
Similar averages of cross-plane
correlations suggest 3D space has
been learnt.

A CNN was trained to establish the
probability of a generated event
existing in real space. 

The training data is real correlation
planes, shuffling to create fake
data.

An ideal classifier performance yields a
diagonal matrix. 

The area under a ROC curve (AUC) is
1 for an ideal classifier [5].

Other types of background are
classified as real with high probability;
CNN identifies 3D features which are
irrespective of the background type.

Sterile neutrinos are a hypothesised neutrino flavour
which do not interact via the weak force [1].

SoLid is a neutrino detector constructed next to a
nuclear reactor. It searches for antineutrinos via
inverse beta decay [2].

Comprised of thousands of individual detection
cubes. 

Background sources need to be removed from the
dataset.
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Generative Adversarial Networks (GANs) typically consist of two neural
networks: Discriminator and Generator. 

GAN simulation is very computationally inexpensive.

A Discriminator classifies whether input data is real or generated. The
Generator converts an input noise vector into an event.

They compete with each other in a Zero-sum game [3]: 

Can a 2D GAN learn 3D Space?

Build a Generative Adversarial Network (GAN) for efficient simulation of
ATMn events.
Develop methods to investigate the capabilities of a 2D GAN for the
production of 3D data.
Use data augmentation techniques to improve Signal/Background classification
at SoLid.

Atmospheric muons are easily identified within the detector, and this data is
cut from the dataset. However, these muons can scatter neutrons which may
enter the detector volume. 

Neutrons scatter electrons along their path which
deposit energy in the detector cubes.
The dataset consists of real events from the detector
alongside Monte Carlo simulated events.
Datasets built from orthogonal projections of each
event; produced by summing over each coordinate
axis.

Figure 1: Basic Operation
of the SoLid detector.

Figure 5: The architecture of the generator. 

Generated events can be compared by eye to real events.

The average of the
dataset for each plane
can be compared.

These scores are a
general measure, a
GAN should be able
to learn specific
features within events.

A key feature is the
energy distribution of
the maximum pixels.

Implemented a 2D DCGAN where the generator uses transposed
convolutions and the discriminator is a convolutional neural network
(CNN).

Conclusions

Figure 9: Average 2D correlations of the planes.

The CNN outputs can be used within the GAN training to constrain the
training; this may help it to learn the 3D correlations quicker.

A HybridGAN could be implemented to produce additional variables
alongside the image planes.

Figure 10: Confusion matrix (inset) and ROC
curve for the trained CNN.

Figure 3: Adapted from [4]. A flow
chart of the training process.

High, convergent output of CNN
as GAN trains gives confidence
that images are 3D events.

Initial output is 1; Random noise
looks correlated to the CNN.

Standard deviation of CNN
predictions falls over time. Figure 11: CNN output during GAN training. 

The GAN's performance can be evaluated by visual metrics, such as
comparing events, average planes and energy distribution. 

An additional CNN is able to explicitly demonstrate that the 2D GAN is
capable of learning 3D space events.

Figure 4: The architecture of the discriminator. 

Figure 2: An ATMn event.

Figure 6: A real event and a fake event displayed for visual comparison. Brighter pixels
represent higher energy.

Figure 7: Average images produced from the fake and real dataset. 
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Figure 8: Distributions of maximum energy in each plane. 
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