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Abstract

Branch prediction is a fundamental aspect of modern high-performance processors. However,
despite its critical importance, significant breakthroughs in this field are few and far between.
Traditional predictors have primarily relied on recent branch history, overlooking other potential
sources of contextual information.

With the recent attention garnered by Natural Language Processing, we have seen some research
attempting to build new branch predictors that use Transformer Neural Network models. However,
these models’ size, long training time, and nature require that learning is done at compile-time
and never changes during run time.

This thesis introduces a novel approach to branch prediction by integrating the compile-time
analysis of a transformer-based model into a state-of-the-art dynamic predictor mechanism. Key
findings of our research include:

e The integration of information derived from a transformer model improves branch prediction
accuracy, outperforming traditional static and state-of-the-art dynamic predictors.

e Our custom branch predictor, when fed with the colour labels generated from our transformer-
based and takenness-based clustering algorithms, produces an accuracy improvement of 3.0%
over the state-of-the-art TAGE-SC-L 64KB branch predictor while maintaining a smaller
memory footprint. Furthermore, we see up to 4.88% improvement in Misses-per-Kilo-Instruction
in some programs compared to the current state-of-the-art Tournament Predictor.

e Our custom predictor architecture demonstrates robustness and efficiency in handling com-
plex program flows, showcasing its potential for real-world applications. Its flexible design
opens up the predictor to learn from context never before used in branch prediction.

e This research presents a novel perspective on branch prediction methodologies, highlighting
the importance of static analysis in complementing dynamic predictors for more efficient
CPU designs.

This thesis contributes to the evolution of branch prediction techniques, opening up a new compile-
time machine learning analysis can enhance prediction accuracy and overall CPU performance in
modern computing environments.
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Chapter 1

Introduction

In the realm of modern computing, the efficient execution of program instructions is paramount,
and at the heart of this efficiency lies the branch predictor - a critical component in the CPU that
anticipates the outcome of conditional branches. As the complexity of software continues to grow,
the need for accurate and adaptive branch prediction becomes increasingly pronounced.

In contemporary processors, Branch Prediction is a crucial technique, seeking to forecast the
outcomes of program branches before their actual execution concludes. This strategic approach
serves to mitigate potential delays waiting for branch conditions to resolve, allowing for the proac-
tive fetching of subsequent instructions. The accuracy of the branch predictor emerges as a pivotal
factor, significantly shaping the overall performance of these designs. Any incorrect branch predic-
tions have a profound impact on processor efficiency, and minimising these mistakes is an integral
way to maximise compute performance in a post-Moore’s Law world.

However, modern branch prediction methods that make predictions based on dynamic recent
branch history, all approach a theoretical limit bounded by the finite information they access and
their compression of that information [1]. While this limit is high, further significant improvements
in branch predictor performance are now only possible by consuming more information, or con-
text, than previous designs. To break past this information barrier faced by the state-of-the-art
predictors we must rethink how a branch predictor learns, what it learns from, and find the best
ways to compress new context into better predictions.

Moreover, the advancement of machine learning has opened avenues for enhancing branch pre-
diction strategies. This thesis explores the integration of a transformer-based approach at compile
time to analyse code patterns and label instructions in the compiled code with "colours" according
to their behaviour. Clustering branches with colours offers a novel source of additional information
that can be used to augment dynamic branch predictors. The static processing at compile time in-
fluences dynamic prediction through a customised branch predictor, thereby optimising prediction
accuracy and ultimately improving processor speed. It preserves the inherent accuracy advantage
of dynamic branch prediction by leveraging the runtime program state while incorporating the
advantages of static prediction such as larger model sizes and longer prediction times.

1.1 Objectives

This research project endeavours to delve into the realm of branch prediction methodologies, seek-
ing innovative ways to enhance prediction accuracy and, consequently, overall CPU performance.

The primary objective of this thesis is to advance the current state of branch predictors and
expand the information sources branch predictors learn from by leveraging a transformer-based
approach. The project aims to develop a branch predictor that learns dynamically but, utilises
static information in the form of colour labels on branches to improve prediction. These colours
can be derived from a transformer trained on traces from the program to cluster branches into
families.

A key problem with modern branch predictors is pollution. As a predictor is learning how one
particular branch behaves, the execution of a completely separate branch behaviour pattern can
pollute and undo all the learning relevant to the first branch. The pollution causes the predictor
to make mistakes in both the first and second-branch behaviour patterns. We aim to reduce
pollution by the use of the extra context provided by colour labels. If we can identify branches
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that may exhibit destructive interference at compile time and ensure they are assigned different
colour labels, we can augment the branch predictor at runtime to be selective in the branch history
it uses and make predictions based only on branches of the same colour. This enhancement supplies
the branch predictor with extra information it previously did not know, mitigates pollution effects
and enhances the accuracy of branch prediction. An improvement in branch prediction accuracy
would improve cutting-edge CPU performance if implemented efficiently in hardware.

To fulfill this goal we have two key components. Firstly, the hardware design component. We
aim to design and simulate a fully functional novel branch predictor that, at run time, can make use
of colour labels that supply extra context about the nature of the branch instructions. Secondly, the
compile time branch clustering algorithm component. We aim to experiment with multiple ways to
cluster branches according to their nature and separate branches that may interfere destructively
with different colour labels. We will experiment with statistical methods and transformer-based
methods for clustering branches into colours.

1.2 Contributions

In this work, we:

e Generate useful colours for branches in the SPEC2006 benchmark suite at com-
pile time: We use the SPEC2006 CPU benchmark suite [2] as an indicator of the branch
predictors utility in real-world computation workloads. We assign colours, also referred to
as clusters, to instructions in the benchmark programs to add an extra layer of context the
branch predictor can use to make better predictions. The type and source of context we
inject are determined by how we generate the colour clusters. We generate clusters in two
key ways. The first, explained in Chapter 5, is simply looking at the takenness of a branch in
the training set. The second, explained in Chapters 6 and 7, is by extending previous work at
purely static transformer branch prediction [3]|, with a unique approach to cluster branches
by the transformer’s learnt attention weights and changes in the transformer architecture to
generate more useful attention matrices.

e Design a custom branch predictor architecture: We design and implement a novel
branch predictor in the gem5 [4][5][6] microarchitecture simulator with a mechanism for it
to read the branch colours that were generated by the transformer at compile time. Our
novel branch predictor can then make predictions based on the dynamic history, like current
state-of-the-art predictors, but also learn from a branch’s colour label which carries extra
context information. The design and motivation are described in Chapter 4.

e Highlight the utility of adding colour information to instructions: We test and
evaluate several strategies for assigning colours to branches and branch predictor setups
to show that the new augmented branch predictor outperforms the TAGE-SC-L 64KB, a
purely static transformer approach [3], and the Tournament predictor. We see up to 4.88%
improvement in Misses-per-Kilo-Instruction in some programs compared to a state-of-the-art
Tournament Predictor. Our custom branch predictor can do this while still having a memory
footprint smaller than the TAGE-SC-L 64KB.

e Provide mathematical proof on the bounds of utility for our local colouring
scheme: We prove our colouring methodology for a local branch predictor can always pro-
vide statistically better predictions while maintaining an identical memory footprint to the
state-of-the-art. We provide the assumptions and bounds for this claim to be true, and why it
holds for most programs. To avoid distracting from the experimental nature of the remainder
of this thesis these proofs are detailed in Appendix A.

e Opens up new directions in which future research into branch prediction can
take: By creating a branch predictor independent of the colouring scheme, we provide the
framework for future work to colour branches in unique and powerful ways. New ways of
colouring branches can inject any number of contexts and data sources into our novel branch
predictor. We have created a flexible predictor architecture that can learn from information
never before used in branch prediction and opens up a new way of looking at improving
branch prediction. We suggest some ideas and explanations for new colouring methodologies
that may be fruitful in producing even better prediction results.
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1.3 Overview of our Proposed New Branch Prediction Method

The entire process we develop for improved branch prediction of a program is summarised at a high
level here: (The specifics of each step are revisited and explained thoroughly in their appropriate
chapters)

1. Generate traces of the program:

1.1. Use BBV to profile the program and generate basic block vectors for it.
1.2. Pass the BBVs to SimPoint to produce SimPoints.

1.3. Use the SimPoints to generate checkpoints with Gem5.

1.4. Use the checkpoints to produce full traces with Gem5.

1.5. Extract key information such as branch addresses and taken direction from traces.

2. Use the trace statistics to produce local colour labels for the branches we have seen. We
develop a takenness-based method to produce these colour labels:

2.1. Branches in the traces that are taken more often than not are assigned a different colour
label to branches that are taken less often. One cluster is assigned colour 0 and the
other colour 1.

2.2. At runtime branches unseen in the traces are given the local colour label 0 which puts
them in the same cluster as other branches seen in the traces.

3. Use the trace statistics to produce global colour labels for the branches we have seen. We
develop a rolling window transformer-based method to produce these colour labels:

3.1. Train our transformer model to predict branch direction based on the traces of the
program.

3.2. Harvest the learnt attention from the transformer as it provides insight on what branches
are important to the outcome of others.

3.3. Treat the attention between branches like a graph and use fast greedy community de-
tection to partition the branches into clusters. Assign each cluster a different colour.

3.4. At runtime branches unseen in the traces are given the global colour label 0 which is
reserved for these unseen branches.

4. Feed the local and global colour labels to our novel branch predictor which is an augmented
tournament predictor so it has independent local and global predictors. The local and global
predictors get extra context from the local and global colour labels respectively which helps
reduce destructive aliasing.

1.4 Real World Application

If our novel branch predictor and clustering algorithms for generating colour labels were imple-
mented in real-world silicon, we anticipate significant improvements in branch predictor perfor-
mance. Users of CPUs equipped with our branch predictor can opt to increase compile-time work
to enhance runtime performance by generating traces and utilising clustering algorithms to pro-
duce colour labels. Alternatively, they can forgo colour labels, maintaining standard compile-time
work, as our novel branch predictor can function identically to state-of-the-art predictors without
them.

We believe users will choose to optimise with our novel branch predictor in scenarios where
compile time is less critical than runtime performance. For instance, high-frequency trading appli-
cations, which prioritise minimising latency, would benefit from our branch predictor and colour
labels, as the additional compile time is justified by the lower latency achieved. Conversely, in
contexts where optimisation is unnecessary, such as during debugging, the colour labels can be
omitted, similar to other compiler optimisations.

Ultimately, this research contributes to the current body of knowledge by introducing a novel
perspective on branch prediction. The utilisation of a transformer-based approach and the incor-
poration of clustering techniques offer a unique angle for enhancing the adaptability and precision
of branch predictors. The project’s findings have the potential to influence the design and imple-
mentation of future CPUs, offering more efficient solutions for handling complex program flows.
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Chapter 2

Background and Related Work

In this chapter, we will outline the key concepts of branch prediction and previous research on
surrounding topics to set the thesis into context.

2.1 Preliminary Knowledge

This section aims to clarify key ideas driving all branch predictions and introduce the relevant
architectural units. This section will introduce major concepts and terminology that will be used
throughout the remainder of this thesis.

2.1.1 Branch Instructions

Branch instructions are an integral part of controlling the flow of a program and are present in
every Instruction Set Architecture (ISA). A branch instructions’ purpose is to inform the program
to jump to a different location in the code. As such, they are required when any programming
language calls for if-statements, loops, or other conditional statements. Branch instructions have
two key properties that determine how they behave. The first is whether the branch is conditional
or unconditional, and the second is whether the branch target is encoded directly or indirectly.

Conditional and Unconditional Branches

Conditional branches require run-time evaluation of branch conditions, allowing the program to fol-
low different paths on every occurrence of the branch. On the other hand, Unconditional branches
enforce an unequivocal shift in program flow, independent of conditions.
Conditional branches, exemplified by constructs such as the if-else statement, cause jumps in
the Program Counter (PC) based on specified conditions.
void conditional_jump (int x) {
if (x > 5) {

printf ("Condition is true: x is greater than 5\n");

}

Listing 2.1: Conditional branch example in C

conditional_jump:

cmp r0, #5 // Compare x with 5

ble end_function // Branch to end_function if x is less than or equal to 5
// Code for true condition

ldr r0, =format_true

bl printf

end_function:
bx 1r

Listing 2.2: Conditional branch example in ARM Assembly

Unconditional branches dictate an immediate shift in program flow, irrespective of conditions. This
is often seen as the ARM Assembly’s unconditional branch statement, b. In the context of branch
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prediction, we are unconcerned with unconditional branches as their program path is fixed and
deterministic at every run.

example_function:
// function code here

b exit_function // Unconditional jump out of function

exit_function:
bx 1r

Listing 2.3: Unconditional branch example in ARM Assembly

Direct and Indirect Branches

Branches, both unconditional and conditional, need to specify a target for where they want to
program counter to jump to. Direct branches specify the target inside the instruction itself while
indirect branches do not specify the destination address explicitly in the branch instruction. In-
stead, the instruction refers to a memory location or register that contains the target address. The
actual target address is determined at run-time.

A common use of the indirect branch is the bz Ir instruction, which is used to branch back to
the link register Ir, effectively returning from the subroutine.

_start:
b target_address // Unconditional direct branch to ’target_address’

// Code for the remainder of the function

target_address:
// Code at the target address
//

bx 1lr // Unconditional indirect branch back to the link register ’1r’

Listing 2.4: Unconditional direct and indirect branch examples in ARM Assembly

2.1.2 Purpose of Branch Prediction

Before delving into the intricacies of current branch predictors, we must first consider why branch
prediction is a useful method to speed up program execution in modern processors.

A processor operates on a sequence of instructions presented in machine code, and conven-
tionally, it executes these instructions in order. However, the execution of a single machine code
instruction is not a straightforward, atomic operation. It involves distinct stages within the pro-
cessor’s pipeline. A typical execution process unfolds as follows:

e Instruction Fetch (IF):

— Fetches the next instruction from memory based on the program counter (PC).

— Increments the PC to point to the next instruction.
e Instruction Decode (ID):

— Decodes the fetched instruction to determine the operation to be performed.
— Identifies the operands and their addresses.

— Branch Prediction: Predicts the outcome of conditional branches based on historical
behaviour or patterns.

e Execution (EX):

— Executes the operation specified by the decoded instruction.
— Arithmetic and logic operations are performed in this stage.

e Memory Access (MEM):

— If necessary, accesses memory to read or write data.

— Data cache or main memory may be accessed depending on the design.
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e Write Back (WB):

— Writes the results of the executed instruction back to registers.

— Updates register values with the result of the computation.

There can be a differing number of stages depending on processor architecture, and they are
commonly referred to as pipeline stages.

Modern CPUs are pipelined such that multiple instructions are "in-flight" at different stages
of the pipeline simultaneously. This allows the processor to work on different stages of various
instructions concurrently, enhancing throughput. In an in-order execution model, earlier instruc-
tions must always be ahead of later ones in the pipeline and these stages progress sequentially for
each instruction. This staggered but sequential processing can be seen in Figure 2.1.

Clock cycle
3 4 5 6 7 8

ju
N

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Pipeline

Stage 3: Execute

Stage 4: Write-baclk

XXXX O -
XXX
XX .
XCOHE N

DI DX DX Y]
XXX
XX
CHENEX
[N
[HN
[1HE
[

Completed
instructions

Figure 2.1: Example of a 4-stage pipeline. The coloured boxes represent instructions independent
of each other [7].

