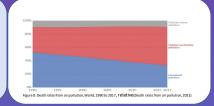
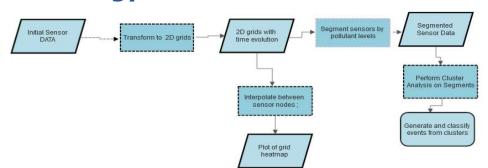
Supervisor: Mark RICHARDS

Characterization of pollution events in simulated sensor network datasets


Cephren REES

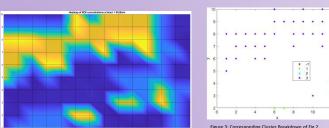
Background


- Air pollution is a danger to public health, being the leading environmental risk factor for mortality/ill health. (Air pollution and health | UNECE, 2021)
- Monitoring pollutant levels can assist community response to the challenges posed by this threat.
- Sensor networks represent a valuable new paradigm in this regard. (Ma et al., 2008)
- Characterization of pollution events from network generated datasets develops critical analytical tools and ensures a set of benchmarks for fidelity and accuracy when transitioning to a roving ad-hoc sensor network.

Research Aims

- Visualize evolution of pollutant levels from raw datasets.
- Develop protocols for identifying pollution events.
- Thoroughly characterize events based on salient features.

Methodology 1.a


Methodology 1.b

- Splines (piecewise defined polynomials) were used to interpolate between distinct points in order to construct a heatmap with significant resolution.
- Various cluster analysis methods were tried but the most appropriate was found to be density-based clustering. (Sander, J. et. al., 1998)
- Consistent parametrization throughout the datasets is better implemented with this method and it accounts well for outliers and arbitrary cluster shapes.
- The method is based on principle of ϵ -neighbourhood for points p, q of dataset such that

$$N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$$

• Rates of information loss for clusters throughout timesheets define duration of event.

Results

- · Primary protocol of event detection Is cluster analysis.
- Density based clustering accounts for arbitrary shapes and outliers, data segmentation and initial parametrization crucial to algorithm implementation.
- · Ongoing analysis of cluster features.
- · Interlinking clusters throughout timesheets into events is key to full event characterization.

Conclusions

- Density based clustering ideal for uniform parametrization
- Quantifying information loss will be key to defining extent of an event
- Revisions to segmentation and clustering algorithms expected.
- Future focus on grouping clusters through time into events
- Not all clusters are equal when defining events.

References