced and accessible, they have the potential to revo-
lutionize the way we interact with digital content, providing benefits over alternative mediums
like Virtual Reality (VR) (see Background 3.2).

However, as this is an emerging field, the high cost (commercially available devices costing
upwards of $11,700 USD [74]) and complexity of these devices has limited their adoption
and hindered human-computer interaction (HCI) research into their usability.

There has been recent research and development investigating using new miniLED and mi-
croLED [50] panels to drastically reduce the cost and complexity of volumetric displays but
these devices are still in the early prototype stage [15].

To enable easier HCI research as the field matures there have been attempts to create devices
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Chapter 1. Introduction 1.2. CONTRIBUTIONS

that simulate volumetric displays to address these issues (see Background 3.2), but these
solutions are often complex and expensive to replicate.

1.2 Contributions
Our project makes two novel contributions to the field of volumetric displays. Firstly, we have
built a system for simulating volumetric displays for use in HCI research. Secondly, we used
our device to conduct a user study that successfully demonstrated the research viability of our
system.

Figure 1.2.1: Our simulator rendering Impe-
rial College London in 3D

Figure 1.2.2: POV perspective completing
a task our user study

Volumetric Display Simulator

We designed our Volumetric Display Simulator (see Implementation 5.1) to form a strong
foundation for future user studies involving volumetric displays.

Our simulator (as seen in Fig 1.2.1) uses head tracking to render the correct perspective for
the user. The user can change their view while maintaining the illusion of a 3D scene in front
of them. We also implemented native hand-tracking integration, allowing the user to interact
with the scene using their hands. To our knowledge our device is first to support such a feature.

We designed our system in a such a way that it:

1. Cost-Effective: operates on a standard desktop computer with regular monitors using
common hardware. It uses Microsoft’s widely available Azure Kinect Camera for its head
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1.2. CONTRIBUTIONS Chapter 1. Introduction

and hand tracking. We believe our system’s affordability and accessibility will encourage
more researchers to explore volumetric display technology.

2. Reproducible: uses Nix (see Background 3.3.2), a package manager that facilitates the
easy reproduction and compilation of software environments. This means the system can
be run on any computer with Nix installed using a single command (see Implementation
5.2.4). This not only simplifies execution but also enhances the ease of sharing and
reproducing results.

3. Simple and Lightweight: is simple as possible by leveraging well-established libraries
(see Implementation 5.3.5 and Implementation 5.4.8). The simulator comprises only
approximately 2,000 lines of C++ code, making it straightforward to understand and
modify. We hope that this simplicity will encourage other researchers to build upon our
work and develop new features.

User Study

We conducted a full user study to validate the effectiveness of our simulator. Our aim was to
demonstrate that our system could be used to conduct meaningful research into the usability
of volumetric displays.

We chose to investigate the performance of participants in a task that required them to trace
a path with their hands under different conditions (see Implementation 5.5.6). An example
of the task can be seen in Fig. 1.2.2. We focused on two factors: the perspective of the display
(2D vs. 3D) and the method of interaction (direct hand interaction vs teleoperation), resulting
in a total of four conditions.

The findings indicated that using head tracking for a 3D perspective significantly improved task
completion speed and accuracy compared to a 2D display. Additionally, direct hand interaction
with the volumetric display yielded superior results compared to teleoperation, particularly
when paired with a 3D view.

We observed a strong user preference for the 3D perspective while using direct hand interac-
tion, suggesting that users value natural and intuitive interaction modes. The findings reaffirm
the advantage of motion parallax in 3D tasks, showing that the benefits of 3D tracking are di-
minished with positional offsets.

The study identifies several areas for further investigation, including the effects of varying
offset distances and the potential impact of offsetting the interaction zone rather than the
display itself. These recommendations can guide future research efforts to refine and improve
the usability of volumetric displays. (For more information see Evaluation 6.2.4).
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2.1. USER STUDY Chapter 2. Ethical Discussion

2.1 User Study
We conducted a user study to evaluate our simulator, titled ”A Virtual Volumetric Screen User
Study.” This study followed the ethical guidelines and approval process as outlined by the
Science Engineering Technology Research Ethics Committee at Imperial College London. The
process was reviewed by the Research Governance and Integrity Team and the head of the
Computing Department. We received approval on 2nd May 2024 and conducted the study
between the 1st and 5th of June.

2.1.1 Human Participants
Since our study involved human participants, we ensured that it was conducted ethically and
in accordance with relevant guidelines. We adhered to the Equality Act 2010 [87] to avoid ex-
cluding any participants. Additionally, we took care to avoid involving participants who might
feel pressured to participate or influenced by the researchers. Prior to the commencement of
the study, participants were provided with an information sheet and a consent form.

2.1.2 Data Collection
During data collection, we complied with local regulations, including the General Data Protec-
tion Regulation (GDPR) [30]. All data were securely stored on a computer located on campus,
accessible only to the researchers, or on Imperial’s secure cloud network. We ensured that data
presented in our report were anonymized. The data will be retained until 30th June 2034.

2.2 Volumetric Simulator

2.2.1 Military Applications
Although this technology could theoretically be used for military applications, we believe it is
unlikely to be employed for such purposes. If it were to be used, it would not be for direct
combat and would pose no more danger than other existing technologies.

2.2.2 Copyright Limitations
Open Source

We utilise several open-source libraries and tools in our project. The Azure Kinect SDK is
licenced under the MIT licence. We use the Nix package manager, licenced under the LGPL-
2.1 licence, and the Nixpkgs repository, which is also under the MIT licence. The dlib library
is used under the Boost Software Licence 1.0 (BSL-1.0). The OpenGL library is employed
under its open-source licence for the Sample Implementation (SI). We also utilise the GLFW
library, licenced under the zlib licence, and the GLM library, licenced under the MIT licence.
Additionally, we use OpenCV, which is licenced under the Apache Licence, and MediaPipe,
which is released under the Apache Licence 2.0. The tinyobjloader is used under the MIT
licence.

6



Chapter 2. Ethical Discussion 2.2. VOLUMETRIC SIMULATOR

Proprietary Software

We also use proprietary software in our project. This includes Microsoft’s proprietary depth
engine, designed for use with the Azure Kinect SDK, which is not open source. Additionally,
we use CUDA and related libraries, which are proprietary software developed by NVIDIA.
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Chapter 3. Background 3.1. VOLUMETRIC DISPLAYS

3.1 Volumetric displays
Volumetric displays [33] provide a three-dimensional viewing experience by emitting light
from each voxel, or volume element, in a 3D space. This approach enables the accurate rep-
resentation of virtual 3D objects while providing accurate focal depth, motion parallax, and
vergence. Vergence refers to the rotation of a viewer’s eye to fixate on the same point they
are focusing on. Moreover, volumetric displays allow multiple users to view the same display
from different angles, providing unique perspectives of the same object simultaneously.

3.1.1 Advantages of Volumetric Displays Over 2D Displays and VR
Volumetric displays offer distinct advantages over traditional 2D displays and virtual reality
(VR). Unlike 2D displays, which only present flat images, volumetric displays create a true 3D
experience by emitting light from each point in a 3D space. This allows viewers to perceive
depth and see objects from different angles without the need for special glasses or head-
tracking.

Compared to VR, volumetric displays do not require headsets, making themmore accessible for
multiple users simultaneously. This avoids the motion sickness and discomfort often associated
with extended VR use [29], providing a more natural and comfortable viewing experience.
Volumetric displays can only present objects in the exact physical space they occupy, ensuring
an accurate and grounded representation; however, unlike VR, they are unable to create a
fully immersive experience.

3.1.2 Swept Volume Displays

Figure 3.1.1: Voxon Photonics’ VXR4612,
a projector-based persistence of vision volu-
metric display. [91]

Figure 3.1.2: A Volumetric Display / Holographic
Signage, an LED-based persistence of vision display
produced by Brightvox Inc. [15]

Swept volume displays are one prominent category of volumetric displays. They employ a
moving 2D display to create a 3D image through the persistence of vision effects. This is
achieved bymoving the 2D display through a 3D space at high speeds while emitting light from
the display where it reaches the position of each corresponding voxel. Common techniques for

9



3.1. VOLUMETRIC DISPLAYS Chapter 3. Background

achieving this include using a rotating mirror [34], an emitting screen, typically an LED-based
[39], or a transparent projector screen [52]. There currently exist commercial products that
implement this technique as can be seen in Fig 3.1.1 and Fig 3.1.2.

3.1.3 Static Volume Displays
Static volume displays are another category. They employ a static transparent medium that
when interacted with creates a 3D image. The result is that light is emitted from the display
at each point in a 3D space. Techniques for achieving this range from using a 3D array of LEDs
[76], lasers and phosphorus gas [93], or a transparent laser-induced damaged medium that
can be projected into [71]. There has been research into photon-activated dye [73] and even
quantum dot-based displays [49]. An example of one such display can be seen in Fig 3.1.3.

3.1.4 Trapped Particle Displays
Acoustic Trapping Displays displays are a relatively new category of volumetric displays. They
employ a 3D array of particles that are suspended in air using acoustic levitation. [37] [48]
This is achieved by using an array of ultrasonic transducers to create a standing wave that can
trap particles in the nodes of the wave. By moving the nodes of the wave through a 3D space
and illuminating the particles with light, a 3D image can be created.

This technique is still in its infancy and can struggle to provide a convincing persistence of
vision effect. Another direction some researchers have taken is to use a photophoretic trap to
trap particles in air [80]. The advantage of this sort of display is that space that is not being
used to display an object is empty and can be passed through. This is in contrast to swept
volume displays/most static volume displays where the space not being used to display an
object is filled with the display’s hardware. An example of one such display can be seen in
Fig 3.1.4.

Figure 3.1.3: Columbia University’s opti-
cal scattering volumetric display [71]

Figure 3.1.4: Bristol University’s acoustic trapping
volumetric display [37]
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Chapter 3. Background 3.2. VOLUMETRIC DISPLAY SIMULATIONS

3.1.5 Issues
Volumetric displays often require custom/cutting-edge hardware (e.g. extremely high refresh
rate projectors, transparent micro LEDs, complex laser systems) which makes them expensive,
difficult to manufacture and calibrate and not widely available. For example, the Voxon VX1,
one of the few if only commercially available volumetric displays costs, $11,700 USD [74] per
unit.

Volumetric displays are also held back by their inherent high bandwidth requirements: To
render objects in real-time at equivalent resolutions to current 2D displays while taking a raw
voxel stream (as opposed to calculating voxels on hardware from primitive shapes) has an
extremely high bandwidth requirement. If we want to render at 60fps on a 4096 × 2160 ×
1080 voxel display with 24 bit colour, it would require a bandwidth of 1.37 × 103 bits per
second/13.7 terabits per second which is orders of magnitude higher than what a normal
display requires. To achieve that currently would require about 170 state-of-the-art Ultra High
Bit Rate (UHBR) (80 gigabit) DisplayPort cables simultaneously. It was predicted in 2021 [12]
that due to these limitations and based on the historic trends of bandwidth in commercially
available displays, volumetric displays will only become feasible in 2060 at the earliest. There
are ways to reduce this bandwidth requirement through compression and other techniques
[101] but this still provides a major issue.

3.2 Volumetric Display Simulations
Due to the challenges associated with physical volumetric displays, significant research has
been conducted into simulating these displays. These simulated displays are often referred to
as fish tank virtual reality (FTVR) displays [95]. Although FTVRs were not originally designed
to simulate volumetric displays, they have recently been adapted for research in this domain
[32], [97]. An FTVR setup typically consists of one or more 2D displays (often curved into
a concave shape) positioned in front of the user. The viewer’s eye movements are tracked in
3D space, and the image on the displays is adjusted accordingly to create the illusion of a 3D
image.

Figure 3.2.1 and Figure 3.2.2 illustrate two different approaches to FTVRs. The first, the
CRSYSTAL Display [20], employs a semi-transparent sphere illuminated from the inside by
multiple projectors. The second, mpCubee [43], utilises multiple sets of mobile phones to
achieve a similar effect.