However, this linear progression can lead to inefficiencies, especially when dealing with condi-
tional branches. For example, the processor often encounters situations where the outcome of a
branch instruction depends on the execution of preceding instructions. These preceding instruc-
tions are still "in-flight" ahead of the branch in the pipeline and their outcome has not yet been
resolved. The processor would have no choice but to wait for the determination of this outcome,
which forces it to execute only one instruction at a time, lose the throughput benefit of pipelining,
and introduce pipeline stalls, causing idle time in the processor.

This is where branch prediction becomes crucial. Branch prediction anticipates the likely out-
come of a branch instruction before it is officially resolved. By making educated guesses based
on historical behaviour and runtime information, branch prediction enables the processor to spec-
ulatively execute instructions along the predicted branch path. This speculative execution helps
in mitigating the impact of pipeline stalls, enhancing parallelism, and ultimately contributing to
improved program execution speed. However, it is important to note that incorrect predictions
can lead to steep performance penalties, as all false speculative execution needs to be undone.

Cache latencies mean instructions often don’t have the required data to operate on (operands)
available immediately. This latency, along with limited arithmetic units, leads to the desirability
of out-of-order execution, allowing the CPU to execute instructions as soon as their operands are
available, rather than waiting for earlier instructions to complete. This approach increases proces-
sor throughput and efficiency. In an out-of-order execution model, instructions can be dynamically
reordered and executed as long as their data dependencies are satisfied. This flexibility maximises
the utilisation of execution units, cache, and other resources within the CPU.

Most modern CPUs adopt out-of-order execution to leverage these advantages, which also in-
troduces challenges related to branch prediction. When encountering a branch with undetermined
parameters, CPUs may stall until the correct branch path is determined. Incorrect branch pre-
dictions incur a significant performance penalty, as all erroneously executed instructions must
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be discarded or ’squashed’. This penalty underscores the critical importance of accurate branch
prediction mechanisms, an area of intensive research over the past decade.

2.1.3 Branch Predictor Methodologies

The ultimate goal of static branch prediction is to perfectly predict what path a program will take
before executing any instructions at all. However, this is considered impossible because of the
inherent uncertainty in program flow. Conditional branches introduce a level of unpredictability
as their outcomes are often not known until execution.

On the other hand, dynamic branch predictors operate by leveraging historical information,
specifically the history of branches. They track the recent outcomes (taken or not taken) of indi-
vidual branch instructions, storing this data in a Branch History Table or a similar structure. The
predictor analyses this historical context to make real-time predictions about the future behaviour
of branches during program execution.

The key insight lies in the idea that the more information we gather, whether through dy-
namically observing the program run or statically analysing pre-runtime metrics, the better the
predictor becomes. A more comprehensive view of the program’s behaviour allows for more ef-
fective compression of predictive information. Just as compressing data involves representing it
more efficiently, optimising branch prediction involves distilling complex program behaviours into
predictive patterns.

Whether dynamically monitoring execution patterns or statically analysing the program’s struc-
ture, the aim is to extract meaningful insights that enhance the predictor’s accuracy. This approach
aligns with the notion that the more we understand a program’s behaviour, the better we are at
predicting its future paths.

2.1.4 Basic Dynamic Prediction Methods
Key Hardware Elements for Dynamic Branch Prediction

The Program Counter (PC) is a register that holds the address of the current instruction being
executed in a processor, and it is crucial for indexing branch prediction structures because it helps
identify and distinguish different points in the program, enabling accurate predictions based on
the historical behaviour of branches at specific locations.

The Branch History Register (BHR) is implemented as a shift register and it is updated with
every branch decision to store the historical outcomes of recent branch instructions in a processor.
It is useful for indexing branch prediction structures as it captures the sequential behaviour of
branches, aiding in predicting future outcomes based on past patterns.

Bimodal Predictor

The Bimodal Predictor, as seen in Figure 2.2 is one of the simplest dynamic predictors. It is a
saturating counter, with the takenness history of a branch shifting the counter through states.

Not Taken

Taken
a’——-‘\\
.

Figure 2.2: A 2-bit Bimodal Predictor finite state machine [§].

10
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Branch History Tables

The Branch History Table (BHT), also referred to as the Correlation-Based Branch Predictor
or Pattern History Table, is an array of Bimodal Predictors indexed by several lower bits of the
Program Counter as seen in Figure 2.3. Multiple Bimodal Predictors are advantageous over a single
one because they allow the system to maintain different prediction models for various branches
based on their unique program counter values. This approach improves accuracy by tailoring
predictions to the diverse behaviours of different branches, optimizing the ability to capture and
adapt to varying patterns in the program’s execution.

BHT

4 0

e[ N

w N = O

v

Figure 2.3: Branch History Table indexed with the 4 least significant PC bits. Every entry in the
branch history table represents a 2-bit saturating counter [3].

Two Level Predictors

A Two-Level Predictor, as opposed to a simple Branch History Table (BHT), incorporates an
additional level of complexity by using multiple tables. A two-level adaptive predictor excels in
scenarios where branch outcomes depend on patterns of past occurrences. For instance, if an ’if
statement’ is executed four times, the decision on the fourth execution could rely on whether the
previous three were taken or not. In such cases, a two-level adaptive predictor is far more accurate
than a BHT or Bimodal Predictor alone. A Two-Level Predictor uses the least significant n bits
of the BHR to remember the history of the last n occurrences of the branch and employs one
saturating counter for each of the possible 2" history patterns. This approach improves prediction
accuracy for conditional jumps with regularly recurring patterns, providing a more nuanced and
adaptable prediction mechanism.

The GSelect Predictor is an example of a Two-level Predictor as seen in Figure 2.4. It uses
a series of BHTs, which are indexed with the Branch History Register. Then within the selected
BHT, it indexes with the Program Counter.

-

BHT BHT BHT
S —

Figure 2.4: GSelect Predictor [3].

2.1.5 TAGE

The TAGE (Tagged Geometric History Length) predictor has been one of the most performant
branch predictors since its proposal [9].

11
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PC  BHR[0:2] PC  BHR[0:4] PC  BHR[0:8]
l

Base Usetu sotu-
Predictor Pred. | Tag | o5 Pred. | Tag | “ess Pred. | Tag

Prediction

Figure 2.5: TAGE Predictor inner workings [3].

While the inner workings of the TAGE predictor 2.5 are not directly relevant to our research
direction, it is crucial to understand how TAGE and other modern predictors learn and make
predictions. TAGE operates by remembering the outcomes of branch instructions in a historical
dataset. It combines a standard predictor and custom predictors. The standard predictor, like a
finite state machine, records basic information about branch outcomes. On the other hand, custom
predictors store more complex historical data, considering different lengths of past outcomes in a
geometric series. This allows TAGE to adapt to diverse program patterns effectively. When a new
branch instruction is encountered, TAGE looks back into its historical data, finding the best match
to predict the current branch’s outcome. This blend of standard and custom predictors enables
TAGE to make accurate predictions by leveraging a rich history of branch behaviours.

2.1.6 Tournament

Different branch prediction schemes have different merits. They have varying prediction perfor-
mance across different branch pattern scenarios and vary in time to train. Tournament predictors
strive to merge multiple prediction methods into a unified structure, selecting the strongest method
of the schemes available at every prediction call.

Tournament predictors train and run all the predictors they manage in parallel, and use a
separate metric to select the optimal one for the situation. TAGE-SC-L [10], a tournament exten-
sion of the TAGE branch predictor, employs a dynamic global history length selection mechanism
facilitated by a tournament predictor. It maintains multiple prediction tables with varying history
lengths. The tournament predictor dynamically evaluates the recent accuracy of different history
lengths and selects the most effective one for a given branch. This adaptive approach continuously
refines its predictions, adjusting the influence of history lengths based on their performance, re-
sulting in a branch predictor finely tuned to the evolving patterns in program execution at the cost
of extra hardware dedicated to branch prediction.

The tournament predictor structure was proposed by Scott McFarling [11] with a duelling local
and global predictor. McFarling describes several configurations of the tournament, but we will
focus on the implementation used in the Gemb simulator [4][5][6]. The local predictor seen in
Figure 2.6, utilises a history table and counter array to make predictions based solely on the recent
history of the current branch. Conversely, the global predictor in Figure 2.7 employs a single shift
register per process, recording the directions taken by recent conditional branches, thereby offering
a broader perspective by considering the global branch history.

In the tournament predictor, the choice between the predictions of the local and global predic-
tors is determined by a selector or choice predictor as seen in Figure 2.8. This selector examines
the past performance of both predictors and chooses the prediction deemed most reliable. Specif-
ically, if the global predictor has consistently outperformed the local predictor over a specified
period, the selector favours the global prediction. However, if the local predictor has demonstrated
superior accuracy, its prediction is selected. This dynamic selection mechanism ensures that the

12
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History Counts

Taken J: L’ [— predictTaken

]

Figure 2.6: Local History Predictor Structure [11].

Counts

Taken —| [— predictTaken

s =[]

Figure 2.7: Global History Predictor Structure [11].

tournament predictor adapts to varying patterns and optimally utilises the strengths of both the
local and global predictors. The global predictor’s larger size and complexity, often mean it is
more accurate than the local predictor but requires a long 'warm-up’ period. The choice predictor
works by checking the resolution of recently predicted branches. If the global predictor and local
predictor predict differently, then the correct one gains a count for that branch’s address. Once
the count for the global predictor reaches a threshold it is deemed good enough to switch to.

Counts

Plc-P2c —=| — useP1

P1 P2

Figure 2.8: Choice Predictor Structure [11].

However, both the local and global predictors are limited in capacity. They only have a finite
number of bits to track historical patterns, thereby indexing the counts table. Consequently, there
is a risk of multiple branches hashing to the same entry in the history table, leading to potential
conflicts and degraded prediction accuracy.

For the local predictor, the finite length of the history entry restricts its ability to capture
complex patterns in branch behaviour. With a limited number of bits, the history table may
become oversaturated, causing different branches to share the same history entry. This aliasing can
result in contention among branches, where their behaviour patterns clash, complicating prediction
and reducing accuracy.

Similarly, the global predictor faces challenges due to its reliance on a single shift register
to record branch history. While the shift register provides a broader perspective by considering

13



CHAPTER 2. BACKGROUND AND RELATED WORK

the global history of conditional branches, its finite size imposes constraints on the granularity of
historical information that can be captured. As a result, branches with distinct behaviour patterns
may converge in the global history register, leading to ambiguity and potential clashes in prediction.

2.2 Related Work

This section aims to explore past research into surrounding areas. We will comment on the orig-
inal authors’ findings and how this informs our own research trajectory. The prediction schemes
considered here are loosely informed by an overview by Intel [12] outlining modern state-of-the-art
branch predictors.

2.2.1 Static Branch Prediction with Machine Learning

Static branch prediction methods produce a predefined branch prediction pattern before runtime.
This can be as simple as the always-taken predictor, where conditional branches are always taken.
Static predictors do not learn as they never see the true outcome for the branches they predict,
so they perform significantly worse than dynamic predictors than improve at runtime. However,
research by Calder et al. produced a more nuanced static branch predictor that is trained on
seen programs to predict control flow in unseen programs [13]. Calder et al. call this approach to
branch prediction ’evidence-based static prediction’ (ESP). ESP trains a machine learning model
on a corpus of programs, and the model is then used to infer the behaviour of new programs. In
particular, they use neural networks and decision trees to map static features associated with each
branch to a prediction that the branch will be taken. While competitive at the time of publication,
the ESP method is not as performant as modern dynamic approaches, with an average miss rate
of 20%.

A large limitation of the static predictor is its over-generalisation. Training a predictor to
predict all branches across all programs, requires an incredibly complex model that can capture
and identify all possible branch behaviour. However, a smaller dynamic predictor that is trained
at runtime only needs to capture the local behaviour of that particular program it is predicting.
The static predictor’s large training set and generalisation provide it with more context about a
branch, but, unlike a dynamic predictor, it has no information about the local history of the branch
it is trying to predict. This local history is far more important in determining the 'takenness’ of a
branch than a wider context of branching across a corpus of programs.

2.2.2 Dynamic Machine Learning and Perceptron-based predictors

While the ESP static machine learning predictors [13] are trained before runtime, a dynamic
machine learning strategy is trained at run time. This typically means a much smaller machine-
learning model that is lightweight and simple enough to train and predict at runtime. We used
work by Joseph [14] to guide our understanding of deep learning and machine learning dynamic
branch prediction methodologies.

Jiménezg and Lin present a new method for branch prediction [15]. They observed that all
existing two-level techniques use tables of saturating counters and attempt to improve accuracy
by replacing these counters with neural networks.

A traditional neural network is composed of interconnected neurons. Each neuron, as depicted
in Figure 2.9, is a product of a weight matrix and input signals from the previous layer in the
network. The output signal then passes through an activation function that allows the neuron to
capture complex behaviour better.

Due to the complexity of traditional neural networks, Jiménezg and Lin concluded they are
prohibitively expensive to implement as branch predictors. Instead, they explore the use of per-
ceptrons, one of the simplest possible neural networks. As seen in Figure 2.10, Perceptrons are
less complex as they drop the activation function after every neuron. This makes them easier to
implement in hardware.

Jiménezg and Lin built a two-level predictor but replaced each saturating counter in the BHTs
with a perceptron. While saturating counters change their output based on their most significant
bit of branch history, the perceptrons take the branch history as input and output a real value.
The output real is mapped to 1 or -1 for taken or not taken predictions respectively.
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Figure 2.9: Neuron from traditional Neural Network [16].
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Figure 2.10: Perceptron as detailed by Jiménezg and Lin [15].

Upon learning the true outcome of a branch, the predictor performs one update step seen in
Figure 2.11. The update changes the current weight by the error in the prediction of the prediction
is significantly wrong in magnitude or completely wrong in prediction outcome.

1f sign(yout) # tor [yout] < 6 then
fori:=0tondo
w; = w; + tz;
end for
end if

Figure 2.11: Perceptron update rule as detailed by Jiménezg and Lin [15]

Finally, the researchers assess the performance of their perceptron predictor using the SPEC2000
benchmark suite. The benchmark is commonly used in the industry and the more recent SPEC2006
suite will be used for our research. In this investigation, the behaviour of branches is categorised
as either linearly separable or linearly inseparable. Linearly separable branches refer to a class
of branches for which the decision boundary between taken and not taken outcomes can be effec-
tively represented by a linear function such as the one outputted by a perceptron. The perceptron
predictor demonstrated superior performance against a Gshare predictor with linearly separable
branches, but Gshare performed better when branches could not be linearly separated. The choice
of a perceptron as a predictor is motivated by its efficient hardware implementation. Although
other neural architectures like ADALINE and Hebb were considered in this study, their perfor-
mance was compromised by low hardware efficiency and accuracy.

