Simulating Materials at Constant Pressure Using Homogeneous Coordinates

Alicja Polanska and Divya Tank, Supervisor: Dr Paul Tangney, Imperial College London, Department of Physics, Condensed Matter Theory Group

1. Molecular dynamics

Molecular dynamics (MD): the simulation of atoms as classical particles moving according to potential functions.

Periodic boundary conditions help us simulate the interior of materials without finite size effects.

Constant pressure simulation \rightarrow variable volume [1]

How do we vary volume? \to **Project aim:** devise an algorithm for dynamically scaling space in atomistic simulations.

2. Uniform dilation with homogeneous coordinates

Uniform dilation by a factor of λ can be achieved with homogeneous coordinates. We add an extra dimension to Cartesian coordinates \vec{r} :

$$\vec{r} = (r^1, r^2, r^3) \to (\vec{s}, \lambda) = (s^1, s^2, s^3, \lambda)$$

Physical distances are now scaled by λ : $\vec{r} = \lambda \vec{s}$.

The diagram shows a plane moving along $\hat{\mathbf{e}}_{\mathbf{0}} \to \lambda$ increases \to distance r increases.

3. Our Lagrangian

Express positions of atoms in homogeneous coordinates.

Create fictitious dynamics with the following Lagrangian:

$$L = \underbrace{\sum_{i=1}^{N} \frac{1}{2} m \dot{\vec{s_i}}^2}_{T_{\text{atoms}}} + \underbrace{\frac{1}{2} W \dot{\lambda}^2}_{T_{\text{cell}}} - \underbrace{\left(U\left(\lambda, \{\vec{s_i}\}\right) + P_T V_0 \lambda^3\right)}_{H_{\text{pot}}}$$

 $T_{\rm atoms}$ - kinetic energy of atoms in three dimensions

 $T_{\rm cell}$ - kinetic energy of cell, correction for the fourth dimension W - cell mass, inertia associated with fourth dimension

 $H_{\rm pot}$ - enthalpic potential: $H_{\rm pot}=U+P_TV$ U - potential energy, P_T - target pressure

The conserved quantity is enthalpy: $H = T_{\text{atoms}} + T_{\text{cell}} + H_{\text{pot}}$

4. Results

Equations of motion for our system:

$$m\ddot{s}_i^k = F_i^k \lambda$$
, and $W\ddot{\lambda} = \frac{3V}{\lambda}(P_{\text{int}} - P_T)$

 $F_i^k = -\frac{\partial U}{\partial s_i^k}$ - component k of force on i due to other atoms

 $P_{\mathrm{int}} = -\frac{\partial U}{\partial V}$ - internal pressure

- Enthalpy is **conserved**.
- When $P_{\text{int}} \neq P_T$, λ is accelerated. Scale volume in response to pressure differential \rightarrow barostat.

5. Conclusions

Introducing **homogeneous coordinates** allows volume and positions to be decoupled while **conserving enthalpy** and stabilising at **target pressure**.

Further work: generalise algorithm to anisotropic stresses using Clifford Algebra [2].

6. References

- Hans C Andersen. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics, 72(4):2384–2393, 1980.
- [2] C. Doran, D. Hestenes, F. Sommen, and N. Van Acker. Lie groups as spin groups. *Journal of Mathematical Physics*, 34(8):3642–3669, August 1993.

