Quantum Computers
Privacy? Latex Word

- The Death of
Count: 2435

uantum computers are obfuscated by

their inherent weirdness - questions

quite naturally arise when one pokes
at the topic. What is a quantum computer?
How on earth do they work? And perhaps
most poignant: why should I care? Indeed
the difficulties in implementing them some-
what vindicate the latter question, but from
the standpoint of an abstract computational
model they offer tangible benefits to the
computer that you may be reading this on.
The influential hand of the internet brings a
growing interconnectedness of society, but we
quite often take for granted the protection of
our personal information from snoopers and
meddlers; indeed close to half of businesses
reported cyber security breaches in 2019 [1].
How can we make this data unreadable? The
answer to your question: schemes such as
RSA (Rivest—Shamir—Adleman) encryption,
which relies on how painful it is to decompose
large numbers into a product of two primes,
making the data gobbledygook to any unin-
tended party. Every time you buy a snazzy
new coat online, or send someone that very
private message on your phone, RSA encryp-
tion has your back. In reality, your comfort
is thanks to the exponential time complex-
ity required to break RSA encryption - buy
it a pint next time you stumble into it at
the pub. But what if those private messages
weren’t safe, or your credit card in the hands
of thieves? Well, quantum computers may
threaten this safety, but hold your horses -
before you descend into all out panic there
are some factors that work in your favour...

The Maths Behind RSA Encryption

To understand RSA encryption, a quick refresh
in modular arithmetic is required. Succinctly, a
mod (b) is the remainder we get when we compute
£ [2]. Simple? I'm sure you can convince yourself
that 18 mod (7) is 4, and 3 mod (4) is 3. Simple
enough.

The grandiosely named fundamental theorem of
arithmetic states that any positive integer apart from
1 has a unique representation as a product of primes
(POP). Basically, multiply together a very specific
selection of primes and you can arrive at whatever
number you want.

Integers a and b are said to be relatively prime if
there are no common primes in their POP decompo-
sition. For some integer n, imagine s(n) is the set of
positive integers smaller than and relatively prime to
n. Euler came up with the phi function ¢(n), defined
as the cardinality or length of s(n). When we can
decompose n into a product of two primes, p and q,
we have that ¢(n) = ¢(p x g) = (p— 1)(g — 1) [2].

Let’s put this jargon to use! Let’s say you want to
securely send the meaning of life, 42, to your friend
John. Now, imagine (as in table 1) that each and
every person has two publicly accessible numbers,
N and c. Njopp is a painfully large number and
moreover a product of two smaller - but still sizeable
- primes, p and g, which quite rightly only John knows.
Moreover, ¢jony, is a very (very) large number that is
relatively prime to ¢(Njonn) = ¢(pxq) = (p—1)(¢—1)
[2]. Of course, John would never publish ¢(N;onn)
as one could then easily determine p and q!

We take the number 42, and apply the mapping:
m — m® mod (Njonn) to get the encrypted mes-
sage which we shall call 7 [2],[3]. Now beckons the
question - How on earth would John decrypt this
gibberish? Indeed this is a little more painful but

page 1 of 5

H Name N C H
John Njohn Cjohn
You Nyou Cyou

Table 1: Our Publicly accessible RSA details. Adapted
from [2].

still relatively doable.

Firstly, John would find the integer x that satisfies
T X Cjohn = 1 mod (¢(Njonn)). He then calculates
(m)* mod (Njonn) to retrieve m [3]. Phew!

Now why is this whole process airtight? Well,
to decrypt the message John needs x. We know x
can only be retrieved if ¢(Njopny,) is known and since
&(Njohn) = (p — 1)(¢ — 1), one must know p and ¢
[2]. The real crux of the process is that finding p
and q is exceptionally time consuming if you don’t
know it already - if IV has n bits, then the best time
complexity we can get is 20(n'/?) [4], which grows
exponentially with the number of digits. Hopefully
you’ll forgive how irritating I was in saying Njon,
was large so many times.

Using some laborious maths, the problem of fac-
toring Njony, into p and ¢ essentially boils down to
period finding [5].

Going Beyond Classical

Now I’'m almost certain you’ve encountered the bi-
nary number system; the parlance of every single
computer you've ever used. A 1 is represented by
the presence of an electrical signal, and 0 by the
absence. These are the fundamental units of compu-
tation called bits, or to avoid later ambiguity, cbits
[6]. Different permutations of 0’s and 1’s can be used
to transmit information [7]. For example 101001 is
equivalent to the decimal representation 41. What
use is this at all? Well, devising mappings from bi-
nary numbers to letters allow for the transmission of
information; for instance “hi” may be represented as
01101000 01101001 using the ASCII (American Stan-
dard Code for Information Interchange) encoding
system [8].