11



3.2. VOLUMETRIC DISPLAY SIMULATIONS Chapter 3. Background

Figure 3.2.1: University of British
Columbia’s CRSYSTAL Display [20]

Figure 3.2.2: Coburg University’s and Univer-
sity of Passau’s mpCubee [43]

These solutions have several significant drawbacks. The user is constrained to a single focal
depth and a single vergence. This limitation can be mitigated by using glasses that filter dif-
ferent images to each eye, providing a stereoscopic view [89]. Additionally, these systems are
generally limited to a single user at a time unless image filtering techniques are employed.
Recreating these devices often requires a substantial collection of specialised tracking hard-
ware and custom-built display components.

There have been several attempts to simulate volumetric displays using virtual reality (VR)
headsets. VR headsets offer a relatively affordable and straightforward method for simulating
volumetric displays and are capable of providing a stereoscopic view [31]. Historically, these
devices have faced challenges with passthrough latency. However, recent advancements have
significantly reduced this issue [31], particularly with the introduction of devices like Apple’s
Vision Pro [3]. We believe this area holds considerable promise for future research.
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Chapter 3. Background 3.3. NIX/NIXOS

3.3 Nix/NixOS
To achieve our goal of making our system reproducible and buildable with a single command
(See Implementation 5.2.4) we have used the Nix package manager. It would not be an
understatement to say this would have been impossible without Nix. Nix can be likened to the
Python package manager ’pip,’ but with significantly enhanced capabilities and applicability
that extend beyond just package management to encompass the entire system environment.

3.3.1 Introduction to Nix
Nix [25] is an open-source, ”purely functional package manager” used in Unix-like operating
systems to provide a functional and reproducible approach to package management. Started
in 2003 as a research project Nix [24] is widely used in both industry [1] and academia [17]
[61] [16], and its associated public package repository nixpkgs [36] as of Jan 2024 has over
80,000 unique packages making it the largest up-to-date package repository in the world [65].
Out of Nix has also grown NixOS [26] a Linux distribution that is conceived and defined as a
deterministic and reproducible entity that is declared functionally and is built using the Nix
package manager.

Nix packages are defined in theNix Language a lazy functional programming language where
packages are treated like purely functional values that are built by side effect-less functions
and once produced are immutable. Packages are built with every dependency down to the
ELF interpreter and libc (C standard library) defined in nix. All packages are installed in the
store directory, typically /nix/store/ by their unique hash and package name as can be seen
in Fig 3.3.1 as opposed to the traditional Unix Filesystem Hierarchy Standard (FHS).

Figure 3.3.1: Nix Store Path

/nix/store/sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1
Prefix Hash part Package name

Package source files, like tarballs and patches, are also downloaded and stored with their hash
in the store directory where packages can find them when building. Changing a package’s de-
pendencies results in a different hash and therefore location in the store directory whichmeans
you can have multiple versions or variants of the same package installed simultaneously with-
out issue. This design also avoids ”DLL hell” by making it impossible to accidentally point at
the wrong version of a package. Another important result is that upgrading or uninstalling a
package cannot ever break other applications.

Nix builds packages in a sandbox to ensure they are built exactly the same way on every ma-
chine by restricting access to nonreproducible files, OS features (like time and date), and the
network [85]. A package can and should be pinned to a specific NixOS release (regardless of
whether you are using NixOS or just the package manager). This means that once a package
is configured to build correctly it will continue to work the same way in the future, regardless
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3.3. NIX/NIXOS Chapter 3. Background

of when and where it is used and it will never not be able to be built.

These features are extremely useful for scientific work, CERN uses Nix to package the LHCb
Experiment because it allows the software ”to be stable for long periods (longer than even
long-term support operating systems)” and it means that as Nix is reproducible; all the experi-
ments are completely reproducible as all bugs that existed in the original experiment stay and
ensure the accuracy of the results [16].

To create a package Nix evaluates a derivation which is a specification/recipe that defines
how a package should be built. It includes all the necessary information and instructions
for building a package from its source code, such as the source location, build dependencies,
build commands, and post-installation steps. By default, Nix uses binary caching to build
packages faster, the default cache is cache.nixos.org is open to everyone and is constantly
being populated by CI systems. You can also specify custom caches. The basic iterative process
for building Nix packages can be seen in Fig 3.3.2.

Figure 3.3.2: Nix Build Loop

1. A hash is computed for the package derivation and,
using that hash, a Nix store path is generated, e.g
/nix/store/sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1.

2. Using the store path, Nix checks if the derivation has already been built.
First, checking the configured Nix store e.g /nix/store/ to see if the path
e.g sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1 already exists. If
it does, it uses that, if it does not it continues to the next step.

3. Next it checks if the store path exists in a configured binary cache, this is
by default cache.nixos.org. If it does it downloads it from the cache and
uses that. If it does not it continues to the next step.

4. Nix will build the derivation from scratch, recursively following all of the
steps in this list, using already-realized packages whenever possible and
building only what is necessary. Once the derivation is built, it is added
to the Nix store.

3.3.2 Example of a Nix package
To give an example of what a Nix package might look like. We have created a flake (one
method of defining a package) in Listing 3.3.3 that builds a version of the classic example
package ”hello”.

Listing 3.3.3: flake.nix

1 {
2 description = "A flake for building Hello World";
3 inputs.nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
4

5 outputs = { self, nixpkgs }: {
6 defaultPackage.x86_64-linux =
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7 let
8 pkgs = nixpkgs.legacyPackages.x86_64-linux;
9 in

10 pkgs.stdenv.mkDerivation {
11 name = "hello-2.12.1";
12 src = self;
13 # Not strictly necessary as stdenv will add gcc
14 buildInputs = [ pkgs.gcc ];
15 configurePhase = "echo 'int main() { printf(\"Hello World!\"); }' > hello.c";
16 buildPhase = "gcc -o hello ./hello.c";
17 installPhase = "mkdir -p $out/bin; install -t $out/bin hello";
18 };
19 };
20 }

To dive deeper into what each line does we have given a breakdown below for the flake.nix

• Line 2: We have specified that we want to build our flake with the stable nix channel nixos-
23.11, the most recent channel at the time of writing. This ”channel” is just a release branch on
the nixpkgs GitHub repository. Channels do receive conservative updates such as bug fixes and
security patches but no major updates after the initial release. The first time we build the hello
package from our flake.nix a flake.lock is automatically generated that pins us to a specific
revision of nixos-23.11. Our built inputs will not change until we relock our flake to either a
different revision of nixos-23.11 or a new channel entirely.

• Line 5: Here we define outputs as a function that accepts, self (the flake) and nixpkgs (the
set of packages we just pinned to on line 2). Nix will resolve all inputs, and then call the output
function.

• Line 6: Here we specify that we are defining the default package for users on x86_64-linux. If
we tried to build this package on a different CPU architecture like for example ARM (aarch64-
linux) the flake would refuse to build as the package has not been defined for ARM yet. If we
desired we could fix this by adding a defaultPackage.aarch64-linux definition.

• Line 7-9: Here we are just defining a shorthand way to refer to x86 Linux packages. This syntax
is similar if not identical to Haskell.

• Line 10: Here we begin the definition of the derivation which is the instruction set Nix uses to
build the package.

• Line 14: We specify here that we need gcc in our sandbox to build our package. gcc here is
shorthand for gcc12 but we could specify any c compiler with any version of that compiler we
liked. If you desired you could compile different parts of your package with different versions of
GCC.

• Line 15: Here we are slightly abusing the configure phase to generate a hello.c file. You would
usually download a source to build from with a command like fetchurl while providing a hash.
Each phase is essentially run as a bash script. Everything inside mkDerivation is happening
inside a sandbox that will be discarded once the package is built (technically after we garbage
collect).

• Line 16: Here we actually build our package
• Line 17: In this line we copy the executable we have generated which is currently in the sandbox

into the actual package we are producing which will be in the store directory /nix/store.
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Below we have given some examples of how to run and investigate our hello package in List-
ing 3.3.4.

Listing 3.3.4: Terminal

[shell:~]$ ls
flake.lock flake.nix

[shell:~]$ nix flake show
└──defaultPackage

└──x86_64-linux: package 'hello-2.12.1'

[shell:~]$ nix run .
Hello, world!

[shell:~]$ nix path-info .
"\nix\store\sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1"

[shell:~]$ tree $(nix path-info .)
"\nix\store\sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1"
└──bin

└──hello

[shell:~]$ nix-store --query $(nix path-info .) --requisites
/nix/store/s2f1sqfsdi4pmh23nfnrh42v17zsvi5y-libunistring-1.1
/nix/store/08n25j4vxyjidjf93fyc15icxwrxm2p8-libidn2-2.3.4
/nix/store/lmidwx4id2q87f4z9aj79xwb03gsmq5j-xgcc-12.3.0-libgcc
/nix/store/qn3ggz5sf3hkjs2c797xf7nan3amdxmp-glibc-2.38-27
/nix/store/sbldylj3clbkc0aqvjjzfa6slp4zdvlj-hello-2.12.1

In Fig 3.3.5 we can see the package dependency graph of our hello package. We are only
dependent on 4 packages libunistring, libidn2, xgcc, glibc all of which Nix have installed
and configured separately the rest of the non-nix system (assuming we are not on NixOS).

Figure 3.3.5: Dependency graph

hello-2.12.1

glibc-2.38-27

libidn2-2.3.4 xgcc-12.3.0-libgcc

libunistring-1.1
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4.1 Perspective Projection
To create the illusion of a 3D scene behind and in front of a display we must use a perspective
projection. This is a method of representing 3D space on a 2D surface that simulates the way
the human eye perceives the world. For our project we have followed the methods laid out in
”Generalized Perspective Projection” by Robert Kooima [60] to calculate the required values
for the OpenGL function frustum to generate a perspective projection.

Figure 4.1.1: Orthographic and perspective projections

To represent 3D space on a 2D surface OpenGL supports two types of projections: perspective
and orthographic as seen in Fig 4.1.1. Orthographic features parallel projection lines (orthog-
onal to the projection plane), which means that it does not depict the effect of perspective.
Distances are preserved, making it useful for technical drawings where measurements need
to be precise and not skewed by perspective (For example all diagrams in this report are from
the orthographic perspective). Unlike orthographic projections, perspective projections simu-
late the way the human eye perceives the world, with objects appearing smaller the further
away they are from the viewpoint as the projection lines converge at a vanishing point on the
horizon. If we wish to create the illusion of volumetric display in this project we must use a
perspective projection.

OpenGL provides the frustum function as seen in Fig 4.1.2 which can be used to construct
the perspective matrix (it is worth noting that OpenGL uses homogeneous coordinates so the
matrix is 4x4): 

2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 −f+n
f−n

− 2fn
f−n

0 0 −1 0


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Figure 4.1.2: Using frustum to generate a perspective projection

This maps a specified viewing frustum to screen space (with intermediate steps handled by
OpenGL). This viewing frustum is specified by six parameters: l, r, b, t, n and f which repre-
sent the left, right, bottom, top, near, and far extents of the frustum. These parameters define
the sides of the near-clipping plane, highlighted in red, relative to the origin of the coordinate
system. These parameters do not represent distances or magnitudes in a traditional sense but
rather define the vectors from the center of the near-clipping plane to its edges.

The l and r parameters specify the horizontal boundaries of the frustum on the near-clipping
plane, with the left typically being negative and the right positive, defining the extent to which
the frustum extends to the left and right of the origin. Similarly, the b and t parameters deter-
mine the vertical boundaries, with the bottom often negative and the top positive, expressing
the extent of the frustum below and above the origin.

The n and f parameters are scalar values that specify the distances from the origin to the
near and far clipping planes along the view direction. Altering the value of n will change the
angles of the lines that connect the corners of the near plane to the eye, effectively changing
the ”field of view”. Changing the value f affects the range of depth that is captured within the
scene but not the view.

If we can track the position of a viewer’s eye in real time then we can create the illusion of a
3D scene behind and in front of a display using this frustum function. This can be done fairly
trivially following Robert Kooima’s method he sets out in ”Generalized Perspective Projection”
to calculate f , l, r, b, t, n as the viewer’s eye changes position [60].

