Imperial College London

Collisions of Supersonic Magnetised Plasma Jets

Joseph Lai and Kassim Mughal PLAS-Lebedev-1 Plasma Group Supervisor: Sergey Lebedev

Background

- Supersonic, magnetised plasma jets in Herbig-Haro objects can travel at speeds in excess of 200km/s [1]
- Outflows in such objects with higher velocities can overtake and interact with slower streams
- These jet collisions are characterised by radiatively cooled bow shock structures
- We present a method to recreate and observe such structures in the lab using Imperial's MAGPIE facility

Figure 1: Hubble telescope image of Herbig-Haro object HH47. Image credit: NASA [2]

Objectives and Setup

Aim: Design and test hardware to recreate plasma jet collisions. Our design should incorporate:

- Control over the polarity of the confining azimuthal magnetic field
- Collision midpoint located at the standardised height for laser diagnostics
- Minimized inductance and potential for electrical breakdown
- Sufficient field of view for diagnostic equipment

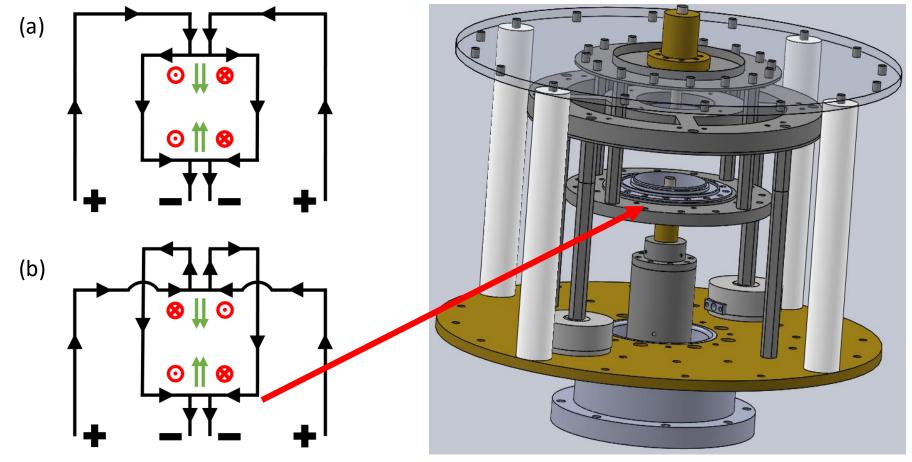


Figure 2: Schematic of current flow in (a) parallel and (b) antiparallel configurations. antiparallel magnetic fields

Figure 3: Initial SOLIDWORKS design for

MAGPIE passes a 1.4MA current into load. We focus on the following diagnostics:

- Rogowski Probes: Wire coils sensitive to rate of change of current in the load
- MITL B Dots: Wire coils located below anode showing possible breakdowns
- XUV Imaging: Images of Extreme Ultra Violet (XUV) self emission from the plasma jets

Antiparallel B Fields Vacuum chambe g 0.2 9 0.0 -0.4Diode stack MITL (cathode)

Figure 4: MITL B dot measurement after initial antiparallel shot

Figure 5: Cross-section of the MAGPIE facility with B Dot location indicated [3]

First shot:

- MITL B Dot measurements indicate lack of a return current signal
- Results suggest high inductance of the load caused breakdown between cathode and anode in the chamber
- Reduce inductance by modifying current path to enclose smaller volume of flux

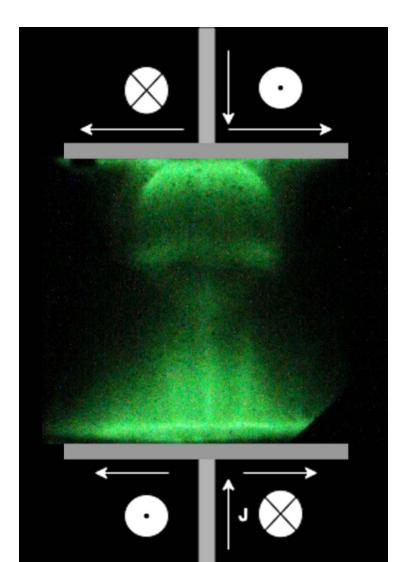


Figure 6: XUV image of antiparallel collision. Bow shock is observed near the top foil.

Second shot:

- B Dots imply no breakdown in however Rogowski's MITL, suggest breakdown in the load
- Bottom jet propagates but top foil only produces ambient plasma
- Bow shock observed when bottom jet reaches top foil location

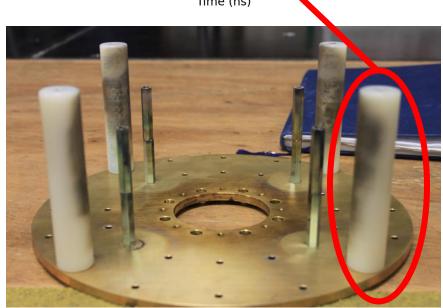


Figure 7 (Top): Rogowski Probe measurements from second shot showing initial current rise followed by breakdown.