After the paper’s publication, Akkary et al. introduced a branch confidence estimator based
on perceptrons to minimise branch mispredictions [17]. Mispredicted executions can have adverse
effects on the system, utilising resources, causing execution stalls, and impacting power consump-
tion due to the execution of additional instructions during prediction misses. In deeper pipeline
processors, pipelining gating becomes crucial for minimising wasted executions resulting from in-
correct speculative decisions made by predictors. By implementing pipeline gating, the processor
can temporarily halt the progression of instructions in the pipeline, preventing the execution of
further speculative instructions based on the current incorrect predictions. The perceptron-based
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branch confidence estimator by Akkary et al. offers multi-valued outputs instead of a binary taken
or not taken output as seen in Figure 2.12. The predictor classifies branch instructions such as
"strongly low confident" and "weakly low confident", which allows more efficient pipeline gating
when multiple low confidence branches are speculatively executed. The perception network func-
tions similarly to Jiménezg and Lin’s model, but instead of only outputting 1 or -1 from the real
output of the perception, the output is compared against a specific threshold \. When the out-
put difference is larger than the threshold, the prediction has low confidence, but if the output is
smaller than the threshold then the prediction is classified as having higher confidence.

Array Correct/Incorrect
—> of Branch Prediction
Branch Perceptrons
Address
Branch
History
Register
Branch Confidence

Figure 2.12: Perceptron confidence estimator [17].

Further research into perception dynamic branch predictors has followed both Jiménezg and
Lin and Akkary et al.’s papers, to improve the power of the model incrementally. A perceptron-
based approach can be seen in commercial AMD x86 CPUs in their Ryzen architecture [18]. While
AMD has not made the specifics of their proprietary branch predictor publicly available, it is clear
the dynamic machine learning approach has plenty of merit.

2.2.3 Using profiling to Blend Static and Dynamic Predictors

Modern branch predictors are largely dynamic as they perform significantly better than their static
counterparts that cannot learn from program behaviour. Unfortunately, the majority of dynamic
predictors encounter the ’aliasing problem’ when two branches occupy the same position in the
dynamic predictor. When these two branches exhibit distinct behaviour, such sharing can lead to
repetitive mispredictions by the dynamic predictor, a phenomenon known as destructive aliasing.
Conversely, when sharing enhances prediction accuracy, it is termed constructive aliasing.

Patil and Emer [19], try to address this aliasing problem by using profile-guided analysis to
identify branches that are predicted poorly dynamically and separating these to be predicted
statically at run time.

The authors identified which branches to predict statically in two phases. Initially, during
the selection phase, they made decisions about which branches in their test programs would be
statically predicted and defined their static predictions. In the subsequent phase, they executed the
simulation of a dynamic predictor using static hints obtained earlier. The focus was on statically
predicting two types of branches: those deemed easy for the dynamic predictor to predict and
those considered difficult. The rationale behind this approach was to optimise the utilisation of
resources in dynamic predictor tables. The authors hypothesised that branches falling into the
first category (easy to predict dynamically) allocate dynamic resources inefficiently. On the other
hand, branches in the second category were anticipated to benefit more from static prediction due
to challenges faced by the dynamic predictor in accurately predicting them.
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To identify easy-to-predict branches, the authors adopted a straightforward approach by exam-
ining the bias of various branches. Any branch with a bias surpassing a predefined threshold was
chosen for static prediction, with the actual static prediction set to the direction indicated by the
bias (taken or not-taken). This strategy proved effective, as highly biased branches are generally
easy to predict for any dynamic predictor.

Conversely, determining hard-to-predict branches posed a more intricate challenge. Since the
set of hard-to-predict branches varies with the dynamic predictor used, the authors simulated the
dynamic predictor in the first phase. They evaluated the prediction accuracy of the simulated
dynamic predictor for each branch and selected branches for static prediction based on biases ex-
ceeding their prediction accuracies. They used the dominant biases of these branches as static
prediction hints. While this meant the performance of the prediction did not suffer, the method-
ology goes beyond simple profiling and requires extensive simulation of multiple branch outcomes
pre-runtime.

The research discovered that predicting some branches statically reduces destructive aliasing
in dynamic predictors. It is especially helpful when the dynamic predictors are simple and both
prediction schemes focus on different branch behaviours. For example, a static predictor predicts
highly taken branches and a dynamic predictor is more suited for branches taken 50% of the
time. However, the outcomes of those branches predicted statically are sometimes importantly
correlated to branches that the dynamic predictors are predicting, and as such reduce the dynamic
performance on those branches by limiting training information. While statically aiding dynamic
predictors was shown useful, it is clear future research should aim to avoid removing keep branches
that help a dynamic predictor learn.

2.2.4 Using Profiling to Inform the Choice Predictor in a Tournament

In their paper [20] Grunwald, Lindsay, and Zorn propose a novel approach to enhancing branch
prediction accuracy through static methods. Hybrid branch prediction, which combines the pre-
dictions of multiple single-level or two-level branch predictors, has been widely adopted. However,
the prediction-combining hardware, often referred to as the "meta-predictor" or "choice-predictor",
can be large, complex, and slow. The authors argue that the combination function can be better
performed statically, leveraging prediction hints in the branch instructions.

By incorporating profiling or static analysis, the proposed method sets prediction hints in
branch instructions, ensuring that the choice predictor remains static while the actual predictions
remain dynamic. This approach mitigates the risk of worst-case performance scenarios. Addi-
tionally, the authors highlight that the interference caused by a branch site is limited to a single
component predictor, thereby reducing capacity demands.

Empirical evaluations conducted by Grunwald et al. demonstrate the effectiveness of their
static hybrid method compared to existing dynamic selection techniques. For instance, results
from experiments with realistic benchmarks such as the Instruction Benchmark Suite (IBS) and
the SPECint95 suite reveal a lower average miss rate with the static approach. These findings,
validated through cross-validation methodologies, underscore the efficacy of the proposed static
hybrid predictor.

One key advantage of the static hybrid method is its reduced hardware complexity compared
to dynamic-hybrid predictors. Since component selection is performed statically, fewer hardware
resources are required. Moreover, as each branch is consistently predicted by the same component,
only one component needs to be updated, thereby enhancing the capacity of the hybrid predictor.

However, the static approach presents challenges, including the complexity of the profiling
mechanism and the potential for reduced effectiveness due to poor training. Furthermore, static
component assignments may not adapt optimally to programs with varying execution phases. De-
spite some instances of performance degradation, attributed to improper training during profiling,
the overall superiority of the static hybrid method is evident. The authors advocate for profile-
based component selection to maximize the benefits of their approach.

2.2.5 Clustering Branches by Behaviour

Vandierendonck and Bosschere [21] looked to exploit behavioural properties of branch instructions
to increase branch prediction accuracy. They place branches with similar behavioural properties
in the same branch cluster. The branch cluster information is fed into the branch predictor to
increase its prediction accuracy.
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Under Vandierendonck and Bosschere’s clustering scheme, branches are dynamically labeled
with a cluster identification which serves as an additional source of information. The dynamic
branch predictor can then use the cluster identifier used to index branch prediction tables in a
similar way as the program counter and the branch history as seen in Figure 2.13.
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Figure 2.13: Cluster Predictor structure [21]. A dynamic cluster predictor incorporates wider
context information about the PC and BTB to assign a CID to the branch. This CID can be used
to help inform the prediction of the clustered conditional branch predictor.

The study investigated two clustering approaches based on the taken rate of branches. One used
a PC-indexed table to cluster, while the other stored cluster prediction details in the Branch Target
Buffer (BTB), a piece of hardware that supplies the target PC value when a program is branching.
Vandierendonck and Bosschere found improvements in branch accuracy for a partitioned GShare
predictor, with a 3.2% improvement for the PC-indexed scheme and a more substantial 6.3%
increase for the BTB scheme.

Notably, the clustering methods used in Vandierendonck and Bosschere’s paper are dynamic.
This means clusters are constantly changing as the program progresses as they are derived from
runtime structures. While this allows the clusters to learn as the program progresses, it limits the
information the branch predictor can access. The clusters can only be formed with PC and BTB
information, which limits the amount of utility they can provide modern state-of-the-art branch
predictors that are far more sophisticated than the GShare predictor augmented by Vandierendonck
and Bosschere in 2006.

Ultimately, the authors highlight how clustering branches can be a powerful method to augment
current dynamic branch prediction methodologies, and we believe further research into different
methods of clustering branches could be a powerful way to provide modern branch predictors with
new information.

2.2.6 Manual Branch Hints

The use of manual branch hints by Intel processors [22] provided a means for programmers to influ-
ence branch prediction behaviour and optimize code execution. These hints were embedded within
conditional branch instructions (Jec) using specific instruction prefixes, allowing programmers to
indicate the most likely code path to be taken at a branch. For instance, the 'Branch Not Taken’
hint (2EH prefix) suggested that the branch would likely not be taken, while the "Branch Taken’
hint (3EH prefix) indicated the opposite [23].

By leveraging these hints, programmers could improve the accuracy of branch prediction,
thereby enhancing overall program performance. This approach allowed for fine-tuning of branch
prediction behaviour based on the expected runtime characteristics of the code. For example, crit-
ical loops or conditional statements with known outcomes could be annotated with hints to guide
the processor’s prediction mechanism.

However, despite their potential benefits, manual branch hints have been phased out in modern
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processors. This removal was primarily driven by several factors. Firstly, the effectiveness of
manual branch hints was limited by their reliance on human-guided static predictions, which could
often be less accurate than dynamic predictions based on runtime behaviour. Additionally, the
overhead associated with managing and interpreting these hints outweighed their potential benefits
in many cases.

Moreover, the increasing complexity of modern processors, coupled with advancements in dy-
namic branch prediction algorithms, rendered manual branch hints less relevant. Modern proces-
sors now employ sophisticated branch prediction mechanisms, such as branch target buffers (BTBs)
and dynamic branch predictors, which can adapt to program behaviour more effectively without
relying on static hints.

Furthermore, the use of manual branch hints introduced additional complexity for programmers
and compilers. Integrating these hints into code requires careful consideration and could lead to
unintended consequences or unpredictable behaviour if not implemented correctly. As a result, the
adoption of manual branch hints was relatively low, and their usage declined over time.

In recent processor architectures, manual branch hints have become obsolete, with modern
compilers and processors no longer generating or utilizing these hints. Instead, the focus has
shifted towards optimizing dynamic branch prediction algorithms and leveraging runtime profiling
and feedback mechanisms to improve prediction accuracy.

While manual branch hints once offered a potential means of enhancing branch prediction, their
phased-out status reflects the evolution of processor design and the adoption of more sophisticated
prediction techniques in modern architectures. These instruction prefixes do not affect modern
Intel processors (anything newer than Pentium 4).

2.2.7 Static Transformer-based prediction
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Figure 2.14: Transformer structure [24].

While transformers are Machine Learning prediction methods, Sburlan’s 2023 MEng Thesis [3]
forms the foundation for the majority of this project. Sburlan experiments with using a transformer
network to build a static branch predictor. The project proves a proof of concept that it is possible
to get a competitively low miss rate by training a transformer on traces of a program and then using
this transformer at runtime to predict the direction of branches. The transformer predictor shows
more than 95% accuracy on the training set on some custom synthetic benchmarks. However, the
results have some major caveats. The transformer can be trained at compile time or profile-guided
optimisation (PGO) time, but the learnt weights must be used to make predictions at runtime.
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This means the trained transformer must receive branch outcomes at runtime which is difficult to
implement efficiently. Furthermore, modern branch predictors can make multiple predictions on
the execution path speculatively and roll back in the event of a mispredict. The rollback mechanism
on a transformer is less clear-cut as learnt internal states at runtime would need to be undone.
However, the transformer approach is a very novel way of looking at the branch predictor
problem. Transformers are a class of deep learning models that have revolutionized various natural
language processing (NLP) and machine learning tasks. Introduced by Vaswani et al. in 2017 [24],
transformers have become the backbone of state-of-the-art models like BERT, GPT, and T5.

Branch Outcome Predictions

0 - ()

Memory
Transformer Encoder Transformer Decoder
Branch Addresses True Branch Qutcomes

Figure 2.15: Predicting Branch Outcomes with the Transformer Model. The input, A, is the
sequence of branch addresses in the path history. The seen branch outcomes, O, is the sequence
of known branch outcomes for the input A. P is the sequence of branch predictions. The branch
A, is predicted to have outcome P,. [3].

Crucially to the work in this thesis, transformers are constructed through a self-attention mech-
anism that enables them to process input data in parallel, distinguishing them from traditional
sequential models. The self-attention mechanism is implemented in normalised Multi-Head Atten-
tion units seen in Figure 2.14. These models are designed to handle sequences of tokens, which
can represent words, characters, or other units of input data. Self-attention allows each token to
consider the importance of every other token in the sequence. Tokens with higher relevance receive
more weight during the weighted sum, capturing contextual information and dependencies across
the entire sequence and capturing long-range dependencies efficiently.

To utilise transformers, input data is tokenised, breaking it down into units that the model can
understand. The tokens are then fed into the transformer, which predicts the next token in the
sequence based on its understanding of the relationships and patterns within the input data. This
predictive capability is crucial for tasks like language modelling, where the transformer learns to
generate coherent and contextually relevant sequences of tokens. The ability to process information
in parallel, combined with the predictive nature of token generation, has made transformers the
architecture of choice for a wide range of applications in natural language processing and beyond.

Sburlan used the transformer model to build a static branch predictor as seen in Figure 2.15.
The transformer’s token input is constructed using the lower-order bits of branch addresses. The
encoder receives a sequence of recent branch addresses, including the current candidate branch set
to be predicted as the final token. Subsequently, the decoder is given a series of recent branch
outcomes associated with the historical branch addresses. Predictions are generated by the decoder
for each input token, culminating in the last decoder output representing the branch prediction for
the candidate branch.

The transformer is trained on only one program, which is the one it is predicting for. This
means the transformer can train faster and be smaller than a general-purpose transformer that
is trained on a corpus of programs to predict and branch. Such a general-purpose transformer
is worth future investigation as it does not require retraining for every new program, but will
instead require it to be of a tremendous size to capture the complexities and nuances of all branch
behaviour. Sburlan’s small transformer model, on the other hand, is trained on traces of the
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program it is about to predict. The program is simulated to generate traces of a few branch paths
that the transformer learns from to build its understanding of which branches are interdependent.
This knowledge allows the transformer to ’overfit’ to the program at hand and generate branch
predictions for any new unseen trace at runtime.

One issue with this approach is the simulation of the program to generate traces. This sim-
ulation must be done at compile time or PGO time and may be prohibitively long to generate
multiple traces for large programs. Sburlan uses SimPoints to offer a sophisticated alternative to
complete program simulations. SimPoints aim is to identify a compact yet representative collection
of samples from the entire program execution, accurately reflecting its characteristics. By simu-
lating these selected samples and appropriately weighting the resulting statistics, we can achieve
highly accurate approximations of the full program execution statistics in a significantly reduced
time frame.

The project also investigated other ways to build the next-generation branch predictor, includ-
ing studying the correlation opportunity between the Return Address Stack and branch outcomes,
and the correlation opportunity between the Return Address Stack at the time of object allocation
and branch outcomes within virtual functions.

2.2.8 Limits of Current Branch Prediction

Exploring the theoretical limits of branch prediction, Chen et al.[1] introduced the Prediction by
Partial Matching (PPM) predictor, derived from a compression algorithm that assigns shorter
encodings to frequent elements to reduce overall length. The PPM predictor, though resource-
intensive, demonstrated optimal performance, the study concluded that most modern predictors
are some variation of approximates of the PPM. As such, with sufficient capacity and time, they will
approach the theoretical optimum produced by the PPM model. Thus, advancements in branch
predictor performance now necessitate the incorporation of more extensive information beyond
recent branch history. When new information is introduced, it allows the compression algorithm
to adapt and refine its understanding of patterns, optimising the encoding process. Essentially,
the algorithm becomes more adept at capturing the nuances and intricacies of the data, resulting
in more efficient compression and, by extension, improved branch prediction.