4.1.1 Generating the perspective projection
The first step we must take is to record the position of the screen we are projecting onto in 3D
space relative to the coordinate system of the tracking device, ”tracker-space”. To encode the
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position and size of the screen we take 3 points, pa, pb and pc which represent the lower-left,
lower-right and upper-left points of the screen respectively when viewed from the front on.
These points can be used to generate an orthonormal basis for the screen comprised of sr, su
and sn which represents the directions up, right and normal to the screen respectively as seen
in Fig 4.1.3. We can compute these values from the screen corners as follows:

sr =
pb − pa

||pb − pa||
su =

pc − pa
||pc − pa||

sn =
sr × su

||sr × su||

Figure 4.1.3: Defining a screen in 3D space

Next, we introduce the viewer’s eye which we will refer to as pe. We can draw 2 vectors vb, vc
from the viewer’s eye pe to the corners of the screen pb, pc as seen in Fig 4.1.4. In the diagram,
we also have labeled the components of each of these vectors in the basis of the screen. We
can compute these as follows:

va = pa − pe vb = pb − pe vc = pc − pe

Figure 4.1.4: Screen Intersection with view

To calculate the required values for our frustum OpenGL function we must first find the point
where a line drawn perpendicular to the plane of the screen that passes through pe strikes the
screen. We refer to this point as the screen-space-origin, it is worth noting that this point can
lie outside the screen (the rectangle bounded by pa, pb, pc). We can find the distance of the
screen-space-origin from the eye pe by taking the component of the screen basis vector sn in
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either of the vectors vb and vc. However, as sn is in the opposite direction we must invert the
result. Similarly, we can calculate t by taking the component of vc in the basis vector su, b by
vb in su, l by vc in sr and lastly r by vb in sr. We can compute these as follows:

d = −(sn · va) l = (vc · sr) r = (vb · sr) b = (vb · su) t = (vc · su)

We can now generate a projection matrix by calling frustum using d as our near-clipping plane
distance nwith an arbitrary value for the far-clipping plane f depending on our required scene
depth. We have now successfully generated our viewing frustum but we still have a few issues.
Firstly our frustum has been defined in tracker space so it is aligned with the direction of our
camera not the normal of our screen. We can remedy this by applying a rotation matrix M to
align our frustum with sn, su and sr, the basis of our screen as seen in Fig 4.1.5. M is defined
as follows: 

vrx vry vrz 0
vux vuy vuz 0
vnx vny vnz 0
0 0 0 1


Figure 4.1.5: Rotating the frustum from tracker space alignment into
screen space alignment

The second problem we have is that we want our projection matrix to move around with the
viewer’s eye however the mathematics of perspective projection disallow this, with the camera
assumed to be at the origin. To translate our viewing frustum to our eye position we must
instead translate our eye position (and the whole world) to the origin of our frustum. This can
be done with a translation matrix T as seen in Fig 4.1.6. T can be generated with the OpenGL
function translate where we want to offset it by the vector from our Origin to the viewer’s
eye pe. T is defined as follows: 

1 0 0 −pex
0 1 0 −pey
0 0 1 −pez
0 0 0 1


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Figure 4.1.6: Translating the viewing frustum to sit inside the screen

We now have a working method for projecting virtual objects behind our screen onto our
screen however it is also possible if we desire to project objects in front of our screen onto the
screen as well as long as they lie within the pyramid formed between the edges of the screen
and the viewer’s eye. We can scale the near-clipping plane from the plane of the screen to a
small distance n from our eye as seen in Fig 4.1.7 giving us scaled-down values of t, b l and r
we can use for our new viewing frustum which we call tn, bn ln and rn. They are defined as
follows:

ln = (vc · sr)
n

d
rn = (vb · sr)

n

d
bn = (vc · su)

n

d
tn = (vb · su)

n

d

So our final viewing frustum takes in the frustum extents tn, bn ln and rn and n and f defining
the distances to the near and far clipping plane.

Figure 4.1.7: Extending the near plane to not clip out objects in front
of the screen

Following these steps, we can create an accurate projection providing the perspective wewould
expect to see if there was a scene in front and behind our screen.
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4.1.2 Sample code
Below in Listing 4.1.8 we have given an example of a function implementing the process we
have just described in C++.

Listing 4.1.8: projection.cpp, Sample code for creating the 3D illusion projection

1 #include <glad/gl.h>
2 #include <glm/glm.hpp>
3 #include <glm/gtc/matrix_transform.hpp>
4

5 using namespace glm;
6

7 mat4 projectionToEye(vec3 pa, vec3 pb, vec3 pc, vec3 eye, GLfloat n, GLfloat f)
8 {
9 // Orthonormal basis of the screen

10 vec3 sr = normalize(pb - pa);
11 vec3 su = normalize(pc - pa);
12 vec3 sn = normalize(cross(sr, su));
13

14 // Vectors from eye to opposite screen corners
15 vec3 vb = pb - eye;
16 vec3 vc = pc - eye;
17

18 // Distance from eye to screen
19 GLfloat d = -dot(sn, vc);
20

21 // Frustum extents (scaled to the near clipping plane)
22 GLfloat l = dot(sr, vc) * n / d;
23 GLfloat r = dot(sr, vb) * n / d;
24 GLfloat b = dot(su, vb) * n / d;
25 GLfloat t = dot(su, vc) * n / d;
26

27 // Create the projection matrix
28 mat4 projMatrix = frustum(l, r, b, t, n, f);
29

30 // Rotate the projection to be aligned with screen basis.
31 mat4 rotMatrix(1.0f);
32 rotMatrix[0] = vec4(sr, 0);
33 rotMatrix[1] = vec4(su, 0);
34 rotMatrix[2] = vec4(sn, 0);
35

36 // Translate the world so the eye is at the origin of the viewing frustum
37 mat4 transMatrix = translate(mat4(1.0f), -eye);
38

39 return projMatrix * rotMatrix * transMatrix;
40 }
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5.1 Overview
Building a Volumetric Simulator from scratch was a complex task that required the integration
of various technologies and components. The most significant parts of the system are listed
below, and we will discuss them in more detail in the following implementation sections.

Simulator: The simulator (libvolsim.so) is a shared library written in C++ that pro-
vides a graphical interface creating the illusion of a 3D display that can be interacted
with.

– Renderer Subsystem: The rendering system is responsible for displaying the vol-
umetric scene and the virtual objects within it. It uses OpenGL to render the scene
based on user positional data from the tracking system, thus creating the illusion
of 3D.

– Tracking Subsystem: The tracking system monitors the user’s hands and eyes
within the scene. It employs machine learning models and a depth camera to track
the user’s head and eyes.

User Study CLI: The User Study CLI (command-line interface) orchestrates the running
of the simulator and stores the results of the user study in a MongoDB database. It also
provides functionality to automatically analyse study data. This component is written
in Python.
Build System: The build system compiles the simulator and rendering system, as well
as manages the execution of the user study. It uses Nix to handle dependencies and build
the system in a declarative manner.

The user interacts with the Study CLI, to orchestrate running simulations by invoking the
simulator’s shared library libvolsim.so. The simulator returns its results/logs to the User
Study CLI (in JSON format), which then stores the data in a MongoDB database. The User
Study CLI can subsequently be used to analyse the results. A schematic of the system layout
is shown in Fig 5.1.1.

Figure 5.1.1: Two examples of using our system
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5.2 Build System
The build system plays a crucial role in compiling the simulator and rendering system, as well
as in running the user study. Our simulator is a complex system that requires the compilation
of C++, CUDA, and Python code, the management of large machine learning models, object
files for rendering, and the handling of components such as camera drivers.

Portability is essential to ensure that the user study can be conducted on various systems.
Given the author’s previous experiences with graphical and hardware-dependent research
projects, getting a project to build consistently on different machines is often a significant
challenge.

One of the key goals of this project was to make the system as easy to build and run as possible
on a variety of machines. This was important to ensure that the system could be used by
other researchers in the future. To address these challenges, we chose to use Nix for our
build system due to its declarative nature and ease of dependency management, including the
ability to modify packages globally using overlays.

5.2.1 Overview
The build system provides two main sets of functionalities to the user.
Firstly, it offers the Nix package volumetricSim-0.0.1, which serves as an automated set of in-
structions for compiling the simulator and its dependencies into a shared library (libvolsim.so)
from scratch. Secondly, it provides a set of development environments designed for running
the user study and for developing the Volumetric Simulator using Visual Studio Code (VS-
Code).
Both of these functionalities are accessible through the nix flake interface, as demonstrated
in Listing 5.2.1.

Listing 5.2.1: Terminal

[VolumetricSim]$ nix flake show
git+file:///home/robbieb/Projects/VolumetricSim
├───devShells
│ └───x86_64-linux
│ ├───default: development environment 'volumetricSim'
│ ├───start-mongodb: development environment 'mongodb-shell'
│ └───userstudy: development environment 'userstudy-shell'
└───packages

└───x86_64-linux
└───default: package 'volumetricSim-0.0.1'

5.2.2 VolumetricSim Package
You can build our simulator as a shared library using the following one-liner command from
inside the main repository, as shown in Listing 5.2.2:
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Listing 5.2.2: Terminal

[VolumetricSim]$ nix build

Alternatively, if you do not want to clone the repository, you can build the simulator with-
out cloning it by taking advantage of Nix’s ability to build from GitHub, as demonstrated in
Listing 5.2.3.

Listing 5.2.3: Terminal

[home]$ nix build github:RobbieBuxton/VolumetricSim

Although these may appear to be simple commands, they perform a significant amount of work
behind the scenes. Firstly, they fetch all the dependencies required to build the simulator from
source (or a public binary cache). You do not need to have any of these dependencies installed
on your system, as Nix will manage all of this for you.
Our packages configure the following components:

1. CUDA: Since we use the CUDA parallel computing platform [63] in our simulator, we
need to build the CUDA toolkit. Fortunately, Nix allows for amore fine-grained approach,
enabling you to build only the components you need. We utilise the CUDA Deep Neural
Network library (cuDNN), CUDA Basic Linear Algebra Subprograms library (cuBLAS),
CUDA Random Number Generation library (cuRAND), and CUDA Dense Linear Solver
library (cuSOLVER), alongwith the necessary libraries to interact with them. We override
and recompile OpenCV and Dlib to be CUDA-enabled.

2. MKL: We use the Intel Math Kernel Library (MKL) [94] for some of our linear algebra
operations, as it is significantly faster than the default BLAS library. We override and
recompile OpenCV and Dlib to use the MKL BLAS libraries.

3. Azure Kinect Sensor SDK: We have created our own Nix package for the Azure Kinect
SDK [69], as it was not previously packaged. This package provides the necessary drivers
and stubs for the Azure Kinect camera to function.

4. OpenGL:We download and configure GLFW [41] (a lightweight OpenGL utility library)
and GLAD [46] (hardware-specific OpenGL drivers) for the programming interface used
in rendering 2D and 3D vector graphics with OpenGL [96].

5. TrackingModels: We download and configure Dlib [58] andMediaPipe [64], which are
machine learning libraries used for our tracking models. We also automatically down-
load the two required models for Dlib from the internet (verified by hash). Additionally,
we download and build OpenCV for image management.

Once all the dependencies are built, the simulator is compiled in a sandbox environment before
being copied into the Nix store as a package containing the shared library libvolsim.so and
all files the simulator depends on (tracking models, OBJ files, shaders). This shared library can
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be accessed from the User Study CLI to run the simulation. An overview of the final package
contents is provided in the Appendix A.

5.2.3 Development Environments
To facilitate our user study, we have created a development environment that includes all the
necessary dependencies, primarily Python libraries, required to run the user study. Our shell
script will also set up an alias that enables you to run the study via a CLI easily, as shown in
Listing 5.2.4.

Listing 5.2.4: Terminal

[VolumetricSim]$ nix develop .#userstudy
Type 'study' to start the user study application.
[VolumetricSim]$ study --help

Command line interface for running the Volumetric User Study.

Options:
--help Show this message and exit.

Commands:
add [ user ]
list [ users | results ]
run [ debug | eval | demo | task | next ]
save [ user ]
show [ result | task | eval ]

Additionally, we have developed a separate environment containing all the dependencies
needed to run the analysis and fully reproduce the graphs and tables presented in this docu-
ment.

Finally, there is a development environment designed to automatically launch and manage a
local MongoDB database for storing the results of the user study. This environment includes
GUI tools, such as MongoDB Compass, for viewing and editing the database. This can be
activated by running the command shown in Listing 5.2.5.

Listing 5.2.5: Terminal

[VolumetricSim]$ nix develop .#start-mongodb

5.2.4 Additional Efforts
One significant drawback of using Nix is that if a package is not already available, you usually
have to package it yourself. Fortunately, almost everything we required was already avail-
able in the Nix package repository (nixpkgs), but there were a few exceptions. Typically, if a
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package is not available, it is because it is either not widely used or it is challenging to package.