Quantum computers do things a little differently.
Memory states are represented by what are called
ket-vectors. For instance, the one state is defined as

1) = <(1)> , and the zero state is defined as |0) = <(1)> :

These are known as basis states [7]. Most have heard
of a notorious and somewhat fatigued thought exper-
iment where a cat is put in a the box, and poison
is released as a result of (an entirely quantum) ra-

dioactive decay. The poor little thing is described
as being dead and alive! - in a superposition of the
two “states”. Similarly, any such memory system
can exist in a linear superposition of the basis states,
and so we construct the general state - known more
formally as the wavefunction - of a single cubit as
|v) = a|l) 4+ 5]0) [9],[6]. The numbers o and 3 are
called amplitudes may be real or complex, but sat-
isfy the normalisation condition: |a|? + |8]? = 1 [6].
The careful eye might notice that we are essentially
giving a weighting to each state; if @ > (3, there
must be some “preference” of state |1) over |0).This
is somewhat true - |a|? is simply the probability
that once we measure the memory state (don’t worry
yourself on how on earth we’d do this) the state is
in the |1) [6]. After the measurement, the memory
state “collapses” to either |0) or |1) permanently.
As a matter of fact, we don’t really care about |0)
and 1), we could use any vectors that are linearly
independent; they’ll do a fine job of acting as the
basis to construct [¢) [5]. Quite obviously we’d like
something a little more sophisticated. A two qubit
state is the linear combination of new basis states:
0y @ [0) = [00), [0) @ [1) = [01), [1) @ 1) = [11) and
|1) ® |0) = [10) [7]. So for two qubits, we can write
|th2) = «|00) + 8|01) +~|11) 4+ §[10). Here ® is called
the tensor product, defined by [10]

bo apbo

[ao]@)[bo]_ ao[bl] | aobr
ay b | a [bo] | aibo
! bl a1b1

You might guess that generalising this for a mem-
ory state of n qubits involves forming the linear

combination of all N = 2" basis states, |B;) =
|biba ... bj...by—1b,) where b; can be a 0 or 1
[7]. As before, we can write the superposition as

n = SN a;|B;) with the condition 3N | |a;|? = 1.
Once again, measurements cause the memory state
to collapse into one of the |B;) with probability |a;|?.
It is this superposition that makes quantum comput-
ers so special; being able to act on all the states at
once means a quantum computer with 300 qubits
could perform more calculations in a fraction of a

second than there are atoms in this huge universe
[11].

Logic Gates, The Hadamard Gate
and Deutsch’s Problem

Logic gates are an abstract model of computation
that operate using the principles of Boolean algebra;

'No cats were hurt in the writing of this article...

page 2 of 5

think true or false, 1 or 0 [12]. For instance, “you’ve
fallen asleep from boredom” is false (0) and “I'm
definitely overthinking this example” is true (1). In
short, logic gates take a true or false input and return
one of the two. Not too complicated. To put this
into perspective, let’s look at the imaginarily named
NOT gate. We can represent its behaviour using a
grandly named truth table:

H Input Output H

0 1
1 0

Table 2: Truth table for a NOT gate [12]

As you might have guessed by now, like the edgy
kid in school, quantum computers like to do things
differently. The equivalent of the not gate is the
Pauli-X gate - I know it sounds cool, but it isn’t. It
is represented as a matrix [9]

0 1
X = .
i o
One important thing to note is that these logic
gates - transformations in maths speak - need to
preserve the magnitude squared of whatever they’re
acting on, so the corresponding matrices must be
unitary [5]. The Hadamard gate is a little (but
only slightly) more interesting. It maps |0) <> |s) =
75(10) + 1)) and [1) > [d) = —5(|0) — [1)), and so
may be represented by the matrix [9]

PR A
V2 [1 —1

The Hadamard gate really comes into its own in
something called Deutsch’s problem; perhaps the
simplest (and earliest) way to demonstrate why a
quantum computer is that much more powerful. Let’s
say after a night out you stumble into your house in a
drunkenly state only to forget if that one pesky switch
is connected to your porch light. You definitely need
this light - stumbling in the dark isn’t a good idea
sober let alone drunk. Now, you of course know
that you’d need to observe the state of the light at
two separate switch positions [5]; firstly in the initial
state of the switch you must observe the initial state
of the light. After a flick of the switch you need to
once more look at the light. Quite obviously, if the
state of the light has changed in the process, you
must be pecking at the right switch.

