Imperial College London

Bosonic String Theory, T-Duality and Extended Geometry

Steven Hsia & Xinjiayu Zhang

Supervisor: Prof. Daniel Waldram Theoretical Physics Group

INTRODUCTION

In the late 1960s, string theory arose as one of the candidates for unifying all four fundamental forces in the premise of identifying particles as different vibrational modes of a string. Our motivation is to understand the string dynamics both classically and quantum mechanically, which involves studies in *symmetries* and *quantisation*. One of the outstanding results is the physical promotion of the existence of *extra* spacetime dimensions. Furthermore, we shall see how *T-duality* provides the equivalence of string dynamics with compactified spacetimes.

Figure 1. A sketch of the worldsheets of an open string and a closed string.

CLASSICAL RELATIVISTIC STRING

$$S_{p} = -\frac{T}{2} \int d^{2}\sigma \sqrt{-h} \, h^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu\nu}$$

There are several symmetries which the *Polyakov* action enjoys:

- *Poincaré* transformation invariance (global)
- **Reparameterization** invariance (local)
- *Weyl* symmetry (local)

Upon that, we can fix a gauge such that the field metric $h_{\alpha\beta}$ is *flat*:

$$h_{\alpha\beta} = \begin{pmatrix} h_{00} & h_{01} \\ h_{10} & h_{11} \end{pmatrix} \xrightarrow{\text{Diffeomorphisms}} \begin{pmatrix} h_{00} & 0 \\ 0 & -h_{00} \end{pmatrix} \xrightarrow{\text{Weyl}} \eta_{\alpha\beta}$$

There exists a *residual* symmetry that a certain diffeomorphism ε on the field metric can be undone by a Weyl rescaling Λ^{-1} , this is a *conformal* symmetry.

Equation of motion from varying $X \to X + \delta X$ and $h^{\alpha\beta} \to h^{\alpha\beta} + \delta h^{\alpha\beta}$:[1]

$$\partial_{\alpha}\partial^{\alpha}X^{\mu} = 0 \qquad \qquad T^{\alpha\beta} = 0$$

where $T^{\alpha\beta}$ transforms into *constraints* for the solution of X^{μ} .^[1]

For a closed string, the solution in its expanded Fourier modes is:

$$X^{\mu} = x^{\mu} + 2\alpha' p^{\mu} \tau + \frac{i}{2} \sqrt{2\alpha'} \sum_{n \neq 0} \frac{1}{n} (\tilde{\alpha}_{n}^{\mu} e^{-2in\sigma} + \alpha_{n}^{\mu} e^{2in\sigma}) e^{-2in\tau}$$

By imposing two constraints from the stress-energy tensor, it yields:

$$L_n = \frac{1}{2} \sum_{m} \alpha_{n-m} \cdot \alpha_m = 0, \qquad \tilde{L}_n = \frac{1}{2} \sum_{m} \tilde{\alpha}_{n-m} \cdot \tilde{\alpha}_m = 0$$

which are Noether charges that generate the conformal symmetry.

OLD COVARIANT QUANTISATION

Just as in the ordinary *canonical quantisation*, we define creation/annihilation operators acting on a vacuum state $|0;p\rangle$ to obtain excited states, e.g., for open strings

- Level 1: $\alpha_{-1}^{\mu}|0;p\rangle$
- Level 2: $\alpha^{\mu}_{-1}\alpha^{\nu}_{-1}|0;p\rangle$ or $\alpha^{\mu}_{-2}|0;p\rangle$

However, this Hilbert space is *non-physical* due to the existance of negative-probability states (also called *ghost states*), e.g.

$$Prob(\alpha_{-1}^{0}|0;p\rangle) = \langle 0; p | \alpha_{1}^{0} \alpha_{-1}^{0} | 0; p \rangle = -\langle 0; p | 0; p \rangle$$

This can be solved by imposing the constraints:

$$L_{n>0}|\phi\rangle = \tilde{L}_{n>0}|\phi\rangle = 0, \qquad L_0|\phi\rangle = \tilde{L}_0|\phi\rangle = a|\phi\rangle$$

which are gorverned by the Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{D}{12}n(n^2 - 1)\delta_{n+m,0}$$

Varying the parameters a and D gives a *physical* Hilbert space, and it happens to be a = 1 and D = 26, it restricts the spacetime *dimensions* exactly to 26.

STRING SPECTRUM

$$M_{\mathrm{Open}}^2 \propto N - a$$
, $M_{\mathrm{Closed}}^2 \propto \widetilde{N} + N - 2a$

Open StringClosed String $N = 0 \rightarrow$ Tachyon $N = \widetilde{N} = 0 \rightarrow$ Tachyon $N = 1 \rightarrow$ Photon $N = \widetilde{N} = 1 \rightarrow$ Graviton, B-field, Dilaton

COMPACTIFICATION & T-DUALITY

However, we only feel 4 spacetime dimensions. A natural attempt is to let these extra 22 dimensions to be small (and periodic) such that it is only noticeable to strings. For simplicity, we can consider the spacetime $\mathbb{R}^{24,1} \times S_R^1$:

Figure 2. An analog of a compactified spatial dimension described by the coordinate X^{25} , it is topologically a circle of radius R.^[2]

The string gains a new intrinsic property (*winding number*) as it can wrap over the compactified dimension. The momentum associated to X^{25} is quantised. These two *quantum numbers* changes the string spectrum:

$$M_{\text{Closed}}^2 = \frac{2}{\alpha'} \left(\widetilde{N} + N - 2 \right) + \left(\frac{n}{R} \right)^2 + \left(\frac{wR}{\alpha'} \right)^2$$

Now, consider another spacetime $\mathbb{R}^{24,1} \times S_r^1$ with the string spectrum:

$$M_{\text{Closed}}^2 = \frac{2}{\alpha'} (\widetilde{N} + N - 2) + \left(\frac{m}{r}\right)^2 + \left(\frac{\omega r}{\alpha'}\right)^2$$

They are equivalent under the transformation:

$$R \to \alpha'/r$$
, $n \to \omega$, $w \to m$

- The string sees no difference between the two backgrounds, one with radius R and the other with radius r.
- This is a symmetry, known as *T-duality*, from which two seemly different spacetime backgrounds are equivalent.
- In general, a curved spacetime is described by the massless closed string states, which are the metric $G_{\mu\nu}$ and the B-field $B_{\mu\nu}$ (ignoring the dilaton).
- There is a set of rules, called the **Buscher rules**, that allows us to find a T-dual background spacetime, described by the metric $\tilde{G}_{\mu\nu}$ and the B-field $\tilde{B}_{\mu\nu}$.

Figure 3. An example of applying Buscher rules starting from the background $T^3 + H$ -flux.

IMPLICATION

Although string theory lacks experimental evidence and the full picture is yet to be revealed, it still offers a framework in which people can start to attempt the puzzles contained in quantum gravity. Particularly, we have just seen different geometries arose from the T-duality, such as non-geometric backgrounds, which provides new perspectives of the nature of gravity.