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Casimir’s Phantom Hand

Picture this: in front of you are two mirrors, perfectly
parallel, with their reflective sides facing each other.
The surfaces of these two plates are close together, so
close you can hardly make out their separation. These
plates are surrounded by a perfect vacuum: no dust,
no human, and no machine touch the plates. Perfect,
undisturbed silence.

Figure 1: The set-up as described above. The plates
are suspended in a vacuum, perfecty parallel to one
another. The plates are conductors and reflective on
their adjacent sides.

If I were to ask you whether anything would happen
to the plates, whether they move or vibrate or sponta-
neously combust, you would look at me and say, “Well
of course not! Newton’s first law says objects at rest
should remain at rest in the absence of external forces,
which is precisely the case here.”

What if I told you these plates would, in fact, be
pushed together? Would you believe me? Your com-
mon sense surely warns you against it.

How about if I gave you a hint and said this was a
quantum e↵ect? Ah, I see now your ears have perked
up.

At first glance this has two explanations, both
equally implausible: either Newton’s laws are a hoax,
allowing the plates to jump into spontaneous motion;
or an invisible phantom hand has materialised and
squeezed the plates together.

This article seeks to make physical sense of this
phantom hand, delving into its historical discovery
while explaining the quantum physics behind this illu-
sive phenomenon. You’ll be surprised to find out this
e↵ect has been used (somewhat cavalierly, depending
on which physicist you speak to) to explain how ships
behave at sea. We’ll also uncover how this e↵ect be-
came a pest for nanotechnologists before being revo-

lutionised into a tool in their armory for creating new
technologies.

History behind the mystery

The phantom hand emerges

This eponymous e↵ect was first theorised by the Dutch
theoretical physicist, Hendrik Casimir, in 1948 [1]. In
a brief, three page note entitled “On the attraction be-
tween two perfectly conducting plates” which accompa-
nied another of his recent papers, Casimir used quan-
tum mechanical reasoning to argue that two reflective
plates in a vacuum should be subject to an attractive
force pulling the plates together [1]. Perhaps with the
optimism of a true theoretical physicist, Casimir con-
cluded by postulating that empirical confirmation of
this miniscule force would be attainable [1].

Figure 2: An exerpt from Casimir’s original 1948 pa-
per, where he sets the theoretical framework for this
illusive phantom force [1].

A theory before its time

Despite Casimir’s valiant suggestion that his phantom
force could be observed through experiment, exper-
imental contemporaries of Casimir found that their
equipment was too rudimentary to provide any quan-
titative supporting evidence. There were a number of
stumbling blocks inhibiting scientists at the time from
obtaining a glimmer of experimental insight into this
e↵ect. The chief complication involved how perfectly
parallel the plates must be to observe the e↵ect, given
they needed to be separated by around 1 micron in or-
der for the magnitude of the force to be large enough to
be measured [2]. In addition to this, if the two plates
had even slightly di↵erent surface potentials, which can
occur on the order of a few mV for metal plates of
the same material, the phantom hand would not ap-
pear [3]. Moreover, the plates are required to be clean,
to avoid debris on the plates from decreasing the at-
traction between them [3]. If this is done by rubbing
the plates, static electricity can be built up, increas-
ing the electrostatic attraction between the plates and
adding another layer of uncertainty. All these factors
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were consequential when in 1958, physicist Sparnaay
failed to measure the Casimir force with any inkling of
precision. Unsatisfying as it is, the high uncertainty
on the measured value of the force meant Sparnaay
was merely able to conclude that his results “do not
contradict Casimir’s theoretical prediction” with e↵ec-
tively 100% uncertainty in the measurement [3].

In reaction to the experimental di�culty demon-
strated by Sparnaay’s paper, the search for empirical
proof of this e↵ect lay dormant for the best part of four
decades.

Measuring the immeasurable

Then, in 1997, the paper “Demonstration of the
Casimir Force in the 0.6 to 6 µm Range” emerged from
the laboratories of the University of Washington, by
the hands of Steve Lamoreaux [4]. The paper outlines
how Lamoreaux succeeded in measuring the Casimir
force to within 5% of the theoretically predicted value.
How was the issue of perfectly parallel plates overcome?
Lamoreaux opted to substitute one of the conducting
plates for a spherical conductor, eliminating the issue
posed by parallelism; the system is simply defined at
the point of closest approach between the sphere and
plate [4]. Casimir’s original equation describing the
force had to be modified to fit this new topology [4].
However, the underlying physics was able to be car-
ried over in this adjustment [4]. To detect the force,
the plate was moved towards the sphere by the exper-
imenters while its motion was measured with excruci-
ating precision - to the nearest 0.5 µm. They observed
that the plate did not only move the amount dictated
by the experimenters; it overstepped. The measure-
ments showed the plate moved the exact amount ex-
tra that would be expected by the force predicted by
Casimir all those years ago.