However difficult it may be in your current drunken
state, let’s express this mathematically. If the light

system is represented as the function L, then we
can say L: {0,1} — {0,1}. Here the domain {0, 1}
represents whether the switch is down or up, and
the codomain {0, 1} represents the light being off or
on. If L(0) = L(1)(= 0 or 1) the state of the light
is independent of the switch position so the switch
is therefore not connected to the light. Similarly,
if L(0) # L(1) then the switch is connected to the
light [5]. To investigate if L(0) = L(1), we need two
uses of L, one for L(0) and the other for L(1), to
determine if the switch is connected. What about
in the weird world of quantum mechanics? In short,
superposition allows us to do this entire process more
efficiently; in fact, only one use L is needed. You can
think of this as checking the light for two different
positions of the switch at once, since the switch
can be in a superposition of on and off [5]. This
sort of thing falls into a class of computation called
Quantum Parallelism. The light for our quantum
case is represented by the black box in figure 1. Let’s
prepare the switch in the state |0) and feed it into
the Hadamard gate to get a neat little superposition
in figure 2. L can act on the superposition, treating
each state independently, and another Hadamard is
used to get back to +|0) or +|1). The state being
in £|0) requires L(0) = L(1), and so is the case in
which the switch is connected [5].

1X) (-1)-]X)

— >

Figure 1: The function,L, applied to a general quantum
state |x). Adapted from [5]

_7{)"O10) + (~1)* 1) |
T{ 0) + 1)) = s) L(0) = L(1)
2 0) = [1)) = £[d) L(0) # L(1)

20 H LW=H

J

q

L(0

)= L(1)
L(0) #

7 (0 +11)) {i“” e

+[1)

Figure 2: How we’d go about using the switch once to
test the light. Adapted from [5]

Deutch interestingly came to the conclusion that

page 3 of 5

what he was doing was finding the period of this
function L. Let’s imagine a periodic function p(z).
The condition for periodicity is p(z) = p(z + T),
straight away noting that T is the period of the

function. Applying this to our example, we can
write:
L(0) = L(1) goes to L(z) = L(z + 1) and

L(0) # L(1) goes to L(z) = L(z + 0).
Essentially, the switch is connected to the light if
L(z) has only the trivial case of zero periodicity [5].

Period Finding and The Quantum
Fourier Transform

You would have experienced period finding in the
classical sense before; the Fourier transform of a func-
tion, say f(x), is a way of stepping out of the spatial
domain and into the spatial frequency domain, f(k).
If I were to give you a set of discrete data in vector
form, you might half-heartedly carry out a discrete
Fourier transform (DFT) on the data, perhaps using
python or your weapon of choice. Now a DFT is
long to calculate, really long, so we can speed the en-
tire process up using a fast Fourier transform (FFT)
or even better a quantum Fourier transform (QFT).
The DFT and QFT share almost the exact same
formalism - the difference is on the data in which
they operate and a pesky normalisation factor [13].
The real difference is that the QFT acts on the am-
plitudes of our quantum state. Remember when we
wrote a general memory state or wavefunction of n
qubits as ¥, = Zf\; 1 @;|B;i)? Applying a QFT would
involve transforming «; to &; - the representation in
reciprocal space - and so QFT (¢y,) = Zf\;1 Q| Bj).
As a matter of fact, the QFT has a time complexity
of O(log? N) as opposed to O(N log N) for the FFT
- an exponential time improvement [13],[14]. Remem-
ber when we brushed over the fact that factoring
was fundamentally a period finding problem? Here
comes the nail in the coffin - the QFT is used in
something called Shor’s algorithm to find the period
of the function involved in the factoring problem
much more quickly [9]. T suppose now you see how
quantum computers are able to threaten the integrity
of RSA encryption. They attack the main working
principle - the difficulty of factoring large numbers -
head on.

Why Should | Care?

Phew! That was a whole load of information. Now
what does this actually mean? Well in short it’s

possible for somebody to devise a machine that can
break RSA encryption. The impacts of of this are
far reaching. Consider for instance the impact of
such technologies on the already fraught terrain of
national cyber security or indeed electoral politics.
The impacts could be equally far reaching for how
citizens of states are surveilled by their governments
and the ramifications of such technologies for civil
rights and liberties.

