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Symmetries are more fundamental to our understanding of physics now than ever
before. They have helped physicists conjecture theories such as Super Symmetry and

test some of the most fundamental laws in nature.

Figure 1: Symmetry can be seen all around us. M.C. Escher was fascinated by reflections in spheres,
physicists today are interested in the reflections and rotations in space and the consequences of these
transformations [1].

Symmetries are all around us, from Escher’s famous
spheres in figure 1 to the crystalline structure of diamond.
They define a regularity in nature and a predictability
in our everyday lives. Yet these seemingly innocuous
properties of systems have a much deeper meaning for
physicists and the fundamental laws of physics. These
symmetries in the laws of nature lead to the conserved
quantities that physicists treasure and use almost every
time they do a calculation. Yet the importance of these
properties had been ignored for centuries.

The symmetry laws underpinning classical mechanics
had not fully been investigated until Einstein’s Special
Theory of Relativity in 1905, in which he considered sym-
metries as a fundamental fact of nature, and that these
symmetries constrain the physical laws that can arise [2].
This shift towards using symmetries to restrict the laws
of nature that could exist was intrinsic to Einstein’s de-
velopment of the General Theory was still considered a
quirk of relativity and group theory. However, Wigner
and other physicists pioneered the use of the method in
quantum mechanics to answer problems, such as the the-
oretical atomic spectra of more complicated atoms [3],
which would be almost impossible to solve using stan-
dard techniques.

The most basic symmetry law, that almost all physi-
cists know, is the time reversibility of the Classical laws.
That is, if we know what is happening now we can predict
what will happen in the future by evolving the system ac-
cording to our laws, but we can also learn about the past
be reversing this evolution. This time reversibility leads
directly to the conservation of energy, one of the most
fundamental laws of physics. More investigation into
these symmetries reveals the origin of other conserved
quantities such as linear and angular momentum. While
the symmetry laws in classical physics are incredibly use-
ful, their use in quantum mechanics leads to some very
strange and insightful results, which will be explored later
on. Nevertheless, we first must look at the mathematics
behind this strange area of physics and so we must take
a brief look at the abstract mathematics that is Group
Theory.

A Crash Course in Groups

Groups are of fundamental importance in analysing sym-
metry laws in physics, they are the natural representation
of these symmetries because of the way quantum mechan-
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ics can be formulated. This section will set the theory of
this area out in a fairly formal manner, I’ve tried to give
an example so that the concept becomes clear. The group
is built up from a set G = {a, b, c...} which has some ad-
ditional structure. The • is just an operator of any kind.
It could represent matrix multiplication, addition, sub-
traction or something more complicated. The operation
depends entirely on the set G and what kind of group is
to be formed.

A group G is defined by the four following properties
[4]:

1. It is closed, that is if a, b ∈ G then a • b ∈ G.
Which basically means that two objects acted to-
gether produces an object which is still in the set.

2. It is associative, that is if a, b, c ∈ G then a•(b•c) =
(a • b) • c

3. It has an identity e such that if a ∈ G, a • e = a

4. Each element has an inverse, that is for a ∈ G there
exists a−1 ∈ G such that a • a−1 = e

Figure 2: An example of a contracted matrix
group, where the operator • is matrix multiplica-
tion. The objects in the set G are the right-angle
rotations about the xy-plane, we can see that the
identity is the identity matrix (1), each element can
be multiplied by another element to produce 1 and
so there are inverses. The most notable thing is,
however, there is clear symmetry in the group which
is the foundation of this area of physics.

This all seems very abstract at first glance, and that
is actually the reason this area of mathematics is so use-
ful for analysing symmetries. The symmetries we want
to derive are elusive and typically can be very abstract
and based in the heart of quantum mechanics.