Figure 8 (Bottom): Post shot picture showing possible conducting path on Nylon post

7	
Setup	Inductance (nH)
Antiparallel 1	98 ± 9
Antiparallel 2	33 ± 3
Parallel	40 ± 5

Table I: Inductance estimates for each shot setup. Calculated using formula from Burdiak et al [4]

Parallel B Fields

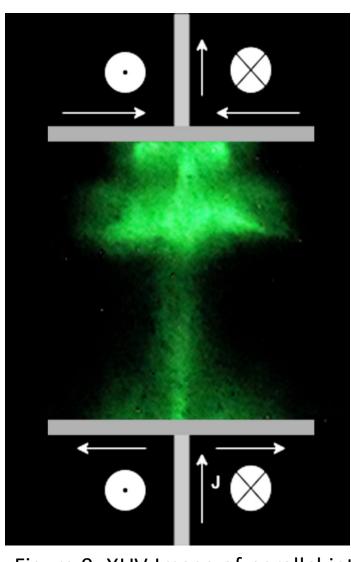


Figure 9: XUV Image of parallel jet collision. Top jet formed with slower velocity

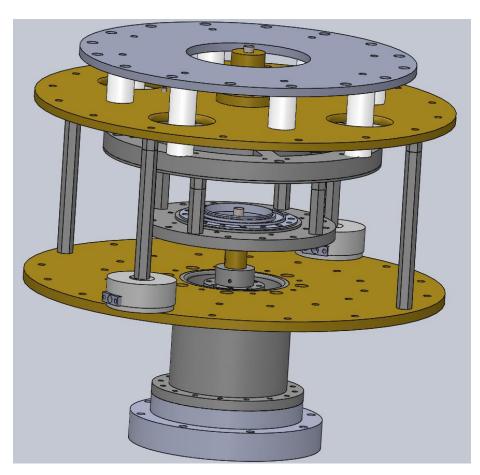


Figure 10: Updated design for parallel setup. Nylon posts have been repositioned to reduce contact with plasma. A collar has been attached to raise the height of the anode plate. Posts have been shielded from UV to prevent surface plasma forming conduction path.

Result

- Weak top jet produced, as indicated by position of collision above foil midpoint
- Higher degree of collimation from bottom foil ablation
- MITL B Dots indicate no breakdown in diode stack
- Rogowski Probes similar to previous experiment, indicating breakdown within the load

Analysis

Unequal jet velocity suggests reduced current through top foil caused by breakdown between metal plate and top foil

Future Work

Redesign

- Plastic plate attached to top foil to minimize breakdown
- Edges of metallic plates filleted to reduce sharp edges

Measurements of Plasma Conditions

- Parallel and antiparallel experiments with updated designs
- Faraday rotation and interferometry diagnostics to determine magnetic field strength and plasma electron density
- Multi-frame optical self-emission imaging to better understand dynamics of interaction
- Thomson scattering laser diagnostic to measure jet velocity, and electron and ion temperatures via Doppler broadening

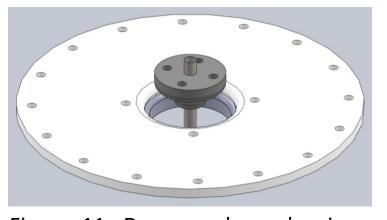


Figure 11: Downwards angle view of redesigned plastic place and its positioning relative to top foil

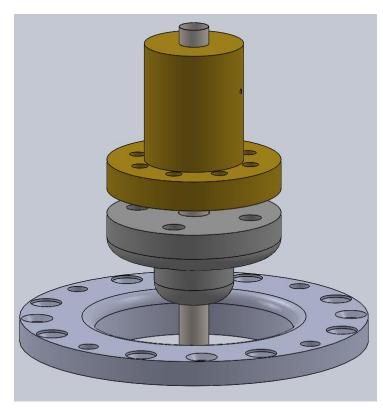


Figure 12: Updated foil holder and alignment piece with curved edges

Summary

- Usage of pulsed-powered generator requires careful design of load to satisfy constraints for system to operate correctly
- Antiparallel shots showed formation of bottom jet and bow shock but breakdown caused top jet to fail
- Parallel shots also displayed signs of breakdown in the load causing top jet to propagate much more slowly
- Future shots should have fillets wherever sharp edges are present to minimise risk of breakdown
- Design for bottom foil is currently being used by researchers in jet-obstacle interaction experiment

References

- [1] S. Lebedev et al, Plasma Physics and Controlled Fusion, 2005
- [2] NASA et al, 1995
- [3] G.C. Burdiak, PhD Thesis, 2012
- [4] G.C. Burdiak et al, Physics of Plasmas, 2013