Hold your horses! Before you absolutely lose it
there are several caveats. Firstly, there’s the diffi-
culty of constructing such a computer. Interactions
from the outside environment such as heat flow, vi-
brations (or indeed other mechanical disturbances)
and electromagnetic wave interference cause deco-
herence whereby the system loses its “quantumness”
and becomes more and more classical [15]. Moreover,
looking for errors in quantum computers is tricky
- observing the state in the first place would cause
the system to collapse into one of the basis states,
breaking the superposition that we’re so fond of [16].
Finding errors in Quantum computers is like trying
to find that pesky socket under your bed to charge
your phone in the pitch black of night. Typical error
corrections with cbits involve making several copies
of the same bit, and so instead of transmitting 1, 1111
could be transmitted instead. Majority voting relies
on the fact that only a few bits of the whole cohort
would flip, and so the correct state of a given bit is de-
termined by the most common digit. Unfortunately,
the no-cloning theorem in quantum mechanics makes
this difficult - its impossible to clone a qubit without
effecting it’s state [16]. This is a big problem - the
most intuitive error checking involves making a copy
at some point.

Perhaps more philosophically, this is a classic case
of built in obsolescence - much like an overly greedy
predator eating all of its prey and dying of starva-
tion - we can be sure that any breakthroughs will
be met by comparable innovation in encryption [5].
As a matter of fact, several encryption methods al-
ready exist that are conjectured to be ”quantum
secure”. The most popular of these fall into a class
of methods called hash-based cryptography, includ-
ing XMSS (eXtended Merkle Signature Scheme) and
LMS (Leighton-Micali Signature system)[17].

References

[1] UK. Gov, Cyber Security Breaches Survey 2020.

[2] S. G. Krantz, A Mathematical Odyssey Journey
from the Real to the Complex, 1st ed., 2014.

page 4 of 5

[3]

[10]

[11]

[12]

[13]

[14]

K. Mann, The science of encryption: prime
numbers and mod n arithmetic. Univer-
sity of University of California, Berkeley,
available from https://math.berkeley.edu/ kp-
mann/encryption.pdf.

U. Vazirani, Quantum Mechanics Quantum
Computation, Lecture 10: Quantum Factoring.
University of California, Berkely.

P. Hayden, The Quantum Computational
Universe Lecture Series. Stanford University,
Institute for Theoretical Physics. [Online].
Available: https://www.youtube.com/watch?
v=AqWuyeh0SxQ&t=3032s&ab_channel=
StanfordInstituteforTheoreticalPhysics

A. Dawa, Quantum Computing, Lecture 1.
University of Cambridge. [Online]. Avail-
able: https://www.cl.cam.ac.uk/teaching/1213/
QuantComp/lecturel.pdf

N. D. Mermin, Quantum Computer Science: An
Introduction. Cambridge: Cambridge Univer-
sity Press, 2007.

ASCII To Binary Converter. [Online]. Avail-
able: https://www.rapidtables.com/convert/
number /ascii- to-binary.html

R. de Wolf, Quantum Computing: Lecture
Notes. CWI and University of Amsterdam,
2019. [Online]. Available: https://arxiv.org/
abs/1907.09415

J. Wright and Y. Ding, CMU 18-859BB,
Lecture 2: Quantum Math Basics. Carnegie
Mellon University, 2015. [Online]. Avail-
able: https://www.cs.cmu.edu/~odonnell /
quantum15/lecture02.pdf

C. Choi, How Many Qubits Are Needed
for Quantum Supremacy? IEEE. [Online].
Available: https://spectrum.ieee.org/tech-talk/
computing /hardware/qubit-supremacy

S. H. Unger, The essence of logic circuits,
2nd ed., 1996.

U. Vazirani and B. Bukh, S 294-6,
Quantum Computing, Lecture 8. Univer-

sity of California, Berkeley, 2004. [Online].
Available: https://people.eecs.berkeley.edu/
~vazirani/f04quantum/notes/lec8.pdf

T. Brun, FEFE 520: Introduction to
Quantum Information Processing, Lecture

[16]

13. University of Southern California,
2017. [Online]. Available: https://viterbi-
web.usc.edu/~tbrun/Course/lecturel3.pdf

S. Pakin and P. Coles, The Problem
with Quantum Computers. Scientific
American, 2019. [Online]. Available: https:
//blogs.scientificamerican.com/observations/
the-problem-with-quantum-computers/#:
~:text=Quantum%20computers%20are%
20exceedingly %20difficult,chance%20t0%
20run%20to%20completion

A. Cho, The biggest flipping chal-
lenge mn quantum computing. Sci-
ence, 2020. [Online]. Available: https:

/ /www.sciencemag.org/news/2020/07 /biggest-
flipping-challenge-quantum-computing

F. Campos, T. Kohlstadt, S. Reith, and
M. Stottinger, “Lms vs xmss: Comparison
of stateful hash-based signature schemes on
arm cortex-m4,” in Progress in Cryptology -
AFRICACRYPT 2020, ser. Lecture Notes in
Computer Science. Springer International Pub-
lishing, 2020, pp. 258-277.

page 5 of 5

