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Introduction
• Supergravity:	semi-classical	+ield	theory	containing	gravity;	the	low	
energy	effective	theory	of	superstring	and	M-theory.

• p-branes:	generalisation of	particles	in	p-dimension (a	p=0	brane	is	a	
particle;	a	p=1	brane	is	a	string). p-branes	are	solutions	to	the	+ield	
equations	of	supergravity.	

• World-Volume	&	Transverse	Space: a	p-brane	occupies	a	p+1	
spacetime	known	as	the	world-volume; the	transverse	space	is	
orthogonal	to	the	world-volume, shown in Fig.1.

• D-branes:	fundamental	strings	are	attached	to	D-branes,	shown	in	Fig.2.
p-branes	in	Anti de-Sitter Space (AdS) is	the	low	energy	manifestation	of	
the	D-branes	in	SU	supersymmetric	Yang-Mills.	This interplay between	
the	two	is	the	primary	motivation	of supergravity. [2]

• Aim	of	the	Project:	understand	the	supergravity	and	its	p-brane	
solutions	which	include	the	derivation,	phenomenology and	kinematics.

Formalism
• General	Relativity:	supergravity	inherits	some	formalism	in	
GR.	The	metric	𝑔!" in GR characterises the	spacetime	
geometry	by	de+ining	the	interval	𝑑𝑠# = 𝑔!"𝑑𝑥!𝑑𝑥" . Other	
properties	of	spacetime	such	as	connection	and	curvature	are
derived	from	the	metric.

• Form	Fields:	a	k-form, 𝐹 $ , is	an	antisymmetric	volume	
element	in	k-dimension	with	some	orientation, analogous	to	
a	co-vector.	A	form	+ield	(differential	k-form)	assigns	a	k-form	
onto	each	point	of the manifold.	The	wedge product	between	
differential	forms, given	by	the	wedge	∧, produces another
differential form. 𝐹 %&$ =⋆ 𝐹 $ is the orthogonal to 𝐹 ! in a
space with Dmaximum dimensions.

• Weyl	Transformation: local	rescaling	of	the	metric	tensor,	

𝑔'( → 𝜆#𝑔'( = 𝑔
̂
'( .	AdS is the combination of spherical and

conformal symmetry, which our	ansatz	satis+ies.

Supergravity	Model
• Action	Composition:	gravity,	a	Majorana	spinor𝜓! ,	a	vielbein 𝑒!' and	an	
antisymmetric	form	field	𝐴 * on the supermanifold. [3]

• Fermionic	Sector: the	spinors	exist	in	the	tangent	space,	which	is	connected	to	the	
curved	manifold	via	a	vielbein,	𝑔!" = 𝑒!'𝑒"(𝜂'( .	

• Bosonic Sector: the	action	containing	only	gravity	and	𝐴 * ,
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1
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1
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• Single Charged Action: dimensional	reduction	is	used	to	recreate	the	Type-IIA	
string	theory	action	in	D=10,	during	which	a	scalar	𝜙 is	introduced	to	the	action.
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The	𝐹 ∧ 𝐹 ∧ 𝐴 term	in (1) vanishes for our symmetric	ansatz.	 Setting	 σ = 0 can	
recreate	the	𝐹 ∧ 𝐹 term in	(1).

• Equation	of	Motion:	EoM of (2) is	a	differential	equation	system	containing 𝜙, 𝑅, 𝐹.

Symmetric Ansatz
• Chosen Symmetry	: the	ansatz	preserves	𝑃𝑜𝑖𝑛𝑐𝑎𝑟𝑒́(2) in	world-volume	and 𝑆𝑂 %&2 in	
the	transverse	space,	hence	the	metric	becomes,

𝑑𝑠# = 𝑒#4 5 𝑑𝑥!𝑑𝑥"𝜂!" + 𝑒#6 5 𝑑𝑦7𝑑𝑦0𝛿70 ,
where	𝑟 = 𝑦7𝑦7;	𝜇 = 0,1, . . . , 𝑝 is	world-volume	indice;	𝑚 = 𝑝 + 1, . . . , 𝐷 + 1 is	the
transverse	space	indice.

• Solving	Procedure:	𝑅 is	obtained	from	the	metric;	𝐹 is	obtained	from	its	antisymmetry
and	𝑟 dependence.	With	𝑅 and	𝐹 determined,	we	can	solve	for	the	𝐴 𝑟 ,	𝐵 𝑟 and	𝜙(𝑟)
in	the	EoM.

