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Chapter 1

Introduction

1.1 Motivation

The increasingly rapid development and success of artificial intelligence (AI) has
various industries with the healthcare sector in particular keen in adopting such
technology. Capable of reading scans and making diagnoses, paired with the na-
tional shortage in staff numbers [1], Al appears to be the perfect answer - saving
significant amounts of time and manpower. While initial attempts by researchers
to build Computer-aided Detection (CAD) systems to aid tasks such as mammog-
raphy screening in the 1980s have been shown to have had overall negative impact
[2], modern architecture built with deep learning techniques have shown promising
results with increasing usage of such systems over the past few years in radiology
and oncology [3, 4].

Integrating machine learning systems into clinical workflow does not come without
risks - an incorrect diagnosis can have devastating consequences. The possibility of
such grave repercussions results in a lack of trust by adopters and many challenges
and barriers that must first be overcome [5|. Fostering trust is not an easy nor a
quick process, especially for black box classification models - models that just give
you a prediction without any particular apparent explanation. Can one unques-
tionably trust a seemingly correct prediction solely based on its high performance?
Most contemporary deep learning architecture models which consists of many com-
plex layers and parameters are black box models. While extremely powerful, these
algorithms can be hard to explain, especially to clinicians and adopters who most
likely do not have the relevant background experience in machine learning.

There are many methods that have been developed that attempt to explain an AI’s
"thought process". There are methods that are model specific and require knowl-
edge of the implementation of the Al such as Gradient-weighted Class Activation
Mapping (GradCAM) [6]. However, when you do not have access to the Al’s archi-
tecture which most often occurs when third party Al products are made available
for clinical use - only the predictions, post-hoc methods which are model agnostic
are required to evaluate these Al. One such example is Local interpretable model-
agnostic explanations (LIME) [7]. LIME is a method that perturbs various parts of
the images while keeping track of the resultant impact on the classifier’s prediction.
The areas which successfully flip the prediction are then overlayed and thresholded
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to build a saliency map which effectively highlights the regions which the AI think
are relevant to the task.

Another example is using counterfactual explanations. Counterfactual explanations
represent a methodology aimed at elucidating the rationale behind an artificial intel-
ligence’s decision-making process. This approach involves constructing an artificial
image that closely resembles the original, with minimal alterations strategically ap-
plied resulting in a different decision from the original made by the Al [8]. For
example, the most minimal changes made to a cat image that would cause the
classifier to instead predict tiger. One effective technique for generating such coun-
terfactual images involves the utilization of cycle generative adversarial networks
(GANS), each specialized in training on distinct classes [9]. Each GAN is tasked
with the translation of an image from one domain to another, or, in the context of
the classifier, from one prediction to an alternative. The visual disparities between
the original image and its counterfactual counterpart serve as the explanation for
understanding the classifier’s decision-making dynamics.

While these methods have been explored and developed in the realm of 2D images
[10], it is important to note that the extension of such techniques into the 3D domain
is still an emerging area with ongoing exploration and development. Applying these
methods to 3D medical images, which involve factors like slice thickness, is not as
straightforward as with 2D data. The added dimensionality introduces complexities,
and the curse of dimensionality makes implementing these techniques in 3D more
challenging.

1.2 Contributions

The goal of this project is to investigate and reason how image properties of dataset
can affect the quality of generated counterfactuals. Furthermore, we also develop
and extend existing state of the art counterfactual methods to support and operate
on 3D images.

We illustrate our findings using ophthalmic and artificial datasets, demonstrating
that both the classification model’s architecture and the images’ textural and shape
properties strongly impact the quality of the generated counterfactuals. We also
develop and implement an extension of the existing 2D counterfactual image gen-
eration by Zhu et al.|9] methods to work with 3D images on a different dataset
and showcase some results produced by our new extended architecture. This work
has been accepted for publication for Medical Image Understanding and Analysis
(MIUA) 2024 which has been peer reviewed and will be published as an e-book in
Frontiers in Medical Technology.



Chapter 2

Background

In this chapter, we will:

e cover the basic background knowledge on relevant machine learning terminol-
ogy and knowledge such as Convolutional Neural Networks, Generative Ad-
versarial Networks, and more to have some degree of understanding on how
counterfactuals are generated.

e provide a comprehensive literature review on some existing XAI methods as
well as Al problems and architectures that these methods rely on and exploit.

2.1 Image Classification

Image classification is a specific task within the realm of computer vision, wherein
the computer categorizes images into predefined labels. This process is commonly
accomplished through the utilization of deep learning algorithms. By providing the
model with ground truth labels and a set of training images labeled accordingly, the
objective is to train a model capable of accurately labeling similar, unseen images.
Datasets containing only two classes are referred to as binary classification, while
those with more than two are designated as multi-class classification. Models trained
exclusively on two types of images are known as binary image classifiers.

Tumour

Figure 2.1: An example of a binary image classifier that identifies brain tumours
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Image classification utilises neural network structures, like Convolutional Neural
Networks (CNNs), to unravel intricate details within visual data. The model un-
dergoes a learning process, mapping input images X to a set of predefined labels



Y by iteratively adjusting a set of parameters . Through the sequential process-
ing of images via convolutional layers, pooling, and activation functions, the model
captures relevant features crucial for accurate classification. The training objective
revolves around minimizing the loss (L) and fine-tuning of parameters  to enhance
the model’s accuracy in assigning labels to images. Given a perfect model that
perfectly maps the correct set of images to labels, we have that:

Vee XC(x;0) =X and VyeYC(y;0)=Y

where in our figure 2.1 example, x would be the images belonging to the Tumour
class, and given a tumour image, the classifier C' would give us the label Tumour
and likewise for the normal images y. The goal of the model, C| is to learn the set
of parameters 6 such that we learn the mapping above for any given image. How 6
is most typically learnt is through the usage of deep learning architecture such as
Convolutional Neural Networks.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have become the main type of models used
for image classification. Compared to traditional Artificial Neural Networks (ANN),
CNNs excel at capturing image features through the usage of convolution, pooling,
and fully-connected layers [11].

The structure of CNNs can be typically broken down into:

e The input layer. This is the first layer of the network. The layer that receives
the input to process. For images, this is the raw pixel values.

e A series of convolutional layers. These convolutional layers applies filters
(or kernels) - parameters which aim to learn and extract certain features.
Different convolutional layers can learn different features. Between each of
these layers, an activation function (such as Rectified Linear Unit (ReLu) or
Sigmoid) is applied to introduce non-linearity.

e The pooling layers. These layers downscale the dimensions of the input
data from previous layers which helps reduce the number of parameters and
consequently speeds up computation.

e The fully-connected layer. It comes after the convolutional and pooling
layers and has neurons equal to the number of classes in our dataset. This
layer plays a role in combining features from earlier layers to make the final
classification decision.
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Figure 2.2: Architecture of the VGG-16 neural network. Note the usage of convolu-
tional layers (white) that increase the number of feature maps produced and pooling
layers (red) which downscale the input to half resolution [12]

2.3 Image-to-Image translation

Image-to-image translation is another task within the realm of computer vision
where the aim is to learn a mapping function from one visual domain to another.
Given a set of paired data (X,Y) where the input domains are aligned, the goal
is to learn the optimal parameters 6 for the function F' : X — Y such that ¢ is
indistinguishable from y.

