Tanjim Chowdhury, Brandon Tollan Dr. Mitesh Patel | High Energy Physics Group

1) Motivation

Leptons interact with the weak force independent of their flavour, this is known as lepton universality.

• The ratio of the branching fractions below (Rk) [1] is expected to be unity within the standard model (SM):

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}.$$

- Results from LHCb seem to hint towards avenues of new physics hiding within the underlying b quark decays, as the measured value of $\tilde{R}k = 0.84^{+0.044}_{-0.041} [1]$ disagrees with the SM prediction.
- Due to the large τ mass any new physics effect would be more pronounced in $b \rightarrow$ $s\tau^+\tau^-$ decays.
- · We aim to develop a method to detect notoriously hard to identify τ 's in order to provide tools to probe this effect further.

2) Data Sample

- A Monte Carlo data sample of τ decay products (shown in Table I) and background π^0 s was used.
- Successfully isolating the signal π^0 s and their corresponding charged counterparts, would show the feasibility of reconstructing τ 's.

Decay mode	$\mathcal{B}\left[\% ight]$
$ au^- o \pi^- u_ au$	11.5
$ au^- ightarrow \pi^- \pi^0 u_ au$	26.0
$ au^- ightarrow \pi^- \pi^0 \pi^0 u_ au$	9.5
$ au^- ightarrow \pi^- \pi^+ \pi^- u_ au$	9.8
$ au^- ightarrow \pi^- \pi^+ \pi^- \pi^0 u_ au$	4.8
Other modes with hadrons	3.2
All modes containing hadrons	64.8

Table I: Adapted from reference [2]. The hadronic decay modes of the τ included in our data sample along with their branching fractions. Charge conjugation invariance is assumed to hold.

3a) Feature Engineering

Investigating typical event windows like in Fig. 1, clues about what features discriminate between background and signal π^0 s.

For example, it illustrates how:

- Signal π^0 s are much closer to $\pi^{+/-}$ s when propagated to the calorimeter plane than background π^0 s.
- We utilise multiple spatial features like this to identify signal π^0 candidates from a plethora of background.

Figure 1: A typical event window created by assuming a vertex at the origin and propagating all particles (signal/background π^0 s in red/blue and $\pi^{+/-}$ s in green) to the calorimeter plane using their momenta.

[1] LHCb Collaboration, R. Aaij, Test of lepton universality in beauty-quark decays, (2021), [arXiv:2103.11769] [2] CMS Collaboration, Reconstruction and Classification of τ lepton decays to hadrons and v_{τ} at CMS, (2016), [arXiv:1510.07488v2]

[3] Band, H. and Camporesi, T., 1987. Measurements of tau decays to three pions. *Physics Letters B*, 198(2), pp.297-301.

3b) Feature Engineering

We also considered other 0.0014 avenues of reasoning such 0.0012 as:

- π^0 and $\pi^{+/-}$ systems with invariant mass greater 5 0.0004 than the τ mass cannot 0.0002 be physically produced.
- Signal π^0 cluster energy density tends to be for greater than background π⁰s

By applying these features within a machine learning algorithm, we can create a model to predict which π^0 s come from τ leptons.

 $\log(E_p^2)$ (MeV^2)

4) Results

- The boosted decision tree model was trained on a sample containing roughly 6 million background π^0 s and 12734 signal π^0 s.
- The curve of true positive rate vs false positive rate in Fig 3 was produced and shows that a minimum of 14.1% of signal π^0 s can be isolated with a zero false-positive rate.

5) Conclusions

- We see strong success in the ability to determine previously unknown π^0 s, from background data.
- Combining this with the detection of $\pi^{+/-}s$, would enable the reconstruction of τ s.
- Currently only τ s that decay to more than 1 hadron can be reproduced accurately [3] including the other decay modes (shown in Table I) would greatly increase our resolution.
- A better estimate of the $\mathcal{B}(B \to K\tau^+\tau^-)$ and similar decays can then be obtained thus further probing lepton-universality.