This means the next frontier for branch prediction accuracy is finding the best form of new data
to provide the predictor and the optimal way to utilise this new data. To break the PPM limit, we
must utilise the information that PPM does not have, highlighting the importance of incorporating
new diverse and comprehensive context sources into future branch prediction algorithms.

2.3 Summary
In this chapter, we have set the context for the remainder of this thesis. We have clarified the back-

ground ideas driving branch prediction, introduced the relevant architectural units, and explored
related work in the field.
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Chapter 3

(Generating Program Traces

In order to produce colour labels for branches of a program we must have some insight into the
branches present in the program from traces. In this chapter, we will explain what our training
set of program traces looks like, how it was chosen, and how they were generated. We will also
highlight modifications we made to Gemb to accommodate the use of this training set.

3.1 Sourcing Training Data

For static analysis of a program, we used a training set of traces from the SPEC2006 CPU integer
benchmark suite. We chose to analyse the SPEC2006 CPU benchmark suite due to its diverse
range of practical programs and being relatively recent. Furthermore, our analysis will focus
exclusively on the Integer benchmarks, omitting the Floating Point ones. This decision is based on
the observation that Integer benchmarks typically emphasise intricate control flow while Floating
Point benchmarks are often more arithmetically intense and are rarely bound by branch predictor
accuracy.

The process of obtaining a training set of branches and their takenness for the SPEC2006
integer benchmark suite involved the utilisation of SimPoint [25] and Gem5 [4][5][6]. This process
is identical to the one followed by Sburlan [3], and the traces used in this project are identical
to those used during their work. SimPoint is a performance evaluation tool used to identify
representative portions of a program’s execution, known as simulation points, based on statistical
analysis of instruction execution patterns. These simulation points serve as reference points for
simulation and analysis. While traces can be produced of a program without SimPoint, these
take excessively long to produce. Executing benchmarks on a cycle-accurate simulator can lead
to significant slowdowns, often increasing the runtime by factors of 1000, resulting in days, weeks,
or even longer to complete full benchmarks. However, leveraging SimPoint typically reduces this
time by 90-95% [26], while maintaining reasonable accuracy.

The process to generate program traces of the SPEC2006 integer benchmark suite using Sim-
Point and Gemb:

e Use BBV to profile programs and generate basic block vectors (BBVs) for them:
A basic block represents a sequential section of code with a defined entry and exit point.
Each basic block vector (BBV) logs every basic block entered during program execution,
along with the frequency of each block’s execution.

e Pass the BBVs to SimPoint to produce SimPoints: SimPoint optimises architectural
simulations by executing a small segment of a program and extrapolating its overall be-
haviour. Many programs exhibit phase-based behaviour, where intervals of code execution
mimic previous intervals. Detecting and grouping these intervals enables an approximation of
the program’s overall behaviour by simulating only essential intervals and scaling the results
accordingly. This is captured in the BBV offsets and weights produced by Simpoint.

e Use the SimPoints to generate checkpoints: Gemb5, a cycle-accurate full-system sim-
ulator, was utilised to execute the SPEC2006 integer benchmark suite and generate sim-
ulation checkpoints for the intervals representative of the program’s phases. We use the
NonCachingSimpleCPU model as it is the simplest and fastest.
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e Use the checkpoints to produce full traces: The checkpoints are then resumed using
the more detailed out-of-order core, which then generates our custom execution traces. These
traces captured the dynamic behaviour of the benchmarks at the instruction level, providing
valuable insights into program execution dynamics, memory accesses, and branch behaviour.

e Extract key information from traces: The execution traces obtained from Gemb5 were
then processed to extract information regarding branch instructions and their corresponding
outcomes (taken or not taken). This process involved parsing the execution traces, identifying
branch instructions based on their opcode and operands, and recording the outcome of each
branch (taken or not taken) during simulation. While the work by Sburlan required more
detailed trace analytics, our work focuses exclusively on program flow and does not require
many features of the more detailed trace.

The resulting dataset comprised a comprehensive collection of branches encountered during the
execution of the SPEC2006 integer benchmarks, along with their associated outcomes. Figure 3.1
demonstrates an example trace in the set. The dataset served as the training set for subsequent
analysis and evaluation of branch prediction strategies, providing valuable empirical data for as-
sessing prediction accuracy and performance. However, it is important to note that this dataset
covers only a subset of all possible branches in the program. The SPEC2006 integer benchmark
suite includes a test set that we do not utilise in this study. This test set contains numerous unseen
branches and trace paths that remain untaken during the simulation. Thus, while our training
set offers insights into the behaviour of branches encountered during simulation, it cannot fully
represent the diversity of branch patterns present in the entire program.

However, our goal is to uncover insight from this test set behaviour to help a dynamic branch
predictor on all branches of the program.

tick disassembly | inst addr | inst rel a | ... | call | taken ras_rel
— — — ddr e | — — —
u64 str u64 — bool | bool list[str]
10508212000 b <L1> 2688572 handle_com false | true ["compress
press+2c5H8 Stream-2a0]
10508213000 | b.cc <L2> 2688620 handle com false | true ["compress
press+2c88 Stream-2a0]
15813264000 | b.hi <L3> 2678792 handle com false | true ["compress
press+624 Stream-2a0|

Figure 3.1: Example Program Branch Trace

3.2 Modifications to Gemb to use the Traces

The training set was generated on a modified version of Gemb with custom instructions that
were used for statistics logging in the original project. To use both the traces and associated
binaries we needed to modify our version of Gem5 to account for this. We added an extra pseudo-
instruction that captures the logging instruction during runtime and skips it. Furthermore, the
traces were generated using a simulated TAGE branch predictor, but we do not need much of the
extra simulated hardware from the traces including the branch predictor results during tracing.
Producing a training set akin to the one we use for real-world applications would be much lighter
weight and faster than in the work by Sburlan.

3.3 Summary

We demonstrated what our training set of program traces looks like, how they were chosen, how
they were generated, and what measures we took to ensure we can use them correctly.
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Chapter 4

Augmenting a Dynamic Branch
Predictor

We set out to design a novel branch predictor that uses the extra information from colour labels
to make better decisions by reducing destructive aliasing. In this chapter, we will explain how our
new branch predictor architecture works and how it combines dynamic prediction with provided
static instruction colour labels.

4.1 Predictor Design Inspiration and Colour Label Format

We based the design of our custom branch predictor on the state-of-the-art tournament branch pre-
dictor [11]. The architecture of this predictor has been discussed prior in the 'Background’ section
of this thesis. A tournament predictor makes dynamic predictions, however, assuming we have the
hardware necessary, we wanted to integrate colour information into the tournament predictor. The
colour labels will be used for separating branches that may interfere destructively. They will be
generated from a training set of traces of the program we are running. This assignment of colour
labels, or clustering, can be done in many ways we discuss in depth later in this thesis. However,
to provide some insight, it can be by grouping branches by their behaviour (e.g. takenness), how
important they are in informing each other’s behaviour (e.g. the attention between them in a
transformer), or alternative methods informed by other hardware (such as the Return Address
Stack) beyond the scope of this project.

We designed our branch predictor to accept two levels of colour information per branch. This
means the predictor is fed one colour for the local level and one colour for the global level. While
both these colours could be any number of bits, we use two colours (1 bit) for local and four colours
(2 bits) for global. We also noted that not all branches will have colours assigned to them as many
will not be in the training set. These unknown branches will be given colour 0 at runtime.

The colour labels are generated by clustering/colouring algorithms at compile time (statically)
on the training set of traces. The clustering algorithm can assign the colour 0 to branches if desired,
or it can not save the 0 colour only for unseen branches and only assign non-zero colours. Our
branch predictor was designed to allow maximum flexibility in optimising the clustering algorithm.
We see in Figure 4.1 The clustering algorithms for local and global have assigned colour 0 to
branches in the training set (seen at compile time).

However, in some programs colour information may not be very helpful or be detrimental to
predictions if clustering is done poorly. This is mainly an issue for global colour labels, as the more
simple local predictor gets replaced by the global predictor once it starts under-performing. We
ensured colour information could only help the predictor and poor colour information from bad
clustering algorithms does not hurt performance much.
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When is Branch First Seen? | Program Counter | Disassembly | Local Colour | Global Colour

Runtime 0x4000al bne 0x4000b0 0 00
Compile Time 0x4000a5 beq 0x4000b4 1 01
Compile Time 0x4000a9 bgt 0x4000b8 1 00

Runtime 0x4000b1 b 0x4000c0 0 00
Compile Time 0x4000ad blt 0x4000bc 0 11
Compile Time 0x4000b5 bne 0x4000c4 0 01
Compile Time 0x4000b9 beq 0x4000c8 1 10
Compile Time 0x4000bd bgt 0x4000cc 0 11

Runtime 0x4000c1 blt 0x4000d0 0 00
Compile Time 0x4000ch b 0x4000d4 0 01

Figure 4.1: Example Branch Instructions with Local and Global Colouring

4.2 Augmenting the Local Predictor with Colour Information

We augmented the local predictor to maintain its memory footprint as seen in Figure 4.2. Similarly
to the normal local predictor, we take the least significant bits of the PC to index the Local History
table but we swapped the most significant of those PC bits with the local colour label. This means
our modified local predictor has the same size as the original. The 1-bit colour labels effectively
partition the local History table into two parts. Branches with colour label 1 can never update
an entry in the Local History table starting with a 0 and hence belonging to branches with colour
label 0. This prevents any inference between branches of colour 0 and colour 1.

However, we should note each of the two partitions is half the size of the old Local History
table. So, if colour labels are assigned poorly and the local colour information is not more useful
than the most significant PC bits, the local predictions will get worse as we have fewer bits from
the PC being used.

However, we were confident in our ability to generate local colour labels powerful enough
to improve performance as the local predictor is simple enough that we can model it statistically.
Furthermore, poor local predictor performance means the global predictor takes over from it sooner
so we have less to lose in the event of poorly assigned local colour labels.

Local Local
History Counters

Predict
Branch
Direction

Prepend
Trunc ate most
T slgmﬁcdnt bits

Local Colour
Label for PC

S —

Figure 4.2: Augmented local predictor architecture.
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4.3 Augmenting the Global Predictor with Colour Informa-
tion

We had no guarantees that the clustering algorithm would provide useful global colour labels that
may be destructive for predictor performance. The global predictor replaces the local predictor once
it warms up and typically runs the remainder of the program. This means it is often responsible
for more predictions than the local predictor and has no performant fallback if it starts predicting
poorly. We augmented the global predictor to protect against this worst-case using a deeper
tournament structure.

The augmented global predictor is fed colour labels for the branch. Uncoloured branches are
automatically marked as colour 0. Branches with label 0 are treated differently from other branches
in our novel branch predictor.

Every colour label has its own Global History that tracks the taken history for branches marked
with that specific colour. When the global predictor encounters a branch with colour C, it looks
up the Global History Reg for colour C and colour 0. In the case that C=0, seen in Figure 4.3,
then both these Global Histories are identical and only Global History for colour 0 is needed.

We then prepend the colour labels C and 0 to the corresponding Global History Reg, as seen
in Figure 4.4, which functions as a selector mechanism. This is then used to index into the Global
Counters table and produce two different predictions. One prediction assumes the branch had
colour 0 and the other assumes the branch had the colour assigned to it, C. Unseen branches and
branches marked with colour 0 produce the same prediction for both as C=0.

Our design of the global branch predictor means that unseen branches and branches with colour
0 use the same global predictor mechanism as proposed by McFarling [11]. The Global History for
C=0 is updated by all branches like the original global predictor. Likewise, all the Global Counters
that start with the 0 colour label are updated by all branches. Unseen branches can use this to
produce a global prediction that is based on all branch history and clustering algorithms can use
the colour label 0 to mark branches that may benefit from not having alternate colours even if
they have been seen in the training traces.

Global
Counters
Taken—) —
Predict
Branch
Direction
C=0 & C#0
_*
Prepend
Label

Colour Label
forPCis0] O |—} I 0 | Global History RegI
(C=0) oris

Uncoloured

Global History Reg
Taken—p)|

Figure 4.3: Augmented global predictor architecture when faced with a branch that has colour 0
or does not have a colour assigned to it.
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Figure 4.4: Augmented global predictor architecture when faced with a branch that has a non-zero
colour assigned to it.

We architected our modifications based on ideas seen in previous research by Patil and Emer
[19] that try a significantly more basic strategy to combine static and dynamic predictors. Their
shortcomings suggest we should aim to avoid removing branches from a dynamic branch predictor
learning set unless we are certain it is not useful. By including the 0 path that predicts ignoring
colour information, we ensure we always have a fallback that learns from all branches like normal.
However, in the case where the colour labels are useful, we also produce predictions using them
and learning from a subset of branches.

4.3.1 Adapting the Choice Predictor for a Deeper Tournament

Our modification of the global predictor means that it produces two predictions. One prediction
uses the colour label assigned to it, C#£0, and the other ignores the colour label assigned to it and
instead uses C=0. We decide at runtime whether the predictions will be better with or without
using the assigned colour labels.

The original tournament predictor uses a secondary internal predictor to determine when to
use the local predictor and when to use the global predictor. We extended the functionality of this
choice predictor to choose between using the C=0 or C#0 global prediction. Instead of indexing the
choice predictor using the PC as proposed by McFarling, we index using the Global Histories and
the colour labels as selectors. When the true outcome for a predicted branch is revealed, the choice
predictor compares it to what the augmented local predictor predicted and what the uncoloured
C=0 global predictor predicted and modifies accordingly the counter indexed by the C=0 Global
History Reg and C=0 label. This choice update is analogous to the original tournament choice
prediction mechanism. The choice predictor then compares the true outcome of the branch to
what the uncoloured C=0 global predictor predicted and what the coloured C+#0 global predictor
predicted and modifies accordingly the counter indexed by the C£0 Global History Reg and C#£0
label. If the branch was uncoloured or C=0, then this second comparison never occurs.

The augmented choice predictor runs inside our augmented tournament predictor to choose
between using local and global predictors based on their historical performance. If it chooses the
global predictor, it then compares the historical performance of the global predictor when it uses
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the colour labels and when it ignores them, to decide if the colour label assigned to this branch
is useful. Furthermore, we highlight that this mechanism can differentiate between colours, so our
choice predictor can identify cases where branches marked C=1 benefit by using their label, but
branches marked C=2 are better off being predicted with the original C=0 global predictor and
ignoring the label.

Counts

P Localc; P Global[C=0]c—) — Use P Global
P Local P P
Global Global
C=0 C#0
P Global[C=0]c; P Global[C#0]c — — Use P Global[C#£0]

Prepend
Labels

Uncoloured

Laber@)| © || 0 |Global History Regl¢—

Global Colour [T |—>| C [ Global History Reg}
©

'Global' History Reg
for Colour Label C

Global History Reg

Figure 4.5: Augmented choice predictor architecture.