F(x:0) =y

However, this can also be achieved with unpaired data with a set of images X and a
set of images Y. As unpaired data is highly unconstrained with the lack of aligned
input domains, an additional inverse mapping G : Y — X to enforce F(G(X) ~ X)
(and vice versa) [9].
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Figure 2.3: An example of paired and unpaired datasets. Unlike paired datasets,
unpaired datasets are less constrained and therefore have many possible mappings
between the two datasets. [9]

Image-to-image translation is typically achieved with the usage of deep learning Gen-
erative Adversarial Models (GAN) which consists of 2 models, a generative model
G and a discriminator D which train with each other in a competitive manner. The
goal of the Generator is to make convincing samples that would fool the discrimina-
tor, whereas the goal of the Discriminator is to differentiate between real data and
samples generated by the Generator. The training continues until the Generator is
capable of generating indistinguishable samples which can be then used to generate
new data that resembles the training data [13].

L2 Loss
Gae Gea v

Real Image in domain A Fake Image in domain B \ Reconstructed Image

Gea generates a reconstructed image of domain A.

This makes the shape to be maintained
real or fake ? Ds when Gas generates a horse image from the zebra.

/l

Discriminator for domain B

Real Image in domain B

Figure 2.4: Unpaired Image to Image translation using a CycleGAN. The generator
G ap learns to generates a fake horse given an image of a zebra whereas the discrim-
inator D; learns to identify the origins of a given horse image. [14]



2.4 Post-hoc explanations for Image Classifiers

As seen by the complicated structures of CNNs, it is not easy to infer or explain to
someone the reasoning behind the architecture design choice and how it correlates
to an imaging classifier’s decision. Furthermore, given that access to the model’s
architecture is often limited or not given at all, the black-box nature of these models
requires methods of explanations that do not require any knowledge or access to
the model at all other than the predictions. These methods are known as post-hoc
methods and are model agnostic.

There are many types of post-hoc explainability methods but they can all be clas-
sified into two types of methods, local explainability or global explainability. Local
explainability aims to explain the AI’s behaviour on a lower level - why a certain
predictions were given for a specific data subset, what features contributed to this
decision. Global explainability on the other hand, aims to explain the overall be-
haviour of the model for the dataset.|15].

2.5 Related Work

The issue of explainability in Al has been a focal point of extensive research within
the academic community.[16]. Numerous studies have delved into methods and
techniques aimed at enhancing the transparency and interpretability of Al systems.
While methods for explainable AT have been researched and developed for 2D images
[10], the extension of such techniques to 3D images is extremely limited and remains
an ongoing area of exploration.

2.5.1 Randomized Input Sampling for Explanation of Black-
box Models

Randomized Input Sampling for Explanation of Black-box Models (RISE) is a local
explainability method that perturbs a given image by randomly masking out parts of
the image. This masked out image is then fed to the classifier where its prediction
is recorded. We repeat this process a numerous amount of times and record the
areas that were masked out that caused the classifier to change its prediction as the
masked out area most likely contained features deemed important to the classifier.
Finally, by overlaying these masked out areas and applying a threshold, we can
create a saliency map highlighting the regions with the most importance to the
classifier.
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Figure 2.5: How RISE works to generate a saliency map|17]

There are also alternative local explainability methods which can also generate
saliency maps such as LIME that do not rely on randomly obscuring the image
but instead directly creating a new dataset through perturbations.

2.5.2 Local Interpretable Model-agnostic Explanations

Local Interpretable Model-agnostic Explanations (LIME) is a type of local explain-
ability method that perturbs various parts of the images |7]. By perturbing random
parts of the image to create a new dataset, the model is then trained on this new
dataset. How close certain features in the new dataset resemble the original dataset
determines the weighting and impact a particular feature has on the classifier’s de-
cision. From this, a saliency map can be created showing which of the images had
the greatest impact.

b)

Figure 2.6: An example of LIME being applied to a Covid classifier 18]

While LIME excels at highlighting regions of the classifier’s interest, when there
are multiple features located within the region, it can be sometimes hard to tell
which feature(s) that the classifier is specifically looking at. As a result, alternate
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XAI methods have been explored and developed which address this problem and
one is counterfactuals. Counterfactuals aim to directly modify the image and in-
troduce/remove the relevant features that define class of images and this is done
by using Generative Adversarial Networks and re-interpreting the problem as an
Image-to-Image translation problem.

2.5.3 Generative Adversarial Networks

The concept of GANs was first introduced by Ian Goodfellow [13] in 2014. Unlike
other networks, the GAN consists of two models, the generator and the discrimina-
tor. The two models would play a two player mini-max game, in which the generator
would aim to generate convincing images that could feasibly exist in the distribution
of the real dataset, and the discriminator would aim to accurately differentiate the
origins of the image. Since the introduction of the GAN, many different types of
GANSs have been made with the aim to improve the training process or outputs of

the GAN.

2.5.4 Image-to-Image translation

Image-to-Image translation (I2I) is a problem typically solved using GANs in the
computer vision field with growing traction and attention due to its numerous ap-
plications in the real world ranging from image synthesis and segmentation to style
transfer or restoration [19].

Labels to Facade BW to Color

Labels to Street Scene

I o o e s s e e |l
- =

155

int i out input output
Edges to Photo

ich

output input output input output

Figure 2.7: Example applications of image-to-image translations|20]

An interesting application of Image-to-Image translation is using it to generate coun-
terfactuals. While the uses of counterfactuals have been explored by Wang et al. [21]
in 2020 to improve the mammogram classifier, Mertes et al. [22| instead explored
the usage of counterfactuals as a means of XAI. They note that the criteria that
define a counterfactual similarly define the problems and goals of an image-to-image
translation problem, that is the counterfactual should belong to the domain of the
other image, and that the counterfactual should resemble as closely to the original
image as possible.
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2.5.5 Counterfactual Instances

Counterfactual instances is an alternative local explainability method. Unlike map
based methods such as LIME which require the user to make a direct judgement of
which features within the highlighted regions are relevant, counterfactual instances
aim to directly remove the relevant features. The problem of generating counter-
factuals can be interpreted as a form of image-to-image translation - Given a set
of images X and a set of images Y, we can train a GAN that learns the mapping
between X and Y. Using the GAN to generate a counterfactual for an image, we
can use the differences of features between the original image and the counterfac-
tual instance as an explanation of which features drove the Al to make a particular
decision.

Original (normal) Translated (pneumonia) Reconstructed (normal)

Original (pneumonia) Translated (normal) Reconstructed (pneumonia)

b Ly

Figure 2.8: An example of counterfactual for a pneumonia dataset using the RSNA
Pneumonia 2018 dataset [23]. We can see that the opacity present in the lungs is
the feature the AI thinks is an indication of pneumonia as indicated by the fact
that the original image (left column) had no opacity for the normal class (top row)
or some opacity present for the pneumonia class (bottom row). The generated
counterfactuals (middle column) then introduced and removed the opacity for the
translated normal and pneumonia images respectively.

Zhu et al.|9] first proposed the algorithm for generating images with unpaired
datasets by using 2 GANs in a cycle called a cycleGAN, where each GAN is respon-
sible for learning a mapping from one image domain to another whilst enforcing
cycle consistency - F(G(X)) ~ X in the form of a cycle loss to further constrain
the possible mappings it can learn due to the nature of unpaired datasets having
less constraints and more mappings. There have been various works that use these
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techniques to create counterfactual images. Wang et al.[21] has published an al-
gorithm for counterfactual image generation for mammography classification using
breast images in order to improve their algorithm but additionally rely on the fact
that healthy human breasts should look symmetrical to guide their approach thus
limiting generalisability.