Azure Kinect Package

The first project we had to package was the Azure Kinect SDK. This was not available in nix-
pkgs, and the only official package was a poorly ported, outdated Ubuntu binary from Win-
dows. To package it in Nix, we had to manually patch the rpaths (run-time search paths
hard-coded in an executable file) and resolve build and driver issues. Microsoft officially
stopped supporting the Azure Kinect in August 2023 [68], so we decided to package a fork
of https://github.com/microsoft/Azure-Kinect-Sensor-SDK that addressed the build is-
sues we encountered. This process was quite challenging and required about a week of work.
We have not yet upstreamed this package to nixpkgs but hope to do so in the future; it is
currently available for all to use on GitHub.

Dlib Package

The second project involved packaging Dlib. Although Dlib was available in nixpkgs, we dis-
covered that CUDA support had been incorrectly implemented (the maintainer had simply
toggled a CMake flag without actually adding CUDA support). We were able to implement
this locally using overlays (a functional method for globally mapping changes to all packages
in Nix). We submitted a pull request (PR) to nixpkgs to fix this issue for everyone. This task
took much longer than expected, as we ended up resolving many other issues in the package
that did not initially affect us. This effort required about a week of work.

MediaPipe

The last challenge we faced was with MediaPipe. MediaPipe is a machine learning library built
with Bazel [9], a build system that, while supported in nixpkgs, is difficult to work with due to
design conflicts with Nix. To integrate it into our C++ project, we had to convert MediaPipe
into a shared library by first wrapping it in a C interface before packaging it in Nix. This task
was particularly time-consuming and difficult, taking about a week of work.
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5.3 Rendering System

5.3.1 Introduction
The rendering system is a key component of the Volumetric Simulator, responsible for display-
ing models in a manner that makes them appear three-dimensional. It needs to be fast and
responsive to maintain the illusion of 3D.

5.3.2 OpenGL
Our project requires the rendering system to render 3D models in real-time with low latency
and a high frame rate. We decided to use OpenGL [96] to achieve this due to its low-level
control over the rendering pipeline and cross-platform compatibility.

We briefly considered using fully fledged game engines like Unity [88] or Unreal Engine [28],
but ultimately decided against them due to the significant overhead and lack of fine control
over the rendering pipeline. Additionally, we utilised the OpenGL-compatible GLM [38] math-
ematical library for matrix manipulation and projections, as it was sufficiently fast and simple
to use.

5.3.3 Perspective
As covered extensively in the background section, the user’s perspective is crucial for creating
the illusion of 3D. To achieve this, we used positions provided by the tracking system to cal-
culate the correct dimensions for the viewing frustums, rendering the scene from the user’s
perspective. The results of this method, used to render a chessboard, can be seen in Fig. 5.3.1
and Fig. 5.3.2.

Figure 5.3.1: Right Perspective Figure 5.3.2: Left Perspective
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5.3.4 Object Loading
Object loading support was added to the rendering system to facilitate the rendering of com-
plex 3D models. We used the tinyobjloader library [86] to load .obj object files. We chose
this library over alternatives like Assimp [5] due to its lightweight nature. We constructed
our challenge for the user study by modifying primitives such as spheres, cylinders, and cubes
loaded as .obj files using tinyobjloader to create an interactive task for the user.

5.3.5 Lighting
As shadows enhance the illusion of depth [53], we added a simple lighting model to the scene.
We employed the Blinn-Phong [13] lighting model, which uses ambient, diffuse, and specular
lighting. A comparison of the scene with and without lighting can be seen with the Erato
Model [66] in Fig. 6.1.15 and Fig. 5.3.4, respectively.

Figure 5.3.3: Erato Figure 5.3.4: Erato With Shadows
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5.4 Tracking System

5.4.1 Introduction
To accurately simulate a volumetric display, it is essential to determine the positions of the
user’s face and hands, which allows for rendering the correct perspective for the user. To
achieve this, our tracking system needed to meet the following requirements:

• High resolution: Precisely track the user’s eyes and hands.
• High framerate: Ensure smooth tracking of the user’s eyes and hands.
• Low latency: Provide near real-time tracking of the user’s face and hands.

5.4.2 Hardware
Figure 5.4.1: Azure Kinect [6]

For this project, we used a Microsoft Azure Kinect camera (Fig 5.4.1). The Azure Kinect cam-
era is equipped with two sensors: a depth sensor (utilizing an IR camera) and a colour camera.

We configured the camera to capture images at its widest field of view (FoV) of 90◦ × 74.3◦,
with an exposure time of 12.8 ms and a framerate of 30 fps. To use this configuration, we
compromised on the resolution of the colour images, running the RGB camera at 2048× 1536
instead of its maximum resolution of 4096 × 3072. Similarly, we used the depth camera at a
2×2 binned resolution of 512×512, instead of its maximum unbinned resolution of 1024×1024.

Because we utilised the depth camera in wide FoVmode (120◦×120◦), rather than the narrower
FoV mode (75◦× 65◦), the maximum operating range of the depth sensor was reduced to 2.88
m, compared to 5.46 m in the narrower FoV mode. This reduction in range was acceptable for
our purposes, as the user was expected to be within 1.5 m of the camera.
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5.4.3 Core Libaries
Azure Kinect SDK (K4A)

We utilise the Azure Kinect SDK (K4A) [69] library to retrieve captures from the Kinect and
handle the spatial transformations necessary to calculate the positions of points in 3D.

When the Kinect camera is polled using the K4A library, it returns a ”Capture,” which is a struct
containing a colour image, a depth image, and an IR image. It is important to note that the
depth image is in a different coordinate space compared to the colour image, as illustrated in
Fig 5.4.2. This discrepancy arises because the colour image and depth/IR image are captured
using physically offset sensors, resulting in a slight variation in perspective. The depth image
resides in what is known as ”depth space,” while the colour image resides in ”colour space.”
To utilise these two images together, they must be converted to the same coordinate space.

Figure 5.4.2: Different Spaces: Depth and Colour Images [90]

Using a ”calibration” that is generated at the start of the program, K4A allows conversion be-
tween the four different ”spaces”: ”Depth 2D,” ”Depth 3D,” ”Colour 2D,” and ”Colour 3D.”
There are notable performance implications when using different spaces for various tasks. For
instance, converting from ”Depth 2D” to ”Depth 3D” is significantly faster than converting
from ”Colour 2D” to ”Colour 3D.”

An interesting side effect of converting between spaces is that, due to the physical offset and
different diffraction characteristics of the IR and colour cameras, ”depth shadows” [54] can
occur, as visible in the bottom left image in Fig 5.4.2. These depth shadows can complicate
tracking thin objects, such as fingers, because they increase the likelihood of encountering
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invalid depth data. We explored using the IR image for tracking to mitigate these depth
shadows; however, we found that tracking models struggled with IR images, leading us to
continue using the original colour image method.

OpenCV

We use OpenCV [14] to handle the images obtained from the Azure Kinect SDK. OpenCV is
a comprehensive library that provides a wide range of functions for image processing and
computer vision. We utilise OpenCV to convert the images from the Azure Kinect SDK into
a format that can be efficiently processed by Dlib and MediaPipe. We leverage OpenCV’s
GPU/CUDA-accelerated functionalities, such as image pyramids for downscaling, to enhance
the performance of our tracking system. Additionally, OpenCV is used for debugging purposes
to render images to the screen.

Dlib

We use Dlib [58] for tracking the user’s face. Dlib is a modern C++ toolkit that includes
machine learning algorithms and tools for creating complex software solutions in C++. As
discussed in greater detail later in this section, we use Dlib’s face tracking model to track the
user’s eyes. We also utilise Dlib’s GPU-accelerated functions to improve the performance of
our tracking system.

MediaPipe

We useMediaPipe [64] for tracking the user’s hands. MediaPipe is a cross-platform framework
designed for building multimodal applied machine learning pipelines. We employ MediaPipe’s
hand tracking model on colour images to track the user’s hands in real-time. MediaPipe’s hand
tracking model is a deep learning model capable of accurately tracking hand movements in
real-time.

5.4.4 Overall Tracking System Design
The primary goal of the tracking system is to convert the captures provided by the Kinect cam-
era into 3D points that represent positional information, such as the positions of the user’s
eyes and fingers. The current system focuses on returning the position of the left eye and the
tips of the index and middle fingers on the hand closest to the camera. The system operates
smoothly at the same frame rate as the Kinect camera, which is 30 frames per second (fps).

Several different approaches were considered for the tracking system design. Ultimately, we
chose to use a method that tracks the positions of the user’s face and hands separately using
2D colour images. These images are then processed and converted into 3D points.

An alternative approach we considered was to track the face and hands directly in 3D. How-
ever, we decided against this method for several reasons. Although the rendering system is
an important aspect of this project, it was not our primary focus, and we were concerned that
tackling 3D tracking would be too complex given our time constraints. The ecosystem for

34



Chapter 5. Implementation 5.4. TRACKING SYSTEM

2D tracking is more mature, partly due to advancements driven by mobile phone technology,
allowing us to leverage existing work, such as the Dlib, MediaPipe, and OpenCV libraries dis-
cussed previously. Additionally, we were concerned about the performance of 3D tracking.
The increased data volume associated with 3D tracking could potentially slow down the sys-
tem, making it difficult to achieve real-time tracking of the user’s face and hands.

Despite opting for 2D tracking, there are several downsides to this approach. For example, as
discussed further in the evaluation section, it can be challenging to accurately determine the
positions of objects in 3D space that are occluded, such as fingers behind other fingers. Fingers,
being relatively small objects, require sampling a general area to identify their position, and
selecting the closest valid point. If only the predicted point is sampled, there is a risk of missing
the finger and encountering a ”depth shadow”.

Figure 5.4.3: Tracker Overview

   Run
Tracking

Extract Key
  Features

Covert to 3D

Capture Track Frame

As illustrated in Fig 5.4.3, the process flow of the tracking system is as follows:

1. Retrieve Capture: The Kinect Camera is polled to receive a capture.
2. Run Tracking: Hand and head tracking are performed on the colour image.
3. Extract Key Features: The positions of the tracked points are extracted from the hands

(middle and index fingertips) and face (left eye).
4. Convert to 3D: The depth image is sampled to convert the 2D points into 3D points,

which are then placed in a ”tracking frame” to be sent to the renderer.

While it might seem unconventional, we maintain separate instances for tracking the left eye
and the thumb and index fingertips. This approach is necessary because there is no guarantee
that the tracker will detect both the face and hands in a single pass through. For instance, if
the user holds their hand in front of their face, the tracker may only detect the hand. Addi-
tionally, there is a possibility that either of the tracking models may fail to detect the intended
features. In such cases, our system will reuse the last known position and the corresponding
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capture, which serves as a reasonable approximation for the eye or finger positions. This strat-
egy also helps to reduce the jerkiness effect that can occur with sporadic dropouts.

It is important to note that, for performance reasons, we do not calculate the 3D positioning
of the points until the renderer requests them. This approach minimises resource wastage. If
we can process a capture faster than the renderer can render a frame, we only calculate the
3D positioning for the most recent capture.

5.4.5 Tracking Models
Dlib

We use Dlib to track the left eye’s position through a two-stage process. In the first stage,
we utilise a Max-Margin Object Detection model [59, 22] implemented with a convolutional
neural network (CNN) [78]. Instead of training our own model, we used a pre-trained model
provided by Dlib [23], known as mmod_human_face_detector. Initially, we ran the face detec-
tion model on the CPU; however, this created a bottleneck in our tracking pipeline. Therefore,
we opted to run our CNN on a GPU using CUDA-accelerated functions to meet our perfor-
mance requirements.

Once the user’s face is detected, we proceed to the second stage of our facial landmark detec-
tionmodel. We chose to use a five-landmark pose estimator called shape_predictor_5_face_landmark,
leveraging Dlib’s implementation of a method proposed in ”One Millisecond Face Alignment
with an Ensemble of Regression Trees” [51], trained on the iBUG 300-W face landmark dataset
[77]. This pose estimator operates efficiently enough on a CPU, so GPU acceleration was un-
necessary.

An example of the results obtained from running the two Dlib models can be seen in Fig 5.4.4.

