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Abstract

Both local and stochastic volatility models are widespread and popular models for pricing deriva-
tives. Both have distinct benefits over each other, with the local volatility model introduced by
Dupire in [1] being able to perfectly fit to all currently observed option market quotes for one un-
derlying, while featuring unrealistic volatility dynamics. Stochastic volatility models on the other
hand provide realistic volatility dynamics making them suitable for pricing and hedging of exotic
options depending on these dynamics, but can not consistently be perfectly calibrated to market
quotes.
Stochastic local volatility models are a newer class of models that seek to combine the advantages
of both of the former models and thus eliminate their drawbacks. Due to their success in ac-
complishing this stochastic Local volatility models have become the industry standard for Foreign
Exchange and Equity Exotic derivative pricing.
However the calibration of Stochastic local volatility models is an involved and challenging prob-
lem.
In this thesis we will briefly introduce local stochastic volatility models from a theoretical stand-
point and then attempt to develop, by compiling methods and ideas from existing literature, a
generic framework for a stable calibration of one factor stochastic local volatility models based
on numerically solving a highly non linear 2 dimensional partial differential equation using finite
difference methods.
We will further exemplify this generic framework by calibrating three different local stochastic
volatility models and discussing the results, highlighting in which cases satisfactory calibration can
be archived, and where further improvements on our methodology are needed.
Finally we will discuss advantages and disadvantages of the three example models based on our
numerical results.
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Introduction

Although revolutionary for the field of option pricing, the option pricing framework introduced
by Black and Scholes in [2] was quickly found to be an insufficient model of reality, as it can not
be consistent with all market prices of European options for one underlying at the same time,
and features very unrealistic volatility dynamics, as real world evidence shows that volatility is
not constant over time. Quickly extensions of the Black-Scholes model were developed in order to
correct its issues. The two major ones of these being stochastic volatility models, where not only
the price but also the volatility of the underlying are modeled as stochastic processes, and Dupire’s
local volatility model [1], where the volatility of the underlying is modeled as a deterministic
function of the price of the underlying and time. Both of these model families provide major
advantages over the Black-Scholes model: Stochastic volatility models display a lot more realistic
volatility dynamics than the Black-Scholes model and the local volatility model is consistent with
all observed market prices of European options on a single underlying.
However stochastic volatility models in general can not fit all market prices perfectly, and the local
volatility model displays unrealistic volatility dynamics. Hence it would be ideal to have a class
of models which combines the strengths of both models. Stochastic local volatility models, first
introduced by Jex et al in [3, Equations 4-6, page 7] in the context of trees, and further developed
in a continuous setting in [4] and [5] aim to do just that.
By modelling the volatility of the underlying partially as a stochastic process and partially as a
function of the underlying and time stochastic local volatility models are effectively a hybrid of
the local and stochastic volatility model. It can be shown through a theorem due to Gyöngy [6],
which will be introduced later, that stochastic local volatility models can inherit the property of
perfectly fitting vanilla option market prices from the local volatility model. Furthermore due to
the stochastic component of the volatility they can also archive realistic volatility dynamics.
The price one has to pay for this is that the calibration of stochastic local volatility models is
quite involved. In this thesis we are going to study the calibration of one factor stochastic local
volatility models, following a partial differential equation based approach laid out in [5]. Our aim is
to provide a general easily adaptable framework combining current literature on the topic that will
allow to calibrate any kind of one factor stochastic local volatility model. We will exemplify this
framework by calibrating three different popular stochastic local volatility models and critiquing
our numerical results.

The Thesis will be structured as follows: In Chapter 1 we will provide some mathematical
background by recalling some definitions and results from the theory of stochastic differential
equations that will be used throughout the thesis and moreover will allow us to formulate the
two main results the calibration procedure will be based on. Then in Chapter 2 we are going to
introduce the local volatility model and in Chapter 3 stochastic volatility models and discuss their
respective strengths and weaknesses. Furthermore in Chapter 3 we will take a closer look at three
specific stochastic volatility models, stating some of their properties that will come in handy later
down then line when they will be used as the basis for the local stochastic volatility models under
consideration in this thesis . Following that we will introduce stochastic volatility models in general
, and the three models used throughout this thesis in particular, from a theoretical perspective in
Chapter 4 and thereafter discuss their numerical calibration in Chapter 5. Finally in Chapter 6 we
will share our numerical results for the calibration of all three models, use the calibrated models
to price forward starting options to investigate if all three of our chosen stochastic models indeed
display distinct volatility dynamics from the local volatility model and discuss the advantages and
disadvantages of choosing a specific one out of these models based on the results.
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Chapter 1

Stochastic Differential Equations

Since the models we consider in this thesis are all expressed as stochastic differential equations,
from here on SDEs, we will quickly recall some results from the theory of SDEs that will be
repeatedly used in the following chapters. Mainly the goals of this chapter are to develop the
machinery to state and understand a theorem due to Gyöngy [6] which will later allow us to
calibrate stochastic volatility models to market prices, and to understand the connection between
the transition probability density of a stochastic process and a certain partial differential equation
that will also play a big role in calibrating stochastic local volatility models.
Throughout this chapter we will assume that every probability space (Ω,F ,P) is a stochastic basis,
that is, it is complete and admits a filtration (Ft)t≥0 that satisfies the usual conditions that the
filtration is right continuous and F0 contains all P−Null sets. Furthermore we shall assume that
every stochastic basis we consider supports a m-dimensional F-Brownian motion (Wt)t≥0.
Consider the SDE {

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt

X0 = Z
, (1.0.1)

where Z is a square integrable Rn valued random variable independent of the filtration generated
by the Brownian motion and µ : Rn × [0,∞) → Rn and σ : Rn × [0,∞) → Rn×m are Borel-
measurable functions. Here µ(x, t) is called the drift vector, σ(t, x) the dispersion matrix and
a(t, x) := σ(t, x)σ(t, x)⊤ the diffusion matrix.
First and foremost we need to understand what it means to be a solution of (1.0.1). Two concepts
for this that will be introduced now exist.

Definition 1.0.1 (Strong Solution). Denote the filtration generated by the Brownian motion W
as FW and define the joint filtration of Z and W augmented by the P- null sets N with
Gt := σ((σ(Z) ∨ FWt ) ∪N ).
We say a stochastic process X = (Xt)t≥0 is a strong solution of (1.0.1) if

1. X is adapted to (Gt)t≥0

2. P(X0 = Z) = 1

3. Xt = X0 +
∫ t
0
µ(Xs, s) ds+

∫ t
0
σ(Xs, s) dWs almost surely

4.
∫ t
0
|µ(Xs, s)|+ σ2

i,j(Xs, s) ds <∞ P− a.s. for all t > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Definition 1.0.2 (Weak Solution). We say (1.0.1) admits a weak solution if there exists a prob-
ability space (Ω,F ,P) with a filtration (Ft)t≥0, and a pair of processes X,W adapted to this
filtration, so that W is a Brownian motion and X satisfies conditions 2-4 from 1.0.1

Remark 1.0.3. The main difference between a strong and a weak solution is that for a weak
solution the process X need not be a measurable with respect to the filtration generated by the
Brownian motion.

With the notion of solutions of SDEs in place the next natural step is to establish existence and
uniqueness results. As it turns out the familiar existence and uniqueness result from the theory of
ODEs generalises to the SDE case.
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Theorem 1.0.4 (Existence and uniqueness of strong Solutions). Assume that the drift vector and
dispersion matrix of (1.0.1) are Lipschitz continuous and have linear growth, that is there exists
K > 0 so that

|µ(x, t)− µ(y, t)|+ ||σ(x, t)− σ(y, t)|| ≤ K|x− y|

and
|µ(x, t)|2 + ||σ(x, t)||2 ≤ K2(1 + |x|2)

for every x, y ∈ Rn and t ∈ [0,∞), where

||σ(x, t)||2 =

n∑
i

m∑
j

σi,j(t, x)
2.

Then there exists a continuous, square integrable strong solution X to the SDE (1.0.1). Moreover
this solution is unique in the sense that for every other strong solution Y to (1.0.1) relative to the
same Brownian motion

P({Xt = Yt, t ≥ 0}) = 1.

This is usually referred to as X,Y being indistinguishable.

For a proof of 1.0.4 we refer to [7, Theorems 2.5, 2.9, Chapter 5.2, pages 287, 289]. In one
dimension this result can be extended to hold under milder assumptions on the dispersion matrix.

Theorem 1.0.5 (Yamada-Watanabe). Consider again the SDE (1.0.1) with n = m = 1. Assume
the drift coefficient is Lipschitz continuous and the dispersion matrix satisfies

||σ(x, t)− σ(y, t)|| ≤ h(|x− y|),

where h : [0,∞)→ [0,∞) is strictly increasing with h(0) = 0 and for every ε > 0∫ ε

0

1

h2(x)
dx =∞,

then there exists a unique strong solution with uniqueness again understood as in 1.0.4

See [7, Proposition 2.13, Chapter 5.2, page 291,Corollary 3.23, Chapter 5.3, page 310] or [8,
Theorem 1, page 164].
If it is known that a solution for a particular SDE exists, for example due to one of the two theorems
presented above, the next step is then the qualitative study of this solution. As alluded to a major
quantity of interest here are the marginal distributions of the solution. They can be characterised
as the solution to the so called Fokker-Planck, or Kolmogorov forward, partial differential equation.

Theorem 1.0.6 (Fokker-Planck Equation). Assume the conditions on µ, σ in 1.0.4 hold and X is
the strong solution of (1.0.1), and its transition distribution function given that Xs = y for t > s
admits the density ps,y(·, t).
Additionally let µ, σ be continuous in t, the diffusion matrix be uniformly positive definite, meaning
for all v, x ∈ Rn, t ∈ [0,∞) there exists c > 0 so that

v⊤a(t, x)v ≥ c|v|,

and ∂xµ, ∂xa, ∂
2
xa satisfy the Lipschitz and linear growth condition in x.

Then ps,y is the unique solution to the PDE{
∂p
∂t = −

∑N
i=1

∂
∂xi

(µp) + 1
2

∑N
i=1

∑N
j=1

∂
∂xi∂xj

(ai,jp)

p(s, x) = δy(x)
. (1.0.2)

See [9, Theorem 10.9.11, page 226].
Lastly we state the main result of this chapter. A theorem by Gyöngy [6, Theorem 4.6, page
516] that shows that, given a stochastic process that is the solution to an SDE with quite general
coefficients, it’s possible to construct another SDE with ”simpler” coefficients so that it’s solution
has the same one dimensional marginal distributions as the former process. As alluded to earlier this
will be central to calibrate local stochastic volatility models by linking their marginal distribution
to that of the local volatility model which will guarantee a perfect fit to market prices of European
options.
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Theorem 1.0.7 (Mimicking Theorem). Consider a filtered probability space (Ω,F , (Ft)t≥0,P).
Let X be a Rn valued Ito-process given by

Xt =

∫ t

0

µs ds+

∫ t

0

σs dWs, t ≥ 0,

where µ is a bounded, Rn valued (Ft)t≥0 adapted process and σ is a bounded, Rn×m matrix valued
process adapted to the same filtration as µ. Furthermore assume that the diffusion matrix is
uniformly positive definite.
Then there exist Lebesgue measurable functions µ̂, Rd valued, as well as σ̂, Rn×m valued, defined
on Rn × [0,∞), so that

µ̂(x, t) = E[µt |Xt = x],

σ̂(x, t)σ̂⊤(x, t) = E[σtσ
⊤
t |Xt = x],

P-almost sure, for Lebesgue almost all t. Moreover the SDE{
dX̂t

X̂t
= µ̂t dt+ σ̂t dŴt

X̂0 = 0

admits a weak solution X̂ so that Xt and X̂t have the same one-dimensional marginal distributions
for all t ≥ 0.

Due to the usefulness of this result for financial mathematics, that will be elucidated in the
following chapters, it still receives attention and more recently has been extended in [10, Corollary
3.7, page 1592 ] to hold under weaker conditions on σ and µ, merely requiring

E
[∫ t

0
(|µs|+ ||σsσ⊤

s ||) ds
]
<∞, with random intital value X0 ̸= 0, and even for suitable functions

of X.
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Chapter 2

The Local Volatility Model

2.1 Implied Volatility

Black and Scholes with their paper [2] , which introduced the eponymous Black-Scholes model,
revolutionised the theory of derivative pricing.
Under this model, given a filtered probability space (Ω,F ,P), the risk-neutral dynamics of the
stock price process (St)t≥0 are given by the SDE

dSt
St

= r dt+ σ dWt, S0 > 0, (2.1.1)

where r is the instantaneous risk-free interest rate and σ the instantaneous volatility.
We will assume a slight generalisation of (2.1.1) allowing for bounded on any finite interval, time
dependent but deterministic instantaneous rate (rt)t≥0 and dividend yield (qt)t≥0. The risk neutral
dynamics of the stock price under this generalised model then become:

dSt
St

= (rt − qt) dt+ σ dWt, (2.1.2)

which admits a unique strong solution up to any finite time T > 0 by Theorem 1.0.4.
In [2, Equation 13, page 644] a formula for the price of a European Call option at inception
for an asset following (2.1.1) is derived. Assuming dynamics (2.1.2) this formula generalises as
follows: Denoting the value of a European Call option on an underlying with current spot S0 at
inception with strike K and maturity T > 0, under the assumption that S is given by (2.1.2), by
CBS(S0,K, T, σ), then

CBS(S0,K, T, σ) := S0e
−TQTN (d+)−Ke−TRTN (d−), (2.1.3)

with

d± :=
log
(
S0

K

)
+ T (RT −QT )
σBS

± σBS

2
,

σBS := σ
√
T ,

RT :=
1

T

∫ T

0

rs ds,

QT :=
1

T

∫ T

0

qs ds,

and N the cumulative distribution function of a standard normal random variable.
We notice that

∂CBS

∂σ
(S0,K, T, σ) = e−TQT S0N ′(d+)

√
T > 0,

for all σ > 0 and thus (2.1.3) is strictly increasing in σ. Furthermore

lim
σ→0

CBS(S0,K, T, σ) = e−TQT S0 −Ke−TRT ,

lim
σ→∞

CBS(S0,K, T, σ) = e−TQT S0.
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Since under our assumptions on the rate and dividend yield for no-arbitrage reasons the market
price of a European Call option with strike K and maturity T CMkt(K,T ) has to satisfy

CMkt(K,T ) ∈ (e−TQT S0 −Ke−rT , e−TQT S0),

we can thus conclude, due to the strict monotonicity of CBS in σ, that there exists an inverse
mapping, the so called implied volatility

σimp :

{
(e−TQT S0 −Ke−rT , e−TQT S0)→ (0,∞)

CMkt(T,K) 7→ σimp(K,T )
, (2.1.4)

so that when plugged into (2.1.3) one uniquely recovers the market price of the option, i.e.

CMkt(K,T ) = CBS(S0,K, T, σimp(K,T )).

.

2.2 The Local Volatility Model

Since in disagreement with the Black-Scholes model European Call options exhibit implied volatil-
ities that are not given by

σimp(K,T ) = σ
√
T ,

for some σ > 0, but display dependence on K and T, see Figure 2.1, the Black-Scholes model can
not be consistent with all market prices for the vanilla options on a given underlying. To introduce
some terminology that we will use from here on out, let us point out that due to the usual shapes
of σimp(·, T ) for fixed T this phenomenon is usually referred to as the volatility smile or smirk,
again see Figure 2.1.
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Figure 2.1: SPX ask implied volatility on 2019-02-05 at different maturities as a function of log( K
FT

).

It is therefore desirable to find a model that is consistent with all the observed vanilla option
prices at the same time.
In [1] Dupire shows this problem can be solved by a diffusion model where the instantaneous
volatility is a function of t and St. That is he proposes the risk-neutral dynamics

dSt
St

= (rt − qt) dt+ σloc(St, t) dWt. (2.2.1)

11



This has the desirable effect that the local volatility model retains the completeness of the Black-
Scholes model, allowing for all options to theoretically be hedged using tradable assets.
Now recalling that the price of a European option is fully determined by the marginal distribution
of the underlying’s process under the risk neutral measure we can interpret the process given by
(2.2.1) as the mimicking process of a more complicated ”true” price process obtained through an
application of Theorem 1.0.7.
However as we we have no knowledge of this ”true” process, we can not use 1.0.7 to infer an
exact expression for the local volatility σloc. Instead in [1] Dupire makes use of Breeden and
Litzenberger’s observation [11, Equation 2, page 627] that the risk neutral marginal probability
density may be recovered from the market prices of European Call options by differentiating twice
with respect to the strike. Through equating this density with the Fokker-Planck equation for
(2.2.1) Dupire obtains a formula for the local volatility term. Let us now present this derivation
following [12, Pages 9-11].
Letting p(·, t) denote the risk neutral marginal density of the stock price at time t, the undiscounted
price of an European Call with strike K is given by

C(K,T ) =

∫ ∞

K

(x−K)p(x, T ) dx. (2.2.2)

Then by the Leibniz-rule

∂KC(K,T ) = −
∫ ∞

K

p(x, T ) dx, (2.2.3)

∂2KC(K,T ) = p(K,T ). (2.2.4)

On the other hand assuming the conditions of 1.0.6 are satisfied the Fokker-Planck equation applied
to (2.2.1) yields

∂p

∂T
= −(rT − qT )

∂

∂x
(xp) +

1

2

∂2

∂x2
(σ2
locx

2p).

Now differentiating (2.2.2) with respect to T and substituting the Fokker-Plank equation we obtain

∂

∂T
C(K,T ) =

∫ ∞

K

[
−(rT − qT )

∂

∂x
(xp(x, T )) +

1

2

∂2

∂x2
(σ2
loc(x, T )x

2p(x, T ))

]
(x−K) dx.

Integrating by parts we get, assuming that p decays to 0 sufficiently fast as |x| → ∞,

∂

∂T
C(K,T ) =

∫ ∞

K

(rT − qT )xp(x, T )−
1

2

∂

∂x
(σ2
loc(x, T )x

2p(x, T )) dx.

