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 Sterile Neutri (" Semi-Supervised GANs (SGANs) :
Sterile neutrinos are potential dark candidates that exist beyond the standard model. They * The SGAN is developed from the GAN. It shares the same generator network and uses a core
interact only through the gravitational force making them hard to detect [1]. Their discovery discriminator based on the GAN discriminator. The unsupervised and supervised
would provide a bridge to beyond standard model physics. discriminators share the core discriminator network but feature different final activation
layers.
In 2018, the MiniBooNE detector observed a 4.56 excess of electron neutrino events between * Unlike GANs, most of the SGAN training dataset is unlabelled (90%).
200-1250 MeV which could be the result of sterile neutrinos with energies of order electron- * After training, the supervised discriminator can be used to classify real BiPo and neutron
volts. However, evidence for their existence is conflicted [2,3]. waveforms.
> < Generator Supervised Discriminator Unsupervised Discriminator
SO Lid 1. Batch of unlabelled real
o Batch of noi Batch of labelled real BiPo/neutron BiPo/neutron waveforms
“The Search for Oscillations with a Lithium-6 Detector” by SHCN 0T NOISE waveforms 2. Batch of unlabelled fake
waveforms
o ) ) Optical fibre — —

e Solidis a 1.6-ton neutrino detector installed —_— Output Batch of fake waveforms Batchfof prObabI|ItlfS that real Batch O|f probabilities that waveforms

6m from the BR2 reactor core. It consists of Waverorms are neutron are rea

12,800 5cm?® PVT detector cubes arranged in Fool unsupervised - _

lanes facing the reactor [4] Goal discriminator into Distinguish real BiPo from real Distinguish fake from real waveforms

P 8 - classifying fake waveforms | neutron waveforms :

