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INTRODUCTION
▶ Supergravity is a field theory combining GR and supersymmetry.
▶ Branes are the generalisations of particles to higher spatial dimensions.

P-branes, a specific class of branes, appear as solutions in supergravity.
▶ The Hierarchy problem is the discrepancy between Higgs mass mh ≈

126 GeV and gravitational scale MPlanck ∼
√

G ∼ 1019GeV . Extra spa-
tial dimensions and supersymmetry are used to tackle this problem.

▶ In this project, we derive some brane solutions from 11D N = 1 supergrav-
ity, discuss some of their properties and explore Brane/Brane orbits.

SUPERGRAVITY MODEL
Supergravity arises as a gauge field theory of supersymmetry
(Chamseddine, A. H. and West, P. C., 1977; Kibble, 1961). We start with the
bosonic sector of 11D N = 1 supergravity action, containing a 3-form gauge
field A[3] and a 4-form field strength F[4] = dA[3].
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After applying Kaluza-Klein dimensional reduction, a 10d action can be
derived. Through consistent truncation, we generalise it to a toy model in D
dimension(Stelle, 1998).
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Here, φ is dilaton field and a is the scalar which controls the coupling. They
both appear during the process of dimensional reduction.

P-BRANE ANSATZ
In order to find the solution, we assume Poincaré invariance along
d-dimensional worldvolume and rotational symmetry along transverse space,
i.e. the symmetry group of the space is ISO(d − 1, 1) × SO(D − d).

ds2 = e2A(r)ηµνdxµdxν + e2B(r)δmndymdyn

where r =
√

ymym. The scalars A and B are assumed to have the linear
condition

dA + d̃B = 0
where d̃ = D − d − 2. This condition makes the brane satisfy the
Bogomol’nyi-Prasad-Sommerfield (BPS) bound (Mass = Charge) and
preserves half of the supersymmetries. An extra condition, either the
"electric" or "solitonic" ansatze, is made on the field strength. Neither of these
contribute to the Chern-Simons term which can therefore be consistently
truncated from the model action.

P-BRANE SOLUTIONS
We work with vielbein to derive the equations of motion for the fields from the
model action. Using the above ansatze, the brane solution metrics are
obtained in D = 11 . The following figures are the Carter-Penrose diagrams
for both solutions.

▶ "Electric" 2-brane solution

ds2 = (1 + k
r6)

−2/3ηµνdxµdxν + (1 + k
r6)

1/3δmndymdyn

Aµνλ = ϵµνλ (1 + k
r6)

−1, other components zero.

FIGURE 1

"Electric" 2-brane has a timelike singularity at r̃ = 0. r̃ is a new coordinate
with the transformation r = (̃r6 − k)1/6. This is because the isotropic
coordinate used above only covers the shaded area shown in the figure,
which leaves out the singularity. The solution can be mapped to Reissner–
Nordström black hole in classical GR. The geometry on the horizon ("throat")
is (AdS)4 × S7, and as such, this solution interpolates between (AdS)4 × S7

and M11. The singularity is labelled with the pointed red line.

▶ "Solitonic" 5-brane solution

ds2 = (1 + k
r3)

−1/3ηµνdxµdxν + (1 + k
r3)

2/3δmndymdyn

Fm1...m4 = 3kϵm1...m4p
yp

r6 , other components zero.

FIGURE 2

"Solitonic" 5-brane has a horizon on r = 0, which has a (AdS)7 × S4

Structure. In a similar way to the "electric" 2-Brane, this solution interpolates
between (AdS)7 × S4 and M11. A symmetry of this solution is revealed by
making a coordinate transformation r → R: r = k1/3R2/(1 − R6)1/3. The
symmetry is then apparent through the isometry R → −R.
EXTENDED WORK
▶ Kaluza-Klein reduction

ds2 = e2αφgµνdxµdxν + e2βφ (dz + Aµdxµ)2

φ is a scalar dilaton field, Aµ is a vector field, and gµν is the metric on
the D-1 remaining dimensions. The constants α and β are set such that
the kinetic term of the scalar field in the resulting action is normalised.
The z dimension is then curled up, so that all dependencies on z can be
expanded in a Fourier series. The size of this dimension is often taken to
0, so that nothing depends on z (The cylinder condition). When Kaluza first
did this with a 5 dimensional Einstein-Hilbert Action, the Aµ field ended up
being equivalent to that of classical EM (Kaluza, 1921).

▶ Orbits
In order to consider the orbits of these branes, one can extend the
same principle used to calculate possible types of orbits for the Reissner-
Nordstrom Black Hole. By looking at the Killing vectors of the appropriate
metrics, and constraining the motion to a specific plane, one can create an
effective potential, from which the stability of different orbits can be deter-
mined. These calculations can be enormously simplified by assuming that
the worldvolumes of both branes are parallel, and then performing diagonal
dimensional reduction on the corresponding directions.
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