Substituting (2.2.2) for the first term of the integral yields

∂

∂T
C(K,T ) = (rT − qT )

(
C(K,T ) +

∫ ∞

K

Kp(x, T ) dx

)
−
∫ ∞

K

1

2

∂

∂x
(σ2
loc(x, T )x

2p(x, T )) dx.

Finally integrating the second integral, still assuming sufficiently fast decay of p, and substituting
our expressions for the derivatives of the Call with respect to strike (2.2.3) we arrive at Dupire’s
equation

∂

∂T
C(K,T ) = (rT − qT )

(
C(K,T )−K ∂

∂K
C(K,T )

)
+
σ2
loc(K,T )K

2

2

∂2

∂K2
p(K,T ),

which can be rearranged as

σ2
loc(K,T ) =

∂TC(K,T )− (rT − qT ) (C(K,T )−K∂KC(K,T ))
1
2K

2∂2KC(K,T )
. (2.2.5)

So since by construction the marginal density of the local volatility model matches the market
implied risk neutral density the local volatility model will perfectly match the market prices.
However in practice we do not observe a continuum of listed options. Therefore (2.2.5) can not
be directly applied to compute the local volatility for arbitrary strike and expiry, but instead
first a continuous in time and strike surface of vanilla option prices needs to created. This is
usually accomplished by interpolating market quotes in implied volatility either using traditional
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interpolating techniques, where special care has to be taken not to create static arbitrage during
interpolation, or by fitting a parametric function to the market implied volatilities.
For the latter approach a popular parametrisation is given by the SVI/SSVI family of models, see
[13], that offer parametrisations of either individual volatility slices or the whole surface. A great
advantage of the SSVI model over traditional interpolation is that conditions on its parameters
were derived in [13] and [14] that guarantee the generated surface to be arbitrage free. On the
other hand due to their parametric nature models like SSVI may struggle to fit some volatility
smile shapes.
In general the proper interpolation of implied volatilities is a still actively discussed and important
topic in quantitative finance which we shall not further dwell on.
Lets us instead discuss some of the limitations of the local volatility model.

2.3 Limitations of the Local Volatility Model

As discussed in the previous section the main attractive feature of the local volatility model is that
it is consistent with market prices of European vanilla options since it perfectly fits the market
implied marginal probability distributions. The problem with this approach is that it pins down
future volatility as a deterministic function of the underlying’s price which leads to unrealistic
dynamics of the volatility process, since this way there is no model imposed on the conditional
transition probabilities of the underlying, instead everything in the model is determined by the
current observed marginal distributions. Essentially using local volatility we impose that the be-
havior of volatility in the future is fully determined by today’s market conditions, which is an
unreasonable assumption.
From a pricing perspective the lack of a model on the conditional transition probabilities is prob-
lematic since these come into effect when pricing exotic options that depend on the evolution of
volatility over time.
As an example consider entering at time t0 a forward starting Call with strike K for a future fixing

date T1 and expiry T2, so that t0 < T1 < T2, which has payoff
(
ST

ST1
−K

)+
. If we knew the implied

volatility surface at time T1 we would know the value of this option at time T1 and then could
simply obtain it’s current value by discounting. Clearly then the value of the option depends on
the dynamics of the volatility surface over time.
Under the Black-Scholes framework (2.1.2) the price of this product can by obtained by making
use of the tower property:

EQ
[
e−

∫ T2
t0

rs ds

(
ST
ST1

−K
)+]

= EQ
[
e−

∫ T1
t0

rs dsEQ
[
e−

∫ T2
T1

rs ds

(
ST
ST1

−K
)+

|FT1

]]
= e−

∫ T1
t0

rs dsCBS(1,K, T2 − T1, σ).

Given a price CF(K,T1, T2) for such an option the forward implied volatility σimp(T1 |K,T2) is
then defined as the value so that

e
∫ T1
t0

rs dsCF(K,T1, T2) = CBS(1,K, T2 − T1, σimp(T1 |K,T2)). (2.3.1)

The relation (2.3.1) then allows us to study the dynamics of the volatility surface for a given model
by computing the prices of forward starting options CF under this model and backing out the
forward implied volatility.
For the local volatility model it can then be observed that the forward volatility surface σLV

imp(T1 | ·, ·)
flattens out as T1 →∞.
This happens since as shown in [15, Corollary 3.7, page 240] and [15, Theorem 5.1, page 243] the
implied volatility surface under any kind of martingale model necessarily flattens out in the sense
that

lim
T→∞

sup
k1,k2∈[−M,M ]

|σimp(k, T )− σimp(k, T )| = 0 for allM ∈ R,

and assuming the derivative with respect to k exists

lim
T→∞

sup
k∈[−M,M ]

∣∣∣∣∂σimp(k, T )∂k

∣∣∣∣ < 4
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where the the spatial variable in σimp was changed to log-moneyness. It can then be inferred from
Dupire’s equation (2.2.5) that the local volatility skew ∂σloc

∂k flattens in the same sense, which in
turn causes the forward implied volatility to flatten out too, see [12, Chapter 8, pages 102-103] for
details. Additionally we will give examples in 6.2 where we compare the forward smile generated
under local volatility to those of stochastic local volatility models.
This is in contrast to reality where it is observed that future implied volatility surfaces are on
average more skewed than what the local volatility model predicts, meaning the local volatility
model systematically miss prices options with forward starting features.
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Chapter 3

Stochastic Volatility Models

The shortcomings of the local volatility model discussed in the previous section lead us to consider
models in which the instantaneous volatility is modeled as a stochastic process driven by its own
Brownian motion.
A general one factor stochastic volatility model under risk neutral measure takes the form{

dSt = (rt − qt)St dt+ σtSt dWt

dσt = µ(t, σt) + λ(σt, t) dBt
, (3.0.1)

where W,B are Brownian motions with covariation [W,B]t = ρt for some |ρ| ≤ 1. Let us remark
that for the existence of a unique strong solution to the above SDE it is sufficient to establish it
for the volatility process since then we can formally solve for the generalised geometric Brownian
motion for S as

St = S0 exp

(∫ t

0

(rs − qs)−
1

2
σ2
s ds+

∫ t

0

σs dWs

)
which can be verified to hold indeed by considering the stopping time τn := inf{t ≥ 0 |σt > n}.
Up to this stopping time σt is bounded and the stopped formal solution is indeed a solution to the
SDE for the stopped process Sτn . Finally limn→∞ Sτnt → St almost surely.
However as noted in [16], to which we refer for a rigorous discussion of this matter, additional
constraints on ρ and the coefficients of the volatility process are needed to ensure among others
martingality and existence of moments for S.
We will now introduce some specific choices for the volatility process σ and highlight some of their
features that will become important in the later part of this thesis where these processes will play
the role of the stochastic component of the local stochastic volatility models.

3.1 The Scott-Chesney Model

In [17, Equation 7, page 426] Scott proposes to model the volatility as an exponential Ornstein-
Uhlenbeck process, which is further developed with Chesney in [18]. For our purposes we let the
mean reversion level be time dependent, essentially taking the well known one factor Hull-White
interest rate model as the log-volatility process. The stochastic volatility model then takes the
form 

dSt = (rt − qt)St dt+ σtSt dWt

σt = exp(Yt)

dYt = κ(θt − Yt) dt+ λ dBt

(3.1.1)

where κ, λ > 0 and θ is a bounded function with domain [0,∞). The existence of a unique strong
solution for the volatility process follows from Theorem 1.0.4, moreover since the SDE for the log
volatility is linear we can solve it analytically and obtain

Yt = Y0e
−κt +

∫ t

0

κθse
κ(s−t) ds+

∫ t

0

λeκ(s−t) dWs. (3.1.2)
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Since the integral against Brownian motion of a deterministic function is normally distributed it
follows from (3.1.2) that

Yt ∼ N
(
Y0e

−κt +

∫ t

0

κθse
κ(s−t) ds,

λ2

2κ
(1− e−2κt)

)
. (3.1.3)

This provides us with an interpretation of the parameters θ and κ : For constant θ > 0 as t→∞
Yt converges in distribution to a normal random variable with mean θ and variance λ2

2κ . Thus θ
characterises the mean reversion level and κ the speed of mean reversion of the log-volatility.
Summing up under the Scott-Chesney model, the volatility process is mean reverting and strictly
positive, both desirable features agreeing with empirical observations. Furthermore the instanta-
neous volatility and thus also the instantaneous variance follows a log-normal distribution, which
in [19, Figure 4, page 12 , Section 5, page 14 ] was found to be a good approximation of real
realised variance behavior.
A drawback is that no closed or semi closed form formulas for European Vanilla options exists
under this model, which makes calibrating the parameters to market prices by optimisation ex-
pensive forcing one to rely on estimation, which can sometimes appear to be more of an art than
a science, given that instantaneous volatility is not directly observable.
Another problem is that the fat tail of the volatility distribution can cause infinite moments of the
stock price, which is problematic for pricing applications.

3.2 The Mean reverting Log-Normal Model

Another popular stochastic volatility model is the so called mean reverting log-normal volatility
model, also known as the inverse Gamma model, with dynamics{

dSt = (rt − qt)St dt+ σtSt dWt

dσt = κ(θ − σt) dt+ λσt dBt
(3.2.1)

where κ, θ, λ > 0. The name log-normal here refers to the volatility being a log-normal diffusion
meaning [σ, σ]t =

∫ t
0
λ2σ2

s ds.
Existence and uniqueness of the volatility process in (3.2.1) follows from Theorem 1.0.4 and we
can solve the linear SDE for the volatility as

σt = σ0e
−(k+ 1

2λ
2)t+λBt + κθ

∫ t

0

e−(κ+ 1
2λ

2)(t−s)+λ(Bt−Bs) ds.

From the solution it immediately follows that for initial value σ0 > 0 the volatility process will be
strictly positive. To verify that the parameters κ, θ can be interpreted as mean reversion speed
and level like in the Scott-Chesney model we calculate

E [σt] = σ0E
[
e−(κ+ 1

2λ
2)t+λBt

]
+ κθE

[∫ t

0

e−(κ+ 1
2λ

2)(t−s)+λ(Bt−Bs) ds

]
= σ0e

−κt + κθE
[∫ t

0

e−(κ+ 1
2λ

2)(t−s)+λ(Bt−Bs) ds

]
.

Since the integrand in the second term is strictly positive by Fubini-Tonelli we can exchange
expectation and the integral. Then

E
[
e−(κ+ 1

2λ
2)(t−s)+λ(Bt−Bs)

]
= e−κ(t−s).

Substituting this back in yields

E [σt] = σ0e
−κt + κθ

∫ t

0

e−κ(t−s) ds = σ0e
−κt + θ(1− e−κt) (3.2.2)

and confirms our interpretation. Unlike for the Scott-Chesney model though the full distribution
of Vt is not known, but the stationary distribution is known to be an inverse gamma distribution
[20, Appendix A.2, page 22 ] which has probability density function

pΓ−1(x |α, β) = βα

Γ(α)
x−α−1e−

β
x (3.2.3)

16



with β = 2κθ
λ2 and α = 1 + β

θ . While again we lack closed form formulas for pricing of vanillas,
an efficient approximation for Europan Put options was derived in [20, Theorem 3.1, page 9] and
thus the parameters can be derived by calibrating the model to market prices. On the other hand
as an application of [16, Theorem 2.4, page 7] S is an integrable martingale only if ρ ≤ 0 and St

has moments up to m ∈ N only if ρ < −
√

m−1
m [16, Theorem 2.5,2.6, page 9].

In summary the mean reverting log-normal model retains the good properties of the Scott-Chesney
model, being mean reverting, strictly positive and through being a log-normal type diffusion model
displaying realistic volatility dynamics, while on top of that having a more straightforward calibra-
tion procedure. However it suffers from the moment explosion problems faced by the Scott-Chesney
model as well.

3.3 The Heston Model

Finally we briefly discuss the arguably most popular stochastic volatility model, which was intro-
duced by Heston in [21, Equations 1,4, pages 328,329 ] where he assumes the dynamics

dSt = (rt − qt)St dt+ σtSt dWt

σt =
√
Vt

dVt = κ(θ − Vt) dt+ λ
√
Vt dBt

(3.3.1)

where κ, θ, λ > 0. Here existence and uniquness of the variance and thus also the volatility process
follows from the Yamada-Watanabe condition 1.0.5 with h =

√
·. An important result about

the variance process, the so called square root process, is that it remains strictly positive with
probability 1 if it satisfies the Feller condition

2κθ

λ2
≥ 1 (3.3.2)

see [22, Chapter 6.31, pages 98,101-103 ]. For the Heston model to produce prices in line with
the market this condition has to often be violated though so in general under the Heston model
variance and thus also volatility are not strictly positive. The mean and variance of Vt are given
by [23, Equation 3.23, page 66]

E[Vt] = V0e
−κt + θ(1− e−κt)

V(Vt) = V0
λ2

κ
(e−κt − e−2κt) + θ

λ2

2κ

(
1− e−κt

)2
from which it can be seen that also this time κ, θ may be interpreted as the mean reversion speed
and level. Additionally the distribution is known to be

Vt ∼
χ2( 4κθλ2 , 2ctV0e

−κt)

2ct
, (3.3.3)

where χ2(α, β) denotes a non central χ2 distribution with α degrees of freedom and non centrality
parameter β, and ct :=

2κ
(1−e−κt)λ2 [23, page 65].

The popularity of the Heston Model stems from the fact that a semi closed form formula, in
terms of the characteristic function of St, for the price of European Call options was derived in
[21, Equations 12-18, pages 330-331]. This allows one to, since European Vanilla prices can be
computed very efficiently, obtain the parameters in (3.3.1) by minimising the difference between
the model and the market prices, instead of estimating them from historical data.
In summary the Heston model is the most analytically tractable among the stochastic volatility
models we introduced, and has the most simple calibration procedure, but the volatility may
become 0 and in [24, Figure 6, page 3175, Section 6, page 3164] the non central χ2 distribution
of the variance process was found to provide a less good fit to market data than the previous two
log-normal type diffusion models.
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3.4 A Solution to the short comings of the Local Volatility
model?

As discussed in the previous three sections stochastic volatility models can reproduce realistically
the dynamical features observed in realised volatility, like mean reversion or distribution of changes.
Adding to that they don’t suffer from the forward smile flattening, in the same way as the local
volatility model, see [25, Section 3.3, page 9] for a discussion of this for the Heston model, and
Section 6.2 where we will give examples of forward smiles under stochastic local volatility. They
are thus preferable for pricing and hedging of exotic options depending on volatility dynamics.
Still stochastic volatility models like the ones we presented here have a significant weakness in
comparison to the local volatility model. Due to their parametric nature they can in general not
fit the whole implied volatility surface perfectly. As vanilla options are frequently used in hedging
of more exotic options it is highly undesirable that a model prices the vanilla options inconsistently
with the market.
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Chapter 4

The Stochastic Local Volatility
Model

In view of the last two chapters for the pricing of exotic options we would like to have an op-
tion pricing model that can fit the current implied volatility surface perfectly and features realistic
stochastic volatility dynamics, in essence we would like to have a mixture of the local and a stochas-
tic volatility model. Risk neutral dynamics for such a model can be written as an extension of
(3.0.1) by adding a deterministic local volatility component L(·, ·), the so called Leverage function.
The SDE describing this mixture model, which from now on we shall call Stochastic Local volatility
model, short SLV model or SLVM, then becomes{

dSt = (rt − qt)St dt+ L(St, t)σtSt dWt

dσt = µ(σt, t) dt+ λ(σt, t) dBt
. (4.0.1)

Such a kind of model, at least in the context to trees was first introduced in [3, Equations 4-6,
page 7]. Another early reference to a similar model, this time in a continuous time setting, can be
found in [4, Equation 8, page 64] where Lipton introduces his universal volatility model which adds
jumps to (4.0.1). A pure continuous time SLVM as stated here is first introduced and discussed
in [5, Equations 1,2, page 138]. In our presentation of calibrating SLV models we will follow the
main approach laid out in the latter and its extensions in subsequent literature.

4.1 General calibration of SLV models and well posedness

One of our stated goals with the SLV model is to capture the whole implied volatility surface
perfectly. The question then arises how L should be choosen to accomplish this. Recalling that the
implied volatility surface generated by a SLV model is completely determined by the 1-dimensional
marginal distributions of (4.0.1) leads us to the following result.

Theorem 4.1.1 (Calibration of SLV models). Suppose the dynamics of the underlying are described
by (4.0.1) then the SLV model matches the market implied volatilities perfectly if and only for all
K,T > 0

L(K,T ) =
σloc(K,T )√

E[σ2
T |ST = K]

(4.1.1)

Proof. The proof is a direct application of the mimicking theorem 1.0.7. Since the Local volatil-
ity model produces the correct marginal distributions, we just need (4.0.1) to have the same
1-dimensional marginal distributions as (2.2.1). For this to hold by the mimicking theorem, which
we can apply under the mild assumptions of the drift vector and diffusion matrix being integrable,
using that σloc and L are deterministic functions of K and T

σloc(K,T ) =
√
E[L2(ST , T )σ2

T |ST = K]

= L(K,T )
√
E[σ2

T |ST = K].

