
2. Machine Learning Techniques
Boosted Decision Trees

In the previous analysis, tau decay modes were identified using a boosted 
decision tree (BDT), a type of machine learning model that processes a set of 
input values, or ‘features’, to return probabilities that an event is one of the 
given decay modes. 

Neural Networks

Neural networks (NNs), like BTDs, take a series of input features and return a set 
of outputs. However, they are also more versatile, capable of accepting multiple 
inputs with different datatypes (images, lists etc.) and returning multiple 
outputs.

Our Work

We have developed and fine-tuned a deep NN with added image processing 
(convolutional) layers. 

• This allowed us to not only incorporate ‘high-level’ parameters, like particle 
momentum, but also images created from the angular positions of particles 
registered by the detector.

• Our NN accepted 29 high level parameters and seven pairs of large and small 
images, representing the distribution of energy, momentum, and different 
particle types within the CMS detector.

• The output was a list of probabilities that a given event belongs to any of the 
six classes shown on the flowchart above. 

• We found better results when training two different models, one to deal with 
singly-charged modes (𝜋, 𝜌, 𝑎1

1𝑝𝑟) and one for modes with three charged 
particles (𝑎1

3𝑝𝑟 , 𝑎1
3𝑝𝑟 + 𝜋0). 

• These models would usually take ~1hr per epoch and 24hrs for a fully-trained 
model, although more complex structures (especially more convolutional 
layers) increased training time to around a week.

3. Results
We evaluated the performance of our NN models using Receiver Operating 
Characteristic (ROC) curves. These show how number of correctly classified 
events (true positive) and misclassified events (false positive) are correlated. 
The ideal classifier would be a right-angle with the corner at (0,1).

We also measured the purity and efficiency of each mode i, defined as;

Purity and efficiency have a direct impact on the uncertainty of the final mixing 
angle. These are compared to the BDT, and to CMS’s HPS algorithm in Fig. 4. This 
shows the NN had higher efficiency but lower purity than the BDT model.

We also found that by varying the cutoff 
probability for different modes we could 
improve efficiency at the expense of losing 
data. The effects of this on the full CP-state
calculation are not yet known.
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1. Motivation
The CP-state of the Higgs boson is an important indicator of new physics, as 
many theories predict the Higgs not to be CP-even [1]. 

However, the Higgs is extremely short-lived, and can only be observed by its 
decay products. The two most frequent fermionic Higgs decays are 𝐻 → 𝑏ത𝑏 and 
𝐻 → 𝜏 ҧ𝜏 [2], and the tau decay was the focus of this project. Tau particles also 
decay too quickly to be measured by a detector, and the five leading tau decay 
modes are observed instead (Table 1). 

The current best value for the CP state of the Higgs is from the CMS group at the 
LHC, which found the Higgs’ CP mixing angle to be 𝝓𝝉𝝉 = 𝟒 ± 𝟏𝟕 ° [3], where 
an angle of 0° would indicate a fully CP-even Higgs, and 90° fully CP-odd. This 
method used the CP-sensitive angles between tau decay planes and required 
the decay modes of the two tau particles to be known.

In this project, we have collaborated with the CMS group to reduce the 
uncertainty on this value, focusing on improving the classification of tau decay 
modes using new image-based machine learning techniques.
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4. Conclusion 
• Our neural network can be used for classification of past and future data from 

the CMS experiment and is at least as powerful as existing BDT models.

• A more complex network and longer training will yield better results, 
although how much better is currently unknown.

Next Steps

• More research should be done into how varying classification cutoffs affects 
overall results, as this can improve results in a more significant way (~10%) 
than optimising a network can (~1%).

• By focusing on distinguishing the 𝜌 and 𝑎1
1𝑝𝑟modes we can develop models 

that are overall more useful, as this is the least well-defined sector. 

• Training could also focus on better resolving 𝜋0 particles, which are currently 
badly defined.

• Novel network architectures, like graph networks, may also be researched.

Table 1: The five most frequent tau decay modes, and their branching ratios 
as percentages. Here 𝑙± indicates a lepton (𝑒± or 𝜇±) and ℎ± represents a 
meson, usually a pion (𝜋±). Table inspired by [3].

Fig. 4: 
Comparison of 
purity and 
efficiency of the 
classification 
between our NN 
(blue), the BDT 
(orange) and the 
default HPS 
algorithm 
(green).

Fig. 5: Efficiency of classification against the 
fraction of events rejected

Fig. 3: ROC curves for the singly-charged tau decay modes for both our best NN 
(blue) and the BDT (orange). Similar curves exist for modes with three charges.

Fig. 2: A flowchart representing the general structure of our NN
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