• Full Metric:

𝑑𝑠# = 𝐻
&,2

~

8 %&# 𝑑𝑥!𝑑𝑥"𝜂!" + 𝐻
,2

8 %&# 𝑑𝑦7𝑑𝑦7 , (3)

where	𝑑 = 𝑝 + 1 is	the	dimension	of	world-volume,		𝑑
~
= 𝐷 − 𝑑 − 2,	and	𝐻 𝑟 = 1 + $

5"
~

is	the	harmonic	solution	of the spherical Laplacian.

Brane Kinematics
• Branic orbits: if two BPS branes are parallel in the world-volume,
they can be dimensionally reduced to blackhole liked objects in the
transverse space. By having one heavy brane as the background, we
have investigated the orbital motion of the other probe brane, which
is analogous to the orbit around a charged black-hole shown in Fig.5.

• Branic Motion: if two parallel branes are	stationary (𝜕𝑦:),	the	potential	
vanishes,	because	the	form	field	repulsion	offsets	the	gravitational	
attraction. In the second order (𝜕𝑦#), the probe brane will experience
a flat metric from the heavier brane. Higher	ordered motion	will	be	
investigated	later	in	the	project.

Fig.1: a string travelling in its world-sheet
(2-D world-volume).

Fig.2: p-brane only contains closed strings;
open strings can only attach to D-branes,
but the two share a similar geometry.
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R = 0Electric/Magnetic p-branes
• Duality:	directly	from	(1),	we can	infer	a	2-form	and	a	5-form	

supercharges	due	to	the	duality	between	𝐹 ! and 𝐹 7 =⋆ 𝐹 ! .	
𝐹 ! comes	from	a	𝐴 # that	couples	to	a	d=3	world-volume,	

which	implies	a	2-brane	(similar	with 𝐹 7 and	the	5-form).

• Dyonic	Branes:	EoM yields	two	solutions	due	to	the	duality,	the	
elementary/electric	2-brane	and	the	solitonic/magnetic	5-brane.	
The	metric	for	each	brane	is	obtained	by	identifying	the	
corresponding	dimensionality,	𝑑,	in	(3).

• Horizons	&	Singularity: for the electric case, after	applying	the	
coordinate	transformation,	𝑟; = 𝑟

~; − 𝑘,	one	can	identify	a	

horizon	at	𝑟
~; = 𝑘. The	causal	structure of both branes is	shown in	

Carter-Penrose	diagram	in	Fig.3; the geometry of the electric
metric is illustrated in Fig.4.

• BPS	Bound:	based	on	supersymmetry,	𝑀 ≥ 𝑄,	which	is	known	as	
the	BPS	bound.	Generally,	brane	metric	yields	two	horizons,	but	
our	ansatz	both	satisfy	the	equality,	𝑀 = 𝑄,	in	which	case	the	two	
horizons	coincide. [1]

• Dimensional	Reduction:	𝜙 is	introduced	by	Kaluza-Klein	
dimensional	reduction,	which	eliminates	the	gauge	field’s	
dependence	on	one	spatial	dimension.	KK reduction used in our	
ansatz	it	is	a	consistent	truncation	that	doesn’t	change	the
solution to EoM.	New	families	of	brane-like	ansatz	will	emerge	
from	further	dimensional	reduction.

𝐹𝑙𝑎𝑡 ℳ!!

Horizon: 𝐴𝑑𝑆" × 𝑆#

In5inite Throat
Fig.3: another transforma?on is applied here 𝑟

~
= 𝑘"/$(1 − 𝑅%)&"/$

3a) Electric brane:ℋ& andℋ' are the two horizons, which has the
same 𝑅, so they coincide; 𝒥& and 𝒥' are regions of flat space.

3b) Magne?c brane: the horizons now appear at 𝑅 = 0; no singularity,
instead there is a symmetry from 𝑅 → −𝑅; once crossing the horizon,
one can enter another iden?cal space. [1]

Fig.4: geometry described by the metric of the
electric brane. Exterior of the horizon tends to
D=11 flat space; on the horizon, the
spacetime is 𝐴𝑑𝑆( × 𝑆) ; down the infinity
throat, one meets the singularity.

3a: electric 3b: magnetic
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Fig.5: 𝑉# is the effec)ve poten)al of a
charged blackhole in natural units. 𝑉#
depends on the charge, mass and
angular momentum, 𝐿, of the probe. [4]
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