The only if follows from the local volatility being the unique one dimensional diffusion model that
matches the market perfectly.
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We note that the conditional expectation in (4.1.1) depends on the joint distribution PXT
of

ST and σT . Thus the SDE describing the dynamics of a calibrated SLV model takes the general
form

dXt = µ̃(Xt, t,PXt) dt+ λ̃(Xt, t,PXt) dZt

for a 2-dimension standard Brownian motion Z. Processes of this form were first studied in [26]
and are known as McKean-Vlasov processes. Altough the existence and uniqueness theorem 1.0.4
can be extended to this setting [27, Proposition 1, page 902] the Lipschitz assumption does not
hold for the specific form of McKean-Vlasov process we are working with so this theorem does not
apply. To make the discussion more concrete we denote the joint transition density of S, σ as p
and rewrite the conditional expectation as

ψ(K,T ) := E[σ2
T |ST = K] =

∫∞
0
σ2p(K,σ, T ) dσ∫∞

0
p(K,σ, T ) dσ

. (4.1.2)

Then (4.0.1) becomes {
dSt = (rt − qt)St dt+ σloc(St,t)√

ψ(St,t)
σtSt dWt

dσt = µ(σt, t) dt+ λ(σt, t) dBt
. (4.1.3)

In [28, Proposition 3, page 29] it is shown that the existence of strong solutions to this Integro-SDE
can be equivalently studied by considering the associated Fokker-Planck PDE,

∂p

∂t
(x, y, t) = − ∂

∂x
[(rt − qt)xp(x, y, t)]−

∂

∂y
[µ(y, t)p(x, y, t)]

+
1

2

∂2

∂x2
[
σ2
loc(x, t)

ψ(x, t)
x2p(x, y, t)] +

1

2

∂2

∂y2
[µ(y, t)p(x, y, t)]

+ ρ
∂2

∂x∂y
[λ(y, t)

σloc(x, t)√
ψ(x, t)

yxp(x, y, t)], (4.1.4)

since the existence of triple a (S, σ, p) that is a strong solution to (4.1.3) implies the existence of a
solution to (4.1.4) and vice versa.
Using this correspondence Tachet derives an existence result on bounded domains B ⊂ R2 provided
that for some coordinate transformation f and (x, y) ∈ B , σ = f(y) and f is not too far from
constant in B [28, Theorem 5, page 38]. Since for numerical solutions of (4.1.4) the domain needs
to be truncated and singular initial conditions need to be regularised this result in most cases
guarantees existence of solutions to the associated numerical problem [28, Proposition 6, page 55],
at least when the volatility of volatility is not too large. More recently existence of a solution to
(4.1.3) given that σt = c+ pLV (St, t)g(St, Yt, t), where pLV denotes the density of the local volatil-
ity model, Y is a general diffusion process of form (1.0.1) and g is a bounded function so that
g(s, y, t)σloc(s, t) is Lipschitz in (x, y) uniformly in t was shown to hold [29, Section 2.3, page 7].
The SLV models we consider in this thesis though will be based on the stochastic volatility models
introduced in chapter 3 where the volatility process does not meet the assumptions required in
[29]. The existence or non-existence of solutions to (4.1.3) in unrestricted domains with σ given by
some popular stochastic volatility model such as the ones presented in chapter 3 remains an open
problem.

Turning back to the problem of calibration, we need to calculate L given by (4.1.1). We already
discussed how to calculate σloc from market data so this can be seen as given. The main problem
is to find the conditional expectation ψ (4.1.2).
For this two main approaches are discussed in the literature. The first one introduced in [5] works
with the Fokker-Planck equation (4.1.4), solving it for the joint density to calculate ψ by its integral
representation. The other, Monte Carlo based, approach introduced in [30] and [31] works directly
with the SDE (4.1.3) simulating it one step at a time and then using the empirical distribution at
the next step to calculate ψ. More recently also attempts have been made to calibrate LSV models
using machine learning [32] and optimal transport techniques [33].
We will adopt the Fokker-Planck PDE approach since we work with one factor stochastic volatility,
meaning that the volatility process is driven by a single Brownian motion. This leads to a two
dimensional Fokker-Planck equation which can numerically be handled efficiently. For multi factor
stochastic volatility processes or the addition of stochastic interest rates the PDE would become
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too high dimensional to be handled efficiently. In this case Monte Carlo based techniques become
necessary.

4.2 The Fokker-Planck Equation calibration Algorithm

To simplify the Fokker-Planck equation for our SLV model (4.0.1) we transform the stock process
into log-moneyness coordinates, and furthermore represent σ as a function of a process Y which
will help us when substituting concrete stochastic volatility dynamics into the general calibration
framework we shall develop as well as staying consistent with our notation for the Fokker-Planack
PDE. The SDE for the SLV model is now given by

St = S0e
Xt

dXt = [(rt − qt)− 1
2 L̃(Xt, t)

2f(Yt)
2] dt+ L̃(Xt, t)f(Yt) dWt

X0 = 0

σt = f(Yt)

dYt = µ(Yt, t) dt+ λ(Yt, t) dBt

(4.2.1)

with L̃(x, t) = L(exS0, t). By abuse of notation from now on we shall just write L instead of L̃.
The Fokker-Planck equation (4.1.4), with p now denoting the joint transition density of X and Y ,
is then transformed to

∂p
∂t = − ∂

∂x [(rt − qt)−
1
2L

2f(y)2]p− ∂
∂y [µ(y, t)]p

+ 1
2
∂2

∂x2 [L
2f(y)2]p+ 1

2
∂2

∂y2 [λ
2(y, t)]p+ ρ ∂2

∂x∂y [Lλ(y, t)f(y)]p

p(x, y, 0) = δ0(x)δY0(y)

. (4.2.2)

Here δu denotes the Dirac measure centered in u ∈ R. Let us denote by G ⊂ R the set that Y
takes values in.
The following algorithm is then proposed by Ren et al in [5, page 139] to bootstrap the Leverage
function :

Algorithm 1: Leverage Function Bootstrap

Discretise (4.2.2) in time between 0 and T maturity as {t0, t1, · · · , tN};
At t0 = 0: L(0, 0) = σloc(S0,0)

f(Y0)
and p(x, y, t0) = δ0(x)δY0

(y);

for i ∈ {1, · · · , N} do
Numerically solve (4.2.2) using L(·, ti−1) and p(·, ·, ti−1) to obtain p(·, ·, ti);
Set ψ(x, ti) =

∫
G
f(y)2p(x,y,ti) dy∫
G
p(x,y,ti) dy

;

Set L(x, ti) =
σloc(e

xS0,ti)√
ψ(x,ti)

;

Before diving into the numerical implementation of the calibration algorithm 1 let us first
introduce the concrete SLV models we will work with for the remainder of this thesis.

4.3 The Madan-Qian-Ren Model

In [5, Equations 1,2, page 138] Ren et all introduce a SLV extension of the Scott-Chesney model
(3.1.1), which we will refer to as the MQR model,

dXt =
[
(rt − qt)− 1

2L
2(Xt, t)e

2Yt
]
dt+ L(Xt, t)e

Yt dWt

X0 = 0

dYt = κ(θt − Yt) dt+ λ dBt

Y0 = 0

θt := −λ
2

2κ (1 + e−2κt)

(4.3.1)

with λ, κ > 0. Originally Ren et all assumed 0 correlation between the Brownian motions, but we
will allow them to be correlated with instantaneous correlation ρ ∈ [−1, 1] as also done in [34, Page
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2]. From (3.1.3) we can see that with the choice of θ made here E[e2Yt ] = 1 for all t ≥ 0. Then
at least formally from (4.1.1) we can see that in general L should be similar to σloc. The model is
thus in spirit constructed as a local volatility model with stochastic multiplier.
In Section 3.1 we commented on the Scott-Chesney model being prone to moment explosions of the
stock process. For the MQR model this should be significantly mitigated due to leverage function
deleveraging the volatility in the far wings.
The Fokker-Planck equation for the MQR model is given by

∂p
∂t = − ∂

∂x [(rt − qt)−
1
2L

2e2y]p− ∂
∂y [κ(θt − y)]p

+ 1
2
∂2

∂x2 [L
2e2y]p+ λ2

2
∂2

∂y2 p+ ρλ ∂2

∂x∂y [Le
y]p

p(x, y, 0) = δ0(x)δ0(y)

. (4.3.2)

4.4 The Tataru-Fisher Model

In [35, CHapter 2, page 2] Tataru and Fisher introduce their SLV model based on the mean
reverting log-normal model (3.2.1)

dXt =
[
(rt − qt)− 1

2L
2(Xt, t)Y

2
t

]
dt+ L(Xt, t)Yt dWt

X0 = 0

dYt = (1− Yt) dt+ λYt dBt

Y0 = 1

. (4.4.1)

From (3.2.2) it follows that E[Yt] = 1 for all t ≥ 0, so similarly to the MQR model, the Tataru-
Fisher model is constructed as a local volatility model with a stochastic multiplier, and we again
expect L to be similarly shaped to σloc. Also similarly to the MQR model the moment explosion
problem of the mean reverting log-normal model should be strongly mitigated by the presence of
the leverage function.
The Fokker-Planck equation reads

∂p
∂t = − ∂

∂x [(rt − qt)−
1
2L

2y2]p− ∂
∂y [(1− y)]p

+ 1
2
∂2

∂x2 [L
2y2]p+ λ2

2
∂2

∂y2 [y
2]p+ ρλ ∂2

∂x∂y [Ly
2]p

p(x, y, 0) = δ0(x)δ1(y)

(4.4.2)

4.5 The Heston SLV Model

The Heston SLVM is the most studied one factor SLVM in the literature. Some early references
studying its calibration using the Fokker-Planck PDE approach include [22] and [36],[37], who do
not apply a transformation to the variance process in the Heston model. But as pointed out in [38,
Slides 20-24] this can amplify issues with the conservation of the probability mass, which can lead
to unstable or inaccurate calibrations as we will discover next chapter, that make it advisable to
transform the variance process to log coordinates, essentially pushing the problematic boundary
at 0 away to infinity. The dynamics of the Heston SLVM are then given as

dXt =
[
(rt − qt)− 1

2L
2(Xt, t)e

Yt
]
dt+ L(Xt, t)e

1
2Yt dWt

X0 = 0

dYt =
[
(κθ − 1

2λ
2)e−Yt − κ

]
dt+ λe−

1
2Yt dBt

Y0 = log(V0)

, (4.5.1)

for some initial variance V0 > 0. Unlike the previous two models the Heston SLVM is not con-
structed in a way that for any parameters on average instantaneous volatility or variance are around
1. Thus we can not expect the leverage function to be similar to the local volatility. Another way
to see this is that due to the on average very large value of the stochastic volatility in the Tataru-
Fisher or MQR model without the leverage function these models would not be able to fit market
quotes well at all and the largest part of the smile has to be explained by the leverage function.
Since the stochastic volatility component for the Heston SLVM is the pure Heston model without
any restricted parameters, which can capture the implied volatility surface reasonably well by itself,
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we expect a larger part of the market smile to be explained by the stochastic volatility component.
The Heston SLVM therefore should be interpreted as a stochastic volatility model with a local
volatility correction term and not as a local volatility model with a stochastic multiplier like the
other two models.
The Fokker Planck equation for (4.5.1) is given by the following:

∂p
∂t = − ∂

∂x [(rt − qt)−
1
2L

2ey]p− ∂
∂y [(κθ −

1
2λ

2)e−y − κ]p
+ 1

2
∂2

∂x2 [L
2ey]p+ λ2

2
∂2

∂y2 [e
−y]p+ ρλ ∂2

∂x∂y [L]p

p(x, y, 0) = δ0(x)δlog(V0)(y)

. (4.5.2)

4.6 A brief digression on mixing Weights

So far in our discussion we have assumed the correlation and volatility of volatility ρ, λ to be
constant. However term structure may easily be added to the parameters by choosing some piece-
wise linear function η : [0,∞) → [0, 1] and replacing λ and ρ by η(t)λ and η(t)ρ in the dynamics
of the SLVMs respectively.
Choosing η(t) = 0 for all t ≥ 0 lets the SLV model degenerate to the local volatility model. On
the other hand choosing η(t) = 1 for all t ≥ 0 keeps the parameters as estimated or fitted and in
that sense preserves the full market observed stochastic volatility dynamics. Hence η can be seen
as tuning between stochastic and local volatility in the SLV model, and is therefore referred to as
mixing weight or mixing fraction. In [22, Footnote 5, page 125] Clark suggests that, at least for
Foreign Exchange markets η should typically be chosen between 0.6 and 0.65. Tatataru and Fisher
[35, Section 8, pages 10-11] and Tian et al [36, Chapter 5.1.1, page 57] suggest instead to use η to
calibrate the SLV model to some chosen liquid exotic options or observable market behaviors by
calibrating to the implied volatility surface with different choices of η and then choosing the one
with the smallest pricing difference to the target exotics or the one that reproduces the desired
behavior best.
Since piece wise linear parameters can easily be handled by the numerical schemes we will employ
for calibration of the leverage function for notational ease we will restrict our self to constant λ, ρ
and η. In this case η then simply gets absorbed into λ and ρ and we will therefore omit mixing
weights in our further presentation.
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Chapter 5

Numerical Implementation

For the implementation of calibration Algorithm 1 for the SLV models introduced in Sections 4.3 to
4.5 we will now establish how to numerically solve equations of the form (4.2.2) in general and give
specific details for the solution of equations (4.3.2),(4.4.2) and (4.5.2) in particular. The first choice
we will have to make, as this will influence the spatial discretisation for our PDE, is what kind of
numerical scheme to employ. Ren et al [5] and later Tachet [28, Chapter 9, pages 73-79], Clark
[22, Section 6.8] and Tian [36, Section 5.2, pages 64-72] propose to use finite difference methods
for the spatial approximation of (4.2.2), in [39] and [40] the problem is solved using using finite
volume methods, and Cozzi [41] considers finite element methods.
Comparing the different sources the finite difference and volume approaches seem to offer the best
results when it comes to quality of calibration.
Since additionally the finite difference approach lends itself well to handling different one factor
stochastic volatility models with only slight adjustments, it is the approach we choose.

5.1 Spatial Discretisation and derivative Approximation

For the execution of a finite difference scheme the spatial domain of our PDE needs to be truncated
to a rectangular domain Ω := [xmin, xmax]× [ymin, ymax] with (0, Y0) ∈ Ω and further discretised
into a grid

Gx,y := {xmin = x0, x1, · · · , xN−1, xN = xmax} × {ymin = y0, y1, · · · , yM−1, yM = ymax}
where N,M ∈ N and for 1 ≤ i ≤ N and 1 ≤ j ≤M we have that xi−1 < xi and yj−1 < yj .

5.1.1 Spatial Grid Generation

As a first step in our calibration procedure the value of the grid boundary points xmin, xmax, ymin, ymax
needs to be determined. Since the solution to (4.2.2) is a probability density the integral of p over
its domain has to be 1 at all times t ≥ 0. Our truncated domain should then be chosen so that for
T the final maturity we calibrate to∫ xmax

xmin

∫ ymax

ymin

p(x, y, t) dydx ≈ 1 for all 0 ≤ t ≤ T. (5.1.1)

This is especially crucial since, as we will further explore when talking about boundary conditions,
too large losses in the total probability mass will lead to the calibration procedure becoming
unstable, producing highly inaccurate results and eventually breaking. The problematic part about
enforcing (5.1.1) is that, p being the solution of the problem we want to solve, we lack prior
information about p. We resolve this issue by considering the x and y directions separately:
Since the marginal distribution of the calibrated stock price process should agree with the one
implied from the market, we can back out the market implied cdf, see Figure 5.1 , from the implied
volatility surface, and then choose xmin, xmax according to the quantiles of this distribution. This
is done as follows: Denoting the discount factor between 0 ≤ t ≤ T as

D(t, T ) := e−
∫ T
0
rs ds
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we can write the market implied cdf of ST as

F imp
ST

(K) : = Q(ST ≤ K)

= 1−
∫ ∞

K

pimp(s, T ) ds

= 1 +
1

D(0, T )
∂KCMkt(K,T )

where for the last equality we used (2.2.3), Q denotes the risk neutral measure and pimp the

market implied risk neutral density. We then find Kmin,Kmax so that F imp
ST

(Kmin) ≤ 10−h and

F imp
ST

(Kmax) ≥ 1−10−h, where we suggest to choose h between 4 and 6, and set xmin := log(Kmin

S0
)

and xmax := log(Kmax

S0
).
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Figure 5.1: SPX market implied cdf on 2023-02-23 for 2024-02-23.

If the distribution of YT is known, which is the case for the MQR (3.1.3) and Heston SLVM
(3.3.3), we choose ymin and ymax in accordance with xmin and xmax as quantiles of the distribution
of YT .
If we do not know the distribution of YT exactly then more case specific methods have to be ap-
plied. For the Tataru-Fisher model, we choose ymin, ymax using the stationary distribution of the
volatility process (3.2.3).

With the boundary of the grid set, the next step is to determine the location of the inner
grid points. Due to the highly singular Dirac initial condition of (4.2.2), which can cause major
problems for finite difference schemes due to the unbounded derivative, it is important to have
a very tight grid spacing around the initial point (0, Y0) for a stable calibration. Additionally
for volatility models with attractive boundaries at 0 such as the Heston SLVM when the Feller
condition (3.3.2) is violated or where our truncated boundary point is close to the true boundary,
as is the case with the Tataru-Fisher model, where we choose, depending on λ, ymin close to 0, it
is important to also have a high concentration of grid points on this lower boundary. Towards the
other boundaries p should be very small in general and less tight grid spacing is needed. Figure 5.2
displays this behavior of the density in case of the Tataru-Fisher model, similar plots for the MQR
and Heston SLV models may be found in Appendix B.1 and B.2 .
To efficiently accomplish this tight grid spacing around some critical points, which we have found
to be crucial for a stable calibration, Clark [22, page 143] recommends the use of non uniform grids.
In Figure 5.3 below we show examples of the kind of grids we used for each model’s calibration,
with a reduced number of points for visibility.
For generating these grids we employ a procedure outlined in [36, pages 65-67]. Let us exemplify
the grid construction for the y-direction of a grid like in Subfigure 5.3(b). To generate a grid with
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(b) 1 month density Tataru-Fisher.
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Figure 5.2: Tataru-Fisher density at different maturities for SPX fit, λ = 0.42, ρ = −0.23
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(b) Stylized Grid Heston SLV.
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(c) Stylized Grid Tataru Fisher.

