#### Balaji Harihar, Nicholas Mok

Supervisors: Prof Yoshi Uchida, Dr Minoo Kabirnezhad


HEPH-Uchida-2 Modelling of Inelastic Neutrino Scattering

### Introduction

- Neutrinos are not massless particles as stated in the Standard Model.
- Understanding the interaction cross section of neutrinos is essential to neutrino research.
- Single pion production (SPP) represents a large fraction of the total cross section for neutrino oscillation experiments.
- Neutrino cross section measurement gives invaluable information about the axial properties and transitional form-factors as the nucleon axial formfactor is still poorly known.

#### MK Model

- Rein and Sehgal model used in neutrino simulation generators such as NEUT and GENIE.
- MK model expands on that by including non-resonant interactions and lepton mass effects. [1, 2]
- The model provides a full kinematic description of the final state particles, which are listed below.
- For charged current (CC) interactions:
- $v_l + p \rightarrow l^- p \pi^+, \quad \overline{v}_l + n \rightarrow l^+ n \pi^-,$
- $v_l + n \rightarrow l^- p \pi^0$ ,  $\overline{v}_l + p \rightarrow l^+ n \pi^0$ ,
- $v_l + n \rightarrow l^- n \pi^+, \quad \overline{v}_l + p \rightarrow l^+ p \pi^-$
- For neutral current (NC) interactions:
- $v + p \rightarrow vp\pi^0$ ,  $\overline{\nu} + p \rightarrow \overline{\nu}p\pi^0$ ,
- $\overline{\nu} + p \rightarrow \overline{\nu} n \pi^+$  $v + p \rightarrow vn\pi^+$  $\cdot \quad v + n \rightarrow v n \pi^0$ ,  $\overline{\nu} + n \rightarrow \overline{\nu} n \pi^0$ ,
- $\bar{\nu} + n \rightarrow \bar{\nu}p\pi^ \cdot \quad v + n \rightarrow vp\pi^-,$



Single pion production [1]

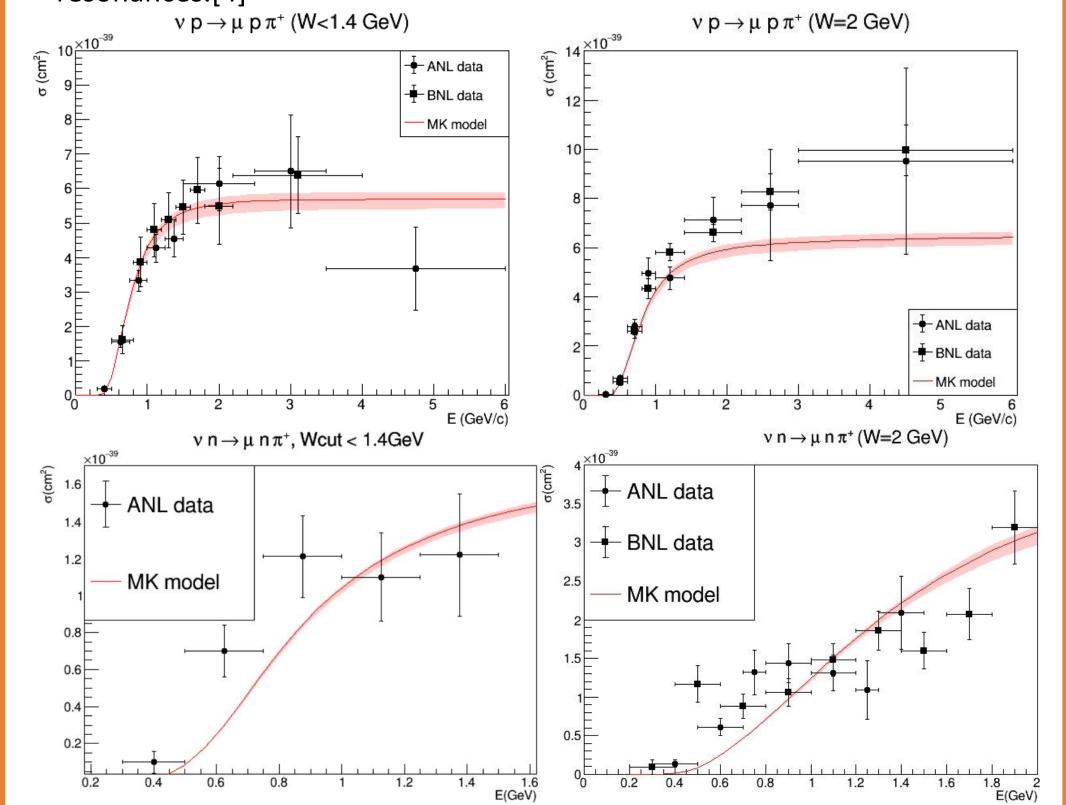
In general:

 $v(k_1) + N(p_1) \to l(k_2)N(p_2)\pi(q)$ 

### Find parameters and validate model

 $X^2$  function with difference between expected value from MK model and ANL data




Minimise  $X^2$  using ANL data to find best fit parameters

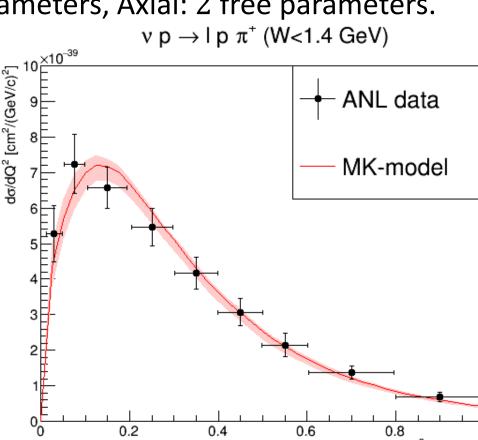


Use best fit parameters for MK model and plot against ANL and BNL data

## Original MK Model Results

- Plotted graphs of integrated cross section  $\sigma$  against neutrino energy E for limited hadron invariant mass ( $W < 1.4~{\rm GeV}$  and  $W < 2~{\rm GeV}$ ) with  $1\sigma$ error band predicted by the MK model.
- Data constraints W < 1.4 GeV neglects contribution from heavier resonances.[4]



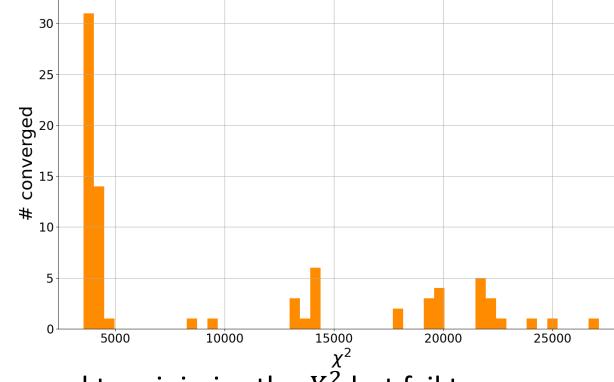

MK model agrees much better with lab data in both high and low energy regimes.

### Objectives

- Testing the MK model against observed results from Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL).
- Using different minimisation implementations to find the best parameters for the original MK model.
- Comparing minimisers to find the best one for our purpose.
- Using electron and pion scattering data to fit parameters to the Vector part and the Axial part of the new MK model respectively.