The most likely set of objects used in this area of
physics are matrices or exponentials phasors (eiαx) , and
so the • (pronounced "blob") is usually the multiplication
associated with those objects. There are groups that are
very specific to symmetry in physics, and they are typ-
ically the Unitary and Special Unitary groups [4] which
are basis for a lot of the global and local symmetries.

Most of these groups are continuous and so they obey an-
other part of group theory called Lie (pronounced ’Lee’)
algebra, the mathematics of these kinds of groups are not
very important but there are a host of books on this area
[5]. An example of a rotation group can be seen in figure
2.

The Constants in Our Lives - Global
Symmetries

Global Symmetries are symmetries which affect the entire
system and transforms the entire system homogeneously.
This type of symmetry is the reason we have conservation
of energy and momentum, and the entire idea behind this
type of symmetry is summed up in Noether’s theorem [6]:

"Covariance of the equations of motion with
respect to a continuous transformation with
n parameters implies the existence of n con-
served quantities (‘conserved charges’ or ‘inte-
grals of motion’), i.e. it implies conservation
laws."

The three most basic transformations that we can
think of are translation in time, space and rotation in
space. These three transforms leave the equations of mo-
tion unchanged and so we can conclude from Noether’s
theorem that there are conserved quantities associated
with these three translations [6]. Translation in time
leads to the conservation of energy, the translation in
space leads to the conservation of linear momentum and
rotation in space leads to the conservation of angular mo-
mentum 1. This is a fairly astounding result, because
some of the most fundamental laws in physics are derived
directly from the symmetries and covariance of systems
under certain translations and rotations. What is even
more amazing is that these transformations can be or-
ganised into mathematical groups. That is, the rotations
in space form a Lie group and so do the other previously
mentioned transformations. We can actually show if a
set of transformations form a group, then a covariance in
the equations occurs and thus we can find a conserved
quantity associated with that transformation [7].

In quantum mechanics, however, we can multiply a
system, ψ, by a phasor, eiφ, and this will still be a so-
lution to the Schroedinger wave equation. Obviously φ
can take on any value, provided φ ∈ <, and so the group
will be subject to Lie algebra, as suggested in the last
section. However, just by inspection we can see it satis-
fies the four group properties. Of course ei0 = 1 is the
identity, and so the inverse of an element is dictated by
the rule that φ+ φ−1 = 0. The other two properties can
be easily proved too. As a result, we can conclude that
this set of transforms, ψ 7→ eiφψ, forms a group2. The
fact it forms a group, we know, means there is an associ-
ated conserved quantity, which is a pretty amazing result
given that all we considered was a basic transformation
and from this we can deduced a conserved quantity.

1All of these results are fairly easy to derive but require looking at more advanced mechanics.
2This group is the U(1) group and plenty of information on this group can be found in the references of this article.
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The conserved quantity associated with this group
is charge, in the situation above, where φ ∈ < and
φ 6= φ(x), the charge conservation is a global conserva-
tion. If φ = φ(x) then the phase would differ from point
to point in the system and so would be said to be locally
symmetric.

Figure 3: An example of a global symmetry. Here
a Newton’s cradle has been reflected (akin to the
parity transformation) but we expect the period of
oscillation to be the same in both systems, this is
a rather contrived example but it serves well to
demonstrate what a global transformation is and
how it leads to conservation.

This is the first step we’re going to make in finding
something called the Charge-Parity-Time (CPT) symme-
try which underpins the entirety of the standard model.
The next thing to look at is the P, or parity, conservation
of a quantum system.

Parity inversion is just replacing x with −x, see fig-
ure 3, in the wave equation or matrix of states, this either
leaves the wave function unchanged (even) or reflects the
system in the y axis (odd). The easiest way to prove
that this operator, Π, forms a group is to use the matrix
representation of the parity inversion operator, which has
the form [8]:

Πinversion =

−1 0 0
0 −1 0
0 0 −1

 , (1)

when you compose this with the 1, Π forms a group. The
symmetry associated with this group is the conservation
of parity, that is, if a state is odd it will remain odd for
all time and if it is even it will remain even for all time.
So now we know that parity is conserved, the final sym-
metry to find is time symmetry and then we’ll have CPT
symmetry, the underpinning for the standard model of
particle physics and the Yang-Mill’s theory. The proof
of time symmetry is very involved, and is far beyond the
scope of this article, however Wigner’s original paper [9]
and online notes [10] show the proof.