Figure 5.3: Stylized grids for 1 year Calibration, 20 points in each direction

M + 1 points, including the endpoints, between ymin, ymax we first generate an uniform grid U
with M + 1 points between [0, 1]. We then set yj := F (uj) for uj ∈ U , 0 ≤ j ≤ M , where the
coordinate transformation F is a solution to the ODE

dF (u)
du = A(

(∑2
k=1

1
Jk(u)

)− 1
2

Jk(u) := [β2 + (F (u)−Bk)2]
F (0) = ymin

F (1) = ymax

(5.1.2)

with B1 = Y0 and B2 = ymin and β = ymax−ymin

Ũ
for Ũ > 0 which controls how non uniform the grid

is, larger being more non uniform. A is a constant that is adjusted so that |F (uM )− ymax| < ε for
some tolerance level ε > 0. In the case of only one concentration point the ODE has an analytical
solution, but for two or more concentration points it needs to be solved numerically.
We give details of the analytical solution in the case of one concentration point and the numerical
procedure to solve the ODE for two concentration points in Appendix A.1.

In log-moneyness direction x we always use a non uniform grid concentrated at 0 and in volatility
direction y we use a grid with one concentration point at Y0 for the MQR model, and concentration
points at the lower boundary and Y0 for the Tataru-Fisher and Heston SLV models.

5.1.2 Spatial Derivative Approximation

We first establish how to approximate derivatives up to second order on a non uniform two dimen-
sional grid Gx,y using finite differences.

Theorem 5.1.1 (Approximation of Derivatives). Let g be a smooth function with domain Ω. Then
for a grid Gx,y as defined previously and 0 ≤ i ≤ N−1, 0 ≤ j ≤M−1, we define ∆xi := xi+1−xi,
and ∆yj := yj+1 − yj, and for 0 ≤ i ≤ N, 0 ≤ j ≤ M we define gi,j := g(xi, yj). The derivatives
of g at the inner grid points (xi, yj) with 1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1 may then be approximated
by the following:

∂

∂x
gi,j = −

∆xi
∆xi−1(∆xi +∆xi−1)

gi−1,j +
∆xi −∆xi−1

∆xi∆xi−1
gi,j +

∆xi−1

∆xi(∆xi +∆xi−1)
gi+1,j +O((∆x)2),

∂2

∂x2
gi,j =

2

∆xi−1(∆xi +∆xi−1)
gi−1,j −

2

∆xi∆xi−1
gi,j +

2

∆xi(∆xi +∆xi−1)
gi+1,j +O(∆x),

∂2

∂x∂y
gi,j =

gi+1,j+1 − gi+1,j−1 − gi−1,j+1 + gi−1,j−1

∆xi∆yj +∆xi∆yj−1 +∆xi−1∆xj +∆xi−1∆yj−1
+O(∆x+∆y).

And similarly for derivatives with respect to y. Here ∆x and ∆y refer to max{∆x0, · · · ,∆xN−1}
and max{∆y0, · · · ,∆yM−1} respectively.

Proof. The proof is an easy application of Taylor’s Theorem and can be found in Appendix A.2.
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From the theorem we may see that the spatial local truncation error of our scheme will be
O(max{∆x,∆y}). When ∆xi = ∆xi−1 and ∆yj = ∆yj−1 we recover the familiar central difference
derivative approximations from 5.1.1 and the local truncation error becomesO(max{(∆x)2, (∆y)2}).
Still we found non-uniform grids to outperform uniform grids due to the higher concentration of
grid points in regions where the density displays high curvature. See 5.3 where this is especially
visible for short maturities when the probability density will be very concentrated around its origin.

(a)
h

Maturity 02/03/2023 26/03/2023 27/05/2023 25/08/2023 23/12/2023 23/02/2024
Model Spot 4005.41 4014.92 4016.53 4017.64 4018.51 4018.195

Mean Error σimp(bps) 63.4 46.2 18.4 8.1 5.4 1.8
Median Error σimp(bps) 42.5 35.2 10.7 3.1 2.9 3.1
Max Error σimp(bps) 181.9 118.7 78.7 38.9 15.6 13.8

Table 5.1: Uniform Grid

(a)
h

Maturity 02/03/2023 26/03/2023 27/05/2023 25/08/2023 23/12/2023 23/02/2024
Model Spots 4012.23 4012.36 4012.33 4012.34 4012.36 4012.32

Mean Error σimp(bps) 15.1 19 6.8 4.6 2.6 1.7
Median Error σimp(bps) 12.6 18.9 4.3 3 1.7 0.9
Max Error σimp(bps) 43.4 34 22.1 14.3 10.4 7.8

Table 5.2: Non uniform grid

Table 5.3: Model Spot and error in implied volatility from SLV to local volatility in bps (10000·|σLV
imp−σSLV

imp |)
for the MQR model calibrated to SPX up to 1 year maturity using a uniform and non uniform space grid
respectively. MQR prices calculated using the density. N = 400, M = 325, 365 time steps and parameters
are the same. Real spot is 4012.32. For all maturities except 02/03/2023 the implied volatilities are
calculated between 0.5 and 1.5 moneyness for 02/03/2023 the strike range is 0.85 to 1.1 moneyness

We now apply Theorem 5.1.1 to approximate the spatial derivatives in the Fokker-Planck
equation (4.2.2). In view of the kind of time stepping schemes we will employ note that we can
write the general calibration Fokker-Planck equation (4.2.2), representing all spatial derivative
terms by the differential operator L, as

∂

∂t
p = Lp = (Lx + Ly + Lxy)p,

by splitting L into 3 operators who represent the x, y and mixed derivative terms respectively.
Letting now L be the discretised finite difference version of L we approximate the Fokker-Planck
PDE at p(xi, yj , t) := pti,j in the interior of our grid Gx,y using 5.1.1 and obtain a semi discrete
system of ODEs: For 1 ≤ i ≤ N − 1 and 1 ≤ j ≤M − 1,

∂

∂t
pti,j ≈ Lxpti,j + Lypti,j + Lxypti,j . (5.1.3)

Let Li,t := L(xi, t), µ(yj , t) := µj,t and λ(yj , t) := λj,t then the discrete finite difference operators
in (5.1.3) are given explicitly by:

Lxpti,j =−
∆xi[−(rt − qt) + 1

2L
2
i−1,tf

2(yj)]p
t
i−1,j

∆xi−1(∆xi +∆xi−1)
+

(∆xi −∆xi−1)[−(rt − qt) + 1
2L

2
i,tf

2(yj)]p
t
i,j

∆xi∆xi−1

+
∆xi−1[−(rt − qt) + 1

2L
2
i+1,tf

2(yj)]p
t
i+1,j

∆xi(∆xi +∆xi−1)

+
f(yj)

2

2

(
2L2

i−1,tp
t
i−1,j

∆xi−1(∆xi +∆xi−1)
−

2L2
i,tp

t
i,j

∆xi∆xi−1
+

2L2
i+1,tp

t
i+1,j

∆xi(∆xi +∆xi−1)

)
, (5.1.4)

Lypti,j =−
∆yj [−µ(yj , t)]pti,j−1

∆yj−1(∆yj +∆yj−1)
+

(∆yj −∆yj−1)[−µ(yj , t)]pti,j
∆yj∆yj−1

+
∆yj−1[−µ(yj+1, t)]p

t
i,j+1

∆yj(∆yj +∆yj−1)

+
1

2

(
2λ2(yj−1, t)p

t
i,j−1

∆yj−1(∆yj +∆yj−1)
−

2λ2(yj , t)p
t
i,j

∆yj∆yj−1
+

2λ2(yj+1, t)p
t
i,j+1

∆yj(∆yj +∆yj−1)

)
, (5.1.5)
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Lxypti,j =ρ
(
Li+1,tλj+1,tf(yj+1)p

t
i+1,j+1 − Li+1,tλj−1,tf(yj−1)p

t
i+1,j−1

∆xi∆yj +∆xi∆yj−1 +∆xi−1∆xj +∆xi−1∆yj−1

+
−Li−1,tλj+1,tf(yj+1)p

t
i−1,j+1 + Li−1,tλj−1,tf(yj−1)p

t
i−1,j−1

∆xi∆yj +∆xi∆yj−1 +∆xi−1∆xj +∆xi−1∆yj−1

)
. (5.1.6)

Choosing f as exp, µ(y, t) = κ(θt − y) and λ(y, t) ≡ λ constant in (5.1.4) to (5.1.6) with κ, θt, λ
as in (4.3.1) yields the finite difference formulation of (4.3.2) the MQR model. For f = Id the
identity, µ(y, t) = 1− y and λ(y, t) = λy for a positive constant λ we get the Tataru-Fisher , and
for f(y) = exp( 12yt), µ(y, t) = (κθ− 1

2λ
2) exp(−y)−κ and λ(y, t) = λ exp(− 1

2y) the Heston SLVM.
For practical implementation purposes it will be beneficial to rewrite the action of Lx and Ly on p
as matrix vector operations. We define P t ∈ RN+1×M+1 with P ti,j = pti,j , 0 ≤ i ≤ N , 0 ≤ j ≤ M .

Furthermore let us denote by P t(j) the jth column of P t.
Finally we define the family of tridiagonal matrices (Dj,tx )0≤j≤M ⊂ RN+1×N+1 by

Dj,tx :=



bj,t0 cj,t0 0 . . . . . . 0

aj,t1 bj,t1 cj,t1 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... . . . 0 aj,tN−1 bj,tN−1 cj,tN−1

0 . . . . . . 0 aj,tN bj,tN


, (5.1.7)

where for 1 ≤ i ≤ N − 1

aj,ti := −
∆xi[−(rt − qt) + 1

2L
2
i−1,tf

2(yj)]

∆xi−1(∆xi +∆xi−1)
+

f(yj)
2L2

i−1,t

∆xi−1(∆xi +∆xi−1)
,

bj,ti :=
(∆xi −∆xi−1)[−(rt − qt) + 1

2L
2
i,tf

2(yj)]

∆xi∆xi−1
−
f(yj)

2L2
i,t

∆xi∆xi−1
,

cj,ti :=
∆xi−1[−(rt − qt) + 1

2L
2
i+1,tf

2(yj)]

∆xi(∆xi +∆xi−1)
+

f(yj)
2L2

i+1,t

∆xi(∆xi +∆xi−1)
,

and bj0, c
j
0, a

j
N , b

j
N are determined by the boundary conditions discussed in the next section. Then

LxP t(j) = Dj,tx P t(j)

where Dj,tx acts on P t(j) simply by matrix vector multiplication.
Similarly we define Dty ∈ RM+1×M+1 as

Dty :=



βt0 γt0 0 . . . . . . 0

αt1 βt1 γt1 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... . . . 0 αtM−1 βtM−1 γtM−1

0 . . . . . . 0 αtM βtM


, (5.1.8)

where again β0, γ0, αM , βM are determined by the boundary conditions and for 1 ≤ j ≤M − 1

αtj := −
∆yj [−µ(yj , t)]

∆yj−1(∆yj +∆yj−1)
+

λ2(yj−1, t)

∆yj−1(∆yj +∆yj−1)

btj :=
(∆yj −∆yj−1)[−µ(yj , t)]

∆yj∆yj−1
− λ2(yj , t)

∆yj∆yj−1

γtj :=
∆yj−1[−µ(yj+1, t)]

∆yj(∆yj +∆yj−1)
+

λ2(yj+1, t)

∆yj(∆yj +∆yj−1)
.

We can then represent the action of Ly on P t as

LyP t = (Dty(P t)⊤)⊤ = P t(Dt
y)

⊤
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5.1.3 Boundary Conditions

To complete the spatial discretisation we still need to determine appropriate boundary conditions
for (4.2.2) on the truncated domain Ω and then deduce the still unspecified entries of (5.1.7) and
(5.1.8) as well as the action of Lxy on pti,j for (i, j) ∈ ({0, N}×{y0, · · · , yM}∪{x0, · · · , xN}×{0,M})
from them.
As pointed out previously in (5.1.1) it is crucial that the total probability mass in the truncated
domain stays approximately equal to 1. Let us briefly illustrate why this is the case: Assuming for
the moment 0 rates and dividends, the stock price process should be a martingale under the risk
neutral measure that is we would expect that

S0 = EQ[ST ] ≈
∫ xmax

xmin

∫ ymax

ymin

exS0p(x, y, T ) dydx.

However we observed for even somewhat small losses or gains in probability mass large losses or
gains in the the spot price, calculated from the density by numerical integration, respectively. We
give an example of this in Table 5.4 below.
So to keep the martingale property of the model and have a market consistent model forward it

Date 23/02/2023 02/03/2023 26/03/2023 27/05/2023 25/08/2023 23/02/2024
Probability mass 1 1 0.999929 0.998129 0.993299 0.981839

Model Spot 4012.32 4013.40 4012.04 4009.86 4003.66 3987.41

Table 5.4: Probability mass and model spot for the MQR model calibrated to SPX option data assuming
0 rates and dividends on 23/02/2023 with 0 second derivatives on boundary and 365 time steps, N, M =
400, 1 year calibration, uniform space and time grid. Probability is given to 6 decimal places.

is essential that the probability mass is properly conserved.
Problems like ours where we lack natural boundary conditions on the boundaries of our truncated
domain Ω are so called open boundary problems. Classical approaches for these kind of problems
are imposing so called Neumann or ”natural” boundary conditions, which on a rectangular domain
correspond to imposing that the first order or second order derivatives respectively vanish on their
corresponding boundaries. These boundary conditions were found to be inadequate for preserving
the probability mass [34, Section 5.1, pages 20,21]. For ”natural” boundary conditions these
findings were confirmed by our implementation, as shown in Table 5.4.
To remedy this problem of unstable mass we turn to a concept from finite volume methods, so
called no flux boundary conditions that are the basis of finite volume schemes’ conservatory nature.
The idea is as follows:
If

∫ xmax

xmin

∫ ymax

ymin

p(x, y, t) dydx = 1 for all t ≥ 0,

then

∂t

∫ xmax

xmin

∫ ymax

ymin

p(x, y, t) dydx = 0 for all t > 0.

Assuming now that we may exchange differentiation and integration we have

0 =

∫ xmax

xmin

∫ ymax

ymin

∂tp(x, y, t) dydx =

∫ xmax

xmin

∫ ymax

ymin

(Lx + Ly + Lxy)p(x, y, t) dydx. (5.1.9)
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Splitting (5.1.9) and enforcing that each term is individually 0 yields

0 =

∫ ymax

ymin

∫ xmax

xmin

Lxp(x, y, t) dxdy

=

∫ ymax

ymin

∫ xmax

xmin

− ∂

∂x
[(rt − qt)−

1

2
L(x, t)2f(y)2]p(x, y, t) +

1

2

∂2

∂x2
[L(x, t)2f(y)2]p(x, y, t) dxdy

=

∫ ymax

ymin

[(
−(rt − qt) +

1

2
L2(x, t)f(y)2

)
p(x, y, t) +

1

2
f(y)2

∂

∂x
[L2(x, t)]p(x, y, t)

]xmax

xmin

dy,

(5.1.10)

0 =

∫ xmax

xmin

∫ ymax

ymin

Lyp(x, y, t) dydx

=

∫ xmax

xmin

∫ ymax

ymin

− ∂

∂y
[µ(y, t)]p(x, y, t) +

1

2

∂2

∂y2
[λ(y, t)2]p(x, y, t) dydx

=

∫ xmax

xmin

[
−µ(y, t)p(x, y, t) + 1

2

∂

∂y
[λ2(y, t)]p(x, y, t)

]ymax

ymin

dx, (5.1.11)

0 =

∫ xmax

xmin

∫ ymax

ymin

Lxyp(x, y, t) dydx

=

∫ xmax

xmin

∫ ymax

ymin

ρ
∂2

∂x∂y
[L(x, t)f(y)λ(y, t)]p(x, y, t) dydx

= ρ

(
L(xmax, t)f(ymax)p(xmax, ymax, t)− L(xmax, t)f(ymin)p(xmax, ymin, t)

− L(xmin, t)f(ymax)p(xmin, ymax, t) + L(xmin, t)f(ymin)p(xmin, ymin, t)

)
. (5.1.12)

We can thus get sufficient boundary conditions for conservation of the total probability mass by
enforcing every term appearing in (5.1.10) to (5.1.12) to be 0. At the spot boundaries this becomes:
for all t > 0, y ∈ [ymin, ymax]{

0 =
(
(rt − qt)− 1

2L
2(xmin, t)f(y)

2
)
p(xmin, y, t)− 1

2f(y)
2 ∂
∂x [L

2(xmin, t)]p(xmin, y, t)

0 =
(
−(rt − qt) + 1

2L
2(xmax, t)f(y)

2
)
p(xmax, y, t) +

1
2f(y)

2 ∂
∂x [L

2(xmax, t)]p(xmax, y, t)
.

(5.1.13)
At the volatility boundaries: for every t > 0, x ∈ [xmin, xmax]{

0 = µ(ymin, t)p(x, ymin, t)− 1
2
∂
∂y [λ

2(ymin, t)]p(x, ymin, t)

0 = −µ(ymax, t)p(x, ymax, t) + 1
2
∂
∂y [λ

2(ymax, t)]p(x, ymax, t)
. (5.1.14)

And finally in the corners of our domain

0 = p(u, v, t) for (u, v) ∈ {xmin.xmax} × {ymin, ymax}. (5.1.15)

A theoretical justification for the no-flux boundary conditions in the case of the Heston SLVM is
given in [42, Theorems 4.1,4.2, pages 8,9], where Lucic shows that, under some smoothness and
boundedness assumptions that guarantee existence and uniqueness of a solution to the Heston SLV
SDE (4.5.1), satisfying the no flux conditions at the volatility boundary is necessary and sufficient
for a solution of the Fokker-Planck PDE (4.5.2) to be the density of the Heston SLVM (4.5.1).
From a numerical point of view Clark [22, page 103] suggested to use the no-flux conditions for
solving the Heston SLV Fokker-Planck equation at the volatility boundary, and Garrivier [34, Sec-
tion 4.4.2, pages 12-17] employed the full no-flux boundary conditions, as presented here, for the
MQR model. To our knowledge there is no discussion available about boundary conditions for
the Tataru-Fisher model. We choose to use the full no-flux conditions for all three models under
discussion.
With the boundary conditions (5.1.13) to (5.1.15) established, the next question is how to incor-
porate them into the finite difference scheme.
For this we follow a standard finite difference approach by introducing a layer of ghost points

{(x−1, yj), (xN+1, yj), (xi, y−1), (xi, yM+1) | 0 ≤ i ≤ N, 0 ≤ j ≤M}
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so that 
∆x−1 := x0 − x−1 = ∆x0

∆xN := xN+1 − xN = ∆xN−1

∆y−1 := y0 − y−1 = ∆y0

∆yM := yM+1 − yM = ∆yM−1

.