One issue with using CycleGANs to generate counterfactuals is that the generator
is generating images for the discriminator to differentiate which Mertes et al. argues
that the counterfactuals generated can only be seen as an explanation for the GAN
rather than the classifier we are trying to explain [22]. They improve on this and pre-
sented a new algorithm, which introduces an additional counterfactual in addition to
the cycle loss, and evaluated this on an RSNA pneumonia dataset and AlexNet clas-
sifier and evaluated how this method performs compared to traditional cycleGANs
as well as other explainable methods. They conclude that the new modifications
to the original cycleGAN architecture resulted in a positive impact on results as
well as surveys showing the participants preference to counterfactual explanations
over other map based explanations such as LIME and Layer-wise Relevance Prop-
agation (LRP). They note that their approach should be used where raw spatial
information provided by LIME and LRP is not enough. Counterfactuals can fill in
the weakness provided by other XAI methods such as LIME and LRP but as we will
see, counterfactuals also have their own weaknesses and inability to handle certain
datasets.
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Chapter 3

Methods

In this chapter, we cover the methods used on a technical level, how we implemented
the GANterfactual CycleGAN and the models that were used throughout the project
which the CycleGAN will try to generate explanations for. We also cover how the
models were trained and if any preprocessing steps were required.

3.1 Using CycleGANs to generate counterfactuals

There are many methods to generate counterfactual images using generative models
such as diffusion models [24] and GANs [25]. We will be focusing on using GANS,
specifically the GANterfactual CycleGAN method proposed by Mertes et al. [22],
to generate the counterfactuals for the dataset.

3.1.1 GANSs

The original GAN first proposed by Goodfellow et al. [13] generates convincing
images that follow the same probability distribution as the training dataset by having
the generator network (G, as well as the discriminator network D, play a two player
mini-max game. The generator, as the name implies, is responsible for generating
images that could appear to originate from the original training dataset whereas
the discriminator is responsible for identifying the origin of the given image. The
prediction given by the discriminator is then used to improve both networks in an
adversarial manner. We can define the objective function for the GAN as follows:

iR By, 00108 DO+ iy log(1 = DG (3.1)

where z are the images from the real dataset and z are randomly generated latent
variables. We can see that the generator wants to minimise this objective func-
tion as this indicates that the discriminator is incapable of distinguishing fake from
real images whereas the discriminator wants to maximise this to indicate that the
generator needs to perform better.
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3.1.2 CycleGANs

Since the inception of the GAN architecture, many new additions and modifications
have been made to suit various needs and purposes and one of them was the Cy-
cleGAN architecture proposed by Zhu et Al [9]. to solve unpaired Image-to-Image
translation. A CycleGAN consists of two GANs where each GAN is responsible for
learning to transform an image from a domain X to the other domain Y and the
other GAN learns the reverse. To define the objective function for the cycleGAN,
we must first define some other loss terms first. We can depict the full objective loss
function as a diagram:

Generator G P
Gx)=y Counterfactual Loss

Domain X Images _—>

AN / A /

Adversarial Loss D(G, Dy, X, Y)

Discriminator Dy
Image from Y or G(x)

Adversarial Loss D(F, Dx, Y,

A 4

Cycle
Consistency
Loss

G(F(y) =x

‘ Classifier |
F(G(x) =y

Adversarial Loss D(G, Dy, X,Y) (~ )

Discriminator Dx 1

Image from X or F(y)
- )

Adversarial Loss D(F, Dx, Y, X)

. Generator F
L Domain Y Images J—) Fly) = < Counterfactual Loss

Figure 3.1: A simplified diagram of the CycleGAN and how each loss component is
calculated. We omit the identity loss from this diagram for clarity.

Adversarial loss

We define the adversarial loss for the generator G and the discriminator Dy as:
Laan(G, Dy, X,Y) = Eypya 108 Dy (Y)] + Erpgora(@ [l0g(1 — Dy (G(2)))] (3.2)

Where G and Dy are the generator and discriminator for the GAN responsible for

learning to transform an image from domain X to Y. Similarly, we can define the
adversarial loss for the other generator F' and the discriminator Dy as:

Lean(F, Dx, Y, X) = Eppypia(@) 108 Dx (2)] + Eynpgaw[log(l — Dx (F(y)))] (3.3)

Where F and Dx make up the other GAN which is responsible for learning to
transform images from domain Y to X.
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Cycle-Consistency Loss

In addition to the adversarial losses of the two GANS, the cycle-consistency loss
enforces that an image translated to the other domain and then back to the original
domain is similar to the original image. It is defined as:

Ecycle(G> F) = Eszdata(x)H’F(G(x)) —z[l1] + Eprdata(y)[||G(F(y)) — 1] (3.4)

Identity Loss

While this loss is optional, we add this loss to encourage the generators to preserve
the colour composition and structure between the input and the output. It is defined
as:

Lidentity (G5 F) = Epopgua @) 1GY) = yll] + Eypasia 1 (2) = 2]1] (3.5)

Counterfactual Loss

In addition to all the other losses, Mertes et al. proposed an additional loss called
the Counterfactual loss [22] as they argue that generating counterfactuals without
the input of the classifier you are generating the counterfactuals for cannot be seen
as anything other than a counterfactual of the discriminators of the cycleGAN. They
define the loss as:

0
Ecounter(Ga F, C) = Ea:diata(ﬂ:)[”C2(G(x)) - (1) Hg]‘i‘

ErmalICaF W) = () 1] (39)

Where (5 is the softmax output of the classifier for the two classes given an input
translated image G(z) or F(y)

Full Objective Function:

The full objective function combines these losses. The weights Acycie; Aidentity and
Acounter control the importance of the cycle-consistency, identity and counterfactual
losses, respectively.

L(G,F,Dx, Dy) = Lcan(G, Dy, X,Y) + Laan(F, Dx,Y, X)
+ )\cycle‘ccycle(Ga F) + )\identityﬁidentity(G> F) + Acounterﬁcounter(Ga F7 C) (37)

3.2 Model training and preparation

Before we can use the CycleGAN method to explain a classifier’s decision making
for a given dataset, we must first train the models on the dataset. We aim to train
all the models to the same levels of accuracy of at least 85% on the test subset of
data and 70% for the more difficult datasets. Where available, we apply transfer
learning using pre-trained weights for the complex datasets.

17



3.2.1 Dataset preparation

All datasets (Section 4) were split into training, validation, and testing subsets with
a 7/2/1 split respectively. We use the testing subset to evaluate the accuracy of our
models for both the regular dataset as well as when generating counterfactuals. The
images were also normalised to be in the range of [-1, 1] for all models to achieve
the best results when working with Tanh layer that the GANs commonly use as the
Tanh activation function maps all values to [-1, 1] whereas pixel values range from
[0, 255].

3.2.2 AlexNet

We use the same provided AlexNet model as provided in the paper [26]. This was the
main model we used to evaluate the method as it was used. The AlexNet architecture
was first invented in 2012 by Alex et al and won the ImageNet competition [27]. It
was only after this moment that interest and development into building deeper and
better neural networks such as VGG and ResNet. AlexNet takes in images of 227
x 277 x 3 and consisted of a 5 convolutional layers, 3 pooling layers, and 3 dense
layers. Compared to the LeNet-5 [28], one of the first CNNs, the massive increase
in depth showed a correspondingly increase in performance.

