
Objectives
Generate fake BiPo and neutron waveforms for use in simulations of the SoLid experiment.

Improve the classification of BiPo events in the SoLid detector.

Conclusion
Successfully built a GAN to produce fake NS/BiPo waveforms that replicate the distribution of 
real waveforms.
Successfully built an SGAN capable of correctly classifying NS/BiPo waveforms with an accuracy 
of >86%.
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Event Classification at SoLid using Semi-Supervised 
Generative Adversarial Networks
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Generative Adversarial Networks (GANs)

Semi-Supervised GANs (SGANs)
• The SGAN is developed from the GAN. It shares the same generator network and uses a core 

discriminator based on the GAN discriminator. The unsupervised and supervised 
discriminators share the core discriminator network but feature different final activation 
layers.

• Unlike GANs, most of the SGAN training dataset is unlabelled (90%).
• After training, the supervised discriminator can be used to classify real BiPo and neutron 

waveforms.
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Fig. 4:  Shows basic structure of a GAN where orange lines represent 
backpropagation steps. 

Generator Discriminator

Input Batch of noise 1. Batch of fake waveforms
2. Batch of real waveforms

Output Batch of fake waveforms Batch of probabilities that waveforms are real

Goal Fool discriminator into classifying fake 
waveforms as real Distinguish real and fake waveforms

• GANs consist of two neural networks which are trained simultaneously with opposing loss 
functions. During training, the distribution of generated waveforms should approach that 
of the real distribution. 

• During GAN training a chi-squared metric was used to quantify the difference between 
the normalized real and fake waveforms. 

• We used schedulers to adjust the learning rate during training which allowed us to attain 
a lower chi-squared value and greater stability.

Generator Supervised Discriminator Unsupervised Discriminator

Input Batch of noise Batch of labelled real BiPo/neutron 
waveforms

1. Batch of unlabelled real 
BiPo/neutron waveforms
2. Batch of unlabelled fake 
waveforms

Output Batch of fake waveforms Batch of probabilities that real 
waveforms are neutron

Batch of probabilities that waveforms 
are real

Goal

Fool unsupervised 
discriminator into 
classifying fake waveforms 
as real

Distinguish real BiPo from real 
neutron waveforms Distinguish fake from real waveforms

Sterile Neutrinos
Sterile neutrinos are potential dark candidates that exist beyond the standard model. They 
interact only through the gravitational force making them hard to detect [1]. Their discovery 
would provide a bridge to beyond standard model physics.

In 2018, the MiniBooNE detector observed a 4.5σ excess of electron neutrino events between 
200-1250 MeV which could be the result of sterile neutrinos with energies of order electron-
volts. However, evidence for their existence is conflicted [2,3].

For each training iteration:
1. Pass real batch through 

discriminator and backpropagate 
loss through discriminator

2. Pass fake batch through 
discriminator and backpropagate 
loss through discriminator

3. Pass noise through the generator to 
generate a new fake batch

4. Classify fake batch using the 
discriminator and backpropagate 
loss through generator (maximise 
classification error)

For each training iteration:
1. Train supervised discriminator 

on real labelled batch
2. Train unsupervised 

discriminator on real unlabelled 
batch

3. Train unsupervised 
discriminator on fake batch

4. Pass fake batch through 
unsupervised discriminator and 
backpropagate loss through 
generator (maximise 
classification error)
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Fig. 5:  Shows basic structure of an SGAN where orange lines represent 
backpropagation steps. 
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Preliminary Results

• After 50 epochs into training, the chi-
squared metric is within 1 std of the 
mean metric calculated for the real 
batches. 

• The average waveforms for both BiPo
and neutrons were compared both 
visually and with the chi-squared 
metric for real and fake waveforms. 

• Fig. 3 and fig. 6 show excellent 
agreement between the real and fake 
distributions.

• The generated waveforms can then be 
used to augment existing datasets and 
classifiers.

GAN

• The SGAN’s accuracy on an unseen 
test dataset was computed every 50 
iterations during training.

• The best results were achieved when 
training the SGAN on fake waveforms 
generated by our GAN in addition to 
real data.

• The SGAN discriminator achieved 
similar AUC scores to the previous 
best classifier, known as “BiPonator”.

• AUC = area under an ROC curve. The 
ROC curve is a plot of true positive 
rate (TPR) against false positive rate 
(FPR) for a test dataset.

• There are multiple routes available to 
increase performance including:

1. Adjusting the ratio of real to 
generated waveforms

2. Adjusting the fraction of 
labelled waveforms

3. Adjusting the hyperparameters

SGAN

SoLid
“The Search for Oscillations with a Lithium-6 Detector”

• SoLid is a 1.6-ton neutrino detector installed 
6m from the BR2 reactor core. It consists of 
12,800 5cm3 PVT detector cubes arranged in 
planes facing the reactor [4].

• The detector measures the electron 
antineutrino flux close to the reactor core 
through inverse beta decays (IBDs). This allows 
measurement of “missing flux” due to 
oscillation to sterile neutrino states.

Fig. 1: A PVT cube with the ZnS detector screens 
fitted on two sides.
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Fig. 2: A reactor antineutrino undergoes IBD producing a 
positron and neutron which are detected by the PVT cubes.
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Fig. 3: A plot of the average real BiPo and neutron waveforms 
(±1 standard deviation).

• Events are filtered based on the time 
delay between NS (neutron scintillation) 
and ES (electron scintillation) signals. 
The remaining signals are then:

1. Accidental background: 
Unconnected events which occur 
within the expected time interval.

2. Correlated background: Decay of 
BiPo within the detector produces 
correlated signals with similar time 
delays to IBD events.

3. Signals: IBD events caused by 
reactor antineutrinos (see fig. 2).

• Accidental background occurs at a 
constant rate so can be easily filtered 
out but BiPo events are harder to 
remove since they produce similar 
waveforms to IBD events.

• We focus on NS events to distinguish 
between BiPo and IBD signals. 

• The SGAN’s discriminator should be more robust 
than existing classifiers because it is also trained 
on generated data which enables it to cover a 
wider parameter space. 

• The discriminator could be deployed to SoLid to 
better separate BiPo from real signals.

• This work will facilitate the ongoing search for 
sterile neutrinos.

Fig. 6: The distribution of generated BiPo and neutron 
waveforms.

Fig. 8: Accuracy on an unseen test dataset during training.

Fig. 7: The chi-squared metric during training.

Peak Accuracy: 86.4%
Peak AUC: 0.926