We then discretise (5.1.13) and (5.1.14) using Theorem 5.1.1 as

0 =

(
(rt − qt)−

1

2
L2
0,tf(yj)

2

)
pt0,j −

1

2
f(yj)

2

(
−

∆x0(L
2
−1,tp

t
−1,j)

∆x−1(∆x0 +∆x−1)

+
(∆x0 −∆x−1)L

2
0,tp

t
0,j

∆x0∆x−1
+

∆x−1(L
2
1,tp

t
1,j)

∆x0(∆x0 +∆x−1)

)
, (5.1.16)

0 =

(
−(rt − qt) +

1

2
L2
N,tf(yj)

2

)
ptN,j +

1

2
f(yj)

2

(
−

∆xN (L2
N−1,tp

t
N−1,j)

∆xN−1(∆xN +∆xN−1)

+
(∆xN −∆xN−1)L

2
N,tp

t
N,j

∆xN∆xN−1
+

∆xN−1(L
2
N+1,tp

t
N+1,j)

∆xN (∆xN +∆xN−1)

)
, (5.1.17)

0 =µ(y0, t)p
t
i,0 −

1

2

(
−
∆y0(λ

2(y−1, t)p
t
i,−1)

∆y−1(∆y0 +∆y−1)

+
(∆y0 −∆y−1)λ

2(y0, t)p
t
i,0

∆y0∆y−1
+

∆y−1(λ
2(y1, t)p

t
i,1)

∆y0(∆y0 +∆y−1)

)
, (5.1.18)

0 =− µ(yM , t)pti,M +
1

2

(
−
∆yM (λ2(yM−1, t)p

t
i,M−1)

∆yM−1(∆yM +∆yM−1)

+
(∆yM −∆yM−1)λ

2(yM , t)p
t
i,M

∆yM∆yM−1
+

∆yM−1(λ
2(yM+1, t)p

t
i,M+1)

∆yM (∆yM +∆yM−1)

)
, (5.1.19)

for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1. By making, as suggested in [34, Page 13], the assumption
L−1,t = L0,t = L1,t and LN−1,t = LN,t = LN+1,t, we may solve (5.1.16) to (5.1.19) for the values
of p at the ghost points in terms of values of p on the grid, which we may write as

p−1,j = Ax,lowerp0,j +Bx,lowerp1,j ,

pN+1,j = Ax,upperpN−1, +Bx,upperpN,j ,

pi,−1 = Ay,lowerpi,0 +By,lowerpi,1,

pi,M+1 = Ay,lowerpi,M−1 +By,upperpi,M+1.

Now recalling that in terms of the ghost points for example for 1 ≤ j ≤ N − 1

Lxpt0,j =−
∆x0[−(rt − qt) + 1

2L
2
−1,tf

2(yj)]p
t
−1,j

∆x−1(∆x0 +∆x−1)
+

(∆x0 −∆x−1)[−(rt − qt) + 1
2L

2
0,tf

2(yj)]p
t
0,j

∆x0∆x−1

+
∆x−1[−(rt − qt) + 1

2L
2
1,tf

2(yj)]p
t
1,j

∆x0(∆x0 +∆x−1)

+
f(yj)

2

2

(
2L2

−1,tp
t
−1,j

∆x−1(∆x0 +∆x−1)
−

2L2
0,tp

t
0,j

∆x0∆x−1
+

2L2
1,tp

t
1,j

∆x0(∆x0 +∆x−1)

)
,

we can substitute the expression for p−1,j obtained from (5.1.16), ∆x−1 = ∆x0 and L−1,t = L0,t to

obtain an expression purely in terms of p0,j and p1,j from which we get the missing values bj,t0 , cj,t0
in the matrix form of Lx (5.1.7).
Similarly we get for 1 ≤ j ≤ N − 1 aj,tN and bj,tN as well as βt0, γ

t
0, α

t
M and γtM in (5.1.7) and (5.1.8)

respectively. Additionally using the expressions for the values at the ghost points we can solve for
the action of Lxy on boundary values in the same manner.
We handle the corners by setting

b0,t0 = bM,t
0 = b0,tN = bM,t

N = 1
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and
c0,t0 = cM,t

0 = a0,tN = aM,t
N = 0,

as well as
Lxypi,j = 0 for (i, j) ∈ {0, N} × {0,M}

and manually setting the corners of Pt(Dty)⊤ to 0.
For completeness the exact boundary terms for all three models under consideration, which we
derived using SimPy [43], can be found in Appendix A.3,A.4 and A.5.
With the spatial part of the PDE handled we now turn our attention to resolving our discretised
system in time.

5.2 Temporal Discretisation

Recall that originally we represented (4.2.2) as

∂

∂t
p = Lp.

In one space dimension partial differential equations of this form are usually numerically resolved
using on of the well known explicit, implicit or Crank-Nicolson time stepping schemes, see [44,
Chapter 8].
This is done by discretising L and representing it as matrix. The resulting matrix will be tridiagonal
, which allows to efficiently solve the linear equations resulting from the implicit or Crank-Nicoloson
scheme in O(N) steps using the tridiagonal matrix algorithm [45, Section 2.6.3].
All these one dimensional time stepping schemes generalise to two spatial dimensions however
a representation of L will not be tridiagonal turning the implicit and Crank-Nicolson schemes
inefficient. The explicit scheme is also not well suited for our needs as for its stability in two
dimension the well known criterion

∆t ≤ 1

2
min

0≤i≤N−1,0≤j≤M−1
{(∆xi)2, (∆yj)2}

needs to hold [22, Equation 7.53, page 162]. Here ∆t is the size of time steps. Especially with
the non uniform grids presented in Section 5.1.1 this would require a prohibitively large amount
of time steps.
A new kind of time stepping scheme is therefore needed. Recalling Section 5.1.2, if the operator
L is split into its directional components Lx,Ly and Lxy, at least the first two can be represented
as tridiagonal matrices (5.1.7) and (5.1.8). We will now introduce a scheme that makes use of this
fact.
As stability properties of a time stepping scheme might restrict the choice of the time step size for
now we just assume the time interval [0, T ] has been discretised as

{t0 := 0, t1, . . . , tL−1, tL := T} for L ∈ N

where tl < tl+1 for 0 ≤ l ≤ L− 1, but for now leave L and ∆tl := tl+t − tl unspecified.

5.2.1 ADI Time Stepping

As mentioned, for efficiently solving the semi discrete system

∂

∂t
P t = LP t

we want to make use of the fact that when splitting L into its coordinate direction and mixed
derivative components Lx,Ly and Lxy the first two can be represented as tridiagonal matrices.
The main idea of so called alternating direction implicit , short ADI schemes, then is to split each
time iteration into two half time steps where in each half step one coordinate direction is resolved
implicitly. Since the mixed term can not be written as a tridiagonal matrix it has to be handled
in an explicit fashion. The hope then is that if the contribution of the mixed term is controlled
in some sense the two implicit half steps along the coordinate axis will be sufficient to guarantee
stability of the scheme.
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The particular ADI scheme, known as the Douglas scheme, we will use, recommended in [22,
Equation 7.82, page 172], is an extension to handle mixed derivatives [46, Equation 6, page 342]
of a scheme introduced by Douglas [47, Equations 2.6a,b , page 43].

The scheme approximates p
tl+1

i,j := pl+1
i,j through an intermediate step pl+1

i,j by

(1− ϑ∆tlLx)pl+1
i,j =

(
1 + ∆tl[(1− ϑ)Lx + Ly + Lxy]

)
pli,j (5.2.1)

(1− ϑ∆tlLx)pl+1
i,j = pl+1

i,j −∆tlϑLypli,j (5.2.2)

where 0 ≤ ϑ ≤ 1 determines the implicitness of the scheme, ϑ = 1 corresponding to a fully implicit
handling of the unidirectional derivatives and ϑ = 0 to fully explicit. In presence of the mixed
derivative term the Douglas scheme is consistent of order O(∆t) [48, Page 3], and unconditionally
stable for linear parabolic PDEs when ϑ ≥ 1

2 [49, Theorem 3.1, page 30].
Initially there appear to be two problems with applying the scheme to the problem at hand. Firstly
the application of Lx,Ly to the intermediate solution p and to p at time tl+1 for the implicit part
of the scheme require the knowledge of pl+1 to calculate the leverage function Li,l+1 which is what
we want to solve for in the first place. Secondly our PDE (4.2.2) is non linear, so the stability
result does not apply.
We solve both problems by simply keeping L constant in each iteration of (5.2.1)(5.2.2), that is
we set Li,tl+1

= Li,tl in (Dj,l+1
x )0≤j≤M during the lth step of the scheme. Effectively this also

linearizes the PDE step wise making the calibration iteration unconditionally stable for ϑ ≥ 1
2 .

For completeness we want to mention that another popular approach in the literature is to, instead
of keeping L constant, use P l to calculate L(·, tl+1) for the l

th Douglas scheme step [36, Chapter
5.2.3, Page 70].

5.2.2 Temporal Grid Choice

Since as established in the last section the time stepping scheme is unconditionally stable, for ϑ ≥ 1
2

which we always choose, we are completely free in the choice of our temporal grid spacing.
Since at the beginning of the calibration the density will be quite singular and changing very
rapidly, we will benefit from taking very small time steps. Then over time the density will become
more stable and we can get away with having larger time steps. For a visualisation of this we again
refer to Figure 5.2 and Appendix B.1 B.2.
While we could use the grid generation scheme presented in 5.1.1 with one concentration point at
0 to accomplish this we rather recommend the scheme given in [22, Equation 7.8, page 175]

tl := u
αshort+(αlong−αshort) exp(−φul)
l ,

where ul ∈ {0, 1
L , · · ·

L−1
L , 1}, since it gives us more control over the grid through αshort, αlong > 0

which control the concentration of grid points in the short and long term respectively, while φ > 0
controls the mixing in the medium term. Typical values we worked with were αshort = 1.2,
αlong = 2.2 and φ = 0.2. An example of the kind of time grid this produces is given in Figure 5.4.

5.2.3 Approximation of the initial Condition

Even with the spatial grid being highly concentrated around (0, Y0), and using small time steps at
beginning of the calibration, the Dirac initial condition remains challenging to handle for a finite
difference scheme. Therefore the initial density is best approximated by a smooth function. A
theoretical justification for approximating the initial condition would be that it makes Tachet’s
existence result for the calibration Fokker-Planck PDE discussed in Section 4.1 available.
To approximate the Dirac initial condition in a manner that is consistent with (4.2.1) we discretise
the SLV SDE for one small step using the Euler scheme which leads to{

X1 ≈ [(r0 − q0)− 1
2σ

2
loc(S0, 0)]∆t0 + σloc(S0, 0)

√
∆t0Z1

Y1 ≈ Y0 + µ(Y0, 0)∆t0 + λ(Y0, 0)
√
∆t0Z2

where Z1, Z2 are standard normal random variables with correlation ρ. Hence approximately[
X1

Y1

]
∼ N

([
[(r0 − q0)− 1

2σ
2
loc(S0, 0)]∆t0

Y0 + µ(Y0, 0)∆t0

]
, ∆t0

[
σ2
loc(S0, 0) ρσloc(S0, 0)λ(Y0, 0)

ρσloc(S0, 0)λ(Y0, 0) µ(Y0, 0)
2

])
.

(5.2.3)
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Figure 5.4: Example of tight time grid for 1 year MQR calibration to SPX, 730 steps.

Denoting the mean vector of this normal distribution

[
µ1

µ2

]
and the covariance matrix as

[
σ2
x ρσxσy

ρσxσy σ2
y

]
p(·, ·, t1) is then approximated as the density of this normal distribution

p(x, y, t1) :=
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µx)2

σ2
x

−2ρ
(
x− µx
σx

)(
y − µy
σy

)
+
(y − µy)2

σ2
y

])
.

Additionally depending on f in (4.2.1) we can, using that X1, Y1 follow a bi-variate normal distri-
bution, analytically calculate the conditional expectation

ψ(x, t) = E[f(Y1)2|St1 = exS0] = E[f(Y )2|X1 = x],

which gives us L at t1 via (4.1.1). If this is not possible the conditional expectation is calculated
via numerical integration, here using the trapezoidal rule, as

ψ(xi, t1) ≈
1
2

∑M−1
j=0 (f2(yj)p

1
i,j + f2(yj+1)p

1
i,j+1)∆yi

1
2

∑M−1
j=0 (p1i,j + p1i,j+1)∆yi

.

The exact normal approximations and analytical leverage functions for the MQR, Tataru-Fisher
and Heston SLV model may be found in Appendix A.3,A.4 and A.5 respectively.
While this way of approximating the initial condition, or approximating it with some other normal
with small variances, is quite common in literature, see for example [36, Equations 5.10,5.11, page
63], the density approximation is then usually used as the initial condition at time 0. In view of time
dependent coefficients like for example θ in the MQR model, and how the density approximation is
derived, we think this is inconsistent with the PDE, and suggest instead to simply start the PDE
calibration from t1 with the density approximation as initial condition, as done in [34, Section 4.6,
page 20]. t1 should neither be to small, leading to similar problems as using the Dirac condition
outright, nor to large as this would give a worse approximation. We found good results with
choosing t1 corresponding to about 8 hours which depending on the daycount convention might be
somewhere between 8 · 10−4 to 1.2 · 10−3. The time grid described in the previous section is then
actually generated between t1 and T .
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5.2.4 Dealing with Drift for long Maturities

When calibrating to large maturities T of a few years, the interest rate and dividend drift term
in (4.2.1) can become impactful and might move the center of the probability density, where most
curvature is , out of the grid region with the highest density of grid points. To combat this for
long maturities we suggest modeling the log-forward log(

Ft,T

F0,T
) to remove this drift instead. The

leverage function for the log-forward can then easily be related to the one of the stock price: By
Ito’s lemma the SDE for the log-forward under SLV is

dXt,T = −1

2
L2
F (Xt,T , t)f

2(Yt) dt+ L2
F (Xt,T , t)f(Yt) dWt.

where due to our assumption of deterministic rates L(St, t) = LF (e
xF0,T e

−
∫ T
t

(rs−qs) ds, t). Apply-
ing Gyöngy’s Theorem 1.0.7 to this process and matching it with the process for the log-forward
under local volatility, we can then see that we can calibrate LF by simply setting rt − qt = 0
everywhere in our previous discussion.

5.3 Practical Implementation of the Calibration Algorithm

With the spatial and temporal discretisation of (4.2.2) in place we may now revisit the calibration
Algorithm 1 and give its practical implementation. In the following we will denote the jth column
of a matrix A as A(j) and the ith row as M(i, r). Furthermore to relate the algorithm to an
implementation in a programming language all matrices and vectors are 0 indexed. It will be
convenient to denote by Dl

y (5.1.8) with βt0 = βtM = 1 and γt0 = αtM = 0. Lastly we will write
the solution vector x of a matrix equation Ax = b as solution(A, b) and the identity matrix in n
dimensions as I ∈ Rn×n.

Algorithm 2: Leverage Function Bootstrap - Practical Implementation

Set up space grid Gx,y as described in 5.1.1;
Approximate P 1 and (Li,1)0≤i≤N as in 5.2.3;
Set corners of P 1 to 0;
Set up time grid {t1 · · · , tL = T};
for l ∈ {1, · · · ,L− 1} do

A← Lx,yP t;
B ← P t(Dl

y)
⊤;

Set corners of B to 0;
for j ∈ {0 · · · M} do

A(j)← solution

(
I− ϑ∆tlDj,l+1

x ,

(
I+∆tl(1− ϑ)Dj,lx

)
P l(j) + ∆tl[A(j) +B(j)]

)
;

for i ∈ {1 · · · N − 1} do

A(i, r)← solution

(
I− ϑ∆tlDl+1

y , A(i, r)− ϑ∆tlB(i, r)

)
;

A(0, r)← solution

(
I− ϑ∆tlDl+1

y , A(0, r)− ϑ∆tlB(0, r)

)
;

A(N, r)← solution

(
I− ϑ∆tlDl+1

y , A(0, r)− ϑ∆tlB(N, r)

)
;

P l+1 ← A;
for i ∈ {0 · · · N} do

ψi,l+1 ←
1
2

∑M−1
j=0 (f2(yj)p

l+1
i,j +f2(yj+1)p

l+1
i,j+1)∆yi

1
2

∑M−1
j=0 (pl+1

i,j +pl+1
i,j+1)∆yi

;

Li,l+1 ← σloc(xi,tl+1)√
ψi,l+1

;

Since each call of solution has, due to (5.1.7) and (5.1.8) being tridiagonal, complexity at most
O(max{N,M}) the whole calibration algorithm has complexity O((max{N,M,L})3).
Depending on the grid size it can be possible that in the beginning, when calculating ψ far way
from 0, the numerical integral in the denominator is 0. In this case we add small positive constants
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ε, c to the denominator and numerator in the calculation of ψ respectively. In our implementation
we choose ε = 10−8 and for mean reverting models like the specific ones we consider in this thesis
c = εθ or c = εθ2 depending on if θ is the mean reversion level of the variance like in the Heston
SLV or of the volatility like in the MQR and Tataru-Fisher models.
Additionally due to numerical error in the beginning of the calibration small negative density values
can appear in the low probability mass regions, these are truncated to 0.