We now have the symmetry of charge, parity and
time individually. However, when applied to the nuclear
weak interaction these individual symmetries are violated

due to the presence of massive bosons [11]. This was a
huge blow for the symmetry community as it seemed to
throw all the work Wigner and his colleagues had done
aside. Fortunately, Chen Ning Yang and Robert Mills
were working on an extended version of much of the
work that had been previously completed, and eventu-
ally Yang-Mill’s theory was born [12]. This theory lead
QED (quantum electrodynamics), electro-weak unifica-
tion, and later to unification with the strong force (QCD
or Quantum Chromo-dynamics). The most important
result, which we have to an extent walked through, is
that taken together charge, parity and time are not vio-
lated by the weak interaction. CPT symmetry is the very
reason we can draw Feynman diagrams and consider an
electron evolving forward in time as a positron travelling
backwards in time, see figure 4.

Figure 4: The top particle is a positively charged,
forward evolving, "positive" parity particle. The
bottom particle is exactly the opposite of this, how-
ever in Yang-Mill’s theory these two particles can
be considered the same, preserving CPT symmetry
in QED and QCD.

Whilst CPT is a global symmetry, gauging (or using
local symmetries) provides the full basis for QED and
QCD, these theories rely on defining a gauge and then
showing invariances in these gauges. It is the general
consensus that global symmetries are all either broken or
approximate symmetries to a more local symmetry which
is almost homogeneous [2], this is because Wigner’s sym-
metries seem to, "smell of action at a distance" [2]. So
now we take a look at Local symmetries and the what a
gauge actually is.

The Changes in Our Lives - Local
Symmetries
A local symmetry is a symmetry in the same sense as
a global symmetry but the transformation has a de-
pendence on x. For example, in the eiφ case before if
φ = φ(x) then the transformation would form a local U(1)
group. The process by which φ = φ(x) is also known as
gauging [13], and is the basis of local symmetries which
are still a very active research areas as they provide the
basis for the unifying theories such as QED (SU(2)) and
QCD (SU(3)) and in the future, supergravity.

The process by which we gauge something is to re-
place a field, such as the EM-field, with a scalar and
vector potential so we can express the Hamiltonian (and
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Lagrangian) as functions of potentials. This process is
best shown via the gauging of the EM-fields [14]. We
define a vector potential A and a scalar potential φ in
terms of the E-field and the B-field as [15],

∇×A = B

−∇φ− ∂A
∂t

= E,
(2)

and then these potentials are used in the Hamiltonian so
the wave equation, or the matrix equation, can be solved
for the eigenbases. These relations can be again shown to
be invariant under the U(1) transformation we saw be-
fore, and so there is again charge conservation. The same
can be done for parity and time and for CPT symmetry,
and so they are all locally symmetric as well as globally
symmetric. This was the result that lead to Yang-Mill’s,
which is based in group theory [12].

Figure 5: In this diagram the local system/process
has changed but the overall result is exactly the
same. This kind of symmetry is the underpinning
of the sum over paths approach Feynman pioneered.
That is, since there are an infinite number of ways
to get to an end product, due to local symmetry,
we must sum over all possibilities. Here we have an
interaction described by p+ π− → n+ π0 [2].

Another consequence of local symmetry, and Yang-
Mill’s theory, can be seen in figure 5; there are an infinite
number of symmetric ways to get to the end product of
n + π0, and so due to the expansion postulate, we must
sum over all possibilities. This summation procedure is
Feynman’s sum over all possible paths.

