
Causality of the Relativistic Scalar 
Field

The Scalar Field

Quantum Field Theory (QFT) describes a system in terms of a scalar field as a 
function of time and space. The simplest case involves a real scalar field S 
whose dynamics can be described in the form of a Lagrangian below. 

However, S by itself holds little physical meaning. From ℒ, we can obtain the 
Klein-Gordon equation that describes the evolution of S below.

ℒ =
1

2
𝜕𝜇𝑆𝜕

𝜇𝑆 −
1

2
𝑚2𝑆2 

Flaws of the Klein-Gordon

The fundamental flaw of the Klein-Gordon equation is that it is second order 
in both space and time. As a result, we get multiple obvious problems:

1. Negative energy solutions: Since our field is real, we cannot interpret 
these negative energies as antiparticles

2. Negative probability: The probability density 𝜌 can be negative.
3. No conserved current: We cannot form a conserved probability four 

current 𝐽μ which gives ∂μ𝐽
μ = 0.

A Revised Approach
To introduce a first order equation, we first transform S through 
the chain below as per [1].
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From the single particle wavefunction 𝜓 linked with the true field 
𝜙, we can construct a conserved probability density and current 
as below. 
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Using 𝜌 and 𝐽𝑖,  we approach the test and proof of causality of 
𝜓 in the next section.

ℒ =
1

2
𝜕𝜇𝜙𝐻෡−1𝜕𝜇𝜙 −

1

2
𝑚2𝜙𝐻෡−1𝜙 

Causality
For an approach to be truly relativistic, any system should be constrained by the speed of light.  There are two ways to approach this 
question revolving around either the wavefunction or its evolution:

Wavefunction

Van Baal invokes the spread of probability over a light cone using S as a wavefunction [2]. This leads to the non-
causal area shaded green in figure 1. 
While this implies non-causality, there are two things to consider:

1. This argument interprets the initial condition on S as a Dirac delta wavefunction. 𝜓 being the true 
wavefunction means that the initial condition is no longer trivial. 

2. Hegerfeldt’s theorem [3] shows that a positive-definite state cannot be confined as assumed in figure 1.

Evolution
Since information cannot travel faster than the speed of light c, we can instead develop a constraint using 
the evolution of the probability density given above of a general wavefunction 𝜓. 

Asserting that the area under a general wavefunction in figure 2 is causal, we can conclude that the area 
shaded in green should be greater than the area in yellow. This gives us the inequality ρ ≥ 𝐽𝑖 over all points 
and can be proven through the AM-GM inequality. Therefore, by this criterion, we can say that the 
wavefunction is causal.

Figure 1. The wavefunction argument for causality violation for a delta function 
initially at 0 at time 𝑡0 and spreading to a non-causal region shaded in green.

Figure 2. The evolution argument for causality violation for any 𝜓 at time 𝑡0
(orange) evolving through time dt (red).

Conclusion
This project has effectively shown that a Relativistic Scalar Field interpreted as 𝜙 yields a 
causal wavefunction 𝜓 which appears to be physical for a Gaussian. 
However, there are still open questions to be addressed when it comes to the physical 
origin of the probability density:

1. Can we derive the 𝜌 and 𝐽𝑖 analytically by requiring local gauge invariance of ℒ?
2. Are 𝜌 and 𝐽𝑖 together a four-vector 𝐽μ which transforms under the Lorentz group?
3. Does ℒ require the addition of total derivative terms to obtain a 𝐽μ? 

Once these challenges are met, we can extend this study to even Complex Scalar Fields.
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Example: Gaussian
While we have demonstrated above that any wavefunction evolves causally, it is important to check whether it is physical. The best analytic option is to use 
a Gaussian to describe a particle of mass 1 GeV. The usage of natural units means every quantity is expressed in terms of GeV units. We choose to compare 
widths of 1 and 0.1 GeV-1 for this study.
Figure 3 shows this comparison over an 8 GeV-1 time interval. The 
behaviour of the 1 GeV-1 case appears to be more classical with the 
spread while the 0.1 GeV-1 case demonstrates two tails as 
consistent with relativity.

The extent of deviation from the classical Gaussian was also measured. As displayed in 
figure 4 to the left, as 𝜓 becomes narrower and more relativistic, the RQM probability 
density widens.

Figure 4. An expression of 
the relativistic width of 𝜌
with respect to the width of 
𝜓∗𝜓 as a scale factor.  The 
error bars account for the 
imprecision in fitting a 
Gaussian to a non-Gaussian 
𝜌 and the x-axis is set to be 
logarithmic. 

(a) 𝜎 = 1 (b) 𝜎 = 0.1
Figure 3. A comparison of the successive evolution of 𝜌 over space for a Gaussian width of 1 and 0.1 GeV-1. The time steps in GeV-1 are 0, 2, 4, 
6 and 8 respectively. 

Study of Causality

Theory and BackgroundPrijith Babu Pradeep

Research Group: High Energy Physics 
Supervisor: Prof. Paul Dauncey

 ∂μ ∂μ +𝑚2 𝑆 = 0 

1. Define the true field 𝜙 in terms of S as 𝜙 = ෡𝐻1/2𝑆.
2. Write down ℒ in terms of 𝜙

3. Define the wavefunction 𝜓 as 𝜓 =
𝜙+𝑖 ෡𝐻−1 ∂𝑡𝜙
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