Fabricating Microscale Antenna for Single-Photon Sources

Shafiat Dewan

Supervisors: Professor Riccardo Sapienza Dr Cynthia Vidal

EXSS - Nanophotonics

Motivation: Single-Photon Sources

- Single-photon sources (SPS) are great emitters but are difficult to work with
- They emit omnidirectionally: we need an antenna to direct light
- They are **fragile**: existing techniques to make an antenna will destroy the SPS
- They are randomly placed making it difficult to place an antenna on top
- Existing methods to make antennas result in surface artefacts

Sketch of single-photon source's emission spectrum

Sketch of a parabolic antenna placed on top of an emitter

Figure 1: Image of quantum dot using a homemade confocal microscope

Method: Photolithography

- Photolithography uses light to polymerise a photosensitive material (photoresist) into a solid dielectric structure
- The traditional method is direct laser writing which fabricates an antenna separately from the emitter by raster scanning
- This novel method is single-shot which fabricates an antenna in one quick exposure on top of the emitter[1]
- Using a confocal microscope setup with a piezoelectric stage, we can print structures on top of emitters, controlling exposure time and defocussing

Sketches of photolithography methods. Photoresist (green) is exposed to a laser (blue) and polymerises along iso-intensity contours (pink)

Results

antenna while varying exposure time and defocussing.

Figure 2: SEM images of fabricated structures. Left: structures fabricated with a laser power of $10\mu W$ with exposure time varying (horizontally) between 50ms and 150msand defocussing varying (vertically) between -50nm and 50nm. Right: Parabolic mirror fabricated with a laser power of $10\mu W$, exposure time of 50ms diameter = 1.6um.

We can successfully fabricate arrays of parabolic micro scaled • Structure diameter varies linearly when varying the exposure time: we can control the voxel size within the Rayleigh range.

Figure 3: Average structure diameter of Figure 2. Gaussian image filtering has been applied and structures have been fitted with randomised Hough transforms using OpenCV2 and SkImage packages.

Outlook

- The next steps are to print antennas on top of a quantum dot and measure the emission spectrum
- Future work can focus on fabricating complex structures using radially polarised beams or a digital micromirror device
- Single-shot photolithography can also be used to print cylindrical antennae on top of nanowires

Figure 4: Tilted SEM image of 'dumbbells fabricated with a Gaussian Beam.

Laguerre beam (taken with CCD

Sketch of a DMD system. Only the white outline of the heart will reflect an incoming beam.

References