It should be noted that the memory requirements of our augmented global predictor are in-
creased to account for the colours. However, if we are confident that our clustering algorithm
produces useful colours then the deeper tournament structure can be removed and always return
the coloured prediction. This would make the space requirements of the augmented predictor
identical to the McFarling predictor [11]. We keep the deeper tournament to better assess the
effectiveness of different clustering algorithms later in this thesis.

4.4 Implementing the Augmented Branch Predictor in the
Gemb Simulator

We then implemented our custom branch predictor architecture in Gemb and integrated it with the
rest of the microarchitecture simulation. This included the full physical structure of the predictor,
speculatively updated histories, and comprehensive squash and rollback mechanisms. Addition-
ally, we developed custom performance statistics logging to thoroughly analyse the behaviour and
efficacy of our predictor design under various workloads and conditions.

4.5 Summary

We have designed a custom branch predictor that can make dynamic decisions while simultaneously
being informed by colour labels.
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Chapter 5

Assigning Colours using Branch
Takenness

In this chapter, we will highlight some issues faced by the current tournament branch predictors and
how we can generate local colour labels using the takenness of branches to alleviate these problems
in our novel branch predictor. We will also explore the mathematical underpinnings behind why
and when the clusters improve prediction accuracy. Finally, we will describe the specifics of the
clustering algorithm we use to produce the colour labels.

5.1 Rationale

One issue with the modern unaugmented tournament predictor is the aliasing of multiple branches
to the same local history register in the local predictor. This aliasing is because we only use the
least significant bits from the PC to index into the history table, so every branch in the program
does not get its local history perfectly tracked. Aliasing can manifest as a problem in two cases we
study further:

1. Two branches that alias to the same history register are being seen by the program at the
same time. Therefore, the clash forces history to be shared and corrupted, which makes the
predictions for both branches worse. In the example 5.1, we see how if we use only the 2 least
significant bits from the PC to index the history table, the branch if (x % 3 == 0) and the
branch if (i % 2 == 0) both alias to the entry in the history table (00). This PC in the
examples are strictly demonstrative and will not be accurate when translated to assembly.

void foo(int x) {

if (x % 3 == 0) { // PC: 0000
printf ("x is divisible by 3\n"); // PC: 0001
} else {
printf ("x is not divisible by 3\n"); // PC: 0010
}
}
int main() {
int i;
for (i = 0; i < 100; i++) { // PC: 0011
if (i %h 2 ==0) { // PC: 0100
foo(i); // PC: 0101
} else {
printf("i is not divisible by 2\n"); // PC: 0110
}
}

return 0;

Listing 5.1: Local Branches Aliasing Simultaneously using the 2 Least Significant PC Bits
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Without aliasing, the historical takenness of if (i % 2 == 0) would be stored in its own
history entry. Histories that have the least significant bit 0 would point to a counter table
entry predicting the next branch is taken. Conversely, histories that have the least significant
bit 1 would point to a counter table entry predicting the next branch is not taken. This
requires just 2 bits of history to encode the pattern. Likewise, with if (i % 3 == 0), we
need only 3 bits of history to encode the branch pattern. However, with aliasing we require the
6 bits, to capture the pattern. With more complicated branches that are more independent
of each other, this extra cost of aliasing increases further. The more bits of history we need to
capture a pattern, the longer it takes for the history to 'fill up’ and for the relevant counters
to be saturated in the correct direction. Furthermore, if the aliased branch pattern is too
complex to fit in the history bits used in the local predictor, as is often the case, then the
local predictor cannot make correct predictions.

Gemb’s default implementation of the local predictor uses 11 bits of the PC to index the

local history. So branches with the same bottom 11 bits will alias to the same history.

2. Two branches that alias to the same history register are being seen by the program at different
times. By the pigeonhole principle [27], this is a very common and necessary alias when the
local history table is smaller than the number of unique branch instructions.

int main() {

int i;
for (i = 0; i < 100; i++) { // PC: 0000
for (x = 0; x < 100; x++) { // PC: 0001
if (x % 2 == 0) { // PC: 0010
printf ("x is divisible by 2\n"); // PC: 0011
}
}
for (y = 0; y < 100; y++) { // PC: 1101
if (y % 3 == 0) { // PC: 1110
printf ("y is divisible by 3\n"); // PC: 1111
}
}
}

return O;

Listing 5.2: Local Branches Aliasing At Different Times using the 2 Least Significant PC Bits

In this situation 5.2, the local history register for if (x % 2 == 0) is repeatedly inherited
by if (y % 3 == 0) and then handed back. The local branch predictor keeps building on
the old history with taken patterns of the new branch until the history is saturated and
fully aligns with the new branch. During this warm-up phase, the old history impacts the
counter registers that are updated and slows down the saturation of the correct counters for
the new branch’s history patterns. This warm-up time is quite short for local predictors and
much larger for global predictors, but reducing it in any capacity would push us closer to a
hypothetical perfect predictor.

One way we believe we can alleviate some of the cost of aliasing is by clustering by takenness.
We describe takenness to be whether a branch is more frequently taken or not-taken. This means
we use one fewer bit from the PC when indexing the local history table and instead use one bit to
supply information on the branches takenness in the training set.

The colour labels we generate by clustering branches by takenness are used by the local predictor
in our augmented tournament predictor. When a branch is marked as more likely to be taken by
its colour label it can only alias in local history with other branches marked in the same colour.
Aliasing with branches that are more likely to go the same way reduces the destructive interference.
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Furthermore, the partition of the local history table that tracks these more often taken branches
will have more 1’s than 0’s, and the partition of the local history table that tracks these more
often not-taken branches will have more 0’s than 1’s. This means the local counters table has
a soft statistical partition where branches marked in the same colour are more likely to produce
predictions from the same subset of local counters as other branches with the same colour.

However, this is all assuming we can assign colour labels to confidently say a branch is more
often taken or more often not-taken. In practice, this is not always possible because of variations in
branch behaviour in the limited training set and the presence of many unseen branches at runtime.
To study the effectiveness of clustering branches by takenness and the extent to which we can be
confident in the takenness assignment of a branch, we do a statistical analysis.

5.1.1 Analysis of Local Takenness-Based Colour Utility

We studied the statistical benefit of colour labels in depth. Our detailed analysis and mathematical
proof on the bounds of utility for our local colouring scheme can be found in Appendix A to not
distract from the experimental nature of the remainder of this thesis. Our key findings are:

e Proof that takenness colour labels can provide a statistical advantage for improving the local
predictor accuracy in both situations discussed earlier in this chapter.

e Since the local predictor in our augmented tournament maintains the same memory footprint,
this can cause extra cost in more aliases as we are using fewer PC bits.

e We show this extra alias cost of our colour labels maintaining the same memory footprint is
a function of how much of the program behaviour the training set traces cover.

e We suffer no expected extra alias cost, however, if our colour labels at run time, including
unseen branches automatically assigned colour 0 as specified by the augmented tournament
architecture, are split 50/50.

e We cannot confidently say branches with the more often taken colour are taken more than
50% of the time and branches with the more often not-taken colour are taken less than 50% of
the time. While these statements are true when we analyse the training set, during runtime
unseen branches are assigned colour 0. This shifts the bounds of the branches labelled colour
0. This presence of unseen branches means we can only assume branches with colour label 1
are bounded by the 50% mark. However, we show that this is enough to improve prediction
accuracy in great detail in Appendix A.

e Overall, if we achieve close enough to the 50/50 colour assignment split at run time by
having a representative and large training set of traces, then a predictor using colour labels
will always produce better predictions in the same memory footprint than a local predictor
not using them.

Appendix A provides a more rigorous explanation of why colouring helps with aliasing. This
analysis informed our implementation of a clustering algorithm to assign colours by takenness.

5.2 Implementation

In the process of clustering branches based on their takenness, we aim to assign each branch in the
trace to one of two clusters: 0 or 1. The underlying principle revolves around leveraging the trace
behaviour of branches to categorise them into clusters that signify their likelihood of being taken
or not taken.

The clustering process starts by collecting data from the trace, including the branch addresses
and their corresponding outcomes (taken or not taken). Additionally, the weights associated with
each simulation point are considered, reflecting the relative frequency of execution for different
parts of the benchmark program. We can then categorise branches based on whether they are
more frequently taken or not taken.

The crucial decision-making step in the clustering process comes when determining whether
a branch more often taken should be assigned to cluster 0 or cluster 1. To ensure a balanced
distribution of branches across the clusters, we strategically assign clusters such that the majority
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of branches are marked as cluster 1. By doing so, we aim to maximise the statistical 'room’ for
unseen branches to be marked as cluster 0 without causing clashes with the observed branches.
This ensures we get as close to the target 50/50 split we proved we need to aim for in the previous
section.

5.3 Results

We generated local colour labels for the SPEC2006 CPU benchmarks using the training set traces
and fed these to the Gemb simulator with our augmented tournament branch predictor imple-
mentation. The changes in prediction performance, measured in Figure 5.1 as 'Misses-per-Kilo-
Instruction’, represent how many instructions our simulated microarchitecture miss-predicts per
thousand it commits.

Default Tournament Augmented.TournameI.lt Percentage
Benchmark Misses-per-Kilo-Instruction Misses-per-Kilo-Instruction Improvement
Local Takenness-based Labels
sjeng 14.09 13.69 2.85
mcf 20.63 20.62 0.01
hmmer 1.71 1.71 0.00
h264ref 1.57 1.55 0.94
gobmk 19.68 19.15 2.70
bzip2 6.59 6.59 0.01
perlbench 6.04 5.71 5.50
xalancbmk 4.22 4.23 -0.25
astar 37.25 37.25 0.00
gee 7.49 7.32 2.22
omnetpp 5.81 5.66 2.59
Average 11.37 11.22 1.27

Figure 5.1: Performance difference between the original tournament branch predictor and a colour
augmented tournament branch predictor fed with takenness local colour labels. Lower Misses-per-
Kilo-Instruction is better.

The local takenness-based colour labels improve the average performance across SPEC2006
versus the state-of-the-art tournament despite maintaining the same memory footprint. The labels
never hurt performance in any individual benchmark except for xalancbmk, where we believe the
training set traces were not representative enough to get the 50/50 split we require to minimise
the extra alias cost of keeping the memory footprint the same. The global predictor functioned
the same as the default tournament predictor.

5.4 Summary

In this chapter, we addressed several issues encountered by current state-of-the-art branch pre-
dictors and examined how generating colour labels could mitigate these challenges. We explored
the mathematical foundations of why and when the takenness-based clusters improve prediction
accuracy. Finally, we described the specifics of the clustering algorithm we used to produce the
colour labels.
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Chapter 6

Assigning Colours using a
Transformer

In this chapter, we will highlight some issues faced by current state-of-the-art branch predictors
and how we can generate global colour labels using the learnt attention of a transformer to combat
these in our novel predictor. We will describe the specifics of the clustering algorithm we use to
produce the colour labels.

6.1 Rationale

In research by Sburlan [3], they propose a static transformer branch predictor architecture. This
transformer was trained on traces of the program at compile time and at runtime it would hypo-
thetically be fed with the outcomes of branch patterns.

While the transformer produced comparable accuracy results to TAGE-SC-L 64KB, it is un-
realistic to implement in practice. The biggest issue is that the trained transformer weights and
architecture would need to be implemented in hardware for it to produce predictions at runtime fast
enough. This is a huge power and silicon cost that would need to somehow change configurations
between program runs to reflect the learnt transformer weights of that particular program.

However, we saw merit in the natural language processing methodical and designed a clustering
algorithm to condense the learnt information of a transformer into colour labels.

A code pattern that modern branch predictors struggle to deal with is what we describe as
‘phased’ code. The state-of-the-art dynamic branch predictors have a limited memory about the
history of a program so when they encounter new branches they must forget older information to
learn the latest patterns.

Example 6.1, demonstrates an example of 'phased’ code that could pose a problem to modern
branch predictors. During Phase 1, the branch predictor encounters highly correlated branches,
which it can efficiently predict based on its learned patterns. As the program progresses through
Phase 1, the branch predictor builds a strong understanding of the branch patterns associated with
this phase, optimising its predictions for future iterations of similar branches.

However, Phase 2 presents a significant challenge for the branch predictor. The introduction of
random branching based on memory values disrupts the predictor’s learned patterns. With each
new, uncorrelated branch encountered in Phase 2, the branch predictor must overwrite previously
learned patterns to accommodate the new information. This process results in the corruption of
the predictor’s memory regarding Phase 1 branches. When Phase 3 begins, the branch predictor is
forced to relearn the patterns it previously encountered in Phase 1. However, due to the corruption
of its memory during Phase 2, the predictor makes numerous mispredictions as it attempts to
reestablish its understanding of the Phase 1 branch patterns. While Phase 2 in the example
consists of completely random branches, it could also include branches uncorrelated with Phases
1 and 3. The key challenge lies in ensuring that the branch predictor retains essential information
from Phase 1 to improve predictions during Phase 3.

To address this challenge, we propose leveraging a static natural language processing approach
to identify and understand the occurrence of these distinct phases within the program. By iden-
tifying the boundaries between phases and recognising the characteristics of each phase, we can
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// Phase 1: Highly correlated branches
for (int i = 0; i < 1000; i++) {

iE (L% 2 2= 0) {
} else {
)

}

// Phase 2: Random branching based on memory values
int *arr = (int *)malloc (1000 * sizeof (int));

for (int i = 0; i < 1000; i++) {

arr[i] = rand();

}

for (int i = 0; i < 1000; i++) {
if (arr[il % 2 == 0) {
T
}

}

// Phase 3: Highly correlated branches again
for (int i = 0; i < 1000; i++) {

if (i % 2 == 0) {
} else {
}

Listing 6.1: An example program with 3 distinct phases

provide this information to the dynamic branch predictor. Armed with this contextual under-
standing, the predictor can prioritise retaining crucial information from Phase 1, even when faced
with disruptive phases like Phase 2, thereby enhancing overall prediction accuracy and efficiency.

6.2 Implementation

Unlike traditional branch predictors, transformers utilise a fundamentally different approach to
prediction, drawing inspiration from the field of natural language processing. Transformers excel
at capturing long-range dependencies and making nuanced contextual decisions, enabling them to
overcome the challenges posed by phased code. One key advantage of transformers lies in their
ability to analyse the program’s execution history comprehensively. By considering a broader con-
text and capturing intricate dependencies between program instructions, we believe transformers
can make more informed predictions, even in the presence of disruptive phases.

Attention mechanisms in transformers facilitate the model’s ability to focus on different parts
of the input sequence when generating an output. For every token, or in our case branch, in the
sequence, three distinct vectors are derived using learned weight matrices: the query (Q), key (K),
and value (V) vectors. The query vector represents the token’s request for information from other
words, the key vector serves as an identifier to determine the relevance of other words in response
to the query, and the value vector contains the actual information pertaining to the word.

The attention score, which determines the focus a token should give to another, is computed by
taking the dot product of their query and key vectors, followed by scaling with a factor dependent
on the dimension of the key vectors:

K
score(A, B) = QA\/LTB
k

where dj, is the dimension of the key vectors. These scores are then normalised using a softmax
function to produce a probability distribution, ensuring that the scores sum to one:

attention weight(A, B) = softmax(score(A, B))
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This attention weight is used, along with the value vectors of all tokens in the sequence, to
produce the prediction for the next token. However, the attention weights alone can provide
insights into what the transformer has learnt. It tells us what branches the transformer used to
make its prediction of the current branch, which can help us understand which branches influence
each other and which do not. This, ultimately, is a gateway to uncover insight about the phases
of a program we are looking for.