Input data Convl Conv2 Conv3 Convd Conv5 FCa FCT FC8
ﬁ 13 13 = 384  13x= 13 = 384 13% 13 % 756
27 27 % 256
55x% 55 x 96 B
| | | L | 1000
227k 22T x 3 4056 4096

Figure 3.2: AlexNet Architecture Diagram|29|

3.2.3 VGG-19

We use the provided VGG models in the Keras library [30] to train our models.
AlexNet while using more convolutional layers than LeNet-5 hit a limit in resources
due to the large size of convolutions it was performing. VGG proposed by Simonyan
et al. [31] in 2014 aimed to make deeper networks by using a series of smaller
convolutions rather than 1 big convolution. This enabled them to make networks
out of VGG blocks, consisting of 1-3 3x3 convolution layers followed by a max
pooling layer, and the VGG-19 uses 19 of these blocks.
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Figure 3.3: Architecture of the VGG-16 neural network. The VGG-19 model has
the same architecture but with an additional three convolutional layers. [12]

3.2.4 ResNet-50

We similarly use the provided ResNet-50 models in the Keras library [30] in our
project. The ResNet architecture is similar to the VGG architecture in that it
consists of many residual blocks. These residual blocks however also include residual
connections between the shallow and deeper layers preventing the vanishing gradient
problem as the deeper you go, the further you back propagate, and the smaller the
gradients become until they disappear. As the number implies, ResNet-50 consists
of 50 of these residual blocks which is a huge increase compared to 19 from VGG.
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Figure 3.4: Architecture of the ResNet-50 model. [32]
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3.2.5 3D-CNN

To test our 3D implementation, we used the model proposed in the MICCAI’2020
PRIME workshop paper [33] with some minor modifications. The 3D-CNN is a 17
layer model with a series of Convolutional, Pooling, and Batch Norm 3D layers. The
architecture doesn’t differ much compared to 2D CNN other than the usage of 3D
layers.

3.3 Counterfactual Evaluation

Once the CycleGAN has trained for a sufficient amount of epochs (20 for large
datasets with more than 10,000 images, and 40 epochs for smaller datasets) whilst
saving the generators for each epoch, we generate the translated counterfactuals as
well as reconstructed images for the entire test subset and feed in these images in
addition to the original. We then calculate the accuracy for each of the subset of
images where we define a successful translated prediction to be the class that is
opposite of the original class, and the reconstructed class to be the same as the
original class. That is given an image from class 0, we would want the classifier
to predict this image as class 0, the translated counterfactual image as class 1,
and the reconstructed image as class 0 again and vice versa for the other class. In
addition, we compare the quality of reconstructed images across models using the
Mean Absolute Error (MAE) values calculated based on the differences between the
original and reconstructed images which is defined as follows:

1 n
MAE:— i—Ai
=D v — il

i=1

where y; and ¢; are the i*" pixel value in each image.
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Chapter 4

Datasets

This chapter explores the datasets with different image properties that were used
throughout the project to investigate and evaluate the GANterfactual method.

We define each image property and describe the dataset and their image properties.
Using these datasets, we investigate how these image properties such as shape and
texture can impact the quality of the generated counterfactuals as well as reason as
to why this is the case.

4.1 Requirements

To evaluate the GANterfactual method fairly, a wide range of datasets with varying
levels of complexity and image properties was used. Notably, we aim to expand the
existing experiments by evaluating the method on datasets where relevant informa-
tion was stored not just as texture but in other forms of information as well such
as structure and spatial information. Furthermore, as this method was proposed
and evaluated with a medical dataset, we primarily used publicly available medical
datasets. As counterfactuals aim to explain an image classifier trained with super-
vised learning, we also require these datasets to have discrete labels.

While this method works with multi-class classification, for the purposes of simplifi-
cation, we aim to use binary class and where necessary, preprocess some multi-class
datasets into several binary class datasets.

4.2 Image Properties

We categorise our datasets on how they store their relevant information into three
distinct categories. A dataset can express information in more than one category.

4.2.1 Textural Information

We say a dataset stores its information texturally if it we can express the image as
two distinct layers where the first layer is the original image, and the second layer
is the transformation that the CycleGAN applies to the image. Specifically, the
transformation does not require to modify the structure or features of the first layer
pertaining the original image.
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Figure 4.1: An example of how pneumonia stores its information texturally

4.2.2 Spatial Information

A dataset stores its relevant information spatially if we can express the transfor-
mation as additional embedding of small physical features or objects in the image
which can but not necessarily cause some minor modifications to the original layer.

Figure 4.2: Diabetic Retinopathy manifesting as patches in two particularly distinct
areas. [34]

4.2.3 Structural Information

For structural information, the relevant information is expressed, not as new features
or objects, but rather requires the modification of existing features that are contained
in the original image.
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Figure 4.3: The membrane existing in both images with Drusen manifesting as
bumps in the left image. [35]

4.3 RSNA Pneumonia Detection Challenge

The RSNA Pneumonia dataset, published in 2018 on Kaggle 23], was the dataset
used by Mertes et Al. [22] to evaluate their proposed method. Consisting of chest
x-rays of the chest of both normal chests and pneumonia patients stored in DICOM
format, the paper provides a preprocesser that converts these DICOMs into PNGs
which were then used to train both the AlexNet Model as well as the CycleGAN
models. Pneumonia typically manifests as an area of increased opacity in the chest.

(a) A normal chest x-ray (b) A patient with pneumonia

Figure 4.4: An example pair of images from the Pneumonia dataset
23]

This dataset exhibits relatively low feature complexity due to its greyscale nature
as well as the consistency of the features across the entire dataset. The chest is
always positioned at the center of the image with a consistent black background.
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The features that differentiate the two classes are also visually apparent and cover
the majority of the image. We note that this dataset stores relevant information as
textural information.

4.4 Diabetic Retinopathy

Diabetic Retinopathy (DR) is an eye disease that occurs with long-term diabetes.
The DR dataset, published in 2015 on Kaggle [34], consists of various coloured
fundus images stored as PNGs of various severity. It is a multi-class dataset labelled
by clinicians according to a scale of 0 (No DR present) to 4 (Proliferate DR present).
This dataset was reprocessed into a binary class task by combining classes 3 (Severe
DR) and 4 (Proliferate DR) to form a new class Severe/Proliferate where as class 0
was used as the normal class. We omit classes 1 and 2 to make the classes visually
distinct.

(a) An image of a normal retina (b) An image of a retina with extreme
DR symptoms

Figure 4.5: An example pair of images from the DR dataset [34]

This dataset is the hardest dataset that was used to test the GANterfactual method
due to its extremely complex features. In addition to being RGB images, the images
also vary a lot in many ways such as:

e Symptoms of DR - Unlike pneumonia which has a consistent transformation
between the 2 classes, DR symptoms can be identified by the presence of red
spots (microaneurysms) and yellow lesions (exudates).

e Colour - Due to how fundus images are taken, a filter or dye is applied resulting
in varying colours.

e Features of the retina - Features of the eyes such as the optical disc or the
veins, while present in every image, vary in positioning or quantity and visual

clarity.

o Artifacts - Bright crescents may sometimes exist at the edge of the retina due
to an illuminated iris
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4.5 Retinal OCT

Figure 4.6: Examples of how DR image can vary
[34]

Retinal OCT dataset, published in 2018 [35] consists of high resolution cross sec-
tion x-rays of the retina of 4 categories: Normal, Drusen, Diabetic Macular Edema
(DME), and choroidal neovascularization (CNV).