This discovery marked the beginning of a new era of
Casimir force measurements. Armed with Lamoreaux’s
plate-sphere technique, researchers across the globe be-
gan pumping out measurements of the Casimir force
with extraordinary precision. Just three years after
Lamoreaux’s intial observation, the likes of Thomas
Ederth of the University of Stockholm found empirical
evidence in agreement with theory to within 1% [5].

The torrent of successful observations in recent years
can be thought of as a tribute to the importance of
perseverance in science. The contributing factor to the
multitude of studies was merely the fact that the re-
searchers now knew it was possible, thanks to Lamore-
aux’s perseverance to observe what was before thought
to be unobservable.

You may be wondering whether Casimir’s initial set-
up of two parallel plates has ever been empirically re-
alised. The issue of parallelism remains to this day a
di�cult hurdle to overcome. One of the few observa-
tions of this parallel plate configuration was carried out
by researchers at the University of Padova in Italy, in
2002. The uncertainty on this measurement is high,
approximately 15%, a far cry from the more common-
place spherical geometry configurations [6]. Having

said that, the degree of progress achieved since the
early days of Casimir force measurements is truly a
scientific triumph.

Timeline: From proposal to observation

1948: Hendrik Casimir is the first to the-
orise the e↵ect, in his publication “On
the attraction between two perfectly con-
ducting plates”

1958: Sparnaay makes a first unsuccess-
ful attempt to measure the Casimir ef-
fect

1997: Steve Lamoreaux measures the
Casimir force to within 5% of the the-
oretical value

2001: The Casimir E↵ect is observed to
within 1% uncertainty

2002: A parallel plate set-up is used suc-
cessfully to measure the Casimir e↵ect

The science behind the phantom
force

All of this history begs the question: How does this
curious e↵ect come about? If Newton’s laws have not
been broken, what is the physics behind it?

Are vacuums really empty?

Luckily for Newton, the plates do in fact move in re-
action to the imbalance of forces acting on the plates.
But what kind of force could possibly be acting in such
a way in a vacuum?

To answer this, we have to come to grips with the
fact that our classical idea of a vacuum is, simply put,
wrong. Classically, we imagine a vacuum to be com-
pletely and perfectly empty. This notion was shattered
by the likes of Dirac and de Broglie who brought quan-
tum field theory (QFT) to the forefront of physics in
the late 1920s [7] [8]. QFT sought to unify two fun-
damental fields of physics: quantum mechanics and
electrodynamics [9]. Simply put, it extends quantum
mechanics, which deals with singular particles, to fields
containing an infinite number of degrees of freedom [9].
A rudimentary way to visualise this is to imagine a field
as an expanse of infinitely many points. Each point os-
cillates as a simple harmonic oscillator, giving us the
infinite number of degrees of freedom a field is required
to contain [10]. The simple harmonic oscillators we are
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used to dealing with in classical physics are defined
in terms of a single frequency. However, quantum me-
chanics stems from the notion that our world is a prob-
abilistic one. Hence, the simple harmonic oscillators
are not defined in terms of an exact single frequency,
but rather by a spectrum of frequencies, which take a
Gaussian distribution [11].

Definition: Quantum field theory

Quantum field theory is a modern approach
to areas of physics such as elementary particle
physics, condensed matter physics and statisti-
cal mechanics. The theory allows physicists to
deal with both particles and fields with a uni-
form theoretical understanding, which wouldn’t
be possible using quantum mechanics alone [9].

In a similar way, the energy of the oscillator is de-
fined by a spectrum, almost like the universe has a
Gaussian-shaped bag of values from which it can choose
an energy and assign it to the point in space. Crucially,
this means that the energy in the vacuum cannot al-
ways be zero: it must fluctuate.

Now that we’ve given the vacuum energy some con-
ceptual consideration, why don’t we try calculate it?
It’s not quite as scary as you might think: we simply
need to sum up the energies of each constituent oscilla-
tor. So to begin, let’s figure out the energy of a single
oscillator.

