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, , , , e Build a Generative Adversarial Network (GAN) for efficient simulation of
Sterile neutrinos are a hypothesised neutrino flavour \ ATMn events.

which do not interact via the weak force [1]. \ e Develop methods to investigate the capabilities of a 2D GAN for the
production of 3D data.

SoLid is a neutrino detector constr.ucted.next toa e Use data augmentation techniques to improve Signal/Background classification
nuclear reactor. It searches for antineutrinos via at SolLid.

inverse beta decay [2].

Comprised of thousands of individual detection Detector

CubeS. Reactor
Figure 1: Basic Operation e Neutrons scatter electrons along their path which

Background sources need to be removed from the  of the SoLid detector. deposit energy in the detector cubes.
dataset. e The dataset consists of real events from the detector

alongside Monte Carlo simulated events.
Atmospheric muons are easily identified within the detector, and this data is e Datasets built from orthogonal projections of each

cut from the dataset. However, these muons can scatter neutrons which may event; produced by summing over each coordinate
enter the detector volume. axis. Figure 2: An ATMn event.
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Generative Adversarial Networks (GANSs) typically consist of two neural N & X 5 X 108

networks: Discriminator and Generator. Generator <«— Noise vector 3X3X 256 probability

GAN simulation is very computationally inexpensive. l @
A batch of
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A Discriminator classifies whether input data is real or generated. The events

Generator converts an input noise vector into an event. l l Figure 4: The architecture of the discriminator.
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e They compete with each other in a Zero-sum game [3]: 256 X 1
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minmaxV (D, G) = Ex-p,., collog D(X)] + E,-p,[log (1 — D(G(2)))]

G D Binary cross-entropy loss

e Implemented a 2D DCGAN where the generator uses transposed random

convolutions and the discriminator is a convolutional neural network Figure 3: Adapted from [4]. A flow noise
(CNN). chart of the training process. Figure 5: The architecture of the generator.
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existing in real space.

¢ Generated events can be compared by eye to real events.

Figure 6: A real event and a fake event displayed for visual comparison. Brighter pixels
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GAN should be able 0.6
Real XZ Real YZ Real XY to learn specific 0 e The area under a ROC curve (AUC) is

° ° 0 features within events. it Lo 1 for an ideal classifier [3].
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CNN identifies 3D features which are

: . : Figure 10: Confusion matrix (inset) and ROC  irrespective of the background type.
Figure 7: Average images produced from the fake and real dataset. curve for the trained CNN.
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Figure 8: Distributions of maximum energy in each plane. predictions falls over time. Figure 11: CNN output during GAN training.
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e The GAN's performance can be evaluated by visual metrics, such as e The CNN outputs can be used within the GAN training to constrain the
comparing events, average planes and energy distribution. training; this may help it to learn the 3D correlations quicker.

¢ An additional CNN is able to explicitly demonstrate that the 2D GAN is e A HybridGAN could be implemented to produce additional variables
capable of learning 3D space events. alongside the image planes.

References:

1] B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, J. Exptl. Theoret. Phys. 53 (1967) 1717-1725.

2] SoLid Collaboration, 2021. Solid: a short baseline reactor neutrino, Journal of Instrumentation experiment. 16(02), pp.P02025-P02025.

3] Isaksson, M., 2020. Towards Data Science. Towards Data Science. Available at: https://towardsdatascience.com/exploring-generative-adversarial-networks-gans-488e1d901d4a

4| Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2020. Generative adversarial networks. Communications of the ACM, 63(11), pp.139-144.
5] G. James et al, An Introduction to Statistical Learning with Applications in R. (1st ed.) 2013. DOI: 10.1007/978-1-4614-7138-7.



https://towardsdatascience.com/exploring-generative-adversarial-networks-gans-488e1d901d4ahttps:/towardsdatascience.com/exploring-generative-adversarial-networks-gans-488e1d901d4a