CNV DRUSEN NORMAL

Figure 4.7: Example OCT images of each class [36]

The dataset was repurposed into 2 binary datasets consisting of only DME and
Drusen. These 2 classes were chosen as each class only has a singular additional fea-
ture. In terms of complexity, these datasets rank slightly higher than the pneumonia
dataset. While both the Retinal OCT and Pneumonia dataset are greyscale with
simple transformations between the classes, DME and Drusen have extra constraints.
Drusen is between the Bruch’s membrane and the retinal pigment epithelium of the
eye where as DME is typically formed in the macular area.

4.6 Synthetic datasets

The datasets mentioned above are all extremely complex and therefore it is difficult
to disambiguate the behaviour of the CycleGAN. Therefore, in addition to some
medical datasets, some synthetic datasets were constructed by us, either from scratch
or other existing datasets in order to identify which image properties influence the
CycleGAN. For synthetic datasets that were made from other existing datasets, the
abnormal class was directly derived by applying some transformation to images from
the normal class.
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4.6.1 Synthetic Box dataset

This dataset consists of 2 extremely simple classes made from scratch. Both images
are a 512 x 512 black image with the normal class having a randomly placed grey
box. The abnormal class similarly has a randomly placed grey box but with an
additional smaller white box inside.

Figure 4.8: An example pair of images from the Synthetic Box dataset. The normal
class image (left) consists only of a grey box whereas the not normal class (right)
has an additional white box located in the center of the grey box.

This is one of the most simple synthetic datasets created with a singular consistent
transformation between the classes. The simplicity of this dataset allows for clear
demonstrations of "perfect" generated counterfactuals.

4.6.2 Box DR dataset

Similarly to the synthetic box dataset, this dataset uses boxes to differentiate be-
tween the normal and abnormal classes. However, this dataset was constructed by
us using the normal class from the DR dataset. The normal class remained the same
whereas the abnormal class was created by masking out a random part of the eye
by applying a white box in the normal images.

Figure 4.9: An example pair of images from the DR box dataset
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This dataset while more complicated due to its RGB nature as well as additional
features in the background but still remains as a simple transformation from one
class to another.

4.6.3 Synthetic Drusen dataset

This synthetic dataset was similarly created as a proof of concept mocking the
features of the Retinal OCT Drusen dataset but to a simplified degree to investigate
how the CycleGAN can deal with simple structural information. The normal class is
classified as a simple straight line whereas the not normal class has a bump located
at the center to mimic the Drusen bumps.

-

Figure 4.10: An example pair of images from the Synthetic Drusen dataset. The
normal class (left) is simply a straight line whereas the not normal class (right) has
an additional bump in the center.

4.6.4 Synthetic Box 3D

This dataset is an extension to the existing Synthetic Box dataset made for the
3D version of the CycleGAN method. Stored as a 64 x 64 x 64 numpy files, the
normal class consists of a 64 x 64 x 64 black box with a random 16 x 16 x 16 grey
box randomly placed. The not normal class consisted the same, but with a smaller
random 8 x 8 x 8 white box placed randomly throughout.
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Chapter 5

Results & Analysis

In this chapter, we describe the experiments with the previous datasets (Section 4.3 -
4.6) and models mentioned (Section 3.2). We present the generated counterfactuals
and evaluate them according to the methods described earlier (Section 3.3).

5.1 RSNA Pneumonia

Starting with the Pneumonia dataset to first recreate the experiment and results by
Mertes et al. The generated counterfactuals from the AlexNet Model was in similar
quality to the ones presented by in their paper.

Original (normal) Translated (pneumonia) Reconstructed (normal)

Original (pneumonia) Translated (normal) Reconstructed (pneumonia)

Figure 5.1: The generated counterfactual for the Pneumonia dataset. The left col-
umn consists of the original images, the center column the generated counterfactuals
by the CycleGAN, and the right column, the reconstructed images.
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The generated counterfactuals look visually convincing and similar to the Pneumonia
images. As the authors noted, they attribute the great success for this method to the
fact that the relevant information is stored texturally. Furthermore, as the images
themselves have consistent properties (e.g. chest is always centered of the image
on a black background, images are greyscale and therefore don’t vary in colour)
paired with the fact that the transformation is a simple global transformation that is
applying opacity to the center of the image, these conditions allow for the CycleGAN
to have easily generate the counterfactuals.

5.2 Diabetic Retinopathy (DR)

To further investigate how image properties can affect the performance of the Cycle-
GAN, we decided to test the DR dataset next. It is a medical dataset with visually
apparent features for the severe DR classes. Furthermore, unlike the Pneumonia
dataset, it expresses the relevant information in the form of spatial information
with local objects occurring within the image. To keep things more simple so we
can perform a more fair comparison in terms of number of features and feature com-
plexity to the Pneumonia dataset, we opted to only use the green channel of the
image to keep it single channel.

Figure 5.2: Each of the colour channels extracted and colour coded from a DR
image.

For this dataset, we used the VGG model to train and attempt to explain. The
CycleGAN failed to generate any meaningful explanations for the model.
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Original (normal)

Original (severe_proliferate) Translated (normal) Reconstructed (severe_proliferate)

Figure 5.3: The generated counterfactual for the DR dataset. We use a green colour
map to reflect the fact that only the green channel of the image was used.

For both classes, the CycleGAN learnt to simply blur the images for the DR images
and for the normal images adding some weird blurring artifacts as well. This is
most likely due to the fact that the CycleGAN has learnt that blurring the images
changes the VGG’s models prediction as it obscures the DR features for the DR
images and introduces new abnormal features for the normal images.

Given that the relevant information was not expressed texturally, paired with the
fact that the spatial information had no consistency (e.g. placement, size, shape),
this meant that the CycleGAN was unable to generalise and generate any relevant
meaningful features and instead simply blurred the image, or exaggerated the edges
of the eye (both of which are global consistent transformations). Using the test set
of 159 images for each class, we get the following results:

Original Class | Translated | Reconstructed
Normal 81.1% 100% 98.7%
Severe Proliferate 56.6% 99.4% 89.3%

Table 5.1: The accuracy of the VGG classifier when given original, translated, and
reconstructed images
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Normal | Not Normal
VGG | 0.041 0.028

Table 5.2: The mean reconstruction loss for each class

Despite the CycleGAN not generating any meaningful counterfactuals, the classifier
still had a good accuracy when given the translated counterfactual images. This
could be due to the fact that the classifier performance on the original dataset was
relatively subpar and therefore does not know how to classify the given translated
images correctly. Given the classifier responded positively to the counterfactuals, the
CycleGANs simply continued to blur the images and not learn the correct features
that represent DR. Similarly as the reconstructed images were blurrier than the
original images, they also scored a higher accuracy when fed to the model.

5.3 Synthetic Box

To test if the CycleGAN was capable of learning spatial transformations had the
dataset been more generalisable and less complex, a simple dataset that exhibited
consistent spatial transformations. For this dataset, successful counterfactuals were
generated for the VGG-19 and AlexNet models. Due to the simplistic nature of this
dataset, the more modern and powerful models such as Resnet-50 would overfit too
easily even with data augmentation techniques. Both VGG-19 and AlexNet were
able to generate successful counterfactuals for both classes.