Corresponding to our understanding of classical
physics, the total energy E of the quantum harmonic
oscillator must be, at least, the sum of its kinetic and
potential energies

E =
�p2

2m
+

1

2
m!2�x2, (1)

where �p is the momentum uncertainty, m is the mass
of the system, ! is the angular frequency of the oscil-
lator, and �x is the position uncertainty [12].

The Heisenberg uncertainty principle can be written
as

�x�p =
h̄

2
, (2)

in its lower limit, where h̄ is the reduced Planck con-
stant. This lower limit corresponds to the lowest en-
ergy state of the oscillator [12]. We can confidently
take this lower limit when dealing with the vacuum
energy because we expect a vacuum to have the lowest
amount of energy, since there’s not matter in it at all!
Using Equation 2, we can rewrite Equation 1 in terms
of position uncertainty, obtaining

E =
h̄2

8m(�x)2
+

1

2
m!2(�x)2. (3)

By taking the derivative of this expression for the
energy with respect to �x and setting the whole thing
equal to zero, we should be able to find the spread in
position required for minimum energy. If you try it
yourself, you’ll find

�x =

r
h̄

2m!
. (4)

Then, we simply need to substitute this into Equa-
tion 3 to obtain the minimum value of energy Emin in
terms of �x. This simplifies neatly to this eloquent
expression for the zero-point energy:

Emin =
h̄!

4
+

h̄!

4
=

h̄!

2
(5)

And voila, we have the minimum energy allowed for
each of our oscillators. Simply by summing these up,
over all the possible points in the field we have

1X

n=1

En =

1X

n=1

h̄!n

2
, (6)

which is clearly non-zero. This more mathematical
proof once again goes to show that a vacuum is not
quite as empty as we thought.

Definition: Zero-point energy

This is the background energy present in all
quantum mechanical systems, calculated by
summing up the energy of the infinite simple
harmonic oscillators in a field.

What does this mean for our plates?

You’re probably thinking, this all sounds like interest-
ing physics, but how on Earth does that translate to
two plates moving towards each other out of thin air!

The key here is to bear in mind our thinking about
fields, and apply it to the fields surrounding the plates.
The region outside the two plates lacks an important
quality: boundary conditions. Without these bound-
ary conditions, all frequencies of the oscillators can be
present, making it a so-called ‘free-vacuum’ [13].

Definition: Boundary conditions

Boundary conditions occur when the value of a
dependent variable is specified at two di↵erent
points within a system [14].

This is not the case for the region between the plates.
The two reflecting plates are conductors, which means
the electric field must be zero inside the conductors
themselves. So, just as with a standing wave on a string
fixed at both ends, the field between the plates must
have nodes at the conductors. This means that only in-
teger multiples of half wavelengths can fit between the
two reflecting plates. Consequently, all the other pos-
sible wavelengths, and thus frequencies, are supressed,
as shown in Fig. 3 [13].

Consider counting the contributions from each mode
outside the plates pairwise with the equivalent mode
between the plates. You can see that for every sup-
pressed mode inside the plate, which has no contri-
bution to the zero-point energy of the field, the field
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Figure 3: A visualisation of the wavelengths allowed
between the plates, compared to those outside the
plates. You can see that the inner region is missing
modes of certain wavelengths because they have been
suppressed by the boundary conditions.

outside the plates will get an energy contribution from
the mode. When we sum up over all the possible fre-
quencies inside and outside the plates, we find there is
more energy in the field outside the plates than inside
the plates [1].

So, now, how does this energy transfer into the mo-
mentum of the plates? An interesting facet of electro-
magnetic waves is that they do in fact carry momen-
tum, unlike other types of waves. This can be shown
by considering the relativistic formula for energy

E2 = p2c2 + m2c4. (7)

Since the electromagnetic wave has no mass, this
equation reduces to

E = pc. (8)

In other words, in order for the energy to be non-
zero, the momentum must also be non-zero.

In this way, the waves of the electromagnetic field
transfer momentum to any matter they encounter,
which in our case is the plates. The pressure the waves
exert on the plates is known as the field radiation pres-
sure. Momentum being proportional to energy implies
that the field radiation pressure on the outside of the
plates will be greater than on the inside, due to the
energy imbalance we derived before. Now we’ve got to
the bottom of it, Newton survives: there is a net force
acting on the plates, pushing them together!

Using this ideas and his previous work on the van
der Waals forces, Casimir carried out the non-trivial

calculation of the force per cm3, finding it to be

F = h̄c
⇡2

240

1

a4
, (9)

where a is the distance between the plates [1]. This
corresponds to a very, very, very small force. For a
plate separation of 6µm, the force has a magnitude
of merely 2.17 ⇥ 10�8 N. That’s less than the force
holding an electron to a hydrogen atom. Hopefully
now you have some sympathy for the experimentalists
who found it so di�cult to measure!