* The detector measures the electron -

antineutrino flux close to the reactor core

o )
through inverse beta decays (IBDs). This allows For each training iteration:
measurement of “missing flux” due to L Z':’":;Z:‘Igirevl'lizdbifcc:m'nator Real labelled o
oscillation to sterile neutrino states. R bata 235
Annihilation produces y which Fig. 1: A PVT cube with the ZnS detector screens discriminator on real unlabelled 32
produces (ES) signal in PVT fitted on two sides. batch Real unlabelled Discriminator
3. Train unsupervised Data Network
* Events are filtered based on the time discriminator on fake batch 3 <
0 . . E -4:
delay between NS (neutron scintillation) 4. Pass fake batch through et 5 8
c . . unsupervised discriminator and : 25
and ES (electron scintillation) signals. backpropagate l0ss through Network £<
The remaining signals are then: generator (maximise
N bsorbed by ZnS (NS). af 1. Accidental baCkground:_ \_ classification error) /) Fig.5: Shows basic structure of an SGAN where orange lines represent
lewiren albsenoed By Al (W5), eller Unconnected events which occur \_ backpropagation steps. -
time delay At ~ 100 us L : .
within the expected time interval. - ~
Fig. 2: A reactor antineutrino undergoes IBD producing a 2. Correlated background: Decay of . .
positron and neutron which are detected by the PVT cubes. BiPo within the detector produces P re ll m I n a r}! Resu lts
correlated signals with similar time
0.30 EEE BiPo Real delays to IBD events.
Neutron Real . y GAN 0.30 - I Generated BiPo
0.25 A 3. Signals: IBD events caused by Generated Neutron
. . . . . . . 0.25 A
0.20 - reactor antineutrinos (see fig. 2). * After 50 epochs into training, the chi-
S5 * Accidental background occurs at a squared metric is within 1 std of the 21
a0 constant rate so can be easily filtered mean metric calculated for the real 0.15 -
' out but BiPo events are harder to batches. 0.10 A
0.05 A : e ,
remove since they produce similar * The average waveforms for both BiPo 0.05 -
S0 . . . , . . waveforms to IBD events. and neutrons were compared both i
250 260 270 280 290 300 310 320 . i : : : . ' , , , , , ,
Fig. 3: A plot of the average real BiPo and neutron waveforms \[ive focus ;T: ™ eﬁggs 1:0 dlftlngUISh Vlsua'”y T S G SRS 20 200 270 200 290 300 310 320
T . etween BiPo an SrEls. metric for real and fake waveforms. Fig. 6: The distribution of generated BiPo and neutron
(+1 standard deviation). . .
* Fig. 3 and fig. 6 show excellent waveforms.
- / agreement between the real and fake ;  Metic for fake batch :
4 N\ distributions. : Metric for real batch + 1 std. f 1073
[ ] [ ] (@] . -
Generative Adversarial Networks (GANSs) * The generated waveforms can then be £ 10 - teomino et
used to augment existing datasets and 2 - éc;
. o GL) J 2
* GANs consist of two neural networks which are trained simultaneously with opposing loss classifiers. ERToat Lo-s £
] ©
functions. During training, the distribution of generated waveforms should approach that SGAN o 7 g
. . . 10~
of the real distribution. N 10-3
* During GAN training a chi-squared metric was used to quantify the difference between ) _ 1077
.  The SGAN’s accuracy on an unseen - - - - - - - - —
the normalized real and fake waveforms. test dataset was computed every 50 0 25 50 75 100 125 150 175 200
° o . . . . . o EpOCh
We used theduIers to adjust the learning -ra-ate during training which allowed us to attain iterations during training. Fig. 7: The chi-squared metric during training.
a lower chi-squared value and greater stability. ,
 The best results were achieved when 0.5
Generator Discriminator training the SGAN on fake waveforms 0.80
it Batch of noise ; gatc: 0]1: iaktle Wa"e]forr::S generated by our GAN in addition to 075
- batch of real wavetorms real data. € 0.70 { Peak Accuracy: 86.4%
Output Batch of fake waveforms Batch of probabilities that waveforms are real e The SGAN discriminator achieved S 065 Peak AUC: 0.926
Goal Fool ?Isrcnrqlmmarto: into classifying fake Sssfimantish el angl faiks wEvEiainG similar AUC scores to the previous 0.60 1 333 Seed
wavelorms as red best classifier, known as “BiPonator”. o055 06 See
Gor each training iteration: ) * AUC = area under an ROC curve. The 0.50 - : —— — — o —

1. Pass real batch through : ROC curve is a plot of true positive T,
discriminator and backpropagate rate (TPR) against false positive rate Fig. 8: Accuracy on an unseen test dataset during training.
loss through discriminator RealData FPR) f test dataset S e ..

2. Pass fake batch through o (FPR) for a tes dataset. - * The SGAN’s discriminator should be more robust
discriminator and backpropagate et * There are multiple routes available to than existing classifiers because it is also trained

; |POSS throughhdlscr;]mlhnator § o INCrease performance |nCIUd|ng. on generated data Wh|Ch enables it to cover a

. Pass noise through the generator to £ 1. Adjusting the ratio of real to :
generate a new fake batch 3 Network ted f W|der-pa|farrleter >pace. _

4, Classiig e i usTng ihe 5 I senerated wavetorms * The discriminator could be deployed to Solid to
discriminator and backpropagate I 2. Adjusting the fraction of better separate BiPo from real signals.
L?::;E:;:go:g;:s:;tor [mErImAIEE Fig. 4: Shows basic structure of a GAN where orange lines represent lab_e”e_d waveforms * This work will facilitate the ongoing search for

\\ /) backpropagation steps. AN 3. Adjusting the hyperparameters sterile neutrinos. )
' Object |[ Conclus \
743\ : . : : .
&J Generate fake BiPo and neutron waveforms for use in simulations of the SoLid experiment. Successfully built a GAN to produce fake NS/BiPo waveforms that replicate the distribution of
real waveforms.
A cpe : : :
&J Improve the classification of BiPo events in the Solid detector. Successfully built an SGAN capable of correctly classifying NS/BiPo waveforms with an accuracy
of >86%.
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