Original (normal) Translated (not_normal) Reconstructed (normal)

Original (not_normal) Translated (normal) Reconstructed (not_normal)

Figure 5.4: A counterfactual generated by the AlexNet Model
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As we can see, the CycleGAN was capable of learning the feature that differentiates
between the two classes with the CycleGAN even preserving the inner white box
shape suggesting that the models does not just learn the classes by the presence of
white but furthermore the shape. An interesting result is that the CycleGAN is also
capable of learning general transformations that apply on a much smaller localised
area signifying that the CycleGAN can learn some localised transformations that
also vary in location as long as the placements of the transformed features are well
defined.

Given the simplistic nature of the dataset with limited features, data expressed as
textural information, as well as a simple transformation between the classes, it was
expected that this dataset would achieve the most convincing results. Using the test
subset of 200 images for each class to generate counterfactuals and evaluate the two
classifiers, we observe the following results:

Original Class | Translated | Reconstructed
Normal 100% 81% 100%
Not Normal 76% 100% 79.5%

Table 5.3: The accuracy of the AlexNet classifier when given original, translated,
and reconstructed images

Original Class | Translated | Reconstructed
Normal 100% 100% 100%
Not Normal 99% 100% 100%

Table 5.4: The accuracy of the VGG classifier when given original, translated, and
reconstructed images

Normal | Not Normal
AlexNet | 0.00011 0.0015
VGG 0.00047 0.0030

Table 5.5: The mean reconstruction loss for each class and model

We can see that the classifiers responded extremely positively to the counterfactuals
with the VGG classifier in particular performing the best which is expected based
off the quality of the counterfactuals generated for each classifier.

5.4 Synthetic DR Box

Following the success of the Synthetic Box dataset, we then wanted to test this on
a slightly more complex level while keeping the transformation the same to see if
the same level of success could be replicated. For the Synthetic DR Box dataset,
relatively successful looking counterfactuals were generated by the AlexNet model.
Unlike the simple Synthetic Box dataset, there were additional features present
such as the optical disc and artifacts such as the light bleeding that exists on some
images. Furthermore, as the placement of the box was applied randomly rather than
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following certain features such as the Synthetic Box dataset, the counterfactuals
produced has some interesting placements.

Original (normal) Translated (not_normal) Reconstructed (normal)

|

Reconstructed (not_normal)

Figure 5.5: A counterfactual generated for the VGG Model. A green colour map
was used to reflect the fact that these images were trained and generated solely from
the green channel. The generated counterfactuals (middle) created/filled in the box
for the normal and not normal class respectively.

From these images, we can see that the CycleGAN, while capable of learning general
transformations, are incapable of learning anything more complex. For example, we
can see that the CycleGAN has learnt the properties and features of the box, but
nothing beyond that as it is incapable of restoring the features that were omitted
due to the box masking. We can interpret the presence of the whiteness within the
filled box for the translated not normal class as an attempt to recreate the optical
disc as we can see in the reverse case, the CycleGAN has learnt to apply the white
box at the location of the optical disc.

As this dataset similarly reflects the properties of the synthetic dataset, it is also
expected for reasonable counterfactuals to be generated. Using the testing subset
of 50 images of each class to generate counterfactuals, the classifiers give us the
following results:
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Original Class | Translated | Reconstructed
Normal 98% 96% 100%
Not Normal 84% 100% 84%

Table 5.6: The accuracy of the AlexNet classifier when given original, translated,
and reconstructed images

Original Class | Translated | Reconstructed
Normal 100% 98% 98%
Not Normal 100% 100% 100%

Table 5.7: The accuracy of the VGG classifier when given original, translated, and
reconstructed images

Normal | Not Normal
AlexNet | 0.033 0.026
VGG 0.027 0.023

Table 5.8: The mean reconstruction loss for each class and model

The results show that both models responded positively to the counterfactuals. The
counterfactuals generated for the AlexNet model did not recreate the white box but
instead exaggerated any areas of whiteness present in the image (see Appendix A.3).
The counterfactuals generated for the VGG model on the other hand was able to
reproduce the white box which suggests that the shape of the 'white box’ generated
by the CycleGAN plays a significantly smaller role in what the AlexNet classifier
defines the classes to be.

5.5 Retina OCT - DME

To finalise the testing of spatial information, we opted for another real medical
dataset that exhibits spatial information but with a lower level of complexity and
better generalisability compared to DR. The DME dataset from the Retinal OCT
dataset had some promising results. While being a dataset that uses spatial infor-
mation like DR, this dataset on the other hand is a lot more simpler and consistent
which allows for better generalisation across the entire dataset. Unlike previous
datasets where all the models were able to succeed to some degree, the CycleGAN
was only able to produce explanations for AlexNet. This is most likely due to the fact
that AlexNet was the least powerful models of all the trained models and therefore
had to generalise more which allowed for more generic counterfactuals to influence
the classifier’s decision.
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Original (normal) Translated (dme) Reconstructed (normal)

Original (dme) Translated (normal) Reconstructed (dme)

Figure 5.6: A counterfactual generated by the AlexNet Model. The CycleGAN
created a tear in the retina for the counterfactual of the normal image (middle)

We can see that a tearing has been made in the retina for the translated normal class
which mostly accurately reflects the features and properties of DME. The tearing
added by the CycleGAN is always added to the center of the eye with a singular tear
because the CycleGAN is only capable of learning general global transformations
and as a result, is unable to add any variety to the tearing such as quantity, size or
location. Generating counterfactuals on the test subset of 242 images for each class
does not yield any surprising results.
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Original Class | Translated | Reconstructed
Normal 93.4% 0.83% 75.6%
Not Normal 93.8% 0% 100%

Table 5.9: The accuracy of the AlexNet classifier when given original, translated,
and reconstructed images

Original Class | Translated | Reconstructed
Normal 100% 0% 100%
Not Normal 92.9% 4.55% 95.9%

Table 5.10: The accuracy of the VGG classifier when given original, translated, and
reconstructed images

Original Class | Translated | Reconstructed
Normal 98.8% 0% 94%
Not Normal 95.9% 0% 97.5%

Table 5.11: The accuracy of the ResNet classifier when given original, translated,
and reconstructed images

Normal | Not Normal
AlexNet | 0.037 0.041
VGG 0.092 0.039
ResNet 0.034 0.044

Table 5.12: The mean reconstruction loss for each class and model

We can see that the results are what we expect with poor accuracy on the translated
images as we the translated images are mostly if not identical to the regular images.
We can also see that the AlexNet translated images did poorly despite generating the
most convincing counterfactuals which suggests that just because the counterfactual
could visually explain some features of DME, if it doesn’t perfectly recreate all the
features the classifiers will not give the prediction we are looking for. This can
be seen with the convincing tear in the generated counterfactual for the AlexNet
model yet poor accuracy when given these counterfactuals suggesting that it was
insufficient to influence and change the classifier’s decision.