5.4 Pricing with SLV

After having obtained obtained the family of density matrices (P tl)0≤l≤L and the corresponding
leverage function grid (Li,l)0≤i≤N,0≤l≤L, the SLV model is fully calibrated and can be used for
pricing.
European Option prices for maturity tl can be calculated directly by integration using the density
matrix P l. The price of a European Call and a Put option with strike K and maturity tl will be
given respectively by:

C(K, tl)SLV = D(0, t1)

∫ ∞

log( K
S0

)

∫
Ωy

p(x, y, tl)(e
xS0 −K) dydx

≈ D(0, tl)

4

N−1∑
i=k

M−1∑
j=0

∆xi∆yj

(
pli,j(e

xiS0 −K) + pli+1,j(e
xi+1S0 −K)

+ pli,j+1(e
xiS0 −K) + pli+1,j+1(e

xi+1S0 −K)

)
(5.4.1)

P (K, tl)SLV = D(0, t1)

∫ log( K
S0

)

−∞

∫
Ωy

p(x, y, tl)(K − exS0) dydx

≈ D(0, tl)

4

k−1∑
i=0

M−1∑
j=0

∆xi∆yj

(
pli,j(K − exiS0) + pli+1,j(K − exi+1S0)

+ pli,j+1(K − exiS0) + pli+1,j+1(K − exi+1S0)

)
(5.4.2)

where xk := inf{xi |xi ≥ log(KS0
)} and Ωy denotes the range of Y .

Since we are mainly interested in SLV models for pricing Exotic Options we wish to generate
Monte Carlo sample paths of X. For this we need to interpolate the leverage function grid
(Li,l)0≤i≤N,0≤l≤L to create a leverage function surface. From this we can then generate sam-
ple paths for X using the Euler scheme , while the exact path generation scheme for σ = f(Y ) is
best chosen on case to case basis. To interpolate the leverage surface , we use cubic splines in X
direction, and we interpolate L2 linear in time. For x outside the calibration grid we extrapolate
the surface flat that is for x < xminwe setL(x, t) = L(xmin, t) for all t > 0 and similarly on the
upper boundary.
To exemplify the procedure we present our simulation schemes for the MQR , Tataru-Fisher , and
Heston SLV model.
For some time grid {0 t1, · · · tK := T} which can be different from the one used during the calibra-
tion of the leverage function L we always set X0 = 0 and for 0 ≤ k ≤ K − 1

Xk+1 = Xk + (rk − qk −
1

2
L2(Xk, tk)σ

2
k)∆tk + L(Xk, tk)σk

√
∆tkZk

for a family of independent standard normal random variables (Zk)0≤k≤K−1.
Then in the case of the MQR model we use that we know the conditional distribution of Yt given
Ys for t > s (3.1.3) so we can simulate Y exactly as Y0 = 0 and

Yk+1 = Yke
−κ∆tk − λ2

2

1− e−κ∆tk + e−κ(2tk+1+∆tk) − e−2κtk+1

κ
+

√
λ2

2κ
(1− e−2κ∆tk)Z̃k

for another family of independent standard normals (Z̃k)0≤k≤K−1 with Corr(Zk, Z̃k) = ρ and set
σk = eYk .
For the Tataru-Fisher model we simulate the volatility process directly. Since as we recall the
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volatility process here is strictly positive and the expected volatility is 1 at all times the probability
of introducing negative volatility through discretisation errors is quite low so we use a simple Euler
scheme for the volatility process. We set σ0 = 1 and

σk+1 = σk + (1− σk)∆tk + λσk
√

∆tkZ̃k.

Should it happen after all that σk < 0 we set σ̃k := |σk| and use this as our process value. We will
allow the volatility process to hit 0 during simulation.
For the Heston SLV model we simulate the variance process V = σ2. Unlike for the Tataru-Fisher
model, especially when the Feller condition (3.3.2) is violated, there is a significant probability
for negative variance values due to the discretisation error in the simulation. To combat this we
follow Gatheral’s suggestion of using a Milstein scheme for the variance process as this reduces the
probability for negative values [12, Equation 2.18, Chapter 2, page 22]. Then V0 = V0 and

Vk+1 = Vk +∆tkκ(θ − Vk) + λ
√
Vk∆tkZ̃k −

λ2

2
((
√
∆tkZ̃)

2 −∆tk).

If negative values still occur they are handled by the same reflection technique we employ for the
Tataru-Fisher model above.
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Chapter 6

Numerical Results

We now apply the results of the last chapter by calibrating the MQR, Tataru-Fisher and Heston
SLV models to the SPX implied volatility surface on the 23/02/2023 up to 23/02/2026 maturity.
Unless specified otherwise we will use the following set of parameters:

• For the MQR model: κ = 0.24, λ = 0.5 and ρ = −0.23.

• For the Tataru-Fisher model: λ = 0.5 and ρ = −0.23.

• For the Heston SLV model: κ = 0.6, θ = 0.15, λ = 0.5, V0 = 0.1 and ρ = −0.23.

As we are mainly interested in studying the quality of the calibration archived by following Al-
gorithm 2, which should be able to theoretically handle any reasonable stochastic volatility pa-
rameters, the stochastic parameters were chosen arbitrarily within a reasonable parameter range,
only taking extra care to violate the Feller condition for the Heston SLV as to provide an extra
challenge for the calibration. We attempted the calibration for a large set of parameters and as the
results were quite similar we feel the choice of focusing the presentation on the above parameters
is justified.
Furthermore we assumed that interest and dividend rates are constant at r = 0.05 and q = 0.02.

6.1 Quality of the Calibration

As the ultimate goal is that the calibrated SLV model will fit to the market quotes for vanilla
options this is the main metric the quality of the calibration will be judged by.

6.1.1 Testing the Marginals of the Density

Our first approach to test this is by comparing implied volatilities generated by the SLV model to
implied volatilities generated by the local volatility model. This is a better approach for judging
the quality of the calibration than comparing the SLV implied volatilities directly to the market
implied volatilities since we are calibrating the SLV model to the local volatility model after all,
and thus even for a perfect calibration of the SLV model to the local volatility model there could
be residual errors to the real implied volatility surface incurred from the calibration of the latter.

Our first approach to calculate the SLV implied volatilities is to compute Put and Call prices
from the joint density p of X and Y , which we obtained as a by-product of the calibration of the
leverage function L, using (5.4.2) and (5.4.1) and then backing out the implied volatilities σSLVimp

from these prices. We also compute prices and from these implied volatilities σLVimp for the same
Puts and Calls using Monte Carlo and the local volatility model. Additionally we also compute
EQ[D(0, t)St] from the density which should be equal to the current spot price and check that p
integrates to approximately 1. If this is the case and |σSLVimp − σLVimp| is small this indicates that the

marginal density pX(x, t) :=
∫ ymax

ymin
p(x, y, t) dy matches the density of log( St

S0
) under local volatility

reasonably well.
In our case we compute the risk neutral expectation and total probability mass at maturities of
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1 week, 1,3,6,9,12,18,24,30 and 36 months with the start date being the 22/02/2023, and implied
volatilities for the same maturities for strikes corresponding to grid points between 0.5 and 1.5
moneyness, except for the one week maturity where the strike range is between 0.9 and 1.05 mon-
eyness, using Puts for moneyness below 1 and Calls for above. To keep the results between the
models comparable in terms of computational effort we have chosen N,M = 800 for all three, even
though for example the Heston SLV model with violated feller condition would, due the large log-
variance domain and two concentration points in the grid, require more grid points in y direction
than the MQR model with its normal distribution for the log-volatility. For the time steps we
choose L = 1700 1. The results of the calibration are reported in Tables 6.1 to 6.3.

Maturity Probability Mass Model Spot Mean Error (bps) Median Error (bps) Max Error (bps)
1w 0.999996 4012.31 3.1 2.5 10
1m 0.999998 4012.31 8.6 9.1 19.3
3m 0.999999 4012.32 2.7 3.2 4.1
6m 1.000001 4012.33 2.1 2.9 3.3
9m 0.999999 4012.32 1.3 1.5 1.2
12m 1.000001 4012.33 0.9 1 1.1
18m 1 4012.32 0.8 0.9 1.3
24m 0.999996 4012.26 0.8 0.7 1
30m 0.999963 4011.80 1.3 0.7 3.2
36m 0.999913 4011.01 2.3 0.8 5.8

Table 6.1: Results of the calibration for the MQR model. Actual spot is 4012.32. Errors are basis points
in volatility: 10000|σLSV

imp − σLV
imp|.

Maturity Probability Mass Model Spot Mean Error (bps) Median Error (bps) Max Error (bps)
1w 0.999996 4012.31 3.1 2.5 10.5
1m 1.000004 4012.34 8.7 9.1 19.2
3m 1.000013 4012.37 2.6 3.1 4.3
6m 1.000024 4012.42 2 2.7 3.3
9m 1.000043 4012.50 1.1 1.4 1.1
12m 1.000043 4012.50 0.7 0.8 0.9
18m 1.000068 4012.60 0.6 0.7 1
24m 1.000087 4012.63 0.5 0.4 0.9
30m 1.000074 4012.26 1 0.4 2.9
36m 1.000073 4011.90 1.5 0.5 4.3

Table 6.2: Results of the calibration for the Tataru-Fisher Model. Actual spot is 4012.32. Errors are basis
points in volatility: 10000|σLSV

imp − σLV
imp|.

The results appear to be promising. For all three models the no-flux boundary conditions
manage to keep the probability mass stable to a satisfactory degree, albeit we observe a somewhat
larger instability for the Heston SLV model where the violated Feller conditions complicates the
problem. Moreover the MQR model keeps the model spot extremely accurate up to 2 years and
is still reasonably close at the three years maturity. This is similar for the Tataru-Fisher model
where we observe larger but still small errors in the model spot up to 2 years and additionally
smaller errors in the last year.
Together with higher loss in probability mass there is also a higher loss in the model spot for the
Heston SLV model, but with retaining 99.9% of the original spot at the final maturity the model
still performs acceptably. Finally the density of all three models capture the volatility surface very
well for expiries between 6 months and three years, with mean and mostly even maximum errors
in implied volatilities below 5 basis points. The accuracy is reduced for the very short expiries
owing to the fact that even with a smooth approximation of the Dirac initial condition and tighter

1While this might seem excessive, this is mainly to generate sufficiently many time steps towards the beginning
of the calibration which we found necessary to get a good accuracy for 1 week and 1 month maturities. With the
non uniform time grid this still corresponds to taking less than 730 time steps between 1 and 3 years. We refer
to Appendix B.6 for a small excerpt of convergence experiments we conducted with the MQR model for a 1 year
calibration
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Maturity Probability Mass Model Spot Mean Error (bps) Median Error (bps) Max Error (bps)
1w 0.999995 4013.30 7.2 5.2 21.6
1m 1 4012.32 13.9 10.8 44
3m 1 4012.32 4.2 3.1 18.9
6m 0.999986 4012.26 2.3 1.9 8.2
9m 0.999963 4012.17 1.4 1.5 3.8
12m 0.999939 4012.01 1,1 1.2 3
18m 0.999891 4011.88 0.8 0.7 1.5
24m 0.999837 4011.61 0.7 0.8 1.3
30m 0.99975 4010.93 1.4 0.9 2.7
36m 0.999616 4009.5 2.8 1 4.8

Table 6.3: Results of the calibration for the Heston SLV model. Actual spot is 4012.32. Errors are basis
points in volatility: 10000|σLSV

imp − σLV
imp|.

grid spacing around the initial values very large derivatives are encountered around that region in
the beginning of the calibration which are difficult to handle for finite difference schemes. Still the
MQR and Tataru-Fisher models display mean errors of less than 10 and maximum errors of the
less than 20 basis points so also here the marginal density captures the volatility surface well.
Over all we can conclude that the marginal density pX matches the local volatility model’s density
quite well for all three models. Additionally we can also easily test if the marginal density of the
volatility process pY (y, t) :=

∫ xmax

xmin
p(x, y, t) dx matches known moments of Yt, or in the case of

the MQR and Heston SLV models where the full distribution of the volatility process is known this
distribution. We found this to be the case for all three models as well.
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Figure 6.1: Leverage surface and square root of the conditional variance ψ(k, t) =
√

E[σ2
t |St/S0 = k] for

the Tataru-Fisher model.
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Figure 6.2: Leverage surface and square root of the conditional variance ψ(k, t) =
√

E[σ2
t |St/S0 = k] for

the Heston SLVM.

The leverage surfaces and corresponding ψ for the Tataru-Fisher and Heston SLVM can be
found in Figures 6.2 and 6.1. The shape of ψ serves as a first confirmation of the interpretations
made about the character of the various SLV models in Sections 4.3 to 4.5. For the Tataru-Fisher
model ψ is indeed close to 1, especially around at the money, so here the leverage function will be
very similar to σloc as expected. For the Heston SLVM we observe that ψ is strictly less than 1

2 so
here, also as expected, the leverage function will be quite far from σloc. The shape of the leverage
surface also seems to be quite intuitive for both models, especially in the short term, where out
of the money the leverage surfaces bumps up the volatility comparatively heavily and, then on
the in the money wing, in case of the Tataru-Fisher model heavily reduces the on average quite
high volatility, and for the Heston SLVM the, due to our choice of V0, θ, quite low volatility is
left around its level there. It then seems credible that this leverage surface forces the underlying
stochastic volatility model to generate an implied volatility smirk with a shape similar to what we
observed in Figure 2.1.
As the leverage surface and ψ for the MQR model behave similarly to the one of the Tataru-Fisher
model, in line with the interpretation of this model as being more local in character, they are given
in Appendix B.5 and we will not further comment on them.
Overall it seems like the SLV models have been successfully calibrated.
However just having the correct marginal densities and intuitive shapes still does not guarantee
that the leverage function is correct as it depends on the joint distribution of X and Y and not
only on the marginals, which leads us into the next section.

6.1.2 Testing the Leverage Function in Monte Carlo

To properly test if the leverage function is calibrated correctly we reprice vanilla options again,
this time using Monte Carlo, as this will truly test the joint distribution of the stock and volatility
process and thus the leverage function, with daily stepping by interpolating the leverage function
into a leverage surface as described in Section 5.4, and again compute implied volatility from out
of the money Puts and Calls.
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Moreover for the MQR and Tataru-Fisher model we also compute implied volatilities for the same
Puts and Calls using only the leverage function, that is we price the options assuming

dSt = (rt − qt)St dt+ L(St, t)St dWt

and back out corresponding implied volatilities σLVG
imp to also further test our interpretation of the

models being more local in nature and our expectation of the leverage function being close to σloc.
If this interpretation is correct σLVG

imp should be close to σLV
imp.

First off Figures 6.3(a) and 6.3(b) confirm the evidence from the previous section that the interpre-
tation of the MQR and Tataru-Fisher model being mostly local volatility models with a stochastic
multiplier made in Sections 4.3 and 4.4 is correct as we can see that especially for the Tataru-Fisher
model around at the money most of the smile is explained by the leverage function itself. This is
quite different from the Heston SLV model where the leverage function prices are not close to the
actual prices at all, see Figure B.3.
On the other hand from Figure 6.3 we see that while the shape of the local volatility implied
volatility surface is matched quite well by all three models there is a significant error, mean error
in basis points being around 45, especially in the wings where we observe errors of up to 150 bps.
Now there could be two explanations for this error: Either the chosen interpolation method for
the leverage surface is insufficient or the joint density p of X,Y is wrong and thus the leverage
function calculated from it, even though the marginals are correct.
To further investigate and locate the source of the error we re calibrate all three models to the
same data set, setting the correlation ρ = 0 and keeping everything else the same.
As we see in in Figure 6.4 this eliminates the error and all three models fit the local volatility im-
plied volatility smile close to perfectly with a mean error of around 8 bps and a maximum errors of
less than 15 bps. This is consistent for all maturities, see Appendix B.4 for a further example. We
can thus conclude that the error in the non zero correlation case stems from an incorrect leverage
function which is caused by an incorrect joint density. Since the only difference in the calibration
for the non zero correlation case is the addition of the mixed derivative term in (4.2.2) we can
further pinpoint it as the root cause of the errors.

Due to the in general lengthy coefficients for the discretised mixed derivative operator (5.1.6) it
is possible that there is an error in our implementation which we were not able to find. Barring this
another more fundamental possible reason for the error is that the Douglas scheme (5.2.1)(5.2.2)
provides insufficient handling for the mixed derivative term as it is only incorporated through an
explicit step in (5.2.1). Because of this in the non zero correlation case we essentially are not fully
relating pli,j to p

l+1
i,j through the Fokker-Planck PDE, as a fully implicit or Crank-Nicolson scheme

would, but partially merely Taylor expanding pli,j forward in time. Solutions to this problem of
the Douglas Scheme present in the literature are so called predictor corrector ADI schemes, where
it is used that after the second step of the Douglas scheme (5.2.2) Li,l+1 can be calculated.

