Imperial College London

A GENERALIZED METHOD FOR FINDING HIDDEN SYMMETRIES IN DYNAMICAL SYSTEMS

Teofil Aleksandrov, Amin Omarouayache. Supervisor: Prof. Vvedensky; Condensed Matter Theory Group

Motivations + Objectives

- Initially motivated by attempts to understand "accidental" degeneracy in quantum systems
- A well known example is SO(4) hidden symmetry which explains the angular momentum quantum number "accidental" degeneracy in the hydrogen atom

- This lead to the objective of finding a generalised method for obtaining symmetries in any dynamical system
- Attempt to show that a differential-geometric approach simplifies the search for hidden symmetry

- Symmetry is the invariance of objects and/or equations under some transformation
- Geometric symmetries correspond to invariances of the configuration of the system and are usually intuitive
- However, there exist other symmetries corresponding to conservation of abstract quantities through system dynamics – called dynamical symmetries (often "Hidden")

Continuous symmetries of Hamiltonian systems can be studied by considering the natural symplectic geometry of the problem.

Why Symplectic geometry?

- Hamiltonian systems naturally live on a symplectic manifold where each point is a phase space $\mathbf{x} =$ (q, p) with a symplectic structure ω that endows it with a Poisson structure
- Transformations of the system then correspond to flows $\gamma(t,x_0)$ generated by vector fields \widehat{X}_G
- These flows are lines on the phase space that obey an ODE with initial condition x_0 at t=0
- Flows that commute with the Hamiltonian flow are symmetries of the system

Machinery

- Geometrical symmetries correspond to Killing vectors such that the vector field \hat{X}_G along the configuration space only depends on position q. These are quantities that obey specific properties depending on the geometry
- Dynamical symmetries correspond to higher-order Killing tensors such that \widehat{X}_G along the configuration space now depends on both positions \boldsymbol{q} and momenta \boldsymbol{p}
- For more complicated problems the analysis can be simplified by considering a higher dimensional manifold whose geodesics are the Hamiltonian paths (Eisenhart lift procedure)
- For example, the hidden symmetry of the Hydrogen atom corresponds to a rank-2 Killing tensor:

Method found in literature: complicated and speculative

Killing methodology: simple and systematic

$$\delta q^i = \dot{q}^i q^k a_k - \frac{1}{2} q^i \dot{q}^k a_k - \frac{1}{2} q^j \dot{q}_j \delta^{ik} a_k - \frac{1}{2} q^$$

In Summary...

corresponds to a canonical transformatio Metric structure g of the

Geometrical symmetries

Dynamical symmetries

Metric structure \tilde{g} of the higherdimensional space is preserved along the flow

All symmetries correspond to flows that commute with the Hamiltonian flow

Proposed Methodology

configuration space is

preserved along the flow

Find the Eisenhart lift to Solve for the Killing a manifold with N + 2tensors of this manifold dimensions Express N-dimensional system in terms of a natural Hamiltonian Find physical conditions Find all Killing tensors satisfying the physical based on the geometry and potential conditions

Higher order Killing tensors correspond to hidden symmetries

Extensions:

Supersymmetry Kerr Metric

Kaluza-Klein Theories

Inflation Models

RIP accidental