5.6 Retina OCT - Drusen

Investigating the third kind of information, structural information, we decided to
test and train a classifier on the OCT Drusen dataset. Unlike the previous dataset,
the relevant information is expressed using already existing features, being the mem-
brane of the retina, but with some modifications to its structure. A ResNet model
was trained and the CycleGAN was unable to produce any meaningful counterfac-
tuals.
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Original (normal)

Translated (drusen) Reconstructed (normal)

Original (drusen) Translated (normal) Reconstructed (drusen)

Figure 5.7: A failed counterfactual generated by the ResNet Model

Unlike the other failed counterfactuals from the DR dataset, the CycleGAN essen-
tially did nothing here. Other than some extremely minor modifications made to
the background noise, the CycleGAN has learnt nothing. This was to be expected
as the CycleGAN is incapable of learning transformations involving structural in-
formation other than in the most simple cases. The inconsistent placement of the
retina within the image such as the retina of the image (e.g. top row of images are
placed center unlike the bottom images) paired with varying angles of the retina
(see Appendix A) making the dataset more deceptively easy than it appears to be.
Not only that, the placement of the bumps of the Drusen are inconsistent and ran-
dom, while still having more constraints on where these bumps can be, makes this
problem similar to the DR dataset. These combinations makes the generalisation
of what Drusen features extremely hard to generalise to a simple transformation
and therefore render the CycleGAN incapable of learning complex transformations
that involve structural information. If we limit the variability of the features of the
dataset and limit the complexity of the dataset, the CycleGAN is capable of learning
simple structural transformations as we will see with the Synthetic Drusen dataset.
Generating counterfactuals for the test set of 242 images for each class yielded the
following results:
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Original Class | Translated | Reconstructed
Normal 100% 0% 99.6%
Not Normal 83.5% 8.26% 85.1%

Table 5.13: The accuracy of the AlexNet classifier when given original, translated,
and reconstructed images

Original Class | Translated | Reconstructed
Normal 90.1% 0% 95.5%
Not Normal 100% 0% 100%

Table 5.14: The accuracy of the VGG classifier when given original, translated, and
reconstructed images

Original Class | Translated | Reconstructed
Normal 100% 0% 100%
Not Normal 89.2% 0.4% 97.9%

Table 5.15: The accuracy of the ResNet classifier when given original, translated,
and reconstructed images

Normal | Not Normal
AlexNet | 0.036 0.045
VGG 0.033 0.043
ResNet 0.028 0.028

Table 5.16: The mean reconstruction loss for each class and model

Similar to the DME dataset, the CycleGAN was completely incapable of generating
any meaningful counterfactuals but for all 3 models. The models predict the same
for most if not all translated images which is to be expected which is supported by
the metrics above.

5.7 Synthetic Drusen

To see if the CycleGAN are incapable of learning all types of structural transforma-
tions, a new synthetic dataset mimicking the features of Drusen was created whilst
simplifying all the other features. The CycleGAN was capable of creating decent
explanations for the VGG model.
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Original (normal) Translated (not_normal) Reconstructed (normal)

Original (not_normal) Translated (normal) Reconstructed (not_normal)

Figure 5.8: One of the best counterfactuals generated by the VGG Model

We can see that while neither explanations are perfect, the CycleGANs do transform
the images in a way that closely resembles the translated class well enough. The
reasoning for why the CycleGAN can perform well on this specific dataset is most
likely due to the fact that we have turned the Drusen transformation from a random
local transformation to a consistent global transformation - for all images, the bump
is always located at the exact center of the image. Using the test set of 100 images
for each class, we observed the following results:

Original Class | Translated | Reconstructed
Normal 100% 46% 100%
Not Normal 87% 100% 65%

Table 5.17: The accuracy of the AlexNet classifier when given original, translated,
and reconstructed images

Original Class | Translated | Reconstructed
Normal 100% 97% 94%
Not Normal 100% 100% 85%
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Normal | Not Normal
AlexNet | 0.0049 0.0067
VGG 0.0067 0.012

Table 5.19: The mean reconstruction loss for each class and model

We can see that the VGG model responded the most positive despite the fact that
not all of the transformations made by the CycleGAN were what defined the not
normal class, a singular bump in the center, (see appendix A.1) which suggests that
what the VGG defined the not normal class features to be any bumps regardless of
location and quantity.

The AlexNet model on the other hand performed worse for the translated normal
class which was to be expected as the counterfactual instances for the AlexNet
classifier were of worse quality compared to VGG’s. The difference in performance
between these models is due to the cycleGAN not working as well for AlexNet
rather than the cycleGAN training process failing as show by the similar mean
reconstruction loss for the two models.

5.8 Summary

From our various testing across all types of datasets expressing all types of infor-
mation - texturally, structurally, and spatially, we can observe that the CycleGAN
not only has affinity toward some types of information more than others, but ad-
ditionally the features and properties of the datasets and the models used can also
influence and affect the quality of the generated counterfactuals.

The CycleGAN struggles the most with structural information for any dataset that
has any moderate level of complexity in terms of features as seen with the Drusen
(Section 5.3) but with a simple enough set of features can still do some structural
modification to a certain degree as seen by the Synthetic Drusen (Section 5.4).

This similarly applies to spatial information as seen with DR (Section 5.2) where the
CycleGAN was incapable of learning any transformation for this particular dataset
due to its large complex number of features and variation in how the transformation
could be applied. In contrast, the Synthetic DR box dataset shows that simplifying
the transformation enough allows the CycleGAN to learn the transformation and
even recreate some features albeit to a minimal degree. Not only that, it is capable
of learning transformations that rely on local information and apply them to specific
relevant regions meaning this method is also capable of working with transforma-
tions that take place on a smaller scale (rather than the global transformation on the
whole image as was the Pneumonia dataset). We see this best with the Synthetic
Box dataset (Section 5.6), where with strict set of features and transformations were
defined, the CycleGAN was capable of not only applying the correct transformation
but even preserving other details such as the shape and size of the box in addition
to the colour.
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There can also be a compromise between not learning any transformations and
learning a perfect transformation, and instead have an imperfect, but understand-
able transformation as we could see with DME (Section 5.5). We can see that with
DME that the CycleGAN has learnt a transformation that partially reflects the na-
ture of DME as the CycleGAN can only learn a generalised transformation across
the entire dataset. Notably, only the AlexNet model was consistently explainable,
where the visual tearing produced for most if not all images unlike the other two
models where very occasionally faint tearing can be seen. This is most likely due to
the weaker capabilities of the AlexNet model having to generalise more and there-
fore having more meaningful feedback and influence on the training process of the
CycleGAN compared to the other two models. Note that despite an imperfect but
visible explanation was created for the AlexNet model, the AlexNet model still re-
sponded poorly to the generated counterfactuals which show that while imperfect
explanations may be satisfactory for humans, this will not be the case for the clas-
sifier.

From the results generated for the Pneumonia and Synthetic Box dataset (Section

5.1, 5.6), the CycleGAN was most capable of reconstructing the relevant features as
they were stored in a textural format which the CycleGAN operates best with.
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Chapter 6

3D Extension

In this chapter, we go into depth explaining our 3D implementation and how this
differs from the original method. We also share some results generated from our 3D
implementation for our 3D Synthetic Box dataset.

6.1 3D CycleGAN Architecture

For the 3D extension, the CycleGAN must first be extended to support 3D im-
ages with an additional dimension (Depth), images with dimension, (Height, Width,
Depth, Channels). To support this, we can preserve the architecture structure and
simply modify the layers to take an additional dimension and this is done by replac-
ing instances of 2D specific layers, such as Pooling layers, with their 3D counterpart.
We also need to modify the input size as well.

Some other modifications that are required to support 3D images is in the nature
of how 3D images are stored compared to 2D. While existing ML libraries such as
Keras [30] have lots of support for directly loading 2D images with common formats
such as PNGs or JPEGs, 3D images are stored in unconventional formats such as
Numpy (npy), NIFTT or DICOM which require additional implementation to use
these image formats. As a result, a custom dataloader is needed that supports npy
dataset that will be used to train the CycleGAN and classifier.