To harness the power of transformers for branch prediction, we developed a clustering algorithm
that utilised the attention mechanism inherent in transformer architectures. The algorithm first
trained a transformer on training set traces of a program, capturing intricate dependencies between
program instructions. This transformer was largely identical to the architecture proposed by
Sburlan, with some key modifications to allow better attention extraction. Namely, we remove
the masking operation to allow a one-to-one mapping out of the encoded state back to branches.
Specifically, we use:

e sequence length of 512 tokens

8 encoder layers and 8 decoder layers

8 head Multi-head Attention Modules

e 5 Epochs

Central to our approach was the extraction of the first layer of attention for every input.
Traditionally, attention is applied sequentially in multiple layers, however, we focused solely on
the first layer (Layer 0) attention to have the least abstracted view of learnt patterns. By merging
these first layer attentions into one global attention map and by removing the masking operation,
we ensured that branches encountered multiple times were accurately represented. We also ensure
the global attention map is symmetric, such that a branch A being attended to by another branch
B, contributes to A’s own attention of the other branch B as the transformer has learnt they are
connected. The attention matrix generated by Sburlan in Figure 6.1 shows the attention between
tokens in a trace of the gobmk benchmark. We noted they find attention between tokens, which
do not correspond to branch addresses directly due to the masking operation. Furthermore, this
attention matrix is of one particular trace, so branches will be present multiple times in the matrix
and not all traces are accounted for. Our global attention map for gobmk, seen in Figure 6.2, is
indexed on branch addresses and multiple attention matrices from all traces are combined to form
a global attention map.

- 0.200
- 0.175
- 0.150
- 0.125
0.100
0.075
0.050
0.025

- 0.000

Figure 6.1: Cropped attention matrix in the SPEC2006 gobmk benchmark using the original
architecture from Sburlan [3].

The resulting attention matrix formed the basis of our graph representation, where attention
weights served as edges between nodes representing program branches. We utilised a community
detection algorithm, specifically the fast greedy algorithm, to identify clusters within the graph.
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Figure 6.2: Cropped global attention map in the SPEC2006 gobmk.

The process began by converting the attention matrix to a weighted graph using the attention
weights as edge weights, as exemplified in Figure 6.3. We then applied the fast greedy algorithm [28§]
to detect communities within the graph. The fast greedy algorithm starts with only links between
highly connected nodes. Then, the algorithm iteratively samples random links that improve the
modularity of the subnetwork and adds them. This iterative process is repeated as long as the
modularity keeps improving. The process can be seen run on the example in Figure 6.4. One
notable aspect of our approach was the ability to define the desired number of clusters, allowing
us to tailor the clustering process to the specific requirements of the program under analysis.
The fast greedy algorithm is a hierarchical agglomeration algorithm making it faster than many
competing algorithms with the key advantage of being able to segment large graphs into any
number of communities due to its iterative nature. The algorithm’s greedy nature allows it to
detect communities on much larger graphs in almost linear time on sparse graphs like the ones
we produced with our global attention maps. However, we must also consider the greedy nature
also means it is not guaranteed to produce the optimal clusters. We believe slightly sub-optimal
communities were acceptable to facilitate reasonable compute times on the large graphs we produce.
In our case, we aimed to identify three distinct clusters corresponding to the 2 bits of colour we
aim to generate.

6.3 Results

We generated global colour labels for the SPEC2006 CPU benchmarks using the clustering algo-
rithm described. The changes in prediction performance are shown in Figure 6.5.

We see that on average there is a decrease in predictor performance. The majority of this deficit
is from the astar benchmark. However, we do see several benchmarks with tangible improvements,
suggesting the approach holds merit.

While we designed the augmented tournament global predictor architecture to be resilient to
bad colour labels, we see that competition between the coloured and uncoloured global predictor
has led to the coloured predictor being chosen when it should not have been. We hypothesise this
is because the colour was useful in one stage of the program but not for the next stage. When it
reaches the second stage the choice predictor must flip back, this delay in choosing the predictor
causes a constant contention between using the colour labels and ignoring them, and so leads to
excess misspredicts. This choice predictor delay is not an issue in the local-global tournament
of the default tournament predictor as the flip happens very few times and the local predictor is
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Figure 6.4: Fast greedy community detection on an example attention matrix. Distinct node

colours represent unique communities.

only useful while the global warms up. However, if the colour labels can consistently and reliably
provide useful information this becomes less of an issue, as the flip happens fewer times.

Another reason we believe some benchmarks suffered a performance loss is because the attention
produced by the transformer is too smooth. The transformer has a long 512 sequence length and
like most traditional transformers each token attends to other tokens in the sequence it can see.
Firstly, a token may have to attend to 511 other tokens, which results in a smoother attention
matrix which is more sensitive to training noise. We see this in Figure 6.2, where attention across
the entire map is low and not very expressive. While we do see a few fireflies, they do not provide
the community detection algorithm with enough information to make informed decisions. Instead,
the community detection algorithm tries to infer patterns in the noisy low-attention spaces. This
can lead to noise overpowering the community detection stage of the clustering process. Also, this
smoothness can be a result of the depth and complexity of the transformer. The first layer becomes
less expressive as the complexity of the model increases as the transformer can learn nuanced
patterns combining many branches and the more complex these patterns, the more obfuscated
they are in Layer 0. The more complex the patterns the less useful they are to the significantly
more simple runtime predictors. Secondly, the large sequence length, while necessary for program
phases to be uncovered can lead to the transformer attending to patterns that are not translatable
to a global predictor. The transformer can see the branch history of the particular branch it is
trying to predict and will attend to itself rather than the surrounding correlated branches we need
it to attend to identify phases in a program.

6.3.1 Dual Colouring Scheme

Our augmented tournament architecture allows us to feed both transformer-based and takenness-
based labels simultaneously. The global predictor uses the former and the local predictor uses the
latter. We see the performance benefits of the two colouring schemes complement each other.
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Default Tournament Augmented .Tournamer.lt Percentage
Benchmark Misses-per-Kilo-Instruction Misses-per-Kilo-Instruction Improvement
Global Transformer-based Labels
sjeng 14.09 13.87 1.52
mcf 20.63 20.47 0.74
hmmer 1.71 1.71 0.16
h264ref 1.57 1.56 0.34
gobmk 19.68 19.32 1.85
bzip2 6.59 6.58 0.05
perlbench 6.04 6.18 -2.39
xalancbmk 4.22 4.26 -1.14
astar 37.25 39.62 -6.37
gce 7.49 7.47 0.14
omnetpp 5.81 5.90 -1.57
Average ‘ 11.37 11.54 ‘ -1.52

Figure 6.5: Performance difference between the original tournament branch predictor and a colour
augmented tournament branch predictor fed with global colour labels derived from the learnt

attention of a transformer. Lower Misses-per-Kilo-Instruction is better.

Augmented Tournament

Benchmark Default Tournament Misses-per-Kilo-Instruction Percentage
Misses-per-Kilo-Instruction — Global Transformer-based and | Improvement
Local Takenness-based Labels
sjeng 14.09 13.51 4.11
mcf 20.63 20.47 0.75
hmmer 1.71 1.71 0.17
h264ref 1.57 1.55 1.23
gobmk 19.68 18.83 4.31
bzip2 6.59 6.58 0.06
perlbench 6.04 5.83 3.50
xalancbmk 4.22 4.27 -1.34
astar 37.25 39.62 -6.38
gce 7.49 7.45 0.41
omnetpp 5.81 5.71 1.77
Average | 11.37 11.41 | -0.39

Figure 6.6: Performance difference between the original tournament branch predictor and a colour
augmented tournament branch predictor fed with takenness local colour labels and transformer

derived global colour labels simultaneously. Lower Misses-per-Kilo-Instruction is better.

6.4 Summary

In this chapter, we demonstrated the code phase issues faced by current state-of-the-art branch
predictors and showed our method for generating global colour labels using the learnt attention of

a transformer.
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Chapter 7

Assigning Colours using a Rolling
Window Transformer

In this chapter, we will go over a method for improving the transformer-based labels using a rolling
window approach.

7.1 Rationale

We sought to improve on the shortcomings of the previous transformer-based clustering algorithm
by modifying the traditional approach of processing sequences in transformer-based models by im-
plementing a rolling window mechanism. This decision was motivated by various factors, including
the observed success of rolling window techniques in computer vision applications [29, 30], as well
as their effectiveness in predicting transient systems, such as the productivity of oil wells [31].

Program branch traces, similarly to transient systems, exhibit a dynamic nature where the
branch predictor’s memory of past branches is limited. Therefore, we believe our approach to
colouring should prioritise clustering optimisation for branches within recent memory, enabling
the predictor to make more accurate predictions based on the most relevant branch patterns.

Additionally, we drew inspiration from the Longformer architecture [32], a state-of-the-art
transformer model designed to process long sequences efficiently. One of the main limitations of
traditional transformer architectures lies in their inability to efficiently process long sequences due
to the quadratic scaling of the self-attention operation with sequence length. The Longformer
addresses this limitation by adopting a sliding window attention mechanism, resulting in a linear
scaling of computational complexity with sequence length. Similarly, our decision to implement
a rolling window mechanism reflects a parallel effort to mitigate computational challenges and
improve the model’s efficiency when processing long sequences, such as entire program traces.

While the Longformer primarily employs a sliding window attention mechanism to mitigate
the computational challenges associated with processing long sequences, our adaptation involved
using a rolling window approach to process the input sequence instead.

7.2 Implementation

We no longer split traces into 512 token sequences, and instead use a 52 token window into the
trace and progress this window 13 tokens at a time. Our 2 bits of colour information should allow
the 13 bits of global history to capture roughly 4 times more information, so our window and
progress step size reflect this statistical estimation along with concerns on memory consumption.
However, we believe the specifics of the window and progression step can be optimised further.
We also simplify the architecture of the transformer, as seen in Figures 7.1 7.2, to make the first
attention layer more expressive. The remainder of the transformer is identical to a traditional
transformer as described in Attention Is All You Need [24] and re-described in context by Sburlan
[3] The new architecture is as follows:

e sequence length of 52 tokens

e 4 encoder layers and 4 decoder layers
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Figure 7.1: A single 4 head multi-attention module used in the rolling window transformer. Ar-

chitecture based on Attention Is All You Need [24].

Decoder Multi Head Modules have 2 parts: one Masked Decoder
Self-Attention which looks at previous tokens, and one Decoder-
Encoder Attention which is fed the Encoder Keys and Values
states and Decoder Query States. As seen in Attention Is All You
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Figure 7.2: The 4 encoder layer and 4 decoder layer architecture of the rolling window transformer.
Fewer layers force the first layer Multi-Head Attention Module to learn more important weights.

Both the lower complexity and rolling window sequences aim to make the first layer attention
as expressive and useful to the dynamic global predictor as possible. However, this sacrifices the
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stability of learning that the original model had. We are now training a transformer for attention
harvesting, but its loss is still tuning the transformer to predict the correct takenness of the next
branch in a sequence. We see in Figure 7.3 that the lower complexity of our rolling window
transformer has a worse performance predicting branches and less stable training. The rolling
window nature of the input pre-processing means branches are seen several times meaning fewer
epochs can be used in the future. Although the training of our new architecture is less stable, the
lower complexity does not hurt accuracy significantly. In Figure 7.4 we see that the new model
produces significantly more expressive attention matrices. This was the goal of the new model and
demonstrates we have successfully designed a transformer architecture tuned for attention matrix
harvesting. We believe further model simplification and alternative attention mechanisms could
yield even more useful attention matrices produced in Layer 0.
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Figure 7.3: Comparison of accuracy on the validation set per epoch between the Original Trans-
former and the Rolling Window Transformer. The Rolling Window Transformer has much less
stable learning and often does not benefit from many epochs due to its lower complexity.
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Figure 7.4: Cropped global attention map using a rolling window transformer in the SPEC2006
gobmk. Cropped into identical branch addresses as Figure 6.2. We see a more expressive global
attention map.
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We trained this new transformer architecture on all training set traces, extracted the attention
map from them, and generated colour labels using the fast greedy community detection algorithm
as before.

7.3 Results

We see that there is a performance improvement over the original transformer-based labels using
our rolling window transformer. However, on average there is a decrease in predictor performance
due to astar. We see the sjeng and gobmk benchmarks be greatly improved by the addition of the
rolling-window transformer-based labels.

Augmented Tournament

Benchmark Default Tournament Misses-per-Kilo-Instruction | Percentage
Misses-per-Kilo-Instruction Global Rolling Window Improvement

Transformer-based Labels
sjeng 14.09 13.67 2.93
mcf 20.63 20.47 0.76
hmmer 1.71 1.71 0.16
h264ref 1.57 1.55 0.91
gobmk 19.68 19.14 2.76
bzip2 6.59 6.58 0.08
perlbench 6.04 6.06 -0.35
xalancbmk 4.22 4.28 -1.59
astar 37.25 39.54 -6.15
gee 7.49 7.48 0.08
omnetpp 5.81 5.91 -1.84
Average ‘ 11.37 11.49 ‘ -1.08

Figure 7.5: Performance difference between the original tournament branch predictor and a colour
augmented tournament branch predictor fed with global colour labels derived from the learnt
attention of a rolling window transformer. Lower Misses-per-Kilo-Instruction is better.

The rolling window transformer-based labels can improve on the state-of-the-art in several
programs in branch prediction performance, an area that is not only incredibly difficult to improve
on, but also paramount to the performance of modern computing. We believe these results show
that the natural language processing approach to generating colours for our augmented tournament
branch predictor is a powerful method and further refinements would yield even more favourable
results.

7.3.1 Dual Colouring Scheme

As before we tested both the local takenness-based labels and global rolling window transformer-
based labels simultaneously. We see that they complement each other and in some benchmarks
produce over 4% improvement. However, we note that in the average case, we see performance drop
due to star. The improvements in some benchmarks indicate that both the augmented tournament
architecture and clustering algorithms we use can be powerful at improving branch prediction in
the right conditions.
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Default Tournament

Augmented Tournament
Misses-per-Kilo-Instruction

Percentage

Benchmark Misses-per-Kilo-Instruction Global Rolling Window Improvement
Transformer-based and
Local Takenness-based Labels
sjeng 14.09 13.40 4.88
mcf 20.63 20.40 1.11
hmmer 1.71 1.71 0.16
h264ref 1.57 1.53 2.01
gobmk 19.68 18.78 4.60
bzip2 6.59 6.58 0.09
perlbench 6.04 5.81 3.79
xalancbmk 4.22 4.29 -1.77
astar 37.25 39.54 -6.16
gce 7.49 7.46 0.36
omnetpp 5.81 5.73 1.42
Average | 11.37 11.38 | -0.13

Figure 7.6: Performance difference between the original tournament branch predictor and a colour
augmented tournament branch predictor fed with takenness local colour labels and rolling window
transformer derived global colour labels simultaneously. Lower Misses-per-Kilo-Instruction is bet-

ter.

7.4 Summary

In this chapter, we improved our transformer-based clustering algorithm using a rolling window

approach.
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Chapter 8

Evaluation

In this chapter, we will evaluate the performance of our custom augmented branch predictor in the
Gemb simulator when fed with local and global colour labels generated by the clustering algorithms
we developed.