This is then used to do a second iteration similar to (5.2.1)(5.2.2) where due to the knowledge
of a proxy solution, the final solution of the Douglas scheme, also the mixed derivative term can
be related to pl+1

i,j through the PDE without having to solve a non tridiagonal matrix equation. A
prominent example of these kind of schemes is the modified Craig-Sneyd scheme [50, Equation 1.3,
page 678] which has also been used for the calibration of SLVMs in [38, Slide 9]. Using this scheme
instead of the Douglas scheme might provide an improvement for the calibration in the non zero
correlation case, making it an interesting option for further experimentation.
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Figure 6.3: SPX implied volatilities computed via Monte Carlo with 100000 sample paths and daily steps.
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Figure 6.4: SPX implied volatilities computed via Monte Carlo with 100000 sample paths and daily steps,
correlation ρ = 0.
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6.2 Volatility Dynamics

With, at least in the zero-correlation case, fully calibrated SLVMs in place we can use them to
price exotic options and compare the results to the local volatility model to see if they indeed
feature volatility dynamics more akin to a stochastic volatility model. To be precise we want to
investigate if the calibrated SLVMs do not suffer from the same problem of flattening forward
implied volatility smiles as the local volatility model. For this we price forward starting options,
introduced in Section 2.3 using Monte Carlo and then compute the forward implied volatility
(2.3.1) from these prices. Figures 6.5, 6.6 shows that all three models feature more convex, less
flat smiles than the local volatility model, meaning they indeed inherit the dynamic features of
stochastic volatility models. Moreover we see that again the Tataru-Fisher model behaves closest
to the local volatility model, in line with its intended interpretation, while the MQR model and
Heston SLV with their less restricted parameter choices have even further freedom to deviate from
the local volatility model.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
moneyness

0.20

0.25

0.30

0.35

0.40

im
pl

ie
d 

vo
l

Forward Smiles SLV 6m+6m
H-SLV 6m+6m
TF 6m+6m
MQR 6m+6m
LV 6m+6m

(a) SLV SPX forward smiles T1 = 0.5, T2 = 1.
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(b) SLV SPX forward smiles T1 = 0.5, T2 = 1.5.

Figure 6.5: SPX Forward implied volatility under different models as of 23/02/2023.
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Figure 6.6: SLV SPX forward smiles T1 = 0.75, T2 = 1.75.

As an additional metric we also computed the forward at the money skew

∂σimp

∂K
(T1 |K, T2)

∣∣∣∣
K=1

via finite differences for all 4 models and observe, Table 6.4, that all three SLVMs exhibit more
skew than the local volatility model, with the Tataru-Fisher model again being closest to the local
volatility model. This again confirms that SLVMs feature richer volatility dynamics than the local
volatility model.

(T1, T2) Local Volatility MQR Tataru-Fisher Heston SLV
(0.5, 0.5) -0.1416 -0.1499 -0.1451 -0.1645
(0.5, 1) -0.1113 -0.1267 -0.1214 -0.1321
(0.75, 1) -0.098 -0.1137 -0.1054 -0.1139

Table 6.4: Forward at the money skew for local volatility and stochastic local volatility.

6.3 Which model to choose?

Finally let us briefly discuss which of the three implemented models we would recommend to use.
In Section 6.1 we have found that when it comes to solving the Fokker-Planck equation for the
density and leverage function the Heston SLV model provides the biggest challenge of the three
models when trying to fit short maturity options well with the density, as well as for keeping the
probability mass stable.
Still when it comes to pricing vanilla options via Monte Carlo all three models perform roughly
similar, encountering the same problems in the non zero correlation case and being able to fit the
smile quite well with correlation equal to zero.
On the other hand the superior stability of the probability mass and more accurate pricing of
short maturity vanilla options with the fitted density inspires more confidence in the MQR and
Tataru-Fisher to still be able to be calibrated under more extreme market scenarios than the one
considered in this thesis. Simply put we found their calibration to be more robust.
The main advantage of the Heston SLV model is that there is a clear cut way to obtain the stochas-
tic volatility parameters by calibrating the standard Heston model. However since the leverage
function is there to correct miss calibration of the underlying pure stochastic volatility anyways
very precise estimation or fitting of the stochastic parameters is not strictly necessary and one
should be able to get away with any kind of reasonable stochastic volatility parameters as long as
they capture the market underlying volatility dynamics reasonably well. Hence it is not a major
disadvantage that for the MQR and Tataru-Fisher models the parameters have to be estimated
from for example historical data , or in the case of the Tataru-Fisher model roughly calibrated
with an approximation formula.
Finally when it comes to producing volatility dynamics widely different from the local volatility
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model the Heston SLV model trumps, giving the most parameter freedom for the stochastic compo-
nent among all three models. But as shown in Section 6.2 also the MQR and Tataru-Fisher models
manage to produce dynamic behavior different to the local vol model, even when their parameter
freedom is further reduced by setting ρ = 0, while the Tataru-Fisher model has the tendency to
be closer to the local volatility model than the MQR model, owing to it being the most restricted,
local in nature, model among them.
All in all we favour the MQR model for its stability, while still offering a lot of freedom in stochastic
dynamics and additionally its log-normal volatility dynamics agreeing well with empirical obser-
vations as discussed in 3.1. The reliance on historical estimation for the the stochastic volatility
parameters as mentioned is only a minor drawback in our opinion.
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Conclusion and further Extensions

In this thesis we have presented a generic framework, based on established methods, for calibrating
one factor stochastic local volatility models following the Fokker-Planck equation based approach
introduced in [5]. Throughout we applied this framework to three different models, two of them,
the MQR and Heston SLV model being well studied, while the third the Tataru-Fisher has received
less attention. To our knowledge in doing so we have provided the first discussion about boundary
conditions for the Tataru-Fisher model and through our implementation shown that also for this
model no flux boundary conditions, which have already previously been applied to the Heston SLV
and MQR models, are a good choice to provide a stable solution for its associated Fokker-Planck
equation.
Furthermore we have shown that with our approach we can calibrate well all three models when
the correlation between the stock price process and the volatility is zero. We also identified our
approach to be lacking for non zero correlation, in that while the overall shape of the smile is
matched decently well especially in the wings we encounter unacceptably large errors when using
the calibrated models for Monte Carlo simulations. Here we offered a possible solution approach
for further experimentation by suggesting to use ADI schemes with multiple predictor corrector
steps to improve the handling of the problematic mixed derivative term as already done in for
example [34] and [38].
Finally we verified that all three SLV models considered in this thesis can solve the forward volatility
smile flattening problem of the local volatility model.
Some interesting further extensions and improvements to our approach, aside from solving the no
correlation problem, would be first off to introduce jumps into the framework, similar to [4], but in
this case with the main motivation to include cash dividends into the models, so that single name
stocks can be more accurately modeled.
Another interesting extension focused on increasing the efficiency of our approach would be instead
of only determining grid boundaries appropriate for the final maturity, and then using this grid
for the whole calibration process, to let the grid boundaries xmin, xmax, ymin and ymax be time
dependent. This would prevent us from working with way too large grids in the beginning when
the density is still very concentrated around the initial value and thus wasting computational time
by solving the PDE in large areas where the density is still essentially zero.
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Appendix A

Technical Details

A.1 Generating grids with ODEs

We now give details on the solution methods for the grid generation ODE (5.1.2).
dF (u)
du = A

(∑2
k=1

1
Jk(u)

)− 1
2

Jk(u) := [β2 + (F (u)−Bk)2]
F (0) = ymin

F (1) = ymax

We first consider the case with only one concentration point B1 ∈ [ymin, ymax]. The ODE is then
given by

dF

du
= A

√
β2 + (F −B1)2.

This ODE is separable so we can formally write∫
1√

β2 + (F −B1)2
dF =

∫
Adu.

Now substituting x := F−B1

β∫
1√

β2 + (F −B1)2
dF =

∫
1√

1 + x2
dx = arcsinh(x) + c.

It follows that arcsinh(F (u)−B1

β ) = Au+ c which is equivalent to

F (u) = B1 + β sinh(Au+ c).

With the two free parameters A, c this can be solved for F (0) = ymin and F (1) = ymax, which
yields

F (u) = B1 + β sinh(c1(1− u) + c2u)

for c1 = arcsinh(ymin−B1

β ) and c2 = arcsinh(ymax−B1

β ).

In the presence of two concentration points B1, B2 ∈ [ymin, ymax] we can not solve the ODE
analytically anymore and numerical methods are needed. Tian [36, Algorithm 2, page 67] suggests
a 4th order Rune-Kutta shooting method approach, meaning the ODE is solved numerically with
initial condition F (0) = ymin for varied A until |F (1)−ymax| ≤ ε for some ε > 0. Tian suggests to
update A as Anew = Aold± ε depending on if FAold

(1) is smaller or greater than ymax respectively.
We found this updating behavior to be very slow even for for reasonably large tolerance levels ε,
we thus suggest to rather update A using a bisection method, which we found to be considerably
faster. Letting the initial search interval be [Amin, Amax] for 0 < Amin < Amax, G ∈ RM+1 a zero

indexed vector, and J(u) :=

(∑2
k=1

1
Jk(u)

)− 1
2

. Our slightly modified version of the grid generation
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algorithm discussed in [36, Chatper 5.2.1, Algorithm 2, page 67] is then given by:

Algorithm 3: Grid Generation with multiple concentration Points

A← Amax+Amin

2 ;

∆← ymax−ymin

M ;
yM ← ymin;
G← {ymin, 0, · · · , 0};
while |ym − ymax| > ε do

for j ∈ {1, ·,M} do
u← Gj−1;
K1 ← ∆AJ(u);

u← Gj−1 +
K1

2 ;
K2 ← ∆AJ(u);

u← Gj−1 +
K2

2 ;
K3 ← ∆AJ(u);
u← Gj−1 +K3;
K4← ∆AJ(u);

Gj ← Gj−1 +
1
6 (K1 + 2K2 + 2K3 +K4);

yM ← GM ;
if ym − ymax > ε then

Amax ← A;

else
Amin ← A;

A = Amax+Amin

2 ;

return G;

In our implementation we used Amax = 20 and Amin = 0.1 with which we obtained quick
convergence for all test grids with ε between 0.01 and 0.001.

A.2 Spatial Derivative Approximation Part 2

We provide the proof of 5.1.1.

Proof. Recall that by Taylor’s theorem for (h, l) ∈ R2 and (x, y) ∈ Ω so that (x+ h, y + l) ∈ Ω, as
g is assumed to be smooth, suppressing the argument (x, y) for ease of notation,

g(x+ h, y + l) = g(x, y) + h∂xg + l∂yg +
h2

2
∂2xg + hl∂x∂yg +

l2

2
∂2yg

+
h3

6
∂3xg +

h2l

2
∂2x∂yg +

l2h

2
∂x∂

2
yg +

l3

6
∂3yg +O(h4 + l4).

Thus for ∆x := max{xi | 0 ≤ i ≤ N}

− ∆xigi−1,j

∆xi−1(∆xi +∆xi−1)
+

(∆xi −∆xi−1)gi,j
∆xi∆xi−1

+
∆xi−1gi+1,j

∆xi(∆xi +∆xi−1)

= − ∆xi
∆xi−1(∆xi +∆xi−1)

(
gi,j −∆xi−1∂xgi,j +

(∆xi−1)
2

2
∂2xgi,j +O((∆x)2)

)
+

(∆xi −∆xi−1)gi,j
∆xi∆xi−1

+
∆xi−1

∆xi(∆xi +∆xi−1)

(
gi,j +∆xi∂xgi,j +

(∆xi)
2

2
∂2xgi,j +O((∆x)2)

)
= ∂xgi,j +O((∆x)2).
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Furthermore

2

∆xi−1(∆xi +∆xi−1)
gi−1,j −

2

∆xi∆xi−1
gi,j +

2

∆xi(∆xi +∆xi−1)
gi+1,j

=
2

∆xi∆xi−1(∆xi +∆xi−1)

(
∆xi[gi,j −∆xi−1∂xgi,j +

(∆xi−1)
2

2
∂2xgi,j −

(∆xi−1)
3

6
∂3gi,j +O((∆x)4)]

+ ∆xi−1[gi,j +∆xi∂xgi,j +
∆xi
2
∂2xgi,j +

(∆xi)
3

6
∂3gi,j +O((∆x)4)]

)
− 2

∆xi−1∆xi
gi,j

= ∂2xgi,j +
1

3

(∆xi)
2 − (∆xi−1)

2

∆xi +∆xi−1
∂3xgi,j +O((∆x)2)

= ∂2xgi,j +O(∆x).

And finally

gi+1,j+1 − gi−1,j+1 − gi+1,j−1 + gi−1,j−1 = (∆xi∆yj +∆xi−1∆yj +∆xi∆yj−1 +∆xi−1∆yj−1)∂x∂ygi,j

+ ((∆xi)
2[∆yj +∆yj−1]− (∆xi−1)

2[∆yj +∆yj−1])∂
2
x∂y

gi,j
2

+ ((∆yj)
2[∆xi +∆xi−1]− (∆yj−1)

2[∆xi +∆xi−1])∂x∂
2
y

gi,j
2

+O((∆x)4 + (∆y)4),

from which it immediately follows that

∂x∂ygi,j =
gi+1,j+1 − gi+1,j−1 − gi−1,j+1 + gi−1,j−1

∆xi∆yj +∆xi∆yj−1 +∆xi−1∆xj +∆xi−1∆yj−1
+O(∆x+∆y)

A.3 Finite Difference Coefficients and approximated Initial
Condition -MQR

In the MQR model we obtain the interior coefficients in (5.1.7) and (5.1.8) with the choice f(y) =
exp(y) , µ(y, t) = κ(θt−y) and λ(y, t) = λ for some constant λ > 0. For this model the coefficients
for no flux boundary conditions my also be found in [34, Section 4.4.2, pages 12-17]. We arrived
at the same boundary conditions which are given by: For 1 ≤ j ≤M − 1 the boundary coefficients
on the spot boundaries are given as:

bj,t0 := (
1

∆x0
− 1

(∆x0)2
)L2

0,te
2yj − 2

rt − qt
∆x0

− 1

2
L2
0,te

2yj − 2(rt − qt)2

L2
0,te

2yj
,

cj,t0 :=
L2
0,te

2yj

(∆x0)2
,

aj,tN :=
L2
N,te

2yj

(∆xN−1)2
,

bj,tN := (− 1

∆xN−1
− 1

(∆xN−1)2
)L2

N,te
2yj + 2

rt − qt
∆xN−1

− 1

2
L2
N,te

2yj − 2(rt − qt)2

L2
N,te

2yj
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and at the volatility boundaries as

βt0 =
−λ2

(∆y0)2
− 2κ

λ2

(
κ(θt − y0 +∆y0) +

λ2

∆y0

)
(θt − y0),

γt0 = κ+
λ2

(∆y0)2

αt0 = κ+
λ2

(∆yM−1)2
,

βt0 =
−λ2

(∆yM−1)2
− 2κ

λ2

(
κ(θt − yM −∆yM−1)−

λ2

∆yM−1

)
(θt − yM ).

Moreover for 1 ≤ j ≤ N − 1 we define

a−,t0 :=
λρL0,te

yj−1

4(∆yj−1 +∆yj)

(
2(rt − qt)
L2
0,te

2yj−1
+ 1

)
,

a+,t0 := − λρL0,te
yj+1

4(∆yj−1 +∆yj)

(
2(rt − qt)
L2
0,te

2yj+1
+ 1

)
,

a−,t1 := − λρ

8∆x0(∆yj−1 +∆yj)
(L1 − L0)e

yj−1 ,

a+,t1 :=
λρ

8∆x0(∆yj−1 +∆yj)
(L1 − L0)e

yj+1 ,

a−,tN−1 := − λρ

8∆xN−1(∆yj−1 +∆yj)
(LN − LN−1)e

yj−1 ,

a+,tN−1 :=
λρ

8∆xN−1(∆yj−1 +∆yj)
(LN − LN−1)e

yj+1 ,

a−,tN := − λρLN,te
yj−1

4(∆yj−1 +∆yj)

(
2(rt − qt)
L2
N,te

2yj−1
− 1

)
,

a+,tN :=
λρLN,te

yj+1

4(∆yj−1 +∆yj)

(
2(rt − qt)
L2
N,te

2yj+1
− 1

)
.

Then

Lxypt0,j = a−,t0 pt0,j−1 + a+,t0 pt0,j+1 + a−,t1 pt1,j−1 + a+,t1 pt1,j+1

and

LxyptN,j = a−,tN−1p
t
N−1,j−1 + a+,tN−1p

t
N−1,j+1 + a−,tN ptN,j−1 + a+,tN ptN,j+1.

For the volatility boundaries we define for 1 ≤ i ≤ N − 1

α−,t
0 := − ρLi−1,te

y0−∆y0

2(∆xi−1 +∆xi)

κ(θt − y0)
λ

,

α+,t
0 :=

ρLi+1,te
y0−∆y0

2(∆xi−1 +∆xi)

κ(θt − y0)
λ

,

α−,t
1 := − λρ

8∆y0(∆xi−1 +∆xi)
Li−1,t(e

y1 − ey0−∆y0),

α+,t
1 :=

λρ

8∆y0(∆xi−1 +∆xi)
Li+1,t(e

y1 − ey0−∆y0),

α−,t
M−1 := − λρ

8∆yM−1(∆xi−1 +∆xi)
Li−1,t(−eyM−1 + eyM+∆yM−1),

α+,t
M−1 :=

λρ

8∆yM−1(∆xi−1 +∆xi)
Li+1,t(−eyM−1 + eyM+∆yM−1),

α−,t
M := −ρLi−1,te

yM+∆yM−1

2(∆xi−1 +∆xi)

κ(θt − yM )

λ
,

α+,t
M :=

ρLi+1,te
yM+∆yM−1

2(∆xi−1 +∆xi)

κ(θt − yM )

λ
.
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We then have

Lxypti,0 =
ρ

2λ(∆xi +∆xi−1)
(α−,t

0 pti−1,0 + α+,t
0 pti+1,0 + α−,t

1 pti−1,1 + α+,t
1 pti+1,1)

and

Lxypti,M =
ρ

2λ(∆xi +∆xi−1)
(α−,t
M−1p

t
i−1,0 + a+,tM−1p

t
i+1,0 + α−,t

M pti−1,M + α+,t
M pti+1,M ).

