Imperial College London

Nanothermometry of gold nanoparticles

Rachel Diamond, Georgia Foot

Background and Motivation

Metallic nanoparticles (NPs) are uniquely strong absorbers and re-emitters of light, especially when illuminated near their resonance wavelength. The position of this resonance depends on factors including NP shape and size [1].

Impact - Understanding how NPs heat up under illumination unlocks **potential applications** [2,3] in:

targeted cancer treatment

reaction catalysis

Recent literature [4] has used the spectrum of re-emitted light to extract the NP temperature: this is known as photoluminescence nanothermometry.

Research Objectives

- Develop novel methods of nanothermometry; test R.O. 1
 - (i) accuracy of each method
 - (ii) consistency between methods
- R.O. 2 Use these methods to investigate relationship between NP size and its temperature increase when illuminated

Theory

- NP is illuminated. Some NP carriers absorb incident photons and are excited.
- 2. Excited carriers interact with other carriers/phonons, losing or gaining energy. These interactions depend on the NP temperature.
- 3. Excited carrier pairs recombine, emitting a photon as photoluminescence.

The ratio between two photoluminescence spectra from the same NP under different illumination powers [4], e.g. between a spectrum of interest and a reference spectrum, is: **Equation (1)**

$$\frac{I}{I_{ref}} = \frac{P}{P_{ref}} \frac{e^{\frac{hc}{kT_{ref}} \left(\frac{1}{\lambda} - \frac{1}{\lambda_{laser}}\right)} - 1}{e^{\frac{hc}{kT} \left(\frac{1}{\lambda} - \frac{1}{\lambda_{laser}}\right)} - 1}$$

P: power I: spectral emission T: temperature λ: wavelength We can use (1) to develop 4 novel analytical methods of photoluminescence nanothermometry.

Methods 633 nm laser beam Gaussian intensity curve of laser beam Gold NP Fig. 1 Schematic of set-up to measure photoluminescence spectrum of NP at different laser powers

Measure NP photoluminescence spectra at range of laser powers by moving NP within laser beam

Wavelength (nm)

Fig. 2 5 photoluminescence spectra for the same

70nm particle, at different laser powers

640

ref. spectrum

660

Apply equation (1): use each of our 4 analytical methods to extract NP temperature at each laser power

Determine and compare temperature-power relationship between the 4 analytical methods

> Repeat 1-3 for NPs over range of sizes

Fig. 4 For 1 NP, using one of 4 analytical methods: extracted NP temperature against illumination power. T_{ref} from equation (1) is calculated iteratively until intercept lies at room temperature as shown.

Particle resonance wavelength similar to laser wavelength

Fig. 5 Gradient of temperature-power graph against NP radius. Each data point represents a different NP. Error bar shows range of gradients returned by 4 analytical methods.

- *R.O.* 1 (ii): 4 methods of photoluminescence nanothermometry developed return consistent results for each NP
- *R.O.* 2: NPs near 70nm (which have NP resonance nearest laser resonance) may have greater heating efficacies, but spread far too large to conclude this at present

Next steps

scan table

Fig. 3 NPs

illuminated by

dark field lamp

• Address R. O. 1 (i) Compare NP temperatures extracted using 4 nanothermometry methods to temperature extracted using established Raman thermometry method

spectra of

interest

laser

peak

Investigate why NPs of same size show wide range of heating behaviour (see Fig. 5)

References

- [1] El-Brolossy, T. A., et al. "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique." Eur Phys J Spec Top 153.1 (2008): 361-364
- [2] Hainfeld, James F., Daniel N. Slatkin, and Henry M. Smilowitz. "The use of gold nanoparticles to enhance radiotherapy in mice." Phys. Med. Biol. 49.18 (2004): N309
- [3] Thompson, David T. "Using gold nanoparticles for catalysis." Nano Today 2.4 (2007): 40-43
- [4] Carattino, Aquiles, Martín Caldarola, and Michel Orrit. "Gold nanoparticles as absolute nanothermometers." Nano Lett.18.2 (2018): 874-880

The NP temperature-power gradient (e.g. as in Fig. 4) describes the efficacy of the NP heating process