The most important feature consequence of local sym-
metries, and gauges, are the fact that they determine how
particles and forces interact on a fundamental level [2].
The gauges themselves are the potentials in which the
particles are moving, and those potentials are directly
linked to the forces produced by a field. Eq 2 is an exam-
ple of how the EM-field can be gauged so that the system
can be described in terms of a family of potentials.

It is becoming more and more accepted by physicists
that local symmetries are the true symmetries in nature
and global symmetries are either just the leftovers of a
broken local symmetry or the approximation to a slow-
varying spatial symmetry [16]. This is more prevalent
in quantum systems where the potential is slow-varying,
such as a nuclear well, where the potential can be approx-
imated to a system where global symmetries hold but an
exact solution has no global symmetry.

Overall, local symmetries are the bread and butter of
"theories of everything" today and gauging underpins the
standard model, Quantum Field Theory and other fun-
damental theories in physics. So, whatever the outcome

of the debate, gauging is still the most accurate process
we have to describe our universe at the smallest scales.

Broken Symmetries and the Future

Symmetries dictate conditions on the laws of the universe
and reveal to us much of the inner structure of the uni-
verse we live in, however, the majority of physical phe-
nomena originate from the breaking of these symmetries.
Modern theoretical physics is underpinned by the investi-
gation of these breaking symmetries and they are inherent
to theories with infinite degrees of freedom (namely field
theories) [16].

The global symmetries we have analysed can usually
be revealed via two mechanisms, the first of which is the
standard method and is called the Wigner-Weyl mode [2];
in this method the laws of physics must be invariant un-
der the transformation and there is a ground state which
is symmetric (which is usually the vaccum). In quantum
systems with finite degrees of freedom, this is standard.
The other method (the Nambu-Goldstone mode) is an-
other possibility in theories with infinite degrees of free-
dom. In this mode the ground state is asymmetric, and
thus constitutes a breaking of symmetry.

This sounds strange but to clarify we’ll consider a
chunk of iron. If the ground state is symmetric, that is
all of the domains point in different directions, then the
iron has no magnetic properties. However, if all the do-
mains point in the same direction, symmetry is broken
and so we have magnetism, see figure 6. The majority of
physical phenomena we observe occur due to a breaking
of symmetry.

Figure 6: In A the iron domains are all randomly
aligned so no magnetic field is actually present in
the system, this is akin to a symmetric system.
However, in B an external magnetic field is applied
to the system so the magnetic domains align. This
means the ground state is asymmetric and mag-
netism within the iron arises even when the mag-
netic field is removed.

Given that we have a method to find symmetries that
are obvious, we now look for broken symmetries so we
can find the underlying symmetry which has been broken.
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This allows us to find symmetries which were previously
disguised by the broken symmetry.

The exciting and most profound things about this
area are the applications to fundamental physics and the
search of a unified theory. Physicists now look for new
local symmetries, and more intricate breaking of symme-
tries, in order to find the fundamental structure of the
universe. We have seen that searching for these symme-
tries lead to QED and QCD, and so physicists hope that
searching for more fundamental symmetries will allow us
to incorporate gravity into this model. One of the most
promising types of theories are so-called supersymmetric
theories. In older theories symmetries occurred between
fermions and bosons exclusively, but supersymmetry uni-
fies the bosons and fermions into one model and one of
the interesting consequences of this is the super-partners
[2]. These partners are particles much like the funda-
mental particles but much more massive, as of yet they
are unobserved but with the new LHC run it is hoped
they may be observed experimentally. One of these su-
persymmetric theories is String-theory. It is by far the
most credible unified theory we have which incorporates
all of the fundamental particles and forces. It has all of
the symmetries we know to be correct and some other,
strange symmetries we have yet to understand.