Applying the normal approximation (5.2.3) gives us, since Y0 = 0,[
X1

Y1

]
∼ N

([
[(r0 − q0)− 1

2σ
2
loc(S0, 0)]∆t0

κθ0∆t0

]
, ∆t0

[
σ2
loc(S0, 0) ρσloc(S0, 0)λ

ρσloc(S0, 0)λ λ2

])
.

then conditional on X1 Y1 is distributed as

Y1|X1 ∼ N
(
κθ0∆t0 +

λρ

σloc(S0, 0)
(X1 − [(r0 − q0) +

1

2
σloc(S0, 0)]∆t0),∆t0(1− ρ2)λ2

)
so

ψ(x, t) = E[e2Y1 |X1 = x]

= exp

(
2

[
κθ0∆t0 +

λρ

σloc(S0, 0)
(x− [(r0 − q0) +

1

2
σloc(S0, 0)]∆t0)

]
+ 2∆t0(1− ρ2)λ2

)

A.4 Finite Difference Coefficients and approximated Initial
Condition -Tataru-Fisher

In the Tataru-Fisher model we obtain the interior coefficients in (5.1.7) and (5.1.8) with the choice
f(y) = y , µ(y, t) = (1 − y) and λ(y, t) = λy for some constant λ > 0. For 1 ≤ j ≤ M − 1 the
boundary coefficients on the spot boundaries are given as:

bj,t0 := (
1

∆x0
− 1

(∆x0)2
)L2

0,ty
2
j − 2

rt − qt
∆x0

− 1

2
L2
0,ty

2
j −

2(rt − qt)2

L2
0,ty

2
j

,

cj,t0 :=
L2
0,ty

2
j

(∆x0)2
,

aj,tN :=
L2
N,ty

2
j

(∆xN−1)2
,

bj,tN := (− 1

∆xN−1
− 1

(∆xN−1)2
)L2

N,ty
2
j + 2

rt − qt
∆xN−1

− 1

2
L2
N,ty

2
j −

2(rt − qt)2

L2
N,ty

2
j

and at the volatility boundaries as

βt0 = (∆y0 − y0 + 1)
2y0 − 2

λ2(∆y0 − y0)2
+

2y0 − 2

∆y0
− λ2y20

(∆y0)2
,

γt0 =
y1 − 1

2∆y0
+ (∆y0 − y0 + 1)

y21
2∆y0(∆y0 − y0)2

+
λ2y21
∆y20

,

αt0 = −yM−1 − 1

2∆yM−1
+ (∆yM−1 + yM − 1)

y2M−1

2∆yM−1(∆yM−1 + yM )2
+

λ2y2M−1

(∆yM−1)2
,

βt0 = (∆yM−1 + yM − 1)
−2yM + 2

λ2(∆yM−1 + yM )2
+

(−2yM + 2)

∆yM−1
− λ2y2M

(∆yM−1)2
.
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Moreover for 1 ≤ j ≤ N − 1 we define

a−,t0 := −4(rt − qt)∆x0 + 2L2
0,t∆x0y

2
j−1,

a+,t0 := 4(rt − qt)∆x0 − 2L2
0,t∆x0y

2
j+1,

a−,t1 := L2
1,ty

2
j−1 − L0,tL1,ty

2
j−1,

a+,t1 := −L2
1,ty

2
j+1 + L0,tL1,ty

2
j+1,

a−,tN−1 := L2
N−1,ty

2
j−1 − LN,tLN−1,ty

2
j−1,

a+,tN−1 := −L2
N−1,ty

2
j+1 + LN,tLN−1,ty

2
j+1,

a−,tN := 4(rt − qt)∆xN−1 − 2L2
N,t∆xN−1y

2
j−1,

a+,tN := −4(rt − qt)∆xN−1 + 2L2
N,t∆xN−1y

2
j+1.

Then

Lxypt0,j =
ρλ

8L0,t∆x0(∆yj +∆yj−1)
(a−,t0 pt0,j−1 + a+,t0 pt0,j+1 + a−,t1 pt1,j−1 + a+,t1 pt1,j+1)

and

LxyptN,j =
ρλ

8LN,t∆xN−1(∆yj +∆yj−1)
(a−,tN−1p

t
N−1,j−1 + a+,tN−1p

t
N−1,j+1 + a−,tN ptN,j−1 + a+,tN ptN,j+1).

For the volatility boundaries we define for 1 ≤ i ≤ N − 1

α−,t
0 := −Li− 1, t(1− y0),
α+,t
0 := Li+1,t(1− y0),
α−,t
1 := 0,

α+,t
1 := 0,

α−,t
M−1 := 0,

α+,t
M−1 := 0,

α−,t
M := −Li−1,t(1− yM ),

α+,t
M := Li+1,t(1− yM ).

We then have

Lxypti,0 =
ρ

2λ(∆xi +∆xi−1)
(α−,t

0 pti−1,0 + α+,t
0 pti+1,0 + α−,t

1 pti−1,1 + α+,t
1 pti+1,1)

and

Lxypti,M =
ρ

2λ(∆xi +∆xi−1)
(α−,t
M−1p

t
i−1,0 + a+,tM−1p

t
i+1,0 + α−,t

M pti−1,M + α+,t
M pti+1,M ).

Applying the normal approximation (5.2.3) gives us, since Y0 = 1,[
X1

Y1

]
∼ N

([
[(r0 − q0)− 1

2σ
2
loc(S0, 0)]∆t0

1

]
, ∆t0

[
σ2
loc(S0, 0) ρσloc(S0, 0)λ

ρσloc(S0, 0)λ λ2

])
.

then conditional on X1 Y1 is distributed as

Y1|X1 ∼ N
(
1 +

λρ

σloc(S0, 0)
(X1 − [(r0 − q0) +

1

2
σloc(S0, 0)]∆t0),∆t0(1− ρ2)λ2

)
so

ψ(x, t) = E[Y 2
1 |X1 = x]

= ∆t0(1− ρ2)λ2 +
(
1 +

λρ

σloc(S0, 0)
(x− [(r0 − q0) +

1

2
σloc(S0, 0)]∆t0)

)2
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A.5 Finite Difference Coefficients Heston-SLV

For the Heston SLV model we obtain the interior coefficients in (5.1.7) and (5.1.8) with the choice

f(y) = exp( 12y) , µ(y, t) = (κθ − 1
2λ

2)e−y − κ and λ(y, t) = λe−
1
2y

2

for some constant λ > 0. For
1 ≤ j ≤M − 1 the boundary coefficients on the spot boundaries are given as:

bj,t0 := (
1

∆x0
− 1

(∆x0)2
)L2

0,te
yj − 2

rt − qt
∆x0

− 1

2
L2
0,te

yj − 2(rt − qt)2

L2
0,te

yj
,

cj,t0 :=
L2
0,te

yj

(∆x0)2
,

aj,tN :=
L2
N,te

yj

(∆xN−1)2
,

bj,tN := (− 1

∆xN−1
− 1

(∆xN−1)2
)L2

N,te
yj + 2

rt − qt
∆xN−1

− 1

2
L2
N,te

yj − 2(rt − qt)2

L2
N,te

yj

and at the volatility boundaries as

βt0 = − λ2

(∆y0)2ey0
+

2κ(−e−y0θ + 1) + λ2e−y0)

∆y0
+

2κ2

λ2
(−θ2e−y0 + θ + θe−∆y0 − e−∆y0+y0)

+ κ(2θe−y0 − 1− e−∆y0)− 1

2
λ2e−y0 ,

γt0 =
λ2

(∆y0)2ey1
+ κ

1− e−2∆y0

2∆y0
,

αt0 =
λ2

(∆yM−1)2eyM−1
+ κ

e2∆yM−1 − 1

2∆yM−1
,

βt0 = − λ2

(∆yM−1)2eyM
+

2κ(e−yM θ − 1)− λ2e−yM )

∆yM−1
+

2κ2

λ2
(−θ2e−yM + θ + θe−∆yM−1 − e∆yM−1+yM )

+ κ(2θe−yM − 1− e−∆yM−1)− 1

2
λ2e−yM .

Moreover for 1 ≤ j ≤ N − 1 we define

a−,t0 :=
λρ

4L0,t(∆yj−1 +∆yj)
(−2(rt − qt)e−yj−1 + L2

0,t),

a+,t0 :=
λρ

4L0,t(∆yj−1 +∆yj)
(2(rt − qt)e−yj+1 − L2

0,t),

a−,t1 :=
L1,tλρ(L1,t − L0,t)

8L0,t∆x0(∆yj−1 +∆yj)
,

a+,t1 :=
L1,tλρ(−L1,t + L0,t)

8L0,t∆x0(∆yj−1 +∆yj)
,

a−,tN−1 :=
LN−1,tλρ(LN,t − LN−1,t)

8LN,t∆xN−1(∆yj−1 +∆yj)
,

a+,tN−1 :=
LN−1,tλρ(−LN,t + LN−1,t)

8LN,t∆xN−1(∆yj−1 +∆yj)
,

a−,tN :=
λρ

4LN,t(∆yj−1 +∆yj)
(−2(rt − qt)e−yj−1 + L2

N,t),

a+,tN :=
λρ

4LN,t(∆yj−1 +∆yj)
(2(rt − qt)e−yj+1 − L2

N,t).

Then

Lxypt0,j = a−,t0 pt0,j−1 + a+,t0 pt0,j+1 + a−,t1 pt1,j−1 + a+,t1 pt1,j+1

and

LxyptN,j = a−,tN−1p
t
N−1,j−1 + a+,tN−1p

t
N−1,j+1 + a−,tN ptN,j−1 + a+,tN ptN,j+1.
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For the volatility boundaries we define for 1 ≤ i ≤ N − 1

α−,t
0 :=

Li−1,tρe
−∆y0

4λ(∆xi−1 +∆xi)
(−2κθ + 2κey0 + λ2),

α+,t
0 :=

Li+1,tρe
−∆y0

4λ(∆xi−1 +∆xi)
(2κθ − 2κey0 − λ2),

α−,t
1 :=

Li−1,tλρ

8∆y0(∆xi−1 +∆xi)
(ey0−∆y0−y1 − 1),

α+,t
1 :=

Li+1,tλρ

8∆y0(∆xi−1 +∆xi)
(−ey0−∆y0−y1 + 1),

α−,t
M−1 :=

Li−1,tλρ

8∆yM−1(∆xi−1 +∆xi)
(−eyM+∆yM−1−yM−1 + 1),

α+,t
M−1 :=

Li−1,tλρ

8∆yM−1(∆xi−1 +∆xi)
(eyM+∆yM−1−yM−1 − 1),

α−,t
M :=

Li−1,tρe
∆yM−1

4λ(∆xi−1 +∆xi)
(−2κθ + 2κeyM + λ2),

α+,t
M :=

Li−1,tρe
∆yM−1

4λ(∆xi−1 +∆xi)
(2κθ − 2κeyM − λ2).

We then have

Lxypti,0 =
ρ

2λ(∆xi +∆xi−1)
(α−,t

0 pti−1,0 + α+,t
0 pti+1,0 + α−,t

1 pti−1,1 + α+,t
1 pti+1,1)

and

Lxypti,M =
ρ

2λ(∆xi +∆xi−1)
(α−,t
M−1p

t
i−1,0 + a+,tM−1p

t
i+1,0 + α−,t

M pti−1,M + α+,t
M pti+1,M ).

Applying the normal approximation (5.2.3) gives us, since Y0 = log(V0),[
X1

Y1

]
∼ N

([
[(r0 − q0)− 1

2σ
2
loc(S0, 0)]∆t0

log(V0) + [(κθ − 1
2λ)

1
V0
− κ]∆t0

]
, ∆t0

[
σ2
loc(S0, 0) ρσloc(S0, 0)λ

1√
V0

ρσloc(S0, 0)λ
1√
V0

λ2 1
V0

])
.

then conditional on X1 Y1 is distributed as

Y1|X1 ∼ N
(
log(V0) + [(κθ − 1

2
λ)

1

V0
− κ]∆t0 +

λρ√
V0σloc(S0, 0)

(X1 − [(r0 − q0) +
1

2
σloc(S0, 0)]∆t0),

(1− ρ2)∆t0
λ2

V0

)
so

ψ(x, t) = E[eY1 |X1 = x]

= exp

(
log(V0) + [(κθ − 1

2
λ)

1

V0
− κ]∆t0

+
λρ√

V0σloc(S0, 0)
(x− [(r0 − q0) +

1

2
σloc(S0, 0)]∆t0) +

1

2
(1− ρ2)∆t0

λ2

V0

)
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Appendix B

Additional Figures and Tables

B.1 Density Plots MQR
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(a) 5 day density MQR.
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(b) 1 month density MQR.

Figure B.1: MQR density at different maturities for SPX fit, κ = 0.24, λ = 0.71, ρ = −0.23
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Figure B.1: MQR density 1y

B.2 Density Plots Heston SLVM
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(a) 5 day density Heston-SLV.
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(b) 1 month density Heston-SLV.

Figure B.2: Heston-SLV density at different maturities for SPX fit, κ = 1.2, θ = 0.15, λ = 0.7, ρ = −0.23
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Figure B.2: 1y density Heston-SLV.

B.3 Heston SLV Leverage Function
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Figure B.3: 1 year maturity Monte Carlo implied volatilities σSLV
imp , σ

LV
imp and σLVG

imp for the Heston SLV
model. Correlation ρ = 0
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B.4 1 Year implied Volatility 1 - Monte Carlo
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(a) 1 year maturity Monte Carlo implied volatilities σSLV
imp , σLV

imp and σLVG
imp for the MQR model

with 0 correlation

2000 2500 3000 3500 4000 4500 5000 5500 6000
strike

0.15

0.20

0.25

0.30

0.35

0.40

im
pl

ie
d 

vo
l

Implied Vol 1y MC - Tataru-Fisher
Implied Vol LV
Implied Vol SLV
Implied Vol LVG func only

(b) 1 year maturity Monte Carlo implied volatilities σSLV
imp , σLV

imp and σLVG
imp for the Tataru-Fisher

model with 0 correlation.
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(c) 1 year maturity Monte Carlo implied volatilities σSLV
imp and σLV

imp for the Heston SLV model
with 0 correlation.

Figure B.4: SPX implied volatilities computed via Monte Carlo with 100000 sample paths and daily steps,
correlation ρ = 0. 1 year maturity.
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B.5 MQR Leverage Surface
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Figure B.5: Leverage surface and square root of the conditional variance ψ(k, t) =
√

E[σ2
t |St/S0 = x] for

the MQR model.
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B.6 Impact of Number of Time Steps

We give below a table of errors in implied volatility in basis points for a 1 year SPX calibration
of the MQR model with parameters κ = 1, λ = 0.5, ρ = −0.31 and constant rates and dividens
r = 0.05, q = 0.02 for different combinations of N,M,L. Errors were rounded to two decimal
places. The error in implied volatility for each L was calculated on the date closest to the given
maturity, so technically speaking the combinations are not exactly comparable across different
choices of L. Additionally for more grid points in x direction, the error is calculated for more
individual strikes in the strike range between 0.5 and 1.5, 0.9 to 1.05 for the 1 week maturity,
moneyness. Hence the results are also not exactly comparable across different choices of N either.
The table only serves as an illustration of the importance of taking many very small time steps in
the beginning of the calibration to gain an acceptable error for close maturities.

(N,M,L) 1w mean 1w max 1m mean 1m max 3m mean 3m max 1y mean 1y max
(500, 500, 80) 56.39 124.95 267.12 641.12 74.45 237.33 9.27 45.39
(500, 500, 100) 27.72 53.53 39.98 89.69 16.64 54.23 2.88 12.19
(500, 500, 150) 23.33 50.42 41.68 75.85 22.85 51.53 4.23 18.32
(500, 500, 200) 16.82 46.94 13.52 41.22 1.53 10.90 1.34 3.95
(500, 500, 250) 10.24 25.48 18.63 32.17 6.40 17.84 1.56 4.05
(500, 500, 300) 10.01 36.83 17.60 37.83 5.17 19.56 1.32 4.97
(500, 500, 365) 12.94 37.26 24.39 39.21 6.94 22.62 1.69 7.76
(500, 500, 400) 11.10 45.67 8.17 28.64 3.72 7.75 1.12 4.78
(500, 500, 550) 10.86 26.99 3.82 15.03 3.08 7.66 1.06 4.18
(500, 500, 730) 9.13 34.57 3.99 19.50 3.13 6.75 0.94 4.76
(600, 600, 80) 56.19 123.60 266.77 640.59 74.40 237.21 9.23 45.34
(600, 600, 100) 27.58 53.45 39.76 89.47 16.60 54.18 2.89 12.16
(600, 600, 150) 23.32 49.37 41.45 75.49 22.80 51.49 4.19 18.30
(600, 600, 200) 16.62 45.83 13.49 40.42 1.48 10.67 1.36 4.14
(600, 600, 250) 9.96 24.28 18.46 31.39 6.40 17.66 1.59 4.40
(600, 600, 300) 9.87 35.57 17.39 37.60 5.12 19.35 1.34 4.94
(600, 600, 365) 12.65 35.96 24.17 38.95 6.88 22.53 1.69 7.74
(600, 600, 400) 10.88 44.53 8.09 27.65 3.70 7.48 1.16 5.12
(600, 600, 550) 10.77 25.88 3.72 14.09 3.01 7.33 1.09 4.53
600, 600, 730) 8.86 33.47 3.79 18.50 3.11 6.45 0.98 5.11

Table B.1: Errors in implied volatility in bps (10000|σSLV
imp − σLV

imp|) for 1 year MQR calibration to SPX on
2023-02-23 for different number of grid points. For each choice of time steps the error is calculated on the
closest grid date to the given maturity.

63



Bibliography

[1] Bruno Dupire et al. Pricing with a smile. Risk, 7(1):18–20, 1994.

[2] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654, 1973.

[3] Michal Jex, Richard C. Henderson, and Desheng Wang. Pricing exotics under the smile.
http://www.smartquant.com/references/OptionPricing/option14.pdf, 1999.

[4] Alexander Lipton. Masterclass with deutsche bank. the vol smile problem. RISK-LONDON-
RISK MAGAZINE LIMITED-, 15(2):61–66, 2002.

[5] Yong Ren, Dilip Madan, and M Qian Qian. Calibrating and pricing with embedded local
volatility models. RISK-LONDON-RISK MAGAZINE LIMITED-, 20(9):138, 2007.
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