
Rigidity of Faithful Embeddings in Causal Set Theory

References

Theoretical Physics Group
Supervisor: Prof. Fay Dowker

Introduction to causal set theory
Causal set theory is one of the leading theories aiming to explain the features of quantum gravity. It
postulates that space-time is described by causal sets at its finest scale. A causal set is a locally finite
set with partial ordering on its elements. The elements correspond to events in the continuum, while
the ordering encodes the causal structure [1].

Poisson process: a random process that positions points so that the density
of points in any finite region follows a Poisson distribution.

Faithfulness: a causal set is a faithful representation of a manifold if the
manifold could have risen from it as a continuum approximation.
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The Scaffolding approach

Fig 2 – (left) visualization of the error in the coordinate estimation before and after the
Scaffolding approach; (right) a comparison plot showing the fraction of accurately preserved
relations (sensitivity) by each embedding method as the sprinkling density increases. The
error bars represent the standard deviation over 10 embeddings.

Rigidity scale of an embedding 
For a causal set faithfully embedded into a Minkowski diamond, we
investigate how much the element coordinates can be shifted without
changing the causal order between them. This allows us to probe the
rigidity of the embedding and access how a local fluctuation can have a
global effect in the causal ordering.

Fig 3 – Diagram illustrating our method to
vary the coordinates of the elements in 1+1D.
The black directed lines connecting the events
(blue dots) represent the causal ordering.
Orange dots represent their coordinates after
the variation.

To approach this, we constructed
an algorithm where we surround
each element in the embedding
with a sphere of radius !, vary its
coordinates in a random angular
direction such that it lies on the
surface of the sphere (see Fig. 3),
and recompute the causal
relations.

Analytically, we have proven that the spheres cannot overlap, meaning
that ! is constrained by half the shortest distance between two elements in
the embedding. In 1+1D, we have also calculated ! analytically. Both of
these calculations were used to verify our iterative method.

We then iteratively decrease the
size of the sphere until the
causal ordering is the same as in
the initial embedding. The
critical value of ! at which this
happens defines the rigidity
scale of the embedding.

An iterative approach  
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Sprinkling: a technique to obtain causal sets that are faithful representations
of a given manifold. Points in the manifold are generated via a Poisson
process and used as elements of the causal set. Then every element is
endowed with the order it inherits from the causal order of the manifold.

Embedding: given a manifold and a causal set that faithfully represents it, we
can assign a coordinate to every element in the causal set [1].

Embedding into a 1+1D Minkowski diamond

Fig 1 – Visualization of estimating the
coordinates. The orange/blue region has a
set past/future size (± "). Their intersection
gives our coordinate estimate.

Once we know that a causal set is a
faithful representation of a 1+1D
Minkowski diamond, we can attempt
to construct an algorithm to embed
it.

Assuming a uniform density
distribution over the diamond, we
expect the number of points between
any two elements to be proportional
to the volume of intersection of their
future and past light cones (equal to
the square of the proper time
between the two elements). We can
then develop a sequential technique
based on this observation.

First, we find the maximal and minimal elements (those with every other
element to their past/future), then we estimate the position of every element
of the causal set, knowing the proper time from the minimal point to the
element as well as the proper time from the element to the maximal point
(see Fig 1). This embedding technique has previously been described [2, 3],
however our analysis revealed some flaws with this method when
estimating the position of elements close to the centre.

Our solution for this phenomenon was to reconstruct the continuum by
starting at the edges and working inwards. Once all the elements close to
the edges of the diamond are calculated, we can use these to find the
position of the elements in the middle. As seen in Fig 2, the inclusion of this
technique significantly improves the quality of the embedding.

Conclusion and further work
Our investigations demonstrate that causal sets are able to encode the
continuum geometry of manifolds in their order structure. This is inline
with the theory and supports the causal set theory approach to quantum
gravity.

Now we are working on extending our work to higher dimensions as well
as invoking recent developments of artificial intelligence to further
improve the quality of our embeddings. Concurrently, we have started
investigating how ! varies with the density of elements in the embedding.

We aim to thoroughly investigate the properties of faithful embeddings. We are analysing the limitations of recovering the continuum properties of a space-
time from its causal set. Concurrently, we are investigating the rigidity of an embedding and the global effect of coordinate fluctuations to its causal structure.

Our approach


