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Background, Motivation and Project Outline 
Goals: 

• Find the conditional (posterior) probability distribution of a set of model parameters, given 
some observed data and a forward simulator model 

• Finding an appropriate compression scheme to reduce dimensionality of the problem 

• Develop working algorithms and validate these using a specified analytic problem 

• Apply these methods to higher dimensional, real case studies 

Motivations: 

• Modelling complex systems, from which we have access to observed data, is a general prob-
lem applicable to a wide variety of quantitative fields 

• Many fields use forward simulator models which contain parameters that require estimation 

• If the processes are too complex to calculate analytic likelihood functions, we must use Likeli-
hood-Free Inference (LFI) techniques 

• Examples include the estimation of cosmological parameters within cosmology, and even the 
Lotka-Volterra Equations for predator-prey modelling [1] 

Consider some model with parameters, θj and observed data, xi. Using Bayes Theorem, we can 

write [2]: 

 

 

where we refer to p(θj|xi) as the posterior, p(xi|θj) as the likelihood, p(θj) as the prior and p(xi) as 

the evidence. 

The posterior, by definition, is the conditional probability distribution given the observed data, 

xi. This term is therefore what we require since it is the updated distribution from taking the new 

information into account alongside the prior. This is illustrated in equation 1; it is the product of 

the likelihood term and the prior. We can apply this understanding to Likelihood-Free Inference 

techniques where, in complex scenarios, the likelihood may be unknown or intractable. This in-

volves computing the posterior, without knowledge of the likelihood, from comparisons be-

tween simulated data and observed data. 

Bayes Theorem 

Approximate Bayesian Computation (ABC) 
• ABC is the most traditional approach to the inference problem; it involves drawing model pa-

rameters from the prior distribution, then forward simulating data with which we compare 
to the observed data.  

• If the simulated data falls within a specified threshold of observed data, which is evaluated 
using a distance metric, the selected parameters are accepted or otherwise rejected.  

• This enables the approximation of the posterior distribution of θ from the accepted parame-
ter values [3]. This is illustrated in the algorithm flowchart in Fig.1.  

Fig. 1. A flowchart demonstrating the ABC rejection sampling algorithm 

Density Estimation Likelihood Free Inference (cont.) 
Mixture Density Networks (MDNs) 

• MDNs rely on the fact that a conditional distribution can be represented via the sum over a 
suitable number of Gaussian components with appropriate coefficients {rk (θ;w)} , 

 

 

  

 where  {μk(θ;w)} are means, and {Σk (θ;w)} covariances [4]. 

Masked Autoregressive Flows (MAFs) 

• MAFs obtain the approximate posterior distribution through a series of invertible, transfor-
mations carried out by Masked Autoencoders for Distribution Estimations (MADEs) 

• With this approach the posterior distribution is decomposed into a product of conditionals 
using the probability chain rule [4] 

 

 

 

Neural Network Loss Function 

• Neural Networks are trained using an objective function; this is something that needs mini-
mizing/maximizing with respect to the, w. For both MDNs and MAFs we take this to be the 
negative log-likelihood, [4] 

 

 

Data Compression 
• For data with high dimensionality, it may be inefficient or not possible to perform computa-

tions regarding LFI  

• Data compression, therefore, becomes an essential problem whereby we must compress a 
high dimensional data set to a set of summary statistics of lower dimensionality 

• Compressing data must be done carefully such that we are retaining the maximum amount 
of information 

• Approximate-Score Compression is a compression method used to compress a set of N data 
to one compressed summary statistic per parameter of interest 

 

 

  

where L* is the natural logarithm of a quasi-likelihood function evaluated at some chosen fiduci-
al point in parameter space [5] 

Results and Discussion 
• The initial analytical model for testing is drawing 100 points from a gaussian distributed data-

set with additional gaussian noise 

• Here we demonstrate the success of both ABC and DELFI, whilst using sufficient summary 
statistics. 

• For both methods we see a match between the experimental PDFs generated and the ana-
lytical forms we derived. 

• Summary statistics used here were the mean and variances of the data samples. 

Fig. 2. (left- DELFI) marginalised PDF for standard deviation, (middle-ABC) marginalised PDF for 
standard deviation, (right-DELFI) joint PDF for mean and standard deviation.  
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Density Estimation Likelihood Free Inference (DELFI) 
• DELFI is a parametric method where we utilise Neural Density Estimators (NDEs) [4] 

• NDEs tackle distribution estimation problems using various statistical methods alongside nu-

merous network architectures [4] 

• The specific method we are utilising models the conditional density, p(d|θ), and obtains the 

likelihood by evaluating at the observed data [4] 

• The posterior can be computed by taking the product between the likelihood and the prior,  

p(θ|d) ∝ p(d|θ) × p(θ) [4] 

• This allows for freedom in attaining simulations, therefore we can draw parameters from the 

most relevant regions in parameter space without incurring problems [4] 

• This is especially effective when simulations are computationally expensive, as all simulation 

results are used in the training and validation process of the neural network [4] 

Conclusion and Future Work 
Conclusion 

• We have explored both non-parametric (ABC) and parametric models (DELFI), whilst utilising 
compressed summary statistics to make the inference task easier to carry out. 

• Throughout we have multiple successes in finding the desired PDFs and parameter estima-
tion in general. Thus, highlighting the effectiveness the techniques employed. 

Future for the field 

• Increasing the speed at which both ABC and DELFI can be carried out. 

• Applying these techniques to new types of problems. 

• Further research into data compression schemes, such as recent developments in Infor-
mation Maximising Neural Networks (IMNN) [6]. 
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