8.1 Performance of our Augmented Tournament Predictor

In this thesis, we developed a novel branch predictor, a colour augmented version of the tournament
predictor, which not only learns from the dynamic branch history but can also be fed with local
and global branch colour labels as an extra source of information. We have seen that modern
state-of-the-art branch prediction is very powerful and approaching the theoretical limit with the
current information supplied to them [1], therefore we sought to expand the way we think about
branch prediction by supplying the current state-of-the-art predictors with extra statically derived
information in the form of colour labels.

We designed several clustering algorithms to generate these colour labels, which included ex-
panding on the work of Sburlan’s hypothetical transformer branch predictor [3] and producing a
statistical model of branch prediction. The two most powerful clustering algorithms we produced
are a Local Takenness-based scheme and a Global Rolling Window Transformer-based scheme. In
Figure 8.1 we take the best clustering schemes per benchmark in the Spec2006 suite and compare
our novel branch predictor with the state-of-the-art comparisons presented by Sburlan. We see
tangible improvements in prediction accuracy in every benchmark versus TAGE-SC-L 64KB while
maintaining a smaller memory footprint. We also see significant improvements versus the hypo-
thetical transformer model while being a more reasonably implementable predictor architecture.

In Figure 8.2, we present the performance improvement we produce over the default tournament
predictor. In a field where state-of-the-art prediction accuracy is excellent, we were able to im-
prove it further in many benchmarks. These results show the merit of the augmented tournament
architecture and suggest that improvements to the clustering algorithms could produce even bigger
improvements with the same branch predictor architecture. We note, however, that this is the best
case for every benchmark meaning a reliable general-purpose clustering scheme to generate global
colour labels would need further research. However, we believe our local Takenness-based labels
are the optimal use of 1 bit of colour information and manage to improve prediction accuracy
reliably and in the same memory footprint as the local predictor in the default state-of-the-art
tournament.

Overall, we believe that the results achieved by our augmented tournament architecture and
clustering algorithms working in tandem are very promising and could warrant further research
into optimising clustering algorithms to supply the most useful information. Our novel branch
predictor aimed to broaden the information available to branch predictors and managed to improve
the performance of state-of-the-art predictors in most benchmarks in the SPEC2006 suite in a field
where improvements are few and far between. Furthermore, our proposed augmented tournament
architecture can provide these performance benefits while being both implementable and no more
memory intensive than its competitors and its flexible design opens the door to future research
into experiments for increasingly better colour label assignments and prediction power.
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TAGE-SC-L Transformer Augmented
64KB Accuracy Tournament Best Case
Benchmark Accuracy (%) Best Case Labelling Delta Accuracy (%)
(%) [?3 Accuracy Scheme
[3] (%)
to to
Local Global | TAGE Trans-
-SC-L former
sjeng 91.6 91.1 94.7 Ta RWT 3.1 3.6
mcf 90.4 94.5 97.0 Ta RWT 6.6 2.5
hmmer 94.9 90.4 98.0 Ta RWT 3.1 7.6
h264ref 95.6 97.7 98.5 Ta RWT 2.9 0.8
gobmk 92.1 94.1 93.5 Ta RWT 1.4 -0.6
bzip2 94.1 94.9 97.0 Ta RWT 2.9 2.1
perlbench 94.1 83.0 97.6 Ta - 3.5 14.6
xalancbmk 98.3 87.8 98.5 Ta - 0.2 10.7
astar 84.3 90.9 92.6 Ta - 8.3 1.7
gce 96.8 91.3 97.7 Ta - 0.9 6.4
omnetpp 97.7 82.8 97.7 Ta - 0.0 14.9
Average | 93.6 90.8 | 966 | | 3.0 5.8

Key for Best Case Labelling Scheme

Ta 1 bit colour of takenness-based labels.
RWT 2 bits colour of Rolling Window Transformer-based labels.
- 0 bits colour. Default predictor.

Figure 8.1: Performance comparison between TAGE-SC-L 64KB, the pure Transformer model [3],
and our augmented tournament predictor fed with best case labels. Higher Accuracy is better.
Accuracy calculated as = 100 * Misspredicts/Total Lookups.

Default Tournament ,?0 i%?;ﬂ;i Best Case
Benchmark Accuracy (%) Labelling Delta Accuracy (%)
13] Best Case Scheme
Accuracy (%)
| | Local ~ Global |
sjeng 94.58 94.72 Ta RWT 0.15
mcf 97.02 97.04 Ta RWT 0.02
hmmer 97.96 97.96 Ta RWT 0.00
h264ref 98.52 98.53 Ta RWT 0.02
gobmk 93.32 93.54 Ta, RWT 0.21
bzip2 96.96 96.96 Ta RWT 0.00
perlbench 97.52 97.65 Ta, - 0.13
xalancbmk 98.50 98.49 Ta - -0.01
astar 92.63 92.63 Ta - 0.00
gce 97.66 97.69 Ta - 0.03
omnetpp 97.63 97.68 Ta - 0.05
Average ‘ 96.57 96.63 ‘ ‘ 0.05

Figure 8.2: Performance comparison between the Default Tournament model [3] and our Aug-
mented Tournament Predictor fed with best case labels. Higher Accuracy is better. Accuracy
calculated as 100 x Misspredicts/Total Lookups. Best Case Labelling Scheme Key in Figure 8.1.
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Chapter 9

Conclusion and Future Work

9.1 Summary of Results

This thesis aimed to develop a branch predictor that learns dynamically but utilises static infor-
mation to incorporate more context into its prediction. We believe we have been successful in this
goal, as this work has produced a novel augmented tournament branch predictor architecture and
several clustering algorithms that provide static context sources for it in the form of colour labels.
The most important contributions of this work are:

e Design and simulation of a novel branch predictor (augmented tournament branch predictor)
that can be fed with separate colour labels for both the local and global sub-predictors
to widen the context it uses to make predictions. Our novel branch predictor can make
predictions based on the dynamic history, like current state-of-the-art predictors, but also
learn from a branch’s colour label which carries extra context information.

e A takenness-based clustering algorithm to generate colours for the local predictor in the aug-
mented tournament branch predictor. Compared to the default state-of-the-art tournament
predictor, we found an average improvement of 1.27% Misses-per-Kilo-Instruction across the
SPEC2006 CPU benchmark suite, with several benchmarks seeing improvements above 2.5%
and perlbench seeing improvements of 5.5%.

e Mathematical proof on the utility of the takenness-based clustering algorithm improves pre-
dictions in a constrained memory footprint for a general program.

e A rolling window transformer-based clustering algorithm to generate colours for the global
predictor in the augmented tournament branch predictor. When combined with the local
takenness-based labels, compared to the default state-of-the-art tournament predictor, we
found several benchmarks seeing improvements over 3% Misses-per-Kilo-Instruction. Com-
pared to the state-of-the-art TAGE-SC-L 64KB predictor, our augmented tournament branch
predictor fed with optimal labels achieves a 3.0% average improvement in prediction accuracy
on the SPEC2006 CPU benchmark suite, all while using a smaller memory footprint.

e A study into how to modify a transformer architecture to make its learnt attentions as
expressive and useful to the clustering algorithm as possible while not modifying its loss
function.

9.2 Limitations

While our results are promising we aim to make this work as useful to the wider academic com-
munity as possible. In this section, we aim to provide the known limitations of this work, such
that further research extending our findings can address them or take them into account. The
limitations of our work are:

e The traces of programs are formed using SimPoints to allow efficient and fast simulation of
programs. However, they only approximate full program execution which means they do not
have 100% coverage of the code.
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e While the rolling window transformer-based colour labels did improve prediction accuracy in
several SPEC2006 CPU benchmarks, the large performance drop in a few meant the average
over the suite dropped slightly. This suggests the model needs modification to produce a
more reliable set of colours that help all programs.

e The rolling window transformer model introduces several new parameters such as the window
size and step progression. The remainder of the architecture shape was tuned by hand using
intuition on how the attention matrices would react. A Bayesian Optimisation or alternative
hyper-parameter search method would be a more optimal way to tune these.

e Evaluating results on a predefined benchmark suite runs the risk of steering research towards
optimising the benchmarks rather than actual workloads used by people in practice.

9.3 Future Work

In this section, we will detail several possible ideas and research directions we believe are avenues
for future work with high potential for further improving branch prediction accuracy.

e A Statistical Model of the Augmented Global Predictor and its Labels: In this the-
sis we present an analysis of the impact of takenness-based labels based on a statistical model
of the local predictor. This allowed us to produce a clustering algorithm that confidently
provides beneficial context to the local predictor. The development of a model for the global
predictor would allow a concrete means to analyse and compare global labelling schemes,
which would pave the road for discovery of the reliable and optimal clustering algorithms to
inject extra context into our augmented tournament branch predictor.

¢ Experimentation into Discovery of New Context Sources: By creating a branch
predictor independent of the colouring scheme, we provide the framework for future work
to colour branches in unique and powerful ways. New ways of colouring branches can inject
any number of contexts and data sources into our novel branch predictor. We have created
a flexible predictor architecture that can learn from information never before used in branch
prediction and opens up a new way of looking at improving branch prediction. Future work
to generate colours based on never-before-used information sources, for example using the
trace-time Return Address Stack (RAS) state, would be immensely promising.

e Further Modifications of the Transformer Architecture: We developed the Rolling
Window Transformer in a bid to make more expressive attention matrices. However, we
believe there are several ways in which we can use the latest Natural Language Processing
techniques to improve the architecture further:

— New Loss Function: Our transformer uses a binary cross entropy loss function to
help the transformer predict what the outcome of the next token in the sequence is.
However, we do not use these predictions directly, so an alternative loss function directed
at assigning colours may be an alternative angle to approach the clustering problem.
A transformer that directly assigns colours to branches would be a powerful way to
add context to a dynamic predictor if a training dataset can be created or sourced.
Furthermore, this approach would open up new avenues for the architecture of the
transformer:

* Deeper architecture as attention matrix expressiveness is no longer a goal.

x Utilising a pre-trained transformer model and fine-tuning it for a specific program
offers significant advantages, eliminating the need for tokens to map directly to
branch addresses and allowing the model to consider both branch addresses and
disassembly. This approach reduces compile-time training and leverages the ex-
tensive knowledge from training on large datasets, thus enhancing efficiency and
accuracy. Pre-trained transformers already possess learned representations of code
patterns and structures, which, when fine-tuned, adapt to the specific characteristics
of the target program, improving prediction accuracy. Training on multiple pro-
grams allows the model to develop a generalised understanding of code behaviours,
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making it robust and versatile. By integrating both branch addresses and disas-
sembly instructions, the model gains a richer context, enabling more informed and
reliable predictions.

— Sparse Attention Mechanism: Research by Child et al. [33] for OpenAl developed
a new attention mechanism for long sparse inputs. The attention mechanism breaks the
input sequence into chunks and assigns attention to these larger chunks rather than in-
dividual tokens. This is a promising new architecture to generate more expressive global
attention maps as it would allow large sequence lengths while discouraging smoothness
across large swaths of the matrix. The principle of attending to chunks on tokens has a
natural symmetry with the idea of program phases and we believe it could be a fruitful
avenue for future research. Further reduction in the depth of the encoder and decoder
would also help complement a sparse attention model and improve the expressiveness
of the global attention map.

e Experimentation in Resource-Constrained Use Cases: We evaluated the improve-
ments of our novel branch predictor and clustering algorithms assuming a large state-of-the-
art memory footprint for all our branch predictors. However, not all computation is done
in processors that have these large resource allocations for branch predictors. Embedded
systems such as microcontrollers and memory-constrained ASICs, often operate under severe
resource limitations. In these systems, every bit of memory and processing power is pre-
cious, and traditional branch predictors with large memory footprints may not be feasible
or practical. As such, they often have far smaller dynamic histories available to them and
perform with lower accuracy. By supplementing one bit of colour information in a memory-
constrained system, it could combat limited runtime information with powerful static context.
Improvements from our colour augmentation in prediction accuracy in these smaller memory
predictors would likely be significantly larger than what we see in our evaluation.

¢ Reducing Memory Footprint of the Augmented Global Predictor: Our augmented
local predictor maintains the same memory footprint as its unaugmented counterpart as we
are confident in our ability to feed it useful context, however, we noted that the memory
requirements of our augmented global predictor are increased limit damage from poor clus-
tering algorithms. However, if future research produces reliably useful global colours then
the deeper tournament structure can be removed. This would make the space requirements
of the augmented predictor identical to the McFarling predictor [11].

¢ Recognise Program Branch Predictor Phases using BBVs and SimPoint: BBVs and
SimPoints can be used to define behaviour phases in a program which we can use to assign
colours to branches. While there is no guarantee these behaviour patterns align with the
branch predictor phases, we believe they may be similar. Furthermore, we could change the
metrics SimPoint looks at to assign behaviour phases such that it focuses more on attributes
relevant to branch prediction.

9.4 Ethical Considerations

Branch prediction is crucial in modern processors, however, it can be exploited through branch
prediction attacks. Spectre and Meltdown attacks have highlighted vulnerabilities in branch pre-
diction, affecting high-performance processors. Despite efforts to mitigate these risks, no com-
prehensive solution has emerged. We believe our research does not exacerbate these issues, but
the incorporation of program context through colour labels offers an extra avenue of attack for
malicious actors. We believe the closed compiler time generation of the colour labels and the
fact our novel branch predictor does not commit speculative instructions and can benefit from the
same mitigations for side-channel attacks currently in use. However, further detailed research into
uncovering any new channels of attack is crucial before deploying our novel branch predictor into
practice.

The world of computer architecture research is often obfuscated and often private due to the
industry’s competitive nature. Commercial interests often restrict information sharing and hinder
academic progress. To foster transparency and encourage further research expanding on ours,
our work is open-source. This includes all ML models, branch predictor simulation code and
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clustering algorithms. Our evaluation utilised the SPEC2006 CPU benchmark suite and the Gem5
microarchitecture simulator, following licensing agreements for their use.

Our research used extensive computing power to produce results. We estimate 1500 hours of
NVIDIA Quadro RTX 6000 runtime and 1000 hours of Intel Xeon CPU E5-2640 runtime were
required during the research and data collection phases of this project. This amounts to a non-
negligible carbon footprint. Based on carbon efficiency of UK power grids and power draw of
hardware components, total emissions are estimated to be roughly 100 kg CO5 eq [34]. However,
we believe our research will be able to speed up the future of computing. Better branch prediction
will allow more computations to be done in the same power envelope and reduce the carbon
emissions of future silicon.

9.5 Reflections

We believe our research was successful in fulfilling the goals we set out to, however, during this
project, we made some wrong turns that cost time and pointed us in the wrong direction. The
main wrong turn we took was designing a custom attention mechanism for the transformer. We
attempted to implement a combination attention mechanism with rolling window aspects of a
Longformer while also being sparse. This meant rewriting the entire transformer architecture from
scratch. However, after dedicating a lot of project time to it, initial testing saw unexplained poor
learning which we believe to be caused by bugs in implementation. Ultimately we abandoned it
and switched to the rolling window transformer architecture we present in this thesis, however, it
provided us with great insight into areas for future research.
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Appendix A

Analysis of Local Takenness-Based
Colour Utility

To show why takenness-based colours are useful to a local branch predictor in the vast majority
of programs, we define a hypothetical statistical model of a general-purpose program with some
assumptions. This work is referenced in chapter 5.1.1.