6.2 3D Classifier

In addition to extending the original CycleGAN architecture to support 3D images,
we also need a 3D classifier to not only generate counterfactuals for but to also
incorporate in the training process of the CycleGAN. 3D Classifiers have already
been extensively researched and implemented meaning implementing one is fairly
simple. For, this experiment, we implemented the 3D-CNN classifier proposed in
the MICCAI'2020 PRIME workshop paper [33] with minor modifications to the
output layer to output prediction probability for each class rather than just the
class as the outputs were needed for the CycleGAN’s training process.
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6.3 3D Image Loader

Unlike 2D images where we can view the entirety of the image in one go and do a
direct comparison, we could only do a comparison of the 3D images on a slice by slice
(layer) basis. A 3D image comparison tool was built using Matplotlib [37] which
allowed to load 3 3D images at once (the original, translated, and reconstructed
image) with synchronised slice viewing to allow for direct comparisons.

6.4 3D Synthetic Box Dataset

To test our 3D Extension, we decided to recreate the Synthetic Box dataset as a 3D
dataset as we wanted to see if the concept of a CycleGAN would also extend and
work for 3D images. To test this proof of concept, a simple dataset with a simple
global visually obvious transformation would be best as a baseline as if this method
does not work for a simple dataset, then the implementation will also unlikely work
for anything more complex.

6.5 Results

We evaluate the generated counterfactuals in a similar manner as defined previously
(Section 3.3).

The 3D counterfactuals generated by the 3D GANterfactual did not perform as well
as the 2D dataset. While the correct feature (white box) was able to created in the
correct location (inside the grey box), the other properties of the correct feature (size
of box) as well as other features of the dataset such as keeping the outer grey box
was not correctly preserved. In addition, the reconstructed images failed to resemble
the original images as well. For the not normal class, while successful in getting rid
of the feature that defines the not normal class (the white box) the CycleGAN failed
to generate counterfactuals with any resemblance to the target class.

Translated Volume - Slice 19 Recons Volume - Slice 19

Original Volume - Slice 19

Figure 6.1: An example counterfactual generated for normal image for the 3D-CNN
Model
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Translated Volume - Slice 24 Recons Volume - Slice 24

Original Volume - Slice 24

Figure 6.2: An example counterfactual generated for not normal image for the 3D-
CNN Model

Using the test subset of 25 images to generate counterfactuals and feed to our
classifier, we observe the following results:

Original Class | Translated | Reconstructed
Normal 100% 100% 0%
Not Normal 100% 96% 100%

Table 6.1: The accuracy of the 3D-CNN classifier when given original, translated,
and reconstructed images

Normal | Not Normal
3D-CNN | 0.016 0.018

Table 6.2: The mean reconstruction loss for each class

We can see that the normal reconstruction was poor which was expected as the
reconstructions did not resemble the original class at all. We also can see that the
translated image accuracy was high for both classes which indicates that the classifier
uses the presence/absence of the white box when predicting the class irrespective of
the shape and size.
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Chapter 7

Discussion

This chapter briefly recounts our findings and contributions (Section 5, 6) as well
as discusses possible avenues for future work. We also cover some possible ethical
concerns due to the nature of the work involving counterfactuals.

7.1 Summary

We have examined how the properties of a dataset and a model’s architecture can
impact the quality of its generated outputs. For datasets that express relevant
information texturally or spatially as simple general transformations (i.e. the coun-
terfactual class can be represented as two layers consisting of the original image as
one layer, and the transformation that the cycleGAN applies as the second layer),
the cycleGAN produces meaningful results. This can be seen in the Synthetic Box,
Pneumonia and DME datasets (Section 5.1, 5.5, 5,6). The differences in performance
between these datasets is likely due to being able to construct the Pneumonia and
Synthetic Box examples through one simple consistent transformation across all im-
ages, whereas DME can be described as a singular but varying transformation. The
DR and Drusen datasets both require several complex transformations to be applied
or the modification of the original first layer, respectively, which the cycleGAN fails
to learn. However, we have also demonstrated that if the dataset and transformation
is simple enough, the CycleGAN is capable of learning structural transformations
as shown with the Synthetic Drusen dataset (Section 5.4).

Furthermore, we extend this state of the art CycleGAN method to support 3D im-
ages and demonstrate its functionality on the 3D Synthetic Box dataset (Section
6)

7.2 Future Work

7.2.1 Improving the original CycleGAN method

We note that one of the shortcomings of this method is that the CycleGAN method
struggles for datasets that have large variety of feature placements and local rather
than global transformations. However, as seen by the Synthetic Box dataset and
Synthetic Drusen dataset, if we reduce the complexity and variation of the dataset
enough, the CycleGAN is capable of learning transformations that are not global
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and textural. It would be interesting to see if either modifications to the CycleGAN
architecture, or other methods such as preprocessing can help it perform better on
these kind of datasets.

7.2.2 Investigating Real 3D Datasets

Our project has limited investigation into the realm of 3D. In medical settings, the
use case of 3D images is much more common and widespread. As such, testing on
real 3D datasets to see if the 3D extension has similar capabilities would be next.
Furthermore, should this be the case, investigating if image properties that affect
counterfactual quality for 2D will still similarly hold for 3D images.

7.3 Ethical Consideration

As this research was conducted on publicly available datasets, this project is exempt
from ethical approval. All datasets procured and used have already been processed
and anonymised appropriately by the companies who submit to open source websites
such as Kaggle as this is required by Kaggle.

This project focuses on the work of Generative Al and specifically counterfactuals.
While counterfactuals are used here as a form of XAl in order to explain and reason
a classifier’s decision to foster trust in the users and adopters, it is possible to use
counterfactuals for more nefarious purposes such as creating fake and misleading
content.
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Appendix A

Extra Counterfactual Images

This chapter contains some extra counterfactual images generated that couldn’t fit
into the results chapter without obscuring the results. We include some interesting
and other types of imperfect counterfactuals that were generated by the CycleGAN.

A.1 Synthetic Drusen

Original (normal) Translated (not_normal) Reconstructed (normal)

Original (not_normal) Translated (normal) Reconstructed (not_normal)

Figure A.1: An example of an imperfect generated counterfactual (middle) for the
AlexNet model. For the not normal counterfactuals, removing the bump is enough
to change the model’s prediction without having to fill in the missing gap.
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Original (normal) Translated (not_normal) Reconstructed (normal)

Original (not_normal) Translated (normal) Reconstructed (not_normal)

Figure A.2: A different transformation used when generating a counterfactual for
the VGG model. Note how the translated images (middle column) do not perfectly
replicate the features from the original image (left column) but is sufficient to change
the VGG model’s prediction indicating that some features such as positioning or
quantity of the bumps do not impact the classifier’s decision

A.2 Drusen



Original (normal) Translated (drusen) Reconstructed (normal)

Original (drusen) Translated (normal) Reconstructed (drusen)

Original (normal) Translated (drusen) Reconstructed (normal)

Original (drusen) Translated (normal) Reconstructed (drusen)

Figure A.3: Some examples of Drusen images. Note how the image properties such
as positioning, orientation, quantity of Drusen bumps vary a lot resulting in the
CycleGAN struggling to generate any meaningful counterfactuals (middle).

A.3 DR BOX
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Original (normal) Translated (not_normal) Reconstructed (normal)

Original (not_normal) Translated (normal) Reconstructed (not_normal)

Figure A.4: A counterfactual generated for the AlexNet model on the DR Box
dataset. Unlike the VGG counterfactual, no white box was introduced but this was
sufficient to change the AlexNet model’s prediction.
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