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Introduction and motivation
We’ve got the system to [study] the system.

Aphrodite’s Child, 1972 (paraphrased)



Introduction and motivation
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The motion of the driven double-pendulum

1. Torque acting on the upper segment: τ = l1F sinωF t

2. Equations of motion are as follows:

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
F sinωF t −m2 sin (θ1 − θ2)(l2ω

2
2 + l1ω

2
1 cos (θ1 − θ2))

l1((m1 +m2)−m2 cos2 (θ1 − θ2))

−g(m1 sin θ1 +m2 cos θ2 sin (θ1 − θ2))

l1((m1 +m2)−m2 cos2 (θ1 − θ2))

ω̇2 =
F sinωF t cos (θ1 − θ2)− (m1 +m2)l1ω

2
1 sin (θ1 − θ2)

l2 (m2 cos2 (θ1 − θ2)− (m1 +m2))

+
−m2l2ω

2
2 cos (θ1 − θ2) sin (θ1 − θ2)− (m1 +m2)g cos θ1 sin (θ1 − θ2)

l2 (m2 cos2 (θ1 − θ2)− (m1 +m2))



What’s interesting?

There’s definitely (...) no logic to [double-pendulum] be-
haviour.

Björk, 1993 (paraphrased)

1. General motion is chaotic

2. Interesting restriction: small driving torque
(F � g(m1 + m2)) when starting from a stationary state

3. Why is this interesting? Remember real-life models



Resonance

1. Simple to define for a simple pendulum

2. What is of interest to us for the double-pendulum?

2.1 Maximal amplitude of the upper segment over a long time
period?

2.2 Time limit of the total mechanical energy accumulated? Note
the complex energy dissipation

3. Our goal: find all ωR for the double-pendulum for which
resonance emerges

4. Two proposed definitions virtually indiscernible; I chose
maximal θ1

5. Possible connection to normal modes?



Normal modes of the double-pendulum

1. Simply put: solutions where θ̃2(t) = ñ · θ̃1(t)

2. Usually correlates with resonant frequencies (empirical)

3. We need to show validity of restricted solution of the
equations of motion

4. Trivial solution: n = 1 (”phase solution”)

5. For phase solution: ωR =
√

g
l1+l2

- notice invariability to many

properties

6. Observed ”antiphase solution” with nontrivial |n|
7. Empirically: ωR for phase solution approaches triviality for

l2 = 0, ωR for antiphase solution approaches triviality for
l1 = 0



Normal modes of the double-pendulum

1. Phase solution much better behaved for slightly lower ωF →
imperfect correlation



The fulcrum trick

You [double-pendulums] have such cute [resonant frequen-
cies].

Toshiro Mifune, 1961 (paraphrased)

1. Consider the phase solution - what other system does this
represent? What connection is there to its natural frequency?

2. Can we find a similar representation transformation for the
antiphase solution?



The fulcrum trick - antiphase solution

ls = l2 − l1
sin θ1

sin nθ1
≈ l2 −

1

n
l1; h(θ2) ≈ l1(cos

θ2
n

+
1

n
cos θ2)



The fulcrum trick - antiphase solution

1. In the non-inertial frame: fulcrum as the reference point

L = T − U =
1

2
m2l2s θ̇

2
2 + lsm2 cos θ2g ′, g ′ = g − d2h

dt2

2. Using the E-L eqn. and with Taylor expansion omitting
O(θ32):

g

ls
θ2 + θ̈2 + ε

[
θ̈2
(
(m + 1)− m

2
(1−m2)θ22

)
− θ̇22θ2(m

3 +m + 2)
]
= 0

where ε = m l1
ls

(minusculity justified by edge case)

3. By linear perturbation analysis, omitting O(ε2):

θ2 = Ã

[
e iω0t +m

l1
ls

[
e iω0t +

Ã

16
(m + 1)(m2 −m + 4)

(
e3iω0t − e iω0t

)
−iω0

m + 1

2
te iω0t

]]

where ω0 =
√

g
ls

=
√

g
l2−l1/n



The fulcrum trick - antiphase solution

1. Taylor expansion turned pendulum into SHO→ we expect
dynamic rescale in actual solution

2. Dominant term in the long term: the one proportional to t -
this can be shown to be true for the whole solution by
examining the cross-terms (we can’t obtain another repeated
root of the characteristic equation)

3. Corresponding natural frequency: ωR = ω0 =
√

g
l2−l1/n

4. We’ll find this a good approximation for the antiphase
resonant frequency

5. Note the small l1 assumption

6. Note that n is not an intrinsic property - needs to be observed



Actual behaviour - short l1, changing m2



Actual behaviour - l1 = l2, changing m2



Conclusions and further research

1. The two predicted resonant frequencies -
√

g
l1+l2

and
√

g
l2−l1/n

- are good estimates of actual resonant frequencies (difference
always under 15%)

2. We’ve empirically shown that antiphase resonance is modal
and phase resonance is almost modal (notice even
half-periods)

3. Empirical groundwork for correcting these estimates

4. Further research questions/topics:

4.1 Find the antiphase solution of the equations of motion using
found restrictions to express ωR only using intrinsic properties

4.2 Study the angular frequency space outlier phenomenon
4.3 Try extending these results to find average angular frequencies

of both segments for arbitrary ωF
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