A.1 Define Local Predictor

We now define the model for a local branch predictor mechanism, using the law of large numbers
(LLN) [35] and assuming branch behaviour is independent. This of course obfuscates the nuances
of individual branch behaviour but allows us to study a local branch predictor in the worst-case
scenario. If colour labels can improve the worst case in the same memory footprint, it bounds the
minimum performance of the predictor, which is very valuable in improving overall performance.

For simplicity, let us assume we collected all the branches in the branches and reassigned them
pseudo program counters, such that they are consecutive. Let PC be this pseudo program counter,
which we model as a random variable.

Let there be N branches in the program. The PC at time ¢, PC;, is determined based on the
previous PC, PC;_1, and has a certain probability p of being completely random as the branch
is taken. We cannot make any further assumptions about the next PC under this taken case.
Formally, we can express this as:

PCi_1+1 with probability 1 — p

PC; = f(PCi1) =
¢ = [(PCy_1) {Uniform(O,N—l) with probability p

where f is a function that determines the next PC based on the current PC, and Uniform(0, N —1)
represents a random PC drawn uniformly from the address space [0, N — 1].

Next, we define the function, g, that takes the least significant logs (M) bits from PC; to hash
to the local history table and return the index local history table required, I. Given that N > M,
we define a surjective function g as follows:

¢:{0,1,2,...,N—1} > {0,1,2,...,.M — 1}

The function g and the local history table index, I, is defined by:

I =g(PC;) = PC; mod M ; where mod denotes the modulo operation.

The function h then returns the local history value for index h at time ¢, LH/. The time ¢ is
particular to the local history table and independent of the PC, but we will use ¢ in both places
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for ease of notation. We also can use the average branch takenness of this program, p. Given the
local history LH/ ;, the function h is defined by:

he{LH{ ,} — {LH/}

where: )
I L#J x 240 with probability 1 — p
LHy =4 Fouf
LTFIJ x 2+ 1 with probability p

Here, |-| denotes the floor function, which effectively drops the most significant bit of LH] ;,
and the term x2 shifts the remaining bits left by one position to make space for the new least
significant bit.

We then define the counter entry, C, corresponding with LH/ | to be. Note we use LH} ,
not LH} as the local history is not updated during look-up.

Prediction = Cpy1

The update rule for C, which occurs after the prediction is returned, is:

o rnaX(C'LHL1 —1,0) with probability 1 — p
EH min(Cpgr  +1,MAX)  with probability p
Here, min and max functions ensure that the saturating counter remains within the range

[0, MAX]. We have now defined the entire probability transition function space from PC to pre-
diction with a local branch predictor.

A.2 Local Predictor Behaviour without Takenness-based La-
bels

We will now use the local branch predictor definition to study its default behaviour concerning the
2 problem cases we outlined before. First, let us assume this program runs for long enough that
the function f reaches its steady state. This is a reasonable assumption for most programs. We
then define the state transitions for the function f:

e [Initial State: Assume PCy is initially uniformly distributed over the range [0, N — 1].

e Transition: At each step, PC; is equal to PC;_; with probability 1 — p, and is a uniformly
random value from [0, N — 1] with probability p.

Let’s denote P(PC; = ) as the probability that PC; is equal to some specific value i.
Given the transition probabilities:

P(PCy =) = (1—p) - P(PCroy = i) + -

To find the steady-state distribution, we assume that the distribution of PC; reaches a point
where it does not change from one step to the next. Let this steady-state probability be P(PC =
i) = ¢. In the steady state, we have:

p
= (1 — g+ =
¢=01-p)q+

Solving for ¢:
pq =

2= =
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This implies that, in the steady state, each PC value is equally likely, with probability %

So, with these assumptions of running to steady state, PC is distributed uniformly over
{0,1,2,..., N — 1} where N > M.

To show that I is also uniformly distributed, we need to show that P(I = k) is the same for all

ke{0,1,...,M—1}.

1.

Since PC is uniform, P(PC =) = & for all i € {0,1,...,N — 1}.
For a given k € {0,1,..., M — 1}, the values of PC that satisfy PC mod M = k are:

N—-1-
k,k+M,k+2M,...7k+<{kaJ>M

The number of such values is LN_I\}I_ICJ +1= %

Thus, the probability P(I = k) is:

|25

P(I=k= > P(PC:kHM):QMJH)lzN/M:l

M N N M

3=0
Since this is true for all k € {0,1,..., M —1}, I is uniformly distributed over {0,1,..., M —

With this, we can consider the 2 cases of concern:

e 1 Two branches that alias to the same history register are being seen by the
program at the same time:

Let the length of local history be LHj.,. Let us assume the local history and counters have
been fully primed for PC; as it has been the only branch they have seen and they have seen
it sufficient times. Given we have just seen a branch PCj;, it has primed LHFC:imodM an( its
corresponding counters.

We then sample from the uniform PC distribution and local history index distribution as
proven before. For two (or more) branches to alias into the same history register and be seen
by the program at the same time, we must see PC; as one of the next LH,., PCs that index
into LHPCimodM

Given that the probability of getting PC; as the immediate next branch is %, we can use the
cumulative distribution function of the geometric distribution to determine the probability
P of getting into this simultaneous aliasing situation is:

M LHien

P(Simultaneous Aliasing) =1 — (1 - N) (A1)
Although we see different aliased branches before seeing PC;, how much the aliasing changes
the local predictor state is a function of both the number of times a branch that is not
PC; is seen and how different these branches behave to PC;. We can estimate how much
damage aliasing will do by finding the probability that the branching pattern of PC; matches
an aliased branch PC;. Both PC; and PC; must have probability of being taken p4 and
pp respectively drawn from a normal distribution with mean p (the branch takenness of the
entire program). So, define p4 and pp to be probabilities drawn independently from N (p, 02),
where the standard deviation is dependent on the program. The probability density function

of p~ N(p,0?) is:
fute) = ——ep (220

e
o2 202

The probability of a sequence of N branches match between PC; and PC; can then be given
by:

1 pl N N 2
P(sequence match) = / / (Z(k)pzp%u—m)N-ku—pB)N-’“) Foa(Pa) o (P5) dpa dps
k=0
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where f,, and f,, are the PDFs for p4 and pg. We know probability distributions that p
and pp are drawn from:

1 p1 /N 2
Plsequence matet) = [ [ (Z () pzp’al—pA)N—’“(l—pB)N-’f) P o) o) dpdp
k=0
(A.2)

e 2 Two branches that alias to the same history register are being seen by the
program at different times:

Given we have the predictor primed with the branch pattern of PC;, we want to know the
probability that the next branch, PCj;, that inherits its counter and history is predicted
correctly.

Let PC; and PC; have probability of being taken p4 and pp respectively as before. Also, as
before define ps and pp to be probabilities drawn independently from A (p,o?), where the
standard deviation is dependent on the program. The local predictor is primed to PCj, so
will return taken with p4. When it encounters PC} it will predict taken with probability p4.
The probability this is correct is:

P(PCj predicted correctly) = 2paps —pa —pp +1 (A.3)

This is maximised, when p4 =0, pg =0 or py = 1, pg = 1. For a fixed p4, it is maximised
when ps = pp.

A.3 Local Predictor Behaviour with Takenness-based Labels

We will now do a similar study on the 2 problem cases we outlined before, but with a model
modified with colour labels.

With takenness labels, we want a class of branches that are 'more often taken’ and a class that
are 'more often not taken’. For this analysis lets assume unseen branches are automatically put
into the 'more often not taken’ class. Our implementation optimises this choice further, but can
be proved in an identical way.

We know about the program is on average branches are taken with probability p, and not taken
with probability 1 — p. We also have shown that the PCs are uniformly distributed when the
program runs for long enough. Let all PCs (PCy...PCy_1) be an RV that draws from a binomial
distribution. Each branch outcome is a Bernoulli trial, and we define X; as the number of "taken"
outcomes in n outcomes of PC;:

X; ~ Binomial(n, p)

We seek the probability that there are more "taken" outcomes than "not taken" outcomes, i.e.,
P(xi=3)
2
Case 1: n is even, so let n = 2k. We need X; > k:
PX;>k)=1-P(X;<k)=1-F(k;n,p)
Case 2: n is odd, so let n = 2k + 1. We need X; > k + 0.5, which is the same as X; > k:
PX;>k)=1-P(X; <k)=1-F(k;n,p)

Combining both cases:
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n

2

P(Xi < g) =F (gJ ;n,p) - jzzjo (7;)1,1(1 _p)ni

where F'(z;n,p) is the cumulative distribution function (CDF) of the Binomial distribution,
and (7) is the binomial coefficient.

Let us assume 6% of branches are seen in the training set, and the training set is represen-
tative of the program. We have 100N branches in our training set, so: 1gON( - F ({%J ;n,p))
branches are in the 'more often taken’ class and have probability of being taken > 0.5. Similarly,
1301\[ (F (L%J ;n,p)) branches are in the 'more often taken’ class and have probability of being
taken < 0.5.

However, at runtime the 101%69N unseen branches are assigned to the 'more often not taken’
class. If p < 0.5 then the new average probability of branches in the 'more often not taken’ class
being taken is < 0.5, independent of 6. If p > 0.5 then the unseen branches pull the average
towards p. Let x be the initial training set probability of branches in the 'more often not taken’
class being taken:

(100N(F(L Jin p)))er(lol%oeN)

%
1o V(F ([5]5m.0)) + 555" N

P(taken|'more often not taken’ class) =

x < 0.5. So:
P(taken|'more often not taken’ class) < p

Now we have two classes of branches. In the worst case, branches in 'more often not taken’
class have probability of being taken < p, and branches in 'more often taken’ class have probability
of being taken > 0.5.

The PC is supplied uniformly as shown previously. However, we now use only logs(M) — 1 bits
from PC; to hash to the local history table. Given that N > M/2, we define a new surjective
function ¢’ as follows:

M
5 U

The function ¢’ and the local history table index, I’, is defined by:

¢ :{0,1,2,...,N—1} > {0,1,2,...,

M
I' = ¢ (PC;) = PC; mod -

Similarly to our previous proof, I’ is uniformly distributed over {0,1, ..., % — 1}
I’ has the 'more often taken’ label prepended to it. We model this as two separate local history
tables, LHT aken and LH NotTaken as opposed to the previous LH:

— Branch is in ‘more often taken’ class:

I/
/ %kent,l x 240 with probability (1 —p;) < 0.5
LHTakentI = LHTaken!’
# x 2+ 1 with probability p; > 0.5

— Branch is in 'more often not taken’ class:

I/
% X 240 with probability (1 — pn) > p

LHNotTakentI/ =

I/
w x 2+ 1 with probability p,: <p

With this, we can consider the 2 cases of concern:
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e 1 Two branches that alias to the same history register are being seen by the
program at the same time:

We will now derive the same metrics we derived for the case with uncoloured branches, under
identical situations.

By using one fewer bit of the PC, we have a higher likelihood of aliasing. We must also
consider the two classes separately:

P(Simultaneous Aliasing)
= P(Simultaneous Aliasing | PC; € 'most often taken’ class)

+ P(Simultaneous Aliasing | PC; € 'most often not taken’ class)

We have shown before there are %N(l - F (L%J ;n,p)) branches are in the 'more often
taken’ class and they have probability of being taken > 0.5. Likewise, there are N — ﬁN (1-
F ( L%J i, p)) branches are in the 'more often not taken’ class and they have probability of

being taken < p. Therefore we have:

P(Simultaneous Aliasing | PC; € 'most often taken’ class)

LHien
RN
2555 N (1 = F ([%];n.p))

P(Simultaneous Aliasing | PC; € 'most often not taken’ class)

LHien
=1- (1— M )
2N — N1 - F([2];n,p)))

Then for P(Simultaneous Aliasing), we simply substitute the expressions:

P(Simultaneous Aliasing)

LHien
N
215 N(L = F (|5]5m,p))

.t v )
2N — 5 N(1 - F([2]:n,p)))

Comparing this to equation A.1, P(Simultaneous Aliasing) are identical in the two cases only
if 2-(1—F(|%];n,p)) =05

s a5 (2 =03

This expression indicates that as 6 approaches 100 and n approaches infinity, the given
function approaches 0.5 - our ideal situation in which we can use fewer bits of the PC to
index the local history table with no increase in aliases. These limits signify we approach the
ideal situation as the traces cover more possible branches and the traces see any given branch
as many times as possible. So the extra alias cost of our colour labels maintaining
the same memory footprint is a function of how good the training set traces are.

We can also find the counterpart to equation A.2. Our new branch takenness probabilities
are bounded, which modifies the bounds on the integrals in equation A.2. For the situation
our branches that alias into each other are in the 'more often not taken’ class:
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Branch outcomes are drawn from a new ’truncated’ normal distribution. The PDF for py
and pp, given p4,pp < p, is:

1 (z—p)?
(z) = 2ro P (_ 2" ) 2 (z —p)?
) = = ex -7

g 0.5 \V2mo? P 202

This ensures the integral of the truncated PDF over [—oo,p) is 1. Using the truncated PDF
g(x):

p rp N
P(sequence match) = / / Z
0

2
(JZ ) Pl (1 — pa)¥ (1~ p5)Y *g(pa)g(p) dpa dpp
0 k=0

Given the truncation (less than p), we outcomes of the aliased branches, p4 and pp will have
smaller variation, making both coins more likely to show heads. Therefore, the sequence
match probability for two branches in the 'more often not taken’ class is expected to be
higher compared to the uncoloured case seen in equation A.2.

Similarly for the 'more often taken’ class, the normal distribution N (p,o?) truncated at 0.5
can be written with a scaled PDF to ensure its integral is 1. Let this new PDF be ¢'(x).
Using ¢'(z):

1 1 N 2

N B _

P(sequence matCh):/ / Z<k> Papy (1 =pa)N (1 =pr)N "¢ (pa)g' (pB) dpa dpr
0.5J0.5 =g

Given the truncation (greater or equal to 0.5), we expect the pa and pp values to be larger,
making both branches more likely to be taken. Therefore, the sequence match probability is
expected to be higher compared to the uncoloured case in equation A.2 because there is less
variation and hence a lower likelihood of divergence in sequences.

So, we have proven in both classes there is an improvement in the probability that
sequence match, and so a decrease in branch interference. So using colours to assign
branches into these classes will, on average, be beneficial for predictor accuracy, given that
the dataset can divide branches close to a 50/50 split.

e 2 Two branches that alias to the same history register are being seen by the
program at different times:

When we use colour labels, we have the same probability of predicting PCcorrectly when it
inherits the predictor state from PC; as described in equation A.3:

P(PC; predicted correctly) = 2paps —pa —pp +1

However, since this is maximised when p4 = pp, our labelling scheme increases the chance

of this happening. While the distribution spans reals, the lower variance in both classes means

we reduce the expected value of [p4—pp| and so increase the expectation of P(PC predicted correctly).
Overall, we have shown that using colour labels to split branches into takenness classes im-

proves the prediction of branches that have inherited their predictor state, as the

local predictor has less warming up to do.

Hence, we have shown in all 2 cases, takenness colour labels provide a statistical advantage
for improving the predictor accuracy.
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