#### Viinimisers

- Original MK model  $\rightarrow$  Vector: 0 free parameters, Axial: 2 free parameters.
- Minimising  $X^2$  value to find best fit values for  $C_5^A(0)$  and  $M_A$ , which are the free parameters of the form-factor for the axial current. [3]
- Using ANL  $Q^2$  differential cross section data.
- Minimisation libraries MINUIT2 and GNU Scientific Library in ROOT.
- The following table shows the best fit parameters and  $X^2$  value of the minimiser used at using 9 data points.




| Minimiser | Min Method      | $M_A$    | $C_5^A(0)$ | $X^2$   | Time (s) |
|-----------|-----------------|----------|------------|---------|----------|
| MINUIT2   | Migrad          | 0.871039 | 0.882856   | 4.54834 | 202.067  |
|           | Simplex         | 0.870358 | 0.883293   | 4.54842 | 271.797  |
|           | Scan            | 0.98     | 0.98       | 28.7156 | 429.295  |
| GSL       | conjugateFR     | 0.871098 | 0.882819   | 4.54834 | 1955.88  |
|           | conjugatePR     | 0.871098 | 0.882819   | 4.54834 | 1704.29  |
|           | BFGS            | 0.871098 | 0.882819   | 4.54834 | 1709.57  |
|           | BFGS2           | 0.871098 | 0.88282    | 4.54834 | 1093.33  |
|           | SteepestDescent | 0.871096 | 0.882822   | 4.54834 | 4872.31  |
|           | SimAn           | 0.871453 | 0.88253    | 4.54836 | 68916.4  |

The correlation matrix between the two parameters was calculated and the parameters were found to be anti-correlated, (-0.8765).

# Vector & Axial Current (VC & AC)

- Lack of quantity and quality of neutrino data  $\rightarrow$  We cannot verify the model.
- Weak current consists of the Vector (V) and the Axial (A) current. Due to the parity violation, it has a V - A structure.
- We can use abundant electron and pion scattering data by splitting the model into a Vector and an Axial part → New MK model.
- Conservation of vector current (CVC) and Partial conservation of axial current (PCAC) constrains the nucleon form-factors.
- $k^{\mu}J_{\mu}^{V}=0$ , is the CVC equation and is an exact conservation law. [5]
- $\partial_{\mu}A^{\mu}=-f_{\pi}m_{\pi}^{2}\varphi$ , where  $f_{\pi}$  is the pion decay constant,  $m_{\pi}$  is the pion mass.
- The symmetry is exact when  $m_{\pi} \to 0$ .
- Finding the 23 parameters of the (V) is done by using electron scattering data.
- $\sim$ 2000 data points used.
- 300 random seeds used for initial starting point for parameters. 80 converged using Migrad.
- $X^2$  values concentrated at around 3600, 4200 and higher values signify multiple local minima.



Simplex and SimAn were also used to minimise the  $X^2$  but fail to converge. Other gradient methods are computationally infeasible and are not used.

## Conclusion & Further Exploration

- Validating MK model by evaluating the parameters from the Vector and Axial parts, make comparisons with NEUT and GENIE model predictions.
- Improving the axial current by using more form-factors to each resonances  $\rightarrow$  Will have more free parameters to fit.
- Newer MK model uses PCAC relation and pion scattering data to constrain parameters for the Axial part.
- Using Markov chain Monte Carlo methods to minimise the parameters of the Vector part and investigate performance gains.

#### References

- [1] Kabirnezhad, M., 2020. Single pion production in electron-nucleon interactions. *Physical Review D*, 102(5), p.053009.
- [2] Kabirnezhad, M., 2020. Improvement of Single Pion Production.
- [3] Graczyk, K.M., Kielczewska, D. and Sobczyk, J.T., 2009. \$ C\_5^ A \$ form factor from ANL experiment. arXiv preprint arXiv:0907.1886. [4] - Graczyk, K.M., Żmuda, J. and Sobczyk, J.T., 2014. Electroweak form factors of the Δ (1232) resonance. *Physical Review D*, 90(9), p.093001
- [5] Alevizos, T., Celikel, A. and Dombey, N., 1977. PCAC analysis of weak pion production in the first resonance region. Journal of Physics G: Nuclear Physics, 3(9), p.1179.