Astrophysical X-Ray Lasers

Juan Manuel Martínez Ruiz & Mathurin Dulout

1. What are astrophysical lasers?

Astrophysical lasers are quantum-electronic space objects, that occur in space plasmas and which prime way of production is due to electron population inversion. Population inversion is plausible in a lasing event as the lifetime of an upper electronic level must be larger than the lifetime of a lower electronic level [1].

Fig. 1: Lagoon Nebula, space object where astrophysical lasers have been detected.

2. Line photo-pumping

When two elements have coincident excitation lines at the same wavelength, it can lead to photo-pumping through stimulated transitions. If the excitation of the pumped element produces a population inversion, line photo-pumping is responsible for lasing.

Fig. 2: Representation of a photo-pumping system able to produce lasing due to a population inversion in its intermediate energy level.

3. Aims of the project

- 1. Find different candidate elements that could produce lasing in space.
- 2. Detect computationally if they produce compatible lines that increment in intensity due to photo-pumping.
- 3. Identify if these lines have been observed in any space conditions.

4. Process

- 1. Find elements that have coincidence lines.
- 2. Use GALAXY, a code that calculates the ionisation and excitation of plasma [2], to find the line intensities, using the information of the elements with different plasma conditions.
- 3. Compare the results for a not photo-pumped system and a photo-pumped system.
- 4. Identify the lines in a real system.

5. Results

Fig. 3: Ratios of the intensities of the photo-pumped Si-Al system over the not photo-pumped Si-Al system. Calculations made with GALAXY. n_e represents the electron density, with units of cm⁻³.

- The photo-pumped system is built by He-like silicon (pumping element) and He-like aluminium (pumped element), at a pumping wavelength of 6.648 Å [3], having a lasing line of 42.610 Å [4].
- There is an increment in intensity of the lines due to photopumping.
- These lines have not been found in an astrophysical system. However, they have been identified under laboratory conditions.

6. Further research

- Identify if the studied Si-Al system could create an astrophysical laser.
- Analyse other systems, such as the Li-like iron and H-like aluminium system, which has several lines that can be candidates for space lasing in the X-Ray regime.

Fig. 4: Scheme of the Fe-Al system, which has two coincidence lines and the possible transitions [5].

References

[1] Letokhov V, Johansson S. *Astrophysical Lasers*. Oxford: Oxford University Press; 2008. [2] Rose SJ. The non-LTE excitation/ionization code GALAXY. *Journal of physics.B, Atomic, molecular, and optical physics*. 1998; 31 (9): 2129-2144. 10.1088/0953-4075/31/9/024. [3] F. Chapline G. Line-Coincidence Schemes For Producing Laser Action at Soft-X-Ray Wavelengths.; January 12, 1983.

[4] Acton LW. Rocket Spectogram in a Solar Flare in the 10-100 A Region. 1985.

[5] Gouveia A Almiey IR. Hawreliak I. Absorption spectroscopy of Al XIII Ly-alpha re

[5] Gouveia A, Al'miev IR, Hawreliak J. Absorption spectroscopy of Al XIII Ly-alpha radiation by an Fe XXIV plasma.