Physicists not all in the same boat

It is still up for debate as to whether Casimir’s phan-
tom hand could crop up in macroscopic physical phe-
nomenon. The most historically renowned of these al-
leged classical analogs suggests that ships at sea could
in fact be pushed together due to a force not dissimilar
from Casimir force.

Figure 4: Ships at sea in P. C. Caussé’s sailors’ manual.
[15]

In 1936, a French Royal Navy captain P. C. Caussé,
wrote a sailors’ manual detailing how to deal with a va-
riety of potentially dangerous situations at sea. Caussé
warns that “a certain attractive force” pulls ships to-
wards each other in a long swell [15].

While this reeks of pure sailors’ superstition, some
physicists, such as Boeserma in 1996, have argued that
the Casimir e↵ect is to blame [16]. They claim the ships
act as Casimir plates and the waves play the role of the
field. The idea is that if the wavelength of the waves is
large compared to the distance between the ships, then
the ships will rock side to side in phase (i.e. starboard
of one ship in phase with starboard of the other, and
likewise for the port sides). This means, however, that
the one ship’s starboard side will be in opposite phase
to the other ships port side which are closest to each
other, as depicted in Fig. 5. The waves emitted by the
sides of each ship will superpose and cancel, resulting
in less energy between the ships than outside - just like
there is for Casimir plates [16]. In a similar fashion to
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the conducting plates, the rolling ships will be drawn
together by Casimir’s phantom hand.

Figure 5: A cartoon schematic of ships at sea. The
green circles indicate the port side of each ship, which
are in phase in their rocking motion. The red crosses
mark the starboard side of the left-hand ship and the
port side of the other. These points are out of phase in
their motion; one is moving towards its highest point,
while the other is moving towards its lowest.

However, other physicists refute this claim. In 2006,
former NASA Scientist, Fabrizio Pinto, got ahold of
P. C. Caussé’s book and found that Boeserma had
the situations mixed up: Caussé was actually claim-
ing the ships were pulled together in the absence of
waves, rather than when waves were present [17]. This
leads to the motivation behind Boeserma’s work be-
ing unfounded. Naval architect Jason Smithwick says
that he could imagine this being possible, although it
would require a very specific set of circumstances and
is definitely not something he has ever heard of or en-
countered [17].

It is unclear whether this explanation is simply a
product of physicists’ desire to keep the ‘folklore’ asso-
ciated with the subject alive and kicking, or whether it
is truly a result of the quantum Casimir e↵ect emerging
in the macroscopic world.

Quantum problems require quan-
tum solutions

You may now be wondering how something as small as
the Casimir e↵ect could have any ounce of importance
to our daily lives?

The answer is nanotechnology. This term, first
coined by Norio Taniguchi in 1974, describes scientists’
and engineers’ manipulation of matter on a nanome-
ter scale for humanity’s own technological benefit [18].
The small scale of the Casimir e↵ect means it is both
a pest and a saviour in the field of nanotechnology.

One key complication is that the attractive Casimir
force can introduce an indirect phantom frictional force
in microelectromechanical systems [19]. The attractive
force between micro-structures can hinder their relative
motion and sometimes even stick them together en-
tirely [19]. Evidently this can put you in a rather sticky

situation if you’re in the nano-manufacturing business.
Nanotechnologists have, however, figured out how

to harness the contactless nature of the e↵ect for their
own benefit, for example in high sensitivity force sen-
sors, structures requiring controlled self-assembly, and
contact-free nanomachines [20]. In 2009, physicists suc-
ceeded in creating a repulsive Casimir force using a gold
coated sphere and a substituting the traditional gold
plate with one made of silica [21]. By combining this
repulsive Casimir force with the attractive one, they
created a Casimir equilibrium, capable of performing
quantum levitation [21] [20].

Figure 6: An artist’s impression of quantum levita-
tion due to the combination of repulsive and attractive
Casimir forces. (Image credit: Jay Penni and Federico
Capasso)

The yet-unharnessed applications of the Casimir ef-
fect are plentiful, leaving the field wide open for fu-
ture generations of innovative physicists. Along with
more ingenious uses of the e↵ect in nanotechnology, re-
searchers are investigating the possibility of translating
the e↵ect to di↵erent topologies and even harnessing it
to explain some of the quantum questions shrouding
the early universe [22].
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