Figure 5.4.4: Dlib Face Tracker Figure 5.4.5: MediaPipe Hand Tracker
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MediaPipe

We use MediaPipe to track the position of two fingers on the user’s hand, employing a two-
stage process. MediaPipe uses a two-stage model to track hands [98]. The first stage involves
a palm detection model that identifies the position of the hand within the image. The second
stage is a hand landmark model that detects the positions of 21 points on the hand. MediaPipe
provides an interface that allows us to feed images as a stream, abstracting away most of the
detection logic, unlike Dlib.

We chose to track the positions of the index and middle fingers because this configuration
proved to bemore stable than tracking the thumb and index finger, and it led to fewer instances
of accidental occlusion. To enhance the tracking accuracy, we depth-sample from the surface
of the hand and apply a constant offset to make it appear as though the point is inside the
hand. An example of the results from running the two MediaPipe models can be seen in
Fig 5.4.5.

Downscaling

To ensure that our tracking system operates at a sufficient frame rate, we downscale the im-
ages obtained from the camera. We found that downscaling the images using an image pyra-
mid [2] by a factor of 2 still yields accurate tracking results. This significantly improves the
performance of our tracking system. Further details can be found in the evaluation section.

5.4.6 Multithreading
One of the more challenging aspects of this project was making our tracking system performant
enough to feel smooth and responsive. To achieve this, we implemented a multi-threaded de-
sign, as outlined in Fig 5.4.6. We used separate threads for tracking, capturing, and rendering.

Figure 5.4.6: Multi-threaded Design

...

...

Create capture

Latest Capture

Latest Tracker 
Frame

Start tracking
Update eye pos

Update hand pos

Render Scene

Track  
Face

Track  
Hand

Poll 

Poll

Update

Capture Thread Tracker Thread Render Thread

Update

Create tracking 
frame

37



5.4. TRACKING SYSTEM Chapter 5. Implementation

The purpose of this design was to ensure that the tracking thread and models were utilised
100% of the time, as they are the most computationally intensive components of the system
and represent the main bottleneck. While using a multithreaded design does not reduce the
system’s latency (as discussed further in the evaluation section), it significantly increases the
application’s throughput and frame rate.

Figure 5.4.7: Single vs Multi-threaded Design
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Since the Kinect camera operates at 30 fps, we need to process an image every 1000 ms
30

=
33.3 ms to ensure that we handle every frame. In our initial single-threaded implementation,
we were unable to achieve this rate. By switching to a multi-threaded design, we decreased
the time required to produce a new tracking frame to match the duration of the slowest thread
(the tracker thread), as shown in Fig 5.4.7. This also allowed us to run the simulation at a
frame rate independent of the tracker. Although this design resulted in the capture thread
often being idle, the overall system was light on resources, making this trade-off worthwhile
for the significant frame rate improvement it provided.

5.4.7 GPU Acceleration
Another method we utilised to enhance the performance of our tracking system is GPU/CUDA
acceleration. Both Dlib and MediaPipe support GPU acceleration. However, we only needed
to use GPU acceleration in Dlib because the CPU speed was already sufficient for our tracking
pipeline in MediaPipe. The reported speedup of 12.27 ms with GPU acceleration versus 17.12
ms without [45] did not justify the effort required to enable CUDA in MediaPipe, especially
given the complexities involved in building with Nix (see the build systems section for more
information).

As illustrated in Fig 5.4.8, we only used GPU acceleration for two parts of our tracking sys-
tem, excluding rendering. We utilised OpenCV’s GPU-accelerated pyramid down function to
downscale our colour images, as this task is highly parallel and benefits significantly from
acceleration. Additionally, we executed the Dlib CNN for face detection on the GPU.
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Figure 5.4.8: Overall Tracking System Design
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5.4.8 Camera Positioning
To ensure that the tracking system is calibrated correctly and that the user sees the correct
perspective, it is crucial to know the relative position of the camera to the screen. Misalignment
can lead to a distorted and incorrect user experience, where objects will appear to be in the
wrong location/orientation relative to the user’s point of view. An example of correct and
incorrect calibration can be seen in Fig 5.4.9. We developed a calibration system to automate
the process of determining accurate position and orientation values. The calibration system
operates as follows:

1. The camera and displays’ position and orientation are measured in 3D space.
2. The relative positions of the camera and screen are input into the system.
3. The predicted position of the screen is rendered in 3D.
4. The predicted position of the screen is iteratively adjusted until it aligns with the true

position.

Figure 5.4.9: Display Calibration

Incorrect Calibration Correct Calibration 
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5.5 User Study

5.5.1 Introduction and Experimental Design
To validate the effectiveness of our system, we conducted a within-subjects user study. The
study was designed to demonstrate the system’s capability for research applications. We aimed
to select a study that would both showcase the system’s capabilities and contribute novel in-
sights to the field. We settled on a study to test user performance with volumetric displays
under two different conditions as outlined below.

We aimed to test the following two hypotheses:

• Hypothesis 1 (H1): Interacting with the volumetric display in 3D leads to different task
performance compared to interacting with it in 2D.

• Hypothesis 2 (H2): Interacting with the volumetric display directly with hands results
in different task performance compared to interacting via teleoperation.

To test these hypotheses, we designed a within-subjects study with two independent variables:

• Perspective(H1): Static vs. Tracker. This variable controls whether the system uses
a tracking mechanism to create the illusion of a 3D volumetric display (Tracker) or a
fixed perspective on a standard monitor (Static), as shown in Fig 5.5.1.

Figure 5.5.1: 2D & 3D

Tracker (3D)Static (2D)

• Interaction Offset(H2): Offset vs. No Offset. This variable controls whether the display
is directly in front of the participant or offset by a fixed amount, as shown in Fig 5.5.2.

Figure 5.5.2: Direct & Offset Interaction
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We controlled for the following variables during the study:

• Tasks: We ensured that the five tasks were identical in each condition.
• Device Calibration: The positions of the participant, the tracking camera, and the inter-

action zone were kept consistent across conditions, as shown in Fig 5.5.3. When using
an offset position, another display was placed where the original display was to maintain
consistent tracking.

• Lighting: We maintained consistent lighting conditions in the room, as lighting signifi-
cantly impacts the system’s tracking quality.

Figure 5.5.3: Test Setup
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5.5.2 Tasks
In each of the four combinations of conditions, participants must complete the same five tasks
in the same order. The tasks are designed to be simple to understand but challenging to com-
plete. They were crafted so that, from any perspective, the components would visually overlap.

To complete a task, participants must trace the path between points using their index and
middle fingers in the order presented by the simulator. A green point indicates a completed
segment, an orange point represents the next segment to be completed, and a red point shows
the current position of the participant’s hand. Each time a task segment is completed, the
colours update accordingly. An example of a completed task can be seen in Fig 5.5.4.

Figure 5.5.4: Completing a Task
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Participants have a time limit of one minute to complete each task. The time at which each
point is completed, as well as the position of the hand and eye throughout the task, is recorded.
If participants do not complete the task within the time limit, the task is marked as incomplete,
and all completed segments are logged. The five different tasks are shown in Fig 5.5.5.

Figure 5.5.5: The Five Tasks

Task 1

Task 3 Task 4 Task 5

Task 2

Participants are also given two demonstration tasks to familiarize themselves with the system,
as seen in Fig 5.5.6.

Figure 5.5.6: Demo Conditions

Demo 1 Demo 2

5.5.3 Participants
Participants were recruited for the study via email and text message using a standardised
script to ensure the process was unbiased. Upon arrival, participants were required to fill out
a consent form and complete the first page of a questionnaire. This initial questionnaire col-
lected demographic and personal information that could influence the study results, such as
age, handedness, previous experience with VR/AR, and whether they wore glasses (the full
questionnaire is provided in the Appendix B).
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Following this, participants received a brief overview of the system and had the opportunity to
run through two demo tasks in each of the four different configurations to familiarize them-
selves with the system. Participants were instructed to keep their non-dominant hand on their
lap and place their dominant hand face down on the monitor at the start of each task to facil-
itate tracking. They were permitted to repeat the demo tasks up to three times if necessary.

Once the participants felt comfortable with the system, they were entered into the study’s sys-
tem and were automatically assigned a random sequence of the four experimental conditions,
as shown in Figure 5.5.7.

Figure 5.5.7: Study Conditions

Condition A: Direct 3D Condition A: Direct 2D

Condition A: OffsetOffset 2DCondition C: 3D

Each condition comprised five tasks, each lasting oneminute, which participants were required
to complete sequentially. An audio cue signaled the start and end of each task. Participants
were allowed to take breaks between conditions. After completing each condition, they filled
out a survey regarding that condition. At the end of the study, they completed a survey about
the overall system. Both surveys are included in the Appendix B.

5.5.4 Setup
The study was conducted on the ground floor of the Huxley building in Room 218 at Imperial
College London’s South Kensington Campus. Considering that the study would span multiple
days, we took special care to set up the system to minimise the risk of accidental changes to
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the setup. As depicted in Fig 5.5.8, the camera was mounted on a tripod, and the positions of
the tripod legs were marked on the floor to maintain consistency. Additionally, we surrounded
the camera with a barrier of tables to prevent it from being knocked over.

Figure 5.5.8: Study: Front View Figure 5.5.9: Study: Side View

The displays used for the study were 24′′ 1920 × 1200 LG IPS LED 24EB23 monitors, which
were detached from their stands and placed horizontally on a table. There was a 25cm gap
between the bottom of the farther monitor and the top of the closer monitor (See Fig 5.5.9).

The camera was positioned such that the user’s head was approximately 1 meter away, al-
though this distance varied slightly with participant height. The interaction zone on the far
display was set up such that participants interacted with the scene at distances ranging from
30 to 70 cm from the camera. These distances were selected to fall within the optimal tracking
range of our system (discussed in more detail in the evaluation section).

To facilitate the study and monitor participants effectively, we set up two additional monitors
opposite the participants, as shown in Fig 5.5.10. These monitors allowed the study conductor
to control the system and observe the participants. Using large monitors helped to block the
view of the study conductor, thereby reducing the possibility of participants feeling observed,
which might introduce unintended bias.

Figure 5.5.10: Study: Control View
Figure 5.5.11: Study: Calibration De-
vice
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We also designed and built a calibration device to realign the displays after each participant
completed their tasks, as depicted in Fig 5.5.11. Participants often inadvertently moved the
displays during the tasks, and this simple device, made from Lego Technic (A line of Lego inter-
connecting plastic rods and parts, which is useful for creating a variety of mechanical systems),
enabled us to easily and accurately reposition the displays to their original alignment.

5.5.5 Evaluation Metrics and Collected Data
The evaluation of the system was based on two primary metrics: the time taken to complete
each task and the number of subtasks completed within the designated time frame. For precise
measurement, a time stamp was recorded at the beginning of each task and at the completion
of each subtask. This allowed us to accurately track task duration and identify any perfor-
mance patterns. Additionally, we monitored and recorded instances of tracking failures to
ensure that we could filter out erroneous data during the analysis phase, thus maintaining the
integrity of our results.

Throughout each task, we continuously logged the positions of the participants’ eyes, middle
fingers, and index fingers, along with corresponding time stamps. This comprehensive data
collection enabled a detailed analysis of participant movements and interactions. Specifically,
the logged data allowed us to plot the paths taken by participants, which provided valuable
insights into their interaction patterns. An example of such a plot is shown in Fig 5.5.12,
illustrating the trajectory of a user’s finger movements during Task 4.

Figure 5.5.12: Example of logging a user’s path for Task 4

To ensure comprehensive evaluation, we also collected additional data points such as error
rates, which included the frequency and types of errors participants made during the tasks.
This data provided deeper insights into the usability and reliability of the system. Moreover,
participant feedback was collected through post-task and post-condition surveys, offering qual-
itative data that complemented the quantitative metrics. This holistic approach ensured that
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we could thoroughly assess both the performance and user experience aspects of the system.

5.5.6 Study Implementation
The study was run from a python based CLI using the Click [72] library. To make the study
experience as seamless as possible, we designed a user-friendly CLI interface that guided study
runner through the study process. The CLI would automatically start the next task with a
simple one line command as can be seen in List 5.5.13.

Listing 5.5.13: Terminal

[VolumetricSim]$ study run next {USER_ID}
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6.1 Simulator Evaluation
To ensure that our system meets the quality standards necessary for research purposes and
accurately simulates a volumetric display, we conducted a comprehensive evaluation using
various metrics.