Figure 7: The standard particles have supersym-
metric particles in the supersymmetric theories. We
have yet to observe these particles but if we observe
them it will be the first piece of concrete physical
evidence we have for the existence of these theories
[17].
Symmetries in nature and quantum mechanics have

shown us a lot about the universe we previously did not
understand; it has given a theoretical basis for many con-
servation laws, and revealed to us new theories to describe
the universe. These symmetries are still being used in
research today and underpin fundamental physics, from
atomic spectra to the fundamental structure of the uni-
verse. Understanding how to find them and use them is
instrumental for all physicists so we can continue to dis-
cover some of the most fundamental secrets of the uni-
verse.

My thanks go to Prof. Dimitri Vvedensky and Dr.
Tim Evans, for answering questions on this topic, and to
my friends who checked my article thoroughly.
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Introduction: Introduce the importance of the topic by giving a little of the history around Wigner and atomic 
spectra [~450 words] 

• Talk about symmetry in a very generic sense- reflections etc. (use images to introduce the concept) 
• Mention how symmetries help see the regularities in the natural laws 
• Briefly mention an example of a classical symmetry for a trivial example so the reader understands 

what we mean by a physics symmetry 
• Finally bring in Wigner and his atomic spectra (cite paper) and mention a general outline for the 

article 
 
Group Theory: Introduce what a group is in very basic terms and describe how they can be used to identify a 
symmetry (ie. By transformations forming groups) [~350 words] 

• Define a group by its 4 main properties 
• Give an example of a group (Likely to be a matrix group as this can be referred to later in the text for 

rotational invariances) 
• Motivate the use of group since they are basis independent, and very abstract and so represent a far 

more general case 
• Give extra places for the reader to look stuff up if (s)he wants to learn more about this area 

 
Global Symmetries: Define and introduce the idea of global transformations, which lead to invariances and 
symmetries. Link this to important developments in physics [~1000 words] 

• Define a global symmetry 
• Define Noether’s Theorem 
• Bring in the three basic operations: Translation in time, space and rotation and link these to their 

conserved quantities 
• Talk about how in QM we can sum the invariant equations to create a new solution 
• Show the 𝑒𝑖𝜙𝜓conservation as an example of invariance and state what this leads to (charge 

invariance) 
• Bring in the Parity and Time conservation laws (via the complex conjugate of the Wave function) 
• Talk about how the above three lead to CPT symmetry and Yang-Mill’s theory 
• Mention that there are other global symmetries involving the rotational group defined before and also 

bring in that all global create group. 
 
Local Symmetries: Define the local symmetries and what they mean. Discuss how they’re useful in physics 
[~750 words] 

• Define a Local symmetry and maybe discuss their inception during the 1960s for context 
• Define and give the example of the EM gauging in QM which fixes the way the particles interact with 

the gauged fields 
• Bring in how it forces the existence of special particles like Bosons etc. 

 
Breaking Symmetries and the Future: Talk about how we believe all true symmetries are local and global ones 
are almost always broken (ongoing discussion) and talk about the future in terms of Quantum Gravity [~550 
words] 

• Bring in the breaking of symmetry (magnetism) and Gross’ arguments for only local symmetry 
• Finally bring in the idea of supersymmetry and quantum gravity 
• Finish with a sentence highlighting the importance of this all 
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• There will often be images and diagrams explicitly showing the ideas discussed in this article since this 
area can be explained very visually as well as mathematically 

• There will be equations but nothing that is above a 2nd year who has all the quantum taught in second 
year 

This is an interesting but very technical subject. I hope you are able to explain the key 
concepts succinctly and at the appropriate level. There are a large number of subjects you 
are attempting to tackle so I hope you can tie them together into a coherent article that is 
not just a textbook. 
 
 
Response: 
The feedback highlights the issues that will occur a lot during the article, however by 
modelling my article off articles in high level magazines – such as “Physics Today” or “Physics 
World” – I hope to avoid these issues. Throughout writing the article I have comes across 
these problems but I hope by using clear explanation and succinct examples, the topics 
become easier to tackle. 
 