6.1.1 Comparison to Other Systems
The field of volumetric displays is relatively niche, but there are a few comparable systems
available if we expand our criteria to include related fields. Table 6.1.1 provides a comparison
of our system to other systems based on the various features they support. ”Single Camera”
refers to whether the system can operate with a single camera or requires a multi-camera
setup. ”Custom Display” indicates whether the system necessitates a custom-made display
(not a standard projector/monitor). ”Stereo” refers to whether the system supports stereo
rendering (differing view per eye), and ”Multi-User” specifies whether the system supports
multiple users viewing simultaneously.

Our system is unique in that, to the best of our knowledge, it is the only system that sup-
ports single-camera, glasses-free eye and hand tracking. Almost every other system requires
a multi-camera setup and the use of IR tracking points, along with a tool for interacting with
the volumetric display, rather than offering direct hand tracking capabilities [62].

Despite these advancements, our system has certain limitations, such as the lack of multi-
user support and stereo rendering. These are areas that could be addressed in future work,
potentially through the introduction of polarized or shutter glasses.

System Single Camera Hand Tracking Custom Display Glasses Stereo Multi-User
VoluSim (ours) True True False False False False

CoGlobe [100] [99] [31] [32] False False True True True True
OrbeVR [10] [35] False False True True True True
pCubee [81] [82] Headtracker False True False False False
HandheldBall [11] False False True True True True
TeleHuman [57] False False True False False False
HoloDesk [47] False True True False False False
FaceTrack [84] True False False False False False

3DDisplaySimulation [97] True False False False False False

Table 6.1.1: Comparison of systems based on attributes

6.1.2 Tracking System
To gain deeper insights into the performance and quality of the tracking system, we conducted
several tests. The primary focus was on the inter-update gap, defined as the time interval
between consecutive tracker frames being sent to the renderer.
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Figure 6.1.2: Tracker Inter-Update Gap (over 5 mins)
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As depicted in Figure 6.1.2, the system’s frame rate remained relatively consistent, with
90.83% of frames maintaining a latency between 30 and 35 ms. A peculiar observation was
the cluster of latencies at 16-18 ms (4.46%) and 49-51 ms (4.39%). This anomaly is at-
tributed to the frame rate of the renderer, as our system performs lazy conversion of 2D points
to 3D only when necessary. Our renderer operates at 60 fps, constrained by our monitors,
resulting in frame intervals approximating to 16.666 ms. Although our tracker functions at
30 fps (33.33 ms inter-update gap), there can be an inter-update gap of 16 ms if the tracker
is delayed past the initial 33.33 ms, causing an additional delay of approximately 16.66 ms,
resulting in a total gap of around 50 ms. However, during this waiting period, another frame
is processed and ready for the next cycle, giving the appearance of a higher frame rate than
30 fps.

Downscaling Benchmarks

In exploring the impact of downscaling on performance, we determined that a single instance
of downscaling sufficed to meet our performance requirements. Further downscaling did not
yield significant performance benefits and adversely affected tracking quality. Figure 6.1.3
illustrates our findings, showing a noticeable performance improvement when reducing the
resolution from the source 2048× 1536 to 1024× 793. Additional reductions in resolution did
not provide further speed benefits, as the bottleneck was the 30 fps frame rate of the Kinect
camera.
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Figure 6.1.3: Comparing Inter-Update Gap By Resolutions (over 1 min)
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Further investigation revealed that among the three concurrent threads (capturing from the
Kinect camera, tracking hand and eye movements, and rendering with OpenGL), the primary
bottleneck was waiting for the Kinect camera to complete the capture. Figure 6.1.4 highlights
that expediting the tracking algorithm offered limited benefit due to this bottleneck.

Figure 6.1.4: Comparing Thread Competition Times
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Latency from Camera to Eye

Although precise latency statistics for the Azure Kinect from capture to device are unavailable,
estimates suggest a latency of around 90 ms [40]. Considering the time required for OpenGL
primitives to display images on the screen, which ranges from 10 to 30 ms depending on the
display [27] [19], and combining this with our system’s processing time of less than 30 ms,
we estimate the total system latency to be approximately 150 ms.

When compared to state-of-the-art systems in similar fields such as VR, our system exhibits
higher latency, as shown in Table 6.1.5.

Table 6.1.5: Our Photo-to-Photon Latency Vs Common VR Systems reported by OptoFidelity [4]

System Latency (ms)

VoluSim (Ours) 150 ms
HTC VIVA XR Elite 40 ms
Meta Quest 3 39 ms
Meta Quest Pro 38 ms
Apple Vision Pro 11 ms

It is challenging to directly compare our system with other similar systems, such as the Multi-
person Fish-Tank Virtual Reality Display [32] [95] or systems used in 3D Display Simulation
Using Head-Tracking with Microsoft Kinect [97], as they do not report their latencies. How-
ever, given that both systems utilise Kinect cameras, which are a significant source of latency,
we can infer that our system likely has comparable latency to these systems.

Effective Range

Figure 6.1.6: Setup for Distance Testing Figure 6.1.7: Success Rate at Distances
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For another important aspect of our evaluation we focused on investigating the effective track-
ing range of our system. We placed a participant in a fixed position on a chair and instructed
them to slowly wave their hand and move their head. An example of the test setup is shown in
Figure 6.1.6. We conducted tests at various distances, recording the percentage of successful
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captures that detected a face or hand at 30-second intervals. The resolution of the colour
image used for this test was 1024× 793.
As illustrated in Figure 6.1.7, the success rate for MediaPipe’s hand tracking model rapidly
decreases after 1 meter, ultimately failing 100% of the time at greater distances. This is likely
due to the dataset it was trained on and its primary design for tracking hands using a mobile
phone camera [58].

Dlib’s head tracking model performed better, with effective tracking up to approximately 1.5
meters. The decline in performance beyond this distance is similarly attributed to the nature
of its training data. These findings were considered in the design of our user study, where the
camera was positioned to keep the user’s hand within 30-70 cm and the head within 1 meter
from the camera.

Head Tracking

The effectiveness of the head tracking system is another critical aspect, particularly the range
of head positions at which tracking is possible. Specifically, we were interested in the angle
at which the model fails to detect a face. We set up a straightforward experiment, shown
in Figure 6.1.8, to measure the head angles at which the tracking system ceases to function.
Participants were seated on a swivel chair and asked to keep their body still while rotating
their head. We noted the position of the midpoint of their feet when tracking failed, and used
basic trigonometry to estimate the head angle.

Figure 6.1.8: Angle Setup

α β

This test involved five participants, with results presented in Figure 6.1.9. Although the tech-
nique was somewhat rudimentary and thus not highly precise, the angle at which head track-
ing typically failed ranged between 120◦ and 150◦. This result may seem counterintuitive, as
at these angles, the participant is facing away from the camera. However, the face tracking
model first detects a face and then maps landmarks to it, even when the face is not directly
visible.

52



Chapter 6. Evaluation 6.1. SIMULATOR EVALUATION

Figure 6.1.9: Angle of Failure for
Head Tracking

90°

60°

30°

0°

330°

300°

270°

240°

210°

180°

150°

120°

Limit of head tracking angles (degrees)

User

A

B

C

D

Figure 6.1.10: Incorrect Head Tracking

As shown in Figure 6.1.10, the face tracking model can still detect a face even when it is not
visible, such as when detecting the side of the participant’s head. The model tends to fail
when only hair is visible. Testing on a bald participant could determine whether the system
always detects a head regardless of rotation. While this might seem problematic, it is not, as
the tracker and display are not visible to the user if their face is not visible. This also allows the
system to approximate the position of the eyes, facilitating a smoother transition as the user
turns their head back into view, minimizing the need for corrections and reducing noticeable
adjustments for the user.

Hand Tracking

During the evaluation of our hand tracking model, we observed that it was significantly less
reliable compared to our head tracking model, even when tested on the same images. Based
on the metrics recorded during our user study, as illustrated in Fig 6.1.11, the hand tracking
model failed for some users up to 10% of the time, whereas the eye tracking model rarely
experienced failures. When participants were surveyed about this during our user study they
echoed our observations as can be seen in Fig 6.1.12 with a noticeable drop in the rating of
hand tracking reliability. This issue was particularly prominent when the model attempted
to initially detect the hand. We found that the model was sensitive to specific conditions: it
required a well-lit environment, a plain background, and the removal of extraneous objects
from the scene. Users wearing t-shirts with intricate patterns experienced a notable decrease
in tracking success. To address this, we provided a plain jumper for users to wear if we iden-
tified this as a potential problem.

We considered mitigating this issue by employing a segmentation model to separate the hand
from the background before tracking. However, we did not have sufficient time to experiment
with this solution, and we were concerned that it might significantly degrade the system’s
latency performance.
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Figure 6.1.11: Failure rates during user
study
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Figure 6.1.12: Accuracy and Reliability of
Hand and Eye Tracking Survey

Hand Tracking Eye Tracking

Tracking Type

0

1

2

3

4

5

6

7

8

M
ea

n
S

co
re

7.50
7.69

4.75

7.81

Accuracy

Reliability

A major challenge of using a depth sampling method is its inability to handle occlusion effec-
tively. Although Mediapipe can predict the position of hand points even when they are not
directly visible, our method struggles to sample their 3D positions accurately in such cases.
This is problematic because the hand often occludes itself, as demonstrated in Fig 6.1.13,
where fingers are occluded by the palm, leading to erroneous depth sampling of the palm
instead. Initially, we were concerned that this might also affect glasses wearers. However, we
discovered that the depth sampling method, which uses infrared (IR) technology, was able to
penetrate through glass.

Figure 6.1.13: Occlusion in Sampling

There are methods to mitigate these issues, such as sampling from points that are not occluded
and using the known depth of the hand to infer the depth of the occluded points. This is a
complex problem, and we did not have sufficient time to develop a solution that was both ac-
curate and fast. Additionally, we found that the relative depth values estimated by Mediapipe
were not very accurate, complicating interaction. We believe that the most effective solution
would be to switch to a point cloud-based tracking model [79]. Our solution was to switch to
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interaction using the middle and index fingers, the two fingers we found to be most reliable.

6.1.3 Renderer
In evaluating our rendering system, we focused primarily on the quality and accuracy of the
images it produced.

6.1.4 Quality
To evaluate the quality of our rendering system, we rendered a variety of complex 3D objects,
including a chess set, a Minecraft house, and a protein structure. The images produced by our
systemwere of high quality, as shown in Figures 6.1.14, 6.1.15, 6.1.16, and 6.1.17. The system
was able to render these objects with high fidelity, accurately representing their 3D structure.
The images were sharp and detailed, with precise lighting and shading. The system effectively
rendered complex objects with numerous details, such as the protein structure, without any
noticeable loss of quality or drop in frame rate. The images produced by our system were
comparable to those produced by professional rendering software, demonstrating the high
quality of our system.

Figure 6.1.14: Chess Set [18] Figure 6.1.15: Erato [66]

Figure 6.1.16: Minecraft House [66]
Figure 6.1.17: Retron-Eco1 filament with
ADP-ribosylated Effector [8]
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We successfully loaded and rendered a 6 million triangle model of Rungholt, a medieval city
that was destroyed by a storm surge in the 14th century and recreated in Minecraft, as shown
in Figure 6.1.18. The model was rendered with no frame rate issues, demonstrating the sys-
tem’s ability to handle large and complex models with ease.

Figure 6.1.18: Rungholt [66]

Accuracy

To evaluate the accuracy of our rendering system, we aimed to determine how well it could
recreate a real object in a virtual environment. We chose a cube as our test object due to
its simplicity and ease of measurement. A physical cube was constructed using Lego, and a
corresponding virtual cube was created in our simulator, both with the exact dimensions of
13.5 cm x 13.5 cm x 12 cm, as illustrated in Figure 6.1.19.

Figure 6.1.19: A real and rendered cube

Real Cube Rendered Cube
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Due to the hollow nature of the physical cube, we were able to compare the two cubes ef-
fectively by superimposing them. We tested various perspectives and confirmed that the two
cubes were indeed of the same size and shape, visually overlapping completely. Some example
perspectives are presented in Figure 6.1.20. It is important to note that slight discrepancies
in the images may occur, as the system was tracking the photographer’s eye rather than the
camera lens, which was positioned below and approximately 10 cm in front of the eye. Ad-
justments were made to account for this difference. This evaluation demonstrates that our
rendering system is accurate and capable of recreating 3D objects from the real world with
high precision.

Figure 6.1.20: Superimposed real and rendered cube

It is worth noting that like all 3D rendering systems based on a 2D display medium, our system
is subject to the limitations of dimensions of the screen. This means any object that extends
beyond the screen will be clipped, and the user will not be able to see the entire object at once.

6.1.5 Portability
One of the significant advantages of this system is its reproducibility and ease of deployment.
It can be set up on a fresh Linux machine from scratch with a single command. The system
was developed on a Linux machine (NixOS) using an Intel i5-9600K CPU and an NVIDIA
GeForce RTX 2070 Super GPU. For testing purposes, the system was also run on a different
Linux machine (NixOS) equipped with an Intel i7-4770K CPU and an NVIDIA GeForce GTX
1080 GPU, as depicted in Fig. 6.1.21. Remarkably, the system executed flawlessly on the first
attempt on this different hardware configuration.
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Figure 6.1.21: Running on a different machine

We also tested the system on a Windows machine using Windows Subsystem for Linux 2
(WSL2). Although we successfully built the system, the OpenGL renderer did not function
as expected. We did not have sufficient time to diagnose the issue thoroughly, but we suspect
it is related to WSL GPU passthrough limitations. This issue is likely resolvable with additional
troubleshooting.

Currently, the system only supports machines with Intel CPUs and NVIDIA GPUs. However,
extending support to AMD CPUs and GPUs should be feasible with further development and
fairly trivial modifications to the build system.
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6.2 User Study Evaluation
We conducted our study as outlined in the Implementation section, aiming to investigate the
following hypotheses:

• Hypothesis 1 (H1): Interacting with the volumetric display in 3D leads to different task
performance compared to interacting with it in 2D.

• Hypothesis 2 (H2): Interacting with the volumetric display directly with hands results
in different task performance compared to interacting via teleoperation.

6.2.1 Participants
The study took place between the 1st and 5th of June in Room 218 of the Huxley Building at
Imperial College London’s South Kensington Campus. We were able to engage 16 participants
in our study, 14 of whom consented to be photographed, as shown in Fig 6.2.1.

Figure 6.2.1: Participants

The recruitment of participants was primarily facilitated through existing networks, involving
colleagues and acquaintances. Attempts to recruit participants through other channels proved
less effective.

Consequently, our participant sample was not broadly representative of the wider population.
The majority of participants were concentrated at the age of 22, as depicted in Fig 6.2.2, and
the group was predominantly male, as illustrated in Fig 6.2.5.

59



6.2. USER STUDY EVALUATION Chapter 6. Evaluation

We also surveyed our participants regarding factors we anticipated might influence the study.
Notably, 37% of the participants wore glasses during the study (Fig 6.2.3), and almost every
participant had prior experience with VR (Virtual Reality) or AR (Augmented Reality), as
shown in Fig 6.2.4. Our analysis indicated that these variables did not significantly impact the
study results.

Figure 6.2.2: Age
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Figure 6.2.3: Glasses
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Figure 6.2.4: Used VR/AR
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Figure 6.2.5: Gender

Man
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6.2.2 Quantitative Results
Results: Timings

Upon completing the study with all participants, we collected and analyzed the data, focusing
particularly on the time taken to complete each segment of the tasks. Our analysis revealed
that both the type of view (STATIC, i.e., 2D, versus TRACKER, i.e., 3D) and the presence of an
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offset (OFFSET versus NO OFFSET) had a statistically significant impact on the time required
to complete the segments. We plotted the average segment completion time against these
variables in Fig 6.2.6.

Figure 6.2.6: Interaction between View and Offset on Segment Comple-
tion Times
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To confirm the significance of these results, we conducted a type II ANOVA test, the results of
which are displayed in Table 6.2.7.

Table 6.2.7: ANOVA Results for Fig 6.2.6

Source Sum of Squares df F p-value

C(View) 3.363 186×107 1.0 10.698 212 0.001 092
C(Offset) 3.341 680×107 1.0 10.629 800 0.001 132
C(View):C(Offset) 2.344 484×107 1.0 7.457 744 0.006 375
Residual 5.985 586×109 1904.0 NaN NaN

The data suggests that participants performed best when using the TRACKER mode (3D view)

61



6.2. USER STUDY EVALUATION Chapter 6. Evaluation

directly in front of them, completing segments in an average of 2043 ms. Performance dete-
riorated under other conditions, with average completion times of 2530 ms for STATIC, 2573
ms for STATIC OFFSET, and 2530 ms for TRACKER OFFSET, respectively. This indicates that
the advantage of the 3D view is significant only when the display is directly in front of the
user, and this benefit diminishes when an offset is introduced.

We hypothesize that this phenomenon is due to motion parallax, an effect where closer ob-
jects appear to move more relative to farther objects. This effect is crucial for depth perception
in the real world and contributes to the effectiveness of 3D displays. However, when the 3D
display is offset, the motion parallax effect is reduced, diminishing the advantages of the 3D
display.

Interestingly, the data suggests that the offset condition does not significantly impact the time
taken to complete the segments, contrary to our expectations. We hypothesized that the off-
set would significantly affect task completion time, potentially because the user’s hand might
occlude their view when the display is directly in front. This hypothesis is supported by our
observation that participants moved their heads equally, regardless of the offset condition, as
shown in Fig 6.2.8. This suggests that participants were still attempting to obtain a better
view of the segments even when they were offset.

To further investigate this phenomenon, it would be prudent to conduct additional studies
examining multiple offset conditions with varying distances. This approach would enable us
to measure more precisely the decline in the effectiveness of the TRACKER mode as the offset
distance increases, providing further validation of our motion parallax hypothesis. It would
also be insightful to try offsetting the interaction zone rather the display to check if this has
an effect.

Figure 6.2.8: Combined Mean Eye Movement Values Per Millisecond and
Standard Deviations
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As demonstrated in Table 6.2.9, the t-test results indicate that the offset condition does not
have a significant effect on eye or head movement.

Table 6.2.9: T-Test Results for Fig 6.2.8

Statistic Value p-value

T-statistic −0.4170 0.6767

Results: Hand Precision

Another important metric we investigated was the distance of the user’s hand from the end
of the segment they were attempting to select over time. This distance represents their error
over time, with a value of 0 indicating that the user successfully overlapped their finger with
the target, thereby completing the task. The distribution of these distances is illustrated in
Fig 6.2.10.

We observed that in both the STATIC OFFSET and TRACKER OFFSET conditions, users ex-
hibited significantly worse precision in selecting the point at the end of the segment. These
conditions showed a much larger peak just before reaching a distance of zero, which is the
target point that participants were trying to precisely select. Interestingly, the STATIC condi-
tion had a much smaller peak near completion, closely resembling the TRACKER condition,
but was consistently worse than every other condition throughout the task.

Figure 6.2.10: Distribution of Hand Distances from Segment End
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In the STATIC condition, users seemed to struggle more consistently with distance through-
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out the entire task. This difficulty is suggested by the small pronounced peak between 25-30
cm, which we hypothesize was called by users moving their hand in completely incorrect di-
rections. We believe this may be due to the perspective in the STATIC condition being more
challenging than in the STATIC OFFSET condition, as users were positioned above and behind
the display rather than above, behind, and to the side. Each segment being oriented along the
x, y, or z axis may have led to more overlapping segments in the STATIC condition, complicat-
ing the user’s ability to discern the correct direction. Although this issue was also presumably
present in the TRACKER conditions, users could mitigate it by changing their perspective.

It is noteworthy that the observed peaks in the distance distributions are likely due to the time
it takes for users to realise they have completed a segment and need to start moving towards
the next point. We are confident in this interpretation, as the peaks align closely with the
lengths of the segments (e.g., 2 cm for one segment, 3 cm for eight segments, 6 cm for twelve
segments, 8 cm for ten segments, 12 cm for three segments, and 16 cm for one segment).
We examined the traces (the path of the user’s hand over time) for the different Tasks and
noticed interesting behaviour. As you can see for Task 4 in Fig. 6.2.11, we can observe that
the OFFSET conditions are notably different from the NOT_OFFSET conditions. In the OFFSET
conditions, users appeared to form more prominent pillars around vertical segments, suggest-
ing they encountered more difficulty completing this segment.

Figure 6.2.11: Traces for Task 3 by Condition
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To investigate this phenomenon further, we looked at the standard deviation of the points in
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each segment split across dimensions (x, y, z) and plotted these in Fig. ??. Interestingly, we
observed that in the OFFSET conditions, the standard deviation is significantly lower for the Y
and Z dimensions but not for X. This suggests that users spent more time ”loitering,” attempt-
ing to adjust the Y and Z dimensions correctly in the OFFSET conditions. User also appeared
to move in a more robotic fashion with a single direction vector in the OFFSET conditions as
opposed to the more natural and varied movements in the NOT_OFFSET conditions.

Figure 6.2.12: Standard Deviation by Dimension for All Tasks
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As shown in Tables 6.2.13, 6.2.14, and 6.2.15, the ANOVA tests indicate that the OFFSET con-
ditions exhibit a lower standard deviation for the Y and Z dimensions with high significance.

Table 6.2.13: Standard De-
viation for X Dimension

sum_sq df F p-value

C(View) 3.9 1 2.5711 0.1090
C(Offset) 2.1 1 1.4017 0.2366
C(V):C(O) 0.1 1 0.1012 0.7504
Residual 3356.8 2236 NaN NaN

Table 6.2.14: Standard De-
viation for Y Dimension

sum_sq df F p-value

C(View) 24.5 1 1.8589 0.1729
C(Offset) 306.7 1 23.3160 0.000001
C(V):C(O) 19.4 1 1.4767 0.2244
Residual 29414.1 2236 NaN NaN

Table 6.2.15: Standard De-
viation for Z Dimension

sum_sq df F p-value

C(View) 6.4 1 1.9352 0.1643
C(Offset) 78.5 1 23.6442 0.000001
C(V):C(O) 7.2 1 2.1701 0.1409
Residual 7431.9 2236 NaN NaN

We hypothesize that the significantly worse performance in the OFFSET conditions is due to
the lack of motion parallax, which would make it more challenging for users to judge the pre-
cise distance and depth between their hand and the end of the segment. This difficulty likely
resulted in users spending more time at the end of a segment trying to precisely select the final
point. Additionally, the display being further away may have made the task appear smaller
and more difficult to gauge accurately.
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6.2.3 Survey Results
Another source of our evaluation was a survey conducted after the study. The survey aimed to
gather feedback on the users’ experiences and preferences regarding the different conditions
they encountered. Participants were asked to rank the conditions in order of preference, as
shown in Fig 6.2.16.

Figure 6.2.16: Study Condition Rankings
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To analyse the preference rankings statistically, we performed a Friedman test. The results,
presented in Table 6.2.17, show a significant difference in the rankings of the conditions, with
a p-value of 0.00162.

Table 6.2.17: Friedman Test Results for Condition Preferences (Fig 6.2.16)

Statistic Value p-value

Friedman Test Statistic 15.240 0.001 62

An overwhelming 87% of participants chose either the TRACKER or TRACKER OFFSET condi-
tion as their top preference, indicating a strong preference for conditions that involved track-
ing. Interestingly, no participants ranked the STATIC condition as their first preference, despite
it not being significantly slower than the TRACKER OFFSET condition according to the timing
data we recorded.

We hypothesize that the strong bias against the STATIC and STATIC OFFSET condition may
be due to the perceived naturalness and familiarity of the tracking conditions. Participants
may have found these conditions more intuitive, possibly because they provided more visual
information, even though this did not necessarily translate into improved task performance.

These findings underscore the participants’ preference for conditions that simulate a more
dynamic and interactive experience, which they may have found more engaging or easier to
understand.
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Further Analysis

To avoid cluttering this section, graphs displaying the results of our study at a finer granularity
can be found in the Appendix C.

6.2.4 Discussion
The results of our study provide valuable insights into the impact of display and interaction
modalities on task performance and user preference in volumetric environments.

Hypotheses

Hypothesis 1 (H1): Interacting with the volumetric display in 3D leads to different task per-
formance compared to interacting with it in 2D.

There is a significant difference in task performance between 3D (TRACKER mode) and 2D
(STATIC mode) interactions. Participants completed tasks faster and with higher precision in
the 3D TRACKER condition when the display was directly in front of them, suggesting that
3D views enhance spatial understanding due to better depth cues like motion parallax. The
advantage of 3D views diminishes with an offset.

Hypothesis 2 (H2): Interacting with the volumetric display directly with hands results in
different task performance compared to interacting via teleoperation.

Task performance varies significantly between direct hand interaction and tele-operation but
only when the view was in 3D. Direct hand interaction in the 3D TRACKER condition resulted
in superior performance, highlighting the effectiveness of natural hand movements in spatial
tasks. The OFFSET conditions introduced challenges, suggesting that indirect manipulation
impacts task accuracy.

Precision and Task Complexity

OFFSET conditions significantly hindered precision, suggesting that reduced motion parallax
makes it difficult to judge distances. The STATIC condition’s poorer performance, indicates
challenges with depth perception and segment orientation in 2D views.

User Preferences

There is a strong preference for TRACKER (3D) conditions, highlighting the subjective value
of intuitive and interactive interfaces. The significant difference in rankings, as shown by the
Friedman test, emphasizes the importance of user experience in technology adoption.
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Implications for Future Research and Design

Future research should explore more variations of offset conditions and task complexities. In
particular the impact of offsetting the interaction zone rather than the display should be in-
vestigated.

Designers of Volumetric Display applications and experiences should prioritise direct hand in-
teraction to enhance user experience and task performance. This is a difficulty for volumetric
displays as almost always permeable/tangible so this not always achievable.
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7.1 Future Work
We have identified several areas for future work that could enhance the capabilities and usabil-
ity of our volumetric display simulator and further explore the potential of volumetric displays
in interactive 3D applications.

7.1.1 Anaglyph 3D
Anaglyph 3D [21] is a technique for displaying 3D images using colour-filtered glasses, typi-
cally employing red and green filters. Unlike polarized 3D [56], it does not require additional
complex hardware. Currently, the 3D effect necessitates closing one eye. Integrating 3D sup-
port into the system could enhance the immersive experience by eliminating this limitation.

7.1.2 Multi-User Support
Another potential area for future exploration is multi-user support. Our current tracking sys-
tem is limited to a single user. Extending it to support multiple users would be a logical
progression and relatively straightforward. By utilizing colour filter glasses or shutter glasses,
it is feasible to render different perspectives to multiple users simultaneously, as suggested in
the study ”Two Kinds of Novel Multi-user Immersive Display Systems” [44].

7.1.3 Real-Time Light Detection
Adding an additional camera with a fisheye lens to generate a real-time light map could be a
valuable enhancement. This feature would enable the virtual scene to be illuminated by real-
world lighting conditions. It would be insightful to investigate whether this addition impacts
performance in any significant way, especially concerning the tasks evaluated in our user study.

7.1.4 Generalize CPU/GPU Camera Compatibility
The current project is compatible only with Nvidia GPUs. Expanding compatibility to include
AMD GPUs, Intel GPUs, and even CPU-only environments (with expected slower performance)
would be beneficial. Furthermore, supporting different depth cameras beyond the Kinect, such
as Intel RealSense Depth Cameras [55], is crucial, particularly since the Kinect has been dis-
continued by Microsoft. Achieving this will require substantial code generalization. Switching
cameras to a lower latency system would also be beneficial.

7.1.5 Switch Hand Tracking Model
The hand tracking component of the project is notably the weakest aspect. Transitioning to
a more robust hand tracking model is highly recommended. Specifically, adopting a model
that utilises depth images rather than RGB images could significantly improve performance.
This would likely be a major undertaking, as off-the-shelf models for this purpose are scarce.
Implementing the approach described in the paper ”Accurate, Robust, and Flexible Real-Time
Hand Tracking” [79] appears promising.
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7.1.6 Further User Study
As indicated in the evaluation section, while the user study provided conclusive results, further
investigation is warranted. We are interested in exploring various offset positions to examine
the drop-off rate in greater detail. Additionally, adjusting the position of the interaction zone,
as opposed to the display position, could yield valuable insights.

7.1.7 Porting to Windows and Mac
Although we have demonstrated that the project can be built with a single command on Linux,
extending support to Windows (including WSL) and Mac would be advantageous. We have
successfully compiled the project on Windows, but further investigation is required to address
WSL-specific issues. We have yet to attempt building it on Mac. This is expected to be more
challenging, as porting all GPU-accelerated functionality to Apple Metal [67] may pose signif-
icant difficulties, despite Nix’s native compatibility with Mac.

7.2 Conclusions
The development and evaluation of our Volumetric Display Simulator underscore its potential
as a versatile tool for future research in volumetric display technologies. By integrating cost-
effective components and reproducible software environments, we have created a system that
is both accessible and straightforward, encouraging wider adoption and further development
by other researchers.

Our user study demonstrated that the use of head tracking and direct hand interaction signifi-
cantly enhances task performance in a 3D environment, highlighting the importance of natural
interaction modes for effective use of volumetric displays. The findings suggest promising av-
enues for future research, including the exploration of positional offsets and interaction zone
dynamics, which could lead to significant improvements in the usability and functionality of
volumetric displays.
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Chapter A. Final Package A.1. VOLUMETRICSIM PACKAGE

A.1 VolumetricSim Package
The result of building our simulator is a shared library named libvolsim.so shown in List-
ing A.1.1.

Listing A.1.1: Terminal

[VolumetricSim]$ tree result
/nix/store/gasc1x5y75rz6qdjz33jq1ffid3az9q7-volumetricSim-0.0.1/
├── bin
│ └── libvolsim.so
└── data

├── challenges
│ ├── demo1.txt
│ ├── demo2.txt
│ ├── task1.txt
│ ├── task2.txt
│ ├── task3.txt
│ ├── task4.txt
│ └── task5.txt
├── mediapipe
│ └── modules
│ ├── hand_landmark
│ │ ├── handedness.txt
│ │ ├── hand_landmark_cpu.binarypb
│ │ ├── hand_landmark_full.tflite
│ │ ├── hand_landmark_landmarks_to_roi.binarypb
│ │ ├── hand_landmark_model_loader.binarypb
│ │ ├── hand_landmark_tracking_cpu.binarypb
│ │ └── palm_detection_detection_to_roi.binarypb
│ └── palm_detection
│ ├── palm_detection_cpu.binarypb
│ ├── palm_detection_full.tflite
│ └── palm_detection_model_loader.binarypb
├── dlib
│ └── modules
│ ├── face_detection
│ │ └── mmod_human_face_detector.dat
│ └── face_landmark
│ └── shape_predictor_5_face_landmarks.dat
├── resources
│ ├── materials
│ │ └── scene.mtl
│ └── models
│ ├── cube.obj
│ ├── cylinder.obj
│ └── sphere.obj
└── shaders

├── camera.fs
├── camera.vs
├── image.fs
└── image.vs
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Chapter B. Survey Forms B.1. FORM A: OVERALL DIGITAL SURVEY FORM

B.1 Form A: Overall Digital Survey Form
This form is the primary survey that was given to participants in the user study. It was used
to collect data on the participants’ demographics, their experience with technology, and their
opinions on the volumetric display system.
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* Required

Volumetric Display User Study
Study Companion Forum

Participant Info
How much do you agree with the statement on a scale of 1 to 10

First Name * 1.

Last Name * 2.

Woman

Man

Non-binary

Prefer not to say

Other

Gender * 3.

Yes

No

Do you wear glasses * 4.

Yes

No

Not sure

Have you used VR/AR before? * 5.

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 1/7



The value must be a number

Age * 6.

Left

Right

Both

Other

Handedness (which is your dominant hand) * 7.

StudyID (this will be generated by Robbie) * 8.

Email (if you would like to be updated about this study)9.

Once

Twice

Three times

I completed the demo10.

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 2/7



Tracker Condition (View does change)
How much do you agree with the statement on a scale of 1 to 10

I found completing the tasks for this condition difficult * 11.

1 2 3 4 5 6 7 8 9 10

I found this condition frustrating * 12.

1 2 3 4 5 6 7 8 9 10

It was unclear in which direction I needed to move my hand next * 13.

1 2 3 4 5 6 7 8 9 10

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 3/7



Static Condition (View does not change)
How much do you agree with the statement on a scale of 1 to 10

I found completing the tasks for this condition difficult * 14.

1 2 3 4 5 6 7 8 9 10

I found this condition frustrating * 15.

1 2 3 4 5 6 7 8 9 10

It was unclear in which direction I needed to move my hand next * 16.

1 2 3 4 5 6 7 8 9 10

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 4/7



Tracker Offset Condition (View does change, hands are offset from view)
How much do you agree with the statement on a scale of 1 to 10

I found completing the tasks for this condition difficult * 17.

1 2 3 4 5 6 7 8 9 10

I found this condition frustrating * 18.

1 2 3 4 5 6 7 8 9 10

It was unclear in which direction I needed to move my hand next * 19.

1 2 3 4 5 6 7 8 9 10

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 5/7



Static Offset Condition (View does not change, hands are offset from view)
How much do you agree with the statement on a scale of 1 to 10

I found completing the tasks for this condition difficult * 20.

1 2 3 4 5 6 7 8 9 10

I found this condition frustrating * 21.

1 2 3 4 5 6 7 8 9 10

It was unclear in which direction I needed to move my hand next * 22.

1 2 3 4 5 6 7 8 9 10

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 6/7



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Conclusion

The task was able to track my hand accurately * 23.

1 2 3 4 5 6 7 8 9 10

The task was able to track my hand reliably  * 24.

1 2 3 4 5 6 7 8 9 10

The task was able to track my eye accurately
 * 

25.

1 2 3 4 5 6 7 8 9 10

The task was able to track my eye reliably 
 * 

26.

1 2 3 4 5 6 7 8 9 10

Tracker Condition (View changes) 

Static Condition (View does not change) 

Tracker Offset Condition (View changes, offset) 

Static Offset Condition (View does not change, offset) 

Rank the conditions in order of prefrence27.

11/06/2024, 21:42 Volumetric Display User Study

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=B3WJK4zudUWDC0-CZ8PTB8N-1f1RvRV… 7/7



Chapter B. Survey Forms B.2. FORM B: INTER-CONDITION SURVEY FORM

B.2 Form B: Inter-Condition Survey Form
This was the phyiscal survey that was given to participants in the user study. It was used to
collect data on the participants’ opinions between the different conditions of the volumetric
display system. The results were copied into a digital form.
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User: ___________  

Tracker Condition: (View does change) 
(Circle one box for each) 

I found completing the tasks for this condition difficult  
1 2 3 4 5 6 7 8 9 10 

I found this condition frustrating  
1 2 3 4 5 6 7 8 9 10 

It was unclear in which direction I needed to move my hand next  
1 2 3 4 5 6 7 8 9 10 

 

 

 

 

Static Condition: (View does not change) 
(Circle one box for each) 

I found completing the tasks for this condition difficult  
1 2 3 4 5 6 7 8 9 10 

I found this condition frustrating  
1 2 3 4 5 6 7 8 9 10 

It was unclear in which direction I needed to move my hand next  
1 2 3 4 5 6 7 8 9 10 

 



 

Tracker Offset Condition: (View does change, hands are 
offset) 
(Circle one box for each) 

I found completing the tasks for this condition difficult  
1 2 3 4 5 6 7 8 9 10 

I found this condition frustrating  
1 2 3 4 5 6 7 8 9 10 

It was unclear in which direction I needed to move my hand next  
1 2 3 4 5 6 7 8 9 10 

 

 

Static Offset Condition: (View does not change, hands 
are offset) 
(Circle one box for each) 

I found completing the tasks for this condition difficult  
1 2 3 4 5 6 7 8 9 10 

I found this condition frustrating  
1 2 3 4 5 6 7 8 9 10 

It was unclear in which direction I needed to move my hand next  
1 2 3 4 5 6 7 8 9 10 
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Chapter C. Extended User Study Results C.1. COMPREHENSIVE RESULTS

C.1 Comprehensive Results
Presented below are the detailed graphs and results from our user study, organized on a task-
by-task basis. The graphs are divided into five sections, each corresponding to a specific task.
The first two graphs are similar to those found in Evaluation 6.2.4, but are applied exclusively
to this task. The subsequent four graphs display the fully plotted 3D paths of users under each
condition, with each segment represented in a distinct colour.
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